WorldWideScience

Sample records for non-regulated disinfection by-products

  1. Spatio-temporal variability of non-regulated disinfection by-products within a drinking water distribution network.

    Science.gov (United States)

    Mercier Shanks, Catherine; Sérodes, Jean-Baptiste; Rodriguez, Manuel J

    2013-06-01

    The non-regulated disinfection by-products (NrDBP) targeted in this study include four haloacetonitriles (trichloroacetonitrile (TCAN); dichloroacetonitrile (DCAN); bromochloroacetonitrile (BCAN) and dibromoacetonitrile (DBAN)); one halonitromethane (trichloronitromethane, better known under the name chloropicrin (CPK)); and two haloketones (1,1-dichloro-2-propanone (11DCPone) and 1,1,1-trichloro-2-propanone (111TCPone)). This study provides a detailed picture of the spatial and temporal variability of these NrDBP concentrations throughout a drinking water distribution system located in a region with major seasonal climate variations. The results obtained show that the concentrations of the investigated NrDBPs varied significantly according to time and location. The average concentrations of TCAN, DCAN, CKP and 111TCPone were significantly higher in summer. Surprisingly, the average concentrations of 11DCPone were significantly higher in winter. For BCAN and DBAN, the average concentrations observed in winter were higher, but not in a statistically significant way. On the other hand, the four HANs, CPK and 111TCPone generally had spatial profiles involving an increase of the concentrations along the network according to increasing water residence times, whereas 11DCPone overall had a profile where concentrations increased at the beginning of the network, followed by a drop in the concentrations towards the ends of the network. In spite of certain disparities in the individual spatio-temporal variation profiles, strong correlations were generally observed between NrDBPs, and trihalomethanes (THMs) and haloacetic acids (HAAs). Therefore, THMs and HAAs could be good statistical indicators of the presence of NrDBPs in the drinking water of the system under study.

  2. Studies on Disinfection By-Products and Drinking Water

    Science.gov (United States)

    Rostad, Colleen E.

    2007-01-01

    Drinking water is disinfected with chemicals to remove pathogens, such as Giardia and Cryptosproridium, and prevent waterborne diseases such as cholera and typhoid. During disinfection, by-products are formed at trace concentrations. Because some of these by-products are suspected carcinogens, drinking water utilities must maintain the effectiveness of the disinfection process while minimizing the formation of by-products.

  3. Formation and Occurrence of Disinfection By-Products

    Science.gov (United States)

    Disinfection by-products (DBPs) are formed when disinfectants such as chlorine, ozone, chlorine dioxide, or chloramines react with naturally occurring organic matter, anthropogenic contaminants, bromide, and iodide during the production of drinking water. There is concern about D...

  4. Genotoxicity of Disinfection By-products: Comparison to Carcinogenicity

    Science.gov (United States)

    Disinfection by-products (DBPs) can be formed when water is disinfected by various agents such as chlorine, ozone, or chloramines. Among the >600 DBPs identified in drinking water, 11 are regulated by the U.S. Environmental Protection Agency, and another ~70 DBPs that occur at s...

  5. IDENTIFICATION OF NEW DISINFECTION BY-PRODUCTS IN DRINKING WATER

    Science.gov (United States)

    Due to concern over the potential adverse health effects of trihalomethanes (THMs) and other chlorinated by-products in chlorinated drinking water, alternative disinfectants are being explored. Ozone, chlorine dioxide, and chloramine are popular alternatives, as they produce low...

  6. THE UPTAKE OF WATER DISINFECTION BY-PRODUCTS INTO FOODS DURING HOME PROCESSING

    Science.gov (United States)

    A variety of organic compounds in tap water are produced as a result of disinfection process. Use of chlorine-containing chemicals for disinfection produces many disinfection by-products (DBPs) including trihalomethanes, haloacetonitriles and haloacetic acid. Ozonation with secon...

  7. Disinfection by-product formation during seawater desalination: A review.

    Science.gov (United States)

    Kim, Daekyun; Amy, Gary L; Karanfil, Tanju

    2015-09-15

    Due to increased freshwater demand across the globe, seawater desalination has become the technology of choice in augmenting water supplies in many parts of the world. The use of chemical disinfection is necessary in desalination plants for pre-treatment to control both biofouling as well as the post-disinfection of desalinated water. Although chlorine is the most commonly used disinfectant in desalination plants, its reaction with organic matter produces various disinfection by-products (DBPs) (e.g., trihalomethanes [THMs], haloacetic acids [HAAs], and haloacetonitriles [HANs]), and some DBPs are regulated in many countries due to their potential risks to public health. To reduce the formation of chlorinated DBPs, alternative oxidants (disinfectants) such as chloramines, chlorine dioxide, and ozone can be considered, but they also produce other types of DBPs. In addition, due to high levels of bromide and iodide concentrations in seawater, highly cytotoxic and genotoxic DBP species (i.e., brominated and iodinated DBPs) may form in distribution systems, especially when desalinated water is blended with other source waters having higher levels of organic matter. This article reviews the knowledge accumulated in the last few decades on DBP formation during seawater desalination, and summarizes in detail, the occurrence of DBPs in various thermal and membrane plants involving different desalination processes. The review also identifies the current challenges and future research needs for controlling DBP formation in seawater desalination plants and to reduce the potential toxicity of desalinated water.

  8. Health impact of disinfection by-products in swimming pools

    OpenAIRE

    Villanueva, Cristina M.; Laia Font-Ribera

    2012-01-01

    This article is focused on the epidemiological evidence on the health impacts related to disinfection by-products (DBPs) in swimming pools, which is a chemical hazard generated as an undesired consequence to reduce the microbial pathogens. Specific DBPs are carcinogenic, fetotoxic and/or irritant to the airways according to experimental studies. Epidemiological evidence shows that swimming in pools during pregnancy is not associated with an increased risk of reproductive outcomes. An epidemio...

  9. Chlorine dioxine DBPs (disinfection by-products in drinking water

    Directory of Open Access Journals (Sweden)

    C. Lasagna

    2013-01-01

    Full Text Available Since the 1970s it has been well known that, though water for human consumption is generally disinfected before being distributed along the network, the use of chemicals results in the formation of many different Disinfection By-Products (DBPs. In the case of chlorine dioxide, the most important and represented DBPs are chlorite and chlorate: after an introduction concerning the current Italian regulation on this subject, in the experimental part the results of a 7-year minitoring campaign, concerning water of different origin collected from taps in various Italian regions, are shown. The analytical technique used for the determination of chlorite and chlorate was Ion Chromatography. The result obtained are finally discussed.

  10. Detection of regulated disinfection by-products in cheeses.

    Science.gov (United States)

    Cardador, Maria Jose; Gallego, Mercedes; Cabezas, Lourdes; Fernández-Salguero, Jose

    2016-08-01

    Cheese can contain regulated disinfection by-products (DBPs), mainly through contact with brine solutions prepared in disinfected water or sanitisers used to clean all contact surfaces, such as processing equipment and tanks. This study has focused on the possible presence of up to 10 trihalomethanes (THMs) and 13 haloacetic acids (HAAs) in a wide range of European cheeses. The study shows that 2 THMs, (in particular trichloromethane) and 3 HAAs (in particular dichloroacetic acid) can be found at μg/kg levels in the 56 cheeses analysed. Of the two types of DBPs, HAAs were generally present at higher concentrations, due to their hydrophilic and non-volatile nature. Despite their different nature (THMs are lipophilic), both of them have an affinity for fatty cheeses, increasing their concentrations as the percentage of water decreased because the DBPs were concentrated in the aqueous phase of the cheeses.

  11. Minimization of the formation of disinfection by-products.

    Science.gov (United States)

    Badawy, Mohamed I; Gad-Allah, Tarek A; Ali, Mohamed E M; Yoon, Yeoman

    2012-09-01

    The drinking water industry is required to minimize DBPs levels while ensuring adequate disinfection. In this study, efficient and appropriate treatment scheme for the reduction of disinfection by-product (DBPs) formation in drinking water containing natural organic matter has been established. This was carried out by the investigation of different treatment schemes consisting of enhanced coagulation, sedimentation, disinfection by using chlorine dioxide/ozone, filtration by sand filter, or granular activated carbon (GAC). Bench scale treatment schemes were applied on actual samples from different selected sites to identify the best conditions for the treatment of water. Samples were collected from effluent of each step in the treatment train in order to analyze pH, UV absorbance at 254 nm (UVA(254)), specific UV absorbance at 254 nm (SUVA(254)), dissolved organic carbon (DOC), haloacetic acids (HAAs) and trihalomethanes (THMs). The obtained results indicated that using pre-ozonation/enhanced coagulation/activated carbon filtration treatment train appears to be the most effective method for reducing DBPs precursors in drinking water treatment.

  12. Integrated Disinfection By-Products Mixtures Research: Concentration by Reverse Osmosis Membrane Techniques of Disinfection By-Products from Water Disinfected by Chlorination and Ozonation/Postchlorination

    Science.gov (United States)

    To conduct the health-effect studies described in subsequent articles in this series, concentrated aqueous mixtures of disinfection by-products were required for the two water treatment trains described in the preceding article (Miltner et al., 2008). To accomplish this, the fini...

  13. Integrated Disinfection By-Products Mixtures Research: Concentration by Reverse Osmosis Membrane Techniques of Disinfection By-Products from Water Disinfected by Chlorination and Ozonation/Postchlorination

    Science.gov (United States)

    To conduct the health-effect studies described in subsequent articles in this series, concentrated aqueous mixtures of disinfection by-products were required for the two water treatment trains described in the preceding article (Miltner et al., 2008). To accomplish this, the fini...

  14. MULTISPECTRAL IDENTIFICATION OF CHLORINE DIOXIDE DISINFECTION BY-PRODUCTS IN DRINKING WATER

    Science.gov (United States)

    This paper discusses the identification of organic disinfection by-products (DBPs) at a pilot plant in Evansville, Indiana, that uses chlorine dioxide as a primary disinfectant. nconventional multispectral identification techniques (gas chromatography combined with high and low r...

  15. MULTISPECTRAL IDENTIFICATION OF CHLORINE DIOXIDE DISINFECTION BY-PRODUCTS IN DRINKING WATER

    Science.gov (United States)

    This paper discusses the identification of organic disinfection by-products (DBPs) at a pilot plant in Evansville, Indiana, that uses chlorine dioxide as a primary disinfectant. nconventional multispectral identification techniques (gas chromatography combined with high and low r...

  16. Health impact of disinfection by-products in swimming pools.

    Science.gov (United States)

    Villanueva, Cristina M; Font-Ribera, Laia

    2012-01-01

    This article is focused on the epidemiological evidence on the health impacts related to disinfection by-products (DBPs) in swimming pools, which is a chemical hazard generated as an undesired consequence to reduce the microbial pathogens. Specific DBPs are carcinogenic, fetotoxic and/or irritant to the airways according to experimental studies. Epidemiological evidence shows that swimming in pools during pregnancy is not associated with an increased risk of reproductive outcomes. An epidemiological study suggested an increased risk of bladder cancer with swimming pool attendance, although evidence is inconclusive. A higher prevalence of respiratory symptoms including asthma is found among swimming pool workers and elite swimmers, although the causality of this association is unclear. The body of evidence in children indicates that asthma is not increased by swimming pool attendance. Overall, the available knowledge suggests that the health benefits of swimming outweigh the potential health risks of chemical contamination. However, the positive effects of swimming should be enhanced by minimising potential risks.

  17. An insight of disinfection by-product (DBP) formation by alternative disinfectants for swimming pool disinfection under tropical conditions.

    Science.gov (United States)

    Yang, Linyan; Schmalz, Christina; Zhou, Jin; Zwiener, Christian; Chang, Victor W-C; Ge, Liya; Wan, Man Pun

    2016-09-15

    Sodium hypochlorite (NaClO) is the most commonly used disinfectant in pool treatment system. Outdoor pools usually suffer from the strong sunlight irradiation which degrades the free chlorine rapidly. In addition, more pools start to adopt the recirculation of swimming pool water, which intensifies the disinfection by-product (DBP) accumulation issue. Given these potential drawbacks of using NaClO in the tropical environment, two alternative organic-based disinfectants, trichloroisocyanuric acid (TCCA, C3Cl3N3O3) and bromochlorodimethylhydantoin (BCDMH, C5H6BrClN2O2), were investigated and compared to NaClO in terms of their self-degradation and the formation of DBPs, including trihalomethanes (THMs) and haloacetic acids (HAAs), under simulated tropical climate conditions. The result reveals that halogen stabilizer, TCCA, had the advantages of slower free chlorine degradation and lower DBP concentration compared to NaClO, which makes it a good alternative disinfectant. BCDMH was not recommended mainly due to the highly reactive disinfecting ingredient, hypobromous acid (HBrO), which fails to sustain the continuous disinfection requirement. Total disinfectant dosage was the main factor that affects residual chlorine/bromine and THM/HAA formation regardless of different disinfectant dosing methods, e.g. shock dosing (one-time spiking) in the beginning, and continuous dosing during the whole experimental period. Two-stage second-order-kinetic-based models demonstrate a good correlation between the measured and predicted data for chlorine decay (R(2) ≥ 0.95), THM (R(2) ≥ 0.99) and HAA (R(2) ≥ 0.83) formation. Higher temperature was found to enhance the DBP formation due to the temperature dependence of reaction rates. Thus, temperature control of pools, especially for those preferring higher temperatures (e.g. hydrotherapy and spa), should take both bather comfort and DBP formation potential into consideration. It is also observed that chlorine competition

  18. Influence of ultrasound enhancement on chlorine dioxide consumption and disinfection by-products formation for secondary effluents disinfection.

    Science.gov (United States)

    Zhou, Xiaoqin; Zhao, Junyuan; Li, Zifu; Lan, Juanru; Li, Yajie; Yang, Xin; Wang, Dongling

    2016-01-01

    Chlorine dioxide (ClO2) has been promoted as an alternative disinfectant because of its high disinfection efficiency and less formation of organic disinfection by-products (DBPs). However, particle-associated microorganisms could be protected during the disinfection process, which decreases the disinfection efficiency or increases the required dosage. Besides, the formation of inorganic disinfection by-products is a significant concern in environment health. Ultrasound (US)-combined disinfection methods are becoming increasingly attractive because they are efficient and environmentally friendly. In this study, US was introduced as an enhancement method to identify its influence on ClO2 demand reduction and to minimize the production of potential DBPs for secondary effluents disinfection. Fecal coliform was used as an indicator, and DBPs, including trichloromethane (TCM), dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), chlorite (ClO2(-)), and chlorate (ClO3(-)), were analyzed to observe the potential DBPs formation. Results show that US pretreatment could reduce half of ClO2 dosage compared with ClO2 disinfection alone for the same disinfection efficiency, and that an input power density of 2.64 kJ/L pretreatment with the 1.5mg/L ClO2 was enough to meet the discharge requirement in China (i.e., fecal coliform below 1000 CFU/L for Class 1A) for secondary effluent disinfection, and the ClO2(-) concentration in the disinfection effluent was only 1.37 mg/L at the same time. Furthermore, the different effects of US on the two processes (US as pretreatment and simultaneous US/ClO2 disinfection) were also analyzed, including deagglomerating, cell damage, and synergistic disinfection as well as degasing/sonolysis. It was proved that the production of TCM, DCAA, and TCAA was insignificantly influenced with the introduction of US, but US pretreatment did reduce the production of ClO2(-) and ClO3(-) effectually. In general, US pretreatment could be a better option for

  19. Health impact of disinfection by-products in swimming pools

    Directory of Open Access Journals (Sweden)

    Cristina M. Villanueva

    2012-12-01

    Full Text Available This article is focused on the epidemiological evidence on the health impacts related to disinfection by-products (DBPs in swimming pools, which is a chemical hazard generated as an undesired consequence to reduce the microbial pathogens. Specific DBPs are carcinogenic, fetotoxic and/or irritant to the airways according to experimental studies. Epidemiological evidence shows that swimming in pools during pregnancy is not associated with an increased risk of reproductive outcomes. An epidemiological study suggested an increased risk of bladder cancer with swimming pool attendance, although evidence is inconclusive. A higher prevalence of respiratory symptoms including asthma is found among swimming pool workers and elite swimmers, although the causality of this association is unclear. The body of evidence in children indicates that asthma is not increased by swimming pool attendance. Overall, the available knowledge suggests that the health benefits of swimming outweigh the potential health risks of chemical contamination. However, the positive effects of swimming should be enhanced by minimising potential risks.

  20. DISINFECTION BY-PRODUCT FORMATION AND CONTROL BY OZONATION AND BIOTREATMENT

    Science.gov (United States)

    There is increasing interest in using ozone in water treatment because it is a strong disinfectant and is able to oxidize the precursors of some disinfection by-products (DBPs). However, ozonation itself produces DBPs, like aldehydes and ketones, and increases the concentration ...

  1. [Formation of Disinfection By-Products During Chlor(am)ination of Danjiangkou Reservoir Water and Comparison of Disinfection Processes].

    Science.gov (United States)

    Zhang, Min-sheng; Xu, Bin; Zhang, Tian-yang; Cheng, Tuo; Xia, Sheng-ji; Chu, Wen-hai

    2015-09-01

    This study discussed the formation of volatile carbonaceous disinfection by-products (DBPs) and nitrogenous DBPs during chlor(am) ination of Danjingkou Reservoir water which was the source of the Middle Route Project of South-to-North Water Diversion Project. The effects of disinfection methods, disinfectant dosage, reaction time, pH values and bromide ion concentration were investigated. And the disinfection parameters were optimized. Four DBPs, including chloroform (CF), bromodichloromethane (BDCM), dichloroacetonitrile(DCAN) and trichloronitromethane(TCNM), were observed during the chlorination. But only CF and TCNM were detected during the chloramination of water. The disinfection by-product (DBP) concentration from chlorination is 7. 5 times higher than that from chloramination, and the yield of DBPs from short time chlorination then chloramination is in between the first two methods. All kinds of DBPs detected increased with the dosage of increasing chlorine, but the increases slowed down when the dosage was higher than 2 mg . L -1. The formation of CF varied a little as the dosage of chloramine increasing. TCNM was detected when the chloramine dosage was greater than 2 mg . L -1. As reaction time going on, chlorine decayed much faster than chloramine, while DBP formation under chlorination was faster than that of chloramination. THM produced by chlorine increased with the increasing pH, while chloramination showed no obvious changes. As the bromide ion increasing, the species of DBPs transformed from chlorinated DBPs to brominated ones, and the total yield of DBPs increased during both chlorination and chloramination, but the former one was obviously more than that of the latter one. In order to reduce the risk of DBP formation, the chloramination is suggested in the treatment of water from Danjiangkou Reservoir. And if chlorination is applied, the disinfectant dosage should be controlled seriously.

  2. Formation and modeling of disinfection by-products in drinking water of six cities in China.

    Science.gov (United States)

    Ye, Bixiong; Wang, Wuyi; Yang, Linsheng; Wei, Jianrong; E, Xueli

    2011-05-01

    Water quality parameters including TOC, UV(254), pH, chlorine dosage, bromide concentration and disinfection by-products were measured in water samples from 41 water treatment plants of six selected cities in China. Chloroform, bromodichloromethane, dibromochloromethane, dichloroacetic acid and trichloroacetic acid were the major disinfection by-products in the drinking water of China. Bromoform and dibromoacetic acid were also detected in many water samples. Higher concentrations of trihalomethanes and haloacetic acids were measured in summer compared to winter. The geographical variations in DBPs showed that TTHM levels were higher in Zhengzhou and Tianjin than other selected cities. And the HAA5 levels were highest in Changsha and Tianjin. The modeling procedure that predicts disinfection by-products formation was studied and developed using artificial neural networks. The performance of the artificial neural networks model was excellent (r > 0.84).

  3. MUTAGENICITY AND DISINFECTION BY-PRODUCTS IN SURFACE DRINKING WATER DISINFECTED WITH PERACETIC ACID

    Science.gov (United States)

    The aims of this research were to study the influence of peracetic acid (PAA) on the formation of mutagens in surface waters used for human consumption and to assess its potential application for the disinfection of drinking water. The results obtained using PAA were compared to ...

  4. Simultaneous Control of Microorganisms and Disinfection By-products by Sequential Chlorination

    Institute of Scientific and Technical Information of China (English)

    CHAO CHEN; XIAO-JIAN ZHANG; WEN-JIE HE; HONG-DA HAN

    2007-01-01

    Objective To introduce a new sequential chlorination disinfection process in which short-term free chlorine and chloramine are sequentially added. Methods Pilot tests of this sequential chlorination were carried out in a drinking water plant. Results The sequential chlorination disinfection process had the same or better efficiency on microbe (including virus)inactivation compared with the free chlorine disinfection process. There seemed to be some synergetic disinfection effect between free chlorine and monochloramine because they attacked different targets. The sequential chlorination disinfection process resulted in 35.7%-77.0% TTHM formation and 36.6%-54.8% THAA5 formation less than the free chlorination process.The poorer the water quality was, the more advantage the sequential chlorination disinfection had over the free chlorination.Conclusion This process takes advantages of free chlorine's quick inactivation of microorganisms and chloramine's low disinfection by-product (DBP) yield and long-term residual effect, allowing simultaneous control of microbes and DBPs in an effective and economic way.

  5. Occurrence and formation of disinfection by-products in the swimming pool environment: A critical review.

    Science.gov (United States)

    Carter, Rhys A A; Joll, Cynthia A

    2017-08-01

    Disinfection of water for human use is essential to protect against microbial disease; however, disinfection also leads to formation of disinfection by-products (DBPs), some of which are of health concern. From a chemical perspective, swimming pools are a complex matrix, with continual addition of a wide range of natural and anthropogenic chemicals via filling waters, disinfectant addition, pharmaceuticals and personal care products and human body excretions. Natural organic matter, trace amounts of DBPs and chlorine or chloramines may be introduced by the filling water, which is commonly disinfected distributed drinking water. Chlorine and/or bromine is continually introduced via the addition of chemical disinfectants to the pool. Human body excretions (sweat, urine and saliva) and pharmaceuticals and personal care products (sunscreens, cosmetics, hair products and lotions) are introduced by swimmers. High addition of disinfectant leads to a high formation of DBPs from reaction of some of the chemicals with the disinfectant. Swimming pool air is also of concern as volatile DBPs partition into the air above the pool. The presence of bromine leads to the formation of a wide range of bromo- and bromo/chloro-DBPs, and Br-DBPs are more toxic than their chlorinated analogues. This is particularly important for seawater-filled pools or pools using a bromine-based disinfectant. This review summarises chemical contaminants and DBPs in swimming pool waters, as well as in the air above pools. Factors that have been found to affect DBP formation in pools are discussed. The impact of the swimming pool environment on human health is reviewed. Copyright © 2017. Published by Elsevier B.V.

  6. Short-term spatial and temporal variability of disinfection by-product occurrence in small drinking water systems.

    Science.gov (United States)

    Guilherme, Stéphanie; Rodriguez, Manuel J

    2015-06-15

    Disinfection by-products (DBPs) constitute a large family of compounds. Trihalomethanes and haloacetic acids are regulated in various countries, but most DBPs are not. Monitoring DBPs can be delicate, especially for small systems, because various factors influence their formation and speciation. Short-term variations of DBPs can be important and particularly difficult for small systems to handle because they require robust treatment and operation processes. According to our knowledge, for the first time, our study covers the short-term variability of regulated and non-regulated DBP occurrence in small systems in the summer. An intensive sampling program was carried out in six small systems in Canada. Systems in the provinces of Newfoundland and Labrador and Quebec were sampled daily at the water treatment plant and at six different locations along the distribution system. Five DBP families were studied: trihalomethanes, haloacetic acids, haloacetonitriles, halonitromethanes and haloketones. Results show that there were considerable variations in DBP levels from week to week during the month of study and even from day to day within the week. On a daily basis, DBP levels can fluctuate by 22% to 96%. Likewise, the large number of sampling locations served to observe DBP variations along the distribution system. Observations revealed some degradation and decomposition of non-regulated DBPs never before studied in small systems that are associated with the difficulty these systems experience in maintaining adequate levels of residual disinfectant. Finally, this study reveals that the short term temporal variability of DBPs is also influenced by spatial location along the distribution system. In the short term, DBP levels can fluctuate by 23% at the beginning of the system, compared to 40% at the end. Thus, spatial and temporal variations of DBPs in the short term may make it difficult to select representative locations and periods for DBP monitoring purposes in small

  7. ANIMAL MODELS FOR STUDYING MISCARRIAGE: ILLUSTRATION WITH STUDY OF DRINKING WATER DISINFECTION BY-PRODUCTS

    Science.gov (United States)

    Animal models for studying miscarriage: Illustration with study of drinking water disinfection by-productsAuthors & affiliations:Narotsky1, M.G. and S. Bielmeier Laffan2.1Reproductive Toxicology Division, NHEERL, ORD, U.S. Environmental Protection Agency, Research Tri...

  8. [Degradation Kinetics and Formation of Disinfection By-products During Linuron Chlorination in Drinking Water].

    Science.gov (United States)

    Ling, Xiao; Hu, Chen-yan; Cheng, Ming; Gu, Jian

    2015-05-01

    Chlorination degradation of linuron was studied using the common disinfectant sodium hypochlorite, the effects of chlorine dosage, pH value, bromine ion concentrationand temperature were systematically investigated, and the formation characteristics of disinfection by-products (DBPs) during the chlorination reaction was analyzed. The results showed that the chlorination degradation kinetics of linuron by sodium hypochlorite could be well described by the second-order kinetic model. Moreover, pH values had a great impact on the degradation reaction, and the rate constant reached the maximum level at pH 7, and the base elementary reaction rate constants of HOCl and OCl- with linuron were 4.84 x 10(2) L · (mol · h)(-1) and 3.80 x 10(2) L · (mol · h)(-1), respectively. The reaction rate decreased with the addition of bromide ion and increased with increasing temperature. Furthermore, many kinds of disinfection by- products were produced during the chlorination degradation of linuron, including CF, DCAN, TCNM and halogen acetone. Under conditions of different solution pH and different bromide ion concentrations, there would be significant difference in the types and concentrations of disinfection by-products.

  9. Disinfection aboard cruise liners and naval units: formation of disinfection by-products using chlorine dioxide in different qualities of drinking water.

    Science.gov (United States)

    Ufermann, Petra; Petersen, Hauke; Exner, Martin

    2011-12-01

    The world-wide deployment of cruise liners and naval units has caused an increased need for the disinfection of drinking water. The main cause for this is the unknown quality of drinking water in foreign harbours--besides the formation of bio-films due to the climatically disadvantageous conditions in the operational area. Water conduits on board are currently disinfected with calcium hypochlorite in case of microbiological contamination. Chemical and physical analyses after disinfection with calcium hypochlorite have shown that organic by-products consisting of trihalomethanes develop in considerable amounts during disinfection. Furthermore, the method is susceptible to handling errors and thus often leads to insufficient disinfection results. Hitherto, the use of other disinfection methods allowed by government regulations, especially chlorine dioxide, is not widely spread. Unlike disinfection with calcium hypochlorite, chlorine dioxide does not lead to the formation of trihalomethanes. Typical disinfection by-products (DBP) are the anions chlorite and chlorate, which are formed in oxidative processes. The formation conditions of these anions have not yet been elucidated. For this reason, the probability of the generation of inorganic by-products after disinfection with chlorine dioxide has been determined, and their occurrence in drinking water on board has been examined with respect to a possible correlation between water quality and the formation of chlorate and chlorite. Therefore, a chromatographic method was developed and validated in order to determine the periodical development of chlorate and chlorite from chorine dioxide in purified water at different pH-values as well as in actual drinking water samples from water conduits on board. The formation of the by-products chlorite and chlorate after disinfection with chlorine dioxide is influenced neither by pH-value nor by chemical properties of the disinfected water. Considering the examined conditions

  10. Formation of nitrogenous disinfection by-products in 10 chlorinated and chloraminated drinking water supply systems.

    Science.gov (United States)

    Liew, Deborah; Linge, Kathryn L; Joll, Cynthia A

    2016-09-01

    The presence of nitrogenous disinfection by-products (N-DBPs) in drinking water supplies is a public health concern, particularly since some N-DBPs have been reported to be more toxic than the regulated trihalomethanes and haloacetic acids. In this paper, a comprehensive evaluation of the presence of N-DBPs in 10 drinking water supply systems in Western Australia is presented. A suite of 28 N-DBPs, including N-nitrosamines, haloacetonitriles (HANs), haloacetamides (HAAms) and halonitromethanes (HNMs), were measured and evaluated for relationships with bulk parameters in the waters before disinfection. A number of N-DBPs were frequently detected in disinfected waters, although at generally low concentrations (water, N-DBP concentrations were significantly correlated with dissolved organic carbon (DOC) and ammonia, and these, in addition to high bromide in one of the waters, led to elevated concentrations of brominated HANs (26.6 μg/L of dibromoacetonitrile). There were significant differences in the occurrence of all classes of N-DBPs between chlorinated and chloraminated waters, except for HNMs, which were detected at relatively low concentrations in both water types. Trends observed in one large distribution system suggest that N-DBPs can continue to form or degrade within distribution systems, and redosing of disinfectant may cause further by-product formation.

  11. Drinking Water Disinfection by In-line Electrolysis: Product and Inorganic By-Product Formation

    Science.gov (United States)

    Bergmann, M. E. Henry

    This section covers peculiarities of so-called in-line electrolysis when drinking water is electrolysed to produce disinfection species killing microorganisms. Mainly mixed oxide electrodes (MIO) based on IrO2 and/or RuO2 coatings and boron-doped diamond electrodes were used in the studies. Artificial and real drinking water systems were electrolysed in continuous and discontinuous operating mode, varying water composition, current density and electrode materials. Results show, besides the ability of producing active chlorine, risks of inorganic disinfection by-products (DBPs) such as chlorate, perchlorate, nitrite, ammonium, chloramines, hydrogen peroxide and others. DBPs are responsible for analysis errors using DPD method for active chlorine measurements. Geometry may influence by-product yield. As a conclusion, the necessity of developing test routines for practical cell applications must be underlined.

  12. Ongoing Meta-analysis on the Association between Disinfection By-product Exposure and Small for Gestational Age Births

    Science.gov (United States)

    Disinfection by-products (DBPs) are potentially harmful chemicals formed in drinking water by the reaction of naturally occurring organic matter with disinfectants aimed to kill microbial pathogens. Though numerous DBP species exist, only a few species have been examined in toxic...

  13. CHRONIC EXPOSURE TO DIBROMOACETIC ACID, A WATER DISINFECTION BY-PRODUCT, DIMINISHES PRIMORDIAL FOLLICLES IN THE RABBIT

    Science.gov (United States)

    Exposure to dibromoacetic acid (DBA), a commonly occurring water disinfection by-product, has detrimental effects on spermatogenesis and fertility in rats and rabbits. Despite indications of important reproductive consequences of DBA exposure in males, reproductive sequelae follo...

  14. CHRONIC EXPOSURE TO DIBROMOACETIC ACID, A WATER DISINFECTION BY-PRODUCT, DIMINISHES PRIMORDIAL FOLLICLES IN THE RABBIT

    Science.gov (United States)

    Exposure to dibromoacetic acid (DBA), a commonly occurring water disinfection by-product, has detrimental effects on spermatogenesis and fertility in rats and rabbits. Despite indications of important reproductive consequences of DBA exposure in males, reproductive sequelae follo...

  15. Halogenated by-products of disinfecting ozonised recreational waters; Subproductos halaogenados de desinfeccion en aguas recreacionales ozonizadas

    Energy Technology Data Exchange (ETDEWEB)

    Goma i Huguet, A.; Quintana i Comte, J.; Soler i Vilaro, J.

    2005-07-01

    Recreational water like the present in swimming pools suffers, more than water from supply, formation of certain by-products in the local disinfection system because a mechanism of accumulation. Using advanced oxidation process, like onization, drives to a reduction of such an effect. Assessment of the presence of these disinfection by-products with and without onization, as well as the discussion of certain key aspects of how to ozonate, are the aim of this paper. (Author) 7 refs.

  16. Developmental Toxicity of Drinking Water Disinfection By-Products to Embryos of the African Clawed Frog (Xenopus laevis)

    Science.gov (United States)

    2005-06-10

    developmental toxicity tests with embryos of the South African clawed frog Xenopus laevis used to evaluate four individual DWDB; bromodichloromethane...SUBJECT TERMS Developmental toxicity; FETAX; water disinfection by-products; frogs ; Xenopus laevis; embryo malformations; embryo mortality...Disinfection By-Products to Embryos of the African Clawed Frog (Xenopus laevis) L. M. Brennan,1 M. W. Toussaint,1 D. M. Kumsher,1 W. E. Dennis,’ A. B

  17. Socioeconomic status and exposure to disinfection by-products in drinking water in Spain

    Directory of Open Access Journals (Sweden)

    Serra Consol

    2011-03-01

    Full Text Available Abstract Background Disinfection by-products in drinking water are chemical contaminants that have been associated with cancer and other adverse effects. Exposure occurs from consumption of tap water, inhalation and dermal absorption. Methods We determined the relationship between socioeconomic status and exposure to disinfection by-products in 1271 controls from a multicentric bladder cancer case-control study in Spain. Information on lifetime drinking water sources, swimming pool attendance, showering-bathing practices, and socioeconomic status (education, income was collected through personal interviews. Results The most highly educated subjects consumed less tap water (57% and more bottled water (33% than illiterate subjects (69% and 17% respectively, p-value = 0.003. These differences became wider in recent time periods. The time spent bathing or showering was positively correlated with attained educational level (p Conclusions The most highly educated subjects were less exposed to chlorination by-products through ingestion but more exposed through dermal contact and inhalation in pools and showers/baths. Health risk perceptions and economic capacity may affect patterns of water consumption that can result in differences in exposure to water contaminants.

  18. Occurrence and control of nitrogenous disinfection by-products in drinking water--a review.

    Science.gov (United States)

    Bond, Tom; Huang, Jin; Templeton, Michael R; Graham, Nigel

    2011-10-01

    The presence of nitrogenous disinfection by-products (N-DBPs), including nitrosamines, cyanogen halides, haloacetonitriles, haloacetamides and halonitromethanes, in drinking water is of concern due to their high genotoxicity and cytotoxicity compared with regulated DBPs. Occurrence of N-DBPs is likely to increase if water sources become impacted by wastewater and algae. Moreover, a shift from chlorination to chloramination, an option for water providers wanting to reduce regulated DBPs such as trihalomethanes (THMs) and haloacetic acids (HAAs), can also increase certain N-DBPs. This paper provides a critical review of the occurrence and control of N-DBPs. Data collated from surveys undertaken in the United States and Scotland were used to calculate that the sum of analysed halonitromethanes represented 3-4% of the mass of THMs on a median basis; with Pearson product moment correlation coefficients of 0.78 and 0.83 between formation of dihaloacetonitriles and that of THMs and HAAs respectively. The impact of water treatment processes on N-DBP formation is complex and variable. While coagulation and filtration are of moderate efficacy for the removal of N-DBP precursors, such as amino acids and amines, biofiltration, if used prior to disinfection, is particularly successful at removing cyanogen halide precursors. Oxidation before final disinfection can increase halonitromethane formation and decrease N-nitrosodimethylamine, and chloramination is likely to increase cyanogen halides and NDMA relative to chlorination. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Effect of chlorine dioxide on cyanobacterial cell integrity, toxin degradation and disinfection by-product formation.

    Science.gov (United States)

    Zhou, Shiqing; Shao, Yisheng; Gao, Naiyun; Li, Lei; Deng, Jing; Zhu, Mingqiu; Zhu, Shumin

    2014-06-01

    Bench scale tests were conducted to study the effect of chlorine dioxide (ClO2) oxidation on cell integrity, toxin degradation and disinfection by-product formation of Microcystis aeruginosa. The simulated cyanobacterial suspension was prepared at a concentration of 1.0×10(6)cells/mL and the cell integrity was measured with flow cytometry. Results indicated that ClO2 can inhibit the photosynthetic capacity of M. aeruginosa cells and almost no integral cells were left after oxidation at a ClO2 dose of 1.0mg/L. The total toxin was degraded more rapidly with the ClO2 dosage increasing from 0.1mg/L to 1.0mg/L. Moreover, the damage on cell structure after oxidation resulted in released intracellular organic matter, which contributed to the formation of trihalomethanes (THMs) and haloacetic acids (HAAs) as disinfection by-products. Therefore, the use of ClO2 as an oxidant for treating algal-rich water should be carefully considered.

  20. New chlorinated amphetamine-type-stimulants disinfection-by-products formed during drinking water treatment.

    Science.gov (United States)

    Huerta-Fontela, Maria; Pineda, Oriol; Ventura, Francesc; Galceran, Maria Teresa

    2012-06-15

    Previous studies have demonstrated high removal rates of amphetamine-type-stimulants (ATSs) through conventional drinking water treatments; however the behaviour of these compounds through disinfection steps and their transformation into disinfection-by-products (DBPs) is still unknown. In this work, for the first time, the reactivity of some ATSs such as amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyethylamphetamine (MDEA) with chlorine has been investigated under simulated and real drinking water treatment conditions in order to evaluate their ability to give rise to transformation products. Two new DBPs from these illicit drugs have been found. A common chlorinated-by-product (3-chlorobenzo)-1,3-dioxole, was identified for both MDA and MDEA while for MDMA, 3-chlorocatechol was found. The presence of these DBPs in water samples collected through drinking water treatment was studied in order to evaluate their formation under real conditions. Both compounds were generated through treatment from raw river water samples containing ATSs at concentration levels ranging from 1 to 15 ng/L for MDA and from 2.3 to 78 ng/L for MDMA. One of them, (3-chlorobenzo)-1,3-dioxole, found after the first chlorination step, was eliminated after ozone and GAC treatment while the MDMA DBP mainly generated after the postchlorination step, showed to be recalcitrant and it was found in final treated waters at concentrations ranging from 0.5 to 5.8 ng/L.

  1. DEVELOPMENT OF A NOVEL METHOD FOR ANALYSIS OF TRANSCRIPTIONAL CHANGES IN TRANSITIONAL EPITHELIUM FROM URINARY BLADDERS OF RATS EXPOSED TO DRINKING WATER DISINFECTION BY-PRODUCTS

    Science.gov (United States)

    Development of a Novel Method for Analysis of Transcriptional Changes in Transitional Epithelium from Urinary Bladders of Rats Exposed to Drinking Water Disinfection By- products.Epidemiologic studies in human populations that drink chemically disinfected drinking wa...

  2. Bioanalytical and chemical assessment of the disinfection by-product formation potential: role of organic matter.

    Science.gov (United States)

    Farré, Maria José; Day, Sophie; Neale, Peta A; Stalter, Daniel; Tang, Janet Y M; Escher, Beate I

    2013-09-15

    Disinfection by-products (DBP) formed from natural organic matter and disinfectants like chlorine and chloramine may cause adverse health effects. Here, we evaluate how the quantity and quality of natural organic matter and other precursors influence the formation of DBPs during chlorination and chloramination using a comprehensive approach including chemical analysis of regulated and emerging DBPs, total organic halogen quantification, organic matter characterisation and bioanalytical tools. In vitro bioassays allow us to assess the hazard potential of DBPs early in the chain of cellular events, when the DBPs react with their molecular target(s) and activate stress response and defence mechanisms. Given the reactive properties of known DBPs, a suite of bioassays targeting reactive modes of toxic action including genotoxicity and sensitive early warning endpoints such as protein damage and oxidative stress were evaluated in addition to cytotoxicity. Coagulated surface water was collected from three different drinking water treatment plants, along with reverse osmosis permeate from a desalination plant, and DBP formation potential was assessed after chlorination and chloramination. While effects were low or below the limit of detection before disinfection, the observed effects and DBP levels increased after disinfection and were generally higher after chlorination than after chloramination, indicating that chlorination forms higher concentrations of DBPs or more potent DBPs in the studied waters. Bacterial cytotoxicity, assessed using the bioluminescence inhibition assay, and induction of the oxidative stress response were the most sensitive endpoints, followed by genotoxicity. Source waters with higher dissolved organic carbon levels induced increased DBP formation and caused greater effects in the endpoints related to DNA damage repair, glutathione conjugation/protein damage and the Nrf2 oxidative stress response pathway after disinfection. Fractionation studies

  3. Bioanalytical and chemical evaluation of disinfection by-products in swimming pool water.

    Science.gov (United States)

    Yeh, Ruby Y L; Farré, Maria José; Stalter, Daniel; Tang, Janet Y M; Molendijk, Jeffrey; Escher, Beate I

    2014-08-01

    Pool water disinfection is vital to prevent microbial pathogens. However, potentially hazardous disinfection by-products (DBP) are formed from the reaction between disinfectants and organic/inorganic precursors. The aim of this study was to evaluate the presence of DBPs in various swimming pool types in Brisbane, Australia, including outdoor, indoor and baby pools, and the dynamics after a complete water renewal. Chemical analysis of 36 regulated and commonly found DBPs and total adsorbable organic halogens as well as in vitro bioassays targeting cytotoxicity, oxidative stress and genotoxicity were used to evaluate swimming pool water quality. Dichloroacetic acid and trichloroacetic acid dominated in the pool water samples with higher levels (up to 2600 μg/L) than the health guideline values set by the Australian Drinking Water Guidelines (100 μg/L). Chlorinated DBPs occurred at higher concentrations compared to tap water, while brominated DBPs decreased gradually with increasing pool water age. Biological effects were expressed as chloroacetic acid equivalent concentrations and compared to predicted effects from chemical analysis and biological characterisation of haloacetic acids. The quantified haloacetic acids explained 35-118% of the absorbable organic halogens but less than 4% of the observed non-specific toxicity (cytotoxicity), and less than 1% of the observed oxidative stress response and genotoxicity. While the DBP concentrations in Australian pools found in this study are not likely to cause any adverse health effect, they are higher than in other countries and could be reduced by better hygiene of pool users, such as thorough showering prior to entering the pool and avoiding urination during swimming.

  4. Seasonal evaluation of the presence of 46 disinfection by-products throughout a drinking water treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, Maria; Montesinos, Isabel; Cardador, M.J.; Silva, Manuel; Gallego, Mercedes, E-mail: mercedes.gallego@uco.es

    2015-06-01

    In this work, we studied a total of 46 regulated and non-regulated disinfection by-products (DBPs) including 10 trihalomethanes (THMs), 13 haloacetic acids (HAAs), 6 halonitromethanes (HNMs), 6 haloacetonitriles (HANs) and 11 aldehydes at different points in a drinking water treatment plant (DWTP) and its distribution network. Determining an increased number of compounds and using accurate, sensitive analytical methodologies for new DBPs can be useful to overcome some challenges encountered in the comprehensive assessment of the quality and safety of drinking water. This paper provides a detailed picture of the spatial and seasonal variability of DBP concentrations from raw water to distribution network. Samples were collected on a monthly basis at seven different points in the four seasons of a year to acquire robust data for DBPs and supplementary quality-related water parameters. Only 5 aldehydes and 2 HAAs were found in raw water. Chlorine dioxide caused the formation of 3 new aldehydes (benzaldehyde included), 5 HAAs and chloroform. The concentrations of DBPs present in raw water were up to 6 times higher in the warmer seasons (spring and summer). The sedimentation process further increased their concentrations and caused the formation of three new ones. Sand filtration substantially removed aldehydes and HAAs (15–50%), but increased the levels of THMs, HNMs and HANs by up to 70%. Chloramination raised the levels of 8 aldehydes and 7 HAAs; also, it caused the formation of monoiodoacetic acid, dibromochloromethane, dichloroiodomethane and bromochloroacetonitrile. Therefore, this treatment increases the levels of existing DBPs and leads to the formation of new ones to a greater extent than does chlorine dioxide. Except for 5 aldehydes, the 23 DBPs encountered at the DWTP exit were found at increased concentrations in the warmer seasons (HAAs by about 50% and THMs by 350%). - Highlights: • Occurrence of 46 regulated and non-regulated DBPs through a DWTP was

  5. Seasonal evaluation of the presence of 46 disinfection by-products throughout a drinking water treatment plant.

    Science.gov (United States)

    Serrano, Maria; Montesinos, Isabel; Cardador, M J; Silva, Manuel; Gallego, Mercedes

    2015-06-01

    In this work, we studied a total of 46 regulated and non-regulated disinfection by-products (DBPs) including 10 trihalomethanes (THMs), 13 haloacetic acids (HAAs), 6 halonitromethanes (HNMs), 6 haloacetonitriles (HANs) and 11 aldehydes at different points in a drinking water treatment plant (DWTP) and its distribution network. Determining an increased number of compounds and using accurate, sensitive analytical methodologies for new DBPs can be useful to overcome some challenges encountered in the comprehensive assessment of the quality and safety of drinking water. This paper provides a detailed picture of the spatial and seasonal variability of DBP concentrations from raw water to distribution network. Samples were collected on a monthly basis at seven different points in the four seasons of a year to acquire robust data for DBPs and supplementary quality-related water parameters. Only 5 aldehydes and 2 HAAs were found in raw water. Chlorine dioxide caused the formation of 3 new aldehydes (benzaldehyde included), 5 HAAs and chloroform. The concentrations of DBPs present in raw water were up to 6 times higher in the warmer seasons (spring and summer). The sedimentation process further increased their concentrations and caused the formation of three new ones. Sand filtration substantially removed aldehydes and HAAs (15-50%), but increased the levels of THMs, HNMs and HANs by up to 70%. Chloramination raised the levels of 8 aldehydes and 7 HAAs; also, it caused the formation of monoiodoacetic acid, dibromochloromethane, dichloroiodomethane and bromochloroacetonitrile. Therefore, this treatment increases the levels of existing DBPs and leads to the formation of new ones to a greater extent than does chlorine dioxide. Except for 5 aldehydes, the 23 DBPs encountered at the DWTP exit were found at increased concentrations in the warmer seasons (HAAs by about 50% and THMs by 350%).

