WorldWideScience

Sample records for non-rem nrem sleep

  1. Cells of a common developmental origin regulate REM/non-REM sleep and wakefulness in mice.

    Science.gov (United States)

    Hayashi, Yu; Kashiwagi, Mitsuaki; Yasuda, Kosuke; Ando, Reiko; Kanuka, Mika; Sakai, Kazuya; Itohara, Shigeyoshi

    2015-11-20

    Mammalian sleep comprises rapid eye movement (REM) sleep and non-REM (NREM) sleep. To functionally isolate from the complex mixture of neurons populating the brainstem pons those involved in switching between REM and NREM sleep, we chemogenetically manipulated neurons of a specific embryonic cell lineage in mice. We identified excitatory glutamatergic neurons that inhibit REM sleep and promote NREM sleep. These neurons shared a common developmental origin with neurons promoting wakefulness; both derived from a pool of proneural hindbrain cells expressing Atoh1 at embryonic day 10.5. We also identified inhibitory γ-aminobutyric acid-releasing neurons that act downstream to inhibit REM sleep. Artificial reduction or prolongation of REM sleep in turn affected slow-wave activity during subsequent NREM sleep, implicating REM sleep in the regulation of NREM sleep.

  2. CAN NON-REM SLEEP BE DEPRESSOGENIC

    NARCIS (Netherlands)

    BEERSMA, DGM; VANDENHOOFDAKKER, RH

    Sleep and mood are clearly interrelated in major depression, as shown by the antidepressive effects of various experiments, such as total sleep deprivation, partial sleep deprivation, REM sleep deprivation, and temporal shifts of the sleep period. The prevailing hypotheses explaining these effects

  3. Can non-REM sleep be depressogenic?

    NARCIS (Netherlands)

    Beersma, Domien G.M.; Hoofdakker, Rutger H. van den

    1992-01-01

    Sleep and mood are clearly interrelated in major depression, as shown by the antidepressive effects of various experiments, such as total sleep deprivation, partial sleep deprivation, REM sleep deprivation, and temporal shifts of the sleep period. The prevailing hypotheses explaining these effects

  4. Can non-REM sleep be depressogenic?

    NARCIS (Netherlands)

    Beersma, Domien G.M.; Hoofdakker, Rutger H. van den

    1992-01-01

    Sleep and mood are clearly interrelated in major depression, as shown by the antidepressive effects of various experiments, such as total sleep deprivation, partial sleep deprivation, REM sleep deprivation, and temporal shifts of the sleep period. The prevailing hypotheses explaining these effects c

  5. CAN NON-REM SLEEP BE DEPRESSOGENIC

    NARCIS (Netherlands)

    BEERSMA, DGM; VANDENHOOFDAKKER, RH

    1992-01-01

    Sleep and mood are clearly interrelated in major depression, as shown by the antidepressive effects of various experiments, such as total sleep deprivation, partial sleep deprivation, REM sleep deprivation, and temporal shifts of the sleep period. The prevailing hypotheses explaining these effects c

  6. Is the nonREM-REM sleep cycle reset by forced awakenings from REM sleep?

    NARCIS (Netherlands)

    Grozinger, M; Beersma, DGM; Fell, J; Roschke, J

    2002-01-01

    In selective REM sleep deprivation (SRSD), the occurrence of stage REM is repeatedly interrupted by short awakenings. Typically, the interventions aggregate in clusters resembling the REM episodes in undisturbed sleep. This salient phenomenon can easily be explained if the nonREM-REM sleep process i

  7. Parkinsonian tremor loses its alternating aspect during non-REM sleep and is inhibited by REM sleep.

    Science.gov (United States)

    Askenasy, J J; Yahr, M D

    1990-01-01

    Non-REM sleep transforms the waking alternating Parkinsonian tremor into subclinical repetitive muscle contractions whose amplitude and duration decrease as non-REM sleep progresses from stages I to IV. During REM sleep Parkinsonian tremor disappears while the isolated muscle events increase significantly. PMID:2246656

  8. Parkinsonian tremor loses its alternating aspect during non-REM sleep and is inhibited by REM sleep.

    OpenAIRE

    Askenasy, J. J.; Yahr, M D

    1990-01-01

    Non-REM sleep transforms the waking alternating Parkinsonian tremor into subclinical repetitive muscle contractions whose amplitude and duration decrease as non-REM sleep progresses from stages I to IV. During REM sleep Parkinsonian tremor disappears while the isolated muscle events increase significantly.

  9. Retention over a Period of REM or non-REM Sleep.

    Science.gov (United States)

    Tilley, Andrew J.

    1981-01-01

    Subjects, awaked, presented with a word list, and tested with arousal measures, were reawaked during REM or non-REM sleep and retested. Recall was facilitated by REM sleep. It was hypothesized that the high arousal level associated with REM sleep incidentally maintained the memory trace in a more retrievable form. (Author/SJL)

  10. Endocannabinoid modulation of cortical up-states and NREM sleep.

    Directory of Open Access Journals (Sweden)

    Matthew J Pava

    Full Text Available Up-/down-state transitions are a form of network activity observed when sensory input into the cortex is diminished such as during non-REM sleep. Up-states emerge from coordinated signaling between glutamatergic and GABAergic synapses and are modulated by systems that affect the balance between inhibition and excitation. We hypothesized that the endocannabinoid (EC system, a neuromodulatory system intrinsic to the cortical microcircuitry, is an important regulator of up-states and sleep. To test this hypothesis, up-states were recorded from layer V/VI pyramidal neurons in organotypic cultures of wild-type or CB1R knockout (KO mouse prefrontal cortex. Activation of the cannabinoid 1 receptor (CB1 with exogenous agonists or by blocking metabolism of endocannabinoids, anandamide or 2-arachidonoyl glycerol, increased up-state amplitude and facilitated action potential discharge during up-states. The CB1 agonist also produced a layer II/III-selective reduction in synaptic GABAergic signaling that may underlie its effects on up-state amplitude and spiking. Application of CB1 antagonists revealed that an endogenous EC tone regulates up-state duration. Paradoxically, the duration of up-states in CB1 KO cultures was increased suggesting that chronic absence of EC signaling alters cortical activity. Consistent with increased cortical excitability, CB1 KO mice exhibited increased wakefulness as a result of reduced NREM sleep and NREM bout duration. Under baseline conditions, NREM delta (0.5-4 Hz power was not different in CB1 KO mice, but during recovery from forced sleep deprivation, KO mice had reduced NREM delta power and increased sleep fragmentation. Overall, these findings demonstrate that the EC system actively regulates cortical up-states and important features of NREM sleep such as its duration and low frequency cortical oscillations.

  11. The Memory Function of Noradrenergic Activity in Non-REM Sleep

    Science.gov (United States)

    Gais, Steffen; Rasch, Bjorn; Dahmen, Johannes C.; Sara, Susan; Born, Jan

    2011-01-01

    There is a long-standing assumption that low noradrenergic activity during sleep reflects mainly the low arousal during this brain state. Nevertheless, recent research has demonstrated that the locus coeruleus, which is the main source of cortical noradrenaline, displays discrete periods of intense firing during non-REM sleep, without any signs of…

  12. Arousal state feedback as a potential physiological generator of the ultradian REM/NREM sleep cycle.

    Science.gov (United States)

    Phillips, A J K; Robinson, P A; Klerman, E B

    2013-02-21

    Human sleep episodes are characterized by an approximately 90-min ultradian oscillation between rapid eye movement (REM) and non-REM (NREM) sleep stages. The source of this oscillation is not known. Pacemaker mechanisms for this rhythm have been proposed, such as a reciprocal interaction network, but these fail to account for documented homeostatic regulation of both sleep stages. Here, two candidate mechanisms are investigated using a simple model that has stable states corresponding to Wake, REM sleep, and NREM sleep. Unlike other models of the ultradian rhythm, this model of sleep dynamics does not include an ultradian pacemaker, nor does it invoke a hypothetical homeostatic process that exists purely to drive ultradian rhythms. Instead, only two inputs are included: the homeostatic drive for Sleep and the circadian drive for Wake. These two inputs have been the basis for the most influential Sleep/Wake models, but have not previously been identified as possible ultradian rhythm generators. Using the model, realistic ultradian rhythms are generated by arousal state feedback to either the homeostatic or circadian drive. For the proposed 'homeostatic mechanism', homeostatic pressure increases in Wake and REM sleep, and decreases in NREM sleep. For the proposed 'circadian mechanism', the circadian drive is up-regulated in Wake and REM sleep, and is down-regulated in NREM sleep. The two mechanisms are complementary in the features they capture. The homeostatic mechanism reproduces experimentally observed rebounds in NREM sleep duration and intensity following total sleep deprivation, and rebounds in both NREM sleep intensity and REM sleep duration following selective REM sleep deprivation. The circadian mechanism does not reproduce sleep state rebounds, but more accurately reproduces the temporal patterns observed in a normal night of sleep. These findings have important implications in terms of sleep physiology and they provide a parsimonious explanation for the

  13. REM sleep deprivation during 5 hours leads to an immediate REM sleep rebound and to suppression of non-REM sleep intensity

    NARCIS (Netherlands)

    Beersma, D.G.M.; Dijk, D.J.; Blok, Guus; Everhardus, I.

    Nine healthy male subjects were deprived of REM sleep during the first 5 h after sleep onset. Afterwards recovery sleep was undisturbed. During the deprivation period the non-REM EEG power spectrum was reduced when compared to baseline for the frequencies up to 7 Hz, despite the fact that non-REM

  14. REM sleep deprivation during 5 hours leads to an immediate REM sleep rebound and to suppression of non-REM sleep intensity

    NARCIS (Netherlands)

    Beersma, D.G.M.; Dijk, D.J.; Blok, Guus; Everhardus, I.

    1990-01-01

    Nine healthy male subjects were deprived of REM sleep during the first 5 h after sleep onset. Afterwards recovery sleep was undisturbed. During the deprivation period the non-REM EEG power spectrum was reduced when compared to baseline for the frequencies up to 7 Hz, despite the fact that non-REM sl

  15. 5'-Ectonucleotidase-knockout mice lack non-REM sleep responses to sleep deprivation.

    Science.gov (United States)

    Zielinski, Mark R; Taishi, Ping; Clinton, James M; Krueger, James M

    2012-06-01

    Adenosine and extracellular adenosine triphosphate (ATP) have multiple physiological central nervous system actions including regulation of cerebral blood flow, inflammation and sleep. However, their exact sleep regulatory mechanisms remain unknown. Extracellular ATP and adenosine diphosphate are converted to adenosine monophosphate (AMP) by the enzyme ectonucleoside triphosphate diphosphohydrolase 1, also known as CD39, and extracellular AMP is in turn converted to adenosine by the 5'-ectonuleotidase enzyme CD73. We investigated the role of CD73 in sleep regulation. Duration of spontaneous non-rapid eye movement sleep (NREMS) was greater in CD73-knockout (KO) mice than in C57BL/6 controls whether determined in our laboratory or by others. After sleep deprivation (SD), NREMS was enhanced in controls but not CD73-KO mice. Interleukin-1 beta (IL1β) enhanced NREMS in both strains, indicating that the CD73-KO mice were capable of sleep responses. Electroencephalographic power spectra during NREMS in the 1.0-2.5 Hz frequency range was significantly enhanced after SD in both CD73-KO and WT mice; the increases were significantly greater in the WT mice than in the CD73-KO mice. Rapid eye movement sleep did not differ between strains in any of the experimental conditions. With the exception of CD73 mRNA, the effects of SD on various adenosine-related mRNAs were small and similar in the two strains. These data suggest that sleep is regulated, in part, by extracellular adenosine derived from the actions of CD73.

  16. Bistability breaks-off deterministic responses to intracortical stimulation during non-REM sleep

    Directory of Open Access Journals (Sweden)

    Andrea Pigorini

    2015-04-01

    These results point to bistability as the underlying critical mechanism that prevents the emergence of complex interactions in human thalamocortical networks during NREM sleep. Besides sleep, the same basic neurophysiological dynamics may play a role in pathological conditions(Casali et al., 2013; Rosanova et al., 2012 where cortico-cortical communication and consciousness are impaired in spite of preserved neuronal activity.

  17. Breathing during REM and non-REM sleep: correlated versus uncorrelated behaviour

    Science.gov (United States)

    Kantelhardt, Jan W.; Penzel, Thomas; Rostig, Sven; Becker, Heinrich F.; Havlin, Shlomo; Bunde, Armin

    2003-03-01

    Healthy sleep can be characterized by several stages: deep sleep, light sleep, and REM sleep. Here we show that these sleep stages lead to different autonomic regulation of breathing. Using the detrended fluctuation analysis up to the fourth order we find that breath-to-breath intervals and breath volumes separated by several breaths are long-range correlated during the REM stages and during wake states. In contrast, in the non-REM stages (deep sleep and light sleep), long-range correlations are absent. This behaviour is very similar to the correlation behaviour of the heart rate during the night and may be related to the phase synchronization between heartbeat and breathing found recently. We speculate that the differences are caused by different cortically influenced control of the autonomic nervous system.

  18. Sleep-related epileptic behaviors and non-REM-related parasomnias: Insights from stereo-EEG.

    Science.gov (United States)

    Gibbs, Steve A; Proserpio, Paola; Terzaghi, Michele; Pigorini, Andrea; Sarasso, Simone; Lo Russo, Giorgio; Tassi, Laura; Nobili, Lino

    2016-02-01

    During the last decade, many clinical and pathophysiological aspects of sleep-related epileptic and non-epileptic paroxysmal behaviors have been clarified. Advances have been achieved in part through the use of intracerebral recording methods such as stereo-electroencephalography (S-EEG), which has allowed a unique "in vivo" neurophysiological insight into focal epilepsy. Using S-EEG, the local features of physiological and pathological EEG activity in different cortical and subcortical structures have been better defined during the entire sleep-wake spectrum. For example, S-EEG has contributed to clarify the semiology of sleep-related seizures as well as highlight the specific epileptogenic networks involved during ictal activity. Moreover, intracerebral EEG recordings derived from patients with epilepsy have been valuable to study sleep physiology and specific sleep disorders. The occasional co-occurrence of NREM-related parasomnias in epileptic patients undergoing S-EEG investigation has permitted the recordings of such events, highlighting the presence of local electrophysiological dissociated states and clarifying the underlying pathophysiological substrate of such NREM sleep disorders. Based on these recent advances, the authors review and summarize the current and relevant S-EEG literature on sleep-related hypermotor epilepsies and NREM-related parasomnias. Finally, novel data and future research hypothesis will be discussed.

  19. Enhancement of Neocortical-Medial Temporal EEG Correlations during Non-REM Sleep

    Directory of Open Access Journals (Sweden)

    Nikolai Axmacher

    2008-01-01

    Full Text Available Interregional interactions of oscillatory activity are crucial for the integrated processing of multiple brain regions. However, while the EEG in virtually all brain structures passes through substantial modifications during sleep, it is still an open question whether interactions between neocortical and medial temporal EEG oscillations also depend on the state of alertness. Several previous studies in animals and humans suggest that hippocampal-neocortical interactions crucially depend on the state of alertness (i.e., waking state or sleep. Here, we analyzed scalp and intracranial EEG recordings during sleep and waking state in epilepsy patients undergoing presurgical evaluation. We found that the amplitudes of oscillations within the medial temporal lobe and the neocortex were more closely correlated during sleep, in particular during non-REM sleep, than during waking state. Possibly, the encoding of novel sensory inputs, which mainly occurs during waking state, requires that medial temporal dynamics are rather independent from neocortical dynamics, while the consolidation of memories during sleep may demand closer interactions between MTL and neocortex.

  20. Automated NREM Sleep Staging Using the Electro-oculogram

    NARCIS (Netherlands)

    Garcia-Molina, G.; Abtahi, S.F.; Lagares-Lemos, M.

    2012-01-01

    Automatic sleep staging from convenient and unobtrusive sensors hasreceived considerable attention lately because this can enable a large range of potential applications in the clinical and consumer fields. In this paper the focus is on achieving non REM sleep staging from ocular electrodes. From th

  1. Short Meditation Trainings Enhance Non-REM Sleep Low-Frequency Oscillations.

    Directory of Open Access Journals (Sweden)

    Daniela Dentico

    Full Text Available We have recently shown higher parietal-occipital EEG gamma activity during sleep in long-term meditators compared to meditation-naive individuals. This gamma increase was specific for NREM sleep, was present throughout the entire night and correlated with meditation expertise, thus suggesting underlying long-lasting neuroplastic changes induced through prolonged training. The aim of this study was to explore the neuroplastic changes acutely induced by 2 intensive days of different meditation practices in the same group of practitioners. We also repeated baseline recordings in a meditation-naive cohort to account for time effects on sleep EEG activity.High-density EEG recordings of human brain activity were acquired over the course of whole sleep nights following intervention.Sound-attenuated sleep research room.Twenty-four long-term meditators and twenty-four meditation-naïve controls.Two 8-h sessions of either a mindfulness-based meditation or a form of meditation designed to cultivate compassion and loving kindness, hereafter referred to as compassion meditation.We found an increase in EEG low-frequency oscillatory activities (1-12 Hz, centered around 7-8 Hz over prefrontal and left parietal electrodes across whole night NREM cycles. This power increase peaked early in the night and extended during the third cycle to high-frequencies up to the gamma range (25-40 Hz. There was no difference in sleep EEG activity between meditation styles in long-term meditators nor in the meditation naïve group across different time points. Furthermore, the prefrontal-parietal changes were dependent on meditation life experience.This low-frequency prefrontal-parietal activation likely reflects acute, meditation-related plastic changes occurring during wakefulness, and may underlie a top-down regulation from frontal and anterior parietal areas to the posterior parietal and occipital regions showing chronic, long-lasting plastic changes in long-term meditators.

  2. Lucid dreaming during NREM sleep: Two case reports

    OpenAIRE

    Stumbrys, Tadas; Erlacher, Daniel

    2012-01-01

    Lucid dreams – dreams in which the dreamer is aware that is dreaming – most frequently occur during REM sleep, yet there is some evidence suggesting that lucid dreaming can occur during NREM sleep as well. By conducting a sleep laboratory study on lucid dreams, we found two possible instances of lucidity during NREM sleep which are reported here. While lucid dreaming during NREM sleep seems to be much rarer and more difficult to achieve, it appears to be possible and is most likely to occur d...

  3. Lucid dreaming during NREM sleep: Two case reports

    OpenAIRE

    Stumbrys, Tadas; Erlacher, Daniel

    2012-01-01

    Lucid dreams – dreams in which the dreamer is aware that is dreaming – most frequently occur during REM sleep, yet there is some evidence suggesting that lucid dreaming can occur during NREM sleep as well. By conducting a sleep laboratory study on lucid dreams, we found two possible instances of lucidity during NREM sleep which are reported here. While lucid dreaming during NREM sleep seems to be much rarer and more difficult to achieve, it appears to be possible and is most likely to occur d...

  4. Information processing during NREM sleep and sleep quality in insomnia.

    Science.gov (United States)

    Ceklic, Tijana; Bastien, Célyne H

    2015-12-01

    Insomnia sufferers (INS) are cortically hyperaroused during sleep, which seems to translate into altered information processing during nighttime. While information processing, as measured by event-related potentials (ERPs), during wake appears to be associated with sleep quality of the preceding night, the existence of such an association during nighttime has never been investigated. This study aims to investigate nighttime information processing among good sleepers (GS) and INS while considering concomitant sleep quality. Following a multistep clinical evaluation, INS and GS participants underwent 4 consecutive nights of PSG recordings in the sleep laboratory. Thirty nine GS (mean age 34.56±9.02) and twenty nine INS (mean age 43.03±9.12) were included in the study. ERPs (N1, P2, N350) were recorded all night on Night 4 (oddball paradigm) during NREM sleep. Regardless of sleep quality, INS presented a larger N350 amplitude during SWS (p=0.042) while GS showed a larger N350 amplitude during late-night stage 2 sleep (p=0.004). Regardless of diagnosis, those who slept objectively well showed a smaller N350 amplitude (p=0.020) while those who slept subjectively well showed a smaller P2 (pInformation processing seems to be associated with concomitant subjective and objective sleep quality for both GS and INS. However, INS show an alteration in information processing during sleep, especially for inhibition processes, regardless of their sleep quality.

  5. The glycolytic metabolite methylglyoxal induces changes in vigilance by generating low-amplitude non-REM sleep.

    Science.gov (United States)

    Jakubcakova, Vladimira; Curzi, M Letizia; Flachskamm, Cornelia; Hambsch, Boris; Landgraf, Rainer; Kimura, Mayumi

    2013-11-01

    Methylglyoxal (MG), an essential by-product of glycolysis, is a highly reactive endogenous α-oxoaldehyde. Although high levels of MG are cytotoxic, physiological doses of MG were shown to reduce anxiety-related behavior through selective activation of γ-aminobutyric acid type A (GABAA) receptors. Because the latter play a major role in sleep induction, this study examined the potential of MG to regulate sleep. Specifically, we assessed how MG influences sleep-wake behavior in CD1 mice that received intracerebroventricular injections of either vehicle or 0.7 µmol MG at onset of darkness. We used electroencephalogram (EEG) and electromyogram (EMG) recordings to monitor changes in vigilance states, sleep architecture and the EEG spectrum, for 24 h after receipt of injections. Administration of MG rapidly induced non-rapid eye movement sleep (NREMS) and, concomitantly, decreased wakefulness and suppressed EEG delta power during NREMS. In addition, MG robustly enhanced the amount and number of episodes of an unclassified state of vigilance in which EMG, as well as EEG delta and theta power, were very low. MG did not affect overall rapid eye movement sleep (REMS) in a given 24-h period, but significantly reduced the power of theta activity during REMS. Our results provide the first evidence that MG can exert sleep-promoting properties by triggering low-amplitude NREMS.

  6. Levels of Interference in Long and Short-Term Memory Differentially Modulate Non-REM and REM Sleep.

    Science.gov (United States)

    Fraize, Nicolas; Carponcy, Julien; Joseph, Mickaël Antoine; Comte, Jean-Christophe; Luppi, Pierre-Hervé; Libourel, Paul-Antoine; Salin, Paul-Antoine; Malleret, Gaël; Parmentier, Régis

    2016-12-01

    It is commonly accepted that sleep is beneficial to memory processes, but it is still unclear if this benefit originates from improved memory consolidation or enhanced information processing. It has thus been proposed that sleep may also promote forgetting of undesirable and non-essential memories, a process required for optimization of cognitive resources. We tested the hypothesis that non-rapid eye movement sleep (NREMS) promotes forgetting of irrelevant information, more specifically when processing information in working memory (WM), while REM sleep (REMS) facilitates the consolidation of important information. We recorded sleep patterns of rats trained in a radial maze in three different tasks engaging either the long-term or short-term storage of information, as well as a gradual level of interference. We observed a transient increase in REMS amount on the day the animal learned the rule of a long-term/reference memory task (RM), and, in contrast, a positive correlation between the performance of rats trained in a WM task involving an important processing of interference and the amount of NREMS or slow wave activity. Various oscillatory events were also differentially modulated by the type of training involved. Notably, NREMS spindles and REMS rapid theta increase with RM training, while sharp-wave ripples increase with all types of training. These results suggest that REMS, but also rapid oscillations occurring during NREMS would be specifically implicated in the long-term memory in RM, whereas NREMS and slow oscillations could be involved in the forgetting of irrelevant information required for WM.

  7. NREM sleep parasomnia associated with Chiari I malformation.

    Science.gov (United States)

    Daftary, Ameet S; Walker, James M; Farney, Robert J

    2011-10-15

    Parasomnias are common sleep disorders in children, and most cases resolve naturally by adolescence.(1) They represent arousal disorders beginning in NREM sleep and are generally non-concerning in children. The diagnosis can usually be made by clinical assessment, and testing with polysomnography is not routinely indicated.(2) However, in certain cases with atypical features, polysomnography and more extensive neurologic evaluation are medically indicated.

  8. Validation of non-REM sleep stage decoding from resting state fMRI using linear support vector machines.

    Science.gov (United States)

    Altmann, A; Schröter, M S; Spoormaker, V I; Kiem, S A; Jordan, D; Ilg, R; Bullmore, E T; Greicius, M D; Czisch, M; Sämann, P G

    2016-01-15

    A growing body of literature suggests that changes in consciousness are reflected in specific connectivity patterns of the brain as obtained from resting state fMRI (rs-fMRI). As simultaneous electroencephalography (EEG) is often unavailable, decoding of potentially confounding sleep patterns from rs-fMRI itself might be useful and improve data interpretation. Linear support vector machine classifiers were trained on combined rs-fMRI/EEG recordings from 25 subjects to separate wakefulness (S0) from non-rapid eye movement (NREM) sleep stages 1 (S1), 2 (S2), slow wave sleep (SW) and all three sleep stages combined (SX). Classifier performance was quantified by a leave-one-subject-out cross-validation (LOSO-CV) and on an independent validation dataset comprising 19 subjects. Results demonstrated excellent performance with areas under the receiver operating characteristics curve (AUCs) close to 1.0 for the discrimination of sleep from wakefulness (S0|SX), S0|S1, S0|S2 and S0|SW, and good to excellent performance for the classification between sleep stages (S1|S2:~0.9; S1|SW:~1.0; S2|SW:~0.8). Application windows of fMRI data from about 70 s were found as minimum to provide reliable classifications. Discrimination patterns pointed to subcortical-cortical connectivity and within-occipital lobe reorganization of connectivity as strongest carriers of discriminative information. In conclusion, we report that functional connectivity analysis allows valid classification of NREM sleep stages.

  9. Spherical Harmonics Reveal Standing EEG Waves and Long-Range Neural Synchronization during Non-REM Sleep

    Science.gov (United States)

    Sivakumar, Siddharth S.; Namath, Amalia G.; Galán, Roberto F.

    2016-01-01

    Previous work from our lab has demonstrated how the connectivity of brain circuits constrains the repertoire of activity patterns that those circuits can display. Specifically, we have shown that the principal components of spontaneous neural activity are uniquely determined by the underlying circuit connections, and that although the principal components do not uniquely resolve the circuit structure, they do reveal important features about it. Expanding upon this framework on a larger scale of neural dynamics, we have analyzed EEG data recorded with the standard 10–20 electrode system from 41 neurologically normal children and adolescents during stage 2, non-REM sleep. We show that the principal components of EEG spindles, or sigma waves (10–16 Hz), reveal non-propagating, standing waves in the form of spherical harmonics. We mathematically demonstrate that standing EEG waves exist when the spatial covariance and the Laplacian operator on the head's surface commute. This in turn implies that the covariance between two EEG channels decreases as the inverse of their relative distance; a relationship that we corroborate with empirical data. Using volume conduction theory, we then demonstrate that superficial current sources are more synchronized at larger distances, and determine the characteristic length of large-scale neural synchronization as 1.31 times the head radius, on average. Moreover, consistent with the hypothesis that EEG spindles are driven by thalamo-cortical rather than cortico-cortical loops, we also show that 8 additional patients with hypoplasia or complete agenesis of the corpus callosum, i.e., with deficient or no connectivity between cortical hemispheres, similarly exhibit standing EEG waves in the form of spherical harmonics. We conclude that spherical harmonics are a hallmark of spontaneous, large-scale synchronization of neural activity in the brain, which are associated with unconscious, light sleep. The analogy with spherical harmonics

  10. Five cases of a Joseph disease family with non-REM sleep apnea and MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Junichi; Tsuruta, Kazuhito; Yamamura, Yoshinori; Kurihara, Teruyuki; Matsukura, Shigeru

    1987-09-01

    Four male and one female patients of a new Joseph disease family in southern Kyushu are presented. This disorder is inherited by autosomal dominant trait. The clinical symptoms are characterized by bulging eyes, ophthalmoplegia, dysarthria, rigospasticity of the lower limbs, marked dystonia and bradykinesia. In our cases, extrapyramidal symptoms were improved by amantadine and L-dopa therapy. CSF homovanilic acid (HVA) was markedly reduced. Muscle biopsy and electromyographic studies revealed neurogenic changes. MRI revealed mild atrophy of frontal lobe and cerebellum, and marked atrophy of brain stem. These findings were consistent with the clinical manifestations. Our case had central type sleep apnea by sleep EEG and polygraphic studies. This is the first report about sleep apnea and MRI of Joseph disease.

  11. Rhythmic dendritic Ca2+ oscillations in thalamocortical neurons during slow non-REM sleep-related activity in vitro.

    Science.gov (United States)

    Errington, Adam C; Hughes, Stuart W; Crunelli, Vincenzo

    2012-08-15

    The distribution of T-type Ca2+ channels along the entire somatodendritic axis of sensory thalamocortical (TC) neurons permits regenerative propagation of low threshold spikes (LTS) accompanied by global dendritic Ca2+ influx. Furthermore, T-type Ca2+ channels play an integral role in low frequency oscillatory activity (dynamics of T-type Ca2+ channel-dependent dendritic Ca2+ signalling during slow sleep-associated oscillations remains unknown. Here we demonstrate using patch clamp recording and two-photon Ca2+ imaging of dendrites from cat TC neurons undergoing spontaneous slow oscillatory activity that somatically recorded δ (1–4 Hz) and slow (<1 Hz) oscillations are associated with rhythmic and sustained global oscillations in dendritic Ca2+. In addition, our data reveal the presence of LTS-dependent Ca2+ transients (Δ[Ca2+]) in dendritic spine-like structures on proximal TC neuron dendrites during slow (<1 Hz) oscillations whose amplitudes are similar to those observed in the dendritic shaft. We find that the amplitude of oscillation associated Δ[Ca2+] do not vary significantly with distance from the soma whereas the decay time constant (τdecay) of Δ[Ca2+] decreases significantly in more distal dendrites. Furthermore, τdecay of dendritic Δ[Ca2+] increases significantly as oscillation frequency decreases from δ to slow frequencies where pronounced depolarised UP states are observed. Such rhythmic dendritic Ca2+ entry in TC neurons during sleep-related firing patterns could be an important factor in maintaining the oscillatory activity and associated biochemical signalling processes, such as synaptic downscaling, that occur in non-REM sleep.

  12. Emotional arousal modulates oscillatory correlates of targeted memory reactivation during NREM, but not REM sleep

    Science.gov (United States)

    Lehmann, Mick; Schreiner, Thomas; Seifritz, Erich; Rasch, Björn

    2016-01-01

    Rapid eye movement (REM) sleep is considered to preferentially reprocess emotionally arousing memories. We tested this hypothesis by cueing emotional vs. neutral memories during REM and NREM sleep and wakefulness by presenting associated verbal memory cues after learning. Here we show that cueing during NREM sleep significantly improved memory for emotional pictures, while no cueing benefit was observed during REM sleep. On the oscillatory level, successful memory cueing during NREM sleep resulted in significant increases in theta and spindle oscillations with stronger responses for emotional than neutral memories. In contrast during REM sleep, solely cueing of neutral (but not emotional) memories was associated with increases in theta activity. Our results do not support a preferential role of REM sleep for emotional memories, but rather suggest that emotional arousal modulates memory replay and consolidation processes and their oscillatory correlates during NREM sleep. PMID:27982120

  13. Quantitative differences among EMG activities of muscles innervated by subpopulations of hypoglossal and upper spinal motoneurons during non-REM sleep - REM sleep transitions: a window on neural processes in the sleeping brain.

    Science.gov (United States)

    Rukhadze, I; Kamani, H; Kubin, L

    2011-12-01

    In the rat, a species widely used to study the neural mechanisms of sleep and motor control, lingual electromyographic activity (EMG) is minimal during non-rapid eye movement (non-REM) sleep and then phasic twitches gradually increase after the onset of REM sleep. To better characterize the central neural processes underlying this pattern, we quantified EMG of muscles innervated by distinct subpopulations of hypoglossal motoneurons and nuchal (N) EMG during transitions from non-REM sleep to REM sleep. In 8 chronically instrumented rats, we recorded cortical EEG, EMG at sites near the base of the tongue where genioglossal and intrinsic muscle fibers predominate (GG-I), EMG of the geniohyoid (GH) muscle, and N EMG. Sleep-wake states were identified and EMGs quantified relative to their mean levels in wakefulness in successive 10 s epochs. During non-REM sleep, the average EMG levels differed among the three muscles, with the order being N>GH>GG-I. During REM sleep, due to different magnitudes of phasic twitches, the order was reversed to GG-I>GH>N. GG-I and GH exhibited a gradual increase of twitching that peaked at 70-120 s after the onset of REM sleep and then declined if the REM sleep episode lasted longer. We propose that a common phasic excitatory generator impinges on motoneuron pools that innervate different muscles, but twitching magnitudes are different due to different levels of tonic motoneuronal hyperpolarization. We also propose that REM sleep episodes of average durations are terminated by intense activity of the central generator of phasic events, whereas long REM sleep episodes end as a result of a gradual waning of the tonic disfacilitatory and inhibitory processes.

  14. Sleep spindles and hippocampal functional connectivity in human NREM sleep.

    Science.gov (United States)

    Andrade, Kátia C; Spoormaker, Victor I; Dresler, Martin; Wehrle, Renate; Holsboer, Florian; Sämann, Philipp G; Czisch, Michael

    2011-07-13

    We investigated human hippocampal functional connectivity in wakefulness and throughout non-rapid eye movement sleep. Young healthy subjects underwent simultaneous EEG and functional magnetic resonance imaging (fMRI) measurements at 1.5 T under resting conditions in the descent to deep sleep. Continuous 5 min epochs representing a unique sleep stage (i.e., wakefulness, sleep stages 1 and 2, or slow-wave sleep) were extracted. fMRI time series of subregions of the hippocampal formation (HF) (cornu ammonis, dentate gyrus, and subiculum) were extracted based on cytoarchitectonical probability maps. We observed sleep stage-dependent changes in HF functional coupling. The HF was integrated to variable strength in the default mode network (DMN) in wakefulness and light sleep stages but not in slow-wave sleep. The strongest functional connectivity between the HF and neocortex was observed in sleep stage 2 (compared with both slow-wave sleep and wakefulness). We observed a strong interaction of sleep spindle occurrence and HF functional connectivity in sleep stage 2, with increased HF/neocortical connectivity during spindles. Moreover, the cornu ammonis exhibited strongest functional connectivity with the DMN during wakefulness, while the subiculum dominated hippocampal functional connectivity to frontal brain regions during sleep stage 2. Increased connectivity between HF and neocortical regions in sleep stage 2 suggests an increased capacity for possible global information transfer, while connectivity in slow-wave sleep is reflecting a functional system optimal for segregated information reprocessing. Our data may be relevant to differentiating sleep stage-specific contributions to neural plasticity as proposed in sleep-dependent memory consolidation.

  15. Clonidine Has a Paradoxical Effect on Cyclic Arousal and Sleep Bruxism during NREM Sleep

    Science.gov (United States)

    Carra, Maria Clotilde; Macaluso, Guido M.; Rompré, Pierre H.; Huynh, Nelly; Parrino, Liborio; Terzano, Mario Giovanni; Lavigne, Gilles J.

    2010-01-01

    Study Objective: Clonidine disrupts the NREM/REM sleep cycle and reduces the incidence of rhythmic masticatory muscle activity (RMMA) characteristic of sleep bruxism (SB). RMMA/SB is associated with brief and transient sleep arousals. This study investigates the effect of clonidine on the cyclic alternating pattern (CAP) in order to explore the role of cyclic arousal fluctuation in RMMA/SB. Design: Polysomnographic recordings from a pharmacological study. Setting: University sleep research laboratory. Participants and Interventions: Sixteen SB subjects received a single dose of clonidine or placebo at bedtime in a crossover design. Measurements and Results: Sleep variables and RMMA/SB index were evaluated. CAP was scored to assess arousal instability between sleep-maintaining processes (phase A1) and stronger arousal processes (phases A2 and A3). Paired t-tests, ANOVAs, and cross-correlations were performed. Under clonidine, CAP time, and particularly the number of A3 phases, increased (P ≤ 0.01). RMMA/SB onset was time correlated with phases A2 and A3 for both placebo and clonidine nights (P ≤ 0.004). However, under clonidine, this positive correlation began up to 40 min before the RMMA/SB episode. Conclusions: CAP phase A3 frequency increased under clonidine, but paradoxically, RMMA/SB decreased. RMMA/SB was associated with and facilitated in CAP phase A2 and A3 rhythms. However, SB generation could be influenced by other factors besides sleep arousal pressure. NREM/REM ultradian cyclic arousal fluctuations may be required for RMMA/SB onset. Citation: Carra MC; Macaluso GM; Rompré PH; Huynh N; Parrino L; Terzano MG; Lavigne GJ. Clonidine has a paradoxical effect on cyclic arousal and sleep bruxism during NREM sleep. SLEEP 2010;33(12):1711-1716. PMID:21120152

  16. NREM parasomnias.

    Science.gov (United States)

    Zadra, Antonio; Pilon, Mathieu

    2011-01-01

    Considerable progress has been made in the systematic study of nonrapid eye movement (NREM) sleep parasomnias. This chapter focuses on the clinical features, prevalence, pathophysiology, associated sleep parameters, and clinical variants of the prototypic NREM sleep parasomnias, namely confusional arousals, sleepwalking, and sleep terrors. Whereas the occurrence of NREM parasomnias in children is frequently viewed as relatively benign, these disorders often pose greater problems, including sleep-related injuries, in affected adults. Most episodes arise from sudden but incomplete arousal from slow-wave sleep and sometimes from stage 2 sleep. Factors that deepen or fragment sleep can facilitate or precipitate NREM parasomnias in predisposed individuals. NREM parasomnias can be associated with various primary sleep disorders or with medical conditions. Diagnosis of NREM parasomnias can often be made based on a detailed history, although some patients may require more extensive evaluations, including polysomnographic study with an expanded EEG montage. Sleep deprivation and the presentation of auditory stimuli during slow-wave sleep are two techniques that can increase the occurrence of behavioral manifestations under laboratory conditions. A variety of nonpharmacological treatments have been recommended for long-term management of NREM parasomnias, whereas pharmacological agents should be considered only if the behaviors are hazardous or extremely disruptive.

  17. Ultrashort sleep-waking schedule. II. Relationship between ultradian rhythms in sleepability and the REM-non-REM cycles and effects of the circadian phase.

    Science.gov (United States)

    Lavie, P; Zomer, J

    1984-01-01

    Eight subjects aged 20-30 years spent two 24 h periods in the sleep laboratory after having an adaptation night. At 16.00 h subjects began a strict 15 min waking-5 min sleeping schedule until 24.00 h. At 24.00 subjects retired for an uninterrupted monitored nocturnal sleep. Subjects were awakened after 6-7 h of sleep, either from REM sleep (in one experimental period) or 25 min after the end of a REM period (in the other experimental period) in a counterbalanced order, and a second 8 h 15 min waking-5 min sleeping schedule was initiated. There were no significant differences between the percentages of sleep stages 1 and 2 in the afternoon, evening and morning experiments. In each, stage 1 occurred in about 10 of the 24 'sleep attempts' and accounted for 15-19% of the total recording time; sleep stage 2 occurred in 2-5 sleep attempts and accounted for 3-8% of total recording time. Four of the 8 subjects showed REM sleep in 8 sleep 'attempts;' only one appeared during an evening period. Orthogonal spectral analysis revealed a dominant ultradian frequency of about 7.2 c/day during both experimental schedules. However, synchronizing the individual morning time series with the last nocturnal REM period resulted in the appearance of a single spectral peak at 14.4 c/day, which is the dominant ultradian frequency of the nocturnal REM-non-REM cycles.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Does more sleep matter? Differential effects of NREM- and REM-dominant sleep on sleepiness and vigilance.

    Science.gov (United States)

    Neu, D; Mairesse, O; Newell, J; Verbanck, P; Peigneux, P; Deliens, G

    2015-05-01

    We investigated effects of NREM and REM predominant sleep periods on sleepiness and psychomotor performances measured with visual analog scales and the psychomotor vigilance task, respectively. After one week of stable sleep-wake rhythms, 18 healthy sleepers slept 3hours of early sleep and 3hours of late sleep, under polysomnographic control, spaced by two hours of sustained wakefulness between sleep periods in a within subjects split-night, sleep interruption protocol. Power spectra analysis was applied for sleep EEG recordings and sleep phase-relative power proportions were computed for six different frequency bands (delta, theta, alpha, sigma, beta and gamma). Both sleep periods presented with similar sleep duration and efficiency. As expected, phasic NREM and REM predominances were obtained for early and late sleep conditions, respectively. Albeit revealing additive effects of total sleep duration, our results showed a systematic discrepancy between psychomotor performances and sleepiness levels. In addition, sleepiness remained stable throughout sustained wakefulness during both conditions, whereas psychomotor performances even decreased after the second sleep period. Disregarding exchanges for frequency bands in NREM or stability in REM, correlations between outcome measures and EEG power proportions further evidenced directional divergence with respect to sleepiness and psychomotor performances, respectively. Showing that the functional correlation pattern changed with respect to early and late sleep condition, the relationships between EEG power and subjective or behavioral outcomes might however essentially be related to total sleep duration rather than to the phasic predominance of REM or NREM sleep.

  19. Sleep and Arousal Mechanisms in Experimental Epilepsy: Epileptic Components of NREM and Antiepileptic Components of REM Sleep

    Science.gov (United States)

    Shouse, M. N.; Scordato, J. C.; Farber, P. R.

    2004-01-01

    Neural generators related to different sleep components have different effects on seizure discharge. These sleep-related systems can provoke seizure discharge propagation during nonrapid eye movement (NREM) sleep and can suppress propagation during REM sleep. Experimental manipulations of discrete physiological components were conducted in feline…

  20. Diminished Auditory Responses during NREM Sleep Correlate with the Hierarchy of Language Processing.

    Directory of Open Access Journals (Sweden)

    Meytal Wilf

    Full Text Available Natural sleep provides a powerful model system for studying the neuronal correlates of awareness and state changes in the human brain. To quantitatively map the nature of sleep-induced modulations in sensory responses we presented participants with auditory stimuli possessing different levels of linguistic complexity. Ten participants were scanned using functional magnetic resonance imaging (fMRI during the waking state and after falling asleep. Sleep staging was based on heart rate measures validated independently on 20 participants using concurrent EEG and heart rate measurements and the results were confirmed using permutation analysis. Participants were exposed to three types of auditory stimuli: scrambled sounds, meaningless word sentences and comprehensible sentences. During non-rapid eye movement (NREM sleep, we found diminishing brain activation along the hierarchy of language processing, more pronounced in higher processing regions. Specifically, the auditory thalamus showed similar activation levels during sleep and waking states, primary auditory cortex remained activated but showed a significant reduction in auditory responses during sleep, and the high order language-related representation in inferior frontal gyrus (IFG cortex showed a complete abolishment of responses during NREM sleep. In addition to an overall activation decrease in language processing regions in superior temporal gyrus and IFG, those areas manifested a loss of semantic selectivity during NREM sleep. Our results suggest that the decreased awareness to linguistic auditory stimuli during NREM sleep is linked to diminished activity in high order processing stations.

  1. The Neuronal Transition Probability (NTP) Model for the Dynamic Progression of Non-REM Sleep EEG: The Role of the Suprachiasmatic Nucleus

    CERN Document Server

    Merica, H

    2011-01-01

    Little attention has gone into linking to its neuronal substrates the dynamic structure of non-rapid-eye-movement (NREM) sleep, defined as the pattern of time-course power in all frequency bands across an entire episode. Using the spectral power time-courses in the sleep electroencephalogram (EEG), we showed in the typical first episode, several moves towards-and-away from deep sleep, each having an identical pattern linking the major frequency bands beta, sigma and delta. The neuronal transition probability model (NTP) - in fitting the data well - successfully explained the pattern as resulting from stochastic transitions of the firing-rates of the thalamically-projecting brainstem-activating neurons, alternating between two steady dynamic-states (towards-and-away from deep sleep) each initiated by a so-far unidentified flip-flop. The aims here are to identify this flip-flop and to demonstrate that the model fits well all NREM episodes, not just the first. Using published data on suprachiasmatic nucleus (SCN...

  2. NREM sleep transient events in fronto-temporal dementia: beyond sleep stage architecture.

    Science.gov (United States)

    Maestri, Michelangelo; Carnicelli, Luca; Economou, Nicholas-Tiberio; Bonakis, Anastasios; Paparrigopoulos, Thomas; Papageorgiou, Sokratis T; Giorgi, Filippo Sean; Di Coscio, Elisa; Tognoni, Gloria; Ferri, Raffaele; Bonuccelli, Ubaldo; Bonanni, Enrica

    2015-01-01

    Frontotemporal dementia (FTD) is increasingly becoming recognized as a major cause of early onset (sleep disorders significantly impair patients' and caregivers' quality of life in neurodegenerative diseases, polysomnographic data in FTD patients are scarce in literature. Aim of our study was to investigate sleep microstructure in FTD, by means of Cyclic Alternating Pattern (CAP), in a group of ten behavioral variant FTD patients (6 M, 4 F; mean age 61.2±7.3 years; disease duration: 1.4±0.7 years) and to compare them with cognitively intact healthy elderly. Sleep in FTD patients was altered at different levels, involving not only the conventional sleep stage architecture parameters (total sleep time, single stage percentage, NREM/REM cycle organization), but also microstructure. FTD subjects showed CAP disruption with decreased slow wave activity related phases (A1 index, n/h:14.5±6.8 vs 38.8±6.6; psleep variables and neuropsychological tests were found. Sleep impairment in FTD may be specifically related to the specific frontal lobe involvement in the neurodegenerative process. The pattern of alterations seems somewhat peculiar, probably due to the anatomical distribution of the neurodegenerative process with a major impact on frontal lobe generated sleep transients, and a substantial sparing of phenomena related to the posterior cortex.

  3. Topographical distribution of spindles: variations between and within nrem sleep cycles.

    Science.gov (United States)

    De Gennaro, L; Ferrara, M; Bertini, M

    2000-01-01

    Spindle density, visually scored in the 12-15 Hz range over antero-posterior midline derivations, was assessed during a baseline night in ten normal subjects. Sleep spindles were found to be highly variable between subjects and more abundant during Stage 2. Topographical distribution of spindle density showed a centroparietal prevalence, stable between NREM sleep stages. Intra-night variations of spindle density exhibited a linear increase across consecutive NREM episodes, suggesting an inverse relation with the time course of slow wave sleep. Except for occipital leads reaching a maximum during the third NREM cycle and then decreasing, changes in spindle density across sleep cycles were similar over different derivations. Intra-cycle variations fit a fourth-order polynomial curve with a minimum in the middle part of each sleep episode (when most slow wave sleep is expressed); this intra-cycle trend also seems stable between derivations and consecutive sleep cycles. These results confirm and extend, to the level of macroscopic EEG, the reciprocal relationship between sigma and delta waves previously shown by spectral analysis of EEG frequencies and, at a neuronal level in the thalamocortical network, by changes of membrane potentials that oscillate in the frequency range of spindles or delta at different levels of hyperpolarization.

  4. The effects of sleep deprivation in humans: topographical electroencephalogram changes in non-rapid eye movement (NREM) sleep versus REM sleep.

    Science.gov (United States)

    Marzano, Cristina; Ferrara, Michele; Curcio, Giuseppe; De Gennaro, Luigi

    2010-06-01

    Studies on homeostatic aspects of sleep regulation have been focussed upon non-rapid eye movement (NREM) sleep, and direct comparisons with regional changes in rapid eye movement (REM) sleep are sparse. To this end, evaluation of electroencephalogram (EEG) changes in recovery sleep after extended waking is the classical approach for increasing homeostatic need. Here, we studied a large sample of 40 healthy subjects, considering a full-scalp EEG topography during baseline (BSL) and recovery sleep following 40 h of wakefulness (REC). In NREM sleep, the statistical maps of REC versus BSL differences revealed significant fronto-central increases of power from 0.5 to 11 Hz and decreases from 13 to 15 Hz. In REM sleep, REC versus BSL differences pointed to significant fronto-central increases in the 0.5-7 Hz and decreases in the 8-11 Hz bands. Moreover, the 12-15 Hz band showed a fronto-parietal increase and that at 22-24 Hz exhibited a fronto-central decrease. Hence, the 1-7 Hz range showed significant increases in both NREM sleep and REM sleep, with similar topography. The parallel change of NREM sleep and REM sleep EEG power is related, as confirmed by a correlational analysis, indicating that the increase in frequency of 2-7 Hz possibly subtends a state-aspecific homeostatic response. On the contrary, sleep deprivation has opposite effects on alpha and sigma activity in both states. In particular, this analysis points to the presence of state-specific homeostatic mechanisms for NREM sleep, limited to REM sleep and NREM sleep seem to share some homeostatic mechanisms in response to sleep deprivation, as indicated mainly by the similar direction and topography of changes in low-frequency activity.

  5. Atypical presentation of NREM arousal parasomnia with repetitive episodes.

    Science.gov (United States)

    Trajanovic, N N; Shapiro, C M; Ong, A

    2007-08-01

    The case report describes a distinct variant of non-REM (Rapid Eye Movement) arousal parasomnia, sleepwalking type, featuring repetitive abrupt arousals, mostly from slow-wave sleep, and various automatisms and semi-purposeful behaviours. The frequency of events and distribution throughout the night presented as a continuous status of parasomnia ('status parasomnicus'). The patient responded well to treatment typically administered for adult NREM parasomnias, and after careful review of the clinical presentation, objective findings and treatment outcome, sleep-related epilepsy was ruled out in favour of parasomnia.

  6. Acoustic oddball during NREM sleep: a combined EEG/fMRI study.

    Directory of Open Access Journals (Sweden)

    Michael Czisch

    Full Text Available BACKGROUND: A condition vital for the consolidation and maintenance of sleep is generally reduced responsiveness to external stimuli. Despite this, the sleeper maintains a level of stimulus processing that allows to respond to potentially dangerous environmental signals. The mechanisms that subserve these contradictory functions are only incompletely understood. METHODOLOGY/PRINCIPAL FINDINGS: Using combined EEG/fMRI we investigated the neural substrate of sleep protection by applying an acoustic oddball paradigm during light NREM sleep. Further, we studied the role of evoked K-complexes (KCs, an electroencephalographic hallmark of NREM sleep with a still unknown role for sleep protection. Our main results were: (1 Other than in wakefulness, rare tones did not induce a blood oxygenation level dependent (BOLD signal increase in the auditory pathway but a strong negative BOLD response in motor areas and the amygdala. (2 Stratification of rare tones by the presence of evoked KCs detected activation of the auditory cortex, hippocampus, superior and middle frontal gyri and posterior cingulate only for rare tones followed by a KC. (3 The typical high frontocentral EEG deflections of KCs were not paralleled by a BOLD equivalent. CONCLUSIONS/SIGNIFICANCE: We observed that rare tones lead to transient disengagement of motor and amygdala responses during light NREM sleep. We interpret this as a sleep protective mechanism to delimit motor responses and to reduce the sensitivity of the amygdala towards further incoming stimuli. Evoked KCs are suggested to originate from a brain state with relatively increased stimulus processing, revealing an activity pattern resembling novelty processing as previously reported during wakefulness. The KC itself is not reflected by increased metabolic demand in BOLD based imaging, arguing that evoked KCs result from increased neural synchronicity without altered metabolic demand.

  7. A Thalamocortical Neural Mass Model of the EEG during NREM Sleep and Its Response to Auditory Stimulation

    Science.gov (United States)

    Ngo, Hong-Viet V.; Marshall, Lisa; Born, Jan; Martinetz, Thomas

    2016-01-01

    Few models exist that accurately reproduce the complex rhythms of the thalamocortical system that are apparent in measured scalp EEG and at the same time, are suitable for large-scale simulations of brain activity. Here, we present a neural mass model of the thalamocortical system during natural non-REM sleep, which is able to generate fast sleep spindles (12–15 Hz), slow oscillations (sleep study in humans, where closed-loop auditory stimulation was applied. The model output relates directly to the EEG, which makes it a useful basis to develop new stimulation protocols. PMID:27584827

  8. Experienced mindfulness meditators exhibit higher parietal-occipital EEG gamma activity during NREM sleep.

    Directory of Open Access Journals (Sweden)

    Fabio Ferrarelli

    Full Text Available Over the past several years meditation practice has gained increasing attention as a non-pharmacological intervention to provide health related benefits, from promoting general wellness to alleviating the symptoms of a variety of medical conditions. However, the effects of meditation training on brain activity still need to be fully characterized. Sleep provides a unique approach to explore the meditation-related plastic changes in brain function. In this study we performed sleep high-density electroencephalographic (hdEEG recordings in long-term meditators (LTM of Buddhist meditation practices (approximately 8700 mean hours of life practice and meditation naive individuals. We found that LTM had increased parietal-occipital EEG gamma power during NREM sleep. This increase was specific for the gamma range (25-40 Hz, was not related to the level of spontaneous arousal during NREM and was positively correlated with the length of lifetime daily meditation practice. Altogether, these findings indicate that meditation practice produces measurable changes in spontaneous brain activity, and suggest that EEG gamma activity during sleep represents a sensitive measure of the long-lasting, plastic effects of meditative training on brain function.

  9. Experienced mindfulness meditators exhibit higher parietal-occipital EEG gamma activity during NREM sleep.

    Science.gov (United States)

    Ferrarelli, Fabio; Smith, Richard; Dentico, Daniela; Riedner, Brady A; Zennig, Corinna; Benca, Ruth M; Lutz, Antoine; Davidson, Richard J; Tononi, Giulio

    2013-01-01

    Over the past several years meditation practice has gained increasing attention as a non-pharmacological intervention to provide health related benefits, from promoting general wellness to alleviating the symptoms of a variety of medical conditions. However, the effects of meditation training on brain activity still need to be fully characterized. Sleep provides a unique approach to explore the meditation-related plastic changes in brain function. In this study we performed sleep high-density electroencephalographic (hdEEG) recordings in long-term meditators (LTM) of Buddhist meditation practices (approximately 8700 mean hours of life practice) and meditation naive individuals. We found that LTM had increased parietal-occipital EEG gamma power during NREM sleep. This increase was specific for the gamma range (25-40 Hz), was not related to the level of spontaneous arousal during NREM and was positively correlated with the length of lifetime daily meditation practice. Altogether, these findings indicate that meditation practice produces measurable changes in spontaneous brain activity, and suggest that EEG gamma activity during sleep represents a sensitive measure of the long-lasting, plastic effects of meditative training on brain function.

  10. A moderate increase of physiological CO2 in a critical range during stable NREM sleep episode: A potential gateway to REM sleep

    Directory of Open Access Journals (Sweden)

    Vibha eMadan

    2012-02-01

    Full Text Available Sleep is characterized as rapid eye movement (REM and non-rapid eye movement (NREM sleep. Studies suggest that wake-related neurons in the basal forebrain, posterior hypothalamus and brainstem and NREM sleep-related neurons in the anterior-hypothalamic area inhibit each other, thus alternating sleep-wakefulness. Similarly, pontine REM-ON and REM-OFF neurons reciprocally inhibit each other for REM sleep modulation. It has been proposed that inhibition of locus coeruleus (LC REM-OFF neurons is pre-requisite for REM sleep genesis, but it remains ambiguous how REM-OFF neurons are hyperpolarized at REM sleep onset. The frequency of breathing pattern remains high during wake, slows down during NREM sleep but further escalates during REM sleep. As a result, brain CO2 level increases during NREM sleep, which may alter REM sleep manifestation. It has been reported that hypocapnia decreases REM sleep while hypercapnia increases REM sleep periods. The groups of brainstem chemosensory neurons, including those present in LC, sense the alteration in CO2 level and respond accordingly. For example; one group of LC neurons depolarize while other hyperpolarize during hypercapnia. In another group, hypercapnia initially depolarizes but later hyperpolarizes LC neurons. Besides chemosensory functions, LC’s REM-OFF neurons are an integral part of REM sleep executive machinery. We reason that increased CO2 level during a stable NREM sleep period may hyperpolarize LC neurons including REM-OFF, which may help initiate REM sleep. We propose that REM sleep might act as a sentinel to help maintain normal CO2 level for unperturbed sleep.

  11. Antidepressant suppression of non-REM sleep spindles and REM sleep impairs hippocampus-dependent learning while augmenting striatum-dependent learning.

    Science.gov (United States)

    Watts, Alain; Gritton, Howard J; Sweigart, Jamie; Poe, Gina R

    2012-09-26

    Rapid eye movement (REM) sleep enhances hippocampus-dependent associative memory, but REM deprivation has little impact on striatum-dependent procedural learning. Antidepressant medications are known to inhibit REM sleep, but it is not well understood if antidepressant treatments impact learning and memory. We explored antidepressant REM suppression effects on learning by training animals daily on a spatial task under familiar and novel conditions, followed by training on a procedural memory task. Daily treatment with the antidepressant and norepinephrine reuptake inhibitor desipramine (DMI) strongly suppressed REM sleep in rats for several hours, as has been described in humans. We also found that DMI treatment reduced the spindle-rich transition-to-REM sleep state (TR), which has not been previously reported. DMI REM suppression gradually weakened performance on a once familiar hippocampus-dependent maze (reconsolidation error). DMI also impaired learning of the novel maze (consolidation error). Unexpectedly, learning of novel reward positions and memory of familiar positions were equally and oppositely correlated with amounts of TR sleep. Conversely, DMI treatment enhanced performance on a separate striatum-dependent, procedural T-maze task that was positively correlated with the amounts of slow-wave sleep (SWS). Our results suggest that learning strategy switches in patients taking REM sleep-suppressing antidepressants might serve to offset sleep-dependent hippocampal impairments to partially preserve performance. State-performance correlations support a model wherein reconsolidation of hippocampus-dependent familiar memories occurs during REM sleep, novel information is incorporated and consolidated during TR, and dorsal striatum-dependent procedural learning is augmented during SWS.

  12. Effect of gender on the development of hypocapnic apnea/hypopnea during NREM sleep.

    Science.gov (United States)

    Zhou, X S; Shahabuddin, S; Zahn, B R; Babcock, M A; Badr, M S

    2000-07-01

    We hypothesized that a decreased susceptibility to the development of hypocapnic central apnea during non-rapid eye movement (NREM) sleep in women compared with men could be an explanation for the gender difference in the sleep apnea/hypopnea syndrome. We studied eight men (age 25-35 yr) and eight women in the midluteal phase of the menstrual cycle (age 21-43 yr); we repeated studies in six women during the midfollicular phase. Hypocapnia was induced via nasal mechanical ventilation for 3 min, with respiratory frequency matched to eupneic frequency. Tidal volume (VT) was increased between 110 and 200% of eupneic control. Cessation of mechanical ventilation resulted in hypocapnic central apnea or hypopnea, depending on the magnitude of hypocapnia. Nadir minute ventilation in the recovery period was plotted against the change in end-tidal PCO(2) (PET(CO(2))) per trial; minute ventilation was given a value of 0 during central apnea. The apneic threshold was defined as the x-intercept of the linear regression line. In women, induction of a central apnea required an increase in VT to 155 +/- 29% (mean +/- SD) and a reduction of PET(CO(2)) by -4.72 +/- 0.57 Torr. In men, induction of a central apnea required an increase in VT to 142 +/- 13% and a reduction of PET(CO(2)) by -3.54 +/- 0.31 Torr (P = 0.002). There was no difference in the apneic threshold between the follicular and the luteal phase in women. Premenopausal women are less susceptible to hypocapnic disfacilitation during NREM sleep than men. This effect was not explained by progesterone. Preservation of ventilatory motor output during hypocapnia may explain the gender difference in sleep apnea.

  13. Circadian variation of EEG power spectra in NREM and REM sleep in humans: dissociation from body temperature

    Science.gov (United States)

    Dijk, D. J.

    1999-01-01

    In humans, EEG power spectra in REM and NREM sleep, as well as characteristics of sleep spindles such as their duration, amplitude, frequency and incidence, vary with circadian phase. Recently it has been hypothesized that circadian variations in EEG spectra in humans are caused by variations in brain or body temperature and may not represent phenomena relevant to sleep regulatory processes. To test this directly, a further analysis of EEG power spectra - collected in a forced desynchrony protocol in which sleep episodes were scheduled to a 28-h period while the rhythms of body temperature and plasma melatonin were oscillating at their near 24-h period - was carried out. EEG power spectra were computed for NREM and REM sleep occurring between 90-120 and 270-300 degrees of the circadian melatonin rhythm, i.e. just after the clearance of melatonin from plasma in the 'morning' and just after the 'evening' increase in melatonin secretion. Average body temperatures during scheduled sleep at these two circadian phases were identical (36.72 degrees C). Despite identical body temperatures, the power spectra in NREM sleep were very different at these two circadian phases. EEG activity in the low frequency spindle range was significantly and markedly enhanced after the evening increase in plasma melatonin as compared to the morning phase. For REM sleep, significant differences in power spectra during these two circadian phases, in particular in the alpha range, were also observed. The results confirm that EEG power spectra in NREM and REM sleep vary with circadian phase, suggesting that the direct contribution of temperature to the circadian variation in EEG power spectra is absent or only minor, and are at variance with the hypothesis that circadian variations in EEG power spectra are caused by variations in temperature.

  14. Non-linear recurrence analysis of NREM human sleep microstructure discloses deterministic oscillation patterns related to sleep stage transitions and sleep maintenance.

    Science.gov (United States)

    Priano, L; Saccomandi, F; Mauro, A; Guiot, C

    2010-01-01

    Sleep is a dynamic process aimed at obtaining the required neurophysiological states at certain times, according to circadian and homeostatic needs and despite external or internal interfering stimuli. In this context, peculiar transient synchronized EEG patterns (TSEP) are supposed to play the main role in the building up of EEG synchronization and in the flexible adaptation against perturbations Our study aimed at disclosing and quantifying attractor driven, hidden periodicity or, conversely, chaotic oscillation patterns in the series of these TSEP related to sleep stage transitions and sleep maintenance. At first we devised a multistep algorithm, able to capture TSEP from EEG during sleep in 10 healthy volunteers. The time series of TSEP were then analyzed according to the Recurrence Plot (RP). TSEP series showed to form a pseudo-periodic series which becomes progressively denser and more stable until steady slow wave NREM sleep is reached, but looses stability just before REM sleep starts. This suggests that deterministic oscillatory patterns maybe adequate descriptors of the balance between homeostatic needs for NREM sleep and REM sleep pressure, supported by different cortical neuronal populations interactions.

  15. Long-term history and immediate preceding state affect EEG slow wave characteristics at NREM sleep onset in C57BL/6 mice.

    Science.gov (United States)

    Cui, N; Mckillop, L E; Fisher, S P; Oliver, P L; Vyazovskiy, V V

    2014-01-01

    The dynamics of cortical activity across the 24-h day and at vigilance state transitions is regulated by an interaction between global subcortical neuromodulatory influences and local shifts in network synchrony and excitability. To address the role of long-term and immediate preceding history in local and global cortical dynamics, we investigated cortical EEG recorded from both frontal and occipital regions during an undisturbed 24-h recording in mice. As expected, at the beginning of the light period, under physiologically increased sleep pressure, EEG slow waves were more frequent and had higher amplitude and slopes, compared to the rest of the light period. Within discrete NREM sleep episodes, the incidence, amplitude and slopes of individual slow waves increased progressively after episode onset in both derivations by approximately 10-30%. Interestingly, at the beginning of NREM sleep episodes slow waves in the frontal and occipital derivations frequently occurred in isolation, as quantified by longer latencies between consecutive slow waves in the two regions. Notably, slow waves during the initial period of NREM sleep following REM sleep episodes were significantly less frequent, lower in amplitude and exhibited shallower slopes, compared to those that occurred in NREM episodes after prolonged waking. Moreover, the latencies between consecutive frontal and occipital NREM slow waves were substantially longer when they occurred directly after REM sleep compared to following consolidated wakefulness. Overall these data reveal a complex picture, where both time of day and preceding state contribute to the characteristics and dynamics of slow waves within NREM sleep. These findings suggest that NREM sleep initiates in a more "local" fashion when it occurs following REM sleep episodes as opposed to sustained waking bouts. While the mechanisms and functional significance of such a re-setting of brain state after individual REM sleep episodes remains to be

  16. [Pathophysiology of NREM parasomnias].

    Science.gov (United States)

    2009-01-01

    Parasomnias are physical, behavioral and experiental phenomena ocurring during entry or along the sleep or on arousal/awakening. The behavior includes movements, emotional, perceptual or dreaming experience, frequently containing manifestations of autonomic nervous system. Parasomnias are devided into primary (ocurring etiher in NREM or REM sleep) and secondary (following organic system disease manifested during sleep). Primary parasomnias are further devided into those that appear during NREM, REM or states of consciousnes that do not respect boundaries between wake and sleep. Parasomnias represent an example of "dissocitaion of sleep stages" with the overlaping of wakefulness and NREM sleep (confusional arousals, somnambulism and night terrors) or wake and REM sleep (REM sleep behavior disorder parasomnia). NREM parasomnias are a significant clinical problem that appears with functional reorganization of the brain as it transits throuh different states of consciousness. Aside from the above dissociation there are other physiological phenomena that render behavior more complex during sleep such as 1) activation of locomotor centers during sleep, 2) sleep intertia (confusion and desorientation during transition from sleep to wakefulness) and 3) instability of sleep stages (rapid oscilation(s) between seleep and wake).

  17. Sleep stability and transitions in patients with idiopathic REM sleep behavior disorder and patients with Parkinson's disease

    DEFF Research Database (Denmark)

    Christensen, Julie Anja Engelhard; Jennum, Poul; Koch, Henriette;

    2016-01-01

    Objective: Patients with idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) are at high risk of developing Parkinson's disease (PD). As wake/sleep-regulation is thought to involve neurons located in the brainstem and hypothalamic areas, we hypothesize that the neurodegeneration in i...... with periodic leg movement disorder (PLMD) and 23 controls. Measures were computed based on manual scorings and data-driven labeled sleep staging. Results: Patients with PD showed significantly lower REM stability than controls and patients with PLMD. Patients with iRBD had significantly lower REM stability......RBD/PD is likely to affect wake/sleep and REM/non-REM (NREM) sleep transitions. Methods: We determined the frequency of wake/sleep and REM/NREM sleep transitions and the stability of wake (W), REM and NREM sleep as measured by polysomnography (PSG) in 27 patients with PD, 23 patients with iRBD, 25 patients...

  18. Essential roles of GABA transporter-1 in controlling rapid eye movement sleep and in increased slow wave activity after sleep deprivation.

    Directory of Open Access Journals (Sweden)

    Xin-Hong Xu

    Full Text Available GABA is the major inhibitory neurotransmitter in the mammalian central nervous system that has been strongly implicated in the regulation of sleep. GABA transporter subtype 1 (GAT1 constructs high affinity reuptake sites for GABA and regulates GABAergic transmission in the brain. However, the role of GAT1 in sleep-wake regulation remains elusive. In the current study, we characterized the spontaneous sleep-wake cycle and responses to sleep deprivation in GAT1 knock-out (KO mice. GAT1 KO mice exhibited dominant theta-activity and a remarkable reduction of EEG power in low frequencies across all vigilance stages. Under baseline conditions, spontaneous rapid eye movement (REM sleep of KO mice was elevated both during the light and dark periods, and non-REM (NREM sleep was reduced during the light period only. KO mice also showed more state transitions from NREM to REM sleep and from REM sleep to wakefulness, as well as more number of REM and NREM sleep bouts than WT mice. During the dark period, KO mice exhibited more REM sleep bouts only. Six hours of sleep deprivation induced rebound increases in NREM and REM sleep in both genotypes. However, slow wave activity, the intensity component of NREM sleep was briefly elevated in WT mice but remained completely unchanged in KO mice, compared with their respective baselines. These results indicate that GAT1 plays a critical role in the regulation of REM sleep and homeostasis of NREM sleep.

  19. Essential roles of GABA transporter-1 in controlling rapid eye movement sleep and in increased slow wave activity after sleep deprivation.

    Science.gov (United States)

    Xu, Xin-Hong; Qu, Wei-Min; Bian, Min-Juan; Huang, Fang; Fei, Jian; Urade, Yoshihiro; Huang, Zhi-Li

    2013-01-01

    GABA is the major inhibitory neurotransmitter in the mammalian central nervous system that has been strongly implicated in the regulation of sleep. GABA transporter subtype 1 (GAT1) constructs high affinity reuptake sites for GABA and regulates GABAergic transmission in the brain. However, the role of GAT1 in sleep-wake regulation remains elusive. In the current study, we characterized the spontaneous sleep-wake cycle and responses to sleep deprivation in GAT1 knock-out (KO) mice. GAT1 KO mice exhibited dominant theta-activity and a remarkable reduction of EEG power in low frequencies across all vigilance stages. Under baseline conditions, spontaneous rapid eye movement (REM) sleep of KO mice was elevated both during the light and dark periods, and non-REM (NREM) sleep was reduced during the light period only. KO mice also showed more state transitions from NREM to REM sleep and from REM sleep to wakefulness, as well as more number of REM and NREM sleep bouts than WT mice. During the dark period, KO mice exhibited more REM sleep bouts only. Six hours of sleep deprivation induced rebound increases in NREM and REM sleep in both genotypes. However, slow wave activity, the intensity component of NREM sleep was briefly elevated in WT mice but remained completely unchanged in KO mice, compared with their respective baselines. These results indicate that GAT1 plays a critical role in the regulation of REM sleep and homeostasis of NREM sleep.

  20. Normal Morning MCH Levels and No Association with REM or NREM Sleep Parameters in Narcolepsy Type 1 and Type 2

    DEFF Research Database (Denmark)

    Schrölkamp, Maren; Jennum, Poul J; Gammeltoft, Steen;

    2017-01-01

    STUDY OBJECTIVES: Other than hypocretin-1 (HCRT-1) deficiency in narcolepsy type 1 (NT1), the neurochemical imbalance of NT1 and narcolepsy type 2 (NT2) with normal HCRT-1 levels is largely unknown. The neuropeptide melanin-concentrating hormone (MCH) is mainly secreted during sleep and is involved...... in rapid eye movement (REM) and nonrapid eye movement (NREM) sleep regulation. Hypocretin neurons reciprocally interact with MCH neurons. We hypothesized that altered MCH secretion contributes to the symptoms and sleep abnormalities of narcolepsy and that this is reflected in morning cerebrospinal fluid...... (CSF) MCH levels, in contrast to previously reported normal evening/afternoon levels. METHODS: Lumbar CSF and plasma were collected from 07:00 to 10:00 from 57 patients with narcolepsy (subtypes: 47 NT1; 10 NT2) diagnosed according to International Classification of Sleep Disorders, Third Edition...

  1. Auditory responses and stimulus-specific adaptation in rat auditory cortex are preserved across NREM and REM sleep.

    Science.gov (United States)

    Nir, Yuval; Vyazovskiy, Vladyslav V; Cirelli, Chiara; Banks, Matthew I; Tononi, Giulio

    2015-05-01

    Sleep entails a disconnection from the external environment. By and large, sensory stimuli do not trigger behavioral responses and are not consciously perceived as they usually are in wakefulness. Traditionally, sleep disconnection was ascribed to a thalamic "gate," which would prevent signal propagation along ascending sensory pathways to primary cortical areas. Here, we compared single-unit and LFP responses in core auditory cortex as freely moving rats spontaneously switched between wakefulness and sleep states. Despite robust differences in baseline neuronal activity, both the selectivity and the magnitude of auditory-evoked responses were comparable across wakefulness, Nonrapid eye movement (NREM) and rapid eye movement (REM) sleep (pairwise differences sleep and wakefulness using an oddball paradigm. Robust stimulus-specific adaptation (SSA) was observed following the onset of repetitive tones, and the strength of SSA effects (13-20%) was comparable across vigilance states. Thus, responses in core auditory cortex are preserved across sleep states, suggesting that evoked activity in primary sensory cortices is driven by external physical stimuli with little modulation by vigilance state. We suggest that sensory disconnection during sleep occurs at a stage later than primary sensory areas.

  2. Brain scale-free properties in awake rest and NREM sleep: a simultaneous EEG/fMRI study.

    Science.gov (United States)

    Lei, Xu; Wang, Yulin; Yuan, Hong; Chen, Antao

    2015-03-01

    Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) studies revealed that spontaneous activity in the brain has scale-invariant properties, as indicated by a frequency spectrum that follows a power-law distribution. However, current knowledge about the exact relationship between scaling properties in EEG and fMRI signals is very limited. To address this question, we collected simultaneous EEG-fMRI data in healthy individuals during resting wakefulness and non-rapid eye movement (NREM) sleep. For either of these conditions, we found that both EEG and fMRI power spectra followed a power-law distribution. Furthermore, the EEG and fMRI scaling exponents were highly variable across subjects, and sensitive to the choice of reference and nuisance variables in EEG and fMRI data, respectively. Interestingly, the EEG exponent of the whole brain selectively corresponded to the fMRI exponent of the thalamus during NREM sleep. Together, our findings suggest that scale-free brain activity is characterized by robust temporal structures and behavioral significance. This motivates future studies to unravel its physiological mechanisms, as well as its relevance to behavior.

