Non-relativistic Limit of Dirac Equations in Gravitational Field and Quantum Effects of Gravity
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Based on unified theory of electromagnetic interactions and gravitational interactions, the non-relativistic limit of the equation of motion of a charged Dirac particle in gravitational field is studied. From the Schrodinger equation obtained from this non-relativistic limit, we can see that the classical Newtonian gravitational potential appears as a part of the potential in the Schrodinger equation, which can explain the gravitational phase effects found in COW experiments.And because of this Newtonian gravitational potential, a quantum particle in the earth's gravitational field may form a gravitationally bound quantized state, which has already been detected in experiments. Three different kinds of phase effects related to gravitational interactions are studied in this paper, and these phase effects should be observable in some astrophysical processes. Besides, there exists direct coupling between gravitomagnetic field and quantum spin, and radiation caused by this coupling can be used to directly determine the gravitomagnetic field on the surface of a star.
Non-relativistic Quantum Mechanics versus Quantum Field Theories
Pineda, Antonio
2007-01-01
We briefly review the derivation of a non-relativistic quantum mechanics description of a weakly bound non-relativistic system from the underlying quantum field theory. We highlight the main techniques used.
Lin, M. C.; Chang, P. C.; Lu, P. S.; Verboncoeur, J. P.
2011-10-01
Influence of ion effects on a space charge limited field emission flow has been studied systematically, by employing both analytical and numerical approaches. In our model, the field emission of electrons is described by the Fowler-Nordheim equation. The cathode plasma and surface properties are considered within the framework of an effective work function approximation. Ionization effects at the anode as well as electron space-charge effects are described by Poisson's equation coupled with the energy conservation equation including the relativistic effects. The calculations are carried out self-consistently to yield the steady states of the bipolar flow. The electric field on the cathode surface is found to be saturated due to space charge effects and is determined by the effective work function approximately. In addition, the upstream ion current bas been treated as a tuning parameter. It is found that the field emission currents in the presence of saturated ion currents can be enhanced to be nearly 1.8, 1.5, and 1.4 times of the cases with no upstream ion current in non-relativistic, intermediate, and ultra-relativistic regimes, respectively. The solutions have also been verified using 1D PIC simulations, as implemented in the OOPD1 code developed by PTSG of UC Berkeley. Work supported by the National Science Council, Taiwan, R.O.C. under Grant No. NSC 96-2112-M-030-004-MY3, National Center for Theoretical Sciences, and National Center for High-Performance Computing, Taiwan, ROC which provides the computing resources.
Estimates on Functional Integrals of Quantum Mechanics and Non-relativistic Quantum Field Theory
Bley, Gonzalo A.; Thomas, Lawrence E.
2017-01-01
We provide a unified method for obtaining upper bounds for certain functional integrals appearing in quantum mechanics and non-relativistic quantum field theory, functionals of the form {E[{exp}(A_T)]} , the (effective) action {A_T} being a function of particle trajectories up to time T. The estimates in turn yield rigorous lower bounds for ground state energies, via the Feynman-Kac formula. The upper bounds are obtained by writing the action for these functional integrals in terms of stochastic integrals. The method is illustrated in familiar quantum mechanical settings: for the hydrogen atom, for a Schrödinger operator with {1/|x|^2} potential with small coupling, and, with a modest adaptation of the method, for the harmonic oscillator. We then present our principal applications of the method, in the settings of non-relativistic quantum field theories for particles moving in a quantized Bose field, including the optical polaron and Nelson models.
Fields and fluids on curved non-relativistic spacetimes
Geracie, Michael; Roberts, Matthew M
2015-01-01
We consider non-relativistic curved geometries and argue that the background structure should be generalized from that considered in previous works. In this approach the derivative operator is defined by a Galilean spin connection valued in the Lie algebra of the Galilean group. This includes the usual spin connection plus an additional "boost connection" which parameterizes the freedom in the derivative operator not fixed by torsion or metric compatibility. As an example of this approach we develop the theory of non-relativistic dissipative fluids and find significant differences in both equations of motion and allowed transport coefficients from those found previously. Our approach also immediately generalizes to systems with independent mass and charge currents as would arise in multicomponent fluids. Along the way we also discuss how to write general locally Galilean invariant non-relativistic actions for multiple particle species at any order in derivatives. A detailed review of the geometry and its rela...
Effective approach to non-relativistic quantum mechanics
Jacobs, David M
2015-01-01
Boundary conditions on non-relativistic wavefunctions are generally not completely constrained by the basic precepts of quantum mechanics, so understanding the set of possible self-adjoint extensions of the Hamiltonian is required. For real physical systems, non-trivial self-adjoint extensions have been used to model contact potentials when those interactions are expected a priori. However, they must be incorporated into the effective description of any quantum mechanical system in order to capture possible short-distance physics that does not decouple in the low energy limit. Here, an approach is described wherein an artificial boundary is inserted at an intermediate scale on which boundary conditions may encode short-distance effects that are hidden behind the boundary. Using this approach, an analysis is performed of the free particle, harmonic oscillator, and Coulomb potential in three dimensions. Requiring measurable quantities, such as spectra and cross sections, to be independent of this artificial bou...
Bethe ansatz matrix elements as non-relativistic limits of form factors of quantum field theory
Kormos, M.; Mussardo, G.; Pozsgay, B.
2010-01-01
We show that the matrix elements of integrable models computed by the algebraic Bethe ansatz (BA) can be put in direct correspondence with the form factors of integrable relativistic field theories. This happens when the S-matrix of a Bethe ansatz model can be regarded as a suitable non-relativistic
Virial Theorem for Non-relativistic Quantum Fields in D Spatial Dimensions
Lin, Chris L
2015-01-01
The virial theorem for non-relativistic complex fields in $D$ spatial dimensions and with arbitrary many-body potential is derived, using path-integral methods and scaling arguments recently developed to analyze quantum anomalies in lower-dimensional systems. The potential appearance of a Jacobian $J$ due to a change of variables in the path-integral expression for the partition function of the system is pointed out, although in order to make contact with the literature most of the analysis deals with the $J=1$ case. The virial theorem is recast into a form that displays the effect of microscopic scales on the thermodynamics of the system. From the point of view of this paper the case usually considered, $J=1$, is not natural, and the generalization to the case $J\
Velocity operator and velocity field for spinning particles in (non-relativistic) quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Recami, E. [Bergamo Univ. (Italy). Facolta` di Ingegneria]|[INFN, Milan (Italy)]|[Campinas State Univ., SP (Brazil). Dept. of Applied Math.; Salesi, G. [Catania Univ. (Italy). Dip. di Fisica
1995-06-01
Starting from the formal expressions of the hydrodynamical (or local) quantities employed in the applications of Clifford Algebras to quantum mechanics, the paper introduces - in terms of the ordinary tensorial framework - a new definition for the field of a generic quantity. By translating from Clifford into tensor algebra, a new (non-relativistic) velocity operator for a spin 1/2 particle is also proposed. This operator is the sum of the ordinary part p/m describing the mean motion (the motion of the center-of-mass), and of a second part associated with the so-called Zitterbewegung, which is the spin internal motion observed in the center-of- mass frame. This spin component of the velocity operator is non-zero not only in the Pauli theoretical framework, i.e. in presence of external magnetic fields and spin precession, but also in the Schroedinger case, when the wave-function is a spin eigenstate. In the latter case, one gets a decomposition of the velocity field for the Madelueng fluid into two distinct parts: which the constitutes the non-relativistic analogue of the Gordon decomposition for the Dirac current.
Light Fermion Finite Mass Effects in Non-relativistic Bound States
Eiras, D; Eiras, Dolors; Soto, Joan
2000-01-01
We present analytic expressions for the vacuum polarization effects due to a light fermion with finite mass in the binding energy and in the wave function at the origin of QED and (weak coupling) QCD non-relativistic bound states. Applications to exotic atoms, \\Upsilon (1s) and t\\bar{t} production near threshold are briefly discussed.
On the Infrared Problem for the Dressed Non-Relativistic Electron in a Magnetic Field
Amour, Laurent; Grebert, Benoit; Guillot, Jean-Claude
2008-01-01
We consider a non-relativistic electron interacting with a classical magnetic field pointing along the $x_3$-axis and with a quantized electromagnetic field. The system is translation invariant in the $x_3$-direction and we consider the reduced Hamiltonian $H(P_3)$ associated with the total momentum $P_3$ along the $x_3$-axis. For a fixed momentum $P_3$ sufficiently small, we prove that $H(P_3)$ has a ground state in the Fock representation if and only if $E'(P_3)=0$, where $P_3 \\mapsto E'(P_3)$ is the derivative of the map $P_3 \\mapsto E(P_3) = \\inf \\sigma (H(P_3))$. If $E'(P_3) \
Caprioli, Damiano
2014-01-01
We use large hybrid (kinetic ions-fluid electrons) simulations to study ion acceleration and generation of magnetic turbulence due to the streaming of energetic particles that are self-consistently accelerated at non-relativistic shocks. When acceleration is efficient (at quasi-parallel shocks), we find that the magnetic field develops transverse components and is significantly amplified in the pre-shock medium. The total amplification factor is larger than 10 for shocks with Mach number $M=100$, and scales with the square root of $M$. We find that in the shock precursor the energy spectral density of excited magnetic turbulence is proportional to spectral energy distribution of accelerated particles at corresponding resonant momenta, in good agreement with the predictions of quasilinear theory of diffusive shock acceleration. We discuss the role of Bell's instability, which is predicted and found to grow faster than resonant instability in shocks with $M\\gtrsim 30$. Ahead of these strong shocks we distinguis...
Energy Technology Data Exchange (ETDEWEB)
Goncalves, Bruno; Dias Junior, Mario Marcio [Instituto Federal de Educacacao, Ciencia e Tecnologia Sudeste de Minas Gerais, Juiz de Fora, MG (Brazil)
2013-07-01
Full text: The discussion of experimental manifestations of torsion at low energies is mainly related to the torsion-spin interaction. In this respect the behavior of Dirac field and the spinning particle in an external torsion field deserves and received very special attention. In this work, we consider the combined action of torsion and magnetic field on the massive spinor field. In this case, the Dirac equation is not straightforward solved. We suppose that the spinor has two components. The equations have mixed terms between the two components. The electromagnetic field is introduced in the action by the usual gauge transformation. The torsion field is described by the field S{sub μ}. The main purpose of the work is to get an explicit form to the equation of motion that shows the possible interactions between the external fields and the spinor in a Hamiltonian that is independent to each component. We consider that S{sub 0} is constant and is the unique non-vanishing term of S{sub μ}. This simplification is taken just to simplify the algebra, as our main point is not to describe the torsion field itself. In order to get physical analysis of the problem, we consider the non-relativistic approximation. The final result is a Hamiltonian that describes a half spin field in the presence of electromagnetic and torsion external fields. (author)
Holographic Schwinger effect in non-relativistic backgrounds
Energy Technology Data Exchange (ETDEWEB)
Fadafan, Kazem Bitaghsir, E-mail: kbitaghsir@gmail.com; Saiedi, Fateme, E-mail: fatimasaiedi@yahoo.com [Physics Department, University of Shahrood, Shahrood (Iran, Islamic Republic of)
2015-12-22
Using the AdS/CFT correspondence, we study the Schwinger effect in strongly coupled theories with an anisotropic scaling symmetry in time and spatial directions. We consider Lifshitz and hyperscaling violation theories and use their gravity duals. It is shown that the shape of the potential barrier depends on the parameters of theory. One concludes that the production rate for the pair creation of particle and antiparticle will be easier in the Lifshitz theory.
Holographic Schwinger effect in non-relativistic backgrounds
Energy Technology Data Exchange (ETDEWEB)
Fadafan, Kazem Bitaghsir; Saiedi, Fateme [University of Shahrood, Physics Department, Shahrood (Iran, Islamic Republic of)
2015-12-15
Using the AdS/CFT correspondence, we study the Schwinger effect in strongly coupled theories with an anisotropic scaling symmetry in time and spatial directions. We consider Lifshitz and hyperscaling violation theories and use their gravity duals. It is shown that the shape of the potential barrier depends on the parameters of theory. One concludes that the production rate for the pair creation of particle and antiparticle will be easier in the Lifshitz theory. (orig.)
Effects of high-order operators in non-relativistic Lifshitz holography
Wang, Xinwen; Tian, Miao; Wang, Anzhong; Deng, Yanbin; Cleaver, Gerald
2014-01-01
In this paper, we study the effects of high-order operators on the non-relativistic Lifshitz holography in the framework of the Ho\\v{r}ava-Lifshitz (HL) theory of gravity, which naturally contains high-order operators in order for the theory to be power-counting renormalizble, and provides an ideal place to study these effects. In particular, we show that the Lifshitz space-time is still a solution of the full theory of the HL gravity. The effects of the high-oder operators on the space-time itself is simply to shift the Lifshitz dynamical exponent. However, while in the infrared the asymptotic behavior of a (probe) scalar field near the boundary is similar to that studied in the literature, it gets dramatically modified in the UV limit, because of the presence of the high-order operators in this regime. Then, according to the gauge/gravity duality, this in turn affects the two-point correlation functions.
Dynamics of perturbations in Double Field Theory & non-relativistic string theory
Energy Technology Data Exchange (ETDEWEB)
Ko, Sung Moon [Department of Physics, Sogang University,Seoul 121-742 (Korea, Republic of); Melby-Thompson, Charles M. [Kavli Institute for the Physics and Mathematics of the Universe (WPI),The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo,Kashiwanoha, Kashiwa, 277-8583 (Japan); Department of Physics, Fudan University,220 Handan Road, 200433 Shanghai (China); Meyer, René [Kavli Institute for the Physics and Mathematics of the Universe (WPI),The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo,Kashiwanoha, Kashiwa, 277-8583 (Japan); Park, Jeong-Hyuck [Department of Physics, Sogang University,Seoul 121-742 (Korea, Republic of)
2015-12-22
Double Field Theory provides a geometric framework capable of describing string theory backgrounds that cannot be understood purely in terms of Riemannian geometry — not only globally (‘non-geometry’), but even locally (‘non-Riemannian’). In this work, we show that the non-relativistic closed string theory of Gomis and Ooguri http://dx.doi.org/10.1063/1.1372697 arises precisely as such a non-Riemannian string background, and that the Gomis-Ooguri sigma model is equivalent to the Double Field Theory sigma model of http://dx.doi.org/10.1016/j.nuclphysb.2014.01.003 on this background. We further show that the target-space formulation of Double Field Theory on this non-Riemannian background correctly reproduces the appropriate sector of the Gomis-Ooguri string spectrum. To do this, we develop a general semi-covariant formalism describing perturbations in Double Field Theory. We derive compact expressions for the linearized equations of motion around a generic on-shell background, and construct the corresponding fluctuation Lagrangian in terms of novel completely covariant second order differential operators. We also present a new non-Riemannian solution featuring Schrödinger conformal symmetry.
Exotic Non-relativistic String
Casalbuoni, Roberto; Longhi, Giorgio
2007-01-01
We construct a classical non-relativistic string model in 3+1 dimensions. The model contains a spurion tensor field that is responsible for the non-commutative structure of the model. Under double dimensional reduction the model reduces to the exotic non-relativistic particle in 2+1 dimensions.
Non-relativistic particles in a thermal bath
Directory of Open Access Journals (Sweden)
Vairo Antonio
2014-04-01
Full Text Available Heavy particles are a window to new physics and new phenomena. Since the late eighties they are treated by means of effective field theories that fully exploit the symmetries and power counting typical of non-relativistic systems. More recently these effective field theories have been extended to describe non-relativistic particles propagating in a medium. After introducing some general features common to any non-relativistic effective field theory, we discuss two specific examples: heavy Majorana neutrinos colliding in a hot plasma of Standard Model particles in the early universe and quarkonia produced in heavy-ion collisions dissociating in a quark-gluon plasma.
Bashir, M F
2012-01-01
Using kinetic theory for homogeneous collisionless magnetized plasmas, we present an extended review of the plasma waves and instabilities and discuss the anisotropic response of generalized relativistic dielectric tensor and Onsager symmetry properties for arbitrary distribution functions. In general, we observe that for such plasmas only those electromagnetic modes whose magnetic field perturbations are perpendicular to the ambient magneticeld, i.e.,B1 \\perp B0, are effected by the anisotropy. However, in oblique propagation all modes do show such anisotropic effects. Considering the non-relativistic bi-Maxwellian distribution and studying the relevant components of the general dielectric tensor under appropriate conditions, we derive the dispersion relations for various modes and instabilities. We show that only the electromagnetic R- and L- waves, those derived from them and the O-mode are affected by thermal anisotropies, since they satisfy the required condition B1\\perpB0. By contrast, the perpendicular...
A non-relativistic logarithmic conformal field theory from a holographic point of view
Bergshoeff, Eric A.; de Haan, Sjoerd; Merbis, Wout; Rosseel, Jan
2011-01-01
We study a fourth-order derivative scalar field configuration in a fixed Lifshitz background. Using an auxiliary field we rewrite the equations of motion as two coupled second order equations. We specialize to the limit that the mass of the scalar field degenerates with that of the auxiliary field a
Operator Product Expansion and Conservation Laws in Non-Relativistic Conformal Field Theories
Golkar, Siavash
2014-01-01
We explore the consequences of conformal symmetry for the operator product expansions in nonrelativistic field theories. Similar to the relativistic case, the OPE coefficients of descendants are related to that of the primary. However, unlike relativistic CFTs the 3-point function of primaries is not completely specified by conformal symmetry. Here, we show that the 3-point function between operators with nonzero particle number, where (at least) one operator has the lowest dimension allowed by unitarity, is determined up to a numerical coefficient. We also look at the structure of the family tree of primaries with zero particle number and discuss the presence of conservation laws in this sector.
Energy Technology Data Exchange (ETDEWEB)
Amour, L. [Reims Univ., Lab. de Mathematiques EDPPM, FRE-CNRS 3111, 51 (France); Faupin, J. [Aarhus Univ., Institut for Matematiske Fag (Denmark); Grebert, B. [Nantes Univ, Lab. de Mathematiques Jean-Leray, UMR-CNRS 6629 (France); Guillot, J.C. [Ecole Polytechnique, Centre de Mathematiques Appliquees, UMR-CNRS 7641, 91 - Palaiseau (France)
2008-10-15
We consider a non-relativistic electron interacting with a classical magnetic field pointing along the x{sub 3}-axis and with a quantized electromagnetic field. The system is translation invariant in the x{sub 3}-direction and the corresponding Hamiltonian has a decomposition H {approx_equal}{integral}{sub R}{sup +}H(P{sub 3})dP{sub 3}. For a fixed momentum P{sub 3} sufficiently small, we prove that H(P{sub 3}) has a ground state in the Fock representation if and only if E'(P{sub 3})=0, where P{sub 3} {yields}E'(P{sub 3}) is the derivative of the map P{sub 3}{yields}E(P{sub 3})=inf{sigma}(H(P{sub 3})). If E'(P{sub 3}){ne}0, we obtain the existence of a ground state in a non-Fock representation. This result holds for sufficiently small values of the coupling constant. (authors)
Entropy current for non-relativistic fluid
Banerjee, Nabamita; Jain, Akash; Roychowdhury, Dibakar
2014-01-01
We study transport properties of a parity-odd, non-relativistic charged fluid in presence of background electric and magnetic fields. To obtain stress tensor and charged current for the non-relativistic system we start with the most generic relativistic fluid, living in one higher dimension and reduce the constituent equations along the light-cone direction. We also reduce the equation satisfied by the entropy current of the relativistic theory and obtain a consistent entropy current for the non-relativistic system (we call it "canonical form" of the entropy current). Demanding that the non-relativistic fluid satisfies the second law of thermodynamics we impose constraints on various first order transport coefficients. For parity even fluid, this is straight forward; it tells us positive definiteness of different transport coefficients like viscosity, thermal conductivity, electric conductivity etc. However for parity-odd fluid, canonical form of the entropy current fails to confirm the second law of thermody...
Cotner, Eric
2016-01-01
Scalar particles are a common prediction of many beyond the Standard Model theories. If they are light and cold enough, there is a possibility they may form Bose-Einstein condensates, which will then become gravitationally bound. These boson stars are solitonic solutions to the Einstein-Klein-Gordon equations, but may be approximated in the non-relativistic regime with a coupled Schr\\"odinger-Poisson system. General properties of single soliton states are derived, including the possibility of quartic self-interactions. Binary collisions between two solitons are then studied, and the effects of different mass ratios, relative phases, self-couplings, and separation distances are characterized, leading to an easy conceptual understanding of how these parameters affect the collision outcome in terms of conservation of energy. Applications to dark matter are discussed.
Non relativistic diffeomorphism and the geometry of the fractional quantum Hall effect
Banerjee, Rabin
2015-01-01
We show that our recently proposed method\\cite{BMM1,BMM2,BMM3,BM4} of constructing nonrelativistic diffeomorphism invariant field theories by gauging the Galilean symmetry provides a natural connection with the geometry of the fractional quantum Hall effect (FQHE). Specifically, the covariant derivative that appears on gauging, exactly reproduces the form that yields the Hall viscosity and Wen-Zee shift \\cite{CYF}.
Energy Technology Data Exchange (ETDEWEB)
Dartora, C.A., E-mail: cadartora@eletrica.ufpr.b [Electrical Engineering Department, Federal University of Parana (UFPR) (Brazil); Cabrera, G.G., E-mail: cabrera@ifi.unicamp.b [Instituto de Fisica ' Gleb Wataghin' , Universidade Estadual de Campinas (UNICAMP), C.P. 6165, Campinas 13.083-970 SP (Brazil)
2010-05-31
The non-relativistic Pauli-Schroedinger theory has a richer gauge structure than usually expected, being invariant under the U(1)xSU(2) gauge group, which allows to define spin-current density vectors and obtains the relevant conserved quantities from Noether's theorem. The electromagnetic fields E and B play the role of the gauge potentials for the SU(2) sector of the gauge group and can possibly contribute with a corresponding invariant curvature self-energy term in the Lagrangian density. From the dynamics of the U(1) and SU(2) gauge fields we show that electric fields can be induced by spin-currents originated from the SU(2) gauge symmetry.
Extended Galilean symmetries of non-relativistic strings
Batlle, Carles; Gomis, Joaquim; Not, Daniel
2017-02-01
We consider two non-relativistic strings and their Galilean symmetries. These strings are obtained as the two possible non-relativistic (NR) limits of a relativistic string. One of them is non-vibrating and represents a continuum of non-relativistic massless particles, and the other one is a non-relativistic vibrating string. For both cases we write the generator of the most general point transformation and impose the condition of Noether symmetry. As a result we obtain two sets of non-relativistic Killing equations for the vector fields that generate the symmetry transformations. Solving these equations shows that NR strings exhibit two extended, infinite dimensional space-time symmetries which contain, as a subset, the Galilean symmetries. For each case, we compute the associated conserved charges and discuss the existence of non-central extensions.
Extended Galilean symmetries of non-relativistic strings
Batlle, Carles; Not, Daniel
2016-01-01
We consider two non-relativistic strings and their Galilean symmetries. These strings are obtained as the two possible non-relativistic (NR) limits of a relativistic string. One of them is non-vibrating and represents a continuum of non-relativistic massless particles, and the other one is a non-relativistic vibrating string. For both cases we write the generator of the most general point transformation and impose the condition of Noether symmetry. As a result we obtain two sets of non-relativistic Killing equations for the vector fields that generate the symmetry transformations. Solving these equations shows that NR strings exhibit two extended, infinite dimensional space-time symmetries which contain, as a subset, the Galilean symmetries. For each case, we compute the associated conserved charges and discuss the existence of non-central extensions.
Energy Technology Data Exchange (ETDEWEB)
Sahu, Biswajit, E-mail: biswajit-sahu@yahoo.co.in [Department of Mathematics, West Bengal State University, Barasat, Kolkata 700126 (India); Sinha, Anjana, E-mail: sinha.anjana@gmail.com [Department of Instrumentation Science, Jadavpur University, Kolkata 700 032 (India); Roychoudhury, Rajkumar, E-mail: rroychoudhury123@gmail.com [Department of Mathematics, Visva-Bharati, Santiniketan - 731 204, India and Advanced Centre for Nonlinear and Complex Phenomena, 1175 Survey Park, Kolkata 700 075 (India)
2015-09-15
A numerical study is presented of the nonlinear dynamics of a magnetized, cold, non-relativistic plasma, in the presence of electron-ion collisions. The ions are considered to be immobile while the electrons move with non-relativistic velocities. The primary interest is to study the effects of the collision parameter, external magnetic field strength, and the initial electromagnetic polarization on the evolution of the plasma system.
Keenan, Brett; Ford, Alex; Medvedev, Mikhail
2014-10-01
Plasma turbulence in some astrophysical objects (e.g., weakly magnetized collisionless shocks in GRBs and SN) has small-scale electro-magnetic field fluctuations. We study spectral characteristics of radiation produced by particles moving in such turbulence and relate it to transport properties (diffusion) of these particles. It was shown earlier that relativistic particles produce jitter radiation, which spectral characteristics are markedly different from synchrotron radiation. Here we study radiation produced by non-relativistic particles. Unlike radiation in homogeneous field, which spectrum consists of a single cyclotron harmonic, radiation in the sub-Larmor-scale turbulence reflects statistical properties of the underlying magnetic field. We present both analytical estimates and results of ab initio numerical simulations. We also show that particle propagation in such turbulence is diffusive and evaluate the diffusion coefficient. We demonstrate that the diffusion coefficient correlates with some spectral parameters. These results can be very valuable for remote diagnostics of laboratory and astrophysical plasmas. Supported by grant DOE grant DE-FG02-07ER54940 and NSF grant AST-1209665.
Renormalization group for non-relativistic fermions.
Shankar, R
2011-07-13
A brief introduction is given to the renormalization group for non-relativistic fermions at finite density. It is shown that Landau's theory of the Fermi liquid arises as a fixed point (with the Landau parameters as marginal couplings) and its instabilities as relevant perturbations. Applications to related areas, nuclear matter, quark matter and quantum dots, are briefly discussed. The focus will be on explaining the main ideas to people in related fields, rather than addressing the experts.
Radiative transitions in mesons in a non relativistic quark model
Bonnaz, R.; Silvestre-Brac, B.; Gignoux, C.
2001-01-01
In the framework of the non relativistic quark model, an exhaustive study of radiative transitions in mesons is performed. The emphasis is put on several points. Some traditional approximations (long wave length limit, non relativistic phase space, dipole approximation for E1 transitions, gaussian wave functions) are analyzed in detail and their effects commented. A complete treatment using three different types of realistic quark-antiquark potential is made. The overall agreement with experi...
Radiative transitions in mesons in a non relativistic quark model
Bonnaz, R; Gignoux, C
2002-01-01
In the framework of the non relativistic quark model, an exhaustive study of radiative transitions in mesons is performed. The emphasis is put on several points. Some traditional approximations (long wave length limit, non relativistic phase space, dipole approximation for E1 transitions, gaussian wave functions) are analyzed in detail and their effects commented. A complete treatment using three different types of realistic quark-antiquark potential is made. The overall agreement with experimental data is quite good, but some improvements are suggested.
Resonances of the confined hydrogen atom and the Lamb-Dicke effect in non-relativistic qed
DEFF Research Database (Denmark)
Faupin, Jeremy
2008-01-01
We study a model describing a system of one dynamical nucleus and one electron confined by their center of mass and interacting with the quantized electromagnetic field. We impose an ultraviolet cutoff and assume that the fine-structure constant is sufficiently small. Using a renormalization grou...... method (based on [3, 4]), we prove that the unperturbed eigenvalues turn into resonances when the nucleus and the electron are coupled to the radiation field. This analysis is related to the Lamb–Dicke effect....
Non-Relativistic Spacetimes with Cosmological Constant
Aldrovandi, R.; Barbosa, A. L.; Crispino, L.C.B.; Pereira, J. G.
1998-01-01
Recent data on supernovae favor high values of the cosmological constant. Spacetimes with a cosmological constant have non-relativistic kinematics quite different from Galilean kinematics. De Sitter spacetimes, vacuum solutions of Einstein's equations with a cosmological constant, reduce in the non-relativistic limit to Newton-Hooke spacetimes, which are non-metric homogeneous spacetimes with non-vanishing curvature. The whole non-relativistic kinematics would then be modified, with possible ...
Relativistic and non-relativistic geodesic equations
Energy Technology Data Exchange (ETDEWEB)
Giambo' , R.; Mangiarotti, L.; Sardanashvily, G. [Camerino Univ., Camerino, MC (Italy). Dipt. di Matematica e Fisica
1999-07-01
It is shown that any dynamic equation on a configuration space of non-relativistic time-dependent mechanics is associated with connections on its tangent bundle. As a consequence, every non-relativistic dynamic equation can be seen as a geodesic equation with respect to a (non-linear) connection on this tangent bundle. Using this fact, the relationships between relativistic and non-relativistic equations of motion is studied.
Microscopic picture of non-relativistic classicalons
Energy Technology Data Exchange (ETDEWEB)
Berkhahn, Felix; Müller, Sophia; Niedermann, Florian; Schneider, Robert, E-mail: felix.berkhahn@physik.lmu.de, E-mail: sophia.x.mueller@physik.uni-muenchen.de, E-mail: florian.niedermann@physik.lmu.de, E-mail: robert.bob.schneider@physik.uni-muenchen.de [Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität, Theresienstraße 37, 80333 Munich (Germany)
2013-08-01
A theory of a non-relativistic, complex scalar field with derivatively coupled interaction terms is investigated. This toy model is considered as a prototype of a classicalizing theory and in particular of general relativity, for which the black hole constitutes a prominent example of a classicalon. Accordingly, the theory allows for a non-trivial solution of the stationary Gross-Pitaevskii equation corresponding to a black hole in the case of GR. Quantum fluctuations on this classical background are investigated within the Bogoliubov approximation. It turns out that the perturbative approach is invalidated by a high occupation of the Bogoliubov modes. Recently, it was proposed that a black hole is a Bose-Einstein condensate of gravitons that dynamically ensures to stay at the verge of a quantum phase transition. Our result is understood as an indication for that claim. Furthermore, it motivates a non-linear numerical analysis of the model.
Energy shift of interacting non-relativistic fermions in noncommutative space
Directory of Open Access Journals (Sweden)
A. Jahan
2005-06-01
Full Text Available A local interaction in noncommutative space modifies to a non-local one. For an assembly of particles interacting through the contact potential, formalism of the quantum field theory makes it possible to take into account the effect of modification of the potential on the energy of the system. In this paper we calculate the energy shift of an assembly of non-relativistic fermions, interacting through the contact potential in the presence of the two-dimensional noncommutativity.
A Signed Particle Formulation of Non-Relativistic Quantum Mechanics
Sellier, Jean Michel
2015-01-01
A formulation of non-relativistic quantum mechanics in terms of Newtonian particles is presented in the shape of a set of three postulates. In this new theory, quantum systems are described by ensembles of signed particles which behave as field-less classical objects which carry a negative or positive sign and interact with an external potential by means of creation and annihilation events only. This approach is shown to be a generalization of the signed particle Wigner Monte Carlo method which reconstructs the time-dependent Wigner quasi-distribution function of a system and, therefore, the corresponding Schroedinger time-dependent wave-function. Its classical limit is discussed and a physical interpretation, based on experimental evidences coming from quantum tomography, is suggested. Moreover, in order to show the advantages brought by this novel formulation, a straightforward extension to relativistic effects is discussed. To conclude, quantum tunnelling numerical experiments are performed to show the val...
Do non-relativistic neutrinos oscillate?
Akhmedov, Evgeny
2017-07-01
We study the question of whether oscillations between non-relativistic neutrinos or between relativistic and non-relativistic neutrinos are possible. The issues of neutrino production and propagation coherence and their impact on the above question are discussed in detail. It is demonstrated that no neutrino oscillations can occur when neutrinos that are non-relativistic in the laboratory frame are involved, except in a strongly mass-degenerate case. We also discuss how this analysis depends on the choice of the Lorentz frame. Our results are for the most part in agreement with Hinchliffe's rule.
Non-relativistic classical mechanics for spinning particles
Salesi, G
2004-01-01
We study the classical dynamics of non-relativistic particles endowed with spin. Non-vanishing Zitterbewegung terms appear in the equation of motion also in the small momentum limit. We derive a generalized work-energy theorem which suggests classical interpretations for tunnel effect and quantum potential.
Isotropic Landau levels of relativistic and non-relativistic fermions in 3D flat space
Li, Yi; Wu, Congjun
2012-02-01
The usual Landau level quantization, as demonstrated in the 2D quantum Hall effect, is crucially based on the planar structure. In this talk, we explore its 3D counterpart possessing the full 3D rotational symmetry as well as the time reversal symmetry. We construct the Landau level Hamiltonians in 3 and higher dimensional flat space for both relativistic and non-relativistic fermions. The 3D cases with integer fillings are Z2 topological insulators. The non-relativistic version describes spin-1/2 fermions coupling to the Aharonov-Casher SU(2) gauge field. This system exhibits flat Landau levels in which the orbital angular momentum and the spin are coupled with a fixed helicity. Each filled Landau level contributes one 2D helical Dirac Fermi surface at an open boundary, which demonstrates the Z2 topological nature. A natural generalization to Dirac fermions is found as a square root problem of the above non-relativistic version, which can also be viewed as the Dirac equation defined on the phase space. All these Landau level problems can be generalized to arbitrary high dimensions systematically. [4pt] [1] Yi Li and Congjun Wu, arXiv:1103.5422.[0pt] [2] Yi Li, Ken Intriligator, Yue Yu and Congjun Wu, arXiv:1108.5650.
Curved non-relativistic spacetimes, Newtonian gravitation and massive matter
Energy Technology Data Exchange (ETDEWEB)
Geracie, Michael, E-mail: mgeracie@uchicago.edu; Prabhu, Kartik, E-mail: kartikp@uchicago.edu; Roberts, Matthew M., E-mail: matthewroberts@uchicago.edu [Kadanoff Center for Theoretical Physics, Enrico Fermi Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637 (United States)
2015-10-15
There is significant recent work on coupling matter to Newton-Cartan spacetimes with the aim of investigating certain condensed matter phenomena. To this end, one needs to have a completely general spacetime consistent with local non-relativistic symmetries which supports massive matter fields. In particular, one cannot impose a priori restrictions on the geometric data if one wants to analyze matter response to a perturbed geometry. In this paper, we construct such a Bargmann spacetime in complete generality without any prior restrictions on the fields specifying the geometry. The resulting spacetime structure includes the familiar Newton-Cartan structure with an additional gauge field which couples to mass. We illustrate the matter coupling with a few examples. The general spacetime we construct also includes as a special case the covariant description of Newtonian gravity, which has been thoroughly investigated in previous works. We also show how our Bargmann spacetimes arise from a suitable non-relativistic limit of Lorentzian spacetimes. In a companion paper [M. Geracie et al., e-print http://arxiv.org/abs/1503.02680 ], we use this Bargmann spacetime structure to investigate the details of matter couplings, including the Noether-Ward identities, and transport phenomena and thermodynamics of non-relativistic fluids.
Symmetries and couplings of non-relativistic electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Festuccia, Guido [Department of Physics and Astronomy, Uppsala University,Lägerhyddsvägen 1, Uppsala (Sweden); Hansen, Dennis [The Niels Bohr Institute, Copenhagen University,Blegdamsvej 17, Copenhagen Ø, DK-2100 (Denmark); Hartong, Jelle [Physique Théorique et Mathématique and International Solvay Institutes,Université Libre de Bruxelles, C.P. 231, Brussels, 1050 (Belgium); Obers, Niels A. [The Niels Bohr Institute, Copenhagen University,Blegdamsvej 17, Copenhagen Ø, DK-2100 (Denmark)
2016-11-08
We examine three versions of non-relativistic electrodynamics, known as the electric and magnetic limit theories of Maxwell’s equations and Galilean electrodynamics (GED) which is the off-shell non-relativistic limit of Maxwell plus a free scalar field. For each of these three cases we study the couplings to non-relativistic dynamical charged matter (point particles and charged complex scalars). The GED theory contains besides the electric and magnetic potentials a so-called mass potential making the mass parameter a local function. The electric and magnetic limit theories can be coupled to twistless torsional Newton-Cartan geometry while GED can be coupled to an arbitrary torsional Newton-Cartan background. The global symmetries of the electric and magnetic limit theories on flat space consist in any dimension of the infinite dimensional Galilean conformal algebra and a U(1) current algebra. For the on-shell GED theory this symmetry is reduced but still infinite dimensional, while off-shell only the Galilei algebra plus two dilatations remain. Hence one can scale time and space independently, allowing Lifshitz scale symmetries for any value of the critical exponent z.
Symmetries and Couplings of Non-Relativistic Electrodynamics
Festuccia, Guido; Hartong, Jelle; Obers, Niels A
2016-01-01
We examine three versions of non-relativistic electrodynamics, known as the electric and magnetic limit theories of Maxwell's equations and Galilean electrodynamics (GED) which is the off-shell non-relativistic limit of Maxwell plus a free scalar field. For each of these three cases we study the couplings to non-relativistic dynamical charged matter (point particles and charged complex scalars). The GED theory contains besides the electric and magnetic potentials a so-called mass potential making the mass parameter a local function. The electric and magnetic limit theories can be coupled to twistless torsional Newton-Cartan geometry while GED can be coupled to an arbitrary torsional Newton-Cartan background. The global symmetries of the electric and magnetic limit theories on flat space consist in any dimension of the infinite dimensional Galilean conformal algebra and a $U(1)$ current algebra. For the on-shell GED theory this symmetry is reduced but still infinite dimensional, while off-shell only the Galile...
Non-Relativistic Anti-Snyder Model and Some Applications
Ching, Chee Leong; Ng, Wei Khim
2016-01-01
We examine the (2+1)-dimensional Dirac equation in a homogeneous magnetic field under the non-relativistic anti-Snyder model which is relevant to deformed special relativity (DSR) since it exhibits an intrinsic upper bound of the momentum of free particles. After setting up the formalism, exact eigen solutions are derived in momentum space representation and they are expressed in terms of finite orthogonal Romanovski polynomials. There is a finite maximum number of allowable bound states due to the orthogonality of the polynomials and the maximum energy is truncated at the maximum n. Similar to the minimal length case, the degeneracy of the Dirac-Landau levels in anti- Snyder model are modified and there are states that do not exist in the ordinary quantum mechanics limit. By taking zero mass limit, we explore the motion of effective zero mass charged Fermions in Graphene like material and obtained a maximum bound of deformed parameter. Furthermore, we consider the modified energy dispersion relations and its...
Non-relativistic Bondi–Metzner–Sachs algebra
Batlle, Carles; Delmastro, Diego; Gomis, Joaquim
2017-09-01
We construct two possible candidates for non-relativistic bms4 algebra in four space-time dimensions by contracting the original relativistic bms4 algebra. bms4 algebra is infinite-dimensional and it contains the generators of the Poincaré algebra, together with the so-called super-translations. Similarly, the proposed nrbms4 algebras can be regarded as two infinite-dimensional extensions of the Bargmann algebra. We also study a canonical realization of one of these algebras in terms of the Fourier modes of a free Schrödinger field, mimicking the canonical realization of relativistic bms4 algebra using a free Klein–Gordon field.
Relativistic Remnants of Non-Relativistic Electrons
Kashiwa, Taro
2015-01-01
Electrons obeying the Dirac equation are investigated under the non-relativistic $c \\mapsto \\infty$ limit. General solutions are given by derivatives of the relativistic invariant functions whose forms are different in the time- and the space-like region, yielding the delta function of $(ct)^2 - x^2$. This light-cone singularity does survive to show that the charge and the current density of electrons travel with the speed of light in spite of their massiveness.
Supersymmetric solutions for non-relativistic holography
Energy Technology Data Exchange (ETDEWEB)
Donos, Aristomenis [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Gauntlett, Jerome P. [Blackett Laboratory, Imperial College, London (United Kingdom)]|[Institute for Mathematical Sciences, Imperial College, London (United Kingdom)
2009-01-15
We construct families of supersymmetric solutions of type IIB and D=11 supergravity that are invariant under the non-relativistic conformal algebra for various values of dynamical exponent z{>=}4 and z{>=}3, respectively. The solutions are based on five- and seven-dimensional Sasaki-Einstein manifolds and generalise the known solutions with dynamical exponent z=4 for the type IIB case and z=3 for the D=11 case, respectively. (orig.)
Non relativistic limit of integrable QFT and Lieb-Liniger models
Bastianello, Alvise; De Luca, Andrea; Mussardo, Giuseppe
2016-12-01
In this paper we study a suitable limit of integrable QFT with the aim to identify continuous non-relativistic integrable models with local interactions. This limit amounts to sending to infinity the speed of light c but simultaneously adjusting the coupling constant g of the quantum field theories in such a way to keep finite the energies of the various excitations. The QFT considered here are Toda field theories and the O(N) non-linear sigma model. In both cases the resulting non-relativistic integrable models consist only of Lieb-Liniger models, which are fully decoupled for the Toda theories while symmetrically coupled for the O(N) model. These examples provide explicit evidence of the universality and ubiquity of the Lieb-Liniger models and, at the same time, suggest that these models may exhaust the list of possible non-relativistic integrable theories of bosonic particles with local interactions.
Non Relativistic Limit of Integrable QFT and Lieb-Liniger Models
Bastianello, Alvise; Mussardo, Giuseppe
2016-01-01
In this paper we study a suitable limit of integrable QFT with the aim to identify non-relativistic integrable models with local interactions. This limit amounts to sending to infinity the speed of light c but simultaneously adjusting the coupling constant g of the quantum field theories in such a way to keep finite the energies of the various excitations. The QFT considered here are Toda Field Theories and the O(N) non-linear sigma model. In both cases the resulting non-relativistic integrable models consist only of Lieb-Liniger models, which are fully decoupled for the Toda theories while symmetrically coupled for the O(N) model. These examples provide explicit evidence of the universality and ubiquity of the Lieb-Liniger models and, at the same time, suggest that these models may exhaust the list of possible non-relativistic integrable theories of bosonic particles with local interactions.
Differential Regularization of a Non-relativistic Anyon Model
Freedman, Daniel Z; Rius, N
1994-01-01
Differential regularization is applied to a field theory of a non-relativistic charged boson field $\\phi$ with $\\lambda (\\phi {}^{*} \\phi)^2$ self-interaction and coupling to a statistics-changing $U(1)$ Chern-Simons gauge field. Renormalized configuration-space amplitudes for all diagrams contributing to the $\\phi {}^{*} \\phi {}^{*} \\phi \\phi$ 4-point function, which is the only primitively divergent Green's function, are obtained up to 3-loop order. The renormalization group equations are explicitly checked, and the scheme dependence of the $\\beta$-function is investigated. If the renormalization scheme is fixed to agree with a previous 1-loop calculation, the 2- and 3-loop contributions to $\\beta(\\lambda,e)$ vanish, and $\\beta(\\lambda,e)$ itself vanishes when the ``self-dual'' condition relating $\\lambda$ to the gauge coupling $e$ is imposed.
Dielectric laser acceleration of non-relativistic electrons at a photonic structure
Energy Technology Data Exchange (ETDEWEB)
Breuer, John
2013-08-29
This thesis reports on the observation of dielectric laser acceleration of non-relativistic electrons via the inverse Smith-Purcell effect in the optical regime. Evanescent modes in the vicinity of a periodic grating structure can travel at the same velocity as the electrons along the grating surface. A longitudinal electric field component is used to continuously impart momentum onto the electrons. This is only possible in the near-field of a suitable photonic structure, which means that the electron beam has to pass the structure within about one wavelength. In our experiment we exploit the third spatial harmonic of a single fused silica grating excited by laser pulses derived from a Titanium:sapphire oscillator and accelerate non-relativistic 28 keV electrons. We measure a maximum energy gain of 280 eV, corresponding to an acceleration gradient of 25 MeV/m, already comparable with state-of-the-art radio-frequency linear accelerators. To experience this acceleration gradient the electrons approach the grating closer than 100 nm. We present the theory behind grating-based particle acceleration and discuss simulation results of dielectric laser acceleration in the near-field of photonic grating structures, which is excited by near-infrared laser light. Our measurements show excellent agreement with our simulation results and therefore confirm the direct acceleration with the light field. We further discuss the acceleration inside double grating structures, dephasing effects of non-relativistic electrons as well as the space charge effect, which can limit the attainable peak currents of these novel accelerator structures. The photonic structures described in this work can be readily concatenated and therefore represent a scalable realization of dielectric laser acceleration. Furthermore, our structures are directly compatible with the microstructures used for the acceleration of relativistic electrons demonstrated in parallel to this work by our collaborators in
Physical stress, mass, and energy for non-relativistic spinful matter
Geracie, Michael; Roberts, Matthew M
2016-01-01
For theories of relativistic matter fields with spin there exist two possible definitions of the stress-energy tensor, one defined by a variation of the action with the coframes at fixed connection, and the other at fixed torsion. These two stress-energy tensors do not necessarily coincide and it is the latter that corresponds to the Cauchy stress measured in the lab. In this note we discuss the corresponding issue for non-relativistic matter theories. We point out that while the physical non-relativistic stress, momentum, and mass currents are defined by a variation of the action at fixed torsion, the energy current does not admit such a description and is naturally defined at fixed connection. Any attempt to define an energy current at fixed torsion results in an ambiguity which cannot be resolved from the background spacetime data or conservation laws. We also provide computations of these quantities for some simple non-relativistic actions.
Remark on charge conjugation in the non relativistic limit
Cabo-Montes de Oca, Alejandro; Rojas, H P; Socolovsky, M
2005-01-01
We study the non relativistic limit of the charge conjugation operation $\\cal C$ in the context of the Dirac equation coupled to an electromagnetic field. The limit is well defined and, as in the relativistic case, $\\cal C$, $\\cal P$ (parity) and $\\cal T$ (time reversal) are the generators of a matrix group isomorphic to a semidirect sum of the dihedral group of eight elements and $\\Z_2$. The existence of the limit is supported by an argument based in quantum field theory. Finally, if one complexifies the Lorentz group and therefore the galilean spacetime $x_\\mu$, then the explicit form of the matrix for $\\cal C$ allows to interpret it, in this context, as the complex conjugation of the spatial coordinates: $\\vec{x} \\to \\vec{x}^*$. This result is natural in a fiber bundle description.
Relativistic and Non-relativistic Equations of Motion
Mangiarotti, L
1998-01-01
It is shown that any second order dynamic equation on a configuration space $X$ of non-relativistic time-dependent mechanics can be seen as a geodesic equation with respect to some (non-linear) connection on the tangent bundle $TX\\to X$ of relativistic velocities. Using this fact, the relationship between relativistic and non-relativistic equations of motion is studied.
Ion Injection at Non-relativistic Collisionless Shocks
Caprioli, Damiano; Spitkovsky, Anatoly
2014-01-01
We use kinetic hybrid simulations (kinetic ions - fluid electrons) to characterize the fraction of ions that are accelerated to non-thermal energies at non-relativistic collisionless shocks. We investigate the properties of the shock discontinuity and show that shocks propagating almost along the background magnetic field (quasi-parallel shocks) reform quasi-periodically on ion cyclotron scales. Ions that impinge on the shock when the discontinuity is the steepest are specularly reflected. This is a necessary condition for being injected, but it is not sufficient. Also by following the trajectories of reflected ions, we calculate the minimum energy needed for injection into diffusive shock acceleration, as a function of the shock inclination. We construct a minimal model that accounts for the ion reflection from quasi-periodic shock barrier, for the fraction of injected ions, and for the ion spectrum throughout the transition from thermal to non-thermal energies. This model captures the physics relevant for i...
Relativistic and non-relativistic solitons in plasmas
Barman, Satyendra Nath
This thesis entitled as "Relativistic and Non-relativistic Solitons in Plasmas" is the embodiment of a number of investigations related to the formation of ion-acoustic solitary waves in plasmas under various physical situations. The whole work of the thesis is devoted to the studies of solitary waves in cold and warm collisionless magnetized or unmagnetized plasmas with or without relativistic effect. To analyze the formation of solitary waves in all our models of plasmas, we have employed two established methods namely - reductive perturbation method to deduce the Korteweg-de Vries (KdV) equation, the solutions of which represent the important but near exact characteristic concepts of soliton-physics. Next, the pseudopotential method to deduce the energy integral with total nonlinearity in the coupling process for exact characteristic results of solitons has been incorporated. In Chapter 1, a brief description of plasma in nature and laboratory and its generation are outlined elegantly. The nonlinear differential equations to characterize solitary waves and the relevant but important methods of solutions have been mentioned in this chapter. The formation of solitary waves in unmagnetized and magnetized plasmas, and in relativistic plasmas has been described through mathematical entity. Applications of plasmas in different fields are also put forwarded briefly showing its importance. The study of plasmas as they naturally occur in the universe encompasses number of topics including sun's corona, solar wind, planetary magnetospheres, ionospheres, auroras, cosmic rays and radiation. The study of space weather to understand the universe, communications and the activities of weather satellites are some useful areas of space plasma physics. The surface cleaning, sterilization of food and medical appliances, killing of bacteria on various surfaces, destroying of viruses, fungi, spores and plasma coating in industrial instruments ( like computers) are some of the fields
Effective field theory of slowly-moving "extreme black holes"
Degura, Yoshitaka; Shiraishi, Kiyoshi
2000-01-01
We consider the non-relativistic effective field theory of ``extreme black holes'' in the Einstein-Maxwell-dilaton theory with an arbitrary dilaton coupling. We investigate finite-temperature behavior of gas of ``extreme black holes'' using the effective theory. The total energy of the classical many-body system is also derived.
Non relativistic limit of the Landau-Lifshitz equation: A new equation
Ares de Parga, G.; Domínguez-Hernández, S.; Salinas-Hernández, E.
2016-06-01
It is shown that Ford equation is not adequate in general to describe the motion of a charged particle including the reaction force in the non relativistic limit. As in General Relativity where a post-Newtonian method is developed in order to describe the gravitational effects at low velocities and small energies, an extra term inherited from Special Relativity must be added to the Ford equation. This is due to that the new term is greater than the reaction force in many physical situations. The Coulombic case is analyzed showing the necessity of including the new term. Comparison with General Relativity results is analyzed. The Vlasov equation to first order in 1 /c2 is proposed for the constant electric and magnetic fields.
Holographic thermalization from non relativistic branes
Roychowdhury, Dibakar
2016-01-01
In this paper, based on the fundamental principles of Gauge/gravity duality and considering a \\textit{global quench}, we probe the physics of thermalization for a special class of strongly coupled non relativistic QFTs by computing the entanglement entropy of the plasma. The isometry group of such QFTs is comprised of the generators of the Schr\\"odinger algebra which could be precisely realized as an isometry group of the killing generators of an asymptotically Schr\\"odinger $ Dp $ brane space time. In our analysis, we note that during the pre local stages of the thermal equilibrium the entanglement entropy has a faster growth in time compared to its relativistic cousin. However, it shows a linear growth during the post local stages of thermal equilibrium where the so called tsunami velocity associated with the linear growth of the entanglement entropy saturates to that of its value corresponding to the relativistic scenario. Finally, we explore the saturation region and it turns out that one must constraint ...
Covariant geometric quantization of non-relativistic Hamiltonian mechanics
Giachetta, G; Sardanashvily, G
2000-01-01
We provide geometric quantization of the vertical cotangent bundle V^*Q equipped with the canonical Poisson structure. This is a momentum phase space of non-relativistic mechanics with the configuration bundle Q -> R. The goal is the Schrodinger representation of V^*Q. We show that this quantization is equivalent to the fibrewise quantization of symplectic fibres of V^*Q -> R, that makes the quantum algebra of non-relativistic mechanics an instantwise algebra. Quantization of the classical evolution equation defines a connection on this instantwise algebra, which provides quantum evolution in non-relativistic mechanics as a parallel transport along time.
Symmetry and Covariance of Non-relativistic Quantum Mechanics
Omote, Minoru; kamefuchi, Susumu
2000-01-01
On the basis of a 5-dimensional form of space-time transformations non-relativistic quantum mechanics is reformulated in a manifestly covariant manner. The resulting covariance resembles that of the conventional relativistic quantum mechanics.