  6. Evidence of arsenic release promoted by disinfection by-products within drinking-water distribution systems.

    Science.gov (United States)

    Andra, Syam S; Makris, Konstantinos C; Botsaris, George; Charisiadis, Pantelis; Kalyvas, Harris; Costa, Costas N

    2014-02-15

    Changes in disinfectant type could trigger a cascade of reactions releasing pipe-anchored metals/metalloids into finished water. However, the effect of pre-formed disinfection by-products on the release of sorbed contaminants (arsenic-As in particular) from drinking water distribution system pipe scales remains unexplored. A bench-scale study using a factorial experimental design was performed to evaluate the independent and interaction effects of trihalomethanes (TTHM) and haloacetic acids (HAA) on arsenic (As) release from either scales-only or scale-biofilm conglomerates (SBC) both anchored on asbestos/cement pipe coupons. A model biofilm (Pseudomonas aeruginosa) was allowed to grow on select pipe coupons prior experimentation. Either TTHM or HAA individual dosing did not promote As release from either scales only or SBC, detecting water. In the case of scales-only coupons, the combination of the highest spike level of TTHM and HAA significantly (pdisinfected finished water in pipe networks remains to be investigated in the field.

  7. Detection of genotoxic effects of drinking water disinfection by-products using Vicia faba bioassay.

    Science.gov (United States)

    Hu, Yu; Tan, Li; Zhang, Shao-Hui; Zuo, Yu-Ting; Han, Xue; Liu, Na; Lu, Wen-Qing; Liu, Ai-Lin

    2017-01-01

    Plant-based bioassays have gained wide use among the toxicological and/or ecotoxicological assessment procedures because of their simplicity, sensitivity, low cost, and reliability. The present study describes the use of Vicia faba (V. faba) micronucleus (MN) test and V. faba comet assay in the evaluation of the genotoxic potential of disinfection by-products (DBPs) commonly found in chlorine-disinfected drinking water. Five haloacetic acids and three halogenated acetonitriles were chosen as representatives of DBPs in this study because they are of potentially great public health risk. Results of the MN test indicated that monochloroacetic acid (MCA), monobromoacetic acid (MBA), dichloroacetic acid (DCA), dibromoacetic acid (DBA), trichloroacetic acid (TCA), and trichloroacetonitrile (TCAN) caused a statistically significant increase in MN frequency in V. faba root tip cells. However, no genotoxic response was observed for dichloroacetonitrile (DCAN) and dibromoacetonitrile (DBAN). Results of the comet assay showed that all tested DBPs induced a statistically significant increase in genomic DNA damage to V. faba root tip cells. On considering the capacity to detect genomic damage of a different nature, we suggest that a combination of V. faba MN test and V. faba comet assay is a useful tool for the detection of genotoxic effects of DBPs. It is worthy of assessing the feasibility of using V. faba comet assay combined with V. faba MN test to screen for the genotoxic activity of chlorinated drinking water in future work.

  8. Formation of disinfection by-products in the ultraviolet/chlorine advanced oxidation process.

    Science.gov (United States)

    Wang, Ding; Bolton, James R; Andrews, Susan A; Hofmann, Ron

    2015-06-15

    Disinfection by-product (DBP) formation may be a concern when applying ultraviolet light and free chlorine (UV/chlorine) as an advanced oxidation process (AOP) for drinking water treatment, due to typically large chlorine doses (e.g. 5-10 mg L(-1) as free chlorine). A potential mitigating factor is the low chlorine contact times for this AOP treatment (e.g. seconds). Full-scale and pilot-scale test results showed minimal trihalomethane (THM) and haloacetic acid (HAA) formation during UV/chlorine treatment, while dichloroacetonitrile (DCAN) and bromochloroacetonitrile (BCAN) were produced rapidly. Adsorbable organic halide (AOX) formation was significant when applying the UV/chlorine process in water that had not been previously chlorinated, while little additional formation was observed in prechlorinated water. Chlorine photolysis led to chlorate and bromate formation, equivalent to approximately 2-17% and 0.01-0.05% of the photolyzed chlorine, respectively. No perchlorate or chlorite formation was observed. During simulated secondary disinfection of AOP-treated water, DBP formation potential for THMs, HAAs, HANs, and AOX was observed to increase approximately to the same extent as was observed for pretreatment using the more common AOP of UV combined with hydrogen peroxide (UV/H2O2).

  9. Tracking disinfection by-products and arsenic removal during various drinking water treatment trains.

    Science.gov (United States)

    Tubić, Aleksandra; Dalmacija, Bozo; Agbaba, Jasmina; Ivancev-Tumbas, Ivana; Klasnja, Mile; Dalmacija, Milena

    2010-01-01

    In the central Banat region (Northern Serbia), groundwater is used as a drinking water source. Raw water originates from a 40-80 m and 100-150 m deep layer. It contains a high amount of natural organic matter (DOC = 9.17+/-0.87 mg C/L) with a trihalomethanes formation potential of 448+/-88.2 microg/L and a haloacetic acid formation potential of 174+/-68.9 microg/L. A high amount of arsenic (86.0+/-3.4 microg/L) is also found in this water. This study used a pilot-scale system to investigate the possibilities of combining polyaluminium chloride and ferrous-chloride to remove disinfection by-products precursors and arsenic by coagulation. Two treatment trains with different pre-treatment steps were investigated (ozone vs. H2O2/O3). For the final water polishing, filtration with granulated activated carbon (GAC) was applied. Both investigated treatment lines achieved a satisfactory chemical water quality. Simulation of disinfection conditions was performed and the contents of trihalomethanes and haloacetic acids measured, to investigate whether the chemical quality of the water remained satisfactory over a 48 hour period.

  10. Molecular structure of a new chlorinated disinfection by-product in drinking water

    Science.gov (United States)

    Gong, Huijuan; Wang, Huaqin; You, Zhen; Zou, Huixian; Shen, Xing

    2005-06-01

    A new found chlorinated disinfection by-product (DBP) in drinking water was isolated and characterized by MS, FTIR, 1H and 13C NMR spectroscopy. Single crystal X-ray diffraction method was also carried out to determinate the exact structure of the compound. The crystal is of monoclinic, and space group P2 1/ m with a=7.8800(16), b=6.7950(14), c=8.8350(18) Å, β=115.02(3)°, V=428.67(15) Å 3, Z=4, Dc=1.778 g/cm 3, μ=1.028 mm -1 and F(000)=228, R=0.0510 and wR=0.2205 for 982 unique reflections with 918 observed ones [ I>2 σ( I)]. The results confirmed the structure of this compound. It was finally identified as 2,2,4-trichloro-5-methoxy-cyclopent-4-ene-1,3-dione (TCMCD).

  11. Reducing the formation of disinfection by-products by pre-ozonation.

    Science.gov (United States)

    Chang, Cheng-Nan; Ma, Ying-Shih; Zing, Fang-Fong

    2002-01-01

    The objective of this study is to apply the pre-ozonation process to reduce the formation of disinfection by-products (DBPs). The raw water sample, collected from the Te-Chi Reservoir in central Taiwan, has been polluted by fertilizer. Three types of resins were used to isolate the natural organic matter into seven types of organic fractions. The pre-ozonation was used to oxidize each organic fraction to study the reduction of DBPs of each fraction. Experimental results indicated that the pre-ozonation could reduce the concentration of dissolved organic carbon resulting in the reduction of DBP formation. With the pre-ozonation, 9-54% of DOC and more than 40% of DBPs were reduced. With the analysis of UV adsorption and Fourier transform infrared spectrometer (FTIR), the reduction of A254 and unsaturated functional groups such as aromatic ring and C=C bond containing in the water sample is the major reaction mechanism.

  12. Removal of disinfection by-product formation potentials by biologically assisted GAC treatment

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The object of this paper is to evaluate the removal of disinfection by-products formation potential by artificially intensified biological activated carbon(BAC) process which is developed on the basis of traditional ozone granular activated carbon (GAC). The results show that 23.1% of trihalomethane formation potential (THMFP) and 68% of haloacetic acid formation potential (HAAFP) can be removed by BAC,respectively. Under the same conditions, the removal rates of the same substances were 12.2% and 13-25 % respectively only by GAC process. Compared with GAC, the high removal rates of the two formed potential substances were due to the increasing of bioactivity of the media and the synergistic capabilities of biological degradation cooperating with activated carbon adsorption of organic compounds. BAC process has some advantages such as long backwashing cycle time, low backwashing intensity and prolonged activated carbon lifetime, etc.

  13. Disinfection by-products in ballast water treatment: an evaluation of regulatory data.

    Science.gov (United States)

    Werschkun, Barbara; Sommer, Yasmin; Banerji, Sangeeta

    2012-10-15

    To reduce the global spread of invasive aquatic species, international regulations will soon require reductions of the number of organisms in ballast water discharged by ships. For this purpose, ballast water treatment systems were developed and approved by an international procedure. These systems rely on established water treatment principles which, to different degrees, have been proven to generate disinfection by-products with hazardous properties but have only scarcely been investigated in marine environments. Our study evaluates the publicly available documentation about approved ballast water treatment systems with regard to by-product formation. The most commonly employed methods are chlorination, ozonation, and ultraviolet (UV) irradiation. Chlorination systems generate trihalomethanes, halogenated acetic acids, and bromate in substantially larger quantities than reported for other areas of application. Levels are highest in brackish water, and brominated species predominate, in particular bromoform and dibromoacetic acid. Ozonation, which is less frequently utilized, produces bromoform in lower concentrations but forms higher levels of bromate, both of which were effectively reduced by active carbon treatment. In systems based on UV radiation, medium pressure lamps are employed as well as UV-induced advanced oxidation. For all UV systems, by-product formation is reported only occasionally. The most notable observations were small increases in nitrite, hydrogen peroxide, halogenated methanes and acetic acids. The assessment of by-product formation during ballast water treatment is limited by the lacking completeness and quality of available information. This concerns the extent and statistical characterisation of chemical analysis as well as the documentation of the test water parameters.

  14. Identification of endocrine active disinfection by-products (DBPs) that bind to the androgen receptor.

    Science.gov (United States)

    Holmes, Breanne E; Smeester, Lisa; Fry, Rebecca C; Weinberg, Howard S

    2017-11-01

    The formation of disinfection by-products (DBPs) in drinking water occurs when chemical disinfectants such as chlorine and chloramine react with natural organic matter and anthropogenic pollutants. Some DBPs have been linked to bladder cancer and infertility; however, the underlying mechanism of action is unknown. One possibility is disruption of the endocrine system, with DBPs binding to the androgen receptor and subsequently altering gene expression. Using the androgen receptor-binding assay and in silico molecular docking, the binding affinity of 21 suspected and known DBPs were tested individually at concentrations over the range 0.1 nM-2 mM. 14 DBPs were found to bind at IC50 values ranging from 1.86 mM for 2,3-dichloropropionamide to 13.5 μM for 3,4,5,6-tetrachloro-benzoquinone as compared to the positive control, 4-n-nonylphenol which bound at 31.6 μM. Since DBPs are present in drinking waters as mixtures, the question of how IC50 values for individual DBPs might be affected by the presence of other chemicals is addressed. Seven of the chemicals with the strongest binding affinities and one chemical with no binding affinity were tested in binary mixtures with 4-n-nonylphenol, a known androgenic chemical found in some surface waters. In these binary mixtures, concentration additive binding was observed. While typical levels of individual androgenic DBPs in drinking water are below their measured IC50 values, their combined binding abilities in mixtures could be a source of androgen disruption. Copyright © 2017. Published by Elsevier Ltd.

  15. Photochemical and bacterial transformations of disinfection by-product precursors in water.

    Science.gov (United States)

    Chow, Alex T; Díaz, Francisco J; Wong, Kin-Hang; O'Geen, Anthony T; Dahlgren, Randy A; Wong, Po-Keung

    2013-09-01

    In situ grab sampling from source waters and water extraction from source materials are common methods for determining disinfection by-product (DBP) formation potential (FP) of water samples or reactivity of dissolved organic matter (DOM) in forming DBPs during chlorination. However, DOM, as the main DBP precursor, collected using these techniques may not represent the DOM reacting with disinfectants due to biogeochemical alterations during water conveyance to drinking water treatment facilities. In this study, we exposed leachates from fresh litter and associated decomposed duff to natural sunlight or K-12 for 14 d and evaluated the changes, if any, on the propensity to form trihalomethane (THM), haloacetonitrile (HAN), and chloral hydrate (CHD) during chlorination. Sunlight treatment did not significantly change dissolved organic carbon (DOC) concentration but caused a 24 to 43% decrease in the specific ultraviolet absorbance (SUVA) at 254 nm, indicating that UV-active chromophores were transformed or degraded. There were significant increases ( < 0.05) in specific HAN formation potential (HAN-FP) and specific CHD formation potential (CHD-FP) (i.e., HAN and CHD formation potentials per unit carbon), but no change in specific THM formation potential (THM-FP) after sunlight exposure. In contrast, bacterial treatment did not show any significant effect on SUVA, specific chlorine demand, or any specific DBP-FPs, although bacterial colony counts suggested DOM in leachates was utilized for bacterial growth. Results of this study confirmed that the reactivity of DOM in forming DBPs could be different after biogeochemical processes compared with its source materials. For this study, photochemical reactions had a greater effect on DBP-FPs than did microbial degradation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Effect of ozonation and UV irradiation with direct filtration on disinfection and disinfection by-product precursors in drinking water treatment.

    Science.gov (United States)

    Amirsardari, Y; Yu, Q; Willams, P

    2001-09-01

    Pilot plant studies were conducted to evaluate the effect of pre-ozonation and ultraviolet irradiation on disinfection, disinfection by-product precursors and water quality in a direct filtration water treatment system. Disinfection parameters including total coliforms, faecal coliforms and heterotrophic plate count were investigated. Total organic carbon (TOC), trihalomethanes (THMs), total organic halides (TOX), filtered water turbidity and colour were also evaluated. It was found that advanced pre-oxidation processes (ozonation and UV irradiation) significantly increase the level of disinfection of raw water. Removal of total trihalomethanes and total organic halides precursors improved with ozonation and UV irradiation, compared to no oxidation treatment in direct filtration and/or in conventional water treatment. All coliforms (total and faecal) were completely destroyed by ozonation alone, and also with ozonation in conjunction with UV irradiation. However, the heterotrophic plate count was not significantly reduced at an ozone residual concentration of 0.1 mg l(-1). This suggests that disinfection efficiency is strongly influenced by competition reactions of organic and inorganic compounds with ozone. Precursors of total trihalomethanes and total organic halides were reduced by 90% and 98%, respectively, with advanced pre-oxidation processes. Water quality parameters were improved by the pre-ozonation and UV irradiation treatment system.

  17. Analysis, Occurrence and Toxicity of Haloacetaldehydes in Drinking Waters: Iodacetaldehyde as an Emerging Disinfection ByProduct.

    Science.gov (United States)

    Chlorinated and brominated haloacetaldehydes (HALs) are consideredthe 3rd largest class of disinfection by-products (DBPs) by weight. The iodinatedHAL, iodoacetaldehyde, has been recently reported as an emerging DBP infinished drinking waters. Overall, iodinated DBPs, e.g., iodoa...

  18. Developmental toxicity of mixtures: the water disinfection by-products dichloro-, dibromo- and bromochloro acetic acid in rat embryo culture

    Science.gov (United States)

    The chlorination of drinking water results in production of numerous disinfection by-products (DBPs). One of the important classes of DBPs is the haloacetic acids. We have previously shown that the haloacetic acids (HAs), dichloro (DCA), dibromo (DBA) and bromochloro (BCA) acetic...

  19. Significance of pH on the Cytotoxic Potential of the Water Disinfection By-Product Iodoacetic Acid

    Science.gov (United States)

    Significance of pH on the Cytotoxic Potential of the Water Disinfection By-Product Iodoacetic Acid Vicki Richardson1, Susan D. Richardson2, Mary Moyer3, Jane Ellen Simmons1, and Anthony DeAngelo1, 1U.S. Environmental Protection Agency, Research Triangle Park, NC, 2University of...

  20. The healthy men study: an evaluation of exposure to disinfection by-products in tap water and sperm quality

    Science.gov (United States)

    BACKGROUND: Chlorination of drinking water generates disinfection by-products (DBPs), which have been shown to disrupt spermatogenesis in rodents at high doses, suggesting that DBPs could pose a reproductive risk to men. In this study we assessed DBP exposure and testicular toxic...

  1. Developmental toxicity of mixtures: the water disinfection by-products dichloro-, dibromo- and bromochloro acetic acid in rat embryo culture

    Science.gov (United States)

    The chlorination of drinking water results in production of numerous disinfection by-products (DBPs). One of the important classes of DBPs is the haloacetic acids. We have previously shown that the haloacetic acids (HAs), dichloro (DCA), dibromo (DBA) and bromochloro (BCA) acetic...

  2. Effect of medium-pressure UV-lamp treatment on disinfection by-products in chlorinated seawater swimming pool waters

    DEFF Research Database (Denmark)

    Cheema, Waqas Akram; Manasfi, Tarek; Kaarsholm, Kamilla Marie Speht

    2017-01-01

    Several brominated disinfection by-products (DBPs) are formed in chlorinated seawater pools, due to the high concentration of bromide in seawater. UV irradiation is increasingly employed in freshwater pools, because UV treatment photodegrades harmful chloramines. However, in freshwater pools it h...

  3. Cumulative toxicity of an environmentally relevant mixture of nine regulated disinfection by-products in a multigenerational rat reproductive bioassay

    Science.gov (United States)

    CUMULATIVE TOXICITY OF AN ENVIRONMENTALLY RELEVANT MIXTURE OF NINE REGULATED DISINFECTION BY-PRODUCTS IN A MULTIGENERATIONAL RAT REPRODUCTIVE BIOASSAY J E Simmons, GR. Klinefelter, JM Goldman, AB DeAngelo, DS Best, A McDonald, LF Strader, AS Murr, JD Suarez, MH George, ES Hunte...

  4. Reproductive toxicity of a mixture of regulated drinking-water disinfection by-products in a multigenerational rat bioassay

    Science.gov (United States)

    BACKGROUND:Trihalomethanes (THMs) and haloaretic acids (HAAs) are regulated disinfection by-products (DBPs); their joint reproductive toxicity in drinking water is unknown.OBJECTIVE: We aimed to evaluate a drinking water mixture of the four regulated THMs and five regulated HAAs ...

  5. Formation of disinfection by-products after pre-oxidation with chlorine dioxide or ferrate.

    Science.gov (United States)

    Yang, Xin; Guo, Wanhong; Zhang, Xing; Chen, Feng; Ye, Tingjin; Liu, Wei

    2013-10-01

    The effect of pre-oxidation with chlorine dioxide (ClO2) or ferrate (Fe(VI)) on the formation of disinfection by-products (DBPs) during chlorination or chloramination was tested with natural waters from 12 sources (9 surface waters, 1 groundwater, and 2 wastewater effluents). DBPs investigated included trihalomethanes (THM), chloral hydrate (CH), haloketones (HK), haloacetonitriles (HAN) and trichloronitromethane (TCNM), chlorite and chlorate. Chlorite and chlorate were found in the ClO2-treated waters. Application of 1 mg/L ClO2 ahead of chlorination reduced the formation potential for THM by up to 45% and the formation of HK, HAN and TCNM in most of the samples. The CH formation results were mixed. The formation of CH and HK was enhanced with low doses of Fe(VI) (1 mg/L as Fe), but was greatly reduced at higher doses (20 mg/L Fe). Fe(VI) reduced the formation of THM, HAN and TCNM in most of the samples. Reduced potential for the formation of NDMA was observed in most of the samples after both ClO2 and Fe(VI) pre-oxidation.

  6. The epidemiology and possible mechanisms of disinfection by-products in drinking water.

    Science.gov (United States)

    Nieuwenhuijsen, Mark J; Grellier, James; Smith, Rachel; Iszatt, Nina; Bennett, James; Best, Nicky; Toledano, Mireille

    2009-10-13

    This paper summarizes the epidemiological evidence for adverse health effects associated with disinfection by-products (DBPs) in drinking water and describes the potential mechanism of action. There appears to be good epidemiological evidence for a relationship between exposure to DBPs, as measured by trihalomethanes (THMs), in drinking water and bladder cancer, but the evidence for other cancers including colorectal cancer is inconclusive and inconsistent. There appears to be some evidence for an association between exposure to DBPs, specifically THMs, and little for gestational age/intrauterine growth retardation and, to a lesser extent, pre-term delivery, but evidence for relationships with other outcomes such as low birth weight, stillbirth, congenital anomalies and semen quality is inconclusive and inconsistent. Major limitations in exposure assessment, small sample sizes and potential biases may account for the inconclusive and inconsistent results in epidemiological studies. Moreover, most studies have focused on total THMs as the exposure metric, whereas other DBPs appear to be more toxic than the THMs, albeit generally occurring at lower levels in the water. The mechanisms through which DBPs may cause adverse health effects including cancer and adverse reproductive effects have not been well investigated. Several mechanisms have been suggested, including genotoxicity, oxidative stress, disruption of folate metabolism, disruption of the synthesis and/or secretion of placental syncytiotrophoblast-derived chorionic gonadotropin and lowering of testosterone levels, but further work is required in this area.

  7. Control of disinfection by-product formation using ozone-based advanced oxidation processes.

    Science.gov (United States)

    Chen, Kuan-Chung; Wang, Yu-Hsiang

    2012-01-01

    The effects of ozone dosage, water temperature and catalyst addition in an ozonation-fluidized bed reactor (O3/FBR) on treated water quality and on the control of chlorinated and ozonated disinfection by-products (DBPs) were investigated. A biofiltration column was used to evaluate its removal efficiency on biodegradable organic matter and to reduce DBP formation. The Dong-Gang River, polluted by agricultural and domestic wastewater in Pingtung, Taiwan, was used as the water source. The treated water quality in terms of dissolved organic carbon (DOC), biodegradable DOC, ultraviolet absorbance at 254 nm (UV254) and specific UV absorbance (SUVA) improved with increasing ozone and catalyst dosages. Catalytic ozonation was more effective than ozonation alone at reducing the formation of DBPs at a given dosage. Experimental results show that water temperature had little effect on the treated water quality with the O3/FBR system used in this study (p > 0.05). The combination of O3/FBR and the biofiltration process effectively decreased the amount ofDBP precursors. The concentration of total trihalomethanes (TTHMs) was less than the maximum contaminant level (MCL) requirement, which is 80 microg/L, for all treated waters and the concentration of five haloacetic acids (HAA5) fell below 60 microg/L with an ozone dosage higher than 2.5 mg/L.

  8. Removal of disinfection by-product precursors with ozone-UV advanced oxidation process.

    Science.gov (United States)

    Chin, A; Bérubé, P R

    2005-05-01

    The efficacy of using ozone (O3), ultraviolet irradiation (UV) and the combined O3-UV advanced oxidation process (AOP) to remove 2 classes of disinfection by-product (DBP) precursors from raw surface water samples have been evaluated and compared. In particular, trihalomethane and haloacetic acids formation potentials were measured. Laboratory batch scale experiments were carried out as a function of ozone and UV dosage in order to study the removal kinetics. It is concluded that the combined O3-UV AOP is more effective than either the ozone or UV treatment alone. Ozone-UV AOP is capable of mineralizing up to 50% of the total organic carbon from the raw source water at an ozone dose of 0.62+/-0.019 mg O3/mL and a UV dose of 1.61 W s/cm2. In addition, O3-UV AOP can reduce trihalomethane formation potential by roughly 80% and haloacetic acids formation potential by roughly 70% at the same ozone and UV dosage.

  9. Disinfection by-products in filter backwash water: implications to water quality in recycle designs.

    Science.gov (United States)

    McCormick, N J; Porter, M; Walsh, M E

    2010-08-01

    The overall purpose of this research was to investigate disinfection by-product (DBP) concentrations and formation potential in filter backwash water (FBWW) and evaluate at bench-scale the potential impact of untreated FBWW recycle on water quality in conventional drinking water treatment. Two chlorinated organic compound groups of DBPs currently regulated in North America were evaluated, specifically trihalomethanes (THMs) and haloacetic acids (HAAs). FBWW samples were collected from four conventional filtration water treatment plants (WTP) in Nova Scotia, Canada, in three separate sampling and plant audit campaigns. THM and HAA formation potential tests demonstrated that the particulate organic material contained within FBWW is available for reaction with chlorine to form DBPs. The results of the study found higher concentrations of TTHMs and HAA9s in FBWW samples from two of the plants that target a higher free chlorine residual in the wash water used to clean the filters (e.g., clearwell) compared to the other two plants that target a lower clear well free chlorine residual concentration. Bench-scale experiments showed that FBWW storage time and conditions can impact TTHM concentrations in these waste streams, suggesting that optimization opportunities exist to reduce TTHM concentrations in FBWW recycle streams prior to blending with raw water. However, mass balance calculations demonstrated that FBWW recycle practice by blending 10% untreated FBWW with raw water prior to coagulation did not impact DBP concentrations introduced to the rapid mix stage of a plant's treatment train.

  10. Removal of disinfection by-products formation potential by biologically intensified process

    Institute of Scientific and Technical Information of China (English)

    AN Dong; LI Wei-guang; CUI Fu-yi; HE Xin; ZHANG Jin-song

    2005-01-01

    The removal of disinfection by-products formation potential(DBPFP) in artificially intensified biological activated carbon(IBAC) process which is developed on the basis of traditional ozone granular activated carbon was evaluated. By IBAC removals of 31% and 68% for THMFP and HAAFP were obtained respectively. Under identical conditions, the removals of the same substances were 4% and 32% respectively only by the granular activated carbon(GAC) process. Compared with GAC, the high removal rates of the two formed potential substances were due to the increasing of bioactivity of the media and the synergistic capabilities of biological degradation cooperating with activated carbon adsorption of organic compounds. A clear linear correlation ( R2 = 0.9562 and R2 = 0.9007) between DOC HAAFP removal rate and Empty Bed Contact Time(EBCT) of IBAC process was observed, while that between THMFP removal rate and EBCT of GAC was R2 = 0.9782. In addition certain linear correlations between THMFP, HAAFP and UV254 ( R2 = 0.855 and R2 = 0.7702) were found for the treated water. For IBAC process there are also more advantages such as long backwashing cycle time, low backwashing intensity and prolonging activated carbon lifetime and so on.

  11. Monohaloacetic acid drinking water disinfection by-products inhibit follicle growth and steroidogenesis in mouse ovarian antral follicles in vitro.

    Science.gov (United States)

    Jeong, Clara H; Gao, Liying; Dettro, Tyler; Wagner, Elizabeth D; Ricke, William A; Plewa, Michael J; Flaws, Jodi A

    2016-07-01

    Water disinfection greatly reduced the incidence of waterborne diseases, but the reaction between disinfectants and natural organic matter in water leads to the formation of drinking water disinfection by-products (DBPs). DBPs have been shown to be toxic, but their effects on the ovary are not well defined. This study tested the hypothesis that monohalogenated DBPs (chloroacetic acid, CAA; bromoacetic acid, BAA; iodoacetic acid, IAA) inhibit antral follicle growth and steroidogenesis in mouse ovarian follicles. Antral follicles were isolated and cultured with either vehicle or DBPs (0.25-1.00mM of CAA; 2-15μM of BAA or IAA) for 48 and 96h. Follicle growth was measured every 24h and the media were analyzed for estradiol levels at 96h. Exposure to DBPs significantly inhibited antral follicle growth and reduced estradiol levels compared to controls. These data demonstrate that DBP exposure caused ovarian toxicity in vitro.

  12. Fate of disinfection by-products in groundwater during aquifer storage and recovery with reclaimed water.

    Science.gov (United States)

    Pavelic, Paul; Nicholson, Brenton C; Dillon, Peter J; Barry, Karen E

    2005-05-01

    Knowledge on the behaviour of disinfection by-products (DBPs) during aquifer storage and recovery (ASR) is limited even though this can be an important consideration where recovered waters are used for potable purposes. A reclaimed water ASR trial in an anoxic aquifer in South Australia has provided some of the first quantitative information at field-scale on the fate and transport of trihalomethanes (THMs) and haloacetic acids (HAAs). The results revealed that THM half-lives varied from storage phase of the trial, as compared to an observation well situated 4 m away, which remained nitrate-reducing. These findings agree with previous laboratory-based studies which also show persistence declining with increased bromination of THMs and reducing redox conditions. Modelling suggests that the chlorinated injectant has sufficient residual chlorine and natural organic matter for substantial increases in THMs to occur within the aquifer, however this is masked in some of the field observations due to concurrent attenuation, particularly for the more rapidly attenuated brominated compounds. The model is based on data taken from water distribution systems and may not be representative for ASR since bromide and ammonia concentrations in the injected water and the possible role of organic carbon in the aquifer were not taken into consideration. During the storage phase DBP formation potentials were reduced as a result of the removal of precursor material despite an increase in the THM formation potential per unit weight of total organic carbon. This suggests that water quality improvements with respect to THMs and HAAs can be achieved through ASR in anoxic aquifers.

  13. Secondary formation of disinfection by-products by UV treatment of swimming pool water.

    Science.gov (United States)

    Spiliotopoulou, Aikaterini; Hansen, Kamilla M S; Andersen, Henrik R

    2015-07-01

    Formation of disinfection by-products (DBPs) during experimental UV treatment of pool water has previously been reported with little concurrence between laboratory studies, field studies and research groups. In the current study, changes in concentration of seven out of eleven investigated volatile DBPs were observed in experiments using medium pressure UV treatment, with and without chlorine and after post-UV chlorination. Results showed that post-UV chlorine consumption increased, dose-dependently, with UV treatment dose. A clear absence of trihalomethane formation by UV and UV with chlorine was observed, while small yet statistically significant increases in dichloroacetonitrile and dichloropropanone concentrations were detected. Results indicate that post-UV chlorination clearly induced secondary formation of several DBPs. However, the formation of total trihalomethanes was no greater than what could be replicated by performing the DBP formation assay with higher chlorine concentrations to simulate extended chlorination. Post-UV chlorination of water from a swimming pool that continuously uses UV treatment to control combined chlorine could not induce secondary formation for most DBPs. Concurrence for induction of trihalomethanes was identified between post-UV chlorination treatments and simulated extended chlorination time treatment. Trihalomethanes could not be induced by UV treatment of water from a continuously UV treated pool. This indicates that literature reports of experimentally induced trihalomethane formation by UV may be a result of kinetic increase in formation by UV. However, this does not imply that higher trihalomethane concentrations would occur in pools that apply continuous UV treatment. The bromine fraction of halogens in formed trihalomethanes increased with UV dose. This indicates that UV removes bromine atoms from larger molecules that participate in trihalomethane production during post-UV chlorination. Additionally, no significant

  14. Genotoxic Effects in Swimmers Exposed to Disinfection By-products in Indoor Swimming Pools

    Science.gov (United States)

    Kogevinas, Manolis; Villanueva, Cristina M.; Font-Ribera, Laia; Liviac, Danae; Bustamante, Mariona; Espinoza, Felicidad; Nieuwenhuijsen, Mark J.; Espinosa, Aina; Fernandez, Pilar; DeMarini, David M.; Grimalt, Joan O.; Grummt, Tamara; Marcos, Ricard

    2010-01-01

    Background Exposure to disinfection by-products (DBPs) in drinking water has been associated with cancer risk. A recent study (Villanueva et al. 2007; Am J Epidemiol 165:148–156) found an increased bladder cancer risk among subjects attending swimming pools relative to those not attending. Objectives We evaluated adults who swam in chlorinated pools to determine whether exposure to DBPs in pool water is associated with biomarkers of genotoxicity. Methods We collected blood, urine, and exhaled air samples from 49 nonsmoking adult volunteers before and after they swam for 40 min in an indoor chlorinated pool. We estimated associations between the concentrations of four trihalomethanes (THMs) in exhaled breath and changes in micronuclei (MN) and DNA damage (comet assay) in peripheral blood lymphocytes before and 1 hr after swimming; urine mutagenicity (Ames assay) before and 2 hr after swimming; and MN in exfoliated urothelial cells before and 2 weeks after swimming. We also estimated associations and interactions with polymorphisms in genes related to DNA repair or to DBP metabolism. Results After swimming, the total concentration of the four THMs in exhaled breath was seven times higher than before swimming. The change in the frequency of micronucleated lymphocytes after swimming increased in association with higher exhaled concentrations of the brominated THMs (p = 0.03 for bromodichloromethane, p = 0.05 for chlorodibromomethane, p = 0.01 for bromoform) but not chloroform. Swimming was not associated with DNA damage detectable by the comet assay. Urine mutagenicity increased significantly after swimming, in association with the higher concentration of exhaled bromoform (p = 0.004). We found no significant associations with changes in micronucleated urothelial cells. Conclusions Our findings support potential genotoxic effects of exposure to DBPs from swimming pools. The positive health effects gained by swimming could be increased by reducing the potential health

  15. Fingerprinting the reactive toxicity pathways of 50 drinking water disinfection by-products.

    Science.gov (United States)

    Stalter, Daniel; O'Malley, Elissa; von Gunten, Urs; Escher, Beate I

    2016-03-15

    A set of nine in vitro cellular bioassays indicative of different stages of the cellular toxicity pathway was applied to 50 disinfection by-products (DBPs) to obtain a better understanding of the commonalities and differences in the molecular mechanisms of reactive toxicity of DBPs. An Eschericia coli test battery revealed reactivity towards proteins/peptides for 64% of the compounds. 98% activated the NRf2-mediated oxidative stress response and 68% induced an adaptive stress response to genotoxic effects as indicated by the activation of the tumor suppressor protein p53. All DBPs reactive towards DNA in the E. coli assay and activating p53 also induced oxidative stress, confirming earlier studies that the latter could trigger DBP's carcinogenicity. The energy of the lowest unoccupied molecular orbital ELUMO as reactivity descriptor was linearly correlated with oxidative stress induction for trihalomethanes (r(2)=0.98) and haloacetamides (r(2)=0.58), indicating that potency of these DBPs is connected to electrophilicity. However, the descriptive power was poor for haloacetic acids (HAAs) and haloacetonitriles (r(2) (0.80, indicating that HAAs' potency is connected to both, electrophilicity and speciation. Based on the activation of oxidative stress response and the soft electrophilic character of most tested DBPs we hypothesize that indirect genotoxicity-e.g., through oxidative stress induction and/or enzyme inhibition-is more plausible than direct DNA damage for most investigated DBPs. The results provide not only a mechanistic understanding of the cellular effects of DBPs but the effect concentrations may also serve to evaluate mixture effects of DBPs in water samples.

  16. Chemistry, Toxicity and Health Risk Assessment of Drinking Water Disinfection ByProducts

    Science.gov (United States)

    Disinfection byproducts (DBPs) are formed by the reaction of oxidizing chemicals (such as chlorine, ozone and chloramines) used to control waterborne pathogens with natural organic material and other substances in water. DBP mixture composition varies as a function of geographic ...

  17. The Effect of Different Boiling and Filtering Devices on the Concentration of Disinfection By-Products in Tap Water

    OpenAIRE

    Glòria Carrasco-Turigas; Villanueva, Cristina M.; Fernando Goñi; Panu Rantakokko; Nieuwenhuijsen, Mark J.

    2013-01-01

    Disinfection by-products (DBPs) are ubiquitous contaminants in tap drinking water with the potential to produce adverse health effects. Filtering and boiling tap water can lead to changes in the DBP concentrations and modify the exposure through ingestion. Changes in the concentration of 4 individual trihalomethanes (THM4) (chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM)), MX, and bromate were tested when boiling and filtering high bromine-conta...

  18. Effectiveness of nanozeolite modified by cationic surfactant in the removal of disinfection by-product precursors from water solution

    Directory of Open Access Journals (Sweden)

    Amir Mohammadi

    2012-01-01

    Conclusions: This study showed that modification of nanozeolite by cationic surfactants, to reduce its negative surface charge, could markedly improve its efficiency in the adsorption of disinfection by-product precursors from an aqueous solution. The HDTMA-Br/Clinoptilolite nanozeolite (CNZ ratio of 0.07, pH have to coincide in iso-electric point, can be an optimum ratio for the modification.

  19. Removal of disinfection by-products in raw water using a biological powder-activated carbon system.

    Science.gov (United States)

    Lou, Jie C; Tseng, Wei B; Wu, Ming C; Han, Jia Y; Chen, Bi H

    2012-01-01

    This study investigates the removal efficiency of disinfection by-products (DBPs) in raw water at a water treatment plant using a biological powder-activated carbon system (BPACS). The presence of an excessive amount of DBPs has a large impact on the water quality of drinking water treated from the purification process. This study collected rapidly filtered water from an advanced water treatment plant for use in experiments on raw water. The removal efficiency of the trihalomethane formation potential (THMFP) and haloacetic acids formation potential (HAAFP) was studied under various hydraulic retention times and under organic DOC loadings. The results showed that the BPACS lowered the average concentration of dissolved organic carbon (DOC), UV(254) and the SUVA value (equivalent to UV(254)/DOC) in raw water. The system efficiently removed the THMFP and HAAFP during the treatment of the three primary organic carbon items. These results highlight the importance of the BPACS for efficiently treating disinfection by-products. These discoveries provide important information on biological degradation behaviors that can remove excessive amounts of disinfection by-products from drinking water.

  20. Formation of Disinfection By-products (DBPs) and Strategies to Reduce Their Concentration in the Water Treatment Plant in Përlepnica – Gjilan, Kosovo

    OpenAIRE

    , A. Azizi; , K. Berisha; , S. Jusufi

    2011-01-01

    Chlorine is the most widely used disinfection agent in drinking water industry in the world. Chlorine is a strong oxidant, and has the ability to kill or inactivate most pathogenic micro organisms commonly found in water. As such, chlorine used for disinfection of drinking water reacts with natural organic matter (NOM) contained in raw water, and forms the so called disinfection by-products (DBPs), of which trihalomethanes (THMs) and halo acetic acids (HAAs) are the two main groups of DBPs. I...

  1. Formation of Disinfection By-products (DBPs) and Strategies to Reduce Their Concentration in the Water Treatment Plant in Përlepnica – Gjilan, Kosovo

    OpenAIRE

    , A. Azizi; , K. Berisha; , S. Jusufi

    2011-01-01

    Chlorine is the most widely used disinfection agent in drinking water industry in the world. Chlorine is a strong oxidant, and has the ability to kill or inactivate most pathogenic micro organisms commonly found in water. As such, chlorine used for disinfection of drinking water reacts with natural organic matter (NOM) contained in raw water, and forms the so called disinfection by-products (DBPs), of which trihalomethanes (THMs) and halo acetic acids (HAAs) are the two main groups of DBPs. I...

  2. Secondary formation of disinfection by-products by UV treatment of swimming pool water

    Energy Technology Data Exchange (ETDEWEB)

    Spiliotopoulou, Aikaterini [Water ApS, Farum Gydevej 64, 3520 Farum (Denmark); Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 113, 2800 Kongens Lyngby (Denmark); Hansen, Kamilla M.S., E-mail: kmsh@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 113, 2800 Kongens Lyngby (Denmark); Andersen, Henrik R. [Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 113, 2800 Kongens Lyngby (Denmark)

    2015-07-01

    Formation of disinfection by-products (DBPs) during experimental UV treatment of pool water has previously been reported with little concurrence between laboratory studies, field studies and research groups. In the current study, changes in concentration of seven out of eleven investigated volatile DBPs were observed in experiments using medium pressure UV treatment, with and without chlorine and after post-UV chlorination. Results showed that post-UV chlorine consumption increased, dose-dependently, with UV treatment dose. A clear absence of trihalomethane formation by UV and UV with chlorine was observed, while small yet statistically significant increases in dichloroacetonitrile and dichloropropanone concentrations were detected. Results indicate that post-UV chlorination clearly induced secondary formation of several DBPs. However, the formation of total trihalomethanes was no greater than what could be replicated by performing the DBP formation assay with higher chlorine concentrations to simulate extended chlorination. Post-UV chlorination of water from a swimming pool that continuously uses UV treatment to control combined chlorine could not induce secondary formation for most DBPs. Concurrence for induction of trihalomethanes was identified between post-UV chlorination treatments and simulated extended chlorination time treatment. Trihalomethanes could not be induced by UV treatment of water from a continuously UV treated pool. This indicates that literature reports of experimentally induced trihalomethane formation by UV may be a result of kinetic increase in formation by UV. However, this does not imply that higher trihalomethane concentrations would occur in pools that apply continuous UV treatment. The bromine fraction of halogens in formed trihalomethanes increased with UV dose. This indicates that UV removes bromine atoms from larger molecules that participate in trihalomethane production during post-UV chlorination. Additionally, no significant

  3. What's in the pool? A comprehensive identification of disinfection by-products and assessment of mutagenicity of chlorinated and brominated swimming pool water

    NARCIS (Netherlands)

    Richardson, S.D.; Demarini, D.M.; Kogevinas, M.; Fernandez, P.; Marco, E.; Lourencetti, C.; Balleste, C.; Heederik, D.; Meliefste, K.; McKague, A.B.; Marcos, R.; Font-Ribera, L.; Grimalt, J.O.; Villanueva, C.M.

    2010-01-01

    BACKGROUND: Swimming pool disinfectants and disinfection by-products (DBPs) have been linked to human health effects, including asthma and bladder cancer, but no studies have provided a comprehensive identification of DBPs in the water and related that to mutagenicity. OBJECTIVES: We performed a com

  4. Analysis of oxyhalide disinfection by-products and other anions of interest in drinking water by ion chromatography.

    Science.gov (United States)

    Hautman, D P; Bolyard, M

    1992-06-01

    The US Environmental Protection Agency is developing regulations for various drinking water disinfection by-products (DBPs). This effort involves developing analytical methods for the DBPs formed as a result of different disinfection treatments and collecting occurrence data for these species. Ion chromatography is one method being used to analyze drinking water samples for the following inorganic DBPs: chlorite, chlorate and bromate. These anions, however, are difficult to separate from common interfering anions of chloride, carbonate and nitrate. A method is therefore presented by which tetraborate/boric acid is used to separate these anions. Method detection limits of the order of 10 micrograms/l, using conductivity and UV detection were obtained. Stability studies of chlorite showing the effectiveness of ethylenediamine as a preservative and summary data for an occurrence of nitrite, nitrate and the DBP precursor bromide are presented.

  5. Formation of Toxic Iodinated Disinfection By-Products from Compounds Used in Medical Imaging

    Science.gov (United States)

    Iodinated X-ray contrast media (ICM) were investigated as a source of iodine in the formation of iodo-trihalomethane (iodo-THM) and iodo-acid disinfection byproducts (DBPs), both of which are highly genotoxic and/or cytotoxic in mammalian cells. ICM are widely used at medical cen...