  3. Time delay between cardiac and brain activity during sleep transitions

    Science.gov (United States)

    Long, Xi; Arends, Johan B.; Aarts, Ronald M.; Haakma, Reinder; Fonseca, Pedro; Rolink, Jérôme

    2015-04-01

    Human sleep consists of wake, rapid-eye-movement (REM) sleep, and non-REM (NREM) sleep that includes light and deep sleep stages. This work investigated the time delay between changes of cardiac and brain activity for sleep transitions. Here, the brain activity was quantified by electroencephalographic (EEG) mean frequency and the cardiac parameters included heart rate, standard deviation of heartbeat intervals, and their low- and high-frequency spectral powers. Using a cross-correlation analysis, we found that the cardiac variations during wake-sleep and NREM sleep transitions preceded the EEG changes by 1-3 min but this was not the case for REM sleep transitions. These important findings can be further used to predict the onset and ending of some sleep stages in an early manner.

  4. Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep.

    Science.gov (United States)

    Van Dort, Christa J; Zachs, Daniel P; Kenny, Jonathan D; Zheng, Shu; Goldblum, Rebecca R; Gelwan, Noah A; Ramos, Daniel M; Nolan, Michael A; Wang, Karen; Weng, Feng-Ju; Lin, Yingxi; Wilson, Matthew A; Brown, Emery N

    2015-01-13

    Rapid eye movement (REM) sleep is an important component of the natural sleep/wake cycle, yet the mechanisms that regulate REM sleep remain incompletely understood. Cholinergic neurons in the mesopontine tegmentum have been implicated in REM sleep regulation, but lesions of this area have had varying effects on REM sleep. Therefore, this study aimed to clarify the role of cholinergic neurons in the pedunculopontine tegmentum (PPT) and laterodorsal tegmentum (LDT) in REM sleep generation. Selective optogenetic activation of cholinergic neurons in the PPT or LDT during non-REM (NREM) sleep increased the number of REM sleep episodes and did not change REM sleep episode duration. Activation of cholinergic neurons in the PPT or LDT during NREM sleep was sufficient to induce REM sleep.

  5. Characterisation of the effects of caffeine on sleep in the rat: a potential model of sleep disruption.

    Science.gov (United States)

    Paterson, L M; Wilson, S J; Nutt, D J; Hutson, P H; Ivarsson, M

    2009-07-01

    Caffeine is known to disrupt sleep and its administration to human subjects has been used to model sleep disruption. We previously showed that its effects on sleep onset latency are comparable between rats and humans. This study evaluated the potential use of caffeine as a model of sleep disruption in the rat, by assessing its effects on sleep architecture and electroencephalogram (EEG) frequency spectrum, and using sleep-promoting drugs to reverse these effects. Rats were implanted with radiotelemetry devices for body temperature, EEG, electromyogram and locomotor activity. Following recovery, animals were dosed with caffeine (10 mg/kg) alone or in combination with zolpidem (10 mg/kg) or trazodone (20 mg/kg). Sleep was scored for the subsequent 12 h using automated analysis software. Caffeine dose-dependently disrupted sleep: it increased WAKE time, decreased NREM (non-REM) sleep time and NREM bout duration (but not bout number), and decreased delta activity in NREM sleep. It also dose-dependently increased locomotor activity and body temperature. When given alone, zolpidem suppressed REM whilst trazodone increased NREM sleep time at the expense of WAKE, increased NREM bout duration, increased delta activity in NREM sleep and reduced body temperature. In combination, zolpidem attenuated caffeine's effects on WAKE, whilst trazodone attenuated its effects on NREM sleep, NREM bout duration, delta activity, body temperature and locomotor activity. Caffeine administration produced many of the signs of insomnia that were improved by two of its most successful current treatments. This model may therefore be useful in the study of new drugs for the treatment of sleep disturbance.

  6. Dietary Prebiotics and Bioactive Milk Fractions Improve NREM Sleep, Enhance REM Sleep Rebound and Attenuate the Stress-Induced Decrease in Diurnal Temperature and Gut Microbial Alpha Diversity

    Science.gov (United States)

    Thompson, Robert S.; Roller, Rachel; Mika, Agnieszka; Greenwood, Benjamin N.; Knight, Rob; Chichlowski, Maciej; Berg, Brian M.; Fleshner, Monika

    2017-01-01

    Severe, repeated or chronic stress produces negative health outcomes including disruptions of the sleep/wake cycle and gut microbial dysbiosis. Diets rich in prebiotics and glycoproteins impact the gut microbiota and may increase gut microbial species that reduce the impact of stress. This experiment tested the hypothesis that consumption of dietary prebiotics, lactoferrin (Lf) and milk fat globule membrane (MFGM) will reduce the negative physiological impacts of stress. Male F344 rats, postnatal day (PND) 24, received a diet with prebiotics, Lf and MFGM (test) or a calorically matched control diet. Fecal samples were collected on PND 35/70/91 for 16S rRNA sequencing to examine microbial composition and, in a subset of rats; Lactobacillus rhamnosus was measured using selective culture. On PND 59, biotelemetry devices were implanted to record sleep/wake electroencephalographic (EEG). Rats were exposed to an acute stressor (100, 1.5 mA, tail shocks) on PND 87 and recordings continued until PND 94. Test diet, compared to control diet, increased fecal Lactobacillus rhamnosus colony forming units (CFU), facilitated non-rapid eye movement (NREM) sleep consolidation (PND 71/72) and enhanced rapid eye movement (REM) sleep rebound after stressor exposure (PND 87). Rats fed control diet had stress-induced reductions in alpha diversity and diurnal amplitude of temperature, which were attenuated by the test diet (PND 91). Stepwise multiple regression analysis revealed a significant linear relationship between early-life Deferribacteres (PND 35) and longer NREM sleep episodes (PND 71/72). A diet containing prebiotics, Lf and MFGM enhanced sleep quality, which was related to changes in gut bacteria and modulated the impact of stress on sleep, diurnal rhythms and the gut microbiota. PMID:28119579

  7. Energetic constraints, not predation, influence the evolution of sleep patterning in mammals

    OpenAIRE

    Capellini, I.; Nunn, C L; McNamara, P; Preston, B T; Barton, R. A.

    2008-01-01

    Mammalian sleep is composed of two distinct states – rapid-eye-movement (REM) and non-REM (NREM) sleep – that alternate in cycles over a sleep bout. The duration of these cycles varies extensively across mammalian species. Because the end of a sleep cycle is often followed by brief arousals to waking, a shorter sleep cycle has been proposed to function as an anti-predator strategy. Similarly, higher predation risk could explain why many species exhibit a polyphasic sleep pattern (division of ...

  8. Hypnogram and sleep parameter computation from activity and cardiovascular data.

    Science.gov (United States)

    Domingues, Alexandre; Paiva, Teresa; Sanches, J Miguel

    2014-06-01

    The automatic computation of the hypnogram and sleep Parameters, from the data acquired with portable sensors, is a challenging problem with important clinical applications. In this paper, the hypnogram, the sleep efficiency (SE), rapid eye movement (REM), and nonREM (NREM) sleep percentages are automatically estimated from physiological (ECG and respiration) and behavioral (Actigraphy) nocturnal data. Two methods are described; the first deals with the problem of the hypnogram estimation and the second is specifically designed to compute the sleep parameters, outperforming the traditional estimation approach based on the hypnogram. Using an extended set of features the first method achieves an accuracy of 72.8%, 77.4%, and 80.3% in the detection of wakefulness, REM, and NREM states, respectively, and the second an estimation error of 4.3%, 9.8%, and 5.4% for the SE, REM, and NREM percentages, respectively.

  9. Towards a neurobiology of dysfunctional arousal in depression: the relationship between beta EEG power and regional cerebral glucose metabolism during NREM sleep.

    Science.gov (United States)

    Nofzinger, E A; Price, J C; Meltzer, C C; Buysse, D J; Villemagne, V L; Miewald, J M; Sembrat, R C; Steppe, D A; Kupfer, D J

    2000-04-10

    This study sought to clarify the neurobiological basis of variations in one aspect of central nervous system 'arousal' in depression by characterizing the functional neuroanatomic correlates of beta electroencephalographic (EEG) power density during non-rapid eye movement (NREM) sleep. First, nine healthy (n=9) subjects underwent concurrent EEG sleep studies and [18F]2-fluoro-2-deoxy-D-glucose ([18F]FDG) positron emission tomography (PET) scans during their first NREM period of sleep in order to generate hypotheses about specific brain structures that show a relationship between increased beta power and increased relative glucose metabolism. Second, brain structures identified in the healthy subjects were then used as a priori regions of interest in similar analyses from identical studies in 12 depressed subjects. Statistical parametric mapping was used to identify the relationship between beta power and relative regional cerebral glucose metabolism (rCMRglu) during NREM sleep. Regions that demonstrated significant correlations between beta power and relative cerebral glucose metabolism in both the healthy and depressed subjects included the ventromedial prefrontal cortex and the right lateral inferior occipital cortex. During a baseline night of sleep, depressed patients demonstrated a trend toward greater beta power in relation to a separate age- and gender-matched healthy control group. In both healthy and depressed subjects, beta power negatively correlated with subjective sleep quality. Finally, in the depressed group, there was a trend for beta power to correlate with an indirect measure of absolute whole brain metabolism during NREM sleep. This study demonstrates a similar relationship between electrophysiological arousal and glucose metabolism in the ventromedial prefrontal cortex in depressed and healthy subjects. Given the increased electrophysiological arousal in some depressed patients and the known anatomical relations between the ventromedial

  10. Relevance of the metabotropic glutamate receptor (mGluR5) in the regulation of NREM-REM sleep cycle and homeostasis: evidence from mGluR5 (-/-) mice.

    Science.gov (United States)

    Ahnaou, A; Raeymaekers, L; Steckler, T; Drinkenbrug, W H I M

    2015-04-01

    Sleep is a homeostatically regulated behavior and sleep loss evokes a proportional increase in sleep time and delta slow wave activity. Glutamate and pharmacological modulation of the metabotropic glutamate receptors (mGluR) signaling have been implicated in the organization of vigilance states. Here, the role of the mGluR5 on homeostatic regulation of sleep-wake cycle and electroencephalographic (EEG) activity was examined in mGluR5 (-/-) mice. We first characterized the sleep-wake EEG phenotype in mGluR5 (-/-) and wild-type (WT) littermates mice by continuous recording for 72h of EEG, body temperature (BT) and locomotor activity (LMA). Next, we investigated the influence of sleep deprivation on the recovery sleep and EEG slow wave activity (1-4Hz) during NREM sleep to assess whether mGluR5 deletion affects the sleep homeostasis process. Like the control animals, mGluR5 (-/-) mice exhibited a clear-cut circadian sleep-wake architecture, however they showed reduced REM sleep time during the light phase with shorter REM sleep bouts and reduced state transitions in the NREM sleep-REM sleep cycle during the first and last 24h of the spontaneous 72h recording period. In addition, mGluR5 (-/-) mice had decreased slow EEG delta power during NREM sleep and enhanced LMA associated with elevated BT during the dark phase. Moreover, mGluR5 (-/-) mice exhibited reduced slow wave activity and sleep drive after sleep deprivation, indicating altered sleep homeostatic processes. The findings strongly indicate that mGluR5 is involved in shaping the stability of NREM sleep-REM sleep state transitions, NREM slow wave activity and homeostatic response to sleep loss.

  11. Ambient temperature during torpor affects NREM sleep EEG during arousal episodes in hibernating European ground squirrels

    NARCIS (Netherlands)

    Strijkstra, AM; Daan, S

    1997-01-01

    Ambient temperature (T-a) systematically affects the frequency of arousal episodes in mammalian hibernation. This variation might hypothetically be attributed to temperature effects on the rate of sleep debt increase in torpor. We studied this rate by recording sleep electroencephalogram (EEG) in

  12. Bright morning light advances the human circadian system without affecting NREM sleep homeostasis

    NARCIS (Netherlands)

    Dijk, Derk Jan; Beersma, Domien G.M.; Daan, Serge; Lewy, Alfred J.

    1989-01-01

    Eight male subjects were exposed to either bright light or dim light between 0600 and 0900 h for 3 consecutive days each. Relative to the dim light condition, the bright light treatment advanced the evening rise in plasma melatonin and the time of sleep termination (sleep onset was held constant) fo

  13. Slow Wave Sleep and Long Duration Spaceflight

    Science.gov (United States)

    Whitmire, Alexandra; Orr, Martin; Arias, Diana; Rueger, Melanie; Johnston, Smith; Leveton, Lauren

    2012-01-01

    While ground research has clearly shown that preserving adequate quantities of sleep is essential for optimal health and performance, changes in the progression, order and /or duration of specific stages of sleep is also associated with deleterious outcomes. As seen in Figure 1, in healthy individuals, REM and Non-REM sleep alternate cyclically, with stages of Non-REM sleep structured chronologically. In the early parts of the night, for instance, Non-REM stages 3 and 4 (Slow Wave Sleep, or SWS) last longer while REM sleep spans shorter; as night progresses, the length of SWS is reduced as REM sleep lengthens. This process allows for SWS to establish precedence , with increases in SWS seen when recovering from sleep deprivation. SWS is indeed regarded as the most restorative portion of sleep. During SWS, physiological activities such as hormone secretion, muscle recovery, and immune responses are underway, while neurological processes required for long term learning and memory consolidation, also occur. The structure and duration of specific sleep stages may vary independent of total sleep duration, and changes in the structure and duration have been shown to be associated with deleterious outcomes. Individuals with narcolepsy enter sleep through REM as opposed to stage 1 of NREM. Disrupting slow wave sleep for several consecutive nights without reducing total sleep duration or sleep efficiency is associated with decreased pain threshold, increased discomfort, fatigue, and the inflammatory flare response in skin. Depression has been shown to be associated with a reduction of slow wave sleep and increased REM sleep. Given research that shows deleterious outcomes are associated with changes in sleep structure, it is essential to characterize and mitigate not only total sleep duration, but also changes in sleep stages.

  14. Experienced Mindfulness Meditators Exhibit Higher Parietal-Occipital EEG Gamma Activity during NREM Sleep

    OpenAIRE

    2013-01-01

    Over the past several years meditation practice has gained increasing attention as a non-pharmacological intervention to provide health related benefits, from promoting general wellness to alleviating the symptoms of a variety of medical conditions. However, the effects of meditation training on brain activity still need to be fully characterized. Sleep provides a unique approach to explore the meditation-related plastic changes in brain function. In this study we performed sleep high-density...

  15. A novel NREM and REM parasomnia with sleep breathing disorder associated with antibodies against IgLON5: a case series, pathological features, and characterization of the antigen

    Science.gov (United States)

    Sabater, Lidia; Gaig, Carles; Gelpi, Ellen; Bataller, Luis; Lewerenz, Jan; Torres-Vega, Estefanía; Contreras, Angeles; Giometto, Bruno; Compta, Yaroslau; Embid, Cristina; Vilaseca, Isabel; Iranzo, Alex; Santamaría, Joan; Dalmau, Josep; Graus, Francesc

    2014-01-01

    Summary Background Autoimmunity may be involved in sleep and neurodegenerative disorders. We aimed to describe a neurological syndrome with prominent sleep dysfunction and antibodies to a previously unknown neuronal antigen. Methods In this observational study, clinical and video-polysomnography (V- PSG) investigations identified a novel sleep disorder in three patients referred to the Sleep Unit of Hospital Clinic University of Barcelona for abnormal sleep behaviors and obstructive sleep apnea(OSA). They had antibodies against a neuronal surface antigen also present in five additional patients referred to our laboratory for antibody studies. These five patients had been evaluated with PSG and in two, the study was done or reviewed in our Sleep Unit. Two patients underwent postmortem brain examination. Immunoprecipitation and mass spectrometry were used to characterize the antigen and to develop a diagnostic test. Serum or CSF from 285 patients with neurodegenerative, sleep, or autoimmune disorders served as controls. Findings All eight patients (five women; range: 52–76 years, median 59) had abnormal sleep movements and behaviors and OSA confirmed by PSG. Six patients had a chronic evolution (range 2–12 years, median 5.5); in four the sleep disorder was the initial and most prominent feature, and in two it was preceded by gait instability, and followed by dysarthria, dysphagia, ataxia, or chorea. Two patients had a rapid evolution with disequilibrium, dysarthria, dysphagia, and central hypoventilation, and died two and six months after symptom onset. In 5/5 patients, the V-PSG reviewed in our Unit disclosed OSA, stridor, and abnormal sleep architecture with undifferentiated NREM sleep or poorly structured stage N2 with simple movements and finalistic behaviors, normalization of NREM sleep by the end of the night, and REM sleep behavior disorder. Four/4 patients carried the HLA-DRB1*1001 and HLA-DQB1*0501 alleles. All patients had antibodies (mainly IgG4

  16. A role for cryptochromes in sleep regulation

    Directory of Open Access Journals (Sweden)

    Sancar Aziz

    2002-12-01

    Full Text Available Abstract Background The cryptochrome 1 and 2 genes (cry1 and cry2 are necessary for the generation of circadian rhythms, as mice lacking both of these genes (cry1,2-/- lack circadian rhythms. We studied sleep in cry1,2-/- mice under baseline conditions as well as under conditions of constant darkness and enforced wakefulness to determine whether cryptochromes influence sleep regulatory processes. Results Under all three conditions, cry1,2-/- mice exhibit the hallmarks of high non-REM sleep (NREMS drive (i.e., increases in NREMS time, NREMS consolidation, and EEG delta power during NREMS. This unexpected phenotype was associated with elevated brain mRNA levels of period 1 and 2 (per1,2, and albumin d-binding protein (dbp, which are known to be transcriptionally inhibited by CRY1,2. To further examine the relationship between circadian genes and sleep homeostasis, we examined wild type mice and rats following sleep deprivation and found increased levels of per1,2 mRNA and decreased levels of dbp mRNA specifically in the cerebral cortex; these changes subsided with recovery sleep. The expression of per3, cry1,2, clock, npas2, bmal1, and casein-kinase-1ε did not change with sleep deprivation. Conclusions These results indicate that mice lacking cryptochromes are not simply a genetic model of circadian arrhythmicity in rodents and functionally implicate cryptochromes in the homeostatic regulation of sleep.

  17. Effects of thermoregulation on human sleep patterns: A mathematical model of sleep-wake cycles with REM-NREM subcircuit

    OpenAIRE

    Bañuelos, Selenne; Best, Janet; Huguet Casades, Gemma; Prieto-Langarica, Alicia; Pyzza, Pamela; Schmidt, Markus; Wilson, Shelby

    2015-01-01

    In this paper we construct a mathematical model of human sleep/wake regulation with thermoregulation and temperature e ects. Simulations of this model show features previously presented in experimental data such as elongation of duration and number of REM bouts across the night as well as the appearance of awakenings due to deviations in body temperature from thermoneutrality. This model helps to demonstrate the importance of temperature in the sleep cycle. Further modi cations of the model t...

  18. Assessment of the EEG complexity during activations from sleep.

    Science.gov (United States)

    Chouvarda, I; Rosso, V; Mendez, M O; Bianchi, A M; Parrino, L; Grassi, A; Terzano, M; Cerutti, S

    2011-12-01

    The present study quantitatively analyzes the EEG characteristics during activations (Act) that occur during NREM sleep, and constitute elements of sleep microstructure (i.e. the Cyclic Alternating Pattern). The fractal dimension (FD) and the sample entropy (SampEn) measures were used to study the different sleep stages and the Act that build up the sleep structure. Polysomnographic recordings from 10 good sleepers were analyzed. The complexity indexes of the Act were compared with the non-activation (NAct) periods during non-REM sleep. In addition, complexity measures among the different Act subtypes (A1, A2 and A3) were analyzed. A3 presented a quite similar complexity independently of the sleep stage, while A1 and A2 showed higher complexity in light sleep than during deep sleep. The current results suggest that Act present a hierarchic complexity between subtypes A3 (higher), A2 (intermediate) and A1 (lower) in all sleep stages.

  19. Mammalian sleep

    Science.gov (United States)

    Staunton, Hugh

    2005-05-01

    This review examines the biological background to the development of ideas on rapid eye movement sleep (REM sleep), so-called paradoxical sleep (PS), and its relation to dreaming. Aspects of the phenomenon which are discussed include physiological changes and their anatomical location, the effects of total and selective sleep deprivation in the human and animal, and REM sleep behavior disorder, the latter with its clinical manifestations in the human. Although dreaming also occurs in other sleep phases (non-REM or NREM sleep), in the human, there is a contingent relation between REM sleep and dreaming. Thus, REM is taken as a marker for dreaming and as REM is distributed ubiquitously throughout the mammalian class, it is suggested that other mammals also dream. It is suggested that the overall function of REM sleep/dreaming is more important than the content of the individual dream; its function is to place the dreamer protagonist/observer on the topographical world. This has importance for the developing infant who needs to develop a sense of self and separateness from the world which it requires to navigate and from which it is separated for long periods in sleep. Dreaming may also serve to maintain a sense of ‘I’ness or “self” in the adult, in whom a fragility of this faculty is revealed in neurological disorders.

  20. NREM-related parasomnias in Machado-Joseph disease: clinical and polysomnographic evaluation.

    Science.gov (United States)

    Silva, Giselle Melo Fontes; Pedroso, José Luiz; Dos Santos, Diogo Fernandes; Braga-Neto, Pedro; Do Prado, Lucila Bizari Fernandes; De Carvalho, Luciane Bizari Coin; Barsottini, Orlando G P; Do Prado, Gilmar Fernandes

    2016-02-01

    Spinocerebellar ataxias (SCA) are autosomal dominant neurodegenerative disorders that affect the cerebellum and its connections, and have a marked clinical and genetic variability. Machado-Joseph disease (MJD) or spinocerebellar ataxia type 3 (SCA3)--MJD/SCA3--is the most common SCA worldwide. MJD/SCA3 is characterized classically by progressive ataxia and variable other motor and non-motor symptoms. Sleep disorders are common, and include rapid eye movement (REM) sleep behaviour disorder (RBD), restless legs syndrome (RLS), insomnia, excessive daytime sleepiness, excessive fragmentary myoclonus and sleep apnea. This study aims to focus upon determining the presence or not of non-REM (NREM)-related parasomnias in MJD/SCA 3, using data from polysomnography (PSG) and clinical evaluation. Forty-seven patients with clinical and genetic diagnosis of MJD/SCA3 and 47 control subjects were evaluated clinically and by polysomnography. MJD/SCA3 patients had a higher frequency of arousals from slow wave sleep (P parasomnia complaints (confusional arousal/sleep terrors, P = 0.001; RBD, P parasomnias must be included in the spectrum of sleep disorders in MJD/SCA3 patients.

  1. Short-term effects of fluoxetine and trifluoromethylphenylpiperazine on electroencephalographic sleep in the rat.

    Science.gov (United States)

    Pastel, R H; Fernstrom, J D

    1987-12-01

    Fluoxetine and trifluoromethylphenylpiperazine (TFMPP) were studied for their short-term effects on electroencephalographic sleep in male rats. Following single injection, each drug produced a sizeable, dose-related suppression of rapid-eye-movement (REM) sleep that persisted for 4-5 h (fluoxetine, 0.625-5 mg/kg; TFMPP, 0.10-1.25 mg/kg). TFMPP also consistently increased non-REM (NREM) sleep during the second hour after drug injection, though this effect was not dose-related (it was seen at all doses tested). Fluoxetine produced small effects on NREM sleep that varied non-systematically with dose and time after drug injection. TFMPP, but not fluoxetine, also increased at all doses the number of delta waves per minute of NREM sleep in the second hour. A structural analog of TFMPP that is inactive at serotonin (5-HT) receptors [4-(m-trifluoromethylphenyl)piperadine; LY97117] was also tested, and found to be devoid of effects on NREM and REM sleep. Both fluoxetine (a 5-HT reuptake blocker) and TFMPP (a 5-HT agonist) enhance transmission across 5-HT synapses, though by different mechanisms. Because they have the common effect of suppressing REM sleep, and in a dose-related manner, the data support the notion that 5-HT neurons in the brain, when active, can suppress REM sleep.

  2. Statistical, spectral and non-linear analysis of the heart rate variability during wakefulness and sleep.

    Science.gov (United States)

    Brando, Victoria; Castro-Zaballa, Santiago; Falconi, Atilio; Torterolo, Pablo; Migliaro, Eduardo R

    2014-03-01

    As a first step in a program designed to study the central control of the heart rate variability (HRV) during sleep, we conducted polysomnographic and electrocardiogram recordings on chronically-prepared cats during semi- restricted conditions. We found that the tachogram, i.e. the pattern of heart beat intervals (RR intervals) was deeply modified on passing from alert wakefulness through quiet wakefulness (QW) to sleep. While the tachogram showed a rhythmical pattern coupled with respiratory activity during non-REM sleep (NREM), it turned chaotic during REM sleep. Statistical analyses of the RR intervals showed that the mean duration increased during sleep. HRV measured by the standard deviation of normal RR intervals (SDNN) and by the square root of the mean squared difference of successive intervals (rMSSD) were larger during REM and NREM sleep than during QW. SD-1 (a marker of short- term variability) and SD-2 (a marker of long-term variability) measured by means of Poincaré plots increased during both REM and NREM sleep compared to QW. Furthermore, in the spectral analysis of RR intervals, the band of high frequency (HF) was larger in NREM and REM sleep in comparison to QW, whereas the band of low frequency (LF) was larger only during REM sleep in comparison to QW. The LF/HF ratio was larger during QW compared either with REM or NREM sleep. Finally, sample entropy analysis used as a measure of complexity, was higher during NREM in comparison to REM sleep. In conclusion, HRV parameters, including complexity, are deeply modified across behavioral states.

  3. Automatic SLEEP staging: From young aduslts to elderly patients using multi-class support vector machine

    DEFF Research Database (Denmark)

    Kempfner, Jacob; Jennum, Poul; Sorensen, Helge B. D.

    2013-01-01

    , and not the affected sleep events. The age-related influences are then reduced by robust subject-specific scaling. The classification of the three sleep stages are achieved by a multi-class support vector machine using the one-versus-rest scheme. It was possible to obtain a high classification accuracy of 0......Aging is a process that is inevitable, and makes our body vulnerable to age-related diseases. Age is the most consistent factor affecting the sleep structure. Therefore, new automatic sleep staging methods, to be used in both of young and elderly patients, are needed. This study proposes...... an automatic sleep stage detector, which can separate wakefulness, rapid-eye-movement (REM) sleep and non-REM (NREM) sleep using only EEG and EOG. Most sleep events, which define the sleep stages, are reduced with age. This is addressed by focusing on the amplitude of the clinical EEG bands...

  4. Overnight improvements in two REM sleep-sensitive tasks are associated with both REM and NREM sleep changes, sleep spindle features, and awakenings for dream recall.

    Science.gov (United States)

    Nielsen, T; O'Reilly, C; Carr, M; Dumel, G; Godin, I; Solomonova, E; Lara-Carrasco, J; Blanchette-Carrière, C; Paquette, T

    2015-07-01

    Memory consolidation is associated with sleep physiology but the contribution of specific sleep stages remains controversial. To clarify the contribution of REM sleep, participants were administered two REM sleep-sensitive tasks to determine if associated changes occurred only in REM sleep. Twenty-two participants (7 men) were administered the Corsi Block Tapping and Tower of Hanoi tasks prior to and again after a night of sleep. Task improvers and non-improvers were compared for sleep structure, sleep spindles, and dream recall. Control participants (N = 15) completed the tasks twice during the day without intervening sleep. Overnight Corsi Block improvement was associated with more REM sleep whereas Tower of Hanoi improvement was associated with more N2 sleep. Corsi Block improvement correlated positively with %REM sleep and Tower of Hanoi improvement with %N2 sleep. Post-hoc analyses suggest Tower of Hanoi effects-but not Corsi Block effects-are due to trait differences. Sleep spindle density was associated with Tower of Hanoi improvement whereas spindle amplitude correlated with Corsi Block improvement. Number of REM awakenings for dream reporting (but not dream recall per se) was associated with Corsi Block, but not Tower of Hanoi, improvement but was confounded with REM sleep time. This non-replication of one of 2 REM-sensitive task effects challenges both 'dual-process' and 'sequential' or 'sleep organization' models of sleep-dependent learning and points rather to capacity limitations on REM sleep. Experimental awakenings for sampling dream mentation may not perturb sleep-dependent learning effects; they may even enhance them.

  5. Global Functional Connectivity Differences between Sleep-Like States in Urethane Anesthetized Rats Measured by fMRI.

    Directory of Open Access Journals (Sweden)

    Ekaterina Zhurakovskaya

    Full Text Available Sleep is essential for nervous system functioning and sleep disorders are associated with several neurodegenerative diseases. However, the macroscale connectivity changes in brain networking during different sleep states are poorly understood. One of the hindering factors is the difficulty to combine functional connectivity investigation methods with spontaneously sleeping animals, which prevents the use of numerous preclinical animal models. Recent studies, however, have implicated that urethane anesthesia can uniquely induce different sleep-like brain states, resembling rapid eye movement (REM and non-REM (NREM sleep, in rodents. Therefore, the aim of this study was to assess changes in global connectivity and topology between sleep-like states in urethane anesthetized rats, using blood oxygenation level dependent (BOLD functional magnetic resonance imaging. We detected significant changes in corticocortical (increased in NREM-like state and corticothalamic connectivity (increased in REM-like state. Additionally, in graph analysis the modularity, the measure of functional integration in the brain, was higher in NREM-like state than in REM-like state, indicating a decrease in arousal level, as in normal sleep. The fMRI findings were supported by the supplementary electrophysiological measurements. Taken together, our results show that macroscale functional connectivity changes between sleep states can be detected robustly with resting-state fMRI in urethane anesthetized rats. Our findings pave the way for studies in animal models of neurodegenerative diseases where sleep abnormalities are often one of the first markers for the disorder development.

  6. Effects of chronic stress on sleep in rats.

    Science.gov (United States)

    Kant, G J; Pastel, R H; Bauman, R A; Meininger, G R; Maughan, K R; Robinson, T N; Wright, W L; Covington, P S

    1995-02-01

    The present study was conducted to determine the effects of chronic stress on sleep using a rodent paradigm of around-the-clock signalled intermittent foot shock in which some rats can pull a chain to avoid/escape shock while another group of rats is yoked to the first group. We measured sleep using telemetry; four-channel EEG was collected 24 h/day in rats during 2 prestress days; days 1, 2, 3, 7, and 14 during chronic stress; and 3 poststress days. States of REM sleep, non-REM (NREM) sleep, and waking were scored for each 15-s period of the EEG recordings. During the prestress period, rats slept (REM plus NREM) 55% of available time during the light hours and 34% of the dark hours with the remainder represented by waking. On the first day of stress, total sleep and, especially REM sleep, decreased markedly. By the second day of stress, only REM sleep in the controllable stress group (but not the uncontrollable stress group) was still significantly decreased compared to prestress levels, and REM sleep returned to baseline levels by day 7 of stress. The recovery of sleep quantity was accomplished by increased sleep during the dark hours, resulting in a long-lasting disruption of normal circadian sleep patterning.

  7. Quantitative analysis of wrist electrodermal activity during sleep.

    Science.gov (United States)

    Sano, Akane; Picard, Rosalind W; Stickgold, Robert

    2014-12-01

    We present the first quantitative characterization of electrodermal activity (EDA) patterns on the wrists of healthy adults during sleep using dry electrodes. We compare the new results on the wrist to the prior findings on palmar or finger EDA by characterizing data measured from 80 nights of sleep consisting of 9 nights of wrist and palm EDA from 9 healthy adults sleeping at home, 56 nights of wrist and palm EDA from one healthy adult sleeping at home, and 15 nights of wrist EDA from 15 healthy adults in a sleep laboratory, with the latter compared to concurrent polysomnography. While high frequency patterns of EDA called "storms" were identified by eye in the 1960s, we systematically compare thresholds for automatically detecting EDA peaks and establish criteria for EDA storms. We found that more than 80% of the EDA peaks occurred in non-REM sleep, specifically during slow-wave sleep (SWS) and non-REM stage 2 sleep (NREM2). Also, EDA amplitude is higher in SWS than in other sleep stages. Longer EDA storms were more likely to occur in the first two quarters of sleep and during SWS and NREM2. We also found from the home studies (65 nights) that EDA levels were higher and the skin conductance peaks were larger and more frequent when measured on the wrist than when measured on the palm. These EDA high frequency peaks and high amplitude were sometimes associated with higher skin temperature, but more work is needed looking at neurological and other EDA elicitors in order to elucidate their complete behavior.

  8. Energetic constraints, not predation, influence the evolution of sleep patterning in mammals.

    Science.gov (United States)

    Capellini, I; Nunn, C L; McNamara, P; Preston, B T; Barton, R A

    2008-10-01

    Mammalian sleep is composed of two distinct states - rapid-eye-movement (REM) and non-REM (NREM) sleep - that alternate in cycles over a sleep bout. The duration of these cycles varies extensively across mammalian species. Because the end of a sleep cycle is often followed by brief arousals to waking, a shorter sleep cycle has been proposed to function as an anti-predator strategy. Similarly, higher predation risk could explain why many species exhibit a polyphasic sleep pattern (division of sleep into several bouts per day), as having multiple sleep bouts avoids long periods of unconsciousness, potentially reducing vulnerability.Using phylogenetic comparative methods, we tested these predictions in mammals, and also investigated the relationships among sleep phasing, sleep-cycle length, sleep durations and body mass.Neither sleep-cycle length nor phasing of sleep was significantly associated with three different measures of predation risk, undermining the idea that they represent anti-predator adaptations.Polyphasic sleep was associated with small body size, shorter sleep cycles and longer sleep durations. The correlation with size may reflect energetic constraints: small animals need to feed more frequently, preventing them from consolidating sleep into a single bout. The reduced daily sleep quotas in monophasic species suggests that the consolidation of sleep into one bout per day may deliver the benefits of sleep more efficiently and, since early mammals were small-bodied and polyphasic, a more efficient monophasic sleep pattern could be a hitherto unrecognized advantage of larger size.

  9. Sleep spindle density in narcolepsy.

    Science.gov (United States)

    Christensen, Julie Anja Engelhard; Nikolic, Miki; Hvidtfelt, Mathias; Kornum, Birgitte Rahbek; Jennum, Poul

    2017-06-01

    Patients with narcolepsy type 1 (NT1) show alterations in sleep stage transitions, rapid-eye-movement (REM) and non-REM sleep due to the loss of hypocretinergic signaling. However, the sleep microstructure has not yet been evaluated in these patients. We aimed to evaluate whether the sleep spindle (SS) density is altered in patients with NT1 compared to controls and patients with narcolepsy type 2 (NT2). All-night polysomnographic recordings from 28 NT1 patients, 19 NT2 patients, 20 controls (C) with narcolepsy-like symptoms, but with normal cerebrospinal fluid hypocretin levels and multiple sleep latency tests, and 18 healthy controls (HC) were included. Unspecified, slow, and fast SS were automatically detected, and SS densities were defined as number per minute and were computed across sleep stages and sleep cycles. The between-cycle trends of SS densities in N2 and NREM sleep were evaluated within and between groups. Between-group comparisons in sleep stages revealed no significant differences in any type of SS. Within-group analyses of the SS trends revealed significant decreasing trends for NT1, HC, and C between first and last sleep cycle. Between-group analyses of SS trends between first and last sleep cycle revealed that NT2 differ from NT1 patients in the unspecified SS density in NREM sleep, and from HC in the slow SS density in N2 sleep. SS activity is preserved in NT1, suggesting that the ascending neurons to thalamic activation of SS are not significantly affected by the hypocretinergic system. NT2 patients show an abnormal pattern of SS distribution. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effects of social stimuli on sleep in mice : non-rapid-eye-movement (NREM) sleep is promoted by aggressive interaction but not by sexual interaction

    NARCIS (Netherlands)

    Meerlo, Peter; Turek, Fred W.

    2001-01-01

    Sleep is generally considered to be a process of recovery from prior wakefulness. In addition to being affected by the duration of the waking period, sleep architecture and sleep EEG also depend on the quality of wakefulness. In the present experiment, we examined how sleep is affected by different

  11. Effects of social stimuli on sleep in mice : non-rapid-eye-movement (NREM) sleep is promoted by aggressive interaction but not by sexual interaction

    NARCIS (Netherlands)

    Meerlo, Peter; Turek, Fred W.

    2001-01-01

    Sleep is generally considered to be a process of recovery from prior wakefulness. In addition to being affected by the duration of the waking period, sleep architecture and sleep EEG also depend on the quality of wakefulness. In the present experiment, we examined how sleep is affected by different

  12. Pathology of sleep, hormones and depression

    NARCIS (Netherlands)

    Steiger, A.; Dresler, M.; Kluge, M.; Schussler, P.

    2013-01-01

    In patients with depression, characteristic changes of sleep electroencephalogram and nocturnal hormone secretion occur including rapid eye movement (REM) sleep disinhibition, reduced non-REM sleep and impaired sleep continuity. Neuropeptides are common regulators of the sleep electroencephalogram (

  13. Measuring dissimilarity between respiratory effort signals based on uniform scaling for sleep staging.

    Science.gov (United States)

    Long, Xi; Yang, Jie; Weysen, Tim; Haakma, Reinder; Foussier, Jérôme; Fonseca, Pedro; Aarts, Ronald M

    2014-12-01

    Polysomnography (PSG) has been extensively studied for sleep staging, where sleep stages are usually classified as wake, rapid-eye-movement (REM) sleep, or non-REM (NREM) sleep (including light and deep sleep). Respiratory information has been proven to correlate with autonomic nervous activity that is related to sleep stages. For example, it is known that the breathing rate and amplitude during NREM sleep, in particular during deep sleep, are steadier and more regular compared to periods of wakefulness that can be influenced by body movements, conscious control, or other external factors. However, the respiratory morphology has not been well investigated across sleep stages. We thus explore the dissimilarity of respiratory effort with respect to its signal waveform or morphology. The dissimilarity measure is computed between two respiratory effort signal segments with the same number of consecutive breaths using a uniform scaling distance. To capture the property of signal morphological dissimilarity, we propose a novel window-based feature in a framework of sleep staging. Experiments were conducted with a data set of 48 healthy subjects using a linear discriminant classifier and a ten-fold cross validation. It is revealed that this feature can help discriminate between sleep stages, but with an exception of separating wake and REM sleep. When combining the new feature with 26 existing respiratory features, we achieved a Cohen's Kappa coefficient of 0.48 for 3-stage classification (wake, REM sleep and NREM sleep) and of 0.41 for 4-stage classification (wake, REM sleep, light sleep and deep sleep), which outperform the results obtained without using this new feature.

  14. Deep sleep after social stress : NREM sleep slow-wave activity is enhanced in both winners and losers of a conflict

    NARCIS (Netherlands)

    Kamphuis, Jeanine; Lancel, Marike; Koolhaas, Jaap M.; Meerlo, Peter

    2015-01-01

    Sleep is considered to be a recovery process of prior wakefulness. Not only duration of the waking period affects sleep architecture and sleep EEG, the quality of wakefulness is also highly important. Studies in rats have shown that social defeat stress, in which experimental animals are attacked an

  15. Rapid eye movements during sleep in mice: High trait-like stability qualifies rapid eye movement density for characterization of phenotypic variation in sleep patterns of rodents

    Directory of Open Access Journals (Sweden)

    Fulda Stephany

    2011-11-01

    Full Text Available Abstract Background In humans, rapid eye movements (REM density during REM sleep plays a prominent role in psychiatric diseases. Especially in depression, an increased REM density is a vulnerability marker for depression. In clinical practice and research measurement of REM density is highly standardized. In basic animal research, almost no tools are available to obtain and systematically evaluate eye movement data, although, this would create increased comparability between human and animal sleep studies. Methods We obtained standardized electroencephalographic (EEG, electromyographic (EMG and electrooculographic (EOG signals from freely behaving mice. EOG electrodes were bilaterally and chronically implanted with placement of the electrodes directly between the musculus rectus superior and musculus rectus lateralis. After recovery, EEG, EMG and EOG signals were obtained for four days. Subsequent to the implantation process, we developed and validated an Eye Movement scoring in Mice Algorithm (EMMA to detect REM as singularities of the EOG signal, based on wavelet methodology. Results The distribution of wakefulness, non-REM (NREM sleep and rapid eye movement (REM sleep was typical of nocturnal rodents with small amounts of wakefulness and large amounts of NREM sleep during the light period and reversed proportions during the dark period. REM sleep was distributed correspondingly. REM density was significantly higher during REM sleep than NREM sleep. REM bursts were detected more often at the end of the dark period than the beginning of the light period. During REM sleep REM density showed an ultradian course, and during NREM sleep REM density peaked at the beginning of the dark period. Concerning individual eye movements, REM duration was longer and amplitude was lower during REM sleep than NREM sleep. The majority of single REM and REM bursts were associated with micro-arousals during NREM sleep, but not during REM sleep. Conclusions Sleep

  16. Primary sleep enuresis in childhood: polysomnography evidences of sleep stage and time modulation

    Directory of Open Access Journals (Sweden)

    Rubens Reimäo

    1993-03-01

    Full Text Available The objective of this study was to evaluate enuretic events and its relations to sleep stages, sleep cycles and time durations in a selected group of children with primary essential sleep enuresis. We evaluated 18 patients with mean age of 8.2 years old (ranging from 5 to 12 years; 10 were males and 8 females (n.s.. They were referred to the Sleep Disorders Center with the specific complaint of enuresis since the first years of life (primary. Pediatric, urologic and neurologic workup did not show objective abnormalities (essential. The standard all-night polysomnography including an enuresis sensor attached to the shorts in the crotch area was performed. Only enuretic events nights were included. All were drug free patients for two weeks prior to polysomnography. In this report, only one polysomnography per patient was considered. The enuretic events were phase related, occurring predominantly in non-REM (NREM sleep (p<0.05. There was no predominance of enuretic events among the NREM stages (n.s.. A tendency of these events to occur in the first two sleep cycles was detected but may be due to the longer duration of these cycles. The events were time modulated, adjusted to a normal distribution with a mean of 213.4 min of recording time.

  17. Such stuff as NREM dreams are made on?

    Science.gov (United States)

    Cicogna, PierCarla; Occhionero, Miranda

    2013-12-01

    The question that we deal with in this commentary is the need to clarify the synergistic role of different non-rapid eye movement (NREM) sleep stages (stages 2 and 3-4) with REM and while awake in elaborative encoding of episodic memory. If the assumption is that there is isomorphism between neuronal and cognitive networks, then more detailed analysis of NREM sleep and dreams is absolutely necessary.

  18. Sleep stage classification with ECG and respiratory effort.

    Science.gov (United States)

    Fonseca, Pedro; Long, Xi; Radha, Mustafa; Haakma, Reinder; Aarts, Ronald M; Rolink, Jérôme

    2015-10-01

    Automatic sleep stage classification with cardiorespiratory signals has attracted increasing attention. In contrast to the traditional manual scoring based on polysomnography, these signals can be measured using advanced unobtrusive techniques that are currently available, promising the application for personal and continuous home sleep monitoring. This paper describes a methodology for classifying wake, rapid-eye-movement (REM) sleep, and non-REM (NREM) light and deep sleep on a 30 s epoch basis. A total of 142 features were extracted from electrocardiogram and thoracic respiratory effort measured with respiratory inductance plethysmography. To improve the quality of these features, subject-specific Z-score normalization and spline smoothing were used to reduce between-subject and within-subject variability. A modified sequential forward selection feature selector procedure was applied, yielding 80 features while preventing the introduction of bias in the estimation of cross-validation performance. PSG data from 48 healthy adults were used to validate our methods. Using a linear discriminant classifier and a ten-fold cross-validation, we achieved a Cohen's kappa coefficient of 0.49 and an accuracy of 69% in the classification of wake, REM, light, and deep sleep. These values increased to kappa = 0.56 and accuracy = 80% when the classification problem was reduced to three classes, wake, REM sleep, and NREM sleep.

  19. Observation on the Changes of Sleep Structure in 82 Patients with Epilepsy by Polysomnography Combined with Long-term Video Electroencephalogram

    Institute of Scientific and Technical Information of China (English)

    Li Hongliang; Li Yan; Jiang Min; Xu Jianyang; Wang Shouyong; Du Junqiu; Shi Xiangsong

    2014-01-01

    Objective:To investigate the effect of epileptiform discharge on changes of sleep structure in patients with epilepsy. Methods:A total of 82 patients diagnosed with epilepsy were performed with polysomnography (PSG) concomitant with long-term video electroencephalogram (LTV EEG) to analyze their sleep structures and epileptic EEG. Results:The PSG in this study was marked by different levels of changes in sleep parameters with increased latency stage and decreased rapid eye movement (REM) sleep as well as increased times of arousals at night, in which 8 patients had no REM sleep. During sleep, epileptiform discharges had evidently inlfuence on phaseⅠ andⅢ~Ⅳ sleep of non-REM (NREM) and discharge group was more signiifcant in the increase of phaseⅠ sleep but decrease of phasesⅢ~Ⅳ sleep of NREM. Conclusion:Patients with epilepsy is often accompanied with disorders of sleep structures, especially those with epileptiform discharges during sleep. Application of PSG concomitant with LTV EEG are more beneifcial for the overall analysis of relationship between sleep structure and epileptiform discharges.

  20. Suppressant effects of selective 5-HT2 antagonists on rapid eye movement sleep in rats.

    Science.gov (United States)

    Tortella, F C; Echevarria, E; Pastel, R H; Cox, B; Blackburn, T P

    1989-04-24

    The effects of the novel, highly selective serotonin-2 (5-HT2) antagonists, ICI 169,369 and ICI 170,809, on 24 h EEG sleep-wake activity were studied in the rat. Both compounds caused a dose-related increase in the latency to rapid eye movement sleep (REMS) and significantly suppressed cumulative REMS time up to 12 h postinjection. In contrast, neither drug disrupted slow-wave sleep continuity in as much as the latency to non-REMS (NREMS) and cumulative NREMS time were unchanged. However, at the highest dose tested (20 mg/kg) ICI 170,809 did produce a significant increase in total NREMS time during the second half of the sleep-awake cycle. These results demonstrate effects of selective 5-HT2 antagonists on sleep in rats which appear to be specific for REMS behavior, suggesting that the priming influence of serotonin on REMS may involve 5-HT2 receptor subtypes. The relationship between the REMS suppressant actions of these compounds and their consideration as therapeutic agents in depression is discussed.

  1. Estradiol modulates recovery of REM sleep in a time-of-day-dependent manner.

    Science.gov (United States)

    Schwartz, Michael D; Mong, Jessica A

    2013-08-01

    Ovarian hormones are thought to modulate sleep and fluctuations in the hormonal milieu are coincident with sleep complaints in women. In female rats, estradiol increases waking and suppresses sleep. In this study, we asked whether this effect is mediated via circadian or homeostatic regulatory mechanisms. Ovariectomized female rats received daily injections of estradiol benzoate (EB) or sesame oil that mimicked the rapid increase and subsequent decline of circulating estradiol at proestrus. In one experiment, animals were sleep deprived for 6 h starting at lights-on, so that recovery began in the mid-light phase; in the second experiment, animals were sleep deprived starting in the mid-light phase, so that recovery began at lights-off. EB suppressed baseline rapid eye movement (REM) and non-REM (NREM) sleep and increased waking in the dark phase. In both experiments, EB enhanced REM recovery in the light phase while suppressing it in the dark compared with oil; this effect was most pronounced in the first 6 h of recovery. By contrast, NREM recovery was largely unaffected by EB. In summary, EB enhanced waking and suppressed sleep, particularly REM sleep, in the dark under baseline and recovery conditions. These strong temporally dependent effects suggest that EB consolidates circadian sleep-wake rhythms in female rats.

  2. Modeling the effect of sleep regulation on a neural mass model.

    Science.gov (United States)

    Costa, Michael Schellenberger; Born, Jan; Claussen, Jens Christian; Martinetz, Thomas

    2016-08-01

    In mammals, sleep is categorized by two main sleep stages, rapid eye movement (REM) and non-REM (NREM) sleep that are known to fulfill different functional roles, the most notable being the consolidation of memory. While REM sleep is characterized by brain activity similar to wakefulness, the EEG activity changes drastically with the emergence of K-complexes, sleep spindles and slow oscillations during NREM sleep. These changes are regulated by circadian and ultradian rhythms, which emerge from an intricate interplay between multiple neuronal populations in the brainstem, forebrain and hypothalamus and the resulting varying levels of neuromodulators. Recently, there has been progress in the understanding of those rhythms both from a physiological as well as theoretical perspective. However, how these neuromodulators affect the generation of the different EEG patterns and their temporal dynamics is poorly understood. Here, we build upon previous work on a neural mass model of the sleeping cortex and investigate the effect of those neuromodulators on the dynamics of the cortex and the corresponding transition between wakefulness and the different sleep stages. We show that our simplified model is sufficient to generate the essential features of human EEG over a full day. This approach builds a bridge between sleep regulatory networks and EEG generating neural mass models and provides a valuable tool for model validation.

  3. Adenosine in the tuberomammillary nucleus inhibits the histaminergic system via A1 receptors and promotes non-rapid eye movement sleep.

    Science.gov (United States)

    Oishi, Yo; Huang, Zhi-Li; Fredholm, Bertil B; Urade, Yoshihiro; Hayaishi, Osamu

    2008-12-16

    Adenosine has been proposed to promote sleep through A(1) receptors (A(1)R's) and/or A(2A) receptors in the brain. We previously reported that A(2A) receptors mediate the sleep-promoting effect of prostaglandin D(2), an endogenous sleep-inducing substance, and that activation of these receptors induces sleep and blockade of them by caffeine results in wakefulness. On the other hand, A(1)R has been suggested to increase sleep by inhibition of the cholinergic region of the basal forebrain. However, the role and target sites of A(1)R in sleep-wake regulation remained controversial. In this study, immunohistochemistry revealed that A(1)R was expressed in histaminergic neurons of the rat tuberomammillary nucleus (TMN). In vivo microdialysis showed that the histamine release in the frontal cortex was decreased by microinjection into the TMN of N(6)-cyclopentyladenosine (CPA), an A(1)R agonist, adenosine or coformycin, an inhibitor of adenosine deaminase, which catabolizes adenosine to inosine. Bilateral injection of CPA into the rat TMN significantly increased the amount and the delta power density of non-rapid eye movement (non-REM; NREM) sleep but did not affect REM sleep. CPA-promoted sleep was observed in WT mice but not in KO mice for A(1)R or histamine H(1) receptor, indicating that the NREM sleep promoted by A(1)R-specific agonist depended on the histaminergic system. Furthermore, the bilateral injection of adenosine or coformycin into the rat TMN increased NREM sleep, which was completely abolished by coadministration of 1,3-dimethyl-8-cyclopenthylxanthine, a selective A(1)R antagonist. These results indicate that endogenous adenosine in the TMN suppresses the histaminergic system via A(1)R to promote NREM sleep.

  4. Orexin-1 receptor blockade dysregulates REM sleep in the presence of orexin-2 receptor antagonism

    Directory of Open Access Journals (Sweden)

    Christine eDugovic

    2014-02-01

    Full Text Available In accordance with the prominent role of orexins in the maintenance of wakefulness via activation of orexin-1 (OX1R and orexin-2 (OX2R receptors, various dual OX1/2R antagonists have been shown to promote sleep in animals and humans. While selective blockade of OX2R seems to be sufficient to initiate and prolong sleep, the beneficial effect of additional inhibition of OX1R remains controversial. The relative contribution of OX1R and OX2R to the sleep effects induced by a dual OX1/2R antagonist was further investigated in the rat, and specifically on rapid eye movement (REM sleep since a deficiency of the orexin system is associated with narcolepsy/cataplexy based on clinical and pre-clinical data. As expected, the dual OX1/2R antagonist SB-649868 was effective in promoting non-REM (NREM and REM sleep following oral dosing (10 and 30 mg/kg at the onset of the dark phase. However, a disruption of REM sleep was evidenced by a more pronounced reduction in the onset of REM as compared to NREM sleep, a marked enhancement of the REM/total sleep ratio, and the occurrence of a few episodes of direct wake to REM sleep transitions (REM intrusion. When administered subcutaneously, the OX2R antagonist JNJ-10397049 (10 mg/kg increased NREM duration whereas the OX1R antagonist GSK-1059865 (10 mg/kg did not alter sleep. REM sleep was not affected either by OX2R or OX1R blockade alone, but administration of the OX1R antagonist in combination with the OX2R antagonist induced a significant reduction in REM sleep latency and an increase in REM sleep duration at the expense of the time spent in NREM sleep. These results indicate that additional blockade of OX1R to OX2R antagonism elicits a dysregulation of REM sleep by shifting the balance in favor of REM sleep at the expense of NREM sleep that may increase the risk of adverse events. Translation of this hypothesis remains to be tested in the clinic.

  5. Parasomnias and movement disorders of sleep.

    Science.gov (United States)

    Avidan, Alon Y

    2009-09-01

    Neurologists are often enlisted to help diagnose, evaluate, and manage a spectrum of abnormal spells during the night ranging from parasomnias to motor disturbance that span the sleep-wake cycle. Parasomnias are undesirable emotional or physical events that accompany sleep. These events typically occur during entry into sleep from wakefulness, or during arousals from sleep, and are often augmented by the sleep state. Some parasomnias, such as the rapid eye movement (REM) sleep behavior disorder may be extremely undesirable, while others such as somniloquy are often of little concern. The parasomnias include a spectrum of abnormal emotions, movements, behaviors, sensory perceptions, dream mentation, and autonomic activity. Basic physiologic drives, such as sex, hunger, and aggression, may manifest as sleep-related eating, sleep-related sexual behaviors, and sleep-related violence. Parasomnias have a very bizarre nature, but are readily explainable, diagnosable, and treatable. They are hypothesized to be due to changes in brain organization across multiple states of being, and are particularly apt to occur during the incomplete transition or oscillation from one sleep state to another. Parasomnias are often explained on the basis that wakefulness and sleep are not mutually exclusive states, and abnormal intrusion of wakefulness into non-REM (NREM) sleep produces arousal disorders, and intrusion of wakefulness into REM sleep produces REM sleep parasomnias and REM sleep behavior disorder (RBD). Restless legs syndrome (RLS) and periodic limb movement disorder (PLMD), two closely related conditions that often result in disturbed sleep onset and sleep maintenance, are also reviewed in this article. Although the mechanisms that underlie idiopathic RLS or PLMD are not fully understood, there is currently substantial evidence that dopaminergic dysfunction is likely involved in both conditions. The discussion will conclude with the "other parasomnias" and sleep

  6. Sleep disorders in Parkinson's disease: a narrative review of the literature.

    Science.gov (United States)

    Raggi, Alberto; Bella, Rita; Pennisi, Giovanni; Neri, Walter; Ferri, Raffaele

    2013-01-01

    Parkinson's disease (PD) is classically considered to be a motor system affliction; however, also non-motor alterations, including sleep disorders, are important features of the disease. The aim of this review is to provide data on sleep disturbances in PD in the following grouping: difficulty initiating sleep, frequent night-time awakening and sleep fragmentation, nocturia, restless legs syndrome/periodic limb movements, sleep breathing disorders, drug induced symptoms, parasomnias associated with rapid eye movements (REM) sleep, sleep attacks, reduced sleep efficiency and excessive daytime sleepiness. Research has characterized some of these disturbances as typical examples of dissociated states of wakefulness and sleep that are admixtures or incomplete declarations of wakefulness, REM sleep, and non-REM (NREM) sleep. Moreover, sleep disorders may precede the typical motor system impairment of PD and their ability to predict disease has important implications for development of neuroprotective treatment; in particular, REM sleep behavior disorder may herald any other clinical manifestation of PD by more than 10 years.

  7. Effects of chronic treatment with two selective 5-HT2 antagonists on sleep in the rat.

    Science.gov (United States)

    Pastel, R H; Echevarria, E; Cox, B; Blackburn, T P; Tortella, F C

    1993-04-01

    The effect of chronic administration of 2(2-dimethylaminoethylthio)-3-phenylquinoline (ICI-169,369) and 2(2-dimethylamino-2-methylpropylthio)-3-phenylquinoline (ICI-170,809), two selective 5-HT2 antagonists, on sleep was studied in rats. As previously shown, the acute effect of ICI-170,809 was to increase latency to rapid eye movement sleep (REMS), decrease the number of REM periods (REMPs), suppress the cumulative amount of REMS over 12 h, and increase the duration of REMPs in the first 6 h, while having no effect on non-REM sleep (NREMS). Administration of ICI-169,369 had similar effects except no change was seen in the duration of REMPs and cumulative REMS was suppressed for 24 h. When given 2 x daily for 5 days, tolerance to the REMS suppressant effects developed in both drugs. After discontinuation of treatment, a REMS rebound occurred after ICI-170,809, but not ICI-169,369. No significant effect on NREMS was seen after administration of ICI-170,809, whereas ICI-169,369 lowered 24-h cumulative NREMS on the fifth day of administration.

  8. The addition of entropy-based regularity parameters improves sleep stage classification based on heart rate variability.

    Science.gov (United States)

    Aktaruzzaman, M; Migliorini, M; Tenhunen, M; Himanen, S L; Bianchi, A M; Sassi, R

    2015-05-01

    The work considers automatic sleep stage classification, based on heart rate variability (HRV) analysis, with a focus on the distinction of wakefulness (WAKE) from sleep and rapid eye movement (REM) from non-REM (NREM) sleep. A set of 20 automatically annotated one-night polysomnographic recordings was considered, and artificial neural networks were selected for classification. For each inter-heartbeat (RR) series, beside features previously presented in literature, we introduced a set of four parameters related to signal regularity. RR series of three different lengths were considered (corresponding to 2, 6, and 10 successive epochs, 30 s each, in the same sleep stage). Two sets of only four features captured 99 % of the data variance in each classification problem, and both of them contained one of the new regularity features proposed. The accuracy of classification for REM versus NREM (68.4 %, 2 epochs; 83.8 %, 10 epochs) was higher than when distinguishing WAKE versus SLEEP (67.6 %, 2 epochs; 71.3 %, 10 epochs). Also, the reliability parameter (Cohens's Kappa) was higher (0.68 and 0.45, respectively). Sleep staging classification based on HRV was still less precise than other staging methods, employing a larger variety of signals collected during polysomnographic studies. However, cheap and unobtrusive HRV-only sleep classification proved sufficiently precise for a wide range of applications.

  9. Polygraphic Recording Procedure for Measuring Sleep in Mice.

    Science.gov (United States)

    Oishi, Yo; Takata, Yohko; Taguchi, Yujiro; Kohtoh, Sayaka; Urade, Yoshihiro; Lazarus, Michael

    2016-01-25

    Recording of the epidural electroencephalogram (EEG) and electromyogram (EMG) in small animals, like mice and rats, has been pivotal to study the homeodynamics and circuitry of sleep-wake regulation. In many laboratories, a cable-based sleep recording system is used to monitor the EEG and EMG in freely behaving mice in combination with computer software for automatic scoring of the vigilance states on the basis of power spectrum analysis of EEG data. A description of this system is detailed herein. Steel screws are implanted over the frontal cortical area and the parietal area of 1 hemisphere for monitoring EEG signals. In addition, EMG activity is monitored by the bilateral placement of wires in both neck muscles. Non-rapid eye movement (Non-REM; NREM) sleep is characterized by large, slow brain waves with delta activity below 4 Hz in the EEG, whereas a shift from low-frequency delta activity to a rapid low-voltage EEG in the theta range between 6 and 10 Hz can be observed at the transition from NREM to REM sleep. By contrast, wakefulness is identified by low- to moderate-voltage brain waves in the EEG trace and significant EMG activity.

  10. Polysomnographic Features of Sleep Disturbances and REM Sleep Behavior Disorder in the Unilateral 6-OHDA Lesioned Hemiparkinsonian Rat

    Directory of Open Access Journals (Sweden)

    Quynh Vo

    2014-01-01

    Full Text Available Sleep pattern disruption, specifically REM sleep behavior disorder (RBD, is a major nonmotor cause of disability in PD. Understanding the pathophysiology of these sleep pattern disturbances is critical to find effective treatments. 24-hour polysomnography (PSG, the gold standard for sleep studies, has never been used to test sleep dysfunction in the standard 6-OHDA lesioned hemiparkinsonian (HP rat PD model. In this study, we recorded 24-hour PSG from normal and HP rats. Recordings were scored into wake, rapid eye movement (REM, and non-REM (NREM. We then examined EEG to identify REM periods and EMG to check muscle activity during REM. Normal rats showed higher wakefulness (70–80% during the dark phase and lower wakefulness (20% during the light phase. HP rats showed 30–50% sleep in both phases, less modulation and synchronization to the light schedule (P<0.0001, and more long run lengths of wakefulness (P<0.05. HP rats also had more REM epochs with muscle activity than control rats (P<0.05. Our findings that the sleep architecture in the HP rat resembles that of PD patients demonstrate the value of this model in studying the pathophysiological basis of PD sleep disturbances and preclinical therapeutics for PD related sleep disorders including RBD.

  11. What does brain damage tell us about the mechanisms of sleep?

    National Research Council Canada - National Science Library

    Evans, B M

    2002-01-01

    ... the damaged brain. WAKEFULNESS, RAPID EYE MOVEMENT (REM) SLEEP AND NON-REM SLEEP Wakefulness is characterized by a state of arousal with an activated cerebral cortex, high cerebral blood-flow and glucose metabolism, and fast activity in the electroence-- phalogram (EEG); autonomic activity and muscular tone are also high. Non-REM sleep begins at sleep ons...

  12. The role of REM sleep theta activity in emotional memory.

    Science.gov (United States)

    Hutchison, Isabel C; Rathore, Shailendra

    2015-01-01

    While non-REM (NREM) sleep has been strongly implicated in the reactivation and consolidation of memory traces, the role of rapid-eye movement (REM) sleep remains unclear. A growing body of research on humans and animals provide behavioral evidence for a role of REM sleep in the strengthening and modulation of emotional memories. Theta activity-which describes low frequency oscillations in the local field potential within the hippocampus, amygdala and neocortex-is a prominent feature of both wake and REM sleep in humans and rodents. Theta coherence between the hippocampus and amygdala drives large-scale pontine-geniculo-occipital (PGO) waves, the density of which predicts increases in plasticity-related gene expression. This could potentially facilitate the processing of emotional memory traces within the hippocampus during REM sleep. Further, the timing of hippocampal activity in relation to theta phase is vital in determining subsequent potentiation of neuronal activity. This could allow the emotionally modulated strengthening of novel and gradual weakening of consolidated hippocampal memory traces during REM sleep. Hippocampal theta activity is also correlated with REM sleep levels of achetylcholine - which is thought to reduce hippocampal inputs in the neocortex. The additional low levels of noradrenaline during REM sleep, which facilitate feedback within the neocortex, could allow the integration of novel memory traces previously consolidated during NREM sleep. We therefore propose that REM sleep mediates the prioritized processing of emotional memories within the hippocampus, the integration of previously consolidated memory traces within the neocortex, as well as the disengagement of consolidated neocortical memory traces from the hippocampus.

  13. Simulating microinjection experiments in a novel model of the rat sleep-wake regulatory network.

    Science.gov (United States)

    Diniz Behn, Cecilia G; Booth, Victoria

    2010-04-01

    This study presents a novel mathematical modeling framework that is uniquely suited to investigating the structure and dynamics of the sleep-wake regulatory network in the brain stem and hypothalamus. It is based on a population firing rate model formalism that is modified to explicitly include concentration levels of neurotransmitters released to postsynaptic populations. Using this framework, interactions among primary brain stem and hypothalamic neuronal nuclei involved in rat sleep-wake regulation are modeled. The model network captures realistic rat polyphasic sleep-wake behavior consisting of wake, rapid eye movement (REM) sleep, and non-REM (NREM) sleep states. Network dynamics include a cyclic pattern of NREM sleep, REM sleep, and wake states that is disrupted by simulated variability of neurotransmitter release and external noise to the network. Explicit modeling of neurotransmitter concentrations allows for simulations of microinjections of neurotransmitter agonists and antagonists into a key wake-promoting population, the locus coeruleus (LC). Effects of these simulated microinjections on sleep-wake states are tracked and compared with experimental observations. Agonist/antagonist pairs, which are presumed to have opposing effects on LC activity, do not generally induce opposing effects on sleep-wake patterning because of multiple mechanisms for LC activation in the network. Also, different agents, which are presumed to have parallel effects on LC activity, do not induce parallel effects on sleep-wake patterning because of differences in the state dependence or independence of agonist and antagonist action. These simulation results highlight the utility of formal mathematical modeling for constraining conceptual models of the sleep-wake regulatory network.

  14. Cholinergic, Glutamatergic, and GABAergic Neurons of the Pedunculopontine Tegmental Nucleus Have Distinct Effects on Sleep/Wake Behavior in Mice.

    Science.gov (United States)

    Kroeger, Daniel; Ferrari, Loris L; Petit, Gaetan; Mahoney, Carrie E; Fuller, Patrick M; Arrigoni, Elda; Scammell, Thomas E

    2017-02-01

    The pedunculopontine tegmental (PPT) nucleus has long been implicated in the regulation of cortical activity and behavioral states, including rapid eye-movement (REM) sleep. For example, electrical stimulation of the PPT region during sleep leads to rapid awakening, whereas lesions of the PPT in cats reduce REM sleep. Though these effects have been linked with the activity of cholinergic PPT neurons, the PPT also includes intermingled glutamatergic and GABAergic cell populations, and the precise roles of cholinergic, glutamatergic, and GABAergic PPT cell groups in regulating cortical activity and behavioral state remain unknown. Using a chemogenetic approach in three Cre-driver mouse lines, we found that selective activation of glutamatergic PPT neurons induced prolonged cortical activation and behavioral wakefulness, whereas inhibition reduced wakefulness and increased non-REM (NREM) sleep. Activation of cholinergic PPT neurons suppressed lower-frequency electroencephalogram rhythms during NREM sleep. Last, activation of GABAergic PPT neurons slightly reduced REM sleep. These findings reveal that glutamatergic, cholinergic, and GABAergic PPT neurons differentially influence cortical activity and sleep/wake states. More than 40 million Americans suffer from chronic sleep disruption, and the development of effective treatments requires a more detailed understanding of the neuronal mechanisms controlling sleep and arousal. The pedunculopontine tegmental (PPT) nucleus has long been considered a key site for regulating wakefulness and REM sleep. This is mainly because of the cholinergic neurons contained in the PPT nucleus. However, the PPT nucleus also contains glutamatergic and GABAergic neurons that likely contribute to the regulation of cortical activity and sleep-wake states. The chemogenetic experiments in the present study reveal that cholinergic, glutamatergic, and GABAergic PPT neurons each have distinct effects on sleep/wake behavior, improving our

  15. Circadian integration of sleep-wake and feeding requires NPY receptor-expressing neurons in the mediobasal hypothalamus.

    Science.gov (United States)

    Wiater, M F; Mukherjee, S; Li, A-J; Dinh, T T; Rooney, E M; Simasko, S M; Ritter, S

    2011-11-01

    Sleep and feeding rhythms are highly coordinated across the circadian cycle, but the brain sites responsible for this coordination are unknown. We examined the role of neuropeptide Y (NPY) receptor-expressing neurons in the mediobasal hypothalamus (MBH) in this process by injecting the targeted toxin, NPY-saporin (NPY-SAP), into the arcuate nucleus (Arc). NPY-SAP-lesioned rats were initially hyperphagic, became obese, exhibited sustained disruption of circadian feeding patterns, and had abnormal circadian distribution of sleep-wake patterns. Total amounts of rapid eye movement sleep (REMS) and non-REMS (NREMS) were not altered by NPY-SAP lesions, but a peak amount of REMS was permanently displaced to the dark period, and circadian variation in NREMS was eliminated. The phase reversal of REMS to the dark period by the lesion suggests that REMS timing is independently linked to the function of MBH NPY receptor-expressing neurons and is not dependent on NREMS pattern, which was altered but not phase reversed by the lesion. Sleep-wake patterns were altered in controls by restricting feeding to the light period, but were not altered in NPY-SAP rats by restricting feeding to either the light or dark period, indicating that disturbed sleep-wake patterns in lesioned rats were not secondary to changes in food intake. Sleep abnormalities persisted even after hyperphagia abated during the static phase of the lesion. Results suggest that the MBH is required for the essential task of integrating sleep-wake and feeding rhythms, a function that allows animals to accommodate changeable patterns of food availability. NPY receptor-expressing neurons are key components of this integrative function.

  16. Changes in cerebral he modynamics during NREM sleep in healthy children%儿童非快速动眼睡眠相脑血流动力学改变

    Institute of Scientific and Technical Information of China (English)

    彭炳蔚; 李嘉铃; 梁秀琼; 郑志英; 麦坚凝

    2015-01-01

    内变异采用多变量的 Hotelling T2检验,以 P <0.05判为有统计学差异。再应用 LSD 法进行两两比较。结果每条血管的各参数值分布与年龄和性别无关。在 MCA 和 PCA,浅睡期收缩期和舒张期血流速度均明显高于清醒期和深睡期,深睡期和唤醒期的 PI 和 RI 明显高于浅睡期和清醒期。随脑电图同步的唤醒节律出现,唤醒期的收缩期和舒张期血流速度最低,同时 PI /RI 升高。而在 PCA,除了在深睡期收缩期血流速度减慢外,其它状态下的血流速度和 PI、RI 均无明显变化。结论我们研究的新发现证明了 TCD 能够很好的显示在睡眠期的血管神经藕联,特别对于剥夺睡眠后 NREM相的血流变化机制进行了很好的解释,这将促进今后对于发作间期放电下睡眠的生理机制进一步深入研究。%Objective To investigate cerebral hemodynamic changes during non-rapid eye movement(NREM)sleep following sleep deprivation in healthy children.Methods Thirty-two children with normal intelligence(full-scale intelligence quotient >80),5 ~14 years of age,were enrolled.Electroencephalograms(EEGs)were within the normal range.Each subject was deprived of routine night sleep then examined in the spontaneous sleep during daytime.Awake and sleep stages were evaluated u-sing EEGs according to Rechtschaffen and Kales.Each subject was woken up in stage IV sleep.Stable transcranial Doppler ultra-sonography(TCD)tracings through the temporal bone window were recorded for at least 30 seconds(s)per stage except the awak-en stage(only the left middle cerebral artery(LMCA)was examined because of twinkling moment).The mean systolic cerebral blood flow velocity(sCBFV),diastolic CBFV(dCBFV),pulsatility index(PI),and resistance index(RI)of each artery were ana-lyzed for 30 s per stage.Multivariant analysis of variance(MANOVA)was conducted to compare hemodynamic parameters in wa-king versus light sleep,deep sleep,and awaken stages.Results NREM sleep in

  17. Oscillatory responses representing differential auditory processing in sleep.

    Science.gov (United States)

    Karakaş, Sirel; Cakmak, Emine D; Bekçi, Belma; Aydin, Hamdullah

    2007-07-01

    The goal of the study was to investigate the contribution of the delta and theta responses to the peaks on the event-related potential waveform and specifically to find the possible cognitive correlates of these oscillatory responses in rapid eye movements (REM) sleep and Stage 2 (spindle sleep), Stage 3 (light sleep) and Stage 4 (deep sleep; slow wave sleep) of non-REM sleep. Data on overnight sleep was acquired from 12 healthy, young adult, volunteer males; those on awake stage were obtained from 19 matched males. Brain activity was obtained in response to auditory stimuli (2000 Hz deviant and 1000 Hz standard stimuli: 65 dB, 10 ms r/f time, 50 ms duration) under passive oddball paradigm in sleep, active and passive oddball (OB-a, OB-p, respectively) paradigms in wakefulness. The effect of the experimental variables (stimulus type, sleep stage) was studied using 2 x 4 analysis of variance for repeated measures and stepwise multiple regression analysis. Overall, three types of configurations were obtained for the oscillatory responses which varied according to sleep stage and stimulus type: Large amplitude, differentiated delta and distinct theta response of long duration; distinct theta response with short duration; distinct delta response. As in wakefulness, the morphology of the time-domain peaks was found to be due to the superposition of the delta and theta responses. The configuration in REM resembled the responses to the OB-p paradigm and that NREM stages resembled the responses to the OB-a paradigm in wakefulness. Auditory information processing selectively varied according to sleep stages and took longer in sleep. Comparable peaks were obtained at longer latencies and later components appeared that did not exist under wakefulness. With respect to the long-duration theta activity, and greater differentiation between the deviant- and standard-elicited stimuli, Stage 2 appeared to represent the more effortful cognitive processing.

  18. Models of human sleep regulation

    NARCIS (Netherlands)

    Beersma, Domien G.M.