Hyperfine splitting of the dressed hydrogen atom ground state in non-relativistic QED
Amour, L
2010-01-01
We consider a spin-1/2 electron and a spin-1/2 nucleus interacting with the quantized electromagnetic field in the standard model of non-relativistic QED. For a fixed total momentum sufficiently small, we study the multiplicity of the ground state of the reduced Hamiltonian. We prove that the coupling between the spins of the charged particles and the electromagnetic field splits the degeneracy of the ground state.
Quantization of Interacting Non-Relativistic Open Strings using Extended Objects
Arias, P J; Fuenmayor, E; Leal, L; Leal, Lorenzo
2005-01-01
Non-relativistic charged open strings coupled with Abelian gauge fields are quantized in a geometric representation that generalizes the Loop Representation. The model comprises open-strings interacting through a Kalb-Ramond field in four dimensions. It is shown that a consistent geometric-representation can be built using a scheme of ``surfaces and lines of Faraday'', provided that the coupling constant (the ``charge'' of the string) is quantized.
Energy Technology Data Exchange (ETDEWEB)
Hussain, S.; Mahmood, S.; Rehman, Aman-ur- [Theoretical Physics Division (TPD), PINSTECH, P.O. Nilore, Islamabad 44000, Pakistan and Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad 44000 (Pakistan)
2014-11-15
Linear and nonlinear propagation of magnetosonic waves in the perpendicular direction to the ambient magnetic field is studied in dense plasmas for non-relativistic and ultra-relativistic degenerate electrons pressure. The sources of nonlinearities are the divergence of the ions and electrons fluxes, Lorentz forces on ions and electrons fluids and the plasma current density in the system. The Korteweg-de Vries equation for magnetosonic waves propagating in the perpendicular direction of the magnetic field is derived by employing reductive perturbation method for non-relativistic as well as ultra-relativistic degenerate electrons pressure cases in dense plasmas. The plots of the magnetosonic wave solitons are also shown using numerical values of the plasma parameters such a plasma density and magnetic field intensity of the white dwarfs from literature. The dependence of plasma density and magnetic field intensity on the magnetosonic wave propagation is also pointed out in dense plasmas for both non-relativistic and ultra-relativistic degenerate electrons pressure cases.
Vortex solutions in axial or chiral coupled non-relativistic spinor- Chern-Simons theory
Németh, Z A
1997-01-01
The interaction of a spin 1/2 particle (described by the non-relativistic "Dirac" equation of Lévy-Leblond) with Chern-Simons gauge fields is studied. It is shown, that similarly to the four dimensional spinor models, there is a consistent possibility of coupling them also by axial or chiral type currents. Static self dual vortex solutions together with a vortex-lattice are found with the new couplings.
Non-Relativistic Limit of the Dirac Equation
Ajaib, Muhammad Adeel
2016-01-01
We show that the first order form of the Schrodinger equation proposed in [1] can be obtained from the Dirac equation in the non-relativistic limit. We also show that the Pauli Hamiltonian is obtained from this equation by requiring local gauge invariance. In addition, we study the problem of a spin up particle incident on a finite potential barrier and show that the known quantum mechanical results are obtained. Finally, we consider the symmetric potential well and show that the quantum mechanical expression for the quantized energy levels of a particle is obtained with periodic boundary conditions. Based on these conclusions, we propose that the equation introduced in [1] is the non-relativistic limit of the Dirac equation and more appropriately describes spin 1/2 particles in the non-relativistic limit.
Non-relativistic anyons from holography
Directory of Open Access Journals (Sweden)
Niko Jokela
2017-03-01
Full Text Available We study generic types of holographic matter residing in Lifshitz invariant defect field theory as modeled by adding probe D-branes in the bulk black hole spacetime characterized by dynamical exponent z and with hyperscaling violation exponent θ. Our main focus will be on the collective excitations of the dense matter in the presence of an external magnetic field. Constraining the defect field theory to 2+1 dimensions, we will also allow the gauge fields become dynamical and study the properties of a strongly coupled anyonic fluid. We will deduce the universal properties of holographic matter and show that the Einstein relation always holds.
Non-relativistic supergravity in three space-time dimensions
Zojer, Thomas
2016-01-01
This year Einstein's theory of general relativity celebrates its one hundredth birthday. It supersedes the non-relativistic Newtonian theory of gravity in two aspects: i) there is a limiting velocity, nothing can move quicker than the speed of light and ii) the theory is valid in arbitrary coordinat
A brief introduction to non-relativistic supergravity
Energy Technology Data Exchange (ETDEWEB)
Zojer, Thomas [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen (Netherlands)
2016-04-15
Non-relativistic geometries have received more attention lately. We review our attempts to construct supersymmetric extensions of this so-called Newton-Cartan geometry in three space-time dimensions. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Non-relativistic supergravity in three space-time dimensions
Zojer, Thomas
2016-01-01
This year Einstein's theory of general relativity celebrates its one hundredth birthday. It supersedes the non-relativistic Newtonian theory of gravity in two aspects: i) there is a limiting velocity, nothing can move quicker than the speed of light and ii) the theory is valid in arbitrary
Theory of non-relativistic three-particle scattering
Malfliet, R.; Ruijgrok, Th.
1967-01-01
A new method, using asymptotically stationary states, is developed to calculate the S-matrix for the scattering of a non-relativistic particle by the bound state of two other particles. For the scattering with breakup of this bound state, we obtain a simplified form of the Faddeev integral
Theory and Applications of Non-Relativistic and Relativistic Turbulent Reconnection
Lazarian, A; Takamoto, M; Pino, E M de Gouveia Dal; Cho, J
2015-01-01
Realistic astrophysical environments are turbulent due to the extremely high Reynolds numbers. Therefore, the theories of reconnection intended for describing astrophysical reconnection should not ignore the effects of turbulence on magnetic reconnection. Turbulence is known to change the nature of many physical processes dramatically and in this review we claim that magnetic reconnection is not an exception. We stress that not only astrophysical turbulence is ubiquitous, but also magnetic reconnection itself induces turbulence. Thus turbulence must be accounted for in any realistic astrophysical reconnection setup. We argue that due to the similarities of MHD turbulence in relativistic and non-relativistic cases the theory of magnetic reconnection developed for the non-relativistic case can be extended to the relativistic case and we provide numerical simulations that support this conjecture. We also provide quantitative comparisons of the theoretical predictions and results of numerical experiments, includi...
Lattice methods and effective field theory
Nicholson, Amy N
2016-01-01
Lattice field theory is a non-perturbative tool for studying properties of strongly interacting field theories, which is particularly amenable to numerical calculations and has quantifiable systematic errors. In these lectures we apply these techniques to nuclear Effective Field Theory (EFT), a non-relativistic theory for nuclei involving the nucleons as the basic degrees of freedom. The lattice formulation of [1,2] for so-called pionless EFT is discussed in detail, with portions of code included to aid the reader in code development. Systematic and statistical uncertainties of these methods are discussed at length, and extensions beyond pionless EFT are introduced in the final Section.
Beneke, M; Ruiz-Femenia, P
2014-01-01
This paper concludes the presentation of the non-relativistic effective field theory formalism designed to calculate the radiative corrections that enhance the pair-annihilation cross sections of slowly moving neutralinos and charginos within the general minimal supersymmetric standard model (MSSM). While papers I and II focused on the computation of the tree-level annihilation rates that feed into the short-distance part, here we describe in detail the method to obtain the Sommerfeld factors that contain the enhanced long-distance corrections. This includes the computation of the potential interactions in the MSSM, which are provided in compact analytic form, and a novel solution of the multi-state Schr\\"odinger equation that is free from the numerical instabilities generated by large mass splittings between the scattering states. Our results allow for a precise computation of the MSSM neutralino dark matter relic abundance and pair-annihilation rates in the present Universe, when Sommerfeld enhancements are...
Geometric Representation of Interacting Non-Relativistic Open Strings using Extended Objects
Arias, P J; Fuenmayor, E; Leal, L
2013-01-01
Non-relativistic charged open strings coupled with Abelian gauge fields are quantized in a geometric representation that generalizes the Loop Representation. The model consists of open-strings interacting through a Kalb-Ramond field in four dimensions. The geometric representation proposed uses lines and surfaces that can be interpreted as an extension of the picture of Faraday's lines of classical electromagnetism. This representation results to be consistent, provided the coupling constant (the "charge" of the string) is quantized. The Schr\\"odinger equation in this representation is also presented.
Effective field theories for baryons with two- and three-heavy quarks
Vairo, Antonio
2010-01-01
Baryons made of two or three heavy quarks can be described in the modern language of non-relativistic effective field theories. These, besides allowing a rigorous treatment of the systems, provide new insight in the nature of the three-body interaction in QCD.
Non-relativistic twistor theory and Newton--Cartan geometry
Dunajski, Maciej
2015-01-01
We develop a non-relativistic twistor theory, in which Newton--Cartan structures of Newtonian gravity correspond to complex three-manifolds with a four-parameter family of rational curves with normal bundle ${\\mathcal O}\\oplus{\\mathcal O}(2)$. We show that the Newton--Cartan space-times are unstable under the general Kodaira deformation of the twistor complex structure. The Newton--Cartan connections can nevertheless be reconstructed from Merkulov's generalisation of the Kodaira map augmented by a choice of a holomorphic line bundle over the twistor space trivial on twistor lines. The Coriolis force may be incorporated by holomorphic vector bundles, which in general are non--trivial on twistor lines. The resulting geometries agree with non--relativistic limits of anti-self-dual gravitational instantons.
Do non-relativistic neutrinos constitute the dark matter?
Nieuwenhuizen, T.M.
2009-01-01
The dark matter of the Abell 1689 Galaxy Cluster is modeled by thermal, non-relativistic gravitating fermions and its galaxies and X-ray gas by isothermal distributions. A fit yields a mass of h(70)(1/2) (12/(g) over bar)(1)/(4) 1.445(30) eV. A dark-matter fraction Omega(nu) = h(70)(-3/2) 0.1893(39)
Maxwell-Chern-Simons Models: Their Symmetries, Exact Solutions and Non-relativistic Limits
Directory of Open Access Journals (Sweden)
J. Niederle
2010-01-01
Full Text Available Two Maxwell-Chern-Simons (MCS models in the (1 + 3-dimensional space-space are discussed and families of their exact solutions are found. In contrast to the Carroll-Field-Jackiw (CFE model [2] these systems are relativistically invariant and include the CFJ model as a particular sector.Using the InNonNu-Wigner contraction a Galilei-invariant non-relativistic limit of the systems is found, which makes possible to find a Galilean formulation of the CFJ model.
Angular momentum in non-relativistic QED and photon contribution to spin of hydrogen atom
Energy Technology Data Exchange (ETDEWEB)
Chen Panying, E-mail: pychen@umd.ed [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742 (United States); Ji Xiangdong [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742 (United States); Institute of Particle Physics and Cosmology, Department of Physics, Shanghai Jiao Tong University, Shanghai, 200240 (China); Center for High-Energy Physics and Institute of Theoretical Physics, Peking University, Beijing, 100080 (China); Xu Yang [Center for High-Energy Physics and Institute of Theoretical Physics, Peking University, Beijing, 100080 (China); Zhang Yue [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD 20742 (United States); Center for High-Energy Physics and Institute of Theoretical Physics, Peking University, Beijing, 100080 (China)
2010-04-26
We study angular momentum in non-relativistic quantum electrodynamics (NRQED). We construct the effective total angular momentum operator by applying Noether's theorem to the NRQED lagrangian. We calculate the NRQED matching for the individual components of the QED angular momentum up to one loop. We illustrate an application of our results by the first calculation of the angular momentum of the ground state hydrogen atom carried in radiative photons, alpha{sub em}{sup 3}/18pi, which might be measurable in future atomic experiments.
Search for non-relativistic magnetic monopoles with IceCube
Energy Technology Data Exchange (ETDEWEB)
Aartsen, M.G.; Hill, G.C.; Robertson, S.; Whelan, B.J. [University of Adelaide, School of Chemistry and Physics, Adelaide, SA (Australia); Abbasi, R.; Ahlers, M.; Arguelles, C.; Baker, M.; BenZvi, S.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J.L.; Kopper, C.; Krasberg, M.; Kurahashi, N.; Landsman, H.; Maruyama, R.; McNally, F.; Merck, M.; Morse, R.; Riedel, B.; Rodrigues, J.P.; Santander, M.; Tobin, M.N.; Toscano, S.; Van Santen, J.; Weaver, C.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N. [University of Wisconsin, Department of Physics and Wisconsin IceCube Particle Astrophysics Center, Madison, WI (United States); Ackermann, M.; Benabderrahmane, M.L.; Berghaus, P.; Bernardini, E.; Bretz, H.P.; Cruz Silva, A.H.; Gluesenkamp, T.; Jacobi, E.; Kaminsky, B.; Karg, T.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Shanidze, R.; Spiering, C.; Stoessl, A.; Yanez, J.P. [DESY, Zeuthen (Germany); Adams, J.; Brown, A.M.; Hickford, S.; Macias, O. [University of Canterbury, Department of Physics and Astronomy, Private Bag 4800, Christchurch (New Zealand); Aguilar, J.A.; Christov, A.; Montaruli, T.; Rameez, M.; Vallecorsa, S. [Universite de Geneve, Departement de physique nucleaire et corpusculaire, Geneva (Switzerland); Altmann, D.; Classen, L.; Gora, D.; Kappes, A.; Tselengidou, M. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Arlen, T.C.; De Andre, J.P.A.M.; DeYoung, T.; Dunkman, M.; Eagan, R.; Groh, J.C.; Huang, F.; Quinnan, M.; Smith, M.W.E.; Stanisha, N.A.; Tesic, G. [Pennsylvania State University, Department of Physics, University Park, PA (United States); Auffenberg, J.; Bissok, M.; Blumenthal, J.; Gretskov, P.; Haack, C.; Hallen, P.; Heinen, D.; Jagielski, K.; Kriesten, A.; Krings, K.; Leuermann, M.; Paul, L.; Raedel, L.; Reimann, R.; Schoenen, S.; Schukraft, A.; Vehring, M.; Wallraff, M.; Wiebusch, C.H.; Zierke, S. [RWTH Aachen University, III. Physikalisches Institut, Aachen (Germany); Bai, X.; Evenson, P.A.; Gaisser, T.K.; Gonzalez, J.G.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S. [University of Delaware, Bartol Research Institute and Department of Physics and Astronomy, Newark, DE (United States); Barwick, S.W.; Yodh, G. [University of California, Department of Physics and Astronomy, Irvine, CA (United States); Baum, V.; Eberhardt, B.; Koepke, L.; Kroll, G.; Luenemann, J.; Sander, H.G.; Schatto, K.; Wiebe, K. [University of Mainz, Institute of Physics, Mainz (Germany); Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K. [University of California, Department of Physics, Berkeley, CA (United States); Beatty, J.J. [Ohio State University, Department of Physics and Center for Cosmology and Astro-Particle Physics, Columbus, OH (United States); Ohio State University, Department of Astronomy, Columbus, OH (United States); Becker Tjus, J.; Eichmann, B.; Fedynitch, A.; Saba, S.M.; Schoeneberg, S.; Unger, E. [Ruhr-Universitaet Bochum, Fakultaet fuer Physik and Astronomie, Bochum (Germany); Becker, K.H.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke, A.; Omairat, A.; Posselt, J.; Soldin, D.; Tepe, A. [University of Wuppertal, Department of Physics, Wuppertal (Germany); Berley, D.; Blaufuss, E.; Christy, B.; Goodman, J.A.; Hellauer, R.; Hoffman, K.D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Richman, M.; Schmidt, T.; Sullivan, G.W.; Wissing, H. [University of Maryland, Department of Physics, College Park, MD (United States); Bernhard, A.; Coenders, S.; Gross, A.; Leute, J.; Resconi, E.; Schulz, O.; Sestayo, Y. [T.U. Munich, Garching (Germany); Besson, D.Z. [University of Kansas, Department of Physics and Astronomy, Lawrence, KS (United States); Binder, G.; Gerhardt, L.; Ha, C.; Klein, S.R.; Miarecki, S. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Boersma, D.J.; Botner, O.; Euler, S.; Hallgren, A.; Perez de los Heros, C.; Stroem, R.; Taavola, H. [Uppsala University, Department of Physics and Astronomy, Box 516, Uppsala (Sweden); Bohm, C.; Danninger, M.; Finley, C.; Flis, S.; Hulth, P.O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M. [Stockholm University, Oskar Klein Centre and Department of Physics, Stockholm (Sweden); Bose, D.; Rott, C. [Sungkyunkwan University, Department of Physics, Suwon (Korea, Republic of); Collaboration: IceCube Collaboration; and others
2014-07-15
The IceCube Neutrino Observatory is a large Cherenkov detector instrumenting 1 km{sup 3} of Antarctic ice. The detector can be used to search for signatures of particle physics beyond the Standard Model. Here, we describe the search for non-relativistic, magnetic monopoles as remnants of the Grand Unified Theory (GUT) era shortly after the Big Bang. Depending on the underlying gauge group these monopoles may catalyze the decay of nucleons via the Rubakov-Callan effect with a cross section suggested to be in the range of 10{sup -27} to 10{sup -21} cm{sup 2}. In IceCube, the Cherenkov light from nucleon decays along the monopole trajectory would produce a characteristic hit pattern. This paper presents the results of an analysis of first data taken from May 2011 until May 2012 with a dedicated slow particle trigger for DeepCore, a subdetector of IceCube. A second analysis provides better sensitivity for the brightest non-relativistic monopoles using data taken from May 2009 until May 2010. In both analyses no monopole signal was observed. For catalysis cross sections of 10{sup -22} (10{sup -24}) cm{sup 2} the flux of non-relativistic GUT monopoles is constrained up to a level of Φ{sub 90} ≤ 10{sup -18} (10{sup -17}) cm{sup -2} s{sup -1} sr{sup -1} at a 90 % confidence level, which is three orders of magnitude below the Parker bound. The limits assume a dominant decay of the proton into a positron and a neutral pion. These results improve the current best experimental limits by one to two orders of magnitude, for a wide range of assumed speeds and catalysis cross sections. (orig.)
Simulations and Theory of Ion Injection at Non-relativistic Collisionless Shocks
Caprioli, Damiano; Pop, Ana-Roxana; Spitkovsky, Anatoly
2015-01-01
We use kinetic hybrid simulations (kinetic ions-fluid electrons) to characterize the fraction of ions that are accelerated to non-thermal energies at non-relativistic collisionless shocks. We investigate the properties of the shock discontinuity and show that shocks propagating almost along the background magnetic field (quasi-parallel shocks) reform quasi-periodically on ion cyclotron scales. Ions that impinge on the shock when the discontinuity is the steepest are specularly reflected. This is a necessary condition for being injected, but it is not sufficient. Also, by following the trajectories of reflected ions, we calculate the minimum energy needed for injection into diffusive shock acceleration, as a function of the shock inclination. We construct a minimal model that accounts for the ion reflection from quasi-periodic shock barrier, for the fraction of injected ions, and for the ion spectrum throughout the transition from thermal to non-thermal energies. This model captures the physics relevant for ion injection at non-relativistic astrophysical shocks with arbitrary strengths and magnetic inclinations, and represents a crucial ingredient for understanding the diffusive shock acceleration of cosmic rays.
Convex Decompositions of Thermal Equilibrium for Non-interacting Non-relativistic Particles
Chenu, Aurelia; Branczyk, Agata; Sipe, John
2016-05-01
We provide convex decompositions of thermal equilibrium for non-interacting non-relativistic particles in terms of localized wave packets. These quantum representations offer a new tool and provide insights that can help relate to the classical picture. Considering that thermal states are ubiquitous in a wide diversity of fields, studying different convex decompositions of the canonical ensemble is an interesting problem by itself. The usual classical and quantum pictures of thermal equilibrium of N non-interacting, non-relativistic particles in a box of volume V are quite different. The picture in classical statistical mechanics is about (localized) particles with a range of positions and velocities; in quantum statistical mechanics, one considers the particles (bosons or fermions) associated with energy eigenstates that are delocalized through the whole box. Here we provide a representation of thermal equilibrium in quantum statistical mechanics involving wave packets with a localized coordinate representation and an expectation value of velocity. In addition to derive a formalism that may help simplify particular calculations, our results can be expected to provide insights into the transition from quantum to classical features of the fully quantum thermal state.
Effective Field Theory for Rotational Bands in Deformed and Superdeformed Nuclei
Ring, P.; Afanasjev, A. V.
2001-09-01
An overview is given on the description of rotational bands in normally deformed and superdeformed nuclei in the framework of effective field theories such as the Relativistic Mean Field (RMF) theory and the Relativistic Hartree--Bogoliubov (RHB) theory. In particular we discuss recent investigations for the description of superdeformed bands in the A˜ 60, 140--150 and 190 mass regions and compare them briefly with the results obtained in non-relativistic mean field theories.
Faller, Sven
2007-01-01
In the last years a lot of papers were published treating general relativity as an effective field theory. We are dealing with general relativity and the combination of general relativity and scalar QED as effective field theories. For effective field theories the quantization is well known therefore we are able to quantize general relativity and the combination of general relativity and scalar QED. The vertex rules can be extracted from the action and the non-analytical contributions to the 1-loop scattering matrix of scalars and charged scalars are calculated in the non-relativistic limit. The non-analytical parts of the scattering amplitudes yield the long range, low energy, leading quantum corrections. From the general relativity as an effective field theory the leading quantum corrections to the Newtonian gravity is constructed. General relativity combined with scalar QED yield the post-Newtonian and quantum corrections to the two-particle non-relativistic scattering matrix potential for charged scalar p...
Persico, Franco; Power, Edwin A.
1988-01-01
The physics of the electromagnetic vacuum, its fluctuations and its role in spontaneous emission has been studied since the early days of the quantum theory of radiation. In recent years there has been a renewed interest in the nature of the vacuum state and its potency in giving rise to observable effects. For example the question of amplification of photon signals and the way vacuum fluctuations may provide inescapable noise is fundamental to the theory of measurement. Quantum electrodynamics in cavities has become a very active area of research both experimentally and theoretically and the way the radiation field, even in vacuo, is changed by confinement is of interest and importance. The effective Einstein A-coefficient can be much smaller than in free space because the available modes are sparser in a cavity. Radiative connections such as the Lamb shift energies are also changed as the virtual photon modes are varied by the confinement. The existence of electromagnetic field energy (from the vacuum fluctuations) in the neighbourhood of atoms/molecules in their ground state is demonstrated by its effect on test molecules brought into the vicinity of the original sources. All the forces analogous to that of Van der Waals, including of course their Casimir retardations at long range, are explicable in terms of these virtual cloud effects. The Adriatico Conference on "Vacuum in Non-Relativistic Matter-Radiation Systems" held in July 1987 brought together scientists in quantum optics, quantum field theorists and others interested in the electromagnetic vacuum. It was most successful in that the participants found enough mutual agreement but with clearly defined tensions between them to provide excitement and argument throughout the four days' meeting. This volume consists of most of the papers presented at the conference. It is clear that the collection ranges from the pedagogical and the review type article to research papers with original material. The
Search for non-relativistic Magnetic Monopoles with IceCube
Aartsen, M G; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Arguelles, C; Arlen, T C; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; Benabderrahmane, M L; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Brayeur, L; Bretz, H -P; Brown, A M; Bruijn, R; Casey, J; Casier, M; Chirkin, D; Christov, A; Christy, B; Clark, K; Classen, L; Clevermann, F; Coenders, S; Cohen, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; Day, M; de André, J P A M; De Clercq, C; De Ridder, S; Desiati, P; de Vries, K D; de With, M; DeYoung, T; Díaz-Vélez, J C; Dunkman, M; Eagan, R; Eberhardt, B; Eichmann, B; Eisch, J; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Goodman, J A; Góra, D; Grandmont, D T; Grant, D; Gretskov, P; Groh, J C; Groß, A; Ha, C; Haack, C; Ismail, A Haj; Hallen, P; Hallgren, A; Halzen, F; Hanson, K; Hebecker, D; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huang, F; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Jagielski, K; Japaridze, G S; Jero, K; Jlelati, O; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kauer, M; Kelley, J L; Kiryluk, J; Kläs, J; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Kriesten, A; Krings, K; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Landsman, H; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Leute, J; Lünemann, J; Macías, O; Madsen, J; Maggi, G; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Meli, A; Merck, M; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Paul, L; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Quinnan, M; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Reimann, R; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Robertson, S; Rodrigues, J P; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Sestayo, Y; Seunarine, S; Shanidze, R; Sheremata, C; Smith, M W E; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stanisha, N A; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Strotjohann, N L; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Tepe, A; Ter-Antonyan, S; Tešić, G; Tilav, S; Toale, P A; Tobin, M N; Toscano, S; Tselengidou, M; Unger, E; Usner, M; Vallecorsa, S; van Eijndhoven, N; van Santen, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallraff, M; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whelan, B J; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; Zoll, M
2014-01-01
The IceCube Neutrino Observatory is a large Cherenkov detector instrumenting $1\\,\\mathrm{km}^3$ of Antarctic ice. The detector can be used to search for signatures of particle physics beyond the Standard Model. Here, we describe the search for non-relativistic, magnetic monopoles as remnants of the GUT (Grand Unified Theory) era shortly after the Big Bang. These monopoles may catalyze the decay of nucleons via the Rubakov-Callan effect with a cross section suggested to be in the range of $10^{-27}\\,\\mathrm{cm^2}$ to $10^{-21}\\,\\mathrm{cm^2}$. In IceCube, the Cherenkov light from nucleon decays along the monopole trajectory would produce a characteristic hit pattern. This paper presents the results of an analysis of first data taken from May 2011 until May 2012 with a dedicated slow-particle trigger for DeepCore, a subdetector of IceCube. A second analysis provides better sensitivity for the brightest non-relativistic monopoles using data taken from May 2009 until May 2010. In both analyses no monopole signal ...
The Thomas-Fermi Quark Model: Non-Relativistic Aspects
Liu, Quan
2012-01-01
Non-relativistic aspects of the Thomas-Fermi statistical quark model are developed. A review is given and our modified approach to spin in the model is explained. Our results are limited so far to two inequivalent simultaneous wave functions which can apply to multiple degenerate flavors. An explicit spin interaction is introduced, which requires the introduction of a generalized spin "flavor". Although the model is designed to be most reliable for many-quark states, we find surprisingly that it may be used to fit the low energy spectrum of octet and decouplet baryons. The low energy fit allows us to investigate the six-quark doubly strange H-dibaryon state, possible 6 quark nucleon-nucleon resonances and flavor symmetric strange states of higher quark content.
Newton-Cartan (super)gravity as a non-relativistic limit
Bergshoeff, Eric; Rosseel, Jan; Zojer, Thomas
2015-01-01
We define a procedure that, starting from a relativistic theory of supergravity, leads to a consistent, non-relativistic version thereof. As a first application we use this limiting procedure to show how the Newton-Cartan formulation of non-relativistic gravity can be obtained from general relativit
Investigation of Properties of Exotic Nuclei in Non-relativistic and Relativistic Models
Institute of Scientific and Technical Information of China (English)
2001-01-01
Properties of exotic nuclei are described by non-relativistic and relativistic models. The relativistic mean field theory predicts one proton halo in 26,27,28P and two proton halos in 27,28,29S, recently, one proton halo in 26,27,28P has been found experimentally in MSU lab. The relativistic Hartree-Fock theory has been used to investigate the contribution of Fock term and isovector mesons to the properties of exotic nuclei. It turns out that the influence of the Fock term and isovector mesons on the properties of neutron extremely rich nuclei is very different from that of near stable nuclei. Meanwhile, the deformed Hartree-Fock-Bogoliubov theory has been employed to describe the ground state properties of the isotopes for some light nuclei.
Energy Technology Data Exchange (ETDEWEB)
Zhu, X. P. [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Zhang, Z. C.; Lei, M. K., E-mail: surfeng@dlut.edu.cn [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Pushkarev, A. I. [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Laboratory of Beam and Plasma Technology, High Technologies Physics Institute, Tomsk Polytechnic University, 30, Lenin Ave, 634050 Tomsk (Russian Federation)
2016-01-15
High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200–300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.
Holographic energy loss in non-relativistic backgrounds
Atashi, Mahdi; Farahbodnia, Mitra
2016-01-01
In this paper, we study some aspects of energy loss in non-relativistic theories from holography. We analyze the energy lost by a rotating heavy point particle along a circle of radius $l$ with angular velocity $\\omega$ in theories with general dynamical exponent $z$ and hyperscaling violation exponent $\\theta$. It is shown that this problem provides a novel perspective on the energy loss in such theories. A general computation at zero and finite temperature is done and it is shown that how the total energy loss rate depends non-trivially on two characteristic exponents $(z,\\theta)$. We find that at zero temperature there is a special radius $l_c$ where the energy loss is independent of different values of $(z,\\theta)$. Also, there is a crossover between a regime in which the energy loss is dominated by the linear drag force and by the radiation because of the acceleration of the rotating particle. We discover different behaviors at finite temperature case.
Radiation of non-relativistic particle on a conducting sphere and a string of spheres
Shul'ga, N F; Larikova, E A
2016-01-01
The radiation arising under uniform motion of non-relativistic charged particle by (or through) perfectly conducting sphere is considered. The rigorous results are obtained using the method of images known from electrostatics.
Generalized One-Dimensional Point Interaction in Relativistic and Non-relativistic Quantum Mechanics
Shigehara, T; Mishima, T; Cheon, T; Cheon, Taksu
1999-01-01
We first give the solution for the local approximation of a four parameter family of generalized one-dimensional point interactions within the framework of non-relativistic model with three neighboring $\\delta$ functions. We also discuss the problem within relativistic (Dirac) framework and give the solution for a three parameter family. It gives a physical interpretation for so-called high energy substantially differ between non-relativistic and relativistic cases.
General aspects of effective field theories and few-body applications
Hammer, H -W
2016-01-01
Effective field theory provides a powerful framework to exploit a separation of scales in physical systems. In these lectures, we discuss some general aspects of effective field theories and their application to few-body physics. In particular, we consider an effective field theory for non-relativistic particles with resonant short-range interactions where certain parts of the interaction need to be treated nonperturbatively. As an application, we discuss the so-called pionless effective field theory for low-energy nuclear physics. The extension to include long-range interactions mediated by photon and pion-exchange is also addressed.
``Pheudo-cyclotron'' radiation of non-relativistic particles in small-scale magnetic turbulence
Keenan, Brett; Ford, Alex; Medvedev, Mikhail V.
2014-03-01
Plasma turbulence in some astrophysical objects (e.g., weakly magnetized collisionless shocks in GRBs and SN) has small-scale magnetic field fluctuations. We study spectral characteristics of radiation produced by particles moving in such turbulence. It was shown earlier that relativistic particles produce jitter radiation, which spectral characteristics are markedly different from synchrotron radiation. Here we study radiation produced by non-relativistic particles. In the case of a homogeneous fields, such radiation is cyclotron and its spectrum consists of just a single harmonic at the cyclotron frequency. However, in the sub-Larmor-scale turbulence, the radiation spectrum is much reacher and reflects statistical properties of the underlying magnetic field. We present both analytical estimates and results of ab initio numerical simulations. We also show that particle propagation in such turbulence is diffusive and evaluate the diffusion coefficient. We demonstrate that the diffusion coefficient correlates with some spectral parameters. These results can be very valuable for remote diagnostics of laboratory and astrophysical plasmas. Supported by grant DOE grant DE-FG02-07ER54940 and NSF grant AST-1209665.
Dark matter directional detection in non-relativistic effective theories
Catena, Riccardo
2015-01-01
We extend the formalism of dark matter directional detection to arbitrary one-body dark matter-nucleon interactions. The new theoretical framework generalizes the one currently used, which is based on 2 types of dark matter-nucleon interaction only. It includes 14 dark matter-nucleon interaction operators, 8 isotope-dependent nuclear response functions, and the Radon transform of the first 2 moments of the dark matter velocity distribution. We calculate the recoil energy spectra at dark matter directional detectors made of CF$_4$, CS$_2$ and $^{3}$He for the 14 dark matter-nucleon interactions, using nuclear response functions recently obtained through numerical nuclear structure calculations. We highlight the new features of the proposed theoretical framework, and present our results for a spherical dark matter halo and for a stream of dark matter particles. This study lays the foundations for model independent analyses of dark matter directional detection experiments.
Simulations of ion acceleration at non-relativistic shocks: i) Acceleration efficiency
Caprioli, Damiano
2013-01-01
We use 2D and 3D hybrid (kinetic ions - fluid electrons) simulations to investigate particle acceleration and magnetic field amplification at non-relativistic astrophysical shocks. We show that diffusive shock acceleration operates for quasi-parallel configurations (i.e., when the background magnetic field is almost aligned with the shock normal) and, for large sonic and Alfv\\'enic Mach numbers, produces universal power-law spectra proportional to p^(-4), where p is the particle momentum. The maximum energy of accelerated ions increases with time, and it is only limited by finite box size and run time. Acceleration is mainly efficient for parallel and quasi-parallel strong shocks, where 10-20% of the bulk kinetic energy can be converted to energetic particles, and becomes ineffective for quasi-perpendicular shocks. Also, the generation of magnetic turbulence correlates with efficient ion acceleration, and vanishes for quasi-perpendicular configurations. At very oblique shocks, ions can be accelerated via shoc...
Are non-relativistic neutrinos the dark matter particles?
Nieuwenhuizen, Theo M.
2010-06-01
. Thereby the spead up the intracluster gas to virial speeds of 10 keV, which causes reionization without assistance of heavy stars. Within the analysis, the baryons are poor tracers of the dark matter density. This work is described in Theo M. Nieuwenhuizen, Do non-relativistic neutrinos constitute the dark matter? Europhysics Letters 86, 59001 (2009). This text of this paper is an update of this work. Structure formation is presently believed to need cold dark matter. However, hydrodynamics alone may explain baryonic clustering without this trigger. Th. M. Nieuwenhuizen, C. H. Gibson and R. E. Schild, Gravitational hydrodynamics of large scale structure formation, Europhysics Letters 2009, to appear.
Ikhdair, Sameer M
2012-01-01
We study the effects of the perpendicular magnetic and Aharonov-Bohm (AB) flux fields on the energy levels of a two-dimensional (2D) Klein-Gordon (KG) particle subjects to equal scalar and vector pseudo-harmonic oscillator (PHO). We calculate the exact energy eigenvalues and normalized wave functions in terms of chemical potential parameter, magnetic field strength, AB flux field and magnetic quantum number by means of the Nikiforov-Uvarov (NU) method. The non-relativistic limit, PHO and harmonic oscillator solutions in the existence and absence of external fields are also obtained.
Hernandez-Zapata, Sergio; 10.1007/s10701-010-9413-7
2010-01-01
A completely Lorentz-invariant Bohmian model has been proposed recently for the case of a system of non-interacting spinless particles, obeying Klein-Gordon equations. It is based on a multi-temporal formalism and on the idea of treating the squared norm of the wave function as a space-time probability density. The particle's configurations evolve in space-time in terms of a parameter {\\sigma}, with dimensions of time. In this work this model is further analyzed and extended to the case of an interaction with an external electromagnetic field. The physical meaning of {\\sigma} is explored. Two special situations are studied in depth: (1) the classical limit, where the Einsteinian Mechanics of Special Relativity is recovered and the parameter {\\sigma} is shown to tend to the particle's proper time; and (2) the non-relativistic limit, where it is obtained a model very similar to the usual non-relativistic Bohmian Mechanics but with the time of the frame of reference replaced by {\\sigma} as the dynamical temporal...
The confined hydrogenoid ion in non-relativistic quantum electrodynamics
Amour, L
2006-01-01
We consider a system of a nucleus with an electron together with the quantized electromagnetic field. Instead of fixing the nucleus, the system is confined by its center of mass. This model is used in theoretical physics to explain the Lamb-Dicke and the M\\"ossbauer effects (see [CTDRG]). When an ultraviolet cut-off is imposed we initiate the spectral analysis of the Hamiltonian describing the system and we derive the existence of a ground state. This is achieved without conditions on the fine structure constant. [CTDRG] C. Cohen-Tannoudji, J. Dupont-Roc and G. Grynberg. Processus d'interaction entre photons et atomes. Edition du CNRS, 2001.
"Non-Relativistic" Behavior of Massive Gravity Sources
Deser, S
2014-01-01
We exhibit novel effects (absent in GR) of sources in massive gravity. First, we show that removing its ghost mode forces a field-current identity: The metric's trace is locally proportional to that of its stress tensor; a point source implies a metric singularity enhanced by the square of the graviton's range. Second, exterior solutions acquire spatial stress hair--their metric components depend on the interior T_ij(r). Also, in contrast to naive expectations, the Newtonian potential of a source is now determined by both its interior's spatial stress and mass. Our explicit results are obtained at linear, Fierz-Pauli, level, but ought to persist nonlinearly.
Hwang, Sungmin
2017-03-01
We present our calculation of the non-relativistic corrections to the heavy quark-antiquark potential up to leading and next-to-leading order (NLO) via the effective string theory (EST). Full systematics of effective field theory (EFT) are discussed in order for including the NLO contribution that arises in the EST. We also show how the number of dimensionful parameters arising from the EST are reduced by the constraints between the Wilson coeffcients from non-relativistic EFTs for QCD.
On the Theory of Resonances in Non-Relativistic QED and Related Models
DEFF Research Database (Denmark)
Abou Salem, Walid K.; Faupin, Jeremy; Froehlich, Juerg;
We study the mathematical theory of quantum resonances in the standard model of non-relativistic QED and in Nelson's model. In particular, we estimate the survival probability of metastable states corresponding to quantum resonances and relate the resonances to poles of an analytic continuation...
Karshenboim, S G; Korzinin, E Yu; Shelyuto, V A
2010-01-01
Contributions to the energy levels in light muonic atoms and, in particular, to the Lamb shift fall into a few well-distinguished classes. The related diagrams are calculated using different approaches. In particular, there is a specific kind of non-relativistic contributions. Here we consider such corrections to the Lamb shift in order $\\alpha^5m_\\mu$. These contributions are due to free vacuum polarization loops as well as to various effects of light-by-light scattering. The closed loop in the related diagrams is an electronic one, which allows a non-relativistic consideration of the muon. Both kinds of contributions have been known for a while, however, the results obtained up to date are only partial ones. We complete a calculation of the $\\alpha^5m_\\mu$ contributions for muonic hydrogen. The results are also adjusted for muonic deuterium and muonic helium ion.
Semi-classical Locality for the Non-relativistic Path Integral in Configuration Space
Gomes, Henrique
2017-09-01
In an accompanying paper Gomes (arXiv:1504.02818, 2015), we have put forward an interpretation of quantum mechanics based on a non-relativistic, Lagrangian 3+1 formalism of a closed Universe M, existing on timeless configuration space Q of some field over M. However, not much was said there about the role of locality, which was not assumed. This paper is an attempt to fill that gap. Locality in full can only emerge dynamically, and is not postulated. This new understanding of locality is based solely on the properties of extremal paths in configuration space. I do not demand locality from the start, as it is usually done, but showed conditions under which certain systems exhibit it spontaneously. In this way we recover semi-classical local behavior when regions dynamically decouple from each other, a notion more appropriate for extension into quantum mechanics. The dynamics of a sub-region O within the closed manifold M is independent of its complement, M-O, if the projection of extremal curves on Q onto the space of extremal curves intrinsic to O is a surjective map. This roughly corresponds to e^{i\\hat{H}t}circ prO= prOcirc e^{i\\hat{H}t}, where prO:Q→ Q_O^{partial O} is a linear projection. This criterion for locality can be made approximate—an impossible feat had it been already postulated—and it can be applied for theories which do not have hyperbolic equations of motion, and/or no fixed causal structure. When two regions are mutually independent according to the criterion proposed here, the semi-classical path integral kernel factorizes, showing cluster decomposition which is the ultimate aim of a definition of locality.
Institute of Scientific and Technical Information of China (English)
LUO Xiao-hua; WU Mu-ying; HE Wei; SHAO Ming-zhu; LUO Shi-yu
2011-01-01
Under classical mechanics, the general equation of particle motion in the periodic field is derived. In the dampless case, the existence possibility of the higher-order harmonic radiation is explored by using Bessel function expansion of a generalized trigonometrical function and the multi-scale method. In the damping case, the critical properties and a chaotic behavior are discussed by the Melnikov method. The results show that the use of a higher-order harmonic radiation of non-relativistic particles as a short-wavelength laser source is perfectly possible, and the system's critical condition is related to its parameters. Only by adjusting parameters suitablely, the stable higher-order harmonic radiation with bigger intensity can be obtained.
Curved non-relativistic spacetimes, Newtonian gravitation and massive matter
Geracie, Michael; Roberts, Matthew M
2015-01-01
There is significant recent work on coupling matter to Newton-Cartan spacetimes with the aim of investigating certain condensed matter phenomena. To this end, one needs to have a completely general spacetime consistent with local non-relativisitic symmetries which supports massive matter fields. In particular, one can not impose a priori restrictions on the geometric data if one wants to analyze matter response to a perturbed geometry. In this paper we construct such a Bargmann spacetime in complete generality without any prior restrictions on the fields specifying the geometry. The resulting spacetime structure includes the familiar Newton-Cartan structure with an additional gauge field which couples to mass. We illustrate the matter coupling with a few examples. The general spacetime we construct also includes as a special case the covariant description of Newtonian gravity, which has been thoroughly investigated in previous works. We also show how our Bargmann spacetimes arise from a suitable non-relativis...
Institute of Scientific and Technical Information of China (English)
Sameer M.Ikhdair; Majid Hamzavi
2012-01-01
We study the effects of the perpendicular magnetic and Aharonov Bohm (AB) flux fields on the energy levels of a two-dimensional (2D) Klein-Gordon (KG) particle subjected to an equal scalar and vector pseudo-harmonic oscillator (PHO).We calculate the exact energy eigenvalues and normalized wave functions in terms of chemical potential parameter,magnetic field strength,AB flux field,and magnetic quantum number by means of the Nikiforov-Uvarov (NU) method.The non-relativistic limit,PHO,and harmonic oscillator solutions in the existence and absence of external fields are also obtained.
,
2016-01-01
With Einstein's inertial motion (free-falling and non-rotating relative to gyroscopes), geodesics for non-relativistic particles can intersect repeatedly, allowing one to compute the space-time curvature $R^{\\hat{0} \\hat{0}}$ exactly. Einstein's $R^{\\hat{0} \\hat{0}}$ for strong gravitational fields and for relativistic source-matter is identical with the Newtonian expression for the relative radial acceleration of neighboring free-falling test-particles, spherically averaged.--- Einstein's field equations follow from Newtonian experiments, local Lorentz-covariance, and energy-momentum conservation combined with the Bianchi identity.
Bruce, Adam L
2015-01-01
We show the traditional rocket problem, where the ejecta velocity is assumed constant, can be reduced to an integral quadrature of which the completely non-relativistic equation of Tsiolkovsky, as well as the fully relativistic equation derived by Ackeret, are limiting cases. By expanding this quadrature in series, it is shown explicitly how relativistic corrections to the mass ratio equation as the rocket transitions from the Newtonian to the relativistic regime can be represented as products of exponential functions of the rocket velocity, ejecta velocity, and the speed of light. We find that even low order correction products approximate the traditional relativistic equation to a high accuracy in flight regimes up to $0.5c$ while retaining a clear distinction between the non-relativistic base-case and relativistic corrections. We furthermore use the results developed to consider the case where the rocket is not moving relativistically but the ejecta stream is, and where the ejecta stream is massless.
Hyperfine splitting in non-relativistic QED: uniqueness of the dressed hydrogen atom ground state
Amour, Laurent
2011-01-01
We consider a free hydrogen atom composed of a spin-1/2 nucleus and a spin-1/2 electron in the standard model of non-relativistic QED. We study the Pauli-Fierz Hamiltonian associated with this system at a fixed total momentum. For small enough values of the fine-structure constant, we prove that the ground state is unique. This result reflects the hyperfine structure of the hydrogen atom ground state.
Condensation for non-relativistic matter in Hořava–Lifshitz gravity
Directory of Open Access Journals (Sweden)
Jiliang Jing
2015-10-01
Full Text Available We study condensation for non-relativistic matter in a Hořava–Lifshitz black hole without the condition of the detailed balance. We show that, for the fixed non-relativistic parameter α2 (or the detailed balance parameter ϵ, it is easier for the scalar hair to form as the parameter ϵ (or α2 becomes larger, but the condensation is not affected by the non-relativistic parameter β2. We also find that the ratio of the gap frequency in conductivity to the critical temperature decreases with the increase of ϵ and α2, but increases with the increase of β2. The ratio can reduce to the Horowitz–Roberts relation ωg/Tc≈8 obtained in the Einstein gravity and Cai's result ωg/Tc≈13 found in a Hořava–Lifshitz gravity with the condition of the detailed balance for the relativistic matter. Especially, we note that the ratio can arrive at the value of the BCS theory ωg/Tc≈3.5 by taking proper values of the parameters.
Effective field theories for heavy Majorana neutrinos in a thermal bath
Energy Technology Data Exchange (ETDEWEB)
Biondini, Simone
2016-05-06
In the leptogenesis framework Majorana neutrinos are at the origin of the baryon asymmetry in the universe. We develop an effective field theory for non-relativistic Majorana fermions and we apply it to the case of a heavy Majorana neutrino decaying in a hot plasma of Standard Model particles, whose temperature is much smaller than the mass of the Majorana neutrino but still much larger than the electroweak scale. Moreover we compute systematically thermal corrections to the CP asymmetries in the Majorana neutrino decays.
Energy Technology Data Exchange (ETDEWEB)
Faller, Sven [Universitaet Siegen, Theoretische Physik 1 (Germany)
2008-07-01
In the last years a lot of papers were published treating general relativity as an effective field theory. We are dealing with general relativity and the combination of general relativity and scalar QED as effective field theories. For effective field theories the quantization is well known therefore we are able to quantize general relativity and the combination of general relativity and scalar QED. The vertex rules can be extracted from the action and the non-analytical contributions to the 1-loop scattering matrix of scalars and charged scalars are calculated in the non-relativistic limit. The non-analytical parts of the scattering amplitudes yield the long range, low energy, leading quantum corrections. From the general relativity as an effective field theory the leading quantum corrections to the Newtonian gravity is constructed. General relativity combined with scalar QED yield the post-Newtonian and quantum corrections to the two-particle non-relativistic scattering matrix potential for charged scalar particles. The difference to other publications is finally discussed.
Wachter, H
2007-01-01
This is the second part of a paper about a q-deformed analog of non-relativistic Schroedinger theory. It applies the general ideas of part I and tries to give a description of one-particle states on q-deformed quantum spaces like the braided line or the q-deformed Euclidean space in three dimensions. Hamiltonian operators for the free q-deformed particle in one as well as three dimensions are introduced. Plane waves as solutions to the corresponding Schroedinger equations are considered. Their completeness and orthonormality relations are written down. Expectation values of position and momentum observables are taken with respect to one-particle states and their time-dependence is discussed. A potential is added to the free-particle Hamiltonians and q-analogs of the Ehrenfest theorem are derived from the Heisenberg equations of motion. The conservation of probability is proved.
Testing the Higgs sector directly in the non-relativistic domain
Zhang, Zhentao
2016-01-01
Directly measuring the Higgs self-coupling is of great importance for testing the Brout-Englert-Higgs mechanism in the Standard Model. As a scattering that contains the direct information from the Higgs self-coupling, we investigate the process $\\mu^-\\mu^+\\rightarrow HH$ in the threshold region. We calculate the one-loop corrections to the cross section and consider the non-perturbative contribution from the Higgs self-interactions in the final state. It is found that the scattering in the non-relativistic domain could be an especial process to testing the Higgs sector directly.
A relativistic non-relativistic Goldstone theorem: gapped Goldstones at finite charge density
Nicolis, Alberto
2012-01-01
We adapt the Goldstone theorem to study spontaneous symmetry breaking in relativistic theories at finite charge density. It is customary to treat systems at finite density via non-relativistic Hamiltonians. Here we highlight the importance of the underlying relativistic dynamics. This leads to seemingly new results whenever the charge in question is spontaneously broken and does not commute with other broken charges. These would normally be associated with gapless Goldstone excitations. We find that, in fact, their currents interpolate gapped excitations. We derive exact non-perturbative expressions for their gaps, in terms of the chemical potential and of the symmetry algebra.
Effective Field Theories for heavy probes in a hot QCD plasma and in the early universe
Directory of Open Access Journals (Sweden)
Escobedo Miguel A.
2017-01-01
Full Text Available There are many interesting problems in heavy-ion collisions and in cosmology that involve the interaction of a heavy particle with a medium. An example is the dissociation of heavy quarkonium seen in heavy-ion collisions. This was believed to be due to the screening of chromoelectric fields that prevents the heavy quarks from binding, however in the last years several perturbative and lattice computations have pointed out to the possibility that dissociation is due to the finite lifetime of a quarkonium state inside the medium. Regarding cosmology, the study of the behavior of heavy Majorana neutrinos in a hot medium is important to understand if this model can explain the origin of dark matter and the baryon asymmetry. A very convenient way of studying these problems is with the use of non-relativistic effective field theories (EFTs, this allows to make the computations in a more systematic way by defining a more suitable power counting and making it more difficult to miss necessary resummations. In this proceedings I will review the most important results obtained by applying the EFT formalism to the study of quarkonium suppression and Majorana neutrinos, I will also discuss how combining an EFT called potential non-relativistic QCD (pNRQCD with concepts coming from the field of open quantum systems it is possible to understand how the population of the different quarkonium states evolve with time inside a thermal medium.
The Lamb shift in muonic hydrogen and the proton radius from effective field theories
Energy Technology Data Exchange (ETDEWEB)
Peset, Clara; Pineda, Antonio [Universitat Autonoma de Barcelona, Grup de Fisica Teorica, Dept. Fisica and IFAE, Bellaterra (Barcelona) (Spain)
2015-12-15
We comprehensively analyse the theoretical prediction for the Lamb shift in muonic hydrogen, and the associated determination of the proton radius. We use effective field theories. This allows us to relate the proton radius with well-defined objects in quantum field theory, eliminating unnecessary model dependence. The use of effective field theories also helps us to organize the computation so that we can clearly state the parametric accuracy of the result. In this paper we review all (and check several of) the contributions to the energy shift of order α{sup 5}, as well as those that scale like α{sup 6} x logarithms in the context of non-relativistic effective field theories of QED. (orig.)
The Lamb shift in muonic hydrogen and the proton radius from effective field theories
Peset, Clara
2015-01-01
We comprehensively analyse the theoretical prediction for the Lamb shift in muonic hydrogen, and the associated determination of the proton radius. We use effective field theories. This allows us to relate the proton radius with well-defined objects in quantum field theory, eliminating unnecessary model dependence. The use of effective field theories also helps us to organize the computation so that we can clearly state the parametric accuracy of the result. In this paper we review all (and check several of) the contributions to the energy shift of order $\\alpha^5$, as well as those that scale like $\\alpha^6\\times$logarithms in the context of non-relativistic effective field theories of QED.
Wieland, Volkmar; Niemiec, Jacek; Rafighi, Iman; Nishikawa, Ken-Ichi
2016-01-01
For parameters that are applicable to the conditions at young supernova remnants, we present results of 2D3V particle-in-cell simulations of a non-relativistic plasma shock with a large-scale perpendicular magnetic field inclined at 45-deg angle to the simulation plane to approximate 3D physics. We developed an improved clean setup that uses the collision of two plasma slabs with different density and velocity, leading to the development of two distinctive shocks and a contact discontinuity. The shock formation is mediated by Weibel-type filamentation instabilities that generate magnetic turbulence. Cyclic reformation is observed in both shocks with similar period, for which we note global variations on account of shock rippling and local variations arising from turbulent current filaments. The shock rippling occurs on spatial and temporal scales given by gyro-motions of shock-reflected ions. The drift motion of electrons and ions is not a gradient drift, but commensurates with E x B drift. We observe a stabl...