  6. PROBING REACTIVITY OF DISSOLVED ORGANIC MATTER FOR DISINFECTION BY-PRODUCT FORMATION USING XAD-8 RESIN ADSORPTION AND ULTRAFILTRATION FRACTIONATION. (R828045)

    Science.gov (United States)

    The disinfection by-product (DBP) reactivity (yield and speciation upon reaction with chlorine) of dissolved organic matter (DOM) isolated from two surface waters was investigated. The source waters, each having significantly different specific ultraviolet absorbance (SUVA

  7. Assessing regulatory violations of disinfection by-products in water distribution networks using a non-compliance potential index.

    Science.gov (United States)

    Islam, Nilufar; Sadiq, Rehan; Rodriguez, Manuel J; Legay, Christelle

    2016-05-01

    Inactivating pathogens is essential to eradicate waterborne diseases. However, disinfection forms undesirable disinfection by-products (DBPs) in the presence of natural organic matter. Many regulations and guidelines exist to limit DBP exposure for eliminating possible health impacts such as bladder cancer, reproductive effects, and child development effects. In this paper, an index named non-compliance potential (NCP) index is proposed to evaluate regulatory violations by DBPs. The index can serve to evaluate water quality in distribution networks using the Bayesian Belief Network (BBN). BBN is a graphical model to represent contributing variables and their probabilistic relationships. Total trihalomethanes (TTHM), haloacetic acids (HAA5), and free residual chlorine (FRC) are selected as the variables to predict the NCP index. A methodology has been proposed to implement the index using either monitored data, empirical model results (e.g., multiple linear regression), and disinfectant kinetics through EPANET simulations. The index's usefulness is demonstrated through two case studies on municipal distribution systems using both full-scale monitoring and modeled data. The proposed approach can be implemented for data-sparse conditions, making it especially useful for smaller municipal drinking water systems.

  8. Biostability and disinfectant by-product formation in drinking water blended with UF-treated filter backwash water.

    Science.gov (United States)

    Walsh, M E; Gagnon, G A; Alam, Z; Andrews, R C

    2008-04-01

    The overall objective of this study was to investigate the impact of blending membrane-treated water treatment plant (WTP) residuals with plant-filtered water on finished water quality in terms of biostability and disinfectant by-product (DBP) formation. Filter backwash water (FBWW) was treated with a pilot-scale ultrafiltration (UF) membrane to produce permeate that was blended with plant-finished water. The batch studies involved storing samples for a specified time with a disinfectant residual to simulate residence time in the distribution system. Both chlorinated and non-chlorinated FBWW streams were evaluated, and the experimental design incorporated free chlorine, monochloramine, and chlorine dioxide in parallel to a model system that did not receive a disinfectant dose. The results of the study found that blending 10% UF-treated FBWW with plant-filtered water did not have an impact on water biostability as monitored with heterotrophic plate counts (HPCs) or DBP concentrations as monitored by TTHM and HAA5 concentrations. However, the presence of preformed THM and HAA species found in chlorinated FBWW streams may result in higher levels of initial DBP concentrations in blended water matrices, and could have a significant impact on finished water quality in terms of meeting specific DBP guidelines or regulations.

  9. The study of interrelationship between raw water quality parameters, chlorine demand and the formation of disinfection by-products

    Science.gov (United States)

    Abdullah, Md. Pauzi; Yee, Lim Fang; Ata, Sadia; Abdullah, Abass; Ishak, Basar; Abidin, Khairul Nidzham Zainal

    Disinfection is the most crucial process in the treatment of drinking water supply and is the final barrier against bacteriological impurities in drinking water. Chlorine is the primary disinfectant used in the drinking water treatment process throughout Malaysia. However, the occurrence of various disinfection by-products such as trihalomethanes (THM) and haloacetic acids created a major issue on the potential health hazards which may pose adverse health effects in both human and animals. To simulate real water treatment conditions and to represent the conditions inherent in a tropical country, this study was performed at an urbanized water treatment plant with a daily production of about 549,000 m 3 of treated water. The purpose of this work is to examine the relationship between the water quality parameters in the raw water with chlorine demand and the formation of disinfection by-products. This study also investigated the possibility of the statistical model applications for the prediction of chlorine demand and the THM formation. Two models were developed to estimate the chlorine demand and the THM formation. For the statistical evaluation, correlation and simple linear regression analysis were conducted using SPSS. The results of Kolmogorov-Smirnov test for the estimation of goodness-of-fit of the dependent variables of the models to the normal distribution showed that all the dependent variables followed the normal distribution at significance level of 0.05. Good linear correlations were observed between the independent parameters and formation of THM and the chlorine demand. This study also revealed that ammonia and the specific ultraviolet absorbent (SUVA) were the function of chlorine consumption in the treatment process. Chlorine dosage and SUVA increase the yield of THM. Chlorine demand and THM formation was moderately sensitive, but significant to the pH. The level of significance ( α) for the statistical tests and the inclusion of a variable in the

  10. Mutagenic activity associated with by-products of drinking water disinfection by chlorine, chlorine dioxide, ozone and UV-irradiation.

    Science.gov (United States)

    Zoeteman, B C; Hrubec, J; de Greef, E; Kool, H J

    1982-12-01

    A retrospective epidemiological study in The Netherlands showed a statistical association between chlorination by-products in drinking water and cancer of the esophagus and stomach for males. A pilot-plant study with alternative disinfectants was carried out with stored water of the Rivers Rhine and Meuse. It was demonstrated that the increase of direct acting mutagens after treatment with chlorine dioxide is similar to the effect of chlorination. Ozonation of Rhine water reduced the mutagenic activity for Salmonella typhimurium TA 98 both with and without metabolic activation. UV alone hardly affects the mutagenicity of the stored river water for S. typh. TA 98. In all studies, practically no mutagenic activity for S. typh. TA 100 was found. Although remarkable changes in the concentration of individual organic compounds are reported, the identity of the mutagens detected is yet unclear. Compounds of possible interest due to their removal by ozonation are 1,3,3-trimethyloxindole, dicyclopentadiene and several alkylquinolines. Compounds which might be responsible for the increased mutagenicity after chlorination are two brominated acetonitriles and tri(2-chlorethyl) phosphate. Furthermore, the concentration procedure with adsorption on XAD resin and the subsequent elution step may have affected the results. It is proposed to focus further research more on the less volatile by-products of disinfection than on the trihalomethanes.

  11. Nano-silver in drinking water and drinking water sources: stability and influences on disinfection by-product formation.

    Science.gov (United States)

    Tugulea, A-M; Bérubé, D; Giddings, M; Lemieux, F; Hnatiw, J; Priem, J; Avramescu, M-L

    2014-10-01

    Nano-silver is increasingly used in consumer products from washing machines and refrigerators to devices marketed for the disinfection of drinking water or recreational water. The nano-silver in these products may be released, ending up in surface water bodies which may be used as drinking water sources. Little information is available about the stability of the nano-silver in sources of drinking water, its fate during drinking water disinfection processes, and its interaction with disinfection agents and disinfection by-products (DBPs). This study aims to investigate the stability of nano-silver in drinking water sources and in the finished drinking water when chlorine and chloramines are used for disinfection and to observe changes in the composition of DBPs formed when nano-silver is present in the source water. A dispersion of nano-silver particles (10 nm; PVP-coated) was used to spike untreated Ottawa River water, treated Ottawa River water, organic-free water, and a groundwater at concentrations of 5 mg/L. The diluted dispersions were kept under stirred and non-stirred conditions for up to 9 months and analyzed weekly using UV absorption to assess the stability of the nano-silver particles. In a separate experiment, Ottawa River water containing nano-silver particles (at 0.1 and 1 mg/L concentration, respectively) was disinfected by adding sodium hypochlorite (a chlorinating agent) in sufficient amounts to maintain a free chlorine residual of approximately 0.4 mg/L after 24 h. The disinfected drinking water was then quenched with ascorbic acid and analyzed for 34 neutral DBPs (trihalomethanes, haloacetonitriles, haloacetaldehydes, 1,1 dichloro-2-propanone, 1,1,1 trichloro-2-propanone, chloropicrin, and cyanogen chloride). The results were compared to the profile of DBPs obtained under the same conditions in the absence of nano-silver and in the presence of an equivalent concentration of Ag(+) ions (as AgNO3). The stability of the nano-silver dispersions in

  12. The impact of iodinated X-ray contrast agents on formation and toxicity of disinfection by-products in drinking water.

    Science.gov (United States)

    Jeong, Clara H; Machek, Edward J; Shakeri, Morteza; Duirk, Stephen E; Ternes, Thomas A; Richardson, Susan D; Wagner, Elizabeth D; Plewa, Michael J

    2017-08-01

    The presence of iodinated X-ray contrast media (ICM) in source waters is of high concern to public health because of their potential to generate highly toxic disinfection by-products (DBPs). The objective of this study was to determine the impact of ICM in source waters and the type of disinfectant on the overall toxicity of DBP mixtures and to determine which ICM and reaction conditions give rise to toxic by-products. Source waters collected from Akron, OH were treated with five different ICMs, including iopamidol, iopromide, iohexol, diatrizoate and iomeprol, with or without chlorine or chloramine disinfection. The reaction product mixtures were concentrated with XAD resins and the mammalian cell cytotoxicity and genotoxicity of the reaction mixture concentrates was measured. Water containing iopamidol generated an enhanced level of mammalian cell cytotoxicity and genotoxicity after disinfection. While chlorine disinfection with iopamidol resulted in the highest cytotoxicity overall, the relative iopamidol-mediated increase in toxicity was greater when chloramine was used as the disinfectant compared with chlorine. Four other ICMs (iopromide, iohexol, diatrizoate, and iomeprol) expressed some cytotoxicity over the control without any disinfection, and induced higher cytotoxicity when chlorinated. Only iohexol enhanced genotoxicity compared to the chlorinated source water. Copyright © 2017. Published by Elsevier B.V.

  13. Dissolved Organic Carbon and Disinfection By-Product Precursor Release from Managed Peat Soils

    Science.gov (United States)

    Fleck, J.A.; Bossio, D.A.; Fujii, R.

    2004-01-01

    A wetland restoration demonstration project examined the effects of a permanently flooded wetland on subsidence of peat soils. The project, started in 1997, was done on Twitchell Island, in the Sacramento-San Joaquin Delta of California. Conversion of agricultural land to a wetland has changed many of the biogeochemical processes controlling dissolved organic carbon (DOC) release from the peat soils, relative to the previous land use. Dissolved organic C in delta waters is a concern because it reacts with chlorine, added as a disinfectant in municipal drinking waters, to form carcinogenic disinfection byproducts (DBPs), including trihalomethanes (THMs) and haloacetic acids (HAAs). This study explores the effects of peat soil biogeochemistry on DOC and DBP release under agricultural and wetland management. Results indicate that organic matter source, extent of soil organic matter decomposition, and decomposition pathways all are factors in THM formation. The results show that historical management practices dominate the release of DOC and THM precursors. However, within-site differences indicate that recent management decisions can contribute to changes in DOC quality and THM precursor formation. Not all aromatic forms of carbon are highly reactive and certain environmental conditions produce the specific carbon structures that form THMs. Both HAA and THM precursors are elevated in the DOC released under wetland conditions. The findings of this study emphasize the need to further investigate the roles of organic matter sources, microbial decomposition pathways, and decomposition status of soil organic matter in the release of DOC and DBP precursors from delta soils under varying land-use practices.

  14. Evaluating Evidence for Association of Human Bladder Cancer with Drinking-Water Chlorination Disinfection By-Products.

    Science.gov (United States)

    Hrudey, Steve E; Backer, Lorraine C; Humpage, Andrew R; Krasner, Stuart W; Michaud, Dominique S; Moore, Lee E; Singer, Philip C; Stanford, Benjamin D

    2015-01-01

    Exposure to chlorination disinfection by-products (CxDBPs) is prevalent in populations using chlorination-based methods to disinfect public water supplies. Multifaceted research has been directed for decades to identify, characterize, and understand the toxicology of these compounds, control and minimize their formation, and conduct epidemiologic studies related to exposure. Urinary bladder cancer has been the health risk most consistently associated with CxDBPs in epidemiologic studies. An international workshop was held to (1) discuss the qualitative strengths and limitations that inform the association between bladder cancer and CxDBPs in the context of possible causation, (2) identify knowledge gaps for this topic in relation to chlorine/chloramine-based disinfection practice(s) in the United States, and (3) assess the evidence for informing risk management. Epidemiological evidence linking exposures to CxDBPs in drinking water to human bladder cancer risk provides insight into causality. However, because of imprecise, inaccurate, or incomplete estimation of CxDBPs levels in epidemiologic studies, translation from hazard identification directly to risk management and regulatory policy for CxDBPs can be challenging. Quantitative risk estimates derived from toxicological risk assessment for CxDBPs currently cannot be reconciled with those from epidemiologic studies, notwithstanding the complexities involved, making regulatory interpretation difficult. Evidence presented here has both strengths and limitations that require additional studies to resolve and improve the understanding of exposure response relationships. Replication of epidemiologic findings in independent populations with further elaboration of exposure assessment is needed to strengthen the knowledge base needed to better inform effective regulatory approaches.

  15. POWDERED ACTIVATED CARBON FROM NORTH DAKOTA LIGNITE: AN OPTION FOR DISINFECTION BY-PRODUCT CONTROL IN WATER TREATMENT PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J. Stepan; Thomas A. Moe; Melanie D. Hetland; Margaret L. Laumb

    2001-06-01

    New federal drinking water regulations have been promulgated to restrict the levels of disinfection by-products (DBPs) in finished public water supplies. DBPs are suspected carcinogens and are formed when organic material is partially oxidized by disinfectants commonly used in the water treatment industry. Additional federal mandates are expected in the near future that will further affect public water suppliers with respect to DBPs. Powdered activated carbon (PAC) has traditionally been used by the water treatment industry for the removal of compounds contributing to taste and odor problems. PAC also has the potential to remove naturally occurring organic matter (NOM) from raw waters prior to disinfection, thus controlling the formation of regulated DBPs. Many small water systems are currently using PAC for taste and odor control and have the potential to use PAC for controlling DBPs. This project, a cooperative effort between the Energy & Environmental Research Center (EERC), the Grand Forks Water Treatment Plant, and the University of North Dakota Department of Civil Engineering, consists of several interrelated tasks. The objective of the research was to evaluate a cost-effective PAC produced from North Dakota lignite for removing NOM from water and reducing trihalomethane formation potential. The research approach was to develop a statistically valid testing protocol that can be used to compare dose-response relationships between North Dakota lignite-derived PAC and commercially available PAC products. A statistical analysis was performed to determine whether significant correlations exist between operating conditions, water properties, PAC properties, and dose-response behavior. Pertinent physical and chemical properties were also measured for each of the waters and each of the PACs.

  16. Modelling formation of disinfection by-products in water distribution: Optimisation using a multi-objective evolutionary algorithm

    KAUST Repository

    Radhakrishnan, Mohanasundar

    2012-05-01

    Concerns have been raised regarding disinfection by-products (DBPs) formed as a result of the reaction of halogen-based disinfectants with DBP precursors. In order to appreciate the chemical and biological tradeoffs, it is imperative to understand the formation trends of DBPs and their spread in the distribution network. However, the water at a point in a complex distribution system is a mixture from various sources, whose proportions are complex to estimate and requires advanced hydraulic analysis. To understand the risks of DBPs and to develop mitigation strategies, it is important to understand the distribution of DBPs in a water network, which requires modelling. The goal of this research was to integrate a steady-state water network model with a particle backtracking algorithm and chlorination as well as DBPs models in order to assess the tradeoffs between biological and chemical risks in the distribution network. A multi-objective optimisation algorithm was used to identify the optimal proportion of water from various sources, dosages of alum, and dosages of chlorine in the treatment plant and in booster locations to control the formation of chlorination DBPs and to achieve a balance between microbial and chemical risks. © IWA Publishing 2012.

  17. Disinfection.

    Science.gov (United States)

    Gould, J. P.; Haas, C. N.

    1978-01-01

    Presents a literature review of wastewater disinfection for 1978. This review covers areas such as: (1) mechanisms of inactivation of negative microorganisms by chlorine and ozone; and (2) the effects of various treatment on over-all water quality. A list of 61 references is also presented. (HM)

  18. Disinfection.

    Science.gov (United States)

    Gould, J. P.; Haas, C. N.

    1978-01-01

    Presents a literature review of wastewater disinfection for 1978. This review covers areas such as: (1) mechanisms of inactivation of negative microorganisms by chlorine and ozone; and (2) the effects of various treatment on over-all water quality. A list of 61 references is also presented. (HM)

  19. Formation of iodinated disinfection by-products during oxidation of iodide-containing water with potassium permanganate.

    Science.gov (United States)

    Ye, Tao; Xu, Bin; Lin, Yi-Li; Hu, Chen-Yan; Xia, Sheng-Ji; Lin, Lin; Mwakagenda, Seleli Andrew; Gao, Nai-Yun

    2012-11-30

    This study shows that iodinated disinfection by-products (I-DBPs) including iodoform (IF), iodoacetic acid (IAA) and triiodoacetic acid (TIAA) can be produced when iodide-containing waters are in contact with potassium permanganate. IF was found as the major I-DBP species during the oxidation. Iodide was oxidized to HOI, I(2) and I(3)(-), consequently, which led to the formation of iodinated organic compounds. I-DBPs varied with reaction time, solution pH, initial concentrations of iodide and potassium permanganate. Yields of IF, IAA and TIAA increased with reaction time and considerable I-DBPs were formed within 12 h. Peak IF yields were found at circumneutral pH range. However, formation of IAA and TIAA was favored under acidic conditions. Molar ratio of iodide to potassium permanganate showed significant influence on formation of IF, IAA and TIAA. The formation of IF, IAA and TIAA also depended on the characteristics of the waters.

  20. Health impacts of long-term exposure to disinfection by-products in drinking water in Europe: HIWATE.

    Science.gov (United States)

    Nieuwenhuijsen, Mark J; Smith, Rachel; Golfinopoulos, Spyros; Best, Nicky; Bennett, James; Aggazzotti, Gabriella; Righi, Elena; Fantuzzi, Guglielmina; Bucchini, Luca; Cordier, Sylvaine; Villanueva, Cristina M; Moreno, Victor; La Vecchia, Carlo; Bosetti, Cristina; Vartiainen, Terttu; Rautiu, Radu; Toledano, Mireille; Iszatt, Nina; Grazuleviciene, Regina; Kogevinas, Manolis

    2009-06-01

    There appears to be very good epidemiological evidence for a relationship between chlorination by-products, as measured by trihalomethanes (THMs), in drinking water and bladder cancer, but the evidence for other cancers, including colorectal cancer appears to be inconclusive and inconsistent. There appears to be some evidence for a relationship between chlorination by-products, as measured by THMs, and small for gestational age (SGA)/intrauterine growth retardation (IUGR) and preterm delivery, but evidence for other outcomes such as low birth weight (LBW), stillbirth, congenital anomalies and semen quality appears to be inconclusive and inconsistent.The overall aim of the HIWATE study is to investigate potential human health risks (e.g. bladder and colorectal cancer, premature births, SGA, semen quality, stillbirth, congenital anomalies) associated with long-term exposure to low levels of disinfectants (such as chlorine) and DBPs occurring in water for human consumption and use in the food industry. The study will comprise risk-benefit analyses including quantitative assessments of risk associated with microbial contamination of drinking water versus chemical risk and will compare alternative treatment options. The outcome will be improved risk assessment and better information for risk management. The work is divided into different topics (exposure assessment, epidemiology, risk assessment and management) and studies.

  1. Formation of hazardous inorganic by-products during electrolysis of seawater as a disinfection process for desalination.

    Science.gov (United States)

    Oh, Byung Soo; Oh, Sang Guen; Hwang, Youn Young; Yu, Hye-Weon; Kang, Joon-Wun; Kim, In S

    2010-11-01

    From our previous study, an electrochemical process was determined to be a promising tool for disinfection in a seawater desalination system, but an investigation on the production of several hazardous by-products is still required. In this study, a more intensive exploration of the formation patterns of perchlorate and bromate during the electrolysis of seawater was conducted. In addition, the rejection efficiencies of the targeted by-products by membrane processes (microfiltration and seawater reverse osmosis) were investigated to uncover the concentrations remaining in the final product from a membrane-based seawater desalination system for the production of drinking water. On the electrolysis of seawater, perchlorate did not provoke any problem due to the low concentrations formed, but bromate was produced at a much higher level, resulting in critical limitation in the application of the electrochemical process to the desalination of seawater. Even though the formed bromate was rejected via microfiltration and reverse osmosis during the 1st and 2nd passes, the residual concentration was a few orders of magnitude higher than the USEPA regulation. Consequently, it was concluded that the application of the electrochemical process to seawater desalination cannot be recommended without the control of bromate.

  2. CARCINOGENICITY OF INDIVIDUAL AND A MIXTURE OF DRINKING WATER DISINFECTION BY-PRODUCTS IN A RAT MODEL OF HEREDITARY RENAL CELL CARCINOMA

    Science.gov (United States)

    Carcinogenicity of Individual and a Mixture of Drinking Water Disinfection By-Products in a Rat Model of Hereditary Renal Cell Carcinoma Eker rats develop hereditary renal cell carcinoma secondary to a germline mutation in the tuberous sclerosis 2 (Tsc2) gene and are ligh...

  3. MODERATING INFLUENCE OF THE DRINKING WATER DISINFECTION BY-PRODUCT DIBROMOACETIC ACID ON A DITHIOCARBAMATE-INDUCED SUPPRESSION OF THE LUTEINIZING HORMONE SURGE IN FEMALE RATS.

    Science.gov (United States)

    The disinfection by-product dibromoacetic acid (DBA) has been found in female rats to increase circulating concentrations of both estradiol (E2) and estrone (E1). This effect is apparently due, at least in part, to a suppression in hepatic catabolism. The present study investigat...

  4. Determination of the minor disinfection by-products formed in the water plant of Sant Joan Despi (Barcelona, Spain); Determinacion de los subproductos de desinfeccion minoritarios formados en la planta de Sant Joan Despi (Barcelona)

    Energy Technology Data Exchange (ETDEWEB)

    Cancho, B.; Galceran, M.T. [Universitat de Barcelona (Spain); Ventura, F. [AGBAR. Societat General d` Aigues de Barcelona, S.A. (Spain)

    1997-09-01

    Chlorine is widely used in drinking water disinfection due to be a powerful and not expense disinfection. Although the benefits of disinfection, the formation of stable disinfection by-products of the health concern, is the result of the interaction of aqueous chlorine with natural organic matter presents in water. Disinfection by-products generated in major concentration are trihalomethane and haloacetic acids. Disinfection by-products generated in minor concentration are haloacetonitriles, haloketones,chloral hydrate and chloropicrin and some new groups such as cyanogen halides and trihaloacetaldydes. In this work two analytical methods.: headspace/gas chromatography/electron capture detector and liquid-liquid microextraction/gas chromatography/electron capture detector are studied and compared to determine the minor by-products and to establish finally, a systematic control of them in the different stages of the Water Treatment Plant of San Joan Despi (Barcelona, Spain). (Author) 12 refs.

  5. Disinfection by-product formation and mitigation strategies in point-of-use chlorination with sodium dichloroisocyanurate in Tanzania.

    Science.gov (United States)

    Lantagne, Daniele S; Cardinali, Fred; Blount, Ben C

    2010-07-01

    Almost a billion persons lack access to improved drinking water, and diarrheal diseases cause an estimated 1.87 million deaths per year. Sodium dichloroisocyanurate (NaDCC) tablets are widely recommended for household water treatment to reduce diarrhea. Because NaDCC is directly added to untreated water sources, concerns have been raised about the potential health impact of disinfection by-products. This study investigated trihalomethane (THM) production in water from six sources used for drinking (0.6-888.5 nephelometric turbidity units) near Arusha, Tanzania. No sample collected at 1, 8, and 24 hours after NaDCC addition exceeded the World Health Organization guideline values for either individual or total THMs. Ceramic filtration, sand filtration, cloth filtration, and settling and decanting were not effective mitigation strategies to reduce THM formation. Chlorine residual and THM formation were not significantly different in NaDCC and sodium hypochlorite treatment. Household chlorination of turbid and non-turbid waters did not create THM concentrations that exceeded health risk guidelines.

  6. Ozone-biological activated carbon integrated treatment for removal of precursors of halogenated nitrogenous disinfection by-products.

    Science.gov (United States)

    Chu, Wenhai; Gao, Naiyun; Yin, Daqiang; Deng, Yang; Templeton, Michael R

    2012-03-01

    Pilot-scale tests were performed to reduce the formation of several nitrogenous and carbonaceous disinfection by-products (DBPs) with an integrated ozone and biological activated carbon (O(3)-BAC) treatment process following conventional water treatment processes (coagulation-sedimentation-filtration). Relative to the conventional processes alone, O(3)-BAC significantly improved the removal of turbidity, dissolved organic carbon, UV(254), NH(4)(+) and dissolved organic nitrogen from 98-99%, 58-72%, 31-53%, 16-93% and 35-74%, respectively, and enhanced the removal efficiency of the precursors for the measured DBPs. The conventional process was almost ineffective in removing the precursors of trichloronitromethane (TCNM) and dichloroacetamide (DCAcAm). Ozonation could not substantially reduce the formation of DCAcAm, and actually increased the formation potential of TCNM; it chemically altered the molecular structures of the precursors and increased the biodegradability of N-containing organic compounds. Consequently, the subsequent BAC filtration substantially reduced the formation of the both TCNM and DCAcAm, thus highlighting a synergistic effect of O(3) and BAC. Additionally, O(3)-BAC was effective at controlling the formation of the total organic halogen, which can be considered as an indicator of the formation of unidentified DBPs.

  7. The effect of different boiling and filtering devices on the concentration of disinfection by-products in tap water.

    Science.gov (United States)

    Carrasco-Turigas, Glòria; Villanueva, Cristina M; Goñi, Fernando; Rantakokko, Panu; Nieuwenhuijsen, Mark J

    2013-01-01

    Disinfection by-products (DBPs) are ubiquitous contaminants in tap drinking water with the potential to produce adverse health effects. Filtering and boiling tap water can lead to changes in the DBP concentrations and modify the exposure through ingestion. Changes in the concentration of 4 individual trihalomethanes (THM4) (chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM)), MX, and bromate were tested when boiling and filtering high bromine-containing tap water from Barcelona. For filtering, we used a pitcher-type filter and a household reverse osmosis filter; for boiling, an electric kettle, a saucepan, and a microwave were used. Samples were taken before and after each treatment to determine the change in the DBP concentration. pH, conductivity, and free/total chlorine were also measured. A large decrease of THM4 (from 48% to 97%) and MX concentrations was observed for all experiments. Bromine-containing trihalomethanes were mostly eliminated when filtering while chloroform when boiling. There was a large decrease in the concentration of bromate with reverse osmosis, but there was a little effect in the other experiments. These findings suggest that the exposure to THM4 and MX through ingestion is reduced when using these household appliances, while the decrease of bromate is device dependent. This needs to be considered in the exposure assessment of the epidemiological studies.

  8. The Effect of Different Boiling and Filtering Devices on the Concentration of Disinfection By-Products in Tap Water

    Directory of Open Access Journals (Sweden)

    Glòria Carrasco-Turigas

    2013-01-01

    Full Text Available Disinfection by-products (DBPs are ubiquitous contaminants in tap drinking water with the potential to produce adverse health effects. Filtering and boiling tap water can lead to changes in the DBP concentrations and modify the exposure through ingestion. Changes in the concentration of 4 individual trihalomethanes (THM4 (chloroform (TCM, bromodichloromethane (BDCM, dibromochloromethane (DBCM, and bromoform (TBM, MX, and bromate were tested when boiling and filtering high bromine-containing tap water from Barcelona. For filtering, we used a pitcher-type filter and a household reverse osmosis filter; for boiling, an electric kettle, a saucepan, and a microwave were used. Samples were taken before and after each treatment to determine the change in the DBP concentration. pH, conductivity, and free/total chlorine were also measured. A large decrease of THM4 (from 48% to 97% and MX concentrations was observed for all experiments. Bromine-containing trihalomethanes were mostly eliminated when filtering while chloroform when boiling. There was a large decrease in the concentration of bromate with reverse osmosis, but there was a little effect in the other experiments. These findings suggest that the exposure to THM4 and MX through ingestion is reduced when using these household appliances, while the decrease of bromate is device dependent. This needs to be considered in the exposure assessment of the epidemiological studies.

  9. Pyruvate remediation of cell stress and genotoxicity induced by haloacetic acid drinking water disinfection by-products.

    Science.gov (United States)

    Dad, Azra; Jeong, Clara H; Pals, Justin A; Wagner, Elizabeth D; Plewa, Michael J

    2013-10-01

    Monohaloacetic acids (monoHAAs) are a major class of drinking water disinfection by-products (DBPs) and are cytotoxic, genotoxic, mutagenic, and teratogenic. We propose a model of toxic action based on monoHAA-mediated inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a target cytosolic enzyme. This model predicts that GAPDH inhibition by the monoHAAs will lead to a severe reduction of cellular ATP levels and repress the generation of pyruvate. A loss of pyruvate will lead to mitochondrial stress and genomic DNA damage. We found a concentration-dependent reduction of ATP in Chinese hamster ovary cells after monoHAA treatment. ATP reduction per pmol monoHAA followed the pattern of iodoacetic acid (IAA) > bromoacetic acid (BAA) > chloroacetic acid (CAA), which is the pattern of potency observed with many toxicological endpoints. Exogenous supplementation with pyruvate enhanced ATP levels and attenuated monoHAA-induced genomic DNA damage as measured with single cell gel electrophoresis. These data were highly correlated with the SN 2 alkylating potentials of the monoHAAs and with the induction of toxicity. The results from this study strongly support the hypothesis that GAPDH inhibition and the possible subsequent generation of reactive oxygen species is linked with the cytotoxicity, genotoxicity, teratogenicity, and neurotoxicity of these DBPs.

  10. Degradation of carbamazepine by UV/chlorine advanced oxidation process and formation of disinfection by-products.

    Science.gov (United States)

    Zhou, Shiqing; Xia, Ying; Li, Ting; Yao, Tian; Shi, Zhou; Zhu, Shumin; Gao, Naiyun

    2016-08-01

    Pharmaceuticals in water are commonly found and are not efficiently removed by current treatment processes. Degradation of antiepileptic drug carbamazepine (CBZ) by UV/chlorine advanced oxidation process was systematically investigated in this study. The results showed that the UV/chlorine process was more effective at degrading CBZ than either UV or chlorination alone. The CBZ degradation followed pseudo-first order reaction kinetics, and the degradation rate constants (kobs) were affected by the chlorine dose, solution pH, and natural organic matter concentration to different degrees. Degradation of CBZ greatly increased with increasing chlorine dose and decreasing solution pH during the UV/chlorine process. Additionally, the presence of natural organic matter in the solution inhibited the degradation of CBZ. UV photolysis, chlorination, and reactive species (hydroxyl radical •OH and chlorine atoms •Cl) were identified as responsible for CBZ degradation in the UV/chlorine process. Finally, a degradation pathway for CBZ in the UV/chlorine process was proposed and the formation potentials of carbonaceous and nitrogenous disinfection by-products were evaluated. Enhanced formation of trichloroacetic acid, dichloroacetonitrile, and trichloronitromethane precursors should be considered when applying UV/chlorine advanced oxidation process to drinking water.

  11. The Effect of Different Boiling and Filtering Devices on the Concentration of Disinfection By-Products in Tap Water

    Science.gov (United States)

    Carrasco-Turigas, Glòria; Villanueva, Cristina M.; Goñi, Fernando; Rantakokko, Panu; Nieuwenhuijsen, Mark J.

    2013-01-01

    Disinfection by-products (DBPs) are ubiquitous contaminants in tap drinking water with the potential to produce adverse health effects. Filtering and boiling tap water can lead to changes in the DBP concentrations and modify the exposure through ingestion. Changes in the concentration of 4 individual trihalomethanes (THM4) (chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM)), MX, and bromate were tested when boiling and filtering high bromine-containing tap water from Barcelona. For filtering, we used a pitcher-type filter and a household reverse osmosis filter; for boiling, an electric kettle, a saucepan, and a microwave were used. Samples were taken before and after each treatment to determine the change in the DBP concentration. pH, conductivity, and free/total chlorine were also measured. A large decrease of THM4 (from 48% to 97%) and MX concentrations was observed for all experiments. Bromine-containing trihalomethanes were mostly eliminated when filtering while chloroform when boiling. There was a large decrease in the concentration of bromate with reverse osmosis, but there was a little effect in the other experiments. These findings suggest that the exposure to THM4 and MX through ingestion is reduced when using these household appliances, while the decrease of bromate is device dependent. This needs to be considered in the exposure assessment of the epidemiological studies. PMID:23476675

  12. Disinfection by-product formation following chlorination of drinking water: artificial neural network models and changes in speciation with treatment.

    Science.gov (United States)

    Kulkarni, Pranav; Chellam, Shankararaman

    2010-09-01

    Artificial neural network (ANN) models were developed to predict disinfection by-product (DBP) formation during municipal drinking water treatment using the Information Collection Rule Treatment Studies database complied by the United States Environmental Protection Agency. The formation of trihalomethanes (THMs), haloacetic acids (HAAs), and total organic halide (TOX) upon chlorination of untreated water, and after conventional treatment, granular activated carbon treatment, and nanofiltration were quantified using ANNs. Highly accurate predictions of DBP concentrations were possible using physically meaningful water quality parameters as ANN inputs including dissolved organic carbon (DOC) concentration, ultraviolet absorbance at 254nm and one cm path length (UV(254)), bromide ion concentration (Br(-)), chlorine dose, chlorination pH, contact time, and reaction temperature. This highlights the ability of ANNs to closely capture the highly complex and non-linear relationships underlying DBP formation. Accurate simulations suggest the potential use of ANNs for process control and optimization, comparison of treatment alternatives for DBP control prior to piloting, and even to reduce the number of experiments to evaluate water quality variations when operating conditions are changed. Changes in THM and HAA speciation and bromine substitution patterns following treatment are also discussed. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Application of effect-directed analysis to identify mutagenic nitrogenous disinfection by-products of advanced oxidation drinking water treatment.

    Science.gov (United States)

    Vughs, D; Baken, K A; Kolkman, A; Martijn, A J; de Voogt, P

    2016-07-22

    Advanced oxidation processes are important barriers for organic micropollutants in (drinking) water treatment. It is however known that medium pressure UV/H2O2 treatment may lead to mutagenicity in the Ames test, which is no longer present after granulated activated carbon (GAC) filtration. Many nitrogen-containing disinfection by-products (N-DBPs) result from the reaction of photolysis products of nitrate with (photolysis products of) natural organic material (NOM) during medium pressure UV treatment of water. Identification of the N-DBPs and the application of effect-directed analysis to combine chemical screening results with biological activity would provide more insight into the relation of specific N-DBPs with the observed mutagenicity and was the subject of this study. To this end, fractions of medium pressure UV-treated and untreated water extracts were prepared using preparative HPLC and tested using the Ames fluctuation test. In addition, high-resolution mass spectrometry was performed on all fractions to assess the presence of N-DBPs. Based on toxicity data and read across analysis, we could identify five N-DBPs that are potentially genotoxic and were present in relatively high concentrations in the fractions in which mutagenicity was observed. The results of this study offer opportunities to further evaluate the identity and potential health concern of N-DBPs formed during advanced oxidation UV drinking water treatment.

  14. DOC, Color and Disinfection By-Product Precursor Dynamics along an Urbanization Gradient, Croton Water Supply System, New York, USA

    Science.gov (United States)

    Hassett, J. M.; Mitchell, M. J.; Burns, D. A.; Heisig, P. M.

    2005-05-01

    Hydrologic processes in suburban watersheds and their effects on water quality warrant investigation. Biweekly and storm samples were collected and analyzed for base cations, selected anions, and DOC over a one-year period at the outlet of three small (37 - 55 ha) watersheds (one forested, two with different degrees of suburban development) in the Croton Watershed, southeastern New York. Less frequent sampling for Pt/Co color and disinfection by-product precursors (DBPs) were also conducted. Median baseflow concentrations (>3 days since rainfall) of DOC were similar, ranging from 2.1 to 1.8 to 1.7 mg L -1 for the most urbanized to the forested watershed, respectively. On a unit area load basis (kg ha-1 yr-1), the range was from 8.9 to 6.4 to 5.1, again from most urbanized to forested watershed. All three watersheds showed similar storm responses, with evidence for a flushing mechanism in that DOC concentration increased with increasing discharge. Pt/Co color and DBPs (determined as both total trihalomethane and total haloacetic acid formation potentials) showed similar storm behavior, although the range of response was greater than observed for DOC, suggesting a labile DOC fraction was mobilized during storm events. The more urbanized watersheds tended to favor brominated over chlorinated forms of DBPs; the reasons for this are unclear.

  15. Removal of soluble microbial products as the precursors of disinfection by-products in drinking water supplies.

    Science.gov (United States)

    Liu, Jin-Lin; Li, Xiao-Yan

    2015-01-01

    Water pollution worsens the problem of disinfection by-products (DBPs) in drinking water supply. Biodegradation of wastewater organics produces soluble microbial products (SMPs), which can be important DBP precursors. In this laboratory study, a number of enhanced water treatment methods for DBP control, including enhanced coagulation, ozonation, and activated carbon adsorption, were evaluated for their effectiveness in treating SMP-containing water for the DBP reduction purpose. The results show that enhanced coagulation with alum could remove SMPs only marginally and decrease the DBP formation potential (DBPFP) of the water by less than 20%. Although ozone could cause destruction of SMPs in water, the overall DBPFP of the water did not decrease but increased after ozonation. In contrast, adsorption by granular activated carbon could remove the SMP organics from water by more than 60% and reduce the DBPFP by more than 70%. It is apparent that enhanced coagulation and ozonation are not suitable for the removal of SMPs as DBP precursors from polluted water, although enhanced coagulation has been commonly used to reduce the DBP formation caused by natural organic matter. In comparison, activated carbon adsorption is shown as a more effective means to remove the SMP content from water and hence to control the wastewater-derived DBP problem in water supply.

  16. Chlorinated and nitrogenous disinfection by-product formation from ozonation and post-chlorination of natural organic matter surrogates.

    Science.gov (United States)

    Bond, Tom; Templeton, Michael R; Rifai, Omar; Ali, Hussain; Graham, Nigel J D

    2014-09-01

    Ozonation before chlorination is associated with enhanced formation of chloropicrin, a halonitromethane disinfection by-product (DBP), during drinking water treatment. In order to elucidate reasons for this, five natural organic matter (NOM) surrogates were treated using both chlorination and ozonation-chlorination under controlled laboratory conditions. Selected surrogates comprised two phenolic compounds, two free amino acids and one dipeptide; these were resorcinol, 3-aminophenol, L-aspartic acid, β-alanine and ala-ala, respectively. Quantified DBPs included chloropicrin, chloroform, dichloroacetonitrile and trichloroacetonitrile. Relative to chlorination alone, increases in the formation of chloropicrin from ozonation-chlorination varied from 138% for 3-aminophenol to 3740% for ala-ala for the four amine surrogates. This indicates that ozone is more effective than chlorine in mediating a rate-limiting oxidation step in chloropicrin formation, most plausibly involving conversion of an amine group to a nitro group. While both hydrophilic and hydrophobic surrogates acted as chloropicrin precursors, ala-ala was the most reactive precursor following ozonation-chlorination. Since peptides are far commoner in drinking water sources than free amino acids, further research into chemical oxidation of these species by ozone and chlorine is recommended. In contrast, oxidation with ozone prior to chlorination reduced chloroform formation moderately for the two phenolic compounds.

  17. Formation potentials of bromate and brominated disinfection by-products in bromide-containing water by ozonation.

    Science.gov (United States)

    Lin, Tao; Wu, Shouke; Chen, Wei

    2014-12-01

    The ozonation involved in drinking water treatment raises issues of water quality security when the raw water contains bromide (Br(-)). Br(-) ions may be converted to bromate (BrO3 (-)) during ozonation and some brominated disinfection by-products (Br-DBPs) in the following chlorination. In this study, the effects of ozone (O3) dosage, contact time, pH, and Br(-) and ammonia (NH3-N) concentrations on the formation of BrO3 (-) and Br-DBPs have been investigated. The results show that decreasing the initial Br(-) concentration is an effective means of controlling the formation of BrO3 (-). When the concentration of Br(-) was lower than 100 μg/L, by keeping the ratio of O3 dosage to dissolved organic carbon (DOC) concentration at less than 1, BrO3 (-) production was effectively suppressed. The concentration of BrO3 (-) steadily increased with increasing O3 dosage at high Br(-) concentration (>900 μg/L). Additionally, a longer ozonation time increased the concentrations of BrO3 (-) and total organic bromine (TOBr), while it had less impact on the formation potentials of brominated trihalomethanes (Br-THMFP) and haloacetic acids (Br-HAAFP). Higher pH value and the presence of ammonia may lead to an increase in the formation potential of BrO3 (-) and Br-DBPs.

  18. [Formation and Variation of Brominated Disinfection By-products in A Combined Ultrafiltration and Reverse Osmosis Process for Seawater Desalination].

    Science.gov (United States)

    Yang, Zhe; Sun, Ying-xue; Shi, Na; Hu, Hong-ying

    2015-10-01

    The characteristics of dissolved organic matter (DOM) and brominated disinfection by-products ( Br-DBPs ) during a seawater desalination ultrafiltration (UF) combined reverse osmosis (RO) process were studied. The seawater contained high level of bromide ion (45.6-50.9 mg x L(-1)) and aromatic compounds with specific ultraviolet absorbance ( SUVA) of 3.6-6.0 L x (mg x m)(-1). The tryptophan-like aromatic protein, fulvic acid-like and soluble microbial by-product-like were the main fluorescent DOM in the seawater. After pre-chlorination of the seawater, the concentrations of DBPs was significantly increased in the influent of UF, which was dominantly the Br-DBPs. Bromoform (CHBr3) accounted for 70.48% - 91.50% of total trihalomethanes (THMs), dibromoacetic acid (Br2CHCO2H) occupied 81.14% - 100% of total haloacetic acids (HAAs) and dibromoacetonitrile (C2HBr2N) occupied 83.77% - 87.45% of total haloacetonitriles ( HANs). The removal efficiency of THMs, HAAs and HANs by the UF membrane was 36.63% - 40.39%, 73.83% - 95.38% and 100%, respectively. The RO membrane could completely remove the HAAs, while a little of the THMs was penetrated. The antiestrogenic activity in the seawater was 0.35 - 0.44 mg x L(-1), which was increased 32% - 69% after the pre-chlorination. The DBPs and other bio-toxic organics which formed during the UF-RO process were finally concentrated in the UF concentrate and RO concentrate.

  19. Comparison of Drinking Water Disinfectants and Analysis and Control of Disinfection By-products%常用饮用水消毒剂比较及其消毒副产物的分析与控制

    Institute of Scientific and Technical Information of China (English)

    严汉林; 严啸威; 李严宽

    2013-01-01

    This paper compared disinfect abilities,disinfect mechanisms and costs among three disinfectants commonly used—clilorine,chlorine dioxide and ozone,represented the production and human health risk of by products (DBPs) and proposed control measures of DBPs.%本文从消毒能力、消毒机理及成本等方面比较了几种常用饮用水消毒剂——氯、二氧化氯(ClO2)和臭氧(O3).阐述了各种消毒副产物(DBPs)的产生及危害,并在此基础上提出了控制DBPs的几种措施.

  20. Disinfection by-products of chlorine dioxide (chlorite, chlorate, and trihalomethanes): Occurrence in drinking water in Qatar.

    Science.gov (United States)

    Al-Otoum, Fatima; Al-Ghouti, Mohammad A; Ahmed, Talaat A; Abu-Dieyeh, Mohammed; Ali, Mohammed

    2016-12-01

    The occurrence of chlorine dioxide (ClO2) disinfection by-products (DBPs) in drinking water, namely, chlorite, chlorate, and trihalomethanes (THMs), was investigated. Two-hundred-ninety-four drinking water samples were collected from seven desalination plants (DPs), four reservoirs (R), and eight mosques (M) distributed within various locations in southern and northern Qatar. The ClO2 concentration levels ranged from 0.38 to <0.02 mg L(-1), with mean values of 0.17, 0.12, and 0.04 mg L(-1) for the DPs, Rs, and Ms, respectively. The chlorite levels varied from 13 μg L(-1) to 440 μg L(-1), with median values varying from 13 to 230 μg L(-1), 77-320 μg L(-1), and 85-440 μg L(-1) for the DPs, Rs, and Ms, respectively. The chlorate levels varied from 11 μg L(-1) to 280 μg L(-1), with mean values varying from 36 to 280 μg L(-1), 11-200 μg L(-1), and 11-150 μg L(-1) in the DPs, Rs, and Ms, respectively. The average concentration of THMs was 5 μg L(-1), and the maximum value reached 77 μg L(-1) However, all of the DBP concentrations fell within the range of the regulatory limits set by GSO 149/2009, the World Health Organization (WHO), and Kahramaa (KM).