    1998-01-01

    Non-REM sleep deprivation and REM sleep deprivation both lead to specific rebounds, suggesting that these states fulfil physiological needs. In view of impaired performance after sleep deprivation, a recovery function of sleep seems likely. The timing of this recovery is restricted to a narrow time

  19. Corticotropin releasing factor (CRF) modulates fear-induced alterations in sleep in mice.

    Science.gov (United States)

    Yang, Linghui; Tang, Xiangdong; Wellman, Laurie L; Liu, Xianling; Sanford, Larry D

    2009-06-18

    Contextual fear significantly reduces rapid eye movement sleep (REM) during post-exposure sleep in mice and rats. Corticotropin releasing factor (CRF) plays a major role in CNS responses to stressors. We examined the influence of CRF and astressin (AST), a non-specific CRF antagonist, on sleep after contextual fear in BALB/c mice. Male mice were implanted with transmitters for recording sleep via telemetry and with a guide cannula aimed into the lateral ventricle. Recordings for vehicle and handling control were obtained after ICV microinjection of saline (SAL) followed by exposure to a novel chamber. Afterwards, the mice were subjected to shock training (20 trials, 0.5 mA, 0.5 s duration) for 2 sessions. After training, separate groups of mice received ICV microinjections of SAL (0.2 microl, n=9), CRF (0.4 microg, n=8), or AST (1.0 microg, n=8) prior to exposure to the shock context alone. Sleep was then recorded for 20 h (8-hour light and 12-hour dark period). Compared to handling control, contextual fear significantly decreased REM during the 8-h light period in mice receiving SAL and in mice receiving CRF, but not in the mice receiving AST. Mice receiving CRF exhibited reductions in REM during the 12-h dark period after contextual fear, whereas mice receiving SAL or AST did not. CRF also reduced non-REM (NREM) delta (slow wave) amplitude in the EEG. Only mice receiving SAL prior to contextual fear exhibited significant reductions in NREM and total sleep. These findings demonstrate a role for the central CRF system in regulating alterations in sleep induced by contextual fear.

  20. Sleep disturbances in highly stress reactive mice: Modeling endophenotypes of major depression

    Directory of Open Access Journals (Sweden)

    Landgraf Rainer

    2011-03-01

    Full Text Available Abstract Background Neuronal mechanisms underlying affective disorders such as major depression (MD are still poorly understood. By selectively breeding mice for high (HR, intermediate (IR, or low (LR reactivity of the hypothalamic-pituitary-adrenocortical (HPA axis, we recently established a new genetic animal model of extremes in stress reactivity (SR. Studies characterizing this SR mouse model on the behavioral, endocrine, and neurobiological levels revealed several similarities with key endophenotypes observed in MD patients. HR mice were shown to have changes in rhythmicity and sleep measures such as rapid eye movement sleep (REMS and non-REM sleep (NREMS as well as in slow wave activity, indicative of reduced sleep efficacy and increased REMS. In the present study we were interested in how far a detailed spectral analysis of several electroencephalogram (EEG parameters, including relevant frequency bands, could reveal further alterations of sleep architecture in this animal model. Eight adult males of each of the three breeding lines were equipped with epidural EEG and intramuscular electromyogram (EMG electrodes. After recovery, EEG and EMG recordings were performed for two days. Results Differences in the amount of REMS and wakefulness and in the number of transitions between vigilance states were found in HR mice, when compared with IR and LR animals. Increased frequencies of transitions from NREMS to REMS and from REMS to wakefulness in HR animals were robust across the light-dark cycle. Detailed statistical analyses of spectral EEG parameters showed that especially during NREMS the power of the theta (6-9 Hz, alpha (10-15 Hz and eta (16-22.75 Hz bands was significantly different between the three breeding lines. Well defined distributions of significant power differences could be assigned to different times during the light and the dark phase. Especially during NREMS, group differences were robust and could be continuously monitored

  1. Your Guide to Healthy Sleep

    Science.gov (United States)

    ... REM Sleep REM Sleep Stage 1: Stage 2: Stage 3: Light sleep; easily l Usually first occurs awakened; muscles about 90 minutes relax with occasional after you fall asleep, twitches; eye and longer, ... non-REM stages throughout the night. Eyes move rapidly Occurs soon ...

  2. Ultradian cycles in mice: definitions and links with REMS and NREMS.

    Science.gov (United States)

    Le Bon, O; Popa, D; Streel, E; Alexandre, C; Lena, C; Linkowski, P; Adrien, J

    2007-10-01

    Sleep can be organized in two quite different ways across homeothermic species: either in one block (monophasic), or in several bouts across the 24 h (polyphasic). Yet, the main relationships between variables, as well as regulating mechanisms, are likely to be similar. Correlations and theories on sleep regulation should thus be examined on both types of sleepers. In previous studies on monophasic humans, we have shown preferential links between the number of ultradian cycles and the rapid eye movement sleep (REMS) time, rather than with its counterpart non-rapid eye movement sleep (NREMS). Here, the sleep of 26 polyphasic mice was examined, both to better describe the NREMS distribution, which is far more complex than in humans, and to replicate the analyses performed on humans. As in humans, the strongest links with the number of cycles were with REMS. Links were not significant with NREMS taken as a whole, although positive correlations were found with the NREMS immediately preceding REMS episodes and inversely significant with the residue. This convergence between monophasic and polyphasic patterns supports the central role played by REMS in sleep alternation.

  3. REM sleep modulation by perifornical orexinergic inputs to the pedunculo-pontine tegmental neurons in rats.

    Science.gov (United States)

    Khanday, M A; Mallick, B N

    2015-11-12

    Rapid eye movement sleep (REMS) is regulated by the interaction of the REM-ON and REM-OFF neurons located in the pedunculo-pontine-tegmentum (PPT) and the locus coeruleus (LC), respectively. Many other brain areas, particularly those controlling non-REMS (NREMS) and waking, modulate REMS by modulating these REMS-related neurons. Perifornical (PeF) orexin (Ox)-ergic neurons are reported to increase waking and reduce NREMS as well as REMS; dysfunction of the PeF neurons are related to REMS loss-associated disorders. Hence, we were interested in understanding the neural mechanism of PeF-induced REMS modulation. As a first step we have recently reported that PeF Ox-ergic neurons modulate REMS by influencing the LC neurons (site for REM-OFF neurons). Thereafter, in this in vivo study we have explored the role of PeF inputs on the PPT neurons (site for REM-ON neurons) for the regulation of REMS. Chronic male rats were surgically prepared with implanted bilateral cannulae in PeF and PPT and electrodes for recording sleep-waking patterns. After post-surgical recovery sleep-waking-REMS were recorded when bilateral PeF neurons were stimulated by glutamate and simultaneously bilateral PPT neurons were infused with either saline or orexin receptor1 (OX1R) antagonist. It was observed that PeF stimulation increased waking and decreased NREMS as well as REMS, which were prevented by OX1R antagonist into the PPT. We conclude that the PeF stimulation-induced reduction in REMS was likely to be due to inhibition of REM-ON neurons in the PPT. As waking and NREMS are inversely related, subject to confirmation, the reduction in NREMS could be due to increased waking or vice versa. Based on our findings from this and earlier studies we have proposed a model showing connections between PeF- and PPT-neurons for REMS regulation.

  4. Waking and sleeping following water deprivation in the rat.

    Directory of Open Access Journals (Sweden)

    Davide Martelli

    Full Text Available Wake-sleep (W-S states are affected by thermoregulation. In particular, REM sleep (REMS is reduced in homeotherms under a thermal load, due to an impairment of hypothalamic regulation of body temperature. The aim of this work was to assess whether osmoregulation, which is regulated at a hypothalamic level, but, unlike thermoregulation, is maintained across the different W-S states, could influence W-S occurrence. Sprague-Dawley rats, kept at an ambient temperature of 24°C and under a 12 h∶12 h light-dark cycle, were exposed to a prolonged osmotic challenge of three days of water deprivation (WD and two days of recovery in which free access to water was restored. Two sets of parameters were determined in order to assess: i the maintenance of osmotic homeostasis (water and food consumption; changes in body weight and fluid composition; ii the effects of the osmotic challenge on behavioral states (hypothalamic temperature (Thy, motor activity, and W-S states. The first set of parameters changed in WD as expected and control levels were restored on the second day of recovery, with the exception of urinary Ca(++ that almost disappeared in WD, and increased to a high level in recovery. As far as the second set is concerned, WD was characterized by the maintenance of the daily oscillation of Thy and by a decrease in activity during the dark periods. Changes in W-S states were small and mainly confined to the dark period: i REMS slightly decreased at the end of WD and increased in recovery; ii non-REM sleep (NREMS increased in both WD and recovery, but EEG delta power, a sign of NREMS intensity, decreased in WD and increased in recovery. Our data suggest that osmoregulation interferes with the regulation of W-S states to a much lesser extent than thermoregulation.

  5. Efficient automatic classifiers for the detection of A phases of the cyclic alternating pattern in sleep.

    Science.gov (United States)

    Mariani, Sara; Manfredini, Elena; Rosso, Valentina; Grassi, Andrea; Mendez, Martin O; Alba, Alfonso; Matteucci, Matteo; Parrino, Liborio; Terzano, Mario G; Cerutti, Sergio; Bianchi, Anna M

    2012-04-01

    This study aims to develop an automatic detector of the A phases of the cyclic alternating pattern, periodic activity that generally occurs during non-REM (NREM) sleep. Eight polysomnographic recordings from healthy subjects were examined. From EEG recordings, five band descriptors, an activity descriptor and a variance descriptor were extracted and used to train different machine-learning algorithms. A visual scoring provided by an expert clinician was used as golden standard. Four alternative mathematical machine-learning techniques were implemented: (1) discriminant classifier, (2) support vector machines, (3) adaptive boosting, and (4) supervised artificial neural network. The results of the classification, compared with the visual analysis, showed average accuracies equal to 84.9 and 81.5% for the linear discriminant and the neural network, respectively, while AdaBoost had a slightly lower accuracy, equal to 79.4%. The SVM leads to accuracy of 81.9%. The performance achieved by the automatic classification is encouraging, since an efficient automatic classifier would benefit the practice in everyday clinics, preventing the physician from the time-consuming activity of the visually scoring of the sleep microstructure over whole 8-h sleep recordings. Finally, the classification based on learning algorithms would provide an objective criterion, overcoming the problems of inter-scorer disagreement.

  6. Sleep electroencephalography as a biomarker in depression

    OpenAIRE

    Steiger A; Pawlowski M.; Kimura M

    2015-01-01

    Axel Steiger, Marcel Pawlowski, Mayumi Kimura Max Planck Institute of Psychiatry, Munich, Germany Abstract: The sleep electroencephalogram (EEG) provides biomarkers of depression, which may help with diagnosis, prediction of therapy response, and prognosis in the treatment of depression. In patients with depression, characteristic sleep EEG changes include impaired sleep continuity, disinhibition of rapid-eye-movement (REM) sleep, and impaired non-REM sleep. Most antidepressants suppress REM...

  7. Correlated and Uncorrelated Regions in Heart-Rate Fluctuations during Sleep

    Science.gov (United States)

    Bunde, Armin; Havlin, Shlomo; Kantelhardt, Jan W.; Penzel, Thomas; Peter, Jörg-Hermann; Voigt, Karlheinz

    2000-10-01

    Healthy sleep consists of several stages: deep sleep, light sleep, and rapid eye movement (REM) sleep. Here we show that these sleep stages can be characterized and distinguished by correlations of heart rates separated by n beats. Using the detrended fluctuation analysis (DFA) up to fourth order we find that long-range correlations reminiscent to the wake phase are present only in the REM phase. In the non-REM phases, the heart rates are uncorrelated above the typical breathing cycle time, pointing to a random regulation of the heartbeat during non-REM sleep.

  8. Sleep-wake behavior in the rat: ultradian rhythms in a light-dark cycle and continuous bright light.

    Science.gov (United States)

    Stephenson, Richard; Lim, Joonbum; Famina, Svetlana; Caron, Aimee M; Dowse, Harold B

    2012-12-01

    Ultradian rhythms are a prominent but little-studied feature of mammalian sleep-wake and rest-activity patterns. They are especially evident in long-term records of behavioral state in polyphasic animals such as rodents. However, few attempts have been made to incorporate ultradian rhythmicity into models of sleep-wake dynamics, and little is known about the physiological mechanisms that give rise to ultradian rhythms in sleep-wake state. This study investigated ultradian dynamics in sleep and wakefulness in rats entrained to a 12-h:12-h light-dark cycle (LD) and in rats whose circadian rhythms were suppressed and free-running following long-term exposure to uninterrupted bright light (LL). We recorded sleep-wake state continuously for 7 to 12 consecutive days and used time-series analysis to quantify the dynamics of net cumulative time in each state (wakefulness [WAKE], rapid eye movement sleep [REM], and non-REM sleep [NREM]) in each animal individually. Form estimates and autocorrelation confirmed the presence of significant ultradian and circadian rhythms; maximum entropy spectral analysis allowed high-resolution evaluation of multiple periods within the signal, and wave-by-wave analysis enabled a statistical evaluation of the instantaneous period, peak-trough range, and phase of each ultradian wave in the time series. Significant ultradian periodicities were present in all 3 states in all animals. In LD, ultradian range was approximately 28% of circadian range. In LL, ultradian range was slightly reduced relative to LD, and circadian range was strongly attenuated. Ultradian rhythms were found to be quasiperiodic in both LD and LL. That is, ultradian period varied randomly around a mean of approximately 4 h, with no relationship between ultradian period and time of day.

  9. Physiology of Normal Sleep: From Young to Old

    OpenAIRE

    V Mohan Kumar

    2014-01-01

    Human sleep, defined on the basis of electroencephalogram (EEG), electromyogram(EMG) and electrooculogram (EOG), is divided into rapid eye movement (REM) sleepand four stages of non–rapid eye movement (NREM) sleep. Collective monitoring andrecording of physiological data during sleep is called polysomnography. Sleep whichnormally starts with a period of NREM alternates with REM, about 4-5 times, everynight. Sleep pattern changes with increasing age. Newborns sleep for about 14-16hours in a da...

  10. cGMP-dependent protein kinase type I is implicated in the regulation of the timing and quality of sleep and wakefulness.

    Directory of Open Access Journals (Sweden)

    Sonja Langmesser

    Full Text Available Many effects of nitric oxide (NO are mediated by the activation of guanylyl cyclases and subsequent production of the second messenger cyclic guanosine-3',5'-monophosphate (cGMP. cGMP activates cGMP-dependent protein kinases (PRKGs, which can therefore be considered downstream effectors of NO signaling. Since NO is thought to be involved in the regulation of both sleep and circadian rhythms, we analyzed these two processes in mice deficient for cGMP-dependent protein kinase type I (PRKG1 in the brain. Prkg1 mutant mice showed a strikingly altered distribution of sleep and wakefulness over the 24 hours of a day as well as reductions in rapid-eye-movement sleep (REMS duration and in non-REM sleep (NREMS consolidation, and their ability to sustain waking episodes was compromised. Furthermore, they displayed a drastic decrease in electroencephalogram (EEG power in the delta frequency range (1-4 Hz under baseline conditions, which could be normalized after sleep deprivation. In line with the re-distribution of sleep and wakefulness, the analysis of wheel-running and drinking activity revealed more rest bouts during the activity phase and a higher percentage of daytime activity in mutant animals. No changes were observed in internal period length and phase-shifting properties of the circadian clock while chi-squared periodogram amplitude was significantly reduced, hinting at a less robust oscillator. These results indicate that PRKG1 might be involved in the stabilization and output strength of the circadian oscillator in mice. Moreover, PRKG1 deficiency results in an aberrant pattern, and consequently a reduced quality, of sleep and wakefulness, possibly due to a decreased wake-promoting output of the circadian system impinging upon sleep.

  11. cGMP-dependent protein kinase type I is implicated in the regulation of the timing and quality of sleep and wakefulness.

    Science.gov (United States)

    Langmesser, Sonja; Franken, Paul; Feil, Susanne; Emmenegger, Yann; Albrecht, Urs; Feil, Robert

    2009-01-01

    Many effects of nitric oxide (NO) are mediated by the activation of guanylyl cyclases and subsequent production of the second messenger cyclic guanosine-3',5'-monophosphate (cGMP). cGMP activates cGMP-dependent protein kinases (PRKGs), which can therefore be considered downstream effectors of NO signaling. Since NO is thought to be involved in the regulation of both sleep and circadian rhythms, we analyzed these two processes in mice deficient for cGMP-dependent protein kinase type I (PRKG1) in the brain. Prkg1 mutant mice showed a strikingly altered distribution of sleep and wakefulness over the 24 hours of a day as well as reductions in rapid-eye-movement sleep (REMS) duration and in non-REM sleep (NREMS) consolidation, and their ability to sustain waking episodes was compromised. Furthermore, they displayed a drastic decrease in electroencephalogram (EEG) power in the delta frequency range (1-4 Hz) under baseline conditions, which could be normalized after sleep deprivation. In line with the re-distribution of sleep and wakefulness, the analysis of wheel-running and drinking activity revealed more rest bouts during the activity phase and a higher percentage of daytime activity in mutant animals. No changes were observed in internal period length and phase-shifting properties of the circadian clock while chi-squared periodogram amplitude was significantly reduced, hinting at a less robust oscillator. These results indicate that PRKG1 might be involved in the stabilization and output strength of the circadian oscillator in mice. Moreover, PRKG1 deficiency results in an aberrant pattern, and consequently a reduced quality, of sleep and wakefulness, possibly due to a decreased wake-promoting output of the circadian system impinging upon sleep.

  12. A social conflict increases EEG slow-wave activity during subsequent sleep

    NARCIS (Netherlands)

    Meerlo, P; de Bruin, EA; Strijkstra, AM; Daan, S

    2001-01-01

    Electroencephalogram (EEG) slow-wave activity (SWA) during non-rapid eye movement (NREM) sleep is widely viewed as an indicator of sleep debt and sleep intensity. In a previous study, we reported a strong increase in SWA during NREM sleep after a social conflict in rats. To test whether this

  13. The utility of polysomnography for the diagnosis of NREM parasomnias: an observational study over 4 years of clinical practice.

    Science.gov (United States)

    Fois, Chiara; Wright, Mary-Anne S; Sechi, GianPietro; Walker, Matthew C; Eriksson, Sofia H

    2015-02-01

    Polysomnography (PSG) is considered the gold standard for diagnosis of non-rapid eye movement (NREM) parasomnias, however its diagnostic yield has been rarely reported. We aimed to assess the diagnostic value of polysomnography in different categories of patients with suspected NREM parasomnia and define variables that can affect the outcome. 124 adults referred for polysomnography for suspected NREM parasomnia were retrospectively identified and divided into clinical categories based on their history. Each polysomnography was analysed for features of NREM parasomnia or different sleep disorders and for presence of potential precipitants. The impact on the outcome of number of recording nights and concomitant consumption of benzodiazepines and antidepressants was assessed. Overall, PSG confirmed NREM parasomnias in 60.5 % patients and showed a different sleep disorder in another 16 %. Precipitants were found in 21 % of the 124 patients. However, PSG showed limited value when the NREM parasomnia was clinically uncomplicated, since it rarely revealed a different diagnosis or unsuspected precipitants (5 % respectively), but became essential for people with unusual features in the history where different or overlapping diagnoses (18 %) or unsuspected precipitants (24 %) were commonly identified. Taking benzodiazepines or antidepressants during the PSG reduced the diagnostic yield. PSG has a high diagnostic yield in patients with suspected NREM parasomnia, and can reveal a different diagnosis or precipitants in over 40 % of people with complicated or atypical presentation or those with a history of epilepsy. We suggest that PSG should be performed for one night in the first instance, with leg electrodes and respiratory measurements and after benzodiazepine and antidepressant withdrawal.

  14. Characteristics of sleep-wake cycles in mice lacking prostanoid DP receptors%前列腺素DP受体缺乏小鼠的睡眠-觉醒特征

    Institute of Scientific and Technical Information of China (English)

    马张庆; 洪宗元

    2006-01-01

    目的:探讨前列腺素DP受体(DPR)对小鼠睡眠-觉醒调节的影响.方法:在苯巴比妥麻醉下,于DPR基因敲除(KO)小鼠及其野生型(WT)小鼠大脑皮层及颈部肌肉分别植入脑电(Electroencephalogram, EEG)和肌电(Electromyogram, EMG)电极,用EEG/EMG睡眠记录系统于2000时开始连续记录24小时两种小鼠的脑电和肌电波,并用SLEEPSIGN软件进行分析.结果:两种小鼠表现出相同的睡眠-觉醒节律,且明时(800-2000)及暗时(2000-800)时相内两种小鼠的非快动眼(NREM) 睡眠和快动眼(REM)睡眠总量无差异.但与WT 小鼠相比,DPR-KO小鼠明时内的觉醒频率显著增高,NREM睡眠的平均时程显著缩短;且DPR-KO小鼠睡眠呈现低活性的θ波和高活性的δ波.结论:DPR在介导前列腺素D2诱导的睡眠中起着关键性调节作用,缺乏DPR将导致小鼠呈现低强度片段化的NREM睡眠和高警戒状态的REM睡眠.%AIM: To investigate the effect of prostanoid DP receptors (DPR) on sleep-wake regulation in mice. METHODS: Under pentobarbital anesthesia, mice were chronically implanted with electroencephalogram (EEG) and electromyogram (EMG) electrodes for polysomnographic recordings. The spontaneous sleep-wake cycles were monitored continuously by EEG/EMG recording system for 24 h beginning at 800 p.m. and analyzed by SLEEPSIGN software in DPR knock out (KO) and wild type (WT) mice. RESULTS: DPR-KO mice exhibited a similar circadian rhythm of sleep-wake cycles to WT mice. The amounts of rapid eye movement (REM) sleep or non-REM (NREM) sleep during both the light and dark periods were identical between the DPR-KO and WT mice. Whereas, an increase in the episode number of wakefulness and a shortage in the duration of NREM sleep were found in DPR-KO mice during the light period compared with WT mice. Moreover, DPR-KO mice showed lower activity in delta-wave component in NREM sleep and higher activity in theta-wave component in REM sleep than WT mice. CONCLUSION

  15. Coordinated infraslow neural and cardiac oscillations mark fragility and offline periods in mammalian sleep.

    Science.gov (United States)

    Lecci, Sandro; Fernandez, Laura M J; Weber, Frederik D; Cardis, Romain; Chatton, Jean-Yves; Born, Jan; Lüthi, Anita

    2017-02-01

    Rodents sleep in bouts lasting minutes; humans sleep for hours. What are the universal needs served by sleep given such variability? In sleeping mice and humans, through monitoring neural and cardiac activity (combined with assessment of arousability and overnight memory consolidation, respectively), we find a previously unrecognized hallmark of sleep that balances two fundamental yet opposing needs: to maintain sensory reactivity to the environment while promoting recovery and memory consolidation. Coordinated 0.02-Hz oscillations of the sleep spindle band, hippocampal ripple activity, and heart rate sequentially divide non-rapid eye movement (non-REM) sleep into offline phases and phases of high susceptibility to external stimulation. A noise stimulus chosen such that sleeping mice woke up or slept through at comparable rates revealed that offline periods correspond to raising, whereas fragility periods correspond to declining portions of the 0.02-Hz oscillation in spindle activity. Oscillations were present throughout non-REM sleep in mice, yet confined to light non-REM sleep (stage 2) in humans. In both species, the 0.02-Hz oscillation predominated over posterior cortex. The strength of the 0.02-Hz oscillation predicted superior memory recall after sleep in a declarative memory task in humans. These oscillations point to a conserved function of mammalian non-REM sleep that cycles between environmental alertness and internal memory processing in 20- to 25-s intervals. Perturbed 0.02-Hz oscillations may cause memory impairment and ill-timed arousals in sleep disorders.

  16. Nap sleep spindle correlates of intelligence

    NARCIS (Netherlands)

    Ujma, P.P.; Bodizs, R.; Gombos, F.; Stintzing, J.; Konrad, B.N.; Genzel, L.; Steiger, A.; Dresler, M.

    2015-01-01

    Sleep spindles are thalamocortical oscillations in non-rapid eye movement (NREM) sleep, that play an important role in sleep-related neuroplasticity and offline information processing. Several studies with full-night sleep recordings have reported a positive association between sleep spindles and fl

  17. Effect of clomipramine on sleep and EEG power spectra in the diurnal rodent Eutamias sibiricus

    NARCIS (Netherlands)

    Dijk, D.J.; Strijkstra, A.; Daan, S.; Beersma, D.G.M.; Hoofdakker, R.H. van den

    1991-01-01

    Sleep was recorded in the diurnal rodent Eutamias sibiricus, chronically implanted with EEG and EMG electrodes. The tricyclic antidepressant drug clomipramine suppressed the duration of REM sleep and EEG power density in the frequencies between 1.5 and 13.5 Hz in nonREM sleep. During the administrat

  18. Sleep EEG in Boys with Attention Deficit Disorder

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2007-11-01

    Full Text Available Researchers at the University of Montreal, Canada, studied spectral analysis of non-REM sleep (stages 2, 3 and 4 and REM sleep EEG in 6 boys (age 10.3 +/- 1.2 with ADHD compared to 6 healthy controls.

  19. Adult-onset NREM parasomnia with hypnopompic hallucinatory pain: a case report.

    Science.gov (United States)

    Mantoan, Laura; Eriksson, Sofia H; Nisbet, Angus P; Walker, Matthew C

    2013-02-01

    We report the case of a 43-year-old woman presenting with nocturnal episodes of pain and screaming during sleep starting at age 30. There was no childhood or family history of parasomnia. The events had gradually become more frequent over the years, occurring in the first half of the night within 2 h of sleep onset. There were no triggers, and she had partial amnesia for the events. A diagnosis of adult-onset sleep terrors was made on clinical grounds and supported polysomnographically. Seizures and periodic limb movements were excluded as triggering factors. There was some mild sleep disordered breathing (predominantly non-desaturating hypopnea with a propensity for REM sleep of debatable significance). Imaging of the brain and spine and neurophysiological investigations ruled out lesions, entrapments, or neuropathies as possible causes of pain. Treatment (clonazepam, paroxetine, or gabapentin) was poorly tolerated and made no difference to the nocturnal episodes, while trazodone worsened them. This is the first report of hypnopompic psychic pain in association with a NREM parasomnia. We hypothesize that the pain may represent a sensory hallucination analogous to the more commonly recognized visual NREM parasomnia-associated hypnopompic visual hallucinations and that, as such, it may arise during arousal of the sensory neocortex as confabulatory response.

  20. [Sleep: regulation and phenomenology].

    Science.gov (United States)

    Vecchierini, M-F

    2013-12-01

    This article describes the two-process model of sleep regulation. The 24-hour sleep-wake cycle is regulated by a homeostatic process and an endogenous, 2 oscillators, circadian process, under the influence of external synchronisers. These two processes are partially independent but influence each other, as shown in the two-sleep-process auto-regulation model. A reciprocal inhibition model of two interconnected neuronal groups, "SP on" and "SP off", explains the regular recurrence of paradoxical sleep. Sleep studies have primarily depended on observation of the subject and have determined the optimal conditions for sleep (position, external conditions, sleep duration and need) and have studied the consequences of sleep deprivation or modifications of sleep schedules. Then, electrophysiological recordings permitted the classification of sleep stages according to the observed EEG patterns. The course of a night's sleep is reported on a "hypnogram". The adult subject falls asleep in non-REM sleep (N1), then sleep deepens progressively to stages N2 and N3 with the appearance of spindles and slow waves (N2). Slow waves become more numerous in stage N3. Every 90minutes REM sleep recurs, with muscle atonia and rapid eye movements. These adult sleep patterns develop progressively during the 2 first years of life as total sleep duration decreases, with the reduction of diurnal sleep and of REM sleep. Around 2 to 4 months, spindles and K complexes appear on the EEG, with the differentiation of light and deep sleep with, however, a predominance of slow wave sleep.

  1. Distinctive features of NREM parasomnia behaviors in parkinson's disease and multiple system atrophy.

    Directory of Open Access Journals (Sweden)

    Pietro-Luca Ratti

    Full Text Available To characterize parasomnia behaviors on arousal from NREM sleep in Parkinson's Disease (PD and Multiple System Atrophy (MSA.From 30 patients with PD, Dementia with Lewy Bodies/Dementia associated with PD, or MSA undergoing nocturnal video-polysomnography for presumed dream enactment behavior, we were able to select 2 PD and 2 MSA patients featuring NREM Parasomnia Behviors (NPBs. We identified episodes during which the subjects seemed to enact dreams or presumed dream-like mentation (NPB arousals versus episodes with physiological movements (no-NPB arousals. A time-frequency analysis (Morlet Wavelet Transform of the scalp EEG signals around each NPB and no- NPB arousal onset was performed, and the amplitudes of the spectral frequencies were compared between NPB and no-NPB arousals.19 NPBs were identified, 12 of which consisting of 'elementary' NPBs while 7 resembling confusional arousals. With quantitative EEG analysis, we found an amplitude reduction in the 5-6 Hz band 40 seconds before NPBs arousal as compared to no-NPB arousals at F4 and C4 derivations (p<0.01.Many PD and MSA patients feature various NREM sleep-related behaviors, with clinical and electrophysiological differences and similarities with arousal parasomnias in the general population.This study help bring to attention an overlooked phenomenon in neurodegenerative diseases.

  2. Assessing the dream-lag effect for REM and NREM stage 2 dreams.

    Science.gov (United States)

    Blagrove, Mark; Fouquet, Nathalie C; Henley-Einion, Josephine A; Pace-Schott, Edward F; Davies, Anna C; Neuschaffer, Jennifer L; Turnbull, Oliver H

    2011-01-01

    This study investigates evidence, from dream reports, for memory consolidation during sleep. It is well-known that events and memories from waking life can be incorporated into dreams. These incorporations can be a literal replication of what occurred in waking life, or, more often, they can be partial or indirect. Two types of temporal relationship have been found to characterize the time of occurrence of a daytime event and the reappearance or incorporation of its features in a dream. These temporal relationships are referred to as the day-residue or immediate incorporation effect, where there is the reappearance of features from events occurring on the immediately preceding day, and the dream-lag effect, where there is the reappearance of features from events occurring 5-7 days prior to the dream. Previous work on the dream-lag effect has used spontaneous home recalled dream reports, which can be from Rapid Eye Movement Sleep (REM) and from non-Rapid Eye Movement Sleep (NREM). This study addresses whether the dream-lag effect occurs only for REM sleep dreams, or for both REM and NREM stage 2 (N2) dreams. 20 participants kept a daily diary for over a week before sleeping in the sleep laboratory for 2 nights. REM and N2 dreams collected in the laboratory were transcribed and each participant rated the level of correspondence between every dream report and every diary record. The dream-lag effect was found for REM but not N2 dreams. Further analysis indicated that this result was not due to N2 dream reports being shorter, in terms of number of words, than the REM dream reports. These results provide evidence for a 7-day sleep-dependent non-linear memory consolidation process that is specific to REM sleep, and accord with proposals for the importance of REM sleep to emotional memory consolidation.

  3. Endocannabinoid Signaling Regulates Sleep Stability.

    Directory of Open Access Journals (Sweden)

    Matthew J Pava

    Full Text Available The hypnogenic properties of cannabis have been recognized for centuries, but endogenous cannabinoid (endocannabinoid regulation of vigilance states is poorly characterized. We report findings from a series of experiments in mice measuring sleep with polysomnography after various systemic pharmacological manipulations of the endocannabinoid system. Rapid, unbiased scoring of vigilance states was achieved using an automated algorithm that we devised and validated. Increasing endocannabinoid tone with a selective inhibitor of monoacyglycerol lipase (JZL184 or fatty acid amide hydrolase (AM3506 produced a transient increase in non-rapid eye movement (NREM sleep due to an augmentation of the length of NREM bouts (NREM stability. Similarly, direct activation of type 1 cannabinoid (CB1 receptors with CP47,497 increased NREM stability, but both CP47,497 and JZL184 had a secondary effect that reduced NREM sleep time and stability. This secondary response to these drugs was similar to the early effect of CB1 blockade with the antagonist/inverse agonist AM281, which fragmented NREM sleep. The magnitude of the effects produced by JZL184 and AM281 were dependent on the time of day this drug was administered. While activation of CB1 resulted in only a slight reduction in gamma power, CB1 blockade had dramatic effects on broadband power in the EEG, particularly at low frequencies. However, CB1 blockade did not significantly reduce the rebound in NREM sleep following total sleep deprivation. These results support the hypothesis that endocannabinoid signaling through CB1 is necessary for NREM stability but it is not necessary for sleep homeostasis.

  4. Differential Effects of Psychological and Physical Stress on the Sleep Pattern in Rats

    Directory of Open Access Journals (Sweden)

    Suemaru,Katsuya

    2007-12-01

    Full Text Available In the present study, we investigated the acute effects of 2 different kinds of stress, namely physical stress (foot shock and psychological stress (non-foot shock induced by the communication box method, on the sleep patterns of rats. The sleep patterns were recorded for 6 h immediately after 1 h of stress. Physical and psychological stress had almost opposite effects on the sleep patterns: In the physical stress group, hourly total rapid eye movement (REM sleep and total non-REM sleep were significantly inhibited, whereas psychological stress enhanced hourly total REM sleep but not total non-REM sleep. Further results showed that total REM sleep, total non-REM sleep, total sleep and the total number of REM sleep episodes in 5 h were reduced, and that sleep latency was prolonged compared to the control group. On the other hand, in the psychological stress group, the total REM sleep in 5 h was increased significantly due to the prolongation of the average duration of REM sleep episodes and reduced REM sleep latency. In addition, the plasma of corticosterone increased significantly after physical stress but not after psychological stress. These results suggested that the sleep patterns, particularly the patterns of REM sleep following physical and psychological stress, are probably regulated by 2 different pathways.

  5. Sleep and activity rhythms in mice: a description of circadian patterns and unexpected disruptions in sleep.

    Science.gov (United States)

    Mitler, M M; Lund, R; Sokolove, P G; Pittendrigh, C S; Dement, W C

    1977-08-05

    Studies on daily and circadian rhythms in wheel running and electrographically defined wakefulness, NREM sleep, and REM sleep in M. musculus were done to gather data on the temporal distribution of activity and sleep. Generally, peaks in NREM and sleep tended to coincide and to alternate with the coincident peaks of wakefulness and wheel running. However, during the active phase of the circadian wheel running cycle some NREM and REM sleep did occur; conversely, during its rest phase, wakefulness was often present. The most striking finding was that in mice with clearly entrained or free-running activity onsets, the circadian peak-through patterns in wakefulness, NREM, and REM sleep were not always distinct--they could be damped and/or polyphasic. Several explanations of these phenomena are considered.

  6. Heart rate variability: a tool to explore the sleeping brain?

    Directory of Open Access Journals (Sweden)

    Florian eChouchou

    2014-12-01

    Full Text Available Sleep is divided into two main sleep stages: 1 non-rapid eye movement sleep (non-REMS, characterized among others by reduced global brain activity; and 2 rapid eye movement sleep (REMS, characterized by global brain activity similar to that of wakefulness. Results of heart rate variability (HRV analysis, which is widely used to explore autonomic modulation, have revealed higher parasympathetic tone during normal non-REMS and a shift toward sympathetic predominance during normal REMS. Moreover, HRV analysis combined with brain imaging has identified close connectivity between autonomic cardiac modulation and activity in brain areas such as the amygdala and insular cortex during REMS, but no connectivity between brain and cardiac activity during non-REMS. There is also some evidence for an association between HRV and dream intensity and emotionality. Following some technical considerations, this review addresses how brain activity during sleep contributes to changes in autonomic cardiac activity, organized into three parts: 1 the knowledge on autonomic cardiac control, 2 differences in brain and autonomic activity between non-REMS and REMS, and 3 the potential of HRV analysis to explore the sleeping brain, and the implications for psychiatric disorders.

  7. Normal sleep and its neurophysiological regulation

    NARCIS (Netherlands)

    W.F. Hofman; L.M. Talamini

    2015-01-01

    Normal sleep consists of two states: NREM (light and deep sleep) and REM, alternating in a cyclical pattern. The sleep/wake rhythm is regulated by two processes: the sleep propensity, building up during wake, and the circadian rhythm, imposed by the suprachiasmatic nucleus. The arousal pathways in t

  8. Physiopathogenetic Interrelationship between Nocturnal Frontal Lobe Epilepsy and NREM Arousal Parasomnias

    Science.gov (United States)

    Halász, Péter; Kelemen, Anna; Szűcs, Anna

    2012-01-01

    Aims. To build up a coherent shared pathophysiology of NFLE and AP and discuss the underlying functional network. Methods. Reviewing relevant published data we point out common features in semiology of events, relations to macro- and microstructural dynamism of NREM sleep, to cholinergic arousal mechanism and genetic aspects. Results. We propose that pathological arousals accompanied by confused behavior with autonomic signs and/or hypermotor automatisms are expressions of the frontal cholinergic arousal function of different degree, during the condition of depressed cognition by frontodorsal functional loss in NREM sleep. This may happen either if the frontal cortical Ach receptors are mutated in ADNFLE (and probably also in genetically not proved nonlesional cases as well), or without epileptic disorder, in AP, assuming gain in receptor functions in both conditions. This hypothesis incorporates the previous “liberation theory” of Tassinari and the “state dissociation hypothesis” of Bassetti and Terzaghi). We propose that NFLE and IGE represent epileptic disorders of the two antagonistic twin systems in the frontal lobe. NFLE is the epileptic facilitation of the ergotropic frontal arousal system whereas absence epilepsy is the epileptic facilitation of burst-firing working mode of the spindle and delta producing frontal thalamocortical throphotropic sleep system. Significance. The proposed physiopathogenesis conceptualize epilepsies in physiologically meaningful networks. PMID:22953061

  9. Labile sleep promotes awareness of abstract knowledge in a serial reaction time task

    OpenAIRE

    Kirov, Roumen; Kolev, Vasil; Verleger, Rolf; Yordanova, Juliana

    2015-01-01

    Sleep has been identified as a critical brain state enhancing the probability of gaining insight into covert task regularities. Both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep have been implicated with offline re-activation and reorganization of memories supporting explicit knowledge generation. According to two-stage models of sleep function, offline processing of information during sleep is sequential requiring multiple cycles of NREM and REM sleep stages. However, the rol...

  10. Labile sleep promotes awareness of abstract knowledge in a serial reaction time task

    OpenAIRE

    Roumen eKirov; Vasil eKolev; Rolf eVerleger; Juliana eYordanova

    2015-01-01

    Sleep has been identified as a critical brain state enhancing the probability of gaining insight into covert task regularities. Both non-rapid eye movement (NREM) and REM sleep have been implicated with offline re-activation and reorganization of memories supporting explicit knowledge generation. According to two-stage models of sleep function, offline processing of information during sleep is sequential requiring multiple cycles of NREM and REM sleep stages. However, the role of overnight dy...

  11. Sleep board review questions: sleep disordered breathing that improves in REM

    Directory of Open Access Journals (Sweden)

    Budhiraja R

    2012-08-01

    Full Text Available No abstract available. Article truncated at end of question. Which of the following breathing disorders is usually less severe in rapid eye movement (REM sleep compared to non-rapid eye movement (NREM sleep?1.Sleep-related hypoxemia in COPD2.Obstructive Sleep Apnea3.Cheyne Stokes Breathing4.Hypoxemia in Pulmonary Hypertension

  12. Functional neuroimaging of sleep.

    Science.gov (United States)

    Nofzinger, Eric A

    2005-03-01

    Sleep and sleep disorders have traditionally been viewed from a polysomnographic perspective. Although these methods provide information on the timing of various stages of sleep and wakefulness, they do not provide information regarding function in brain structures that have been implicated in the generation of sleep and that may be abnormal in different sleep disorders. Functional neuroimaging methods provide information regarding changes in brain function across the sleep-wake cycle that provides information for models of sleep dysregulation in a variety of sleep disorders. Early studies show reliable increases in function in limbic and anterior paralimbic cortex in rapid eye movement (REM) sleep and decreases in function in higher-order cortical regions in known thalamocortical networks during non-REM sleep. Although most of the early work in this area has been devoted to the study of normal sleep mechanisms, a collection of studies in diverse sleep disorders such as sleep deprivation, depression, insomnia, dyssomnias, narcolepsy, and sleep apnea suggest that functional neuroimaging methods have the potential to clarify the pathophysiology of sleep disorders and to guide treatment strategies.

  13. Obstructive sleep apnea alters sleep stage transition dynamics.

    Directory of Open Access Journals (Sweden)

    Matt T Bianchi

    Full Text Available INTRODUCTION: Enhanced characterization of sleep architecture, compared with routine polysomnographic metrics such as stage percentages and sleep efficiency, may improve the predictive phenotyping of fragmented sleep. One approach involves using stage transition analysis to characterize sleep continuity. METHODS AND PRINCIPAL FINDINGS: We analyzed hypnograms from Sleep Heart Health Study (SHHS participants using the following stage designations: wake after sleep onset (WASO, non-rapid eye movement (NREM sleep, and REM sleep. We show that individual patient hypnograms contain insufficient number of bouts to adequately describe the transition kinetics, necessitating pooling of data. We compared a control group of individuals free of medications, obstructive sleep apnea (OSA, medical co-morbidities, or sleepiness (n = 374 with mild (n = 496 or severe OSA (n = 338. WASO, REM sleep, and NREM sleep bout durations exhibited multi-exponential temporal dynamics. The presence of OSA accelerated the "decay" rate of NREM and REM sleep bouts, resulting in instability manifesting as shorter bouts and increased number of stage transitions. For WASO bouts, previously attributed to a power law process, a multi-exponential decay described the data well. Simulations demonstrated that a multi-exponential process can mimic a power law distribution. CONCLUSION AND SIGNIFICANCE: OSA alters sleep architecture dynamics by decreasing the temporal stability of NREM and REM sleep bouts. Multi-exponential fitting is superior to routine mono-exponential fitting, and may thus provide improved predictive metrics of sleep continuity. However, because a single night of sleep contains insufficient transitions to characterize these dynamics, extended monitoring of sleep, probably at home, would be necessary for individualized clinical application.

  14. Boosting Vocabulary Learning by Verbal Cueing During Sleep.

    Science.gov (United States)

    Schreiner, Thomas; Rasch, Björn

    2015-11-01

    Reactivating memories during sleep by re-exposure to associated memory cues (e.g., odors or sounds) improves memory consolidation. Here, we tested for the first time whether verbal cueing during sleep can improve vocabulary learning. We cued prior learned Dutch words either during non-rapid eye movement sleep (NonREM) or during active or passive waking. Re-exposure to Dutch words during sleep improved later memory for the German translation of the cued words when compared with uncued words. Recall of uncued words was similar to an additional group receiving no verbal cues during sleep. Furthermore, verbal cueing failed to improve memory during active and passive waking. High-density electroencephalographic recordings revealed that successful verbal cueing during NonREM sleep is associated with a pronounced frontal negativity in event-related potentials, a higher frequency of frontal slow waves as well as a cueing-related increase in right frontal and left parietal oscillatory theta power. Our results indicate that verbal cues presented during NonREM sleep reactivate associated memories, and facilitate later recall of foreign vocabulary without impairing ongoing consolidation processes. Likewise, our oscillatory analysis suggests that both sleep-specific slow waves as well as theta oscillations (typically associated with successful memory encoding during wakefulness) might be involved in strengthening memories by cueing during sleep.

  15. The hypocretins (orexins mediate the “phasic” components of REM sleep: A new hypothesis

    Directory of Open Access Journals (Sweden)

    Pablo Torterolo

    2014-03-01

    The hypocretinergic neurons are active during wakefulness in conjunction with the presence of motor activity that occurs during survival-related behaviors. These neurons decrease their firing rate during non-REM sleep; however there is still controversy upon the activity and role of these neurons during REM sleep. Hence, in the present report we conducted a critical review of the literature of the hypocretinergic system during REM sleep, and hypothesize a possible role of this system in the generation of REM sleep.

  16. Network Homeostasis and State Dynamics of Neocortical Sleep.

    Science.gov (United States)

    Watson, Brendon O; Levenstein, Daniel; Greene, J Palmer; Gelinas, Jennifer N; Buzsáki, György

    2016-05-18

    Sleep exerts many effects on mammalian forebrain networks, including homeostatic effects on both synaptic strengths and firing rates. We used large-scale recordings to examine the activity of neurons in the frontal cortex of rats and first observed that the distribution of pyramidal cell firing rates was wide and strongly skewed toward high firing rates. Moreover, neurons from different parts of that distribution were differentially modulated by sleep substates. Periods of nonREM sleep reduced the activity of high firing rate neurons and tended to upregulate firing of slow-firing neurons. By contrast, the effect of REM was to reduce firing rates across the entire rate spectrum. Microarousals, interspersed within nonREM epochs, increased firing rates of slow-firing neurons. The net result of sleep was to homogenize the firing rate distribution. These findings are at variance with current homeostatic models and provide a novel view of sleep in adjusting network excitability.

  17. NREM parasomnias: arousal disorders and differentiation from nocturnal frontal lobe epilepsy.

    Science.gov (United States)

    Zucconi, M; Ferini-Strambi, L

    2000-09-01

    Parasomnias emerging from NREM sleep such as sleep walking, sleep terrors and confusional arousals are considered arousal disorders. Nocturnal video-polysomnography is the gold standard to diagnosing and differentiating parasomnias from other arousals with atypical motor behaviors such as nocturnal frontal lobe epilepsy (NFLE). This form of nocturnal seizures with prominent dystonic-dyskinetic components, in some cases genetic, has been recently identified by means of detailed video-analysis of movements during sleep. The clinical picture of parasomnias (with onset in early childhood, rare episodes of long duration, absence of stereotypy, general disappearance after puberty) is different from that of NFLE (which first occurs between the age of 10 and 20, manifests frequent complex and repetitive behaviors of short duration excluding rare prolonged seizures, nocturnal agitation, some daytime complaints such as fatigue or sleepiness, persistence into adulthood). Patients show no difference from classical sleep parameters whilst microstructure analysis shows sleep instability and arousal fluctuations in parasomnias and NFLE. In children as well, at least in our experience, the differential diagnosis between the two disorders is difficult and requires one or more complete nocturnal video-polygraphic recording. In any case the diagnosis of NFLE should be considered in children with nocturnal motor episodes or nocturnal motor agitation, when the attacks persist; this diagnosis is probably more frequent than expected.

  18. Adult NREM parasomnia associated with lancinating throat pain.

    Science.gov (United States)

    Bušková, Jitka; Sonka, Karel

    2014-08-15

    We report the case of a 30-year-old woman presenting with dangerous nocturnal NREM episodes with the clinical feature of lancinating throat pain. We hypothesize that the pain may have represented sensory hallucination analogous to commonly recognized visual images associated with NREM parasomnias. This case is also unusual for probable psychological triggers that could play a role in the pathogenesis of the disease, as evidenced by successful psychotherapy.

  19. Sleep

    Science.gov (United States)

    ... NICHD Research Information Clinical Trials Resources and Publications Sleep: Condition Information Skip sharing on social media links Share this: Page Content What is sleep? Sleep is a period of unconsciousness during which ...

  20. Sleep EEG spectral analysis in a diurnal rodent : Eutamias sibiricus

    NARCIS (Netherlands)

    DIJK, DJ; DAAN, S

    1989-01-01

    1. Sleep was studied in the diurnal rodent Eutamias sibiricus, chronically implanted with EEG and EMG electrodes. Analysis of the distribution of wakefulness, nonrapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep over the 24 h period (LD 12:12) showed that total sleep time was 27.5%

  1. Sustaining sleep spindles through enhanced SK2 channel activity consolidates sleep and elevates arousal threshold

    Science.gov (United States)

    Wimmer, Ralf D.; Astori, Simone; Bond, Chris T.; Rovó, Zita; Chatton, Jean-Yves; Adelman, John P.; Franken, Paul; Lüthi, Anita

    2013-01-01

    Sleep spindles are synchronized 11–15 Hz electroencephalographic (EEG) oscillations predominant during non-rapid-eye-movement sleep (NREMS). Rhythmic bursting in the reticular thalamic nucleus (nRt), arising from interplay between Cav3.3-type Ca2+ channels and Ca2+-dependent small-conductance-type 2 (SK2) K+ channels, underlies spindle generation. Correlative evidence indicates that spindles contribute to memory consolidation and protection against environmental noise in human NREMS. Here, we describe a molecular mechanism through which spindle power is selectively extended and we probed the actions of intensified spindling in the naturally sleeping mouse. Using electrophysiological recordings in acute brain slices from SK2 channel-over-expressing (SK2-OE) mice, we found that nRt bursting was potentiated and thalamic circuit oscillations were prolonged. Moreover, nRt cells showed greater resilience to transit from burst to tonic discharge in response to gradual depolarization, mimicking transitions out of NREMS. Compared to wild-type littermates, chronic EEG recordings of SK2-OE mice contained less fragmented NREMS, while the NREMS EEG power spectrum was conserved. Furthermore, EEG spindle activity was prolonged at NREMS exit. Finally, when exposed to white noise, SK2-OE mice needed stronger stimuli to arouse. Increased nRt bursting thus strengthens spindles and improves sleep quality through mechanisms independent of EEG slow-waves (< 4 Hz), suggesting SK2 signaling as a new potential therapeutic target for sleep disorders and for neuropsychiatric diseases accompanied by weakened sleep spindles. PMID:23035101

  2. Sustaining sleep spindles through enhanced SK2-channel activity consolidates sleep and elevates arousal threshold.

    Science.gov (United States)

    Wimmer, Ralf D; Astori, Simone; Bond, Chris T; Rovó, Zita; Chatton, Jean-Yves; Adelman, John P; Franken, Paul; Lüthi, Anita

    2012-10-03

    Sleep spindles are synchronized 11-15 Hz electroencephalographic (EEG) oscillations predominant during nonrapid-eye-movement sleep (NREMS). Rhythmic bursting in the reticular thalamic nucleus (nRt), arising from interplay between Ca(v)3.3-type Ca(2+) channels and Ca(2+)-dependent small-conductance-type 2 (SK2) K(+) channels, underlies spindle generation. Correlative evidence indicates that spindles contribute to memory consolidation and protection against environmental noise in human NREMS. Here, we describe a molecular mechanism through which spindle power is selectively extended and we probed the actions of intensified spindling in the naturally sleeping mouse. Using electrophysiological recordings in acute brain slices from SK2 channel-overexpressing (SK2-OE) mice, we found that nRt bursting was potentiated and thalamic circuit oscillations were prolonged. Moreover, nRt cells showed greater resilience to transit from burst to tonic discharge in response to gradual depolarization, mimicking transitions out of NREMS. Compared with wild-type littermates, chronic EEG recordings of SK2-OE mice contained less fragmented NREMS, while the NREMS EEG power spectrum was conserved. Furthermore, EEG spindle activity was prolonged at NREMS exit. Finally, when exposed to white noise, SK2-OE mice needed stronger stimuli to arouse. Increased nRt bursting thus strengthens spindles and improves sleep quality through mechanisms independent of EEG slow waves (<4 Hz), suggesting SK2 signaling as a new potential therapeutic target for sleep disorders and for neuropsychiatric diseases accompanied by weakened sleep spindles.

  3. Dynamics of Sleep Stage Transitions in Health and Disease

    Science.gov (United States)

    Kishi, Akifumi; Struzik, Zbigniew R.; Natelson, Benjamin H.; Togo, Fumiharu; Yamamoto, Yoshiharu

    2007-07-01

    Sleep dynamics emerges from complex interactions between neuronal populations in many brain regions. Annotated sleep stages from electroencephalography (EEG) recordings could potentially provide a non-invasive way to obtain valuable insights into the mechanisms of these interactions, and ultimately into the very nature of sleep regulation. However, to date, sleep stage analysis has been restricted, only very recently expanding the scope of the traditional descriptive statistics to more dynamical concepts of the duration of and transitions between vigilance states and temporal evaluation of transition probabilities among different stages. Physiological and/or pathological implications of the dynamics of sleep stage transitions have, to date, not been investigated. Here, we study detailed duration and transition statistics among sleep stages in healthy humans and patients with chronic fatigue syndrome, known to be associated with disturbed sleep. We find that the durations of waking and non-REM sleep, in particular deep sleep (Stages III and IV), during the nighttime, follow a power-law probability distribution function, while REM sleep durations follow an exponential function, suggestive of complex underlying mechanisms governing the onset of light sleep. We also find a substantial number of REM to non-REM transitions in humans, while this transition is reported to be virtually non-existent in rats. Interestingly, the probability of this REM to non-REM transition is significantly lower in the patients than in controls, resulting in a significantly greater REM to awake, together with Stage I to awake, transition probability. This might potentially account for the reported poor sleep quality in the patients because the normal continuation of sleep after either the lightest or REM sleep is disrupted. We conclude that the dynamical transition analysis of sleep stages is useful for elucidating yet-to-be-determined human sleep regulation mechanisms with a

  4. Human regional cerebral glucose metabolism during non-rapid eye movement sleep in relation to waking.

    Science.gov (United States)

    Nofzinger, Eric A; Buysse, Daniel J; Miewald, Jean M; Meltzer, Carolyn C; Price, Julie C; Sembrat, Robert C; Ombao, Hernando; Reynolds, Charles F; Monk, Timothy H; Hall, Martica; Kupfer, David J; Moore, Robert Y

    2002-05-01

    Sleep is an essential human function. Although the function of sleep has generally been regarded to be restorative, recent data indicate that it also plays an important role in cognition. The neurobiology of human sleep is most effectively analysed with functional imaging, and PET studies have contributed substantially to our understanding of both rapid eye movement (REM) and non-rapid eye movement (NREM) sleep. In this study, PET was used to determine patterns of regional glucose metabolism in NREM sleep compared with waking. We hypothesized that brain structures related to waking cognitive function would show a persistence of function into the NREM sleep state. Fourteen healthy subjects (age range 21-49 years; 10 women, 4 men) underwent concurrent EEG sleep studies and [(18)F]fluoro-2-deoxy-D-glucose PET scans during waking and NREM sleep. Whole-brain glucose metabolism declined significantly from waking to NREM sleep. Relative decreases in regional metabolism from waking to NREM sleep occurred in wide areas of frontal, parietal, temporal and occipital association cortex, primary visual cortex, and in anterior/dorsomedial thalamus. After controlling for the whole-brain declines in absolute metabolism, relative increases in regional metabolism from waking to NREM were found bilaterally in the dorsal pontine tegmentum, hypothalamus, basal forebrain, ventral striatum, anterior cingulate cortex and extensive regions of the mesial temporal lobe, including the amygdala and hippocampus, and in the right dorsal parietal association cortex and primary somatosensory and motor cortices. The reductions in relative metabolism in NREM sleep compared with waking are consistent with prior findings from blood flow studies. The relative increases in glucose utilization in the basal forebrain, hypothalamus, ventral striatum, amygdala, hippocampus and pontine reticular formation are new observations that are in accordance with the view that NREM sleep is important to brain

  5. Role of corticosterone on sleep homeostasis induced by REM sleep deprivation in rats.

    Science.gov (United States)

    Machado, Ricardo Borges; Tufik, Sergio; Suchecki, Deborah

    2013-01-01

    Sleep is regulated by humoral and homeostatic processes. If on one hand chronic elevation of stress hormones impair sleep, on the other hand, rapid eye movement (REM) sleep deprivation induces elevation of glucocorticoids and time of REM sleep during the recovery period. In the present study we sought to examine whether manipulations of corticosterone levels during REM sleep deprivation would alter the subsequent sleep rebound. Adult male Wistar rats were fit with electrodes for sleep monitoring and submitted to four days of REM sleep deprivation under repeated corticosterone or metyrapone (an inhibitor of corticosterone synthesis) administration. Sleep parameters were continuously recorded throughout the sleep deprivation period and during 3 days of sleep recovery. Plasma levels of adrenocorticotropic hormone and corticosterone were also evaluated. Metyrapone treatment prevented the elevation of corticosterone plasma levels induced by REM sleep deprivation, whereas corticosterone administration to REM sleep-deprived rats resulted in lower corticosterone levels than in non-sleep deprived rats. Nonetheless, both corticosterone and metyrapone administration led to several alterations on sleep homeostasis, including reductions in the amount of non-REM and REM sleep during the recovery period, although corticosterone increased delta activity (1.0-4.0 Hz) during REM sleep deprivation. Metyrapone treatment of REM sleep-deprived rats reduced the number of REM sleep episodes. In conclusion, reduction of corticosterone levels during REM sleep deprivation resulted in impairment of sleep rebound, suggesting that physiological elevation of corticosterone levels resulting from REM sleep deprivation is necessary for plentiful recovery of sleep after this stressful event.

  6. Prevalence of Parasomnia in Autistic Children with Sleep Disorders

    OpenAIRE

    Walters, Arthur S.; Michael Brimacombe; Roberto V. Nachajon; Xue Ming; Ye-Ming Sun

    2009-01-01

    The prevalence of sleep related complaints is reported by questionnaire studies to be as high as 83.3% in children with autism spectrum disorders (ASD). Questionnaire studies report the presence of various parasomnia in ASD. However, no polysomnographic study reports non-REM parasomnias and only a single study reports REM related parasomnias in ASD. We investigated the prevalence and characteristics of sleep disorders by polysomnographic study and questionnaires in a cohort of 23 children wit...

  7. Cerebral blood flow and metabolism during sleep

    DEFF Research Database (Denmark)

    Madsen, Peter Lund; Vorstrup, S

    1991-01-01

    A review of the current literature regarding sleep-induced changes in cerebral blood flow (CBF) and cerebral metabolic rate (CMR) is presented. Early investigations have led to the notion that dreamless sleep was characterized by global values of CBF and CMR practically at the level of wakefulness......, while rapid eye movement (REM) sleep (dream sleep) was a state characterized by a dramatically increased level of CBF and possibly also of CMR. However, recent investigations firmly contradict this notion. Investigations on CBF and CMR performed during non-REM sleep, taking the effect of different...... levels of sleep into consideration, show that light sleep (stage II) is characterized by global levels of CBF and CMR only slightly reduced by 3-10% below the level associated with wakefulness, whereas CBF and CMR during deep sleep (stage III-IV) is dramatically reduced by 25-44%. Furthermore, recent...

  8. [Continuous nocturnal automassage of an acupuncture point modifies sleep in healthy subjects].

    Science.gov (United States)

    Buguet, A; Sartre, M; Le Kerneau, J

    1995-01-01

    To test the somnogenic properties of the automassage of point 7 heart of acupuncture, polygraphic night sleep was studied in six healthy volunteers (age: 27.8 +/- 1.6 years) from 23:00 h to 07:00 h. After one night of adaptation, two PEBA cones (Polyether Block Amides; Isocones) were fixed bilaterally at both points 7 heart (active application, AA) or on the back of hand (placebo application, AP). The alternate application was used 2 weeks later, using a randomized, double-blind, and cross-over protocol. Cyclic alternating patterns (CAP) were also analysed on the electroencephalogram during non-REM sleep. Sleep efficiency increased in AA, due to a decrease in wakefulness, and an increase in total sleep time due to an increase in non-REM sleep. The number of CAP decreased in AA, as did the number of CAP sequences and the ratio of CAP duration to total sleep time (CAP rate) and to the duration of slow-wave sleep. In conclusion, the application of Isocones at point 7 heart during the night induced a decrease in wakefulness and an increase in non-REM sleep during night sleep in healthy subjects.

  9. Light sleep versus slow wave sleep in memory consolidation: a question of global versus local processes?

    Science.gov (United States)

    Genzel, Lisa; Kroes, Marijn C W; Dresler, Martin; Battaglia, Francesco P

    2014-01-01

    Sleep is strongly involved in memory consolidation, but its role remains unclear. 'Sleep replay', the active potentiation of relevant synaptic connections via reactivation of patterns of network activity that occurred during previous experience, has received considerable attention. Alternatively, sleep has been suggested to regulate synaptic weights homeostatically and nonspecifically, thereby improving the signal:noise ratio of memory traces. Here, we reconcile these theories by highlighting the distinction between light and deep nonrapid eye movement (NREM) sleep. Specifically, we draw on recent studies to suggest a link between light NREM and active potentiation, and between deep NREM and homeostatic regulation. This framework could serve as a key for interpreting the physiology of sleep stages and reconciling inconsistencies in terminology in this field.

  10. The relationship of sleep with temperature and metabolic rate in a hibernating primate.

    Directory of Open Access Journals (Sweden)

    Andrew D Krystal

    Full Text Available STUDY OBJECTIVES: It has long been suspected that sleep is important for regulating body temperature and metabolic-rate. Hibernation, a state of acute hypothermia and reduced metabolic-rate, offers a promising system for investigating those relationships. Prior studies in hibernating ground squirrels report that, although sleep occurs during hibernation, it manifests only as non-REM sleep, and only at relatively high temperatures. In our study, we report data on sleep during hibernation in a lemuriform primate, Cheirogaleus medius. As the only primate known to experience prolonged periods of hibernation and as an inhabitant of more temperate climates than ground squirrels, this animal serves as an alternative model for exploring sleep temperature/metabolism relationships that may be uniquely relevant to understanding human physiology. MEASUREMENTS AND RESULTS: We find that during hibernation, non-REM sleep is absent in Cheirogaleus. Rather, periods of REM sleep occur during periods of relatively high ambient temperature, a pattern opposite of that observed in ground squirrels. Like ground squirrels, however, EEG is marked by ultra-low voltage activity at relatively low metabolic-rates. CONCLUSIONS: These findings confirm a sleep-temperature/metabolism link, though they also suggest that the relationship of sleep stage with temperature/metabolism is flexible and may differ across species or mammalian orders. The absence of non-REM sleep suggests that during hibernation in Cheirogaleus, like in the ground squirrel, the otherwise universal non-REM sleep homeostatic response is greatly curtailed or absent. Lastly, ultra-low voltage EEG appears to be a cross-species marker for extremely low metabolic-rate, and, as such, may be an attractive target for research on hibernation induction.

  11. Labile sleep promotes awareness of abstract knowledge in a serial reaction time task

    Directory of Open Access Journals (Sweden)

    Roumen eKirov

    2015-09-01

    Full Text Available Sleep has been identified as a critical brain state enhancing the probability of gaining insight into covert task regularities. Both non-rapid eye movement (NREM and REM sleep have been implicated with offline re-activation and reorganization of memories supporting explicit knowledge generation. According to two-stage models of sleep function, offline processing of information during sleep is sequential requiring multiple cycles of NREM and REM sleep stages. However, the role of overnight dynamic sleep macrostructure for insightfulness has not been studied so far. In the present study, we test the hypothesis that the frequency of interactions between NREM and REM sleep stages might be critical for awareness after sleep. For that aim, the rate of sleep stage transitions was evaluated in 53 participants who learned implicitly a serial reaction time task (SRTT in which a determined sequence was inserted. The amount of explicit knowledge about the sequence was established by verbal recall after a night of sleep following SRTT learning. Polysomnography was recorded in this night and in a control night before and was analyzed to compare the rate of sleep-stage transitions between participants who did or did not gain awareness of task regularity after sleep. Indeed, individual ability of explicit knowledge generation was strongly associated with increased rate of transitions between NREM and REM sleep stages and between light sleep stages and slow wave sleep. However, the rate of NREM-REM transitions specifically predicted the amount of explicit knowledge after sleep in a trait-dependent way. These results demonstrate that enhanced lability of sleep goes along with individual ability of knowledge awareness. Observations suggest that facilitated dynamic interactions between sleep stages, particularly between NREM and REM sleep stages play a role for offline processing which promotes rule extraction and awareness.

  12. Labile sleep promotes awareness of abstract knowledge in a serial reaction time task.

    Science.gov (United States)

    Kirov, Roumen; Kolev, Vasil; Verleger, Rolf; Yordanova, Juliana

    2015-01-01

    Sleep has been identified as a critical brain state enhancing the probability of gaining insight into covert task regularities. Both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep have been implicated with offline re-activation and reorganization of memories supporting explicit knowledge generation. According to two-stage models of sleep function, offline processing of information during sleep is sequential requiring multiple cycles of NREM and REM sleep stages. However, the role of overnight dynamic sleep macrostructure for insightfulness has not been studied so far. In the present study, we test the hypothesis that the frequency of interactions between NREM and REM sleep stages might be critical for awareness after sleep. For that aim, the rate of sleep stage transitions was evaluated in 53 participants who learned implicitly a serial reaction time task (SRTT) in which a determined sequence was inserted. The amount of explicit knowledge about the sequence was established by verbal recall after a night of sleep following SRTT learning. Polysomnography was recorded in this night and in a control night before and was analyzed to compare the rate of sleep-stage transitions between participants who did or did not gain awareness of task regularity after sleep. Indeed, individual ability of explicit knowledge generation was strongly associated with increased rate of transitions between NREM and REM sleep stages and between light sleep stages and slow wave sleep. However, the rate of NREM-REM transitions specifically predicted the amount of explicit knowledge after sleep in a trait-dependent way. These results demonstrate that enhanced lability of sleep goes along with individual ability of knowledge awareness. Observations suggest that facilitated dynamic interactions between sleep stages, particularly between NREM and REM sleep stages play a role for offline processing which promotes rule extraction and awareness.

  13. Sleep board review question: epilepsy or parasomnia?

    Directory of Open Access Journals (Sweden)

    Budhiraja R

    2013-02-01

    Full Text Available No abstract available. Article truncated after first page. Which of the following is the most helpful in differentiating nocturnal frontal lobe epilepsy (NFLE from non-rapid eye movement (NREM arousal parasomnias? 1. Onset during rapid eye movement (REM sleep. 2. Arousal preceding the event. 3. Stereotypy. 4. Concomitant presence of sleep apnea.

  14. Sleep board review question: epilepsy or parasomnia?

    OpenAIRE

    Budhiraja R

    2013-01-01

    No abstract available. Article truncated after first page. Which of the following is the most helpful in differentiating nocturnal frontal lobe epilepsy (NFLE) from non-rapid eye movement (NREM) arousal parasomnias? 1. Onset during rapid eye movement (REM) sleep. 2. Arousal preceding the event. 3. Stereotypy. 4. Concomitant presence of sleep apnea.

  15. Ultradian oscillations in plasma renin activity: their relationships to meals and sleep stages.

    Science.gov (United States)

    Brandenberger, G; Follenius, M; Muzet, A; Ehrhart, J; Schieber, J P

    1985-08-01

    The 24-h pattern of PRA was studied in 6 supine normal subjects, and the relationship between sleep stages and PRA oscillations was analyzed using 18 nighttime profiles and the concomitant polygraphic recordings of sleep. Blood was collected at 10-min intervals. The slow trends obtained by adjusting a third degree polynomial to the 24-h data were not reproducible among individuals, and no circadian pattern was detected. Sustained oscillations in PRA occurred throughout the day. Spectral analysis revealed that PRA oscillated at a regular periodicity of about 100 min during the night. This periodicity was modified during the daytime by meal intake, which induced PRA peaks with large interindividual variations in size. A close relationship was found between the nocturnal PRA oscillations and the alternance of rapid eye movement (REM) sleep and non-REM sleep. Non-REM sleep invariably coincided with increasing or peaking PRA levels. REM sleep occurred as PRA was declining or at nadirs. More precisely, increases in PRA marked the transition from REM sleep to stage II, whereas stages III and IV usually occurred when PRA was highest. This relationship between the periodic nocturnal oscillations in PRA and the alternance of the REM-non-REM cycles may translate a similar oscillatory process in the central nervous system or may be linked to hemodynamic changes during sleep that might be partly controlled by the renin-angiotensin system.

  16. Effect of sleeping alone on sleep quality in female bed partners of snorers.

    Science.gov (United States)

    Blumen, M; Quera Salva, M A; d'Ortho, M-P; Leroux, K; Audibert, P; Fermanian, C; Chabolle, F; Lofaso, F

    2009-11-01

    The aim of the present study was to objectively measure the effect of sleeping alone for one night on sleep quality in female bed partners of male snorers. Females complaining of poor sleep due to snoring by their bed partner and having no known hearing loss or snoring were included in a prospective multicentre cross-sectional study. 23 females underwent one polysomnography recording while sleeping with their bed partner and another while sleeping alone. Their sleep parameters were compared between the two nights. We excluded seven couples because the female partner snored for >10% of the sleep time (n = 6) or had obstructive sleep apnoea syndrome (n = 1). In the remaining 16 females, sleep time, sleep efficiency, arousal index and percentages of deep sleep (stages 3-4) and rapid eye movement (REM) sleep were not significantly different between the two nights. Percentages of light sleep (non-REM stage 2) and awakening index were lower when sleeping alone (p = 0.023 and p = 0.046, respectively). Sleep quality was decreased and sleep fragmentation increased in females sleeping with male snorers. Some females had unrecognised snoring. However, our data do not suggest that objective sleep quality improves substantially in the female nonsnoring partner when she sleeps alone for one night.

  17. Study on Heart Rate Variability During Sleep Basing on Wavelet Decomposition and Zero Crossing Analysis%基于小波分解和过零点分析的睡眠期间心率变异性研究

    Institute of Scientific and Technical Information of China (English)

    肖蒙; 严洪; 李延军

    2013-01-01

    Objective To propose a simple method for analyzing heart rate variability (HRV) and apply it in HRV feature study during sleep.Methods The low frequency (LF) and high frequency (HF) component of RR sequence were extracted through wavelet decomposition at first.Then the zero crossing features,which involved mean and normalized standard deviation of zero crossing intervals,of RR,LF and HF component were calculated.At the same time,the spectral features i.e.LFn,HFn,LF/HF and sample entropy were also determined.The significance levels of different features in different sleep stages were evaluated and the correlationship between zero crossing features and other measures were determined.Results The zero crossing features during wake,rapid eye movement(REM) and non-REM(NREM) sleep revealed significant difference.Three in 6 zero crossing features showed fairly strong correlation with spectral features and sample entropy.Conclusion The proposed method can be calculated easily and conveniently,and shows the capability of reflecting spectral and complexity features of HRV at the same time.It provides new index for investigating the activity of automatic nervous system and developing sleep monitoring method based on electrocardiogram.%目的 提出一种简便的心率变异性(heart rate variability,HRV)分析方法,并将其用于研究睡眠期间的HRV特征.方法 利用小波分解提取RR序列的低频(low frequency,LF)和高频(high frequency,HF)成分后,采用过零点分析法分别计算睡眠各阶段RR序列及其LF,HF分量的过零点特征(过零点间隔均值和归一化过零点间隔标准差),同时计算RR序列的频谱特征(LFn,HFn,LF/HF)和样本熵.分析各特征在不同睡眠阶段的差异性,以及过零点特征与其它特征的相关性.结果 RR过零点特征在觉醒、快速眼动(rapid eye movement,REM)和非快速眼动(non-REM,NREM)睡眠期间具有显著差异;三个过零点特征与频谱特征和样本熵

  18. An Analysis of Warfighter Sleep, Fatigue, and Performance on the USS Nimitz

    Science.gov (United States)

    2014-09-01

    Characteristic EEG activity for the four stages of NREM sleep . The underlining shows two sleep spindles (from Colten & Altevogt, 2006, p. 36...9 Table 2. Description of sleep stages (after NSF, 2014a). ................................. 11 Table 3. Relates continuous...Institutes for Behavior Resources ICSD-2 International Classification of Sleep Disorders-2 ID Identification Number IMPRINT Improved Performance Research

  19. Bioradiolocation-based sleep stage classification.

    Science.gov (United States)

    Tataraidze, Alexander; Korostovtseva, Lyudmila; Anishchenko, Lesya; Bochkarev, Mikhail; Sviryaev, Yurii; Ivashov, Sergey

    2016-08-01

    This paper presents a method for classifying wakefulness, REM, light and deep sleep based on the analysis of respiratory activity and body motions acquired by a bioradar. The method was validated using data of 32 subjects without sleep-disordered breathing, who underwent a polysomnography study in a sleep laboratory. We achieved Cohen's kappa of 0.49 in the wake-REM-light-deep sleep classification, 0.55 for the wake-REM-NREM classification and 0.57 for the sleep/wakefulness determination. The results might be useful for the development of unobtrusive sleep monitoring systems for diagnostics, prevention, and management of sleep disorders.