Dressing the Post-Newtonian two-body problem and Classical Effective Field Theory
Kol, Barak
2009-01-01
We apply a dressed perturbation theory to better organize and economize the computation of high orders of the 2-body effective action of an inspiralling Post-Newtonian gravitating binary. We use the effective field theory approach with the non-relativistic field decomposition (NRG fields). For that purpose we develop quite generally the dressing theory of a non-linear classical field theory coupled to point-like sources. We introduce dressed charges and propagators, but unlike the quantum theory there are no dressed bulk vertices. The dressed quantities are found to obey recursive integral equations which succinctly encode parts of the diagrammatic expansion, and are the classical version of the Schwinger-Dyson equations. Actually, the classical equations are somewhat stronger since they involve only finitely many quantities, unlike the quantum theory. Classical diagrams are shown to factorize exactly when they contain non-linear world-line vertices, and we classify all the possible topologies of irreducible ...
Ultra high energy cosmic rays from non-relativistic quasar outflows
Wang, Xiawei
2016-01-01
It has been suggested that non-relativistic outflows from quasars can naturally account for the missing component of the extragalactic $\\gamma$-ray background and explain the cumulative neutrino background through pion decay in collisions between protons accelerated by the outflow shock and interstellar protons. Here we show that the same quasar outflows are capable of accelerating protons to energies of $\\sim 10^{20}$ eV during the early phase of their propagation. The overall quasar population is expected to produce a cumulative ultra high energy cosmic ray flux of $\\sim10^{-7}\\,\\rm GeV\\,cm^{-2}s^{-1}sr^{-1}$ at $E_{\\rm CR}\\gtrsim10^{18}$ eV. The spectral shape and amplitude is consistent with recent observations for outflow parameters constrained to fit secondary $\\gamma$-rays and neutrinos without any additional parameter tuning. This indicates that quasar outflows simultaneously account for all three messengers at their observed levels.
Failure of relativistic codes in the non-relativistic limit: the role of Brillouin configurations
Indelicato, P J; Desclaux, J P
2004-01-01
In the present letter we solve a long standing problem with relativistic calculations done with the widely used Multi-Configuration Dirac-Fock Method. We show, using Relativistic Many-Body Perturbation Theory (RMBPT), how even for relatively high-$Z$, relaxation or correlation causes the non-relativistic limit of states of different total angular momentum but identical orbital angular momentum to have different energies. We identify the role of single excitations obeying to Brillouin's theorem in this problem. We show that with large scale calculations in which this problem is properly treated, we can reproduce very accurately recent high-precision measurements in F-like Ar, and turn then into precise test of QED
Semi-classical locality for the non-relativistic path integral in configuration space
Gomes, Henrique
2015-01-01
In an accompanying paper, we have put forward an interpretation of quantum mechanics grounded on a non-relativistic Lagrangian 3+1 formalism of a closed Universe, existing on timeless configuration space. However, not much was said there about the role of locality, which was not assumed. In this paper, I describe how subsystems existing in (spatial) regions with fixed boundary conditions can be represented as submanifolds of the complete configuration space. I show that if the action functional can be put in the form of Riemannian distance element, then dynamical independence of the subsystem implies that the respective submanifolds are totally geodesic. When two regions are mutually independent the semi-classical path integral kernel factorizes, showing cluster decomposition. To exemplify these constructions I then construct a specific gravitational system with two propagating physical degrees of freedom and no refoliation-invariance. Finally, considering the path integral in this 3+1 context, I implement an...
Non-relativistic Schroedinger theory on q-deformed quantum spaces III, Scattering theory
Wachter, H
2007-01-01
This is the third part of a paper about non-relativistic Schroedinger theory on q-deformed quantum spaces like the braided line or the three-dimensional q-deformed Euclidean space. Propagators for the free q-deformed particle are derived and their basic properties are discussed. A time-dependent formulation of scattering is proposed. In this respect, q-analogs of the Lippmann-Schwinger equation are given. Expressions for their iterative solutions are written down. It is shown how to calculate S-matrices and transition probabilities. Furthermore, attention is focused on the question what becomes of unitarity of S-matrices in a q-deformed setting. The examinations are concluded by a discussion of the interaction picture and its relation to scattering processes.
Institute of Scientific and Technical Information of China (English)
Kh. H. EL-SHORBAGY
2008-01-01
The effect of a high frequency (HF) electric field on the propagation of electrostatic wave in a 2D non-uniform relativistic plasma waveguide is investigated. A variable separation method is applied to the two-fluid plasma model. An analytical study of the reflection of electro-static wave propagation along a magnetized non-uniform relativistic plasma slab subjected to an intense HF electric field is presented and compared with the case of a non relativistic plasma. It is found that, when the frequency of the incident wave is close to the relativistic electron plasma frequency, the plasma is less reflective due to the presence of both an HF field and the effect of rel-ativistic electrons. On the other hand, for a low-frequency incident wave the reflection coefficient is directly proportional to the amplitude of the HF field. Also, it is shown that the relativistic electron plasma leads to a decrease in the value of reflection coefficient in comparison with the case of the non relativistic plasma.
De Soto, F
2006-01-01
The numerical solutions of the non-relativistic Yukawa model on a 3-dimensional size lattice with periodic boundary conditions are obtained. The possibility to extract the corresponding -- infinite space -- low energy parameters and bound state binding energies from eigensates computed at finite lattice size is discussed.
Directory of Open Access Journals (Sweden)
Abdelmadjid MAIRECHE
2015-09-01
Full Text Available We obtain here the modified bound-states solutions for central fraction power singular potential (C.F.P.S. in noncommutative 3-dimensional non relativistic quantum mechanics (NC-3D NRQM. It has been observed that the commutative energy spectra was changed, and replaced degenerate new states, depending on four quantum numbers: j, l and sz=±1/2 corresponding to the two spins states of electron by (up and down and the deformed Hamiltonian formed by two new operators: the first describes the spin-orbit interaction , while the second obtained Hamiltonian describes the modified Zeeman effect (containing ordinary Zeeman effect in addition to the usual commutative Hamiltonian. We showed that the isotropic commutative Hamiltonian HCFPS will be in non commutative space anisotropic Hamiltonian HNC-CFPS.
Non-Relativistic Chern-Simons Theories and Three-Dimensional Horava-Lifshitz Gravity
Hartong, Jelle; Obers, Niels A
2016-01-01
We show that certain three-dimensional Horava-Lifshitz gravity theories can be written as Chern-Simons gauge theories on various non-relativistic algebras. The algebras are specific extensions of the Bargmann, Newton-Hooke and Schroedinger algebra each of which has the Galilean algebra as a subalgebra. To show this we employ the fact that Horava-Lifshitz gravity corresponds to dynamical Newton-Cartan geometry. In particular, the extended Bargmann (Newton-Hooke) Chern-Simons theory corresponds to projectable Horava-Lifshitz gravity with a local U(1) gauge symmetry without (with) a cosmological constant. Moreover we identify an extended Schroedinger algebra containing 3 extra generators that are central with respect to the subalgebra of Galilean boosts, momenta and rotations, for which the Chern-Simons theory gives rise to a novel version of non-projectable conformal Horava-Lifshitz gravity that we refer to as Schroedinger gravity. This theory has a z=2 Lifshitz geometry as a vacuum solution and thus provides a...
Continuity properties of the semi-group and its integral kernel in non-relativistic QED
Matte, Oliver
2016-07-01
Employing recent results on stochastic differential equations associated with the standard model of non-relativistic quantum electrodynamics by B. Güneysu, J. S. Møller, and the present author, we study the continuity of the corresponding semi-group between weighted vector-valued Lp-spaces, continuity properties of elements in the range of the semi-group, and the pointwise continuity of an operator-valued semi-group kernel. We further discuss the continuous dependence of the semi-group and its integral kernel on model parameters. All these results are obtained for Kato decomposable electrostatic potentials and the actual assumptions on the model are general enough to cover the Nelson model as well. As a corollary, we obtain some new pointwise exponential decay and continuity results on elements of low-energetic spectral subspaces of atoms or molecules that also take spin into account. In a simpler situation where spin is neglected, we explain how to verify the joint continuity of positive ground state eigenvectors with respect to spatial coordinates and model parameters. There are no smallness assumptions imposed on any model parameter.
Quantum Exact Non-Abelian Vortices in Non-relativistic Theories
Nitta, Muneto; Vinci, Walter
2014-01-01
Non-Abelian vortices arise when a non-Abelian global symmetry is exact in the ground state but spontaneously broken in the vicinity of their cores. In this case, there appear (non-Abelian) Nambu-Goldstone (NG) modes confined and propagating along the vortex. In relativistic theories, the Coleman-Mermin-Wagner theorem forbids the existence of a spontaneous symmetry breaking, or a long-range order, in 1+1 dimensions: quantum corrections restore the symmetry along the vortex and the NG modes acquire a mass gap. We show that in non-relativistic theories NG modes with quadratic dispersion relation confined on a vortex can remain gapless at quantum level. We provide a concrete and experimentally realizable example of a three-component Bose-Einstein condensate with U(1) x U(2) symmetry. We first show, at the classical level, the existence of S^3 = S^1 |x S^2 (S^1 fibered over S^2) NG modes associated to the breaking U(2) -> U(1) on vortices, where S^1 and S^2 correspond to type I and II NG modes, respectively. We th...
Generalized Lagrangian-Path Representation of Non-Relativistic Quantum Mechanics
Tessarotto, Massimo; Cremaschini, Claudio
2016-08-01
In this paper a new trajectory-based representation to non-relativistic quantum mechanics is formulated. This is ahieved by generalizing the notion of Lagrangian path (LP) which lies at the heart of the deBroglie-Bohm " pilot-wave" interpretation. In particular, it is shown that each LP can be replaced with a statistical ensemble formed by an infinite family of stochastic curves, referred to as generalized Lagrangian paths (GLP). This permits the introduction of a new parametric representation of the Schrödinger equation, denoted as GLP-parametrization, and of the associated quantum hydrodynamic equations. The remarkable aspect of the GLP approach presented here is that it realizes at the same time also a new solution method for the N-body Schrödinger equation. As an application, Gaussian-like particular solutions for the quantum probability density function (PDF) are considered, which are proved to be dynamically consistent. For them, the Schrödinger equation is reduced to a single Hamilton-Jacobi evolution equation. Particular solutions of this type are explicitly constructed, which include the case of free particles occurring in 1- or N-body quantum systems as well as the dynamics in the presence of suitable potential forces. In all these cases the initial Gaussian PDFs are shown to be free of the spreading behavior usually ascribed to quantum wave-packets, in that they exhibit the characteristic feature of remaining at all times spatially-localized.
Accurate determination of the free-free Gaunt factor; I - non-relativistic Gaunt factors
van Hoof, P A M; Volk, K; Chatzikos, M; Ferland, G J; Lykins, M; Porter, R L; Wang, Y
2014-01-01
Modern spectral synthesis codes need the thermally averaged free-free Gaunt factor defined over a very wide range of parameter space in order to produce an accurate prediction for the spectrum emitted by an ionized plasma. Until now no set of data exists that would meet this need in a fully satisfactory way. We have therefore undertaken to produce a table of very accurate non-relativistic Gaunt factors over a much wider range of parameters than has ever been produced before. We first produced a table of non-averaged Gaunt factors, covering the parameter space log10(epsilon_i) = -20 to +10 and log10(w) = -30 to +25. We then continued to produce a table of thermally averaged Gaunt factors covering the parameter space log10(gamma^2) = -6 to +10 and log10(u) = -16 to +13. Finally we produced a table of the frequency integrated Gaunt factor covering the parameter space log10(gamma^2) = -6 to +10. All the data presented in this paper are available online.
Golubovic, Leonardo; Knudsen, Steven
2017-01-01
We consider general problem of modeling the dynamics of objects sliding on moving strings. We introduce a powerful computational algorithm that can be used to investigate the dynamics of objects sliding along non-relativistic strings. We use the algorithm to numerically explore fundamental physics of sliding climbers on a unique class of dynamical systems, Rotating Space Elevators (RSE). Objects sliding along RSE strings do not require internal engines or propulsion to be transported from the Earth's surface into outer space. By extensive numerical simulations, we find that sliding climbers may display interesting non-linear dynamics exhibiting both quasi-periodic and chaotic states of motion. While our main interest in this study is in the climber dynamics on RSEs, our results for the dynamics of sliding object are of more general interest. In particular, we designed tools capable of dealing with strongly nonlinear phenomena involving moving strings of any kind, such as the chaotic dynamics of sliding climbers observed in our simulations.
Fu, X.; Waters, T.; Gary, S. P.
2014-12-01
Collisionless space plasmas often deviate from Maxwellian-like velocity distributions. To study kinetic waves and instabilities in such plasmas, the dispersion relation, which depends on the velocity distribution, needs to be solved numerically. Most current dispersion solvers (e.g. WHAMP) take advantage of mathematical properties of the Gaussian (or generalized Lorentzian) function, and assume that the velocity distributions can be modeled by a combination of several drift-Maxwellian (or drift-Lorentzian) components. In this study we are developing a kinetic dispersion solver that admits nearly arbitrary non-relativistic parallel velocity distributions. A key part of any dispersion solver is the evaluation of a Hilbert transform of the velocity distribution function and its derivative along Landau contours. Our new solver builds upon a recent method to compute the Hilbert transform accurately and efficiently using the fast Fourier transform, while simultaneously treating the singularities arising from resonances analytically. We have benchmarked our new solver against other codes dealing with Maxwellian distributions. As an example usage of our code, we will show results for several instabilities that occur for electron velocity distributions observed in the solar wind.
Non-relativistic radiation mediated shock breakouts: II. Bolometric properties of SN shock breakout
Katz, Boaz; Waxman, Eli
2011-01-01
Exact bolometric light curves of supernova shock breakouts are derived based on the universal, non relativistic, planar breakout solutions (Sapir et al. 2011), assuming spherical symmetry, constant Thomson scattering opacity, \\kappa, and angular intensity corresponding to the steady state planar limit. These approximations are accurate for progenitors with a scale height much smaller than the radius. The light curves are insensitive to the density profile and are determined by the progenitor radius R, and the breakout velocity and density, v_0 and \\rho_0 respectively, and \\kappa. The total breakout energy, E_BO, and the maximal ejecta velocity, v_max, are shown to be E_BO=8.0\\pi R^2\\kappa^-1cv_0 and v_max=2.0v_0 respectively, to an accuracy of about 10%. The calculated light curves are valid up to the time of transition to spherical expansion, t_sph\\approx R/4v_0. Approximate analytic expressions for the light curves are provided for breakouts in which the shock crossing time at breakout, t_0=c/\\kappa\\rho_0v_...
Directory of Open Access Journals (Sweden)
Hwang Sungmin
2017-01-01
Full Text Available We present our calculation of the non-relativistic corrections to the heavy quark-antiquark potential up to leading and next-to-leading order (NLO via the effective string theory (EST. Full systematics of effective field theory (EFT are discussed in order for including the NLO contribution that arises in the EST. We also show how the number of dimensionful parameters arising from the EST are reduced by the constraints between the Wilson coeffcients from non-relativistic EFTs for QCD.
AdS and dS black hole solutions in analogue gravity: The relativistic and non-relativistic cases
Dey, Ramit; Turcati, Rodrigo
2016-01-01
We show that Schwarzschild black hole solutions in asymptotically Anti-de Sitter (AdS) and de Sitter (dS) spaces may, up to a conformal factor, be reproduced in the framework of analogue gravity. The aforementioned derivation is performed using relativistic and non-relativistic Bose-Einstein condensates. In addition, we demonstrate that the (2+1) planar AdS black hole can be mapped into the non-relativistic acoustic metric. Given that AdS black holes are extensively employed in the gauge/gravity duality, we then comment on the possibility to study the AdS/CFT correspondence and gravity/fluid duality from an analogue gravity perspective.
The effective field theory of dark matter direct detection
Energy Technology Data Exchange (ETDEWEB)
Fitzpatrick, A. Liam; Haxton, Wick; Katz, Emanuel; Lubbers, Nicholas; Xu, Yiming
2013-02-01
We extend and explore the general non-relativistic effective theory of dark matter (DM) direct detection. We describe the basic non-relativistic building blocks of operators and discuss their symmetry properties, writing down all Galilean-invariant operators up to quadratic order in momentum transfer arising from exchange of particles of spin 1 or less. Any DM particle theory can be translated into the coefficients of an effective operator and any effective operator can be simply related to most general description of the nuclear response. We find several operators which lead to novel nuclear responses. These responses differ significantly from the standard minimal WIMP cases in their relative coupling strengths to various elements, changing how the results from different experiments should be compared against each other. Response functions are evaluated for common DM targets — F, Na, Ge, I, and Xe — using standard shell model techniques. We point out that each of the nuclear responses is familiar from past studies of semi-leptonic electroweak interactions, and thus potentially testable in weak interaction studies. We provide tables of the full set of required matrix elements at finite momentum transfer for a range of common elements, making a careful and fully model-independent analysis possible. Finally, we discuss embedding non-relativistic effective theory operators into UV models of dark matter.
Kobayashi, Michikazu
2014-01-01
We show that a momentum operator of a translational symmetry may not commute with an internal symmetry operator in the presence of a topological soliton in non-relativistic theories. As a striking consequence, there appears a coupled Nambu-Goldstone mode with a quadratic dispersion consisting of translational and internal zero modes in the vicinity of a domain wall in an O(3) sigma model, a magnetic domain wall in ferromagnets with an easy axis.
Le Yaouanc, A; Morénas, V; Oliver, L; Pène, O; Raynal, J C
2000-01-01
The detailed way in which duality between sum of exclusive states and the free quark model description operates in semileptonic total decay widths, is analysed. It is made very explicit by the use of the non relativistic harmonic oscillator quark model in the SV limit, and a simple interaction current with the lepton pair. In particular, the Voloshin sum rule is found to eliminate the mismatches of order $\\delta m/m_b^2$.
Is a non-relativist post-modernism possible? The attempts of William Dean and Wentzel van Huyssteen
Directory of Open Access Journals (Sweden)
J. A. Stone
1993-01-01
Full Text Available This paper aims at creating a third option to foundationalism and relativism. It criticizes William Dean’s historicist radical empiricism for going too far toward a relativ ist deconstructionism, and Wentzel van Huyss teen’s critical realism for not leaving modernism. Both, however, succeed in creating a third option. This paper examines their respective contributions to a non relativist, reconstructionist post-modernism.
Beneke, M.; Hellmann, C.; Ruiz-Femenia, P.
2012-01-01
We compute analytically the tree-level annihilation rates of a collection of non-relativistic neutralino and chargino two-particle states in the general MSSM, including the previously unknown off-diagonal rates. The results are prerequisites to the calculation of the Sommerfeld enhancement in the MSSM, which will be presented in subsequent work. They can also be used to obtain concise analytic expressions for MSSM dark matter pair annihilation in the present Universe for a large number of exc...
Palge, Veiko; Dunningham, Jacob; Hasegawa, Yuji
2016-01-01
In quantum physics Wigner's rotation is commonly regarded as confirmed by the Thomas precession in a hydrogen like atom. In this paper we show that a direct experimental verification of Wigner's rotation is in principle accessible in the regime of non-relativistic velocities at $2 \\cdot 10^3\\,$m/s and propose an experiment using thermal neutrons. The experiment can be carried out in a laboratory and it provides a test of relativity in the quantum domain.
Effective Field Theory of Emergent Symmetry Breaking in Deformed Atomic Nuclei
Papenbrock, T
2015-01-01
Spontaneous symmetry breaking in non-relativistic quantum systems has previously been addressed in the framework of effective field theory. Low-lying excitations are constructed from Nambu-Goldstone modes using symmetry arguments only. We extend that approach to finite systems. The approach is very general. To be specific, however, we consider atomic nuclei with intrinsically deformed ground states. The emergent symmetry breaking in such systems requires the introduction of additional degrees of freedom on top of the Nambu-Goldstone modes. Symmetry arguments suffice to construct the low-lying states of the system. In deformed nuclei these are vibrational modes each of which serves as band head of a rotational band.
Non-dipole effects in multiphoton ionization of hydrogen atom in short superintense laser fields
Energy Technology Data Exchange (ETDEWEB)
Jobunga, Eric O. [AG Moderne Optik, Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany); Department of Mathematics and Physics, Technical University of Mombasa, P. O. Box 90420-80100, Mombasa (Kenya); Saenz, Alejandro [AG Moderne Optik, Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany)
2014-07-01
The development of novel light sources has enabled the realization of high-precision experiments investigating various non-linear processes in the dynamics of atomic, molecular, and ionic systems interacting with high intense laser pulses. At high intensities or short wavelengths, the analysis of these experiments would definitely require a reliable non-perturbative solution of the time-dependent Schroedinger or Dirac equation. These solutions should consider both the temporal and the spatial intensity variations of the laser pulse.We have solved the non-relativistic time dependent Schroedinger equation for a ground state hydrogen atom interacting with short intense spatially and temporally resolved laser fields corresponding to the multiphoton ATI regime for a monochromatic source with λ= 800 nm. We shall analyse the effects of the A{sup 2} term and the corresponding orders of the multipolar expansion of the transition matrix.
Elhandi, S; attaourti, Y; Manaut, B; Oufni, L
2010-01-01
The effect of the electron's anomalous magnetic moment on the relativistic electronic dressing for the process of electron-hydrogen atom elastic collisions is investigated. We consider a laser field with circular polarization and various electric field strengths. The Dirac-Volkov states taking into account this anomaly are used to describe the process in the first order of perturbation theory. The correlation between the terms coming from this anomaly and the electric field strength gives rise to new results, namely the strong dependence of the spinor part of the differential cross section (DCS) with respect to these terms. A detailed study has been devoted to the non relativistic regime as well as the moderate relativistic regime. Some aspects of this dependence as well as the dynamical behavior of the DCS in the relativistic regime have been addressed.
Energy Technology Data Exchange (ETDEWEB)
Sapir, Nir; Waxman, Eli [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Katz, Boaz [Institute for Advanced Study, Princeton, NJ 08540 (United States)
2013-09-01
The spectrum of radiation emitted following shock breakout from a star's surface with a power-law density profile {rho}{proportional_to}x{sup n} is investigated. Assuming planar geometry, local Compton equilibrium, and bremsstrahlung emission as the dominant photon production mechanism, numerical solutions are obtained for the photon number density and temperature profiles as a function of time for hydrogen-helium envelopes. The temperature solutions are determined by the breakout shock velocity v{sub 0} and the pre-shock breakout density {rho}{sub 0} and depend weakly on the value of n. Fitting formulae for the peak surface temperature at breakout as a function of v{sub 0} and {rho}{sub 0} are provided, with T{sub peak} approx. 9.44 exp [12.63(v{sub 0}/c){sup 1/2}] eV, and the time dependence of the surface temperature is tabulated. The time integrated emitted spectrum is a robust prediction of the model, determined by T{sub peak} and v{sub 0} alone and insensitive to details of light travel time or slight deviations from spherical symmetry. Adopting commonly assumed progenitor parameters, breakout luminosities of Almost-Equal-To 10{sup 45} erg s{sup -1} and Almost-Equal-To 10{sup 44} erg s{sup -1} in the 0.3-10 keV band are expected for blue supergiant (BSG) and red supergiant (RSG)/He-WR progenitors, respectively (T{sub peak} is well below the band for RSGs, unless their radius is {approx}10{sup 13} cm). >30 detections of SN 1987A-like (BSG) breakouts are expected over the lifetime of ROSAT and XMM-Newton. An absence of such detections would imply either that the typical parameters assumed for BSG progenitors are grossly incorrect or that their envelopes are not hydrostatic. The observed spectrum and duration of XRF 080109/SN 2008D are in tension with a non-relativistic breakout from a stellar surface interpretation.
Existence of a ground state for the confined hydrogen atom in non-relativistic QED
DEFF Research Database (Denmark)
Amour, Laurent; Faupin, Jeremy
2008-01-01
We consider a system of a hydrogen atom interacting with the quantized electromagnetic field. Instead of fixing the nucleus, we assume that the system is confined by its center of mass. This model is used in theoretical physics to explain the Lamb-Dicke effect. After a brief review of the literat......We consider a system of a hydrogen atom interacting with the quantized electromagnetic field. Instead of fixing the nucleus, we assume that the system is confined by its center of mass. This model is used in theoretical physics to explain the Lamb-Dicke effect. After a brief review...
Ding, Min; Li, Yachun
2017-04-01
We study the 1-D piston problem for the relativistic Euler equations under the assumption that the total variations of both the initial data and the velocity of the piston are sufficiently small. By a modified wave front tracking method, we establish the global existence of entropy solutions including a strong rarefaction wave without restriction on the strength. Meanwhile, we consider the convergence of the entropy solutions to the corresponding entropy solutions of the classical non-relativistic Euler equations as the light speed c→ +∞.
Energy Technology Data Exchange (ETDEWEB)
Soto, F. de [Laboratoire Physique Subatomique et Cosmologie, 53 av. des Martyrs, 38026 Grenoble (France)]|[Dpto. Sistemas Fisicos, Quimicos y Naturales, U. Pablo de Olavide, 41013 Sevilla (Spain); Carbonell, J. [Laboratoire Physique Subatomique et Cosmologie, 53 av. des Martyrs, 38026 Grenoble (France)
2007-04-15
The numerical solutions of the non-relativistic Yukawa model on a 3-dimensional size lattice with periodic boundary conditions are obtained. The possibility to extract the corresponding - infinite space - low energy parameters and bound state binding energies from eigenstates computed at finite lattice size is discussed. The results have been obtained with a non relativistic model, which is justified by the small energies involved in the calculations. Despite its simplicity, the model considered contains an essential ingredient of the hadron-hadron interaction - its finite range - which plays a relevant role in view of extracting the low energy parameters from the finite volume spectra. It offers a wieldy and physically sound tool to test the validity of the different approaches discussed in the literature to study the low energy scattering of baryon-baryon or meson-baryon systems from a lattice simulations in QCD. The results presented in this work have been essentially limited to the ground state of central attractive interactions, depending only on one parameter. The method can be easily applied to more involved interactions, like hard core repulsive terms or non central potentials leading to coupled channel equations. (authors)
Ahamad, Shakeb; Patra, S K
2012-01-01
The ground state and first intrinsic excited state of superheavy nuclei with Z=120 and N=160-204 are investigated using both non-relativistic Skyrme-Hartree-Fock and the axially deformed Relativistic Mean Field formalisms. We employ a simple BCS pairing approach for calculating the energy contribution from pairing interaction. The results for isotopic chain of binding energy, quadrupole deformation parameter, two neutron separation energies and some other observables are compared with the FRDM and some recent macroscopic-microscopic calculations. We predict superdeformed ground state solutions for almost all the isotopes. Considering the possibility of magic neutron number, two different mode of \\alpha-decay chains (292)120 and (304)120 are also studied within these frameworks. The Q_{\\alpha}-values and the half-life T^{\\alpha}_{1/2} for these two different mode of decay chains are compared with FRDM and recent macroscopic-microscopic calculations. The calculation is extended for the \\alpha-decay chains of 29...
Energy Technology Data Exchange (ETDEWEB)
De Felice, Antonio, E-mail: antoniod@nu.ac.th [Department of Physics, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); TPTP and NEP, The Institute for Fundamental Study, Naresuan University, Phitsanulok, 65000 (Thailand); Thailand Center of Excellence in Physics, Ministry of Education, Bangkok 10400 (Thailand); Kobayashi, Tsutomu [Hakubi Center, Kyoto University, Kyoto 606-8302 (Japan); Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Tsujikawa, Shinji [Department of Physics, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan)
2011-12-06
In the Horndeski's most general scalar-tensor theories the equations of scalar density perturbations are derived in the presence of non-relativistic matter minimally coupled to gravity. Under a quasi-static approximation on sub-horizon scales we obtain the effective gravitational coupling G{sub eff} associated with the growth rate of matter perturbations as well as the effective gravitational potential {Phi}{sub eff} relevant to the deviation of light rays. We then apply our formulas to a number of modified gravitational models of dark energy - such as those based on f(R) theories, Brans-Dicke theories, kinetic gravity braidings, covariant Galileons, and field derivative couplings with the Einstein tensor. Our results are useful to test the large-distance modification of gravity from the future high-precision observations of large-scale structure, weak lensing, and cosmic microwave background.
De Felice, Antonio; Tsujikawa, Shinji
2011-01-01
In the Horndeski's most general scalar-tensor theories the equations of scalar density perturbations are derived in the presence of non-relativistic matter minimally coupled to gravity. Under a quasi-static approximation on sub-horizon scales we obtain the effective gravitational coupling $G_{eff}$ associated with the growth rate of matter perturbations as well as the effective gravitational potential $\\Phi_{eff}$ relevant to the deviation of light rays. We then apply our formulas to a number of modified gravitational models of dark energy--such as those based on f(R) theories, Brans-Dicke theories, kinetic gravity braidings, covariant Galileons, and field derivative couplings with the Einstein tensor. Our results are useful to test the large-distance modification of gravity from the future high-precision observations of large-scale structure, weak lensing, and cosmic microwave background.
Li, En-Kun; Geng, Jin-Ling
2014-01-01
The modified holographic Ricci dark energy coupled to interacting relativistic and non-relativistic dark matter is considered in the nonflat Friedmann-Robertson-Walker universe. Through examining the deceleration parameter, one can find that the transition time of the Universe from decelerating to accelerating phase in the interacting holographic Ricci dark energy model is close to that in the $\\Lambda$ cold dark matter model. The evolution of modified holographic Ricci dark energy's state parameter and the evolution of dark matter and dark energy's densities shows that the dark energy holds the dominant position from the near past to the future. By studying the statefinder diagnostic and the evolution of the total pressure, one can find that this model could explain the Universe's transition from the radiation to accelerating expansion stage through the dust stage. According to the $Om$ diagnostic, it is easy to find that when the interaction is weak and the proportion of relativistic dark matter in total da...
Wachter, H
2007-01-01
The aim of these three papers (I, II, and III) is to develop a q-deformed version of non-relativistic Schroedinger theory. Paper I introduces the fundamental mathematical and physical concepts. The braided line and the three-dimensional q-deformed Euclidean space play the role of position space. For both cases the algebraic framework is extended by a time element. A short review of the elements of q-deformed analysis on the spaces under consideration is given. The time evolution operator is introduced in a consistent way and its basic properties are discussed. These reasonings are continued by proposing q-deformed analogs of the Schroedinger and the Heisenberg picture.
The acceleration of a neutron in a static electric field
Cappelletti, R. L.
2012-06-01
We show that when a non-relativistic neutron travels in a static electric field, the acceleration vector operator is perpendicular to the velocity operator. Kinetic energy is conserved. A spin-dependent field term in the canonical momentum gives rise to a non-dispersive contribution to the quantum mechanical (Aharonov-Casher) phase. This motion differs from that in a static magnetic field which has no field term in the canonical momentum and no conservation of kinetic energy. For the geometry of the Aharonov-Casher effect, there is no acceleration, while in Mott-Schwinger scattering, the acceleration causes a spin-dependent change in neutron direction.
Effective field theory as a limit of R-matrix theory for light nuclear reactions
Hale, Gerald M; Paris, Mark W
2014-01-01
We study the zero channel radius limit of Wigner's R-matrix theory for two cases, and show that it corresponds to non-relativistic effective quantum field theory. We begin with the simple problem of single-channel n-p elastic scattering in the 1S0 channel. The dependence of the R matrix width and level energy on the channel radius, "a" for fixed scattering length a0 and effective range r0 is determined. It is shown that these quantities have a simple pole for a critical value of the channel radius. The 3H(d,n)4He reaction cross section, analyzed with a two-channel effective field theory in the previous paper, is then examined using a two-channel, single-level R-matrix parametrization. The resulting S matrix is shown to be identical in these two representations in the limit that R-matrix channel radii are taken to zero. This equivalence is established by giving the relationship between the low-energy constants of the effective field theory (couplings and mass) and the R-matrix parameters (reduced width amplitu...
Benedicks effect in a relativistic simple fluid
Garcia-Perciante, A L; Garcia-Colin, L S
2013-01-01
According to standard thermophysical theories, cross effects are mostly present in multicomponent systems. In this paper we show that for relativistic fluids an electric field generates a heat flux even in the single component case. In the non-relativistic limit the effect vanishes and Fourier's law is recovered. This result is novel and may have applications in the transport properties of very hot plasmas.
The cusp effect in eta' --> eta pi pi decays
Kubis, Bastian
2009-01-01
Strong final-state interactions create a pronounced cusp in eta' --> eta pi0 pi0 decays. We adapt and generalize the non-relativistic effective field theory framework developed for the extraction of pi pi scattering lengths from K --> 3 pi decays to this case. The cusp effect is predicted to have an effect of more than 8% on the decay spectrum below the pi+ pi- threshold.
Effective and fundamental quantum fields at criticality
Energy Technology Data Exchange (ETDEWEB)
Scherer, Michael
2010-10-28
We employ Wetterich's approach to functional renormalization as a suitable method to investigate universal phenomena in non-perturbative quantum field theories both qualitatively and quantitatively. Therefore we derive and investigate flow equations for a class of chiral Yukawa models with and without gauge bosons and reveal fixed-point mechanisms. In four dimensions chiral Yukawa systems serve as toy models for the standard model Higgs sector and show signatures of asymptotically safe fixed points by a balancing of bosonic and fermionic contributions. In the approximations investigated this renders the theory fundamental and solves the triviality problem. Further, we obtain predictions for the Higgs mass and even for the top mass of our toy model. In three dimensions we compute the critical exponents which define new universality classes and provide benchmark values for systems of strongly correlated chiral fermions. In a Yukawa system of non-relativistic two-component fermions a fixed point dominates the renormalization flow giving rise to universality in the BCS-BEC crossover. We push the functional renormalization method to a quantitative level and we compute the critical temperature and the single-particle gap with a considerable precision for the whole crossover. Finally, we provide further evidence for the asymptotic safety scenario in quantum gravity by confirming the existence of an ultraviolet fixed point under inclusion of a curvature-ghost coupling. (orig.)
DC Conductivities from Non-Relativistic Scaling Geometries with Momentum Dissipation
Cremonini, Sera; Lu, Hong; Pope, C N
2016-01-01
We consider a gravitational theory with two Maxwell fields, a dilatonic scalar and spatially dependent axions. Black brane solutions to this theory are Lifshitz-like and violate hyperscaling. Working with electrically charged solutions, we calculate analytically the holographic DC conductivities when both gauge fields are allowed to fluctuate. We discuss some of the subtleties associated with relating the horizon to the boundary data, focusing on the role of Lifshitz asymptotics and the presence of multiple gauge fields. The axionic scalars lead to momentum dissipation in the dual holographic theory. Finally, we examine the behavior of the DC conductivities as a function of temperature. We comment on the cases in which one can obtain a linear resistivity, and we also obtain a holographic dual of the phase transition from a metal to a semiconductor.
Postnikov, Sergey
2013-01-01
This work extends the seminal work of Gottfried on the two-body quantum physics of particles interacting through a delta-shell potential to many-body physics by studying a system of non-relativistic particles when the thermal De-Broglie wavelength of a particle is smaller than the range of the potential and the density is such that average distance between particles is smaller than the range. The ability of the delta-shell potential to reproduce some basic properties of the deuteron are examined. Relations for moments of bound states are derived. The virial expansion is used to calculate the first quantum correction to the ideal gas pressure in the form of the second virial coefficient. Additionally, all thermodynamic functions are calculated up to the first order quantum corrections. For small departures from equilibrium, the net flows of mass, energy and momentum, characterized by the coefficients of diffusion, thermal conductivity and shear viscosity, respectively, are calculated. Properties of the gas are...
Numerical Calculation of Coupling Impedances in Kicker Modules for Non-Relativistic Particle Beams
Doliwa, B
2004-01-01
In the context of heavy-ion synchrotrons, coupling impedances in ferrite-loaded structures (e.g. fast kicker modules) are known to have a significant influence on beam stability. While bench measurements are feasible today, it is desirable to have the coupling impedances in hands already during the design process of the respective components. To achieve this goal, as a first step, we have carried out numerical analyses of simple ferrite-containing test systems within the framework of the Finite Integration Technique[1]. This amounts to solving the full set of Maxwell's equations in frequency domain, the particle beam being represented by an appropriate excitation current. With the resulting electromagnetic fields, one may then readily compute the corresponding coupling impedances. Despite the complicated material properties of ferrites, our results show that their numerical treatment is possible, thus opening up a way to determine a crucial parameter of kicker devices before construction.
Higgs Effective Field Theories
2016-01-01
The main focus of this meeting is to present new theoretical advancements related to effective field theories, evaluate the impact of initial results from the LHC Run2, and discuss proposals for data interpretation/presentation during Run2. A crucial role of the meeting is to bring together theorists from different backgrounds and with different viewpoints and to extend bridges towards the experimental community. To this end, we would like to achieve a good balance between senior and junior speakers, enhancing the visibility of younger scientists while keeping some overview talks.
Holographic effective field theories
Energy Technology Data Exchange (ETDEWEB)
Martucci, Luca [Dipartimento di Fisica ed Astronomia “Galileo Galilei' , Università di Padova,and INFN - Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Zaffaroni, Alberto [Dipartimento di Fisica, Università di Milano-Bicocca,and INFN - Sezione di Milano-Bicocca, I-20126 Milano (Italy)
2016-06-28
We derive the four-dimensional low-energy effective field theory governing the moduli space of strongly coupled superconformal quiver gauge theories associated with D3-branes at Calabi-Yau conical singularities in the holographic regime of validity. We use the dual supergravity description provided by warped resolved conical geometries with mobile D3-branes. Information on the baryonic directions of the moduli space is also obtained by using wrapped Euclidean D3-branes. We illustrate our general results by discussing in detail their application to the Klebanov-Witten model.
Simulation study of the formation of a non-relativistic pair shock
Dieckmann, M. E.; Bret, A.
2017-02-01
We examine with a particle-in-cell (PIC) simulation the collision of two equally dense clouds of cold pair plasma. The clouds interpenetrate until instabilities set in, which heat up the plasma and trigger the formation of a pair of shocks. The fastest-growing waves at the collision speed , where is the speed of light in vacuum, and low temperature are the electrostatic two-stream mode and the quasi-electrostatic oblique mode. Both waves grow and saturate via the formation of phase space vortices. The strong electric fields of these nonlinear plasma structures provide an efficient means of heating up and compressing the inflowing upstream leptons. The interaction of the hot leptons, which leak back into the upstream region, with the inflowing cool upstream leptons continuously drives electrostatic waves that mediate the shock. These waves heat up the inflowing upstream leptons primarily along the shock normal, which results in an anisotropic velocity distribution in the post-shock region. This distribution gives rise to the Weibel instability. Our simulation shows that even if the shock is mediated by quasi-electrostatic waves, strong magnetowaves will still develop in its downstream region.
Search for non-relativistic Magnetic Monopoles with IceCube
DEFF Research Database (Denmark)
Aartsen, M.G.; Abbasi, R.; Ackermann, M.;
2014-01-01
Theory (GUT) era shortly after the Big Bang. Depending on the underlying gauge group these monopoles may catalyze the decay of nucleons via the Rubakov–Callan effect with a cross section suggested to be in the range of 10^−27 to 10^−21cm2 . In IceCube, the Cherenkov light from nucleon decays along...
Search for non-relativistic Magnetic Monopoles with IceCube
DEFF Research Database (Denmark)
Aartsen, M.G.; Abbasi, R.; Ackermann, M.
2014-01-01
is three orders of magnitude below the Parker bound. The limits assume a dominant decay of the proton into a positron and a neutral pion. These results improve the current best experimental limits by one to two orders of magnitude, for a wide range of assumed speeds and catalysis cross sections....... Theory (GUT) era shortly after the Big Bang. Depending on the underlying gauge group these monopoles may catalyze the decay of nucleons via the Rubakov–Callan effect with a cross section suggested to be in the range of 10^−27 to 10^−21cm2 . In IceCube, the Cherenkov light from nucleon decays along...
The entanglement spectrum and R\\'enyi entropies of non-relativistic conformal fermions
Porter, William J
2016-01-01
We characterize non-perturbatively the R\\'enyi entropies of degree n=2,3,4, and 5 of three-dimensional, strongly coupled many-fermion systems in the scale-invariant regime of short interaction range and large scattering length, i.e. in the unitary limit. We carry out our calculations using lattice methods devised recently by us. Our results show the effect of strong pairing correlations on the entanglement entropy, which modify the sub-leading behavior for large subsystem sizes (as characterized by the dimensionless parameter x=kF L_A, where kF is the Fermi momentum and L_A the linear subsystem size), but leave the leading order unchanged relative to the non-interacting case. Moreover, we find that the onset of the sub-leading asymptotic regime is at surprisingly small x=2-4. We provide further insight into the entanglement properties of this system by analyzing the spectrum of the entanglement Hamiltonian of the two-body problem from weak to strong coupling. The low-lying entanglement spectrum displays clear...
Field reparametrization in effective field theories
Passarino, Giampiero
2016-01-01
Debate topic for Effective Field Theory (EFT) is the choice of a "basis" for $\\mrdim = 6$ operators Clearly all bases are equivalent as long as they are a "basis", containing a minimal set of operators after the use of equations of motion and respecting gauge invariance. From a more formal point of view a basis is characterized by its closure with respect to renormalization. Equivalence of bases should always be understood as a statement for the S-matrix and not for the Lagrangian, as dictated by the equivalence theorem. Any phenomenological approach that misses one of these ingredients is still acceptable for a preliminar analysis, as long as it does not pretend to be an EFT. Here we revisit the equivalence theorem and its consequences for EFT when two sets of higher dimensional operators are connected by a set of non-linear, noninvariant, field reparametrizations.
Background Electromagnetic Fields and NRQED Matching: Scalar Case
Lee, Jong-Wan
2013-01-01
The low-energy structure of hadrons can be described systematically using effective field theory, and the parameters of the effective theory can be determined from lattice QCD computations. Recent work, however, points to inconsistencies between the background field method in lattice QCD and effective field theory matching conditions. We show that the background field problem necessitates inclusion of operators related by equations of motion. In the presence of time-dependent electromagnetic fields, for example, such operators modify Green's functions, thereby complicating the isolation of hadronic parameters which enter on-shell scattering amplitudes. The particularly simple case of a scalar hadron coupled to uniform electromagnetic fields is investigated in detail. At the level of the relativistic effective theory, operators related by equations of motion are demonstrated to be innocuous. The same result does not hold in the non-relativistic effective theory, and inconsistencies in matching are resolved by ...
Energy Technology Data Exchange (ETDEWEB)
Buehring, W.
1983-03-01
Non-relativistic scattering phase shifts, bound state energies, and wave function normalization factors for a screened Coulomb potential of the Hulthen type are presented in the form of relatively simple analytic expressions. These formulae have been obtained by a suitable renormalization procedure applied to the quantities derived from an approximate Schroedinger equation which contains the exact Hulthen potential together with an approximate angular momentum term. When the screening exponent vanishes, our formulae reduce to the exact Coulomb expresions. The interrelation between our formulae and Pratt's analytic perturbation theory for screened Coulomb potentials' is discussed.
Quantum Mechanics and Quantum Field Theory
Dimock, Jonathan
2011-02-01
Introduction; Part I. Non-relativistic: 1. Mathematical prelude; 2. Classical mechanics; 3. Quantum mechanics; 4. Single particle; 5. Many particles; 6. Statistical mechanics; Part II. Relativistic: 7. Relativity; 8. Scalar particles and fields; 9. Electrons and photons; 10. Field theory on a manifold; Part III. Probabilistic Methods: 11. Path integrals; 12. Fields as random variables; 13. A nonlinear field theory; Appendices; References; Index.
Institute of Scientific and Technical Information of China (English)
M. R. Setare; O. Hatami
2008-01-01
Based on the shape invariance property we obtain exact solutions of the Dirac equation for an electron moving in the presence of a certain varying magnetic field, then we also show its non-relativistic limit.
Biological effects of electromagnetic fields.
Macrì, M. A.; Di Luzio, Sr.; Di Luzio, S.
2002-01-01
Nowadays, concerns about hazards from electromagnetic fields represent an alarming source for human lives in technologically developed countries. We are surrounded by electromagnetic fields everywhere we spend our working hours, rest or recreational activities. The aim of this review is to summarize the biological effects due to these fields arising from power and transmission lines, electrical cable splices, electronic devices inside our homes and work-places, distribution networks and associated devices such as cellular telephones and wireless communication tower, etc. Special care has been reserved to study the biological effects of electromagnetic fields on cell lines of the mammalian immune system about which our research group has been working for several years.
Microplasma Field Effect Transistors
Directory of Open Access Journals (Sweden)
Massood Tabib-Azar
2017-04-01
Full Text Available Micro plasma devices (MPD with power gains are of interest in applications involving operations in the presence of ionizing radiations, in propulsion, in control, amplification of high power electromagnetic waves, and in metamaterials for energy management. Here, we review and discuss MPDs with an emphasis on new architectures that have evolved during the past seven years. Devices with programmable impact ionization rates and programmable boundaries are developed to control the plasma ignition voltage and current to achieve power gain. Plasma devices with 1–10 μm gaps are shown to operate in the sub-Paschen regime in atmospheric pressures where ion-assisted field emission results in a breakdown voltage that linearly depends on the gap distance in contrast to the exponential dependence dictated by the Paschen curve. Small gap devices offer higher operation frequencies at low operation voltages with applications in metamaterial skins for energy management and in harsh environment inside nuclear reactors and in space. In addition to analog plasma devices, logic gates, digital circuits, and distributed amplifiers are also discussed.
There are no particles, there are only fields
Hobson, Art
2012-01-01
Quantum foundations are still unsettled, with harmful effects on science and society. By now it should be possible to obtain consensus on at least one issue: Are the fundamental constituents fields or particles? Experiment and theory imply a universe made of unbounded fields rather than bounded particles. This is especially clear for relativistic quantum systems, and it follows that non-relativistic quantum systems must also be made of fields. Particles are epiphenomena arising from real fields. Thus the Schroedinger field is not a probability amplitude for "finding, upon measurement, a particle" but rather a real space-filling field; the field for an electron is the electron; each electron comes through both slits in the 2-slit experiment and spreads over the entire pattern; and quantum physics is about interactions of microscopic systems with the macroscopic world rather than just about measurements. It's important to clarify this issue because textbooks still teach a particles- and measurement-oriented int...
Renormalization of gauge theories in the background-field approach arXiv
Barvinsky, Andrei O.; Herrero-Valea, Mario; Sibiryakov, Sergey M.; Steinwachs, Christian F.
Using the background-field method we demonstrate the Becchi-Rouet-Stora-Tyutin (BRST) structure of counterterms in a broad class of gauge theories. In other words, the renormalization procedure for these gauge theories is compatible with their gauge invariance. This class encompasses Yang-Mills theories (with possibly Abelian subgroups) and relativistic gravity, including both renormalizable and non-renormalizable (effective) theories. Our results also hold for non-relativistic models such as Yang-Mills theories with anisotropic scaling or Horava gravity. They strengthen and generalize the existing results in the literature concerning the renormalization of gauge systems. We illustrate our general approach with several explicit examples.
Kubis, Bastian
2009-01-01
The pion mass difference generates a pronounced cusp in the pi0 pi0 invariant mass distribution of K+ --> pi0 pi0 pi+ decays. As originally pointed out by Cabibbo, an accurate measurement of the cusp may allow one to pin down the S-wave pion-pion scattering lengths to high precision. We present the non-relativistic effective field theory framework that permits to determine the structure of this cusp in a straightforward manner, including the effects of radiative corrections. Applications of the same formalism to other decay channels, in particular eta and eta' decays, are also discussed.
Quantum field theory from classical statistics
Wetterich, C
2011-01-01
An Ising-type classical statistical model is shown to describe quantum fermions. For a suitable time-evolution law for the probability distribution of the Ising-spins our model describes a quantum field theory for Dirac spinors in external electromagnetic fields, corresponding to a mean field approximation to quantum electrodynamics. All quantum features for the motion of an arbitrary number of electrons and positrons, including the characteristic interference effects for two-fermion states, are described by the classical statistical model. For one-particle states in the non-relativistic approximation we derive the Schr\\"odinger equation for a particle in a potential from the time evolution law for the probability distribution of the Ising-spins. Thus all characteristic quantum features, as interference in a double slit experiment, tunneling or discrete energy levels for stationary states, are derived from a classical statistical ensemble. Concerning the particle-wave-duality of quantum mechanics, the discret...
Tunneling field effect transistor technology
Chan, Mansun
2016-01-01
This book provides a single-source reference to the state-of-the art in tunneling field effect transistors (TFETs). Readers will learn the TFETs physics from advanced atomistic simulations, the TFETs fabrication process and the important roles that TFETs will play in enabling integrated circuit designs for power efficiency. · Provides comprehensive reference to tunneling field effect transistors (TFETs); · Covers all aspects of TFETs, from device process to modeling and applications; · Enables design of power-efficient integrated circuits, with low power consumption TFETs.
Synaptic Effects of Electric Fields
Rahman, Asif
Learning and sensory processing in the brain relies on the effective transmission of information across synapses. The strength and efficacy of synaptic transmission is modifiable through training and can be modulated with noninvasive electrical brain stimulation. Transcranial electrical stimulation (TES), specifically, induces weak intensity and spatially diffuse electric fields in the brain. Despite being weak, electric fields modulate spiking probability and the efficacy of synaptic transmission. These effects critically depend on the direction of the electric field relative to the orientation of the neuron and on the level of endogenous synaptic activity. TES has been used to modulate a wide range of neuropsychiatric indications, for various rehabilitation applications, and cognitive performance in diverse tasks. How can a weak and diffuse electric field, which simultaneously polarizes neurons across the brain, have precise changes in brain function? Designing therapies to maximize desired outcomes and minimize undesired effects presents a challenging problem. A series of experiments and computational models are used to define the anatomical and functional factors leading to specificity of TES. Anatomical specificity derives from guiding current to targeted brain structures and taking advantage of the direction-sensitivity of neurons with respect to the electric field. Functional specificity originates from preferential modulation of neuronal networks that are already active. Diffuse electric fields may recruit connected brain networks involved in a training task and promote plasticity along active synaptic pathways. In vitro, electric fields boost endogenous synaptic plasticity and raise the ceiling for synaptic learning with repeated stimulation sessions. Synapses undergoing strong plasticity are preferentially modulated over weak synapses. Therefore, active circuits that are involved in a task could be more susceptible to stimulation than inactive circuits
Inflating with Large Effective Fields
Burgess, C P; Quevedo, F; Williams, M
2014-01-01
We re-examine large scalar fields within effective field theory, in particular focussing on the issues raised by their use in inflationary models (as suggested by BICEP2 to obtain primordial tensor modes). We argue that when the large-field and low-energy regimes coincide the scalar dynamics is most effectively described in terms of an asymptotic large-field expansion whose form can be dictated by approximate symmetries, which also help control the size of quantum corrections. We discuss several possible symmetries that can achieve this, including pseudo-Goldstone inflatons characterized by a coset $G/H$ (based on abelian and non-abelian, compact and non-compact symmetries), as well as symmetries that are intrinsically higher dimensional. Besides the usual trigonometric potentials of Natural Inflation we also find in this way simple {\\em large-field} power laws (like $V \\propto \\phi^2$) and exponential potentials, $V(\\phi) = \\sum_{k} V_k \\; e^{-k \\phi/M}$. Both of these can describe the data well and give slo...
Field enhancement effect of metal probe in evanescent field
Institute of Scientific and Technical Information of China (English)
Xiaogang Hong; Wendong Xu; Xiaogang Li; Chengqiang Zhao; Xiaodong Tang
2009-01-01
Field enhancement effect of metal probe in evanescent field, induced by using a multi-layers structure for exciting surface plasmon resonance (SPR), is analyzed numerically by utilizing two-dimensional (2D) TM wave finite difference time-domain (FDTD) method. In this letter, we used a fundamental mode Gaussian beam to induce evanescent field, and calculated the electric intensity. The results show that compared with the nonmetal probe, the metal probe has a larger field enhancement effect, and its scattering wave induced by field enhancement has a bigger decay coefficient. The field enhancement effect should conclude that the metal probe has an important application in nanolithography.