  1. Removal of precursors for disinfection by-products (Dbps)--differences between ozone- and OH-radical-induced oxidation.

    Science.gov (United States)

    Kleiser, G; Frimmel, F H

    2000-06-22

    Pre-oxidation is often applied to reduce the formation of disinfection by-products (DBPs). The aim of pre-oxidation is to remove the centers of natural organic matter (NOM) which are responsible for the formation of DBPs. In this paper, the differences between ozone- and OH-radical-induced oxidation to remove DBP-precursors are compared. The experiments were done with water of the River Ruhr (Germany) with a concentration of dissolved organic carbon (DOC) of 2 mg/l. Ozonation was able to remove DBP precursors selectively. After application of an absorbed ozone mass of 1.5 mg/mg DOC, a reduction in the formation potential for (THM-FP) and in the formation potential for organic halogen adsorbable on activated carbon (AOX-FP) down to 68 and 73% of the initial concentration was achieved, respectively. A removal of NOM was not achieved using absorbed ozone masses between 0.5 and 1.5 mg/mg DOC. In the hydrogen peroxide/UV process, in which OH-radicals are the reactive species, an increase in the THM concentration was measured after application of this process with short irradiation times. The maximum value of the THM-FP was 20% higher than the initial THM-FP. After an irradiation time of 1,050 min and a hydrogen peroxide consumption of 5.6 mg/l, the THM-FP and AOX-FP decreased to 75 and 71% of the initial formation potential, respectively. There was no selective removal of DBP precursors because the DOC concentration decreased also to 75% of the initial DOC-concentration after 1,050 min of irradiation.

  2. Formation of iodinated disinfection by-products during oxidation of iodide-containing waters with chlorine dioxide.

    Science.gov (United States)

    Ye, Tao; Xu, Bin; Lin, Yi-Li; Hu, Chen-Yan; Lin, Lin; Zhang, Tian-Yang; Gao, Nai-Yun

    2013-06-01

    This study was to explore the formation of iodinated disinfection by-products (I-DBPs), including iodoform (CHI3), iodoacetic acid (IAA) and triiodoacetic acid (TIAA), when iodide-containing artificial synthesized waters and raw waters are in contact with chlorine dioxide (ClO2). Among the investigated I-DBPs, CHI3 was the major species during ClO2 oxidation in artificial synthesized waters. Impact factors were evaluated, including the concentrations of ClO2, iodide (I(-)), dissolved organic carbon (DOC) and pH. Formation of CHI3, IAA and TIAA followed an increasing and then decreasing pattern with increased ClO2 or DOC concentration. I-DBPs yield was significantly affected by solution pH. High concentrations of I-DBPs were generated under circumneutral conditions with the maximum formation at pH 8. The increase of I(-) concentration can increase I-DBPs yields, but the increment was suppressed when I(-) concentration was higher than 50 μM. When 100 μg/L I(-)and ClO2 (7.5-44.4 μM) were spiked to the raw water samples from Yangshupu and Minhang drinking water treatment plant, certain amounts of CHI3 and IAA were found under pH 7 and the concentrations were strongly correlated with ClO2 dosage and water qualities, however, no TIAA was detected. Finally, we investigated I-DBPs formation of 18 model compounds, including 4 carboxylic acids, 5 phenols and 8 amino acids, treating with ClO2 when I(-) was present. Results showed that most of these model compounds could form a considerable amount of I-DBPs, especially for propanoic acid, butanoic acid, resorcinol, hydroquinone, alanine, glutamic acid, phenylalanine and serine.

  3. Formation and cytotoxicity of a new disinfection by-product (DBP) phenazine by chloramination of water containing diphenylamine

    Institute of Scientific and Technical Information of China (English)

    Wenjun Zhou; Linjie Lou; Lifang Zhu; Zhimin Li; Lizhong Zhu

    2012-01-01

    Disinfection by-products (DBPs) in drinking water have caused worldwide concern due to their potential earcinogenic effects.The formation of phenazine from diphenylamine (DPhA) chloramination was studied and its cytotoxicities for two human cancer cells were also investigated.Phenazine was detected synchronously with the consumption of DPhA by chloramination,which further confirmed that the new DBP phenazine can be produced along with N-nitrosodiphenylamine (NDPhA) from DPhA chloramination.The formation of phenazine had a maximum molar yield with solution pH increasing from 5.0 to 9.0,with phernazine as the main product for DPhA chloramination at lower pH,but higher pH favored the formation of NDPhA.Thus,solution pH is the key factor in controlling the formation of phenazine and NDPhA.Both the initial DPhA and chloramine concentrations did not show a significant effect on the molar yields of phenazine,although increasing the chloramine concentration could speed up the reacdon rate of DPhA with chloramines.The cytotoxicity assays showed that phenazine had significant cell-specific toxicity towards T24 (bladder cancer cell lines) and HepG2 (hepatic tumor cell lines) cells with IC50 values of 0.50 and 2.04 mmol/L,respectively,and T24 ceils being more sensitive to phenazine than HepG2 ceils.The IC50 values of phenazine,DPhA,and NDPhA for T24 cells were of the same order of magnitude and the cytotoxicity of phenazine for T24 cells was slightly lower than that of NDPhA (IC50,0.16 mmol/L),suggesting that phenazine in drinking water may have an adverse effect on human health.

  4. Factors affecting the formation of nitrogenous disinfection by-products during chlorination of aspartic acid in drinking water.

    Science.gov (United States)

    Chen, Wei; Liu, Zhigang; Tao, Hui; Xu, Hang; Gu, Yanmei; Chen, Zhaolin; Yu, Jingjing

    2017-01-01

    The formation of emerging nitrogenous disinfection by-products (N-DBPs) from the chlorination of aspartic acid (Asp) was investigated. The yield of dichloroacetonitrile (DCAN) was higher than other N-DBPs, such as dichloroacetamide(DCAcAm) and chloropicrin (TCNM) during the chlorination of Asp. The formation of DCAN, DCAcAm, and TCNM all showed a trend of first increasing and then decreasing during the chlorination of Asp with increasing contact time. The dosage of chlorine had an impact on the formation of DCAN, DCAcAm, and TCNM. The highest yields of DCAN and DCAcAm appeared when the Cl2/Asp molar ratio was about 20, the yield of TCNM increased with increasing the Cl2/Asp molar ratio from 5 to 30 and TCNM was not produced when the ratio was less than 5. Cyanogen chloride (CNCl) was detected when the Cl2/Asp molar ratio was lower than 5. N-DBPs formation was influenced by pH. DCAN formation increased with increasing pH from 5 to 6 and then decreased with increasing pH from 6 to 9, but DCAcAm and TCNM increased with increasing pH from 5 to 8 and then decreased. Higher temperatures reduced the formation of DCAN and DCAcAm, but increased TCNM formation. DCAN and DCAcAm formation decreased, and relatively stable TCNM formation increased, with increasing free chlorine contact time during chloramination. N-nitrosodimethylamine (NDMA) was produced during chloramination of Asp and increased with prolonged chloramination contact time. The presence of bromide ions enhanced the yields of haloacetonitriles and shifted N-DBPs to more brominated species.

  5. Concentrations of disinfection by-products in swimming pool following modifications of the water treatment process: An exploratory study.

    Science.gov (United States)

    Tardif, Robert; Rodriguez, Manuel; Catto, Cyril; Charest-Tardif, Ginette; Simard, Sabrina

    2017-08-01

    The formation and concentration of disinfection by-products (DBPs) in pool water and the ambient air vary according to the type of water treatment process used. This exploratory study was aimed at investigating the short-term impact of modifications of the water treatment process on traditional DBP levels (e.g., trihalomethanes (THMs), chloramines) and emerging DBPs (e.g., Halonitromethanes, Haloketones, NDMA) in swimming pool water and/or air. A sampling program was carried to understand the impact of the following changes made successively to the standard water treatment process: activation of ultraviolet (UV) photoreactor, halt of air stripping with continuation of air extraction from the buffer tank, halt of air stripping and suppression of air extraction from the buffer tank, suppression of the polyaluminium silicate sulfate (PASS) coagulant. UV caused a high increase of Halonitromethanes (8.4 fold), Haloketones (2.1 fold), and THMs in the water (1.7 fold) and, of THMs in the air (1.6 fold) and contributed to reducing the level of chloramines in the air (1.6 fold) and NDMA in the water (2.1 fold). The results highlight the positive impact of air stripping in reducing volatile contaminants. The PASS did not change the presence of DBPs, except for the THMs, which decrease slightly with the use of this coagulant. This study shows that modifications affecting the water treatment process can rapidly produce important and variable impacts on DBP levels in water and air and suggests that implementation of any water treatment process to reduce DBP levels should take into account the specific context of each swimming pool. Copyright © 2017. Published by Elsevier B.V.

  6. Risk of stillbirth in the relation to water disinfection by-products: a population-based case-control study in Taiwan.

    Science.gov (United States)

    Hwang, Bing-Fang; Jaakkola, Jouni J K

    2012-01-01

    Few epidemiological studies that have assessed the relation between water disinfection by-products (DBPs) and the risk of stillbirth provide inconsistent results. The objective was to assess the relation between exposure to water disinfection by-products and the risk of stillbirth. We conducted a population-based case-control study of 3,289 cases of stillbirth and a random sample of 32,890 control subjects from 396,049 Taiwanese newborns in 2001-2003 using information from the Birth Registry and Waterworks Registry in Taiwan. We compared the risk of stillbirth in four disinfection by-product exposure categories based on the levels of total trihalomethanes (TTHMs) representing high (TTHMs 20+ µg/L), medium (TTHMs 10-19 µg/L), low exposure (TTHMs 5-9 µg/L), and 0-4 µg/L as the reference category. In addition, we conducted a meta-analysis of the results from the present and 5 previous studies focusing on stillbirth. In logistic regression analysis adjusting for gender, maternal age, plurality, conception of season and population density of the municipality where the mother lived during pregnancy, the odds ratio (OR) for stillbirth was 1.10 (95% CI 1.00-1.21) for medium exposure and 1.06 (95% 0.96-1.17) for high exposure compared to reference category. In the meta-analysis, the summary odds ratio for stillbirth (1.11, 95% CI: 1.03, 1.19) was consistently elevated. The present study is consistent with the hypothesis that the risk of stillbirth is related to prenatal exposure to disinfection by-products. This finding on stillbirth is consistent with previous epidemiologic studies, which strengthens the weight of evidence.

  7. Powdered activated carbon coupled with enhanced coagulation for natural organic matter removal and disinfection by-product control: application in a Western Australian water treatment plant.

    Science.gov (United States)

    Kristiana, Ina; Joll, Cynthia; Heitz, Anna

    2011-04-01

    The removal of organic precursors of disinfection by-products (DBPs), i.e. natural organic matter (NOM), prior to disinfection and distribution is considered as the most effective approach to minimise the formation of DBPs. This study investigated the impact of the addition of powdered activated carbon (PAC) to an enhanced coagulation treatment process at an existing water treatment plant on the efficiency of NOM removal, the disinfection behaviour of the treated water, and the water quality in the distribution system. This is the first comprehensive assessment of the efficacy of plant-scale application of PAC combined with enhanced coagulation on an Australian source water. As a result of the PAC addition, the removal of NOM improved by 70%, which led to a significant reduction (80-95%) in the formation of DBPs. The water quality in the distribution system also improved, indicated by lower concentrations of DBPs in the distribution system and better maintenance of disinfectant residual at the extremities of the distribution system. The efficacy of the PAC treatment for NOM removal was shown to be a function of the characteristics of the NOM and the quality of the source water, as well as the PAC dose. PAC treatment did not have the capacity to remove bromide ion, resulting in the formation of more brominated DBPs. Since brominated DBPs have been found to be more toxic than their chlorinated analogues, their preferential formation upon PAC addition must be considered, especially in source waters containing high concentrations of bromide.

  8. Prevalence of Ocular, Respiratory and Cutaneous Symptoms in Indoor Swimming Pool Workers and Exposure to Disinfection By-Products (DBPs

    Directory of Open Access Journals (Sweden)

    Guglielmina Fantuzzi

    2010-03-01

    Full Text Available The objective of this cross-sectional study was to investigate the prevalence of self-reported respiratory, ocular and cutaneous symptoms in subjects working at indoor swimming pools and to assess the relationship between frequency of declared symptoms and occupational exposure to disinfection by-products (DBPs. Twenty indoor swimming pools in the Emilia Romagna region of Italy were included in the study. Information about the health status of 133 employees was collected using a self-administered questionnaire. Subjects working at swimming pools claimed to frequently experience the following symptoms: cold (65.4%, sneezing (52.6%, red eyes (48.9% and itchy eyes (44.4%. Only 7.5% claimed to suffer from asthma. Red eyes, runny nose, voice loss and cold symptoms were declared more frequently by pool attendants (lifeguards and trainers when compared with employees working in other areas of the facility (office, cafe, etc.. Pool attendants experienced generally more verrucas, mycosis, eczema and rash than others workers; however, only the difference in the frequency of self-declared mycosis was statistically significant (p = 0.010. Exposure to DBPs was evaluated using both environmental and biological monitoring. Trihalomethanes (THMs, the main DBPs, were evaluated in alveolar air samples collected from subjects. Swimming pool workers experienced different THM exposure levels: lifeguards and trainers showed the highest mean values of THMs in alveolar air samples (28.5 ± 20.2 µg/m3, while subjects working in cafe areas (17.6 ± 12.1 µg/m3, offices (14.4 ± 12.0 µg/m3 and engine rooms (13.6 ± 4.4 µg/m3 showed lower exposure levels. Employees with THM alveolar air values higher than 21 µg/m3 (median value experienced higher risks for red eyes (OR 6.2; 95% CI 2.6–14.9, itchy eyes (OR 3.5; 95% CI 1.5–8.0, dyspnea/asthma (OR 5.1; 95% CI 1.0–27.2 and blocked nose (OR 2.2; 95% CI 1.0–4.7 than subjects with less exposure. This study confirms

  9. Headspace-free setup of in vitro bioassays for the evaluation of volatile disinfection by-products.

    Science.gov (United States)

    Stalter, Daniel; Dutt, Mriga; Escher, Beate I

    2013-11-18

    The conventional setup of in vitro bioassays in microplates does not prevent the loss of volatile compounds, which hampers the toxicological characterization of waterborne volatile disinfection by-products (DBPs). To minimize the loss of volatile test chemicals, we adapted four in vitro bioassays to a headspace-free setup using eight volatile organic compounds (four trihalomethanes, 1,1-dichloroethene, bromoethane, and two haloacetonitriles) that cover a wide range of air-water partition coefficients. The nominal effect concentrations of the test chemicals decreased by up to three orders of magnitude when the conventional setup was changed to a headspace-free setup for the bacterial cytotoxicity assay using bioluminescence inhibition of Vibrio fischeri. The increase of apparent sensitivity correlated significantly with the air-water partition coefficient. Purge and trap GC/MS analysis revealed a reduced loss of dosed volatile compounds in the headspace free setup (78-130% of nominal concentration) compared to a substantial loss in the conventional set up (2-13% of the nominal concentration). The experimental effect concentrations converged with the headspace-free setup to the effect concentrations predicted by a QSAR model, confirming the suitability of the headspace-free approach to minimize the loss of volatile test chemicals. The analogue headspace-free design of the bacterial bioassays for genotoxicity (umuC assay) and mutagenicity (Ames fluctuation assay) increased the number of compounds detected as genotoxic or mutagenic from one to four and zero to two, respectively. In a bioassay with a mammalian cell line applied for detecting the induction of the Nrf-2-mediated oxidative stress response (AREc32 assay), the headspace-free setup improved the apparent sensitivity by less than one order of magnitude, presumably due to the retaining effect of the serum components in the medium, which is also reflected in the reduced aqueous concentrations of compounds. This

  10. The alkaline comet assay used in evaluation of genotoxic damage of drinking water disinfection by-products (bromoform and chloroform

    Directory of Open Access Journals (Sweden)

    Messaouda Khallef

    2015-06-01

    Full Text Available The alkaline comet assay (pH 12.3 is a useful method for monitoring genotoxic effects of environmental pollutants in the root nuclei of Allium cepa and various plants; it allows the detection of single- and double-strand breaks, incomplete excision-repair sites and cross-links. It has been introduced to detect even small changes in DNA structure. It is a technically simple, highly sensitive, fast and economic test which detects in vitro and in vivo genotoxicity (DNA integrity and packing mode in any cell types examined, and requires just a few cells for its execution (Liman et al., 2011; Yıldız et al., 2009. Chloroform and bromoform are the most important trihalomethanes found in drinking water. Different concentrations of bromoform (25, 50, 75and 100µg/ml and chloroform (25, 50, 100 and 200 µg/ml were introduced to onion tuber roots. Distilled water was used as a negative control and methyl methansulfonate (MMS-10 µg/ml as positive control. All obtained data were subjected to statistical analyses by using SPSS 15.0 for Windows software. For comparison purposes, Duncan multiple range tests using one-way analysis of variance (ANOVA were employed and p<0.05 was accepted as the test of significance. Comet assay results showed that DNA damage was significant at p <0.05 for the different concentrations of chloroform and bromoform compared to the negative control which has a damage rate equal to 3.5 ± 0.7 and the positive control which has damage rate equal to 13.5 ± 2.12. The exposure of root tip cells to these disinfection by-products increases DNA damage. All concentrations examined in this study of bromoform and chloroform cause significant harm, which could be due to DNA damage induced by oxidative stress. The measurement of DNA damage in the nuclei of higher plant tissues is a new area of study with SCGE. This assay could be incorporated into in situ monitoring of atmosphere, water and soil: the comet assay allows a fast detection without

  11. Epidemiological approaches in the investigation of environmental causes of cancer: the case of dioxins and water disinfection by-products

    Directory of Open Access Journals (Sweden)

    Kogevinas Manolis

    2011-04-01

    Full Text Available Abstract I will refer in this paper to difficulties in research in environmental causes of cancer using as examples research on dioxins and on drinking water disinfection by-products (DBPs that have created considerable controversy in the scientific and wider community. Dioxins are highly toxic chemicals that are animal carcinogens. For many years, evaluation of the carcinogenicity of dioxins in humans was based on case-control or registry based studies. The development of methods to measure dioxins in blood indicated that these studies suffered from extreme exposure misclassification. The conduct of large cohort studies of workers with widely contrasted exposures together with the use of biomarkers and models for exposure assessment, led to convincing evidence on the carcinogenicity of dioxins in humans. The high toxicity of a few dioxin congeners, the availability of a scheme to characterize the toxicity of a mixture of dioxins and related compounds and the long half-life of these compounds facilitated epidemiological research. Contrary to dioxins, trihalomethanes (THMs and most of the hundreds of DBPs in drinking water are chemicals of low toxicity. For more than 15 years, the main evidence on the carcinogenicity of DBPs was through ecological or death certificate studies. More recent studies based on individual assessment confirmed increases in bladder cancer risk. However even those studies ignored the toxicological evidence on the importance of routes of exposure to DBPs other than ingestion and, probably, underestimated the risk. Persistence of weak study designs together with delays in advanced exposure assessment models led to delays in confirming early evidence on the carcinogenicity of DBPs. The evaluation of only a few chemicals when exposure is to a complex mixture remains a major problem in exposure assessment for DBPs. The success of epidemiological studies in identifying increased risks lies primarily on the wide contrast of

  12. Epidemiological approaches in the investigation of environmental causes of cancer: the case of dioxins and water disinfection by-products.

    Science.gov (United States)

    Kogevinas, Manolis

    2011-04-05

    I will refer in this paper to difficulties in research in environmental causes of cancer using as examples research on dioxins and on drinking water disinfection by-products (DBPs) that have created considerable controversy in the scientific and wider community. Dioxins are highly toxic chemicals that are animal carcinogens. For many years, evaluation of the carcinogenicity of dioxins in humans was based on case-control or registry based studies. The development of methods to measure dioxins in blood indicated that these studies suffered from extreme exposure misclassification. The conduct of large cohort studies of workers with widely contrasted exposures together with the use of biomarkers and models for exposure assessment, led to convincing evidence on the carcinogenicity of dioxins in humans. The high toxicity of a few dioxin congeners, the availability of a scheme to characterize the toxicity of a mixture of dioxins and related compounds and the long half-life of these compounds facilitated epidemiological research. Contrary to dioxins, trihalomethanes (THMs) and most of the hundreds of DBPs in drinking water are chemicals of low toxicity. For more than 15 years, the main evidence on the carcinogenicity of DBPs was through ecological or death certificate studies. More recent studies based on individual assessment confirmed increases in bladder cancer risk. However even those studies ignored the toxicological evidence on the importance of routes of exposure to DBPs other than ingestion and, probably, underestimated the risk. Persistence of weak study designs together with delays in advanced exposure assessment models led to delays in confirming early evidence on the carcinogenicity of DBPs. The evaluation of only a few chemicals when exposure is to a complex mixture remains a major problem in exposure assessment for DBPs. The success of epidemiological studies in identifying increased risks lies primarily on the wide contrast of exposure to DBPs in the general

  13. Fast analysis of volatile organic compounds and disinfection by-products in drinking water using solid-phase microextraction-gas chromatography/time-of-flight mass spectrometry.

    Science.gov (United States)

    Niri, Vadoud H; Bragg, Leslie; Pawliszyn, Janusz

    2008-08-08

    A fast method was developed for the extraction and analysis of volatile organic compounds, including disinfection by-products (DBPs), with headspace solid-phase microextraction (HS-SPME) and gas chromatography/mass spectrometry (GC/MS) techniques. A GC/time-of-flight (TOF)-MS instrument, which had fast acquisition rates and powerful deconvolution software, was used. Under optimum conditions total runtime was 45s. Volatile organic compounds (VOCs), including purgeable A and B compounds (listed in US Environmental Protection Agency method 624), were identified in standard water samples. Extraction times were 1min for more volatile compounds and 2min for less volatile compounds. The method was applied to the analysis of water samples treated under different disinfection processes and the results were compared with those from a liquid-liquid extraction method.

  14. A study of the formation of minority chlorination disinfection by-products; Estudio de la formacion de subproductos minoritarios de la desinfeccion con cloro

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Vidal, F. J.; Ibeas Reoyo, M. v.; Perez Serrano, A.; Orozco Barrenetxea, C.; Gonzalez Delgado, N. [Universidad de Burgos (Spain)

    2001-07-01

    Chlorine has been the traditional choice of chemical for the disinfection in drinking water treatment; however, chlorination of water can lead to the formation of disinfection by-products (DBPs). Tri halomethanes are the most abundant and studied volatile DBPs, but in recent years the study of the minority DBPs is becoming more and more important due to the possible health effects of these compounds and therefore, the need to establish maximum contaminant levels for their presence in public water supplies. In the present work, some of these minority DBPs are evaluated, di chloroacetonitrile (DCAN), chloropicrin or trichloronitromethane (CP) and 1.1,1-tetrachloroethane (TCAC), studying the main parameters influencing their formation: type and concentration of the precursor organic matter, presence of bromide ion, pH and influence of the previous ozonization treatment. (Author) 33 refs.

  15. Effect of ozonation of swimming pool water on formation of volatile disinfection by-products - A laboratory study

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Spiliotopoulou, Aikaterini; Cheema, Waqas Akram

    2016-01-01

    Ozonation experiments were performed using unchlorinated tap water used for filling municipal swimming pools, actual pool water and pool water polluted by addition of fresh tap water and artificial body fluid to evaluate ozone kinetics and water quality effects on formation of volatile disinfection...

  16. Disinfection by-products and microbial contamination in the treatment of pool water with granular activated carbon.

    Science.gov (United States)

    Uhl, W; Hartmann, C

    2005-01-01

    For swimming pools, it is generally agreed that free chlorine levels have to be maintained to guarantee adequate disinfection. Recommended free chlorine levels can vary between 0.3 and 0.6 mg/L in Germany and up to 3 mg/L in other countries. Bathers introduce considerable amounts of organic matter, mainly in the form of such as urine and sweat, into the pool water. As a consequence, disinfection byproducts (DBPs) are formed. Regulations in Germany recommend levels of combined chlorine of less than 0.2 mg/L and levels of trihalomethanes (THMs) of less than 20 microg/L. Haloacetic acids (HAAs), haloacetonitriles (HANs), chloropicrin and chloral hydrate are also detected in considerable amounts. However, these compounds are not regulated yet. Swimming pool staff and swimmers, especially athletes, are primarily exposed to these byproducts by inhalation and/or dermal uptake. In Germany, new regulations for swimming pool water treatment generally require the use of activated carbon. In this project, three different types of granular activated carbon (GAC) (one standard GAC, two catalytic GACs) are compared for their long time behaviour in pool water treatment. In a pilot plant operated with real swimming pool water, production and removal of disinfection byproducts (THMs, HAAs, AOXs), of biodegradable substances (AOC), of bacteria (Pseudomonas aeruginosa, Legionella, coliforms, HPC) as well as the removal of chlorine and chloramines are monitored as function of GAC bed depth. Combined chlorine penetrates deeper in the filter bed than free chlorine does. However, both, free and combined chlorine removal efficiencies decrease over the time of filter operation. The decreases of removal efficiencies are also observed for parameters such as dissolved organic carbon, spectral absorption coefficient, adsorbable organic carbon and most of the disinfection byproducts. However, THMs, especially chloroform are produced in the filter bed. The GAC beds were contaminated microbially

  17. 组合氯化消毒工艺的卤代消毒副产物生成特性%Disinfection By-products Reduction of Combined Disinfection by Chlorine and Monochloramines in Distribution System

    Institute of Scientific and Technical Information of China (English)

    刘静; 陈超; 张晓健

    2009-01-01

    比较4种单独使用氯或组合氯化消毒工艺在较长管网停留时的卤代消毒副产物生成情况.4种工艺为单独游离氯消毒、氯胺消毒、清水池游离氯消毒后转氯胺的先氯后氨消毒、短时游离氯后转氯胺的顺序氯化消毒工艺.结果表明,游离氯消毒工艺在管网停留时间长时,卤代消毒副产物会持续大量的生成,而一氯胺消毒工艺生成的卤代消毒副产物量很低.目前使用较为普遍的先氯后氨消毒工艺与游离氯消毒相比,可以降低卤代消毒副产物的生成量,管网停留24 h时,三卤甲烷的生成量降低了9.6%,卤乙酸的生成量减低了42%.但是先氯后氨消毒工艺由于游离氯接触时间约为2 h,卤代消毒副产物已经大量生成.短时游离氯后转氯胺的顺序氯化消毒工艺,由于控制了游离氯的接触时间,可以在保障消毒工艺灭活微生物效果的同时更为有效地控制卤代消毒副产物,管网停留24 h时,三卤甲烷的生成量与单独游离氯消毒工艺相比降低了48%,卤乙酸的生成量减低了72%.因此,顺序氯化消毒工艺可以更好地控制卤代消毒副产物的生成,提高水质安全性.%Halogen disinfection by-products of four chlorined disinfection processes with long contact time in distribution system was compared in the work. These four disinfection processes are free chlorine, monochloramines, free chlorine disinfection in clearwelles while chloramines in distribution system, sequential chlorination disinfection with short-term free chlorine plus chloramines. According to the research, free chlorine generates most trihalomethanes(THMs) and haloacetic acids (HAAs) both in clearwells and distribution system, while monochloramines barely yield halogen DBPs. Free chlorine disinfection in clearwelles while chloramines in distribution system could reduce 9.6% of THMs and 42% of HAAs in 24 h contact time of distribution system compared with free chlorine. But free

  18. 预臭氧化控制饮用水消毒副产物%Control of drinking water disinfection by-products by pre-ozonation

    Institute of Scientific and Technical Information of China (English)

    李多; 吴立波; 张怡然; 苗时雨; 鲁金凤; 王启山

    2014-01-01

    饮用水的预臭氧化技术近年来倍受关注,臭氧预氧化技术的功效有很多,但是目前人们比较关注的是其对饮用水消毒副产物的控制,笔者综述了近几年国内外的研究结果,总结了预臭氧化工艺控制饮用水消毒副产物的机理,也指出了目前预臭氧化技术存在的不足并为以后的研究工作提出了建议和展望。%Pre-ozonization technology of drinkin g water has received much attention in recent years. Preozonation technology possesses many functions,but at present,most attention has been focused on the control of drinking water disinfection by-products. Recent research results both in China and abroad are reviewed and the mechanisms of the control of drinking water disinfection by-product by pre-ozonation are summarized. The deficiencies existing in the current preliminary ozonation technology are pointed out and suggestions and forecast aiming at them are provided.

  19. The use of ozonation and catalytic ozonation combined with ultrafiltration for the control of natural organic matter (NOM) and disinfection by-products (DBPs) in drinking water

    Science.gov (United States)

    Karnik, Bhavana Sushilkumar

    Commercially available titania membranes, with a molecular weight cut-off of 15, 5, 1 kD were used in a ozonation/membrane system that was fed with water from Lake Lansing. The effects of ozonation on permeate flux recovery and membrane fouling was investigated. In addition the effects of ozonation/membrane filtration hybrid process on the removal of the natural organic matter (NOM) and the formation of disinfection by-products (DBPS) were monitored. The commercial membrane (CeRAM Inside, Tami North America, St. Laurent, Quebec, Canada) was coated with iron oxide nanoparticles (4--6 nm in diameter) using a layer-by-layer technique and sintered in air for 30 minutes. Surface characterization was carried out using electron microscopy techniques and atomic force microscopy, to study the changes in structure and surface morphology of the membranes. The removal and survival of bacteria in the process was also evaluated using fluorescence microscopy and microbial assays. Finally the surface catalytic reaction was investigated to propose the mechanism responsible for the improved performance of the hybrid process. The permeate flux through a titania coated ceramic membrane was significantly affected by ozonation. A minimum threshold ozone concentration (2.5 g/m 3) could achieve complete recovery of permeate flux after fouling. Ozonation/filtration decreased the concentration of chlorinated disinfection by-products up to 80%. With catalyst coated membranes, the concentration of dissolved organic carbon was reduced by >85% and the concentrations of disinfection by-products decreased by up to 90%. Furthermore with the coated membrane, the concentrations of ozonation by-products in the permeate were reduced by >50% as compared to that obtained with the uncoated membranes, thus reducing the risk of potential regrowth of bacteria in the distribution system. Application of the hybrid process lead to greater than 7 log removal of bacteria. Surface characterization showed that

  20. Disinfection by-product formation during chlor(am)ination of algal organic matters (AOM) extracted from Microcystis aeruginosa: effect of growth phases, AOM and bromide concentration.

    Science.gov (United States)

    Chen, Juxiang; Gao, Naiyun; Li, Lei; Zhu, Mingqiu; Yang, Jing; Lu, Xian; Zhang, Yansen

    2017-03-01

    Algae organic matter (AOM), including extracellular organic matter (EOM) and intracellular organic matter (IOM), has caused a series of problems to the water quality, among which formation of disinfection by-products (DBPs) during subsequent chlor(am)ination process was especially serious and concerned. This study characterized physicochemical properties of the EOM and IOM solution extracted from different growth phases of Microcystis aeruginosa and investigated the corresponding formation potential of DBPs during chlor(am)ination process. Besides, the effects of initial concentration of xEOM, IOM, and Br(-) on the yields of disinfection by-product formation potential were studied. The results indicated that the specific UV absorbance (SUVA254) values of IOM and EOM (1.09 and 2.66 L/mg m) were considerably lower than that of natural organic matter (NOM) (4.79 L/mg m). Fluorescence dates showed the soluble microbial by-product was dominant in both EOM and IOM, and the tryptophan was the main component of AOM. From the excitation-emission matrix figure of EOM and IOM, we found that the content of the high molecular weight protein substance in IOM was higher than EOM. During chlorination of EOM and IOM, the yields of four kinds of DBPs followed the order trichloroethene (TCM) > 1,1-DCP > dichloride acetonitrile (DCAN) > trichloronitromethane (TCNM), while the order was TCM > DCAN > TCNM > 1,1-DCP during chloramination process. The bromine substitution factor (BSF) value increased with the increasing of the concentration of Br(-). When the concentration of Br(-) was 500 μg/L, the BSF values of chlorination EOM and IOM were 51.1 and 68.4%, respectively. As the concentration of Br(-) increased, the formation of Cl-DBPs was inhibited and the formation of Br-DBPs was promoted. Graphical abstract ᅟ.

  1. Effects of ozone pretreatment on the formation of disinfection by-products and its associated bromine substitution factors upon chlorination/chloramination of Tai Lake water.

    Science.gov (United States)

    Wang, Fangyuan; Ruan, Mengyong; Lin, Hongjun; Zhang, Yu; Hong, Huachang; Zhou, Xiaoling

    2014-03-15

    This study investigated the effects of preozonation on disinfection by-products (DBPs) formation during chlorination and chloramination of the water collected from Tai Lake. Results showed that the high ozone dose (0.6-1.0 mg O₃/mg DOC) pretreatment reduced the yields of trihaloacetic acids (reduced 62-63% in chlorination), dihaloacetonitriles (reduced 53-55% and 14-26% in chlorination and chloramination, respectively) and trihaomethanes (reduced 19% in chloramination), but markedly increased the formation of halonitromethanes (increased 4.7-5.6 times in chlorination and 2.1-2.7 times in chloramination), haloketones (increased 4.8-7.1 times in chlorination and 2.5-2.9 times in chloramination) and dihaloacetic acids (increased 1.5-2.4 times in chlorination and 0.3-0.6 times in chloramination). Thus the high ozone dose pretreatment should be avoided during chlorination/chloramination of Tai Lake water. Also, chloramination (with and without preozonation) produced much lower DBPs yields as compared with chlorination (with and without preozonation), indicating that chloramine was a better choice to control the DBPs yields. Further analysis also revealed that the bromine substitution factors (BSFs) of DBPs varied with disinfection mode. In chlorinamination, the BSFs generally showed a decrease trend with the ozone dose, yet in chlorination, the BSFs mostly exhibited first an increase and then a decrease trend. Moreover, the BSFs of DBPs in chloramination (with or without preozonation) were dominantly lower than those in chlorination (with or without preozonation).

  2. 控制消毒副产物三卤甲烷的实践研究%PRACTICE RESEARCH ON CONTROL OF DISINFECTION BY-PRODUCTS OF TRIHALOMETHANES

    Institute of Scientific and Technical Information of China (English)

    孙淑琴; 常华; 李建科; 于益群

    2013-01-01

    随着工农业和化工技术的发展,越来越多的化学物质尤其是有机化合物进入到地表水中,使得氯消毒副产物大量生成,危害人体健康.本文通过生产实践,采取用预臭氧代替预加氯、投加活性炭吸附前体物质、优化消毒工艺等措施大大降低了出厂水中三卤甲烷的生成量,确保了饮用健康.%With the development of agriculture and chemical engineering technology, more and more chemical substances especially organic compounds goes into the surface water. This result in a lot of chlorine disinfection by-products generate, and harms to human health. Trihalomethanes in the effluent greatly reduced through some production practice, such as using pre-ozonation instead of pre-chlorination, dosing active carbon to adsorb precursor substance, optimizing disinfection technology etc, which ensured drinking health.

  3. Formation of Emerging Disinfection By-products by Chlorination/Chloramination of Seawater Impacted by Algal Organic Matter

    KAUST Repository

    Nihemaiti, Maolida

    2015-08-31

    The aim of this work was to study the formation of haloacetamides (HAcAms) and other DBPs during chlorination and chloramination of algal organic matter (AlOM). The HAcAms formation potentials of different precursors (amino acids, simulated algal blooms grown in the Red Sea) were evaluated. Experiments with simulated algal blooms were conducted in the presence of bromide ion (synthetic seawater containing 800 μg/L Br−) to assess the formation of brominated analogues of HAcAms in conditions close to the disinfection of real seawater. Chlorination produced more HAcAms than chloramination from real algae (Synecococcus sp.), thus indicating that the nitrogen of HAcAms comes predominantly from DON through the decarboxylation of amino acids rather than from NH2Cl. Dibrominated species of DBPs (i.e., DBAcAm, DBAA and DBAN) were the dominant species formed by both chlorination and chloramination of algal bloom samples. Chloramination of the amino acid asparagine produced an important amount of DCAcAm as compared to chlorination, indicating the existence of a specific reaction pathway.

  4. Characterization of organic matter and disinfection by-products in membrane backwash water from drinking water treatment.

    Science.gov (United States)

    Zhang, Lingling; Gu, Ping; Zhong, Zijie; Yang, Dong; He, Wenjie; Han, Hongda

    2009-09-15

    Two pilot-scale membrane plants were set up to produce drinking water, and membrane backwash water was discharged during the production process. This work studied the characteristics of dissolved organic matter (DOM) in membrane backwash water from submerged microfiltration (MBWS) and pressurized ultrafiltration (MBWP) both of which are coupled with the pre-coagulation process. The results showed that the two waters had similar molecular weight (MW) distributions. Dissolved organic carbon (DOC) and trihalomethane formation potential (THMFP) in MBWS and MBWP were both mainly distributed in MW>30 kDa and MWUV(254) was mainly in MWwater (LRW, the raw water for the two pilot-scale membrane plants in this study), organic matter enriched in membrane backwash water was mainly in sizes of MW>30 kDa. In addition, organic matter with MW>10 kDa was higher in MBWP than in MBWS. The quality of membrane backwash water was influenced by the changes in LRW quality during different periods. The quality of membrane backwash water was worse in alga-laden period than in normal period and organic matter concentrations in MWwater was more reactive to form trihalomethanes (THMs) in the disinfection process. The variability of specific UV absorbance and THMFP/DOC was consistent in membrane backwash water.

  5. The removal process of 2,2-dichloroacetamide (DCAcAm), a new disinfection by-product, in drinking water treatment process and its toxicity on zebrafish.

    Science.gov (United States)

    Lin, Tao; Zhou, Dongju; Yu, Shilin; Chen, Wei

    2016-09-01

    The removal process of 2,2-dichloroacetamide (DCAcAm), a new disinfection by-product (DBP) in conventional drinking water treatment plant (C-DWTP) and advanced DWTP (ADWTP) was studied with newly maximum formation potential (MFP) process. It was demonstrated that the advanced treatment displayed greater removal efficiency towards DCAcAm formation potential (MFP) than the conventional treatment. The hydrophilic natural organic matter and natural organic matter with molecular weight 10 kDa leaded to more DCAcAm formation, and the aromatic protein was inferred as one part of DCAcAm precursor. DCAcAm was found to cause delayed development and malformation to zebrafish embryos at embryonic growth stage. Compared with heart toxicity, it caused a significant neuron toxicity. It also could cause the acute DNA damage to adult zebrafish, which should be extremely cautioned.

  6. Influence of Natural Organic Matter (NOM) Character on the Distribution of Chlorinated and Chloraminated Disinfection By-Products (DBPs) at Rand Water

    Science.gov (United States)

    Marais, Savia S.; Ncube, Esper J.; Haarhoff, Johannes; Msagati, Titus AM; Mamba, Bhekie B.; Nkambule, Thabo I.

    2016-04-01

    Certain disinfection by-products (DBPs) are likely human carcinogens or present mutagenic effects while many DBPs are unidentified. Considering the possibility of DBPs being harmful to human health and the fact that trihalomethanes (THMs) are the only regulated DBP in the South African National Standard (SANS:241) for drinking water, special interest in the precursors to these DBPs' formation is created. It is essential to understand the reactivity and character of the precursors responsible for the formation of DBPs in order to enhance precursor removal strategies during the treatment of drinking water. In this study the character of NOM within surface water and the subsequent distribution of THMs formed in the drinking water from Rand Waters' full scale treatment plant were investigated. Molecular size distribution (MSD) of NOM within the surface water was determined by high performance size exclusion chromatography (HPSEC). Specific ultraviolet absorbance (SUVA) and UV254 measurements formed part of the NOM character study as they provide an indication of the aromaticity of organic matter. The four THMs; bromoform, chloroform, dibromochloromethane (DBCM) and bromodichloromethane (BDCM)were measured by gas chromatography. The sum of these four THMs was expressed as total trihalomethane (TTHM). On average the chloroform constituted 76.2% of the total TTHM, BDCM 22.5% while DBCM and bromoform measured below the detection limit. THM speciation after chlorination and chloramination concentrations increased in the sequence bromoform water in summer when high temperatures and rainfall occurred. The results displayed are an indication that aromatic NOM were the main precursor to TTHM formation, more prominently during summer. Keywords: disinfection by-products, molecular size distribution, natural organic matter, UV254

  7. [Formation of disinfection by-products by Microcystis aeruginosa intracellular organic matter: comparison between chlorination and bromination].

    Science.gov (United States)

    Tian, Chuan; Guo, Ting-Ting; Liu, Rui-Ping; Jefferson, William; Liu, Hui-Juan; Qu, Jiu-Hui

    2013-11-01

    In order to illustrate the effects of released algal organic matter in cyanobacteria blooms on raw water quality and water treatment process, intracellular organic matter (IOM) of Microcystis aeruginosa, which is the dominant species in cyanobacteria blooms, was chosen as a precursor and characterized. In addition, the transformation of IOM and the formation of disinfection byproducts were evaluated at different pH of 6.5, 7.1 and 8.4 after chlorination or bromination, with subsequent correlation analysis. The results indicated that IOM was primarily composed of macromolecular matter, i. e. , the species with relative molecular weight of > 30 x 10(3), constituting 68.8% of dissolved organic carbon (DOC). Fluorescence excitation-emission matrix indicated that IOM was mainly composed of aromatic protein-like matter with an intensity of 92.6 AU x L x mg(-1). After reaction with chlorine or bromine, the intensity of aromatic protein-like peaks decreased sharply by 76.6% - 93.3%, and its reduction correlated well with the formation of trihalomethane (THMs, R2 = 0.81) and haloacetic acid (HAAs, R2 = 0.77). The formation of THMs and HAAs increased with the increase in pH. Compared with chlorine, bromine formed more THMs and HAAs, and tended to form highly halogenated HAAs. However, with increasing pH, the reactivity with IOM between chlorine and bromine was closer, i.e, k(OBr-IOM)/k(OCl-(IOM) < k(HOBr-IOM/k(HOCl-IOM).

  8. Algal toxicity of the alternative disinfectants performic acid (PFA), peracetic acid (PAA), chlorine dioxide (ClO2) and their by-products hydrogen peroxide (H2O2) and chlorite (ClO2(-)).

    Science.gov (United States)

    Chhetri, Ravi Kumar; Baun, Anders; Andersen, Henrik Rasmus

    2016-12-01

    Environmental effect evaluation of disinfection of combined sewer overflow events with alternative chemical disinfectants requires that the environmental toxicity of the disinfectants and the main by-products of their use are known. Many disinfectants degrade quickly in water which should be included in the evaluation of both their toxicity as determined in standardized tests and their possible negative effect in the water environment. Here we evaluated according to the standardized ISO 8692 test the toxicity towards the green microalgae, Pseudokirchneriella subcapitata, of three disinfectants: performic acid (PFA), peracetic acid (PAA) and chlorine dioxide (ClO2) as well as two by-products of their use: hydrogen peroxide (H2O2) and chlorite. All of the five chemicals investigated showed clear toxicity to the algae with well-defined dose response curves. The EC50 values ranged from 0.16 to 2.9mg/L based on nominal concentrations leading to the labeling of the chemicals as either toxic or very toxic. The five investigated chemicals decreased in toxicity in the order chlorine dioxide, performic acid, peracetic acid, chlorite and hydrogen peroxide. The stability of the chemicals increased in the same order as the toxicity decrease. This indicates that even though ClO2 has the highest environmental hazard potential, it may still be suitable as an alternative disinfectant due to its rapid degradation in water.

  9. Do Iodine Contrast Media Compounds Used for Medical Imaging Contribute to the Formation of Iodinated Disinfection By-Products in Drinking Water?

    Science.gov (United States)

    Iodinated disinfection byproducts (DBPs) have recently gained attention due to their cyto- and genotoxicity and increased formation in drinking water treated with chloramine, which has become an increasingly popular disinfectant in the United States. One of these—iodoacetic acid...