  20. Time-of-day modulation of homeostatic and allostatic sleep responses to chronic sleep restriction in rats.

    Science.gov (United States)

    Deurveilher, S; Rusak, B; Semba, K

    2012-06-15

    To study sleep responses to chronic sleep restriction (CSR) and time-of-day influences on these responses, we developed a rat model of CSR that takes into account the polyphasic sleep patterns in rats. Adult male rats underwent cycles of 3 h of sleep deprivation (SD) and 1 h of sleep opportunity (SO) continuously for 4 days, beginning at the onset of the 12-h light phase ("3/1" protocol). Electroencephalogram (EEG) and electromyogram (EMG) recordings were made before, during, and after CSR. During CSR, total sleep time was reduced by ∼60% from baseline levels. Both rapid eye movement sleep (REMS) and non-rapid eye movement sleep (NREMS) during SO periods increased initially relative to baseline and remained elevated for the rest of the CSR period. In contrast, NREMS EEG delta power (a measure of sleep intensity) increased initially, but then declined gradually, in parallel with increases in high-frequency power in the NREMS EEG. The amplitude of daily rhythms in NREMS and REMS amounts was maintained during SO periods, whereas that of NREMS delta power was reduced. Compensatory responses during the 2-day post-CSR recovery period were either modest or negative and gated by time of day. NREMS, REMS, and EEG delta power lost during CSR were not recovered by the end of the second recovery day. Thus the "3/1" CSR protocol triggered both homeostatic responses (increased sleep amounts and intensity during SOs) and allostatic responses (gradual decline in sleep intensity during SOs and muted or negative post-CSR sleep recovery), and both responses were modulated by time of day.

  1. Circadian modulation of sleep in rodents.

    Science.gov (United States)

    Yasenkov, Roman; Deboer, Tom

    2012-01-01

    Sleep is regulated by circadian and homeostatic processes. The sleep homeostat keeps track of the duration of prior sleep and waking and determines the intensity of sleep. In mammals, the homeostatic process is reflected by the slow waves in the non-rapid eye movement (NREM) sleep electroencephalogram (EEG). The circadian process is controlled by a pacemaker located in the suprachiasmatic nucleus of the hypothalamus and provides the sleep homeostat with a circadian framework. This review summarizes the changes in sleep obtained after different chronobiological interventions (changes in photoperiod, light availability, and running wheel availability), the influence of mutations or lesions in clock genes on sleep, and research on the interaction between sleep homeostasis and the circadian clock. Research in humans shows that the period of consolidated waking during the day is a consequence of the interaction between an increasing homeostatic sleep drive and a circadian signal, which promotes waking during the day and sleep during the night. In the rat, it was shown that, under constant homeostatic sleep pressure, with similar levels of slow waves in the NREM sleep EEG at all time points of the circadian cycle, still a small circadian modulation of the duration of waking and NREM sleep episodes was observed. Under similar conditions, humans show a clear circadian modulation in REM sleep, whereas in the rat, a circadian modulation in REM sleep was not present. Therefore, in the rat, the sleep homeostatic modulation in phase with the circadian clock seems to amplify the relatively weak circadian changes in sleep induced by the circadian clock. Knowledge about the interaction between sleep and the circadian clock and the circadian modulation of sleep in other species than humans is important to better understand the underlying regulatory mechanisms.

  2. Estradiol suppresses recovery of REM sleep following sleep deprivation in ovariectomized female rats.

    Science.gov (United States)

    Schwartz, Michael D; Mong, Jessica A

    2011-10-24

    Sleep complaints such as insufficient sleep and insomnia are twice as prevalent in women. Symptoms of sleep disruption are often coincident with changes in the gonadal hormone profile across a women's lifespan. Data from a number of different species, including humans, non-human primates and rodents strongly implicate a role for gonadal hormones in the modulation of sleep. In female rats, increased levels of circulating estradiol increase wakefulness and reduce sleep in the dark phase. In this study, we asked whether this reduction in sleep is driven by estradiol-dependent reduction in sleep need during the dark phase by assessing sleep before and after sleep deprivation (SD). Ovariectomized rats implanted with EEG telemetry transmitters were given Silastic capsules containing either 17-β estradiol in sesame oil (E2) or sesame oil alone. After a 24-hour baseline, animals were sleep-deprived via gentle handling for the entire 12-hour light phase, and then allowed to recover. E2 treatment suppressed baseline REM sleep duration in the dark phase, but not NREM or Wake duration, within three days. While SD induced a compensatory increase in REM duration in both groups, this increase was smaller in E2-treated rats compared to oils, as measured in absolute duration as well as by relative increase over baseline. Thus, E2 suppressed REM sleep in the dark phase both before and after SD. E2 also suppressed NREM and increased waking in the early- to mid-dark phase on the day after SD. NREM delta power tracked NREM sleep before and after SD, with small hormone-dependent reductions in delta power in recovery, but not spontaneous sleep. These results demonstrate that E2 powerfully and specifically suppresses spontaneous and recovery REM sleep in the dark phase, and suggest that ovarian steroids may consolidate circadian sleep-wake rhythms.

  3. The spectrum of the non-rapid eye movement sleep electroencephalogram following total sleep deprivation is trait-like.

    Science.gov (United States)

    Tarokh, Leila; Rusterholz, Thomas; Achermann, Peter; Van Dongen, Hans P A

    2015-08-01

    The sleep electroencephalogram (EEG) spectrum is unique to an individual and stable across multiple baseline recordings. The aim of this study was to examine whether the sleep EEG spectrum exhibits the same stable characteristics after acute total sleep deprivation. Polysomnography (PSG) was recorded in 20 healthy adults across consecutive sleep periods. Three nights of baseline sleep [12 h time in bed (TIB)] following 12 h of wakefulness were interleaved with three nights of recovery sleep (12 h TIB) following 36 h of sustained wakefulness. Spectral analysis of the non-rapid eye movement (NREM) sleep EEG (C3LM derivation) was used to calculate power in 0.25 Hz frequency bins between 0.75 and 16.0 Hz. Intraclass correlation coefficients (ICCs) were calculated to assess stable individual differences for baseline and recovery night spectra separately and combined. ICCs were high across all frequencies for baseline and recovery and for baseline and recovery combined. These results show that the spectrum of the NREM sleep EEG is substantially different among individuals, highly stable within individuals and robust to an experimental challenge (i.e. sleep deprivation) known to have considerable impact on the NREM sleep EEG. These findings indicate that the NREM sleep EEG represents a trait.

  4. Cellular and molecular connections between sleep and synaptic plasticity.

    Science.gov (United States)

    Benington, Joel H; Frank, Marcos G

    2003-02-01

    The hypothesis that sleep promotes learning and memory has long been a subject of active investigation. This hypothesis implies that sleep must facilitate synaptic plasticity in some way, and recent studies have provided evidence for such a function. Our knowledge of both the cellular neurophysiology of sleep states and of the cellular and molecular mechanisms underlying synaptic plasticity has expanded considerably in recent years. In this article, we review findings in these areas and discuss possible mechanisms whereby the neurophysiological processes characteristic of sleep states may serve to facilitate synaptic plasticity. We address this issue first on the cellular level, considering how activation of T-type Ca(2+) channels in nonREM sleep may promote either long-term depression or long-term potentiation, as well as how cellular events of REM sleep may influence these processes. We then consider how synchronization of neuronal activity in thalamocortical and hippocampal-neocortical networks in nonREM sleep and REM sleep could promote differential strengthening of synapses according to the degree to which activity in one neuron is synchronized with activity in other neurons in the network. Rather than advocating one specific cellular hypothesis, we have intentionally taken a broad approach, describing a range of possible mechanisms whereby sleep may facilitate synaptic plasticity on the cellular and/or network levels. We have also provided a general review of evidence for and against the hypothesis that sleep does indeed facilitate learning, memory, and synaptic plasticity.

  5. Multifractal Analysis of Human Heartbeat in Sleep

    Science.gov (United States)

    Ding, Liang-Jing; Peng, Hu; Cai, Shi-Min; Zhou, Pei-Ling

    2007-07-01

    We study the dynamical properties of heart rate variability (HRV) in sleep by analysing the scaling behaviour with the multifractal detrended fluctuation analysis method. It is well known that heart rate is regulated by the interaction of two branches of the autonomic nervous system: the parasympathetic and sympathetic nervous systems. By investigating the multifractal properties of light, deep, rapid-eye-movement (REM) sleep and wake stages, we firstly find an increasing multifractal behaviour during REM sleep which may be caused by augmented sympathetic activities relative to non-REM sleep. In addition, the investigation of long-range correlations of HRV in sleep with second order detrended fluctuation analysis presents irregular phenomena. These findings may be helpful to understand the underlying regulating mechanism of heart rate by autonomic nervous system during wake-sleep transitions.

  6. Multifractal Analysis of Human Heartbeat in Sleep

    Institute of Scientific and Technical Information of China (English)

    DING Liang-Jing; PENG Hu; CAI Shi-Min; ZHOU Pei-Ling

    2007-01-01

    We study the dynamical properties of heart rate variability (HRV) in sleep by analysing the scaling behaviour with the multifractal detrended fluctuation analysis method. It is well known that heart rate is regulated by the interaction of two branches of the autonomic nervous system: the parasympathetic and sympathetic nervous systems. By investigating the multifractal properties of light, deep, rapid-eye-movement (REM) sleep and wake stages, we firstly find an increasing multifractal behaviour during REM sleep which may be caused by augmented sympathetic activities relative to non-REM sleep. In addition, the investigation of long-range correlations of HRV in sleep with second order detrended fluctuation analysis presents irregular phenomena. These findings may be helpful to understand the underlying regulating mechanism of heart rate by autonomic nervous system during wake-sleep transitions.

  7. Sleep disturbances in Parkinsonism.

    Science.gov (United States)

    Askenasy, J J M

    2003-02-01

    The present article is meant to suggest an approach to the guidelines for the therapy of sleep disturbances in Parkinson's Disease (PD) patients.The factors affecting the quality of life in PD patients are depression, sleep disturbances and dependence. A large review of the literature on sleep disturbances in PD patients, provided the basis for the following classification of the sleep-arousal disturbances in PD patients. We suggest a model based on 3 steps in the treatment of sleep disturbances in PD patients. This model allowing the patient, the spouse or the caregiver a quiet sleep at night, may postpone the retirement and the institutionalization of the PD patient. I. Correct diagnosis of sleep disorders based on detailed anamnesis of the patient and of the spouse or of the caregiver. One week recording on a symptom diary (log) by the patient or the caregiver. Correct diagnosis of sleep disorders co morbidities. Selection of the most appropriate sleep test among: polysomnography (PSG), multiple sleep latency test (MSLT), multiple wake latency test (MWLT), Epworth Sleepiness Scale, actigraphy or video-PSG. II. The nonspecific therapeutic approach consists in: a) Checking the sleep effect on motor performance, is it beneficial, worse or neutral. b) Psycho-physical assistance. c) Dopaminergic adjustment is necessary owing to the progression of the nigrostriatal degeneration and the increased sensitivity of the terminals, which alter the normal modulator mechanisms of the motor centers in PD patients. Among the many neurotransmitters of the nigro-striatal pathway one can distinguish two with a major influence on REM and NonREM sleep. REM sleep corresponds to an increased cholinergic receptor activity and a decreased dopaminergic activity. This is the reason why REM sleep deprivation by suppressing cholinergic receptor activity ameliorates PD motor symptoms. L-Dopa and its agonists by suppressing cholinergic receptors suppress REM sleep. The permanent adjustment

  8. Alcohol disrupts sleep homeostasis.

    Science.gov (United States)

    Thakkar, Mahesh M; Sharma, Rishi; Sahota, Pradeep

    2015-06-01

    Alcohol is a potent somnogen and one of the most commonly used "over the counter" sleep aids. In healthy non-alcoholics, acute alcohol decreases sleep latency, consolidates and increases the quality (delta power) and quantity of NREM sleep during the first half of the night. However, sleep is disrupted during the second half. Alcoholics, both during drinking periods and during abstinences, suffer from a multitude of sleep disruptions manifested by profound insomnia, excessive daytime sleepiness, and altered sleep architecture. Furthermore, subjective and objective indicators of sleep disturbances are predictors of relapse. Finally, within the USA, it is estimated that societal costs of alcohol-related sleep disorders exceeds $18 billion. Thus, although alcohol-associated sleep problems have significant economic and clinical consequences, very little is known about how and where alcohol acts to affect sleep. In this review, we have described our attempts to unravel the mechanism of alcohol-induced sleep disruptions. We have conducted a series of experiments using two different species, rats and mice, as animal models. We performed microdialysis, immunohistochemical, pharmacological, sleep deprivation and lesion studies which suggest that the sleep-promoting effects of alcohol may be mediated via alcohol's action on the mediators of sleep homeostasis: adenosine (AD) and the wake-promoting cholinergic neurons of the basal forebrain (BF). Alcohol, via its action on AD uptake, increases extracellular AD resulting in the inhibition of BF wake-promoting neurons. Since binge alcohol consumption is a highly prevalent pattern of alcohol consumption and disrupts sleep, we examined the effects of binge drinking on sleep-wakefulness. Our results suggest that disrupted sleep homeostasis may be the primary cause of sleep disruption observed following binge drinking. Finally, we have also shown that sleep disruptions observed during acute withdrawal, are caused due to impaired

  9. Effects of partial sleep deprivation on slow waves during non-rapid eye movement sleep: A high density EEG investigation.

    Science.gov (United States)

    Plante, David T; Goldstein, Michael R; Cook, Jesse D; Smith, Richard; Riedner, Brady A; Rumble, Meredith E; Jelenchick, Lauren; Roth, Andrea; Tononi, Giulio; Benca, Ruth M; Peterson, Michael J

    2016-02-01

    Changes in slow waves during non-rapid eye movement (NREM) sleep in response to acute total sleep deprivation are well-established measures of sleep homeostasis. This investigation utilized high-density electroencephalography (hdEEG) to examine topographic changes in slow waves during repeated partial sleep deprivation. Twenty-four participants underwent a 6-day sleep restriction protocol. Spectral and period-amplitude analyses of sleep hdEEG data were used to examine changes in slow wave energy, count, amplitude, and slope relative to baseline. Changes in slow wave energy were dependent on the quantity of NREM sleep utilized for analysis, with widespread increases during sleep restriction and recovery when comparing data from the first portion of the sleep period, but restricted to recovery sleep if the entire sleep episode was considered. Period-amplitude analysis was less dependent on the quantity of NREM sleep utilized, and demonstrated topographic changes in the count, amplitude, and distribution of slow waves, with frontal increases in slow wave amplitude, numbers of high-amplitude waves, and amplitude/slopes of low amplitude waves resulting from partial sleep deprivation. Topographic changes in slow waves occur across the course of partial sleep restriction and recovery. These results demonstrate a homeostatic response to partial sleep loss in humans. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Sleep

    Science.gov (United States)

    ... Families & Friendships Military Sexual Trauma Depression mild Traumatic Brain Injury Life Stress Health & Wellness Anger Stigma Suicide Prevention ... Post-Traumatic Stress Sleep Alcohol & Drugs mild Traumatic Brain Injury Resilience Families with Kids Depression Families & Friendships Tobacco ...

  11. Neural Markers of Responsiveness to the Environment in Human Sleep

    DEFF Research Database (Denmark)

    Andrillon, Thomas; Poulsen, Andreas Trier; Hansen, Lars Kai

    2016-01-01

    could be related to modulation in sleep depth. InREMsleep, however, this relationship was reversed.Wetherefore propose that, in REM sleep, endogenously generated processes compete with the processing of external input. Sleep can thus be seen as a self-regulated process in which external information can......Sleep is characterized by a loss of behavioral responsiveness. However, recent research has shown that the sleeping brain is not completely disconnected from its environment. How neural activity constrains the ability to process sensory information while asleep is yet unclear. Here, we instructed...... by Lempel-Ziv complexity (LZc), a measure shown to track arousal in sleep and anesthesia. Neural activity related to the semantic content of stimuli was conserved in light non-rapid eye movement (NREM) sleep. However, these processes were suppressed in deep NREM sleep and, importantly, also in REM sleep...

  12. Sleep Regulation, Physiology and Development, Sleep Duration and Patterns, and Sleep Hygiene in Infants, Toddlers, and Preschool-Age Children.

    Science.gov (United States)

    Bathory, Eleanor; Tomopoulos, Suzy

    2017-02-01

    Sleep problems are common, reported by a quarter of parents with children under the age of 5 years, and have been associated with poor behavior, worse school performance, and obesity, in addition to negative secondary effects on maternal and family well-being. Yet, it has been shown that pediatricians do not adequately address sleep in routine well-child visits, and underdiagnose sleep issues. Pediatricians receive little formal training in medical school or in residency regarding sleep medicine. An understanding of the physiology of sleep is critical to a pediatrician׳s ability to effectively and confidently counsel patients about sleep. The biological rhythm of sleep and waking is regulated through both circadian and homeostatic processes. Sleep also has an internal rhythmic organization, or sleep architecture, which includes sleep cycles of REM and NREM sleep. Arousal and sleep (REM and NREM) are active and complex neurophysiologic processes, involving both neural pathway activation and suppression. These physiologic processes change over the life course, especially in the first 5 years. Adequate sleep is often difficult to achieve, yet is considered very important to optimal daily function and behavior in children; thus, understanding optimal sleep duration and patterns is critical for pediatricians. There is little experimental evidence that guides sleep recommendations, rather normative data and expert recommendations. Effective counseling on child sleep must account for the child and parent factors (child temperament, parent-child interaction, and parental affect) and the environmental factors (cultural, geographic, and home environment, especially media exposure) that influence sleep. To promote health and to prevent and manage sleep problems, the American Academy of Pediatrics (AAP) recommends that parents start promoting good sleep hygiene, with a sleep-promoting environment and a bedtime routine in infancy, and throughout childhood. Thus, counseling

  13. Differential Effects of Psychological and Physical Stress on the Sleep Pattern in Rats

    OpenAIRE

    Suemaru, Katsuya; Li, Bingjin; Cui, Ranji; Araki, Hiroaki

    2007-01-01

    In the present study, we investigated the acute effects of 2 different kinds of stress, namely physical stress (foot shock) and psychological stress (non-foot shock) induced by the communication box method, on the sleep patterns of rats. The sleep patterns were recorded for 6 h immediately after 1 h of stress. Physical and psychological stress had almost opposite effects on the sleep patterns: In the physical stress group, hourly total rapid eye movement (REM) sleep and total non-REM sleep we...

  14. Prolonged sleep fragmentation of mice exacerbates febrile responses to lipopolysaccharide

    Science.gov (United States)

    Ringgold, Kristyn M.; Barf, R. Paulien; George, Amrita; Sutton, Blair C.; Opp, Mark R.

    2013-01-01

    Background Sleep disruption is a frequent occurrence in modern society. Whereas many studies have focused on the consequences of total sleep deprivation, few have investigated the condition of sleep disruption. New Method We disrupted sleep of mice during the light period for 9 consecutive days using an intermittently-rotating disc. Results Electroencephalogram (EEG) data demonstrated that non-rapid eye movement (NREM) sleep was severely fragmented and REM sleep was essentially abolished during the 12 h light period. During the dark period, when sleep was not disrupted, neither NREM sleep nor REM sleep times differed from control values. Analysis of the EEG revealed a trend for increased power in the peak frequency of the NREM EEG spectra during the dark period. The fragmentation protocol was not overly stressful as body weights and water consumption remained unchanged, and plasma corticosterone did not differ between mice subjected to 3 or 9 days of sleep disruption and home cage controls. However, mice subjected to 9 days of sleep disruption by this method responded to lipopolysaccharide with an exacerbated febrile response. Comparison with existing methods Existing methods to disrupt sleep of laboratory rodents often subject the animal to excessive locomotion, vibration, or sudden movements. This method does not suffer from any of these confounds. Conclusions This study demonstrates that prolonged sleep disruption of mice exacerbates febrile responses to lipopolysaccharide. This device provides a method to determine mechanisms by which chronic insufficient sleep contributes to the etiology of many pathologies, particularly those with an inflammatory component. PMID:23872243

  15. Effects of sleep disruption and high fat intake on glucose metabolism in mice.

    Science.gov (United States)

    Ho, Jacqueline M; Barf, R Paulien; Opp, Mark R

    2016-06-01

    Poor sleep quality or quantity impairs glycemic control and increases risk of disease under chronic conditions. Recovery sleep may offset adverse metabolic outcomes of accumulated sleep debt, but the extent to which this occurs is unclear. We examined whether recovery sleep improves glucose metabolism in mice subjected to prolonged sleep disruption, and whether high fat intake during sleep disruption exacerbates glycemic control. Adult male C57BL/6J mice were subjected to 18-h sleep fragmentation daily for 9 days, followed by 1 day of recovery. During sleep disruption, one group of mice was fed a high-fat diet (HFD) while another group was fed standard laboratory chow. Insulin sensitivity and glucose tolerance were assessed by insulin and glucose tolerance testing at baseline, after 3 and 7 days of sleep disruption, and at the end of the protocol after 24h of undisturbed sleep opportunity (recovery). To characterize changes in sleep architecture that are associated with sleep debt and recovery, we quantified electroencephalogram (EEG) recordings during sleep fragmentation and recovery periods from an additional group of mice. We now report that 9 days of 18-h daily sleep fragmentation significantly reduces rapid eye movement sleep (REMS) and non-rapid eye movement sleep (NREMS). Mice respond with increases in REMS, but not NREMS, during the daily 6-h undisturbed sleep opportunity. However, both REMS and NREMS increase significantly during the 24-h recovery period. Although sleep disruption alone has no effect in this protocol, high fat feeding in combination with sleep disruption impairs glucose tolerance, effects that are reversed by recovery sleep. Insulin sensitivity modestly improves after 3 days of sleep fragmentation and after 24h of recovery, with significantly greater improvements in mice exposed to HFD during sleep disruption. Improvements in both glucose tolerance and insulin sensitivity are associated with NREMS rebound, raising the possibility that this

  16. Sleep and dreaming are for important matters

    OpenAIRE

    2013-01-01

    Recent studies in sleep and dreaming have described an activation of emotional and reward systems, as well as the processing of internal information during these states. Specifically, increased activity in the amygdala and across mesolimbic dopaminergic regions during REM sleep is likely to promote the consolidation of memory traces with high emotional/motivational value. Moreover, coordinated hippocampal-striatal replay during NREM sleep may contribute to the selective strengthening of memor...

  17. Isolated sleep paralysis elicited by sleep interruption.

    Science.gov (United States)

    Takeuchi, T; Miyasita, A; Sasaki, Y; Inugami, M; Fukuda, K

    1992-06-01

    We elicited isolated sleep paralysis (ISP) from normal subjects by a nocturnal sleep interruption schedule. On four experimental nights, 16 subjects had their sleep interrupted for 60 minutes by forced awakening at the time when 40 minutes of nonrapid eye movement (NREM) sleep had elapsed from the termination of rapid eye movement (REM) sleep in the first or third sleep cycle. This schedule produced a sleep onset REM period (SOREMP) after the interruption at a high rate of 71.9%. We succeeded in eliciting six episodes of ISP in the sleep interruptions performed (9.4%). All episodes of ISP except one occurred from SOREMP, indicating a close correlation between ISP and SOREMP. We recorded verbal reports about ISP experiences and recorded the polysomnogram (PSG) during ISP. All of the subjects with ISP experienced inability to move and were simultaneously aware of lying in the laboratory. All but one reported auditory/visual hallucinations and unpleasant emotions. PSG recordings during ISP were characterized by a REM/W stage dissociated state, i.e. abundant alpha electroencephalographs and persistence of muscle atonia shown by the tonic electromyogram. Judging from the PSG recordings, ISP differs from other dissociated states such as lucid dreaming, nocturnal panic attacks and REM sleep behavior disorders. We compare some of the sleep variables between ISP and non-ISP nights. We also discuss the similarities and differences between ISP and sleep paralysis in narcolepsy.

  18. A new quantitative automatic method for the measurement of non-rapid eye movement sleep electroencephalographic amplitude variability.

    Science.gov (United States)

    Ferri, Raffaele; Rundo, Francesco; Novelli, Luana; Terzano, Mario G; Parrino, Liborio; Bruni, Oliviero

    2012-04-01

    The aim of this study was to arrange an automatic quantitative measure of the electroencephalographic (EEG) signal amplitude variability during non-rapid eye movement (NREM) sleep, correlated with the visually extracted cyclic alternating pattern (CAP) parameters. Ninety-eight polysomnographic EEG recordings of normal controls were used. A new algorithm based on the analysis of the EEG amplitude variability during NREM sleep was designed and applied to all recordings, which were also scored visually for CAP. All measurements obtained with the new algorithm correlated positively with corresponding CAP parameters. In particular, total CAP time correlated with total NREM variability time (r = 0.596; P < 1E-07), light sleep CAP time with light sleep variability time (r = 0.597; P < 1E-07) and slow wave sleep CAP time with slow wave sleep variability time (r = 0.809; P < 1E-07). Only the duration of CAP A phases showed a low correlation with the duration of variability events. Finally, the age-related modifications of CAP time and of NREM variability time were found to be very similar. The new method for the automatic analysis of NREM sleep amplitude variability presented here correlates significantly with visual CAP parameters; its application requires a minimum work time, compared to CAP analysis, and might be used in large studies involving numerous recordings in which NREM sleep EEG amplitude variability needs to be assessed.

  19. Sleep apneas and high altitude newcomers.

    Science.gov (United States)

    Goldenberg, F; Richalet, J P; Onnen, I; Antezana, A M

    1992-10-01

    Sleep and respiration data from two French medical high altitude expeditions (Annapurna 4,800 m and Mt Sajama 6,542 m) are presented. Difficulties in maintaining sleep and a SWS decrease were found with periodic breathing (PB) during both non-REM and REM sleep. Extent of PB varied considerably among subjects and was not correlated to the number of arousals but to the intercurrent wakefulness duration. There was a positive correlation between the time spent in PB and the individual hypoxic ventilatory drive. The relation between PB, nocturnal desaturation, and mountain sickness intensity are discussed. Acclimatization decreased the latency toward PB and improved sleep. Hypnotic benzodiazepine intake (loprazolam 1 mg) did not worsen either SWS depression or apneas and allowed normal sleep reappearance after acclimatization.

  20. [Effect of obstructive sleep apnea on sleep architecture of acute ischemic stroke patients].

    Science.gov (United States)

    Xu, Y N; Li, J; Huang, J Y; Zhu, C; Mao, C J; Shen, Y; Liu, C F

    2017-03-28

    Objective: To investigate the effect of obstructive sleep apnea (OSA) on sleep architecture in acute ischemic stroke (AIS) patients. Methods: Seventy AIS patients with polysomnography examination from June 2014 to April 2016 were included in the Second Affiliated Hospital of Soochow University. Twenty-seven healthy controls during the same period were chosen as control group. According to apnea-hypopnea index (AHI), AIS patients were divided into AIS group (AHIsleep time (TST) was significantly shorter and sleep efficiency (SE) was lower in AIS group than the control group (P=0.007, 0.008, respectively). AIS+ OSA group had longer non-rapid eye movement (NREM)1 than control group [24.9(21.3) vs 14.3(10.6), P=0.044]. Compared with AIS group, AIS+ OSA group had shorter NREM3 [13.0(13.2) vs 19.6(12.8), P=0.039]. There was no significant difference between the infarct location of AIS group and AIS+ OSA group. However, AIS+ OSA group had higher mRS score observed at 3 months through follow-up visit than AIS group (P=0.027). Spearman correlation analysis showed a positive correlation between unfavorable prognosis of stroke at 3 months and atrial fibrillation, the oxygen desaturation index (ODI), percentage of oxygen saturation Sleep architecture of cerebral infarction patients are disturbed with its characteristic of shorter total sleep time and lower sleep efficiency. Cerebral infarction patients with OSA have longer NREM1 and shorter NREM3.

  1. Slow oscillating transcranial direct current stimulation during non-rapid eye movement sleep improves behavioral inhibition in attention-deficit/ hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Manuel Tobias Munz

    2015-08-01

    Full Text Available Background: Behavioral inhibition, which is a later-developing executive function (EF and anatomically located in prefrontal areas, is impaired in attention-deficit and hyperactivity disorder (ADHD. While optimal EFs have been shown to depend on efficient sleep in healthy subjects, the impact of sleep problems, frequently reported in ADHD, remains elusive. Findings of macroscopic sleep changes in ADHD are inconsistent, but there is emerging evidence for distinct microscopic changes with a focus on prefrontal cortical regions and non-rapid eye movement (non-REM slow-wave sleep. Recently, slow oscillations (SO during non-REM sleep were found to be less functional and, as such, may be involved in sleep-dependent memory impairments in ADHD. Objective: By augmenting slow-wave power through bilateral, slow oscillating transcranial direct current stimulation (so-tDCS, frequency = 0.75 Hz during non-REM sleep, we aimed to improve daytime behavioral inhibition in children with ADHD. Methods: 14 boys (10-14 yrs diagnosed with ADHD were included. In a randomized, double-blind, cross-over design, patients received so-tDCS either in the first or in the second experimental sleep night. Inhibition control was assessed with a visuomotor go/no-go task. Intrinsic alertness was assessed with a simple stimulus response task. To control for visuomotor performance, motor memory was assessed with a finger sequence tapping task. Results: SO-power was enhanced during early non-REM sleep, accompanied by slowed reaction times and decreased standard deviations of reaction times, in the go/no-go task after so-tDCS. In contrast, intrinsic alertness and motor memory performance were not improved by so-tDCS. Conclusion: Since behavioral inhibition but not intrinsic alertness or motor memory was improved by so-tDCS, our results suggest that lateral prefrontal slow oscillations during sleep might play a specific role for executive functioning in ADHD.

  2. Heart rate variability during sleep and subsequent sleepiness in patients with chronic fatigue syndrome.

    Science.gov (United States)

    Togo, Fumiharu; Natelson, Benjamin H

    2013-06-01

    We determined whether alterations in heart rate dynamics during sleep in patients with chronic fatigue syndrome (CFS) differed from controls and/or correlated with changes of sleepiness before and after a night in the sleep laboratory. We compared beat-to-beat RR intervals (RRI) during nocturnal sleep, sleep structure, and subjective scores on visual analog scale for sleepiness in 18 CFS patients with 19 healthy controls aged 25-55 after excluding subjects with sleep disorders. A short-term fractal scaling exponent (α1) of RRI dynamics, analyzed by the detrended fluctuation analysis (DFA) method, was assessed after stratifying patients into those who reported more or less sleepiness after the night's sleep (a.m. sleepier or a.m. less sleepy, respectively). Patients in the a.m. sleepier group showed significantly (psleep (Stages 1, 2, and 3 sleep) than healthy controls, although standard polysomnographic measures did not differ between the groups. The fractal scaling index α1 during non-REM sleep was significantly (psleep onset for healthy controls and patients in the a.m. less sleepy group, but did not differ between sleep stages for patients in the a.m. sleepier group. For patients, changes in self-reported sleepiness before and after the night correlated positively with the fractal scaling index α1 during non-REM sleep (psleep might be associated with disrupted sleep in patients with CFS.

  3. Assessment Of Noise-induced Sleep Fragility In Two Age Ranges By Means Of Polysomnographic Microstructure

    Science.gov (United States)

    Terzano, M. G.; Parrino, L.; Spaggiari, M. C.; Buccino, G. P.; Fioriti, G.; Depoortere, H.

    1993-04-01

    The microstructure of sleep, which translates the short-lived fluctuations of the arousal level, is a commonly neglected feature in polysomnographic studies. Specifically arranged microstructural EEG events may provide important information on the dynamic characteristics of the sleep process. CAP (cyclic alternating pattern) and non-CAP are complementary modalities in which arousal-related "phasic" EEG phenomena are organized in non-REM sleep, and they correspond to opposite conditions of unstable and stable sleep depth, respectively. Thus, arousal instability can be measured by the CAP rate, the percentage ratio of total CAP time to total non-REM sleep time. The CAP rate, an age-related physiological variable that increases in several pathological conditions, is highly sensitive to acoustic perturbation. In the present study, two groups of healthy subjects without complaints about sleep, belonging to different age ranges (six young adults, three males and three females, between 20 and 30 years, and six middle-aged individuals, three males and three females, between 40 and 55 years) slept, after adaptation to the sleep laboratory, in a random sequence for two non-consecutive nights either under silent baseline (27·3 dB(A) Lcq) or noise-disturbed (continuous 55 dB(A) white noise) conditions. Age-related and noise-related effects on traditional sleep parameters and on the CAP rate were statistically evaluated by a split-plot test. Compared to young adults, the middle-aged individuals showed a significant reduction of total sleep time, stage 2 and REM sleep and significantly higher values of nocturnal awakenings and the CAP rate. The noisy nights were characterized by similar alterations. The disruptive effects of acoustic perturbation were greater on the more fragile sleep architecture of the older group. The increased fragility of sleep associated with aging probably reflects the decreased capacity of the sleeping brain to maintain steady states of vigilance. Total

  4. Neuronal activity in the preoptic hypothalamus during sleep deprivation and recovery sleep.

    Science.gov (United States)

    Alam, Md Aftab; Kumar, Sunil; McGinty, Dennis; Alam, Md Noor; Szymusiak, Ronald

    2014-01-01

    The preoptic hypothalamus is implicated in sleep regulation. Neurons in the median preoptic nucleus (MnPO) and the ventrolateral preoptic area (VLPO) have been identified as potential sleep regulatory elements. However, the extent to which MnPO and VLPO neurons are activated in response to changing homeostatic sleep regulatory demands is unresolved. To address this question, we continuously recorded the extracellular activity of neurons in the rat MnPO, VLPO and dorsal lateral preoptic area (LPO) during baseline sleep and waking, during 2 h of sleep deprivation (SD) and during 2 h of recovery sleep (RS). Sleep-active neurons in the MnPO (n = 11) and VLPO (n = 13) were activated in response to SD, such that waking discharge rates increased by 95.8 ± 29.5% and 59.4 ± 17.3%, respectively, above waking baseline values. During RS, non-rapid eye movement (REM) sleep discharge rates of MnPO neurons initially increased to 65.6 ± 15.2% above baseline values, then declined to baseline levels in association with decreases in EEG delta power. Increase in non-REM sleep discharge rates in VLPO neurons during RS averaged 40.5 ± 7.6% above baseline. REM-active neurons (n = 16) in the LPO also exhibited increased waking discharge during SD and an increase in non-REM discharge during RS. Infusion of A2A adenosine receptor antagonist into the VLPO attenuated SD-induced increases in neuronal discharge. Populations of LPO wake/REM-active and state-indifferent neurons and dorsal LPO sleep-active neurons were unresponsive to SD. These findings support the hypothesis that sleep-active neurons in the MnPO and VLPO, and REM-active neurons in the LPO, are components of neuronal circuits that mediate homeostatic responses to sustained wakefulness.

  5. Essential Thalamic Contribution to Slow Waves of Natural Sleep

    Science.gov (United States)

    David, François; Schmiedt, Joscha T.; Taylor, Hannah L.; Orban, Gergely; Di Giovanni, Giuseppe; Uebele, Victor N.; Renger, John J.; Lambert, Régis C.; Leresche, Nathalie

    2013-01-01

    Slow waves represent one of the prominent EEG signatures of non-rapid eye movement (non-REM) sleep and are thought to play an important role in the cellular and network plasticity that occurs during this behavioral state. These slow waves of natural sleep are currently considered to be exclusively generated by intrinsic and synaptic mechanisms within neocortical territories, although a role for the thalamus in this key physiological rhythm has been suggested but never demonstrated. Combining neuronal ensemble recordings, microdialysis, and optogenetics, here we show that the block of the thalamic output to the neocortex markedly (up to 50%) decreases the frequency of slow waves recorded during non-REM sleep in freely moving, naturally sleeping-waking rats. A smaller volume of thalamic inactivation than during sleep is required for observing similar effects on EEG slow waves recorded during anesthesia, a condition in which both bursts and single action potentials of thalamocortical neurons are almost exclusively dependent on T-type calcium channels. Thalamic inactivation more strongly reduces spindles than slow waves during both anesthesia and natural sleep. Moreover, selective excitation of thalamocortical neurons strongly entrains EEG slow waves in a narrow frequency band (0.75–1.5 Hz) only when thalamic T-type calcium channels are functionally active. These results demonstrate that the thalamus finely tunes the frequency of slow waves during non-REM sleep and anesthesia, and thus provide the first conclusive evidence that a dynamic interplay of the neocortical and thalamic oscillators of slow waves is required for the full expression of this key physiological EEG rhythm. PMID:24336724

  6. Role of corticosterone on sleep homeostasis induced by REM sleep deprivation in rats.

    Directory of Open Access Journals (Sweden)

    Ricardo Borges Machado

    Full Text Available Sleep is regulated by humoral and homeostatic processes. If on one hand chronic elevation of stress hormones impair sleep, on the other hand, rapid eye movement (REM sleep deprivation induces elevation of glucocorticoids and time of REM sleep during the recovery period. In the present study we sought to examine whether manipulations of corticosterone levels during REM sleep deprivation would alter the subsequent sleep rebound. Adult male Wistar rats were fit with electrodes for sleep monitoring and submitted to four days of REM sleep deprivation under repeated corticosterone or metyrapone (an inhibitor of corticosterone synthesis administration. Sleep parameters were continuously recorded throughout the sleep deprivation period and during 3 days of sleep recovery. Plasma levels of adrenocorticotropic hormone and corticosterone were also evaluated. Metyrapone treatment prevented the elevation of corticosterone plasma levels induced by REM sleep deprivation, whereas corticosterone administration to REM sleep-deprived rats resulted in lower corticosterone levels than in non-sleep deprived rats. Nonetheless, both corticosterone and metyrapone administration led to several alterations on sleep homeostasis, including reductions in the amount of non-REM and REM sleep during the recovery period, although corticosterone increased delta activity (1.0-4.0 Hz during REM sleep deprivation. Metyrapone treatment of REM sleep-deprived rats reduced the number of REM sleep episodes. In conclusion, reduction of corticosterone levels during REM sleep deprivation resulted in impairment of sleep rebound, suggesting that physiological elevation of corticosterone levels resulting from REM sleep deprivation is necessary for plentiful recovery of sleep after this stressful event.

  7. Sleep: A Novel Mechanistic Pathway, Biomarker, and Treatment Target in the Pathology of Alzheimer's Disease?

    Energy Technology Data Exchange (ETDEWEB)

    Mander, Bryce A. [Univ. of California, Berkeley, CA (United States). Sleep and Neuroimaging Laboratory; Winer, Joseph R. [Univ. of California, Berkeley, CA (United States). Sleep and Neuroimaging Laboratory; Jagust, William J. [Univ. of California, Berkeley, CA (United States). Helen Wills Neuroscience Institute; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Bioimaging Div.; Walker, Matthew P. [Univ. of California, Berkeley, CA (United States). Sleep and Neuroimaging Laboratory; Univ. of California, Berkeley, CA (United States). Helen Wills Neuroscience Institute

    2016-06-17

    Sleep disruption appears to be a major component of Alzheimer's disease (AD) and its pathophysiology. Signature abnormalities of sleep emerge before clinical onset of AD. Moreover, insufficient sleep facilitates accumulation of amyloid-β (Aβ), potentially triggering earlier cognitive decline and conversion to AD. Building on such findings, this review has four goals: evaluating (i) associations and plausible mechanisms linking non-rapid-eye-movement (NREM) sleep disruption, Aβ, and AD; (ii) a role for NREM sleep disruption as a novel factor linking cortical Aβ to impaired hippocampus-dependent memory consolidation; (iii) the potential diagnostic utility of NREM sleep disruption as a new biomarker of AD; and (iv) the possibility of sleep as a new treatment target in aging, affording preventative and therapeutic benefits.

  8. Sleep spindles predict stress-related increases in sleep disturbances

    Directory of Open Access Journals (Sweden)

    Thien Thanh eDang-Vu

    2015-02-01

    Full Text Available Background and Aim: Predisposing factors place certain individuals at higher risk for insomnia, especially in the presence of precipitating conditions such as stressful life events. Sleep spindles have been shown to play an important role in the preservation of sleep continuity. Lower spindle density might thus constitute an objective predisposing factor for sleep reactivity to stress. The aim of this study was therefore to evaluate the relationship between baseline sleep spindle density and the prospective change in insomnia symptoms in response to a standardized academic stressor. Methods: 12 healthy students had a polysomnography (PSG recording during a period of lower stress at the beginning of the academic semester, along with an assessment of insomnia complaints using the Insomnia Severity Index (ISI. They completed a second ISI assessment at the end of the semester, a period coinciding with the week prior to final examinations and thus higher stress. Spindle density, amplitude, duration and frequency, as well as sigma power were computed from C4-O2 electroencephalography (EEG derivation during stages N2-N3 of non-rapid-eye-movement (NREM sleep, across the whole night and for each NREM sleep period. To test for the relationship between spindle density and changes in insomnia symptoms in response to academic stress, spindle measurements at baseline were correlated with changes in ISI across the academic semester.Results: Spindle density (as well as spindle amplitude and sigma power, particularly during the first NREM sleep period, negatively correlated with changes in ISI (p < 0.05. Conclusion: Lower spindle activity, especially at the beginning of the night, prospectively predicted larger increases in insomnia symptoms in response to stress. This result indicates that individual differences in sleep spindle activity contribute to the differential vulnerability to sleep disturbances in the face of precipitating factors.

  9. Sleep loss and recovery after administration of drugs related to different arousal systems in rats.

    Science.gov (United States)

    Hajnik, T; Tóth, A; Szalontai, Ö; Pethő, M; Détári, L

    2016-09-01

    Sleep is homeostatically regulated suggesting a restorative function. Sleep deprivation is compensated by an increase in length and intensity of sleep. In this study, suppression of sleep was induced pharmacologically by drugs related to different arousal systems. All drugs caused non-rapid eye movement (NREM) sleep loss followed by different compensatory processes. Apomorphine caused a strong suppression of sleep followed by an intense recovery. In the case of fluoxetine and eserine, recovery of NREM sleep was completed by the end of the light phase due to the biphasic pattern demonstrated for these drugs first in the present experiments. Yohimbine caused a long-lasting suppression of NREM sleep, indicating that either the noradrenergic system has the utmost strength among the examined systems, or that restorative functions occurring normally during NREM sleep were not blocked. Arousal systems are involved in the regulation of various wakefulness-related functions, such as locomotion and food intake. Therefore, it can be hypothesized that activation of the different systems results in qualitatively different waking states which might affect subsequent sleep differently. These differences might give some insight into the homeostatic function of sleep in which the dopaminergic and noradrenergic systems may play a more important role than previously suggested.

  10. Enhanced emotional reactivity after selective REM sleep deprivation in humans: an fMRI study

    OpenAIRE

    Alejandra eRosales-Lagarde; Jorge L Armony; Yolanda edel Río-Portilla; David eTrejo-Martínez; Ruben eConde; Maria eCorsi-Cabrera

    2012-01-01

    Converging evidence from animal and human studies suggest that REM sleep modulates emotional processing. The aim of the present study was to explore the effects of selective REM sleep deprivation on emotional responses to threatening visual stimuli and their brain correlates using functional magnetic resonance imaging (fMRI). Twenty healthy subjects were randomly assigned to two groups: selective REM sleep deprivation (REM-D), by awakening them at each REM sleep onset, or NREM sleep interrupt...

  11. Frequency of REM sleep behavior disorders in patients with Parkinson’s disease

    OpenAIRE

    Janković Marko; Svetel Marina; Kostić Vladimir

    2015-01-01

    Background/Aim. Sleep is prompted by natural cycles of activity in the brain and consists of two basic states: rapid eye movement (REM) sleep and non-rapid eye movement (NREM) sleep. REM sleep behavior disorder (RBD) is characterized by violent motor and vocal behavior during REM sleep which represents dream enactment. The normal loss of muscle tone, with the exception of respiratory, sphincter, extra ocular and middle ear muscles, is absent in patients wit...

  12. Time-dependent sleep stage transition model based on heart rate variability.

    Science.gov (United States)

    Takeda, Toki; Mizuno, Osamu; Tanaka, Tomohiro

    2015-01-01

    A new model is proposed to automatically classify sleep stages using heart rate variability (HRV). The generative model, based on the characteristics that the distribution and the transition probabilities of sleep stages depend on the elapsed time from the beginning of sleep, infers the sleep stage with a Gibbs sampler. Experiments were conducted using a public data set consisting of 45 healthy subjects and the model's classification accuracy was evaluated for three sleep stages: wake state, rapid eye movement (REM) sleep, and non-REM sleep. Experimental results demonstrated that the model provides more accurate sleep stage classification than conventional (naive Bayes and Support Vector Machine) models that do not take the above characteristics into account. Our study contributes to improve the quality of sleep monitoring in the daily life using easy-to-wear HRV sensors.

  13. Phase-amplitude investigation of spontaneous low-frequency oscillations of cerebral hemodynamics with near-infrared spectroscopy: A sleep study in human subjects

    Science.gov (United States)

    Pierro, Michele; Sassaroli, Angelo; Bergethon, Peter R.; Ehrenberg, Bruce L.; Fantini, Sergio

    2012-01-01

    We have investigated the amplitude and phase of spontaneous low-frequency oscillations (LFOs) of the cerebral deoxy- and oxy-hemoglobin concentrations ([Hb] and [HbO]) in a human sleep study using near-infrared spectroscopy (NIRS). Amplitude and phase analysis was based on the analytic signal method, and phasor algebra was used to decompose measured [Hb] and [HbO] oscillations into cerebral blood volume (CBV) and flow velocity (CBFV) oscillations. We have found a greater phase lead of [Hb] vs. [HbO] LFOs during non-REM sleep with respect to the awake and REM sleep states (maximum increase in [Hb] phase lead: ~π/2). Furthermore, during non-REM sleep, the amplitudes of [Hb] and [HbO] LFOs are suppressed with respect to the awake and REM sleep states (maximum amplitude decrease: 87%). The associated cerebral blood volume and flow velocity oscillations are found to maintain their relative phase difference during sleep, whereas their amplitudes are attenuated during non-REM sleep. These results show the potential of phase-amplitude analysis of [Hb] and [HbO] oscillations measured by NIRS in the investigation of hemodynamics associated with cerebral physiology, activation, and pathological conditions. PMID:22820416

  14. Sleep electroencephalography as a biomarker in depression

    Directory of Open Access Journals (Sweden)

    Steiger A

    2015-04-01

    Full Text Available Axel Steiger, Marcel Pawlowski, Mayumi Kimura Max Planck Institute of Psychiatry, Munich, Germany Abstract: The sleep electroencephalogram (EEG provides biomarkers of depression, which may help with diagnosis, prediction of therapy response, and prognosis in the treatment of depression. In patients with depression, characteristic sleep EEG changes include impaired sleep continuity, disinhibition of rapid-eye-movement (REM sleep, and impaired non-REM sleep. Most antidepressants suppress REM sleep in depressed patients, healthy volunteers, and in animal models. REM suppression appears to be an important, but not an absolute requirement, for antidepressive effects of a substance. Enhanced REM density, a measure for frequency of REM, characterizes high-risk probands for affective disorders. REM-sleep changes were also found in animal models of depression. Sleep-EEG variables were shown to predict the response to treatment with antidepressants. Furthermore, certain clusters of sleep EEG variables predicted the course of the disorder for several years. Some of the predicted sleep EEG markers appear to be related to hypothalamic–pituitary–adrenal system activity. Keywords: biomarkers, depression, sleep EEG, antidepressants, prediction, animal models

  15. Interrelations and circadian changes of electroencephalogram frequencies under baseline conditions and constant sleep pressure in the rat.

    Science.gov (United States)

    Yasenkov, R; Deboer, T

    2011-04-28

    Similar to the nap-protocols applied in humans, the repeated short-sleep deprivation protocol in rats stabilizes slow-wave activity (SWA, 0.5-4 Hz) in the non-rapid eye movement (NREM) sleep electroencephalogram (EEG), thus reflecting a constant sleep pressure or sleep homeostatic level, whereas higher frequencies (7-25 Hz) in these conditions preserve their daily rhythm, therefore demonstrating a strong input from an endogenous circadian clock. How different EEG frequencies in rapid eye movement (REM) sleep and waking respond to these constant conditions, how they interrelate to each other within the different vigilance states, and which component of sleep regulation (homeostatic or circadian) is involved, remain unknown. To answer these questions, we applied power spectral analysis and correlation analysis to 1 Hz bin EEG frequency data for different vigilance states in freely moving rats in constant darkness, under baseline conditions and during the repeated short-sleep deprivation protocol. Our analysis suggests that (1) 0.5-5 Hz frequencies in NREM sleep and higher frequencies in REM sleep (above 19 Hz) and waking (above 10 Hz) are sleep-dependent, and thus seem to be under control of the sleep homeostat, while (2) faster frequencies in the NREM sleep EEG (7-25 Hz) and 3-7 Hz activity in the REM sleep EEG are under strong influence of the endogenous circadian clock. Theta activity in waking (5-7 Hz) seems to reflect both circadian and behavior dependent influences. NREM sleep EEG frequencies between 9 and 14 Hz showed both homeostatic and circadian components in their behavior. Thus, frequencies in the EEG of the different vigilance states seem to represent circadian and homeostatic components of sleep regulatory mechanisms, where REM sleep and waking frequency ranges behave similarly to each other and differently from NREM sleep frequencies.

  16. Corticothalamic Feedback Controls Sleep Spindle Duration In Vivo

    Science.gov (United States)

    Bonjean, Maxime; Baker, Tanya; Lemieux, Maxime; Timofeev, Igor; Sejnowski, Terrence; Bazhenov, Maxim

    2011-01-01

    Spindle oscillations are commonly observed during stage two of non-REM sleep. During sleep spindles, the cerebral cortex and thalamus interact through feedback connections. Both initiation and termination of spindle oscillations are thought to originate in the thalamus, based on thalamic recordings and computational models, although some in vivo results suggest otherwise. Here, we have used computer modeling and in vivo multisite recordings from the cortex and the thalamus in cats to examine the involvement of the cortex in spindle oscillations. We found that although the propagation of spindles depended on synaptic interaction within the thalamus, the initiation and termination of spindle sequences critically involved corticothalamic influences. PMID:21697364

  17. Seasonal aspects of sleep in the Djungarian hamster

    Directory of Open Access Journals (Sweden)

    Deboer Tom

    2003-05-01

    Full Text Available Abstract Background Changes in photoperiod and ambient temperature trigger seasonal adaptations in the physiology and behaviour of many species, including the Djungarian hamster. Exposure of the hamsters to a short photoperiod and low ambient temperature leads to a reduction of the polyphasic distribution of sleep and waking over the light and dark period. In contrast, a long photoperiod enhances the daily sleep-wake amplitude leading to a decline of slow-wave activity in NREM sleep within the light period. It is unknown whether these changes can be attributed specifically to photoperiod and/or ambient temperature, or whether endogenous components are contributing factors. The influence of endogenous factors was investigated by recording sleep in Djungarian hamsters invariably maintained at a low ambient temperature and fully adapted to a short photoperiod. The second recording was performed when they had returned to summer physiology, despite the maintenance of the 'winter' conditions. Results Clear winter-summer differences were seen in sleep distribution, while total sleep time was unchanged. A significantly higher light-dark cycle modulation in NREM sleep, REM sleep and waking was observed in hamsters in the summer physiological state compared to those in the winter state. Moreover, only in summer, REM sleep episodes were longer and waking bouts were shorter during the light period compared to the dark period. EEG power in the slow-wave range (0.75–4.0 Hz in both NREM sleep and REM sleep was higher in animals in the summer physiological state than in those in the 'winter' state. In winter SWA in NREM sleep was evenly distributed over the 24 h, while in summer it decreased during the light period and increased during the dark period. Conclusion Endogenous changes in the organism underlie the differences in sleep-wake redistribution we have observed previously in hamsters recorded in a short and long photoperiod.

  18. Cerebral blood flow and metabolism during sleep.

    Science.gov (United States)

    Madsen, P L; Vorstrup, S

    1991-01-01

    A review of the current literature regarding sleep-induced changes in cerebral blood flow (CBF) and cerebral metabolic rate (CMR) is presented. Early investigations have led to the notion that dreamless sleep was characterized by global values of CBF and CMR practically at the level of wakefulness, while rapid eye movement (REM) sleep (dream sleep) was a state characterized by a dramatically increased level of CBF and possibly also of CMR. However, recent investigations firmly contradict this notion. Investigations on CBF and CMR performed during non-REM sleep, taking the effect of different levels of sleep into consideration, show that light sleep (stage II) is characterized by global levels of CBF and CMR only slightly reduced by 3-10% below the level associated with wakefulness, whereas CBF and CMR during deep sleep (stage III-IV) is dramatically reduced by 25-44%. Furthermore, recent data indicate that global levels of CBF and CMR are about the same during REM sleep as in wakefulness. On the regional level, deep sleep seems to be associated with a uniform decrease in regional CBF and CMR. Investigations concerning regional CBF and CMR during REM sleep are few but data from recent investigations seem to identify site-specific changes in regional CBF and CMR during REM sleep. CBF and CMR are reflections of cerebral synaptic activity and the magnitude of reduction in these variables associated with deep sleep indicates that overall cerebral synaptic activity is reduced to approximately one-half the level associated with wakefulness, while cerebral synaptic activity levels during REM sleep are similar to wakefulness. However, even though the new understanding of CBF and CMR during sleep provides significant and important information of the brain's mode of working during sleep, it does not at its current state identify the physiological processes involved in sleep or the physiological role of sleep.

  19. Impact of obstructive sleep apnea on sleep-wake stage ratio.

    Science.gov (United States)

    Ng, Andrew Keong; Guan, Cuntai

    2012-01-01

    Patients with obstructive sleep apnea (OSA) experience fragmented sleep and exhibit different sleep architectures. While polysomnographic metrics for quantifying sleep architecture are studied, there is little information about the impact of OSA on the ratio of different sleep-wake stages (wake, W; rapid eye movement, REM; non-REM stages 1 to 3, N1 to N3). This study, therefore, aims to investigate the relationship between apnea-hypopnea index (AHI, a measure of OSA severity) and all possible ratios of sleep-wake stages. Sleep architectures of 24 adult subjects with suspected OSA were constructed according to the American Academy of Sleep Medicine scoring manual, and subsequently analyzed through various correlation (Pearson, Spearman, and Kendall) and regression (linear, logarithmic, exponential, and power-law) approaches. Results show a statistically significant positive, linear and monotonic correlation between AHI and REM/N3, as well as between AHI and N1/W (p-values sleep, and in light sleep than wake (or less time in deep sleep than REM, and in wake than light sleep). A power-law regression model may possibly explain the relationships of AHI-REM/N3 and AHI-N1/W, and predict the value of AHI using REM/N3 or N1/W.

  20. Sleeping outside the box: electroencephalographic measures of sleep in sloths inhabiting a rainforest.

    Science.gov (United States)

    Rattenborg, Niels C; Voirin, Bryson; Vyssotski, Alexei L; Kays, Roland W; Spoelstra, Kamiel; Kuemmeth, Franz; Heidrich, Wolfgang; Wikelski, Martin

    2008-08-23

    The functions of sleep remain an unresolved question in biology. One approach to revealing sleep's purpose is to identify traits that explain why some species sleep more than others. Recent comparative studies of sleep have identified relationships between various physiological, neuroanatomical and ecological traits, and the time mammals spend in rapid eye movement (REM) and non-REM sleep. However, owing to technological constraints, these studies were based exclusively on animals in captivity. Consequently, it is unclear to what extent the unnatural laboratory environment affected time spent sleeping, and thereby the identification and interpretation of informative clues to the functions of sleep. We performed the first electroencephalogram (EEG) recordings of sleep on unrestricted animals in the wild using a recently developed miniaturized EEG recorder, and found that brown-throated three-toed sloths (Bradypus variegatus) inhabiting the canopy of a tropical rainforest only sleep 9.63 h d(-1), over 6 h less than previously reported in captivity. Although the influence of factors such as the age of the animals studied cannot be ruled out, our results suggest that sleep in the wild may be markedly different from that in captivity. Additional studies of various species are thus needed to determine whether the relationships between sleep duration and various traits identified in captivity are fundamentally different in the wild. Our initial study of sloths demonstrates the feasibility of this endeavour, and thereby opens the door to comparative studies of sleep occurring within the ecological context within which it evolved.

  1. Manipulating REM sleep in older adults by selective REM sleep deprivation and physiological as well as pharmacological REM sleep augmentation methods.

    Science.gov (United States)

    Hornung, Orla P; Regen, Francesca; Schredl, Michael; Heuser, Isabella; Danker-Hopfe, Heidi

    2006-02-01

    Experimental approaches to manipulate REM sleep within the cognitive neuroscience of sleep are usually based on sleep deprivation paradigms and focus on younger adults. In the present study, a traditional selective REM sleep deprivation paradigm as well as two alternative manipulation paradigms targeting REM sleep augmentation were investigated in healthy older adults. The study sample consisted of 107 participants, male and female, between the ages of 60 and 82 years, who had been randomly assigned to five experimental groups. During the study night, a first group was deprived of REM sleep by selective REM sleep awakenings, while a second group was woken during stage 2 NREM sleep in matched frequency. Physiological REM sleep augmentation was realized by REM sleep rebound after selective REM sleep deprivation, pharmacological REM sleep augmentation by administering an acetylcholinesterase inhibitor in a double-blind, placebo-controlled design. Deprivation and augmentation paradigms manipulated REM sleep significantly, the former affecting more global measures such as REM sleep minutes and percentage, the latter more organizational aspects such as stage shifts to REM sleep, REM latency, REM density (only pharmacological augmentation) and phasic REM sleep duration. According to our findings, selective REM sleep deprivation seems to be an efficient method of REM sleep manipulation in healthy older adults. While physiological rebound-based and pharmacological cholinergic REM sleep augmentation methods both failed to affect global measures of REM sleep, their efficiency in manipulating organizational aspects of REM sleep extends the traditional scope of REM sleep manipulation methods within the cognitive neuroscience of sleep.

  2. Altered sleep composition after traumatic brain injury does not affect declarative sleep-dependent memory consolidation.

    Science.gov (United States)

    Mantua, Janna; Mahan, Keenan M; Henry, Owen S; Spencer, Rebecca M C

    2015-01-01

    Individuals with a history of traumatic brain injury (TBI) often report sleep disturbances, which may be caused by changes in sleep architecture or reduced sleep quality (greater time awake after sleep onset, poorer sleep efficiency, and sleep stage proportion alterations). Sleep is beneficial for memory formation, and herein we examine whether altered sleep physiology following TBI has deleterious effects on sleep-dependent declarative memory consolidation. Participants learned a list of word pairs in the morning or evening, and recall was assessed 12-h later, following an interval awake or with overnight sleep. Young adult participants (18-22 years) were assigned to one of four experimental groups: TBI Sleep (n = 14), TBI Wake (n = 12), non-TBI Sleep (n = 15), non-TBI Wake (n = 15). Each TBI participant was >1 year post-injury. Sleep physiology was measured with polysomnography. Memory consolidation was assessed by comparing change in word-pair recall over 12-h intersession intervals. The TBI group spent a significantly greater proportion of the night in SWS than the non-TBI group at the expense of NREM1. The TBI group also had marginally lower EEG delta power during SWS in the central region. Intersession changes in recall were greater for intervals with sleep than without sleep in both groups. However, despite abnormal sleep stage proportions for individuals with a TBI history, there was no difference in the intersession change in recall following sleep for the TBI and non-TBI groups. In both Sleep groups combined, there was a positive correlation between Intersession Change and the proportion of the night in NREM2 + SWS. Overall, sleep composition is altered following TBI but such deficits do not yield insufficiencies in sleep-dependent memory consolidation.

  3. Altered sleep composition after traumatic brain injury does not affect declarative sleep-dependent memory consolidation

    Directory of Open Access Journals (Sweden)

    Janna eMantua

    2015-06-01

    Full Text Available Individuals with a history of traumatic brain injury (TBI often report sleep disturbances, which may be caused by changes in sleep architecture or reduced sleep quality (greater time awake after sleep onset, poorer sleep efficiency, and sleep stage proportion alterations. Sleep is beneficial for memory formation, and herein we examine whether altered sleep physiology following TBI has deleterious effects on sleep-dependent declarative memory consolidation. Participants learned a list of word pairs in the morning or evening, and recall was assessed 12-hrs later, following an interval awake or with overnight sleep. Young adult participants (18-22 yrs were assigned to one of four experimental groups: TBI Sleep (n=14, TBI Wake (n=12, non-TBI Sleep (n=15, non-TBI Wake (n=15. Each TBI participant was >1 yr post-injury. Sleep physiology was measured with polysomnography. Memory consolidation was assessed by comparing change in word-pair recall over 12-hr intersession intervals. The TBI group spent a significantly greater proportion of the night in SWS than the non-TBI group at the expense of NREM1. The TBI group also had marginally lower EEG delta power during SWS in the central region. Intersession changes in recall were greater for intervals with sleep than without sleep in both groups. However, despite abnormal sleep stage proportions for individuals with a TBI history, there was no difference in the intersession change in recall following sleep for the TBI and non-TBI groups. In both Sleep groups combined, there was a positive correlation between Intersession Change and the proportion of the night in NREM2 + SWS. Overall, sleep composition is altered following TBI but such deficits do not yield insufficiencies in sleep-dependent memory consolidation.

  4. Sleep-wake cycle of an unrestrained isolated chimpanzee under entrained and free running conditions.

    Science.gov (United States)

    Mcnew, J. J.; Burson, R. C.; Hoshizaki, T.; Adey, W. R.

    1972-01-01

    Biorhythmic patterns of EEG activity - the sleep-wake cycle and the sleep cycle - were investigated in an unrestrained chimpanzee subjected to 30 days of isolation in a 4-ft cubical cage placed in a high performance sound isolation chamber. The animal received 10 days of 12 hours of light and 12 hours of dark, then 10 days of continuous light, followed by 10 more days of 12 hours of light and 12 hours of dark. The circadian sleep-wake rhythm and the wake and sleep phases of this rhythm during entrained and free running conditions were analyzed in terms of duration. The awake and nonREM sleep and REM sleep stages were also analyzed. In addition, the mean duration of the sleep cycle of the sleep phase was computed.

  5. Sleep stage classification based on respiratory signal.

    Science.gov (United States)

    Tataraidze, Alexander; Anishchenko, Lesya; Korostovtseva, Lyudmila; Kooij, Bert Jan; Bochkarev, Mikhail; Sviryaev, Yurii

    2015-01-01

    One of the research tasks, which should be solved to develop a sleep monitor, is sleep stages classification. This paper presents an algorithm for wakefulness, rapid eye movement sleep (REM) and non-REM sleep detection based on a set of 33 features, extracted from respiratory inductive plethysmography signal, and bagging classifier. Furthermore, a few heuristics based on knowledge about normal sleep structure are suggested. We used the data from 29 subjects without sleep-related breathing disorders who underwent a PSG study at a sleep laboratory. Subjects were directed to the PSG study due to suspected sleep disorders. A leave-one-subject-out cross-validation procedure was used for testing the classification performance. The accuracy of 77.85 ± 6.63 and Cohen's kappa of 0.59 ± 0.11 were achieved for the classifier. Using heuristics we increased the accuracy to 80.38 ± 8.32 and the kappa to 0.65 ± 0.13. We conclude that heuristics may improve the automated sleep structure detection based on the analysis of indirect information such as respiration signal and are useful for the development of home sleep monitoring system.

  6. Diurnal Emotional States Impact the Sleep Course.

    Directory of Open Access Journals (Sweden)

    Julien Delannoy

    Full Text Available Diurnal emotional experiences seem to affect several characteristics of sleep architecture. However, this influence remains unclear, especially for positive emotions. In addition, electrodermal activity (EDA, a sympathetic robust indicator of emotional arousal, differs depending on the sleep stage. The present research has a double aim: to identify the specific effects of pre-sleep emotional states on the architecture of the subsequent sleep period; to relate such states to the sympathetic activation during the same sleep period.Twelve healthy volunteers (20.1 ± 1.0 yo. participated in the experiment and each one slept 9 nights at the laboratory, divided into 3 sessions, one per week. Each session was organized over three nights. A reference night, allowing baseline pre-sleep and sleep recordings, preceded an experimental night before which participants watched a negative, neutral, or positive movie. The third and last night was devoted to analyzing the potential recovery or persistence of emotional effects induced before the experimental night. Standard polysomnography and EDA were recorded during all the nights.Firstly, we found that experimental pre-sleep emotional induction increased the Rapid Eye Movement (REM sleep rate following both negative and positive movies. While this increase was spread over the whole night for positive induction, it was limited to the second half of the sleep period for negative induction. Secondly, the valence of the pre-sleep movie also impacted the sympathetic activation during Non-REM stage 3 sleep, which increased after negative induction and decreased after positive induction.Pre-sleep controlled emotional states impacted the subsequent REM sleep rate and modulated the sympathetic activity during the sleep period. The outcomes of this study offer interesting perspectives related to the effect of diurnal emotional influences on sleep regulation and open new avenues for potential practices designed to

  7. Nonepileptic paroxysmal sleep disorders.

    Science.gov (United States)

    Frenette, Eric; Guilleminault, Christian

    2013-01-01

    Events occurring during nighttime sleep in children can be easily mislabeled, as witnesses are usually not immediately available. Even when observers are present, description of the events can be sketchy, as these individuals are frequently aroused from their own sleep. Errors of perception are thus common and can lead to diagnosis of epilepsy where other sleep-related conditions are present, sometimes initiating unnecessary therapeutic interventions, especially with antiepileptic drugs. Often not acknowledged, paroxysmal nonepileptic behavioral and motor episodes in sleep are encountered much more frequently than their epileptic counterpart. The International Classification of Sleep Disorders (ICSD) 2nd edition displays an extensive list of such conditions that can be readily mistaken for epilepsy. The most prevalent ones are reviewed, such as nonrapid eye movement (NREM) sleep parasomnias, comprised of sleepwalking, confusional arousals and sleep terrors, periodic leg movements of sleep, repetitive movement disorders, benign neonatal myoclonus, and sleep starts. Apnea of prematurity is also briefly reviewed. Specific issues regarding management of these selected disorders, both for diagnostic consideration and for therapeutic intervention, are addressed.

  8. cGMP-dependent protein kinase I, the circadian clock, sleep, and learning

    OpenAIRE

    Feil, Robert; Hölter, Sabine M.; Weindl, Karin; Wurst, Wolfgang; Langmesser, Sonja; Gerling, Andrea; Feil, Susanne; Albrecht, Urs

    2009-01-01

    The second messenger cGMP controls cardiovascular and gastrointestinal homeostasis in mammals. However, its physiological relevance in the nervous system is poorly understood.1 Now, we have reported that the cGMP-dependent protein kinase type I (PRKG1) is implicated in the regulation of the timing and quality of sleep and wakefulness.2 Prkg1 mutant mice showed altered distribution of sleep and wakefulness as well as reduction in rapid-eye-movement sleep (REMS) duration and in non-REMS consoli...

  9. Homeostatic regulation of sleep in the white-crowned sparrow (Zonotrichia leucophrys gambelii

    Directory of Open Access Journals (Sweden)

    Cirelli Chiara

    2008-05-01

    Full Text Available Abstract Background Sleep is regulated by both a circadian and a homeostatic process. The homeostatic process reflects the duration of prior wakefulness: the longer one stays awake, the longer and/or more intense is subsequent sleep. In mammals, the best marker of the homeostatic sleep drive is slow wave activity (SWA, the electroencephalographic (EEG power spectrum in the 0.5–4 Hz frequency range during non-rapid eye movement (NREM sleep. In mammals, NREM sleep SWA is high at sleep onset, when sleep pressure is high, and decreases progressively to reach low levels in late sleep. Moreover, SWA increases further with sleep deprivation, when sleep also becomes less fragmented (the duration of sleep episodes increases, and the number of brief awakenings decreases. Although avian and mammalian sleep share several features, the evidence of a clear homeostatic response to sleep loss has been conflicting in the few avian species studied so far. The aim of the current study was therefore to ascertain whether established markers of sleep homeostasis in mammals are also present in the white-crowned sparrow (Zonotrichia leucophrys gambelii, a migratory songbird of the order Passeriformes. To accomplish this goal, we investigated amount of sleep, sleep time course, and measures of sleep intensity in 6 birds during baseline sleep and during recovery sleep following 6 hours of sleep deprivation. Results Continuous (24 hours EEG and video recordings were used to measure baseline sleep and recovery sleep following short-term sleep deprivation. Sleep stages were scored visually based on 4-sec epochs. EEG power spectra (0.5–25 Hz were calculated on consecutive 4-sec epochs. Four vigilance states were reliably distinguished based on behavior, visual inspection of the EEG, and spectral EEG analysis: Wakefulness (W, Drowsiness (D, slow wave sleep (SWS and rapid-eye movement (REM sleep. During baseline, SWA during D, SWS, and NREM sleep (defined as D and SWS

  10. Role of Somatostatin-Positive Cortical Interneurons in the Generation of Sleep Slow Waves.

    Science.gov (United States)

    Funk, Chadd M; Peelman, Kayla; Bellesi, Michele; Marshall, William; Cirelli, Chiara; Tononi, Giulio

    2017-09-20

    During non-rapid eye-movement (NREM) sleep, cortical and thalamic neurons oscillate every second or so between ON periods, characterized by membrane depolarization and wake-like tonic firing, and OFF periods, characterized by membrane hyperpolarization and neuronal silence. Cortical slow waves, the hallmark of NREM sleep, reflect near-synchronous OFF periods in cortical neurons. However, the mechanisms triggering such OFF periods are unclear, as there is little evidence for somatic inhibition. We studied cortical inhibitory interneurons that express somatostatin (SOM), because ∼70% of them are Martinotti cells that target diffusely layer I and can block excitatory transmission presynaptically, at glutamatergic terminals, and postsynaptically, at apical dendrites, without inhibiting the soma. In freely moving male mice, we show that SOM+ cells can fire immediately before slow waves and their optogenetic stimulation during ON periods of NREM sleep triggers long OFF periods. Next, we show that chemogenetic activation of SOM+ cells increases slow-wave activity (SWA), slope of individual slow waves, and NREM sleep duration; whereas their chemogenetic inhibition decreases SWA and slow-wave incidence without changing time spent in NREM sleep. By contrast, activation of parvalbumin+ (PV+) cells, the most numerous population of cortical inhibitory neurons, greatly decreases SWA and cortical firing, triggers short OFF periods in NREM sleep, and increases NREM sleep duration. Thus SOM+ cells, but not PV+ cells, are involved in the generation of sleep slow waves. Whether Martinotti cells are solely responsible for this effect, or are complemented by other classes of inhibitory neurons, remains to be investigated.SIGNIFICANCE STATEMENT Cortical slow waves are a defining feature of non-rapid eye-movement (NREM) sleep and are thought to be important for many of its restorative benefits. Yet, the mechanism by which cortical neurons abruptly and synchronously cease firing, the

  11. Differential effects of sodium oxybate and baclofen on EEG, sleep, neurobehavioral performance, and memory.

    Science.gov (United States)

    Vienne, Julie; Lecciso, Gianpaolo; Constantinescu, Irina; Schwartz, Sophie; Franken, Paul; Heinzer, Raphaël; Tafti, Mehdi

    2012-08-01

    Sodium oxybate (SO) is a GABAβ agonist used to treat the sleep disorder narcolepsy. SO was shown to increase slow wave sleep (SWS) and EEG delta power (0.75-4.5 Hz), both indexes of NREM sleep (NREMS) intensity and depth, suggesting that SO enhances recuperative function of NREM. We investigated whether SO induces physiological deep sleep. SO was administered before an afternoon nap or before the subsequent experimental night in 13 healthy volunteers. The effects of SO were compared to baclofen (BAC), another GABAβ receptor agonist, to assess the role of GABAβ receptors in the SO response. As expected, a nap significantly decreased sleep need and intensity the subsequent night. Both drugs reversed this nap effect on the subsequent night by decreasing sleep latency and increasing total sleep time, SWS during the first NREMS episode, and EEG delta and theta (0.75-7.25 Hz) power during NREMS. The SO-induced increase in EEG delta and theta power was, however, not specific to NREMS and was also observed during REM sleep (REMS) and wakefulness. Moreover, the high levels of delta power during a nap following SO administration did not affect delta power the following night. SO and BAC taken before the nap did not improve subsequent psychomotor performance and subjective alertness, or memory consolidation. Finally, SO and BAC strongly promoted the appearance of sleep onset REM periods. The SO-induced EEG slow waves seem not to be functionally similar to physiological slow waves. Our findings also suggest a role for GABAβ receptors in REMS generation.

  12. Dynamics of sleep stage transitions in healthy humans and patients with chronic fatigue syndrome.

    Science.gov (United States)

    Kishi, Akifumi; Struzik, Zbigniew R; Natelson, Benjamin H; Togo, Fumiharu; Yamamoto, Yoshiharu

    2008-06-01

    Physiological and/or pathological implications of the dynamics of sleep stage transitions have not, to date, been investigated. We report detailed duration and transition statistics between sleep stages in healthy subjects and in others with chronic fatigue syndrome (CFS); in addition, we also compare our data with previously published results for rats. Twenty-two healthy females and 22 female patients with CFS, characterized by complaints of unrefreshing sleep, underwent one night of polysomnographic recording. We find that duration of deep sleep (stages III and IV) follows a power-law probability distribution function; in contrast, stage II sleep durations follow a stretched exponential and stage I, and REM sleep durations follow an exponential function. These stage duration distributions show a gradually increasing departure from the exponential form with increasing depth of sleep toward a power-law type distribution for deep sleep, suggesting increasing complexity of regulation of deeper sleep stages. We also find a substantial number of REM to non-REM sleep transitions in humans, while this transition is reported to be virtually nonexistent in rats. The relative frequency of this REM to non-REM sleep transition is significantly lower in CFS patients than in controls, resulting in a significantly greater relative transition frequency of moving from both REM and stage I sleep to awake. Such an alteration in the transition pattern suggests that the normal continuation of sleep in light or REM sleep is disrupted in CFS. We conclude that dynamic transition analysis of sleep stages is useful for elucidating yet-to-be-determined human sleep regulation mechanisms with pathophysiological implications.