Inflating with large effective fields
Burgess, C. P.; Cicoli, M.; Quevedo, F.; Williams, M.
2014-11-01
We re-examine large scalar fields within effective field theory, in particular focussing on the issues raised by their use in inflationary models (as suggested by BICEP2 to obtain primordial tensor modes). We argue that when the large-field and low-energy regimes coincide the scalar dynamics is most effectively described in terms of an asymptotic large-field expansion whose form can be dictated by approximate symmetries, which also help control the size of quantum corrections. We discuss several possible symmetries that can achieve this, including pseudo-Goldstone inflatons characterized by a coset G/H (based on abelian and non-abelian, compact and non-compact symmetries), as well as symmetries that are intrinsically higher dimensional. Besides the usual trigonometric potentials of Natural Inflation we also find in this way simple large-field power laws (like V propto phi2) and exponential potentials, V(phi) = ∑kVxe-kphi/M. Both of these can describe the data well and give slow-roll inflation for large fields without the need for a precise balancing of terms in the potential. The exponential potentials achieve large r through the limit |η| ll epsilon and so predict r simeq (8/3)(1-ns) consequently ns simeq 0.96 gives r simeq 0.11 but not much larger (and so could be ruled out as measurements on r and ns improve). We examine the naturalness issues for these models and give simple examples where symmetries protect these forms, using both pseudo-Goldstone inflatons (with non-abelian non-compact shift symmetries following familiar techniques from chiral perturbation theory) and extra-dimensional models.
Inflating with large effective fields
Energy Technology Data Exchange (ETDEWEB)
Burgess, C.P. [PH-TH Division, CERN, CH-1211, Genève 23 (Switzerland); Cicoli, M. [Dipartimento di Fisica e Astronomia, Università di Bologna, Via Irnerio 46, 40126 Bologna (Italy); Quevedo, F. [Abdus Salam ICTP, Strada Costiera 11, Trieste 34014 (Italy); Williams, M., E-mail: cburgess@perimeterinstitute.ca, E-mail: mcicoli@ictp.it, E-mail: f.quevedo@damtp.cam.ac.uk, E-mail: mwilliams@perimeterinsititute.ca [Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton ON (Canada)
2014-11-01
We re-examine large scalar fields within effective field theory, in particular focussing on the issues raised by their use in inflationary models (as suggested by BICEP2 to obtain primordial tensor modes). We argue that when the large-field and low-energy regimes coincide the scalar dynamics is most effectively described in terms of an asymptotic large-field expansion whose form can be dictated by approximate symmetries, which also help control the size of quantum corrections. We discuss several possible symmetries that can achieve this, including pseudo-Goldstone inflatons characterized by a coset G/H (based on abelian and non-abelian, compact and non-compact symmetries), as well as symmetries that are intrinsically higher dimensional. Besides the usual trigonometric potentials of Natural Inflation we also find in this way simple large-field power laws (like V ∝ φ{sup 2}) and exponential potentials, V(φ) = ∑{sub k}V{sub x}e{sup −kφ/M}. Both of these can describe the data well and give slow-roll inflation for large fields without the need for a precise balancing of terms in the potential. The exponential potentials achieve large r through the limit |η| || ε and so predict r ≅ (8/3)(1-n{sub s}); consequently n{sub s} ≅ 0.96 gives r ≅ 0.11 but not much larger (and so could be ruled out as measurements on r and n{sub s} improve). We examine the naturalness issues for these models and give simple examples where symmetries protect these forms, using both pseudo-Goldstone inflatons (with non-abelian non-compact shift symmetries following familiar techniques from chiral perturbation theory) and extra-dimensional models.
Effective Field Theories and Inflation
Burgess, C P; Holman, R
2003-01-01
We investigate the possible influence of very-high-energy physics on inflationary predictions focussing on whether effective field theories can allow effects which are parametrically larger than order H^2/M^2, where M is the scale of heavy physics and H is the Hubble scale at horizon exit. By investigating supersymmetric hybrid inflation models, we show that decoupling does not preclude heavy-physics having effects for the CMB with observable size even if H^2/M^2 << O(1%), although their presence can only be inferred from observations given some a priori assumptions about the inflationary mechanism. Our analysis differs from the results of hep-th/0210233, in which other kinds of heavy-physics effects were found which could alter inflationary predictions for CMB fluctuations, inasmuch as the heavy-physics can be integrated out here to produce an effective field theory description of low-energy physics. We argue, as in hep-th/0210233, that the potential presence of heavy-physics effects in the CMB does no...
The effective crystal field potential
Mulak, J
2000-01-01
As it results from the very nature of things, the spherical symmetry of the surrounding of a site in a crystal lattice or an atom in a molecule can never occur. Therefore, the eigenfunctions and eigenvalues of any bound ion or atom have to differ from those of spherically symmetric respective free ions. In this way, the most simplified concept of the crystal field effect or ligand field effect in the case of individual molecules can be introduced. The conventional notion of the crystal field potential is narrowed to its non-spherical part only through ignoring the dominating spherical part which produces only a uniform energy shift of gravity centres of the free ion terms. It is well understood that the non-spherical part of the effective potential "seen" by open-shell electrons localized on a metal ion plays an essential role in most observed properties. Light adsorption, electron paramagnetic resonance, inelastic neutron scattering and basic characteristics derived from magnetic and thermal measurements, ar...
Momentum and charge transport in non-relativistic holographic fluids from Ho\\v{r}ava gravity
Davison, Richard A; Janiszewski, Stefan; Kaminski, Matthias
2016-01-01
We study the linearized transport of transverse momentum and charge in a conjectured field theory dual to a black brane solution of Ho\\v{r}ava gravity with Lifshitz exponent $z=1$. As expected from general hydrodynamic reasoning, we find that both of these quantities are diffusive over distance and time scales larger than the inverse temperature. We compute the diffusion constants and conductivities of transverse momentum and charge, as well the ratio of shear viscosity to entropy density, and find that they differ from their relativistic counterparts. To derive these results, we propose how the holographic dictionary should be modified to deal with the multiple horizons and differing propagation speeds of bulk excitations in Ho\\v{r}ava gravity. When possible, as a check on our methods and results, we use the covariant Einstein-Aether formulation of Ho\\v{r}ava gravity, along with field redefinitions, to re-derive our results from a relativistic bulk theory.
English, W.; Hardcastle, M. J.; Krause, M. G. H.
2016-09-01
We present results from two suites of simulations of powerful radio galaxies in poor cluster environments, with a focus on the formation and evolution of the radio lobes. One suite of models uses relativistic hydrodynamics and the other relativistic magnetohydrodynamics; both are set up to cover a range of jet powers and velocities. The dynamics of the lobes are shown to be in good agreement with analytical models and with previous numerical models, confirming in the relativistic regime that the observed widths of radio lobes may be explained if they are driven by very light jets. The ratio of energy stored in the radio lobes to that put into the intracluster gas is seen to be the same regardless of jet power, jet velocity or simulation type, suggesting that we have a robust understanding of the work done on the ambient gas by this type of radio source. For the most powerful jets, we at times find magnetic field amplification by up to a factor of 2 in energy, but mostly the magnetic energy in the lobes is consistent with the magnetic energy injected. We confirm our earlier result that for jets with a toroidally injected magnetic field, the field in the lobes is predominantly aligned with the jet axis once the lobes are well developed, and that this leads to radio flux anisotropies of up to a factor of about two for mature sources. We reproduce the relationship between 151 MHz luminosity and jet power determined analytically in the literature.
Sun, Zhan; Zhang, Hong-Fei
2015-01-01
We present a systematical study on the photoproduction of prompt $J/\\psi$ in association with a $c\\bar{c}$ pair within the framework of non-relativistic QCD at the future high-energy $e^{+}e^{-}$ collider - International Linear Collider, including both direct and feed-down contributions. For direct $J/\\psi$ production, the states with color-octet $c\\bar{c}$-components, especially $|c\\bar{c}[^3P^{[8]}_J]g\\rangle$ and $|c\\bar{c}[^1S^{[8]}_0]g\\rangle$, provide dominant contribution to the production cross-section, which are about sixty times over that of the color-singlet state $|c\\bar{c}[^3S^{[1]}_1]\\rangle$. This is clearly shown by the transverse momentum ($p_t$) and rapidity distributions. The feed-down contribution from $\\psi'$ and $\\chi_{cJ}$ ($J=0,1,2$) is sizable, which is $\\sim 20\\%$ to the total prompt cross-section. Besides the yields, we also calculate the $J/\\psi$ polarization parameter $\\lambda$. In small $p_t$ region, the polarization of the prompt $J/\\psi$ is longitudinal due to $|c\\bar{c}[^3P^{[...
On the effective operators for Dark Matter annihilations
Energy Technology Data Exchange (ETDEWEB)
Simone, Andrea De; Thamm, Andrea [CERN, Theory Division, CH-1211 Geneva 23 (Switzerland); Monin, Alexander [Institut de Théorie des Phénomènes Physiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Urbano, Alfredo, E-mail: andrea.desimone@sissa.it, E-mail: alexander.monin@epfl.ch, E-mail: andrea.thamm@cern.ch, E-mail: alfredo.urbano@sissa.it [SISSA, via Bonomea 265, I-34136 Trieste (Italy)
2013-02-01
We consider effective operators describing Dark Matter (DM) interactions with Standard Model fermions. In the non-relativistic limit of the DM field, the operators can be organized according to their mass dimension and their velocity behaviour, i.e. whether they describe s- or p-wave annihilations. The analysis is carried out for self-conjugate DM (real scalar or Majorana fermion). In this case, the helicity suppression at work in the annihilation into fermions is lifted by electroweak bremsstrahlung. We construct and study all dimension-8 operators encoding such an effect. These results are of interest in indirect DM searches.
On the effective operators for Dark Matter annihilations
De Simone, Andrea; Thamm, Andrea; Urbano, Alfredo
2013-01-01
We consider effective operators describing Dark Matter (DM) interactions with Standard Model fermions. In the non-relativistic limit of the DM field, the operators can be organized according to their mass dimension and their velocity behaviour, i.e. whether they describe s- or p-wave annihilations. The analysis is carried out for self-conjugate DM (real scalar or Majorana fermion). In this case, the helicity suppression at work in the annihilation into fermions is lifted by electroweak bremsstrahlung. We construct and study all dimension-8 operators encoding such an effect. These results are of interest in indirect DM searches.
Graphene field-effect transistors
Energy Technology Data Exchange (ETDEWEB)
Reddy, Dharmendar; Register, Leonard F; Banerjee, Sanjay K [Microelectronics Research Center, University of Texas at Austin, Austin, Texas 78758 (United States); Carpenter, Gary D [IBM Austin Research Labs, Austin, Texas 78728 (United States)
2011-08-10
Owing in part to scaling challenges for metal oxide semiconductor field-effect transistors (MOSFETs) and complementary metal oxide semiconductor (CMOS) logic, the semiconductor industry is placing an increased emphasis on emerging materials and devices that may provide improved MOSFET performance beyond the 22 nm node, or provide novel functionality for, e.g. 'beyond CMOS' devices. Graphene, with its novel and electron-hole symmetric band structure and its high carrier mobilities and thermal velocities, is one such material that has garnered a great deal of interest for both purposes. Single and few layer carbon sheets have been fabricated by a variety of techniques including mechanical exfoliation and chemical vapour deposition, and field-effect transistors have been demonstrated with room-temperature mobilities as high as 10 000 cm{sup 2} V{sup -1} s{sup -1}. But graphene is a gapless semiconductor and gate control of current is challenging, off-state leakage currents are high, and current does not readily saturate with drain voltage. However, various ways to overcome, adapt to, or even embrace this property are now being considered for device applications. In this work we explore through illustrative examples the potential of and challenges to graphene use for conventional and novel device applications. (topical review)
Graphene field-effect transistors
Reddy, Dharmendar; Register, Leonard F.; Carpenter, Gary D.; Banerjee, Sanjay K.
2011-08-01
Owing in part to scaling challenges for metal oxide semiconductor field-effect transistors (MOSFETs) and complementary metal oxide semiconductor (CMOS) logic, the semiconductor industry is placing an increased emphasis on emerging materials and devices that may provide improved MOSFET performance beyond the 22 nm node, or provide novel functionality for, e.g. 'beyond CMOS' devices. Graphene, with its novel and electron-hole symmetric band structure and its high carrier mobilities and thermal velocities, is one such material that has garnered a great deal of interest for both purposes. Single and few layer carbon sheets have been fabricated by a variety of techniques including mechanical exfoliation and chemical vapour deposition, and field-effect transistors have been demonstrated with room-temperature mobilities as high as 10 000 cm2 V-1 s-1. But graphene is a gapless semiconductor and gate control of current is challenging, off-state leakage currents are high, and current does not readily saturate with drain voltage. However, various ways to overcome, adapt to, or even embrace this property are now being considered for device applications. In this work we explore through illustrative examples the potential of and challenges to graphene use for conventional and novel device applications.
Photovoltage field-effect transistors
Adinolfi, Valerio; Sargent, Edward H.
2017-02-01
The detection of infrared radiation enables night vision, health monitoring, optical communications and three-dimensional object recognition. Silicon is widely used in modern electronics, but its electronic bandgap prevents the detection of light at wavelengths longer than about 1,100 nanometres. It is therefore of interest to extend the performance of silicon photodetectors into the infrared spectrum, beyond the bandgap of silicon. Here we demonstrate a photovoltage field-effect transistor that uses silicon for charge transport, but is also sensitive to infrared light owing to the use of a quantum dot light absorber. The photovoltage generated at the interface between the silicon and the quantum dot, combined with the high transconductance provided by the silicon device, leads to high gain (more than 104 electrons per photon at 1,500 nanometres), fast time response (less than 10 microseconds) and a widely tunable spectral response. Our photovoltage field-effect transistor has a responsivity that is five orders of magnitude higher at a wavelength of 1,500 nanometres than that of previous infrared-sensitized silicon detectors. The sensitization is achieved using a room-temperature solution process and does not rely on traditional high-temperature epitaxial growth of semiconductors (such as is used for germanium and III–V semiconductors). Our results show that colloidal quantum dots can be used as an efficient platform for silicon-based infrared detection, competitive with state-of-the-art epitaxial semiconductors.
[Health effects of electromagnetic fields].
Röösli, Martin
2013-12-01
Use of electricity causes extremely low frequency magnetic fields (ELF-MF) and wireless communication devices emit radiofrequency electromagnetic fields (RF-EMF). Average ELF-MF exposure is mainly determined by high voltage power lines and transformers at home or at the workplace, whereas RF-EMF exposure is mainly caused by devices operating close to the body (mainly mobile and cordless phones). Health effects of EMF are controversially discussed. The IARC classified ELF-MF and RF-EMF as possible carcinogenic. Most consistent epidemiological evidence was found for an association between ELF-MF and childhood leukaemia. If causal, 1 - 4 percent of all childhood leukaemia cases could be attributed to ELF-MF. Epidemiological research provided some indications for an association between ELF-MF and Alzheimer's diseases as well as amyotrophic lateral sclerosis, although not entirely consistent. Regarding mobile phones and brain tumours, some studies observed an increased risk after heavy or long term use on the one hand. On the other hand, brain tumour incidence was not found to have increased in the last decade in Sweden, England or the US. Acute effects of RF-EMF on non-specific symptoms of ill health seem unlikely according to randomized and double blind provocation studies. However, epidemiological research on long term effects is still limited. Although from the current state of the scientific knowledge a large individual health risk from RF-EMF exposure is unlikely, even a small risk would have substantial public health relevance because of the widespread use of wireless communication technologies.
Effective field theory approach to quasi-single field inflation
Noumi, Toshifumi; Yokoyama, Daisuke
2012-01-01
We apply the effective field theory approach to quasi-single field inflation, which contains an additional scalar field with Hubble scale mass other than inflaton. Based on the time-dependent spatial diffeomorphism, which is not broken by the time-dependent background evolution, the most generic action of quasi-single field inflation is constructed up to third order fluctuations. Using the obtained action, the effects of the additional massive scalar field on the primordial curvature perturbations are discussed. In particular, we calculate the power spectrum and discuss the momentum-dependence of three point functions in the squeezed limit for general settings of quasi-single field inflation. Our framework can be also applied to inflation models with heavy particles. We make a qualitative discussion on the effects of heavy particles during inflation and that of sharp turning trajectory in our framework.
Energy Technology Data Exchange (ETDEWEB)
Schofield, Jennifer, E-mail: Jennifer.schofield@postgrad.manchester.ac.uk [School of Chemistry, The University of Manchester, Oxford Road, M13 9PL (United Kingdom); Pimblott, Simon M. [School of Chemistry, The University of Manchester, Oxford Road, M13 9PL (United Kingdom); The University of Manchester Dalton Cumbrian Facility, Westlakes Science and Technology Park, Moor Row, Cumbria CA24 3HA (United Kingdom)
2016-04-01
A formalism for the inelastic cross-section for electronic collisions of protons and heavier ions in a material is developed based on a quadratic extrapolation of the experimentally based dipole oscillator strength distribution (DOSD) of the material into the energy momentum plane. The approach is tested by calculating various energy loss properties in zirconium dioxide. Mean free path, stopping power and continuous slowing down approximation (csda) range are predicted as a function of ion energy for various incident ions, with the stopping powers compared to experimental data to assess the effectiveness of the methodology. The DOSD is straightforwardly obtained from the experimentally measured energy loss function data below 80 eV and atomic photo-absorption cross-section data above 100 eV. Agreement between the results of the calculation for stopping power and the experimental data is within 10% for all ions when compared for energies greater than the Bragg peak. The discrepancy is larger below the peak due to limitations in the methodology, especially the failure to make corrections for the Barkas and higher order effects and the lack of charge cycling cross-section data.
Gonthier, P L; Baring, M G; Costello, R M; Mercer, C L; Gonthier, Peter L.; Harding, Alice K.; Baring, Matthew G.; Costello, Rachel M.; Mercer, Cassandra L.
2000-01-01
This paper explores the effects of strong magnetic fields on the Compton scattering of relativistic electrons. Recent studies of upscattering and energy loss by relativistic electrons that have used the non-relativistic, magnetic Thomson cross section for resonant scattering or the Klein-Nishina cross section for non-resonant scattering do not account for the relativistic quantum effects of strong fields ($ > 4 \\times 10^{12}$ G). We have derived a simplified expression for the exact QED scattering cross section for the broadly-applicable case where relativistic electrons move along the magnetic field. To facilitate applications to astrophysical models, we have also developed compact approximate expressions for both the differential and total polarization-dependent cross sections, with the latter representing well the exact total QED cross section even at the high fields believed to be present in environments near the stellar surfaces of Soft Gamma-Ray Repeaters and Anomalous X-Ray Pulsars. We find that stron...
Davydov, Alexander
2010-01-01
It is accepted wisdom that language and formalism of classical physics are inadequate for description of quantum phenomena. Here I confront this point of view by showing that there exists a surprisingly accurate mapping between representation of some quantum phenomena in one dimension and behavior of a classical time-dependent harmonic oscillator. For the first time, I demonstrate that such quintessentially quantum effect as tunneling through a potential barrier can be described in terms of classical physics without violating the energy conservation law at any time instance. A formula is presented that generates a wide class of one-dimensional potential barrier shapes in analytic form with the desired reflection (transmission) coefficient and transmission phase shift along with the corresponding exact solutions of the time-independent Schr\\"odinger's equation. Based on these results and numerical evidence, I put forward a conjecture that a classical (macroscopic) harmonic oscillator disturbed by a parametric ...
Davydov, Alexander
2010-01-01
It is accepted wisdom that language and formalism of classical physics are inadequate for description of quantum phenomena. Here I confront this point of view by showing that there exists a surprisingly accurate mapping between representation of some quantum phenomena in one dimension and behavior of a classical time-dependent harmonic oscillator. For the first time, I demonstrate that such quintessentially quantum effect as tunneling through a potential barrier can be described in terms of classical physics without violating the energy conservation law at any time instance. A formula is presented that generates a wide class of one-dimensional potential barrier shapes in analytic form with the desired reflection (transmission) coefficient and transmission phase shift along with the corresponding exact solutions of the time-independent Schr\\"odinger's equation. Based on these results and numerical evidence, I put forward a conjecture that a classical (macroscopic) harmonic oscillator disturbed by a parametric ...
Bai, Xue-Ning; Sironi, Lorenzo; Spitkovsky, Anatoly
2014-01-01
We formulate a magnetohydrodynamic-particle-in-cell (MHD-PIC) method for describing the interaction between collisionless cosmic ray (CR) particles and a thermal plasma. The thermal plasma is treated as a fluid, obeying equations of ideal MHD, while CRs are treated as relativistic Lagrangian particles subject to the Lorentz force. Backreaction from CRs to the gas is included in the form of momentum and energy feedback. In addition, we include the electromagnetic feedback due to CR-induced Hall effect that becomes important when the electron-ion drift velocity of the background plasma induced by CRs approaches the Alfv\\'en velocity. Our method is applicable on scales much larger than the ion inertial length, bypassing the microscopic scales that must be resolved in conventional PIC methods, while retaining the full kinetic nature of the CRs. We have implemented and tested this method in the Athena MHD code, where the overall scheme is second-order accurate and fully conservative. As a first application, we des...
Directory of Open Access Journals (Sweden)
Sameer M. Ikhdair
2014-10-01
Full Text Available The two-dimensional solution of the spinless Klein–Gordon (KG equation for scalar–vector harmonic oscillator potentials with and without the presence of constant perpendicular magnetic and Aharonov–Bohm (AB flux fields is studied within the asymptotic function analysis and Nikiforov–Uvarov (NU method. The exact energy eigenvalues and normalized wave functions are analytically obtained in terms of potential parameters, magnetic field strength, AB flux field and magnetic quantum number. The results obtained by using different Larmor frequencies are compared with the results in the absence of both magnetic field (ωL = 0 and AB flux field (ξ = 0 case. Effects of external fields on the non-relativistic energy eigenvalues and wave functions solutions are also precisely presented.
Exploring the thermodynamics of non-commutative scalar fields
Brito, Francisco A
2015-01-01
We study the thermodynamic properties of the Bose-Einstein condensate (BEC) in the context of the quantum field theory with non-commutative target space. Our main goal is to investigate in which temperature and/or energy regimes the non-commutativity can characterize some influence in the BEC properties described by a relativistic massive non-commutative boson gas. The non-commutative parameters play a key role in the modified dispersion relations of the non-commutative fields, leading to a new phenomenology. We have obtained the condensate fraction, internal energy, pressure and specific heat of the system and taken ultra-relativistic (UR) and non-relativistic limits (NR). The non-commutative effects in the thermodynamic properties of the system are discussed. We found that there appear interesting signatures around the critical temperature.
Effective resonant interactions via a driving field
Energy Technology Data Exchange (ETDEWEB)
Klimov, A B [Departamento de FIsica, Universidad de Guadalajara, Revolucion 1500, Guadalajara 44420 (Mexico); Sainz, I [Departamento de FIsica, Universidad de Guadalajara, Revolucion 1500, Guadalajara 44420 (Mexico); Saavedra, C [Center for Quantum Optics and Quantum Information, Departamento de FIsica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile)
2004-11-01
Effective resonant quantum atom-field interactions are studied. These resonant interactions are induced by the presence of an external classical driving field. An adequate choice for frequencies of the driving field produces nonlinear effective Hamiltonians both for atom-field and for spin-spin interactions. It is shown that the exact numerical evolution for each resonance condition is well described by the corresponding effective Hamiltonian.
Non-relativistic quantum mechanics
Puri, Ravinder R.
2017-01-01
This book develops and simplifies the concept of quantum mechanics based on the postulates of quantum mechanics. The text discusses the technique of disentangling the exponential of a sum of operators, closed under the operation of commutation, as the product of exponentials to simplify calculations of harmonic oscillator and angular momentum. Based on its singularity structure, the Schrödinger equation for various continuous potentials is solved in terms of the hypergeometric or the confluent hypergeometric functions. The forms of the potentials for which the one-dimensional Schrödinger equation is exactly solvable are derived in detail. The problem of identifying the states of two-level systems which have no classical analogy is addressed by going beyond Bell-like inequalities and separability. The measures of quantumness of mutual information in two two-level systems is also covered in detail. Offers a new approach to learning quantum mechanics based on the history of quantum mechanics and its postu...
Organic tunnel field effect transistors
Tietze, Max Lutz
2017-06-29
Various examples are provided for organic tunnel field effect transistors (OTFET), and methods thereof. In one example, an OTFET includes a first intrinsic layer (i-layer) of organic semiconductor material disposed over a gate insulating layer; source (or drain) contact stacks disposed on portions of the first i-layer; a second i-layer of organic semiconductor material disposed on the first i-layer surrounding the source (or drain) contact stacks; an n-doped organic semiconductor layer disposed on the second i-layer; and a drain (or source) contact layer disposed on the n-doped organic semiconductor layer. The source (or drain) contact stacks can include a p-doped injection layer, a source (or drain) contact layer, and a contact insulating layer. In another example, a method includes disposing a first i-layer over a gate insulating layer; forming source or drain contact stacks; and disposing a second i-layer, an n-doped organic semiconductor layer, and a drain or source contact.
Casimir effect for Elko spinor field
Pereira, S H; Santos, Rubia dos
2016-01-01
The Casimir effect for the Elko spinor field in $3+1$ dimension is obtained using Dirichlet boundary conditions. It is shown the existence of a repulsive force four times greater than the case of the scalar field. The precise reason for such differences are highlighted and interpreted, as well as the right parallel of the Casimir effect due to scalar and fermionic fields.
Effective field theories of QCD for heavy quarkonia at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Ghiglieri, Jacopo
2011-07-27
Quarkonia, i.e. heavy quark-antiquark bound states, represent one of the most important probes in the experimental investigation, through heavy-ion collisions, of the high-temperature region of the phase diagram of QCD, where the onset of a deconfined medium, the quark-gluon plasma, is expected. Such bound states were hypothesized to dissociate in this plasma due to the screening of the colour charges and experimental data from SPS, RHIC and very recently also LHC indeed show a suppression pattern. In this thesis we extend the well-established and successful zero temperature framework of Non-Relativistic (NR) Effective Field Theories (EFTs) (NRQCD, pNRQCD) for the study of heavy quarkonia (production, spectroscopy, decays,..) to finite temperatures. This is achieved by integrating out in sequence the scales that characterize a NR bound state and those that are typical of a thermal medium, in the possible hierarchies that are relevant for quarkonia in the quark-gluon plasma. Within this framework we show how the potential that governs the evolution of the quark-antiquark pair is derived from QCD in a modern and rigorous way, thereby bridging the gap between phenomenological potential models and QCD. We show how the EFTs can be systematically improved and how effects that cannot be encoded in a potential arise naturally in the EFT, giving rise to new mechanisms of dissociation. We use this EFT framework to compute the spectrum and width of quarkonia in a particular setting that is relevant for the phenomenology of the ground states of bottomonium at the LHC. We also analyze within this framework the correlator of Polyakov loops, which is related to the thermodynamical free energy of heavy quark-antiquark pairs in the medium. As such, lattice computations thereof were frequently used as input for potential models. With our approach we are able to clarify the relation between these free energies and the real-time potential describing the dynamics of quarkonia, finding
Charge Exchange Effect on Space-Charge-Limited Current Densities in Ion Diode
Institute of Scientific and Technical Information of China (English)
石磊
2002-01-01
The article theoretically studied the charge-exchange effects on space charge limited electron and ion current densities of non-relativistic one-dimensional slab ion diode, and compared with those of without charge exchange.
Discreteness of space from GUP in a weak gravitational field
Directory of Open Access Journals (Sweden)
Soumen Deb
2016-04-01
Full Text Available Quantum gravity effects modify the Heisenberg's uncertainty principle to a generalized uncertainty principle (GUP. Earlier work showed that the GUP-induced corrections to the Schrödinger equation, when applied to a non-relativistic particle in a one-dimensional box, led to the quantization of length. Similarly, corrections to the Klein–Gordon and the Dirac equations, gave rise to length, area and volume quantizations. These results suggest a fundamental granular structure of space. In this work, it is investigated how spacetime curvature and gravity might influence this discreteness of space. In particular, by adding a weak gravitational background field to the above three quantum equations, it is shown that quantization of lengths, areas and volumes continue to hold. However, it should be noted that the nature of this new quantization is quite complex and under proper limits, it reduces to cases without gravity. These results suggest that quantum gravity effects are universal.
Discreteness of space from GUP in a weak gravitational field
Energy Technology Data Exchange (ETDEWEB)
Deb, Soumen, E-mail: soumen.deb@uleth.ca [Theoretical Physics Group, Dept. of Physics and Astronomy, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4 (Canada); Das, Saurya, E-mail: saurya.das@uleth.ca [Theoretical Physics Group, Dept. of Physics and Astronomy, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4 (Canada); Vagenas, Elias C., E-mail: elias.vagenas@ku.edu.kw [Theoretical Physics Group, Department of Physics, Kuwait University, P.O. Box 5969, Safat 13060 (Kuwait)
2016-04-10
Quantum gravity effects modify the Heisenberg's uncertainty principle to a generalized uncertainty principle (GUP). Earlier work showed that the GUP-induced corrections to the Schrödinger equation, when applied to a non-relativistic particle in a one-dimensional box, led to the quantization of length. Similarly, corrections to the Klein–Gordon and the Dirac equations, gave rise to length, area and volume quantizations. These results suggest a fundamental granular structure of space. In this work, it is investigated how spacetime curvature and gravity might influence this discreteness of space. In particular, by adding a weak gravitational background field to the above three quantum equations, it is shown that quantization of lengths, areas and volumes continue to hold. However, it should be noted that the nature of this new quantization is quite complex and under proper limits, it reduces to cases without gravity. These results suggest that quantum gravity effects are universal.
Power-Zienau-Woolley QED: centre of mass-energy and the Aharonov-Casher effect
Energy Technology Data Exchange (ETDEWEB)
Horsley, S A R; Babiker, M [Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom)
2006-08-14
The Aharonov-Casher (AC) effect is due to the interaction between an electric field and a moving particle that is endowed with a magnetic moment. This interaction is normally, but controversially, introduced by hand and by appeal to electromagnetic symmetry, as first done by Aharonov and Casher. We show here that the AC interaction arises rigorously within quantum electrodynamics (QED) in the Power-Zienau-Woolley formulation, provided that the centre of mass-energy is used as the multipolar reference centre, rather than its strictly non-relativistic limit-the centre of mass.
Biological effects of electromagnetic fields
African Journals Online (AJOL)
2012-02-28
Feb 28, 2012 ... cell level studies have shown that electromagnetic fields do not have a directly .... The ionic flows, which can be formed in case these molecules are affected from ...... Electr Magn Biol Med 1st Orlando FL. 13. Magnusson M ...
Field Effect Transistor in Nanoscale
2017-04-26
prominent rectification and NDC properties, due to various factors , such as, internal charge transfer , intrinsic molecular asymmetries, interference...characteristics. The magnetic field induced tuning of current may appear from several factors , such as, tuning of interfering electronic degenerate...play a major role [20,21]. Consequently, these devices remain in Coulomb blockade (CB) regime where integral charge transfer dominates the electron
Horava-Lifshitz Gravity and Effective Theory of the Fractional Quantum Hall Effect
Wu, Chaolun
2014-01-01
We show that Horava-Lifshitz gravity theory can be employed as a covariant framework to build an effective field theory for the fractional quantum Hall effect that respects all the spacetime symmetries such as non-relativistic diffeomorphism invariance and anisotropic Weyl invariance as well as the gauge symmetry. The key to this formalism is a set of correspondence relations that maps all the field degrees of freedom in the Horava-Lifshitz gravity theory to external background (source) fields among others in the effective action of the quantum Hall effect, according to their symmetry transformation properties. We originally derive the map as a holographic dictionary, but its form is independent of the existence of holographic duality. This paves the way for the application of Horava-Lifshitz holography on fractional quantum Hall effect. Using the simplest holographic Chern-Simons model, we compute the low energy effective action at leading orders and show that it captures universal electromagnetic and geomet...
Nuclear Dynamics with Effective Field Theories
Epelbaum, Evgeny
2013-01-01
These are the proceedings of the international workshop on "Nuclear Dynamics with Effective Field Theories" held at Ruhr-Universitaet Bochum, Germany from July 1 to 3, 2013. The workshop focused on effective field theories of low-energy QCD, chiral perturbation theory for nuclear forces as well as few- and many-body physics. Included are a short contribution per talk.
Nanowire Field-Effect Transistors: Sensing Simplicity?
Mescher, M.
2014-01-01
Silicon nanowires are structures made from silicon with at least one spatial dimension in the nanometer regime (1-100 nm). From these nanowires, silicon nanowire field-effect transistors can be constructed. Since their introduction in 2001 silicon nanowire field-effect transistors have been studied
Hammant, T C; von Hippel, G M; Horgan, R R; Monahan, C J
2013-01-01
We apply the background field (BF) method to Non-Relativistic QCD (NRQCD) on the lattice in order to determine the one-loop radiative corrections to the coefficients of the NRQCD action in a manifestly gauge-covariant manner by matching the NRQCD prediction for particular on-shell processes with those of relativistic continuum QCD. We explain how the BF method is implemented in automated perturbation theory and discuss the technique for matching the relativistic and non-relativistic theories. We compute the one-loop radiative corrections to the sigma.B and Darwin terms for the NRQCD action currently used in simulations, as well as the one-loop coefficients of the spin-dependent O(alpha^2) four-fermion contact terms. The effect of the corrections on the hyperfine splitting of bottomonium is estimated using earlier simulation results; the corrected lattice prediction is found to be in agreement with experiment. Agreement of the hyperfine splitting of bottomonium and the B-meson system is confirmed by recent sim...
Biological Effect of Magnetic Field in Mice
Institute of Scientific and Technical Information of China (English)
Zhao-Wei ZENG
2005-01-01
Objective: To study the biological effect of magnetic field in mice bodies. Method: With a piece of permanent magnet embeded in mice bodies beside the femoral artery and vein to measure the electrophoretic velocity(um/s). Result: The magnetic field in mice bodies on the experiment group that the electrophoretic velocity is faster more than control and free group.Conclusion:The magnetic field in animal's body can raise the negative electric charges on the surface of erythrocyte to improve the microcirculation, this is the biological effect of magnetic field.
Anisotropic magnetoresistance effect field sensors
Hauser, H; Stangl, G; Chabicovsky, R; Janiba, M; Riedling, K
2000-01-01
The parameters of the sensor layout and sensitivity considerations are discussed. The anisotropic magnetoresistive effect of DC-sputtered Ni 81%-Fe 19% films has been increased up to DELTA rho/rho=3.93% at 50 nm thickness and a sensitivity of 500 mu V/mu T can be achieved by an elliptically shaped sensor layout.
Nonrelativistic effective field theory for axions
Braaten, Eric; Mohapatra, Abhishek; Zhang, Hong
2016-10-01
Axions can be described by a relativistic field theory with a real scalar field ϕ whose self-interaction potential is a periodic function of ϕ . Low-energy axions, such as those produced in the early Universe by the vacuum misalignment mechanism, can be described more simply by a nonrelativistic effective field theory with a complex scalar field ψ whose effective potential is a function of ψ*ψ . We determine the coefficients in the expansion of the effective potential to fifth order in ψ*ψ by matching low-energy axion scattering amplitudes. In order to describe a Bose-Einstein condensate of axions that is too dense to truncate the expansion of the effective potential in powers of ψ*ψ , we develop a sequence of systematically improvable approximations to the effective potential that resum terms of all orders in ψ*ψ .
Nonrelativistic Effective Field Theory for Axions
Braaten, Eric; Zhang, Hong
2016-01-01
Axions can be described by a relativistic field theory with a real scalar field $\\phi$ whose self-interaction potential is a periodic function of $\\phi$. Low-energy axions, such as those produced in the early universe by the vacuum misalignment mechanism, can be described more simply by a nonrelativistic effective field theory with a complex scalar field $\\psi$ whose effective potential is a function of $\\psi^*\\psi$. We determine the coefficients in the expansion of the effective potential to fifth order in $\\psi^*\\psi$ by matching low-energy axion scattering amplitudes. In order to describe a Bose-Einstein condensate of axions that is too dense to expand the effective potential in powers of $\\psi^*\\psi$, we develop a sequence of systematically improvable approximations to the effective potential that include terms of all orders in $\\psi^*\\psi$.
Coexistence of phases in asymmetric nuclear matter under strong magnetic fields
Aguirre, R
2014-01-01
The equation of state of nuclear matter is strongly affected by the presence of a magnetic field. Here we study the equilibrium configuration of asymmetric nuclear matter for a wide range of densities, isospin composition, temperatures and magnetic fields. Special attention is paid to the low density and low temperature domain, where a thermodynamical instability exists. Neglecting fluctuations of the Coulomb force, a coexistence of phases is found under such conditions, even for extreme magnetic intensities. We describe the nuclear interaction by using the non--relativistic Skyrme potential model within a Hartree--Fock approach. We found that the coexistence of phases modifies the equilibrium configuration, masking most of the manifestations of the spin polarized matter. However, the compressibility and the magnetic susceptibility show clear signals of this fact. Thermal effects are significative for both quantities, mainly out of the coexistence region.
Chiral effective field theory and nuclear forces
Machleidt, R
2011-01-01
We review how nuclear forces emerge from low-energy QCD via chiral effective field theory. The presentation is accessible to the non-specialist. At the same time, we also provide considerable detailed information (mostly in appendices) for the benefit of researchers who wish to start working in this field.
Electric field confinement effect on charge transport in organic field-effect transistors
Li, X.; Kadashchuk, A.; Fishchuk, I.I.; Smaal, W.T.T.; Gelinck, G.H.; Broer, D.J.; Genoe, J.; Heremans, P.; Bässler, H.
2012-01-01
While it is known that the charge-carrier mobility in organic semiconductors is only weakly dependent on the electric field at low fields, the experimental mobility in organic field-effect transistors using silylethynyl-substituted pentacene is found to be surprisingly field dependent at low source-
The Magnetic Field Effect on Planetary Nebulae
Institute of Scientific and Technical Information of China (English)
A. R. Khesali; K. Kokabi
2006-01-01
In our previous work on the 3-dimensional dynamical structure of planetary nebulae the effect of magnetic field was not considered. Recently Jordan et al. have directly detected magnetic fields in the central stars of some planetary nebulae. This discovery supports the hypothesis that the non-spherical shape of most planetary nebulae is caused by magnetic fields in AGB stars. In this study we focus on the role of initially weak toroidal magnetic fields embedded in a stellar wind in altering the shape of the PN. We found that magnetic pressure is probably influential on the observed shape of most PNe.
Electric field control of the magnetocaloric effect.
Gong, Yuan-Yuan; Wang, Dun-Hui; Cao, Qing-Qi; Liu, En-Ke; Liu, Jian; Du, You-Wei
2015-02-04
Through strain-mediated magnetoelectric coupling, it is demonstrated that the magnetocaloric effect of a ferromagnetic shape-memory alloy can be controlled by an electric field. Large hysteresis and the limited operating temperature region are effectively overcome by applying an electric field on a laminate comprising a piezoelectric and the alloy. Accordingly, a model for an active magnetic refrigerator with high efficiency is proposed in principle.
Nanowire Field-Effect Transistors: Sensing Simplicity?
Mescher, M
2014-01-01
Silicon nanowires are structures made from silicon with at least one spatial dimension in the nanometer regime (1-100 nm). From these nanowires, silicon nanowire field-effect transistors can be constructed. Since their introduction in 2001 silicon nanowire field-effect transistors have been studied because of their promising application as selective sensors for biological and chemical species. Their large surface-to-volume ratio promises an increased sensitivity compared to conventional, plan...
The acceleration of a neutron in a static electric field
Energy Technology Data Exchange (ETDEWEB)
Cappelletti, R.L., E-mail: ron.cappelletti@nist.gov [NIST Center for Neutron Research, Gaithersburg, MD 20899 (United States)
2012-06-18
We show that when a non-relativistic neutron travels in a static electric field, the acceleration vector operator is perpendicular to the velocity operator. Kinetic energy is conserved. A spin-dependent field term in the canonical momentum gives rise to a non-dispersive contribution to the quantum mechanical (Aharonov–Casher) phase. This motion differs from that in a static magnetic field which has no field term in the canonical momentum and no conservation of kinetic energy. For the geometry of the Aharonov–Casher effect, there is no acceleration, while in Mott–Schwinger scattering, the acceleration causes a spin-dependent change in neutron direction. -- Highlights: ► Acceleration of a neutron in an E field is orthogonal to velocity. KE is conserved. ► For the Aharonov–Casher (AC) effect, acceleration is 0. ► The AC phase arises from the field term in the canonical momentum. ► In a static B field there is no field term in the canonical momentum. ► In a static B field KE is exchanged with Zeeman energy to conserve energy.
Polarization effects in molecular mechanical force fields
Cieplak, Piotr; Dupradeau, François-Yves; Duan, Yong; Wang, Junmei
2014-01-01
The focus here is on incorporating electronic polarization into classical molecular mechanical force fields used for macromolecular simulations. First, we briefly examine currently used molecular mechanical force fields and the current status of intermolecular forces as viewed by quantum mechanical approaches. Next, we demonstrate how some components of quantum mechanical energy are effectively incorporated into classical molecular mechanical force fields. Finally, we assess the modeling methods of one such energy component—polarization energy—and present an overview of polarizable force fields and their current applications. Incorporating polarization effects into current force fields paves the way to developing potentially more accurate, though more complex, parameterizations that can be used for more realistic molecular simulations. PMID:21828594
Polarization effects in molecular mechanical force fields
Energy Technology Data Exchange (ETDEWEB)
Cieplak, Piotr [Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92120 (United States); Dupradeau, Francois-Yves [UMR CNRS 6219-Faculte de Pharmacie, Universite de Picardie Jules Verne, 1 rue des Louvels, F-80037 Amiens (France); Duan, Yong [Genome Center and Department of Applied Science, University of California, Davis, One Shields Avenue, Davis, CA 95616 (United States); Wang Junmei, E-mail: pcieplak@burnham.or [Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Boulevard, ND9.136, Dallas, TX 75390-9050 (United States)
2009-08-19
The focus here is on incorporating electronic polarization into classical molecular mechanical force fields used for macromolecular simulations. First, we briefly examine currently used molecular mechanical force fields and the current status of intermolecular forces as viewed by quantum mechanical approaches. Next, we demonstrate how some components of quantum mechanical energy are effectively incorporated into classical molecular mechanical force fields. Finally, we assess the modeling methods of one such energy component-polarization energy-and present an overview of polarizable force fields and their current applications. Incorporating polarization effects into current force fields paves the way to developing potentially more accurate, though more complex, parameterizations that can be used for more realistic molecular simulations. (topical review)
Magnetic field screening effect in electroweak model
Bakry, A; Zhang, P M; Zou, L P
2014-01-01
It is shown that in the Weinberg-Salam model a magnetic field screening effect for static magnetic solutions takes place. The origin of that phenomenon is conditioned by features of the electro-weak interaction, namely, there is mutual cancellation of Abelian magnetic fields created by the SU(2) gauge fields and Higgs boson. The effect implies monopole charge screening in finite energy system of monopoles and antimonopoles. We consider another manifestation of the screening effect which leads to an essential energy decrease of magnetic solutions. Applying variational method we have found a magnetic field configuration with a topological azimuthal magnetic flux which minimizes the energy functional and possesses a total energy of order 1 TeV. We suppose that corresponding magnetic bound state exists in the electroweak theory and can be detected in experiment.
Field emission current from a junction field-effect transistor
Energy Technology Data Exchange (ETDEWEB)
Monshipouri, Mahta; Abdi, Yaser, E-mail: y.abdi@ut.ac.ir [University of Tehran, Nano-Physics Research Laboratory, Department of Physics (Iran, Islamic Republic of)
2015-04-15
Fabrication of a titanium dioxide/carbon nanotube (TiO{sub 2}/CNT)-based transistor is reported. The transistor can be considered as a combination of a field emission transistor and a junction field-effect transistor. Using direct current plasma-enhanced chemical vapor deposition (DC-PECVD) technique, CNTs were grown on a p-typed (100)-oriented silicon substrate. The CNTs were then covered by TiO{sub 2} nanoparticles 2–5 nm in size, using an atmospheric pressure CVD technique. In this device, TiO{sub 2}/CNT junction is responsible for controlling the emission current. High on/off-current ratio and proper gate control are the most important advantages of device. A model based on Fowler–Nordheim equation is utilized for calculation of the emission current and the results are compared with experimental data. The effect of TiO{sub 2}/CNT hetero-structure is also investigated, and well modeled.
The Supersymmetric Effective Field Theory of Inflation
Delacretaz, Luca V; Senatore, Leonardo
2016-01-01
We construct the Supersymmetric Effective Field Theory of Inflation, that is the most general theory of inflationary fluctuations when time-translations and supersymmetry are spontaneously broken. The non-linear realization of these invariances allows us to define a complete SUGRA multiplet containing the graviton, the gravitino, the Goldstone of time translations and the Goldstino, with no auxiliary fields. Going to a unitary gauge where only the graviton and the gravitino are present, we write the most general Lagrangian built out of the fluctuations of these fields, invariant under time-dependent spatial diffeomorphisms, but softly-breaking time diffeomorphisms and gauged SUSY. With a suitable St\\"uckelberg transformation, we introduce the Goldstone boson of time translation and the Goldstino of SUSY. No additional dynamical light field is needed. In the high energy limit, larger than the inflationary Hubble scale for the Goldstino, these fields decouple from the graviton and the gravitino, greatly simplif...
Global Anomalies and Effective Field Theory
Golkar, Siavash
2015-01-01
We show that matching anomalies under large gauge transformations and large diffeomorphisms can explain the appearance and non-renormalization of couplings in effective field theory. We focus on %thermal partition functions and thermal effective field theory where we argue that the appearance of certain unusual Chern-Simons couplings is a consequence of global anomalies. As an example, we show that a mixed global anomaly in four dimensions fixes the chiral vortical effect coefficient. This is an experimentally measurable prediction from a global anomaly. For certain situations, we propose a simpler method for calculating global anomalies which uses correlation functions rather than eta invariants.
Local field effects in periodic metamaterials
Porvatkina, O. V.; Tishchenko, A. A.; Strikhanov, M. N.
2016-08-01
In this article we investigate dielectric and magnetic properties of periodic metamaterials taking into account the so-called local field effect, caused by interaction between single particles the material consists of. We also consider the spatial dispersion effects. As a result, generalized Clausius-Mossotti techniques have been extended to the case of periodic metamaterials; permittivity tensor and permeability tensor were obtained.
Beta decay and other processes in strong electromagnetic fields
Akhmedov, Evgeny
2011-01-01
We consider effects of the fields of strong electromagnetic waves on various characteristics of quantum processes. After a qualitative discussion of the effects of external fields on the energy spectra and angular distributions of the final-state particles as well as on the total probabilities of the processes (such as decay rates and total cross sections), we present a simple method of calculating the total probabilities of processes with production of non-relativistic charged particles. Using nuclear beta-decay as an example, we study the weak and strong field limits, as well as the field-induced beta-decay of nuclei stable in the absence of the external fields, both in the tunneling and multi-photon regimes. We also consider the possibility of accelerating forbidden nuclear beta-decays by lifting the forbiddeness due to the interaction of the parent or daughter nuclei with the field of a strong electromagnetic wave. It is shown that for currently attainable electromagnetic fields all effects on total beta-...
Planar supersymmetric quantum mechanics of a charged particle in an external electromagnetic field
Energy Technology Data Exchange (ETDEWEB)
Paschoal, Ricardo C. [Servico Nacional de Aprendizagem Industrial, Rio de Janeiro, RJ (Brazil). Centro de Tecnologia da Industria Quimica e Textil (SENAI/CETIQT)]. E-mail: paschoal@cbpf.br; Helayel-Neto, Jose A.; Assis, Leonardo P.G. de [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]|[Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil); E-mails: helayel@cbpf.br; lpgassis@cbpf.br
2004-07-01
The supersymmetric quantum mechanics of a two-dimensional non-relativistic particle subject to both magnetic and electric fields is studied in a superfield formulation and with the typical non-minimal coupling of (2+1) dimensions. Both the N=1 and N=2 cases are contemplated and the introduction of the electric interaction is suitably analysed. (author)
Planar supersymmetric quantum mechanics of a charged particle in an external electromagnetic field
Energy Technology Data Exchange (ETDEWEB)
Paschoal, Ricardo C. [Centro Brasileiro de Pesquisas Fisicas, CBPF, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ (Brazil) and Servico Nacional de Aprendizagem Industrial, Centro de Tecnologia da Industria Quimica e Textil, SENAI/CETIQT, Rua Dr. Manoel Cotrim 195, 20961-040 Rio de Janeiro, RJ (Brazil)]. E-mail: paschoal@cbpf.br; Helayel-Neto, Jose A. [Centro Brasileiro de Pesquisas Fisicas, CBPF, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ (Brazil) and Grupo de Fisica Teorica Jose Leite Lopes, P.O. Box 91933, 25685-970 Petropolis, RJ (Brazil)]. E-mail: helayel@cbpf.br; Assis, Leonardo P.G. de [Centro Brasileiro de Pesquisas Fisicas, CBPF, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ (Brazil) and Grupo de Fisica Teorica Jose Leite Lopes, P.O. Box 91933, 25685-970 Petropolis, RJ (Brazil)]. E-mail: lpgassis@cbpf.br
2006-01-09
The supersymmetric quantum mechanics of a two-dimensional non-relativistic particle subject to external magnetic and electric fields is studied in a superfield formulation and with the typical non-minimal coupling of (2+1) dimensions. Both the N=1 and N=2 cases are contemplated and the introduction of the electric interaction is suitably analysed.
Scott correction for large atoms and molecules in a self-generated magnetic field
DEFF Research Database (Denmark)
Erdös, Laszlo; Fournais, Søren; Solovej, Jan Philip
2012-01-01
We consider a large neutral molecule with total nuclear charge $Z$ in non-relativistic quantum mechanics with a self-generated classical electromagnetic field. To ensure stability, we assume that $Z\\al^2\\le \\kappa_0$ for a sufficiently small $\\kappa_0$, where $\\al$ denotes the fine structure...
Scott correction for large atoms and molecules in a self-generated magnetic field
DEFF Research Database (Denmark)
Erdös, Laszlo; Fournais, Søren; Solovej, Jan Philip
2012-01-01
We consider a large neutral molecule with total nuclear charge $Z$ in non-relativistic quantum mechanics with a self-generated classical electromagnetic field. To ensure stability, we assume that $Z\\al^2\\le \\kappa_0$ for a sufficiently small $\\kappa_0$, where $\\al$ denotes the fine structure...
On the bonding and the electric field gradient of the uranyl ion
de Jong, WA; Visscher, L; Nieuwpoort, WC
1999-01-01
Molecular properties of the uranyl ion ([UO2](2+)) are studied using both a non-relativistic and a relativistic method. Inclusion of relativity leads to a bond length expansion and makes the electric field gradient (EFG) at the uranium nucleus strongly dependent on the U-O bond distance, The non-rel
Green's function for a neutral particle of spin 1/2 in a magnetic field
Rodrigues, R D L
2001-01-01
Using the spectral theorema in context of Green's function in momentum space of neutrons in the magnetic field of a linear conductor with current the bound state energy spectrum and eigenfunctions are deduced. It's also pointed out that this problem present a new scenary of Green's function in non-relativistic quantum mechanics.
Purcell effect in sub-wavelength semiconductor lasers.