  10. Discharges of produced waters from oil and gas extraction via wastewater treatment plants are sources of disinfection by-products to receiving streams.

    Science.gov (United States)

    Hladik, Michelle L; Focazio, Michael J; Engle, Mark

    2014-01-01

    Fluids co-produced with oil and gas production (produced waters) are often brines that contain elevated concentrations of bromide. Bromide is an important precursor of several toxic disinfection by-products (DBPs) and the treatment of produced water may lead to more brominated DBPs. To determine if wastewater treatment plants that accept produced waters discharge greater amounts of brominated DBPs, water samples were collected in Pennsylvania from four sites along a large river including an upstream site, a site below a publicly owned wastewater treatment plant (POTW) outfall (does not accept produced water), a site below an oil and gas commercial wastewater treatment plant (CWT) outfall, and downstream of the POTW and CWT. Of 29 DBPs analyzed, the site at the POTW outfall had the highest number detected (six) ranging in concentration from 0.01 to 0.09 μg L(-1) with a similar mixture of DBPs that have been detected at POTW outfalls elsewhere in the United States. The DBP profile at the CWT outfall was much different, although only two DBPs, dibromochloronitromethane (DBCNM) and chloroform, were detected, DBCNM was found at relatively high concentrations (up to 8.5 μg L(-1)). The water at the CWT outfall also had a mixture of inorganic and organic precursors including elevated concentrations of bromide (75 mg L(-1)) and other organic DBP precursors (phenol at 15 μg L(-1)). To corroborate these DBP results, samples were collected in Pennsylvania from additional POTW and CWT outfalls that accept produced waters. The additional CWT also had high concentrations of DBCNM (3.1 μg L(-1)) while the POTWs that accept produced waters had elevated numbers (up to 15) and concentrations of DBPs, especially brominated and iodinated THMs (up to 12 μg L(-1) total THM concentration). Therefore, produced water brines that have been disinfected are potential sources of DBPs along with DBP precursors to streams wherever these wastewaters are discharged.

  11. Optical monitoring of Disinfection By-product Precursors with Fluorescence Excitation-Emission Mapping (F-EEM): Practical Application Issues for Drinking, Waste and Reuse Water Industry

    Science.gov (United States)

    Gilmore, A. M.

    2012-12-01

    Drinking water, wastewater and reuse plants must deal with regulations associated with bacterial contamination and halogen disinfection procedures that can generate harmful disinfection by-products (DBPs) including trihalomethanes (THMs), haloacetic acids (HOAAs) and other compounds. The natural fluorescent chromophoric dissolved organic matter (CDOM) is regulated as the major DBP precursor. This study outlines the advantages and current limitations associated with optical monitoring of water treatment processes using tcontemporary Fluorescence Excitation-Emission Mapping (F-EEM). The F-EEM method coupled with practical peak indexing and multi-variate analyses is potentially superior in terms of cost, speed and sensitivity over conventional total organic carbon (TOC) meters and specific UV-absorbance (SUVA) measurements. Hence there is strong interest in developing revised environmental regulations around the F-EEM technique instruments which can incidentally simultaneously measure the SUVA and DOC parameters. Importantly, the F-EEM technique, compared to the single-point TOC and SUVA signals can resolve CDOM classes distinguishing those that strongly cause DBPs. The F-EEM DBP prediction method can be applied to surface water sources to evaluate DBP potential as a function of the point sources and reservoir depth profiles. It can also be applied in-line to rapidly adjust DOC removal processes including sedimentation-flocculation, microfiltration, reverse-osmosis, and ozonation. Limitations and interferences for F-EEMs are discussed including those common to SUVA and TOC in contrast to the advantages including that F-EEMs are less prone to interferences from inorganic carbon and metal contaminations and require little if any chemical preparation. In conclusion, the F-EEM method is discussed in terms of not only the DBP problem but also as a means of predicting (concurrent to DBP monitoring) organic membrane fouling in water-reuse and desalination plants.

  12. Discharges of produced waters from oil and gas extraction via wastewater treatment plants are sources of disinfection by-products to receiving streams

    Science.gov (United States)

    Hladik, Michelle L.; Focazio, Michael J.; Engle, Mark

    2014-01-01

    Fluids co-produced with oil and gas production (produced waters) are often brines that contain elevated concentrations of bromide. Bromide is an important precursor of several toxic disinfection by-products (DBPs) and the treatment of produced water may lead to more brominated DBPs. To determine if wastewater treatment plants that accept produced waters discharge greater amounts of brominated DBPs, water samples were collected in Pennsylvania from four sites along a large river including an upstream site, a site below a publicly owned wastewater treatment plant (POTW) outfall (does not accept produced water), a site below an oil and gas commercial wastewater treatment plant (CWT) outfall, and downstream of the POTW and CWT. Of 29 DBPs analyzed, the site at the POTW outfall had the highest number detected (six) ranging in concentration from 0.01 to 0.09 μg L− 1 with a similar mixture of DBPs that have been detected at POTW outfalls elsewhere in the United States. The DBP profile at the CWT outfall was much different, although only two DBPs, dibromochloronitromethane (DBCNM) and chloroform, were detected, DBCNM was found at relatively high concentrations (up to 8.5 μg L− 1). The water at the CWT outfall also had a mixture of inorganic and organic precursors including elevated concentrations of bromide (75 mg L− 1) and other organic DBP precursors (phenol at 15 μg L− 1). To corroborate these DBP results, samples were collected in Pennsylvania from additional POTW and CWT outfalls that accept produced waters. The additional CWT also had high concentrations of DBCNM (3.1 μg L− 1) while the POTWs that accept produced waters had elevated numbers (up to 15) and concentrations of DBPs, especially brominated and iodinated THMs (up to 12 μg L− 1 total THM concentration). Therefore, produced water brines that have been disinfected are potential sources of DBPs along with DBP precursors to streams wherever these wastewaters are discharged.

  13. Sources of Dissolved Organic Carbon and Disinfection By-Product Precursors to the McKenzie River: Use of absorbance and fluorescence spectroscopy

    Science.gov (United States)

    Kraus, T. E.; Anderson, C.; Morgenstern, K.; Downing, B. D.; Bergamaschi, B. A.

    2009-12-01

    Dissolved organic matter (DOM) is a constituent of concern with respect to drinking water quality because it reacts upon chlorination to form disinfection byproducts (DBPs). The amount of DBPs that form is a function of both the amount and type of DOM undergoing treatment. Currently, the EPA regulates two classes of DBPs - trihalomethanes and haloacetic acids. This study was initiated to determine the main sources of NOM and disinfection by-product (DBP) precursors to the McKenzie River which is the sole water source for approximately 200,000 people in Eugene, Oregon (USA). Water samples collected from upstream, reservoir, tributary inputs and mainstem sites were analyzed for dissolved organic carbon (DOC) concentration and DBP formation potential. In addition, absorbance and fluorescence properties were determined to provide insight into DOC quality and assess whether these measurements can serve as useful proxies for DOC concentration and trihalomethane and haloacetic acid formation potentials (THMFP and HAAFP, respectively). Overall, raw water concentrations of DOC (water quality. Water exiting two flood control reservoirs from upstream tributaries, Cougar and Blue River, also had higher DOC concentrations than the upstream site, however qualitative data did not support a significant source from in situ algal production. Due to the interference in absorbance likely due to the presence of iron in downstream tributaries, absorbance was not as strong of a predictor of DOC concentration as fluorescence (R2 = 0.73 vs. 0.92). Furthermore, fluorescence data was strongly correlated to THMFP (R2 = 0.95) and HAAFP (R2 = 0.93). Findings from this study indicate that use of optical measurements has great promise in identifying watershed sources of DOC and DBP precursors. In particular, continuous in situ fluorescence data may help drinking water utilities develop effective source water monitoring and management programs.

  14. Research Review and Prospect of Drinking Water Disinfection By-products%饮用水消毒副产物的研究回顾与展望

    Institute of Scientific and Technical Information of China (English)

    程小谷; 张展毅; 曾凡进; 刘坤; 巫静; 徐开华

    2016-01-01

    消毒副产物对饮用水的污染是全球面临的一个亟待解决的问题。为了深入了解饮用水消毒副产物研究的全球状况和前沿动态,本文采用 ISI Web of Knowledge的Web of ScienceTM数据库,将饮用水消毒副产物作为主题检索词,对1996-2015年该库收录的相关文献进行计量分析,结果表明:美国发文量领先于其他国家,占全部发文量的36.935%;国际上发文量居前2位的期刊为: Water Research、 Environmental Science Technology;同济大学和清华大学的发文量在中国位居前2位。从全世界的研究方向来看,环境生态科学是最热门的研究方向,其次是环境工程、水资源方向。而药物药理学、基因遗传学和应用微生物学虽然发文量不多,但同时也说明这三个研究方向有巨大的研究空间,更容易出创新性成果。%Pollution of drinking water disinfection by-products has become a global problem for urgent need to solve. To better understand the global trend in drinking water disinfection by-products and to reflect major nations' scientific advances and influences on the world's scientific community in the field, a bibliometric study on drinking water disinfection by-products literature indexed by the Web of Science based on Web of Knowledge during 1996-2015 was carried out using regular search methods. The results showed that among all nations, United States had the largest number of publications, accounting for 36. 935% of all related publications worldwide. Two journals including Water Research, Environmental Science Technology were the most important and popular journals in this field. The Tongji University and Tsinghua University were the top 2 institutions that had the highest numbers of publications with the highest quality in China. In terms of the research directions all over the world, Environmental Sciences Ecology was the hottest, Environmental Science Technology and Water Research were

  15. Evaluating and elucidating the formation of nitrogen-contained disinfection by-products during pre-ozonation and chlorination.

    Science.gov (United States)

    Chiang, Pen-Chi; Chang, E-E; Chuang, Chao-Chin; Liang, Chung-Huei; Huang, Chin-Pao

    2010-06-01

    The effects of pre-ozonation on the formation of haloacetonitriles (HANs), trichloronitromethane (TCNM), and haloketones (HKs) during chlorination were evaluated. Ozone dose used in this study was 8.0, 10.0 and 25.0 mg O(3)/min. Results showed high UV(254) reduction (>80%) and relatively low dissolved organic carbon removal (40-70%) after ozonation, indicating that ozone might change significantly the chemical properties of natural organic matter presented in the raw water. Undesired ozonation by-products such as aldehydes and ketones were also formed during ozonation. At high ozone dose of 25.0 mg O(3)/min, the formation of dichloroacetonitrile and bromochloroacetonitrile were reduced significantly. Chlorination of the ozonated water formed high concentration of TCNM and HKs were 8-10 and 31-48 microg/L, respectively. It was also found that continuous hydrolysis at longer reaction time rapidly decreased the formation of HKs. Ozonation prior to chlorination practice exhibited a negative effect on TCNM and HKs reduction. A model based on the dissolved organic carbon and chlorine decay was developed not only for determining the reaction rate constants, e.g. formation and hydrolysis of HANs, HKs and TCNM, but also for interpreting the mechanisms of formation and hydrolysis for HANs, HKs and TCNM during the chlorination of natural organic matter.

  16. Trophic state, natural organic matter content, and disinfection by-product formation potential of six drinking water reservoirs in the Pearl River Delta, China

    Science.gov (United States)

    Hong, Hua Chang; Wong, Ming Hung; Mazumder, Asit; Liang, Yan

    2008-09-01

    SummaryThis study examined spatial and seasonal variation of nutrients, algal biomass, and natural organic matter (NOM) in six subtropical drinking water reservoirs in the Pearl River Delta region, China, during the period from 2004 to 2006. We also tested the formation of trihalomethanes (THMs) and haloacetic acids (HAAs) as disinfection by-products (DBPs) via chlorination of the water samples from these reservoirs. This study showed that these reservoirs were mesotrophic with the average chlorophyll a (Chl a) levels ranging from 2.31 to 7.79 μg l -1. The average dissolved organic carbon (DOC) in the six reservoirs was 2.70 mg l -1, and the degree of aromaticity of NOM indicated by UV 254 (absorbance at 254 nm) was 0.048 cm -1. Total phosphorous (TP) was significantly correlated with chlorophyll a, as well as DOC and UV 254. It suggested that the major component of NOM, with a specific UV 254 value (SUV 254) of 1.78 l mg -1 m -1, was algal-derived organic matter. Existing models from other studies could be used to predict THM yield from NOM level in the present study, but the relationship between HAAs and NOM suggested that aromatic portion of the NOM in the investigated reservoirs had a greater potential to produce HAAs.

  17. Removal of Disinfection By-Products from Contaminated Water Using a Synthetic Goethite Catalyst via Catalytic Ozonation and a Biofiltration System

    Directory of Open Access Journals (Sweden)

    Yu-Hsiang Wang

    2014-09-01

    Full Text Available The effects of synthetic goethite (α-FeOOH used as the catalyst in catalytic ozonation for the degradation of disinfection by-product (DBP precursors are investigated. A biofiltration column applied following the catalytic ozonation process is used to evaluate the efficiency of removing DBP precursors via biotreatment. Ozone can rapidly react with aromatic compounds and oxidize organic compounds, resulting in a decrease in the fluorescence intensity of dissolved organic matter (DOM. In addition, catalytic ozonation can break down large organic molecules, which causes a blue shift in the emission-excitation matrix spectra. Water treated with catalytic ozonation is composed of low-molecular structures, including soluble microbial products (SMPs and other aromatic proteins (APs. The DOM in SMPs and APs is removed by subsequent biofiltration. Catalytic ozonation has a higher removal efficiency for dissolved organic carbon and higher ultraviolet absorbance at 254 nm compared to those of ozonation without a catalyst. The use of catalytic ozonation and subsequent biofiltration leads to a lower DBP formation potential during chlorination compared to that obtained using ozonation and catalytic ozonation alone. Regarding DBP species during chlorination, the bromine incorporation factor (BIF of trihalomethanes and haloacetic acids increases with increasing catalyst dosage in catalytic ozonation. Moreover, the highest BIF is obtained for catalytic ozonation and subsequent biofiltration.

  18. Progressive Increase in Disinfection By-products and Mutagenicity from Source to Tap to Swimming Pool and Spa Water: Impact of Human Use

    Science.gov (United States)

    Pools and spas are enjoyed throughout the world for exercise and relaxation. However, there are no previous studies on mutagenicity of disinfected spa (hot tub) waters or comprehensive identification of disinfection byproducts (DBPs) formed in spas. Using 28 water samples from ...

  19. Modelling of Disinfection by-products formation via UV irradiation of the water from Tajan River (source water for Sari drinking water, Iran

    Directory of Open Access Journals (Sweden)

    Allahbakhsh Javid

    2013-11-01

    Full Text Available Background & Aims of the Study Irradiation with ultraviolet light (UV is used for the disinfection of bacterial contaminants in the production of potable water. The main objective of the study was to investigate and model Disinfection By-Products (DBPs formation due to the UV Irradiation of the Tajan River water under different Irradiation conditions. Materials & Methods:  Water samples were collected throughout September 2011 to August 2013. Transportation of the sample to the laboratory was done on ice in a cooler, and physiochemical analysis was conducted immediately within one day. Dissolved organic carbon (DOC was determined by a TOC analyzer. Irradiation experiments were conducted in a series of 25 mL glass serum bottles with Teflon septa. The present study adopts an orthogonal design. The design involved irradiation with UV at a UV/DOC ratio of 0.5–3.0 and incubating (headspace-free storage for 5–25 sec. A 1 mM phosphate buffer maintained the pH at 6, 7, or 8 respectively, and an incubator maintained the temperature (Temp at 15, 20, or 25 °C respectively. The development of empirical models for DBPs formation used a multivariate regression procedure (stepwise which applied the SPSS System for Windows (Version 16.0. Results:  The results showed that the total DBPs formation ranged between 12.3 and 67.4 mg/l and that control of the levels was primarily due to the reaction time and the dissolved organic carbon level (DOC in the water. Conclusions:  Reaction time and level of DOC concentrations in water exerted a dominant influence on the formation of DBPs during the UV irradiation of water from the Tajan River. The relationships between the measured and predicted values were satisfactory with R 2 values ranging from 0.89 (for Octanal–0.92 (for Formaldehydes. The DOC level in water is the key factor in controlling DBPs formation.

  20. Comparative cytotoxic and genotoxic potential of 13 drinking water disinfection by-products using a microplate-based cytotoxicity assay and a developed SOS/umu assay.

    Science.gov (United States)

    Zhang, Shao-Hui; Miao, Dong-Yue; Tan, Li; Liu, Ai-Lin; Lu, Wen-Qing

    2016-01-01

    The implications of disinfection by-products (DBPs) present in drinking water are of public health concern because of their potential mutagenic, carcinogenic and other toxic effects on humans. In this study, we selected 13 main DBPs found in drinking water to quantitatively analyse their cytotoxicity and genotoxicity using a microplate-based cytotoxicity assay and a developed SOS/umu assay in Salmonella typhimurium TA1535/pSK1002. With the developed SOS/umu test, eight DBPs: 3-chloro-4-(dichloromethyl)-5-hydroxy-2[5H]-fura3-chloro-4-(dichloromethyl)-5-hydroxy-2-[5H]-furanone (MX), dibromoacetonitrile (DBN), iodoacetic acid (IA), bromochloroacetonitrile (BCN), bromoacetic acid (BA), trichloroacetonitrile (TCN), dibromoacetic acid (DBA) and dichloroacetic acid (DCA) were significantly genotoxic to S. typhimurium. Three DBPs: chloroacetic acid (CA), trichloroacetic acid (TCA) and dichloroacetonitrile (DCN) were weakly genotoxic, whereas the remaining DBPs: chloroacetonitrile (CN) and chloral hydrate (CH) were negative. The rank order in decreasing genotoxicity was as follows: MX > DBN > IA > BCN > BA > TCN > DBA > DCA > CA, TCA, DCN > CN, CH. MX was approximately 370 000 times more genotoxic than DCA. In the microplate-based cytotoxicity assay, cytotoxic potencies of the 13 DBPs were compared and ranked in decreasing order as follows: MX > IA > DBN > BCN > BA > TCN > DCN > CA > DCA > DBA > CN > TCA > CH. MX was approximately 19 200 times more cytotoxic than CH. A statistically significant correlation was found between cytotoxicity and genotoxicity of the 13 DBPs in S. typhimurium. Results suggest that microplate-based cytotoxicity assay and the developed SOS/umu assay are feasible tools for analysing the cytotoxicity and genotoxicity of DBPs, particularly for comparing their toxic intensities quantitatively.

  1. Evaluation of disinfection by-product formation potential (DBPFP) during chlorination of two algae species--Blue-green Microcystis aeruginosa and diatom Cyclotella meneghiniana.

    Science.gov (United States)

    Liao, Xiaobin; Liu, Jinjin; Yang, Mingli; Ma, Hongfang; Yuan, Baoling; Huang, Ching-Hua

    2015-11-01

    Microcystis aeruginosa (blue-green alga) commonly blooms in summer and Cyclotella meneghiniana (diatom) outbreaks in fall in the reservoirs that serve as drinking water sources in Southeast China. Herein, an evaluation of disinfection by-product formation potential (DBPFP) from them during chlorination should be conducted. Five DBPs including trichloromethane (TCM), trichloronitromethane (TCNM), dichloroacetonitrile (DCAN), 1,1-dichloropropanone (1,1-DCP) and 1,1,1-trichloropropanone (1,1,1-TCP) were monitored. The formation potential of TCM and TCNM was enhanced with the increase of reaction time and chlorine dosage, whereas that of DCAN, 1,1-DCP and 1,1,1-TCP increased first and then fell with continuing reaction time. M. aeruginosa showed higher DBPFP than C. meneghiniana, the yield of DBPs varied with components of algal cells. The DBPFP order from components of M. aeruginosa was cell suspension (CS) ≈ intracellular organic matter (IOM) > extracellular organic matter (EOM) > cell debris (CD), which indicated that IOM was the main DBP precursors for M. aeruginosa. The yields of DBPs from components of C. meneghiniana were in the order of CS>IOM≈ CD ≈ EOM, suggesting that three components made similar contributions to the total DBP formation. The amount of IOM with higher DBPFP leaked from both algae species increased with the chlorine dosage, indicating that chlorine dosage should be considered carefully in the treatment of eutrophic water for less destroying of the cell integrity. Though fluorescence substances contained in both algae species varied significantly, the soluble microbial products (SMPs) and aromatic protein-like substances were the main cellular components that contributed to DBP formation for both algae.

  2. The effect of UV/H2O2 treatment on disinfection by-product formation potential under simulated distribution system conditions.

    Science.gov (United States)

    Metz, D H; Meyer, M; Dotson, A; Beerendonk, E; Dionysiou, D D

    2011-07-01

    Advanced oxidation with ultraviolet light and hydrogen peroxide (UV/H(2)O(2)) produces hydroxyl radicals that have the potential to degrade a wide-range of organic micro-pollutants in water. Yet, when this technology is used to reduce target contaminants, natural organic matter can be altered. This study evaluated disinfection by-product (DBP) precursor formation for UV/H(2)O(2) while reducing trace organic contaminants in natural water (>90% for target pharmaceuticals, pesticides and taste and odor producing compounds and 80% atrazine degradation). A year-long UV/H(2)O(2) pilot study was conducted to evaluate DBP precursor formation with varying water quality. The UV pilot reactors were operated to consistently achieve 80% atrazine degradation, allowing comparison of low pressure (LP) and medium pressure (MP) lamp technologies for DBP precursor formation. Two process waters of differing quality were used as pilot influent, i.e., before and after granular activated carbon adsorption. DBP precursors increased under most of the conditions studied. Regulated trihalomethane formation potential increased through the UV/H(2)O(2) reactors from 20 to 118%, depending on temperature and water quality. When Post-GAC water served as reactor influent, less DBPs were produced in comparison to conventionally treated water. Haloacetic acid (HAA5) increased when conventionally treated water served as UV/H(2)O(2) pilot influent, but only increased slightly (MP lamp) when GAC treated water served as pilot influent. No difference in 3-day simulated distribution system DBP concentration was observed between LP and MP UV reactors when 80% atrazine degradation was targeted.

  3. CHANGES IN THE CECAL MICROBIAL METABOLISM OF RATS INDUCED BY INDIVIDUAL AND A MIXTURE OF DRINKING WATER DISINFECTION BY-PRODUCTS

    Science.gov (United States)

    ABSTRACTWater treatment results in the production of numerous halogenated disinfection byproducts (DBPs), and has been associated with human colorectal cancer. Because the intestinal microbiota can bioactivate xenobiotics, several studies have been done to examine the eff...

  4. Environmental and urinary markers of prenatal exposure to drinking water disinfection by-products, fetal growth, and duration of gestation in the PELAGIE birth cohort (Brittany, France, 2002-2006).

    Science.gov (United States)

    Costet, Nathalie; Garlantézec, Ronan; Monfort, Christine; Rouget, Florence; Gagnière, Bertrand; Chevrier, Cécile; Cordier, Sylvaine

    2012-02-15

    Although prenatal exposure to water disinfection by-products does not appear to affect the duration of gestation, its impact on fetal growth remains an open question. The authors studied the associations between prenatal exposure to disinfection by-products and fetal growth restriction (FGR) and preterm birth in the PELAGIE cohort, a French birth cohort comprising 3,421 pregnant women recruited between 2002 and 2006. Exposure was assessed by estimating levels of trihalomethanes (THMs) in tap water during pregnancy and maternal water use and by measuring maternal urinary levels of trichloroacetic acid (TCAA) during early pregnancy in a nested case-control design that compared 174 FGR cases, 114 preterm births, and 399 controls. Higher uptake of THMs (especially brominated THMs) was associated with a higher risk of FGR. Women with TCAA detected in their urine (>0.01 mg/L) had a higher risk of FGR than those with TCAA levels below the detection limit (adjusted odds ratio = 1.8, 95% confidence interval: 0.9, 3.7) and had an odds ratio for preterm birth below 1 (adjusted odds ratio = 0.8, 95% confidence interval: 0.3, 2.6). Results from this prospective study, the first to use a biomarker of disinfection by-product exposure, suggest that prenatal exposure affects fetal growth, but the causal agent or agents remain to be identified.

  5. 生活饮用水氯化消毒副产物分布的研究%STUDY ON DISTRIBUTION OF CHLORINATED DISINFECTION BY-PRODUCTS IN TAP-WATER

    Institute of Scientific and Technical Information of China (English)

    李谦; 刘天洁; 范正轩; 黄伟; 梅玉琴

    2012-01-01

    Objective To investigate formation and distribution regular of chlorinated disinfection by - products in tap -water. Methods The chlorinated disinfection by - products in source water, finished water and terminal water of different sampling was detected by instrument and chemical analysis. Results The detection rate of trihalomethanes is 60- 20% and the excessive rate is 13.40%. The detection rate of haloacetic acids is 50. 05% and the excessive rate is 2. 10%. The concentration of chlorinated disinfection by - products in drinking water during the high - water period is higher than during the low - water period. There is no difference of the pollution degree between waterworks in the city and the downtown. Conclusion The detection rate of trihalomethanes is over 50% and part of the concentration of chlorinated disinfection by -products in drinking water is excessive. Water disinfection process should be improved to strengthen the protection of water sources.%目的 研究饮用水中氯化消毒副产物的形成及其分布规律.方法 采用仪器法和化学分析法,对不同采样点水源水、出厂水和管网水进行氯化消毒副产物检测.结果 水源水、出厂水和管网末梢水中三卤甲烷检出率60.20%、有13.40%超标;卤乙酸的检出率50.05%,超标率为2.10%.丰水期的水中消毒副产物浓度高于枯水期,市县级水厂与乡镇水厂污染程度无差别.结论 某市氯化消毒的饮用水中三氯甲烷副产物检出率达50%以上,部分水中毒副产物含量超标,应改进水消毒工艺,加强水源保护.

  6. Algal toxicity of the alternative disinfectants performic acid (PFA), peracetic acid (PAA), chlorine dioxide (ClO2) and their by-products hydrogen peroxide (H2O2) and chlorite (ClO2-)

    DEFF Research Database (Denmark)

    Chhetri, Ravi Kumar; Baun, Anders; Andersen, Henrik Rasmus

    2016-01-01

    Environmental effect evaluation of disinfection of combined sewer overflow events with alternative chemical disinfectants requires that the environmental toxicity of the disinfectants and the main by-products of their use are known. Many disinfectants degrade quickly in water which should...... be included in the evaluation of both their toxicity as determined in standardized tests and their possible negative effect in the water environment. Here we evaluated according to the standardized ISO 8692 test the toxicity towards the green microalgae, Pseudokirchneriella subcapitata, of three disinfectants...... in the same order as the toxicity decrease. This indicates that even though ClO2 has the highest environmental hazard potential, it may still be suitable as an alternative disinfectant due to its rapid degradation in water....

  7. Potential for formation of disinfection by-products from storage of chlorinated surface water in the Basalt aquifer near Fallon, Nevada

    Science.gov (United States)

    Fram, Miranda S.; Maurer, Douglas K.; Lico, Michael S.

    2005-01-01

    Increased pumpage from a basalt aquifer near Fallon, Nevada, has caused its water levels to decline and has induced changes in the quality of water pumped from the basalt. The aquifer is the sole source of water for municipal supply to the city of Fallon, the Naval Air Station Fallon, and the Fallon Paiute-Shoshone Tribe. These changes may be mitigated by storage of surface water in the basalt for subsequent use. Because chlorination of the surface water may be required for storage, the U.S. Geological Survey, in cooperation with the Fallon Paiute-Shoshone Tribe, made laboratory tests using laboratory carbon-organic-free water, surface-water, ground-water, and basaltic-rock samples to determine the potential for formation of disinfection by-products. Experiments with water samples only (no rock and no chlorine) indicated no change in dissolved-organic-carbon (DOC) concentrations over a 20-day reaction period; whereas, all experiments using rock, water, and no chlorine indicated an increase in DOC concentrations. The greatest increase in DOC concentrations for all three water samples occurred in experiments with the rock samples from outcrops on Rattlesnake Hill. Experiments with water only and chlorine yielded a total trihalomethane (THM) concentration of 97.4 ?g/L for the ground-water sample and 347 ?g/L for the surface-water sample. Experiments with mixtures of water, rocks, and chlorine indicated that reactions with the rock consumed chlorine and released significant amounts of organic carbon from the rock, increasing the DOC concentration in the water. The organic carbon in the rocks likely is associated with the secondary clay minerals that line vesicles and fractures in the rocks. THM concentrations were greatest, from 335 to 909 ?g/L, for surface water equilibrated with rock samples from Rattlesnake Hill. However, the concentration of chlorine required to produce these high THM concentrations ranged from 18 to 84 mg/L. The results of the experiments suggest

  8. Sources and characteristics of organic matter in the Clackamas River, Oregon, related to the formation of disinfection by-products in treated drinking water

    Science.gov (United States)

    Carpenter, Kurt D.; Kraus, Tamara E.C.; Goldman, Jami H.; Saraceno, John Franco; Downing, Bryan D.; Bergamaschi, Brian A.; McGhee, Gordon; Triplett, Tracy

    2013-01-01

    This study characterized the amount and quality of organic matter in the Clackamas River, Oregon, to gain an understanding of sources that contribute to the formation of chlorinated and brominated disinfection by-products (DBPs), focusing on regulated DBPs in treated drinking water from two direct-filtration treatment plants that together serve approximately 100,000 customers. The central hypothesis guiding this study was that natural organic matter leaching out of the forested watershed, in-stream growth of benthic algae, and phytoplankton blooms in the reservoirs contribute different and varying proportions of organic carbon to the river. Differences in the amount and composition of carbon derived from each source affects the types and concentrations of DBP precursors entering the treatment plants and, as a result, yield varying DBP concentrations and species in finished water. The two classes of DBPs analyzed in this study-trihalomethanes (THMs) and haloacetic acids (HAAs)-form from precursors within the dissolved and particulate pools of organic matter present in source water. The five principal objectives of the study were to (1) describe the seasonal quantity and character of organic matter in the Clackamas River; (2) relate the amount and composition of organic matter to the formation of DBPs; (3) evaluate sources of DBP precursors in the watershed; (4) assess the use of optical measurements, including in-situ fluorescence, for estimating dissolved organic carbon (DOC) concentrations and DBP formation; and (5) assess the removal of DBP precursors during treatment by conducting treatability "jar-test" experiments at one of the treatment plants. Data collection consisted of (1) monthly sampling of source and finished water at two drinking-water treatment plants; (2) event-based sampling in the mainstem, tributaries, and North Fork Reservoir; and (3) in-situ continuous monitoring of fluorescent dissolved organic matter (FDOM), turbidity, chlorophyll-a, and

  9. Impact of pre-ozonation on disinfection by-product formation and speciation from chlor(am)ination of algal organic matter of Microcystis aeruginosa.

    Science.gov (United States)

    Zhu, Mingqiu; Gao, Naiyun; Chu, Wenhai; Zhou, Shiqing; Zhang, Zhengde; Xu, Yaqun; Dai, Qi

    2015-10-01

    The increasing use of algal-impacted source waters is increasing concerns over exposure to disinfection byproducts (DBPs) in drinking water disinfection, due to the higher concentrations of DBP precursors in these waters. The impact of pre-ozonation on the formation and speciation of DBPs during subsequent chlorination and chloramination of algal organic matter (AOM), including extracellular organic matter (EOM) and intracellular organic matter (IOM), was investigated. During subsequent chlorination, ozonation pretreatment reduced the formation of haloacetonitriles from EOM, but increased the yields of trihalomethanes, dihaloacetic acid and trichloronitromethane from both EOM and IOM. While in chloramination, pre-ozonation remarkably enhanced the yields of several carbonaceous DBPs from IOM, and significantly minimized the nitrogenous DBP precursors. Also, the yield of 1,1-dichloro-2-propanone from IOM was decreased by 24.0% after pre-ozonation during chloramination. Both increases and decreases in the bromine substitution factors (BSF) of AOM were observed with ozone pretreatment at the low bromide level (50μg/L). However, pre-ozonation played little impact on the bromide substitution in DBPs at the high bromide level (500μg/L). This information was used to guide the design and practical operation of pre-ozonation in drinking water treatment plants using algae-rich waters.

  10. Sources and characteristics of organic matter in the Clackamas River, Oregon, related to the formation of disinfection by-products in treated drinking water

    Science.gov (United States)

    Carpenter, Kurt D.; Kraus, Tamara E.C.; Goldman, Jami H.; Saraceno, John Franco; Downing, Bryan D.; Bergamaschi, Brian A.; McGhee, Gordon; Triplett, Tracy

    2013-01-01

    This study characterized the amount and quality of organic matter in the Clackamas River, Oregon, to gain an understanding of sources that contribute to the formation of chlorinated and brominated disinfection by-products (DBPs), focusing on regulated DBPs in treated drinking water from two direct-filtration treatment plants that together serve approximately 100,000 customers. The central hypothesis guiding this study was that natural organic matter leaching out of the forested watershed, in-stream growth of benthic algae, and phytoplankton blooms in the reservoirs contribute different and varying proportions of organic carbon to the river. Differences in the amount and composition of carbon derived from each source affects the types and concentrations of DBP precursors entering the treatment plants and, as a result, yield varying DBP concentrations and species in finished water. The two classes of DBPs analyzed in this study-trihalomethanes (THMs) and haloacetic acids (HAAs)-form from precursors within the dissolved and particulate pools of organic matter present in source water. The five principal objectives of the study were to (1) describe the seasonal quantity and character of organic matter in the Clackamas River; (2) relate the amount and composition of organic matter to the formation of DBPs; (3) evaluate sources of DBP precursors in the watershed; (4) assess the use of optical measurements, including in-situ fluorescence, for estimating dissolved organic carbon (DOC) concentrations and DBP formation; and (5) assess the removal of DBP precursors during treatment by conducting treatability "jar-test" experiments at one of the treatment plants. Data collection consisted of (1) monthly sampling of source and finished water at two drinking-water treatment plants; (2) event-based sampling in the mainstem, tributaries, and North Fork Reservoir; and (3) in-situ continuous monitoring of fluorescent dissolved organic matter (FDOM), turbidity, chlorophyll-a, and

  11. Source Water Management for Disinfection By-Product Control using New York City's Operations Support Tool and On-Line Monitoring

    Science.gov (United States)

    Weiss, W. J.; Becker, W.; Schindler, S.

    2012-12-01

    The United States Environmental Protection Agency's 2006 Stage 2 Disinfectant / Disinfection Byproduct Rule (DBPR) for finished drinking waters is intended to reduce overall DBP levels by limiting the levels of total trihalomethanes (TTHM) and five of the haloacetic acids (HAA5). Under Stage 2, maximum contaminant levels (MCLs), 80 μg/L for TTHM and 60 μg/L for HAA5, are based on a locational running annual average for individual sites instead of as the system-wide quarterly running annual average of the Stage 1 DBPR. This means compliance will have to be met at sampling locations of peak TTHM and HAA5 concentrations rather than an average across the entire system. Compliance monitoring under the Stage 2 DBPR began on April 1, 2012. The New York City (NYC) Department of Environmental Protection (DEP) began evaluating potential impacts of the Stage 2 DBPR on NYC's unfiltered water supply in 2002 by monitoring TTHM and HAA5 levels at various locations throughout the distribution system. Initial monitoring indicated that HAA5 levels could be of concern in the future, with the potential to intermittently violate the Stage 2 DBPR at specific locations, particularly those with high water age. Because of the uncertainty regarding the long-term prospect for compliance, DEP evaluated alternatives to ensure compliance, including operational changes (reducing chlorine dose, changing flow configurations to minimize water age, altering pH, altering source water withdrawals); changing the residual disinfectant from free chlorine to chloramines; and engineered treatment alternatives. This paper will discuss the potential for using DEP's Operations Support Tool (OST) and enhanced reservoir monitoring to support optimization of source water withdrawals to minimize finished water DBP levels. The OST is a state-of-the-art decision support system (DSS) to provide computational and predictive support for water supply operations and planning. It incorporates a water supply system

  12. Kinetic assessment and modeling of an ozonation step for full-scale municipal wastewater treatment: micropollutant oxidation, by-product formation and disinfection.

    Science.gov (United States)

    Zimmermann, Saskia G; Wittenwiler, Mathias; Hollender, Juliane; Krauss, Martin; Ort, Christoph; Siegrist, Hansruedi; von Gunten, Urs

    2011-01-01

    The kinetics of oxidation and disinfection processes during ozonation in a full-scale reactor treating secondary wastewater effluent were investigated for seven ozone doses ranging from 0.21 to 1.24 g O(3) g(-1) dissolved organic carbon (DOC). Substances reacting fast with ozone, such as diclofenac or carbamazepine (k(P, O3) > 10(4) M(-1) s(-1)), were eliminated within the gas bubble column, except for the lowest ozone dose of 0.21 g O(3) g(-1) DOC. For this low dose, this could be attributed to short-circuiting within the reactor. Substances with lower ozone reactivity (k(P, O3) scale measurements. Monte Carlo simulations showed that the observed differences were higher than model uncertainties. The overestimation of micropollutant oxidation was attributed to a protection of micropollutants from ozone attack by the interaction with aquatic colloids. Laboratory-scale batch experiments using wastewater from the same full-scale treatment plant could predict the oxidation of slowly-reacting micropollutants on the full-scale level within a factor of 1.5. The Rct value, the experimentally determined ratio of the concentrations of hydroxyl radicals and ozone, was identified as a major contribution to this difference. An increase in the formation of bromate, a potential human carcinogen, was observed with increasing ozone doses. The final concentration for the highest ozone dose of 1.24 g O(3) g(-1) DOC was 7.5 μg L(-1), which is below the drinking water standard of 10 μg L(-1). N-Nitrosodimethylamine (NDMA) formation of up to 15 ng L(-1) was observed in the first compartment of the reactor, followed by a slight elimination during sand filtration. Assimilable organic carbon (AOC) increased up to 740 μg AOC L(-1), with no clear trend when correlated to the ozone dose, and decreased by up to 50% during post-sand filtration. The disinfection capacity of the ozone reactor was assessed to be 1-4.5 log units in terms of total cell counts (TCC) and 0.5 to 2.5 log units for

  13. Formation Rule of Chlorine Dioxide Disinfection By-products%二氧化氯消毒副产物的生成规律研究

    Institute of Scientific and Technical Information of China (English)

    张盛军; 张大钰; 董燕; 王永芳

    2013-01-01

    According to chlorite excessive phenomenon in chlorine dioxide sterilization of drinking water, Xiaoqinghe River and Darning Lake water were selected to study the relationship between chlorine dioxide consumption and chlorite production in the disinfection process. The removal of COD by chlorine dioxide was assessed. The results showed that chlorite production was positively correlated with chlorine dioxide consumption, and had no direct relation with chlorine dioxide dosage and COD concentration in water.%针对二氧化氯在饮用水消毒过程中出现的副产物亚氯酸盐超标现象,以小清河水和大明湖水为处理对象,研究了在消毒过程中二氧化氯的消耗量与亚氯酸盐的产生量之间的关系,同时测定了二氧化氯对COD的去除情况.结果表明,副产物亚氯酸盐的产生量与二氧化氯的消耗量呈正相关关系,而与二氧化氯的投加量及水体中的COD浓度没有直接关系.

  14. Disinfection of tertiary wastewater effluent prior to river discharge using peracetic acid; treatment efficiency and results on by-products formed in full scale tests.

    Science.gov (United States)

    Pedersen, Per Overgaard; Brodersen, Erling; Cecil, David

    2013-01-01

    This is an investigation of chemical disinfection, with peracetic acid (PAA), in a tertiary sand filter at a full scale activated sludge plant with nitrification/denitrification and P-removal. The reduction efficiency of Escherichia coli and intestinal enterococci in the sand filter is reported. E. coli log reductions of between 0.4 and 2.2 were found with contact times from 6 to 37 min and with dosing from 0 to 4.8 mg L(-1). The average log reduction was 1.3. The decomposition products, bromophenols, chlorophenols and formaldehyde and residual H2O2 were measured before and after the sand filter. The residual H2O2 concentration in the effluent was critical at short contact times and high dosages of PAA due to the discharge limit of 25 μg L(-1). The other three products could not be detected at 0.1 μg L(-1) levels. The chemical cost of PAA dosing is estimated to be 0.039 US$ m(-3) treated wastewater.

  15. Carbonaceous and nitrogenous disinfection by-product formation in the surface and ground water treatment plants using Yellow River as water source

    Institute of Scientific and Technical Information of China (English)

    Yukun Hou; Wenhai Chu; Meng Ma

    2012-01-01

    This work investigated the formation of carbonaceous and nitrogenous disinfection by-preducts (C-DBPs,N-DBPs) upon chlorination of water samples collected from a surface water and a ground water treatment plant (SWTP and GWTP) where the conventional treatment processes,i.e.,coagulation,sedimentation,and filtration were employed.Twenty DBPs,including four trihalomethanes,nine haloacetic acids,seven N-DBPs (dichloroacetamide,trichloroacetamide,dichloroacetonitrile,trich loroacetonitrile,bromochloroacetonitrile,dibromoacetonitrile and trichloronitromethane),and eight volatile chlorinated compounds (dichlomethane (DCM),1,2-dichloroethane,tetrachloroethylene,chlorobenzene,1,2-dichlorobenzene,1,4-dichlorobenzene,1,2,3-trichlorobenzene and 1,2,4-trichlorobenzene) were detected in the two WTPs.The concentrations of these contaminants were all below their corresponding maximum contamination levels (MCLs) regulated by the Standards for Drinking Water Quality of China (GB5749-2006) except for DCM (17.1 μg/L detected vs.20 μg/L MCL).The SWTP had much higher concentrations of DBPs detected in the treated water as well as the DBP formation potentials tested in the filtered water than the GWTP,probably because more precursors (e.g.,dissolved organic carbon,dissolved organic nitrogen) were present in the water source of the SWTP.

  16. The toxicity of a new disinfection by-product, 2,2-dichloroacetamide (DCAcAm), on adult zebrafish (Danio rerio) and its occurrence in the chlorinated drinking water.

    Science.gov (United States)

    Yu, Shilin; Lin, Tao; Chen, Wei; Tao, Hui

    2015-11-01

    The detection method of 2,2-dichloroacetamide (DCAcAm), a new disinfection by-product (DBP) in chlorinated drinking water, was established using a gas chromatograph coupled with a micro-electron capture detector. The chlorinated water samples were taken from ten drinking water treatment plants around Yangtze River or Taihu Lake in China. The concentration of DCAcAm was detected ranging from 0.5 to 1.8μg/L in the waterworks around Yangtze River, and 1.5-2.6μg/L around Taihu Lake. The toxicity of DCAcAm on adult zebrafish was assessed by investigating the metabolism damage with multiple metabolic biomarkers and the accumulation capability with bio-concentration factor. The results showed that DCAcAm could cause the acute metabolism damage and was easily accumulated in zebrafish, and should be extremely cautioned.

  17. 二氧化氯与氯联合消毒对饮用水中消毒副产物的影响%EFFECT OF COMBINED DISINFECTION WITH CHLORINE AND CHLORINE DIOXIDE ON THE FORMATION OF DISINFECTION BY-PRODUCTS IN DRINKING WATER

    Institute of Scientific and Technical Information of China (English)

    叶必雄; 王五一; 杨林生; 王小龙; 魏建荣

    2011-01-01

    In an effect to explore the production mechanisms and characteristics of the by-products in different water disinfection processes,and to investigate the effect of chlorine dioxide on the formation of chlorine by-products,water samples from 4 water plants in a city in China were analyzed.Compared with the water disinfected with chlorine alone,the amount of THMs and HAAs decreased by 74.39% and 40.65%,respectively,in water samples disinfected with both chlorine dioxide and chlorine.Likewise,the amounts of chlorate and chlorite produced by the chlorine dioxide chemical generator was higher than that of the pure chlorine dioxide generator.%为了研究二氧化氯与氯联合消毒工艺过程中消毒副产物的形成规律以及特点,探讨二氧化氯对氯化消毒副产物的控制效果,对我国北方某市使用同一水源的4家水厂消毒工艺进行全面的采样与检测,并对各项消毒副产物检测结果进行了全面的分析.结果表明,二氧化氯与氯联合消毒比单纯液氯消毒形成的三卤甲烷平均降低74.39%,卤乙酸平均降低40.65%.在控制氯酸盐及亚氯酸盐生成方面,使用纯二氧化氯发生器生成的氯酸盐要显著低于化学法复合二氧化氯发生器.