  13. Novel object presentation affects sleep-wake behavior in rats.

    Science.gov (United States)

    Schiffelholz, Thomas; Aldenhoff, Josef B

    2002-08-02

    Sleep is suggested to be crucial for the processing and storage of new information. Several learning tasks have been shown to increase the amount of rapid eye movement sleep (REMS) with its typical theta activity (6-8 Hz) relative to total sleep time. Vice versa, REMS deprivation is able to affect memory consolidation following some, but not all learning tasks. Furthermore, recent studies have shown an increase of spindle activity (12-15 Hz) within the electroencephalogram (EEG) of nonREMS as well. The enhancement of both spindle and theta activity is suggested to serve as background activity for the synchronization of those neuronal pathways that were involved in the registration and, later on, participate in the long-term storage of new information in defined brain regions. In the present study, the presentation of a novel object to rats enhanced the amount of preREMS, an intermediate sleep stage with high spindle activity, within the first 2 h of the subsequent sleeping phase. Four hours later, the amount of REMS was increased as well. However, there were no changes in the EEG power spectra of nonREMS, preREMS and REMS. We therefore hypothesize that the increase of preREMS and REMS amounts and the related spindle and theta activity stand for the processing and storage of new information about the presented novel objects.

  14. Quantification of muscle activity during sleep for patients with neurodegenerative diseases

    DEFF Research Database (Denmark)

    Hanif, Umaer; Trap, Lotte; Jennum, Poul;

    2015-01-01

    Idiopathic REM sleep behavior disorder (iRBD) is a very strong predictor for later development of Parkinson's disease (PD), and is characterized by REM sleep without atonia (RSWA), resulting in increased muscle activity during REM sleep. Abundant studies have shown the loss of atonia during REM...... sleep, but our aim was to investigate whether iRBD and PD patients have increased muscle activity in both REM and NREM sleep compared to healthy controls. This was achieved by developing a semi-automatic algorithm for quantification of mean muscle activity per second during all sleep stages...... to the different sleep stages and muscle activity beyond the threshold was counted. The results were evaluated statistically using the two-sided Mann-Whitney U-test. The results suggested that iRBD patients also exhibit distinctive muscle activity characteristics in NREM sleep, however not as evident as in REM...

  15. Decreased nocturnal awakenings in young adults performing bikram yoga: a low-constraint home sleep monitoring study.

    Science.gov (United States)

    Kudesia, Ravi S; Bianchi, Matt T

    2012-01-01

    This pilot study evaluated the impact of Bikram Yoga on subjective and objective sleep parameters. We compared subjective (diary) and objective (headband sleep monitor) sleep measures on yoga versus nonyoga days during a 14-day period. Subjects (n = 13) were not constrained regarding yoga-practice days, other exercise, caffeine, alcohol, or naps. These activities did not segregate by choice of yoga days. Standard sleep metrics were unaffected by yoga, including sleep latency, total sleep time, and percentage of time spent in rapid eye movement (REM), light non-REM, deep non-REM, or wake after sleep onset (WASO). Consistent with prior work, transition probability analysis was a more sensitive index of sleep architecture changes than standard metrics. Specifically, Bikram Yoga was associated with significantly faster return to sleep after nocturnal awakenings. We conclude that objective home sleep monitoring is feasible in a low-constraint, real-world study design. Further studies on patients with insomnia will determine whether the results generalize or not.

  16. Sexsomnia: A case of sleep masturbation documented by video-polysomnography in a young adult male with sleepwalking.

    Science.gov (United States)

    Yeh, Shih-Bin; Schenck, Carlos H

    2016-01-01

    The first case of video-polysomnography (vPSG) documented sleep masturbation in a male is reported, and the second reported case of shift work induced sexsomnia. A 20 y.o. soldier with childhood sleepwalking (SW) developed sleep masturbation and SW triggered by military shift work. vPSG documented two episodes of sleep masturbation from N2 sleep in the fourth sleep cycle and from N3 sleep during the fifth sleep cycle. There was no sleep-disordered breathing nor periodic limb movements. vPSG thus confirmed confusional arousals from NREM sleep as the cause of the masturbation. Bedtime clonazepam therapy controlled the SW but not the masturbation.

  17. Fragmentation of Rapid Eye Movement and Nonrapid Eye Movement Sleep without Total Sleep Loss Impairs Hippocampus-Dependent Fear Memory Consolidation.

    Science.gov (United States)

    Lee, Michael L; Katsuyama, Ângela M; Duge, Leanne S; Sriram, Chaitra; Krushelnytskyy, Mykhaylo; Kim, Jeansok J; de la Iglesia, Horacio O

    2016-11-01

    Sleep is important for consolidation of hippocampus-dependent memories. It is hypothesized that the temporal sequence of nonrapid eye movement (NREM) sleep and rapid eye movement (REM) sleep is critical for the weakening of nonadaptive memories and the subsequent transfer of memories temporarily stored in the hippocampus to more permanent memories in the neocortex. A great body of evidence supporting this hypothesis relies on behavioral, pharmacological, neural, and/or genetic manipulations that induce sleep deprivation or stage-specific sleep deprivation. We exploit an experimental model of circadian desynchrony in which intact animals are not deprived of any sleep stage but show fragmentation of REM and NREM sleep within nonfragmented sleep bouts. We test the hypothesis that the shortening of NREM and REM sleep durations post-training will impair memory consolidation irrespective of total sleep duration. When circadian-desynchronized animals are trained in a hippocampus-dependent contextual fear-conditioning task they show normal short-term memory but impaired long-term memory consolidation. This impairment in memory consolidation is positively associated with the post-training fragmentation of REM and NREM sleep but is not significantly associated with the fragmentation of total sleep or the total amount of delta activity. We also show that the sleep stage fragmentation resulting from circadian desynchrony has no effect on hippocampus-dependent spatial memory and no effect on hippocampus-independent cued fear-conditioning memory. Our findings in an intact animal model, in which sleep deprivation is not a confounding factor, support the hypothesis that the stereotypic sequence and duration of sleep stages play a specific role in long-term hippocampus-dependent fear memory consolidation.

  18. REM sleep rescues learning from interference.

    Science.gov (United States)

    McDevitt, Elizabeth A; Duggan, Katherine A; Mednick, Sara C

    2015-07-01

    Classical human memory studies investigating the acquisition of temporally-linked events have found that the memories for two events will interfere with each other and cause forgetting (i.e., interference; Wixted, 2004). Importantly, sleep helps consolidate memories and protect them from subsequent interference (Ellenbogen, Hulbert, Stickgold, Dinges, & Thompson-Schill, 2006). We asked whether sleep can also repair memories that have already been damaged by interference. Using a perceptual learning paradigm, we induced interference either before or after a consolidation period. We varied brain states during consolidation by comparing active wake, quiet wake, and naps with either non-rapid eye movement sleep (NREM), or both NREM and REM sleep. When interference occurred after consolidation, sleep and wake both produced learning. However, interference prior to consolidation impaired memory, with retroactive interference showing more disruption than proactive interference. Sleep rescued learning damaged by interference. Critically, only naps that contained REM sleep were able to rescue learning that was highly disrupted by retroactive interference. Furthermore, the magnitude of rescued learning was correlated with the amount of REM sleep. We demonstrate the first evidence of a process by which the brain can rescue and consolidate memories damaged by interference, and that this process requires REM sleep. We explain these results within a theoretical model that considers how interference during encoding interacts with consolidation processes to predict which memories are retained or lost.

  19. Effects of the 5-HT(1A) Receptor Agonist Tandospirone on ACTH-Induced Sleep Disturbance in Rats.

    Science.gov (United States)

    Tsutsui, Ryuki; Shinomiya, Kazuaki; Sendo, Toshiaki; Kitamura, Yoshihisa; Kamei, Chiaki

    2015-01-01

    The aim of this study was to compare the effect of the serotonin (5-HT)1A receptor agonist tandospirone versus that of the benzodiazepine hypnotic flunitrazepam in a rat model of long-term adrenocorticotropic hormone (ACTH)-induced sleep disturbance. Rats implanted with electrodes for recording electroencephalogram and electromyogram were injected with ACTH once daily at a dose of 100 µg/rat. Administration of ACTH for 10 d caused a significant increase in sleep latency, decrease in non-rapid eye movement (non-REM) sleep time, and increase in wake time. Tandospirone caused a significant decrease in sleep latency and increase in non-REM sleep time in rats treated with ACTH. The effect of tandospirone on sleep patterns was antagonized by the 5-HT1A receptor antagonist WAY-100635. In contrast, flunitrazepam had no significant effect on sleep parameters in ACTH-treated rats. These results clearly indicate that long-term administration of ACTH causes sleep disturbance, and stimulating the 5-HT1A receptor by tandospirone may be efficacious for improving sleep in cases in which benzodiazepine hypnotics are ineffective.

  20. Sleep Deprivation Influences Circadian Gene Expression in the Lateral Habenula.

    Science.gov (United States)

    Zhang, Beilin; Gao, Yanxia; Li, Yang; Yang, Jing; Zhao, Hua

    2016-01-01

    Sleep is governed by homeostasis and the circadian clock. Clock genes play an important role in the generation and maintenance of circadian rhythms but are also involved in regulating sleep homeostasis. The lateral habenular nucleus (LHb) has been implicated in sleep-wake regulation, since LHb gene expression demonstrates circadian oscillation characteristics. This study focuses on the participation of LHb clock genes in regulating sleep homeostasis, as the nature of their involvement is unclear. In this study, we observed changes in sleep pattern following sleep deprivation in LHb-lesioned rats using EEG recording techniques. And then the changes of clock gene expression (Per1, Per2, and Bmal1) in the LHb after 6 hours of sleep deprivation were detected by using real-time quantitative PCR (qPCR). We found that sleep deprivation increased the length of Non-Rapid Eye Movement Sleep (NREMS) and decreased wakefulness. LHb-lesioning decreased the amplitude of reduced wake time and increased NREMS following sleep deprivation in rats. qPCR results demonstrated that Per2 expression was elevated after sleep deprivation, while the other two genes were unaffected. Following sleep recovery, Per2 expression was comparable to the control group. This study provides the basis for further research on the role of LHb Per2 gene in the regulation of sleep homeostasis.

  1. Sleep Deprivation Influences Circadian Gene Expression in the Lateral Habenula

    Directory of Open Access Journals (Sweden)

    Beilin Zhang

    2016-01-01

    Full Text Available Sleep is governed by homeostasis and the circadian clock. Clock genes play an important role in the generation and maintenance of circadian rhythms but are also involved in regulating sleep homeostasis. The lateral habenular nucleus (LHb has been implicated in sleep-wake regulation, since LHb gene expression demonstrates circadian oscillation characteristics. This study focuses on the participation of LHb clock genes in regulating sleep homeostasis, as the nature of their involvement is unclear. In this study, we observed changes in sleep pattern following sleep deprivation in LHb-lesioned rats using EEG recording techniques. And then the changes of clock gene expression (Per1, Per2, and Bmal1 in the LHb after 6 hours of sleep deprivation were detected by using real-time quantitative PCR (qPCR. We found that sleep deprivation increased the length of Non-Rapid Eye Movement Sleep (NREMS and decreased wakefulness. LHb-lesioning decreased the amplitude of reduced wake time and increased NREMS following sleep deprivation in rats. qPCR results demonstrated that Per2 expression was elevated after sleep deprivation, while the other two genes were unaffected. Following sleep recovery, Per2 expression was comparable to the control group. This study provides the basis for further research on the role of LHb Per2 gene in the regulation of sleep homeostasis.

  2. Nerve growth factor enhances sleep in rabbits.

    Science.gov (United States)

    Takahashi, S; Krueger, J M

    1999-04-02

    Nerve growth factor (NGF) elicits rapid-eye-movement sleep (REMS) in cats. Removal of NGF receptor-positive cholinergic basal forebrain neurons inhibits REMS in rats. The aim of the present study was to determine the effects of NGF on sleep and brain temperature (Tbr) in rabbits. Male rabbits were implanted with electroencephalograph (EEG) electrodes, a brain thermistor and an intraventricular (i.c.v.) guide cannula. Rabbits received human beta-NGF i.c.v. (0.01, 0.1, 1.0 or 10 microg] and on a separate day, 25 microl pyrogen-free saline i.c.v. as control. EEG and Tbr were recorded for 23 h after injections. The highest two doses of NGF increased both non-REMS and REMS across the 23-h recording period. REMS was enhanced dose-dependently. Tbr was not affected by any dose of NGF. These results suggest that NGF is involved in both REMS and non-REMS regulation.

  3. Analysis of sleep parameters in patients with obstructive sleep apnea studied in a hospital vs. a hotel-based sleep center.

    Science.gov (United States)

    Hutchison, Kimberly N; Song, Yanna; Wang, Lily; Malow, Beth A

    2008-04-15

    Polysomnography is associated with changes in sleep architecture called the first-night effect. This effect is believed to result from sleeping in an unusual environment and the technical equipment used to study sleep. Sleep experts hope to decrease this variable by providing a more familiar, comfortable atmosphere for sleep testing through hotel-based sleep centers. In this study, we compared the sleep parameters of patients studied in our hotel-based and hospital-based sleep laboratories. We retrospectively reviewed polysomnograms completed in our hotel-based and hospital-based sleep laboratories from August 2003 to July 2005. All patients were undergoing evaluation for obstructive sleep apnea. Hospital-based patients were matched for age and apnea-hypopnea index with hotel-based patients. We compared the sleep architecture changes associated with the first-night effect in the two groups. The associated conditions and symptoms listed on the polysomnography referral forms are also compared. No significant differences were detected between the two groups in sleep onset latency, sleep efficiency, REM sleep latency, total amount of slow wave sleep (NREM stages 3 and 4), arousal index, and total stage 1 sleep. This pilot study failed to show a difference in sleep parameters associated with the first-night effect in patients undergoing sleep studies in our hotel and hospital-based sleep laboratories. Future studies need to compare the first-night effect in different sleep disorders, preferably in multi-night recordings.

  4. Regional Slow Waves and Spindles in Human Sleep

    Science.gov (United States)

    Nir, Yuval; Staba, Richard J.; Andrillon, Thomas; Vyazovskiy, Vladyslav V.; Cirelli, Chiara; Fried, Itzhak; Tononi, Giulio

    2011-01-01

    SUMMARY The most prominent EEG events in sleep are slow waves, reflecting a slow (waves and the underlying active and inactive neuronal states occur locally. Thus, especially in late sleep, some regions can be active while others are silent. We also find that slow waves can propagate, usually from medial prefrontal cortex to the medial temporal lobe and hippocampus. Sleep spindles, the other hallmark of NREM sleep EEG, are likewise predominantly local. Thus, intracerebral communication during sleep is constrained because slow and spindle oscillations often occur out-of-phase in different brain regions. PMID:21482364

  5. Effect of sedative-hypnotics, anesthetics and analgesics on sleep architecture in obstructive sleep apnea.

    Science.gov (United States)

    McEntire, Dan M; Kirkpatrick, Daniel R; Kerfeld, Mitchell J; Hambsch, Zakary J; Reisbig, Mark D; Agrawal, Devendra K; Youngblood, Charles F

    2014-11-01

    The perioperative care of obstructive sleep apnea (OSA) patients is currently receiving much attention due to an increased risk for complications. It is established that postoperative changes in sleep architecture occur and this may have pathophysiological implications for OSA patients. Upper airway muscle activity decreases during rapid eye movement sleep (REMS). Severe OSA patients exhibit exaggerated chemoreceptor-driven ventilation during non-rapid eye movement sleep (NREMS), which leads to central and obstructive apnea. This article critically reviewed the literature relevant to preoperative screening for OSA, prevalence of OSA in surgical populations and changes in postoperative sleep architecture relevant to OSA patients. In particular, we addressed three questions in regard to the effects of sedative-hypnotics, anesthetics and analgesics on sleep architecture, the underlying mechanisms and the relevance to OSA. Indeed, these classes of drugs alter sleep architecture, which likely significantly contributes to abnormal postoperative sleep architecture, exacerbation of OSA and postoperative complications.

  6. Rapid eye movement sleep behavior disorder and rapid eye movement sleep without atonia in narcolepsy

    DEFF Research Database (Denmark)

    Dauvilliers, Yves; Jennum, Poul; Plazzi, Giuseppe

    2013-01-01

    Narcolepsy is a rare disabling hypersomnia disorder that may include cataplexy, sleep paralysis, hypnagogic hallucinations, and sleep-onset rapid eye movement (REM) periods, but also disrupted nighttime sleep by nocturnal awakenings, and REM sleep behavior disorder (RBD). RBD is characterized...... by dream-enacting behavior and impaired motor inhibition during REM sleep (REM sleep without atonia, RSWA). RBD is commonly associated with neurodegenerative disorders including Parkinsonisms, but is also reported in narcolepsy in up to 60% of patients. RBD in patients with narcolepsy is, however...... with narcolepsy often present dissociated sleep features including RSWA, increased density of phasic chin EMG and frequent shift from REM to NREM sleep, with or without associated clinical RBD. Most patients with narcolepsy with cataplexy lack the hypocretin neurons in the lateral hypothalamus. Tonic and phasic...

  7. Migraine, arousal and sleep deprivation: comment on: "sleep quality, arousal and pain thresholds in migraineurs: a blinded controlled polysomnographic study".

    Science.gov (United States)

    Vollono, Catello; Testani, Elisa; Losurdo, Anna; Mazza, Salvatore; Della Marca, Giacomo

    2013-06-10

    We discuss the hypothesis proposed by Engstrom and coworkers that Migraineurs have a relative sleep deprivation, which lowers the pain threshold and predispose to attacks. Previous data indicate that Migraineurs have a reduction of Cyclic Alternating Pattern (CAP), an essential mechanism of NREM sleep regulation which allows to dump the effect of incoming disruptive stimuli, and to protect sleep. The modifications of CAP observed in Migraineurs are similar to those observed in patients with impaired arousal (narcolepsy) and after sleep deprivation. The impairment of this mechanism makes Migraineurs more vulnerable to stimuli triggering attacks during sleep, and represents part of a more general vulnerability to incoming stimuli.

  8. Effects of Bright Light Therapy of Sleep, Cognition, Brain Function, and Neurochemistry in Mild Traumatic Brain Injury

    Science.gov (United States)

    2012-01-01

    Organon  Hungarian  I. Bitter, J. Balazs   I. Bitter, J. Balazs  Icelandic      J.G. Stefansson  Italian     I. Bonora, L. Conti, M. Piccinelli, M...Braun, AR, & Balkin, TJ. Positron emission tomography correlates of EEG microarchitecture waveforms during non- REM sleep. International Journal...40. Killgore, WD, Smith, KL, Reichardt, RM., Killgore, DB, & Balkin, TJ. Intellectual capacity is related to REM sleep following sleep

  9. Modulation of the sympatho-vagal balance during sleep

    Directory of Open Access Journals (Sweden)

    Ramona eCabiddu

    2012-03-01

    Full Text Available Sleep is a complex state characterized by important changes in the autonomic modulation of the cardiovascular activity. Heart rate variability (HRV greatly changes during different sleep stages, showing a predominant parasympathetic drive to the heart during non-rapid eye movement sleep (NREM and an increased sympathetic activity during rapid eye movement sleep (REM.Respiration undergoes important modifications as well, becoming deeper and more regular with deep sleep and shallower and more frequent during REM. The aim of the present study is to assess both autonomic cardiac regulation and cardiopulmonary coupling variations during different sleep stages in healthy subjects, using spectral and cross-spectral analysis of the HRV and respiration signals. Polysomnographic sleep recordings were performed in 11 healthy women and the HRV signal and the respiration signal were obtained. The spectral and cross-spectral parameters of the HRV signal and of the respiration signal were computed at low frequency (LF and at breathing frequency (high frequency, HF during different sleep stages. Results attested a sympatho-vagal balance shift towards parasympathetic modulation during NREM sleep and towards sympathetic modulation during REM sleep. Spectral analysis of the HRV signal and of the respiration signal indicated a higher respiration regularity during deep sleep, and a higher parasympathetic drive is also confirmed by an increase in the coherence between the HRV and the respiration signal in the HF band during NREM sleep. Our findings about sleep stage-dependent variations in the HRV signal and in the respiratory activity are in line with previous evidences and confirm spectral analysis of the HRV and the respiration signal to be a suitable tool for investigating cardiac autonomic modulation and respiration activity during sleep.

  10. How do people with drug-resistant mesial temporal lobe epilepsy sleep? A clinical and video-EEG with EOG and submental EMG for sleep staging study

    Directory of Open Access Journals (Sweden)

    Aline Vieira Scarlatelli-Lima

    2016-09-01

    Full Text Available This study aimed to assess subjective and objective sleep parameters in a homogeneous group of drug-resistant mesial temporal lobe epilepsy (MTLE patients through internationally validated clinical questionnaires, video-electroencephalographic (VEEG and polysomnographic (PSG studies. Fifty-six patients with definite diagnosis of MTLE who were candidates for epilepsy surgery underwent a detailed clinical history, the Pittsburgh Sleep Quality Index (PSQI, Epworth Sleepiness Scale (ESS, Stanford Sleepiness Scale (SSS, neurological examination, 1.5 T brain magnetic resonance imaging, VEEG and PSG. Sixteen percent of patients reported significant daytime sleepiness as measured by ESS and 27% reported low levels of sleep quality as measured by PSQI. Patients with medically resistant epilepsy by MTLE showed increased wakefulness after sleep onset (WASO with mean ± standard deviation of 17.4 ± 15.6, longer non-rapid eye movement (NREM 1 (7.5 ± 4.6% and NREM3 sleep (26.6 ± 11.8%, abnormal rapid eye movement (REM latency in 30/56 patients, shorter REM sleep (16.7 ± 6.6%, and abnormal alpha delta patterns were observed in 41/56 patients. The analysis of interictal epileptic discharges (IEDs evidenced highest spiking rate during NREM3 sleep and higher concordance with imaging data when IEDs were recorded in sleep, mainly during REM sleep. We concluded that patients with MTLE showed disrupted sleep architecture that may result in daytime dysfunction and sleep complaints. Furthermore, NREM sleep activated focal IEDs and them - when recorded during sleep - had higher localizing value.

  11. Probabilistic sleep architecture models in patients with and without sleep apnea.

    Science.gov (United States)

    Bianchi, Matt T; Eiseman, Nathaniel A; Cash, Sydney S; Mietus, Joseph; Peng, Chung-Kang; Thomas, Robert J

    2012-06-01

    Sleep fragmentation of any cause is disruptive to the rejuvenating value of sleep. However, methods to quantify sleep architecture remain limited. We have previously shown that human sleep-wake stage distributions exhibit multi-exponential dynamics, which are fragmented by obstructive sleep apnea (OSA), suggesting that Markov models may be a useful method to quantify architecture in health and disease. Sleep stage data were obtained from two subsets of the Sleep Heart Health Study database: control subjects with no medications, no OSA, no medical co-morbidities and no sleepiness (n = 374); and subjects with severe OSA (n = 338). Sleep architecture was simplified into three stages: wake after sleep onset (WASO); non-rapid eye movement (NREM) sleep; and rapid eye movement (REM) sleep. The connectivity and transition rates among eight 'generator' states of a first-order continuous-time Markov model were inferred from the observed ('phenotypic') distributions: three exponentials each of NREM sleep and WASO; and two exponentials of REM sleep. Ultradian REM cycling was accomplished by imposing time-variation to REM state entry rates. Fragmentation in subjects with severe OSA involved faster transition probabilities as well as additional state transition paths within the model. The Markov models exhibit two important features of human sleep architecture: multi-exponential stage dynamics (accounting for observed bout distributions); and probabilistic transitions (an inherent source of variability). In addition, the model quantifies the fragmentation associated with severe OSA. Markov sleep models may prove important for quantifying sleep disruption to provide objective metrics to correlate with endpoints ranging from sleepiness to cardiovascular morbidity.

  12. Physiology of Normal Sleep: From Young to Old

    Directory of Open Access Journals (Sweden)

    V Mohan Kumar

    2014-03-01

    Full Text Available Human sleep, defined on the basis of electroencephalogram (EEG, electromyogram(EMG and electrooculogram (EOG, is divided into rapid eye movement (REM sleepand four stages of non–rapid eye movement (NREM sleep. Collective monitoring andrecording of physiological data during sleep is called polysomnography. Sleep whichnormally starts with a period of NREM alternates with REM, about 4-5 times, everynight. Sleep pattern changes with increasing age. Newborns sleep for about 14-16hours in a day of 24 hours. Although there is a wide variation among individuals, sleepof 7-8.5 hours is considered fully restorative in adults. Apart from restorative andrecovery function, energy conservation could be one of the functions of sleep. The roleof sleep in neurogenesis, memory consolidation and brain growth has been suggested.Though progress in medical science has vastly improved our understanding of sleepphysiology, we still do not know all the functions of sleep.Key words : electroencephalogram, electromyogram, electrooculogram,polysomnography, REM sleep, non–REM sleep, newborns, circadian rhythm, autoregulation,sleep function

  13. Effects of quetiapine on sleep architecture in patients with unipolar or bipolar depression

    Directory of Open Access Journals (Sweden)

    Laura Gedge

    2010-08-01

    Full Text Available Laura Gedge1, Lauren Lazowski1, David Murray2, Ruzica Jokic2,3, Roumen Milev2,31Centre for Neuroscience Studies, 2Department of Psychiatry, Queen’s University, Kingston, 3Providence Care-Mental Health Services, Kingston, Ontario, CanadaObjective: To determine the effect of adjunctive quetiapine therapy on the sleep architecture of patients with bipolar or unipolar depression.Methods: This is a prospective, single-blind, repeated measures polysomnographic study. Sleep architecture was analyzed by overnight polysomnography, and subjective sleep quality was measured using the Pittsburgh Sleep Quality Index. The Hamilton Rating Scale for Depression, Montgomery Asberg Depression Rating Scale, Young Mania Rating Scale, and Clinical Global Impression-Severity Scale were employed to quantify changes in illness severity with adjunctive quetiapine treatment. Polysomnographs and clinical measures were administered at baseline, after 2–4 days of treatment, and after 21–28 days of quetiapine treatment. The average dose of quetiapine was 155 mg, ranging from 100–200 mg.Results: Adjunctive quetiapine therapy did not significantly alter sleep efficiency, sleep continuity, or Pittsburgh Sleep Quality Index scores. Respiratory Disturbance Index and percentage of total time in rapid eye movement (REM sleep significantly decreased and the percentage of total time in non-REM sleep, and duration of Stage 2 and non-REM sleep significantly increased after 2–4 days of quetiapine treatment. Illness severity significantly decreased over time.Conclusions: Adjunctive quetiapine treatment alters sleep architecture in patients with major depressive disorder or bipolar disorder, which may partially explain its early antidepressant properties. Changes in sleep architecture are more robust and significant within two to four days of starting treatment.Keywords: quetiapine, sleep architecture, depression, bipolar disorder

  14. Disruptions of Sleep/Wake Patterns in the Stable Tubule Only Polypeptide (STOP) Null Mouse Model of Schizophrenia.

    Science.gov (United States)

    Profitt, Maxine F; Deurveilher, Samuel; Robertson, George S; Rusak, Benjamin; Semba, Kazue

    2016-09-01

    Disruption of sleep/wake cycles is common in patients with schizophrenia and correlates with cognitive and affective abnormalities. Mice deficient in stable tubule only polypeptide (STOP) show cognitive, behavioral, and neurobiological deficits that resemble those seen in patients with schizophrenia, but little is known about their sleep phenotype. We characterized baseline sleep/wake patterns and recovery sleep following sleep deprivation in STOP null mice. Polysomnography was conducted in adult male STOP null and wild-type (WT) mice under a 12:12 hours light:dark cycle before, during, and after 6 hours of sleep deprivation during the light phase. At baseline, STOP null mice spent more time awake and less time in non-rapid eye movement sleep (NREMS) over a 24-hour period, with more frequent transitions between wake and NREMS, compared to WT mice, especially during the dark phase. The distributions of wake, NREMS and REMS across the light and the dark phases differed by genotype, and so did features of the electroencephalogram (EEG). Following sleep deprivation, both genotypes showed homeostatic increases in sleep duration, with no significant genotype differences in the initial compensatory increase in sleep intensity (EEG delta power). These results indicate that STOP null mice sleep less overall, and their sleep and wake periods are more fragmented than those of WT mice. These features in STOP null mice are consistent with the sleep patterns observed in patients with schizophrenia.

  15. Sleep in the nocturnal primate, Aotus trivirgatus.

    Science.gov (United States)

    Perachio, A. A.

    1971-01-01

    Measurement of the cycles of wakefulness and stages of sleep in owl monkeys during 24-hr periods divided into half dark and half light segments. Recordings of electrophysiological activity were used. Reversal of the sequence of light and dark served to test the influence of environmental lighting on the sleep-wakefulness cycles. The sleep patterns of owl monkeys expressed in percentage of rapid eye movement (REM) and nonrapid eye movement (NREM) were compared with those of a closely related New World monkey species, Saimiri Sciureus.

  16. Sleep physiology and pathology: pertinence to psychiatry.

    Science.gov (United States)

    Soldatos, Constantin R; Paparrigopoulos, Thomas J

    2005-08-01

    Sleep should not be considered a behavioural state characterized by brain inertia; instead, it is a highly dynamic process involving numerous brainstem areas and all physiological systems of the body. Our understanding of the underlying mechanisms responsible for sleep regulation has considerably advanced since the discovery of rapid eye movement (REM) sleep, about half a century ago. Based on standardized electroencephalographic, electro-oculographic and electromyographic features, two distinct main states periodically alternating throughout the night have been identified: REM and non-REM sleep; the latter is further distinguished into stages 1, 2, 3 and 4. Computerized analysis of sleep recordings yielded more detailed information on sleep physiology and pathology. Although still preliminary, neuroimaging studies promise to elucidate the functional alterations of neuronal substrates during sleep. Regarding sleep disorders, which account for a substantial individual and socio-economic burden, considerable progress has been achieved in terms of their classification, assessment, clinical diagnosis and treatment. Specific sleep disorders within the three major categories, that is, 'dysomnias', 'parasomnias', and 'sleep disorders associated with mental, neurologic, or other medical conditions', exhibit characteristic clinical features; sleep laboratory recordings considerably assist to definitely diagnose several among them. Pertinence of sleep medicine for psychiatrists is obvious, taking into consideration that psychiatric disorders account for the largest diagnostic group of patients with sleep problems. In fact, the basics of this interdisciplinary field should be of special concern both to medical students and clinicians of diverse backgrounds who are interested in acquiring the necessary skills to globally and comprehensively understand and eventually effectively treat their patients.

  17. 睡眠过程中内膝体神经元的听反应后抑制%Post-response Inhibition on Medial Geniculate Neurons in Sleep

    Institute of Scientific and Technical Information of China (English)

    孟现凯; 孙文健; 徐新秀; 张子聪; 贺菊芳

    2013-01-01

    inhibition to the MGB neurons during non-REM sleep than during REM sleep.

  18. Changes in Cognitive Performance Are Associated with Changes in Sleep in Older Adults With Insomnia.

    Science.gov (United States)

    Wilckens, Kristine A; Hall, Martica H; Nebes, Robert D; Monk, Timothy H; Buysse, Daniel J

    2016-01-01

    The present study examined sleep features associated with cognition in older adults and examined whether sleep changes following insomnia treatment were associated with cognitive improvements. Polysomnography and cognition (recall, working memory, and reasoning) were assessed before and after an insomnia intervention (Brief Behavioral Treatment of Insomnia [BBTI] or information control [IC]) in 77 older adults with insomnia. Baseline wake-after-sleep-onset (WASO) was associated with recall. Greater NREM (nonrapid eye movement) delta power and lower NREM sigma power were associated with greater working memory and reasoning. The insomnia intervention did not improve performance. However, increased absolute delta power and decreased relative sigma power were associated with improved reasoning. Findings suggest that improvements in executive function may occur with changes in NREM architecture.

  19. Migraine, arousal and sleep deprivation: comment on: “sleep quality, arousal and pain thresholds in migraineurs: a blinded controlled polysomnographic study”

    OpenAIRE

    Vollono, Catello; Testani, Elisa; Losurdo, Anna; Mazza, Salvatore; Della Marca, Giacomo

    2013-01-01

    We discuss the hypothesis proposed by Engstrom and coworkers that Migraineurs have a relative sleep deprivation, which lowers the pain threshold and predispose to attacks. Previous data indicate that Migraineurs have a reduction of Cyclic Alternating Pattern (CAP), an essential mechanism of NREM sleep regulation which allows to dump the effect of incoming disruptive stimuli, and to protect sleep. The modifications of CAP observed in Migraineurs are similar to those observed in patients with i...

  20. A novel BHLHE41 variant is associated with short sleep and resistance to sleep deprivation in humans.

    Science.gov (United States)

    Pellegrino, Renata; Kavakli, Ibrahim Halil; Goel, Namni; Cardinale, Christopher J; Dinges, David F; Kuna, Samuel T; Maislin, Greg; Van Dongen, Hans P A; Tufik, Sergio; Hogenesch, John B; Hakonarson, Hakon; Pack, Allan I

    2014-08-01

    Earlier work described a mutation in DEC2 also known as BHLHE41 (basic helix-loophelix family member e41) as causal in a family of short sleepers, who needed just 6 h sleep per night. We evaluated whether there were other variants of this gene in two well-phenotyped cohorts. Sequencing of the BHLHE41 gene, electroencephalographic data, and delta power analysis and functional studies using cell-based luciferase. We identified new variants of the BHLHE41 gene in two cohorts who had either acute sleep deprivation (n = 200) or chronic partial sleep deprivation (n = 217). One variant, Y362H, at another location in the same exon occurred in one twin in a dizygotic twin pair and was associated with reduced sleep duration, less recovery sleep following sleep deprivation, and fewer performance lapses during sleep deprivation than the homozygous twin. Both twins had almost identical amounts of non rapid eye movement (NREM) sleep. This variant reduced the ability of BHLHE41 to suppress CLOCK/BMAL1 and NPAS2/BMAL1 transactivation in vitro. Another variant in the same exome had no effect on sleep or response to sleep deprivation and no effect on CLOCK/BMAL1 transactivation. Random mutagenesis identified a number of other variants of BHLHE41 that affect its function. There are a number of mutations of BHLHE41. Mutations reduce total sleep while maintaining NREM sleep and provide resistance to the effects of sleep loss. Mutations that affect sleep also modify the normal inhibition of BHLHE41 of CLOCK/BMAL1 transactivation. Thus, clock mechanisms are likely involved in setting sleep length and the magnitude of sleep homeostasis. Pellegrino R, Kavakli IH, Goel N, Cardinale CJ, Dinges DF, Kuna ST, Maislin G, Van Dongen HP, Tufik S, Hogenesch JB, Hakonarson H, Pack AI. A novel BHLHE41 variant is associated with short sleep and resistance to sleep deprivation in humans. SLEEP 2014;37(8):1327-1336.

  1. Cordycepin Increases Nonrapid Eye Movement Sleep via Adenosine Receptors in Rats

    Directory of Open Access Journals (Sweden)

    Zhenzhen Hu

    2013-01-01

    Full Text Available Cordycepin (3′-deoxyadenosine is a naturally occurring adenosine analogue and one of the bioactive constituents isolated from Cordyceps militaris/Cordyceps sinensis, species of the fungal genus Cordyceps. It has traditionally been a prized Chinese folk medicine for the human well-being. Because of similarity of chemical structure of adenosine, cordycepin has been focused on the diverse effects of the central nervous systems (CNSs, like sleep regulation. Therefore, this study was undertaken to know whether cordycepin increases the natural sleep in rats, and its effect is mediated by adenosine receptors (ARs. Sleep was recorded using electroencephalogram (EEG for 4 hours after oral administration of cordycepin in rats. Sleep architecture and EEG power spectra were analyzed. Cordycepin reduced sleep-wake cycles and increased nonrapid eye movement (NREM sleep. Interestingly, cordycepin increased θ (theta waves power density during NREM sleep. In addition, the protein levels of AR subtypes (A1, A2A, and A2B were increased after the administration of cordycepin, especially in the rat hypothalamus which plays an important role in sleep regulation. Therefore, we suggest that cordycepin increases theta waves power density during NREM sleep via nonspecific AR in rats. In addition, this experiment can provide basic evidence that cordycepin may be helpful for sleep-disturbed subjects.

  2. Sleep Patterns and Homeostatic Mechanisms in Adolescent Mice

    Directory of Open Access Journals (Sweden)

    Giulio Tononi

    2013-03-01

    Full Text Available Sleep changes were studied in mice (n = 59 from early adolescence to adulthood (postnatal days P19–111. REM sleep declined steeply in early adolescence, while total sleep remained constant and NREM sleep increased slightly. Four hours of sleep deprivation starting at light onset were performed from ages P26 through adulthood (>P60. Following this acute sleep deprivation all mice slept longer and with more consolidated sleep bouts, while NREM slow wave activity (SWA showed high interindividual variability in the younger groups, and increased consistently only after P42. Three parameters together explained up to 67% of the variance in SWA rebound in frontal cortex, including weight-adjusted age and increase in alpha power during sleep deprivation, both of which positively correlated with the SWA response. The third, and strongest predictor was the SWA decline during the light phase in baseline: mice with high peak SWA at light onset, resulting in a large SWA decline, were more likely to show no SWA rebound after sleep deprivation, a result that was also confirmed in parietal cortex. During baseline, however, SWA showed the same homeostatic changes in adolescents and adults, declining in the course of sleep and increasing across periods of spontaneous wake. Thus, we hypothesize that, in young adolescent mice, a ceiling effect and not the immaturity of the cellular mechanisms underlying sleep homeostasis may prevent the SWA rebound when wake is extended beyond its physiological duration.

  3. Symposium: Normal and abnormal REM sleep regulation: REM sleep in depression-an overview.

    Science.gov (United States)

    Berger; Riemann

    1993-12-01

    Abnormalities of REM sleep, i.e. shortening of REM latency, lengthening of the duration of the first REM period and heightening of REM density, which are frequently observed in patients with a major depressive disorder (MDD), have attracted considerable interest. Initial hopes that these aberrant patterns of sleep constitute specific markers for the primary/endogenous sub-type of depression have not been fulfilled. The specificity of REM sleep disinhibition for depression in comparison with other psychopathological groups is challenged as well. Demographic variables like age and sex exert strong influences on sleep physiology and must be controlled when searching for specific markers of depressed sleep. It is still an open question whether abnormalities of sleep are state- or trait-markers of depression. Beyond baseline studies, the cholinergic REM induction test (CRIT) indicated a heightened responsitivity of the REM sleep system to cholinergic challenge in depression compared with healthy controls and other psychopathological groups, with the exception of schizophrenia. A special role for REM sleep in depression is supported by the well-known REM sleep suppressing effect of most antidepressants. The antidepressant effect of selective REM deprivation by awakenings stresses the importance of mechanisms involved in REM sleep regulation for the understanding of the pathophysiology of depressive disorders. The positive effect of total sleep deprivation on depressive mood which can be reversed by daytime naps, furthermore emphasizes relationships between sleep and depression. Experimental evidence as described above instigated several theories like the REM deprivation hypothesis, the 2-process model and the reciprocal interaction model of nonREM-REM sleep regulation to explain the deviant sleep pattern of depression. The different models will be discussed with reference to empirical data gathered in the field.

  4. Agreement between different sleep states and behaviour indicators in dairy cows

    DEFF Research Database (Denmark)

    Ternman, Emma; Pastell, Matti; Agenäs, Sigrid;

    2014-01-01

    , so this study examined whether these behavioural estimates also apply for adult cows.Behaviour observations and electrophysiological readings were recorded for a total of 13 cows during one recording session per cow lasting on average 4. h 22. min. Recording started when the cow was fully awake...... that the behavioural estimates for assessing total sleep time in calves could not be applied to adult cows as they markedly overestimated NREM and REM sleep time. Behavioural estimates for NREM and REM sleep time were on average 124 ± 17 and 14 ± 4. min per cow, respectively, while the electrophysiological estimate......Conclusive data regarding behavioural indicators of different sleep states in adult dairy cows are lacking, i.e. agreement between behavioural indicators of sleep and corresponding electrophysiological measures. Behavioural estimates for quantifying total sleep time in calves have been developed...

  5. Sleep in the human hippocampus: a stereo-EEG study.

    Directory of Open Access Journals (Sweden)

    Fabio Moroni

    Full Text Available BACKGROUND: There is compelling evidence indicating that sleep plays a crucial role in the consolidation of new declarative, hippocampus-dependent memories. Given the increasing interest in the spatiotemporal relationships between cortical and hippocampal activity during sleep, this study aimed to shed more light on the basic features of human sleep in the hippocampus. METHODOLOGY/PRINCIPAL FINDINGS: We recorded intracerebral stereo-EEG directly from the hippocampus and neocortical sites in five epileptic patients undergoing presurgical evaluations. The time course of classical EEG frequency bands during the first three NREM-REM sleep cycles of the night was evaluated. We found that delta power shows, also in the hippocampus, the progressive decrease across sleep cycles, indicating that a form of homeostatic regulation of delta activity is present also in this subcortical structure. Hippocampal sleep was also characterized by: i a lower relative power in the slow oscillation range during NREM sleep compared to the scalp EEG; ii a flattening of the time course of the very low frequencies (up to 1 Hz across sleep cycles, with relatively high levels of power even during REM sleep; iii a decrease of power in the beta band during REM sleep, at odds with the typical increase of power in the cortical recordings. CONCLUSIONS/SIGNIFICANCE: Our data imply that cortical slow oscillation is attenuated in the hippocampal structures during NREM sleep. The most peculiar feature of hippocampal sleep is the increased synchronization of the EEG rhythms during REM periods. This state of resonance may have a supportive role for the processing/consolidation of memory.

  6. Sleep neurobiology from a clinical perspective.

    Science.gov (United States)

    España, Rodrigo A; Scammell, Thomas E

    2011-07-01

    Many neurochemical systems interact to generate wakefulness and sleep. Wakefulness is promoted by neurons in the pons, midbrain, and posterior hypothalamus that produce acetylcholine, norepinephrine, dopamine, serotonin, histamine, and orexin/hypocretin. Most of these ascending arousal systems diffusely activate the cortex and other forebrain targets. NREM sleep is mainly driven by neurons in the preoptic area that inhibit the ascending arousal systems, while REM sleep is regulated primarily by neurons in the pons, with additional influence arising in the hypothalamus. Mutual inhibition between these wake- and sleep-regulating regions likely helps generate full wakefulness and sleep with rapid transitions between states. This up-to-date review of these systems should allow clinicians and researchers to better understand the effects of drugs, lesions, and neurologic disease on sleep and wakefulness.

  7. Maternal dietary restriction alters offspring's sleep homeostasis.

    Directory of Open Access Journals (Sweden)

    Noriyuki Shimizu

    Full Text Available Nutritional state in the gestation period influences fetal growth and development. We hypothesized that undernutrition during gestation would affect offspring sleep architecture and/or homeostasis. Pregnant female mice were assigned to either control (fed ad libitum; AD or 50% dietary restriction (DR groups from gestation day 12 to parturition. After parturition, dams were fed AD chow. After weaning, the pups were also fed AD into adulthood. At adulthood (aged 8-9 weeks, we carried out sleep recordings. Although offspring mice displayed a significantly reduced body weight at birth, their weights recovered three days after birth. Enhancement of electroencephalogram (EEG slow wave activity (SWA during non-rapid eye movement (NREM sleep was observed in the DR mice over a 24-hour period without changing the diurnal pattern or amounts of wake, NREM, or rapid eye movement (REM sleep. In addition, DR mice also displayed an enhancement of EEG-SWA rebound after a 6-hour sleep deprivation and a higher threshold for waking in the face of external stimuli. DR adult offspring mice exhibited small but significant increases in the expression of hypothalamic peroxisome proliferator-activated receptor α (Pparα and brain-specific carnitine palmitoyltransferase 1 (Cpt1c mRNA, two genes involved in lipid metabolism. Undernutrition during pregnancy may influence sleep homeostasis, with offspring exhibiting greater sleep pressure.

  8. Electroencephalogram approximate entropy influenced by both age and sleep

    Directory of Open Access Journals (Sweden)

    Gerick M. H. Lee

    2013-12-01

    Full Text Available The use of information-based measures to assess changes in conscious state is an increasingly popular topic. Though recent results have seemed to justify the merits of such methods, little has been done to investigate the applicability of such measures to children. For our work, we used the approximate entropy (ApEn, a measure previously shown to correlate with changes in conscious state when applied to the electroencephalogram (EEG, and sought to confirm whether previously reported trends in adult ApEn values across wake and sleep were present in children. Besides validating the prior findings that ApEn decreases from wake to sleep (including wake, rapid eye movement [REM] sleep, and non-REM sleep in adults, we found that previously reported ApEn decreases across vigilance states in adults were also present in children (ApEn trends for both age groups: wake > REM sleep > non-REM sleep. When comparing ApEn values between age groups, adults had significantly larger ApEn values than children during wakefulness. After the application of an 8 Hz high-pass filter to the EEG signal, ApEn values were recalculated. The number of electrodes with significant vigilance state effects dropped from all 109 electrodes with the original 1 Hz filter to 1 electrode with the 8 Hz filter. The number of electrodes with significant age effects dropped from ten to four. Our results support the notion that ApEn can reliably distinguish between vigilance states, with low-frequency sleep-related oscillations implicated as the driver of changes between vigilance states. We suggest that the observed differences between adult and child ApEn values during wake may reflect differences in connectivity between age groups, a factor which may be important in the use of EEG to measure consciousness.

  9. Practice with sleep makes perfect: sleep-dependent motor skill learning.

    Science.gov (United States)

    Walker, Matthew P; Brakefield, Tiffany; Morgan, Alexandra; Hobson, J Allan; Stickgold, Robert

    2002-07-01

    Improvement in motor skill performance is known to continue for at least 24 hr following training, yet the relative contributions of time spent awake and asleep are unknown. Here we provide evidence that a night of sleep results in a 20% increase in motor speed without loss of accuracy, while an equivalent period of time during wake provides no significant benefit. Furthermore, a significant correlation exists between the improved performance overnight and the amount of stage 2 NREM sleep, particularly late in the night. This finding of sleep-dependent motor skill improvement may have important implications for the efficient learning of all skilled actions in humans.

  10. Sleep Sleeping Patch

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The Sleep Sleeping Patch is a new kind of external patch based on modern sleep medicine research achievements, which uses the internationally advanced transdermal therapeutic system (TTS). The Sleep Sleeping Patch transmits natural sleep inducers such as peppermint and liquorice extracts and melatonin through the skin to induce sleep. Clinical research proves that the Sleep Sleeping Patch can effectively improve insomnia and the quality of sleep. Highly effective: With the modern TTS therapy,

  11. Effects of an interleukin-1 receptor antagonist on human sleep, sleep-associated memory consolidation, and blood monocytes.

    Science.gov (United States)

    Schmidt, Eva-Maria; Linz, Barbara; Diekelmann, Susanne; Besedovsky, Luciana; Lange, Tanja; Born, Jan

    2015-07-01

    Pro-inflammatory cytokines like interleukin-1 beta (IL-1) are major players in the interaction between the immune system and the central nervous system. Various animal studies report a sleep-promoting effect of IL-1 leading to enhanced slow wave sleep (SWS). Moreover, this cytokine was shown to affect hippocampus-dependent memory. However, the role of IL-1 in human sleep and memory is not yet understood. We administered the synthetic IL-1 receptor antagonist anakinra (IL-1ra) in healthy humans (100mg, subcutaneously, before sleep; n=16) to investigate the role of IL-1 signaling in sleep regulation and sleep-dependent declarative memory consolidation. Inasmuch monocytes have been considered a model for central nervous microglia, we monitored cytokine production in classical and non-classical blood monocytes to gain clues about how central nervous effects of IL-1ra are conveyed. Contrary to our expectation, IL-1ra increased EEG slow wave activity during SWS and non-rapid eye movement (NonREM) sleep, indicating a deepening of sleep, while sleep-associated memory consolidation remained unchanged. Moreover, IL-1ra slightly increased prolactin and reduced cortisol levels during sleep. Production of IL-1 by classical monocytes was diminished after IL-1ra. The discrepancy to findings in animal studies might reflect species differences and underlines the importance of studying cytokine effects in humans.

  12. Effects of ibotenate and 192IgG-saporin lesions of the nucleus basalis magnocellularis/substantia innominata on spontaneous sleep and wake states and on recovery sleep after sleep deprivation in rats.

    Science.gov (United States)

    Kaur, Satvinder; Junek, Adrienne; Black, Michelle A; Semba, Kazue

    2008-01-09

    The basal forebrain (BF) is known for its role in cortical and behavioral activation, and has been postulated to have a role in compensatory mechanisms after sleep loss. However, specific neuronal phenotypes responsible for these roles are unclear. We investigated the effects of ibotenate (IBO) and 192IgG-saporin (SAP) lesions of the caudal BF on spontaneous sleep-waking and electroencephalogram (EEG), and recovery sleep and EEG after 6 h of sleep deprivation (SD). Relative to artificial CSF (ACSF) controls, IBO injections decreased parvalbumin and cholinergic neurons in the caudal BF by 43 and 21%, respectively, and cortical acetylcholinesterase staining by 41%. SAP injections nonsignificantly decreased parvalbumin neurons by 11%, but significantly decreased cholinergic neurons by 69% and cortical acetylcholinesterase by 84%. IBO lesions had no effect on sleep-wake states but increased baseline delta power in all states [up to 62% increase during non-rapid eye movement (NREM) sleep]. SAP lesions transiently increased NREM sleep by 13%, predominantly during the dark phase, with no effect on EEG. During the first 12 h after SD, animals with IBO and SAP lesions showed lesser rebound NREM sleep (32 and 77% less, respectively) and delta power (78 and 53% less) relative to ACSF controls. These results suggest that noncholinergic BF neurons promote cortical activation by inhibiting delta waves, whereas cholinergic BF neurons play a nonexclusive role in promoting wake. Intriguingly, these results also suggest that both types of BF neurons play important roles, probably through different mechanisms, in increased NREM sleep and EEG delta power after sleep loss.

  13. Individual differences in the effects of mobile phone exposure on human sleep: rethinking the problem.

    Science.gov (United States)

    Loughran, Sarah P; McKenzie, Raymond J; Jackson, Melinda L; Howard, Mark E; Croft, Rodney J

    2012-01-01

    Mobile phone exposure-related effects on the human electroencephalogram (EEG) have been shown during both waking and sleep states, albeit with slight differences in the frequency affected. This discrepancy, combined with studies that failed to find effects, has led many to conclude that no consistent effects exist. We hypothesised that these differences might partly be due to individual variability in response, and that mobile phone emissions may in fact have large but differential effects on human brain activity. Twenty volunteers from our previous study underwent an adaptation night followed by two experimental nights in which they were randomly exposed to two conditions (Active and Sham), followed by a full-night sleep episode. The EEG spectral power was increased in the sleep spindle frequency range in the first 30 min of non-rapid eye movement (non-REM) sleep following Active exposure. This increase was more prominent in the participants that showed an increase in the original study. These results confirm previous findings of mobile phone-like emissions affecting the EEG during non-REM sleep. Importantly, this low-level effect was also shown to be sensitive to individual variability. Furthermore, this indicates that previous negative results are not strong evidence for a lack of an effect and, given the far-reaching implications of mobile phone research, we may need to rethink the interpretation of results and the manner in which research is conducted in this field.

  14. Enhanced emotional reactivity after selective REM sleep deprivation in humans: an fMRI study

    Directory of Open Access Journals (Sweden)

    Alejandra eRosales-Lagarde

    2012-06-01

    Full Text Available Converging evidence from animal and human studies suggest that REM sleep modulates emotional processing. The aim of the present study was to explore the effects of selective REM sleep deprivation on emotional responses to threatening visual stimuli and their brain correlates using functional magnetic resonance imaging (fMRI. Twenty healthy subjects were randomly assigned to two groups: selective REM sleep deprivation (REM-D, by awakening them at each REM sleep onset, or NREM sleep interruptions (NREM-I as control for potential non-specific effects of awakenings and lack of sleep. In a within-subject design, a visual emotional-reactivity task was performed in the scanner before and 24 hours after sleep manipulation. Behaviorally, emotional reactivity was enhanced relative to baseline in the REM deprived group only. In terms of fMRI signal, there was an overall decrease in activity in the NREM-I group the second time subjects performed the task, particularly in regions involved in emotional processing, such as occipital and temporal areas, as well as in the ventrolateral prefrontal cortex, involved in top-down emotion regulation. In contrast, activity in these areas remained the same level or even increased in the REM-D group, compared to their baseline level.Taken together, these results suggest that lack of REM sleep in humans is associated with enhanced emotional reactivity, both at behavioral and neural levels, and thus highlight the specific role of REM sleep in regulating the neural substrates for emotional responsiveness.

  15. Distinct effects of IPSU and suvorexant on mouse sleep architecture

    Directory of Open Access Journals (Sweden)

    Daniel eHoyer

    2013-12-01

    Full Text Available Dual orexin receptor (OXR antagonists (DORAs such as almorexant, SB-649868, suvorexant (MK-4305 and filorexant (MK-6096, have shown promise for the treatment of insomnias and sleep disorders. Whether antagonism of both OX1R and OX2R is necessary for sleep induction has been a matter of some debate. Experiments using knockout mice suggest that it may be sufficient to antagonize only OX2R. The recent identification of an orally bioavailable, brain penetrant OX2R preferring antagonist 2-((1H-Indol-3-ylmethyl-9-(4-methoxypyrimidin-2-yl-2,9-diazaspiro[5.5]undecan-1-one (IPSU has allowed us to test whether selective antagonism of OX2R may also be a viable strategy for induction of sleep. We previously demonstrated that IPSU and suvorexant increase sleep when dosed during the mouse active phase (lights off; IPSU inducing sleep primarily by increasing NREM sleep, suvorexant primarily by increasing REM sleep. Here, our goal was to determine whether suvorexant and IPSU affect sleep architecture independently of overall sleep induction. We therefore tested suvorexant (25 mg/kg and IPSU (50 mg/kg in mice during the inactive phase (lights on when sleep is naturally more prevalent and when orexin levels are normally low. Whereas IPSU was devoid of effects on the time spent in NREM or REM, suvorexant substantially disturbed the sleep architecture by selectively increasing REM during the first 4 hours after dosing. At the doses tested, suvorexant significantly decreased wake only during the first hour and IPSU did not affect wake time. These data suggest that OX2R preferring antagonists may have a reduced tendency for perturbing NREM/REM architecture in comparison with DORAs. Whether this effect will prove to be a general feature of OX2R antagonists versus DORAs remains to be seen.

  16. Word encoding during sleep is suggested by correlations between word-evoked up-states and post-sleep semantic priming.

    Science.gov (United States)

    Ruch, Simon; Koenig, Thomas; Mathis, Johannes; Roth, Corinne; Henke, Katharina

    2014-01-01

    To test whether humans can encode words during sleep we played everyday words to men while they were napping and assessed priming from sleep-played words following waking. Words were presented during non-rapid eye movement (NREM) sleep. Priming was assessed using a semantic and a perceptual priming test. These tests measured differences in the processing of words that had been or had not been played during sleep. Synonyms to sleep-played words were the targets in the semantic priming test that tapped the meaning of sleep-played words. All men responded to sleep-played words by producing up-states in their electroencephalogram. Up-states are NREM sleep-specific phases of briefly increased neuronal excitability. The word-evoked up-states might have promoted word processing during sleep. Yet, the mean performance in the priming tests administered following sleep was at chance level, which suggests that participants as a group failed to show priming following sleep. However, performance in the two priming tests was positively correlated to each other and to the magnitude of the word-evoked up-states. Hence, the larger a participant's word-evoked up-states, the larger his perceptual and semantic priming. Those participants who scored high on all variables must have encoded words during sleep. We conclude that some humans are able to encode words during sleep, but more research is needed to pin down the factors that modulate this ability.

  17. Disturbed sleep: linking allergic rhinitis, mood and suicidal behavior.

    Science.gov (United States)

    Fang, Beverly J; Tonelli, Leonardo H; Soriano, Joseph J; Postolache, Teodor T

    2010-01-01

    Allergic inflammation is associated with mood disorders, exacerbation of depression, and suicidal behavior. Mediators of inflammation modulate sleep , with Th1 cytokines promoting NREM sleep and increasing sleepiness and Th2 cytokines (produced during allergic inflammation) impairing sleep. As sleep impairment is a rapidly modifiable suicide risk factor strongly associated with mood disorders, we review the literature leading to the hypothesis that allergic rhinitis leads to mood and anxiety disorders and an increased risk of suicide via sleep impairment. Specifically, allergic rhinitis can impair sleep through mechanical (obstructive) and molecular (cytokine production) processes. The high prevalence of mood and anxiety disorders and allergy, the nonabating suicide incidence, the currently available treatment modalities to treat sleep impairment and the need for novel therapeutic targets for mood and anxiety disorders, justify multilevel efforts to explore disturbance of sleep as a pathophysiological link.

  18. The circadian regulation of sleep: impact of a functional ADA-polymorphism and its association to working memory improvements.

    Directory of Open Access Journals (Sweden)

    Carolin F Reichert

    Full Text Available Sleep is regulated in a time-of-day dependent manner and profits working memory. However, the impact of the circadian timing system as well as contributions of specific sleep properties to this beneficial effect remains largely unexplored. Moreover, it is unclear to which extent inter-individual differences in sleep-wake regulation depend on circadian phase and modulate the association between sleep and working memory. Here, sleep electroencephalography (EEG was recorded during a 40-h multiple nap protocol, and working memory performance was assessed by the n-back task 10 times before and after each scheduled nap sleep episode. Twenty-four participants were genotyped regarding a functional polymorphism in adenosine deaminase (rs73598374, 12 G/A-, 12 G/G-allele carriers, previously associated with differences in sleep-wake regulation. Our results indicate that genotype-driven differences in sleep depend on circadian phase: heterozygous participants were awake longer and slept less at the end of the biological day, while they exhibited longer non rapid eye movement (NREM sleep and slow wave sleep concomitant with reduced power between 8-16 Hz at the end of the biological night. Slow wave sleep and NREM sleep delta EEG activity covaried positively with overall working memory performance, independent of circadian phase and genotype. Moreover, REM sleep duration benefitted working memory particularly when occurring in the early morning hours and specifically in heterozygous individuals. Even though based on a small sample size and thus requiring replication, our results suggest genotype-dependent differences in circadian sleep regulation. They further indicate that REM sleep, being under strong circadian control, boosts working memory performance according to genotype in a time-of-day dependent manner. Finally, our data provide first evidence that slow wave sleep and NREM sleep delta activity, majorly regulated by sleep homeostatic mechanisms, is

  19. The role of sleep in pain and fibromyalgia.

    Science.gov (United States)

    Choy, Ernest H S

    2015-09-01

    Fibromyalgia is a common cause of chronic widespread pain, characterized by reduced pressure pain thresholds with hyperalgesia and allodynia. In addition to pain, common symptoms include nonrestorative sleep, fatigue, cognitive dysfunction, stiffness and mood disturbances. The latest research indicates that the dominant pathophysiology in fibromyalgia is abnormal pain processing and central sensitization. Neuroimaging studies have shown that patients with fibromyalgia have similar neural activation to healthy age-matched and gender-matched individuals; however, they have a lower pressure-pain threshold. Polysomnography data has demonstrated that these patients have reduced short-wave sleep and abnormal α-rhythms, suggestive of wakefulness during non-REM (rapid eye movement) sleep. Sleep deprivation in healthy individuals can cause symptoms of fibromyalgia, including myalgia, tenderness and fatigue, suggesting that sleep dysfunction might be not only a consequence of pain, but also pathogenic. Epidemiological studies indicate that poor sleep quality is a risk factor for the development of chronic widespread pain among an otherwise healthy population. Mechanistically, sleep deprivation impairs descending pain-inhibition pathways that are important in controlling and coping with pain. Clinical trials of pharmacological and nonpharmacological therapies have shown that improving sleep quality can reduce pain and fatigue, further supporting the hypothesis that sleep dysfunction is a pathogenic stimulus of fibromyalgia.

  20. How Sleep Activates Epileptic Networks?

    Directory of Open Access Journals (Sweden)

    Peter Halász

    2013-01-01

    Full Text Available Background. The relationship between sleep and epilepsy has been long ago studied, and several excellent reviews are available. However, recent development in sleep research, the network concept in epilepsy, and the recognition of high frequency oscillations in epilepsy and more new results may put this matter in a new light. Aim. The review address the multifold interrelationships between sleep and epilepsy networks and with networks of cognitive functions. Material and Methods. The work is a conceptual update of the available clinical data and relevant studies. Results and Conclusions. Studies exploring dynamic microstructure of sleep have found important gating mechanisms for epileptic activation. As a general rule interictal epileptic manifestations seem to be linked to the slow oscillations of sleep and especially to the reactive delta bouts characterized by A1 subtype in the CAP system. Important link between epilepsy and sleep is the interference of epileptiform discharges with the plastic functions in NREM sleep. This is the main reason of cognitive impairment in different forms of early epileptic encephalopathies affecting the brain in a special developmental window. The impairment of cognitive functions via sleep is present especially in epileptic networks involving the thalamocortical system and the hippocampocortical memory encoding system.

  1. EEG beta power and heart rate variability describe the association between cortical and autonomic arousals across sleep.

    Science.gov (United States)

    Kuo, Terry B J; Chen, Chun-Yu; Hsu, Ya-Chuan; Yang, Cheryl C H

    2016-01-01

    Cortical and autonomic arousals have been found to be closely associated. As arousal events are not evenly dispersed across sleep, we hypothesized the relationship between high frequency electroencephalogram (EEG) power and autonomic arousal indices differ between non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. One night of polysomnographic recording was performed on a group of 18 subjects using a portable recorder. The EEG was collected from C3/Fz. Sleep stages and cortical arousals were visually scored. Cardiac autonomic modulation was assessed from heart rate variability, where the high frequency power (HF) indicates parasympathetic modulation, and the low frequency to high frequency power ratio (LF/HF) represents sympathetic modulation. During NREM sleep, EEG beta power was significantly correlated with LF/HF (r=0.40 ± 0.06), and the relationships were more positive than during REM sleep (LF/HF: r=0.20 ± 0.08; EOG power: r=-0.13 ± 0.05). The relationship of beta power with LF/HF was associated with the incidence of cortical arousal, particularly during NREM sleep. With respect to alpha power, it was only marginally related to HF or LF/HF. In addition, the coefficients of determination were lower for alpha power than for beta power in terms of the relationships to HF, LF/HF and EOG power. This study shows a higher relationship between cortical and autonomic activation during NREM sleep, and the association is better described by beta power. This finding suggests NREM sleep may be of greater therapeutic potential in view of reducing cardiovascular disease associated with sleep fragmentation, and beta power may provide a better index to evaluate the effect.

  2. Endogenous Opiates in the Nucleus Tractus Solitarius Mediate Electroacupuncture-Induced Sleep Activities in Rats

    Directory of Open Access Journals (Sweden)

    Chiung-Hsiang Cheng

    2011-01-01

    Full Text Available Electroacupuncture (EA possesses various therapeutic effects, including alleviation of pain, reduction of inflammation and improvement of sleep disturbance. The mechanisms of EA on sleep improvement, however, remain to be determined. It has been stated in ancient Chinese literature that the Anmian (EX17 acupoint is one of the trigger points that alleviates insomnia. We previously demonstrated that EA stimulation of Anmian acupoints in rats during the dark period enhances non-rapid eye movement (NREM sleep, which involves the induction of cholinergic activity in the nucleus tractus solitarius (NTS. In addition to cholinergic activation of the NTS, activation of the endogenous opioidergic system may also be a mechanism by which acupuncture affects sleep. Therefore, this study was designed to investigate the involvement of the NTS opioidergic system in EA-induced alterations in sleep. Our present results indicate that EA of Anmian acupoints increased NREM sleep, but not rapid eye movement sleep, during the dark period in rats. This enhancement in NREM sleep was dose-dependently blocked by microinjection of opioid receptor antagonist, naloxone, and the μ-opioid receptor antagonist, naloxonazine, into the NTS; administrations of δ-receptor antagonist, natrindole, and the κ-receptor antagonist, nor-binaltrophimine, however, did not affect EA-induced alterations in sleep. Furthermore, β-endorphin was significantly increased in both the brainstem and hippocampus after the EA stimuli, an effect blocked by administration of the muscarinic antagonist scopolamine into the NTS. Our findings suggest that mechanisms of EA-induced NREM sleep enhancement may be mediated, in part, by cholinergic activation, stimulation of the opiodergic neurons to increase the concentrations of β-endorphin and the involvement of the μ-opioid receptors.

  3. [Neurochemical mechanisms of sleep regulation].

    Science.gov (United States)

    2009-01-01

    Sleep is a complex, global and reversible behavioral state of all mammals, that is homeostatically regulated. Generally it is also defined as a rapidly reversible state of immobility and reduced sensory responsiveness. Still, there is no definition that has succeded in satisfying all aspects of sleep. The failure to define sleep as a single behavior lies in several facts: (1) sleep is not a homogenous state, but continuum of number of mixed states; (2) the control mechanisms of sleep are manifested at all levels of biological organization--from genes and intracellular mechanisms to the networks of neuronal populations within the central nervous system that control movement, arousal, autonomic functions, behavior and cognition; (3) the activity and interactions of these neurochemically greatly heterogenous neuronal populations are dependent of two biological rhythms--the circadian rhythm of wake/sleep and periodic cycles of NREM/REM sleep as two main sleep states. There are several levels of sleep control. The brain forebrain areas serve to control neuropsychology of dreaming; thalamo-cortical system controls NREM sleep rhythms, EEG activation and deactivation; hippocampo-cortical system controls memory consolidation; hypothalamic nuclei are the sources of circadian rhythm and sleep onset control; the control of periodic NREM/REM cycling is within the pons. The wake promoting neuronal populations are within the brainstem, midbrain, hypothalamus and basal forebrain. The main pontine wake-promoting centers are the noradrenergic neurons of locus coeruleus, the serotonergic neurons of dorsal raphe nucleus and the cholinerigic neurons of pedunculopontine tegmental nucleus and laterodorsal tegmental nucleus. The reciprocal connections and interactions of these neurons, and their opposite discharge pattern activity from wake to NREM and REM sleep have been the background of reciprocal interaction hypothesis of REM sleep generation. The wake-promoting neurons at the

  4. Sleep-Dependent Oscillatory Synchronization: A Role in Fear Memory Consolidation

    Directory of Open Access Journals (Sweden)

    Michael S. Totty

    2017-07-01

    Full Text Available Sleep plays an important role in memory consolidation through the facilitation of neuronal plasticity; however, how sleep accomplishes this remains to be completely understood. It has previously been demonstrated that neural oscillations are an intrinsic mechanism by which the brain precisely controls neural ensembles. Inter-regional synchronization of these oscillations is also known to facilitate long-range communication and long-term potentiation (LTP. In the present study, we investigated how the characteristic rhythms found in local field potentials (LFPs during non-REM and REM sleep play a role in emotional memory consolidation. Chronically implanted bipolar electrodes in the lateral amygdala (LA, dorsal and ventral hippocampus (DH, VH, and the infra-limbic (IL, and pre-limbic (PL prefrontal cortex were used to record LFPs across sleep-wake activity following each day of a Pavlovian cued fear conditioning paradigm. This resulted in three principle findings: (1 theta rhythms during REM sleep are highly synchronized between regions; (2 the extent of inter-regional synchronization during REM and non-REM sleep is altered by FC and EX; (3 the mean phase difference of synchronization between the LA and VH during REM sleep predicts changes in freezing after cued fear extinction. These results both oppose a currently proposed model of sleep-dependent memory consolidation and provide a novel finding which suggests that the role of REM sleep theta rhythms in memory consolidation may rely more on the relative phase-shift between neural oscillations, rather than the extent of phase synchronization.

  5. Sleep Fragmentation Exacerbates Mechanical Hypersensitivity and Alters Subsequent Sleep-Wake Behavior in a Mouse Model of Musculoskeletal Sensitization

    Science.gov (United States)

    Sutton, Blair C.; Opp, Mark R.

    2014-01-01

    subsequent sleep of mice as demonstrated by increased numbers of sleep-wake state transitions during the light and dark periods; changes in nonrapid eye movement (NREM) sleep, rapid eye movement sleep, and wakefulness; and altered delta power during NREM sleep. These effects persisted for at least 3 weeks postsensitization. Conclusions: Our data demonstrate that sleep fragmentation combined with musculoskeletal sensitization exacerbates the physiological and behavioral responses of mice to musculoskeletal sensitization, including mechanical hypersensitivity and sleep-wake behavior. These data contribute to increasing literature demonstrating bidirectional relationships between sleep and pain. The prevalence and incidence of insufficient sleep and pathologies characterized by chronic musculoskeletal pain are increasing in the United States. These demographic data underscore the need for research focused on insufficient sleep and chronic pain so that the quality of life for the millions of individuals with these conditions may be improved. Citation: Sutton BC; Opp MR. Sleep fragmentation exacerbates mechanical hypersensitivity and alters subsequent sleep-wake behavior in a mouse model of musculoskeletal sensitization. SLEEP 2014;37(3):515-524. PMID:24587574

  6. Sleep and its importance in adolescence and in common adolescent somatic and psychiatric conditions

    Directory of Open Access Journals (Sweden)

    Br

    2011-06-01

    Full Text Available Serge Brand1, Roumen Kirov21Depression and Sleep Research Unit, Psychiatric Hospital of the University of Basel, Basel, Switzerland; 2Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, BulgariaThe authors contributed equally to this workAbstract: Restoring sleep is strongly associated with a better physical, cognitive, and psychological well-being. By contrast, poor or disordered sleep is related to impairment of cognitive and psychological functioning and worsened physical health. These associations are well documented not only in adults but also in children and adolescents. Importantly, adolescence is hallmarked by dramatic maturational changes in sleep and its neurobiological regulation, hormonal status, and many psychosocial and physical processes. Thus, the role of sleep in mental and physical health during adolescence and in adolescent patients is complex. However, it has so far received little attention. This review first presents contemporary views about the complex neurobiology of sleep and its functions with important implications for adolescence. Second, existing complex relationships between common adolescent somatic/organic, sleep-related, and psychiatric disorders and certain sleep alterations are discussed. It is concluded that poor or altered sleep in adolescent patients may trigger and maintain many psychiatric and physical disorders or combinations of these conditions, which presumably hinder recovery and may cross into later stages of life. Therefore, timely diagnosis and management of sleep problems appear critical for growth and development in adolescent patients.Keywords: cognitive, psychological, neurobiology, growth, development, sleep physiology, rapid eye movement, non-REM sleep, behavioral disorders, adolescents

  7. [Depression and sleep--the status of current research].

    Science.gov (United States)

    Riemann, D; Schnitzler, M; Hohagen, F; Berger, M

    1994-12-01

    Abnormalities of REM sleep, i.e. shortening of REM latency, lengthening of the duration of the first REM period and heightening of REM density, which are frequently observed in patients with a Major Depressive Disorder (MDD), have attracted considerable interest. Initial hopes that these aberrant patterns of sleep constitute specific markers for the primary/endogenous subtype of depression have not been fulfilled. The specificity of REM sleep disinhibition for depression in comparison to other psychopathological groups is also challenged. Demographic variables like age and sex exert strong influences on sleep physiology and must be controlled when searching for specific markers of depressed sleep. It is still an open question whether abnormalities of sleep are state-markers or trait-markers of depression. Beyond baseline studies, the cholinergic REM induction test (CRIT) indicated a heightened responsitivity of the REM sleep system to cholinergic challenge in depression compared with healthy controls and other psychopathological groups, with the exception of schizophrenia. A special role for REM sleep in depression is supported by the well known REM sleep suppressing effect of most antidepressants. The antidepressant effect of selective REM deprivation by awakenings stresses the importance of mechanisms involved in REM sleep regulation for the understanding of the pathophysiology of depressive disorders. The positive effect of total sleep deprivation on depressive mood which can be reversed by daytime naps, furthermore emphasizes relationships between sleep and depression. Experimental evidence as described above instigated several theories like the REM deprivation hypothesis, the 2-process model and the reciprocal interaction model of nonREM-REM sleep regulation to explain the deviant sleep pattern of depression. The different models will be discussed with reference to empirical data gathered in the field.