Gu, Qing; Slutsky, Boris; Vallini, Felipe; Smalley, Joseph S T; Nezhad, Maziar P; Frateschi, Newton C; Fainman, Yeshaiahu
2013-07-01
We present a formal treatment of the modification of spontaneous emission rate by a cavity (Purcell effect) in sub-wavelength semiconductor lasers. To explicitly express the assumptions upon which our formalism builds, we summarize the results of non-relativistic quantum electrodynamics (QED) and the emitter-field-reservoir model in the quantum theory of damping. Within this model, the emitter-field interaction is modified to the extent that the field mode is modified by its environment. We show that the Purcell factor expressions frequently encountered in the literature are recovered only in the hypothetical condition when the gain medium is replaced by a transparent medium. Further, we argue that to accurately evaluate the Purcell effect, both the passive cavity boundary and the collective effect of all emitters must be included as part of the mode environment.
Effects of static magnetic fields on plants.
Kuznetsov, O.
In our recent experiment on STS-107 (MFA-Biotube) we took advantage of the magnetic heterogeneity of the gravity receptor cells of flax roots, namely stronger diamagnetism of starch-filled amyloplasts compared to cytoplasm (Δ ≊ HGMF, grad(H2/2) up to 109-1010 Oe2/cm) of the experimental chambers (MFCs) repelled amyloplasts from the zones of stronger field thus providing a directional stimulus for plant gravisensing system in microgravity, and causing the roots to react. Such reaction was observed in the video downlink pictures. Unfortunately, the ``Columbia'' tragedy caused loss of the plant material and most of the images, thus preventing us from detailed studies of the results. Currently we are looking for a possibility to repeat this experiment. Therefore, it is very important to understand, what other effects (besides displacing amyloplasts) static magnetic fields with intensities 0 to 2.5104 Oe, and with the size of the area of non-uniformity 10-3 to 1 cm. These effects were estimated theoretically and tested experimentally. No statistically significant differences in growth rates or rates of gravicurvature were observed in experiments with Linum, Arabidopsis, Hordeum, Avena, Ceratodon and Chara between the plants grown in uniform magnetic fields of various intensities (102 to 2.5104 Oe) and those grown in the Earth's magnetic field. Microscopic studies also did not detect any structural differences between test and control plants. The magnitudes of possible effects of static magnetic fields on plant cells and organs (including effects on ion currents, magneto-hydrodynamic effects in moving cytoplasm, ponderomotive forces on other cellular structures, effects on some biochemical reactions and biomolecules) were estimated theoretically. The estimations have shown, that these effects are small compared to the thermodynamic noise and thus are insignificant. Both theoretical estimations and control experiments confirm, that intracellular magnetophoresis of
Electromagnetic Effects in Superconductors in Gravitational Field
Ahmedov, B J
2005-01-01
The general relativistic modifications to the resistive state in superconductors of second type in the presence of a stationary gravitational field are studied. Some superconducting devices that can measure the gravitational field by its red-shift effect on the frequency of radiation are suggested. It has been shown that by varying the orientation of a superconductor with respect to the earth gravitational field, a corresponding varying contribution to AC Josephson frequency would be added by gravity. A magnetic flux (being proportional to angular velocity of rotation $\\Omega$) through a rotating hollow superconducting cylinder with the radial gradient of temperature $\
Anomaly induced effects in a magnetic field
Antoniadis, Ignatios; Boyarsky, Alexey; Ruchayskiy, Oleg
2007-01-01
We consider a modification of electrodynamics by an additional light massive vector field, interacting with the photon via Chern-Simons-like coupling. This theory predicts observable effects for the experiments studying the propagation of light in an external magnetic field, very similar to those, predicted by theories of axion and axion-like particles. We discuss a possible microscopic origin of this theory from a theory with non-trivial gauge anomaly cancellation between massive and light p...
Schwinger effect in inhomogeneous electric fields
Hebenstreit, Florian
2011-01-01
The vacuum of quantum electrodynamics is unstable against the formation of many-body states in the presence of an external electric field, manifesting itself as the creation of electron-positron pairs (Schwinger effect). This effect has been a long-standing but still unobserved prediction as the generation of the required field strengths has not been feasible so far. However, due to the advent of a new generation of high-intensity laser systems such as the European XFEL or the Extreme Light Infrastructure (ELI), this effect might eventually become observable within the next decades. Based on the equal-time Wigner formalism, various aspects of the Schwinger effect in electric fields showing both temporal and spatial variations are investigated. Regarding the Schwinger effect in time-dependent electric fields, analytic expressions for the equal-time Wigner function in the presence of a static as well as a pulsed electric field are derived. Moreover, the pair creation process in the presence of a pulsed electric...
Fundamentals of nanoscaled field effect transistors
Chaudhry, Amit
2013-01-01
Fundamentals of Nanoscaled Field Effect Transistors gives comprehensive coverage of the fundamental physical principles and theory behind nanoscale transistors. The specific issues that arise for nanoscale MOSFETs, such as quantum mechanical tunneling and inversion layer quantization, are fully explored. The solutions to these issues, such as high-κ technology, strained-Si technology, alternate devices structures and graphene technology are also given. Some case studies regarding the above issues and solution are also given in the book. In summary, this book: Covers the fundamental principles behind nanoelectronics/microelectronics Includes chapters devoted to solutions tackling the quantum mechanical effects occurring at nanoscale Provides some case studies to understand the issue mathematically Fundamentals of Nanoscaled Field Effect Transistors is an ideal book for researchers and undergraduate and graduate students in the field of microelectronics, nanoelectronics, and electronics.
[Biological effects of electromagnetic fields (author's transl)].
Bernhardt, J
1979-08-01
This résumé deals with thermal and nonthermal effects of electromagnetic fields on man. In consideration of two aspects a limitation is necessary. Firstly, there will be discussed only direct and immediate influences on biological cells and tissues, secondly, the treatment is limited to such phenomena, for which biophysical aproximations, based on experimental data, could be developed. Hazards for the human being may occur only by thermal effects within the microwave range. Regarding frequencies below approximately 30 kHz, excitation processes cannot be excluded in exceptional cases. Thermal effects are predominant, between 30 kHz and 100 kHz, before excitations can appear. Furthermore, by comparing the electrically and magnetically induced currents with the naturally flowing currents in man caused by the brain's and heart's electrical activity, a "lower boundaryline" was estimated. Regarding electric or magnetic field strengths undercutting this boundary-line, direct effects on the central nervous system may be excluded; other mechanisms should be responsible for demonstrated biological effects. The paper closes referring to some reports--presently discussed--on experimental findings of biological effects, which are observed as a result of the influence of electromagnetic fields of small field strengths.
Proposal of spin complementary field effect transistor
Kunihashi, Yoji; Kohda, Makoto; Sanada, Haruki; Gotoh, Hideki; Sogawa, Tetsuomi; Nitta, Junsaku
2012-03-01
Spin complementary field effect transistor is proposed on the basis of gate-controlled persistent spin helix (PSH) states. Uniaxial effective magnetic field in the PSH state creates coherent spin propagation with or without precession. By the gate control of the Rashba spin-orbit interaction, the PSH state can be reversed to the inverted PSH state. Switching between two PSH states enables complementary output depending on the channel direction. Our proposed device could be a reconfigurable minimum unit of the spin-based logic circuit.
Playing with QCD I: effective field theories
Energy Technology Data Exchange (ETDEWEB)
Fraga, Eduardo S. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Fisica
2009-07-01
The building blocks of hadrons are quarks and gluons, although color is confined into singlet states. QCD is believed to be the fundamental theory of strong interactions. Its asymptotically free nature puts the vacuum out of reach for perturbation theory. The Lagrangian of QCD and the Feynman rules associated were built by using the Gauge Principle, starting from the quark matter fields and obtaining gluons as connections. A simpler, and sometimes necessary or complementary, approach is provided by effective field theories or effective models, especially when one has to deal with the nonperturbative sector of the theory. (author)
The Effective Field Theory of Multifield Inflation
Senatore, Leonardo
2010-01-01
We generalize the Effective Field Theory of Inflation to include additional light scalar degrees of freedom that are in their vacuum at the time the modes of interest are crossing the horizon. In order to make the scalars light in a natural way we consider the case where they are the Goldstone bosons of a global symmetry group or are partially protected by an approximate supersymmetry. We write the most general Lagrangian that couples the scalar mode associated to the breaking of time translation during inflation to the additional light scalar fields. This Lagrangian is constrained by diffeomorphism invariance and the additional symmetries that keep the new scalars light. This Lagrangian describes the fluctuations around the time of horizon crossing and it is supplemented with a general parameterization describing how the additional fluctuating fields can affect cosmological perturbations. We find that multifield inflation can reproduce the non-Gaussianities that can be generated in single field inflation but...
Transit time of a freely falling quantum particle in a background gravitational field
Davies, P. C. W.
2004-12-01
Using a model quantum clock, I evaluate an expression for the time of a non-relativistic quantum particle to transit a piecewise geodesic path in a background gravitational field with small spacetime curvature (gravity gradient), in the case in which the apparatus is in free fall. This calculation complements and extends an earlier one (Davies 2004) in which the apparatus is fixed to the surface of the Earth. The result confirms that, for particle velocities not too low, the quantum and classical transit times coincide, in conformity with the principle of equivalence. I also calculate the quantum corrections to the transit time when the de Broglie wavelengths are long enough to probe the spacetime curvature. The results are compared with the calculation of Chiao and Speliotopoulos (2003), who propose an experiment to measure the foregoing effects.
Transit time of a freely falling quantum particle in a background gravitational field
Energy Technology Data Exchange (ETDEWEB)
Davies, P C W [Australian Centre for Astrobiology, Macquarie University, New South Wales 2109 (Australia)
2004-12-21
Using a model quantum clock, I evaluate an expression for the time of a non-relativistic quantum particle to transit a piecewise geodesic path in a background gravitational field with small spacetime curvature (gravity gradient), in the case in which the apparatus is in free fall. This calculation complements and extends an earlier one (Davies 2004) in which the apparatus is fixed to the surface of the Earth. The result confirms that, for particle velocities not too low, the quantum and classical transit times coincide, in conformity with the principle of equivalence. I also calculate the quantum corrections to the transit time when the de Broglie wavelengths are long enough to probe the spacetime curvature. The results are compared with the calculation of Chiao and Speliotopoulos (2003), who propose an experiment to measure the foregoing effects.
Electric Field Effects in RUS Measurements
Energy Technology Data Exchange (ETDEWEB)
Darling, Timothy W [Los Alamos National Laboratory; Ten Cate, James A [Los Alamos National Laboratory; Allured, Bradley [UNIV NEVADA, RENO; Carpenter, Michael A [CAMBRIDGE UNIV. UK
2009-09-21
Much of the power of the Resonant Ultrasound Spectroscopy (RUS) technique is the ability to make mechanical resonance measurements while the environment of the sample is changed. Temperature and magnetic field are important examples. Due to the common use of piezoelectric transducers near the sample, applied electric fields introduce complications, but many materials have technologically interesting responses to applied static and RF electric fields. Non-contact optical, buffered, or shielded transducers permit the application of charge and externally applied electric fields while making RUS measurements. For conducting samples, in vacuum, charging produces a small negative pressure in the volume of the material - a state rarely explored. At very high charges we influence the electron density near the surface so the propagation of surface waves and their resonances may give us a handle on the relationship of electron density to bond strength and elasticity. Our preliminary results indicate a charge sign dependent effect, but we are studying a number of possible other effects induced by charging. In dielectric materials, external electric fields influence the strain response, particularly in ferroelectrics. Experiments to study this connection at phase transformations are planned. The fact that many geological samples contain single crystal quartz suggests a possible use of the piezoelectric response to drive vibrations using applied RF fields. In polycrystals, averaging of strains in randomly oriented crystals implies using the 'statistical residual' strain as the drive. The ability to excite vibrations in quartzite polycrystals and arenites is explored. We present results of experimental and theoretical approaches to electric field effects using RUS methods.
Effective field theory for magnetic compactifications
Buchmuller, Wilfried; Dudas, Emilian; Schweizer, Julian
2016-01-01
Magnetic flux plays an important role in compactifications of field and string theories in two ways, it generates a multiplicity of chiral fermion zero modes and it can break supersymmetry. We derive the complete four-dimensional effective action for N=1 supersymmetric Abelian and non-Abelian gauge theories in six dimensions compactified on a torus with flux. The effective action contains the tower of charged states and it accounts for the mass spectrum of bosonic and fermionic fields as well as their level-dependent interactions. This allows us to compute quantum corrections to the mass and couplings of Wilson lines. We find that the one-loop corrections vanish, contrary to the case without flux. This can be traced back to the spontaneous breaking of a symmetry of the six-dimensional theory by the background gauge field, with the Wilson line as Goldstone boson.
Effective Field Theory for Jet Processes.
Becher, Thomas; Neubert, Matthias; Rothen, Lorena; Shao, Ding Yu
2016-05-13
Processes involving narrow jets receive perturbative corrections enhanced by logarithms of the jet opening angle and the ratio of the energies inside and outside the jets. Analyzing cone-jet processes in effective field theory, we find that in addition to soft and collinear fields their description requires degrees of freedom that are simultaneously soft and collinear to the jets. These collinear-soft particles can resolve individual collinear partons, leading to a complicated multi-Wilson-line structure of the associated operators at higher orders. Our effective field theory provides, for the first time, a factorization formula for a cone-jet process, which fully separates the physics at different energy scales. Its renormalization-group equations control all logarithmically enhanced higher-order terms, in particular also the nonglobal logarithms.
On the derivation of effective field theories
Uzunov, D I
2004-01-01
A general self-consistency approach allows a thorough treatment of the corrections to the standard mean-field approximation (MFA). The natural extension of standard MFA with the help of a cumulant expansion leads to a new point of view on the effective field theories. The proposed approach can be used for a systematic treatment of fluctuation effects of various length scales and, perhaps, for the development of a new coarse graining procedure. We outline and justify our method by some preliminary calculations. Concrete results are given for the critical temperature and the Landau parameters of the $\\phi^4_d$-theory - the field counterpart of the Ising model. An important unresolved problem of the modern theory of phase transitions - the problem for the calculation of the true critical temperature, is considered within the framework of the present approach. A comprehensive description of the ground state properties of many-body systems is also demonstrated.
Effective Field Theory for Rydberg Polaritons
Gullans, M. J.; Thompson, J. D.; Wang, Y.; Liang, Q.-Y.; Vuletić, V.; Lukin, M. D.; Gorshkov, A. V.
2016-01-01
We develop an effective field theory (EFT) to describe the few- and many-body propagation of one dimensional Rydberg polaritons. We show that the photonic transmission through the Rydberg medium can be found by mapping the propagation problem to a non-equilibrium quench, where the role of time and space are reversed. We include effective range corrections in the EFT and show that they dominate the dynamics near scattering resonances in the presence of deep bound states. Finally, we show how the long-range nature of the Rydberg-Rydberg interactions induces strong effective N-body interactions between Rydberg polaritons. These results pave the way towards studying non-perturbative effects in quantum field theories using Rydberg polaritons. PMID:27661685
Dynamics of classical and quantum fields an introduction
Setlur, Girish S
2014-01-01
Dynamics of Classical and Quantum Fields: An Introduction focuses on dynamical fields in non-relativistic physics. Written by a physicist for physicists, the book is designed to help readers develop analytical skills related to classical and quantum fields at the non-relativistic level, and think about the concepts and theory through numerous problems. In-depth yet accessible, the book presents new and conventional topics in a self-contained manner that beginners would find useful. A partial list of topics covered includes: Geometrical meaning of Legendre transformation in classical mechanics Dynamical symmetries in the context of Noether's theorem The derivation of the stress energy tensor of the electromagnetic field, the expression for strain energy in elastic bodies, and the Navier Stokes equation Concepts of right and left movers in case of a Fermi gas explained Functional integration is interpreted as a limit of a sequence of ordinary integrations Path integrals for one and two quantum particles and for...
Ferromagnetic hysteresis and the effective field
Naus, H.W.L.
2002-01-01
The Jiles-Atherton model of the behavior of ferromagnetic materials determines the irreversible magnetization from the effective field by using a differential equation. This paper presents an exact, analytical solution to the equation, one displaying hysteresis. The inclusion of magnetomechanical co
Magnetic field effects on photosynthetic reactions
Liu, Yan
2008-01-01
Although the influence of magnetic fields on the rates and product yields of a host of chemical reactions are well documented and can be understood in the framework of the Radical Pair Mechanism (RPM), it has so far proved impossible to demonstrate convincingly a biological RPM effect. In this work
An Introduction to Effective Field Theory
Burgess, C. P.
2007-11-01
This review summarizes effective field theory techniques, which are the modern theoretical tools for exploiting the existence of hierarchies of scale in a physical problem. The general theoretical framework is described and evaluated explicitly for a simple model. Power-counting results are illustrated for a few cases of practical interest, and several applications to quantum electrodynamics are described.
Effective field theory for deformed atomic nuclei
Papenbrock, T.; Weidenmüller, H. A.
2016-05-01
We present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband E2 transitions. For rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.
Effective field theory for deformed atomic nuclei
Papenbrock, T
2015-01-01
We present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband $E2$ transitions. For rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.
Renormalizability of effective scalar field theory
Ball, R D
1994-01-01
We present a comprehensive discussion of the consistency of the effective quantum field theory of a single $Z_2$ symmetric scalar field. The theory is constructed from a bare Euclidean action which at a scale much greater than the particle's mass is constrained only by the most basic requirements; stability, finiteness, analyticity, naturalness, and global symmetry. We prove to all orders in perturbation theory the boundedness, convergence, and universality of the theory at low energy scales, and thus that the theory is perturbatively renormalizable in the sense that to a certain precision over a range of such scales it depends only on a finite number of parameters. We then demonstrate that the effective theory has a well defined unitary and causal analytic S--matrix at all energy scales. We also show that redundant terms in the Lagrangian may be systematically eliminated by field redefinitions without changing the S--matrix, and discuss the extent to which effective field theory and analytic S--matrix theory...
Institute of Scientific and Technical Information of China (English)
M.R. Setare; O.Hatami
2009-01-01
Based on the shape invariance property we obtain exact solutions of the three-dimensional relativistic Klein-Gordon equation for a charged particle moving in the presence of a certain varying magnetic field, and we also show its non-relativistic limit.
Magnetic Catalysis in Graphene Effective Field Theory
DeTar, Carleton; Zafeiropoulos, Savvas
2016-01-01
We report on the first observation of magnetic catalysis at zero temperature in a fully nonperturbative simulation of the graphene effective field theory. Using lattice gauge theory, a nonperturbative analysis of the theory of strongly-interacting, massless, (2+1)-dimensional Dirac fermions in the presence of an external magnetic field is performed. We show that in the zero-temperature limit, a nonzero value for the chiral condensate is obtained which signals the spontaneous breaking of chiral symmetry. This result implies a nonzero value for the dynamical mass of the Dirac quasiparticle. This in turn has been posited to account for the quantum-Hall plateaus that are observed at large magnetic fields.
Anomaly induced effects in a magnetic field
Antoniadis, Ignatios; Boyarsky, Alexey; Ruchayskiy, Oleg
2008-04-01
We consider a modification of electrodynamics by an additional light massive vector field, interacting with the photon via Chern-Simons-like coupling. This theory predicts observable effects for the experiments studying the propagation of light in an external magnetic field, very similar to those, predicted by theories of axion and axion-like particles. We discuss a possible microscopic origin of this theory from a theory with non-trivial gauge anomaly cancellation between massive and light particles (including, for example, millicharged fermions). Due to the conservation of the gauge current, the production of the new vector field is suppressed at high energies. As a result, this theory can avoid both stellar bounds (which exist for axions) and the bounds from CMB considered recently, allowing for positive results in experiments like ALPS, LIPPS, OSQAR, PVLAS-2, BMV, Q&A, etc.
Anomaly induced effects in a magnetic field
Energy Technology Data Exchange (ETDEWEB)
Antoniadis, Ignatios; Boyarsky, Alexey [Department of Physics, CERN, Theory Division, 1211 Geneva 23 (Switzerland); Ruchayskiy, Oleg [Ecole Polytechnique Federale de Lausanne, Institute of Theoretical Physics, FSB/ITP/LPPC, BSP 720, CH-1015 Lausanne (Switzerland)], E-mail: oleg.ruchayskiy@epfl.ch
2008-04-11
We consider a modification of electrodynamics by an additional light massive vector field, interacting with the photon via Chern-Simons-like coupling. This theory predicts observable effects for the experiments studying the propagation of light in an external magnetic field, very similar to those, predicted by theories of axion and axion-like particles. We discuss a possible microscopic origin of this theory from a theory with non-trivial gauge anomaly cancellation between massive and light particles (including, for example, millicharged fermions). Due to the conservation of the gauge current, the production of the new vector field is suppressed at high energies. As a result, this theory can avoid both stellar bounds (which exist for axions) and the bounds from CMB considered recently, allowing for positive results in experiments like ALPS, LIPPS, OSQAR, PVLAS-2, BMV, Q and A, etc.
Anomaly induced effects in a magnetic field
Antoniadis, Ignatios; Ruchayskiy, O
2008-01-01
We consider a modification of electrodynamics by an additional light massive vector field, interacting with the photon via Chern-Simons-like coupling. This theory predicts observable effects for the experiments studying the propagation of light in an external magnetic field, very similar to those, predicted by theories of axion and axion-like particles. We discuss a possible microscopic origin of this theory from a theory with non-trivial gauge anomaly cancellation between massive and light particles (including, for example, millicharged fermions). Due to the conservation of the gauge current, the production of the new vector field is suppressed at high energies. As a result, this theory can avoid both stellar bounds (which exist for axions) and the bounds from CMB considered recently, allowing for positive results in experiments like ALPS, LIPPS, OSQAR, PVLAS-2, BMV, Q&A, etc.
Multisymplectic effective General Boundary Field Theory
Arjang, Mona
2013-01-01
The transfer matrix in lattice field theory connects the covariant and the initial data frameworks; in spin foam models, it can be written as a composition of elementary cellular amplitudes/propagators. We present a framework for discrete spacetime classical field theory in which solutions to the field equations over elementary spacetime cells may be amalgamated if they satisfy simple gluing conditions matching the composition rules of cellular amplitudes in spin foam models. Furthermore, the formalism is endowed with a multisymplectic structure responsible for local conservation laws. Some models within our framework are effective theories modeling a system at a given scale. Our framework allows us to study coarse graining and the continuum limit.
Weak gravity conjecture and effective field theory
Saraswat, Prashant
2017-01-01
The weak gravity conjecture (WGC) is a proposed constraint on theories with gauge fields and gravity, requiring the existence of light charged particles and/or imposing an upper bound on the field theory cutoff Λ . If taken as a consistency requirement for effective field theories (EFTs), it rules out possibilities for model building including some models of inflation. I demonstrate simple models which satisfy all forms of the WGC, but which through Higgsing of the original gauge fields produce low-energy EFTs with gauge forces that badly violate the WGC. These models illustrate specific loopholes in arguments that motivate the WGC from a bottom-up perspective; for example the arguments based on magnetic monopoles are evaded when the magnetic confinement that occurs in a Higgs phase is accounted for. This indicates that the WGC should not be taken as a veto on EFTs, even if it turns out to be a robust property of UV quantum gravity theories. However, if the latter is true, then parametric violation of the WGC at low energy comes at the cost of nonminimal field content in the UV. I propose that only a very weak constraint is applicable to EFTs, Λ ≲(log 1/g )-1 /2Mpl , where g is the gauge coupling, motivated by entropy bounds. Remarkably, EFTs produced by Higgsing a theory that satisfies the WGC can saturate but not violate this bound.
Magnetic field effect on spoke behaviour
Hnilica, Jaroslav; Slapanska, Marta; Klein, Peter; Vasina, Petr
2016-09-01
The investigations of the non-reactive high power impulse magnetron sputtering (HiPIMS) discharge using high-speed camera imaging, optical emission spectroscopy and electrical probes showed that plasma is not homogeneously distributed over the target surface, but it is concentrated in regions of higher local plasma density called spokes rotating above the erosion racetrack. Magnetic field effect on spoke behaviour was studied by high-speed camera imaging in HiPIMS discharge using 3 inch titanium target. An employed camera enabled us to record two successive images in the same pulse with time delay of 3 μs between them, which allowed us to determine the number of spokes, spoke rotation velocity and spoke rotation frequency. The experimental conditions covered pressure range from 0.15 to 5 Pa, discharge current up to 350 A and magnetic fields of 37, 72 and 91 mT. Increase of the magnetic field influenced the number of spokes observed at the same pressure and at the same discharge current. Moreover, the investigation revealed different characteristic spoke shapes depending on the magnetic field strength - both diffusive and triangular shapes were observed for the same target material. The spoke rotation velocity was independent on the magnetic field strength. This research has been financially supported by the Czech Science Foundation in frame of the project 15-00863S.
Brun-Battistini, D; Sandoval-Villalbazo, A
2016-01-01
Richard C. Tolman analyzed the relation between a temperature gradient and a gravitational field in an equilibrium situation. In 2012, Tolman\\textquoteright s law was generalized to a non-equilibrium situation for a simple dilute relativistic fluid. The result in that scenario, obtained by introducing the gravitational force through the molecular acceleration, couples the heat flux with the metric coefficients and the gradients of the state variables. In the present paper it is shown, by \\textquotedblleft suppressing\\textquotedblright{} the molecular acceleration in Boltzmann\\textquoteright s equation, that a gravitational field drives a heat flux. This procedure corresponds to the description of particle motion through geodesics, in which a Newtonian limit to the Schwarzschild metric is assumed. The effect vanishes in the non-relativistic regime, as evidenced by the direct evaluation of the corresponding limit.
Generalized spin-dependent WIMP-nucleus interactions and the DAMA modulation effect
Scopel, Stefano; Yoon, KookHyun
2015-01-01
Guided by non-relativistic Effective Field Theory (EFT) we classify the most general spin-dependent interactions between a fermionic Weakly Interacting Massive Particle (WIMP) and nuclei, and within this class of models we discuss the viability of an interpretation of the DAMA modulation result in terms of a signal from WIMP elastic scatterings using a halo-independent approach. We find that, although several relativistic EFT's can lead to a spin-dependent cross section, in some cases with an explicit, non-negligible dependence on the WIMP incoming velocity, three main scenarios can be singled out in the non-relativistic limit which approximately encompass them all, and that only differ by their dependence on the transferred momentum. For two of them compatibility between DAMA and other constraints is possible for a WIMP mass below 30 GeV, but only for a WIMP velocity distribution in the halo of our Galaxy which departs from a Maxwellian. This is achieved by combining a suppression of the WIMP effective coupl...
Nanowire field effect transistors principles and applications
Jeong, Yoon-Ha
2014-01-01
“Nanowire Field Effect Transistor: Basic Principles and Applications” places an emphasis on the application aspects of nanowire field effect transistors (NWFET). Device physics and electronics are discussed in a compact manner, together with the p-n junction diode and MOSFET, the former as an essential element in NWFET and the latter as a general background of the FET. During this discussion, the photo-diode, solar cell, LED, LD, DRAM, flash EEPROM and sensors are highlighted to pave the way for similar applications of NWFET. Modeling is discussed in close analogy and comparison with MOSFETs. Contributors focus on processing, electrostatic discharge (ESD) and application of NWFET. This includes coverage of solar and memory cells, biological and chemical sensors, displays and atomic scale light emitting diodes. Appropriate for scientists and engineers interested in acquiring a working knowledge of NWFET as well as graduate students specializing in this subject.
Effective Field Theories and Lattice QCD
Bernard, C
2015-01-01
I describe some of the many connections between lattice QCD and effective field theories, focusing in particular on chiral effective theory, and, to a lesser extent, Symanzik effective theory. I first discuss the ways in which effective theories have enabled and supported lattice QCD calculations. Particular attention is paid to the inclusion of discretization errors, for a variety of lattice QCD actions, into chiral effective theory. Several other examples of the usefulness of chiral perturbation theory, including the encoding of partial quenching and of twisted boundary conditions, are also described. In the second part of the talk, I turn to results from lattice QCD for the low energy constants of the two- and three-flavor chiral theories. I concentrate here on mesonic quantities, but the dependence of the nucleon mass on the pion mass is also discussed. Finally I describe some recent preliminary lattice QCD calculations by the MILC Collaboration relating to the three-flavor chiral limit.
Halo Effective Field Theory of 6He
Directory of Open Access Journals (Sweden)
Thapaliya Arbin
2016-01-01
Full Text Available 6He has a cluster structure with a tight 4He (α core surrounded by two loosely bound neutrons (n making it a halo nucleus. The leading-order (LO Halo Effective Field Theory (EFT [1, 2] calculations using momentum-space Faddeev equations pertinent to a bound 6He were carried out in [3]. In this work, we investigate 6He up to next-to-leading order (NLO within Halo EFT.
Evaluation of near-field earthquake effects
Energy Technology Data Exchange (ETDEWEB)
Shrivastava, H.P.
1994-11-01
Structures and equipment, which are qualified for the design basis earthquake (DBE) and have anchorage designed for the DBE loading, do not require an evaluation of the near-field earthquake (NFE) effects. However, safety class 1 acceleration sensitive equipment such as electrical relays must be evaluated for both NFE and DBE since they are known to malfunction when excited by high frequency seismic motions.
Quantum gravity, effective fields and string theory
Bjerrum-Bohr, N E J
2004-01-01
We look at the various aspects of treating general relativity as a quantum theory. It is briefly studied how to consistently quantize general relativity as an effective field theory. A key achievement here is the long-range low-energy leading quantum corrections to both the Schwarzschild and Kerr metrics. The leading quantum corrections to the pure gravitational potential between two sources are also calculated, both in the mixed theory of scalar QED and quantum gravity and in the pure gravitational theory. The (Kawai-Lewellen-Tye) string theory gauge/gravity relations is next dealt with. We investigate if the KLT-operator mapping extends to the case of higher derivative effective operators. The KLT-relations are generalized, taking the effective field theory viewpoint, and remarkable tree-level amplitude relations between the field theory operators are derived. Quantum gravity is finally looked at from the the perspective of taking the limit of infinitely many spatial dimensions. It is verified that only a c...
The Effective Field Theory of Dark Energy
Gubitosi, Giulia; Vernizzi, Filippo
2012-01-01
We propose a universal description of dark energy and modified gravity that includes all single-field models. By extending a formalism previously applied to inflation, we consider the metric universally coupled to matter fields and we write in terms of it the most general unitary gauge action consistent with the residual unbroken symmetries of spatial diffeomorphisms. Our action is particularly suited for cosmological perturbation theory: the background evolution depends on only three operators. All other operators start at least at quadratic order in the perturbations and their effects can be studied independently and systematically. In particular, we focus on the properties of a few operators which appear in non-minimally coupled scalar-tensor gravity and galileon theories. In this context, we study the mixing between gravity and the scalar degree of freedom. We assess the quantum and classical stability, derive the speed of sound of fluctuations and the renormalization of the Newton constant. The scalar ca...
Effective Field Theory of Cosmological Perturbations
Piazza, Federico
2013-01-01
The effective field theory of cosmological perturbations stems from considering a cosmological background solution as a state displaying spontaneous breaking of time translations and (adiabatic) perturbations as the related Nambu-Goldstone modes. With this insight, one can systematically develop a theory for the cosmological perturbations during inflation and, with minor modifications, also describe in full generality the gravitational interactions of dark energy, which are relevant for late-time cosmology. The formalism displays a unique set of Lagrangian operators containing an increasing number of cosmological perturbations and derivatives. We give an introductory description of the unitary gauge formalism for theories with broken gauge symmetry---that allows to write down the most general Lagrangian---and of the Stueckelberg "trick"---that allows to recover gauge invariance and to make the scalar field explicit. We show how to apply this formalism to gravity and cosmology and we reproduce the detailed ana...
Effective Field Theory for Rydberg Polaritons
Gullans, M J; Thompson, J D; Liang, Q -Y; Vuletic, V; Lukin, M D; Gorshkov, A V
2016-01-01
We study non-perturbative effects in N-body scattering of Rydberg polaritons using effective field theory (EFT). We develop an EFT in one dimension and show how a suitably long medium can be used to prepare shallow N-body bound states. We then derive the effective N-body interaction potential for Rydberg polaritons and the associated N-body contact force that arises in the EFT. We use the contact force to find the leading order corrections to the binding energy of the N-body bound states and determine the photon number at which the EFT description breaks down. We find good agreement throughout between the predictions of EFT and numerical simulations of the exact two and three photon wavefunction transmission.
Effective field theory analysis of Higgs naturalness
Energy Technology Data Exchange (ETDEWEB)
Bar-Shalom, Shaouly [Technion-Israel Inst. of Tech., Haifa (Israel); Soni, Amarjit [Brookhaven National Lab. (BNL), Upton, NY (United States); Wudka, Jose [Univ. of California, Riverside, CA (United States)
2015-07-20
Assuming the presence of physics beyond the Standard Model ( SM) with a characteristic scale M ~ O (10) TeV, we investigate the naturalness of the Higgs sector at scales below M using an effective field theory (EFT) approach. We obtain the leading 1 -loop EFT contributions to the Higgs mass with a Wilsonian-like hard cutoff, and determine t he constraints on the corresponding operator coefficients for these effects to alleviate the little hierarchy problem up to the scale of the effective action Λ < M , a condition we denote by “EFT-naturalness”. We also determine the types of physics that can lead to EFT-naturalness and show that these types of new physics are best probed in vector-boson and multiple-Higgs production. The current experimental constraints on these coefficients are also discussed.
Effective Field Theory with Two Higgs Doublets
Crivellin, Andreas; Procura, Massimiliano
2016-01-01
In this article we extend the effective field theory framework describing new physics effects to the case where the underlying low-energy theory is a Two-Higgs-Doublet model. We derive a complete set of independent operators up to dimension six assuming a $Z_2$-invariant CP-conserving Higgs potential. The effects on Higgs and gauge boson masses, mixing angles in the Higgs sector as well as couplings to fermions and gauge bosons are computed. At variance with the case of a single Higgs doublet, we find that pair production of SM-like Higgses, arising through dimension-six operators, is not fixed by fermion-fermion-Higgs couplings and can therefore be sizable.
Higgs effective field theories. Systematics and applications
Energy Technology Data Exchange (ETDEWEB)
Krause, Claudius G.
2016-07-28
Researchers of the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) announced on July 4th, 2012, the observation of a new particle. The properties of the particle agree, within the relatively large experimental uncertainties, with the properties of the long-sought Higgs boson. Particle physicists around the globe are now wondering, ''Is it the Standard Model Higgs that we observe; or is it another particle with similar properties?'' We employ effective field theories (EFTs) for a general, model-independent description of the particle. We use a few, minimal assumptions - Standard Model (SM) particle content and a separation of scales to the new physics - which are supported by current experimental results. By construction, effective field theories describe a physical system only at a certain energy scale, in our case at the electroweak-scale v. Effects of new physics from a higher energy-scale, Λ, are described by modified interactions of the light particles. In this thesis, ''Higgs Effective Field Theories - Systematics and Applications'', we discuss effective field theories for the Higgs particle, which is not necessarily the Higgs of the Standard Model. In particular, we focus on a systematic and consistent expansion of the EFT. The systematics depends on the dynamics of the new physics. We distinguish two different consistent expansions. EFTs that describe decoupling new-physics effects and EFTs that describe non-decoupling new-physics effects. We briefly discuss the first case, the SM-EFT. The focus of this thesis, however, is on the non-decoupling EFTs. We argue that the loop expansion is the consistent expansion in the second case. We introduce the concept of chiral dimensions, equivalent to the loop expansion. Using the chiral dimensions, we expand the electroweak chiral Lagrangian up to next-to-leading order, O(f{sup 2}/Λ{sup 2})=O(1/16π{sup 2}). Further, we discuss how different
Oxidation and crystal field effects in uranium
Energy Technology Data Exchange (ETDEWEB)
Tobin, J. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Booth, C. H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shuh, D. K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); van der Laan, G. [Diamond Light Source, Didcot (United Kingdom); Sokaras, D. [Stanford Synchrotron Radiation Lightsource, Stanford, CA (United States); Weng, T. -C. [Stanford Synchrotron Radiation Lightsource, Stanford, CA (United States); Yu, S. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bagus, P. S. [Univ. of North Texas, Denton, TX (United States); Tyliszczak, T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nordlund, D. [Stanford Synchrotron Radiation Lightsource, Stanford, CA (United States)
2015-07-06
An extensive investigation of oxidation in uranium has been pursued. This includes the utilization of soft x-ray absorption spectroscopy, hard x-ray absorption near-edge structure, resonant (hard) x-ray emission spectroscopy, cluster calculations, and a branching ratio analysis founded on atomic theory. The samples utilized were uranium dioxide (UO_{2}), uranium trioxide (UO_{3}), and uranium tetrafluoride (UF_{4}). As a result, a discussion of the role of non-spherical perturbations, i.e., crystal or ligand field effects, will be presented.
The Effective Field Theory of nonsingular cosmology
Cai, Yong; Li, Hai-Guang; Qiu, Taotao; Piao, Yun-Song
2016-01-01
In this paper, we explore the nonsingular cosmology within the framework of the Effective Field Theory(EFT) of cosmological perturbations. Due to the recently proved no-go theorem, any nonsingular cosmological models based on the cubic Galileon suffer from pathologies. We show how the EFT could help us clarify the origin of the no-go theorem, and offer us solutions to break the no-go. Particularly, we point out that the gradient instability can be removed by using some spatial derivative operators in EFT. Based on the EFT description, we obtain a realistic healthy nonsingular cosmological model, and show the perturbation spectrum can be consistent with the observations.
Hysteresis modeling in graphene field effect transistors
Energy Technology Data Exchange (ETDEWEB)
Winters, M.; Rorsman, N. [Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412-96 Göteborg (Sweden); Sveinbjörnsson, E. Ö. [Science Institute, University of Iceland, IS-107 Reykjavik (Iceland)
2015-02-21
Graphene field effect transistors with an Al{sub 2}O{sub 3} gate dielectric are fabricated on H-intercalated bilayer graphene grown on semi-insulating 4H-SiC by chemical vapour deposition. DC measurements of the gate voltage v{sub g} versus the drain current i{sub d} reveal a severe hysteresis of clockwise orientation. A capacitive model is used to derive the relationship between the applied gate voltage and the Fermi energy. The electron transport equations are then used to calculate the drain current for a given applied gate voltage. The hysteresis in measured data is then modeled via a modified Preisach kernel.
Sepehri Javan, N.; Amjadi, N.; Mohammadzadeh, H.
2016-12-01
In this work, we theoretically study the effect of coating of metallic nanoparticles on the third harmonic generation in a periodic three-dimensional lattice. Taking into account the effects of dielectric shell of nanoparticles and microscopic electromagnetic fields on the nonlinear dynamics of electrons, equations describing the laser-nanoparticle interaction are derived in the non-relativistic approximation. We pay special attention on the effects of the thickness and the kind of shell of nanoparticles upon the third harmonic efficiency. It is found that in some frequency areas, existence of shell can amplify the microscopic fields in the place of conduction electrons, which can lead to the improvement of harmonic generation. This amplification could be essential if the frequency region related to the shell effect improvement coincides with that of the plasmon resonance.
Nuclear effective field theory on the lattice
Krebs, H; Epelbaum, E; Lee, D; ner, Ulf-G Mei\\ss
2008-01-01
In the low-energy region far below the chiral symmetry breaking scale (which is of the order of 1 GeV) chiral perturbation theory provides a model-independent approach for quantitative description of nuclear processes. In the two- and more-nucleon sector perturbation theory is applicable only at the level of an effective potential which serves as input in the corresponding dynamical equation. To deal with the resulting many-body problem we put chiral effective field theory (EFT) on the lattice. Here we present the results of our lattice EFT study up to next-to-next-to-leading order in the chiral expansion. Accurate description of two-nucleon phase-shifts and ground state energy ratio of dilute neutron matter up to corrections of higher orders shows that lattice EFT is a promising tool for a quantitative description of low-energy few- and many-body systems.
Wake field effects in APT linac
Energy Technology Data Exchange (ETDEWEB)
Kurennoy, S.S.
1998-12-31
The 1.7-GeV 100-mA CW proton linac is now under design for the Accelerator Production of Tritium (APT) Project. The high current leads to stringent restrictions on allowable beam losses (<1 nA/m), that requires analyzing carefully all possible loss sources. While wake-field effects are usually considered negligible in proton linacs, the author studies these effects for the APT to exclude potential problems at such a high current. Loss factors and resonance frequency spectra of various discontinuities of the vacuum chamber are investigated, both analytically and using 2-D and 3-D simulation codes with a single bunch as well as with many bunches. Here he concentrates on two features specific to the APT linac: loss factors for the design {beta} < 1 and CW beam structure.
Wake Field Effects in the APT Linac.
Kurennoy, Sergey
1998-04-01
The 1.7-GeV 100-mA CW proton linac is now under design for the Accelerator Production of Tritium (APT) Project. While wake-field effects are usually considered negligible in proton linacs, an analysis for the APT accelerator has been performed to exclude potential problems at such a high current leading to beam losses. Loss factors and resonance frequency spectra of various discontinuities of the vacuum chamber are investigated, both analytically and using 2-D and 3-D simulation codes with a single bunch as well as with many bunches. The only noticeable effect is the HOM heating of the 5-cell superconducting cavities. However, it has an acceptable level and will be further reduced by HOM couplers.
Polycrystalline silicon ion sensitive field effect transistors
Yan, F.; Estrela, P.; Mo, Y.; Migliorato, P.; Maeda, H.; Inoue, S.; Shimoda, T.
2005-01-01
We report the operation of polycrystalline silicon ion sensitive field effect transistors. These devices can be fabricated on inexpensive disposable substrates such as glass or plastics and are, therefore, promising candidates for low cost single-use intelligent multisensors. In this work we have developed an extended gate structure with a Si3N4 sensing layer. Nearly ideal pH sensitivity (54mV /pH) and stable operation have been achieved. Temperature effects have been characterized. A penicillin sensor has been fabricated by functionalizing the sensing area with penicillinase. The sensitivity to penicillin G is about 10mV/mM, in solutions with concentration lower than the saturation value, which is about 7 mM.
Effective Field Theories for the LHC
Moult, Ian
2016-01-01
In this thesis I study applications of effective field theories to understand aspects of QCD jets and their substructure at the Large Hadron Collider. In particular, I introduce an observable, $D_2$, which can be used for distinguishing boosted $W/Z/H$ bosons from the QCD background using information about the radiation pattern within the jet, and perform a precision calculation of this observable. To simplify calculations in the soft collinear effective theory, I also develop a helicity operator basis, which facilitates matching calculations to fixed order computations performed using spinor-helicity techniques, and demonstrate its utility by computing an observable relevant for studying the properties of the newly discovered Higgs boson.
Oxide-on-graphene field effect biosensors
Wang, Bei; Liddell, Kristi; Wang, Junjie; Koger, Brandon; Keating, Christine; Zhu, J.
2013-03-01
Nanoelectronics-based detection schemes offer fast and label-free alternatives to bioanalysis. Here we report on the design, fabrication, and operation of ion-sensitive field-effect biosensors using large-area graphene sheets synthesized by chemical vapor deposition. The graphene transducer channel has a high carrier mobility of approximately 5000cm2/Vs. Our oxide-on-graphene design uses thin HfO2 and SiO2 films to passivate the graphene channel and electrodes from electrolyte and uses the top SiO2 surface for sensing and linker chemistry. The pH sensitivity of the bare SiO2 is measured to be 46mV/pH, in good agreement with literature results. We demonstrate the silanization of the SiO2 surface with aminopropyl-trimethoxysilane (APTMS). The pH sensitivity of the APTMS-functionalized SiO2 is measured to be 43mV/pH. By applying the solution gate voltage in pulse, we eliminate hysteresis in the transfer curve of the graphene channel, which is a common challenge in achieving high-solution detection using nanostructure-based field effect sensors. The amine-functionalized SiO2 surface can be further functionalized with bio-probes to perform the detection of specific binding events such as DNA hybridization.
Noether's theorems applications in mechanics and field theory
Sardanashvily, Gennadi
2016-01-01
The book provides a detailed exposition of the calculus of variations on fibre bundles and graded manifolds. It presents applications in such area's as non-relativistic mechanics, gauge theory, gravitation theory and topological field theory with emphasis on energy and energy-momentum conservation laws. Within this general context the first and second Noether theorems are treated in the very general setting of reducible degenerate graded Lagrangian theory.
Effects of Vegetated Field Borders on Arthropods in Cotton Fields in Eastern North Carolina
Outward, Randy; Sorenson, Clyde E.; Bradley, J. R.
2008-01-01
The influence, if any, of 5m wide, feral, herbaceous field borders on pest and beneficial arthropods in commercial cotton, Gossypium hirsutum (L.) (Malvales: Malvaceae), fields was measured through a variety of sampling techniques over three years. In each year, 5 fields with managed, feral vegetation borders and five fields without such borders were examined. Sampling was stratified from the field border or edge in each field in an attempt to elucidate any edge effects that might have occurr...
Electromagnetic field induced biological effects in humans.
Kaszuba-Zwoińska, Jolanta; Gremba, Jerzy; Gałdzińska-Calik, Barbara; Wójcik-Piotrowicz, Karolina; Thor, Piotr J
2015-01-01
Exposure to artificial radio frequency electromagnetic fields (EMFs) has increased significantly in recent decades. Therefore, there is a growing scientific and social interest in its influence on health, even upon exposure significantly below the applicable standards. The intensity of electromagnetic radiation in human environment is increasing and currently reaches astronomical levels that had never before experienced on our planet. The most influential process of EMF impact on living organisms, is its direct tissue penetration. The current established standards of exposure to EMFs in Poland and in the rest of the world are based on the thermal effect. It is well known that weak EMF could cause all sorts of dramatic non-thermal effects in body cells, tissues and organs. The observed symptoms are hardly to assign to other environmental factors occurring simultaneously in the human environment. Although, there are still ongoing discussions on non-thermal effects of EMF influence, on May 31, 2011--International Agency for Research on Cancer (IARC)--Agenda of World Health Organization (WHO) has classified radio electromagnetic fields, to a category 2B as potentially carcinogenic. Electromagnetic fields can be dangerous not only because of the risk of cancer, but also other health problems, including electromagnetic hypersensitivity (EHS). Electromagnetic hypersensitivity (EHS) is a phenomenon characterized by the appearance of symptoms after exposure of people to electromagnetic fields, generated by EHS is characterized as a syndrome with a broad spectrum of non-specific multiple organ symptoms including both acute and chronic inflammatory processes located mainly in the skin and nervous systems, as well as in respiratory, cardiovascular systems, and musculoskeletal system. WHO does not consider the EHS as a disease-- defined on the basis of medical diagnosis and symptoms associated with any known syndrome. The symptoms may be associated with a single source of EMF
Special Effect of Parallel Inductive Electric Field
Institute of Scientific and Technical Information of China (English)
陈涛; 刘振兴; W.Heikkila
2002-01-01
Acceleration of electrons by a field-aligned electric field during a magnetospheric substorm in the deep geomagnetic tail is studied by means of a one-dimensional electromagnetic particle code. It was found that the free acceleration of the electrons by the parallel electric field is obvious; kinetic energy variation is greater than electromagnetic energy variation in the presence of parallel electric field. Magnetic energy is greater than kinetic energy variation and electric energy variation in the absence of the parallel electric field. More wave modes in the presence of the parallel electric field are generated than those in the absence of the parallel electric field.
Magnetic Field Effects on Plasma Plumes
Ebersohn, F.; Shebalin, J.; Girimaji, S.; Staack, D.
2012-01-01
Here, we will discuss our numerical studies of plasma jets and loops, of basic interest for plasma propulsion and plasma astrophysics. Space plasma propulsion systems require strong guiding magnetic fields known as magnetic nozzles to control plasma flow and produce thrust. Propulsion methods currently being developed that require magnetic nozzles include the VAriable Specific Impulse Magnetoplasma Rocket (VASIMR) [1] and magnetoplasmadynamic thrusters. Magnetic nozzles are functionally similar to de Laval nozzles, but are inherently more complex due to electromagnetic field interactions. The two crucial physical phenomenon are thrust production and plasma detachment. Thrust production encompasses the energy conversion within the nozzle and momentum transfer to a spacecraft. Plasma detachment through magnetic reconnection addresses the problem of the fluid separating efficiently from the magnetic field lines to produce maximum thrust. Plasma jets similar to those of VASIMR will be studied with particular interest in dual jet configurations, which begin as a plasma loops between two nozzles. This research strives to fulfill a need for computational study of these systems and should culminate with a greater understanding of the crucial physics of magnetic nozzles with dual jet plasma thrusters, as well as astrophysics problems such as magnetic reconnection and dynamics of coronal loops.[2] To study this problem a novel, hybrid kinetic theory and single fluid magnetohydrodynamic (MHD) solver known as the Magneto-Gas Kinetic Method is used.[3] The solver is comprised of a "hydrodynamic" portion based on the Gas Kinetic Method and a "magnetic" portion that accounts for the electromagnetic behaviour of the fluid through source terms based on the resistive MHD equations. This method is being further developed to include additional physics such as the Hall effect. Here, we will discuss the current level of code development, as well as numerical simulation results
Biological effects of electric fields: an overview
Energy Technology Data Exchange (ETDEWEB)
Anderson, L.E.; Phillips, R.D.
1983-11-01
An overview of the literature suggests tha electric-field exposure is an environmental agent/influence of relatively low potential toxicity to biological systems. Generally, many of the biological effects which have been reported are quite subtle and differences between exposed and unexposed subjects may be masked by normal biological variations. However, several recent reports indicate possibly more serious consequences from chronic exposure, emphasizing the need for more research in epidemiology and laboratory experiments. This paper presents a cursory overview of investigations on the biological consequences of exposure to ELF electromagnetic fields. Three important topics are discussed, including: 1) the general methodology of exposure experiments, including those elements which are critical for definitive studies in biological systems; 2) a brief discussion of epidemiological and clinical studies conducted to date; and 3) a somewhat more extensive examination of animal experiments representing major areas of investigation (behavior, biological rhythms, nervous and endocrine systems, bone growth and repair, cardiovascular system and blood chemistry, immunology, reproduction, growth and development mortality and pathology, cellular and membrane studies, and mutagenesis). A discussion of current concepts, possible mechanisms and future directions of research is presented. 110 references.
Rescattering effects in eta --> 3pi decays
Schneider, Sebastian P; Ditsche, Christoph
2010-01-01
The isospin-breaking decay eta --> 3pi is an ideal tool to extract information on light quark mass ratios from experiment. For a precise determination, however, a detailed description of the Dalitz plot distribution is necessary. In that respect, in particular the slope parameter alpha of the neutral decay channel causes some concern, since the one-loop prediction from chiral perturbation theory misses the experimental value substantially. We use the modified non-relativistic effective field-theory, a dedicated framework to analyze final-state interactions beyond one loop including isospin-breaking corrections, to extract charged and neutral Dalitz plot parameters. Matching to chiral perturbation theory at next-to-leading order, we find alpha = -0.025 +- 0.005, in marginal agreement with experimental findings. We derive a relation between charged and neutral decay parameters that points towards a significant tension between the most recent KLOE measurements of these observables.
CRYSTAL-FIELD AND TRANSVERSE-FIELD EFFECTS OF THE SPIN-ONE ISING MODEL
Institute of Scientific and Technical Information of China (English)
宋为基; 杨传章
1993-01-01
A mean-field approximation (MFA) is used to treat the crystal-field and transverse-field effects of the spin-1 Ising modle in the presence of longitudinal field. In spite of its simplicity, this scheme still gives the satisfied results.
Quantifying truncation errors in effective field theory
Furnstahl, R J; Phillips, D R; Wesolowski, S
2015-01-01
Bayesian procedures designed to quantify truncation errors in perturbative calculations of quantum chromodynamics observables are adapted to expansions in effective field theory (EFT). In the Bayesian approach, such truncation errors are derived from degree-of-belief (DOB) intervals for EFT predictions. Computation of these intervals requires specification of prior probability distributions ("priors") for the expansion coefficients. By encoding expectations about the naturalness of these coefficients, this framework provides a statistical interpretation of the standard EFT procedure where truncation errors are estimated using the order-by-order convergence of the expansion. It also permits exploration of the ways in which such error bars are, and are not, sensitive to assumptions about EFT-coefficient naturalness. We first demonstrate the calculation of Bayesian probability distributions for the EFT truncation error in some representative examples, and then focus on the application of chiral EFT to neutron-pr...