  18. Disinfection By-Products and Human Health. Edited by Steve E. Hrudey and Jeffrey W.A. Charrois, IWA Publishing, 2012; 304 pages. Price: US$ 178.20/£ 99.00 ISBN 978–1–843–39519–5

    Directory of Open Access Journals (Sweden)

    Shu-Kun Lin

    2012-05-01

    Full Text Available The following paragraphs are reproduced from the website of the publisher [1].Disinfection By-Products and Human Health is based on contributions from speakers who participated in May 2011 workshops on Disinfection By-Products (DBPs and Human Health at Ozwater 11 in Adelaide, Australia or at an AWA sponsored workshop at the Curtin Water Quality Research Centre, Perth, Australia.The contributions are prepared to facilitate communication with practitioners, rather than researchers, making use of overview illustrations rather than dense text or data tables. Each chapter concludes with up to 5 key findings that are take-home messages for practitioners. [...

  19. A Summary of Publications on the Development of Mode-of-Action Information and Statistical Tools for Evaluating Health Outcomes from Drinking Water Disinfection By-Product (DBP) Exposures

    Science.gov (United States)

    Chemical contaminants are formed as a consequence of chemical disinfection of public drinking waters. Chemical disinfectants, which are used to kill harmful microorganisms, react with natural organic matter (NOM), bromide, iodide, and other compounds, forming complex mixtures...

  20. By-products of chlorine disinfection of drinking water and reproductive health%氯消毒饮水的副产物与生殖健康

    Institute of Scientific and Technical Information of China (English)

    林辉; 宋建勇; 李莉

    2002-01-01

    @@ 用氯消毒饮水及其副产物(Chlorination by-products,CBPs)因可能与癌症(尤其是膀胱癌和直肠癌)有关,已受到广泛关注[1];近年,其对生殖健康的潜在影响亦逐渐引起人们的重视.以下对该领域的毒理学和流行病学等相关研究进展进行综述.

  1. 含氮消毒副产物卤代酰胺的生成特性与控制研究进展%State-of-the-Art of Formation and Control of Nitrogenous Disinfection By-products:Haloamides

    Institute of Scientific and Technical Information of China (English)

    李冕; 徐斌; 夏圣骥; 高乃云; 李大鹏; 田富箱

    2011-01-01

    Haloamides have highly carcinogenic, teratogenic and mutagenic effects, and they are new nitrogenous halogenated disinfection by-products (DBPs) concerned in drinking water treatment.These DBPs show specific characteristics such as low molecular weight, simple structure, easy hydrolysis and so on.Due to strong polarity and high hydrophilicity, these DBPs tend to be widely present in the treated water from drinking water plant after disinfection.The formation of haloamides can be affected by temperature, pH, disinfectant concentration and so on.However, the mechanism is so complex that yet there are no related theories that can fully explain the formation of haloamides.In view of high potential risks involved, scientific researches on haloamides such as characteristics, formation conditions and control become important in the field of research on DBPs.The classification, detection and control of haloamides are introduced.It is suggested that the research should be focused on controlling their precursors to inhibit the formation of haloamides.%卤代酰胺(haloamides)具有极强的致癌、致崎和致突变性,是饮用水处理领域开始关注的一种新型含氮卤代消毒副产物.这类物质分子质量小、结构简单、可水解,具有很强的极性和亲水性,可广泛存在于消毒后的出厂水中.卤代酰胺的产生受到温度、pH值、消毒剂含量的影响,但生成机制非常复杂,尚未有相关理论能完全解释其产生规律.鉴于其较强的"三致"特性,对它的物理特性、产生条件及控制手段进行研究是目前消毒副产物领域的一个重要方向.介绍了卤代酰胺的特性、检测方法,对其控制手段的最新研究进展进行了重点说明,指出通过控制其前体物的方法来控制卤代酰胺的产生是该领域的研究重点.

  2. Real Time Monitoring of Dissolved Organic Carbon Concentration and Disinfection By-Product Formation Potential in a Surface Water Treatment Plant with Simulaneous UV-VIS Absorbance and Fluorescence Excitation-Emission Mapping

    Science.gov (United States)

    Gilmore, A. M.

    2015-12-01

    This study describes a method based on simultaneous absorbance and fluorescence excitation-emission mapping for rapidly and accurately monitoring dissolved organic carbon concentration and disinfection by-product formation potential for surface water sourced drinking water treatment. The method enables real-time monitoring of the Dissolved Organic Carbon (DOC), absorbance at 254 nm (UVA), the Specific UV Absorbance (SUVA) as well as the Simulated Distribution System Trihalomethane (THM) Formation Potential (SDS-THMFP) for the source and treated water among other component parameters. The method primarily involves Parallel Factor Analysis (PARAFAC) decomposition of the high and lower molecular weight humic and fulvic organic component concentrations. The DOC calibration method involves calculating a single slope factor (with the intercept fixed at 0 mg/l) by linear regression for the UVA divided by the ratio of the high and low molecular weight component concentrations. This method thus corrects for the changes in the molecular weight component composition as a function of the source water composition and coagulation treatment effects. The SDS-THMFP calibration involves a multiple linear regression of the DOC, organic component ratio, chlorine residual, pH and alkalinity. Both the DOC and SDS-THMFP correlations over a period of 18 months exhibited adjusted correlation coefficients with r2 > 0.969. The parameters can be reported as a function of compliance rules associated with required % removals of DOC (as a function of alkalinity) and predicted maximum contaminant levels (MCL) of THMs. The single instrument method, which is compatible with continuous flow monitoring or grab sampling, provides a rapid (2-3 minute) and precise indicator of drinking water disinfectant treatability without the need for separate UV photometric and DOC meter measurements or independent THM determinations.

  3. Evaluation of the immunomodulatory effects of the disinfection by-product, sodium chlorite, in female B6C3F1 mice: a drinking water study.

    Science.gov (United States)

    Karrow, N A; Guo, T L; McCay, J A; Johnson, G W; Brown, R D; Musgrove, D L; Germolec, D R; Luebke, R W; White, K L

    2001-08-01

    Sodium chlorite is an inorganic by-product of chlorine dioxide formed during the chlorination of drinking water. Relatively little is known about the adverse health effects of exposure to sodium chlorite in drinking water. In this study, we evaluated sodium chlorite's immunomodulatory properties using female B6C3F1 mice and a panel of immune assays that were designed to evaluate potential changes in innate and acquired cellular and humoral immune responses. Female B6C3F1 mice were exposed to sodium chlorite in their drinking water (0, 0.1, 1, 5, 15, and 30 mg/L) for 28 days, and then evaluated for immunomodulation. Overall, minimal toxicological and immunological changes were observed after exposure to sodium chlorite. Increases in the percentages of blood reticulocytes, and the relative spleen weights were both observed at different sodium chlorite treatment levels; however, these increases were not dose-dependent. An increasing trend in the number of spleen antibody-forming cells was observed over the range of sodium chlorite concentrations. This increase was not, however, significant at any individual treatment level, and was not reflected by changes in serum IgM levels. A significant increase (26%) in the total number of splenic CD8+ cells was observed in mice treated with 30 mg/L of sodium chlorite, but not at the other concentrations. Splenic mixed leukocyte response and peritoneal macrophage activity were unaffected by sodium chlorite. Lastly, exposure to sodium chlorite did not affect natural killer cell activity, although a decrease in augmented natural killer cell activity (42%) was observed at the lowest sodium chlorite treatment level. These results suggest that sodium chlorite, within the range 0.1-30 mg/L, produces minimal immunotoxicity in mice.

  4. Prospective Power Calculations for the Four Lab Study of A Multigenerational Reproductive/Developmental Toxicity Rodent Bioassay Using A Complex Mixture of Disinfection By-Products in the Low-Response Region

    Directory of Open Access Journals (Sweden)

    Jane Ellen Simmons

    2011-10-01

    Full Text Available In complex mixture toxicology, there is growing emphasis on testing environmentally representative doses that improve the relevance of results for health risk assessment, but are typically much lower than those used in traditional toxicology studies. Traditional experimental designs with typical sample sizes may have insufficient statistical power to detect effects caused by environmentally relevant doses. Proper study design, with adequate statistical power, is critical to ensuring that experimental results are useful for environmental health risk assessment. Studies with environmentally realistic complex mixtures have practical constraints on sample concentration factor and sample volume as well as the number of animals that can be accommodated. This article describes methodology for calculation of statistical power for non-independent observations for a multigenerational rodent reproductive/developmental bioassay. The use of the methodology is illustrated using the U.S. EPA’s Four Lab study in which rodents were exposed to chlorinated water concentrates containing complex mixtures of drinking water disinfection by-products. Possible experimental designs included two single-block designs and a two-block design. Considering the possible study designs and constraints, a design of two blocks of 100 females with a 40:60 ratio of control:treated animals and a significance level of 0.05 yielded maximum prospective power (~90% to detect pup weight decreases, while providing the most power to detect increased prenatal loss.

  5. Prospective Power Calculations for the Four Lab Study of A Multigenerational Reproductive/Developmental Toxicity Rodent Bioassay Using A Complex Mixture of Disinfection By-Products in the Low-Response Region

    Science.gov (United States)

    Dingus, Cheryl A.; Teuschler, Linda K.; Rice, Glenn E.; Simmons, Jane Ellen; Narotsky, Michael G.

    2011-01-01

    In complex mixture toxicology, there is growing emphasis on testing environmentally representative doses that improve the relevance of results for health risk assessment, but are typically much lower than those used in traditional toxicology studies. Traditional experimental designs with typical sample sizes may have insufficient statistical power to detect effects caused by environmentally relevant doses. Proper study design, with adequate statistical power, is critical to ensuring that experimental results are useful for environmental health risk assessment. Studies with environmentally realistic complex mixtures have practical constraints on sample concentration factor and sample volume as well as the number of animals that can be accommodated. This article describes methodology for calculation of statistical power for non-independent observations for a multigenerational rodent reproductive/developmental bioassay. The use of the methodology is illustrated using the U.S. EPA’s Four Lab study in which rodents were exposed to chlorinated water concentrates containing complex mixtures of drinking water disinfection by-products. Possible experimental designs included two single-block designs and a two-block design. Considering the possible study designs and constraints, a design of two blocks of 100 females with a 40:60 ratio of control:treated animals and a significance level of 0.05 yielded maximum prospective power (~90%) to detect pup weight decreases, while providing the most power to detect increased prenatal loss. PMID:22073030

  6. 南水北调丹江口水库水氯(胺)化消毒副产物产生特性与消毒工艺对比%Formation of Disinfection By-Products During Chlor(am)ination of Danjiangkou Reservoir Water and Comparison of Disinfection Processes

    Institute of Scientific and Technical Information of China (English)

    张民盛; 徐斌; 张天阳; 程拓; 夏圣骥; 楚文海

    2015-01-01

    This study discussed the formation of volatile carbonaceous disinfection by-products (DBPs) and nitrogenous DBPs during chlor(am)ination of Danjingkou Reservoir water which was the source of the middle Route Project of South-to-North Water Diversion Project. The effects of disinfection methods, disinfectant dosage, reaction time, pH values and bromide ion concentration were investigated. And the disinfection parameters were optimized. Four DBPs, including chloroform ( CF), bromodichloromethane (BDCm), dichloroacetonitrile(DCAN) and trichloronitromethane(TCNm) , were observed during the chlorination. But only CF and TCNm were detected during the chloramination of water. The disinfection by-product (DBP) concentration from chlorination is 7. 5 times higher than that from chloramination, and the yield of DBPs from short time chlorination then chloramination is in between the first two methods. All kinds of DBPs detected increased with the dosage of increasing chlorine, but the increases slowed down when the dosage was higher than 2 mg·L - 1 . The formation of CF varied a little as the dosage of chloramine increasing. TCNm was detected when the chloramine dosage was greater than 2 mg·L - 1 . As reaction time going on, chlorine decayed much faster than chloramine, while DBP formation under chlorination was faster than that of chloramination. THm produced by chlorine increased with the increasing pH, while chloramination showed no obvious changes. As the bromide ion increasing, the species of DBPs transformed from chlorinated DBPs to brominated ones, and the total yield of DBPs increased during both chlorination and chloramination, but the former one was obviously more than that of the latter one. In order to reduce the risk of DBP formation, the chloramination is suggested in the treatment of water from Danjiangkou Reservoir. And if chlorination is applied, the disinfectant dosage should be controlled seriously.%系统研究了南水北调中线工程水源---丹江

  7. Ozone and hydrogen peroxide applications for disinfection by-products control in drinking water; Applicazioni con ozono e perossido di idrogeno per il controllo dei sottoprodotti di disinfezione nelle acque potabili

    Energy Technology Data Exchange (ETDEWEB)

    Collivignarelli, C.; Sorlini, S. [Brescia Univ., Brescia (Italy). Dipt. di Ingegneria Civile; Colombino, M. [Azienda Mediterranea Gas e Acqua, Genoa (Italy); Riganti, V. [Pavia Univ., Pavia (Italy). Dipt. di Chimica Generale

    2001-04-01

    A great interest has been developed during the last years for ozone in drinking water treatments thanks to its strong oxidant and disinfectant power and for its efficiency in disinfection by-products (DBPs) precursors removal. However ozonization produces some specific DBPs, such as aldehydes and ketones; moreover, the presence of bromide in raw water engages ozone in a complex cycle in which both organic bromide and inorganic bromate are end products. In this paper the combination of hydrogen peroxide with ozone (known as peroxone process) and the ozone alone process were experimented on one surface water coming from the lake of Brugneto (Genova) in order to investigate bromate formation and trihalomethanes precursors removal during the oxidation process. The results show that the advanced peroxone process can be applied for bromate reduction (about 30-40%) with better results in comparison with the ozone alone process, while no advantages are shown for THMs precursors removal. The addition of in-line filtration step after pre-oxidation improves both bromate and THMs precursors removal, particularly with increasing hydrogen peroxide/ozone ratio in the oxidation step. [Italian] Un notevole interesse e' stato mostrato di recente per l'utilizzo dell'ozono nei trattamenti di potabilizzazione sia per il suo forte potere ossidante e disinfettante sia per la capacita' di rimuovere alcuni precursori di formazione dei sottoprodotti di ossidazione (OBPs). Tuttavia, anche l'ozono puo' produrre a sua volta alcuni specifici sottoprodotti, quali aldeidi e chetoni; inoltre, la presenza di bromuro nell'acqua grezza coinvolge l'ozono in una serie di reazioni che portano alla formazione di composti organici bromurati e di sottoprodotti inorganici, i piu' noti tra i quali sono i bromati. In questo articolo vengono presentati i risultati di alcuni trattamenti di ossidazione convenzionali a base di ozono combinato con perossido di idrogeno

  8. Silver-based Antibacterial Surfaces for Drinking Water Disinfection - An overview

    Science.gov (United States)

    Risks associated with current disinfection techniques, including the formation of disinfection by-products and multi-drug resistant bacterial species, have prompted the exploration of advanced disinfection methods. One such technique employs silver nanoparticles incorporation on ...

  9. Water-Quality Constituents, Dissolved-Organic-Carbon Fractions, and Disinfection By-Product Formation in Water from Community Water-Supply Wells in New Jersey, 1998-99

    Science.gov (United States)

    Hopple, Jessica A.; Barringer, Julia L.; Koleis, Janece

    2007-01-01

    Water samples were collected from 20 community water-supply wells in New Jersey to assess the chemical quality of the water before and after chlorination, to characterize the types of organic carbon present, and to determine the disinfection by-product formation potential. Water from the selected wells previously had been shown to contain concentrations of dissolved organic carbon (DOC) that were greater than 0.2 mg/L. Of the selected wells, five are completed in unconfined (or semi-confined) glacial-sediment aquifers of the Piedmont and Highlands (New England) Physiographic Provinces, five are completed in unconfined bedrock aquifers of the Piedmont Physiographic Province, and ten are completed in unconsolidated sediments of the Coastal Plain Physiographic Province. Four of the ten wells in the Coastal Plain are completed in confined parts of the aquifers; the other six are in unconfined aquifers. One or more volatile organic compounds (VOCs) were detected in untreated water from all of the 16 wells in unconfined aquifers, some at concentrations greater than maximum contaminant levels. Those compounds detected included aliphatic compounds such as trichloroethylene and 1,1,1-trichloroethane, aromatic compounds such as benzene, the trihalomethane compound, chloroform, and the gasoline additive methyl tert-butyl ether (MTBE). Concentrations of sodium and chloride in water from one well in a bedrock aquifer and sulfate in water from another exceeded New Jersey secondary standards for drinking water. The source of the sulfate was geologic materials, but the sodium and chloride probably were derived from human inputs. DOC fractions were separated by passing water samples through XAD resin columns to determine hydrophobic fractions from hydrophilic fractions. Concentrations of hydrophobic acids were slightly lower than those of combined hydrophilic acids, neutral compounds, and low molecular weight compounds in most samples. Water samples from the 20 wells were adjusted

  10. Water-Quality Constituents, Dissolved-Organic-Carbon Fractions, and Disinfection By-Product Formation in Water from Community Water-Supply Wells in New Jersey, 1998-99

    Science.gov (United States)

    Hopple, Jessica A.; Barringer, Julia L.; Koleis, Janece

    2007-01-01

    Water samples were collected from 20 community water-supply wells in New Jersey to assess the chemical quality of the water before and after chlorination, to characterize the types of organic carbon present, and to determine the disinfection by-product formation potential. Water from the selected wells previously had been shown to contain concentrations of dissolved organic carbon (DOC) that were greater than 0.2 mg/L. Of the selected wells, five are completed in unconfined (or semi-confined) glacial-sediment aquifers of the Piedmont and Highlands (New England) Physiographic Provinces, five are completed in unconfined bedrock aquifers of the Piedmont Physiographic Province, and ten are completed in unconsolidated sediments of the Coastal Plain Physiographic Province. Four of the ten wells in the Coastal Plain are completed in confined parts of the aquifers; the other six are in unconfined aquifers. One or more volatile organic compounds (VOCs) were detected in untreated water from all of the 16 wells in unconfined aquifers, some at concentrations greater than maximum contaminant levels. Those compounds detected included aliphatic compounds such as trichloroethylene and 1,1,1-trichloroethane, aromatic compounds such as benzene, the trihalomethane compound, chloroform, and the gasoline additive methyl tert-butyl ether (MTBE). Concentrations of sodium and chloride in water from one well in a bedrock aquifer and sulfate in water from another exceeded New Jersey secondary standards for drinking water. The source of the sulfate was geologic materials, but the sodium and chloride probably were derived from human inputs. DOC fractions were separated by passing water samples through XAD resin columns to determine hydrophobic fractions from hydrophilic fractions. Concentrations of hydrophobic acids were slightly lower than those of combined hydrophilic acids, neutral compounds, and low molecular weight compounds in most samples. Water samples from the 20 wells were adjusted

  11. 腐殖酸氯消毒副产物生成潜力评估指标的研究%Assessment parameter for disinfection by-products formation potential of humic acids

    Institute of Scientific and Technical Information of China (English)

    吴颖虹; 张明月; 李楠; 商博东; 白世基

    2012-01-01

    目的 探讨腐殖酸氯消毒副产物生成潜力评估指标.方法 选用2种商品腐殖酸和1种提取自活性污泥的腐殖酸作为目标物( 1.67~10 mg/L)进行氯化消毒过程的实验室模拟研究,检测254 nm紫外吸光度(UV254)、总有机碳(TOC)、三卤甲烷(THMs)、卤代乙酸(HAAs)并进行线性拟合.结果 3种腐殖酸在氯化消毒过程中均能产生THMs和HAAs,其中THMs的生产潜力为11.63~43.61 μg/mg TOC,HAAs的生产潜力为11.03~24.06 μg/mg TOC.HAAs的生成潜力与单位TOC的腐殖酸254 nm紫外吸收(SUVA)具有较好相关性(P<0.05).采用SUVA与腐殖酸氧含量的乘积作为参数,与THMs类物质的产生具有更好的相关性(P<0.05).结论 三氯甲烷和氯乙酸(二氯乙酸、三氯乙酸、一氯乙酸)分别是主要的THMs和HAAs类氯消毒副产物.SUVA和SUVA与腐殖酸氧含量的乘积可分别用作氯消毒过程中HAAs和THMs类副产物生成潜力的评价指标.%Objective To study the formation potential of disinfection by-products of huraic acid. Methods Two different commercial humic acids and one humic acid extracted from activated sludge were selected as the target substances in this study and the simulated experiments were conducted. Results Formation of trihalomethanes (THMs) and haloacetic acids (HAAs) was observed in all systems containing each of the three humic acids, while the THMs formation potential ranged from 11.63-43.61 μg/mg TOC, and the HAAs 11.03-24.06 μg/mg TOC. Formation potential of HAAs was highly related to per unit of TOC's ultraviolet absorption at 254 nm (SUVA) of each humic acid. However, the product of SUVA and oxygen content of humic acid (SUVA×O%) was found more suitable to fix the formation potential of THMs. Conclusion Trichloromethane and dichloro-, trichloro-, chloro-acetic acids were the main by-products belonging to THMs and HAAs respectively. Values of SUVA and(SUVA×O%) can be used as the indexes to assess the formation potential of

  12. Formation of Disinfection By-products in Drinking Water With Chlorine Dioxide and Chlorine%二氧化氯与氯对饮用水中消毒副产物形成的研究

    Institute of Scientific and Technical Information of China (English)

    朱明新; 孙轶民; 沈丽娜; 徐炎华; 伏荣进

    2012-01-01

    采用氯和二氧化氯作为消毒剂,用模拟水样和实际水样比较这两种消毒剂的消毒副产物产生量及其消毒效果.实验结果表明:在不同腐殖酸浓度、消毒剂浓度及pH下,氯消毒产生的三氯甲烷都比二氧化氯消毒产生的多;从成本上看,不同二氧化氯制备方法所需的药剂成本都比液氯高,其中过氧化氢法所需的成本较低,是液氯的1.4 ~2.5倍;而盐酸法和亚氯酸钠法所需的成本较高,是液氯的4~5倍.%Disinfecting effect of chlorine and chlorine dioxide has been compared by using simulating water and actual water samples. The result indicates that chlorine disinfection produces more chloroform than chlorine dioxide at the conditions of different humic acid concentration, disinfectants concentration and pH value. From a cost consideration, the pharmaceutical cost used by chlorine dioxide disinfection is higher than chlorine disinfection. The raw material cost of hydrogen peroxide method is lower, while the raw material cost of hydrochloric acid method and sodium chlorite method is higher. Respectively,the cost is 1.4~2.5 times and 4~5 times more than chlorine.

  13. A Preliminary Study of the Formation of Bromate By-products During Ozone Disinfection in Rural Drinking Water Supply%农村供水臭氧消毒副产物溴酸盐生成的初步研究

    Institute of Scientific and Technical Information of China (English)

    贾燕南; 魏向辉; 刘文朝

    2013-01-01

    臭氧消毒近年来为各地农村供水工程所广泛采用,但其带来的副产物溴酸盐超标问题却没有引起足够的重视.对北京若干区县的实际水样进行臭氧投加试验,考察了副产物溴酸盐的生成情况,探讨了臭氧消毒的适用性.结果表明:北京地区地下水采用臭氧消毒时溴酸盐超标的风险较高,建议在选择臭氧消毒前首先对原水进行臭氧投加试验,并考察生成溴酸盐的浓度水平;臭氧投加方式对于溴酸盐生成量的影响较大.%Ozone disinfection is widely used in many rural drinking water supply projects. However, more attention should be paid to the fact that the bromate by-product formed may be over standard in the disinfection process. In this paper, ozone adding experiments towards groundwater samples of different rural drinking water projects from various towns in Beijing are developed, and the bromate formation of the water samples is observed. Results show that risk of bromate of theses groundwater samples from Beijing exceeding the standard values is rather high after ozone disinfection. Besides, ozone dosing methods has a significant effect on formation of bromate.

  14. 预臭氧化工艺对消毒副产物影响的生产性研究%Full-scale study on effects of pre-ozonation on disinfection by - products

    Institute of Scientific and Technical Information of China (English)

    岳尚超; 王启山; 张伟林; 李思思; 张怡然; 刘艳芳; 鲁金凤; 赵文玉

    2012-01-01

    通过进行预臭氧化一紫外线联合氯消毒工艺处理高温高藻期滦河水的生产性试验,检测和分析三卤甲烷生成势(THMFP)和卤乙酸生成势(HAAFP)的含量变化情况,研究了整套水处理工艺,尤其是预臭氧化单元对氯消毒副产物(DBPs)的去除效果.同时,研究了甲醛和溴酸盐这两种臭氧化副产物在处理过程中的生成情况.结果表明:在高温高藻期,预臭氧化单元对THMFP和HAAFP的平均去除率分别为12.43%和15.06%,整套工艺对THMFP和HAAFP的平均总去除率分别为39.33%和54.12%,氯消毒副产物前体物得到有效去除;出水中甲醛含量低于50μg/L,溴酸盐的含量小于6μg/L,臭氧氧化副产物得到了有效控制.%A full-scale study was done on the processes of pre-ozonation and a combination disinfection of ultraviolet and chlorine to treat the Luan River raw water in high temperature and high algae concentration phase. Through the testing and analyzing of the trihalomethanes formation potential (THMFP) and haloacetic acids formation potential (HAAFP) variances, the whole set of water treatment process was studied, especially the effects of pre-ozonation on disinfection byproducts (DBPs) removal. At the same time, the formation of formaldehyde and bromated in treatment process was also studied. The results showed: during high temperature and high algae concentration period, the average removal rates of THMFP and HAAFP by pre-ozonation were 12. 43% and 15. 06% respectively, and the removal rates of combined process were 39. 33% and 54. 12% respectively, which meant the precursors of DBPs were removed effectively; formaldehyde and bromate in effluent were less than 50 μg/L and 6 μg/L respectively, which meant the DBPs were also controlled effectively.

  15. Algal toxicity of the alternative disinfectants performic acid (PFA), peracetic acid (PAA), chlorine dioxide (ClO2) and their by-products hydrogen peroxide (H2O2) and chlorite (ClO2-)

    DEFF Research Database (Denmark)

    Chhetri, Ravi Kumar; Baun, Anders; Andersen, Henrik Rasmus

    2017-01-01

    : performic acid (PFA), peracetic acid (PAA) and chlorine dioxide (ClO2) as well as two by-products of their use: hydrogen peroxide (H2O2) and chlorite. All of the five chemicals investigated showed clear toxicity to the algae with well-defined dose response curves. The EC50 values ranged from 0.16 to 2.9 mg....../L based on nominal concentrations leading to the labeling of the chemicals as either toxic or very toxic. The five investigated chemicals decreased in toxicity in the order chlorine dioxide, performic acid, peracetic acid, chlorite and hydrogen peroxide. The stability of the chemicals increased...

  16. A dynamical model of non regulated markets

    CERN Document Server

    Schaale, A

    1999-01-01

    The main focus of this work is to understand the dynamics of non regulated markets. The present model can describe the dynamics of any market where the pricing is based on supply and demand. It will be applied here, as an example, for the German stock market presented by the Deutscher Aktienindex (DAX), which is a measure for the market status. The duality of the present model consists of the superposition of the two components - the long and the short term behaviour of the market. The long term behaviour is characterised by a stable development which is following a trend for time periods of years or even decades. This long term growth (or decline) is based on the development of fundamental market figures. The short term behaviour is described as a dynamical evaluation (trading) of the market by the participants. The trading process is described as an exchange between supply and demand. In the framework of this model there the trading is modelled by a system of nonlinear differential equations. The model also...

  17. Spiral-shaped disinfection reactors

    KAUST Repository

    Ghaffour, Noreddine

    2015-08-20

    This disclosure includes disinfection reactors and processes for the disinfection of water. Some disinfection reactors include a body that defines an inlet, an outlet, and a spiral flow path between the inlet and the outlet, in which the body is configured to receive water and a disinfectant at the inlet such that the water is exposed to the disinfectant as the water flows through the spiral flow path. Also disclosed are processes for disinfecting water in such disinfection reactors.

  18. Chlorine dioxide and by-products in water distribution systems

    OpenAIRE

    Ferreira, Francisco Cardoso

    1991-01-01

    Chlorine dioxide is used as both a pre-oxidant and/or a post-disinfectant in several water treatment plants in the United States. Chlorine dioxide is associated with its byproducts chlorite and chlorate. Chlorine dioxide, chlorine, chlori te and chlorate were sampled in four distribution systems where chlorine dioxide is used for disinfection purposes: Charleston, WV, Columbus, GA, New Castle, PA, and Skagit, WA. The fate of chlorine dioxide and its by-products in dist...

  19. 金属离子对在饮用水氯化过程中形成消毒副产物的影响的研究进展%Progress of the Effect of Metal Ions on the Formation of Disinfection By-products during Chlorination

    Institute of Scientific and Technical Information of China (English)

    樊陈锋; 朱志良; 刘绍刚

    2011-01-01

    The safety issue of chlorination disinfection in drinking water has been paid more and more attention in the past decades. Since mineral ions exist widely in natural water and the slight pollution of heavy metals happens frequently, it is of great importance for evaluating and controlling the formation of disinfection by-products ( DBPs) to study the effect of metal ions on DBPs formation. In this paper, the research progress on the formation of the DBPs during drinking water chlorination in the presence of different metal ions was reviewed, and the investigation results in literatures about some typical metal ions and oxides, such as ferric ions, copper ions, manganese dioxide and lead oxide were introduced. The forming species, reaction mechanisms and affecting ways of DBPs formation were discussed. Authors hope to provide useful information for understanding and investigating the possible mechanisms and influence factors of DBPs during chlorination, and help the control of DBPs and the guarantee of drinking water safety.%饮用水氯化消毒的安全性问题一直是水处理领域的研究热点之一.由于天然水体中矿物质的普遍存在以及微量重金属污染的经常发生,开展金属离子对消毒副产物形成的影响规律研究,对于实际饮用水消毒副产物的控制及其对人类健康的影响评价都具有重要意义.本文以目前研究较多的一些典型金属离子和金属氧化物(如铜离子、铁离子、二氧化锰和二氧化铅等)为例,从饮用水消毒过程中副产物形成种类、反应机理、影响途径等几个方面,综述分析了近年来国内外有关金属离子对消毒副产物影响的研究进展,旨在为进一步了解和研究饮用水消毒副产物形成的影响因素及规律,科学控制饮用水消毒副产物并保障饮用水安全,提供参考和支持.

  20. Applications of Photocatalytic Disinfection

    Directory of Open Access Journals (Sweden)

    Joanne Gamage

    2010-01-01

    Full Text Available Due to the superior ability of photocatalysis to inactivate a wide range of harmful microorganisms, it is being examined as a viable alternative to traditional disinfection methods such as chlorination, which can produce harmful byproducts. Photocatalysis is a versatile and effective process that can be adapted for use in many applications for disinfection in both air and water matrices. Additionally, photocatalytic surfaces are being developed and tested for use in the context of “self-disinfecting” materials. Studies on the photocatalytic technique for disinfection demonstrate this process to have potential for widespread applications in indoor air and environmental health, biological, and medical applications, laboratory and hospital applications, pharmaceutical and food industry, plant protection applications, wastewater and effluents treatment, and drinking water disinfection. Studies on photocatalytic disinfection using a variety of techniques and test organisms are reviewed, with an emphasis on the end-use application of developed technologies and methods.

  1. Recent advances in drinking water disinfection: successes and challenges.

    Science.gov (United States)

    Ngwenya, Nonhlanhla; Ncube, Esper J; Parsons, James

    2013-01-01

    Drinking water is the most important single source of human exposure to gastroenteric diseases, mainly as a result of the ingestion of microbial contaminated water. Waterborne microbial agents that pose a health risk to humans include enteropathogenic bacteria, viruses, and protozoa. Therefore, properly assessing whether these hazardous agents enter drinking water supplies, and if they do, whether they are disinfected adequately, are undoubtedly aspects critical to protecting public health. As new pathogens emerge, monitoring for relevant indicator microorganisms (e.g., process microbial indicators, fecal indicators, and index and model organisms) is crucial to ensuring drinking water safety. Another crucially important step to maintaining public health is implementing Water Safety Plans (WSPs), as is recommended by the current WHO Guidelines for Drinking Water Quality. Good WSPs include creating health-based targets that aim to reduce microbial risks and adverse health effects to which a population is exposed through drinking water. The use of disinfectants to inactivate microbial pathogens in drinking water has played a central role in reducing the incidence of waterborne diseases and is considered to be among the most successful interventions for preserving and promoting public health. Chlorine-based disinfectants are the most commonly used disinfectants and are cheap and easy to use. Free chlorine is an effective disinfectant for bacteria and viruses; however, it is not always effective against C. parvum and G. lamblia. Another limitation of using chlorination is that it produces disinfection by-products (DBPs), which pose potential health risks of their own. Currently, most drinking water regulations aggressively address DBP problems in public water distribution systems. The DBPs of most concern include the trihalomethanes (THMs), the haloacetic acids (HAAs), bromate, and chlorite. However, in the latest edition of the WHO Guidelines for Drinking Water Quality

  2. Ozone reactions with indoor materials during building disinfection

    DEFF Research Database (Denmark)

    Poppendieck, D.; Hubbard, H.; Ward, M.

    2007-01-01

    There is scant information related to heterogeneous indoor chemistry at ozone concentrations necessary for the effective disinfection of buildings, i.e., hundreds to thousands of ppm. In the present study, 24 materials were exposed for 16 h to ozone concentrations of 1000-1200ppm in the inlet......, and particularly after several hours of disinfection, surface reaction resistance dominated the overall resistance to ozone deposition for nearly all materials. Total building disinfection by-products (all carbonyls) were quantified per unit area of each material for the experimental period. Paper, office...

  3. Comportamento cinético do cloro livre em meio aquoso e formação de subprodutos da desinfecção Kinetic behavior of free chlorine in the liquid phase and disinfection by-product (DBP formation

    Directory of Open Access Journals (Sweden)

    Sidney Seckler Ferreira Filho

    2008-06-01

    Full Text Available Uma das formas indiretas de previsão da potencialidade de uma determinada água natural formar subprodutos da desinfecção é mediante a avaliação do comportamento cinético do cloro livre na fase líquida e determinação de sua demanda para diferentes condições de operação do processo de cloração. Desta forma, o objetivo deste trabalho foi avaliar o comportamento cinético do cloro livre em meio aquoso para diferentes tipos de água bruta, bem como investigar o impacto do processo de coagulação na redução da demanda de cloro e na formação de subprodutos da desinfecção. Observou-se que, quanto maior for à remoção de carbono orgânico total (COT pelo processo de coagulação menor será a demanda de cloro na fase líquida. A formação de THMs apresentou relação com a demanda de cloro, tendo sido esta da ordem de 28 mg/L para cada 1 mg Cl2/L de demanda de cloro observada.One indirect approach to predict the disinfection by-product (DBP formation potential for a given water source is by evaluation of the kinetic behavior of free chlorine in the liquid phase and chlorine demand determination for different operation conditions of the chlorination process. The objective of this work was to evaluate the kinetic behavior of free chlorine in water or a number of different raw water sources, as well as to investigate the impact of the coagulation process on chlorine demand reduction and DBP formation. It was observed that the higher the total organic carbon (TOC removal efficiency through coagulation, the lower the liquid phase chlorine demand. Regarding trihalomethane (THM formation, a ratio of 28 ug/L formed per mg/L of applied chlorine was observed for the waters employed in the experimental investigation.

  4. 污水中溶解性有机氮类化合物的氯化反应特性及其消毒副产物生成潜能%Chlorination Characteristic and Disinfection By-product Formation Potential of Dissolved Organic Nitrogen Compounds in Municipal Wastewater

    Institute of Scientific and Technical Information of China (English)

    刘冰; 于鑫; 余国忠; 古励; 赵承美; 翟慧敏; 李清飞

    2013-01-01

    为探讨城市污水厂二级出水中溶解性有机氮(dissolved organic nitrogen,DON)类化合物的氯化消毒副产物生成潜能及其化学结构变化,首先测定DON、溶解性有机炭(dissolved organic carbon,DOC)、NH4+-N和UV254等指标以及与氯反应前后DON相对分子质量分布,并采用气相色谱测定消毒副产物(disinfection by-products,DBPs)质量浓度,最后应用红外光谱和三维荧光光谱对与氯反应前后的水样进行表征.结果表明,城市污水厂二级出水中DON、DOC、UV254和NH4+-N分别为2.47mg·L-1、14.45 mg·L-1、15.88 m-1和5.42 mg·L-1,DOC与DON比值[m(DOC)/m(DON)]为5.85 mg·mg-1,SUVA为1.09L·(m·mg)-1;与氯反应后,小相对分子质量(Mr<6 000) DON所占比例由70%提高到78%,大相对分子质量(Mr>20 000)DON所占比例从21%降到14%,占较小比例的中等相对分子质量(Mr6 000 ~ 20 000)DON基本不变;氯化消毒副产物生成潜能中一氯一溴乙腈(BCAN)质量浓度最大为6.887 μg·L-1,三氯乙腈(TCAN)质量浓度最小仅为0.217 μg· L-1;与氯反应前,水样的红外光谱出现6个主要吸收区域分别在3 500 ~3 400、2 260 ~2 200、1 700~1 640、1 500 ~1 450、1 150 ~1 100和850~ 800 cm-;与氯反应后水样的红外光谱在1 380 ~1 350 cm-1“和600 ~ 550 cm-增加两个吸收区域;三维荧光光谱证实,与氯反应前后水样中变化与3个主要特征峰有关,分别代表色氨酸类蛋白质、芳香族类蛋白质和富里酸类等物质.%In order to explore the chlorinated disinfection by-product formation potential and chemical structure of dissolved organic nitrogen compounds in municipal wastewater,the water quality parameters,such as DON,DOC,NH4+-N and UV254 etc,were determined in the secondary effluent and the molecular weight distribution of the DON was investigated before and after the reaction with chlorine.DBPs were determined by gas chromatography,and the changes of DON were characterized

  5. Bench-Scale Evaluation of Peracetic Acid and Twin Oxide ™ as Disinfectants in Drinking Water

    Science.gov (United States)

    Chlorine is widely used as an inexpensive and potent disinfectant in the United States for drinking water. However, chlorine has the potential for forming carcinogenic and mutagenic disinfection by-products (DBPs). In this study, bench scale experiments were conducted at the U.S...

  6. Role of Disinfection in Food Industry

    Institute of Scientific and Technical Information of China (English)

    G Sansebastiano; R Zoni; R Zanelli; L Bigliardi

    2006-01-01

    At present microbiological risk are still the most frequent in the food industry and the disinfection is one of the procedures that can be carried out in the general prevention of foodborne infectious diseases. In the industrial process of food transformation the cleaning and disinfection procedures of surfaces and machinery have to be considered an integrate system with food production, a technological aspect that surely affects the finished product quality and safety. First of all to carry out properly these operations it is necessary that the factory and the equipment have been designed and constructed with high standard of hygiene to reduce the risk of contamination and to facilitate the sanitation. The procedures involve several stages which generally include pre-washing with water, cleaning, real disinfection, and a final rinsing with water. In order to assure a right disinfections of surfaces areas and of processing equipment the choice of disinfectant takes on particular importance. Some of the most widely used disinfectants include the hypochlorous acid, the chlorine dioxide and the peroxides like peracetic acid; the latter is widely used in soft drink and mineral water industries. The efficiency of these chemical agents depends on various factors as pH, temperature and the presence of organic substances with which the disinfectants can react to give by-products which can reduce the activity and can present toxicity. The use of hypochlorite may led to the formation of carcinogenic substance such as trialomethanes (THM) while the use of chlorine dioxide may lead to the formation of chlorites and chiorates. The peracetic acid is a good alternative compounds and it doesn't lead to the formation of carcinogenic by-products. In our researches we evaluated the effectiveness of peracetic acid to inactivate some resistant micro-organism like hepatitis A virus; our results show that in practical application in CIP (cleaning in place) it's necessary to use

  7. 色谱-质谱联用法识别饮用水中新型含氮消毒副产物氯代亚胺%Indentification of New Nitrogenous Disinfection By-products Chlorophenylacetaldmine in Drinking Water by Chromatogram Coupled with Spectrum

    Institute of Scientific and Technical Information of China (English)

    宋亚丽; 邓靖; 冯娇; 马晓雁; 李青松

    2016-01-01

    Nitrogenous disinfection byproducts (N-DBP)in drinking water attract more and more attention,among which chloraldimines are one kind of off-flavor N-DBP gen-erated from different kinds of amino acids,posing the general chemical structure as R-CH=NCl.Based on GC/MS and HPLC/MS,chloroaldmines originated from valine and phenylalanine were identified.The other unknown by-products of phenylalanine were identified by GC/MS and the transformation pathway of phenylalanine was pro-posed.The results show that chlorination of valine (Val)can induce isobutyrochloraldi-mine,while phenylalanine (Phe)can induce chlorophenylacetaldimine,phenylacetalde-hyde and 2,6-diphenylpyridine.Phe reacts with chlorine to produce chlorophenylalanine and dichlorophenylalanine,which can decompose and transform to phenylacetaldehyde. Dichlorophenylalanine can also produce N-chlorophenylacetaldimine. HPLC coupled with liquid-liquid extraction was emplyed to purify chlorophenylacetaldimine, and GC/MS was used to determine the concentration.Occurrence of chlorophenylacetaldi-mine was measured,and the concentration ranged from 5.03-1 1.26 μg/L in four drink-ing water treatment plants of a certain city.Results show that the contamination risk of chloroaldmine exists in drinking water.%近年来,以氨基酸为前体物的含氮氯代消毒副产物成为饮用水安全保障研究领域的热点问题,其中氯代亚胺是具有嗅味特征的含氮消毒副产物,化学结构为 R-CH=NCl。本研究基于气相色谱-质谱(GC/MS)法和高效液相色谱-质谱(HPLC/MS)法,鉴定识别了源于苯丙氨酸(phenylalanine,Phe)等氯代亚胺类消毒副产物;通过 GC/MS 谱图对其他未知消毒副产物进行定性分析,解析了苯丙氨酸氯消毒过程的转化规律。结果表明:在氯化过程中,缬氨酸(valine,Val)可生成异丙基氯代亚胺(isobutyrochloraldi-mine)副产物;苯丙氨酸可生成氯代苯乙亚胺(chlorophenylacetaldimine)、

  8. Emergency Disinfection of Drinking Water

    Science.gov (United States)

    How to boil and disinfect water to kill most disease-causing microorganisms during emergency situations where regular water service has been interrupted and local authorities recommend using only bottled water, boiled water, or disinfected water.

  9. Biological Treatment of Water Disinfection Byproducts using Biotrickling Filter under Anoxic and Anaerobic Conditions

    Science.gov (United States)

    Major disinfection by-products (DBPs) from the chlorination process of drinking water include trihalomethanes (THMs) and haloacetic acides (HAA5). THMs mainly consist of chloroform, and other harsh chemicals. Prolonged consumptions of drinking water containing high levels of THMs...

  10. Disinfection Tests of MF-2 Disinfectant on Nature Water Resource

    Institute of Scientific and Technical Information of China (English)

    WANG Jinlan; LIU Qingzeng; CUI Ying

    2002-01-01

    Objective To furnish evidence for practical application by examining the disinfection effect of MF - 2 disinfectant on different degree of contaminated water. Methods According to the determining methods of total bacterial count and coli - index of drinking water stimulated by the state conduct the forthwith disinfection experiments and accumulate disinfection experiments. Results Adding the MF - 2 into water resource to specific concentration according with the water resource sanitation criterion stipulated by the sater, after pointed time, it can chang water quality of severe contaminated water and questionable contaminated water into that of clean water, the quality of less contaminated water into that of drinking water. Conclusions MF - 2 disinfectant is applicable for disinfection of nature contaminated water resource in an outlying district and field - operation especially for urgent drinking water disinfection the area where there is neither clean water nor heating condition.

  11. [Optimizing surgical hand disinfection].