  8. Prevalence of Parasomnia in Autistic Children with Sleep Disorders

    Directory of Open Access Journals (Sweden)

    Arthur S. Walters

    2009-01-01

    Full Text Available The prevalence of sleep related complaints is reported by questionnaire studies to be as high as 83.3% in children with autism spectrum disorders (ASD. Questionnaire studies report the presence of various parasomnia in ASD. However, no polysomnographic study reports non-REM parasomnias and only a single study reports REM related parasomnias in ASD. We investigated the prevalence and characteristics of sleep disorders by polysomnographic study and questionnaires in a cohort of 23 children with ASD and 23 age-matched children of a non-autistic comparison group. The results showed significantly more non-REM parasomnias in 14 children with ASD on polysomnograms (PSG and 16 ASD children by questionnaire, a finding that was not associated with medication use, other comorbid medical or psychiatric disorders, or sleep disordered breathing. Of the 14 children with ASD who had PSG evidence of parasomnia, 11 of them had a history suggestive of parasomnia by questionnaire. There was a high sensitivity but a low specificity of parasomnia in ASD by questionnaire in predicting the presence of parasomnia in the PSG. Of the parasomnias recorded in the laboratory, 13 ASD children had Disorders of Partial Arousal, consistent with sleep terrors or confusional arousals. Furthermore, multiple episodes of partial arousal occurred in 11 of the 13 ASD children who had PSG evidence of Disorders of Partial Arousal. Of the 11 ASD children with multiple episodes of partial arousal, 6 ASD children had multiple partial arousals during both nights’ PSG study. Sleep architecture was abnormal in children with ASD, characterized by increased spontaneous arousals, prolonged REM latency and reduced REM percentage. These results suggest a high prevalence of parasomnia in this cohort of children with ASD and a careful history intake of symptoms compatible with parasomnia could be prudent to diagnose parasomnia in ASD children when performing a PSG is not possible.

  9. Prevalence of parasomnia in autistic children with sleep disorders.

    Science.gov (United States)

    Ming, Xue; Sun, Ye-Ming; Nachajon, Roberto V; Brimacombe, Michael; Walters, Arthur S

    2009-01-01

    The prevalence of sleep related complaints is reported by questionnaire studies to be as high as 83.3% in children with autism spectrum disorders (ASD). Questionnaire studies report the presence of various parasomnia in ASD. However, no polysomnographic study reports non-REM parasomnias and only a single study reports REM related parasomnias in ASD. We investigated the prevalence and characteristics of sleep disorders by polysomnographic study and questionnaires in a cohort of 23 children with ASD and 23 age-matched children of a non-autistic comparison group. The results showed significantly more non-REM parasomnias in 14 children with ASD on polysomnograms (PSG) and 16 ASD children by questionnaire, a finding that was not associated with medication use, other comorbid medical or psychiatric disorders, or sleep disordered breathing. Of the 14 children with ASD who had PSG evidence of parasomnia, 11 of them had a history suggestive of parasomnia by questionnaire. There was a high sensitivity but a low specificity of parasomnia in ASD by questionnaire in predicting the presence of parasomnia in the PSG. Of the parasomnias recorded in the laboratory, 13 ASD children had Disorders of Partial Arousal, consistent with sleep terrors or confusional arousals. Furthermore, multiple episodes of partial arousal occurred in 11 of the 13 ASD children who had PSG evidence of Disorders of Partial Arousal. Of the 11 ASD children with multiple episodes of partial arousal, 6 ASD children had multiple partial arousals during both nights' PSG study. Sleep architecture was abnormal in children with ASD, characterized by increased spontaneous arousals, prolonged REM latency and reduced REM percentage. These results suggest a high prevalence of parasomnia in this cohort of children with ASD and a careful history intake of symptoms compatible with parasomnia could be prudent to diagnose parasomnia in ASD children when performing a PSG is not possible.

  10. Sleep and bodily functions: the physiological interplay between body homeostasis and sleep homeostasis.

    Science.gov (United States)

    Amici, R; Bastianini, S; Berteotti, C; Cerri, M; Del Vecchio, F; Lo Martire, V; Luppi, M; Perez, E; Silvani, A; Zamboni, G; Zoccoli, G

    2014-01-01

    Body homeostasis and sleep homeostasis may both rely on the complex integrative activity carried out by the hypothalamus. Thus, the three main wake-sleep (WS) states (i.e. wakefulness, NREM sleep, and REM sleep) may be better understood if the different cardio-respiratory and metabolic parameters, which are under the integrated control of the autonomic and the endocrine systems, are studied during sleep monitoring. According to this view, many physiological events can be considered as an expression of the activity that physiological regulations should perform in order to cope with the need to fulfill body and sleep homeostasis. This review is aimed at making an assessment of data showing the existence of a physiological interplay between body homeostasis and sleep homeostasis, starting from the spontaneous changes observed in the somatic and autonomic activity during sleep, through evidence showing the deep changes occurring in the central integration of bodily functions during the different WS states, to the changes in the WS states observed when body homeostasis is challenged by the external environment and when the return to normal ambient conditions allows sleep homeo- stasis to run without apparent physiological restrictions. The data summarized in this review suggest that an approach to the dichotomy between NREM and REM sleep based on physiological regulations may offer a framework within which observations that a traditional behavioral approach may overlook can be interpreted. The study of the interplay between body and sleep homeostasis appears, therefore, to be a way to understand the function of complex organisms beyond that of the specific regulations.

  11. The sleeping brain in Parkinson's disease: A focus on REM sleep behaviour disorder and related parasomnias for practicing neurologists.

    Science.gov (United States)

    Bhidayasiri, Roongroj; Sringean, Jirada; Rattanachaisit, Watchara; Truong, Daniel D

    2017-03-15

    Sleep disorders are identified as common non-motor symptoms of Parkinson's disease (PD) and recently this recognition has been expanded to include parasomnias, encompassing not only REM sleep behaviour disorder (RBD), but also other non-REM forms. RBD, a prototypical parasomnia in PD, exists even in the prodromal stage of the disease, and is characterized by the presence of dream enactment behaviours occurring alongside a loss of normal skeletal muscle atonia during REM sleep. In contrast, non-REM parasomnias are more frequently observed in the late stage PD. However, the development of these disorders often overlaps and it is not uncommon for PD patients to meet the criteria for more than one type of parasomnias, thus making a clinical distinction challenging for practicing neurologists who are not sleep specialists. Indeed, clinical recognition of the predominant form of parasomnia does not just depend on video-polysomnography, but also on an individual physician's clinical acumen in delineating pertinent clinical history to determine the most likely diagnosis and proceed accordingly. In this review article, we highlight the various forms of parasomnias that have been reported in PD, including, but not limited to, RBD, with a focus on clinical symptomatology and implications for clinical practice. In addition, we review the differences in PD-related parasomnias compared to those seen in general populations. With advances in sleep research and better technology for ambulatory home monitoring, it is likely that many unanswered questions on PD-related parasomnias will soon be resolved resulting in better management of this nocturnal challenge in PD.

  12. Modulation of Sleep Homeostasis by Corticotropin Releasing Hormone in REM Sleep-Deprived Rats

    Directory of Open Access Journals (Sweden)

    Ricardo Borges Machado

    2010-01-01

    Full Text Available Studies have shown that sleep recovery following different protocols of forced waking varies according to the level of stress inherent to each method. Sleep deprivation activates the hypothalamic-pituitary-adrenal axis and increased corticotropin-releasing hormone (CRH impairs sleep. The purpose of the present study was to evaluate how manipulations of the CRH system during the sleep deprivation period interferes with subsequent sleep rebound. Throughout 96 hours of sleep deprivation, separate groups of rats were treated i.c.v. with vehicle, CRH or with alphahelical CRH9−41, a CRH receptor blocker, twice/day, at 07:00 h and 19:00 h. Both treatments impaired sleep homeostasis, especially in regards to length of rapid eye movement sleep (REM and theta/delta ratio and induced a later decrease in NREM and REM sleep and increased waking bouts. These changes suggest that activation of the CRH system impact negatively on the homeostatic sleep response to prolonged forced waking. These results indicate that indeed, activation of the HPA axis—at least at the hypothalamic level—is capable to reduce the sleep rebound induced by sleep deprivation.

  13. Homeostatic regulation of sleep in arrhythmic Siberian hamsters.

    Science.gov (United States)

    Larkin, Jennie E; Yokogawa, Tohei; Heller, H Craig; Franken, Paul; Ruby, Norman F

    2004-07-01

    Sleep is regulated by independent yet interacting circadian and homeostatic processes. The present study used a novel approach to study sleep homeostasis in the absence of circadian influences by exposing Siberian hamsters to a simple phase delay of the photocycle to make them arrhythmic. Because these hamsters lacked any circadian organization, their sleep homeostasis could be studied in the absence of circadian interactions. Control animals retained circadian rhythmicity after the phase shift and re-entrained to the phase-shifted photocycle. These animals displayed robust daily sleep-wake rhythms with consolidated sleep during the light phase beginning about 1 h after light onset. This marked sleep-wake pattern was circadian in that it persisted in constant darkness. The distribution of sleep in the arrhythmic hamsters over 24 h was similar to that in the light phase of rhythmic animals. Therefore, daily sleep amounts were higher in arrhythmic animals compared with rhythmic ones. During 2- and 6-h sleep deprivations (SD), it was more difficult to keep arrhythmic hamsters awake than it was for rhythmic hamsters. Because the arrhythmic animals obtained more non-rapid eye movement sleep (NREMS) during the SD, they showed a diminished compensatory response in NREMS EEG slow-wave activity during recovery sleep. When amounts of sleep during the SD were taken into account, there were no differences in sleep homeostasis between experimental and control hamsters. Thus loss of circadian control did not alter the homeostatic response to SD. This supports the view that circadian and homeostatic influences on sleep regulation are independent processes.

  14. Circadian factor BMAL1 in histaminergic neurons regulates sleep architecture.

    Science.gov (United States)

    Yu, Xiao; Zecharia, Anna; Zhang, Zhe; Yang, Qianzi; Yustos, Raquel; Jager, Polona; Vyssotski, Alexei L; Maywood, Elizabeth S; Chesham, Johanna E; Ma, Ying; Brickley, Stephen G; Hastings, Michael H; Franks, Nicholas P; Wisden, William

    2014-12-01

    Circadian clocks allow anticipation of daily environmental changes. The suprachiasmatic nucleus (SCN) houses the master clock, but clocks are also widely expressed elsewhere in the body. Although some peripheral clocks have established roles, it is unclear what local brain clocks do. We tested the contribution of one putative local clock in mouse histaminergic neurons in the tuberomamillary nucleus to the regulation of the sleep-wake cycle. Histaminergic neurons are silent during sleep, and start firing after wake onset; the released histamine, made by the enzyme histidine decarboxylase (HDC), enhances wakefulness. We found that hdc gene expression varies with time of day. Selectively deleting the Bmal1 (also known as Arntl or Mop3) clock gene from histaminergic cells removes this variation, producing higher HDC expression and brain histamine levels during the day. The consequences include more fragmented sleep, prolonged wake at night, shallower sleep depth (lower nonrapid eye movement [NREM] δ power), increased NREM-to-REM transitions, hindered recovery sleep after sleep deprivation, and impaired memory. Removing BMAL1 from histaminergic neurons does not, however, affect circadian rhythms. We propose that for mammals with polyphasic/nonwake consolidating sleep, the local BMAL1-dependent clock directs appropriately timed declines and increases in histamine biosynthesis to produce an appropriate balance of wake and sleep within the overall daily cycle of rest and activity specified by the SCN.

  15. Sleep Structure in Children With Attention-Deficit/Hyperactivity Disorder.

    Science.gov (United States)

    Akinci, Gulcin; Oztura, Ibrahim; Hiz, Semra; Akdogan, Ozlem; Karaarslan, Dilay; Ozek, Handan; Akay, Aynur

    2015-10-01

    The authors evaluated basic sleep architecture and non-rapid eye movement (NREM) sleep alterations in drug-naïve attention-deficit/hyperactivity disorder (ADHD) children without psychiatric or other comorbidities. This cross-sectional case-control study included 28 drug-naïve children with ADHD and 15 healthy controls. This subjective studies revealed that children with ADHD had a worse sleep quality and increased daytime sleepiness. Polysomnography data showed that the sleep macrostructure was not significantly different in children with ADHD. Sleep microstructure was altered in ADHD children by means of reduced total cyclic alternating pattern rate and duration of cyclic alternating pattern sequences. This reduction was associated with a selective decrease of A1 index during stage 2 NREM. SpO2 in total sleep was slightly decreased; however, the incidence of sleep disordered breathing showed no significant difference. The authors suggest that cyclic alternating pattern scoring would provide a further insight to obtain a better understanding of the sleep structure in children with ADHD.

  16. Sleep EEG Changes during Adolescence: An Index of a Fundamental Brain Reorganization

    Science.gov (United States)

    Feinberg, Irwin; Campbell, Ian G.

    2010-01-01

    Delta (1-4 Hz) EEG power in non-rapid eye movement (NREM) sleep declines massively during adolescence. This observation stimulated the hypothesis that during adolescence the human brain undergoes an extensive reorganization driven by synaptic elimination. The parallel declines in synaptic density, delta wave amplitude and cortical metabolic rate…

  17. Decreased sleep spindle density in patients with idiopathic REM sleep behavior disorder and patients with Parkinson’s disease

    DEFF Research Database (Denmark)

    Christensen, Julie Anja Engelhard; Kempfner, Jacob; Zoetmulder, Marielle

    2014-01-01

    polysomnography (PSG). SS were scored in an extract of data from control subjects. An automatic SS detector using a Matching Pursuit (MP) algorithm and a Support Vector Machine (SVM) was developed and applied to the PSG recordings. The SS densities in N1, N2, N3, all NREM combined and REM sleep were obtained......ObjectiveTo determine whether sleep spindles (SS) are potentially a biomarker for Parkinson’s disease (PD). MethodsFifteen PD patients with REM sleep behavior disorder (PD+RBD), 15 PD patients without RBD (PD−RBD), 15 idiopathic RBD (iRBD) patients and 15 age-matched controls underwent...

  18. Neurons Containing Orexin or Melanin Concentrating Hormone Reciprocally Regulate Wake and Sleep

    Directory of Open Access Journals (Sweden)

    Roda Rani eKonadhode

    2015-01-01

    Full Text Available There is considerable amount of data on arousal neurons whereas there is a paucity of knowledge regarding neurons that make us fall asleep. Indeed, current network models of sleep-wake regulation list many arousal neuronal populations compared to only one sleep group located in the preoptic area. There are neurons outside the preoptic area that are active during sleep, but they have never been selectively manipulated. Indeed, none of the sleep-active neurons have been selectively stimulated. To close this knowledge gap we used optogenetics to selectively manipulate neurons containing melanin concentrating hormone (MCH. The MCH neurons are located in the posterior hypothalamus intermingled with the orexin arousal neurons. Our data indicated that optogenetic stimulation of MCH neurons in wildtype mice (J Neuroscience, 2013 robustly increased both non-REM and REM sleep. MCH neuron stimulation increased sleep during the animal’s normal active period, which is compelling evidence that stimulation of MCH neurons has a powerful effect in counteracting the strong arousal signal from all of the arousal neurons. The MCH neurons represent the only group of sleep-active neurons that when selectively stimulated induce sleep. From a translational perspective this is potentially useful in sleep disorders, such as insomnia, where sleep needs to be triggered against a strong arousal drive. Our studies indicate that the MCH neurons belong within an overall model of sleep-wake regulation.

  19. Nocturnal Mnemonics: Sleep and Hippocampal Memory Processing

    Directory of Open Access Journals (Sweden)

    Jared M. Saletin

    2012-05-01

    Full Text Available As critical as waking brain function is to learning and memory, an established literature now describes an equally important yet complementary role for sleep in information processing. This overview examines the specific contribution of sleep to human hippocampal memory processing; both the detriments caused by a lack of sleep, and conversely, the proactive benefits that develop following the presence of sleep. First, a role for sleep before learning is discussed, preparing the hippocampus for initial memory encoding. Second, a role for sleep after learning is considered, modulating the post-encoding consolidation of hippocampal-dependent memory. Third, a model is outlined in which these encoding and consolidation operations are symbiotically accomplished, associated with specific NREM sleep physiological oscillations. As a result, the optimal network outcome is achieved, increasing hippocampal independence and hence overnight consolidation, while restoring next-day sparse hippocampal encoding capacity for renewed learning ability upon awakening. Finally, emerging evidence is considered suggesting that, unlike previous conceptions, sleep does not universally consolidate all information equally. Instead, and based on explicit as well as motivational cues during initial encoding, sleep executes the discriminatory offline consolidation only of select information. Consequently, sleep promotes the targeted strengthening of some memories while actively forgetting others; a proposal with significant theoretical and clinical ramifications.

  20. Catechol-O-methyltransferase Val158Met polymorphism associates with individual differences in sleep physiologic responses to chronic sleep loss.

    Directory of Open Access Journals (Sweden)

    Namni Goel

    Full Text Available BACKGROUND: The COMT Val158Met polymorphism modulates cortical dopaminergic catabolism, and predicts individual differences in prefrontal executive functioning in healthy adults and schizophrenic patients, and associates with EEG differences during sleep loss. We assessed whether the COMT Val158Met polymorphism was a novel marker in healthy adults of differential vulnerability to chronic partial sleep deprivation (PSD, a condition distinct from total sleep loss and one experienced by millions on a daily and persistent basis. METHODOLOGY/PRINCIPAL FINDINGS: 20 Met/Met, 64 Val/Met, and 45 Val/Val subjects participated in a protocol of two baseline 10h time in bed (TIB nights followed by five consecutive 4 h TIB nights. Met/Met subjects showed differentially steeper declines in non-REM EEG slow-wave energy (SWE-the putative homeostatic marker of sleep drive-during PSD, despite comparable baseline SWE declines. Val/Val subjects showed differentially smaller increases in slow-wave sleep and smaller reductions in stage 2 sleep during PSD, and had more stage 1 sleep across nights and a shorter baseline REM sleep latency. The genotypes, however, did not differ in performance across various executive function and cognitive tasks and showed comparable increases in subjective and physiological sleepiness in response to chronic sleep loss. Met/Met genotypic and Met allelic frequencies were higher in whites than African Americans. CONCLUSIONS/SIGNIFICANCE: The COMT Val158Met polymorphism may be a genetic biomarker for predicting individual differences in sleep physiology-but not in cognitive and executive functioning-resulting from sleep loss in a healthy, racially-diverse adult population of men and women. Beyond healthy sleepers, our results may also provide insight for predicting sleep loss responses in patients with schizophrenia and other psychiatric disorders, since these groups repeatedly experience chronically-curtailed sleep and demonstrate COMT

  1. Rhythmic tongue movements during sleep: a peculiar parasomnia in Costello syndrome.

    Science.gov (United States)

    Della Marca, Giacomo; Rubino, Marco; Vollono, Catello; Vasta, Isabella; Scarano, Emanuele; Mariotti, Paolo; Cianfoni, Alessandro; Mennuni, Gioacchino Francesco; Tonali, Pietro; Zampino, Giuseppe

    2006-04-01

    We describe a peculiar parasomnia observed in four Costello infants, characterized by periodic rhythmic movements of the tongue. Ten Costello patients (4 male; age range 9 months to 29 years) underwent 1 full-night laboratory-based video polysomnography. The four youngest patients (2 male and 2 female; age range 9-31 months) presented during sleep repeated stereotyped movements of the tongue, producing a sucking-like or licking-like movement, mostly during non-rapid eye movement (NREM) sleep. Rhythmic tongue movements in Costello syndrome show the features of an NREM sleep parasomnia. Tongue movements during sleep probably originate from brainstem structures and could be facilitated by an impaired control of the oropharyngeal and tongue muscles.

  2. Cellular and neurochemical basis of sleep stages in the thalamocortical network.

    Science.gov (United States)

    Krishnan, Giri P; Chauvette, Sylvain; Shamie, Isaac; Soltani, Sara; Timofeev, Igor; Cash, Sydney S; Halgren, Eric; Bazhenov, Maxim

    2016-11-16

    The link between the combined action of neuromodulators in the brain and global brain states remains a mystery. In this study, using biophysically realistic models of the thalamocortical network, we identified the critical intrinsic and synaptic mechanisms, associated with the putative action of acetylcholine (ACh), GABA and monoamines, which lead to transitions between primary brain vigilance states (waking, non-rapid eye movement sleep [NREM] and REM sleep) within an ultradian cycle. Using ECoG recordings from humans and LFP recordings from cats and mice, we found that during NREM sleep the power of spindle and delta oscillations is negatively correlated in humans and positively correlated in animal recordings. We explained this discrepancy by the differences in the relative level of ACh. Overall, our study revealed the critical intrinsic and synaptic mechanisms through which different neuromodulators acting in combination result in characteristic brain EEG rhythms and transitions between sleep stages.

  3. Senior Vipassana Meditation practitioners exhibit distinct REM sleep organization from that of novice meditators and healthy controls.

    Science.gov (United States)

    Maruthai, Nirmala; Nagendra, Ravindra P; Sasidharan, Arun; Srikumar, Sulekha; Datta, Karuna; Uchida, Sunao; Kutty, Bindu M

    2016-06-01

    Abstract/Summary The present study is aimed to ascertain whether differences in meditation proficiency alter rapid eye movement sleep (REM sleep) as well as the overall sleep-organization. Whole-night polysomnography was carried out using 32-channel digital EEG system. 20 senior Vipassana meditators, 16 novice Vipassana meditators and 19 non-meditating control subjects participated in the study. The REM sleep characteristics were analyzed from the sleep-architecture of participants with a sleep efficiency index >85%. Senior meditators showed distinct changes in sleep-organization due to enhanced slow wave sleep and REM sleep, reduced number of intermittent awakenings and reduced duration of non-REM stage 2 sleep. The REM sleep-organization was significantly different in senior meditators with more number of REM episodes and increased duration of each episode, distinct changes in rapid eye movement activity (REMA) dynamics due to increased phasic and tonic activity and enhanced burst events (sharp and slow bursts) during the second and fourth REM episodes. No significant differences in REM sleep organization was observed between novice and control groups. Changes in REM sleep-organization among the senior practitioners of meditation could be attributed to the intense brain plasticity events associated with intense meditative practices on brain functions.

  4. Rapid eye movement sleep behavior disorder and rapid eye movement sleep without atonia in narcolepsy.

    Science.gov (United States)

    Dauvilliers, Yves; Jennum, Poul; Plazzi, Giuseppe

    2013-08-01

    Narcolepsy is a rare disabling hypersomnia disorder that may include cataplexy, sleep paralysis, hypnagogic hallucinations, and sleep-onset rapid eye movement (REM) periods, but also disrupted nighttime sleep by nocturnal awakenings, and REM sleep behavior disorder (RBD). RBD is characterized by dream-enacting behavior and impaired motor inhibition during REM sleep (REM sleep without atonia, RSWA). RBD is commonly associated with neurodegenerative disorders including Parkinsonisms, but is also reported in narcolepsy in up to 60% of patients. RBD in patients with narcolepsy is, however, a distinct phenotype with respect to other RBD patients and characterized also by absence of gender predominance, elementary rather than complex movements, less violent behavior and earlier age at onset of motor events, and strong association to narcolepsy with cataplexy/hypocretin deficiency. Patients with narcolepsy often present dissociated sleep features including RSWA, increased density of phasic chin EMG and frequent shift from REM to NREM sleep, with or without associated clinical RBD. Most patients with narcolepsy with cataplexy lack the hypocretin neurons in the lateral hypothalamus. Tonic and phasic motor activities in REM sleep and dream-enacting behavior are mostly reported in presence of cataplexy. Narcolepsy without cataplexy is a condition rarely associated with hypocretin deficiency. We proposed that hypocretin neurons are centrally involved in motor control during wakefulness and sleep in humans, and that hypocretin deficiency causes a functional defect in the motor control involved in the development of cataplexy during wakefulness and RBD/RSWA/phasic motor activity during REM sleep.

  5. Hippocampal sleep features: relations to human memory function.

    Science.gov (United States)

    Ferrara, Michele; Moroni, Fabio; De Gennaro, Luigi; Nobili, Lino

    2012-01-01

    The recent spread of intracranial electroencephalographic (EEG) recording techniques for presurgical evaluation of drug-resistant epileptic patients is providing new information on the activity of different brain structures during both wakefulness and sleep. The interest has been mainly focused on the medial temporal lobe, and in particular the hippocampal formation, whose peculiar local sleep features have been recently described, providing support to the idea that sleep is not a spatially global phenomenon. The study of the hippocampal sleep electrophysiology is particularly interesting because of its central role in the declarative memory formation. Recent data indicate that sleep contributes to memory formation. Therefore, it is relevant to understand whether specific patterns of activity taking place during sleep are related to memory consolidation processes. Fascinating similarities between different states of consciousness (wakefulness, REM sleep, non-REM sleep) in some electrophysiological mechanisms underlying cognitive processes have been reported. For instance, large-scale synchrony in gamma activity is important for waking memory and perception processes, and its changes during sleep may be the neurophysiological substrate of sleep-related deficits of declarative memory. Hippocampal activity seems to specifically support memory consolidation during sleep, through specific coordinated neurophysiological events (slow waves, spindles, ripples) that would facilitate the integration of new information into the pre-existing cortical networks. A few studies indeed provided direct evidence that rhinal ripples as well as slow hippocampal oscillations are correlated with memory consolidation in humans. More detailed electrophysiological investigations assessing the specific relations between different types of memory consolidation and hippocampal EEG features are in order. These studies will add an important piece of knowledge to the elucidation of the ultimate

  6. A microstructural study of sleep instability in drug-naive patients with schizophrenia and healthy controls: sleep spindles, rapid eye movements, and muscle atonia.

    Science.gov (United States)

    Guénolé, Fabian; Chevrier, Elyse; Stip, Emmanuel; Godbout, Roger

    2014-05-01

    This study aimed at characterizing the functional stability of sleep in schizophrenia by quantifying dissociated stages of sleep (DSS), and to explore their correlation with psychopathology. The sleep of 10 first-break, drug-naive young adults with schizophrenia and 10 controls was recorded. Four basic DSS patterns were scored: 1) the transitional EEG-mixed intermediate stage (EMIS); 2) Rapid-eye-movement (REM) sleep without rapid eye movement (RSWR); 3) REM sleep without atonia (RSWA); and 4) non-REM sleep with rapid eye movements. An intermediate sleep (IS) score was calculated by summing EMIS and RSWR scores, and the durations of intra-REM sleep periods IS (IRSPIS) and IS scored "at the expense" of REM sleep (ISERS) were determined. Patients were administered the Brief Psychiatric Rating Scale (BPRS) at the time of recording. Proportions of each DSS variables over total sleep time and proportions of IRSPIS and ISERS over REM sleep duration were compared between patients and controls. Correlation coefficients between DSS variables and BPRS total scores were calculated. The proportion of total DSS did not differ between patients and controls. Among DSS subtypes, RSWA was significantly increased in patients while other comparisons showed no significant differences. Significant positive correlations were found between BPRS scores and proportions of DSS, IS, RSWR, IRSPIS and ISERS over total sleep and REM sleep durations. These results demonstrate the functional instability of REM sleep in first-break, drug naive young adults with schizophrenia and unveil a pattern reminiscent of REM sleep behavior disorder. The significant correlation suggests that schizophrenia and REM sleep share common neuronal control mechanisms.

  7. Maternal Dietary Restriction Alters Offspring’s Sleep Homeostasis

    Science.gov (United States)

    Shimizu, Noriyuki; Chikahisa, Sachiko; Nishi, Yuina; Harada, Saki; Iwaki, Yohei; Fujihara, Hiroaki; Kitaoka, Kazuyoshi; Shiuchi, Tetsuya; Séi, Hiroyoshi

    2013-01-01

    Nutritional state in the gestation period influences fetal growth and development. We hypothesized that undernutrition during gestation would affect offspring sleep architecture and/or homeostasis. Pregnant female mice were assigned to either control (fed ad libitum; AD) or 50% dietary restriction (DR) groups from gestation day 12 to parturition. After parturition, dams were fed AD chow. After weaning, the pups were also fed AD into adulthood. At adulthood (aged 8–9 weeks), we carried out sleep recordings. Although offspring mice displayed a significantly reduced body weight at birth, their weights recovered three days after birth. Enhancement of electroencephalogram (EEG) slow wave activity (SWA) during non-rapid eye movement (NREM) sleep was observed in the DR mice over a 24-hour period without changing the diurnal pattern or amounts of wake, NREM, or rapid eye movement (REM) sleep. In addition, DR mice also displayed an enhancement of EEG-SWA rebound after a 6-hour sleep deprivation and a higher threshold for waking in the face of external stimuli. DR adult offspring mice exhibited small but significant increases in the expression of hypothalamic peroxisome proliferator-activated receptor α (Pparα) and brain-specific carnitine palmitoyltransferase 1 (Cpt1c) mRNA, two genes involved in lipid metabolism. Undernutrition during pregnancy may influence sleep homeostasis, with offspring exhibiting greater sleep pressure. PMID:23741310

  8. The benefit of offline sleep and wake for novel object recognition.

    Science.gov (United States)

    McDevitt, Elizabeth A; Rowe, Kelly M; Brady, Mark; Duggan, Katherine A; Mednick, Sara C

    2014-05-01

    How do we segment and recognize novel objects? When explicit cues from motion and color are available, object boundary detection is relatively easy. However, under conditions of deep camouflage, in which objects share the same image cues as their background, the visual system must reassign new functional roles to existing image statistics in order to group continuities for detection and segmentation of object boundaries. This bootstrapped learning process is stimulus dependent and requires extensive task-specific training. Using a between-subject design, we tested participants on their ability to segment and recognize novel objects after a consolidation period of sleep or wake. We found a specific role for rapid eye movement (REM, n = 43) sleep in context-invariant novel object learning, and that REM sleep as well as a period of active wake (AW, n = 35) increased segmentation of context-specific object learning compared to a period of quiet wake (QW, n = 38; p = .007 and p = .017, respectively). Performance in the non-REM nap group (n = 32) was not different from the other groups. The REM sleep enhancement effect was especially robust for the top performing quartile of subjects, or "super learners" (p = .037). Together, these results suggest that the construction and generalization of novel representations through bootstrapped learning may benefit from REM sleep, and more specific object learning may also benefit from AW. We discuss these results in the context of shared electrophysiological and neurochemical features of AW and REM sleep, which are distinct from QW and non-REM sleep.

  9. Evaluating the evidence surrounding pontine cholinergic involvement in REM sleep generation

    Directory of Open Access Journals (Sweden)

    Kevin P Grace

    2015-09-01

    Full Text Available Rapid eye movement (REM sleep - characterized by vivid dreaming, motor paralysis, and heightened neural activity - is one of the fundamental states of the mammalian central nervous system. Initial theories of rapid eye movement (REM sleep generation posited that induction of the state required activation of the ‘pontine REM sleep generator’ by cholinergic inputs. Here we review and evaluate the evidence surrounding cholinergic involvement in REM sleep generation. We submit that: (i the capacity of pontine cholinergic neurotransmission to generate REM sleep has been firmly established by gain-of-function experiments, (ii the function of endogenous cholinergic input to REM sleep generating sites cannot be determined by gain-of-function experiments; rather, loss-of-function studies are required, (iii loss-of-function studies show that endogenous cholinergic input to the PFT is not required for REM sleep generation, and (iv Cholinergic input to the pontine REM sleep generating sites serve an accessory role in REM sleep generation: reinforcing non-REM-to-REM sleep transitions making them quicker and less likely to fail.

  10. Evaluating the Evidence Surrounding Pontine Cholinergic Involvement in REM Sleep Generation.

    Science.gov (United States)

    Grace, Kevin P; Horner, Richard L

    2015-01-01

    Rapid eye movement (REM) sleep - characterized by vivid dreaming, motor paralysis, and heightened neural activity - is one of the fundamental states of the mammalian central nervous system. Initial theories of REM sleep generation posited that induction of the state required activation of the "pontine REM sleep generator" by cholinergic inputs. Here, we review and evaluate the evidence surrounding cholinergic involvement in REM sleep generation. We submit that: (i) the capacity of pontine cholinergic neurotransmission to generate REM sleep has been firmly established by gain-of-function experiments, (ii) the function of endogenous cholinergic input to REM sleep generating sites cannot be determined by gain-of-function experiments; rather, loss-of-function studies are required, (iii) loss-of-function studies show that endogenous cholinergic input to the PTF is not required for REM sleep generation, and (iv) cholinergic input to the pontine REM sleep generating sites serve an accessory role in REM sleep generation: reinforcing non-REM-to-REM sleep transitions making them quicker and less likely to fail.

  11. Can sleep microstructure improve diagnosis of OSAS? Integrative information from CAP parameters.

    Science.gov (United States)

    Milioli, Giulia; Bosi, Marcello; Grassi, Andrea; Riccardi, Silvia; Terzano, Mario Giovanni; Cortelli, Pietro; Poletti, Venerino; Parrino, Liborio

    2015-01-01

    The scoring of American Academy of Sleep Medicine (AASM) arousal is mandatory for the definition of respiratory event-related arousal (RERA). However there are other EEG activation phenomena, such as A phases of cyclic alternating pattern (CAP) which are associated with respiratory events in non rapid eye movements (NREM) sleep. This study aims at quantifying the additional value of CAP for the definition of respiratory events and sleep alterations in OSAS. Analysis of polysomnographic recordings from nineteen OSAS patients was carried out. Scoring was focused on investigation of the cerebral response to flow limitation (FL) events. For this purpose we used both CAP rules and AASM arousal criteria. While no difference was demonstrated in the arousal index between mild and moderate-severe OSAS patients, CAP time showed a progressive enhancement from normal subjects (152.5±20.76) to mild (180.64±34.76) and moderate-severe (282.27±58.02) OSAS patients. In NREM sleep, only 41.1% of FL events met the criteria for the definition of RERA, while, 75.5% of FL events ended with a CAP A phase and most FL CAP (69.1%) terminated with a CAP phase A3 subtype. Our data indicate that the RERA scoring has a limited accuracy in the detection of FL events. In NREM sleep, CAP rules provided more information than AASM arousal for the definition of respiratory events and sleep alterations in OSAS.

  12. EFFECTS OF SLEEP DEPRIVATION ON WHOLE NIGHT POLYSOMNOGRAPHY IN HEALTHY YOUNG MEN

    Institute of Scientific and Technical Information of China (English)

    XIAO Ze-ping; CHEN Xing-shi; WANG Ji-jun; ZHANG Ming-dao; WANG Hong-xing; HU Zhen-yu; LU Ying-zhi; ZHANG Zai-fu; GAN Jing-li; LOU Fei-ying; CHEN Chong; ZHANG Tian-hong; FAN Qing

    2009-01-01

    Objective To assess the effects of sleep deprivation (SD) on the whole night polysomnography (PSG) in healthy young men.Methods The whole night PSG was recorded by using Neurofax-1518K (Nihon Kohden, Japan) system before and after 38 h of SD among 15 healthy male subjects.Results Compared with PSG before SD, post-SD PSG showed significantly shortened sleep latency (before SD: 19.7±9.3, after SD: 5.6±7.3, P<0.05), decreased stage 1 (S1) non-rapid eye movement (NREM) sleep [before SD: (9.2±1.9)%, after SD: (4.0±1.4)%, P<0.05], and increased stage 4 (S4) NREM sleep [before SD: (10.3±3.7)%, after SD: (26.2±4.3)%, P<0.01].Conclusion During post-SD sleep, the proportion of S4 NREM sleep was increased as compensation in healthy male. In addition, SD was proved to affect electrophysiological brain activities in normal people.

  13. EphA4 is Involved in Sleep Regulation but Not in the Electrophysiological Response to Sleep Deprivation.

    Science.gov (United States)

    Freyburger, Marlène; Pierre, Audrey; Paquette, Gabrielle; Bélanger-Nelson, Erika; Bedont, Joseph; Gaudreault, Pierre-Olivier; Drolet, Guy; Laforest, Sylvie; Blackshaw, Seth; Cermakian, Nicolas; Doucet, Guy; Mongrain, Valérie

    2016-03-01

    Optimal sleep is ensured by the interaction of circadian and homeostatic processes. Although synaptic plasticity seems to contribute to both processes, the specific players involved are not well understood. The EphA4 tyrosine kinase receptor is a cell adhesion protein regulating synaptic plasticity. We investigated the role of EphA4 in sleep regulation using electrocorticography in mice lacking EphA4 and gene expression measurements. EphA4 knockout (KO) mice, Clock(Δ19/Δ19) mutant mice and littermates, C57BL/6J and CD-1 mice, and Sprague-Dawley rats were studied under a 12 h light: 12 h dark cycle, under undisturbed conditions or 6 h sleep deprivation (SLD), and submitted to a 48 h electrophysiological recording and/or brain sampling at different time of day. EphA4 KO mice showed less rapid eye movement sleep (REMS), enhanced duration of individual bouts of wakefulness and nonrapid eye movement sleep (NREMS) during the light period, and a blunted daily rhythm of NREMS sigma activity. The NREMS delta activity response to SLD was unchanged in EphA4 KO mice. However, SLD increased EphA4 expression in the thalamic/hypothalamic region in C57BL/6J mice. We further show the presence of E-boxes in the promoter region of EphA4, a lower expression of EphA4 in Clock mutant mice, a rhythmic expression of EphA4 ligands in several brain areas, expression of EphA4 in the suprachiasmatic nuclei of the hypothalamus (SCN), and finally an unchanged number of cells expressing Vip, Grp and Avp in the SCN of EphA4 KO mice. Our results suggest that EphA4 is involved in circadian sleep regulation. © 2016 Associated Professional Sleep Societies, LLC.

  14. Heart rate variability in normal and pathological sleep

    Directory of Open Access Journals (Sweden)

    Eleonora eTobaldini

    2013-10-01

    Full Text Available Sleep is a physiological process involving different biological systems, from molecular to organ level; its integrity is essential for maintaining health and homeostasis in human beings. Although in the past sleep has been considered a state of quiet, experimental and clinical evidences suggest a noteworthy activation of different biological systems during sleep. A key role is played by the autonomic nervous system (ANS, whose modulation regulates cardiovascular functions during sleep onset and different sleep stages. Therefore, an interest on the evaluation of autonomic cardiovascular control in health and disease is growing by means of linear and non linear heart rate variability (HRV analyses. The application of classical tools for ANS analysis, such as HRV during physiological sleep, showed that the rapid eye movement (REM stage is characterized by a likely sympathetic predominance associated with a vagal withdrawal, while the opposite trend is observed during non-REM sleep. More recently, the use of non linear tools, such as entropy-derived indices, have provided new insight on the cardiac autonomic regulation, revealing for instance changes in the cardiovascular complexity during REM sleep, supporting the hypothesis of a reduced capability of the cardiovascular system to deal with stress challenges. Interestingly, different HRV tools have been applied to characterize autonomic cardiac control in different pathological conditions, from neurological sleep disorders to sleep disordered breathing (SDB. In summary, linear and non linear analysis of HRV are reliable approaches to assess changes of autonomic cardiac modulation during sleep both in health and diseases. The use of these tools could provide important information of clinical and prognostic relevance.

  15. Sleep disturbances in drug naïve Parkinson′s disease (PD patients and effect of levodopa on sleep

    Directory of Open Access Journals (Sweden)

    Teresa Ferreira

    2014-01-01

    Full Text Available Context: Parkinson′s disease (PD is associated with sleep disturbances, attributed to the neurodegenerative process and therapeutic drugs. Studies have found levodopa to increase wakefulness in some patients while increasing sleepiness in others. Aims: To confirm sleep disturbances in drug naïve PD patients and understand the impact of levodopa on their sleep. Materials and Methods: Twenty-three drug naοve PD patients and 31 age-gender matched controls were compared using the Parkinson′s Disease Sleep Scale (PDSS and Epworth Sleepiness Scale (ESS. A polysomnogram objectively compared sleep quality. Of the 23 patients, the 12 initiated on levodopa were reassessed subjectively and through polysomnography after 2 months of therapy. Statistical Analysis: Data was expressed as mean ± standard deviation, median, and range. Continuous variables were analyzed by Student′s T test for normally distributed data and Mann-Whitney U test for skewed data. Discrete variables were compared by Chi Square tests (Pearson Chi square Test or Fisher′s Exact Test. Wilcoxon signed ranks test was applied in the analysis of paired data pre- and post-levodopa. A P value < 0.05 was considered as statistically significant. Statistical analysis of the data was done using the Statistical Package for the Social Sciences (SPSS version 12. Results: Drug naïve PD patients had lower PDSS scores than controls. The sleep architecture changes observed on polysomnogram were reduced NREM Stage III and REM sleep and increased sleep latency and wake after sleep onset time. Following levodopa, improved sleep efficiency with reduced sleep latency and wake after sleep onset time was noted, coupled with improved PDSS scores. However, NREM Stage III and REM sleep duration did not increase. Discussion: PD patients take longer to fall asleep and have difficulty in sleep maintenance. Sleep maintenance is affected by nocturia, REM behavioral disorder, nocturnal cramps, akinesia, and

  16. Sleep EEG predictors and correlates of the response to cognitive behavioral therapy for insomnia.

    Science.gov (United States)

    Krystal, Andrew D; Edinger, Jack D

    2010-05-01

    Determine the relationship of non-rapid eye movement (NREM) electroencephalographic (EEG) spectral measures and the response to cognitive behavioral therapy (CBT) in primary insomnia (PI). Patients with PI were randomly assigned to CBT or a placebo intervention (PC). Ambulatory polysomnography was performed before and after treatment. University medical center sleep laboratory. Thirty PI patients with sleep maintenance difficulty evident in subjective sleep measures. CBT and PC. CBT led to a more rapid decline in EEG delta power over the night, compared with PC. This change was associated with subjective improvement in response to CBT. Furthermore, lower pretreatment peak EEG delta power in the first NREM cycle and a more gradual decline in delta power predicted a better response to CBT. Increased wake time during the day produced by CBT was correlated with an increase in the steepness of the slope of EEG delta power and subjective improvement. Traditional polysomnography measures were associated with the subjective CBT response to a greater degree among patients whose total sleep time estimates better approximated polysomnography-derived total sleep time. In contrast, changes in all-night averaged NREM EEG spectral indices were more strongly related to subjective improvement in individuals who underestimated total sleep time to a greater extent. CBT led to a more rapid decline in EEG delta power over the night. This change is linked to the therapeutic effect of CBT, which appears to occur in conjunction with an increase in homeostatic sleep drive. Traditional polysomnography indices and all-night averaged NREM EEG measures appear to be related to subjective improvements with CBT in subsets of patients with PI.

  17. What is the most important factor affecting the cognitive function of obstructive sleep apnea syndrome patients: a single center study

    Directory of Open Access Journals (Sweden)

    LI Xiang

    2013-05-01

    Full Text Available Objective Patients with obstructive sleep apnea syndrome (OSAS usually complain of daytime hypersomnia and decrease in cognitive function, which affects the quality of their work and life. The reason why the cognitive function of OSAS patients decreased remains controversial. The aim of this study is to evaluate the impairment and the main influencing factors of cognitive function in OSAS. Methods There were totally 50 OSAS patients (OSAS group and 25 volunteers (control group included in our study. All of them were monitored by polysomnography (PSG and tested by Continuous Performance Test (CPT, n-back test and Stroop Color?Word Test (CWT to evaluate their sleep condition and cognitive function. Results No significant difference was found between the two groups in total sleep time and sleep efficiency (P > 0.05, for all. Compared with control group, OSAS group had significant increased time of non-rapid eye movement (NREM sleep stage Ⅰ and stage Ⅱ, significant decreased time of stage Ⅲ (P 0.05, for all, while had significant connection with AI and NREM Ⅲ (P < 0.05, for all. The rate of OSAS patients who underwent nasal continuous positive airway pressure (nCPAP treatment was very low, only 8% (4/50. Conclusion The abnormality of OSAS patients' sleep structure is characterized with sleep fragmentation and decrease of NREM Ⅲ, which may be the main factors of cognitive impairment. Exploration of treatment methods targeted on regulating the effected hormones and receptors is meaningful.

  18. Increases in cAMP, MAPK activity, and CREB phosphorylation during REM sleep: implications for REM sleep and memory consolidation.

    Science.gov (United States)

    Luo, Jie; Phan, Trongha X; Yang, Yimei; Garelick, Michael G; Storm, Daniel R

    2013-04-10

    The cyclic adenosine monophosphate (cAMP), mitogen-activated protein kinase (MAPK), and cAMP response element-binding protein (CREB) transcriptional pathway is required for consolidation of hippocampus-dependent memory. In mice, this pathway undergoes a circadian oscillation required for memory persistence that reaches a peak during the daytime. Because mice exhibit polyphasic sleep patterns during the day, this suggested the interesting possibility that cAMP, MAPK activity, and CREB phosphorylation may be elevated during sleep. Here, we report that cAMP, phospho-p44/42 MAPK, and phospho-CREB are higher in rapid eye movement (REM) sleep compared with awake mice but are not elevated in non-REM sleep. This peak of activity during REM sleep does not occur in mice lacking calmodulin-stimulated adenylyl cyclases, a mouse strain that learns but cannot consolidate hippocampus-dependent memory. We conclude that a preferential increase in cAMP, MAPK activity, and CREB phosphorylation during REM sleep may contribute to hippocampus-dependent memory consolidation.

  19. Electrophysiological Evidence for Alternative Motor Networks in REM Sleep Behavior Disorder.

    Science.gov (United States)

    Hackius, Marc; Werth, Esther; Sürücü, Oguzkan; Baumann, Christian R; Imbach, Lukas L

    2016-11-16

    Patients with Parkinson's disease (PD) and REM sleep behavior disorder (RBD) show mostly unimpaired motor behavior during REM sleep, which contrasts strongly to coexistent nocturnal bradykinesia. The reason for this sudden amelioration of motor control in REM sleep is unknown, however. We set out to determine whether movements during REM sleep are processed by different motor networks than movements in the waking state. We recorded local field potentials in the subthalamic nucleus (STN) and scalp EEG (modified 10/20 montage) during sleep in humans with PD and RBD. Time-locked event-related β band oscillations were calculated during movements in REM sleep compared with movements in the waking state and during NREM sleep. Spectral analysis of STN local field potentials revealed elevated β power during REM sleep compared with NREM sleep and β power in REM sleep reached levels similar as in the waking state. Event-related analysis showed time-locked β desynchronization during WAKE movements. In contrast, we found significantly elevated β activity before and during movements in REM sleep and NREM sleep. Corticosubthalamic coherence was reduced during REM and NREM movements. We conclude that sleep-related movements are not processed by the same corticobasal ganglia network as movements in the waking state. Therefore, the well-known seemingly normal motor performance during RBD in PD patients might be generated by activating alternative motor networks for movement initiation. These findings support the hypothesis that pathological movement-inhibiting basal ganglia networks in PD patients are bypassed during sleep. This study provides evidence that nocturnal movements during REM sleep in Parkinson's disease (PD) patients are not processed by the same corticobasal ganglia network as movements in the waking state. This implicates the existence of an alternative motor network that does not depend directly on the availability of l-Dopa in the basal ganglia. These findings

  20. Sleep scoring made easy-Semi-automated sleep analysis software and manual rescoring tools for basic sleep research in mice.

    Science.gov (United States)

    Kreuzer, M; Polta, S; Gapp, J; Schuler, C; Kochs, E F; Fenzl, T

    2015-01-01

    Studying sleep behavior in animal models demands clear separation of vigilance states. Pure manual scoring is time-consuming and commercial scoring software is costly. We present a LabVIEW-based, semi-automated scoring routine using recorded EEG and EMG signals. This scoring routine is •designed to reliably assign the vigilance/sleep states wakefulness (WAKE), non-rapid eye movement sleep (NREMS) and rapid eye movement sleep (REMS) to defined EEG/EMG episodes.•straightforward to use even for beginners in the field of sleep research.•freely available upon request. Chronic recordings from mice were used to design and evaluate the scoring routine consisting of an artifact-removal, a scoring- and a rescoring routine. The scoring routine processes EMG and different EEG frequency bands. Amplitude-based thresholds for EEG and EMG parameters trigger a decision tree assigning each EEG episode to a defined vigilance/sleep state automatically. Using the rescoring routine individual episodes or particular state transitions can be re-evaluated manually. High agreements between auto-scored and manual sleep scoring could be shown for experienced scorers and for beginners quickly and reliably. With small modifications to the software, it can be easily adapted for sleep analysis in other animal models.

  1. Acute enhancement of non-rapid eye movement sleep in rats after drinking water contaminated with cadmium chloride.

    Science.gov (United States)

    Unno, Katsuya; Yamoto, Kurumi; Takeuchi, Kouhei; Kataoka, Aya; Ozaki, Tomoya; Mochizuki, Takatoshi; Honda, Kazuki; Miura, Nobuhiko; Ikeda, Masayuki

    2014-02-01

    Cadmium (Cd) is a heavy metal widely used or effused by industries. Serious environmental Cd pollution has been reported over the past two centuries, whereas the mechanisms underlying Cd-mediated diseases are not fully understood. Interestingly, an increase in reactive oxygen species (ROS) after Cd exposure has been shown. Our group has demonstrated that sleep is triggered via accumulation of ROS during neuronal activities, and we thus hypothesize the involvement of Cd poisoning in sleep-wake irregularities. In the present study, we analyzed the effects of Cd intake (1-100 ppm CdCl₂ in drinking water) on rats by monitoring sleep encephalograms and locomotor activities. The results demonstrated that 100 ppm CdCl₂ administration for 28 h was sufficient to increase non-rapid-eye-movement (non-REM) sleep and reduce locomotor activities during the night (the rat active phase). In contrast, free-running locomotor rhythms under constant dim red light and their re-entrainment to 12:12-h light/dark cycles were intact under chronic (1 month) 100 ppm CdCl₂ administrations, suggesting a limited influence on circadian clock movements at this dosage. The relative amount of oxidized glutathione increased in the brain after the 28-h 100 ppm CdCl₂ administrations similar to the levels in cultured astrocytes receiving H₂O₂ or CdCl₂ in culture medium. Therefore, we propose Cd-induced sleep as a consequence of oxidative stress. As oxidized glutathione is an endogenous sleep substance, we suggest that Cd rapidly induces sleepiness and influences activity performance by occupying intrinsic sleep-inducing mechanisms. In conclusion, we propose increased non-REM sleep during the active phase as an index of acute Cd exposure.

  2. Age-related Changes In Sleep Spindles Characteristics During Daytime Recovery Following a 25-Hour Sleep Deprivation

    Directory of Open Access Journals (Sweden)

    Thaïna eRosinvil

    2015-06-01

    Full Text Available Objectives: The mechanisms underlying sleep spindles (~11-15Hz; >0.5s help to protect sleep. With age, it becomes increasingly difficult to maintain sleep at a challenging time (e.g. daytime, even after sleep loss. This study compared spindle characteristics during daytime recovery and nocturnal sleep in young and middle-aged adults. In addition, we explored whether spindles characteristics in baseline nocturnal sleep were associated with the ability to maintain sleep during daytime recovery periods in both age groups.Methods: Twenty-nine young (15 women and 14 men; 27.3 ± 5.0 and 31 middle-aged (19 women and 13 men; 51.6 y ± 5.1 healthy subjects participated in a baseline nocturnal sleep and a daytime recovery sleep after 25 hours of sleep deprivation. Spindles were detected on artefact-free NREM sleep epochs. Spindle density (nb/min, amplitude (μV, frequency (Hz and duration (s were analyzed on parasagittal (linked-ears derivations. Results: In young subjects, spindle frequency increased during daytime recovery sleep as compared to baseline nocturnal sleep in all derivations, whereas middle-aged subjects showed spindle frequency enhancement only in the prefrontal derivation. No other significant interaction between age group and sleep condition was observed. Spindle density for all derivations and centro-occipital spindle amplitude decreased whereas prefrontal spindle amplitude increased from baseline to daytime recovery sleep in both age groups. Finally, no significant correlation was found between spindle characteristics during baseline nocturnal sleep and the marked reduction in sleep efficiency during daytime recovery sleep in both young and middle-aged subjects.Conclusion: These results suggest that the interaction between homeostatic and circadian pressure module spindle frequency differently in aging. Spindle characteristics do not seem to be linked with the ability to maintain daytime recovery sleep.

  3. Differentiated effects of the multimodal antidepressant vortioxetine on sleep architecture: Part 2, pharmacological interactions in rodents suggest a role of serotonin-3 receptor antagonism.

    Science.gov (United States)

    Leiser, Steven C; Iglesias-Bregna, Deborah; Westrich, Ligia; Pehrson, Alan L; Sanchez, Connie

    2015-10-01

    Antidepressants often disrupt sleep. Vortioxetine, a multimodal antidepressant acting through serotonin (5-HT) transporter (SERT) inhibition, 5-HT3, 5-HT7 and 5-HT1D receptor antagonism, 5-HT1B receptor partial agonism, and 5-HT1A receptor agonism, had fewer incidences of sleep-related adverse events reported in depressed patients. In the accompanying paper a polysomnographic electroencephalography (sleep-EEG) study of vortioxetine and paroxetine in healthy subjects indicated that at low/intermediate levels of SERT occupancy, vortioxetine affected rapid eye movement (REM) sleep differently than paroxetine. Here we investigated clinically meaningful doses (80-90% SERT occupancy) of vortioxetine and paroxetine on sleep-EEG in rats to further elucidate the serotoninergic receptor mechanisms mediating this difference. Cortical EEG, electromyography (EMG), and locomotion were recorded telemetrically for 10 days, following an acute dose, from rats receiving vortioxetine-infused chow or paroxetine-infused water and respective controls. Sleep stages were manually scored into active wake, quiet wake, and non-REM or REM sleep. Acute paroxetine or vortioxetine delayed REM onset latency (ROL) and decreased REM episodes. After repeated administration, vortioxetine yielded normal sleep-wake rhythms while paroxetine continued to suppress REM. Paroxetine, unlike vortioxetine, increased transitions from non-REM to wake, suggesting fragmented sleep. Next, we investigated the role of 5-HT3 receptors in eliciting these differences. The 5-HT3 receptor antagonist ondansetron significantly reduced paroxetine's acute effects on ROL, while the 5-HT3 receptor agonist SR57227A significantly increased vortioxetine's acute effect on ROL. Overall, our data are consistent with the clinical findings that vortioxetine impacts REM sleep differently than paroxetine, and suggests a role for 5-HT3 receptor antagonism in mitigating these differences.

  4. Human consciousness and sleep/waking rhythms: a review and some neuropsychological considerations.

    Science.gov (United States)

    Broughton, R

    1982-09-01

    The relevance of sleep/waking rhythms to issues of human consciousness is reviewed from data in the literature and from personal studies. Consciousness is often considered to be markedly attenuated or absent in sleep. There is, however, much evidence for a rich subjective experience during sleep, much of which is not recalled later. This implies that William James' "stream of consciousness' persists continuously throughout sleep as well as wakefulness, but that problems of memory recall interfere with its being reported as such. Sleeping subjects show selective awareness of external stimuli, with significant stimuli generally leading to awakening and relatively nonsignificant stimuli, at least at times, being incorporated into the ongoing mental activity of REM or NREM sleep. Mentation throughout sleep is characterized by a high degree of autonomy and little willful control. Creative insight and problem solving of a very high order may occur in sleep and involve either dreaming or thought-like mentation. Parameters of waking consciousness show possibly sleep-related rhythmic fluctuations at both circadian (24 hr sleep/waking) and ultradian (90-120) min, NREM/REM sleep) rates. Moreover, waking consciousness is markedly influenced by the quality of temporal stability of preceding sleep. A substantial number of so-called "altered states of consciousness" is found to involve primarily or exclusively dysfunction of sleep/waking mechanisms. Cerebral lesions can produce selective impairment of aspects of sleep mentation. It is concluded that further analysis of subjective awareness in sleep or in partial sleep states is very relevant and indeed vital to a more comprehensive understanding of human consciousness.

  5. Distribution of delta activity across nonrapid eye movement sleep episodes in healthy young men.

    Science.gov (United States)

    Preud'homme, X A; Lanquart, J P; Mendlewicz, J; Linkowski, P

    1997-04-01

    The distribution of delta activity across successive nonrapid eye movement (NREM) sleep episodes and its night-to-night stability across three consecutive nights were investigated by studying delta power with spectral analysis in 31 healthy young men. Repeated-measures analysis of variance (ANOVA) with polynomial contrast was applied to grouped data of absolute delta power and three indexes: (1) the rate of delta power per NREM episode to its duration, 2) the standardized rate for the last NREM episode, and 3) the logarithm of the standardized rate. A significant linear decrease across NREM episodes was observed for each variable in each successive night. In addition, using night as a second within-subjects factor, no night effect was observed. Yet, the subsequent analysis of the logarithmic data yielded greater F values in all three nights' data as well as a linear function that accounted for a greater proportion of total variance than the analysis of the nonlogarithmic data. Since a linear decline for the logarithm of a variable implies an exponential distribution for that variable, we conclude that delta activity is distributed exponentially across NREM episodes, and this finding shows a remarkable night-to-night stability.

  6. Sleep and Endocrinology: Hypothalamic-pituitary- adrenal axis and growth hormone

    Directory of Open Access Journals (Sweden)

    Ravinder Goswami

    2014-03-01

    Full Text Available The supra-chiasmatic nucleus (SCN is the primarily biological clock determining thecircadian rhythm. The neurons of the nucleus making this clock have inherent rhythmand set in biological day and night. These periods usually corresponds to day/night, andindirectly to sleep-wakefulness cycle, in most individuals. Retino-hypothalamic tractcarrying photic information from the retina provides the most important input tomaintain the inherent rhythm of the SCN. The rhythmic discharges from the SCN tovarious neurons of the central nervous system, including pineal gland andhypothalamus, translate into circadian rhythm characteristic of several hormones andmetabolites such as glucose. As a result there is a pattern of hormonal changesoccurring during cycle of sleep wakefulness. Most characteristic of these changes aresurge of melatonin with biological night, surge of growth hormone-releasing hormone(GHRHat onset of sleep and surge of corticotropin-releasinghormone(CRHduring late part of the sleep. The cause and effect relationship of the hypothalamicreleasing hormones and their target hormones on various phases of sleep includinginitial non rapid eye movement (NREM phase at onset of sleep, and rapid eyemovement (REM phase near awakening, is an upcoming research area. Sleepelectroencephalogram (EEG determining the onset of NREM and REM sleep is animportant tool complimenting the studies assessing relationship between varioushormones and phases of sleep. The slow wave activity (SWA corresponds to theintensity of sleep at its onset during the biological night of an individual. Besides,GHRH and CRH, several other peptide and steroid hormones such as growthhormone (GH, its secretagogues, ghrelin, neuropeptide Y, estrogen anddehydroepiandrosterone sulfate are associated or have the potential to change phases ofsleep including initial slow wave-NREM sleep.

  7. Sleeping dendrites: fiber-optic measurements of dendritic calcium activity in freely moving and sleeping animals

    Directory of Open Access Journals (Sweden)

    Julie Seibt

    2014-03-01

    Full Text Available Dendrites are the post-synaptic sites of most excitatory and inhibitory synapses in the brain, making them the main location of cortical information processing and synaptic plasticity. Although current hypotheses suggest a central role for sleep in proper cognitive function and brain plasticity, virtually nothing is known about changes in dendritic activity across the sleep-wake cycle and how waking experience modifies this activity. To start addressing these questions, we developed a method that allows long-term recordings of EEGs/EMG combined with in vivo cortical calcium (Ca2+ activity in freely moving and sleeping rats. We measured Ca2+ activity from populations of dendrites of layer (L 5 pyramidal neurons (n = 13 rats that we compared with Ca2+ activity from populations of neurons in L2/3 (n = 11 rats. L5 and L2/3 neurons were labelled using bolus injection of OGB1-AM or GCaMP6 (1. Ca2+ signals were detected using a fiber-optic system (cannula diameter = 400µm, transmitting the changes in fluorescence to a photodiode. Ca2+ fluctuations could then be correlated with ongoing changes in brain oscillatory activity during 5 major brain states: active wake [AW], quiet wake [QW], NREM, REM and NREM-REM transition (or intermediate state, [IS]. Our Ca2+ recordings show large transients in L5 dendrites and L2/3 neurons that oscillate predominantly at frequencies In summary, we show that this technique is successful in monitoring fluctuations in ongoing dendritic Ca2+ activity during natural brain states and allows, in principle, to combine behavioral measurement with imaging from various brain regions (e.g. deep structures in freely behaving animals. Using this method, we show that Ca2+ transients from populations of L2/3 neurons and L5 dendrites are deferentially regulated across the sleep/wake cycle, with dendritic activity being the highest during the IS sleep. Our correlation analysis suggests that specific sleep EEG activity during NREM and IS

  8. Does sleep play a role in memory consolidation? A comparative test.

    Directory of Open Access Journals (Sweden)

    Isabella Capellini

    Full Text Available Sleep is a pervasive characteristic of mammalian species, yet its purpose remains obscure. It is often proposed that 'sleep is for the brain', a view that is supported by experimental studies showing that sleep improves cognitive processes such as memory consolidation. Some comparative studies have also reported that mammalian sleep durations are higher among more encephalized species. However, no study has assessed the relationship between sleep and the brain structures that are implicated in specific cognitive processes across species. The hippocampus, neocortex and amygdala are important for memory consolidation and learning and are also in a highly actived state during sleep. We therefore investigated the evolutionary relationship between mammalian sleep and the size of these brain structures using phylogenetic comparative methods. We found that evolutionary increases in the size of the amygdala are associated with corresponding increases in NREM sleep durations. These results are consistent with the hypothesis that NREM sleep is functionally linked with specializations of the amygdala, including perhaps memory processing.

  9. Abnormal nocturnal heart rate variability response among chronic kidney disease and dialysis patients during wakefulness and sleep

    OpenAIRE

    Roumelioti, Maria-Eleni; Ranpuria, Reena; Hall, Martica; Hotchkiss, John R.; Chan, Chris T.; Mark L Unruh; Argyropoulos, Christos

    2010-01-01

    Background. Dialysis patients and patients with chronic kidney disease (CKD) experience a substantial risk for abnormal autonomic function and abnormal heart rate variability (HRV). It remains unknown whether HRV changes across sleep stages in patients with different severity of CKD or dialysis dependency. We hypothesized that high-frequency (HF) HRV (vagal tone) will be attenuated from wakefulness to non-rapid eye movement (NREM) and then to rapid eye movement (REM) sleep in dialysis patient...

  10. Clinical Features and Polysomnographic Findings in Greek Male Patients with Obstructive Sleep Apnea Syndrome: Differences Regarding the Age

    Directory of Open Access Journals (Sweden)

    Efremidis George

    2012-01-01

    Full Text Available Background-Aim. Although sleep disturbance is a common complaint among patients of all ages, research suggests that older adults are particularly vulnerable. The aim of this retrospective study was to elucidate the influence of age on clinical characteristics and polysomnographic findings of obstructive sleep apnea syndrome (OSAS between elderly and younger male patients in a Greek population. Methods. 697 male patients with OSAS were examined from December 2001 to August 2011. All subjects underwent an attended overnight polysomnography (PSG. They were divided into two groups: young and middle-aged (<65 years old and elderly (≥65 years old. We evaluated the severity of OSAS, based on apnea-hypopnea index (AHI, and the duration of apnea-hypopnea events, the duration of hypoxemia during total sleep time (TST and during REM and NREM sleep, and the oxygen saturation in REM and in NREM sleep. Results. PSG studies showed that elderly group had significant higher duration of apnea-hypopnea events, longer hypoxemia in TST and in NREM sleep, as well as lower oxygen saturation in REM and NREM sleep than the younger group. Otherwise, significant correlation between BMI and neck circumference with AHI was observed in both groups. Conclusions. The higher percentages of hypoxemia during sleep and longer duration of apnea-hypopnea events that were observed in the elderly group might be explained by increased propensity for pharyngeal collapse and increased deposition of parapharyngeal fat, which are associated with aging. Another factor that could explain these findings might be a decreased partial arterial pressure of oxygen (PaO2 due to age-related changes in the respiratory system.

  11. Endogenous cholinergic input to the pontine REM sleep generator is not required for REM sleep to occur.

    Science.gov (United States)

    Grace, Kevin P; Vanstone, Lindsay E; Horner, Richard L

    2014-10-22

    Initial theories of rapid eye movement (REM) sleep generation posited that induction of the state required activation of the pontine subceruleus (SubC) by cholinergic inputs. Although the capacity of cholinergic neurotransmission to contribute to REM sleep generation has been established, the role of cholinergic inputs in the generation of REM sleep is ultimately undetermined as the critical test of this hypothesis (local blockade of SubC acetylcholine receptors) has not been rigorously performed. We used bilateral microdialysis in freely behaving rats (n = 32), instrumented for electroencephalographic and electromyographic recording, to locally manipulate neurotransmission in the SubC with select drugs. As predicted, combined microperfusion of D-AP5 (glutamate receptor antagonist) and muscimol (GABAA receptor agonist) in the SubC virtually eliminated REM sleep. However, REM sleep was not reduced by scopolamine microperfusion in this same region, at a concentration capable of blocking the effects of cholinergic receptor stimulation. This result suggests that transmission of REM sleep drive to the SubC is acetylcholine-independent. Although SubC cholinergic inputs are not majorly involved in REM sleep generation, they may perform a minor function in the reinforcement of transitions into REM sleep, as evidenced by increases in non-REM-to-REM sleep transition duration and failure rate during cholinergic receptor blockade. Cholinergic receptor antagonism also attenuated the normal increase in hippocampal θ oscillations that characterize REM sleep. Using computational modeling, we show that our in vivo results are consistent with a mutually excitatory interaction between the SubC and cholinergic neurons where, importantly, cholinergic neuron activation is gated by SubC activity.

  12. Effects of i.c.v. administration of interleukin-1 on sleep and body temperature of interleukin-6-deficient mice.

    Science.gov (United States)

    Olivadoti, M D; Opp, M R

    2008-04-22

    Cytokines in brain contribute to the regulation of physiological processes and complex behavior, including sleep. The cytokines that have been most extensively studied with respect to sleep are interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha, and IL-6. Administration of these cytokines into laboratory animals, or in some cases into healthy human volunteers, increases the amount of time spent in non-rapid eye movement (NREM) sleep. Although antagonizing the IL-1 or TNF systems reduces the amount of time laboratory animals spend in NREM sleep, interactions among these three cytokine systems as they pertain to the regulation of physiological NREM sleep are not well understood. To further elucidate mechanisms in brain by which IL-1beta, TNFalpha, and/or IL-6 contribute to NREM sleep regulation, we injected recombinant murine interleukin-1beta (muIL-1beta) into C57BL/6J mice and into IL-6-deficient mice (IL-6 knockout, KO). IL-6 KO (B6.129S6-Il6(tm1Kopf); n=13) and C57BL/6J mice (n=14) were implanted with telemeters to record the electroencephalogram (EEG) and core body temperature, as well as with indwelling guide cannulae targeted to one of the lateral ventricles. After recovery and habituation, mice were injected intracerebroventricularly just prior to dark onset on different days with either 0.5 microl vehicle (pyrogen-free saline; PFS) or with 0.5 microl PFS containing one of four doses of muIL-1beta (2.5 ng, 5 ng, 10 ng, 50 ng). No mouse received more than two doses of muIL-1beta, and administration of muIL-1beta doses was counter-balanced to eliminate potential order effects. Sleep-wake behavior was determined for 24 h after injections. i.c.v. administration of muIL-1beta increased in NREM sleep of both mouse strains in a dose-related fashion, but the maximal increase was of greater magnitude in C57Bl/6J mice. muIL-1beta induced fever in C57Bl/6J mice but not in IL-6 KO mice. Collectively, these data demonstrate IL-6 is necessary for IL-1 to induce

  13. Cerebral glucose utilization during stage 2 sleep in man.

    Science.gov (United States)

    Maquet, P; Dive, D; Salmon, E; Sadzot, B; Franco, G; Poirrier, R; Franck, G

    1992-01-31

    Using [18F]fluorodeoxyglucose method and positron emission tomography, we performed paired determinations of the cerebral glucose utilization at one week intervals during sleep and wakefulness, in 12 young normal subjects. During 6 of 28 sleep runs, a stable stage 2 SWS was observed that fulfilled the steady-state conditions of the model. The cerebral glucose utilization during stage 2 SWS was lower than during wakefulness, but the variation did not significantly differ from zero (mean variation: -11.5 +/- 25.57%, P = 0.28). The analysis of 89 regions of interest showed that glucose metabolism differed significantly from that observed at wake in 6 brain regions, among them both thalamic nuclei. We conclude that the brain energy metabolism is not homogeneous throughout all the stages of non-REMS but decreases from stage 2 SWS to deep SWS; we suggest that a low thalamic glucose metabolism is a metabolic feature common to both stage 2 and deep SWS, reflecting the inhibitory processes observed in the thalamus during these stages of sleep. Stage 2 SWS might protect the stability of sleep by insulating the subject from the environment and might be a prerequisite to the full development of other phases of sleep, especially deep SWS.

  14. Sleep disturbances and circadian CLOCK genes in borderline personality disorder.

    Science.gov (United States)

    Fleischer, Monika; Schäfer, Michael; Coogan, Andrew; Häßler, Frank; Thome, Johannes

    2012-10-01

    Borderline personality disorder (BPD) is characterised by a deep-reaching pattern of affective instability, incoherent identity, self-injury, suicide attempts, and disturbed interpersonal relations and lifestyle. The daily activities of BPD patients are often chaotic and disorganized, with patients often staying up late while sleeping during the day. These behavioural patterns suggest that altered circadian rhythms may be associated with BPD. Furthermore, BPD patients frequently report suffering from sleep disturbances. In this review, we overview the evidence that circadian rhythms and sleep are disturbed in BPD, and we explore the possibility that personality traits that are pertinent for BPD may be associated with circadian typology, and perhaps to circadian genotypes. With regards to sleep architecture, we review the evidence that BPD patients display altered non-REM and REM sleep. A possible cue to a deeper understanding of this temporal dysregulation might be an analysis of the circadian clock at the molecular and cellular level, as well as behavioural studies using actigraphy and we suggest avenues for further exploration of these factors.

  15. Deficiency of FK506-binding protein (FKBP) 51 alters sleep architecture and recovery sleep responses to stress in mice.

    Science.gov (United States)

    Albu, Stefana; Romanowski, Christoph P N; Letizia Curzi, M; Jakubcakova, Vladimira; Flachskamm, Cornelia; Gassen, Nils C; Hartmann, Jakob; Schmidt, Mathias V; Schmidt, Ulrike; Rein, Theo; Holsboer, Florian; Hausch, Felix; Paez-Pereda, Marcelo; Kimura, Mayumi

    2014-04-01

    FK506-binding protein 51 (FKBP51) is a co-chaperone of the glucocorticoid receptor, functionally linked to its activity via an ultra-short negative feedback loop. Thus, FKBP51 plays an important regulatory role in the hypothalamic-pituitary-adrenocortical (HPA) axis necessary for stress adaptation and recovery. Previous investigations illustrated that HPA functionality is influenced by polymorphisms in the gene encoding FKBP51, which are associated with both increased protein levels and depressive episodes. Because FKBP51 is a key molecule in stress responses, we hypothesized that its deletion impacts sleep. To study FKBP51-involved changes in sleep, polysomnograms of FKBP51 knockout (KO) mice and wild-type (WT) littermates were compared at baseline and in the recovery phase after 6-h sleep deprivation (SD) and 1-h restraint stress (RS). Using another set of animals, the 24-h profiles of hippocampal free corticosterone levels were also determined. The most dominant effect of FKBP51 deletion appeared as increased nocturnal wake, where the bout length was significantly extended while non-rapid eye movement sleep (NREMS) and rapid eye movement sleep were rather suppressed. After both SD and RS, FKBP51KO mice exhibited less recovery or rebound sleep than WTs, although slow-wave activity during NREMS was higher in KOs, particularly after SD. Sleep compositions of KOs were nearly opposite to sleep profiles observed in human depression. This might result from lower levels of free corticosterone in FKBP51KO mice, confirming reduced HPA reactivity. The results indicate that an FKBP51 deletion yields a pro-resilience sleep phenotype. FKBP51 could therefore be a therapeutic target for stress-induced mood and sleep disorders.