Bayesian parameter estimation for effective field theories
Wesolowski, S; Furnstahl, R J; Phillips, D R; Thapaliya, A
2015-01-01
We present procedures based on Bayesian statistics for effective field theory (EFT) parameter estimation from data. The extraction of low-energy constants (LECs) is guided by theoretical expectations that supplement such information in a quantifiable way through the specification of Bayesian priors. A prior for natural-sized LECs reduces the possibility of overfitting, and leads to a consistent accounting of different sources of uncertainty. A set of diagnostic tools are developed that analyze the fit and ensure that the priors do not bias the EFT parameter estimation. The procedures are illustrated using representative model problems and the extraction of LECs for the nucleon mass expansion in SU(2) chiral perturbation theory from synthetic lattice data.
Effective field theory of dissipative fluids
Crossley, Michael; Liu, Hong
2015-01-01
We develop an effective field theory for dissipative fluids which governs the dynamics of gapless modes associated to conserved quantities. The system is put in a curved spacetime and coupled to external sources for charged currents. The invariance of the hydrodynamical action under gauge symmetries and diffeomorphisms suggests a natural set of dynamical variables which provide a mapping between an emergent "fluid spacetime" and the physical spacetime. An essential aspect of our formulation is to identify the appropriate symmetries in the fluid spacetime. Our theory applies to nonlinear disturbances around a general density matrix. For a thermal density matrix, we require an additional Z_2 symmetry, to which we refer as the local KMS condition. This leads to the standard constraints of hydrodynamics, as well as a nonlinear generalization of the Onsager relations. It also leads to an emergent supersymmetry in the classical statistical regime, with a higher derivative version required for the full quantum regim...
Bayesian parameter estimation for effective field theories
Wesolowski, S.; Klco, N.; Furnstahl, R. J.; Phillips, D. R.; Thapaliya, A.
2016-07-01
We present procedures based on Bayesian statistics for estimating, from data, the parameters of effective field theories (EFTs). The extraction of low-energy constants (LECs) is guided by theoretical expectations in a quantifiable way through the specification of Bayesian priors. A prior for natural-sized LECs reduces the possibility of overfitting, and leads to a consistent accounting of different sources of uncertainty. A set of diagnostic tools is developed that analyzes the fit and ensures that the priors do not bias the EFT parameter estimation. The procedures are illustrated using representative model problems, including the extraction of LECs for the nucleon-mass expansion in SU(2) chiral perturbation theory from synthetic lattice data.
Vertically Integrated Multiple Nanowire Field Effect Transistor.
Lee, Byung-Hyun; Kang, Min-Ho; Ahn, Dae-Chul; Park, Jun-Young; Bang, Tewook; Jeon, Seung-Bae; Hur, Jae; Lee, Dongil; Choi, Yang-Kyu
2015-12-09
A vertically integrated multiple channel-based field-effect transistor (FET) with the highest number of nanowires reported ever is demonstrated on a bulk silicon substrate without use of wet etching. The driving current is increased by 5-fold due to the inherent vertically stacked five-level nanowires, thus showing good feasibility of three-dimensional integration-based high performance transistor. The developed fabrication process, which is simple and reproducible, is used to create multiple stiction-free and uniformly sized nanowires with the aid of the one-route all-dry etching process (ORADEP). Furthermore, the proposed FET is revamped to create nonvolatile memory with the adoption of a charge trapping layer for enhanced practicality. Thus, this research suggests an ultimate design for the end-of-the-roadmap devices to overcome the limits of scaling.
Hadronic Transport Coefficients from Effective Field Theories
Torres-Rincon, Juan M
2012-01-01
This dissertation focuses on the calculation of transport coefficients in the matter created in a relativistic heavy-ion collision after the chemical freeze-out. This matter can be well approximated by a pion gas out of equilibrium. We describe the theoretical framework to obtain the shear and bulk viscosities, the thermal and electrical conductivities and the flavor diffusion coefficients of a meson gas at low temperatures. To describe the interactions of the degrees of freedom, we use effective field theories with chiral and heavy quark symmetries. We introduce the unitarization methods in order to obtain a scattering amplitude that satisfies the unitarity condition exactly. We perform the calculation of the transport properties of the low temperature phase of quantum chromodynamics -the hadronic medium- that can be used in the hydrodynamic simulations of a relativistic heavy-ion collision and its subsequent evolution. We show that the shear viscosity over entropy density exhibits a minimum in a phase trans...
Wake field effect analysis in APT linac
Energy Technology Data Exchange (ETDEWEB)
Kurennoy, S.S.
1998-12-31
The 1.7-GeV 100-mA CW proton linac is now under design for the Accelerator Production of Tritium (APT) Project. The APT linac comprises both the normal conducting (below 211 MeV) and superconducting (SC) sections. The high current leads to stringent restrictions on allowable beam losses (< 1 nA/m), that requires analyzing carefully all possible loss sources. While wake-field effects are usually considered negligible in proton linacs, the authors study these effects for the APT to exclude potential problems at such a high current. Loss factors and resonance frequency spectra of various discontinuities of the vacuum chamber are investigated, both analytically and using 2-D and 3-D simulation codes with a single bunch as well as with many bunches. The main conclusion is that the only noticeable effect is the HOM heating of the 5-cell SC cavities. It, however, has an acceptable level and, in addition, will be taken care of by HOM couplers.
Wake Field Effect Analysis in APT Linac
Kurennoy, S S
1998-01-01
The 1.7-GeV 100-mA CW proton linac is now under design for the Accelerator Production of Tritium (APT) Project. The APT linac comprises both the normal conducting (below 211 MeV) and superconducting (SC) sections. The high current leads to stringent restrictions on allowable beam losses (<1 nA/m), that requires analyzing carefully all possible loss sources. While wake-field effects are usually considered negligible in proton linacs, we study these effects for the APT to exclude potential problems at such a high current. Loss factors and resonance frequency spectra of various discontinuities of the vacuum chamber are investigated, both analytically and using 2-D and 3-D simulation codes with a single bunch as well as with many bunches. Our main conclusion is that the only noticeable effect is the HOM heating of the 5-cell SC cavities. It, however, has an acceptable level and, in addition, will be taken care of by HOM couplers.
Higgs Effective Field Theories - Systematics and Applications
Krause, Claudius
2016-01-01
We discuss effective field theories (EFTs) for the Higgs particle, which is not necessarily the Higgs of the Standard Model. We distinguish two different consistent expansions: EFTs that describe decoupling new-physics effects and EFTs that describe non-decoupling new-physics effects. We briefly discuss the first case, the SM-EFT. The focus of this thesis is on the non-decoupling EFTs. We argue that the loop expansion is the consistent expansion in the second case. We introduce the concept of chiral dimensions, equivalent to the loop expansion. Using the chiral dimensions, we expand the electroweak chiral Lagrangian up to next-to-leading order, $\\mathcal{O}(f^{2}/\\Lambda^{2})=\\mathcal{O}(1/16\\pi^{2})$. We then compare the decoupling and the non-decoupling EFT. We also consider scenarios in which the new-physics sector is non-decoupling at a scale $f$, far above the electroweak-scale $v$. We discuss the relevance of the resulting double expansion in $\\xi=v^{2}/f^{2}$ and $f^{2}/\\Lambda^{2}$ for the data analys...
Hydrogel Actuation by Electric Field Driven Effects
Morales, Daniel Humphrey
Hydrogels are networks of crosslinked, hydrophilic polymers capable of absorbing and releasing large amounts of water while maintaining their structural integrity. Polyelectrolyte hydrogels are a subset of hydrogels that contain ionizable moieties, which render the network sensitive to the pH and the ionic strength of the media and provide mobile counterions, which impart conductivity. These networks are part of a class of "smart" material systems that can sense and adjust their shape in response to the external environment. Hence, the ability to program and modulate hydrogel shape change has great potential for novel biomaterial and soft robotics applications. We utilized electric field driven effects to manipulate the interaction of ions within polyelectrolyte hydrogels in order to induce controlled deformation and patterning. Additionally, electric fields can be used to promote the interactions of separate gel networks, as modular components, and particle assemblies within gel networks to develop new types of soft composite systems. First, we present and analyze a walking gel actuator comprised of cationic and anionic gel legs attached by electric field-promoted polyion complexation. We characterize the electro-osmotic response of the hydrogels as a function of charge density and external salt concentration. The gel walkers achieve unidirectional motion on flat elastomer substrates and exemplify a simple way to move and manipulate soft matter devices in aqueous solutions. An 'ionoprinting' technique is presented with the capability to topographically structure and actuate hydrated gels in two and three dimensions by locally patterning ions induced by electric fields. The bound charges change the local mechanical properties of the gel to induce relief patterns and evoke localized stress, causing rapid folding in air. The ionically patterned hydrogels exhibit programmable temporal and spatial shape transitions which can be tuned by the duration and/or strength of
Generalized Bogoliubov Transformation for Confined Fields Applications in Casimir Effect
Silva, J C; Neto, A M; Santana, A E
2002-01-01
The Bogoliubov transformation in thermofield dynamics, an operator formalism for the finite-temperature quantum-field theory, is generalized to describe a field in arbitrary confined regions of space and time. Starting with the scalar field, the approach is extended to the electromagnetic field and the energy-momentum tensor is written via the Bogoliubov transformation. In this context, the Casimir effect is calculated for zero and non-zero temperature, and therefore it can be considered as a vacuum condensation effect of the electromagnetic field. This aspect opens an interesting perspective for using this procedure as an effective scheme for calculations in the studies of confined fields, including the interacting fields.
Measuring the effect of field viability on wheat yield
DEFF Research Database (Denmark)
Olsen, Jakob Vesterlund; Schou, Jesper Sølver
showing a significant effect on yields. Further research may involve estimating the effect of field characteristics on the aggregated economic farm performance. The field viability index has multiple applications in e.g. benchmarking, leasing or buying arrangements, and for identifying potential land...... contributes by introducing a new joint index for field shape and field size, field viability index (FVI), aiming at measuring the effect of land fragmentation on farm performance based on field characteristics. The index is calculated for Danish wheat fields and is tested on a large sample of Danish farmers...
Field Discontinuities and the Memory Effect
Tolish, Alexander; Wald, Robert
2017-01-01
The ``memory effect,'' a permanent change in the separation of test particles after the passage of a pulse of gravitational radiation, is a well-defined and fairly well-understood phenomenon in spacetimes with a notion of null infinity. However, many valid questions remain unanswered. For example, how do we define memory in the absence of null infinity? Or, does memory depend on the precise details of the radiation source or just on the source's asymptotic behavior? We believe that such questions are best answered using a simplified, distributional model of memory. If we consider linearized gravity on fixed background spacetimes, we can study the scattering of point particles, which radiate metric perturbations with sharp, step-function wave fronts. These steps correspond to derivative-of-delta-function discontinuities in the curvature, and according to the geodesic deviation equation, it is these discontinuities (and these alone) that contribute to permanent, finite changes in test particle separation-i.e., memory. Using this analysis of field discontinuities (as well as scalar and electromagnetic analogues of gravitational memory) we can isolate the physics of the memory effect from other, background phenomena.
Superluminality, Black Holes and Effective Field Theory
Goon, Garrett
2016-01-01
Under the assumption that a UV theory does not display superluminal behavior, we ask what constraints on superluminality are satisfied in the effective field theory (EFT). We study two examples of effective theories: quantum electrodynamics (QED) coupled to gravity after the electron is integrated out, and the flat-space galileon. The first is realized in nature, the second is more speculative, but they both exhibit apparent superluminality around non-trivial backgrounds. In the QED case, we attempt, and fail, to find backgrounds for which the superluminal signal advance can be made larger than the putative resolving power of the EFT. In contrast, in the galileon case it is easy to find such backgrounds, indicating that if the UV completion of the galileon is (sub)luminal, quantum corrections must become important at distance scales of order the Vainshtein radius of the background configuration, much larger than the naive EFT strong coupling distance scale. Such corrections would be reminiscent of the non-per...
Energy Technology Data Exchange (ETDEWEB)
Rodrigues, Rafael de Lima [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Vaidya, Arvind Narayan [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Fisica
2001-12-01
Using the spectral theorema in context of Green's function in momentum space of neutrons in the magnetic field of a linear conductor with current the bound state energy spectrum and eigenfunctions are deduced. It's also pointed out that this problem present a new scenary of Green's function in non-relativistic quantum mechanics. (author)
Effective field theory description of halo nuclei
Hammer, H.-W.; Ji, C.; Phillips, D. R.
2017-10-01
Nuclear halos emerge as new degrees of freedom near the neutron and proton driplines. They consist of a core and one or a few nucleons which spend most of their time in the classically-forbidden region outside the range of the interaction. Individual nucleons inside the core are thus unresolved in the halo configuration, and the low-energy effective interactions are short-range forces between the core and the valence nucleons. Similar phenomena occur in clusters of 4He atoms, cold atomic gases near a Feshbach resonance, and some exotic hadrons. In these weakly-bound quantum systems universal scaling laws for s-wave binding emerge that are independent of the details of the interaction. Effective field theory (EFT) exposes these correlations and permits the calculation of non-universal corrections to them due to short-distance effects, as well as the extension of these ideas to systems involving the Coulomb interaction and/or binding in higher angular-momentum channels. Halo nuclei exhibit all these features. Halo EFT, the EFT for halo nuclei, has been used to compute the properties of single-neutron, two-neutron, and single-proton halos of s-wave and p-wave type. This review summarizes these results for halo binding energies, radii, Coulomb dissociation, and radiative capture, as well as the connection of these properties to scattering parameters, thereby elucidating the universal correlations between all these observables. We also discuss how Halo EFT's encoding of the long-distance physics of halo nuclei can be used to check and extend ab initio calculations that include detailed modeling of their short-distance dynamics.
Effective field theory approaches for tensor potentials
Energy Technology Data Exchange (ETDEWEB)
Jansen, Maximilian
2016-11-14
Effective field theories are a widely used tool to study physical systems at low energies. We apply them to systematically analyze two and three particles interacting via tensor potentials. Two examples are addressed: pion interactions for anti D{sup 0}D{sup *0} scattering to dynamically generate the X(3872) and dipole interactions for two and three bosons at low energies. For the former, the one-pion exchange and for the latter, the long-range dipole force induce a tensor-like structure of the potential. We apply perturbative as well as non-perturbative methods to determine low-energy observables. The X(3872) is of major interest in modern high-energy physics. Its exotic characteristics require approaches outside the range of the quark model for baryons and mesons. Effective field theories represent such methods and provide access to its peculiar nature. We interpret the X(3872) as a hadronic molecule consisting of neutral D and D{sup *} mesons. It is possible to apply an effective field theory with perturbative pions. Within this framework, we address chiral as well as finite volume extrapolations for low-energy observables, such as the binding energy and the scattering length. We show that the two-point correlation function for the D{sup *0} meson has to be resummed to cure infrared divergences. Moreover, next-to-leading order coupling constants, which were introduced by power counting arguments, appear to be essential to renormalize the scattering amplitude. The binding energy as well as the scattering length display a moderate dependence on the light quark masses. The X(3872) is most likely deeper bound for large light quark masses. In a finite volume on the other hand, the binding energy significantly increases. The dependence on the light quark masses and the volume size can be simultaneously obtained. For bosonic dipoles we apply a non-perturbative, numerical approach. We solve the Lippmann-Schwinger equation for the two-dipole system and the Faddeev
Lee, D S; Ng, Y J; Shovkovy, I A
1999-01-01
The effective potential for the composite fields responsible for chiral symmetry breaking in weakly coupled QED in a magnetic field is derived. The global minimum of the effective potential is found to acquire a non-vanishing expectation value of the composite fields that leads to generating the dynamical fermion mass by an external magnetic field. The results are compared with those for the Nambu-Jona-Lasinio model.
Effective field theory for halo nuclei
Energy Technology Data Exchange (ETDEWEB)
Hagen, Philipp Robert
2014-02-19
We investigate properties of two- and three-body halo systems using effective field theory. If the two-particle scattering length a in such a system is large compared to the typical range of the interaction R, low-energy observables in the strong and the electromagnetic sector can be calculated in halo EFT in a controlled expansion in R/ vertical stroke a vertical stroke. Here we focus on universal properties and stay at leading order in the expansion. Motivated by the existence of the P-wave halo nucleus {sup 6}He, we first set up an EFT framework for a general three-body system with resonant two-particle P-wave interactions. Based on a Lagrangian description, we identify the area in the effective range parameter space where the two-particle sector of our model is renormalizable. However, we argue that for such parameters, there are two two-body bound states: a physical one and an additional deeper-bound and non-normalizable state that limits the range of applicability of our theory. With regard to the three-body sector, we then classify all angular-momentum and parity channels that display asymptotic discrete scale invariance and thus require renormalization via a cut-off dependent three-body force. In the unitary limit an Efimov effect occurs. However, this effect is purely mathematical, since, due to causality bounds, the unitary limit for P-wave interactions can not be realized in nature. Away from the unitary limit, the three-body binding energy spectrum displays an approximate Efimov effect but lies below the unphysical, deep two-body bound state and is thus unphysical. Finally, we discuss possible modifications in our halo EFT approach with P-wave interactions that might provide a suitable way to describe physical three-body bound states. We then set up a halo EFT formalism for two-neutron halo nuclei with resonant two-particle S-wave interactions. Introducing external currents via minimal coupling, we calculate observables and universal correlations for
Moore, Keith; Lane, Ian C
2015-01-01
BaH is an attractive molecular candidate for laser cooling to ultracold temperatures and a potential precursor for the production of ultracold gases of hydrogen and deuterium. The theoretical challenge is to simulate the laser cooling cycle as reliably as possible and this paper addresses the generation of highly accurate ab initio potentials for such studies. The performance of various basis sets within the multi-reference configuration-interaction (MRCI) approximation with the Davidson correction (MRCI+Q) is tested and taken to the complete basis set limit. It is shown that the calculated molecular constants using a 46 electron Effective Core-Potential (ECP), the augmented polarized core-valence quintuplet basis set (aug-pCV5Z-PP) but only including three active electrons in the MRCI calculation are in close agreement with the available experimental values. The predicted dissociation energy D$_e$ for the X$^2\\Sigma^+$ state (extrapolated to the complete basis set (CBS) limit) is 16975.14 cm$^{-1}$ (2.099 eV...
Transverse Field Effect in Fluxgate Sensors
DEFF Research Database (Denmark)
Brauer, Peter; Merayo, José M.G.; Nielsen, Otto V
1997-01-01
A model of the fluxgate magnetometer based on the field interactions in the fluxgate core has been derived. The non-linearity of the ringcore sensors due to large uncompensated fields transverse to the measuring axis are calculated and compared with measurements. Measurements of the non-linearity......A model of the fluxgate magnetometer based on the field interactions in the fluxgate core has been derived. The non-linearity of the ringcore sensors due to large uncompensated fields transverse to the measuring axis are calculated and compared with measurements. Measurements of the non...
A periodic table of effective field theories
Cheung, Clifford; Kampf, Karol; Novotny, Jiri; Shen, Chia-Hsien; Trnka, Jaroslav
2017-02-01
We systematically explore the space of scalar effective field theories (EFTs) consistent with a Lorentz invariant and local S-matrix. To do so we define an EFT classification based on four parameters characterizing 1) the number of derivatives per interaction, 2) the soft properties of amplitudes, 3) the leading valency of the interactions, and 4) the spacetime dimension. Carving out the allowed space of EFTs, we prove that exceptional EFTs like the non-linear sigma model, Dirac-Born-Infeld theory, and the special Galileon lie precisely on the boundary of allowed theory space. Using on-shell momentum shifts and recursion relations, we prove that EFTs with arbitrarily soft behavior are forbidden and EFTs with leading valency much greater than the spacetime dimension cannot have enhanced soft behavior. We then enumerate all single scalar EFTs in d < 6 and verify that they correspond to known theories in the literature. Our results suggest that the exceptional theories are the natural EFT analogs of gauge theory and gravity because they are one-parameter theories whose interactions are strictly dictated by properties of the S-matrix.
A Periodic Table of Effective Field Theories
Cheung, Clifford; Novotny, Jiri; Shen, Chia-Hsien; Trnka, Jaroslav
2016-01-01
We systematically explore the space of scalar effective field theories (EFTs) consistent with a Lorentz invariant and local S-matrix. To do so we define an EFT classification based on four parameters characterizing 1) the number of derivatives per interaction, 2) the soft properties of amplitudes, 3) the leading valency of the interactions, and 4) the spacetime dimension. Carving out the allowed space of EFTs, we prove that exceptional EFTs like the non-linear sigma model, Dirac-Born-Infeld theory, and the special Galileon lie precisely on the boundary of allowed theory space. Using on-shell momentum shifts and recursion relations, we prove that EFTs with arbitrarily soft behavior are forbidden and EFTs with leading valency much greater than the spacetime dimension cannot have enhanced soft behavior. We then enumerate all single scalar EFTs in d<6 and verify that they correspond to known theories in the literature. Our results suggest that the exceptional theories are the natural EFT analogs of gauge theor...
DAMA confronts null searches in the effective theory of dark matter-nucleon interactions
Energy Technology Data Exchange (ETDEWEB)
Catena, Riccardo [Department of Physics, Chalmers University of Technology,Kemigården 1, Gothenburg (Sweden); Ibarra, Alejandro; Wild, Sebastian [Physik-Department T30d, Technische Universität München,James-Franck-Straße, 85748 Garching (Germany)
2016-05-17
We examine the dark matter interpretation of the modulation signal reported by the DAMA experiment from the perspective of effective field theories displaying Galilean invariance. We consider the most general effective coupling leading to the elastic scattering of a dark matter particle with spin 0 or 1/2 off a nucleon, and we analyze the compatibility of the DAMA signal with the null results from other direct detection experiments, as well as with the non-observation of a high energy neutrino flux in the direction of the Sun from dark matter annihilation. To this end, we develop a novel semi-analytical approach for comparing experimental results in the high-dimensional parameter space of the non-relativistic effective theory. Assuming the standard halo model, we find a strong tension between the dark matter interpretation of the DAMA modulation signal and the null result experiments. We also list possible ways-out of this conclusion.
Cyr-Racine, Francis-Yan; Zavala, Jesus; Bringmann, Torsten; Vogelsberger, Mark; Pfrommer, Christoph
2015-01-01
We formulate an effective theory of structure formation (ETHOS) that enables cosmological structure formation to be computed in almost any microphysical model of dark matter physics. This framework maps the detailed microphysical theories of particle dark matter interactions into the physical effective parameters that shape the linear matter power spectrum and the self-interaction transfer cross section of non-relativistic dark matter. These are the input to structure formation simulations, which follow the evolution of the cosmological and galactic dark matter distributions. Models with similar effective parameters in ETHOS but with different dark particle physics would nevertheless result in similar dark matter distributions. We present a general method to map an ultraviolet complete or effective field theory of low energy dark matter physics into parameters that affect the linear matter power spectrum and carry out this mapping for several representative particle models. We further propose a simple but use...
Silicon nanowire field effect transistor for biosensing
Chen, Yu
Detection and recognition of chemical ions and biological molecules are important in basic science as well as in pharmacology and medicine. Nanotechnology has made it possible to greatly enhance detection sensitivity through the use of nanowires, nanotubes, nanocrystals, nanocantilevers, and quantum dots as sensing platforms. In this work silicon nanowires are used as the conductance channel between the source and drain of a FET (field effect transistor) device and the biomolecular binding on the surface of nanowire modifies the conductance like a change in gate voltage. Due to the high surface-to-volume ratio and unique character of the silicon nanowires, this device has significant advantages in real-time, label-free and highly sensitive detection of a wide range of species, including proteins, nucleic acids and other small molecules. Here we present a biosensor fabricated from CMOS (complementary metal-oxide-semiconductor) compatible top-down methods including electron beam lithography. This method enables scalable manufacturing of multiple sensor arrays with high efficiency. In a systematic study of the device characteristics with different wire widths, we have found the sensitivity of the device increases when wire width decreases. By operating the device in appropriate bias region, the sensitivity of the device can be improved without doping or high temperature annealing. Not only can this device be used to detect the concentration of proteins and metabolites like urea or glucose, but also dynamic information like the dissociation constant can be extracted from the measurement. The device is also used to detect the clinically related cancer antigen CA 15.3 and shows potential application in cancer studies.
Graphene junction field-effect transistor
Ou, Tzu-Min; Borsa, Tomoko; van Zeghbroeck, Bart
2014-03-01
We have demonstrated for the first time a novel graphene transistor gated by a graphene/semiconductor junction rather than an insulating gate. The transistor operates much like a semiconductor junction Field Effect Transistor (jFET) where the depletion layer charge in the semiconductor modulates the mobile charge in the channel. The channel in our case is the graphene rather than another semiconductor layer. An increased reverse bias of the graphene/n-silicon junction increases the positive charge in the depletion region and thereby reduces the total charge in the graphene. We fabricated individual graphene/silicon junctions as well as graphene jFETs (GjFETs) on n-type (4.5x1015 cm-3) silicon with Cr/Au electrodes and 3 μm gate length. As a control device, we also fabricated back-gated graphene MOSFETs using a 90nm SiO2 on a p-type silicon substrate (1019 cm-3) . The graphene was grown by APCVD on copper foil and transferred with PMMA onto the silicon substrate. The GjFET exhibited an on-off ratio of 3.75, an intrinsic graphene doping of 1.75x1012 cm-2, compared to 1.17x1013 cm-2 in the MOSFET, and reached the Dirac point at 13.5V. Characteristics of the junctions and transistors were measured as a function of temperature and in response to light. Experimental data and a comparison with simulations will be presented.
OTR from Non-Relativistic Electrons
Bal, C; Chevallay, E; Lefèvre, T; Suberlucq, Guy
2003-01-01
The CLIC Test Facility 3 (CTF3) injector will provide pulsed beams of high average current; 5A over 1.56µs at 140keV. For transverse beam sizes of the order of 1mm, as foreseen, this implies serious damage to the commonly used scintillating screens. Optical Transition Radiation from thermally resistant radiators represents a possible alternative. In this context, the backward OTR radiation emitted from an aluminium screen by a 80keV, 60nC, 4ns electron pulse has been investigated. The experimental results are in good agreement with the theoretical expectations, indicating a feeble light intensity distributed over a large solid angle. Our conclusions for the design of the CTF3 injector profile monitor are also given.
Effects of Strong Magnetic Fields on Photoionised Clouds
Mackey, Jonathan
2012-01-01
Simulations are presented of the photoionisation of three dense gas clouds threaded by magnetic fields, showing the dynamical effects of different initial magnetic field orientations and strengths. For moderate magnetic field strengths the initial radiation-driven implosion phase is not strongly affected by the field geometry, and the photoevaporation flows are also similar. Over longer timescales, the simulation with an initial field parallel to the radiation propagation direction (parallel field) remains basically axisymmetric, whereas in the simulation with a perpendicular initial field the pillar of neutral gas fragments in a direction aligned with the magnetic field. For stronger initial magnetic fields, the dynamics in all gas phases are affected at all evolutionary times. In a simulation with a strong initially perpendicular field, photoevaporated gas forms filaments of dense ionised gas as it flows away from the ionisation front along field lines. These filaments are potentially a useful diagnostic of...
Casimir Effects in Renormalizable Quantum Field Theories
Graham, N; Weigel, H; Graham, Noah; Jaffe, Robert L.; Weigel, Herbert
2002-01-01
We review the framework we and our collaborators have developed for the study of one-loop quantum corrections to extended field configurations in renormalizable quantum field theories. We work in the continuum, transforming the standard Casimir sum over modes into a sum over bound states and an integral over scattering states weighted by the density of states. We express the density of states in terms of phase shifts, allowing us to extract divergences by identifying Born approximations to the phase shifts with low order Feynman diagrams. Once isolated in Feynman diagrams, the divergences are canceled against standard counterterms. Thus regulated, the Casimir sum is highly convergent and amenable to numerical computation. Our methods have numerous applications to the theory of solitons, membranes, and quantum field theories in strong external fields or subject to boundary conditions.
Casimir Effects in Renormalizable Quantum Field Theories
Graham, Noah; Jaffe, Robert L.; Weigel, Herbert
We present a framework for the study of one-loop quantum corrections to extended field configurations in renormalizable quantum field theories. We work in the continuum, transforming the standard Casimir sum over modes into a sum over bound states and an integral over scattering states weighted by the density of states. We express the density of states in terms of phase shifts, allowing us to extract divergences by identifying Born approximations to the phase shifts with low order Feynman diagrams. Once isolated in Feynman diagrams, the divergences are canceled against standard counterterms. Thus regulated, the Casimir sum is highly convergent and amenable to numerical computation. Our methods have numerous applications to the theory of solitons, membranes, and quantum field theories in strong external fields or subject to boundary conditions.
Utilizing Urban Environments for Effective Field Experiences
MacAvoy, S. E.; Knee, K.
2014-12-01
Research surveys suggest that students are demanding more applied field experiences from their undergraduate environmental science programs. For geoscience educators at liberal arts colleges without field camps, university vehicles, or even geology departments, getting students into the field is especially rewarding - and especially challenging. Here, we present strategies that we have used in courses ranging from introductory environmental science for non-majors, to upper level environmental methods and geology classes. Urban locations provide an opportunity for a different type of local "field-work" than would otherwise be available. In the upper-level undergraduate Environmental Methods class, we relied on a National Park area located a 10-minute walk from campus for most field exercises. Activities included soil analysis, measuring stream flow and water quality parameters, dendrochronology, and aquatic microbe metabolism. In the non-majors class, we make use of our urban location to contrast water quality in parks and highly channelized urban streams. Here we share detailed lesson plans and budgets for field activities that can be completed during a class period of 2.5 hours with a $75 course fee, show how these activities help students gain quantitative competency, and provide student feedback about the classes and activities.
Local Approximations for Effective Scalar Field Equations of Motion
Berera, Arjun; Ramos, Rudnei O
2007-01-01
Fluctuation and dissipation dynamics is examined at all temperature ranges for the general case of a background time evolving scalar field coupled to heavy intermediate quantum fields which in turn are coupled to light quantum fields. The evolution of the background field induces particle production from the light fields through the action of the intermediate catalyzing heavy fields. Such field configurations are generically present in most particle physics models, including Grand Unified and Supersymmetry theories, with application of this mechanism possible in inflation, heavy ion collision and phase transition dynamics. The effective evolution equation for the background field is obtained and a fluctuation-dissipation theorem is derived for this system. The effective evolution in general is nonlocal in time. Appropriate conditions are found for when these time nonlocal effects can be approximated by local terms. Here careful distinction is made between a local expansion and the special case of a derivative...
A projector formulation of the Galilean covariant Duffin-Kemmer-Petiau field
Energy Technology Data Exchange (ETDEWEB)
Santos, E S [Centro Federal de Educacao Tecnologica da Bahia, DCA-Coordenacao de Fisica, Rua Emidio Santos s/n, Barbalho, 40300-010 Salvador, BA (Brazil); Abreu, L M [Centro de Cincias Exatas e Tecnologicas, Universidade Federal do Reconcavo da Bahia, Campus de Cruz das Almas, 44380-000 Cruz das Almas, BA (Brazil)
2008-02-22
We construct in this paper a projector formulation of the Galilean covariant Duffin-Kemmer-Petiau field in five dimensions. Such an approach allows us to select the scalar and vector sectors of the theory through the use of the appropriate operators. As an application, we study a non-minimal coupling associated to the DKP harmonic oscillator, naturally in the non-relativistic regime and with the selection of the spin-0 sector in a general representation. We also discuss the local gauge invariance and the anomalous term which appear in the wave equations due to the minimal coupling. In both questions, our results were carried out as in the relativistic case, i.e. the consistent local gauge transformations can be obtained through the choice of the right form of the non-relativistic DKP field.
Analytic solution of a relativistic two-dimensional hydrogen-like atom in a constant magnetic field
Energy Technology Data Exchange (ETDEWEB)
Villalba, V.M. [Instituto Venezolano de Investigaciones Cientificas, Caracas (Venezuela). Centro de Fisica; Pino, R. [Instituto Venezolano de Investigaciones Cientificas, Caracas (Venezuela). Centro de Fisica]|[Centro de Quimica, Instituto Venezolano de Investigaciones Cientificas, IVIC, Apdo 21827, Caracas 1020-A (Venezuela)
1998-01-26
We obtain exact solutions of the Klein-Gordon and Pauli-Schroedinger equations for a two-dimensional hydrogen-like atom in the presence of a constant magnetic field. Analytic solutions for the energy spectrum are obtained for particular values of the magnetic field strength. The results are compared to those obtained in the non-relativistic and spinless case. We obtain that the relativistic spectrum does not present s states. (orig.). 7 refs.
Gunn effect in field-emission phenomena
Litovchenko, V.; Evtukh, A.; Yilmazoglu, O.; Mutamba, K.; Hartnagel, H. L.; Pavlidis, D.
2005-02-01
The peculiarities of electron field emission from nanostructured GaN surface have been investigated. The current-voltage characteristics of emission current in Fowler-Nordheim plot show two parts with different slopes. There are emission current oscillations in the changing slope region. As an explanation for the experimental results a model based on the electron-emission analysis from lower (Γ) valley, upper (U) valley, and electron transition between valleys due to heating in electric field has been proposed. The electron affinities for the emission from Γ and U valleys have been determined. The decreased affinities from there valleys have been estimated for quantization in nanostructured GaN.
Magnetic field effect in photodetachment from negative ion in electric field near metal surface
Institute of Scientific and Technical Information of China (English)
Tang Tian-Tian; Wang De-Hua; Huang Kai-Yun; Wang Shan-Shan
2011-01-01
Based on the closed-orbit theory, the magnetic field effect in the photodetachment of negative ion in the electric field near a metal surface is studied for the first time. The results show that the magnetic field can produce a significant effect on the photodetachment of negative ion near a metal surface. Besides the closed orbits previously found by Du et al. for the H-in the electric field near a metal surface (J. Phys. B 43 035002 (2010)), some additional closed orbits are produced due to the effect of magnetic field. For a given ion-surface distance and an electric field strength, the cross section depends sensitively on the magnetic field strength. As the magnetic field strength is very small, its influence can be neglected. With the increase of the magnetic field strength, the number of the closed orbits increases greatly and the oscillation in the cross section becomes much more complex. Therefore we can control the photodetachment cross section of the negative ion by changing the magnetic field strength. We hope that our results may guide future experimental studies for the photodetachment process of negative ion in the presence of external fields and surfaces.
Field-effect transistors (2nd revised and enlarged edition)
Bocharov, L. N.
The design, principle of operation, and principal technical characteristics of field-effect transistors produced in the USSR are described. Problems related to the use of field-effect transistors in various radioelectronic devices are examined, and tables of parameters and mean statistical characteristics are presented for the main types of field-effect transistors. Methods for calculating various circuit components are discussed and illustrated by numerical examples.
Nonideal effects in quantum field-effect directional coupler
Institute of Scientific and Technical Information of China (English)
Xie Yue-E; Yan Xiao-Hong; Chen Yuan-Ping
2006-01-01
The nonideal effects in a quantum field-effect directional coupler where two quantum wires are coupled through a finite potential barrier are studied by adopting the lattice Green function method. The results show that the electron energy distribution, asymmetric geometry and finite temperature all have obvious influence on the electron transfer of the coupler. Only for the electrons with energies in a certain region, can the complete periodic transfer between two quantum wires take place. The conductance of these electrons as a function of the barrier length and potential height exhibits a fine periodic or quasi-periodic pattern. For the electrons with energies beyond the region, however, the complete periodic transfer does not hold any more since many irregular oscillations are superimposed on the conductance profile. In addition, the finite temperature and asymmetric geometry both can reduce the electron transfer efficiency.
Is the Effective Field Theory of Dark Energy Effective?
Linder, Eric V; Watson, Scott
2015-01-01
The effective field theory of cosmic acceleration systematizes possible contributions to the action, accounting for both dark energy and modifications of gravity. Rather than making model dependent assumptions, it includes all terms, subject to the required symmetries, with four (seven) functions of time for the coefficients. These correspond respectively to the Horndeski and general beyond Horndeski class of theories. We address the question of whether this general systematization is actually effective, i.e. useful in revealing the nature of cosmic acceleration when compared with cosmological data. The answer is no and yes: {\\it there is no simple time dependence of the free functions} -- assumed forms in the literature are poor fits, but one can derive some general characteristics in early and late time limits. For example, we prove that the gravitational slip must restore to general relativity in the de Sitter limit of Horndeski theories, and why it doesn't more generally. We also clarify the relation betw...
Focus Group Effects on Field Practicum Preferences
Sandel, Mark H.; Cohen, Harriet L.; Thomas, Cecilia L.; Barton, Thomas R.
2006-01-01
During the coming years the need for professionals to work with the nation's elders will increase several fold. This will place a great responsibility on university educational programs to prepare enough qualified future professionals to work in the greatly expanding field of gerontology. Prior research has identified several nonacademic and…
Field-effect detection using phospholipid membranes -Topical Review
Directory of Open Access Journals (Sweden)
Chiho Kataoka-Hamai and Yuji Miyahara
2010-01-01
Full Text Available The application of field-effect devices to biosensors has become an area of intense research interest. An attractive feature of field-effect sensing is that the binding or reaction of biomolecules can be directly detected from a change in electrical signals. The integration of such field-effect devices into cell membrane mimics may lead to the development of biosensors useful in clinical and biotechnological applications. This review summarizes recent studies on the fabrication and characterization of field-effect devices incorporating model membranes. The incorporation of black lipid membranes and supported lipid monolayers and bilayers into semiconductor devices is described.
Diffusion of relativistic gas mixtures in gravitational fields
Kremer, Gilberto M
2013-01-01
A mixture of relativistic gases of non-disparate rest masses in a Schwarzschild metric is studied on the basis of a relativistic Boltzmann equation in the presence of gravitational fields. A BGK-type model equation of the collision operator of the Boltzmann equation is used in order to compute the non-equilibrium distribution functions by the Chapman-Enskog method. The main focus of this work is to obtain Fick's law without the thermal-diffusion cross-effect. Fick's law has four contributions, two of them are the usual terms proportional to the gradients of concentration and pressure. The other two are of the same nature as those which appears in Fourier's law in the presence of gravitational fields and are related with an acceleration and gravitational potential gradient, but unlike Fourier's law these two last terms are of non-relativistic order. Furthermore, it is shown that the coefficients of diffusion depend on the gravitational potential and they become larger than those in the absence of it.
Effective-Field Theory on High Spin Systems with Biaxial Crystal Field
Institute of Scientific and Technical Information of China (English)
JIANG Wei; GUO An-Bang; LI Xin; WANG Xi-Kun; BAI Bao-Dong
2006-01-01
Based on the effective-field theory with self-spin correlations and the differential operator technique,physical properties of the spin-2 system with biaxial crystal field on the simple cubic, body-centered cubic, as well as faced-centered lattice have been studied. The influences of the external longitudinal magnetic field on the magnetization,internal energy, specific heat, and susceptibility have been discussed in detail. The phenomenon that the magnetization in the ground state shows quantum effects produced by the biaxial transverse crystal field has been found.
Loop Representation of charged particles interacting with Maxwell and Chern-Simons fields
Fuenmayor, E; Revoredo, R; Fuenmayor, Ernesto; Leal, Lorenzo; Revoredo., Ryan
2002-01-01
The loop representation formulation of non-relativistic particles coupled with abelian gauge fields is studied. Both Maxwell and Chern-Simons interactions are separately considered. It is found that the loop-space formulations of these models share significant similarities, although in the Chern-Simons case there exists an unitary transformation that allows to remove the degrees of freedom associated with the paths. As a general result, we find that charge quantization is necessary for the geometric representation to be consistent.
Particle motion in a Yang-Mills field Wong's equations and spin one-half analogues
Van Holten, J W
1995-01-01
A complete, straightforward and natural Lagrangian description is given for the classical non-relativistic dynamics of a particle with colour or internal symmetry degrees of freedom moving in a background Yang-Mills field. This provides a new simple Lagrangian formalism for Wong's equations for spinless particles, and presents also their generalisation, in gauge covariant form, for spin-\\frack particles, within a complete Lagrangian formalism.
Effect of zero magnetic field on cardiovascular system and microcirculation
Gurfinkel, Yu. I.; At'kov, O. Yu.; Vasin, A. L.; Breus, T. K.; Sasonko, M. L.; Pishchalnikov, R. Yu.
2016-02-01
The effects of zero magnetic field conditions on cardiovascular system of healthy adults have been studied. In order to generate zero magnetic field, the facility for magnetic fields modeling "ARFA" has been used. Parameters of the capillary blood flow, blood pressure, and the electrocardiogram (ECG) monitoring were measured during the study. All subjects were tested twice: in zero magnetic field and, for comparison, in sham condition. The obtained results during 60 minutes of zero magnetic field exposure demonstrate a clear effect on cardiovascular system and microcirculation. The results of our experiments can be used in studies of long-term stay in hypo-magnetic conditions during interplanetary missions.
Covariant and single-field effective action with the background-field formalism
Safari, Mahmoud
2016-01-01
In the context of scalar quantum field theory we introduce a class of generically nonlinear quantum-background splits for which the splitting Ward identity, encoding the single field dependence in the effective action, can be solved exactly. We show that this can be used to construct an effective action which is both covariant and dependent on the background and fluctuation fields only through a single total field in a way independent from the dynamics. Moreover we discuss the criteria under which the ultraviolet symmetries are inherited by the quantum effective action. The approach is demonstrated through some examples, including the $O(N)$ effective field theory, which might be of interest for the Higgs sector of the Standard Model or its extensions.
Topological magnetoelectric effects in microwave far-field radiation
Berezin, M; Shavit, R
2015-01-01
Similar to electromagnetism, described by the Maxwell equations, the physics of magnetoelectric (ME) phenomena deals with the fundamental problem of the relationship between electric and magnetic fields. Despite a formal resemblance between the two notions, they concern effects of different natures. In general, ME coupling effects manifest in numerous macroscopic phenomena in solids with space and time symmetry breakings. Recently it was shown that the near fields in the proximity of a small ferrite particle with magnetic dipolar mode (MDM) oscillations have the space and time symmetry breakings and topological properties of these fields are different from topological properties of the free space electromagnetic (EM) fields. Such MDM originated fields, called magnetoelectric (ME) fields, carry both spin and orbital angular momentums. They are characterized by power flow vortices and non zero helicity. In this paper, we report on observation of the topological ME effects in far field microwave radiation based ...
Effective field theory in time-dependent settings
Collins, Hael; Ross, Andreas
2012-01-01
We use the in-in or Schwinger-Keldysh formalism to explore the construction and interpretation of effective field theories for time-dependent systems evolving out of equilibrium. Starting with a simple model consisting of a heavy and a light scalar field taken to be in their free vacuum states at a finite initial time, we study the effects from the heavy field on the dynamics of the light field by analyzing the equation of motion for the expectation value of the light background field. New terms appear which cannot arise from a local action of an effective field theory in terms of the light field, though they disappear in the adiabatic limit. We discuss the origins of these terms as well as their possible implications for time dependent situations such as inflation.
Collisional effects on Rayleigh-Taylor-induced magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Manuel, M. J.-E. [University of Michigan, Ann Arbor, Michigan 48109 (United States); Flaig, M.; Plewa, T. [Florida State University, Tallahassee, Florida 32306 (United States); Li, C. K.; Séguin, F. H.; Frenje, J. A.; Casey, D. T.; Petrasso, R. D. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Hu, S. X.; Betti, R.; Hager, J.; Meyerhofer, D. D.; Smalyuk, V. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)
2015-05-15
Magnetic-field generation from the Rayleigh-Taylor (RT) instability was predicted more than 30 years ago, though experimental measurements of this phenomenon have only occurred in the past few years. These pioneering observations demonstrated that collisional effects are important to B-field evolution. To produce fields of a measurable strength, high-intensity lasers irradiate solid targets to generate the nonaligned temperature and density gradients required for B-field generation. The ablation process naturally generates an unstable system where RT-induced magnetic fields form. Field strengths inferred from monoenergetic-proton radiographs indicate that in the ablation region diffusive effects caused by finite plasma resistivity are not negligible. Results from the first proof-of-existence experiments are reviewed and the role of collisional effects on B-field evolution is discussed in detail.
Mechanism of magnetic field effect in cryptochrome
Solov'yov, Ilia A
2011-01-01
Creatures as varied as mammals, fish, insects, reptiles, and migratory birds have an intriguing `sixth' sense that allows them to distinguish north from south by using the Earth's intrinsic magnetic field. Yet despite decades of study, the physical basis of this magnetic sense remains elusive. A likely mechanism is furnished by magnetically sensitive radical pair reactions occurring in the retina, the light-sensitive part of the eyes. A photoreceptor, cryptochrome, has been suggested to endow birds with magnetoreceptive abilities as the protein has been shown to exhibit the biophysical properties required for an animal magnetoreceptor to operate properly. Here, we propose a concrete light-driven reaction cycle in cryptochrome that lets a magnetic field influence the signaling state of the photoreceptor. The reaction cycle ties together transient absorption and electron-spin-resonance observations with known facts on avian magnetoreception. Our analysis establishes the feasibility of cryptochrome to act as a g...
Lipparini, Filippo; Gauss, Jürgen
2016-09-13
We present an implementation of the complete active space-self-consistent field (CASSCF) method specifically designed to be used in four-component scalar relativistic calculations based on the spin-free Dirac-Coulomb (SFDC) Hamiltonian. Our implementation takes full advantage of the properties of the SFDC Hamiltonian that allow us to use real algebra and to exploit point-group and spin symmetry to their full extent while including in a rigorous way scalar relativistic effects in the treatment. The SFDC-CASSCF treatment is more expensive than its non-relativistic counterpart only in the orbital optimization step, while exhibiting the same computational cost for the rate-determining full configuration interaction part. The numerical aspects are discussed, and the capabilities of the SFDC-CASSCF methodology are demonstrated through a pilot application.
Electromagnetic Field Effects in Semiconductor Crystal Growth
Dulikravich, George S.
1996-01-01
This proposed two-year research project was to involve development of an analytical model, a numerical algorithm for its integration, and a software for the analysis of a solidification process under the influence of electric and magnetic fields in microgravity. Due to the complexity of the analytical model that was developed and its boundary conditions, only a preliminary version of the numerical algorithm was developed while the development of the software package was not completed.
Planar Hall effect bridge magnetic field sensors
DEFF Research Database (Denmark)
Henriksen, A.D.; Dalslet, Bjarke Thomas; Skieller, D.H.
2010-01-01
Until now, the planar Hall effect has been studied in samples with cross-shaped Hall geometry. We demonstrate theoretically and experimentally that the planar Hall effect can be observed for an exchange-biased ferromagnetic material in a Wheatstone bridge topology and that the sensor signal can...... Hall effect bridge sensors....
Magnetic field control of the spin Seebeck effect
Ritzmann, Ulrike; Hinzke, Denise; Kehlberger, Andreas; Guo, Er-Jia; Kläui, Mathias; Nowak, Ulrich
2015-11-01
The origin of the suppression of the longitudinal spin Seebeck effect by applied magnetic fields is studied. We perform numerical simulations of the stochastic Landau-Lifshitz-Gilbert equation of motion for an atomistic spin model and calculate the magnon accumulation in linear temperature gradients for different strengths of applied magnetic fields and different length scales of the temperature gradient. We observe a decrease of the magnon accumulation with increasing magnetic field and we reveal that the origin of this effect is a field dependent change of the frequency distribution of the propagating magnons. With increasing field the magnonic spin currents are reduced due to a suppression of parts of the frequency spectrum. By comparison with measurements of the magnetic field dependent longitudinal spin Seebeck effect in YIG thin films with various thicknesses, we find qualitative agreement between our model and the experimental data, demonstrating the importance of this effect for experimental systems.
Effective critical electric field for runaway electron generation
Stahl, Adam; Decker, Joan; Embréus, Ola; Fülöp, Tünde
2014-01-01
In this letter we investigate factors that influence the effective critical electric field for runaway electron generation in plasmas. We present numerical solutions of the kinetic equation, and discuss the implications for the threshold electric field. We show that the effective electric field necessary for significant runaway formation often is higher than previously calculated due to both (1) extremely strong dependence of primary generation on temperature, and (2) synchrotron radiation losses. We also address the effective critical field in the context of a transition from runaway growth to decay. We find agreement with recent experiments, but show that the observation of an elevated effective critical field can mainly be attributed to changes in the momentum-space distribution of runaways, and only to a lesser extent to a de facto change in the critical field.
Effective Action of Scalar QED in Electric Field Backgrounds
Kim, Sang Pyo; Yoon, Yongsung
2008-01-01
We use the evolution operator method to find the one-loop effective action of scalar QED in electric field backgrounds in terms of the Bogoliubov coefficient between the ingoing and the outgoing vacuum. The effective action shows the general relation between the vacuum persistence and the mean number of created pairs for any electric field. We obtain the exact effective action for a constant electric field and a pulsed electric field, E_0 sech^2 (t/tau), and show that the imaginary part correctly yields the vacuum persistence.
Electric field effects on electronic characteristics of arsenene nanoribbons
Luo, Yanwei; Li, Yuxiao; Wang, Fei; Guo, Peng; Jia, Yu
2017-10-01
By using the first-principles calculations, we investigate the effects of electric field on electronic structures of armchair and zigzag arsenene nanoribbons (AsNRs) with different widths. The results show that for each case, quantum size effects induce a smaller band gap in larger AsNRs. Moreover, electric field can reduce effectively the band gap of AsNRs. In addition, the electric field can induce only the transition of band structures in the A-AsNRs or Z-AsNRs with narrow size. The band gap decrease more rapidly and the threshold electric field induced metal becomes smaller in the wider AsNRs.
Effect of strong magnetic fields on the pasta phase structure
de Lima, Rafael Camargo Rodrigues; Providência, Constança
2013-01-01
The effect of strong magnetic fields on the properties of the pasta structures is calculated within a Thomas Fermi approach using relativistic mean field models to modulate stellar matter. It is shown how quantities such as the size of the clusters and Wigner-Seitz cells, the surface tension and the transition between configurations are affected. It is expected that these effects may give rise to large stresses in the pasta phase if the local magnetic field suffers fluctuations.
Dissipative Effects in the Effective Field Theory of Inflation
Energy Technology Data Exchange (ETDEWEB)
Lopez Nacir, Diana; /Buenos Aires, CONICET /Buenos Aires U.; Porto, Rafael A.; /Princeton, Inst. Advanced Study /ISCAP, New York /Columbia U.; Senatore, Leonardo; /Stanford U., ITP /SLAC /KIPAC, Menlo Park; Zaldarriaga, Matias; /Princeton, Inst. Advanced Study
2012-09-14
We generalize the effective field theory of single clock inflation to include dissipative effects. Working in unitary gauge we couple a set of composite operators, {Omicron}{sub {mu}{nu}}..., in the effective action which is constrained solely by invariance under time-dependent spatial diffeomorphisms. We restrict ourselves to situations where the degrees of freedom responsible for dissipation do not contribute to the density perturbations at late time. The dynamics of the perturbations is then modified by the appearance of 'friction' and noise terms, and assuming certain locality properties for the Green's functions of these composite operators, we show that there is a regime characterized by a large friction term {gamma} >> H in which the {zeta}-correlators are dominated by the noise and the power spectrum can be significantly enhanced. We also compute the three point function <{zeta}{zeta}{zeta}> for a wide class of models and discuss under which circumstances large friction leads to an increased level of non-Gaussianities. In particular, under our assumptions, we show that strong dissipation together with the required non-linear realization of the symmetries implies |f{sub NL}| {approx} {gamma}/c{sub s}{sup 2} H >> 1. As a paradigmatic example we work out a variation of the 'trapped inflation' scenario with local response functions and perform the matching with our effective theory. A detection of the generic type of signatures that result from incorporating dissipative effects during inflation, as we describe here, would teach us about the dynamics of the early universe and also extend the parameter space of inflationary models.