    Science.gov (United States)

    Kampf, G; Kramer, A; Rotter, M; Widmer, A

    2006-08-01

    For more than 110 years hands of surgeons have been treated before a surgical procedure in order to reduce the bacterial density. The kind and duration of treatment, however, has changed significantly over time. Recent scientific evidence suggests a few changes with the aim to optimize both the efficacy and the dermal tolerance. Aim of this article is the presentation and discussion of new insights in surgical hand disinfection. A hand wash should be performed before the first disinfection of a day, ideally at least 10 min before the beginning of the disinfection as it has been shown that a 1 min hand wash significantly increases skin hydration for up to 10 min. The application time may be as short as 1.5 min depending on the type of hand rub. Hands and forearms should be kept wet with the hand rub for the recommended application time in any case. A specific rub-in procedure according to EN 12791 has been found to be suitable in order to avoid untreated skin areas. The alcohol-based hand rub should have a proven excellent dermal tolerance in order to ensure appropriate compliance. Considering these elements in clinical practice can have a significant impact to optimize the high quality of surgical hand disinfection for prevention of surgical site infections.

  12. CHLORINE DISINFECTION OF AEROMONAS

    Science.gov (United States)

    The bacterial genus Aeromonas is currently listed on the USEPA's Candidate Contaminant List (CCL). Resistance to chemical disinfection is an essential aspect regarding all microbial groups listed on the CCL. This study was designed to determine the inactivation kinetics of Aeromo...

  13. DISSCUSS ON CONTROL TECHNOLOGIES FOR THE CONTENT OF BROMATE FROM OZONATION DISINFECTION BY-PRODUCT IN DRINKING WATER%饮用水中臭氧消毒副产物溴酸盐含量的控制技术探讨

    Institute of Scientific and Technical Information of China (English)

    张书芬; 王全林; 沈坚; 钟雄华

    2011-01-01

    The paper described the formation mechanism of bromate in the process of ozonation, and then studied control method to limit the bromated content in drinking water in the steps of pretreatment of raw water, controlment of bromate formation and removal of bromated.It is a feasible approach to adopt membrane separation technology (control of raw water conductivity and microbial content), ammonia treatment, combination of various disinfectants and using new disinfectant, optimization of ozone disinfection process and activated carbon adsorption technology to control the bromate content in drinking water.In order to get the balance of ozone, microorganisms and bromate, water characteristic, production capacity,enterprise size and running cost should be concerned.%在阐述臭氧化过程中溴酸盐的生成机理的前提下,从原水预处理、溴酸盐形成过程控制、溴酸盐形成后消除3个阶段来分析研究控制饮用水中溴酸盐含量的方法.经过探讨和实践表明,采用膜分离技术(控制原水电导率和微生物含量)、加氨、采用新型消毒剂和多种消毒剂组合使用、优化臭氧消毒工艺和活性炭吸附技术等是较为可行的控制途径.饮用水生产企业根据水源特点,生产能力,企业规模、运行成本等条件进行选择尝试,从而实现臭氧,微生物和溴酸盐之间的平衡.

  14. Dental unit waterlines disinfection using hypochlorous acid-based disinfectant

    OpenAIRE

    Irfana Fathima Shajahan; Kandaswamy, D; Padma Srikanth; L Lakshmi Narayana; R Selvarajan

    2016-01-01

    Objective: The purpose of the study was to investigate the efficacy of a new disinfectant to disinfect the dental unit waterlines. Materials and Methods: New dental unit waterlines were installed in 13 dental chairs, and biofilm was allowed to grow for 10 days. Disinfection treatment procedure was carried out in the 12 units, and one unit was left untreated. The dental unit waterlines were removed and analyzed using the scanning electron microscope (SEM) (TESCAN VEGA3 SBU). Result: On examina...

  15. Commercial Disinfectants During Disinfection Process Validation: More Failures than Success

    Science.gov (United States)

    Chumber, Sushil Kumar; Khanduri, Uma

    2016-01-01

    Introduction Disinfection process validation is mandatory before introduction of a new disinfectant in hospital services. Commercial disinfection brands often question existing hospital policy claiming greater efficacy and lack of toxicity of their products. Inadvertent inadequate disinfection leads to morbidity, patient’s economic burden, and the risk of mortality. Aim To evaluate commercial disinfectants for high, intermediate and low-level disinfection so as to identify utility for our routine situations. Materials and Methods This laboratory based experiment was conducted at St Stephen Hospital, Delhi during July-September 2013. Twelve commercial disinfectants: Sanidex®, Sanocid®, Cidex®, SekuSept Aktiv®, BIB Forte®, Alprojet W®, Desnet®, Sanihygiene®, Incidin®, D125®, Lonzagard®, and Glutishield® were tested. Time-kill assay (suspension test) was performed against six indicator bacteria (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella Typhi, Bacillus cereus, and Mycobacterium fortuitum). Low and high inoculum (final concentrations 1.5X106 and 9X106 cfu/ml) of the first five bacteria while only low level of M. fortuitum was tested. Results Cidex® (2.4% Glutaraldehyde) performed best as high level disinfectant while newer quarternary ammonium compounds (QACs) (Incidin®, D125®, and Lonzagard®) were good at low level disinfection. Sanidex® (0.55% Ortho-pthalaldehyde) though mycobactericidal took 10 minutes for sporicidal activity. Older QAC containing BIB Forte® and Desnet® took 20 minutes to fully inhibit P. aeruginosa. All disinfectants effectively reduced S. Typhi to zero counts within 5 minutes. Conclusion Cidex® is a good high-level disinfectant while newer QACs (Incidin®, D125®, and Lonzagard®) were capable low-level disinfectants. PMID:27656441

  16. Travelers' Health: Water Disinfection for Travelers

    Science.gov (United States)

    ... Chapter 2 - Food Poisoning from Marine Toxins Water Disinfection for Travelers Howard D. Backer RISK FOR TRAVELERS ... of iodine and chlorine (see Halogens below). Chemical Disinfection HALOGENS The most common chemical water disinfectants are ...

  17. Disinfection and sterilization: an overview.

    Science.gov (United States)

    Rutala, William A; Weber, David J

    2013-05-01

    All invasive procedures involve contact by a medical device or surgical instrument with a patient's sterile tissue or mucous membranes. The level of disinfection or sterilization is dependent on the intended use of the object: critical (items that contact sterile tissue such as surgical instruments), semicritical (items that contact mucous membrane such as endoscopes), and noncritical (devices that contact only intact skin such as stethoscopes) items require sterilization, high-level disinfection, and low-level disinfection, respectively. Cleaning must always precede high-level disinfection and sterilization.

  18. A review on wastewater disinfection

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2013-01-01

    Full Text Available Changes in regulations and development of new technologies have affected the selection of alternative for treated wastewater disinfection. Disinfection is the last barrier of wastewater reclamation process to protect ecosystem safety and human health. Driving forces include water scarcity and drinking water supply, irrigation, rapid industrialization, using reclaimed water, source protection, overpopulation, and environmental protection. The safe operation of water reuse depends on effluent disinfection. Understanding the differences in inactivation mechanisms is critical to identify rate-limiting steps involved in the inactivation process as well as to develop more effective disinfection strategies. Disinfection byproducts discharged from wastewater treatment plants may impair aquatic ecosystems and downstream drinking-water quality. Numerous inorganic and organic micropollutants can undergo reactions with disinfectants. Therefore, to mitigate the adverse effects and also to enhance that efficiency, the use of alternative oxidation/disinfection systems should be evaluated as possible alternative to chlorine. This review gives a summary of the traditional, innovative, and combined disinfection alternatives and also disinfection byproducts for effluent of municipal wastewater treatment plants.

  19. Disinfectants used for environmental disinfection and new room decontamination technology.

    Science.gov (United States)

    Rutala, William A; Weber, David J

    2013-05-01

    Environmental contamination plays an important role in the transmission of several key health care-associated pathogens. Effective and thorough cleaning/disinfecting of the patient environment is essential. Room decontamination units (such as ultraviolet-C and hydrogen peroxide systems) aid in reducing environmental contamination after terminal room cleaning and disinfection.

  20. Disinfection of water by adsorption combined with electrochemical treatment.

    Science.gov (United States)

    Hussain, S N; de Las Heras, N; Asghar, H M A; Brown, N W; Roberts, E P L

    2014-05-01

    The disinfection performance of a unique process of adsorption combined with electrochemical treatment is evaluated. A flake graphite intercalation compound adsorbent was used, which is effective for the removal of organic contaminants and is amenable to anodic electrochemical regeneration. Adsorption of Escherichia coli on the graphite flake was followed by electrochemical treatment under a range of experimental conditions in a sequential batch reactor. The adsorption of E. coli cells was found to be a fast process and was capable of removing >99.98% of cells from solution after 5 min with a ca. 6.5-log10 reduction in E. coli concentration after 10 min. With electrochemical treatment the adsorbent could be reused, with no decrease in E. coli adsorption observed over five cycles. In the presence of chloride, >8.5-log10 reduction of E. coli concentration was achieved. Disinfection was found to be less effective in the absence of chloride. However, selection of appropriate operating conditions enabled effective disinfection in a chloride free system, reducing the potential for formation of disinfection by-products. The energy consumption required to achieve >8.5-log10 disinfection was 2-7 kWh m(-3).

  1. Distribution of disinfection by-product formation potential by chlor(am)ination in three megalopolis along Yangtze river%长江沿线城市水源氯(胺)化消毒副产物生成潜能研究

    Institute of Scientific and Technical Information of China (English)

    黄河; 徐斌; 朱文倩; 秦朗; 马玉英

    2014-01-01

    Dissolved organic matter (DOM) in raw water from upper Yangtze River in Chongqing, middle Yangtze River in Wuhan, lower Yangtze River in Shanghai was isolated into fractions with different hydrophobicity and molecular weight (MW) by resin adsorption and ultra-filtration, respectively, to investigate and regulate emerging disinfection byproducts formation potential during chlorination and chloramination for each fraction. Research showted that DOM from Chongqing, Wuhan and Shanghai was mainly constituted of MW<1kDa organic compounds, hydrophilic and hydrophobic fractions. Trihalometheanes, haloketones, haloacetic acids, haloacetonitriles and chloropicrin were formed after chlorination and chloramination. Among three cities, MW<1kDa fractions gave the highest yield of carbonaceous disinfection byproducts (C-DBPs) and nitrogenous disinfection byproducts (N-DBPs), and the proportion of MW<1kDa formation potential tended to ascend from the upper Yangtze River to lower Yangtze River;Among all three megalopolis, hydrophobic fraction and hydrophilic fraction produced more C-DBPs and N-DBPs, the proportion of hydrophilic fraction C-DBPs and N-DBPs formation potential tended to ascend during chloramination.%以长江上游重庆、中游武汉、下游上海等大城市的长江饮用水源为研究对象,在对溶解性有机物分子量和亲疏水性分离的基础上,分别采用氯和氯胺两种方式消毒,对比分析了相同时期沿江这些城市原水中氯(胺)化常规和新兴含氮消毒副产物生成潜能的分子组成规律。研究表明,重庆、武汉、上海三地的溶解性有机物均以小分子前体物为主,主要分布在<1kDa 的区间内,且以强疏水性成分和亲水性成分为主,原水经氯(胺)化可产生三卤甲烷、卤乙酸、卤乙腈、三氯硝基甲烷等类型的消毒副产物;三地的氯(胺)化主要的含碳消毒副产物(C-DBPs)和含氮消毒副产物(N-DBPs)生成潜能均在<1kDa的区间内

  2. Evaluation of cytotoxicity, genotoxicity, and apoptosis of wastewater before and after disinfection with performic acid.

    Science.gov (United States)

    Ragazzo, Patrizia; Feretti, Donatella; Monarca, Silvano; Dominici, Luca; Ceretti, Elisabetta; Viola, Gaia; Piccolo, Valentina; Chiucchini, Nicoletta; Villarini, Milena

    2017-06-01

    Disinfection with performic acid (PFA) represents an emerging technology in wastewater treatment. Many recent studies indicate its effectiveness and suitability as a disinfectant for different applications; several have demonstrated its reliability as an alternative to chlorine for disinfecting secondary effluents from urban wastewater treatment plants (WWTPs). Some disinfection technologies, in relation to their oxidative power, lead to the formation of disinfection by-products (DBPs), some of which are of concern for their toxic and carcinogenic potential. The aim of this study was to investigate potential genotoxic, cytotoxic, and mutagenic effects of this disinfection agent on treated secondary effluent coming from a municipal WWTP. A strategy with multiple short-term tests and different target cells (bacterial, plant, and mammalian) was adopted to explore a relatively wide range of potential genotoxic events. The Ames test (point mutation in Salmonella), the micronucleus (chromosomal damage) and Comet tests (primary DNA damage) on human hepatic cells (HepG2) were conducted to detect mutagenicity and chromosomal DNA alterations. DNA fragmentation and mitochondrial potential assays were conducted to evaluate apoptosis in the same kinds of cells. Mutagenic and clastogenic effect potentials were evaluated by examining micronucleus formation in Allium cepa root cells. In all the in vitro tests, carried out on both disinfected and non-disinfected effluents, negative results were always obtained for mutagenic and genotoxic effects. In the Allium cepa tests, however, some non-concentrated wastewater samples after PFA treatment induced a slight increase in micronucleus frequencies in root cells, but not in a dose-related manner. In conclusion, PFA applied for disinfection to a secondary effluent from a municipal wastewater treatment plant did not contribute to the release of genotoxic or mutagenic compounds. Further studies are required to establish to which extent

  3. New disinfection and sterilization methods.

    OpenAIRE

    2001-01-01

    New disinfection methods include a persistent antimicrobial coating that can be applied to inanimate and animate objects (Surfacine), a high-level disinfectant with reduced exposure time (ortho-phthalaldehyde), and an antimicrobial agent that can be applied to animate and inanimate objects (superoxidized water). New sterilization methods include a chemical sterilization process for endoscopes that integrates cleaning (Endoclens), a rapid (4-hour) readout biological indicator for ethylene oxid...

  4. Disinfecting capabilities of oxychlorine compounds.

    OpenAIRE

    Noss, C I; Olivieri, V P

    1985-01-01

    The bacterial virus f2 was inactivated by chlorine dioxide at acidic, neutral, and alkaline pH values. The rate of inactivation increased with increasing pH. Chlorine dioxide disproportionation products, chlorite and chlorate, were not active disinfectants. As chlorine dioxide solutions were degraded under alkaline conditions, they displayed reduced viricidal effectiveness, thereby confirming the chlorine dioxide free radical as the active disinfecting species.

  5. A review on wastewater disinfection

    OpenAIRE

    Mohammad Mehdi Amin; Hassan Hashemi; Amir Mohammadi Bovini; Yung Tse Hung

    2013-01-01

    Changes in regulations and development of new technologies have affected the selection of alternative for treated wastewater disinfection. Disinfection is the last barrier of wastewater reclamation process to protect ecosystem safety and human health. Driving forces include water scarcity and drinking water supply, irrigation, rapid industrialization, using reclaimed water, source protection, overpopulation, and environmental protection. The safe operation of water reuse depends on effluent d...

  6. The Recreational Water Cycle: From Source Water to Tap Water to Spa and Swimming Pool Water: Effects of Disinfectants and Precursors and Implications for Exposure and Toxicity

    Science.gov (United States)

    The current study investigates the effect of different disinfection treatments on the disinfection by-products (DBPs) formed in finished drinking water vs. tap water vs. swimming pool water vs. spa waters. To this end, complete water pathway samples (untreated source waters ->fi...

  7. Disinfection Pilot Trial for Little Miami WWTP | Science ...

    Science.gov (United States)

    There is a serious interest growing nationally towards the use of PAA at various stages of public waste water treatment facilities; one of such use is secondary waste water treatment. MSDGC is currently interested in improving efficiency and economic aspects of waste water treatment. MSDGC requested for ORD’s support to evaluate alternative cost-effective disinfectants. This report herein is based on the data generated from the field pilot test conducted at the Little Miami Wastewater Treatment Plant. Chlorine assisted disinfection of wastewaters created the concern regarding the formation of high levels of toxic halogenated disinfection byproducts (DBPs) detrimental to aquatic life and public health. Peracetic acid is emerging as a green alternative to chlorine and claimed to have economic and social benefits. In addition, it is a relatively simple retrofit to the existing chlorine treated wastewater treatment facilities. PAA is appealed to possess a much lower aquatic toxicity profile than chlorine and decays rapidly in the environment, even if overdosed. As a result, PAA generally does not need a quenching step, such as dechlorination, reducing process complexity, sodium pollution and cost. PAA treatment does not result in the formation of chlorinated disinfection by-products such as trihalomethanes (THMs), haloacetic acids and other byproducts such as cyanide and n-Nitrosodimethylamine (NDMA).

  8. Disinfection byproducts in swimming pool: occurrences, implications and future needs.

    Science.gov (United States)

    Chowdhury, Shakhawat; Alhooshani, Khalid; Karanfil, Tanju

    2014-04-15

    Disinfection of swimming pool water is essential to deactivate pathogenic microorganisms. Many swimming pools apply chlorine or bromine based disinfectants to prevent microbial growth. The chlorinated swimming pool water contains higher chlorine residual and is maintained at a higher temperature than a typical drinking water distribution system. It constitutes environments with high levels of disinfection by-products (DBPs) in water and air as a consequence of continuous disinfection and constant organic loading from the bathers. Exposure to those DBPs is inevitable for any bather or trainer, while such exposures can have elevated risks to human health. To date, over 70 peer-reviewed publications have reported various aspects of swimming pool, including types and quantities of DBPs, organic loads from bathers, factors affecting DBPs formation in swimming pool, human exposure and their potential risks. This paper aims to review the state of research on swimming pool including with the focus of DBPs in swimming pools, understand their types and variability, possible health effects and analyze the factors responsible for the formation of various DBPs in a swimming pool. The study identifies the current challenges and future research needs to minimize DBPs formation in a swimming pool and their consequent negative effects to bathers and trainers.

  9. Environmentally friendly disinfectant: Production, disinfectant action and efficiency

    Directory of Open Access Journals (Sweden)

    Čekerevac Milan I.

    2006-01-01

    Full Text Available Silver is a known disinfectant from ancient times, and it has been widely used for various purposes: for food and water disinfection, curing of wounds and as a universal antibiotic for a wide spectrum of diseases - until the Second World War and the discovery of penicillin. Until recently, it was assumed that silver, being a heavy metal, was toxic for humans and living beings. However, the newest research provides facts that the usage of silver, even for drinking water disinfection, is benign if it is added in small concentrations (in parts per billion. It has been shown in the newer scientific and technical literature that silver in colloidal form is a powerful (secondary disinfectant for drinking water, that it can be effectively used for the disinfection of water containers including swimming pools, installations in food industry, medicine, etc. Particularly, it has been shown that colloidal silver combined with hydrogen peroxide shows synergism having strong bactericidal and antiviral effects. The combination can be successfully used as a disinfectant in agriculture, food production and medicine. The original electrochemical process of production, the mechanism of physical-chemical reactions in that process and the mechanism of the antiseptic affect of the environmentally friendly disinfectant, based on the synergism of colloidal silver and hydrogen peroxide and the activity of electrochemically activated water, is shown. The starting solution was anolyte, obtained in electrochemical activation by water electrolysis of a highly diluted solution of K-tartarate in demineralized water (5.5-1CT4 M. The problem of electrolysis of very dilute aqueous solutions in membrane cells was particularly treated. It was shown that the efficiency of the electrolysis depends on the competition between the two processes: the rates of the processes of hydrogen and oxygen generation at the electrodes and the process of diffusion of hydrogen and hydroxyl ions

  10. 9 CFR 96.9 - Casings admitted on disinfection; sealing; transfer and disinfection.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Casings admitted on disinfection; sealing; transfer and disinfection. 96.9 Section 96.9 Animals and Animal Products ANIMAL AND PLANT HEALTH... STATES § 96.9 Casings admitted on disinfection; sealing; transfer and disinfection. Foreign animal...

  11. Studies on egg disinfection.

    Science.gov (United States)

    Adler, H E; DaMassa, A J; Scott, W F

    1979-07-01

    Various concentrations of alkyldimethylbenzyl ammonium chloride (QAC), Na2CO3, and ethylenediaminetetracetic acid (EDTA) were tested for antimicrobial activity singly and in combination against Escherichia coli, Arizona hinshawii, and Pseudomonas aeruginosa. Bactericidal activity of the reagents were evaluated in embryonating eggs, trypticase soy broth, and a medium containing lecithin. Toxicity of the chemicals was assayed in embryonating eggs. An appraisal was made of an egg-washing solution composed of 250 ppm QAC, 100 ppm Na2CO3, and 10 and 100 ppm EDTA. The mixture was effective and nontoxic for this purpose. All egg treatments had an adverse effect on fertility and hatchability. Using the temperature differential procedure in egg dipping, the disinfectant mixture was relatively nontoxic if 10 ppm EDTA was used with 3000 ppm tylosin tartrate. One hundred parts per million of the chelator in the dip solution caused excessive embryo mortality due to synergistic toxicity with the antibiotic. The germicidal action of the QAC solution was markedly increased with Na2CO3. Ten parts per million EDTA did not improve the biocidal effect of QAC solutions in distilled water but increased bactericidal activity in tap water that contained 16 ppm Ca and 22 ppm Mg.

  12. Formation and distribution of disinfection by-products during chlorine disinfection in the presence of bromide ion

    Institute of Scientific and Technical Information of China (English)

    LI Bo; QU JiuHui; LIU HuiJuan; ZHAO Xu

    2008-01-01

    The influences of contact time and pH value on the formation and distribution of four species of triha-lomethanes and five species of haloacetic acids during chlorination in the presence of bromine were investigated. Results showed that the distribution of molar fraction of trihalomethanes varied with contact time due to the change of bromide ion concentration during chlorination. Most of the triha-lomethanes comprising bromine-containing species and the favored products of the haloacetic acids were chlorine-containing species after 24 h of chlorination. The extent of bromine incorporation in tri-halomethanes and haloacetic acids both decreased with time. The contact time also had influence on the formation rate of different species of haloacetic acids. The formation and distribution of triha-lomethanes and haloacetic acids strongly depended on the chlorination pH value. All of the triha-lomethanes species formation increased with the increase of pH value except the bromoform that had not been detected. The molar fraction of bromodichloromethane and dibromochloromethane contain-ing bromine increased with pH value while chloroform without bromine decreased. Under the pH range studied in this experiment, the predominant haloacetic acids species were trichloroacetic acid and dichloroacetic acid which all decreased with the increase of pH value and the level of TCAA was higher than that of DCAA.

  13. Determination of odour threshold concentration ranges for some disinfectants and disinfection by-products for an Australian panel.

    Science.gov (United States)

    McDonald, S; Lethorn, A; Loi, C; Joll, C; Driessen, H; Heitz, A

    2009-01-01

    Taste-and-odour complaints are a leading cause of consumer dissatisfaction with drinking water. The aim of this study was to determine odour threshold concentration ranges and descriptors, using a Western Australian odour panel, for chlorine, bromine, chlorine added to bromide ions, the four major regulated trihalomethanes (THMs), and combined THMs. An odour panel was established and trained to determine odour threshold concentration ranges for odorous compounds typically found in drinking water at 25 degrees C, using modified flavour profile analysis (FPA) techniques. Bromine and chlorine had the same odour threshold concentration ranges and were both described as having a chlorinous odour by a majority of panellists, but the odour threshold concentration range of bromine expressed in free chlorine equivalents was lower that that of chlorine. It is likely that the free chlorine equivalent residuals measured in many parts of distribution systems in Western Australia are comprised of some portion of bromine and that bromine has the potential to cause chlorinous odours at a lower free chlorine equivalent concentration than chlorine itself. In fact, bromine is the likely cause of any chlorinous odours in Western Australian distributed waters when the free chlorine equivalent concentration is between 0.04 and 0.1 mg L(-1). Odour threshold concentrations for the four individual THMs ranged from 0.06-0.16 mg L(-1), and the odour threshold concentration range was 0.10 + or - 0.09 mg L(-1) when the four THMs were combined (in equal mass concentrations). These concentrations are below the maximum guideline value for total THM concentration in Australia so odours from these compounds may possibly be observed in distributed waters. However, while the presence of THMs may contribute to any sweet/fragrant/floral and chemical/hydrocarbon odours in local drinking waters, the THMs are unlikely to contribute to chlorinous odours.

  14. Metals releases and disinfection byproduct formation in domestic wells following shock chlorination

    Directory of Open Access Journals (Sweden)

    M. Walker

    2010-06-01

    Full Text Available Shock chlorination is used for rapid disinfection to control pathogens and nuisance bacteria in domestic wells. A typical shock chlorination procedure involves adding sodium hypochlorite in liquid bleach solutions to achieve concentrations of free chlorine of up to 200 ppm in the standing water of a well. The change in pH and oxidation potential may bring trace metals from aquifer materials into solution and chlorine may react with dissolved organic carbon to form disinfection byproducts. We carried out experiments with four wells to observe and determine the persistence of increased concentrations of metals and disinfection byproducts. Water samples from shock chlorinated wells were analyzed for Pb, Cu, As, radionuclides and disinfection byproducts (haloacetic acids and trihalomethanes, immediately prior to treatment, after sufficient contact time with chlorine had elapsed, and at intervals determined by the number of casing volumes purged, for up to four times the well casing volume.

    Elevated concentrations of lead and copper dissipated in proportion to free chlorine (measured semi-quantitatively during the purging process. Trihalomethanes and haloacetic acids were formed in wells during disinfection. In one of two wells tested, disinfection byproducts dissipated in proportion to free chlorine during purging. However, one well retained disinfection byproducts and free chlorine after four well volumes had been purged. Although metals returned to background concentrations in this well, disinfection byproducts remained elevated, though below the MCL, likely because purging volume was insufficient. Simple chlorine test strips may be a useful method for indicating when purging is adequate to remove metals and disinfection by-products mobilized and formed by shock chlorination.

  15. Metals releases and disinfection byproduct formation in domestic wells following shock chlorination

    Directory of Open Access Journals (Sweden)

    M. Walker

    2011-01-01

    Full Text Available Shock chlorination is used for rapid disinfection to control pathogens and nuisance bacteria in domestic wells. A typical shock chlorination procedure involves adding sodium hypochlorite in liquid bleach solutions to achieve concentrations of free chlorine of up to 200 mg L−1 in the standing water of a well. The change in pH and oxidation potential may bring trace metals from aquifer materials into solution and chlorine may react with dissolved organic carbon to form disinfection byproducts. We carried out experiments with four wells to observe and determine the persistence of increased concentrations of metals and disinfection byproducts. Water samples from shock chlorinated wells were analyzed for Pb, Cu, As, radionuclides and disinfection byproducts (haloacetic acids and trihalomethanes, immediately prior to treatment, after sufficient treatment time with chlorine had elapsed, and at intervals determined by the number of casing volumes purged, for up to four times the well casing volume.

    Elevated concentrations of lead and copper dissipated in proportion to free chlorine (measured semi-quantitatively during the purging process. Trihalomethanes and haloacetic acids were formed in wells during disinfection. In one of two wells tested, disinfection byproducts dissipated in proportion to free chlorine during purging. However, one well retained disinfection byproducts and free chlorine after 4 WV had been purged. Although metals returned to background concentrations in this well, disinfection byproducts remained elevated, though below the MCL. This may have been due to well construction characteristics and interactions with aquifer materials. Simple chlorine test strips may be a useful method for indicating when purging is adequate to remove metals and disinfection by-products mobilized and formed by shock chlorination.

  16. Can pulsed xenon ultraviolet light systems disinfect aerobic bacteria in the absence of manual disinfection?

    Science.gov (United States)

    Jinadatha, Chetan; Villamaria, Frank C; Ganachari-Mallappa, Nagaraja; Brown, Donna S; Liao, I-Chia; Stock, Eileen M; Copeland, Laurel A; Zeber, John E

    2015-04-01

    Whereas pulsed xenon-based ultraviolet light no-touch disinfection systems are being increasingly used for room disinfection after patient discharge with manual cleaning, their effectiveness in the absence of manual disinfection has not been previously evaluated. Our study indicates that pulsed xenon-based ultraviolet light systems effectively reduce aerobic bacteria in the absence of manual disinfection. These data are important for hospitals planning to adopt this technology as adjunct to routine manual disinfection. Published by Elsevier Inc.

  17. New disinfection and sterilization methods.

    Science.gov (United States)

    Rutala, W. A.; Weber, D. J.

    2001-01-01

    New disinfection methods include a persistent antimicrobial coating that can be applied to inanimate and animate objects (Surfacine), a high-level disinfectant with reduced exposure time (ortho-phthalaldehyde), and an antimicrobial agent that can be applied to animate and inanimate objects (superoxidized water). New sterilization methods include a chemical sterilization process for endoscopes that integrates cleaning (Endoclens), a rapid (4-hour) readout biological indicator for ethylene oxide sterilization (Attest), and a hydrogen peroxide plasma sterilizer that has a shorter cycle time and improved efficacy (Sterrad 50). PMID:11294738

  18. Waste/By-Product Hydrogen

    Science.gov (United States)

    2011-01-13

    By‐ product Hydrogen Fuel Flexibility Biogas : generated from organic waste �Wastewater treatment plants can provide multiple MW of renewable... Waste /By product Hydrogen Waste H2 sources include: � Waste bio‐mass: biogas to high temp fuel cells to produce H2 – there are over two dozen sites...13 Waste /By product Hydrogen ‐ Biogas

  19. Less skin irritation from alcohol-based disinfectant than from detergent used for hand disinfection

    DEFF Research Database (Denmark)

    Pedersen, L K; Held, E; Johansen, J D

    2005-01-01

    BACKGROUND: The benefit of alcohol-based disinfectant used on normal skin has been debated. OBJECTIVES: The objective of the present study was to compare the effects of repeated exposure to an alcohol-based disinfectant, a detergent and an alcohol-based disinfectant/detergent alternately for 10...... days, including noninvasive measurements in the evaluation. Skin reactivity in irritated skin after a 4-week interval was also evaluated. MATERIALS AND METHODS: Detergent, disinfectant and alternate disinfectant and detergent were applied twice daily every 10 min for 1 h to the ventral upper arms......: On day 5 the detergent caused a higher visual score than either disinfectant applied alone or alternate disinfectant and detergent, P disinfectant and detergent caused a higher score than disinfectant, P

  20. The effect of chlorine and combined chlorine/UV treatment on coliphages in drinking water disinfection.

    Science.gov (United States)

    Zyara, Alyaa M; Torvinen, Eila; Veijalainen, Anna-Maria; Heinonen-Tanski, Helvi

    2016-08-01

    Chlorine disinfection is a globally used method to ensure the safety of drinking water. However, it has not always been successful against viruses and, therefore, it is important to find new methods to disinfect water. Seventeen different coliphages were isolated from the treated municipal wastewater. These coliphages and MS2 were treated with different dosages of chlorine in drinking water, and a combined chlorine/ultraviolet irradiation treatment for the chlorine-resistant coliphages. Chlorine disinfection with 0.3-0.5 mg/L total chlorine (free Cl-dosage 0.12-0.21 mg/L) for 10 min achieved 2.5-5.7 Log10-reductions for 11 sensitive coliphages. The six most resistant coliphages showed no reduction with these chlorine concentrations. MS2 was intermediate in chlorine resistance, and thus it is not a good indicator for viruses in chlorine disinfection. In the combined treatment total chlorine of 0.05-0.25 mg/L (free Cl-dosage 0.02-0.08 mg/L) and ultraviolet irradiation (14-22 mWs/cm(2)) were more effective than chlorine alone, and 3-5 Log10-reductions were achieved for the chlorine-resistant strains. The chlorination efficiency could be increased by higher dosages and longer contact times, but this could increase the formation of disinfection by-products. Therefore, the combination treatment is a recommended disinfection method.

  1. Waterborne outbreak control: which disinfectant?

    Science.gov (United States)

    Akin, E W; Hoff, J C; Lippy, E C

    1982-12-01

    Drinking water disinfection was shown to be an important public health measure around the turn of the century. In the United States, it was perhaps the single most important factor in controlling typhoid fever, a waterborne disease that was rampant throughout the world during the last century. It may also be assumed that disinfection was important in limiting the number of cases of other diseases known to be capable of waterborne transmission, i.e., cholera, amebiasis, shigellosis, salmonellosis, and hepatitis A. Even though modern treatment has eliminated water as a major vehicle of infectious disease transmission, outbreaks still occur. In fact, the annual number has been increasing since 1966. Interruption in chlorination or failure to achieve adequate levels of chlorine residual is the most often identified deficiency of the involved water supplies. This finding indicates that waterborne microbial pathogens remain as a potential health threat and underscores the importance of disinfection. From the outset, chlorination has been the drinking water disinfectant of choice in the country. Numerous studies have demonstrated its ability to inactivate bacterial, viral, and protozoal pathogens when applied under proper conditions. However, the finding that chlorinated organics that are potentially carcinogenic are formed has prompted an evaluation of alternative disinfectants. The viable alternatives to chlorine currently under consideration for widespread use are ozone, chlorine dioxide, and chloramines. In terms of biocidal efficiency, ozone is the most potent of the three. Chlorine dioxide is about the equivalent of free chlorine in the hypochlorous acid form but much more efficient than the hypochlorite form of free chlorine. The chloramines are weaker biocides than hypochlorite. Although this general order of ranking of efficiency holds for diverse types of microorganisms, quantitative comparisons vary with different microorganisms and experimental conditions.

  2. Predicting the disinfection efficiency range in chlorine contact tanks through a CFD-based approach.

    Science.gov (United States)

    Angeloudis, Athanasios; Stoesser, Thorsten; Falconer, Roger A

    2014-09-01

    In this study three-dimensional computational fluid dynamics (CFD) models, incorporating appropriately selected kinetic models, were developed to simulate the processes of chlorine decay, pathogen inactivation and the formation of potentially carcinogenic by-products in disinfection contact tanks (CTs). Currently, the performance of CT facilities largely relies on Hydraulic Efficiency Indicators (HEIs), extracted from experimentally derived Residence Time Distribution (RTD) curves. This approach has more recently been aided with the application of CFD models, which can be calibrated to predict accurately RTDs, enabling the assessment of disinfection facilities prior to their construction. However, as long as it depends on HEIs, the CT design process does not directly take into consideration the disinfection biochemistry which needs to be optimized. The main objective of this study is to address this issue by refining the modelling practices to simulate some reactive processes of interest, while acknowledging the uneven contact time stemming from the RTD curves. Initially, the hydraulic performances of seven CT design variations were reviewed through available experimental and computational data. In turn, the same design configurations were tested using numerical modelling techniques, featuring kinetic models that enable the quantification of disinfection operational parameters. Results highlight that the optimization of the hydrodynamic conditions facilitates a more uniform disinfectant contact time, which correspond to greater levels of pathogen inactivation and a more controlled by-product accumulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. [Comparison of the effects of chlorine dioxide, sodium hypochlorite and their combination on simulative water disinfection].

    Science.gov (United States)

    Wang, Ying; Li, Na; Lu, Yi; Wang, Yazhou

    2008-05-01

    To compare the effects of disinfection of chlorine dioxide (ClO2), sodium hypochlorite(NaClO) and their combination (ClO + NaClO) on simulative water samples. The simulative water samples containing 5.0 x 10(4) - 5.0 x 10(5) cfu/100ml Escherichia coli were prepared in laboratory and disinfected by different doses of chlorine dioxide, sodium hypochlorite and their combination for 60, 60, 30 + 60 min respectively. The kill ratio for Escherichia coli, and the residual chlorine dioxide, and the product of chlorite ion (ClO2-) and total residual chlorine were detected and compared by the membrane filter(MF) technique and electrometric titration. The minimum effective dosage (MED) for disinfect of simulative water samples were 0.4 mg/L of chlorine dioxide, 0.5 mg/L of sodium hypochlorite, and the 0.1 mg/L + 0.3 mg/L or 0.2 mg/L + 0.2 mg/L of their combination. By comparision with disinfection of ClO2 and NaClO alone, the residual chlorine dioxide increased 13.43% - 166.67% in simulative water sample under disinfection by the combination of ClO2 + NaClO, While chlorite ion decreased 13.11% - 19.97% and total residual chlorine increased 9.34% - 40.15%. The combination of chlorine dioxide and sodium hypochlorite for disinfection of drinking water could achieve better effect of disinfection and decrease disinfection by-products as well.

  4. Progress in Drinking Water Disinfection Methods%饮用水消毒方法的研究进展

    Institute of Scientific and Technical Information of China (English)

    林英姿; 陈壮

    2016-01-01

    Chlorine disinfection because of its mature technology, low price, with continued disinfection in the pipeline and the vast majority of water is applied. But its disinfection process will produce trihalomethanes and other carcinogenic, mutagenic, teratogenic disinfection byproducts. Emerging disinfection technology to a certain extent reduces the formation of harmful disinfection by-products, but its high cost, poor oxidation resistance leading to poor sterilization effect, not easy to save, there is no continuous disinfection, it is difficult to widely used. The future development of drinking water disinfection technology should draw advantage of existing technology to explore the low cost, low hazard, excellent quality combined disinfection disinfection technology.%氯气消毒因其技术成熟,价格低廉,在管道中具有持续消毒作用而被绝大多数水厂应用。但其消毒过程中会产生三卤甲烷等致癌、致突变、致畸性的消毒副产物。新兴消毒技术一定程度减少了有害消毒副产物的生成,但其造价昂贵,氧化性差导致消毒效果不佳,不易保存,没有持续消毒效果,目前难以广泛应用。未来饮用水消毒技术的发展,应在汲取现有技术的优点基础上,探究成本低、危害小、消毒质量优良的组合消毒技术。

  5. Electrochemical disinfection of biologically treated wastewater from small treatment systems by using boron-doped diamond (BDD) electrodes--contribution for direct reuse of domestic wastewater.

    Science.gov (United States)

    Schmalz, Viktor; Dittmar, Thomas; Haaken, Daniela; Worch, Eckhard

    2009-12-01

    The aim of the study was to demonstrate the application potential of boron-doped diamond electrodes (BDD) in electrochemical disinfection of biologically treated sewage for direct recycling of domestic wastewater. Discontinuous bulk disinfection experiments with secondary effluents and model solutions were performed to investigate the influence of operating conditions and wastewater parameters on disinfection efficiency and formation of disinfection by-products (adsorbable organically bound halogens, AOX). The inactivation rate accelerates with increasing current density caused by a faster generation of electrochemical oxidants (ECO). It could be shown that the effect of OH radicals in case of the direct electrochemical disinfection of chloride-containing secondary effluents with BDD is negligible because of their fast reaction with typical radical scavengers. The dominating role of electrochemically generated free chlorine in the disinfection process could be explicitly verified. It could be also shown that the disinfection efficiency is strongly affected by the specific wastewater parameters temperature and pH. These effects can be explained by the behaviour of the reactive species. The migration-controlled generation of ECO can be accelerated under turbulent hydrodynamic conditions. The formation of disinfection by-products (AOX) correlates with the introduced electric charge Q applied per volume and is independent of the applied current density.

  6. Electrochemical disinfection of secondary wastewater treatment plant (WWTP) effluent.

    Science.gov (United States)

    Pérez, G; Gómez, P; Ibañez, R; Ortiz, I; Urtiaga, A M

    2010-01-01

    In this work the electrochemical disinfection of the effluent of a secondary wastewater treatment plant is investigated. In the experimental work, performed on-site with real effluents of the WWTP located in Vuelta Ostrera (Cantabria, Spain), boron-doped diamond (BDD) electrodes were employed. The initial concentration of E. coli in the effluent of the WWTP varied in the range 1.3 x 10⁴-5.2 x 10⁵ cfu/mL. The influence of two operation variables on the kinetics of E. coli deactivation was investigated: i) The applied current density was varied in the range J=40-120 mA/cm², showing first order kinetics, and linear dependency of the apparent kinetic constant with the applied current density; and ii) the chloride concentration was varied in the range 60-1,050 mg/L, showing that increasing chloride content also enhanced the kinetics of the E. coli deactivation. The latter parameter is particularly important in coastal areas, as in the case of the present study. The formation of disinfection by-products (DBPs) was followed by measuring the content of trihalomethanes (THMs) that nevertheless was maintained below 100 μg/L, so it can be concluded that the formation of DBPs is not a disadvantage of electrochemical disinfection of secondary effluents of WWTP.

  7. Microbial community degradation of widely used quaternary ammonium disinfectants.

    Science.gov (United States)

    Oh, Seungdae; Kurt, Zohre; Tsementzi, Despina; Weigand, Michael R; Kim, Minjae; Hatt, Janet K; Tandukar, Madan; Pavlostathis, Spyros G; Spain, Jim C; Konstantinidis, Konstantinos T

    2014-10-01

    Benzalkonium chlorides (BACs) are disinfectants widely used in a variety of clinical and environmental settings to prevent microbial infections, and they are frequently detected in nontarget environments, such as aquatic and engineered biological systems, even at toxic levels. Therefore, microbial degradation of BACs has important ramifications for alleviating disinfectant toxicity in nontarget environments as well as compromising disinfectant efficacy in target environments. However, how natural microbial communities respond to BAC exposure and what genes underlie BAC biodegradation remain elusive. Our previous metagenomic analysis of a river sediment microbial community revealed that BAC exposure selected for a low-diversity community, dominated by several members of the Pseudomonas genus that quickly degraded BACs. To elucidate the genetic determinants of BAC degradation, we conducted time-series metatranscriptomic analysis of this microbial community during a complete feeding cycle with BACs as the sole carbon and energy source under aerobic conditions. Metatranscriptomic profiles revealed a candidate gene for BAC dealkylation, the first step in BAC biodegradation that results in a product 500 times less toxic. Subsequent biochemical assays and isolate characterization verified that the putative amine oxidase gene product was functionally capable of initiating BAC degradation. Our analysis also revealed cooperative interactions among community members to alleviate BAC toxicity, such as the further degradation of BAC dealkylation by-products by organisms not encoding amine oxidase. Collectively, our results advance the understanding of BAC aerobic biodegradation and provide genetic biomarkers to assess the critical first step of this process in nontarget environments.

  8. Predicting of bactericidal activity of chemical disinfectants using disinfection activity coefficient of solution

    OpenAIRE

    Gjorgjeska, Biljana

    2011-01-01

    There is the need for defining standard technique for quantitative determination of bactericidal activity of chemical disinfectant substances, as well as the need for defining parameter for comparing various chemical disinfectants. The methods which are usually used for evaluation of antiseptic activity of disinfectant aqueous solutions are microbiological.

  9. Secondary formation of disinfection by-products by UV treatment of swimming pool water

    DEFF Research Database (Denmark)

    Spiliotopoulou, Aikaterini; Hansen, Kamilla Marie Speht; Andersen, Henrik Rasmus

    2015-01-01

    was observed, while small yet statistically significant increases in dichloroacetonitrile and dichloropropanone concentrations were detected. Results indicate post-UV chlorination clearly induced secondary formation of several DBPs. However, formation of total trihalomethanes was no greater than what could...... that UV removes bromine atoms from larger molecules that participate in trihalomethane production during post-UV chlorination. Additionally, no significant effect on DBP formation was observed due to photoinducible radical forming molecules NO3 - (potentially present in high concentrations in pool water...

  10. Disinfection by-product formation of UV treated swimming pool water

    DEFF Research Database (Denmark)

    Spiliotopoulou, Aikaterini; Hansen, Kamilla Marie Speht; Andersen, Henrik Rasmus

    2015-01-01

    -UV chlorine consumption increased, dose-dependently, with UV treatment dose. A clear absence of trihalomethane formation by UV and UV with chlorine was observed. The post-UV chlorination clearly induced formation of DBPs; however, for the total trihalomethanes (TTHM), the inductions were not more than what...... indicates that UV breaks bromine atoms from larger molecules participating in trihalomethane production during the post-UV chlorination. No significant effect on DBP formation was observed by the photo-inducible radical forming molecules NO3- and H2O2, which may either occur occasionally in high...

  11. Efficacy and production of disinfection by-products of ozone treated ballast water

    NARCIS (Netherlands)

    Sneekes, A.C.

    2014-01-01

    AirTree is preparing for land-based testing at the NIOZ/IMARES test facility. As the Ballast Water Management System (BWMS) developed by AirTree uses ozone as active substance, IMO Guideline G9 applies and Basic and Final Approval are also required. In preparing the Basic Approval dossier, it appear

  12. [Aspartic Acid Generated in the Process of Chlorination Disinfection By-product Dichloroacetonitrile].