  16. Sleep Monitoring Based on a Tri-Axial Accelerometer and a Pressure Sensor.

    Science.gov (United States)

    Nam, Yunyoung; Kim, Yeesock; Lee, Jinseok

    2016-05-23

    Sleep disorders are a common affliction for many people even though sleep is one of the most important factors in maintaining good physiological and emotional health. Numerous researchers have proposed various approaches to monitor sleep, such as polysomnography and actigraphy. However, such approaches are costly and often require overnight treatment in clinics. With this in mind, the research presented here has emerged from the question: "Can data be easily collected and analyzed without causing discomfort to patients?" Therefore, the aim of this study is to provide a novel monitoring system for quantifying sleep quality. The data acquisition system is equipped with multimodal sensors, including a three-axis accelerometer and a pressure sensor. To identify sleep quality based on measured data, a novel algorithm, which uses numerous physiological parameters, was proposed. Such parameters include non-REM sleep time, the number of apneic episodes, and sleep durations for dominant poses. To assess the effectiveness of the proposed system, three participants were enrolled in this experimental study for a duration of 20 days. From the experimental results, it can be seen that the proposed monitoring system is effective for quantifying sleep quality.

  17. Sleep in children with autism with and without autistic regression.

    Science.gov (United States)

    Giannotti, Flavia; Cortesi, Flavia; Cerquiglini, Antonella; Vagnoni, Cristina; Valente, Donatella

    2011-06-01

    The purpose of the present investigation was to characterize and compare traditional sleep architecture and non-rapid eye movement (NREM) sleep microstructure in a well-defined cohort of children with regressive and non-regressive autism, and in typically developing children (TD). We hypothesized that children with regressive autism would demonstrate a greater degree of sleep disruption either at a macrostructural or microstructural level and a more problematic sleep as reported by parents. Twenty-two children with non-regressive autism, 18 with regressive autism without comorbid pathologies and 12 with TD, aged 5-10years, underwent standard overnight multi-channel polysomnographic evaluation. Parents completed a structured questionnaire (Childrens' Sleep Habits Questionnaire-CSHQ). The initial hypothesis, that regressed children have more disrupted sleep, was supported by our findings that they scored significantly higher on CSHQ, particularly on bedtime resistance, sleep onset delay, sleep duration and night wakings CSHQ subdomains than non-regressed peers, and both scored more than typically developing controls. Regressive subjects had significantly less efficient sleep, less total sleep time, prolonged sleep latency, prolonged REM latency and more time awake after sleep onset than non-regressive children and the TD group. Regressive children showed lower cyclic alternating pattern (CAP) rates and A1 index in light sleep than non-regressive and TD children. Our findings suggest that, even though no particular differences in sleep architecture were found between the two groups of children with autism, those who experienced regression showed more sleep disorders and a disruption of sleep either from a macro- or from a microstructural viewpoint. © 2010 European Sleep Research Society.

  18. Sleep phenotyping in a mouse model of extreme trait anxiety.

    Directory of Open Access Journals (Sweden)

    Vladimira Jakubcakova

    Full Text Available BACKGROUND: There is accumulating evidence that anxiety impairs sleep. However, due to high sleep variability in anxiety disorders, it has been difficult to state particular changes in sleep parameters caused by anxiety. Sleep profiling in an animal model with extremely high vs. low levels of trait anxiety might serve to further define sleep patterns associated with this psychopathology. METHODOLOGY/PRINCIPAL FINDINGS: Sleep-wake behavior in mouse lines with high (HAB, low (LAB and normal (NAB anxiety-related behaviors was monitored for 24 h during baseline and recovery after 6 h sleep deprivation (SD. The amounts of each vigilance state, sleep architecture, and EEG spectral variations were compared between the mouse lines. In comparison to NAB mice, HAB mice slept more and exhibited consistently increased delta power during non-rapid eye movement (NREM sleep. Their sleep patterns were characterized by heavy fragmentation, reduced maintenance of wakefulness, and frequent intrusions of rapid eye movement (REM sleep. In contrast, LAB mice showed a robust sleep-wake rhythm with remarkably prolonged sleep latency and a long, persistent period of wakefulness. In addition, the accumulation of delta power after SD was impaired in the LAB line, as compared to HAB mice. CONCLUSIONS/SIGNIFICANCE: Sleep-wake patterns were significantly different between HAB and LAB mice, indicating that the genetic predisposition to extremes in trait anxiety leaves a biological scar on sleep quality. The enhanced sleep demand observed in HAB mice, with a strong drive toward REM sleep, may resemble a unique phenotype reflecting not only elevated anxiety but also a depression-like attribute.

  19. Commentary on the mutual interaction model of McCarley and Massaquoi for REM-NREM cycle

    NARCIS (Netherlands)

    Daan, Serge; Beersma, Domien G.M.

    1986-01-01

    McCarley and Massaquoi successfully simulated human REM-NREM cycle characteristics by extending the McCarley-Hobson model with two sets of assumptions, one creating limit cycle behavior, the other introducing two sources of circadian variation. We argue that the limit cycle assumptions, due to freed

  20. Probabilistic cardiac and respiratory based classification of sleep and apneic events in subjects with sleep apnea.

    Science.gov (United States)

    Willemen, T; Varon, C; Dorado, A Caicedo; Haex, B; Vander Sloten, J; Van Huffel, S

    2015-10-01

    Current clinical standards to assess sleep and its disorders lack either accuracy or user-friendliness. They are therefore difficult to use in cost-effective population-wide screening or long-term objective follow-up after diagnosis. In order to fill this gap, the use of cardiac and respiratory information was evaluated for discrimination between different sleep stages, and for detection of apneic breathing. Alternative probabilistic visual representations were also presented, referred to as the hypnocorrogram and apneacorrogram. Analysis was performed on the UCD sleep apnea database, available on Physionet. The presence of apneic events proved to have a significant impact on the performance of a cardiac and respiratory based algorithm for sleep stage classification. WAKE versus SLEEP discrimination resulted in a kappa value of κ = 0.0439, while REM versus NREM resulted in κ = 0.298 and light sleep (N1N2) versus deep sleep (N3) in κ = 0.339. The high proportion of hypopneic events led to poor detection of apneic breathing, resulting in a kappa value of κ = 0.272. While the probabilistic representations allow to put classifier output in perspective, further improvements would be necessary to make the classifier reliable for use on patients with sleep apnea.

  1. Specific EEG sleep pattern in the prefrontal cortex in primary insomnia.

    Science.gov (United States)

    Perrier, Joy; Clochon, Patrice; Bertran, Françoise; Couque, Colette; Bulla, Jan; Denise, Pierre; Bocca, Marie-Laure

    2015-01-01

    To assess the specific prefrontal activity in comparison to those in the other main cortical areas in primary insomnia patients and in good sleepers. Fourteen primary insomnia patients and 11 good sleepers were included in the analysis. Participants completed one night of polysomnography in the sleep lab. Power spectra were calculated during the NREM (Non-rapid eyes movements) and the REM (Rapid eyes movements) sleep periods at prefrontal, occipital, temporal and central electrode positions. During the NREM sleep, the power spectra did not differ between groups in the prefrontal cortex; while primary insomnia patients exhibited a higher beta power spectrum and a lower delta power spectrum compared to good sleepers in other areas. During the REM sleep, the beta1 power spectrum was lower in the prefrontal cortex in primary insomnia patients compared to good sleepers; while no significant difference between groups was obtained for the other areas. The present study shows a specific prefrontal sleep pattern during the whole sleep period. In addition, we suggest that primary insomnia patients displayed a dysfunction in the reactivation of the limbic system during the REM sleep and we give additional arguments in favor of a sleep-protection mechanism displayed by primary insomnia patients.

  2. Specific EEG sleep pattern in the prefrontal cortex in primary insomnia.

    Directory of Open Access Journals (Sweden)

    Joy Perrier

    Full Text Available OBJECTIVE: To assess the specific prefrontal activity in comparison to those in the other main cortical areas in primary insomnia patients and in good sleepers. METHODS: Fourteen primary insomnia patients and 11 good sleepers were included in the analysis. Participants completed one night of polysomnography in the sleep lab. Power spectra were calculated during the NREM (Non-rapid eyes movements and the REM (Rapid eyes movements sleep periods at prefrontal, occipital, temporal and central electrode positions. RESULTS: During the NREM sleep, the power spectra did not differ between groups in the prefrontal cortex; while primary insomnia patients exhibited a higher beta power spectrum and a lower delta power spectrum compared to good sleepers in other areas. During the REM sleep, the beta1 power spectrum was lower in the prefrontal cortex in primary insomnia patients compared to good sleepers; while no significant difference between groups was obtained for the other areas. CONCLUSIONS: The present study shows a specific prefrontal sleep pattern during the whole sleep period. In addition, we suggest that primary insomnia patients displayed a dysfunction in the reactivation of the limbic system during the REM sleep and we give additional arguments in favor of a sleep-protection mechanism displayed by primary insomnia patients.

  3. A Self-adaptive Threshold Method for Automatic Sleep Stage Classification Using EOG and EMG

    Directory of Open Access Journals (Sweden)

    Li Jie

    2015-01-01

    Full Text Available Sleep stages are generally divided into three stages including Wake, REM and NRME. The standard sleep monitoring technology is Polysomnography (PSG. The inconvenience for PSG monitoring limits the usage of PSG in some areas. In this study, we developed a new method to classify sleep stage using electrooculogram (EOG and electromyography (EMG automatically. We extracted right and left EOG features and EMG feature in time domain, and classified them into strong, weak and none types through calculating self-adaptive threshold. Combination of the time features of EOG and EMG signals, we classified sleep stages into Wake, REM and NREM stages. The time domain features utilized in the method were Integrate Value, variance and energy. The experiment of 30 datasets showed a satisfactory result with the accuracy of 82.93% for Wake, NREM and REM stages classification, and the average accuracy of Wake stage classification was 83.29%, 82.11% for NREM stage and 76.73% for REM stage.

  4. Predominant endothelial vasomotor activity during human sleep: a near-infrared spectroscopy study.

    Science.gov (United States)

    Zhang, Zhongxing; Khatami, Ramin

    2014-11-01

    Vasomotion is important in the study of vascular disorders, including stroke. Spontaneous low and very low hemodynamic oscillations (3-150 mHz) measured with near-infrared spectroscopy (NIRS) reflect the endothelial (3-20 mHz), neurogenic (20-40 mHz) and myogenic (40-150 mHz) components of vasomotion. We investigated sleep-specific patterns of vasomotion by characterizing hemodynamic oscillations with NIRS in healthy subjects, and tested the feasibility of NIRS as a bedside tool for monitoring vasomotion during whole-night sleep. To characterize local cerebral vasomotion, we compared cerebral NIRS measurements with muscular NIRS measurements and peripheral arterial oxygen saturation (SpO2 ) during different sleep stages in 14 healthy volunteers. Spectral powers of hemodynamic oscillations in the frequency range of endothelial vasomotion were systemically predominant in every sleep stage, and the powers of endothelial and neurogenic vasomotion decreased in deep sleep as compared with light sleep and rapid eye movement (REM) sleep in brain, muscle, and SpO2 . The decrease in the powers of myogenic vasomotion in deep sleep only occurred in brain, and not in muscle. These results point to a predominant role of endothelial function in regulating vasomotion during sleep. The decline in cerebral endothelial and neurogenic vasomotion during progression to deeper non-REM sleep suggests that deep sleep may play a protective role for vascular function. NIRS can be used to monitor endothelial control of vasomotion during nocturnal sleep, thus providing a promising non-invasive bedside tool with which to study the sleep-relevant pathological mechanisms in vascular diseases and stroke.

  5. Ramadan fasting, mental health and sleep-wake pattern

    Directory of Open Access Journals (Sweden)

    Mohsen Khoshniat Nikoo

    2012-06-01

    Full Text Available Background: Life style Changes during Ramadan month could possibly affect sleep-related behaviors such as total daily sleep time, sleep and wake up time and brain waves. In addition, Spirituality and religiosity have a marvelous influence on mental health and effective solutions against stress are being religious and believe in God. This review discusses the results of all related studies about possible effects of Ramadan fasting on various aspects of sleep pattern and mental health. Methods: Keywords such as ‘Ramadan’, ‘Ramadan Fasting’, ‘Islamic Fasting’, ‘Fasting in Ramadan’ and Fasting along Sleep, Chronotype, Sleep Latency, REM, NREM, Brain Wave, Psychology, Mental health, Religion, Mood, Depression, Social interaction, Depressive illness, Psychomotor performances, Bipolar disorders, Accident, Mania, Anxiety and Stress were searched via PubMed database, Scientific Information Datebas (SID and also some local journals, hence, 103 related articles from 1972 until 2010 were studied. Results: The results of studies about the effects of Ramadan fasting on sleep pattern is not similar and these differences could be due to cultural and life style discrepancy in several countries. Fasting during Ramadan could lead to delay in sleep-wake cycle, decrease in deep sleep and lack of awareness during the day. Conclusion: There are various reasons such as dietary pattern, hormonal changes and also stress which could alter the quantity and quality of sleep during Ramadan. Also, according to the available information, there is a relationship between fasting and mental health.

  6. Sleep Disorders

    Science.gov (United States)

    ... the day, even if you have had enough sleep? You might have a sleep disorder. The most common kinds are Insomnia - a hard time falling or staying asleep Sleep apnea - breathing interruptions during sleep Restless legs syndrome - ...

  7. Sleep Problems

    Science.gov (United States)

    ... For Consumers Consumer Information by Audience For Women Sleep Problems Share Tweet Linkedin Pin it More sharing ... PDF 474KB) En Español Medicines to Help You Sleep Tips for Better Sleep Basic Facts about Sleep ...

  8. Biological Rhythms Modelisation of Vigilance and Sleep in Microgravity State with COSINOR and Volterra's Kernels Methods

    Science.gov (United States)

    Gaudeua de Gerlicz, C.; Golding, J. G.; Bobola, Ph.; Moutarde, C.; Naji, S.

    2008-06-01

    The spaceflight under microgravity cause basically biological and physiological imbalance in human being. Lot of study has been yet release on this topic especially about sleep disturbances and on the circadian rhythms (alternation vigilance-sleep, body, temperature...). Factors like space motion sickness, noise, or excitement can cause severe sleep disturbances. For a stay of longer than four months in space, gradual increases in the planned duration of sleep were reported. [1] The average sleep in orbit was more than 1.5 hours shorter than the during control periods on earth, where sleep averaged 7.9 hours. [2] Alertness and calmness were unregistered yield clear circadian pattern of 24h but with a phase delay of 4h.The calmness showed a biphasic component (12h) mean sleep duration was 6.4 structured by 3-5 non REM/REM cycles. Modelisations of neurophysiologic mechanisms of stress and interactions between various physiological and psychological variables of rhythms have can be yet release with the COSINOR method. [3

  9. cGMP-dependent protein kinase I, the circadian clock, sleep and learning.

    Science.gov (United States)

    Feil, Robert; Hölter, Sabine M; Weindl, Karin; Wurst, Wolfgang; Langmesser, Sonja; Gerling, Andrea; Feil, Susanne; Albrecht, Urs

    2009-07-01

    The second messenger cGMP controls cardiovascular and gastrointestinal homeostasis in mammals. However, its physiological relevance in the nervous system is poorly understood.1 Now, we have reported that the cGMP-dependent protein kinase type I (PRKG1) is implicated in the regulation of the timing and quality of sleep and wakefulness.2Prkg1 mutant mice showed altered distribution of sleep and wakefulness as well as reduction in rapid-eye-movement sleep (REMS) duration and in non-REMS consolidation. Furthermore, the ability to sustain waking episodes was compromised. These observations were also reflected in wheel-running and drinking activity. A decrease in electroencephalogram power in the delta frequency range (1-4 Hz) under baseline conditions was observed, which was normalized after sleep deprivation. Together with the finding that circadian clock amplitude is reduced in Prkg1 mutants these results indicate a decrease of the wake-promoting output of the circadian system affecting sleep. Because quality of sleep might affect learning we tested Prkg1 mutants in several learning tasks and find normal spatial learning but impaired object recognition memory in these animals. Our findings indicate that Prkg1 impinges on circadian rhythms, sleep and distinct aspects of learning.

  10. Form and Function of Sleep Spindles across the Lifespan

    Directory of Open Access Journals (Sweden)

    Brittany C. Clawson

    2016-01-01

    Full Text Available Since the advent of EEG recordings, sleep spindles have been identified as hallmarks of non-REM sleep. Despite a broad general understanding of mechanisms of spindle generation gleaned from animal studies, the mechanisms underlying certain features of spindles in the human brain, such as “global” versus “local” spindles, are largely unknown. Neither the topography nor the morphology of sleep spindles remains constant throughout the lifespan. It is likely that changes in spindle phenomenology during development and aging are the result of dramatic changes in brain structure and function. Across various developmental windows, spindle activity is correlated with general cognitive aptitude, learning, and memory; however, these correlations vary in strength, and even direction, depending on age and metrics used. Understanding these differences across the lifespan should further clarify how these oscillations are generated and their function under a variety of circumstances. We discuss these issues, and their translational implications for human cognitive function. Because sleep spindles are similarly affected in disorders of neurodevelopment (such as schizophrenia and during aging (such as neurodegenerative conditions, both types of disorders may benefit from therapies based on a better understanding of spindle function.

  11. Reliability of Sleep Measures from Four Personal Health Monitoring Devices Compared to Research-Based Actigraphy and Polysomnography

    Directory of Open Access Journals (Sweden)

    Janna Mantua

    2016-05-01

    Full Text Available Polysomnography (PSG is the “gold standard” for monitoring sleep. Alternatives to PSG are of interest for clinical, research, and personal use. Wrist-worn actigraph devices have been utilized in research settings for measures of sleep for over two decades. Whether sleep measures from commercially available devices are similarly valid is unknown. We sought to determine the validity of five wearable devices: Basis Health Tracker, Misfit Shine, Fitbit Flex, Withings Pulse O2, and a research-based actigraph, Actiwatch Spectrum. We used Wilcoxon Signed Rank tests to assess differences between devices relative to PSG and correlational analysis to assess the strength of the relationship. Data loss was greatest for Fitbit and Misfit. For all devices, we found no difference and strong correlation of total sleep time with PSG. Sleep efficiency differed from PSG for Withings, Misfit, Fitbit, and Basis, while Actiwatch mean values did not differ from that of PSG. Only mean values of sleep efficiency (time asleep/time in bed from Actiwatch correlated with PSG, yet this correlation was weak. Light sleep time differed from PSG (nREM1 + nREM2 for all devices. Measures of Deep sleep time did not differ from PSG (SWS + REM for Basis. These results reveal the current strengths and limitations in sleep estimates produced by personal health monitoring devices and point to a need for future development.

  12. Reliability of Sleep Measures from Four Personal Health Monitoring Devices Compared to Research-Based Actigraphy and Polysomnography

    Science.gov (United States)

    Mantua, Janna; Gravel, Nickolas; Spencer, Rebecca M. C.

    2016-01-01

    Polysomnography (PSG) is the “gold standard” for monitoring sleep. Alternatives to PSG are of interest for clinical, research, and personal use. Wrist-worn actigraph devices have been utilized in research settings for measures of sleep for over two decades. Whether sleep measures from commercially available devices are similarly valid is unknown. We sought to determine the validity of five wearable devices: Basis Health Tracker, Misfit Shine, Fitbit Flex, Withings Pulse O2, and a research-based actigraph, Actiwatch Spectrum. We used Wilcoxon Signed Rank tests to assess differences between devices relative to PSG and correlational analysis to assess the strength of the relationship. Data loss was greatest for Fitbit and Misfit. For all devices, we found no difference and strong correlation of total sleep time with PSG. Sleep efficiency differed from PSG for Withings, Misfit, Fitbit, and Basis, while Actiwatch mean values did not differ from that of PSG. Only mean values of sleep efficiency (time asleep/time in bed) from Actiwatch correlated with PSG, yet this correlation was weak. Light sleep time differed from PSG (nREM1 + nREM2) for all devices. Measures of Deep sleep time did not differ from PSG (SWS + REM) for Basis. These results reveal the current strengths and limitations in sleep estimates produced by personal health monitoring devices and point to a need for future development. PMID:27164110

  13. Reliability of Sleep Measures from Four Personal Health Monitoring Devices Compared to Research-Based Actigraphy and Polysomnography.

    Science.gov (United States)

    Mantua, Janna; Gravel, Nickolas; Spencer, Rebecca M C

    2016-05-05

    Polysomnography (PSG) is the "gold standard" for monitoring sleep. Alternatives to PSG are of interest for clinical, research, and personal use. Wrist-worn actigraph devices have been utilized in research settings for measures of sleep for over two decades. Whether sleep measures from commercially available devices are similarly valid is unknown. We sought to determine the validity of five wearable devices: Basis Health Tracker, Misfit Shine, Fitbit Flex, Withings Pulse O2, and a research-based actigraph, Actiwatch Spectrum. We used Wilcoxon Signed Rank tests to assess differences between devices relative to PSG and correlational analysis to assess the strength of the relationship. Data loss was greatest for Fitbit and Misfit. For all devices, we found no difference and strong correlation of total sleep time with PSG. Sleep efficiency differed from PSG for Withings, Misfit, Fitbit, and Basis, while Actiwatch mean values did not differ from that of PSG. Only mean values of sleep efficiency (time asleep/time in bed) from Actiwatch correlated with PSG, yet this correlation was weak. Light sleep time differed from PSG (nREM1 + nREM2) for all devices. Measures of Deep sleep time did not differ from PSG (SWS + REM) for Basis. These results reveal the current strengths and limitations in sleep estimates produced by personal health monitoring devices and point to a need for future development.

  14. Sleep Architecture in Partially Acclimatized Lowlanders and Native Tibetans at 3800 Meter Altitude: What Are the Differences?

    Science.gov (United States)

    Kong, Fanyi; Liu, Shixiang; Li, Qiong; Wang, Lin

    2015-09-01

    It is not well known whether high altitude acclimatization could help lowlanders improve their sleep architecture as well as Native Tibetans. In order to address this, we investigated the structural differences in sleep between Native Tibetans and partially acclimatized lowlanders and examined the association between sleep architecture and subjective sleep quality. Partially acclimatized soldiers from lowlands and Native Tibetan soldiers stationed at Shangri-La (3800 m) were surveyed using the Pittsburgh Sleep Quality Index (PSQI), Hamilton Anxiety Scale (HAMA), and Hamilton Depression Rating Scale (HAMD). The sleep architecture of those without anxiety (as determined by HAMA>14) and/or depression (HAMD>20) was analyzed using polysomnography and the results were compared between the two groups. One hundred sixty-five male soldiers, including 55 Native Tibetans, were included in the study. After partial acclimatization, lowlanders still exhibited differences in sleep architecture as compared to Native Tibetans, as indicated by a higher PSQI score (8.14±2.37 vs. 3.90±2.85, psleep (458.68±112.63 vs. 501±37.82 min, P=0.03), lower nocturnal arterial oxygen saturation (Spo2; mean 91.39±1.24 vs. 92.71±2.12%, p=0.03), and increased times of Spo2 reduction from 89% to 85% (median 48 vs.17, p=0.04) than Native Tibetans. Sleep onset latency (β=0.08, 95%CI: 0.01 to 0.15), non-REM latency (β=0.011, 95%CI 0.001 to 0.02), mean Spo2 (β=-0.79, 95%CI: -1.35 to -0.23) and time in stage 3+4 sleep (β=-0.014, 95%CI: -0.001 to -0.028) were slightly associated with the PSQI score. Partially acclimatized lowlanders experienced less time in non-REM sleep and had lower arterial oxygen saturation than Native Tibetans at an altitude of 3800 m. The main independent contributors to poor sleep quality are hypoxemia, difficulty in sleep induction, and time in deep sleep.

  15. Sleep in Kcna2 knockout mice

    Directory of Open Access Journals (Sweden)

    Messing Albee

    2007-10-01

    Full Text Available Abstract Background Shaker codes for a Drosophila voltage-dependent potassium channel. Flies carrying Shaker null or hypomorphic mutations sleep 3–4 h/day instead of 8–14 h/day as their wild-type siblings do. Shaker-like channels are conserved across species but it is unknown whether they affect sleep in mammals. To address this issue, we studied sleep in Kcna2 knockout (KO mice. Kcna2 codes for Kv1.2, the alpha subunit of a Shaker-like voltage-dependent potassium channel with high expression in the mammalian thalamocortical system. Results Continuous (24 h electroencephalograph (EEG, electromyogram (EMG, and video recordings were used to measure sleep and waking in Kcna2 KO, heterozygous (HZ and wild-type (WT pups (P17 and HZ and WT adult mice (P67. Sleep stages were scored visually based on 4-s epochs. EEG power spectra (0–20 Hz were calculated on consecutive 4-s epochs. KO pups die by P28 due to generalized seizures. At P17 seizures are either absent or very rare in KO pups ( Conclusion Kv1.2, a mammalian homologue of Shaker, regulates neuronal excitability and affects NREM sleep.

  16. Sleep and dreaming are for important matters

    Directory of Open Access Journals (Sweden)

    Lampros ePerogamvros

    2013-07-01

    Full Text Available Recent studies in sleep and dreaming have described an activation of emotional and reward systems, as well as the processing of internal information during these states. Specifically, increased activity in the amygdala and across mesolimbic dopaminergic regions during REM sleep is likely to promote the consolidation of memory traces with high emotional/motivational value. Moreover, coordinated hippocampal-striatal replay during NREM sleep may contribute to the selective strengthening of memories for important events. In this review, we suggest that, via the activation of emotional/motivational circuits, sleep and dreaming may offer a neurobehavioral substrate for the offline reprocessing of emotions, associative learning, and exploratory behaviors, resulting in improved memory organization, waking emotion regulation, social skills, and creativity. Dysregulation of such motivational/emotional processes due to sleep disturbances (e.g. insomnia, sleep deprivation would predispose to reward-related disorders, such as mood disorders, increased risk-taking and compulsive behaviors, and may have major health implications, especially in vulnerable populations.

  17. Sleep and dreaming are for important matters.

    Science.gov (United States)

    Perogamvros, L; Dang-Vu, T T; Desseilles, M; Schwartz, S

    2013-01-01

    Recent studies in sleep and dreaming have described an activation of emotional and reward systems, as well as the processing of internal information during these states. Specifically, increased activity in the amygdala and across mesolimbic dopaminergic regions during REM sleep is likely to promote the consolidation of memory traces with high emotional/motivational value. Moreover, coordinated hippocampal-striatal replay during NREM sleep may contribute to the selective strengthening of memories for important events. In this review, we suggest that, via the activation of emotional/motivational circuits, sleep and dreaming may offer a neurobehavioral substrate for the offline reprocessing of emotions, associative learning, and exploratory behaviors, resulting in improved memory organization, waking emotion regulation, social skills, and creativity. Dysregulation of such motivational/emotional processes due to sleep disturbances (e.g., insomnia, sleep deprivation) would predispose to reward-related disorders, such as mood disorders, increased risk-taking and compulsive behaviors, and may have major health implications, especially in vulnerable populations.

  18. 儿童特发性癫痫与睡眠的相关性研究%Study on correlation of children idiopathic epilepsy and sleep

    Institute of Scientific and Technical Information of China (English)

    汤春辉; 杨景晖

    2012-01-01

    目的 探讨儿童特发性癫痫样放电与睡眠时相的关系及癫痫对睡眠结构的影响.方法 对55例癫痫患者的动态脑电图(AEEG)监测,并对结果进行分析.结果 55例癫痫患儿中痫样放电共49例(89.1%),睡眠期出现45例(91.8%),以NREMⅠ、Ⅱ期最多见.睡眠中全身性发作35例、部分性发作继发全身性发作4例均出现于NREMⅠ、Ⅱ期.与对照组比较,癜痫患儿总睡眠时间、REM期较正常对照组差异无统计学意义(P>0.05),但NREM Ⅰ、Ⅱ期显著延长,而NREMⅢ、Ⅳ期明显缩短,睡眠潜伏期延长(P<0.01).癫痫患者睡眠纺锤波出现不对称、减少或消失.结论 瘸样放电主要发生于睡眠期NREMⅠ、Ⅱ期,癫痫也改变着睡眠结构,引起睡眠障碍.不同癫痫发作类型与睡眠时相有一定的关系.%OBJECTIVE To investigate the relationship between idiopathic epileptiform discharge and sleep phase, and the effect of epilepsy on sleep architecture. METHODS Monitored and analyzed active EEG of 55 patients with epilepsy. RESULTS Among 55 cases, epileptiform discharge was found in 49 cases (89.1%), of which, 45 cases showed in sleep stage, and NREM Ⅰ and Ⅱ stage were most common. Both 35 generalized seizure and 4 partial seizure with secondarily generalized seizure appeared in NREM Ⅰ and Ⅱ stage. Compared with the control group, total sleep time and REM phase in epileptic children were not different (P> 0.05). However, NREM Ⅰ and Ⅱ stage prolonged obviously, NREM Ⅲ and Ⅳ stage shortened significantly, and sleep latency prolonged (P < 0.01). Sleep spindles in epileptic children appeared asymmetry, reduced or disappeared. CONCLUSION Epileptiform discharge mainly appears in NREM Ⅰ and Ⅱ stage, and epilepsy changes sleep architecture and results in sleep disorders. There are some relations between seizure types and sleep phases.

  19. The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation

    Science.gov (United States)

    Van Dongen, Hans P A.; Maislin, Greg; Mullington, Janet M.; Dinges, David F.

    2003-01-01

    OBJECTIVES: To inform the debate over whether human sleep can be chronically reduced without consequences, we conducted a dose-response chronic sleep restriction experiment in which waking neurobehavioral and sleep physiological functions were monitored and compared to those for total sleep deprivation. DESIGN: The chronic sleep restriction experiment involved randomization to one of three sleep doses (4 h, 6 h, or 8 h time in bed per night), which were maintained for 14 consecutive days. The total sleep deprivation experiment involved 3 nights without sleep (0 h time in bed). Each study also involved 3 baseline (pre-deprivation) days and 3 recovery days. SETTING: Both experiments were conducted under standardized laboratory conditions with continuous behavioral, physiological and medical monitoring. PARTICIPANTS: A total of n = 48 healthy adults (ages 21-38) participated in the experiments. INTERVENTIONS: Noctumal sleep periods were restricted to 8 h, 6 h or 4 h per day for 14 days, or to 0 h for 3 days. All other sleep was prohibited. RESULTS: Chronic restriction of sleep periods to 4 h or 6 h per night over 14 consecutive days resulted in significant cumulative, dose-dependent deficits in cognitive performance on all tasks. Subjective sleepiness ratings showed an acute response to sleep restriction but only small further increases on subsequent days, and did not significantly differentiate the 6 h and 4 h conditions. Polysomnographic variables and delta power in the non-REM sleep EEG-a putative marker of sleep homeostasis--displayed an acute response to sleep restriction with negligible further changes across the 14 restricted nights. Comparison of chronic sleep restriction to total sleep deprivation showed that the latter resulted in disproportionately large waking neurobehavioral and sleep delta power responses relative to how much sleep was lost. A statistical model revealed that, regardless of the mode of sleep deprivation, lapses in behavioral alertness

  20. The effects of second generation antipsychotic drugs on sleep variables in healthy subjects and patients with schizophrenia.

    Science.gov (United States)

    Monti, Jaime M; Torterolo, Pablo; Pandi Perumal, Seithikurippu R

    2017-06-01

    Insomnia is a common feature in schizophrenia, and is characterized by an increase of sleep latency (SL), as well as reductions in total sleep time (TST) and sleep efficiency (SE). Regarding sleep architecture, non-rapid-eye-movement (NREM) sleep, slow wave sleep (SWS) and rapid-eye-movement (REM) sleep latency are decreased, whereas REM sleep tends to remain unchanged. According to polysomnographic studies, clozapine, olanzapine, quetiapine and ziprasidone administration increased TST and/or SE in healthy subjects. Additionally, olanzapine and ziprasidone augmented SWS, while changes corresponding to REM sleep were inconsistent. Furthermore, administration of clozapine, olanzapine and paliperidone to patients with schizophrenia was followed in most instances by a significant reduction of SL and an increase of TST and SE. In addition, olanzapine and paliperidone augmented SWS and REM sleep. By contrast, quetiapine administration further disrupted sleep as judged by the increase of SL, wake time after sleep onset (WASO) and REM sleep latency, and the reduction of SWS and REM sleep. No consistent effects on sleep variables were obtained during treatment with risperidone. To date, no polysomnographic studies have been published on the effects of aripiprazole, asenapine, iloperidone and lurasidone on sleep in either healthy subjects or patients with schizophrenia. Taken together, this evidence supports the conclusion that second generation antipsychotics (SGAs) including clozapine, olanzapine and paliperidone may ameliorate insomnia in patients with schizophrenia.

  1. How stressful are 105 days of isolation? Sleep EEG patterns and tonic cortisol in healthy volunteers simulating manned flight to Mars.

    Science.gov (United States)

    Gemignani, Angelo; Piarulli, Andrea; Menicucci, Danilo; Laurino, Marco; Rota, Giuseppina; Mastorci, Francesca; Gushin, Vadim; Shevchenko, Olga; Garbella, Erika; Pingitore, Alessandro; Sebastiani, Laura; Bergamasco, Massimo; L'Abbate, Antonio; Allegrini, Paolo; Bedini, Remo

    2014-08-01

    Spaceflights "environment" negatively affects sleep and its functions. Among the different causes promoting sleep alterations, such as circadian rhythms disruption and microgravity, stress is of great interest also for earth-based sleep medicine. This study aims to evaluate the relationships between stress related to social/environmental confinement and sleep in six healthy volunteers involved in the simulation of human flight to Mars (MARS500). Volunteers were sealed in a spaceship simulator for 105 days and studied at 5 specific time-points of the simulation period. Sleep EEG, urinary cortisol (24 h preceding sleep EEG recording) and subjectively perceived stress levels were collected. Cognitive abilities and emotional state were evaluated before and after the simulation. Sleep EEG parameters in the time (latency, duration) and frequency (power and hemispheric lateralization) domains were evaluated. Neither cognitive and emotional functions alterations nor abnormal stress levels were found. Higher cortisol levels were associated to: (i) decrease of sleep duration, increase of arousals, and shortening of REM latency; (ii) reduction of delta power and enhancement of sigma and beta in NREM N3; and (iii) left lateralization of delta activity (NREM and REM) and right lateralization of beta activity (NREM). Stressful conditions, even with cortisol fluctuations in the normal range, alter sleep structure and sleep EEG spectral content, mirroring pathological conditions such as primary insomnia or insomnia associated to depression. Correlations between cortisol fluctuations and sleep changes suggest a covert risk for developing allostatic load, and thus the need to develop ad-hoc countermeasures for preventing sleep alterations in long lasting manned space missions. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Change in sleep construction and its clinical significance in patients with epilepsy

    Institute of Scientific and Technical Information of China (English)

    Zhao zhongxin; Dong Xiaoli; Wu Weihua; Shao Fuyuan; Dong Shuzhen

    2000-01-01

    ObjectiveAnalyzing change of sleep construction and its clinical significance in patients with epilepsy Methods The 24h ambulatory EEGs(AEEG) during interictal were monitored in 58 patients with epilepsy and control group (58 normal persons). Results 1. The sleep period tiae and time of REM (rapid eye movement sleep)were no marked difference between the epilepsy and control groups, 479.98±67. 4 min in epilepsy, 496. 33±57.62 min in control. 2. In coaparison with those of the control, the epilepsy group showed that the NREM ( non rapid eye movement sleep) stage Ⅰ- Ⅱ was longer(68±6.61% and 56.33±7.01 % respectively), the NREM stage Ⅲ-Ⅳ was shorter (7. 03±5. 41% and 18.42±6. 94 % respectively) . There were a significance difference between the two groups (P<0。 01) . 3. The arousal times (268 times) in epilepsy were higher than those (15 times) of the control (P<0.01). 4. The results of correlated analysis showed that there was a significant positive correlation between the arousal times and the frequency of epileptifora discharges in epilepsy (r=0.639, P<0. 01). 5. The sleep spindles in 12 patients (21%) decreased and asymmetrical, normal in the control. Conclusion: There were the sleep disorders in patients with epilepsy . The epileptic activity during interictal can obvious influences on sleep quality in patients with epilepsy.

  3. [Effects of zopiclone on sleep, daytime somnolence and nocturnal and daytime performance in healthy volunteers].

    Science.gov (United States)

    Billiard, M; Besset, A; de Lustrac, C; Brissaud, L; Cadilhac, J

    1989-05-01

    Ten healthy volunteers, aged 20 to 39, underwent 2 adaptation nights and 3 sessions of 2 consecutive experimental nights and days at 1 week intervals. In the 3 sessions, subjects received under double blind conditions either Zopiclone 3.75 mg or 7.5 mg or placebo, according to a latin-square design. On nights 1 and 2 of each session, subjects were continuously polygraphically monitored, except for a 45 min provoked wake episode 135 min after sleep onset on night 2. Sleep continuity and architecture were evaluated during night 1, degree of daytime somnolence during day 1 and residual effects during night 2 (0 h 00) and day 2 (8 h 00 and 12 h 00). Sleep continuity was not modified, except for a reduction of the number of night awakenings. NREM sleep stage 1 was reduced and stage 2 was increased (in duration but not in percentage) with Zopiclone 3.75 and 7.5 mg. NREM sleep stages 3 and 4 were increased with Zopiclone 3.75 mg only. REM sleep was reduced (in percentage only) with Zopiclone 3.75 and 7.5 mg. Daytime somnolence varied according to the time but not with the 3 different conditions. One performance test only (choice reaction time test) showed a significant impairment at 0 h 00 with Zopiclone 7.5 mg. From a subjective point of view, sleep quality was improved and night time awakening was reduced with Zopiclone 7.5 mg.

  4. Coupling of Thalamocortical Sleep Oscillations Are Important for Memory Consolidation in Humans.

    Directory of Open Access Journals (Sweden)

    Mohammad Niknazar

    Full Text Available Sleep, specifically non-rapid eye movement (NREM sleep, is thought to play a critical role in the consolidation of recent memories. Two main oscillatory activities observed during NREM, cortical slow oscillations (SO, 0.5-1.0 Hz and thalamic spindles (12-15 Hz, have been shown to independently correlate with memory improvement. Yet, it is not known how these thalamocortical events interact, or the significance of this interaction, during the consolidation process. Here, we found that systemic administration of the GABAergic drug (zolpidem increased both the phase-amplitude coupling between SO and spindles, and verbal memory improvement in humans. These results suggest that thalamic spindles that occur during transitions to the cortical SO Up state are optimal for memory consolidation. Our study predicts that the timely interactions between cortical and thalamic events during consolidation, contribute to memory improvement and is mediated by the level of inhibitory neurotransmission.

  5. Sleep quality alterations in healthy workers at high altitude in Yushu area

    Institute of Scientific and Technical Information of China (English)

    Wu Tianyi; Li Wenxiang; Zhang Jianqing; Qi Shengui; Hao Lijuan; Wen Jialin

    2013-01-01

    During the period of reconstruction after Yushu Earthquake,a large number of sea-level or lowland workers ascended there and worked at altitudes between 3750 m and 4878 m which is a hypoxic environment.To investigate the sleep quality at that altitude,we performed two full polysomnographies (PSGs) in 10 volunteers,who were healthy male workers,aged 31±6.6,born and living at sea level,without experience of pre-altitude exposure.The assessment of subjective sleep quality was performed twice in each volunteer.The first investigations were carried out at sea level in Jinan city (pB=760 torr,1 torr=133.322 4 Pa).The second studies were performed at an altitude of 3750 m (pB=416 tonr) in Yushu Jiegu in the same 10 workers after they lived and worked at that altitude for 5 months.At sea level,workers presented a normal sleep structure and a higher oxygenation during sleep.However,as compared to sea-level sleep,at 3750 m,workers had a shorter total sleep time (TST) (p < 0.001),a longer stage 1 non-rapid eye movement (nREM) sleep (p < 0.05) and a shorter 3+4 nREM and rapid eye movement (REM) sleep (p < 0.05) with a severe sleep hypoxemia (p < 0.01).Our data suggested that sea-level workers revealed a disturbed sleep and a bad sleep quality with a significant sleep hypoxemia at altitude of 3750 m.Strengthening the prevention and treatment are thereby sorely necessary.

  6. The value of REM sleep parameters in differentiating Alzheimer's disease from old-age depression and normal aging.

    Science.gov (United States)

    Dykierek, P; Stadtmüller, G; Schramm, P; Bahro, M; van Calker, D; Braus, D F; Steigleider, P; Löw, H; Hohagen, F; Gattaz, W F; Berger, M; Riemann, D

    1998-01-01

    Pseudodementia as a common trait in elderly depressives presents a major problem in gerontopsychiatry, especially for the differential diagnosis between Old-Age Depression (OAD) and Dementia of the Alzheimer Type (DAT). The present polysomnographic study examined parameters of sleep continuity, sleep architecture, and REM sleep to differentiate DAT from OAD. The investigation was based on the theoretical framework of the cholinergic-aminergic imbalance model of depression, the cholinergic deficit hypothesis of Alzheimer's disease and the reciprocal interaction model of Non-REM/REM sleep regulation, according to which REM sleep parameters should have high discriminative value to differentiate OAD and DAT. We investigated 35 DAT patients, 39 OAD patients and 42 healthy controls for two consecutive nights in the sleep laboratory. The DAT patients were in relatively early/mild stages of the disease, the severity of depression in the OAD group was moderate to severe. Depressed patients showed characteristic 'depression-like' EEG sleep alterations, i.e. a lower sleep efficiency, a higher amount of nocturnal awakenings and decreased sleep stage 2. Sleep continuity and architecture in DAT was less disturbed. Nearly all REM sleep measures differentiated significantly between the diagnostic groups. OAD patients showed a shortened REM latency, increased REM density and a high rate of Sleep Onset REM periods (SOREM), whereas in DAT REM density was decreased in comparison to control subjects. REM latency in DAT was not prolonged as expected. To assess the discriminative power of REM sleep variables a series of discriminant analyses were conducted. Overall, 86% of patients were correctly classified, using REM density and REM latency measures. Our findings suggest that REM density as an indicator of phasic activity appears to be more sensitive as a biological marker for the differential diagnosis of OAD and DAT than REM latency. The results support the role of central cholinergic

  7. The homeostatic regulation of REM sleep: A role for localized expression of brain-derived neurotrophic factor in the brainstem.

    Science.gov (United States)

    Datta, Subimal; Knapp, Clifford M; Koul-Tiwari, Richa; Barnes, Abigail

    2015-10-01

    Homeostatic regulation of REM sleep plays a key role in neural plasticity and deficits in this process are implicated in the development of many neuropsychiatric disorders. Little is known, however, about the molecular mechanisms that underlie this homeostatic regulation process. This study examined the hypothesis that, during selective REM sleep deprivation (RSD), increased brain-derived neurotrophic factor (BDNF) expression in REM sleep regulating areas is critical for the development of homeostatic drive for REM sleep, as measured by an increase in the number of REM sleep transitions. Rats were assigned to RSD, non-sleep deprived (BSL), or total sleep deprivation (TSD) groups. Physiological recordings were obtained from cortical, hippocampal, and pontine EEG electrodes over a 6h period, in which sleep deprivation occurred during the first 3h. In the RSD, but not the other conditions, homeostatic drive for REM sleep increased progressively. BDNF protein expression was significantly greater in the pedunculopontine tegmentum (PPT) and subcoeruleus nucleus (SubCD) in the RSD as compared to the TSD and BSL groups, areas that regulate REM sleep, but not in the medial preoptic area, which regulates non-REM sleep. There was a significant positive correlation between RSD-induced increases in number of REM sleep episodes and increased BDNF expression in the PPT and SubCD. These increases positively correlated with levels of homeostatic drive for REM sleep. These results, for the first time, suggest that selective RSD-induced increased expression of BDNF in the PPT and SubCD are determinant factors in the development of the homeostatic drive for REM sleep.

  8. Nap sleep preserves associative but not item memory performance.

    Science.gov (United States)

    Studte, Sara; Bridger, Emma; Mecklinger, Axel

    2015-04-01

    Many studies have shown that sleep improves memory performance, and that even short naps during the day are beneficial. Certain physiological components of sleep such as spindles and slow-wave-sleep are thought to be particularly important for memory consolidation. The aim of this experiment was to reveal the role of naps for hippocampus-dependent associative memory (AM) and hippocampus-independent item memory (IM) alongside their corresponding ERP old/new effects. Participants learnt single words and word-pairs before performing an IM- and an AM-test (baseline). One group was subsequently allowed to nap (∼90min) while the other watched DVDs (control group). Afterwards, both groups performed a final IM- and AM-test for the learned stimuli (posttest). IM performance decreased for both groups, while AM performance decreased for the control group but remained constant for the nap group, consistent with predictions concerning the selective impact of napping on hippocampus-dependent recognition. Putative ERP correlates of familiarity and recollection were observed in the IM posttest, whereas only the later recollection-related effect was present in the AM test. Notably, none of these effects varied with group. Positive correlations were observed between spindle density during slow-wave-sleep and AM posttest performance as well as between spindle density during non-REM sleep and AM baseline performance, showing that successful learning and retrieval both before and after sleep relates to spindle density during nap sleep. Together, these results speak for a selective beneficial impact of naps on hippocampus-dependent memories.

  9. Sleep in depression: the influence of age, gender and diagnostic subtype on baseline sleep and the cholinergic REM induction test with RS 86.

    Science.gov (United States)

    Riemann, D; Hohagen, F; Bahro, M; Berger, M

    1994-01-01

    One hundred and eight healthy controls and 178 patients with a major depressive disorder according to DSM-III were investigated in the sleep laboratory after a 7-day drug wash-out period. Subsamples of 36 healthy controls and 56 patients additionally took part in the cholinergic rapid eye movement (REM) sleep induction test with RS 86. Data analysis revealed that age exerted powerful influences on sleep in control subjects and depressed patients. Sleep efficiency and amount of slow wave sleep (SWS) decreased with age, whereas the number of awakenings, early morning awakening, and amounts of wake time and stage 1 increased with age. REM latency was negatively correlated with age only in the group of patients with a major depression. Statistical analysis revealed group differences for almost all parameters of sleep continuity with disturbed indices in the depressed group. Differences in SWS were not detected. REM latency and REM density were altered in depression compared to healthy subjects. Sex differences existed for the amounts of stage 1 and SWS. The cholinergic REM induction test resulted in a significantly more pronounced induction of REM sleep in depressed patients compared with healthy controls, provoking sleep onset REM periods as well in those depressed patients showing baseline REM latencies in the normal range. Depressed patients with or without melancholia (according to DSM-III) did not differ from each other, either concerning baseline sleep or with respect to the results of the cholinergic REM induction test. The results stress the importance of age when comparing sleep patterns of healthy controls with those of depressed patients. Furthermore they underline the usefulness of the cholinergic REM induction test for differentiating depressed patients from healthy controls and support the reciprocal interaction model of nonREM-REM regulation and the cholinergic-aminergic imbalance hypothesis of affective disorders.

  10. Increased Ventricular Premature Contraction Frequency During REM Sleep in Patients with Coronary Artery Disease and Obstructive Sleep Apnea

    Directory of Open Access Journals (Sweden)

    Mari A. Watanabe

    2008-11-01

    Full Text Available Background Patients with obstructive sleep apnea are reported to have a peak of sudden cardiac death at night, in contrast to patients without apnea whose peak is in the morning. We hypothesized that ventricular premature contraction (VPC frequency would correlate with measures of apnea and sympathetic activity.Methods Electrocardiograms from a sleep study of 125 patients with coronary artery disease were evaluated. Patients were categorized by apnea-hypopnea index (AHI into Moderate (AHI 15 apnea groups. Sleep stages studied were Wake, S1, S2, S34, and rapid eye movement (REM. Parameters of a potent autonomically-based risk predictor for sudden cardiac death called heart rate turbulence were calculated.Results There were 74 Moderate and 51 Severe obstructive sleep apnea patients. VPC frequency was affected significantly by sleep stage (Wake, S2 and REM, F=5.8, p<.005 and by AHI (F=8.7, p<.005. In Severe apnea patients, VPC frequency was higher in REM than in Wake (p=.011. In contrast, patients with Moderate apnea had fewer VPCs and exhibited no sleep stage dependence (p=.19. Oxygen desaturation duration per apnea episode correlated positively with AHI (r2=.71, p<.0001, and was longer in REM than in non-REM (p<.0001. The heart rate turbulence parameter TS correlated negatively with oxygen desaturation duration in REM (r2=.06, p=.014.Conclusions Higher VPC frequency coupled with higher sympathetic activity caused by longer apnea episodes in REM sleep may be one reason for increased nocturnal death in apneic patients.

  11. 睡眠中发作症状的脑电图特征及其与睡眠分期的关系%Study on the characteristics of EEG features in onset of symptoms during sleep and its relationship with sleep staging

    Institute of Scientific and Technical Information of China (English)

    覃君德; 龚彩芬

    2015-01-01

    目的:探讨睡眠中发作症状的脑电图特征及其与睡眠分期的关系。方法统计分析2012年9月至2014年9月收治的86例睡眠中发作症状患者的临床资料。结果夜发性额叶癫痫患者的痫样波检出率57.1%(12/21)显著高于睡眠肌阵挛、夜惊症、梦游症、梦魇患者9.7%(3/31)、18.8%(3/16)、0、0( P ﹤0.05);86例患者中,NREMⅠ期、NREMⅡ期是睡眠肌阵挛集中发生的时期,NREMⅢ期、NREMⅣ期是夜惊症、梦游症集中发生的时期,REM期是梦魇集中发生的时期,NREMⅠ期、NREMⅡ期是夜发性额叶癫痫主要发生的时期,其次为NREMⅢ期、NREMⅣ期,最后为REM期。结论不同睡眠中发作症状的脑电图特征差异显著,和睡眠分期关系密切,临床可以依据脑电图特征对睡眠中发作症状患者的疾病类型进行诊断,从而为及时准确地治疗和改善患者预后提供良好的前提条件。%Objective To explore the characteristics of electroencephalographic features in onset of symptoms during sleep and sleep stag-ing. Methods The clinical data of 86 patients with onset of symptoms during sleep admitted and treated in the department of internal medicine in this hospital during September 2012 to September 2014 were reviewed and analyzed. Results The detection rate of epileptiform wave in patients with nocturnal frontal lobe epilepsy was 57. 1%(12/21),it was significantly higher than that of patients with sleep myoclonus 9. 7%(3/31), night terrors,18. 8%(3/16),sleepwalking(0)and nightmare(0)( P ﹤0. 05). Among these 86 patients,NREM I and NREM II were set in the period of sleep myoclonus,NREM III and NREM IV were night terror,set in sleepwalking concentrated period,the REM period was nightmare concentrated period,NREM I and NREM II were periods for occurring sleep myoclonus,NREM III and NREM IV were the periods for occurring night terror and sleepwalking,REM was the period for occurring nightmare

  12. Abnormal sleep architecture is an early feature in the E46K familial synucleinopathy.

    Science.gov (United States)

    Zarranz, Juan J; Fernández-Bedoya, Anabel; Lambarri, Imanol; Gómez-Esteban, Juan C; Lezcano, Elena; Zamacona, Javier; Madoz, Pedro

    2005-10-01

    We examined 7 patients from a family harboring a novel mutation in the alpha-synuclein gene (E46K) that segregated with a phenotype of parkinsonism and dementia with Lewy bodies. An abnormal restless sleep was the presenting symptom in 2 of them. Polysomnographic (PSG) studies were performed in 4 of the 7 patients and in 2 asymptomatic carriers of the mutation. A severe loss of both rapid eye movement (REM) and non-REM sleep was observed in 2 patients complaining of insomnia and in a third parkinsonian member of the family who did not complain of trouble with sleeping. Another parkinsonian family member had a mild disorganization of the sleep architecture. The 2 asymptomatic carriers also had minor changes in the PSG findings. Episodes of bizarre behavior at night were reported historically in the 2 symptomatic patients, but we did not observed the behaviors during the PSG studies. REM sleep behavior disorder could not be recorded in any case. Our findings expand the spectrum of sleep disorders reported in synucleinopathies whether sporadic or familial.

  13. Relative phase of oscillations of cerebral oxy-hemoglobin and deoxy-hemoglobin concentrations during sleep

    Science.gov (United States)

    Pierro, Michele L.; Sassaroli, Angelo; Bergethon, Peter R.; Fantini, Sergio

    2012-02-01

    We present a near-infrared spectroscopy study of the instantaneous phase difference between spontaneous oscillations of cerebral deoxy-hemoglobin and oxy-hemoglobin concentrations ([Hb] and [HbO], respectively) in the low-frequency range, namely 0.04-0.12 Hz. We report phase measurements during the transitions between different sleep stages in a whole-night study of a human subject. We have found that the phase difference between [Hb] and [HbO] low-frequency oscillations tends to be greater in deep sleep (by ~96° on average) and REM sleep (by ~77° on average) compared to the awake state. In particular, we have observed progressive phase increases as the subject transitions from awake conditions into non-REM sleep stages N1, N2, and N3. Corresponding phase decreases were recorded in the reversed transitions from sleep stages N3 to N2, and N2 to awake. These results illustrate the physiological information content of phase measurements of [Hb] and [HbO] oscillations that reflect the different cerebral hemodynamic conditions of the different sleep stages, and that can find broader applicability in a wide range of near-infrared spectroscopy brain studies.

  14. Nocturnal agitation in Huntington disease is caused by arousal-related abnormal movements rather than by rapid eye movement sleep behavior disorder.

    Science.gov (United States)

    Neutel, Dulce; Tchikviladzé, Maya; Charles, Perrine; Leu-Semenescu, Smaranda; Roze, Emmanuel; Durr, Alexandra; Arnulf, Isabelle

    2015-06-01

    Patients with Huntington disease (HD) and their spouses often complain of agitation during sleep, but the causes are mostly unknown. To evaluate sleep and nocturnal movements in patients with various HD stages and CAG repeats length. The clinical features and sleep studies of 29 patients with HD were retrospectively collected (11 referred for genotype-phenotype correlations and 18 for agitation during sleep) and compared with those of 29 age- and sex-matched healthy controls. All patients had videopolysomnography, but the movements during arousals were re-analyzed in six patients with HD with stored video. The patients had a longer total sleep period and REM sleep onset latency, but no other differences in sleep than controls. There was no correlation between CAG repeat length and sleep measures, but total sleep time and sleep efficiency were lower in the subgroup with moderate than milder form of HD. Periodic limb movements and REM sleep behavior disorders were excluded, although 2/29 patients had abnormal REM sleep without atonia. In contrast, they had clumsy and opisthotonos-like movements during arousals from non-REM or REM sleep. Some movements were violent and harmful. They might consist of voluntary movements inappropriately involving the proximal part of the limbs on a background of exaggerated hypotonia. Giant (>65 mcV) sleep spindles were observed in seven (24%) patients with HD and one control. The nocturnal agitation in patients with HD seems related to anosognostic voluntary movements on arousals, rather than to REM sleep behavior disorder and other sleep problems. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Behavioral, sleep-waking and EEG power spectral effects following the two specific 5-HT uptake inhibitors zimeldine and alaproclate in cats.

    Science.gov (United States)

    Sommerfelt, L; Ursin, R

    1991-11-26

    Sleep, waking and EEG power spectra were studied in cats for 15 h following peroral administration of placebo or 10 mg/kg and 20 mg/kg of the 5-HT reuptake inhibitors zimeldine and alaproclate. Behavior was also observed during the initial period following drug administration. Both drugs had effects on motor behavior and initiated hallucinatory like behavior. Zimeldine increased latency to stable sleep and to SWS-2. Alaproclate increased latency to SWS-1. Both drugs increased SWS (NREM sleep) and particularly SWS-2. REM sleep latency was increased and REM sleep was reduced following both drugs. EEG slow wave activity was increased following zimeldine. It is concluded that the 5-HT stimulation caused by the drugs yields complex effects on the sleep-waking axis, both sleep incompatible and sleep promoting effects.

  16. Inhibition of central Na+/H+ exchanger type 3 can alleviate sleep apnea in Sprague-Dawley rats

    Institute of Scientific and Technical Information of China (English)

    Wang Qimin; Zhou Rong; Zhang Cheng; Dong Hui; Ma Jing; Wang Guangfa

    2014-01-01

    Background Recent studies showed the central Na+/H+ exchanger type 3 (NHE3) has a close relationship with ventilation control.The objective of the study is to investigate the role of NHE3 in sleep apnea in Sprague-Dawley (SD) rats.Methods A sleep study was performed on 20 male SD rats to analyze the correlation between the sleep apneic events and total NHE3 protein content and inactive NHE3(pS552) in the brainstem measured by Western blotting.Another 20 adult male SD rats received 3 days of sleep and respiration monitoring for 6 hours a day,with adaption on the first day,0.5% DMSO microinjection into the fourth ventricle on the second day,and AVE0657 (specific inhibitor of NHE3) microinjection on the third day.Rats were divided into two groups with injection of 5 μmol/L or 8 μmol/L AVE0657 before the sleep study.The effects of AVE0657 on sleep apnea and sleep structure of rats were analyzed through self-control.Results The total post-sigh apnea index (TPSAI) and post-sigh apnea index in non-rapid eye movement (NREM) sleep (NPSAI) and total apnea index (AI) in NREM sleep (NAI) were negatively correlated with NHE3(pS552) protein contents in the brainstem (r=-0.534,-0.547 and-0.505,respectively,P<0.05).The spontaneous apnea index in REM sleep (RSPAI) was positively correlated with the level of NHE3(pS552) protein expression in the brainstem (r=0.556,P<0.05).However,the sleep AI had no relationship with total NHE3 protein.Compared with the blank control and microinjection of 0.5% DMSO,5 μmol/L AVE0657 significantly reduced the total AI and NPSAI (both P<0.05) without a significant effect on sleep architecture.In contrast to blank control and microinjection of 0.5% DMSO,injection of 8 μmol/L AVE0657 significantly reduced the AI and PSAI in NREM and REM sleep (all P<0.05).Conclusions The severity of sleep apnea was negatively correlated with central inactive NHE3.A specific inhibitor of NHE3 decreased the sleep AI.Thus,our results indicate that central

  17. Diet/Energy Balance Affect Sleep and Wakefulness Independent of Body Weight.

    Science.gov (United States)

    Perron, Isaac J; Pack, Allan I; Veasey, Sigrid

    2015-12-01

    Excessive daytime sleepiness commonly affects obese people, even in those without sleep apnea, yet its causes remain uncertain. We sought to determine whether acute dietary changes could induce or rescue wake impairments independent of body weight. We implemented a novel feeding paradigm that generates two groups of mice with equal body weight but opposing energetic balance. Two subsets of mice consuming either regular chow (RC) or high-fat diet (HFD) for 8 w were switched to the opposite diet for 1 w. Sleep recordings were conducted at Week 0 (baseline), Week 8 (pre-diet switch), and Week 9 (post-diet switch) for all groups. Sleep homeostasis was measured at Week 8 and Week 9. Young adult, male C57BL/6J mice. Differences in total wake, nonrapid eye movement (NREM), and rapid eye movement (REM) time were quantified, in addition to changes in bout fragmentation/consolidation. At Week 9, the two diet switch groups had similar body weight. However, animals switched to HFD (and thus gaining weight) had decreased wake time, increased NREM sleep time, and worsened sleep/wake fragmentation compared to mice switched to RC (which were in weight loss). These effects were driven by significant sleep/wake changes induced by acute dietary manipulations (Week 8 → Week 9). Sleep homeostasis, as measured by delta power increase following sleep deprivation, was unaffected by our feeding paradigm. Acute dietary manipulations are sufficient to alter sleep and wakefulness independent of body weight and without effects on sleep homeostasis. © 2015 Associated Professional Sleep Societies, LLC.

  18. CPAP Treatment Partly Normalizes Sleep Spindle Features in Obstructive Sleep Apnea

    Science.gov (United States)

    Saunamäki, Tiia; Huupponen, Eero; Loponen, Juho

    2017-01-01

    Objective. Obstructive sleep apnea (OSA) decreases sleep spindle density and frequency. We evaluated the effects of continuous positive airway pressure (CPAP) treatment on different features of sleep spindles. Methods. Twenty OSA patients underwent two night polysomnographies in a diagnostic phase and one night polysomnography after 6 months of CPAP treatment. The control group comprised 20 healthy controls. Sleep spindles were analyzed by a previously developed automated method. Unilateral and bilateral spindles were identified in central and frontopolar brain locations. Spindle density and frequency were determined for the first and last half of the NREM time. Results. The density of bilateral central spindles, which did not change in the untreated OSA patients, increased towards the morning hours during CPAP treatment and in the controls. Central spindles did not become faster with sleep in OSA patients and the central spindles remained slow in the left hemisphere even with CPAP. Conclusion. CPAP treatment normalized spindle features only partially. The changes may be associated with deficits in thalamocortical spindle generating loops. Significance. This study shows that some sleep spindle changes persist after CPAP treatment in OSA patients. The association of these changes to daytime symptoms in OSA patients needs to be further evaluated. PMID:28261503

  19. Investigation of the relationship between arterial stiffness and sleep architecture in patients with essential hypertension.

    Science.gov (United States)

    Liao, Hang; Zhao, Liming; Liu, Kai; Chen, Xiaoping

    2016-01-01

    A change in sleep architecture might increase the risk of hypertension and worsen target organs. This study thus aimed to study the features of sleep architecture and examine its relationship with pulse wave velocity (PWV), a measure of arterial stiffness, in patients with essential hypertension and healthy people aged 45-65 years (n = 106). We collected data on demographics, the serum index, overnight polysomnography, vascular testing and ambulatory blood pressure in addition to measuring arterial stiffness and monitoring sleep respiration. We found that patients with hypertension had longer sleep latency and shorter duration. Their sleep efficiency and the ratio of N3 in non-rapid eye movement (NREM) and rapid eye movement were lower, while the micro-arousal index (MI), N1 and N2 in NREM, and the apnea-hypopnea index were higher than normal people in controls. PWV raised with a decrease in N3 and an increase in the MI. In summary, there were notable changes in sleep architecture and with a decrease in N3 and increase in MI can accelerate arterial stiffness and then worsen target organ damage in patients with hypertension.

  20. Automatic sleep stage classification based on EEG signals by using neural networks and wavelet packet coefficients.

    Science.gov (United States)

    Ebrahimi, Farideh; Mikaeili, Mohammad; Estrada, Edson; Nazeran, Homer

    2008-01-01

    Currently in the world there is an alarming number of people who suffer from sleep disorders. A number of biomedical signals, such as EEG, EMG, ECG and EOG are used in sleep labs among others for diagnosis and treatment of sleep related disorders. The usual method for sleep stage classification is visual inspection by a sleep specialist. This is a very time consuming and laborious exercise. Automatic sleep stage classification can facilitate this process. The definition of sleep stages and the sleep literature show that EEG signals are similar in Stage 1 of non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep. Therefore, in this work an attempt was made to classify four sleep stages consisting of Awake, Stage 1 + REM, Stage 2 and Slow Wave Stage based on the EEG signal alone. Wavelet packet coefficients and artificial neural networks were deployed for this purpose. Seven all night recordings from Physionet database were used in the study. The results demonstrated that these four sleep stages could be automatically discriminated from each other with a specificity of 94.4 +/- 4.5%, a of sensitivity 84.2+3.9% and an accuracy of 93.0 +/- 4.0%.

  1. Effects of selective REM sleep deprivation on prefrontal gamma activity and executive functions.

    Science.gov (United States)

    Corsi-Cabrera, M; Rosales-Lagarde, A; del Río-Portilla, Y; Sifuentes-Ortega, R; Alcántara-Quintero, B

    2015-05-01

    Given that the dorsolateral prefrontal cortex is involved in executive functions and is deactivated and decoupled from posterior associative regions during REM sleep, that Gamma temporal coupling involved in information processing is enhanced during REM sleep, and that adult humans spend about 90 min of every 24h in REM sleep, it might be expected that REM sleep deprivation would modify Gamma temporal coupling and have a deteriorating effect on executive functions. We analyzed EEG Gamma activity and temporal coupling during implementation of a rule-guided task before and after REM sleep deprivation and its effect on verbal fluency, flexible thinking and selective attention. After two nights in the laboratory for adaptation, on the third night subjects (n=18) were randomly assigned to either selective REM sleep deprivation effectuated by awakening them at each REM sleep onset or, the same number of NREM sleep awakenings as a control for unspecific effects of sleep interruptions. Implementation of abstract rules to guide behavior required greater activation and synchronization of Gamma activity in the frontopolar regions after REM sleep reduction from 20.6% at baseline to just 3.93% of total sleep time. However, contrary to our hypothesis, both groups showed an overall improvement in executive task performance and no effect on their capacity to sustain selective attention. These results suggest that after one night of selective REM sleep deprivation executive functions can be compensated by increasing frontal activation and they still require the participation of supervisory control by frontopolar regions.

  2. Sleep-dependent facilitation of episodic memory details.

    Directory of Open Access Journals (Sweden)

    Els van der Helm

    Full Text Available While a role for sleep in declarative memory processing is established, the qualitative nature of this consolidation benefit, and the physiological mechanisms mediating it, remain debated. Here, we investigate the impact of sleep physiology on characteristics of episodic memory using an item- (memory elements and context- (contextual details associated with those elements learning paradigm; the latter being especially dependent on the hippocampus. Following back-to-back encoding of two word lists, each associated with a different context, participants were assigned to either a Nap-group, who obtained a 120-min nap, or a No Nap-group. Six hours post-encoding, participants performed a recognition test involving item-memory and context-memory judgments. In contrast to item-memory, which demonstrated no between-group differences, a significant benefit in context-memory developed in the Nap-group, the extent of which correlated both with the amount of stage-2 NREM sleep and frontal fast sleep-spindles. Furthermore, a difference was observed on the basis of word-list order, with the sleep benefit and associated physiological correlations being selective for the second word-list, learned last (most proximal to sleep. These findings suggest that sleep may preferentially benefit contextual (hippocampal-dependent aspects of memory, supported by sleep-spindle oscillations, and that the temporal order of initial learning differentially determines subsequent offline consolidation.

  3. Sleep Disturbances

    Science.gov (United States)

    ... PD / Coping with Symptoms & Side Effects / Sleep Disturbances Sleep Disturbances Many people with Parkinson’s disease (PD) have ... stay awake during the day. Tips for Better Sleep People with PD — and their care partners too — ...

  4. Repeated exposure to conditioned fear stress increases anxiety and delays sleep recovery following exposure to an acute traumatic stressor

    Directory of Open Access Journals (Sweden)

    Benjamin N Greenwood

    2014-10-01

    Full Text Available Repeated stressor exposure can sensitize physiological responses to novel stressors and facilitate the development of stress-related psychiatric disorders including anxiety. Disruptions in diurnal rhythms of sleep-wake behavior accompany stress-related psychiatric disorders and could contribute to their development. Complex stressors that include fear-eliciting stimuli can be a component of repeated stress experienced by humans, but whether exposure to repeated fear can prime the development of anxiety and sleep disturbances is unknown. In the current study, adult male F344 rats were exposed to either control conditions or repeated contextual fear conditioning for 22 days followed by exposure to either no, mild (10, or severe (100 acute uncontrollable tail shock stress. Exposure to acute stress produced anxiety-like behavior as measured by a reduction in juvenile social exploration and exaggerated shock-elicited freezing in a novel context. Prior exposure to repeated fear enhanced anxiety-like behavior as measured by shock-elicited freezing, but did not alter social exploratory behavior. The potentiation of anxiety produced by prior repeated fear was temporary; exaggerated fear was present 1 day but not 4 days following acute stress. Interestingly, exposure to acute stress reduced REM and NREM sleep during the hours immediately following acute stress. This initial reduction in sleep was followed by robust REM rebound and diurnal rhythm flattening of sleep / wake behavior. Prior repeated fear extended the acute stress-induced REM and NREM sleep loss, impaired REM rebound, and prolonged the flattening of the diurnal rhythm of NREM sleep following acute stressor exposure. These data suggest that impaired recovery of sleep / wake behavior following acute stress could contribute to the mechanisms by which a history of prior repeated stress increases vulnerability to subsequent novel stressors and stress-related disorders.

  5. Sleep-Wake Cycle Dysfunction in the TgCRND8 Mouse Model of Alzheimer's Disease: From Early to Advanced Pathological Stages.

    Directory of Open Access Journals (Sweden)

    Jessica Colby-Milley

    Full Text Available In addition to cognitive decline, individuals affected by Alzheimer's disease (AD can experience important neuropsychiatric symptoms including sleep disturbances. We characterized the sleep-wake cycle in the TgCRND8 mouse model of AD, which overexpresses a mutant human form of amyloid precursor protein resulting in high levels of β-amyloid and plaque formation by 3 months of age. Polysomnographic recordings in freely-moving mice were conducted to study sleep-wake cycle architecture at 3, 7 and 11 months of age and corresponding levels of β-amyloid in brain regions regulating sleep-wake states were measured. At all ages, TgCRND8 mice showed increased wakefulness and reduced non-rapid eye movement (NREM sleep during the resting and active phases. Increased wakefulness in TgCRND8 mice was accompanied by a shift in the waking power spectrum towards fast frequency oscillations in the beta (14-20 Hz and low gamma range (20-50 Hz. Given the phenotype of hyperarousal observed in TgCRND8 mice, the role of noradrenergic transmission in the promotion of arousal, and previous work reporting an early disruption of the noradrenergic system in TgCRND8, we tested the effects of the alpha-1-adrenoreceptor antagonist, prazosin, on sleep-wake patterns in TgCRND8 and non-transgenic (NTg mice. We found that a lower dose (2 mg/kg of prazosin increased NREM sleep in NTg but not in TgCRND8 mice, whereas a higher dose (5 mg/kg increased NREM sleep in both genotypes, suggesting altered sensitivity to noradrenergic blockade in TgCRND8 mice. Collectively our results demonstrate that amyloidosis in TgCRND8 mice is associated with sleep-wake cycle dysfunction, characterized by hyperarousal, validating this model as a tool towards understanding the relationship between β-amyloid overproduction and disrupted sleep-wake patterns in AD.