Effect of stress on field dependence.
Sarris, V; Heineken, E; Peters, H
1976-08-01
60 subjects were tested in the rod-and-frame test under flicker conditions (stress). As compared to scores in a control situation (no flicker), the rod-and-frame scores were large under stress and increased monotonically during the session. Futhermore, both intra- and interindividual variability of rod-and-frame performance changed under stress conditions in a consistent manner. The general results, which clearly point to a reliable influence of stress on field dependency, are discussed within the methodological framework of Witkin's theory of perception and personality.
Health Effects of Electromagnetic Fields: A Review of Literature.
White, George L.; And Others
1995-01-01
Current evidence suggests that the effects of electromagnetic fields (EMF) disturb cell homeostasis at very low intensities by influencing discrete intracellular magnetic fields. The article reviews current research about the health effects of EMF, examining historical implications, childhood studies, adult studies, and popular press reports, and…
Planar Hall effect bridge magnetic field sensors
Henriksen, A. D.; Dalslet, B. T.; Skieller, D. H.; Lee, K. H.; Okkels, F.; Hansen, M. F.
2010-07-01
Until now, the planar Hall effect has been studied in samples with cross-shaped Hall geometry. We demonstrate theoretically and experimentally that the planar Hall effect can be observed for an exchange-biased ferromagnetic material in a Wheatstone bridge topology and that the sensor signal can be significantly enhanced by a geometric factor. For the samples in the present study, we demonstrate an enhancement of the sensor output by a factor of about 100 compared to cross-shaped sensors. The presented construction opens a new design and application area of the planar Hall effect, which we term planar Hall effect bridge sensors.
Field variation is one of the important factors that can have a significant impact on genetic data analysis. Ineffective control of field variation may result in an inflated residual variance and/or biased estimation of genetic variations and/or effects. In this study, we addressed this problem by m...
Effects of vegetated field borders on arthropods in cotton fields in eastern North Carolina.
Outward, Randy; Sorenson, Clyde E; Bradley, J R
2008-01-01
The influence, if any, of 5m wide, feral, herbaceous field borders on pest and beneficial arthropods in commercial cotton, Gossypium hirsutum (L.) (Malvales: Malvaceae), fields was measured through a variety of sampling techniques over three years. In each year, 5 fields with managed, feral vegetation borders and five fields without such borders were examined. Sampling was stratified from the field border or edge in each field in an attempt to elucidate any edge effects that might have occurred. Early season thrips populations appeared to be unaffected by the presence of a border. Pitfall sampling disclosed no differences in ground-dwelling predaceous arthropods but did detect increased populations of crickets around fields with borders. Cotton aphid (Aphis gossypii Glover) (Hemiptera: Aphididae) populations were too low during the study to adequately assess border effects. Heliothines, Heliothis virescens (F.) and Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), egg numbers and damage rates were largely unaffected by the presence or absence of a border, although in one instance egg numbers were significantly lower in fields with borders. Overall, foliage-dwelling predaceous arthropods were somewhat more abundant in fields with borders than in fields without borders. Tarnished plant bugs, Lygus lineolaris (Palisot de Beauvois) (Heteroptera: Miridae) were significantly more abundant in fields with borders, but stink bugs, Acrosternum hilare (Say), and Euschistus servus (Say) (Hemiptera: Pentatomidae) numbers appeared to be largely unaffected by border treatment. Few taxa clearly exhibited distributional edge effects relative to the presence or absence of border vegetation. Field borders like those examined in this study likely will have little impact on insect pest management in cotton under current insect management regimens.
Effective gravitational fields in transplackian scattering
Betti, Luca S G
2014-01-01
After a short introduction to the general Quantum Gravity problem, we compare a result from the S-matrix description of gravitational interaction due to Amati, Ciafaloni and Veneziano (ACV) with classical General Relativity results. In Chapter 1, we introduce the metric produced by a massless particle moving at the speed of light. In Chapter 2, we review ACV's semiclassical approach to gravitation and show some of its result. In Chapter 3, we detail the computation of gravitational field expectation values in a high-energy scattering process, following ACV's prescriptions. In Chapter 4, we analyze our results. The main feature is that the leading contributions to the metric computed in terms of the Feynman diagrams deriving from ACV's model perfectly reproduce classical results.
Andhariya, Nidhi; Chudasama, Bhupendra; Patel, Rajesh; Upadhyay, R V; Mehta, R V
2008-07-01
In the present investigation we report the effect of capillary diameter and the direction of applied magnetic field on the rotational viscosity of water and kerosene based ferrofluids. We found that changes in the field induced rotational viscosity are larger in the case of water based magnetic fluid than that of kerosene based fluid. The field induced rotational viscosity is found to be inversely proportional to the capillary diameter and it falls exponentially as a function of the angle between the direction of field and vorticity of flow. Magnetophoretic mobility and hydrodynamic volume fraction of nanomagnetic particles are determined for above cases.
Is the effective field theory of dark energy effective?
Linder, Eric V.; Sengör, Gizem; Watson, Scott
2016-05-01
The effective field theory of cosmic acceleration systematizes possible contributions to the action, accounting for both dark energy and modifications of gravity. Rather than making model dependent assumptions, it includes all terms, subject to the required symmetries, with four (seven) functions of time for the coefficients. These correspond respectively to the Horndeski and general beyond Horndeski class of theories. We address the question of whether this general systematization is actually effective, i.e. useful in revealing the nature of cosmic acceleration when compared with cosmological data. The answer is no and yes: there is no simple time dependence of the free functions—assumed forms in the literature are poor fits, but one can derive some general characteristics in early and late time limits. For example, we prove that the gravitational slip must restore to general relativity in the de Sitter limit of Horndeski theories, and why it doesn't more generally. We also clarify the relation between the tensor and scalar sectors, and its important relation to observations; in a real sense the expansion history H(z) or dark energy equation of state w(z) is 1/5 or less of the functional information! In addition we discuss the de Sitter, Horndeski, and decoupling limits of the theory utilizing Goldstone techniques.
Yamaguchi-Sekino, Sachiko; Sekino, Masaki; Ueno, Shoogo
2011-01-01
Humans are exposed daily to artificial and naturally occurring magnetic fields that originate from many different sources. We review recent studies that examine the biological effects of and medical applications involving electromagnetic fields, review the properties of static and pulsed electromagnetic fields that affect biological systems, describe the use of a pulsed electromagnetic field in combination with an anticancer agent as an example of a medical application that incorporates an electromagnetic field, and discuss the recently updated safety guidelines for static electromagnetic fields. The most notable modifications to the 2009 International Commission on Non-Ionizing Radiation Protection guidelines are the increased exposure limits, especially for those who work with or near electromagnetic fields (occupational exposure limits). The recommended increases in exposure were determined using recent scientific evidence obtained from animal and human studies. Several studies since the 1994 publication of the guidelines have examined the effects on humans after exposure to high static electromagnetic fields (up to 9.4 tesla), but additional research is needed to ascertain further the safety of strong electromagnetic fields.
The effects of static magnetic fields on bone.
Zhang, Jian; Ding, Chong; Ren, Li; Zhou, Yimin; Shang, Peng
2014-05-01
All the living beings live and evolve under geomagnetic field (25-65 μT). Besides, opportunities for human exposed to different intensities of static magnetic fields (SMF) in the workplace have increased progressively, such SMF range from weak magnetic field (1 T). Given this, numerous scientific studies focus on the health effects and have demonstrated that certain magnetic fields have positive influence on our skeleton systems. Therefore, SMF is considered as a potential physical therapy to improve bone healing and keep bones healthy nowadays. Here, we review the mechanisms of effects of SMF on bone tissue, ranging from physical interactions, animal studies to cellular studies.
Esfandyari-Kalejahi, Abdolrasoul; Saberian, Ehsan; 10.1585/pfr.5.045
2011-01-01
Arbitrary amplitude ion-acoustic solitary waves (IASWs) are studied using Sagdeev-Potential approach in electron-positron-ion plasma with ultra-relativistic or non-relativistic degenerate electrons and positrons and the matching criteria of existence of such solitary waves are numerically investigated. It has been shown that the relativistic degeneracy of electrons and positrons has significant effects on the amplitude and the Mach-number range of IASWs. Also it is remarked that only compressive IASWs can propagate in both non-relativistic and ultra-relativistic degenerate plasmas.
Energy Technology Data Exchange (ETDEWEB)
Guerra, E.M. de [Inst. de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas (Spain)
2001-07-01
In these talks, we review non relativistic selfconsistent mean field theories, their scope and limitations. We first discuss static and time dependent mean field approaches for particles and quasiparticles, together with applications. We then discuss extensions that go beyond the non-relativistic independent particle limit. On the one hand, we consider extensions concerned with restoration of symmetries and with the treatment of collective modes, particularly by means of quantized ATDHF. On the other hand, we consider extensions concerned with the relativistic dynamics of bound nucleons. We present data on nucleon momentum distributions that show the need for relativistic mean field approach and probe the limits of the mean field concept. Illustrative applications of various methods are presented stressing the role that selfconsistency plays in providing a unifying reliable framework to study all sorts of properties and phenomena. From global properties such as size, mass, lifetime,.., to detailed structure in excitation spectra (high spin, RPA modes,..), as well as charge, magnetization and velocity distributions. (orig.)
Electric field effects in hyperexcitable neural tissue: A review
Energy Technology Data Exchange (ETDEWEB)
Durand, D.M
2003-07-01
Uniform electric fields applied to neural tissue can modulate neuronal excitability with a threshold value of about 1mV mm{sup -1} in normal physiological conditions. However, electric fields could have a lower threshold in conditions where field sensitivity is enhanced, such as those simulating epilepsy. Uniform electrical fields were applied to hippocampal brain slices exposed to picrotoxin, high potassium or low calcium solutions. The results in the low calcium medium show that neuronal activity can be completely blocked in 10% of the 30 slices tested with a field amplitude of 1mV mm{sup -1}. These results suggest that the threshold for this effect is clearly smaller than 1mV mm{sup -1}. The hypothesis that the extracellular resistance could affect the sensitivity to the electrical fields was tested by measuring the effect of the osmolarity of the extracellular solution on the efficacy of the field. A 10% decrease on osmolarity resulted in a 56% decrease (n=4) in the minimum field required for full suppression. A 14% in osmolarity produced an 81% increase in the minimum field required for full suppression. These results show that the extracellular volume can modulate the efficacy of the field and could lower the threshold field amplitudes to values lower than {approx}1mmV mm{sup -.} (author)
Quantum and field effects of oxide heterostructures
DEFF Research Database (Denmark)
Trier, Felix
, these interfaces are the ones between CaZrO3/SrTiO3 and amorphous-LaAlO3/(La, Sr)MnO3/SrTiO3. The sample preparation section is ended by outlininga patterning strategy for the high-electron mobility interface at amorphous-LaAlO3/(La, Sr)MnO3/SrTiO3. Subsequently, the effects of electrostatic gating is studied...... with a gradual tuning of the interface conductivity. Finally, the so-called quantum Hall effect is demonstrated at the interface between amorphous-LaAlO3/(La, Sr)MnO3/SrTiO3. The manifestation of the quantum Hall effect reveals that the interface conductivity is comprised of several subbands conducting...
Graphene-based field effect transistors for radiation-induced field sensing
Energy Technology Data Exchange (ETDEWEB)
Di Gaspare, Alessandra, E-mail: alessandra.digaspare@lnf.infn.it [INFN-Laboratori Nazionali Frascati, Frascati, Rome (Italy); Valletta, Antonio [CNR-Istituto per la Microelettronica e i Microsistemi, TorVergata, Rome (Italy); Fortunato, Guglielmo [CNR-Istituto per la Microelettronica e i Microsistemi, TorVergata, Rome (Italy); INFN-Laboratori Nazionali Frascati, Frascati, Rome (Italy); Larciprete, Rosanna [CNR-Istituto di Sistemi Complessi, TorVergata, Rome (Italy); INFN-Laboratori Nazionali Frascati, Frascati, Rome (Italy); Mariucci, Luigi [CNR-Istituto per la Microelettronica e i Microsistemi, TorVergata, Rome (Italy); INFN-Laboratori Nazionali Frascati, Frascati, Rome (Italy); Notargiacomo, Andrea [CNR-Istituto di Fotonica e Nanotecnologie, Rome (Italy); INFN-Laboratori Nazionali Frascati, Frascati, Rome (Italy); Cimino, Roberto [INFN-Laboratori Nazionali Frascati, Frascati, Rome (Italy); CERN, Geneva (Switzerland)
2016-07-11
We propose the implementation of graphene-based field effect transistor (FET) as radiation sensor. In the proposed detector, graphene obtained via chemical vapor deposition is integrated into a Si-based field effect device as the gate readout electrode, able to sense any change in the field distribution induced by ionization in the underneath absorber, because of the strong variation in the graphene conductivity close to the charge neutrality point. Different 2-dimensional layered materials can be envisaged in this kind of device.
Quantum Gravity Effects in Scalar, Vector and Tensor Field Propagation
Dutta, Anindita
Quantum theory of gravity deals with the physics of the gravitational field at Planck length scale (10-35 m). Even though it is experimentally hard to reach the Planck length scale, on can look for evidence of quantum gravity that is detectable in astrophysics. In this thesis, we try to find effects of loop quantum gravity corrections on observable phenomena. We show that the quantum fluctuation strain for LIGO data would be 10 -125 on the Earth. Th correction is, however, substantial near the black hole horizon. We discuss the effect of this for scalar field propagation followed by vector and tensor fields. For the scalar field, the correction introduces a new asymmetry; for the vector field, we found a new perturbation solution and for the tensor field, we found the corrected Einstein equations which are yet to solve. These will affect phenomena like Hawking radiation, black hole entropy and gravitational waves.
Magnetic fields around black holes
Garofalo, David A. G.
Active Galactic Nuclei are the most powerful long-lived objects in the universe. They are thought to harbor supermassive black holes that range from 1 million solar masses to 1000 times that value and possibly greater. Theory and observation are converging on a model for these objects that involves the conversion of gravitational potential energy of accreting gas to radiation as well as Poynting flux produced by the interaction of the rotating spacetime and the electromagnetic fields originating in the ionized accretion flow. The presence of black holes in astrophysics is taking center stage, with the output from AGN in various forms such as winds and jets influencing the formation and evolution of the host galaxy. This dissertation addresses some of the basic unanswered questions that plague our current understanding of how rotating black holes interact with their surrounding magnetized accretion disks to produce the enormous observed energy. Two magnetic configurations are examined. The first involves magnetic fields connecting the black hole with the inner accretion disk and the other involves large scale magnetic fields threading the disk and the hole. We study the effects of the former type by establishing the consequences that magnetic torques between the black hole and the inner accretion disk have on the energy dissipation profile. We attempt a plausible explanation to the observed "Deep Minimum" state in the Seyfert galaxy MCG-6- 30-15. For the latter type of magnetic geometry, we study the effects of the strength of the magnetic field threading the black hole within the context of the cherished Blandford & Znajek mechanism for black hole spin energy extraction. We begin by addressing the problem in the non-relativistic regime where we find that the black hole-threading magnetic field is stronger for greater disk thickness, larger magnetic Prandtl number, and for a larger accretion disk. We then study the problem in full relativity where we show that our
Highly Effective Action from Large N Gauge Fields
Yang, Hyun Seok
2014-01-01
Recently John H. Schwarz put forward a conjecture that the world-volume action of a probe $D3$-brane in an AdS5 x S5 background of type IIB superstring theory can be reinterpreted as the highly effective action (HEA) of four-dimensional N=4 superconformal field theory on the Coulomb branch. We argue that the HEA can be derived from the noncommutative (NC) field theory representation of the AdS/CFT correspondence and the Seiberg-Witten (SW) map defining a spacetime field redefinition between ordinary and NC gauge fields. It is based only on the well-known facts that the master fields of large N matrices are higher-dimensional NC U(1) gauge fields and the SW map is a local coordinate transformation eliminating U(1) gauge fields known as the Darboux theorem in symplectic geometry.
Magnetic Field Effects on the Plume of a Diverging Cusped-Field Thruster
Matlock, Taylor
2010-07-25
The Diverging Cusped-Field Thruster (DCFT) uses three permanent ring magnets of alternating polarity to create a unique magnetic topology intended to reduce plasma losses to the discharge chamber surfaces. The magnetic field strength within the DCFT discharge chamber (up to 4 kG on axis) is much higher than in thrusters of similar geometry, which is believed to be a driving factor in the high measured anode efficiencies. The field strength in the near plume region is large as well, which may bear on the high beam divergences measured, with peaks in ion current found at angles of around 30-35 from the thruster axis. Characterization of the DCFT has heretofore involved only one magnetic topology. It is then the purpose of this study to investigate changes to the near-field plume caused by altering the shape and strength of the magnetic field. A thick magnetic collar, encircling the thruster body, is used to lower the field strength outside of the discharge chamber and thus lessen any effects caused by the external field. Changes in the thruster plume with field topology are monitored by the use of normal Langmuir and emissive probes interrogating the near-field plasma. Results are related to other observations that suggest a unified conceptual framework for the important near-exit region of the thruster.
Sourrouille, Lucas
2015-11-01
We consider a generalization of non-relativistic Schrödinger-Higgs Lagrangian by introducing a nonstandard kinetic term. We show that this model is Galilean invariant, we construct the conserved charges associated to the symmetries and realize the algebra of the Galilean group. In addition, we study the model in the presence of a gauge field. We also show that the gauged model is Galilean invariant. Finally, we explore relations between the twin models and their solutions.
Magnetoreception in birds: the effect of radio-frequency fields.
Wiltschko, Roswitha; Thalau, Peter; Gehring, Dennis; Nießner, Christine; Ritz, Thorsten; Wiltschko, Wolfgang
2015-02-01
The avian magnetic compass, probably based on radical pair processes, works only in a narrow functional window around the local field strength, with cryptochrome 1a as most likely receptor molecule. Radio-frequency fields in the MHz range have been shown to disrupt the birds' orientation, yet the nature of this interference is still unclear. In an immuno-histological study, we tested whether the radio-frequency fields interfere with the photoreduction of cryptochrome, but this does not seem to be the case. In behavioural studies, birds were not able to adjust to radio-frequency fields like they are able to adjust to static fields outside the normal functional range: neither a 2-h pre-exposure in a 7.0 MHz field, 480 nT, nor a 7-h pre-exposure in a 1.315 MHz field, 15 nT, allowed the birds to regain their orientation ability. This inability to adjust to radio-frequency fields suggests that these fields interfere directly with the primary processes of magnetoreception and therefore disable the avian compass as long as they are present. They do not have lasting adverse after-effects, however, as birds immediately after exposure to a radio-frequency field were able to orient in the local geomagnetic field.
Biological Effects of Electromagnetic Fields on Cellular Growth
Eftekhari, Beheshte; Wilson, James; Masood, Samina
2012-10-01
The interaction of organisms with environmental magnetic fields at the cellular level is well documented, yet not fully understood. We review the existing experimental results to understand the physics behind the effects of ambient magnetic fields on the growth, metabolism, and proliferation of in vitro cell cultures. Emphasis is placed on identifying the underlying physical principles responsible for alterations to cell structure and behavior.
Effect of superconductor filament magnetization on the field errors
Wolf, R
1999-01-01
One of the main source of field errors in a superconducting magnet is the magnetization M of the superconducting filaments. Screening currents, of persistent nature, are induced by any. field change during operation of the magnet. This chapter describes the models for the calculation of these effects and the parameters to be defined in ROXIE. (3 refs).
Effective field theory of dark matter: a global analysis
Liem, S.; Bertone, G.; Calore, F.; Ruiz de Austri, R.; Tait, T.M.P.; Trotta, R.; Weniger, C.
2016-01-01
We present global fits of an effective field theory description of real, and complex scalar dark matter candidates. We simultaneously take into account all possible dimension 6 operators consisting of dark matter bilinears and gauge invariant combinations of quark and gluon fields. We derive constra
Electric-field effect in partially deoxygenated YBCO thin films
Energy Technology Data Exchange (ETDEWEB)
Kula, W. (Dept. of Electrical Engineering and Lab. for Laser Energetics, Univ. of Rochester, NY (United States) Inst. of Physics, Polish Academy of Sciences, Warszawa (Poland)); Sobolewski, R. (Dept. of Electrical Engineering and Lab. for Laser Energetics, Univ. of Rochester, NY (United States) Inst. of Physics, Polish Academy of Sciences, Warszawa (Poland))
1994-02-01
We report our studies on the electric-field effect in partially oxygen-depleted YBa[sub 2]Cu[sub 3]O[sub y] (YBCO) thin-film test structures fabricated by a laser-writing patterning technique. Our preliminary results indicate substantial, field-induced changes of the sample critical current. (orig.)
Anbarashan, Padmavathy; Gopalswamy, Poyyamoli
2013-07-15
The usage of synthetic fertilizers/insecticides in conventional farming has dramatically increased over the past decades. The aim of the study was to compare the effects of bio-pesticides and insecticides/pesticides on selected beneficial non targeted arthropods. Orders Collembola, Arachinida/Opiliones, Oribatida and Coleoptera were the main groups of arthropods found in the organic fields and Coleoptera, Oribatida, Gamasida and Collembola in conventional fields. Pesticides/insecticides had a significant effect on non-targeted arthropods order- Collembola, Arachinida/Opiliones, Hymenoptera and Thysonoptera were suppressed after pesticides/insecticides spraying. Bio-insecticides in organic fields had a non-significant effect on non targeted species and they started to increase in abundance after 7 days of spraying, whereas insecticide treatment in conventional fields had a significant long-term effect on non targeted arthropods and short term effect on pests/insects, it started to increase after 21 days of the spraying. These results indicate that insecticide treatment kept non targeted arthropods at low abundance. In conclusion, organic farming does not significantly affected the beneficial-non targeted arthropods biodiversity, whereas preventive insecticide application in conventional fields had significant negative effects on beneficial non targeted arthropods. Therefore, conventional farmers should restrict insecticide applications, unless pest densities reach the thresholds and more desirably can switch to organic farming practices.
Cylindrical-shaped nanotube field effect transistor
Hussain, Muhammad Mustafa
2015-12-29
A cylindrical-shaped nanotube FET may be manufactured on silicon (Si) substrates as a ring etched into a gate stack and filled with semiconductor material. An inner gate electrode couples to a region of the gate stack inside the inner circumference of the ring. An outer gate electrode couples to a region of the gate stack outside the outer circumference of the ring. The multi-gate cylindrical-shaped nanotube FET operates in volume inversion for ring widths below 15 nanometers. The cylindrical-shaped nanotube FET demonstrates better short channel effect (SCE) mitigation and higher performance (I.sub.on/I.sub.off) than conventional transistor devices. The cylindrical-shaped nanotube FET may also be manufactured with higher yields and cheaper costs than conventional transistors.
Frequentist limit setting in effective field theories
Gregersen, Kristian Damlund
2015-01-01
The original frequentist approach for computing confidence intervals involves the construction of the confidence belt which provides a mapping between the true value of the parameter and its maximum likelihood estimator. Alternative methods based on the frequentist idea exist, including the delta likelihood method, the $CL_s$ method and a method here referred to as the $p$-value method, which have all been commonly used in high energy experiments. The purpose of this article is to draw attention to a series of potential problems when applying these alternative methods to the important case where the predicted signal depends quadratically on the parameter of interest, a situation which is common in high energy physics as it covers scenarios encountered in effective theories. These include anomalous Higgs couplings and anomalous trilinear and quartic gauge couplings. It is found that the alternative methods, contrary to the original method using the confidence belt, in general do not manage to correctly describ...
Effects of magnetic field perturbations in the ATF torsatron
Energy Technology Data Exchange (ETDEWEB)
Colchin, R.J.; England, A.C.; Isler, R.C.; Murakami, M.; Rasmussen, D.A.; Uckan, T.; Wilgen, J.B. [Oak Ridge National Lab., TN (United States); Aceto, S.C.; Zielinski, J.J. [Rensselaer Polytechnic Inst., Troy, NY (United States)
1993-10-01
The effects of errors in the magnetic fields of tokamaks on the plasma are quite different from those in stellarators. In tokamaks, field errors can cause disruptive locked modes through the non-linear evolution of tearing modes acting on initially small error-induced islands. Scaling predictions for these effects indicate that the critical relative field error which can be tolerated becomes smaller as the tokamak size becomes larger. In stellarators, the effect is more benign, as field errors appear only to cause increased plasma transport in the vicinity of islands. Great care has been taken to minimize magnetic field errors in the most recent generation of stellarator-type magnetic plasma traps. In the past six years, several new and sensitive techniques have been developed to detect and map field errors. These methods all rely on the detection of electrons injected along magnetic field lines. During the commissioning of ATF, flux surfaces were mapped using the fluorescent screen technique. Field errors were discovered and traced to uncompensated dipoles in the helical current feeds. Prior to elimination of these errors, plasma discharges indicated centrally peaked plasma profiles. After correction of the uncompensated dipoles, flux surfaces were mapped a second time, and the island widths were found to be greatly reduced. Field errors were then deliberately introduced using a set of perturbation coils that had been added to ATF, and electron-beam mapping of the flux surfaces showed that islands several centimeters in width could easily be created by these coils. After elimination of the error fields, the measured plasma temperature and density profiles were much broader. The field-perturbation coils were then used to produce magnetic field asymmetries, and the measured plasma profiles were again shown to narrow as a result of islands.
Teleportation of the Relativistic Quantum Field
Laiho, R; Nazin, S S
2000-01-01
The process of teleportation of a completely unknown one-particle state of a free relativistic quantum field is considered. In contrast to the non-relativistic quantum mechanics, the teleportation of an unknown state of the quantum field cannot be in principle described in terms of a measurement in a tensor product of two Hilbert spaces to which the unknown state and the state of the EPR-pair belong. The reason is of the existence of a cyclic (vacuum) state common to both the unknown state and the EPR-pair. Due to the common vacuum vector and the microcausality principle (commutation relations for the field operators), the teleportation amplitude contains inevitably contributions which are irrelevant to the teleportation process. Hence in the relativistic theory the teleportation in the sense it is understood in the non-relativistic quantum mechanics proves to be impossible because of the impossibility of the realization of the appropriate measurement as a tensor product of the measurements related to the ind...
Effects of an electric field on interaction of aromatic systems.
Youn, Il Seung; Cho, Woo Jong; Kim, Kwang S
2016-04-30
The effect of uniform external electric field on the interactions between small aromatic compounds and an argon atom is investigated using post-HF (MP2, SCS-MP2, and CCSD(T)) and density functional (PBE0-D3, PBE0-TS, and vdW-DF2) methods. The electric field effect is quantified by the difference of interaction energy calculated in the presence and absence of the electric field. All the post-HF methods describe electric field effects accurately although the interaction energy itself is overestimated by MP2. The electric field effect is explained by classical electrostatic models, where the permanent dipole moment from mutual polarization mainly determines its sign. The size of π-conjugated system does not have significant effect on the electric field dependence. We found out that PBE0-based methods give reasonable interaction energies and electric field response in every case, while vdW-DF2 sometimes shows spurious artifact owing to its sensitivity toward the real space electron density. © 2015 Wiley Periodicals, Inc.
Effects of static magnetic field on mutagenesis in in vitro
Energy Technology Data Exchange (ETDEWEB)
Ikehata, M; Yoshie, S; Hayakawa, T [Railway Technical Research Institute, Kokubunji, Tokyo 185-8540 (Japan); Hirota, N [Nano Materials Center, National Institute for Materials Science, Tsukuba, Ibaraki 277-8561 (Japan)], E-mail: ikehata@rtri.or.jp
2009-03-01
Effects of static magnetic field up to 13 T were estimated in Escherichia coli and Saccharomyces cerevisiae. We observed that exposure to a 5 T static magnetic field resulted in a slight but significant increase in gene recombination frequency while frequency of reverse point mutation was not altered in S. cerevisiae. This mutagenic effect showed a dose response relationship as J-shape. To investigate an involvement of reactive oxygen species in possible mutagenic effect of static magnetic field, SOD deficient E. coli QC774 was used in thymine synthesis-based mutation assay. The result shows that static magnetic field up to 13 T did not indicate mutagenicity. Thus, it is suggested that frequency of point mutation does not changed under static magnetic field regardless of its susceptibility to superoxide. These results suggest that strong static magnetic field would have small but detectable mutagenic potential. Although mechanism of the mutagenic effect of static magnetic field has not been elucidated yet, the extent of this effect is estimated extremely small by comparison with other mutagens such as ultraviolet irradiation.
Diffraction patterns in ferrofluids: Effect of magnetic field and gravity
Energy Technology Data Exchange (ETDEWEB)
Radha, S., E-mail: radhasri12@gmail.com [Department of Physics, University of Mumbai, Mumbai 400098 (India); Mohan, Shalini [Department of Physics, University of Mumbai, Mumbai 400098 (India); UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Mumbai 400098 (India); Pai, Chintamani [Department of Physics, University of Mumbai, Mumbai 400098 (India)
2014-09-01
In this paper, we report the experimental observation of diffraction patterns in a ferrofluid comprising of Fe{sub 3}O{sub 4} nanoparticles in hexane by a 10 mW He–Ne laser beam. An external dc magnetic field (0–2 kG) was applied perpendicular to the beam. The diffraction pattern showed a variation at different depths of the sample in both zero and applied magnetic field. The patterns also exhibit a change in shape and size as the external field is varied. This effect arises due to thermally induced self-diffraction under the influence of gravity and external magnetic field.
Novel electric field effects on Landau levels in graphene.
Lukose, Vinu; Shankar, R; Baskaran, G
2007-03-16
A new effect in graphene in the presence of crossed uniform electric and magnetic fields is predicted. Landau levels are shown to be modified in an unexpected fashion by the electric field, leading to a collapse of the spectrum, when the value of electric to magnetic field ratio exceeds a certain critical value. Our theoretical results, strikingly different from the standard 2D electron gas, are explained using a "Lorentz boost," and as an "instability of a relativistic quantum field vacuum." It is a remarkable case of emergent relativistic type phenomena in nonrelativistic graphene. We also discuss few possible experimental consequence.
Effects of aging in electric field on 2024 alloy
Institute of Scientific and Technical Information of China (English)
王秀芳; 孙东立; 武高辉; 王美玲
2002-01-01
The effect of heat treatment in an electric field on micro-plastic deformation characteristics of 2024 Al alloy was investigated.The mechanism of aging in an electric field affecting the micro-plastic deformation behavior was preliminarily discussed.The results show that the resistance to micro-plastic deformation of the alloy can be greatly increased by aging in an electric field.Aging temperature,aging time and electric field strength are selected by adopting the orthogonal design method and the optimum technological parameters are obtained.
Effective Field Theory of Dark Matter from membrane inflationary paradigm
Choudhury, Sayantan
2015-01-01
In this article, we have studied the cosmological and particle physics constraints on dark matter relic abundance from effective field theory of inflation using tensor-to-scalar ratio ($r$), in case of Randall-Sundrum single membrane (RSII) paradigm. Using semi-analytical approach we establish a direct connection between the dark matter relic abundance ($\\Omega_{DM}h^2$) and primordial gravity waves ($r$), which establishes a precise connection between inflation and generation of dark matter within the framework of effective field theory in RSII membrane. Further assuming the UV completeness of the effective field theory perfectly holds good in the prescribed framework, we have explicitly shown that the membrane tension, $\\sigma$, bulk mass scale $M_5$, and cosmological constant $\\tilde{\\Lambda}_{5}$, in RSII membrane plays the most significant role to establish the connection between dark matter and inflation, using which we have studied the features of various mediator mass scale suppressed effective field ...
Chemically modified field effect transistors with nitrite or fluoride selectivity
Antonisse, Martijn M.G.; Snellink-Ruël, Bianca H.M.; Engbersen, Johan F.J.; Reinhoudt, David N.
1998-01-01
Polysiloxanes with different types of polar substituents are excellent membrane materials for nitrite and fluoride selective chemically modified field effect transistors (CHEMFETs). Nitrite selectivity has been introduced by incorporation of a cobalt porphyrin into the membrane; fluoride selectivity
Chemically modified field effect transistors with nitrite or fluoride selectivity
Antonisse, M.M.G.; Ruel, Bianca H.M.; Engbersen, Johannes F.J.; Reinhoudt, David
1998-01-01
Polysiloxanes with different types of polar substituents are excellent membrane materials for nitrite and fluoride selective chemically modified field effect transistors (CHEMFETs). Nitrite selectivity has been introduced by incorporation of a cobalt porphyrin into the membrane; fluoride selectivity
Nucleon effective masses in field theories of dense matter
Energy Technology Data Exchange (ETDEWEB)
Lee, C.H.; Reddy, S.; Prakash, M. [Dept. of Physics and Astronomy, Stony Brook, NY (United States)
1998-06-01
We point out some generic trends of effective masses in commonly used field-theoretical descriptions of stellar matter in which several species of strongly interacting particles of dissimilar masses may be present. (orig.)
The effect of toroidal field on the rotating magnetic field current drive in rotamak plasmas
Institute of Scientific and Technical Information of China (English)
Zhong Fang-Chuan; Huang Tian-Sen; Petrov Yuri
2007-01-01
A rotamak is one kind of compact spherically shaped magnetic-confinement device. In a rotamak the plasma current is driven by means of rotating magnetic field (RMF). The driven current can reverse the original equilibrium field and generate a field-reversed-configuration. In a conventional rotamak, a toroidal field (TF) is not necessary for the RMF to drive plasma current, but it was found that the present of an additional TF can influence the RMF current drive. In this paper the effect of TF on the RMF current drive in a rotamak are investigated in some detail.The experimental results show that addition of TF increases the RMF driven current greatly and enhances the RMF penetration dramatically. Without TF, the RMF can only penetrate into plasma in the edge region. When a TF is added, the RMF can reach almost the whole plasma region. This is an optimal strength of toroidal magnetic field for getting maximum plasma current when Bv and radio frequency generator power are fixed. Besides driving current,the RMF generates high harmonic fields in rotamak plasma. The effect of TF on the harmonic field spectra are also reported.
Some effects of quiet geomagnetic field changes upon values used for main field modeling
Campbell, W.H.
1987-01-01
The effects of three methods of data selection upon the assumed main field levels for geomagnetic observatory records used in main field modeling were investigated for a year of very low solar-terrestrial activity. The first method concerned the differences between the year's average of quiet day field values and the average of all values during the year. For H these differences were 2-3 gammas, for D they were -0.04 to -0.12???, for Z the differences were negligible. The second method of selection concerned the effects of the daytime internal Sq variations upon the daily mean values of field. The midnight field levels when the Sq currents were a minimum deviated from the daily mean levels by as much as 4-7 gammas in H and Z but were negligible for D. The third method of selection was designed to avoid the annual and semi-annual quiet level changes of field caused by the seasonal changes in the magnetosphere. Contributions from these changes were found to be as much as 4-7 gammas in quiet years and expected to be greater than 10 gammas in active years. Suggestions for improved methods of improved data selection in main field modeling are given. ?? 1987.
Kobayashi, Kaya; Saito, Masaki; Ohmichi, Eiji; Osada, Toshihito
2004-04-01
We have investigated a new electric field effect on magnetotransport in the multilayer systems where each layer is highly anisotropic. Under tilted magnetic fields, the resonant increase of interlayer conduction occurs when open electron orbits become periodic in k-space. The interlayer electric fields tilt the open orbits on two sheetlike Fermi surfaces in the different way, causing the split of the resonance. Using an organic conductor α-(BEDT-TTF) 2KHg(SCN) 4, we have successfully proved the above scenario experimentally.
Quantum statistical correlations in thermal field theories: boundary effective theory
Bessa, A; de Carvalho, C A A; Fraga, E S
2010-01-01
We show that the one-loop effective action at finite temperature for a scalar field with quartic interaction has the same renormalized expression as at zero temperature if written in terms of a certain classical field $\\phi_c$, and if we trade free propagators at zero temperature for their finite-temperature counterparts. The result follows if we write the partition function as an integral over field eigenstates (boundary fields) of the density matrix element in the functional Schr\\"{o}dinger field-representation, and perform a semiclassical expansion in two steps: first, we integrate around the saddle-point for fixed boundary fields, which is the classical field $\\phi_c$, a functional of the boundary fields; then, we perform a saddle-point integration over the boundary fields, whose correlations characterize the thermal properties of the system. This procedure provides a dimensionally-reduced effective theory for the thermal system. We calculate the two-point correlation as an example.
Effects of Electromagnetic Fields on Fish and Invertebrates
Energy Technology Data Exchange (ETDEWEB)
Schultz, Irvin R.; Woodruff, Dana L.; Marshall, Kathryn E.; Pratt, William J.; Roesijadi, Guritno
2010-10-13
In this progress report, we describe the preliminary experiments conducted with three fish and one invertebrate species to determine the effects of exposure to electromagnetic fields. During fiscal year 2010, experiments were conducted with coho salmon (Onchrohychus kisutch), California halibut (Paralicthys californicus), Atlantic halibut (Hippoglossus hippoglossus), and Dungeness crab (Cancer magister). The work described supports Task 2.1.3: Effects on Aquatic Organisms, Subtask 2.1.3.1: Electromagnetic Fields.
Effects of Electromagnetic Fields on Fish and Invertebrates
Energy Technology Data Exchange (ETDEWEB)
Schultz, Irvin R.; Woodruff, Dana L.; Marshall, Kathryn E.; Pratt, William J.; Roesijadi, Guritno
2010-10-13
In this progress report, we describe the preliminary experiments conducted with three fish and one invertebrate species to determine the effects of exposure to electromagnetic fields. During fiscal year 2010, experiments were conducted with coho salmon (Onchrohychus kisutch), California halibut (Paralicthys californicus), Atlantic halibut (Hippoglossus hippoglossus), and Dungeness crab (Cancer magister). The work described supports Task 2.1.3: Effects on Aquatic Organisms, Subtask 2.1.3.1: Electromagnetic Fields.
Transit-Time Spin Field-Effect-Transistor
Appelbaum, Ian; Monsma, Douwe
2007-01-01
We propose and analyze a four-terminal metal-semiconductor device that uses hot-electron transport through thin ferromagnetic films to inject and detect a charge-coupled spin current transported through the conduction band of an arbitrary semiconductor. This provides the possibility of realizing a spin field-effect-transistor in Si, using electrostatic transit-time control in a perpendicular magnetic field, rather than Rashba effect with spin-orbit interaction.
Progresses in organic field-effect transistors and molecular electronics
Institute of Scientific and Technical Information of China (English)
Wu Weiping; Xu Wei; Hu Wenping; Liu Yunqi; Zhu Daoben
2006-01-01
In the past years,organic semiconductors have been extensively investigated as electronic materials for organic field-effect transistors (OFETs).In this review,we briefly summarize the current status of organic field-effect transistors including materials design,device physics,molecular electronics and the applications of carbon nanotubes in molecular electronics.Future prospects and investigations required to improve the OFET performance are also involved.
Effective Field Theory of Interactions on the Lattice
Valiente, Manuel; Zinner, Nikolaj Thomas
2015-12-01
We consider renormalization of effective field theory interactions by discretizing the continuum on a tight-binding lattice. After studying the one-dimensional problem, we address s-wave collisions in three dimensions and relate the bare lattice coupling constants to the continuum coupling constants. Our method constitutes a very simple avenue for the systematic renormalization in effective field theory, and is especially useful as the number of interaction parameters increases.
Baryon non-invariant couplings in Higgs effective field theory
Energy Technology Data Exchange (ETDEWEB)
Merlo, Luca; Saa, Sara; Sacristan-Barbero, Mario [Universidad Autonoma de Madrid, Departamento de Fisica Teorica y Instituto de Fsica Teorica, IFT-UAM/CSIC, Madrid (Spain)
2017-03-15
The basis of leading operators which are not invariant under baryon number is constructed within the Higgs effective field theory. This list contains 12 dimension six operators, which preserve the combination B - L, to be compared to only 6 operators for the standard model effective field theory. The discussion of the independent flavour contractions is presented in detail for a generic number of fermion families adopting the Hilbert series technique. (orig.)
Local approximations for effective scalar field equations of motion
Berera, Arjun; Moss, Ian G.; Ramos, Rudnei O.
2007-10-01
Fluctuation and dissipation dynamics is examined at all temperature ranges for the general case of a background time evolving scalar field coupled to heavy intermediate quantum fields which in turn are coupled to light quantum fields. The evolution of the background field induces particle production from the light fields through the action of the intermediate catalyzing heavy fields. Such field configurations are generically present in most particle physics models, including grand unified and supersymmetry theories, with application of this mechanism possible in inflation, heavy ion collision, and phase transition dynamics. The effective evolution equation for the background field is obtained and a fluctuation-dissipation theorem is derived for this system. The effective evolution, in general, is nonlocal in time. Appropriate conditions are found for when these time nonlocal effects can be approximated by local terms. Here careful distinction is made between a local expansion and the special case of a derivative expansion to all orders, which requires analytic behavior of the evolution equation in Fourier space.
Topological magnetoelectric effects in microwave far-field radiation
Energy Technology Data Exchange (ETDEWEB)
Berezin, M.; Kamenetskii, E. O.; Shavit, R. [Microwave Magnetic Laboratory, Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer Sheva (Israel)
2016-07-21
Similar to electromagnetism, described by the Maxwell equations, the physics of magnetoelectric (ME) phenomena deals with the fundamental problem of the relationship between electric and magnetic fields. Despite a formal resemblance between the two notions, they concern effects of different natures. In general, ME-coupling effects manifest in numerous macroscopic phenomena in solids with space and time symmetry breakings. Recently, it was shown that the near fields in the proximity of a small ferrite particle with magnetic-dipolar-mode (MDM) oscillations have the space and time symmetry breakings and the topological properties of these fields are different from the topological properties of the free-space electromagnetic fields. Such MDM-originated fields—called magnetoelectric (ME) fields—carry both spin and orbital angular momenta. They are characterized by power-flow vortices and non-zero helicity. In this paper, we report on observation of the topological ME effects in far-field microwave radiation based on a small microwave antenna with a MDM ferrite resonator. We show that the microwave far-field radiation can be manifested with a torsion structure where an angle between the electric and magnetic field vectors varies. We discuss the question on observation of the regions of localized ME energy in far-field microwave radiation.
Magnetic Field Design by Using Image Effect from Iron Shield
Institute of Scientific and Technical Information of China (English)
Quanling PENG; S.M. McMurry; J.M.D.Coey
2004-01-01
Permanent magnet rings are presented, which exploit the image effect in the surrounding circular iron shields. The theory is given for a general permanent ring when the magnetization orientation Ψ at each coordinate angle Ψ changes by Ψ=(n+1)Ψ,where n is a positive or negative integer. For the uniformly magnetized case n=-1, the permanent ring produces no field in its bore, and the field is that of a dipole outside. When the ring is surrounded by a soft iron shield, its field becomes uniform in the bore, and zero outside the ring. The field can be varied continuously by moving the iron shield along the magnet axis.A small variable field device was constructed by using NdFeB permanent rings, which produced a field flux density of 0～0.5 T in the central region.
Raouafi, N -E; Wiegelmann, T
2008-01-01
Our understanding of coronal phenomena, such as coronal plasma thermodynamics, faces a major handicap caused by missing coronal magnetic field measurements. Several lines in the UV wavelength range present suitable sensitivity to determine the coronal magnetic field via the Hanle effect. The latter is a largely unexplored diagnostic of coronal magnetic fields with a very high potential. Here we study the magnitude of the Hanle-effect signal to be expected outside the solar limb due to the Hanle effect in polarized radiation from the H {\\sc{i}} Ly$\\alpha$ and $\\beta$ lines, which are among the brightest lines in the off-limb coronal FUV spectrum. For this purpose we use a magnetic field structure obtained by extrapolating the magnetic field starting from photospheric magnetograms. The diagnostic potential of these lines for determining the coronal magnetic field, as well as their limitations are studied. We show that these lines, in particular H {\\sc{i}} Ly$\\beta$, are useful for such measurements.
Plasma effects in electromagnetic field interaction with biological tissue
Sharma, R. P.; Batra, Karuna; Excell, Peter S.
2011-02-01
Theoretical analysis is presented of the nonlinear behavior of charge carriers in biological tissue under the influence of varying low-intensity electromagnetic (EM) field. The interaction occurs because of the nonlinear force arising due to the gradient of the EM field intensity acting on free electrons in the conduction band of proteins in metabolically active biological cell membrane receptors leading to a redistribution of charge carriers. Field dependence of the resulting dielectric constant is investigated by a suitable modification to include an additional electronic contribution term to the three-term Debye model. The exogenous EM field propagating in this nonlinear cellular medium satisfies the nonlinear Schrödinger equation and can be affected significantly. Resulting field effect can be substantially augmented and effective rectification/demodulation can occur. Possible implications of this modification on biological processes in white and grey matter are discussed.
Novel Topological Effects in Dense QCD in a Magnetic Field
Ferrer, E J
2015-01-01
We show that in dense QCD an axion field can be dynamically generated as the phase of the dual chiral density wave condensate that forms in the presence of a magnetic field. The coupling of the axion with the external magnetic field leads to several macroscopically observable effects. They are the generation of an anomalous uniform electric charge proportional to the magnetic field, the induction of a nondissipative anomalous Hall current, a linear magnetoelectric effect, and the formation of an axion polariton due to the fluctuations of the axion field at finite temperature. Connection to topological insulators, as well as possible observable signatures in heavy-ion collisions and neutron stars are all highlighted.
Magnetic Field Effects on Quantum-Dot Spin Valves
Institute of Scientific and Technical Information of China (English)
GAO Jin-Hua; SUN Qing-Feng; XIE Xin-Cheng
2009-01-01
We study the magnetic field effects on the spin-polarized transport of the quantum dot (QD) spin valve in the sequential tunneling regime. A set of generalized master equation is derived. Based on that, we discuss the collinear and noneollinear magnetic field effects, respectively. In the collinear magnetic field case, we find that the Zeeman splitting can induce a negative differential conductance (NDC), which is quite different from the one found in previous studies. It has a critical polarization in the parallel arrangement and will disappear in the antiparallel configuration. In the noncollinear magnetic field case, the current shows two plateaus and their angular dependence is analyzed. Although sometimes the two current plateaus have similar angular dependence, their mechanisms are different. Our formalism is also suitable for calculating the transport in magnetic molecules, in which the spin splitting is induced not by a magnetic field but by the intrinsic magnetization.
Phenomenological approach to introduce damping effects on radiation field states
D'Almeida, N G; Serra, R M; Moussa, M H Y
2000-01-01
In this work we propose an approach to deal with radiation field states which incorporates damping effects at zero temperature. By using some well known results on dissipation of a cavity field state, obtained by standard ab-initio methods, it was possible to infer through a phenomenological way the explicit form for the evolution of the state vector for the whole system: the cavity-field plus reservoir. This proposal turns out to be of extreme convenience to account for the influence of the reservoir over the cavity field. To illustrate the universal applicability of our approach we consider the attenuation effects on cavity-field states engineering. A proposal to maximize the fidelity of the process is presented.
Do Mixed States save Effective Field Theory from BICEP?
Collins, Hael; Vardanyan, Tereza
2014-01-01
The BICEP2 collaboration has for the first time observed the B-mode polarization associated with inflationary gravitational waves. Their result has some discomfiting implications for the validity of an effective theory approach to single-field inflation since it would require an inflaton field excursion larger than the Planck scale. We argue that if the quantum state of the gravitons is a mixed state based on the Bunch-Davies vacuum, then the tensor to scalar ratio r measured by BICEP is different than the quantity that enters the Lyth bound. When this is taken into account, the tension between effective field theory and the BICEP result is alleviated.
Effect of magnetic field on the crystallization of zinc sulfate
Directory of Open Access Journals (Sweden)
Freitas A. M. B.
2000-01-01
Full Text Available The effect of magnetic field on the crystallization of diamagnetic zinc sulfate was investigated in a series of controlled batch cooling experiments. Zinc sulfate solutions were exposed to magnetic fields of different intensities, up to a maximum of 0.7T. A clear influence of magnetic field on the following zinc sulfate crystallization parameters was found: an increase in saturation temperature, a decrease in metastable zone width, and an increase in growth rate and average crystal size. These effects were observed for the diamagnetic zinc sulfate, but not in similar, previously reported experiments for paramagnetic copper sulfate.
Field-effect induced tunability in planar hyperbolic metamaterials
Papadakis, Georgia T
2015-01-01
We demonstrate that use of the field effect to tune the effective optical parameters of a layered hyperbolic metamaterial leads to topological transitions in its dispersion characteristics in the optical regime. Field effect gating electrically modulates the permittivity in transparent conductive oxides via changes in the carrier density. These permittivity changes lead to active extreme modulation of ~200% of the effective electromagnetic parameters along with active control of the anisotropic dispersion surface of hyperbolic metamaterials and enable the opening and closing of photonic band gaps.
SEMICONDUCTOR DEVICES: Humidity sensitive organic field effect transistor
Murtaza, I.; Karimov, Kh S.; Ahmad, Zubair; Qazi, I.; Mahroof-Tahir, M.; Khan, T. A.; Amin, T.
2010-05-01
This paper reports the experimental results for the humidity dependent properties of an organic field effect transistor. The organic field effect transistor was fabricated on thoroughly cleaned glass substrate, in which the junction between the metal gate and the organic channel plays the role of gate dielectric. Thin films of organic semiconductor copper phthalocynanine (CuPc) and semitransparent Al were deposited in sequence by vacuum thermal evaporation on the glass substrate with preliminarily deposited Ag source and drain electrodes. The output and transfer characteristics of the fabricated device were performed. The effect of humidity on the drain current, drain current-drain voltage relationship, and threshold voltage was investigated. It was observed that humidity has a strong effect on the characteristics of the organic field effect transistor.
Effects of high external electric fields on protein conformation
Pompa, Pier Paolo; Bramanti, Alessandro; Maruccio, Giuseppe; del Mercato, Loretta Laureana; Chiuri, Rocco; Cingolani, Roberto; Rinaldi, Ross
2005-06-01
Resistance of biomolecules to high electric fields is a main concern for nanobioelectronics/nanobiosensing applications, and it is also a relevant issue from a fundamental perspective, to understand the dielectric properties and structural dynamics of proteins. In nanoscale devices, biomolecules may experience electric fields as high as 107 V/m in order to elicit charge transport/transfer. Understanding the effects of such fields on their structural integrity is thus crucial to assess the reliability of biomolecular devices. In this study, we show experimental evidence for the retention of native-like fold pattern by proteins embedded in high electric fields. We have tested the metalloprotein azurin, deposited onto SiO2 substrates in air with proper electrode configuration, by applying high static electric fields (up to 106-107 V/m). The effects on the conformational properties of protein molecules have been determined by means of intrinsic fluorescence measurements. Experimental results indicate that no significant field-induced conformational alteration occurs. This behavior is also discussed and supported by theoretical predictions of the intrinsic intra-protein electric fields. As the general features of such inner fields are not peculiar of azurin, the conclusions presented here should have general validity.
Energy Technology Data Exchange (ETDEWEB)
Okuzumi, Satoshi [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan); Inutsuka, Shu-ichiro, E-mail: okuzumi@geo.titech.ac.jp [Department of Physics, Nagoya University, Nagoya, Aichi 464-8602 (Japan)
2015-02-10
The ionization state of the gas plays a key role in the magnetohydrodynamics (MHD) of protoplanetary disks. However, the ionization state can depend on the gas dynamics, because electric fields induced by MHD turbulence can heat up plasmas and thereby affect the ionization balance. To study this nonlinear feedback, we construct an ionization model that includes plasma heating by electric fields and impact ionization by heated electrons, as well as charging of dust grains. We show that when plasma sticking onto grains is the dominant recombination process, the electron abundance in the gas decreases with increasing electric field strength. This is a natural consequence of electron-grain collisions whose frequency increases with the electron's random velocity. The decreasing electron abundance may lead to a self-regulation of MHD turbulence. In some cases, not only the electron abundance but also the electric current decreases with increasing field strength in a certain field range. The resulting N-shaped current-field relation violates the fundamental assumption of the non-relativistic MHD that the electric field is uniquely determined by the current density. At even higher field strengths, impact ionization causes an abrupt increase of the electric current as expected by previous studies. We find that this discharge current is multi-valued (i.e., the current-field relation is S-shaped) under some circumstances, and that the intermediate branch is unstable. The N/S-shaped current-field relations may yield hysteresis in the evolution of MHD turbulence in some parts of protoplanetary disks.