  6. Connectivity measures in EEG microstructural sleep elements

    Directory of Open Access Journals (Sweden)

    Dimitris eSakellariou

    2016-02-01

    Full Text Available During Non-Rapid Eye Movement sleep (NREM the brain is relatively disconnected from the environment, while connectedness between brain areas is also decreased. Evidence indicates that these dynamic connectivity changes are delivered by microstructural elements of sleep: short periods of environmental stimuli evaluation followed by sleep promoting procedures. The connectivity patterns of the latter, among other aspects of sleep microstructure, are still to be fully elucidated.We suggest here a methodology for the assessment and investigation of the connectivity patterns of EEG microstructural elements, such as sleep spindles. The methodology combines techniques in the preprocessing, estimation, error assessing and visualization of results levels in order to allow the detailed examination of the connectivity aspects (levels and directionality of information flow over frequency and time with notable resolution, while dealing with the volume conduction and EEG reference assessment. The high temporal and frequency resolution of the methodology will allow the association between the microelements and the dynamically forming networks that characterise them, and consequently possibly reveal aspects of the EEG microstructure. The proposed methodology is initially tested on artificially generated signals for proof of concept and subsequently applied to real EEG recordings via a custom built MATLAB-based tool developed for such studies. Preliminary results from 843 fast sleep spindles recorded in whole night sleep of 5 healthy volunteers indicate a prevailing pattern of interactions between centroparietal and frontal regions.We demonstrate hereby an opening to our knowledge attempt to estimate the scalp EEG connectivity that characterizes fast sleep spindles via an EEG-element connectivity methodology we propose. The application of the latter, via a computational tool we developed suggests it is able to investigate the connectivity patterns related to the

  7. The spectrum of REM sleep-related episodes in children with type 1 narcolepsy.

    Science.gov (United States)

    Antelmi, Elena; Pizza, Fabio; Vandi, Stefano; Neccia, Giulia; Ferri, Raffaele; Bruni, Oliviero; Filardi, Marco; Cantalupo, Gaetano; Liguori, Rocco; Plazzi, Giuseppe

    2017-06-01

    Type 1 narcolepsy is a central hypersomnia due to the loss of hypocretin-producing neurons and characterized by cataplexy, excessive daytime sleepiness, sleep paralysis, hypnagogic hallucinations and disturbed nocturnal sleep. In children, close to the disease onset, type 1 narcolepsy has peculiar clinical features with severe cataplexy and a complex admixture of movement disorders occurring while awake. Motor dyscontrol during sleep has never been systematically investigated. Suspecting that abnormal motor control might affect also sleep, we systematically analysed motor events recorded by means of video polysomnography in 40 children with type 1 narcolepsy (20 females; mean age 11.8 ± 2.6 years) and compared these data with those recorded in 22 age- and sex-matched healthy controls. Motor events were classified as elementary movements, if brief and non-purposeful and complex behaviours, if simulating purposeful behaviours. Complex behaviours occurring during REM sleep were further classified as 'classically-defined' and 'pantomime-like' REM sleep behaviour disorder episodes, based on their duration and on their pattern (i.e. brief and vivid-energetic in the first case, longer and with subcontinuous gesturing mimicking daily life activity in the second case). Elementary movements emerging either from non-REM or REM sleep were present in both groups, even if those emerging from REM sleep were more numerous in the group of patients. Conversely, complex behaviours could be detected only in children with type 1 narcolepsy and were observed in 13 patients, with six having 'classically-defined' REM sleep behaviour disorder episodes and seven having 'pantomime-like' REM sleep behaviour disorder episodes. Complex behaviours during REM sleep tended to recur in a stereotyped fashion for several times during the night, up to be almost continuous. Patients displaying a more severe motor dyscontrol during REM sleep had also more severe motor disorder during daytime (i

  8. CHOLINERGIC NEURONS OF THE BASAL FOREBRAIN MEDIATE BIOCHEMICAL AND ELECTROPHYSIOLOGICAL MECHANISMS UNDERLYING SLEEP HOMEOSTASIS

    Science.gov (United States)

    Kalinchuk, Anna V.; Porkka-Heiskanen, Tarja; McCarley, Robert W.; Basheer, Radhika

    2015-01-01

    The tight coordination of biochemical and electrophysiological mechanisms underlies the homeostatic sleep pressure (HSP) produced by sleep deprivation (SD). We have reported that during SD the levels of inducible nitric oxide synthase (iNOS), extracellular nitric oxide (NO), adenosine [AD]ex, lactate [Lac]ex and pyruvate [Pyr]ex increase in the basal forebrain (BF). However, it is not clear whether all of them contribute to HSP leading to increased electroencephalogram (EEG) delta activity during non-rapid eye movement (NREM) recovery sleep (RS) following SD. Previously, we showed that NREM delta increase evident during RS depends on the presence of BF cholinergic (ChBF) neurons. Here, we investigated the role of ChBF cells in coordination of biochemical and EEG changes seen during SD and RS in the rat. Increases in low theta power (5–7Hz), but not high theta (7–9Hz), during SD correlated with the increase in NREM delta power during RS, and with the changes in nitrate/nitrite [NOx]ex and [AD]ex. Lesions of ChBF cells using IgG 192-saporin prevented increases in [NOx]ex, [AD]ex and low theta activity, during SD, but did not prevent increases in [Lac]ex and [Pyr]ex. Infusion of NO donor DETA NONOate into the saporin-treated BF failed to increase NREM RS and delta power, suggesting ChBF cells are important for mediating NO homeostatic effects. Finally, SD-induced iNOS was mostly expressed in ChBF cells, and the intensity of iNOS induction correlated with the increase in low theta activity. Together, our data indicate ChBF cells are important in regulating the biochemical and EEG mechanisms that contribute to HSP. PMID:25369989

  9. All Night Spectral Analysis of EEG Sleep in Young Adult and Middle-Aged Male Subjects

    OpenAIRE

    Dijk, Derk Jan; Beersma, Domien G. M.; Hoofdakker, Rutger H. van den

    1989-01-01

    The sleep EEGs of 9 young adult males (age 20-28 years) and 8 middle-aged males (42-56 years) were analyzed by visual scoring and spectral analysis. In the middle-aged subjects power density in the delta, theta and sigma frequencies were attenuated as compared to the young subjects. In both age groups power density in the delta and theta frequencies declined from NREM period 1 to 3. In the sigma frequencies, however, no systematic changes in power density were observed over the sleep episode....

  10. Slow wave activity and slow oscillations in sleepwalkers and controls: effects of 38 h of sleep deprivation.

    Science.gov (United States)

    Perrault, Rosemarie; Carrier, Julie; Desautels, Alex; Montplaisir, Jacques; Zadra, Antonio

    2013-08-01

    Sleepwalkers have been shown to have an unusually high number of arousals from slow wave sleep and lower slow wave activity (SWA) power during the night than controls. Because sleep deprivation increases the frequency of slow wave sleep (SWS) arousals in sleepwalkers, it may also affect the expression of the homeostatic process to a greater extent than shown previously. We thus investigated SWA power as well as slow wave oscillation (SWO) density in 10 sleepwalkers and nine controls at baseline and following 38 h of sleep deprivation. There was a significant increase in SWA during participants' recovery sleep, especially during their second non-rapid eye movement (NREM) period. SWO density was similarly increased during recovery sleep's first two NREM periods. A fronto-central gradient in SWA and SWO was also present on both nights. However, no group differences were noted on any of the 2 nights on SWA or SWO. This unexpected result may be related to the heterogeneity of sleepwalkers as a population, as well as our small sample size. SWA pressure after extended sleep deprivation may also result in a ceiling effect in both sleepwalkers and controls.

  11. Time-varying correlations between delta EEG power and heart rate variability in midlife women: the SWAN Sleep Study.

    Science.gov (United States)

    Rothenberger, Scott D; Krafty, Robert T; Taylor, Briana J; Cribbet, Matthew R; Thayer, Julian F; Buysse, Daniel J; Kravitz, Howard M; Buysse, Evan D; Hall, Martica H

    2015-04-01

    No studies have evaluated the dynamic, time-varying relationship between delta electroencephalographic (EEG) sleep and high frequency heart rate variability (HF-HRV) in women. Delta EEG and HF-HRV were measured during sleep in 197 midlife women (M(age)  = 52.1, SD = 2.2). Delta EEG-HF-HRV correlations in nonrapid eye movement (NREM) sleep were modeled as whole-night averages and as continuous functions of time. The whole-night delta EEG-HF-HRV correlation was positive. The strongest correlations were observed during the first NREM sleep period preceding and following peak delta power. Time-varying correlations between delta EEG-HF-HRV were stronger in participants with sleep-disordered breathing and self-reported insomnia compared to healthy controls. The dynamic interplay between sleep and autonomic activity can be modeled across the night to examine within- and between-participant differences including individuals with and without sleep disorders.

  12. QT Interval Variability Index and QT Interval Duration in Different Sleep Stages: Analysis of Polysomnographic Recordings in Nonapneic Male Patients

    Directory of Open Access Journals (Sweden)

    Moonika Viigimae

    2015-01-01

    Full Text Available The aim of the study was to determine whether different sleep stages, especially REM sleep, affect QT interval duration and variability in male patients without obstructive sleep apnea (OSA. Polysomnographic recordings of 30 patients were analyzed. Beat-to-beat QT interval variability was calculated using QTV index (QTVI formula. For QTc interval calculation, in addition to Bazett’s formula, linear and parabolic heart rate correction formulas with two separate α values were used. QTVI and QTc values were calculated as means of 2 awake, 3 NREM, and 3 REM sleep episodes; the duration of each episode was 300 sec. Mean QTVI values were not statistically different between sleep stages. Therefore, elevated QTVI values found in patients with OSA cannot be interpreted as physiological sympathetic impact during REM sleep and should be considered as a risk factor for potentially life-threatening ventricular arrhythmias. The absence of difference of the mean QTc interval values between NREM and REM stages seems to confirm our conclusion that sympathetic surges during REM stage do not induce repolarization variability. In patients without notable structural and electrical remodeling of myocardium, physiological elevation in sympathetic activity during REM sleep remains subthreshold concerning clinically significant increase of myocardial electrical instability.

  13. Light modulation of human sleep depends on a polymorphism in the clock gene Period3.

    Science.gov (United States)

    Chellappa, Sarah L; Viola, Antoine U; Schmidt, Christina; Bachmann, Valérie; Gabel, Virginie; Maire, Micheline; Reichert, Carolin F; Valomon, Amandine; Landolt, Hans-Peter; Cajochen, Christian

    2014-09-01

    Non-image-forming (NIF) responses to light powerfully modulate human physiology. However, it remains scarcely understood how NIF responses to light modulate human sleep and its EEG hallmarks, and if there are differences across individuals. Here we investigated NIF responses to light on sleep in individuals genotyped for the PERIOD3 (PER3) variable-number tandem-repeat (VNTR) polymorphism. Eighteen healthy young men (20-28 years; mean ± SEM: 25.9 ± 1.2) homozygous for the PER3 polymorphism were matched by age, body-mass index, and ethnicity. The study protocol comprised a balanced cross-over design during the winter, during which participants were exposed to either light of 40 lx at 6,500 K (blue-enriched) or light at 2,500 K (non-blue enriched), during 2h in the evening. Compared to light at 2,500 K, light at 6,500 K induced a significant increase in all-night NREM sleep slow-wave activity (SWA: 1.0-4.5 Hz) in the occipital cortex for PER3(5/5) individuals, but not for PER3(4/4) volunteers. Dynamics of SWA across sleep cycles revealed increased occipital NREM sleep SWA for virtually all sleep episode only for PER3(5/5) individuals. Furthermore, they experienced light at 6,500 K as significantly brighter. Intriguingly, this subjective perception of brightness significantly predicted their increased occipital SWA throughout the sleep episode. Our data indicate that humans homozygous for the PER3(5/5) allele are more sensitive to NIF light effects, as indexed by specific changes in sleep EEG activity. Ultimately, individual differences in NIF light responses on sleep may depend on a clock gene polymorphism involved in sleep-wake regulation.

  14. Differentiating between light and deep sleep stages using an ambulatory device based on peripheral arterial tonometry.

    Science.gov (United States)

    Bresler, Ma'ayan; Sheffy, Koby; Pillar, Giora; Preiszler, Meir; Herscovici, Sarah

    2008-05-01

    The objective of this study is to develop and assess an automatic algorithm based on the peripheral arterial tone (PAT) signal to differentiate between light and deep sleep stages. The PAT signal is a measure of the pulsatile arterial volume changes at the finger tip reflecting sympathetic tone variations and is recorded by an ambulatory unattended device, the Watch-PAT100, which has been shown to be capable of detecting wake, NREM and REM sleep. An algorithm to differentiate light from deep sleep was developed using a training set of 49 patients and was validated using a separate set of 44 patients. In both patient sets, Watch-PAT100 data were recorded simultaneously with polysomnography during a full night sleep study. The algorithm is based on 14 features extracted from two time series of PAT amplitudes and inter-pulse periods (IPP). Those features were then further processed to yield a prediction function that determines the likelihood of detecting a deep sleep stage epoch during NREM sleep periods. Overall sensitivity, specificity and agreement of the automatic algorithm to identify standard 30 s epochs of light and deep sleep stages were 66%, 89%, 82% and 65%, 87%, 80% for the training and validation sets, respectively. Together with the already existing algorithms for REM and wake detection we propose a close to full stage detection method based solely on the PAT and actigraphy signals. The automatic sleep stages detection algorithm could be very useful for unattended ambulatory sleep monitoring assessing sleep stages when EEG recordings are not available.

  15. Baclofen and gamma-hydroxybutyrate differentially altered behavior, EEG activity and sleep in rats.

    Science.gov (United States)

    Hodor, A; Palchykova, S; Gao, B; Bassetti, C L

    2015-01-22

    Animal and human studies have shown that sleep may have an impact on functional recovery after brain damage. Baclofen (Bac) and gamma-hydroxybutyrate (GHB) have been shown to induce physiological sleep in humans, however, their effects in rodents are unclear. The aim of this study is to characterize sleep and electroencelphalogram (EEG) after Bac and GHB administration in rats. We hypothesized that both drugs would induce physiological sleep. Adult male Sprague-Dawley rats were implanted with EEG/electromyogram (EMG) electrodes for sleep recordings. Bac (10 or 20 mg/kg), GHB (150 or 300 mg/kg) or saline were injected 1 h after light and dark onset to evaluate time of day effect of the drugs. Vigilance states and EEG spectra were quantified. Bac and GHB induced a non-physiological state characterized by atypical behavior and an abnormal EEG pattern. After termination of this state, Bac was found to increase the duration of non-rapid eye movement (NREM) and rapid eye movement (REM) sleep (∼90 and 10 min, respectively), reduce sleep fragmentation and affect NREM sleep episode frequency and duration (psleep in the frequencies 1.5-6.5 and 9.5-21.5 Hz compared to saline (psleep was enhanced 1.5-3-fold during the first 1-2 h following termination of the non-physiological state. The magnitude of drug effects was stronger during the dark phase. While both Bac and GHB induced a non-physiological resting state, only Bac facilitated and consolidated sleep, and promoted EEG delta oscillations thereafter. Hence, Bac can be considered a sleep-promoting drug and its effects on functional recovery after stroke can be evaluated both in humans and rats. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Acid reflux directly causes sleep disturbances in rat with chronic esophagitis.

    Directory of Open Access Journals (Sweden)

    Kenichi Nakahara

    Full Text Available BACKGROUND & AIMS: Gastroesophageal reflux disease (GERD is strongly associated with sleep disturbances. Proton pump inhibitor (PPI therapy improves subjective but not objective sleep parameters in patients with GERD. This study aimed to investigate the association between GERD and sleep, and the effect of PPI on sleep by using a rat model of chronic acid reflux esophagitis. METHODS: Acid reflux esophagitis was induced by ligating the transitional region between the forestomach and the glandular portion and then wrapping the duodenum near the pylorus. Rats underwent surgery for implantation of electrodes for electroencephalogram and electromyogram recordings, and they were transferred to a soundproof recording chamber. Polygraphic recordings were scored by using 10-s epochs for wake, rapid eye movement sleep, and non-rapid eye movement (NREM sleep. To examine the role of acid reflux, rats were subcutaneously administered a PPI, omeprazole, at a dose of 20 mg/kg once daily. RESULTS: Rats with reflux esophagitis presented with several erosions, ulcers, and mucosal thickening with basal hyperplasia and marked inflammatory infiltration. The reflux esophagitis group showed a 34.0% increase in wake (232.2±11.4 min and 173.3±7.4 min in the reflux esophagitis and control groups, respectively; p<0.01 accompanied by a reduction in NREM sleep during light period, an increase in sleep fragmentation, and more frequent stage transitions. The use of omeprazole significantly improved sleep disturbances caused by reflux esophagitis, and this effect was not observed when the PPI was withdrawn. CONCLUSIONS: Acid reflux directly causes sleep disturbances in rats with chronic esophagitis.

  17. Sleep Disorders

    DEFF Research Database (Denmark)

    Rahbek Kornum, Birgitte; Mignot, Emmanuel

    2014-01-01

    Mammalian sleep has evolved under the influence of the day-night cycle and in response to reproductive needs, food seeking, and predator avoidance, resulting in circadian (predictive) and homeostatic (reactive) regulation. A molecular clock characterized by transcription/translation feedback loops...... mediates circadian regulation of sleep. Misalignment with the rhythm of the sun results in circadian disorders and jet lag. The molecular basis of homeostatic sleep regulation is mostly unknown. A network of mutually inhibitory brain nuclei regulates sleep states and sleep-wake transitions. Abnormalities...... in these networks create sleep disorders, including rapid eye movement sleep behavior disorder, sleep walking, and narcolepsy. Physiological changes associated with sleep can be imbalanced, resulting in excess movements such as periodic leg movements during sleep or abnormal breathing in obstructive sleep apneas...

  18. The relationships between memory systems and sleep stages.

    Science.gov (United States)

    Rauchs, Géraldine; Desgranges, Béatrice; Foret, Jean; Eustache, Francis

    2005-06-01

    Sleep function remains elusive despite our rapidly increasing comprehension of the processes generating and maintaining the different sleep stages. Several lines of evidence support the hypothesis that sleep is involved in the off-line reprocessing of recently-acquired memories. In this review, we summarize the main results obtained in the field of sleep and memory consolidation in both animals and humans, and try to connect sleep stages with the different memory systems. To this end, we have collated data obtained using several methodological approaches, including electrophysiological recordings of neuronal ensembles, post-training modifications of sleep architecture, sleep deprivation and functional neuroimaging studies. Broadly speaking, all the various studies emphasize the fact that the four long-term memory systems (procedural memory, perceptual representation system, semantic and episodic memory, according to Tulving's SPI model; Tulving, 1995) benefit either from non-rapid eye movement (NREM) (not just SWS) or rapid eye movement (REM) sleep, or from both sleep stages. Tulving's classification of memory systems appears more pertinent than the declarative/non-declarative dichotomy when it comes to understanding the role of sleep in memory. Indeed, this model allows us to resolve several contradictions, notably the fact that episodic and semantic memory (the two memory systems encompassed in declarative memory) appear to rely on different sleep stages. Likewise, this model provides an explanation for why the acquisition of various types of skills (perceptual-motor, sensory-perceptual and cognitive skills) and priming effects, subserved by different brain structures but all designated by the generic term of implicit or non-declarative memory, may not benefit from the same sleep stages.

  19. Sleep deprivation impairs consolidation of cued fear memory in rats.

    Directory of Open Access Journals (Sweden)

    Tankesh Kumar

    Full Text Available Post-learning sleep facilitates negative memory consolidation and also helps preserve it over several years. It is believed, therefore, that sleep deprivation may help prevent consolidation of fearful memory. Its effect, however, on consolidation of negative/frightening memories is not known. Cued fear-conditioning (CuFC is a widely used model to understand the neural basis of negative memory associated with anxiety disorders. In this study, we first determined the suitable circadian timing for consolidation of CuFC memory and changes in sleep architecture after CuFC. Thereafter, we studied the effect of sleep deprivation on CuFC memory consolidation. Three sets of experiments were performed in male Wistar rat (n=51. In experiment-I, animals were conditioned to cued-fear by presenting ten tone-shock paired stimuli during lights-on (7 AM (n=9 and lights-off (7 PM (n=9 periods. In experiment-II, animals were prepared for polysomnographic recording (n=8 and changes in sleep architecture after CuFC was determined. Further in experiment-III, animals were cued fear-conditioned during the lights-off period and were randomly divided into four groups: Sleep-Deprived (SD (n=9, Non-Sleep Deprived (NSD (n=9, Stress Control (SC (n=9 and Tone Control (n=7. Percent freezing amount, a hallmark of fear, was compared statistically in these groups. Rats trained during the lights-off period exhibited significantly more freezing compared to lights-on period. In CuFC trained animals, total sleep amount did not change, however, REM sleep decreased significantly. Further, out of total sleep time, animals spent proportionately more time in NREM sleep. Nevertheless, SD animals exhibited significantly less freezing compared to NSD and SC groups. These data suggest that sleep plays an important role in the consolidation of cued fear-conditioned memory.

  20. Hippocampal sleep features: relations to human memory function

    Directory of Open Access Journals (Sweden)

    Michele eFerrara

    2012-04-01

    Full Text Available The recent spread of intracranial EEG recordings techniques for presurgical evaluation of drug-resistant epileptic patients is providing new information on the activity of different brain structures during both wakefulness and sleep. The interest has been mainly focused on the medial temporal lobe, and in particular the hippocampal formation, whose peculiar local sleep features have been recently described, providing support to the idea that sleep is not a spatially global phenomenon. The study of the hippocampal sleep electrophysiology is particularly interesting because of its central role in the declarative memory formation. Recent data indicate that sleep contributes to memory formation. Therefore, it is relevant to understand whether specific pattern of activity taking place during sleep are related to memory consolidation processes. Fascinating similarities between different states of consciousness (wakefulness, REM sleep, NREM sleep in some electrophysiological mechanisms underlying cognitive processes have been reported. For instance, large-scale synchrony in gamma activity is important for waking memory and perception processes, and its changes during sleep may be the neurophysiological substrate of sleep-related deficits of declarative memory. Hippocampal activity seems to specifically support memory consolidation during sleep, through specific coordinated neurophysiological events (slow waves, spindles, ripples that would facilitate the integration of new information into the pre-existing cortical networks. A few studies indeed provided direct evidence that rhinal ripples as well as slow hippocampal oscillations are correlated with memory consolidation in humans. More detailed electrophysiological investigations assessing the specific relations between different types of memory consolidation and hippocampal EEG features are in order. These studies will add an important piece of knowledge to the elucidation of the ultimate sleep

  1. Impact of acetazolamide and CPAP on cortical activity in obstructive sleep apnea patients.

    Directory of Open Access Journals (Sweden)

    Katrin Stadelmann

    Full Text Available STUDY OBJECTIVES: 1 To investigate the impact of acetazolamide, a drug commonly prescribed for altitude sickness, on cortical oscillations in patients with obstructive sleep apnea syndrome (OSAS. 2 To examine alterations in the sleep EEG after short-term discontinuation of continuous positive airway pressure (CPAP therapy. DESIGN: Data from two double-blind, placebo-controlled randomized cross-over design studies were analyzed. SETTING: Polysomnographic recordings in sleep laboratory at 490 m and at moderate altitudes in the Swiss Alps: 1630 or 1860 m and 2590 m. PATIENTS: Study 1: 39 OSAS patients. Study 2: 41 OSAS patients. INTERVENTIONS: Study 1: OSAS patients withdrawn from treatment with CPAP. Study 2: OSAS patients treated with autoCPAP. Treatment with acetazolamide (500-750 mg or placebo at moderate altitudes. MEASUREMENTS AND RESULTS: An evening dose of 500 mg acetazolamide reduced slow-wave activity (SWA; approximately 10% and increased spindle activity (approximately 10% during non-REM sleep. In addition, alpha activity during wake after lights out was increased. An evening dose of 250 mg did not affect these cortical oscillations. Discontinuation of CPAP therapy revealed a reduction in SWA (5-10% and increase in beta activity (approximately 25%. CONCLUSIONS: The higher evening dose of 500 mg acetazolamide showed the "spectral fingerprint" of Benzodiazepines, while 250 mg acetazolamide had no impact on cortical oscillations. However, both doses had beneficial effects on oxygen saturation and sleep quality.

  2. Autobiographical memory and hyperassociativity in the dreaming brain: implications for memory consolidation in sleep

    Science.gov (United States)

    Horton, Caroline L.; Malinowski, Josie E.

    2015-01-01

    In this paper we argue that autobiographical memory (AM) activity across sleep and wake can provide insight into the nature of dreaming, and vice versa. Activated memories within the sleeping brain reflect one’s personal life history (autobiography). They can appear in largely fragmentary forms and differ from conventional manifestations of episodic memory. Autobiographical memories in dreams can be sampled from non-REM as well as REM periods, which contain fewer episodic references and become more bizarre across the night. Salient fragmented memory features are activated in sleep and re-bound with fragments not necessarily emerging from the same memory, thus de-contextualizing those memories and manifesting as experiences that differ from waking conceptions. The constructive nature of autobiographical recall further encourages synthesis of these hyper-associated images into an episode via recalling and reporting dreams. We use a model of AM to account for the activation of memories in dreams as a reflection of sleep-dependent memory consolidation processes. We focus in particular on the hyperassociative nature of AM during sleep. PMID:26191010

  3. Autobiographical memory and hyperassociativity in the dreaming brain: Implications for memory consolidation in sleep

    Directory of Open Access Journals (Sweden)

    Caroline L Horton

    2015-07-01

    Full Text Available In this paper we argue that autobiographical memory activity across sleep and wake can provide insight into the nature of dreaming, and vice versa. Activated memories within the sleeping brain reflect one’s personal life history (autobiography. They can appear in largely fragmentary forms and differ from conventional manifestations of episodic memory. Autobiographical memories in dreams can be sampled from non-REM as well as REM periods, which contain fewer episodic references and become more bizarre across the night. Salient fragmented memory features are activated in sleep and re-bound with fragments not necessarily emerging from the same memory, thus de-contextualising those memories and manifesting as experiences that differ from waking conceptions. The constructive nature of autobiographical recall further encourages synthesis of these hyper-associated images into an episode via recalling and reporting dreams. We use a model of autobiographical memory to account for the activation of memories in dreams as a reflection of sleep-dependent memory consolidation processes. We focus in particular on the hyperassociative nature of autobiographical memory during sleep.

  4. The effects of trazodone with L-tryptophan on sleep-disordered breathing in the English bulldog.

    Science.gov (United States)

    Veasey, S C; Fenik, P; Panckeri, K; Pack, A I; Hendricks, J C

    1999-11-01

    Obstructive sleep apnea hypopnea syndrome (OSAHS) is a prevalent disorder, for which there are no universally effective pharmacotherapeutics. We hypothesized that in OSAHS, excitatory serotoninergic influences are important for maintaining patency of the upper airway in waking, and that in sleep, reduced serotoninergic drive plays a significant role in upper airway collapse and OSAHS. The previously reported small responses in humans with OSAHS to serotoninergics may relate, in part, to study design and the drugs/doses selected. We therefore performed multitrials/dose, multidose, randomized sleep studies testing the effectiveness of a combination of serotoninergics, trazodone, and L-tryptophan, in our animal model of OSAHS, the English bulldog. Trazodone/L-tryptophan caused dose-dependent reductions in respiratory events in non-rapid-eye-movement sleep (NREMS) and rapid-eye-movement sleep (REMS). During NREMS, the respiratory disturbance index (RDI) +/- standard error was 6.3 +/- 1.4 events/h (placebo) and 0.9 +/- 0.3 (highest dose), p < 0.01. During REMS, the RDI was 31.4 +/- 6.1 events/h (placebo) and 11.5 +/- 4.3 (highest dose), p = 0.002. Trazodone/ L-tryptophan dose-dependently reduced sleep fragmentation, p = 0.03, increased sleep efficiency, p = 0.005, enhanced slow-wave sleep, p = 0.0004, and minimized sleep-related suppression of upper airway dilator activity, p < 0.02. Trazodone with L-tryptophan can treat sleep-disordered breathing (SDB) in an animal model of OSAHS; the effectiveness of this therapy may be related to increased upper airway dilator activity in sleep and/or enhanced slow-wave sleep.

  5. Coupled flip-flop model for REM sleep regulation in the rat.

    Directory of Open Access Journals (Sweden)

    Justin R Dunmyre

    Full Text Available Recent experimental studies investigating the neuronal regulation of rapid eye movement (REM sleep have identified mutually inhibitory synaptic projections among REM sleep-promoting (REM-on and REM sleep-inhibiting (REM-off neuronal populations that act to maintain the REM sleep state and control its onset and offset. The control mechanism of mutually inhibitory synaptic interactions mirrors the proposed flip-flop switch for sleep-wake regulation consisting of mutually inhibitory synaptic projections between wake- and sleep-promoting neuronal populations. While a number of synaptic projections have been identified between these REM-on/REM-off populations and wake/sleep-promoting populations, the specific interactions that govern behavioral state transitions have not been completely determined. Using a minimal mathematical model, we investigated behavioral state transition dynamics dictated by a system of coupled flip-flops, one to control transitions between wake and sleep states, and another to control transitions into and out of REM sleep. The model describes the neurotransmitter-mediated inhibitory interactions between a wake- and sleep-promoting population, and between a REM-on and REM-off population. We proposed interactions between the wake/sleep and REM-on/REM-off flip-flops to replicate the behavioral state statistics and probabilities of behavioral state transitions measured from experimental recordings of rat sleep under ad libitum conditions and after 24 h of REM sleep deprivation. Reliable transitions from REM sleep to wake, as dictated by the data, indicated the necessity of an excitatory projection from the REM-on population to the wake-promoting population. To replicate the increase in REM-wake-REM transitions observed after 24 h REM sleep deprivation required that this excitatory projection promote transient activation of the wake-promoting population. Obtaining the reliable wake-nonREM sleep transitions observed in the data

  6. Coupled flip-flop model for REM sleep regulation in the rat.

    Science.gov (United States)

    Dunmyre, Justin R; Mashour, George A; Booth, Victoria

    2014-01-01

    Recent experimental studies investigating the neuronal regulation of rapid eye movement (REM) sleep have identified mutually inhibitory synaptic projections among REM sleep-promoting (REM-on) and REM sleep-inhibiting (REM-off) neuronal populations that act to maintain the REM sleep state and control its onset and offset. The control mechanism of mutually inhibitory synaptic interactions mirrors the proposed flip-flop switch for sleep-wake regulation consisting of mutually inhibitory synaptic projections between wake- and sleep-promoting neuronal populations. While a number of synaptic projections have been identified between these REM-on/REM-off populations and wake/sleep-promoting populations, the specific interactions that govern behavioral state transitions have not been completely determined. Using a minimal mathematical model, we investigated behavioral state transition dynamics dictated by a system of coupled flip-flops, one to control transitions between wake and sleep states, and another to control transitions into and out of REM sleep. The model describes the neurotransmitter-mediated inhibitory interactions between a wake- and sleep-promoting population, and between a REM-on and REM-off population. We proposed interactions between the wake/sleep and REM-on/REM-off flip-flops to replicate the behavioral state statistics and probabilities of behavioral state transitions measured from experimental recordings of rat sleep under ad libitum conditions and after 24 h of REM sleep deprivation. Reliable transitions from REM sleep to wake, as dictated by the data, indicated the necessity of an excitatory projection from the REM-on population to the wake-promoting population. To replicate the increase in REM-wake-REM transitions observed after 24 h REM sleep deprivation required that this excitatory projection promote transient activation of the wake-promoting population. Obtaining the reliable wake-nonREM sleep transitions observed in the data required that

  7. Quantitative changes in the sleep EEG at moderate altitude (1630 m and 2590 m.

    Directory of Open Access Journals (Sweden)

    Katrin Stadelmann

    Full Text Available BACKGROUND: Previous studies have observed an altitude-dependent increase in central apneas and a shift towards lighter sleep at altitudes >4000 m. Whether altitude-dependent changes in the sleep EEG are also prevalent at moderate altitudes of 1600 m and 2600 m remains largely unknown. Furthermore, the relationship between sleep EEG variables and central apneas and oxygen saturation are of great interest to understand the impact of hypoxia at moderate altitude on sleep. METHODS: Fourty-four healthy men (mean age 25.0 ± 5.5 years underwent polysomnographic recordings during a baseline night at 490 m and four consecutive nights at 1630 m and 2590 m (two nights each in a randomized cross-over design. RESULTS: Comparison of sleep EEG power density spectra of frontal (F3A2 and central (C3A2 derivations at altitudes compared to baseline revealed that slow-wave activity (SWA, 0.8-4.6 Hz in non-REM sleep was reduced in an altitude-dependent manner (~4% at 1630 m and 15% at 2590 m, while theta activity (4.6-8 Hz was reduced only at the highest altitude (10% at 2590 m. In addition, spindle peak height and frequency showed a modest increase in the second night at 2590 m. SWA and theta activity were also reduced in REM sleep. Correlations between spectral power and central apnea/hypopnea index (AHI, oxygen desaturation index (ODI, and oxygen saturation revealed that distinct frequency bands were correlated with oxygen saturation (6.4-8 Hz and 13-14.4 Hz and breathing variables (AHI, ODI; 0.8-4.6 Hz. CONCLUSIONS: The correlation between SWA and AHI/ODI suggests that respiratory disturbances contribute to the reduction in SWA at altitude. Since SWA is a marker of sleep homeostasis, this might be indicative of an inability to efficiently dissipate sleep pressure.

  8. Quantitative Changes in the Sleep EEG at Moderate Altitude (1630 m and 2590 m)

    Science.gov (United States)

    Stadelmann, Katrin; Latshang, Tsogyal D.; Lo Cascio, Christian M.; Tesler, Noemi; Stoewhas, Anne-Christin; Kohler, Malcolm; Bloch, Konrad E.; Huber, Reto; Achermann, Peter

    2013-01-01

    Background Previous studies have observed an altitude-dependent increase in central apneas and a shift towards lighter sleep at altitudes >4000 m. Whether altitude-dependent changes in the sleep EEG are also prevalent at moderate altitudes of 1600 m and 2600 m remains largely unknown. Furthermore, the relationship between sleep EEG variables and central apneas and oxygen saturation are of great interest to understand the impact of hypoxia at moderate altitude on sleep. Methods Fourty-four healthy men (mean age 25.0±5.5 years) underwent polysomnographic recordings during a baseline night at 490 m and four consecutive nights at 1630 m and 2590 m (two nights each) in a randomized cross-over design. Results Comparison of sleep EEG power density spectra of frontal (F3A2) and central (C3A2) derivations at altitudes compared to baseline revealed that slow-wave activity (SWA, 0.8–4.6 Hz) in non-REM sleep was reduced in an altitude-dependent manner (∼4% at 1630 m and 15% at 2590 m), while theta activity (4.6–8 Hz) was reduced only at the highest altitude (10% at 2590 m). In addition, spindle peak height and frequency showed a modest increase in the second night at 2590 m. SWA and theta activity were also reduced in REM sleep. Correlations between spectral power and central apnea/hypopnea index (AHI), oxygen desaturation index (ODI), and oxygen saturation revealed that distinct frequency bands were correlated with oxygen saturation (6.4–8 Hz and 13–14.4 Hz) and breathing variables (AHI, ODI; 0.8–4.6 Hz). Conclusions The correlation between SWA and AHI/ODI suggests that respiratory disturbances contribute to the reduction in SWA at altitude. Since SWA is a marker of sleep homeostasis, this might be indicative of an inability to efficiently dissipate sleep pressure. PMID:24167552

  9. State-dependent alterations in sleep/wake architecture elicited by the M4 PAM VU0467154 - Relation to antipsychotic-like drug effects.

    Science.gov (United States)

    Gould, Robert W; Nedelcovych, Michael T; Gong, Xuewen; Tsai, Erica; Bubser, Michael; Bridges, Thomas M; Wood, Michael R; Duggan, Mark E; Brandon, Nicholas J; Dunlop, John; Wood, Michael W; Ivarsson, Magnus; Noetzel, Meredith J; Daniels, J Scott; Niswender, Colleen M; Lindsley, Craig W; Conn, P Jeffrey; Jones, Carrie K

    2016-03-01

    Accumulating evidence indicates direct relationships between sleep abnormalities and the severity and prevalence of other symptom clusters in schizophrenia. Assessment of potential state-dependent alterations in sleep architecture and arousal relative to antipsychotic-like activity is critical for the development of novel antipsychotic drugs (APDs). Recently, we reported that VU0467154, a selective positive allosteric modulator (PAM) of the M4 muscarinic acetylcholine receptor (mAChR), exhibits robust APD-like and cognitive enhancing activity in rodents. However, the state-dependent effects of VU0467154 on sleep architecture and arousal have not been examined. Using polysomnography and quantitative electroencephalographic recordings from subcranial electrodes in rats, we evaluated the effects of VU0467154, in comparison with the atypical APD clozapine and the M1/M4-preferring mAChR agonist xanomeline. VU0467154 induced state-dependent alterations in sleep architecture and arousal including delayed Rapid Eye Movement (REM) sleep onset, increased cumulative duration of total and Non-Rapid Eye Movement (NREM) sleep, and increased arousal during waking periods. Clozapine decreased arousal during wake, increased cumulative NREM, and decreased REM sleep. In contrast, xanomeline increased time awake and arousal during wake, but reduced slow wave activity during NREM sleep. Additionally, in combination with the N-methyl-d-aspartate subtype of glutamate receptor (NMDAR) antagonist MK-801, modeling NMDAR hypofunction thought to underlie many symptoms in schizophrenia, both VU0467154 and clozapine attenuated MK-801-induced elevations in high frequency gamma power consistent with an APD-like mechanism of action. These findings suggest that selective M4 PAMs may represent a novel mechanism for treating multiple symptoms of schizophrenia, including disruptions in sleep architecture without a sedative profile.

  10. The effect of transdermal nicotine patches on sleep and dreams.

    Science.gov (United States)

    Page, F; Coleman, G; Conduit, R

    2006-07-30

    This study was undertaken to determine the effect of 24-h transdermal nicotine patches on sleep and dream mentation in 15 smokers aged 20 to 33. Utilising a repeated measures design, it was found that more time awake and more ASDA micro-arousals occurred while wearing the nicotine patch compared to placebo. Also, the percentage of REM sleep decreased, but REM latency and the proportion of time spent in NREM sleep stages did not change significantly. Dream reports containing visual imagery, visual imagery ratings and the number of visualizable nouns were significantly greater from REM compared to Stage 2 awakenings, regardless of patch condition. However, a general interaction effect was observed. Stage 2 dream variables remained equivalent across nicotine and placebo conditions. Within REM sleep, more dream reports containing visual imagery occurred while wearing the nicotine patch, and these were rated as more vivid. The greater frequency of visual imagery reports and higher imagery ratings specifically from REM sleep suggests that previously reported dreaming side effects from 24-h nicotine patches may be specific to REM sleep. Combined with previous animal studies showing that transdermally delivered nicotine blocks PGO activity in REM sleep, the current results do no appear consistent with PGO-based hypotheses of dreaming, such as the Activation-Synthesis (AS) or Activation, Input and Modulation (AIM) models.

  11. Aging in mice reduces the ability to sustain sleep/wake states.

    Directory of Open Access Journals (Sweden)

    Mathieu E Wimmer

    Full Text Available One of the most significant problems facing older individuals is difficulty staying asleep at night and awake during the day. Understanding the mechanisms by which the regulation of sleep/wake goes awry with age is a critical step in identifying novel therapeutic strategies to improve quality of life for the elderly. We measured wake, non-rapid eye movement (NREM and rapid-eye movement (REM sleep in young (2-4 months-old and aged (22-24 months-old C57BL6/NIA mice. We used both conventional measures (i.e., bout number and bout duration and an innovative spike-and-slab statistical approach to characterize age-related fragmentation of sleep/wake. The short (spike and long (slab components of the spike-and-slab mixture model capture the distribution of bouts for each behavioral state in mice. Using this novel analytical approach, we found that aged animals are less able to sustain long episodes of wakefulness or NREM sleep. Additionally, spectral analysis of EEG recordings revealed that aging slows theta peak frequency, a correlate of arousal. These combined analyses provide a window into the mechanisms underlying the destabilization of long periods of sleep and wake and reduced vigilance that develop with aging.

  12. Sexual behaviors during sleep associated with polysomnographically confirmed parasomnia overlap disorder.

    Science.gov (United States)

    Cicolin, Alessandro; Tribolo, Antonella; Giordano, Alessandra; Chiarot, Elisabetta; Peila, Elena; Terreni, Anna; Bucca, Caterina; Mutani, Roberto

    2011-05-01

    Parasomnia overlap disorder (POD) refers to a sleep disorder characterized by the association of REM sleep behavior disorder (RBD) with NREM sleep parasomnia in the same patient. Sexual behaviors during sleep (SBS) can include most wakeful sexual activities and are classified in the ICSD-2 as a variant of confusional arousals and sleepwalking, both NREM parasomnias. A case of SBS associated with sleepwalking and possible RBD has been previously described, but it was not confirmed by polysomnography (PSG). We report two patients with SBS associated with POD documented by PSG. In one patient (60-year-old female) SBS was video-polysomnographically demonstrated: a few minute episode of masturbation occurring during slow-wave sleep (SWS) and preceded by hypersynchronous delta pattern. During the episode, the EEG pattern showed the persistence of delta rhythms with increasing alpha activity. When awoken by technicians, the patient was not aware of her sexual behavior and did not report any dream. The other patient, a 41-year-old male with a history of sleepwalking and RBD, was legally charged with repeatedly sexually fondling a young girl during the night. The POD was documented by PSG. The parasomnia defense, including sleepsex, was accepted by the Court and the patient was acquitted. This is an unprecedented report of SBS in patients with PSG-confirmed POD and of SBS documented during video-PSG.

  13. Recalling and forgetting dreams: theta and alpha oscillations during sleep predict subsequent dream recall.

    Science.gov (United States)

    Marzano, Cristina; Ferrara, Michele; Mauro, Federica; Moroni, Fabio; Gorgoni, Maurizio; Tempesta, Daniela; Cipolli, Carlo; De Gennaro, Luigi

    2011-05-04

    Under the assumption that dream recall is a peculiar form of declarative memory, we have hypothesized that (1) the encoding of dream contents during sleep should share some electrophysiological mechanisms with the encoding of episodic memories of the awake brain and (2) recalling a dream(s) after awakening from non-rapid eye movement (NREM) and rapid eye movement (REM) sleep should be associated with different brain oscillations. Here, we report that cortical brain oscillations of human sleep are predictive of successful dream recall. In particular, after morning awakening from REM sleep, a higher frontal 5-7 Hz (theta) activity was associated with successful dream recall. This finding mirrors the increase in frontal theta activity during successful encoding of episodic memories in wakefulness. Moreover, in keeping with the different EEG background, a different predictive relationship was found after awakening from stage 2 NREM sleep. Specifically, a lower 8-12 Hz (alpha) oscillatory activity of the right temporal area was associated with a successful dream recall. These findings provide the first evidence of univocal cortical electroencephalographic correlates of dream recall, suggesting that the neurophysiological mechanisms underlying the encoding and recall of episodic memories may remain the same across different states of consciousness.

  14. Dim light at night disturbs the daily sleep-wake cycle in the rat

    Science.gov (United States)

    Jan Stenvers, Dirk; van Dorp, Rick; Foppen, Ewout; Mendoza, Jorge; Opperhuizen, Anne-Loes; Fliers, Eric; Bisschop, Peter H.; Meijer, Johanna H.; Kalsbeek, Andries; Deboer, Tom

    2016-01-01

    Exposure to light at night (LAN) is associated with insomnia in humans. Light provides the main input to the master clock in the hypothalamic suprachiasmatic nucleus (SCN) that coordinates the sleep-wake cycle. We aimed to develop a rodent model for the effects of LAN on sleep. Therefore, we exposed male Wistar rats to either a 12 h light (150–200lux):12 h dark (LD) schedule or a 12 h light (150–200 lux):12 h dim white light (5 lux) (LDim) schedule. LDim acutely decreased the amplitude of daily rhythms of REM and NREM sleep, with a further decrease over the following days. LDim diminished the rhythms of 1) the circadian 16–19 Hz frequency domain within the NREM sleep EEG, and 2) SCN clock gene expression. LDim also induced internal desynchronization in locomotor activity by introducing a free running rhythm with a period of ~25 h next to the entrained 24 h rhythm. LDim did not affect body weight or glucose tolerance. In conclusion, we introduce the first rodent model for disturbed circadian control of sleep due to LAN. We show that internal desynchronization is possible in a 24 h L:D cycle which suggests that a similar desynchronization may explain the association between LAN and human insomnia. PMID:27762290

  15. Monitoring Results and Correlation Analysis of Polysomnography in 231 Cases of Young Male Patients with Obstructive Sleep Apnea Hypopnea Syndrome%231例男性青年阻塞性睡眠呼吸暂停低通气综合征患者的睡眠监测及相关分析

    Institute of Scientific and Technical Information of China (English)

    黄尘瑶; 谢于鹏; 张秀华; 陈宏

    2012-01-01

    with oxygen saturation level<90% , <85% . <80%(TS90,TS85,TS80) accounted for 20. 75% ,4. 53% ,1. 66% , respectively. REM sleep time was (17.00±7. 45)%,and non-REM(NREM) sleep time was (82. 96±7. 40)%. AHI was negatively correlated with LSaO2 and MSaO2, while it was positively correlated with the others, and had high correlation with ODI and the time of oxygen desaturation in one hour. BMI was negatively correlated with LSaO2 and MSaC2, while it was positively correlated with AHI, ODI, the largest oxygen desaturation degree (LDD). LSaO2 was negatively correlated with LA, LH,TS90,TS85,TS80. Conclusion: The young male patients with OSAHS have high overweight and obesity rate and manifest obvious disorder of sleep structural.

  16. Can we still dream when the mind is blank? Sleep and dream mentations in auto-activation deficit.

    Science.gov (United States)

    Leu-Semenescu, Smaranda; Uguccioni, Ginevra; Golmard, Jean-Louis; Czernecki, Virginie; Yelnik, Jerome; Dubois, Bruno; Forgeot d'Arc, Baudouin; Grabli, David; Levy, Richard; Arnulf, Isabelle

    2013-10-01

    Bilateral damage to the basal ganglia causes auto-activation deficit, a neuropsychological syndrome characterized by striking apathy, with a loss of self-driven behaviour that is partially reversible with external stimulation. Some patients with auto-activation deficit also experience a mental emptiness, which is defined as an absence of any self-reported thoughts. We asked whether this deficit in spontaneous activation of mental processing may be reversed during REM sleep, when dreaming activity is potentially elicited by bottom-up brainstem stimulation on the cortex. Sleep and video monitoring over two nights and cognitive tests were performed on 13 patients with auto-activation deficit secondary to bilateral striato-pallidal lesions and 13 healthy subjects. Dream mentations were collected from home diaries and after forced awakenings in non-REM and REM sleep. The home diaries were blindly analysed for length, complexity and bizarreness. A mental blank during wakefulness was complete in six patients and partial in one patient. Four (31%) patients with auto-activation deficit (versus 92% of control subjects) reported mentations when awakened from REM sleep, even when they demonstrated a mental blank during the daytime (n = 2). However, the patients' dream reports were infrequent, short, devoid of any bizarre or emotional elements and tended to be less complex than the dream mentations of control subjects. The sleep duration, continuity and stages were similar between the groups, except for a striking absence of sleep spindles in 6 of 13 patients with auto-activation deficit, despite an intact thalamus. The presence of spontaneous dreams in REM sleep in the absence of thoughts during wakefulness in patients with auto-activation deficit supports the idea that simple dream imagery is generated by brainstem stimulation and is sent to the sensory cortex. However, the lack of complexity in these dream mentations suggests that the full dreaming process (scenario

  17. Caffeine in the neonatal period induces long-lasting changes in sleep and breathing in adult rats.

    Science.gov (United States)

    Montandon, Gaspard; Horner, Richard L; Kinkead, Richard; Bairam, Aida

    2009-11-15

    Caffeine is commonly used clinically to treat apnoeas and unstable breathing associated with premature birth. Caffeine antagonizes adenosine receptors and acts as an efficient respiratory stimulant in neonates. Owing to its persistent effects on adenosine receptor expression in the brain, neonatal caffeine administration also has significant effects on maturation of the respiratory control system. However, since adenosine receptors are critically involved in sleep regulation, and sleep also modulates breathing, we tested the hypothesis that neonatal caffeine treatment disrupts regulation of sleep and breathing in the adult rat. Neonatal caffeine treatment (15 mg kg(-1) day(-1)) was administered from postnatal days 3-12. At adulthood (8-10 weeks old), sleep and breathing were measured with a telemetry system and whole-body plethysmography respectively. In adult rats treated with caffeine during the neonatal period, sleep time was reduced, sleep onset latency was increased, and non-rapid eye movement (non-REM) sleep was fragmented compared to controls. Ventilation at rest was higher in caffeine-treated adult rats compared to controls across sleep/wake states. Hypercapnic ventilatory responses were significantly reduced in caffeine-treated rats compared to control rats across sleep/wake states. Additional experiments in adult anaesthetized rats showed that at similar levels of arterial blood gases, phrenic nerve activity was enhanced in caffeine-treated rats. This study demonstrates that administration of caffeine in the neonatal period alters respiratory control system activity in awake and sleeping rats, as well as in the anaesthetized rats, and also has persistent disrupting effects on sleep that are apparent in adult rats.

  18. The Fingerprint of Rapid Eye Movement: Its Algorithmic Detection in the Sleep Electroencephalogram Using a Single Derivation.

    Science.gov (United States)

    McCarty, David E; Kim, Paul Y; Frilot, Clifton; Chesson, Andrew L; Marino, Andrew A

    2016-10-01

    The strong associations of rapid eye movement (REM) sleep with dreaming and memory consolidation imply the existence of REM-specific brain electrical activity, notwithstanding the visual similarity of the electroencephalograms (EEGs) in REM and wake states. Our goal was to detect REM sleep by means of algorithmic analysis of the EEG. We postulated that novel depth and fragmentation variables, defined in relation to temporal changes in the signal (recurrences), could be statistically combined to allow disambiguation of REM epochs. The cohorts studied were consecutive patients with obstructive sleep apnea (OSA) recruited from a sleep medicine clinic, and clinically normal participants selected randomly from a national database (N = 20 in each cohort). Individual discriminant analyses were performed, for each subject based on 4 recurrence biomarkers, and used to classify every 30-second epoch in the subject's overnight polysomnogram as REM or NotREM (wake or any non-REM sleep stage), using standard clinical staging as ground truth. The primary outcome variable was the accuracy of algorithmic REM classification. Average accuracies of 90% and 87% (initial and cross-validation analyses) were achieved in the OSA cohort; corresponding results in the normal cohort were 87% and 85%. Analysis of brain recurrence allowed identification of REM sleep, disambiguated from wake and all other stages, using only a single EEG lead, in subjects with or without OSA.

  19. REM sleep diversity following the pedunculopontine tegmental nucleus lesion in rat.

    Science.gov (United States)

    Petrovic, Jelena; Lazic, Katarina; Kalauzi, Aleksandar; Saponjic, Jasna

    2014-09-01

    The aim of this study was to demonstrate that two REM clusters, which emerge following bilateral pedunculopontine tegmental nucleus (PPT) lesions in rats, are two functionally distinct REM states. We performed the experiments in Wistar rats, chronically instrumented for sleep recording. Bilateral PPT lesions were produced by the microinfusion of 100 nl of 0.1M ibotenic acid (IBO). Following a recovery period of 2 weeks, we recorded their sleep for 6h. Bilateral PPT lesions were identified by NADPH - diaphorase histochemistry. We applied Fourier analysis to the signals acquired throughout the 6h recordings, and each 10s epoch was differentiated as a Wake, NREM or REM state. We analyzed the topography of the sleep/wake states architecture and their transition structure, their all state-related EEG microstructures, and the sensorimotor (SMCx) and motor (MCx) cortex REM related cortico-muscular coherences (CMCs). Bilateral PPT lesion in rats increased the likelihood of the emergence of two distinct REM sleep states, specifically expressed within the MCx: REM1 and REM2. Bilateral PPT lesion did not change the sleep/wake states architecture of the SMCx, but pathologically increased the duration of REM1 within the MCx, alongside increasing Wake/REM1/Wake and NREM/REM2/NREM transitions within both cortices. In addition, the augmented total REM SMCx EEG beta amplitude and REM1 MCx EEG theta amplitude was the underlying EEG microstructure pathology. PPT lesion induced REM1 and REM2 are differential states with regard to total EMG power, topographically distinct EEG microstructures, and locomotor drives to nuchal musculature.

  20. Event-related potentials as a measure of sleep disturbance: A tutorial review

    Directory of Open Access Journals (Sweden)

    Kenneth Campbell

    2010-01-01

    Full Text Available This article reviews event-related potentials (ERPs the minute responses of the human brain that are elicited by external auditory stimuli and how the ERPs can be used to measure sleep disturbance. ERPs consist of a series of negative- and positive-going components. A negative component peaking at about 100 ms, N1, is thought to reflect the outcome of a transient detector system, activated by change in the transient energy in an acoustic stimulus. Its output and thus the amplitude of N1 increases as the intensity level of the stimulus is increased and when the rate of presentation is slowed. When the output reaches a certain critical level, operations of the central executive are interrupted and attention is switched to the auditory channel. This switching of attention is thought to be indexed by a later positivity, P3a, peaking between 250 and 300 ms. In order to sleep, consciousness for all but the most relevant of stimuli must be prevented. Thus, during sleep onset and definitive non-rapid eye movement (NREM sleep, the amplitude of N1 diminishes to near-baseline level. The amplitude of P2, peaking from 180 to 200 ms, is however larger in NREM sleep than in wakefulness. P2 is thought to reflect an inhibitory process protecting sleep from irrelevant disturbance. As stimulus input becomes increasingly obtrusive, the amplitude of P2 also increases. With increasing obtrusiveness particularly when stimuli are presented slowly, a later large negativity, peaking at about 350 ms, N350, becomes apparent. N350 is unique to sleep, its amplitude also increasing as the stimulus becomes more obtrusive. Many authors postulate that when the N350 reaches a critical amplitude, a very large amplitude N550, a component of the K-Complex is elicited. The K-Complex can only be elicited during NREM sleep. The P2, N350 and N550 processes are thus conceived as sleep protective mechanisms, activated sequentially as the risk for disturbance increases. During REM sleep

  1. Sleep-disordered breathing in unilateral diaphragm paralysis or severe weakness.

    Science.gov (United States)

    Steier, J; Jolley, C J; Seymour, J; Kaul, S; Luo, Y M; Rafferty, G F; Hart, N; Polkey, M I; Moxham, J

    2008-12-01

    Few data exist concerning sleep in patients with hemidiaphragm paralysis or weakness. Traditionally, such patients are considered to sustain normal ventilation in sleep. In the present study, diaphragm strength was measured in order to identify patients with unilateral paralysis or severe weakness. Patients underwent polysomnography with additional recordings of the transoesophageal electromyogram (EMG) of the diaphragm and surface EMG of extra-diaphragmatic respiratory muscles. These data were compared with 11 normal, healthy subjects matched for sex, age and body mass index (BMI). In total, 11 patients (six males, mean+/-sd age 56.5+/-10.0 yrs, BMI 28.7+/-2.8 kg x m(-2)) with hemidiaphragm paralysis or severe weakness (unilateral twitch transdiaphragmatic pressure 3.3+/-1.7 cmH(2)O (0.33+/-0.17 kPa) were studied. They had a mean+/-sd respiratory disturbance index of 8.1+/-10.1 events x h(-1) during non-rapid eye movement (NREM) sleep and 26.0+/-17.8 events x h(-1) during rapid eye movement (REM) sleep (control groups 0.4+/-0.4 and 0.7+/-0.9 events x h(-1), respectively). The diaphragm EMG, as a percentage of maximum, was double that of the control group in NREM sleep (15.3+/-5.3 versus 8.9+/-4.9% max, respectively) and increased in REM sleep (20.0+/-6.9% max), while normal subjects sustained the same level of activation (6.2+/-3.1% max). Patients with unilateral diaphragm dysfunction are at risk of developing sleep-disordered breathing during rapid eye movement sleep. The diaphragm electromyogram, reflecting neural respiratory drive, is doubled in patients compared with normal subjects, and increases further in rapid eye movement sleep.

  2. A method for the assessment of the functional neuroanatomy of human sleep using FDG PET.

    Science.gov (United States)

    Nofzinger, E A; Mintun, M A; Price, J; Meltzer, C C; Townsend, D; Buysse, D J; Reynolds, C F; Dachille, M; Matzzie, J; Kupfer, D J; Moore, R Y

    1998-03-01

    Although sleep is characterized by relative behavioral inactivity, cortical activity is known to cycle in well-defined periods across this state. Cognitive function during sleep has been difficult to define, although disturbances in sleep are known to result from, and to cause, various human pathologies, including neuropsychiatric disorders. Assessment of brain function in humans (related to cognitive operations) during sleep has been limited, until recently, to surface electrophysiologic recordings that limit analysis of regional function, particularly in deep structures. The current report describes one method of assessing human forebrain activation during sleep using the [18F]2-fluoro-2-deoxy-d-glucose ([18F]FDG) method and positron emission tomography (PET) measures of regional cerebral glucose utilization. In comparison with other functional brain imaging techniques (e.g., assessment of blood flow or functional magnetic resonance imaging), this method offers the advantage of a more naturalistic study of sleep since subjects do not have to sleep in a scanning device. This leads to a higher rate of successful completion of studies. The primary disadvantage of this method is the decreased temporal resolution necessitating assessments of global sleep states (e.g., REM or NREM) as opposed to assessing events within a sleep state (e.g., sleep spindles or rapid eye movements).

  3. Dual hypocretin receptor antagonism is more effective for sleep promotion than antagonism of either receptor alone.

    Directory of Open Access Journals (Sweden)

    Stephen R Morairty

    Full Text Available The hypocretin (orexin system is involved in sleep/wake regulation, and antagonists of both hypocretin receptor type 1 (HCRTR1 and/or HCRTR2 are considered to be potential hypnotic medications. It is currently unclear whether blockade of either or both receptors is more effective for promoting sleep with minimal side effects. Accordingly, we compared the properties of selective HCRTR1 (SB-408124 and SB-334867 and HCRTR2 (EMPA antagonists with that of the dual HCRTR1/R2 antagonist almorexant in the rat. All 4 antagonists bound to their respective receptors with high affinity and selectivity in vitro. Since in vivo pharmacokinetic experiments revealed poor brain penetration for SB-408124, SB-334867 was selected for subsequent in vivo studies. When injected in the mid-active phase, SB-334867 produced small increases in rapid-eye-movement (REM and non-REM (NR sleep. EMPA produced a significant increase in NR only at the highest dose studied. In contrast, almorexant decreased NR latency and increased both NR and REM proportionally throughout the subsequent 6 h without rebound wakefulness. The increased NR was due to a greater number of NR bouts; NR bout duration was unchanged. At the highest dose tested (100 mg/kg, almorexant fragmented sleep architecture by increasing the number of waking and REM bouts. No evidence of cataplexy was observed. HCRTR1 occupancy by almorexant declined 4-6 h post-administration while HCRTR2 occupancy was still elevated after 12 h, revealing a complex relationship between occupancy of HCRT receptors and sleep promotion. We conclude that dual HCRTR1/R2 blockade is more effective in promoting sleep than blockade of either HCRTR alone. In contrast to GABA receptor agonists which induce sleep by generalized inhibition, HCRTR antagonists seem to facilitate sleep by reducing waking "drive".

  4. Analysis of A-phase transitions during the cyclic alternating pattern under normal sleep.

    Science.gov (United States)

    Mendez, Martin Oswaldo; Chouvarda, Ioanna; Alba, Alfonso; Bianchi, Anna Maria; Grassi, Andrea; Arce-Santana, Edgar; Milioli, Guilia; Terzano, Mario Giovanni; Parrino, Liborio

    2016-01-01

    An analysis of the EEG signal during the B-phase and A-phases transitions of the cyclic alternating pattern (CAP) during sleep is presented. CAP is a sleep phenomenon composed by consecutive sequences of A-phases (each A-phase could belong to a possible group A1, A2 or A3) observed during the non-REM sleep. Each A-phase is separated by a B-phase which has the basal frequency of the EEG during a specific sleep stage. The patterns formed by these sequences reflect the sleep instability and consequently help to understand the sleep process. Ten recordings from healthy good sleepers were included in this study. The current study investigates complexity, statistical and frequency signal properties of electroencephalography (EEG) recordings at the transitions: B-phase--A-phase. In addition, classification between the onset-offset of the A-phases and B-phase was carried out with a kNN classifier. The results showed that EEG signal presents significant differences (p sleep stages. The statistical analysis of variance shows that more than 80% of the A-phase onset and offset is significantly different from the B-phase. The classification performance between onset or offset of A-phases and background showed classification values over 80% for specificity and accuracy and 70% for sensitivity. Only during the A3-phase, the classification was lower. The results suggest that neural assembles that generate the basal EEG oscillations during sleep present an over-imposed coordination for a few seconds due to the A-phases. The main characteristics for automatic separation between the onset-offset A-phase and the B-phase are the energy at the different frequency bands.

  5. Hierarchical nesting of slow oscillations, spindles and ripples in the human hippocampus during sleep.

    Science.gov (United States)

    Staresina, Bernhard P; Bergmann, Til Ole; Bonnefond, Mathilde; van der Meij, Roemer; Jensen, Ole; Deuker, Lorena; Elger, Christian E; Axmacher, Nikolai; Fell, Juergen

    2015-11-01

    During systems-level consolidation, mnemonic representations initially reliant on the hippocampus are thought to migrate to neocortical sites for more permanent storage, with an eminent role of sleep for facilitating this information transfer. Mechanistically, consolidation processes have been hypothesized to rely on systematic interactions between the three cardinal neuronal oscillations characterizing non-rapid eye movement (NREM) sleep. Under global control of de- and hyperpolarizing slow oscillations (SOs), sleep spindles may cluster hippocampal ripples for a precisely timed transfer of local information to the neocortex. We used direct intracranial electroencephalogram recordings from human epilepsy patients during natural sleep to test the assumption that SOs, spindles and ripples are functionally coupled in the hippocampus. Employing cross-frequency phase-amplitude coupling analyses, we found that spindles were modulated by the up-state of SOs. Notably, spindles were found to in turn cluster ripples in their troughs, providing fine-tuned temporal frames for the hypothesized transfer of hippocampal memory traces.

  6. A novel non-rapid-eye movement and rapid-eye-movement parasomnia with sleep breathing disorder associated with antibodies to IgLON5: a case series, characterisation of the antigen, and post-mortem study.

    Science.gov (United States)

    Sabater, Lidia; Gaig, Carles; Gelpi, Ellen; Bataller, Luis; Lewerenz, Jan; Torres-Vega, Estefanía; Contreras, Angeles; Giometto, Bruno; Compta, Yaroslau; Embid, Cristina; Vilaseca, Isabel; Iranzo, Alex; Santamaría, Joan; Dalmau, Josep; Graus, Francesc

    2014-06-01

    Autoimmunity might be associated with or implicated in sleep and neurodegenerative disorders. We aimed to describe the features of a novel neurological syndrome associated with prominent sleep dysfunction and antibodies to a neuronal antigen. In this observational study, we used clinical and video polysomnography to identify a novel sleep disorder in three patients referred to the Sleep Unit of Hospital Clinic, University of Barcelona, Spain, for abnormal sleep behaviours and obstructive sleep apnoea. These patients had antibodies against a neuronal surface antigen, which were also present in five additional patients referred to our laboratory for antibody studies. These five patients had been assessed with polysomnography, which was done in our sleep unit in one patient and the recording reviewed in a second patient. Two patients underwent post-mortem brain examination. Immunoprecipitation and mass spectrometry were used to characterise the antigen and develop an assay for antibody testing. Serum or CSF from 298 patients with neurodegenerative, sleep, or autoimmune disorders served as control samples. All eight patients (five women; median age at disease onset 59 years [range 52-76]) had abnormal sleep movements and behaviours and obstructive sleep apnoea, as confirmed by polysomnography. Six patients had chronic progression with a median duration from symptom onset to death or last visit of 5 years (range 2-12); in four the sleep disorder was the initial and most prominent feature, and in two it was preceded by gait instability followed by dysarthria, dysphagia, ataxia, or chorea. Two patients had a rapid progression with disequilibrium, dysarthria, dysphagia, and central hypoventilation, and died 2 months and 6 months, respectively, after symptom onset. In five of five patients, video polysomnography showed features of obstructive sleep apnoea, stridor, and abnormal sleep architecture (undifferentiated non-rapid-eye-movement [non-REM] sleep or poorly structured

  7. Bottom-Up versus Top-Down Induction of Sleep by Zolpidem Acting on Histaminergic and Neocortex Neurons.

    Science.gov (United States)

    Uygun, David S; Ye, Zhiwen; Zecharia, Anna Y; Harding, Edward C; Yu, Xiao; Yustos, Raquel; Vyssotski, Alexei L; Brickley, Stephen G; Franks, Nicholas P; Wisden, William

    2016-11-02

    Zolpidem, a GABAA receptor-positive modulator, is the gold-standard drug for treating insomnia. Zolpidem prolongs IPSCs to decrease sleep latency and increase sleep time, effects that depend on α2 and/or α3 subunit-containing receptors. Compared with natural NREM sleep, zolpidem also decreases the EEG power, an effect that depends on α1 subunit-containing receptors, and which may make zolpidem-induced sleep less optimal. In this paper, we investigate whether zolpidem needs to potentiate only particular GABAergic pathways to induce sleep without reducing EEG power. Mice with a knock-in F77I mutation in the GABAA receptor γ2 subunit gene are zolpidem-insensitive. Using these mice, GABAA receptors in the frontal motor neocortex and hypothalamic (tuberomammillary nucleus) histaminergic-neurons of γ2I77 mice were made selectively sensitive to zolpidem by genetically swapping the γ2I77 subunits with γ2F77 subunits. When histamine neurons were made selectively zolpidem-sensitive, systemic administration of zolpidem shortened sleep latency and increased sleep time. But in contrast to the effect of zolpidem on wild-type mice, the power in the EEG spectra of NREM sleep was not decreased, suggesting that these EEG power-reducing effects of zolpidem do not depend on reduced histamine release. Selective potentiation of GABAA receptors in the frontal cortex by systemic zolpidem administration also reduced sleep latency, but less so than for histamine neurons. These results could help with the design of new sedatives that induce a more natural sleep. Many people who find it hard to get to sleep take sedatives. Zolpidem (Ambien) is the most widely prescribed "sleeping pill." It makes the inhibitory neurotransmitter GABA work better at its receptors throughout the brain. The sleep induced by zolpidem does not resemble natural sleep because it produces a lower power in the brain waves that occur while we are sleeping. We show using mouse genetics that zolpidem only needs to

  8. Obstructive Sleep Apnea

    Science.gov (United States)

    ... to find out more. Obstructive Sleep Apnea Obstructive Sleep Apnea Obstructive sleep apnea (OSA) is a serious ... to find out more. Obstructive Sleep Apnea Obstructive Sleep Apnea Obstructive sleep apnea (OSA) is a serious ...

  9. Healthy Sleep Habits

    Science.gov (United States)

    ... Sleep Apnea Testing CPAP Healthy Sleep Habits Healthy Sleep Habits Your behaviors during the day, and especially ... team at an AASM accredited sleep center . Quick Sleep Tips Follow these tips to establish healthy sleep ...

  10. Effect of dopamine D4 receptor agonists on sleep architecture in rats.

    Science.gov (United States)

    Nakazawa, Shunsuke; Nakamichi, Keiko; Imai, Hideaki; Ichihara, Junji

    2015-12-03

    Dopamine plays a key role in the regulation of sleep-wake states, as revealed by the observation that dopamine-releasing agents such as methylphenidate have wake-promoting effects. However, the precise mechanisms for the wake-promoting effect produced by the enhancement of dopamine transmission are not fully understood. Although dopamine D1, D2, and D3 receptors are known to have differential effects on sleep architecture, the role of D4 receptors (D4Rs), and particularly the influence of D4R activation on the sleep-wake state, has not been studied so far. In this study, we investigated for the first time the effects of two structurally different D4R agonists, Ro 10-5824 and A-412997, on the sleep-wake states in rats. We found that both D4R agonists generally increased waking duration, and conversely, reduced non-rapid eye movement (NREM) sleep duration in rats. The onset of NREM sleep was also generally delayed. However, only the A-412997 agonist (but not the Ro 10-5824) influenced rapid eye movement sleep onset and duration. Furthermore, these effects were accompanied with an enhancement of EEG spectral power in the theta and the gamma bands. Our results suggest the involvement of dopamine D4R in the regulation of sleep-wake states. The activation of the D4R could enhance the arousal states as revealed by the behavioral and electrophysiological patterns in this study. Dopamine D4R may contribute to the arousal effects of dopamine-releasing agents such as methylphenidate.

  11. Enhanced emotional reactivity after selective REM sleep deprivation in humans: an fMRI study.

    Science.gov (United States)

    Rosales-Lagarde, Alejandra; Armony, Jorge L; Del Río-Portilla, Yolanda; Trejo-Martínez, David; Conde, Ruben; Corsi-Cabrera, Maria

    2012-01-01

    Converging evidence from animal and human studies suggest that rapid eye movement (REM) sleep modulates emotional processing. The aim of the present study was to explore the effects of selective REM sleep deprivation (REM-D) on emotional responses to threatening visual stimuli and their brain correlates using functional magnetic resonance imaging (fMRI). Twenty healthy subjects were randomly assigned to two groups: selective REM-D, by awakening them at each REM sleep onset, or non-rapid eye movement sleep interruptions (NREM-I) as control for potential non-specific effects of awakenings and lack of sleep. In a within-subject design, a visual emotional reactivity task was performed in the scanner before and 24 h after sleep manipulation. Behaviorally, emotional reactivity was enhanced relative to baseline (BL) in the REM deprived group only. In terms of fMRI signal, there was, as expected, an overall decrease in activity in the NREM-I group when subjects performed the task the second time, particularly in regions involved in emotional processing, such as occipital and temporal areas, as well as in the ventrolateral prefrontal cortex, involved in top-down emotion regulation. In contrast, activity in these areas remained the same level or even increased in the REM-D group, compared to their BL level. Taken together, these results suggest that lack of REM sleep in humans is associated with enhanced emotional reactivity, both at behavioral and neural levels, and thus highlight the specific role of REM sleep in regulating the neural substrates for emotional responsiveness.

  12. Increased Reward-Related Behaviors during Sleep and Wakefulness in Sleepwalking and Idiopathic Nightmares.

    Directory of Open Access Journals (Sweden)

    Lampros Perogamvros

    Full Text Available We previously suggested that abnormal sleep behaviors, i.e., as found in parasomnias, may often be the expression of increased activity of the reward system during sleep. Because nightmares and sleepwalking predominate during REM and NREM sleep respectively, we tested here whether exploratory excitability, a waking personality trait reflecting high activity within the mesolimbic dopaminergic (ML-DA system, may be associated with specific changes in REM and NREM sleep patterns in these two sleep disorders.Twenty-four unmedicated patients with parasomnia (12 with chronic sleepwalking and 12 with idiopathic nightmares and no psychiatric comorbidities were studied. Each patient spent one night of sleep monitored by polysomnography. The Temperament and Character Inventory (TCI was administered to all patients and healthy controls from the Geneva population (n = 293.Sleepwalkers were more anxious than patients with idiopathic nightmares (Spielberger Trait anxiety/STAI-T, but the patient groups did not differ on any personality dimension as estimated by the TCI. Compared to controls, parasomnia patients (sleepwalkers together with patients with idiopathic nightmares scored higher on the Novelty Seeking (NS TCI scale and in particular on the exploratory excitability/curiosity (NS1 subscale, and lower on the Self-directedness (SD TCI scale, suggesting a general increase in reward sensitivity and impulsivity. Furthermore, parasomnia patients tended to worry about social separation persistently, as indicated by greater anticipatory worry (HA1 and dependence on social attachment (RD3. Moreover, exploratory excitability (NS1 correlated positively with the severity of parasomnia (i.e., the frequency of self-reported occurrences of nightmares and sleepwalking, and with time spent in REM sleep in patients with nightmares.These results suggest that patients with parasomnia might share common waking personality traits associated to reward-related brain functions

  13. Enhanced emotional reactivity after selective REM sleep deprivation in humans: an fMRI study

    Science.gov (United States)

    Rosales-Lagarde, Alejandra; Armony, Jorge L.; del Río-Portilla, Yolanda; Trejo-Martínez, David; Conde, Ruben; Corsi-Cabrera, Maria

    2012-01-01

    Converging evidence from animal and human studies suggest that rapid eye movement (REM) sleep modulates emotional processing. The aim of the present study was to explore the effects of selective REM sleep deprivation (REM-D) on emotional responses to threatening visual stimuli and their brain correlates using functional magnetic resonance imaging (fMRI). Twenty healthy subjects were randomly assigned to two groups: selective REM-D, by awakening them at each REM sleep onset, or non-rapid eye movement sleep interruptions (NREM-I) as control for potential non-specific effects of awakenings and lack of sleep. In a within-subject design, a visual emotional reactivity task was performed in the scanner before and 24 h after sleep manipulation. Behaviorally, emotional reactivity was enhanced relative to baseline (BL) in the REM deprived group only. In terms of fMRI signal, there was, as expected, an overall decrease in activity in the NREM-I group when subjects performed the task the second time, particularly in regions involved in emotional processing, such as occipital and temporal areas, as well as in the ventrolateral prefrontal cortex, involved in top-down emotion regulation. In contrast, activity in these areas remained the same level or even increased in the REM-D group, compared to their BL level. Taken together, these results suggest that lack of REM sleep in humans is associated with enhanced emotional reactivity, both at behavioral and neural levels, and thus highlight the specific role of REM sleep in regulating the neural substrates for emotional responsiveness. PMID:22719723

  14. Increased Orexin Expression Promotes Sleep/Wake Disturbances in the SOD1-G93A Mouse Model of Amyotrophic Lateral Sclerosis

    Institute of Scientific and Technical Information of China (English)

    Rong Liu; Zhao-Fu Sheng; Bing Cai; Yong-He Zhang; Dong-Sheng Fan

    2015-01-01

    Background:Sleep/wake disturbances in patients with amyotrophic lateral sclerosis (ALS) are well-documented,however,no animal or mechanistic studies on these disturbances exist.Orexin is a crucial neurotransmitter in promoting wakefulness in sleep/wake regulation,and may play an important role in sleep disturbances in ALS.In this study,we used SOD1-G93A transgenic mice as an ALS mouse model to investigate the sleep/wake disturbances and their possible mechanisms in ALS.Methods:Electroencephalogram/electromyogram recordings were performed in SOD1-G93A transgenic mice and their littermate control mice at the ages of 90 and 120 days,and the samples obtained from these groups were subjected to quantitative reverse transcriptase-polymerase chain reaction,western blotting,and enzyme-linked immunosorbent assay.Results:For the first time in SOD1-G93A transgenic mice,we observed significantly increased wakefulness,reduced sleep time,and up-regulated orexins (prepro-orexin,orexin A and B) at both 90 and 120 days.Correlation analysis confirmed moderate to high correlations between sleep/wake time (total sleep time,wakefulness time,rapid eye movement [REM] sleep time,non-REM sleep time,and deep sleep time) and increase in orexins (prepro-orexin,orexin A and B).Conclusion:Sleep/wake disturbances occur before disease onset in this ALS mouse model.Increased orexins may promote wakefulness and result in these disturbances before and after disease onset,thus making them potential therapeutic targets for amelioration of sleep disturbances in ALS.Further studies are required to elucidate the underlying mechanisms in the future.