Energy Technology Data Exchange (ETDEWEB)
Hwang, Sungmin [Physik-Department, Technische Universität Müchen, James-Franck-Str.1, 85747 Garching (Germany)
2016-01-22
We present the calculation on the relations between Wilson coefficients in non-relativistic QCD and potential non-relativistic QCD [1] by using a new method, namely induced representation [2]. Our results match with the known results [3], which confirms that this method can further be used in the higher order calculations in various kinds of effective field theories.
Effects of landscape features on waterbird use of rice fields
King, S.; Elphick, C.S.; Guadagnin, D.; Taft, O.; Amano, T.
2010-01-01
Literature is reviewed to determine the effects of landscape features on waterbird use of fields in regions where rice (Oryza sativa) is grown. Rice-growing landscapes often consist of diverse land uses and land cover, including rice fields, irrigation ditches, other agricultural fields, grasslands, forests and natural wetlands. Numerous studies indicate that local management practices, such as water depth and timing of flooding and drawdown, can strongly influence waterbird use of a given rice field. However, the effects of size and distribution of rice fields and associated habitats at a landscape scale have received less attention. Even fewer studies have focused on local and landscape effects simultaneously. Habitat connectivity, area of rice, distance to natural wetlands, and presence and distance to unsuitable habitat can be important parameters influencing bird use of rice fields. However, responses to a given landscape vary with landscape structure, scale of analysis, among taxa and within taxa among seasons. A lack of multi-scale studies, particularly those extending beyond simple presence and abundance of a given species, and a lack of direct tests comparing the relative importance of landscape features with in-field management activities limits understanding of the importance of landscape in these systems and hampers waterbird conservation and management.
A class of effective field theory models of cosmic acceleration
Energy Technology Data Exchange (ETDEWEB)
Bloomfield, Jolyon K.; Flanagan, Éanna É., E-mail: jkb84@cornell.edu, E-mail: eef3@cornell.edu [Center for Radiophysics and Space Research, Cornell University, Space Science Building, Ithaca, NY 14853 (United States)
2012-10-01
We explore a class of effective field theory models of cosmic acceleration involving a metric and a single scalar field. These models can be obtained by starting with a set of ultralight pseudo-Nambu-Goldstone bosons whose couplings to matter satisfy the weak equivalence principle, assuming that one boson is lighter than all the others, and integrating out the heavier fields. The result is a quintessence model with matter coupling, together with a series of correction terms in the action in a covariant derivative expansion, with specific scalings for the coefficients. After eliminating higher derivative terms and exploiting the field redefinition freedom, we show that the resulting theory contains nine independent free functions of the scalar field when truncated at four derivatives. This is in contrast to the four free functions found in similar theories of single-field inflation, where matter is not present. We discuss several different representations of the theory that can be obtained using the field redefinition freedom. For perturbations to the quintessence field today on subhorizon lengthscales larger than the Compton wavelength of the heavy fields, the theory is weakly coupled and natural in the sense of t'Hooft. The theory admits a regime where the perturbations become modestly nonlinear, but very strong nonlinearities lie outside its domain of validity.
Renormalization (and power counting) of effective field theories for the nuclear force
Energy Technology Data Exchange (ETDEWEB)
Timoteo, Varese S. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Tecnologia; Szpigel, Sergio; Duraes, Francisco O. [Universidade Presbiteriana Mackenzie, Sao Paulo, SP (Brazil). Centro de Ciencias e Humanidades
2011-07-01
The most common scheme used to regularize the Lippman-Schwinger (LS) equation is to introduce a sharp or smooth regularizing function that suppresses the contributions from the potential matrix elements for momenta larger than a given cutoff scale, which separates high-energy/short-distance scales and low-energy/long-distance scales, thus eliminating the ultraviolet divergences in the momentum integrals. Then, one needs determine the strengths of the contact interactions, the so called low-energy constants (LEC), by fitting a set of low-energy scattering data. Once the LECs are fixed for a given cutoff, the LS equation can be solved to evaluate other observables. Such a procedure, motivated by Wilsons renormalization group, relies on the fundamental premise of EFT that physics at low-energy/long-distance scales is insensitive with respect to the details of the dynamics at high-energy/short-distance scales, i.e. the relevant high-energy/short- distance effects for describing the low-energy observables can be captured in the cutoff-dependent LECs. The NN interaction can be considered properly renormalized when the calculated observables are independent of the cutoff scale within the range of validity of the ChEFT or involves a small residual cutoff dependence due to the truncation of the chiral expansion. In the language of Wilsons renormalization group, this means that the LECs must run with the cutoff scale in such a way that the scattering amplitude becomes renormalization group invariant (RGI). Here we consider pionless EFT up to NNLO and chiral EFT up to NNLO and use a subtractive renormalization scheme to describe the NN scattering channels with. We fix the strength of the contact interactions at a reference scale, chosen to be the one the provides the best fit, and then evolve the driving terms with a non-relativistic Callan-Symanzik equation to slide the renormalization scale. By computing phase shift relative differences, we show that the method is RGI. We
Quantum electrodynamics in finite volume and nonrelativistic effective field theories
Fodor, Z; Katz, S D; Lellouch, L; Portelli, A; Szabo, K K; Toth, B C
2015-01-01
Electromagnetic effects are increasingly being accounted for in lattice quantum chromodynamics computations. Because of their long-range nature, they lead to large finite-size effects over which it is important to gain analytical control. Nonrelativistic effective field theories provide an efficient tool to describe these effects. Here we argue that some care has to be taken when applying these methods to quantum electrodynamics in a finite volume.
Quantum electrodynamics in finite volume and nonrelativistic effective field theories
Energy Technology Data Exchange (ETDEWEB)
Fodor, Z. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52428 Jülich (Germany); Institute for Theoretical Physics, Eötvös University, H-1117 Budapest (Hungary); Hoelbling, C. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); Katz, S.D. [Institute for Theoretical Physics, Eötvös University, H-1117 Budapest (Hungary); MTA-ELTE Lendület Lattice Gauge Theory Research Group, H-1117 Budapest (Hungary); Lellouch, L., E-mail: lellouch@cpt.univ-mrs.fr [CNRS, Aix-Marseille U., U. de Toulon, CPT, UMR 7332, F-13288, Marseille (France); Portelli, A. [School of Physics & Astronomy, University of Southampton, SO17 1BJ (United Kingdom); Szabo, K.K. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52428 Jülich (Germany); Toth, B.C. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany)
2016-04-10
Electromagnetic effects are increasingly being accounted for in lattice quantum chromodynamics computations. Because of their long-range nature, they lead to large finite-size effects over which it is important to gain analytical control. Nonrelativistic effective field theories provide an efficient tool to describe these effects. Here we argue that some care has to be taken when applying these methods to quantum electrodynamics in a finite volume.
Quantum electrodynamics in finite volume and nonrelativistic effective field theories
Directory of Open Access Journals (Sweden)
Z. Fodor
2016-04-01
Full Text Available Electromagnetic effects are increasingly being accounted for in lattice quantum chromodynamics computations. Because of their long-range nature, they lead to large finite-size effects over which it is important to gain analytical control. Nonrelativistic effective field theories provide an efficient tool to describe these effects. Here we argue that some care has to be taken when applying these methods to quantum electrodynamics in a finite volume.
A model for a non-minimally coupled scalar field interacting with dark matter
Binder, J B
2005-01-01
In this work we investigate the evolution of a Universe consisted of a scalar field, a dark matter field and non-interacting baryonic matter and radiation. The scalar field, which plays the role of dark energy, is non-minimally coupled to space-time curvature, and drives the Universe to a present accelerated expansion. The non-relativistic dark matter field interacts directly with the dark energy and has a pressure which follows from a thermodynamic theory. We show that this model can reproduce the expected behavior of the density parameters, deceleration parameter and luminosity distance.
Entropy production for a relativistic simple fluid in a weak electromagnetic field
García-Perciante, A. L.; Sandoval-Villalbazo, A.; Brun-Battistini, D.
2016-11-01
Thermal dissipation in plasmas includes a variety of effects, most of them arising from the fact that these gases are usually composed of at least two species. In the case of a mild temperature single component charged fluid kinetic theory indicates that the temperature gradient is the only source of vector-type dissipation. However, if the temperature increases to a point in which the molecule's velocities approach the speed of light, electrothermal dissipation is possible even for the single component charged gas. The modification to the structure of the entropy production introduced by this effect is established in order to address the second law of thermodynamics for such a system. The entropy balance equation is obtained from the relativistic Boltzmann equation and the vector contribution to the entropy production is calculated in terms of the thermodynamic forces and the electromagnetic field using Chapman-Enskog's expansion. It is shown that the structure is consistent with the constitutive equation previously reported, in which a thermoelectric effect was found for a single component relativistic fluid. This effect does not have a non-relativistic counterpart and presents no ambiguity regarding the frame chosen as the comoving frame, which is an issue in the mixture case.
Effective field theory analysis of the self-interacting chameleon
Sanctuary, Hillary; Sturani, Riccardo
2010-08-01
We analyse the phenomenology of a self-interacting scalar field in the context of the chameleon scenario originally proposed by Khoury and Weltman. In the absence of self-interactions, this type of scalar field can mediate long range interactions and simultaneously evade constraints from violation of the weak equivalence principle. By applying to such a scalar field the effective field theory method proposed for Einstein gravity by Goldberger and Rothstein, we give a thorough perturbative evaluation of the importance of non-derivative self-interactions in determining the strength of the chameleon mediated force in the case of orbital motion. The self-interactions are potentially dangerous as they can change the long range behaviour of the field. Nevertheless, we show that they do not lead to any dramatic phenomenological consequence with respect to the linear case and solar system constraints are fulfilled.
Effects of simulated cosmological magnetic fields on the galaxy population
Marinacci, Federico
2015-01-01
We investigate the effects of varying the intensity of the primordial magnetic seed field on the global properties of the galaxy population in ideal MHD cosmological simulations performed with the moving-mesh code AREPO. We vary the seed field in our calculations in a range of values still compatible with the current cosmological upper limits. We show that above a critical intensity of $\\simeq 10^{-9}\\,{\\rm G}$ the additional pressure arising from the field strongly affects the evolution of gaseous structures, leading to a suppression of the cosmic star formation history. The suppression is stronger for larger seed fields, and directly reflects into a lower galaxy number density at fixed stellar mass and a less massive stellar component at fixed virial mass at all mass scales. These signatures may be used, in addition to the existing methods, to derive tighter constraints on primordial magnetic seed field intensities.
HIGH FIELD Q-SLOPE AND THE BAKING EFFECT
Energy Technology Data Exchange (ETDEWEB)
Ciovati, Gianluigi [JLAB
2009-11-01
The performance of SRF cavities made of bulk Nb at high fields (peak surface magnetic field greater than about 90 mT) is characterized by exponentially increasing RF losses (high-field Q-slope), in the absence of field emission, which are often mitigated by a low temperature (100-140 °C, 12-48h) baking. In this contribution, recent experimental results and phenomenological models to explain this effect will be briefly reviewed. New experimental results on the high-field Q-slope will be presented for cavities that had been heat treated at high temperature in the presence of a small partial pressure of nitrogen. Improvement of the cavity performances have been obtained, while surface analysis measurements on Nb samples treated with the cavities revealed significantly lower hydrogen concentration than for samples that followed standard cavity treatments.
On the Renormalization of Heavy Quark Effective Field Theory
Kilian, W
1994-01-01
The construction of heavy quark effective field theory (HqEFT) is extended to arbitrary order in both expansion parameters $\\alpha_s$ and $1/m_q$. Matching conditions are discussed for the general case, and it is verified that this approach correctly reproduces the infrared behaviour of full QCD. Choosing a renormalization scheme in the full theory fixes the renormalization scheme in the effective theory except for the scale of the heavy quark field. Explicit formulae are given for the effective Lagrangian, and one--loop matching renormalization constants are computed for the operators of order $1/m$. Finally, the multiparticle sector of HqEFT is considered.
Initial Conditions in the Effective Field Theory of Inflation
O'Connell, Ross
2011-01-01
Many different models of inflation give rise to the same effective field theory of the inflaton. While effective field theories in flat space provide little information about UV physics, we propose that in inflationary backgrounds a large amount of information can be encoded by the initial conditions of the effective theory. We identify conditions under which this information would remain available at late times, e.g. through observation of non-gaussianities. We also study the power spectrum of a simple set of initial conditions, and find that it is constrained by the WMAP7 results.
Organic single-crystal field-effect transistors
Directory of Open Access Journals (Sweden)
Colin Reese
2007-03-01
Full Text Available Organic molecular crystals hold great promise for the rational development of organic semiconductor materials. Their long-range order not only reveals the performance limits of organic materials, but also provides unique insight into their intrinsic transport properties. The field-effect transistor (FET has served as a versatile tool for electrical characterization of many facets of their performance. In the last few years, breakthroughs in single-crystal FET fabrication techniques have enabled the realization of field-effect mobilities far surpassing amorphous Si, observation of the Hall effect in an organic material, and the study of transport as an explicit function of molecular packing and chemical structure.
Single event burnout sensitivity of embedded field effect transistors
Energy Technology Data Exchange (ETDEWEB)
Koga, R.; Crain, S.H.; Crawford, K.B.; Yu, P.; Gordon, M.J.
1999-12-01
Observations of single event burnout (SEB) in embedded field effect transistors are reported. Both SEB and other single event effects are presented for several pulse width modulation and high frequency devices. The microscope has been employed to locate and to investigate the damaged areas. A model of the damage mechanism based on the results so obtained is described.
Effective magnetic moment of neutrinos in strong magnetic fields
Pérez, A; Masood, S S; Gaitan, R; Rodríguez, S
2002-01-01
In this paper we compute the effective magnetic moment of neutrinos propagating in dense high magnetized medium. Taking typical values of magnetic field and densities of astrophysical objects (such as the cores of supernovae and neutron stars) we obtain an effective type of dipole magnetic moment in agreement with astrophysical and cosmological bounds. (Author)
Critical suppression of spin Seebeck effect by magnetic fields
Kikkawa, Takashi; Uchida, Ken-ichi; Daimon, Shunsuke; Qiu, Zhiyong; Shiomi, Yuki; Saitoh, Eiji
2015-08-01
The longitudinal spin Seebeck effect (LSSE) in Pt /Y3Fe5O12(YIG ) junction systems has been investigated at various magnetic fields and temperatures. We found that the LSSE voltage in a Pt/YIG-slab system is suppressed by applying high magnetic fields and this suppression is critically enhanced at low temperatures. The field-induced suppression of the LSSE in the Pt/YIG-slab system is too large at around room temperature to be explained simply by considering the effect of the Zeeman gap in magnon excitation. This result requires us to introduce a magnon-frequency-dependent mechanism into the scenario of LSSE; low-frequency magnons dominantly contribute to the LSSE. The magnetic field dependence of the LSSE voltage was observed to change by changing the thickness of YIG, suggesting that the thermospin conversion by the low-frequency magnons is suppressed in thin YIG films due to the long characteristic lengths of such magnons.
Diffusion affected magnetic field effect in exciplex fluorescence.
Burshtein, Anatoly I; Ivanov, Anatoly I
2014-07-14
The fluorescence of the exciplex, (1)[D(+δ)A(-δ)], formed at contact of photoexcited acceptor (1)A(*) with an electron donor (1)D, is known to be very sensitive to an external magnetic field, reducing the spin conversion efficiency in the resulting geminate radical ion pair, (1, 3)[D(+)…A(-)]. The relative increase of the exciplex fluorescence in the highest magnetic field compared to the lowest one, known as the magnetic field effect, crucially depends on the viscosity of the solvent. This phenomenon first studied experimentally is at first reproduced here theoretically. The magnetic field effect is shown to vanish in both limits of high and low solvent diffusivity reaching a maximum in between. It is also very sensitive to the solvent dielectric constant and to the exciplex and radical-ion pair conversion rates.
Classical Effective Field Theory and Caged Black Holes
Kol, Barak
2007-01-01
Matched Asymptotic Expansion (MAE) is a useful technique in General Relativity and other fields whenever interaction takes place between physics at two different length scales. Here MAE is argued to be equivalent quite generally to Classical Effective Field Theory (ClEFT) where one (or more) of the zones is replaced by an effective theory whose terms are organized in order of increasing irrelevancy, as demonstrated by Goldberger and Rothstein in a certain gravitational context. The ClEFT perspective has advantages as the procedure is clearer, it allows a representation via Feynman diagrams, and divergences can be regularized and renormalized in standard field theoretic methods. As a side product we obtain a wide class of classical examples of regularization and renormalization, concepts which are usually associated with Quantum Field Theories. We demonstrate these ideas through the thermodynamics of caged black holes, both simplifying the non-rotating case, and computing the rotating case. In particular we ar...
Transverse electric fields' effects in the Dark Energy Camera CCDs
Plazas, Andres; Sheldon, Erin
2014-01-01
Spurious electric fields transverse to the surface of thick, fully-depleted, high-resistivity CCDs displace the photo-generated charges in the bulk of the detector, effectively modifying the pixel area and producing noticeable signals in astrometric and photometric measurements. We use data from the science verification period of the Dark Energy Survey (DES) to characterize these effects in the Dark Energy Camera (DECam) CCDs. The transverse fields mainly manifest as concentric rings (tree rings) and bright stripes near the boundaries of the detectors (edge distortions) with relative amplitudes of about 1 % and 10 % in the flat-field images, respectively. Their nature as pixel size variations is confirmed by comparing their photometric and astrometric signatures. Using flat-field images from DECam, we derive templates in the five DES photometric bands (grizY) for the tree rings and the edge distortions as a function of their position in each DECam detector. The templates are directly incorporated into the der...
Effects of magnetic fields on dissolution of arthritis causing crystals
Takeuchi, Y.; Iwasaka, M.
2015-05-01
The number of gout patients has rapidly increased because of excess alcohol and salt intake. The agent responsible for gout is the monosodium urate (MSU) crystal. MSU crystals are found in blood and consist of uric acid and sodium. As a substitute for drug dosing or excessive water intake, physical stimulation by magnetic fields represents a new medical treatment for gout. In this study, we investigated the effects of a magnetic field on the dissolution of a MSU crystal suspension. The white MSU crystal suspension was dissolved in an alkaline solution. We measured the light transmission of the MSU crystal suspension by a transmitted light measuring system. The magnetic field was generated by a horizontal electromagnet (maximum field strength was 500 mT). The MSU crystal suspension that dissolved during the application of a magnetic field of 500 mT clearly had a higher dissolution rate when compared with the control sample. We postulate that the alkali solution promoted penetration upon diamagnetic rotation and this magnetic field orienting is because of the pronounced diamagnetic susceptibility anisotropy of the MSU crystal. The results indicate that magnetic fields represent an effective gout treatment approach.
Effects of static magnetic fields on growth of Paramecium caudatum.
Elahee, Khouaildi B; Poinapen, Danny
2006-01-01
Little is known about the influence of magnetic fields on growth of primitive eukaryotes such as the ciliate Paramecium. The latter are known to exhibit interesting characteristics such as electrotaxis, gravitaxis, and membrane excitability not commonly encountered in higher organisms. This preliminary study reports the effects of static magnetic fields on growth of Paramecium caudatum. The microorganisms were either permanently or 24 h on-and-off exposed to North and South polarity magnetic fields of average field gradient 4.3 T/m, for a period of 96 h. The growth rate and lag phase of all exposed populations were not significantly different from control ones exposed to normal geomagnetic field (P > .05). However, a significant negative shift in t(max) (time taken for maximum growth) of 10.5%-12.2% and a significant decrease (P fields, irrespective of polarity and exposure period reduce Paramecium growth by triggering early senescence of the population. The mechanisms underlying the small changes in population growth are unknown at this level, but various hypotheses have been suggested, including disorganization of swimming patterns resulting from (i) changes in cell membrane electric potential due to high speed movement through a gradient magnetic field and (ii) thermodynamic effect of anisotropic magnetic energies on cell membrane components affecting functioning of calcium channels. Altered swimming movements could in turn affect highly orchestrated processes such as conjugation, essential for survival of the organisms during development of adverse environmental conditions as thought to occur in the closed culture system used in this study.
Effects of pulsed electric field on ULQ and RFP plasmas
Energy Technology Data Exchange (ETDEWEB)
Watanabe, M. [Iwate Univ., Morioka (Japan). Faculty of Engineering; Saito, K.; Suzuki, T. [and others
1997-12-31
Dynamo activity and self-organization processes are investigated using the application of pulsed poloidal and toroidal electric fields on ULQ and RFP plasmas. Synchronized to the application of the pulsed electric fields, the remarkable responses of the several plasma parameters are observed. The plasma has a preferential magnetic field structure, and the external perturbation activates fluctuation to maintain the structure through dynamo effect. This process changes the total dissipation with the variation of magnetic helicity in the system, showing that self organization accompanies an enhanced dissipation. (author)
Effects of Orthogonal Rotating Electric Fields on Electrospinning Process
Cipolletta, Federico; Pontrelli, Giuseppe; Pisignano, Dario; Succi, Sauro
2016-01-01
Electrospinning is an nanotechnology process whereby an external electric field is used to accelerate and stretch a charged polymer jet, so as to produce fibers at nanoscale diameters. In quest of a further reduction in the cross section of electrified jets hence of the resulting electrospun fibers, we explore the effects of an external rotating electric field orthogonal to the jet direction. Through extensive particle simulations, it is shown that by a proper tuning of the electric field amplitude and frequency, a reduction of up to a 30% in the aforementioned radius can be obtained, thereby opening new perspectives in the design of future ultra-thin electrospun fibres.
Simple field theoretical approach of Coulomb systems. Entropic effects
Energy Technology Data Exchange (ETDEWEB)
Di Caprio, D; Badiali, J P [Laboratory of Electrochemistry and Analytical Chemistry, University Paris 6, CNRS, ENSCP, BP 39, 4, Place Jussieu, 75252 Paris, Cedex 05 (France); Holovko, M [Institute for Condensed Matter Physics, National Academy of Sciences, 1 Svientsitskii Str, 79011 Lviv (Ukraine)], E-mail: dung.di_caprio@upmc.fr
2009-05-29
We discuss a new simple field theory approach of Coulomb systems. Using a description in terms of fields, we introduce in a new way the statistical degrees of freedom in relation to the quantum mechanics. We show by a series of examples that these fundamental entropic effects can help account for physical phenomena in relation to Coulomb systems whether symmetric or asymmetric in valence. Overall, this gives a new understanding of these systems.
Organic Field-effect Transistors Based on Tetrathiafulvalene Derivatives
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
1 Restults Tetrathiafulvalene (TTF) and its derivatives have been extensively investigated in the field of organic conductors and superconductors since 1973. Recently, their application in organic field-effect transistors (OFETs) has attracted considerable attention. So far, on the one hand, the fabrication techniques of the TTF-based FETs have been primarily limited to high vacuum evaporation, which is a relatively expensive process. On the other hand, low FET performances, such as the low on/off ratio...
Magnetic field effects on humans: epidemiological study design
Energy Technology Data Exchange (ETDEWEB)
Budinger, T.F.; Wong, P.; Yen, C.K.
1978-10-01
This report presents details of the study design and methods for a retrospective epidemiological study on the health effects, if any, of stationary and alternating magnetic fields produced by man-made devices such as cyclotrons, controlled thermonuclear reactors (CTR), high voltage-high current transmission lines, magnetohydrodynamic devices (MHD), energy storage systems, and isotope separation facilities. The magnetic fields to which the workers can be exposed are as high as 10,000 gauss and the anticipated increase in magnetic fields associated with the environment and transmission lines near these devices is a few times the natural earth magnetic field. Thus the objectives include acquisition of low exposure data which can be used to evaluate any risks to the population incidentally exposed to environmental increases in magnetic fields, as well as an acquisition of high exposure data to be used in determining allowable exposure standards for the technical personnel working at CTR and MHD facilities. From the present status of knowledge on biological effects of magnetic fields, it is not possible to extrapolate or rationally conclude maximum permissible exposure levels for magnetic device workers and the population at large. There are no known previous studies of the effects of long-term exposure to magnetic fields involving large samples and matched controls. Thus this human epidemiological study was commenced in 1977 in parallel with experimental studies on biological and medical effects of magnetic fields being conducted by Dr. T. Tenforde and co-workers at LBL, by investigators at Battelle Northwest, and smaller projects at a number of laboratories around the world. The data base for the exposed population is comprised of approximately 1,000 cyclotron and bubble chamber workers.
Land, M C
2001-01-01
This paper examines the Stark effect, as a first order perturbation of manifestly covariant hydrogen-like bound states. These bound states are solutions to a relativistic Schr\\"odinger equation with invariant evolution parameter, and represent mass eigenstates whose eigenvalues correspond to the well-known energy spectrum of the non-relativistic theory. In analogy to the nonrelativistic case, the off-diagonal perturbation leads to a lifting of the degeneracy in the mass spectrum. In the covariant case, not only do the spectral lines split, but they acquire an imaginary part which is lnear in the applied electric field, thus revealing induced bound state decay in first order perturbation theory. This imaginary part results from the coupling of the external field to the non-compact boost generator. In order to recover the conventional first order Stark splitting, we must include a scalar potential term. This term may be understood as a fifth gauge potential, which compensates for dependence of gauge transformat...
Topics in lattice QCD and effective field theory
Buchoff, Michael I.
Quantum Chromodynamics (QCD) is the fundamental theory that governs hadronic physics. However, due to its non-perturbative nature at low-energy/long distances, QCD calculations are difficult. The only method for performing these calculations is through lattice QCD. These computationally intensive calculations approximate continuum physics with a discretized lattice in order to extract hadronic phenomena from first principles. However, as in any approximation, there are multiple systematic errors between lattice QCD calculation and actual hardronic phenomena. Developing analytic formulae describing the systematic errors due to the discrete lattice spacings is the main focus of this work. To account for these systematic effects in terms of hadronic interactions, effective field theory proves to be useful. Effective field theory (EFT) provides a formalism for categorizing low-energy effects of a high-energy fundamental theory as long as there is a significant separation in scales. An example of this is in chiral perturbation theory (chiPT), where the low-energy effects of QCD are contained in a mesonic theory whose applicability is a result of a pion mass smaller than the chiral breaking scale. In a similar way, lattice chiPT accounts for the low-energy effects of lattice QCD, where a small lattice spacing acts the same way as the quark mass. In this work, the basics of this process are outlined, and multiple original calculations are presented: effective field theory for anisotropic lattices, I=2 pipi scattering for isotropic, anisotropic, and twisted mass lattices. Additionally, a combination of effective field theory and an isospin chemical potential on the lattice is proposed to extract several computationally difficult scattering parameters. Lastly, recently proposed local, chiral lattice actions are analyzed in the framework of effective field theory, which illuminates various challenges in simulating such actions.
Power Counting and Wilsonian Renormalization in Nuclear Effective Field Theory
Valderrama, Manuel Pavon
2016-01-01
Effective field theories are the most general tool for the description of low energy phenomena. They are universal and systematic: they can be formulated for any low energy systems we can think of and offer a clear guide on how to calculate predictions with reliable error estimates, a feature that is called power counting. These properties can be easily understood in Wilsonian renormalization, in which effective field theories are the low energy renormalization group evolution of a more fundamental ---perhaps unknown or unsolvable--- high energy theory. In nuclear physics they provide the possibility of a theoretically sound derivation of nuclear forces without having to solve quantum chromodynamics explicitly. However there is the problem of how to organize calculations within nuclear effective field theory: the traditional knowledge about power counting is perturbative but nuclear physics is not. Yet power counting can be derived in Wilsonian renormalization and there is already a fairly good understanding ...
Correlation theory of crystal field and anisotropic exchange effects
DEFF Research Database (Denmark)
Lindgård, Per-Anker
1985-01-01
A general theory for including correlation effects in static and dynamic properties is presented in terms of Raccah or Stevens operators. It is explicitly developed for general crystal fields and anisotropic interactions and systems with several sublattices, like the rare earth compounds. The the......A general theory for including correlation effects in static and dynamic properties is presented in terms of Raccah or Stevens operators. It is explicitly developed for general crystal fields and anisotropic interactions and systems with several sublattices, like the rare earth compounds....... The theory gives explicitly a temperature dependent renormalization of both the crystal field and the interactions, and a damping of the excitations and in addition a central park component. The general theory is illustrated by a discussion of the singlet-doublet system. The correlation effects...... on the susceptibility, the first and second moment frequencies and the line shape are calculated self-consistently....
Bogovalov, S; Koldoba, A V; Ustyugova, G V; Aharonian, F A
2011-01-01
In this paper, we present a numerical study of the properties of the flow produced by the collision of a magnetized anisotropic pulsar wind with its environment in binary system. We compare the impact of both the magnetic field and the wind anisotropy to the benchmark case of a purely hydrodynamical (HD) interaction of isotropic winds, which has been studied in detail by Bogovalov et al. (2008). We consider the interaction in axisymmetric approximation, i.e. the pulsar rotation axis is assumed to be oriented along the line between the pulsar and the optical star and the effects related to the pulsar orbiting are neglected. The impact of the magnetic field is studied for the case of weak magnetization (with magnetization parameter $\\sigma<0.1$), which is consistent with conventional models of pulsar winds. The effects related to anisotropy in pulsar winds are modeled assuming that the kinetic energy flux in a non-magnetized pulsar wind is strongly anisotropic, with the minimum at the pulsar rotation axis an...
Strontium titanate resistance modulation by ferroelectric field effect
Marré, D; Bellingeri, E; Pallecchi, I; Pellegrino, L; Siri, A S
2003-01-01
Among perovskite oxides strontium titanate (STO) SrTiO sub 3 undergoes a metal-insulator transition at very low carrier concentration and exhibits high mobility values at low temperature. We exploited such electrical properties and the structural compatibility of perovskite oxide materials in realizing ferroelectric field effect epitaxial heterostructures. By pulsed laser deposition, we grew patterned field effect devices, consisting of lanthanum doped STO and Pb(Zr,Ti)O sub 3. Such devices showed a resistance modulation up to 20%, consistent with geometrical parameters and carrier concentration of the semiconducting channel.
Contact engineering in organic field-effect transistors
Directory of Open Access Journals (Sweden)
Chuan Liu
2015-03-01
Full Text Available Organic field-effect transistors (OFETs are promising for numerous potential applications but suffer from poor charge injection, such that their performance is severely limited. Recent efforts in lowering contact resistance have led to significantly improved field-effect mobility of OFETs, up to 100 times higher, as the results of careful choice of contact materials and/or chemical treatment of contact electrodes. Here we review the innovative developments of contact engineering and focus on the mechanisms behind them. Further improvement toward Ohmic contact can be expected along with the rapid advance in material research, which will also benefit other organic and electronic devices.
Massive gravitons from Extended Gravity to Effective Field Theories
Capozziello, Salvatore; Paolella, Mariacristina; Ricciardi, Giulia
2013-01-01
Massive gravitons in effective field theories can be recovered by extending General Relativity and taking into account generic functions of the curvature invariants not necessarily linear in the Ricci scalar R. In particular, adopting the minimal extension of f(R) gravity, an effective field theory with a massive state is straightforwardly recovered. This approach allows to evade shortcomings like ghosts and discontinuities if a suitable choice of expansion parameters is performed. We show that the massive state can be identified with a massive graviton.
Key aspects of cost effective collector and solar field design
von Reeken, Finn; Nicodemo, Dario; Keck, Thomas; Weinrebe, Gerhard; Balz, Markus
2016-05-01
A study has been performed where different key parameters influencing solar field cost are varied. By using levelised cost of energy as figure of merit it is shown that parameters like GoToStow wind speed, heliostat stiffness or tower height should be adapted to respective site conditions from an economical point of view. The benchmark site Redstone (Northern Cape Province, South Africa) has been compared to an alternate site close to Phoenix (AZ, USA) regarding site conditions and their effect on cost-effective collector and solar field design.
Finite baryon density effects on gauge field dynamics
Bödeker, Dietrich
2001-01-01
We discuss the effective action for QCD gauge fields at finite temperatures and densities, obtained after integrating out the hardest momentum scales from the system. We show that a non-vanishing baryon density induces a charge conjugation (C) odd operator to the gauge field action, proportional to the chemical potential. Even though it is parametrically smaller than the leading C even operator, it could have an important effect on C odd observables. The same operator appears to be produced by classical kinetic theory, allowing in principle for a non-perturbative study of such processes.
Deceleration Effect of Magnetic Field on Black Hole Accretion Disks
Institute of Scientific and Technical Information of China (English)
WANG Ding-Xiong
2000-01-01
The deceleration effect of magnetic field near the horizon of a spinning black hole (BH) of accretion disk is investigated in the Blandford-Znajek (BZ) process. It is shown that rates of change with respect to time for both the angular velocities of BH horizon and accreting particles at the inner edge of an accretion disk are reduced in the BZ process, behaving with non-monotonous evolution characteristics. This result implies that the magnetic field near the BH horizon has & deceleration effect not only on the spinning BH but also on the surrounding accretion disk.
Pauli Spin Blockade and the Ultrasmall Magnetic Field Effect
Danon, Jeroen
2013-08-06
Based on the spin-blockade model for organic magnetoresistance, we present an analytic expression for the polaron-bipolaron transition rate, taking into account the effective nuclear fields on the two sites. We reveal the physics behind the qualitatively different magnetoconductance line shapes observed in experiment, as well as the ultrasmall magnetic field effect (USFE). Since our findings agree in detail with recent experiments, they also indirectly provide support for the spin-blockade interpretation of organic magnetoresistance. In addition, we predict the existence of a similar USFE in semiconductor double quantum dots tuned to the spin-blockade regime.
Effective Field Theory for Low-Energy np Systems
Park, T S
1998-01-01
The properties of low-energy neutron-proton systems are studied in an effective field theory where only nucleons figure as relevant degrees of freedom. With a finite momentum cut-off regularization scheme, we show that the large scattering lengths of the np systems do not spoil the convergence of the effective field theory, which turns out to be extremely successful in reproducing, with little cut-off dependence, the deuteron properties, the np 1S0 scattering amplitude and most significantly, the M1 transition amplitude entering into the radiative np capture process.
Wiggle Instability of Galactic Spiral Shocks: Effects of Magnetic Fields
Kim, Yonghwi; Elmegreen, Bruce G
2015-01-01
It has been suggested that the wiggle instability (WI) of spiral shocks in a galactic disk is responsible for the formation of gaseous feathers observed in grand-design spiral galaxies. We perform both a linear stability analysis and numerical simulations to investigate the effect of magnetic fields on the WI. The disk is assumed to be infinitesimally-thin, isothermal, and non-self-gravitating. We control the strengths of magnetic fields and spiral-arm forcing using the dimensionless parameters $\\beta$ and $\\mathcal{F}$, respectively. By solving the perturbation equations as a boundary-eigenvalue problem, we obtain dispersion relations of the WI for various values of $\\beta=1-\\infty$ and $\\mathcal{F}=5\\%$ and $10\\%$. We find that the WI arising from the accumulation of potential vorticity at disturbed shocks is suppressed, albeit not completely, by magnetic fields. The stabilizing effect of magnetic fields is not from the perturbed fields but from the unperturbed fields that reduce the density compression fac...
Effects Of Field Distortions In Ih-apf Linac
Kapin, Valery; Yamada, S
2004-01-01
The project on developing compact medical accelera-tors for the tumor therapy using carbon ions has been started at the National Institute of Radiological Sciences (NIRS). Alternating-phase-focused (APF) linac using an interdigital H-mode (IH) cavity has been proposed for the injector linac. The IH-cavity is doubly ridged circular resonator loaded by the drift-tubes mounted on ridges with supporting stems. The effects of intrinsic and random field distortions in a practical design of the 4-MeV/u 200 MHz IH-APF linac are considered. The intrinsic field distortions in IH-cavity are caused by the asymmetry of the gap field due to presence of the drift-tube supporting stems and pair of ridges. The random field distortions are caused by drift-tube misalignments and non-regular deviations of the voltage distribution from programmed law. The RF fields in IH-cavity have been calculated using Microwave Studio (MWS) code. The effects of field distortions on beam dynamics have been simulated numerically.
Electromechanical field effect transistors based on multilayer phosphorene nanoribbons
Energy Technology Data Exchange (ETDEWEB)
Jiang, Z.T., E-mail: jiangzhaotan@hotmail.com; Lv, Z.T.; Zhang, X.D.
2017-06-21
Based on the tight-binding Hamiltonian approach, we demonstrate that the electromechanical field effect transistors (FETs) can be realized by using the multilayer phosphorene nanoribbons (PNRs). The synergistic combination of the electric field and the external strains can establish the on–off switching since the electric field can shift or split the energy band, and the mechanical strains can widen or narrow the band widths. This kind of multilayer PNR FETs, much solider than the monolayer PNR one and more easily biased by different electric fields, has more transport channels consequently leading to the higher on–off current ratio or the higher sensitivity to the electric fields. Meanwhile, the strain-induced band-flattening will be beneficial for improving the flexibility in designing the electromechanical FETs. In addition, such electromechanical FETs can act as strain-controlled FETs or mechanical detectors for detecting the strains, indicating their potential applications in nano- and micro-electromechanical fields. - Highlights: • Electromechanical transistors are designed with multilayer phosphorene nanoribbons. • Electromechanical synergistic effect can establish the on–off switching more flexibly. • Multilayer transistors, solider and more easily biased, has more transport channels. • Electromechanical transistors can act as strain-controlled transistors or mechanical detectors.
Nucleon propagation through nuclear matter in chiral effective field theory
Mallik, S; Mishra, Hiranmaya
2007-01-01
We treat the propagation of nucleon in nuclear matter by evaluating the ensemble average of the two-point function of nucleon currents in the framework of the chiral effective field theory. We first derive the effective parameters of nucleon to one loop. The resulting formula for the effective mass was known previously and gives an absurd value at normal nuclear density. We then modify it following Weinberg's method for the two-nucleon system in the effective theory. Our results for the effective mass and the width of nucleon are compared with those in the literature.
Nucleon propagation through nuclear matter in chiral effective field theory
Energy Technology Data Exchange (ETDEWEB)
Mallik, S. [Saha Institute of Nuclear Physics, Kolkata (India); Mishra, H. [Physical Research Laboratory, Theory Divison, Ahmedabad (India)
2007-05-15
We treat the propagation of a nucleon in nuclear matter by evaluating the ensemble average of the two-point function of the nucleon currents in the framework of chiral effective field theory. We first derive the effective parameters of the nucleon to one loop. The resulting formula for the effective mass has been known since before and gives an absurd value at normal nuclear density. We then modify it following Weinberg's method for the two-nucleon system in the effective theory. Our results for the effective mass and the width of the nucleon are compared with those in the literature. (orig.)
Nucleon propagation through nuclear matter in chiral effective field theory
Mallik, S.; Mishra, H.
2007-05-01
We treat the propagation of a nucleon in nuclear matter by evaluating the ensemble average of the two-point function of the nucleon currents in the framework of chiral effective field theory. We first derive the effective parameters of the nucleon to one loop. The resulting formula for the effective mass has been known since before and gives an absurd value at normal nuclear density. We then modify it following Weinberg’s method for the two-nucleon system in the effective theory. Our results for the effective mass and the width of the nucleon are compared with those in the literature.
Effect of Magnetic Field on L-Strain Cells
Ulakoglu, G; Atak, C; Rzakoulieva, A; Danilov, V I; Alikamanoglu, S
2000-01-01
The effects of electromagnetic and magnetic fields are currently being made useful in many fields, especially in medicine. In this research work, L-Strain cells which are a type of fibrosarcoma cells were exposed to a magnetic flow of 2-26 mT in periods of 1, 2, 3 and 4 minutes. The L-Strain cells, which were exposed to the magnetic field for these periods, were counted after 24 and 48 hours, when compared with the controls, it was observed that in groups of 1 and 4 minutes exposure a significant decrease (P < 0.05) in the number of cells occurred. The per cent of labelling index of L-Strain cells exposed to the magnetic field for 1 and 4 minutes decreased significantly also in comparison to the controls.
Application of Terahertz Field Enhancement Effect in Metal Microstructures
Nakajima, M.; Kurihara, T.; Tadokoro, Y.; Kang, B.; Takano, K.; Yamaguchi, K.; Watanabe, H.; Oto, K.; Suemoto, T.; Hangyo, M.
2016-12-01
Applications of high-field terahertz pulses are attractive in physics and terahertz technology. In this study, two applications related to high-intensity terahertz pulses are demonstrated. The field enhancement effect by subwavelength metallic microstructures is utilized for terahertz excitation measurement. The spin precession dynamics in magnetic materials was induced by a terahertz magnetic field. Spin precession was amplified by one order of magnitude in amplitude by the enhanced magnetic terahertz field in orthoferrite ErFeO3 with metal microstructures. The induced spin dynamics was analyzed and explained by LLG-LCR model. Moreover, a detection method for terahertz pulses was developed using a cholesteric liquid crystal at room temperature without any electronic devices. The beam profile of terahertz pulses was visualized and compared to other methods such as the knife edge method using pyroelectric detector and micro-bolometer array. The liquid crystal terahertz imager is very simple and has good applicability as a portable terahertz-sensing card.
Acoustic field effects on a negative corona discharge
Bálek, R.; Červenka, M.; Pekárek, S.
2014-06-01
For a negative corona discharge under atmospheric pressure in different regimes, we investigated the effects of an acoustic field both on its electrical parameters and on the change in its visual appearance. We found that the application of an acoustic field on the true corona discharge, for particular currents, decreases the discharge voltage. The application of an acoustic field on the discharge in the filamentary streamer regime substantially extends the range of currents for which the discharge voltage remains more or less constant, i.e. it allows a substantial increase in the power delivered to the discharge. The application of an acoustic field on the discharge causes the discharge to spread within the discharge chamber and consequently, a highly reactive non-equilibrium plasma is created throughout the inter-electrode space. Finally, our experimental apparatus radiates almost no acoustic energy from the discharge chamber.
Subleading Effects and the Field Range in Axion Inflation
Parameswaran, Susha; Zavala, Ivonne
2016-01-01
An attractive candidate for the inflaton is an axion slowly rolling down a flat potential protected by a perturbative shift symmetry. Realisations of this idea within large field, natural and chaotic inflation have been disfavoured by observations and are difficult to embed in string theory. We show that subleading, but significant non-perturbative corrections can superimpose sharp cliffs and gentle plateaus into the potential, whose overall effect is to enhance the number of e-folds of inflation. Sufficient e-folds are therefore achieved for smaller field ranges compared to the potential without such corrections. Thus, both single-field chaotic and natural inflation in UV complete theories like string theory, can be restored into the favour of current observations, with distinctive signatures. Tensor modes result un-observably small, but there is a large negative running of the spectral index. Remarkably, natural inflation can be achieved with a single field whose axion decay constant is sub-Planckian.
Subleading effects and the field range in axion inflation
Parameswaran, Susha; Tasinato, Gianmassimo; Zavala, Ivonne
2016-04-01
An attractive candidate for the inflaton is an axion slowly rolling down a flat potential protected by a perturbative shift symmetry. Realisations of this idea within large field, natural and monomial inflation have been disfavoured by observations and are difficult to embed in string theory. We show that subleading, but significant non-perturbative corrections can superimpose sharp cliffs and gentle plateaus into the potential, whose overall effect is to enhance the number of e-folds of inflation. Sufficient e-folds are therefore achieved for smaller field ranges compared to the potential without such corrections. Thus, both single-field natural and monomial inflation in UV complete theories like string theory, can be restored into the favour of current observations, with distinctive signatures. Tensor modes result un-observably small, but there is a large negative running of the spectral index. Remarkably, natural inflation can be achieved with a single field whose axion decay constant is sub-Planckian.
Interaction mechanisms and biological effects of static magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Tenforde, T.S.
1994-06-01
Mechanisms through which static magnetic fields interact with living systems are described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving, ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecules structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary is also presented of the biological effects of static magnetic fields. There is convincing experimental evidence for magnetoreception mechanisms in several classes of lower organisms, including bacteria and marine organisms. However, in more highly evolved species of animals, there is no evidence that the interactions of static magnetic fields with flux densities up to 2 Tesla (1 Tesla [T] = 10{sup 4} Gauss) produce either behavioral or physiolocical alterations. These results, based on controlled studies with laboratory animals, are consistent with the outcome of recent epidemiological surveys on human populations exposed occupationally to static magnetic fields.
A generally-relativistic gauge classification of the Dirac fields
Fabbri, Luca
2016-01-01
We consider generally-relativistic gauge transformations for the spinorial fields finding two mutually exclusive but together exhaustive classes in which fermions are placed adding supplementary information to the results obtained by Lounesto, and identifying quantities analogous to the momentum vector and the Pauli-Lubanski axial vector we discuss how our results are similar to those obtained by Wigner; by taking into account the most general Dirac equations we will investigate the consequences for the dynamics: and in particular we shall address the problem of getting the non-relativistic approximation in a consistent way. We are going to comment on extensions.
Tachyon field non-minimally coupled to massive neutrino matter
Ahmad, Safia; Myrzakulov, Nurgissa; Myrzakulov, R.
2016-07-01
In this paper, we consider rolling tachyon, with steep run-away type of potentials non-minimally coupled to massive neutrino matter. The coupling dynamically builds up at late times as neutrino matter turns non-relativistic. In case of scaling and string inspired potentials, we have shown that non-minimal coupling leads to minimum in the field potential. Given a suitable choice of model parameters, it is shown to give rise to late-time acceleration with the desired equation of state.
Field effects and ictal synchronization: insights from in homine observations.
Weiss, Shennan A; McKhann, Guy; Goodman, Robert; Emerson, Ronald G; Trevelyan, Andrew; Bikson, Marom; Schevon, Catherine A
2013-12-05
It has been well established in animal models that electrical fields generated during inter-ictal and ictal discharges are strong enough in intensity to influence action potential firing threshold and synchronization. We discuss recently published data from microelectrode array recordings of human neocortical seizures and speculate about the possible role of field effects in neuronal synchronization. We have identified two distinct seizure territories that cannot be easily distinguished by traditional EEG analysis. The ictal core exhibits synchronized neuronal burst firing, while the surrounding ictal penumbra exhibits asynchronous and relatively sparse neuronal activity. In the ictal core large amplitude rhythmic ictal discharges produce large electric fields that correspond with highly synchronous neuronal firing. In the penumbra rhythmic ictal discharges are smaller in amplitude, but large enough to influence spike timing, yet neuronal synchrony is not observed. These in homine observations are in accord with decades of animal studies supporting a role of field effects in neuronal synchronization during seizures, yet also highlight how field effects may be negated in the presence of strong synaptic inhibition in the penumbra.
Field effects and ictal synchronization: insights from in homine observations.
Directory of Open Access Journals (Sweden)
Shennan Aibel Weiss
2013-12-01
Full Text Available It has been well established in animal models that electrical fields generated during inter-ictal and ictal discharges are strong enough in intensity to influence action potential firing threshold and synchronization. We discuss recently published data from microelectrode array recordings of human neocortical seizures and what they imply about the possible role of field effects in neuronal synchronization. We have identified two distinct seizure territories that cannot be easily distinguished by traditional EEG analysis. The ictal core exhibits synchronized neuronal burst firing, while the surrounding ictal penumbra exhibits asynchronous and relatively sparse neuronal activity. In the ictal core large amplitude rhythmic ictal discharges produce large electric fields that correspond with relatively synchronous neuronal firing. In the penumbra rhythmic ictal discharges are smaller in amplitude, but large enough to influence spike timing, yet neuronal synchrony is not observed. These in homine observations are in accord with decades of animal studies supporting a role of field effects in neuronal synchronization during seizures, yet also highlight how field effects may be negated in the presence of strong synaptic inhibition in the penumbra.
Pramanik, Sourav; Kuznetsov, V. I.; Bakaleinikov, L. A.; Chakrabarti, Nikhil
2016-08-01
A comprehensive study on the steady states of a planar vacuum diode driven by a cold relativistic electron beam in the presence of an external transverse magnetic field is presented. The regimes, where no electrons are turned around by the external magnetic field and where they are reflected back to the emitter by the magnetic field, are both considered in a generalized way. The problem is solved by two methods: with the Euler and the Lagrange formulation. Taking non-relativistic limit, the solutions are compared with the similar ones which were obtained for the Bursian diode with a non-relativistic electron beam in previous work [Pramanik et al., Phys. Plasmas 22, 112108 (2015)]. It is shown that, at a moderate value of the relativistic factor of the injected beam, the region of the ambiguous solutions located to the right of the SCL bifurcation point (space charge limit) in the non-relativistic regime disappears. In addition, the dependencies of the characteristic bifurcation points and the transmitted current on the Larmor frequency as well as on the relativistic factor are explored.
Explicit high-order symplectic integrators for charged particles in general electromagnetic fields
Tao, Molei
2016-01-01
This article considers non-relativistic charged particle dynamics in both static and non-static electromagnetic fields, which are governed by nonseparable, possibly time-dependent Hamiltonians. For the first time, explicit symplectic integrators of arbitrary high-orders are constructed for accurate and efficient simulations of such mechanical systems. Performances superior to the standard non-symplectic method of Runge-Kutta are demonstrated on two examples: the first is on the confined motion of a particle in a static toroidal magnetic field used in tokamak; the second is on how time-periodic perturbations to a magnetic field inject energy into a particle via parametric resonance at a specific frequency.
Energy Technology Data Exchange (ETDEWEB)
Restrepo, R.L., E-mail: pfrire@eia.edu.co [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Escuela de Ingeniería de Antioquia-EIA, Envigado (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia); Ungan, F.; Kasapoglu, E. [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonóma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Morales, A.L.; Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia-UdeA, Calle 70 No. 52-21, Medellín (Colombia)
2015-01-15
This paper presents the results of the theoretical study of the effects of non-resonant intense laser field and electric and magnetic fields on the optical properties (the linear and third-order nonlinear refractive index and absorption coefficients) in an asymmetric quantum well. The electric field and intense laser field are applied along the growth direction of the asymmetric quantum well and the magnetic field is oriented perpendicularly. To calculate the energy and the wave functions of the electron in the asymmetric quantum well, the effective mass approximation and the method of envelope wave function are used. The asymmetric quantum well is constructed by using different aluminium concentrations in both right and left barriers. The confinement in the quantum well is changed drastically by either the effect of electric and magnetic fields or by the application of intense laser field. The optical properties are calculated using the compact density matrix approach. The results show that the effect of the intense laser field competes with the effects of the electric and magnetic fields. Consequently, peak position shifts to lower photon energies due to the effect of the intense laser field and it shifts to higher photon energies by the effects of electric and magnetic fields. In general, it is found that the concentration of aluminum, electric and magnetic fields and intense laser field are external agents that modify the optical responses in the asymmetric quantum well.
Sound field reconstruction based on the acousto-optic effect
DEFF Research Database (Denmark)
Torras Rosell, Antoni; Barrera Figueroa, Salvador; Jacobsen, Finn
2011-01-01
Acoustic measurements are usually carried out with transducers that interact mechanically with the sound field under investigation. The goal of this work is to employ a completely different measurement principle, the determination of sound pressure based on the interaction between sound and light......, namely the acousto-optic effect. When sound propagates through a medium, it gives rise to pressure fluctuations that change the instantaneous density of the medium. Under such circumstances, the speed of light is not constant, but changed by the acoustic field. This acousto-optic interaction can...... be measured with a laser Doppler vibrometer; furthermore, it can be exploited to characterize an arbitrary sound field using tomographic techniques. This paper briefly reviews the fundamental principles governing the acousto-optic effect in air, and presents an investigation of the tomographic reconstruction...