    Science.gov (United States)

    Ding, Chun-sheng; Li, Nai-jun; Zhang, Tao; Zhang, Meng-qing

    2016-05-15

    In this study, a method was developed for the determination of dichloroacetonitrile (DCAN) in drinking water by liquid- liquid micro-extraction and gas chromatography/mass spectrometry ( LLE-GC/MS), which used 1,2-dibromopropane as the internal standard and methyl tertiary butyl ether (MTBE) as the extractant for high accuracy. The aspartic acid was used as the precursor of the DCAN formation during chlorination and the influencing factors were evaluated. The formation mechanism of DCAN was also discussed. The results showed that the DCAN amount increased with the increase of pH value under the neutral and acidic conditions, however, the amount of DCAN decreased with the increase of pH value under the alkali condition. And the final amount of DCAN under the alkali condition was much less than that under the neutral and acidic conditions. It was also found that the DCAN amount increased with the increase of chlorine addition, while the temperature in the range of 10-30°C had little influence on the DCAN formation. The formation process of the DCAN from aspartic acid by chlorination included seven steps, such as substitution, decarboxylation, oxidation, etc and ultimately formed DCAN.

  13. Factors influencing disinfection by-products formation in drinking water of six cities in China.

    Science.gov (United States)

    Ye, Bixiong; Wang, Wuyi; Yang, Linsheng; Wei, Jianrong; E, Xueli

    2009-11-15

    Based on the measured chemical and physical data in drinking water from six cities in China, the factors including total organic carbon (TOC), ultraviolet absorbance at 254 nm (UV(254)), pH, applied chlorine dosage, temperature, concentrations of bromide ion and several chemical elements which possibly affect the formation of trihalomethane (THM) and haloacetic acid (HAA) have been studied. The results showed that: in all factors, TOC and UV(254) have definite correlations with total THM, but have nonsignificant relationships with total HAA. In the studied pH range of 6.5-8.5 for drinking water, the total THM concentration increased with the increasing of pH value, but the total HAA concentration slightly decreased. A low but significant relationship (r=0.26, pwater temperature was low, the variation of THMs and HAAs was little, but in warmer water, the concentration of THMs and HAAs varied quickly. The extent of bromine incorporation into the DBPs increases with increasing bromide ion concentration. Based on the effect of chemical elements for the DBPs remove effect, the polyferric chloride could be a preferred flocculant agent in waterworks.

  14. Identification of Halohydrins as Potential Disinfection By-Products in Treated Drinking Water

    Directory of Open Access Journals (Sweden)

    Karl J. Jobst

    2011-01-01

    It appears that DBP-A is 3-chloro-2-methylbutan-2-ol and that DBP-B is its bromo analogue. DBP-B has been detected in ozonated waters containing bromide. Our study also shows that these DBPs can be laboratory artefacts, generated by the reaction of residual chlorine in the sample with 2-methyl-2-butene, the stabilizer in the CH2Cl2 used for extraction. This was shown by experiments using CH2Cl2 stabilized with deuterium labelled 2-methyl-2-butene. Quenching any residual chlorine in the drinking water sample with sodium thiosulfate minimizes the formation of these artefacts.

  15. Disinfection of gloves: feasible, but pay attention to the disinfectant/glove combination.

    Science.gov (United States)

    Scheithauer, S; Häfner, H; Seef, R; Seef, S; Hilgers, R D; Lemmen, S

    2016-11-01

    Compliance with hand hygiene is complicated by indications for hand disinfection in rapid succession during the care of one patient. In such situations, disinfection of gloves could facilitate better workflow and optimize compliance rates. We analysed the efficacy of disinfecting gloves by comparing an individual effect of five different hand disinfectant solutions in combination with three different glove types. The investigation was performed in accordance with DIN EN 1500:2013. For all combinations, ten analyses were performed, including (1) right/left-hand examination disinfection efficacy after the first and fifth contamination with E. coli K12 NCTC 10538, (2) recovery rates after contamination, (3) reduction efficacy, (4) fingertip immersion culture, and (5) check for tightness. Disinfection of the ungloved hands was taken as an additional benchmark. The disinfection efficacy for all disinfectant/glove combinations was better with rather than without gloves. For eight combinations, the disinfection efficacy was always >5.0 log10. There were significant differences within the gloves (P=0.0021) and within the disinfectant product (P=0.0023), respectively. In detail, Nitril Blue Eco-Plus performed significantly better than Vasco Braun (P=0.0017) and Latex Med Comfort (P=0.0493). Descoderm showed a significantly worse performance than Promanum pure (P=0.043). In the check for tightness, only the Vasco Braun gloves showed no leaks in all samples. There were relevant qualitative differences pertaining to the comfort of disinfecting gloves. The disinfection efficacy for the different disinfectant/glove combinations was greater than for the ungloved hands. However, various disinfectant/glove combinations produce relevant differences as regards disinfection efficacy. Copyright © 2016 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  16. Transformation pathways and acute toxicity variation of 4-hydroxyl benzophenone in chlorination disinfection process.

    Science.gov (United States)

    Liu, Wei; Wei, Dongbin; Liu, Qi; Du, Yuguo

    2016-07-01

    Benzophenones compounds (BPs) are widely used as UV filters, and have been frequently found in multiple environmental matrices. The residual of BPs in water would cause potential threats on ecological safety and human health. Chlorination disinfection is necessary in water treatment process, in which many chemicals remained in water would react with disinfectant chlorine and form toxic by-products. By using ultra performance liquid phase chromatography quadrupole time of flight mass spectrometer (UPLC-QTOF-MS), nuclear magnetic resonance (NMR), the transformation of 4-hydroxyl benezophenone (4HB) with free available chlorine (FAC) was characterized. Eight major products were detected and seven of them were identified. Transformation pathways of 4HB under acid, neutral, and alkaline conditions were proposed respectively. The transformation mechanisms involved electrophilic chlorine substitution of 4HB, Baeyer-Villiger oxidation of ketones, hydrolysis of esters and oxidative breakage of benzene ring. The orthogonal experiments of pH and dosages of disinfectant chlorine were conducted. The results suggested that pH conditions determined the occurrence of reaction types, and the dosages of disinfectant chlorine affected the extent of reactions. Photobacterium assay demonstrated that acute toxicity had significant increase after chlorination disinfection of 4HB. It was proved that 3,5-dichloro-4HB, one of the major transformation products, was responsible for the increasing acute toxicity after chlorination. It is notable that, 4HB at low level in real ambient water matrices could be transformed during simulated chlorination disinfection practice. Especially, two major products 3-chloro-4HB and 3,5-dichloro-4HB were detected out, implying the potential ecological risk after chlorination disinfection of 4HB.

  17. Emerging nitrogenous disinfection byproducts: Transformation of the antidiabetic drug metformin during chlorine disinfection of water.

    Science.gov (United States)

    Armbruster, Dominic; Happel, Oliver; Scheurer, Marco; Harms, Klaus; Schmidt, Torsten C; Brauch, Heinz-Jürgen

    2015-08-01

    As an environmental contaminant of anthropogenic origin metformin is present in the high ng/L- up to the low μg/L-range in most surface waters. Residues of metformin may lead to the formation of disinfection by-products during chlorine disinfection, when these waters are used for drinking water production. Investigations on the underlying chemical processes occurring during treatment of metformin with sodium hypochlorite in aqueous medium led to the discovery of two hitherto unknown transformation products. Both substances were isolated and characterized by HPLC-DAD, GC-MS, HPLC-ESI-TOF, (1)H-NMR and single-crystal X-ray structure determination. The immediate major chlorination product is a cyclic dehydro-1,2,4-triazole-derivate of intense yellow color (Y; C4H6ClN5). It is a solid chlorimine of limited stability. Rapid formation was observed between 10 °C and 30 °C, as well as between pH 3 and pH 11, in both ultrapure and tap water, even at trace quantities of reactants (ng/L-range for metformin, mg/L-range for free chlorine). While Y is degraded within a few hours to days in the presence of light, elevated temperature, organic solvents and matrix constituents within tap water, a secondary degradation product was discovered, which is stable and colorless (C; C4H6ClN3). This chloroorganic nitrile has a low photolysis rate in ambient day light, while being resistant to heat and not readily degraded in the presence of organic solvents or in the tap water matrix. In addition, the formation of ammonia, dimethylamine and N,N-dimethylguanidine was verified by cation exchange chromatography.

  18. Comparison of organic peracids in wastewater treatment: Disinfection, oxidation and corrosion.

    Science.gov (United States)

    Luukkonen, Tero; Heyninck, Tom; Rämö, Jaakko; Lassi, Ulla

    2015-11-15

    The use of organic peracids in wastewater treatment is attracting increasing interest. The common beneficial features of peracids are effective anti-microbial properties, lack of harmful disinfection by-products and high oxidation power. In this study performic (PFA), peracetic (PAA) and perpropionic acids (PPA) were synthesized and compared in laboratory batch experiments for the inactivation of Escherichia coli and enterococci in tertiary wastewater, oxidation of bisphenol-A and for corrosive properties. Disinfection tests revealed PFA to be a more potent disinfectant than PAA or PPA. 1.5 mg L(-1) dose and 2 min of contact time already resulted in 3.0 log E. coli and 1.2 log enterococci reduction. Operational costs of disinfection were estimated to be 0.0114, 0.0261 and 0.0207 €/m(3) for PFA, PAA and PPA, respectively. Disinfection followed the first order kinetics (Hom model or S-model) with all studied peracids. However, in the bisphenol-A oxidation experiments involving Fenton-like conditions (pH = 3.5, Fe(2+) or Cu(2+) = 0.4 mM) peracids brought no additional improvement to traditionally used and lower cost hydrogen peroxide. Corrosion measurements showed peracids to cause only a negligible corrosion rate (corrosion rates on the carbon steel sample were significantly higher (<500 μm year(-1)).

  19. Disinfection of water contaminated with fecal coliform using ozone: Effect of Some Variables

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Zazouli

    2015-09-01

    Full Text Available Introduction & Purpose:Chlorine is the most important matter to water disinfection due to a residual effect. But by formation of by-products could be harmful to consumers’ health ,The researchers decided to use the method or other material. For this reason, in this study ozone used to water disinfection and its performance to disinfect of contaminated water with Escherichia coli was investigated. Methods: E. coli was utilized to contaminated water preparation. Culture and counting methods were performed according to the standard methods and recorded with CFU/ml. Normality of the data was analyzed by using Asmynrf-Kolmogrov test and T-test and ANOVA were used to statistical analysis, too. Results :Theresults showed that the destruction of E. coli increased by increasing of ozone concentration and decreasing of density. Removal of the concentration of 1 mg per liter, compared with a concentration of 5 mg per liter of ozone in the ozone density〖10〗^4و〖10〗^5 CFU / ml is significant(P_value0.05. Conclusion :Ozone due to its oxidizing effect on microorganisms is a good disinfectant properties. The results of this study, ozone can be highly contaminated with E. coli was significantly effective in disinfecting water.

  20. Effect of selection of pH in swimming pool on formation of chlorination by-products

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Willach, Sarah; Mosbæk, Hans

    2011-01-01

    Chlorine is used as disinfection agent in public swimming pools, but also reacts with organic matter in the water forming chlorinat ed disinfection by-products. In order to evaluate the effect of choice of pHsetpoint in the pool we investigated the effect of chlorination of artificial body fluid ...... formation of haloacetonitriles and trihalomethans. Addition of bromide in the experiments resulted in a shift in the formation of DBP to more brominated DBPs which contributed to that the predicted genotoxicity of the water increased significantly regardless of the pH-level....

  1. Interaction of disinfectant residues on cleanroom substrates.

    Science.gov (United States)

    Kaiser, H; Klein, D; Kopis, E; Leblanc, D; McDonnell, G; Tirey, J F

    1999-01-01

    This study will determine the levels of disinfectant residues on stainless steel surfaces after simulated manual cleaning activities. Additionally, this study will determine if chemical interactions between different chemical agents, representative of commonly used cleanroom disinfectant technologies, subsequently applied to the same surfaces exist, and to what degree these interactions impact sporicidal performance of an oxidizing biocide against Bacillus subtilis.

  2. Anaerobic effluent disinfection using ozone: Byproducts formation

    NARCIS (Netherlands)

    Silva, G.H.R.; Daniel, L.A.; Bruning, H.; Rulkens, W.H.

    2010-01-01

    This research was aimed at studying oxidation processes, coliform inactivation effectiveness and disinfection byproducts (DBPs) associated with the disinfection of anaerobic sanitary wastewater effluent with ozone applied at doses of 5.0, 8.0 and 10.0mg O(3)L(-1) for contact times of 5, 10 and 15 mi

  3. Ultraviolet (UV) Disinfection for Drinking Water Systems

    Science.gov (United States)

    UV disinfection is an effective process for inactivating many microbial pathogens in water with potential to serve as stand-alone treatment or in combination with other disinfectants. USEPA provided guidance on the validation of UV reactors nearly a decade ago. Since then, lesson...

  4. Anaerobic effluent disinfection using ozone: Byproducts formation

    NARCIS (Netherlands)

    Silva, G.H.R.; Daniel, L.A.; Bruning, H.; Rulkens, W.H.

    2010-01-01

    This research was aimed at studying oxidation processes, coliform inactivation effectiveness and disinfection byproducts (DBPs) associated with the disinfection of anaerobic sanitary wastewater effluent with ozone applied at doses of 5.0, 8.0 and 10.0mg O(3)L(-1) for contact times of 5, 10 and 15 mi

  5. How to improve instrument disinfection by ultrasound.

    Science.gov (United States)

    Jatzwauk, L; Schöne, H; Pietsch, H

    2001-08-01

    Ultrasound technologies have a wide range of hospital and dental applications which include cleaning and disinfection of surgical and dental instruments. We measured the germicidal efficacy of sonication, with or without chemical disinfectants, in an ultrasonic bath delivering a frequency of 35 kHz and an intensity of 0.66 W/cm2. Cultures of Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans were exposed to ultrasound and to an amine-based disinfectant in non-bactericidal concentrations. Ultrasonication for 60 min alone did not cause a significant killing of the bacteria and yeast. However, we were able to show that sonication can act as a powerful synergistic agent to increase the cidal efficacy of the disinfectant against S. aureus and P. aeruginosa. C. albicans was more resistant to the combination of ultrasound and chemical disinfection. The key role in the action of ultrasound in cleaning of instruments and perhaps in enhanced disinfection is played by cavitation phenomena. The distribution of cavitations in an ultrasonic bath is not homogenous. We found a similar synergistic effect of ultrasound and disinfectant in positions with low cavitation. The synergistic effect was not reduced inside rubber tubes. Before ultrasound can be accepted as an integral part of the cleaning and disinfection process of medical instruments, the influence of intensity and frequency of sonication and the effects of cavitation must be clarified.

  6. Susceptibility of Vaccinia Virus to Chemical Disinfectants

    Science.gov (United States)

    de Oliveira, Tércia Moreira Ludolfo; Rehfeld, Izabelle Silva; Coelho Guedes, Maria Isabel Maldonado; Ferreira, Jaqueline Maria Siqueira; Kroon, Erna Geessien; Lobato, Zélia Inês Portela

    2011-01-01

    Vaccinia virus (VACV) is the cause of bovine vaccinia (BV), an emerging zoonotic disease that affects dairy cows and milkers. Some chemical disinfectants have been used on farms affected by BV to disinfect cow teats and milkers' hands. To date, there is no information about the efficacy of disinfectants against VACV. Therefore, this study aimed to assess the virucidal activity of some active disinfectants commonly used in the field. Sodium hypochlorite, quaternary ammonium combined with chlorhexidine, and quaternary ammonium combined with glutaraldehyde were effective in inactivating the virus at all concentrations tested. Iodine and quaternary ammonium as the only active component were partially effective. The presence of bovine feces as organic matter and light decreased the effectiveness of sodium hypochlorite. These results show that an appropriated disinfection and asepsis of teats and hands may be helpful in the control and prevention of BV and other infections with VACV. PMID:21734141

  7. 7 CFR 301.89-12 - Cleaning, disinfection, and disposal.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Cleaning, disinfection, and disposal. 301.89-12... Cleaning, disinfection, and disposal. (a) Mechanized harvesting equipment that has been used to harvest... and, if disinfection is determined to be necessary by an inspector, disinfected in accordance with...

  8. 9 CFR 53.5 - Disinfection or destruction of materials.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Disinfection or destruction of....5 Disinfection or destruction of materials. (a) In order to prevent the spread of disease, materials... cost of disinfection would exceed the value of the materials or disinfection would be impracticable for...

  9. 9 CFR 83.7 - Shipping containers; cleaning and disinfection.

    Science.gov (United States)

    2010-01-01

    ... disinfection. 83.7 Section 83.7 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... HEMORRHAGIC SEPTICEMIA § 83.7 Shipping containers; cleaning and disinfection. (a) All live fish that are to be... been cleaned and disinfected. (1) Cleaning and disinfection of shipping containers must be monitored by...

  10. Potential application of high pressure carbon dioxide in treated wastewater and water disinfection: Recent overview and further trends.

    Science.gov (United States)

    Vo, Huy Thanh; Imai, Tsuyoshi; Ho, Truc Thanh; Dang, Thanh-Loc Thi; Hoang, Son Anh

    2015-10-01

    Recently emerging disadvantages in conventional disinfection have heightened the need for finding a new solution. Developments in the use of high pressure carbon dioxide for food preservation and sterilization have led to a renewed interest in its applicability in wastewater treatment and water disinfection. Pressurized CO2 is one of the most investigated methods of antibacterial treatment and has been used extensively for decades to inhibit pathogens in dried food and liquid products. This study reviews the literature concerning the utility of CO2 as a disinfecting agent, and the pathogen inactivation mechanism of CO2 treatment is evaluated based on all available research. In this paper, it will be argued that the successful application and high effectiveness of CO2 treatment in liquid foods open a potential opportunity for its use in wastewater treatment and water disinfection. The findings from models with different operating conditions (pressure, temperature, microorganism, water content, media …) suggest that most microorganisms are successfully inhibited under CO2 treatment. It will also be shown that the bacterial deaths under CO2 treatment can be explained by many different mechanisms. Moreover, the findings in this study can help to address the recently emerging problems in water disinfection, such as disinfection by-products (resulting from chlorination or ozone treatment).

  11. Inactivation of an enterovirus by airborne disinfectants

    OpenAIRE

    2013-01-01

    Background The activity of airborne disinfectants on bacteria, fungi and spores has been reported. However, the issue of the virucidal effect of disinfectants spread by fogging has not been studied thoroughly. Methods A procedure has been developed to determine the virucidal activity of peracetic acid-based airborne disinfectants on a resistant non-enveloped virus poliovirus type 1. This virus was laid on a stainless carrier. The products were spread into the room by hot fogging at 55°C for 3...

  12. Study of Disinfection Technologies for Medical Waste Water Treatment%医疗废水消毒技术探讨

    Institute of Scientific and Technical Information of China (English)

    陈笠; 李正山; 黄正文; 史凯

    2012-01-01

    消毒是医疗废水处理的必需环节,人们对环境与安全的要求日益提高,不仅需要消毒剂能够杀灭废水中的致病微生物,也要求消毒剂本身不对水体造成二次污染.目前常用消毒技术中,传统氯消毒仍占主导地位,但其容易产生消毒副产物等弊端.以紫外消毒为代表的新技术发展迅速,大有取代传统消毒剂的趋势,而膜消毒和电化学消毒是医疗废水消毒新的研究方向,有广阔应用前景.%Disinfection is an essential link for the treatment of medical waste water. Given growing environmental safety concerns, pathogenic microorganisms need to be killed by qualified disinfectant without leaving secondary pollution during waste water treatment. Conventional chlorination plays a leading role among current disinfection techniques. However, it has some disadvantages such as easy generation of disinfection by-products. With the rapid development of new technology application represented by ultraviolet disinfection, it is more likely to replace traditional disinfectants. Membrane disinfection and electrochemical disinfection are emerging research directions that show broad prospects in the market.

  13. Comparison the Effect of Disinfection of Yasuj Sewage Effluent with UV/Paa/Naocl Combined Treatment : A Pilot Plant Study

    Directory of Open Access Journals (Sweden)

    SA Sadat

    2008-12-01

    Full Text Available ABSTRACT: Introduction & objective: Disinfection of effluent swage treatment plant, is one of the the most important stage of treatment effluent that has been done with purpose of water sources protection or water reuse.Chlorine compounds are the most common disinfectants that have been ever used for this idea.Todays,with attention to the production of dangerous by-products,that can cause by using chlorine compounds in water, other disinfections such as H2o2,paa and uv ,o3 combinations of two or three of them has been stated for replacing items. This study designed to compare the disinfection efficiency of combinations of three common disinfectants mentioned above in pilot plant study. Materials & Methods: This is an empirical study that was done on sewage effluent of Yasuj wastewater treatment plant in 1387. During sample operations, through 5 months, each 10 days, two sample sets with different concentrations of each disinfectant compound were experimented on determining total coliforms(TC, fecal coliforms(FC, fecal streptococci(FS according to standard methods for waste water experiments. Reseived data was analysed by SPSS software and ANOVA, statistical test. Results: This study indicates that combined methods Paa/Naocl/UV, Paa/UV, Naocl/UV, in order from left to right, has the most efficiency in decreasing total coliforms and Paa/Naocl/UV have the most efficiency and UV the least efficiency and Paa/UV, Naocl/UV have the same efficiency in decreasing fecal coliforms. all the combined disinifection methods that have been used in this research most times completely eliminate fecal streptococci from swage of Yasouj wastewater treatment plant. Conclusion:The result indicate that combined uses of Paa, Naocl, with UV for disinfection sewage effluent make an intensive effect on disinfectant materials over each other and consequently increasing efficiency of this method in deactivation total coliforms, fecal coliforms, fecal streptococci .

  14. 9 CFR 71.10 - Permitted disinfectants.

    Science.gov (United States)

    2010-01-01

    ... AGRICULTURE INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS GENERAL PROVISIONS..., Fungicide, and Rodenticide Act (7 U.S.C. 135 et seq.), with tuberculocidal claims, as disinfectants...

  15. Travelers' Health: Water Disinfection for Travelers

    Science.gov (United States)

    ... Water Disinfection Infographics for Travelers MERS Health Advisory poster Food and Water: What's Safer Health Advisory: MERS ... prevent recontamination during storage Table 2-10. Microorganism size and susceptibility to filtration ORGANISM AVERAGE SIZE (µm) ...

  16. Disinfection, sterilization, and antisepsis: An overview.

    Science.gov (United States)

    Rutala, William A; Weber, David J

    2016-05-02

    All invasive procedures involve contact by a medical device or surgical instrument with a patient's sterile tissue or mucous membranes. The level of disinfection or sterilization is dependent on the intended use of the object: critical (items that contact sterile tissue such as surgical instruments), semicritical (items that contact mucous membrane such as endoscopes), and noncritical (devices that contact only intact skin such as stethoscopes) items require sterilization, high-level disinfection and low-level disinfection, respectively. Cleaning must always precede high-level disinfection and sterilization. Antiseptics are essential to infection prevention as part of a hand hygiene program as well as several other uses such as surgical hand antisepsis and pre-operative skin preparation.

  17. [Formaldehyde sediment in incubators following disinfection].

    Science.gov (United States)

    Wartner, R; Kegel, M; Meyer, H D; Schlüter, G; Wegner, J; Werner, E

    1983-12-01

    Measurements in incubators revealed the presence of formaldehyde concentrations involving a health risk for premature and normal newborns kept and cared for in incubators. Prior to measurements, the incubators had been disinfected by means of formaldehyde vapours in an "Aseptor" disinfecting cabinet (Drägerwerk AG, Lübeck) and then ventilated in strict adherence to operating instructions. The elevated formaldehyde concentrations found had been due to residues of paraformaldehyde and urotropin on the surfaces of the disinfected apparatus, liberating formaldehyde by hydrolysis depending on temperature and relative humidity. There should be a basic reconsideration of the present practice of incubator disinfection. From experiments with activated-carbon filters in incubators it would seem that there is a chance of reducing such formaldehyde concentrations.

  18. ASSESSMENT OF THE EFFICIENCY OF DISINFECTION METHOD ...

    African Journals Online (AJOL)

    eobe

    ABSTRACT. The efficiencies of three disinfection methods namely boiling, water guard and pur purifier were assessed. ... Water is an indispensable resource for supporting life systems [2- ...... developing country context: improving decisions.

  19. ALTERNATIVE DISINFECTANTS FOR DRINKING WATER TREATMENT

    Science.gov (United States)

    During a one-year study at Jefferson Parish, Louisiana the chemical, microbiological, and mutagenic effects of using the major drinking water disinfectants (chlorine, chlorine dioxide, chloramine, ozone) were evaluated. ests were performed on samples collected from various treatm...

  20. ALTERNATIVE DISINFECTION FOR DRINKING WATER TREATMENT

    Science.gov (United States)

    During a one-yr study at Jefferson Parish, La., the chemical, microbiological, and mutagenic effects os using the major drinkgin water disinfectants (chlorine, chlorine dioxide, chloramine, ozone) were evaluated. Tests were performed on samples collected from various treatment s...

  1. [Elimination of microscopic filamentous fungi with disinfectants].

    Science.gov (United States)

    Laciaková, A; Laciak, V

    1994-01-01

    The antifungal effectivity of three single-component (Persteril, Septonex, Glutaraldehyd) and of three combined (Persteril+Septonex, Pesteril+Glutaraldehyd, Glutaraldehyd+Septonex) commercially available disinfectants was monitored by the diffuse method on five fen of the microscopic filamentous fungi Aspergillus alternata, Aspergillus niger, Mucor fragillis, Fusarium moniliforme, Penicillium glabrum. The highest antifungal activity was observed in 2% Persteril while 2% Persteril + 1% Septonex were the most effective among the combined disinfectants. M. fragilis was the most resistant strain.

  2. [Udder disinfection and mastitis in cattle: a literature review].

    Science.gov (United States)

    Lam, T J; van Vliet, J H; Schukken, Y H

    1995-07-01

    Postmilking teat disinfection is accepted as an important part of standard preventive measures against mastitis in dairy cattle. The efficacy of postmilking teat disinfection against infections with contagious pathogens such as Staphylococcus aureus and Streptococcus agalactiae is beyond doubt. However, the efficacy of teat disinfection against infections with environmental pathogens such as Escherichia coli is disputed, and a negative effect has even been described in some situations. This article reviews the practice of teat disinfection in dairy cattle. Premilking and postmilking teat disinfection are discussed, as is the efficacy, different ways of teat disinfection, and different disinfectants. It is concluded that post-milking teat disinfection is an effective management measure in most herds. Selection of teat disinfectants should be based on proven efficacy, which is required for registration of the preparation as a veterinary medical product in the Netherlands.

  3. Photocatalytic Water Disinfection with Solar Energy

    Energy Technology Data Exchange (ETDEWEB)

    Sichel, C.; Fernandez-Ibanez, P.; Blanco, J.; Malato, S.

    2006-07-01

    Drinking water disinfection is the final treatment phase before supplying drinking water to customers. Actually, the most widely employed disinfecting method is the chlorination. Even though it has high efficiency and long residual effects, chlorine presents the drawback of the high potential to produce chloro-organic compounds, which are hazardous. In order to find a safe method to disinfect drinking water, a number of so-called {sup n}ew technologies{sup a}re being developed by researchers from the entire world. Among these emerging technologies, the heterogeneous photocatalytic oxidation is becoming more and more important, mainly for applications in isolated and arid areas of developing countries. In the case of heterogeneous photocatalytic oxidation via TiO2, when the semiconductor is suspended or immersed in water and irradiated with near UV (?<385 nm), OH radicals are generated by the reaction of holes and electrons respectively with electron donor and acceptor molecules. The OH radical is highly toxic towards microorganisms and very reactive in the oxidation of organic substances. Therefore, a solar photocatalytic treatment can be a disinfecting method but at the same time a process to degrade organic matter. This contribution demonstrates the feasibility of using the photocatalytical processes to inactivate microorganisms present in water for potential applications in drinking water disinfection for solar systems. This work shows the main results on solar photocatalytic disinfection with solar photo-reactors, using the solar radiation and TiO2 as a photocatalyst. (Author)

  4. Amoebicidal effects of contact lens disinfecting solutions.

    Science.gov (United States)

    Boost, Maureen V; Shi, Guang-Sen; Lai, Sindy; Cho, Pauline

    2012-01-01

    To compare the traditional manual hemacytometer method and an automated counter (Vi-cell) to enumerate and distinguish between viable and non-viable amoeba, and to determine the efficacies of contact lens (CL) disinfecting solutions against three species of Acanthamoeba. The efficacies in the presence of a bacterial food source and bovine serum albumin (BSA) were investigated. Four brands of multipurpose solutions and a hydrogen peroxide disinfecting system (Oxysept) for soft CLs, and four disinfecting solutions for Rigid Gas Permeable (RGP) lenses were tested against three species of Acanthamoeba. Page's amoebic saline was included as a negative control and standard solutions of disinfecting agents, 6% hydrogen peroxide and 0.5% chlorhexidine, as positive controls. The effects of the presence of Pseudomonas aeruginosa and BSA on effectiveness were assessed. None of the CL solutions tested achieved a 1-log reduction in viability of all three Acanthamoeba species within the manufacturer's recommended disinfection times. The presence of P. aeruginosa did not significantly affect disinfecting capacity of multipurpose solution solutions but reduced activity of RGP solutions and the hydrogen peroxide system. BSA reduced trophozoicidal activity of all solutions. Bland and Altman analysis showed good agreement between Vi-cell and hemacytometer. The Vi-Cell analyzer offers a simple and effective method of determining amoebicidal activity. Our results show that the CL solutions tested could not satisfactorily kill Acanthamoeba.

  5. Quality assurance and best research practices for non-regulated veterinary clinical studies.

    Science.gov (United States)

    Davies, R; London, C; Lascelles, B; Conzemius, M

    2017-08-16

    Veterinary clinical trials generate data that advance the transfer of knowledge from clinical research to clinical practice in human and veterinary settings. The translational success of non-regulated and regulated veterinary clinical studies is dependent upon the reliability and reproducibility of the data generated. Clinician-scientists that conduct veterinary clinical studies would benefit from a commitment to research quality assurance and best practices throughout all non-regulated and regulated research environments. Good Clinical Practice (GCP) guidance documents from the FDA provides principles and procedures designed to safeguard data integrity, reliability and reproducibility. While these documents maybe excessive for clinical studies not intended for regulatory oversight it is important to remember that research builds on research. Thus, the quality and accuracy of all data and inference generated throughout the research enterprise remains vulnerable to the impact of potentially unreliable data generated by the lowest performing contributors. The purpose of this first of a series of statement papers is to outline and reference specific quality control and quality assurance procedures that should, at least in part, be incorporated into all veterinary clinical studies.

  6. [Genotoxic and ecotoxic effects of urban waste water disinfected with sodium hypochlorite or peracetic acid].

    Science.gov (United States)

    Crebelli, R; Conti, L; Marchini, S; Monarca, S; Feretti, D; Zerbini, I; Zani, C; Veschetti, E; Cutilli, D; Ottaviani, M

    2003-01-01

    Genotoxic and ecotoxicologic effects of urban wastewater disinfected with sodium hypochlorite or peracetic acid were analyzed. The formation of genotoxic species was studied by determining clastogenic and mutagenic activity of aqueous samples and their extracts with in vivo and in vitro tests, respectively. In particular, we have applied citogenetic tests to Allium cepa roots and Tradescantia inflorescence (Allium cepa test and Tradescantia/micronuclei test) and reversion test to Salmonella typhimurium according to the microsuspension procedure (Kado test). The latter is the method of choice for the analysis of complex matrices due to its high sensitivity and specificity. The mutagenic activity of disinfected effluents was similar to the corresponding untreated wastewater both sampled in four different periods. Therefore, the disinfection process did not seem to contribute to aquatic mutagenicity in the examined range of biocide concentration. The potential toxicity of disinfected wastewater for aquatic organisms was evaluated using Daphnia magna. The acute toxicity of peracetic acid in sewage was 0.4 mg/L (24 h E(L)C50). By comparing this value with peracetic acid concentrations detected in effluents from a pilot plant it is expected that treated wastewater would show acute toxic effects on aquatic organisms. Dissociation compounds (hydrogen peroxide and acetic acid) and possible by-products of peracetic acid did not seem to contribute significantly to the toxicity of sewage treated with peracetic acid.

  7. Genotoxicity of quinolone antibiotics in chlorination disinfection treatment: formation and QSAR simulation.

    Science.gov (United States)

    Li, Min; Wei, Dongbin; Du, Yuguo

    2016-10-01

    Lots of unexpected disinfection by-products were formed during the chlorination disinfection of contaminated water bodies, leading to a potential threat to human health and ecological safety. In this study, SOS/umu assay was used to trace the genotoxicity variation of 20 quinolone compounds during the chlorination disinfection. Furthermore, two- and three-dimensional quantitative structure-activity relationship models were developed based on the electronic and hydrophobic properties of the quinolones, which were used to quantify the impact of the different structural features of the compounds on their genotoxicity variation. The results revealed that quinolones bearing hydrophilic substituents with less H-bond donors and negative charge at the 1-position of the quinolone ring exhibited a positive correlation with genotoxicity elevation. More notably, the chlorination of quinolones in both ultrapure water and secondary effluent matrices provided comparable levels of genotoxicity, indicating that our research could potentially be used to evaluate the environmental risk of quinolone antibiotics in chlorination disinfection treatment.

  8. Comparative experimental study on municipal wastewater disinfection with ozone and peracetic acid; Indagine sperimentale comparata sulla disinfezione di acque reflue urbane con ozono e acido peracetico

    Energy Technology Data Exchange (ETDEWEB)

    Andreottola, G.; Bertola, P.; Ziglio, G. [Trento Univ. (Italy). Dip. di Ingegneria Civile Ambientale

    1996-04-01

    The results of a pilot experimental study on the disinfection of treated municipal wastewater to be used in agriculture are presented. A comparative evaluation has been carried out on two parallel pilot-scale disinfection plants using respectively ozone and peracetic acid. After a preliminary sand filtration pilot unit. Both processes showed the capability of meeting the Italian standards for agricultural reuse, but the disinfection process with ozone required much higher doses than the one with peracetic acid, probably because of the higher reactivity of ozone, if compared to peracetic acid with the organic matter present in wastewater. Further research is needed in order to evaluate the efficiency of peracetic acid applied to microorganism different from the bacterial ones and to identify nature and consequences of possible disinfection by products.

  9. [Spanish disinfectants for the 21st century].

    Science.gov (United States)

    Herruzo Cabrera, R

    2000-01-01

    There are two chemical disinfectants patents from Spain that permit to obtain advantageous products on other disinfectants: Nduopropenide (two iodures of quaternary ammonium) and "Peroxidine" (hydrogen peroxide that active to lactic acid and a surfactant mixture). The first product is used as an antiseptic or disinfectant, but the second, only act as disinfectant. DISINFECTION: It is studied (by germ-carrier methods), the microbicide effect on different microorganisms (Gram positive cocci, Gram negative bacilli, fungus, Mycobacteria and B subtilis spores), comparing these two products with different disinfectants as 2% glutaraldehyde, 1/8 phenate-glutaraldehyde, peracetic acid compounds, 11% oxygen peroxide and 2% sodium hypoclorite. It is obtained that 1/4 Peroxidine in 5 minutes or 1/6 Peroxidine in 10 minutes, are the most effective disinfectant on all microorganisms used (includes the most resistant) since it produces destruction of 4 log-10 of spores and 5 log-10 of Mycobacteria. Moreover, it can destroy, completely, the inoculum of commercial spores, routinely used for sterilization process evaluation, in 20 minutes, when 2% glutaraldehyd needs 3-10 hours. ANTISEPSIE: It is studied the "hygienization" and surgical handwashing with Nduopropenide solution, in comparison with classical washing methods (neutral soap in routinely handwashing and 5% chlorhexidine or 10% iodine-povidone in surgical washing): 1) Nduopropenide and alcohol solution is more effective that routinely handwashing. 2) This product is more effective and persistent, after surgical washing that chlorhexidine or iodine-povidone. Moreover, it does not must be applied with brush. 3) The mixture Nduopropenide and chlorhexidine makes a synergy, then it can be used in hand or skin washing, on heath personnel or patient people, being advantageous on the other products.

  10. [Comparison of the quality and toxicity of wastewater after chlorine and chlorine dioxide disinfections].

    Science.gov (United States)

    Wang, Li-sha; Zhang, Tong; Hu, Hong-ying

    2005-11-01

    The effects of chlorine and chlorine dioxide disinfections on quality and toxicity of wastewater were compared. The experiment results showed that chlorine disinfection had no obvious effect on wastewater color, while chlorine dioxide disinfection decreased wastewater color observably. The DOC of wastewater did not change much after chlorine and chlorine dioxide disinfections. Chlorine disinfection significantly increased UV230 of wastewater and chlorine dioxide disinfection slightly decreased UV230 of wastewater. When the disinfectants dosage was 30 mg/L, UV230 increased about 0.7 cm(-1) after chlorine disinfection and decreased about 0.05 cm(-1) after chlorine dioxide disinfection. The acute toxicity of wastewater increased with increasing disinfectants dosage for both chlorine and chlorine dioxide disinfections and the acute toxicity after chlorine disinfection is much stronger than that after chlorine dioxide disinfection. The genotoxicity of wastewater increased slightly after chlorine disinfection and decreased slightly after chlorine dioxide disinfection.

  11. Disinfection for small water supplies: a technical guide

    CSIR Research Space (South Africa)

    Solsona, F

    1990-01-01

    Full Text Available This guide will present some disinfection systems, which will be useful in supporting disinfection programmes. The description of the different systems will provide a guideline for the selection of equipment base on balancing the simplicity...

  12. Basic Information about Chloramines and Drinking Water Disinfection

    Science.gov (United States)

    Chloramines are disinfectants used to treat drinking water. Chloramines are most commonly formed when ammonia is added to chlorine to treat drinking water. Chloramines provide longer-lasting disinfection as the water moves through pipes to consumers.

  13. Wettability changes in polyether impression materials subjected to immersion disinfection

    Directory of Open Access Journals (Sweden)

    Shweta Shetty

    2013-01-01

    Conclusion: Within the limitations of the study, 2% glutaraldehyde proved safe for 10 min of immersion disinfection while 0.05% iodophor holds promise as an effective disinfectant without affecting the wettability of the material.

  14. Overview STUDY AND APPLICATION OF HERBAL DISINFECTANTS IN CHINA

    Institute of Scientific and Technical Information of China (English)

    ZHAO-BIN CHEN

    2004-01-01

    Disinfection means killing or removing pathogenic microorganisms in media to realize a harmless process. A disinfectant, which is also referred to as a disinfection medicine in relevant regulations, is the medicine used to kill microorganisms for the purpose of disinfection. The disinfectants prepared from plants (including traditional Chinese herbal medicines) and the extracts thereof are called herbal disinfectants[1]. China has a long history of using herbal disinfectants. As early as in 533 A.D., the use of Cornel to sterilize well water was recorded in Necessary Techniques for Qi People by Jia Enxie of the Beiwei Dynasty[2]. During the Dragon Boat Festival, people often use fumigants made of traditional Chinese herbal medicines like Chinese Atractylodes, Argy Wormwood Leaf and Red Arsenic Sulfide to smoke their houses, so as to ward off plagues and drive away evils[3]. In fact this is now a kind of disinfection practice.

  15. Study and application of herbal disinfectants in China.

    Science.gov (United States)

    Chen, Zhao-Bin

    2004-12-01

    Disinfection means killing or removing pathogenic microorganisms in media to realize a harmless process. A disinfectant, which is also referred to as a disinfection medicine in relevant regulations, is the medicine used to kill microorganisms for the purpose of disinfection. The disinfectants prepared from plants (including traditional Chinese herbal medicines) and the extracts thereof are called herbal disinfectants. China has a long history of using herbal disinfectants. As early as in 533 A.D., the use of Cornel to sterilize well water was recorded in Necessary Techniques for Qi People by Jia Enxie of the Beiwei Dynasty. During the Dragon Boat Festival, people often use fumigants made of traditional Chinese herbal medicines like Chinese Atractylodes, Argy Wormwood Leaf and Red Arsenic Sulfide to smoke their houses, so as to ward off plagues and drive away evils. In fact this is now a kind of disinfection practice.

  16. MULTISPECTRAL IDENTIFICATION OF CHLORINE DIOXIDE DISINFECTION BYPRODUCTS IN DRINKING WATER

    Science.gov (United States)

    This paper discusses the identification of organic disinfection byproducts (DBPs) at a pilot plant in Evansville, IN, which uses chlorine dioxide as a primary disinfectant. Unconventional multispectral identification techniques (gas chromatography combined with high- and low reso...

  17. Disinfection for infection prevention over the course of time

    OpenAIRE

    Hell, M.; Pauser, G

    2007-01-01

    In recent years and decades increasingly more emphasis has been placed on alcohol-based solutions for hygienic and surgical hand disinfection. Traditional handwashing with soap and water has been largely replaced in the everyday clinical setting, as has the use of disinfectant soap-based solutions for surgical hand disinfection. It has been possible in recent years to reduce the exposure time for alcohol-based hand disinfection in surgery from 5 to 3 minutes, and there are plans to reduce thi...

  18. Trends in sterilization and disinfection procedures in orthodontic offices.

    Science.gov (United States)

    Cash, R G

    1990-10-01

    The present survey is a repetition of a 1987 survey examining the sterilization/disinfection procedures of Georgia's orthodontists. The purpose of this study is to examine the trends in orthodontic sterilization/disinfection procedures. Orthodontists in Georgia have dramatically changed their sterilization and disinfection procedures. The major changes represented are greater use of protective barrier wear by doctor and staff members; increased heat sterilization methods for instruments, pliers, and handpieces; and increased disinfection of alginate impressions.

  19. Electrochemical disinfection using boron-doped diamond electrode--the synergetic effects of in situ ozone and free chlorine generation.

    Science.gov (United States)

    Rajab, Mohamad; Heim, Carolin; Letzel, Thomas; Drewes, Jörg E; Helmreich, Brigitte

    2015-02-01

    This work investigated the capability of using a boron-doped diamond (BDD) electrode for bacterial disinfection in different water matrices containing varying amounts of chloride. The feed water containing Pseudomonas aeruginosa was electrochemically treated while applying different electrode conditions. Depending on the applied current density and the exposure time, inactivation between 4- and 8-log of the targeted microorganisms could be achieved. The disinfection efficiency was driven by the generation of free chlorine as a function of chloride concentration in the water. A synergetic effect of generating both free chlorine and ozone in situ during the disinfection process resulted in an effective bactericidal impact. The formation of the undesired by-products chlorate and perchlorate depended on the water matrix, the applied current density and the desired target disinfection level. In case of synthetic water with a low chloride concentration (20 mg L(-1)) and an applied current density of 167 mA cm(-2), a 6-log inactivation of Pseudomonas aeruginosa could be achieved after 5 min of exposure. The overall energy consumption ranged between 0.3 and 0.6 kW h m(-3) depending on the applied current density and water chemistry. Electrochemical water disinfection represents a suitable and efficient process for producing pathogen-free water without the use of any chemicals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Disinfection efficiency of peracetic acid (PAA): inactivation of coliphages and bacterial indicators in a municipal wastewater plant.

    Science.gov (United States)

    Zanetti, F; De Luca, G; Sacchetti, R; Stampi, S

    2007-11-01

    The aim of the study was to assess the efficiency of low doses of peracetic acid against viral and bacterial indicators in wastewater and to evaluate if the treatment allows regulatory requirements to be satisfied. A total of 31 samplings were carried out, each involving the collection of secondary effluent and of effluent disinfected with 1.2 or 1.5 mg l(-1) of peracetic acid (contact time 20 minutes). In each sample were measured: somatic coliphages, F-specific RNA bacteriophages, Escherichia coli, total and faecal coliforms, enterococci. Peracetic acid disinfection showed significant differences between the reductions of the microorganisms tested: E. coli showed the highest reduction (1.78 and 2.43 Log respectively with 1.2 and 1.5 mg l(-1) of peracetic acid) and phages the lowest (ranging between 0.52 and 0.60 Log). Only a concentration of 1.5 mg l(-1) of peracetic acid would enable the effluent to be discharged into surface waters in compliance with Italian regulations. The variability of microbial resistance against the peracetic acid disinfection treatment, underlines the importance of assessing disinfection efficiency by using more than one indicator microorganism. The detection of E. coli could be usefully accompanied by tests for more resistant microorganisms such as enterococci or coliphages. In conclusion, peracetic acid can be used for the disinfection of effluents even at low doses, with the advantage of reducing costs and preventing the formation of significant amounts of genotoxic by-products.

  1. DETECTION OF INFECTIOUS ADENOVIRUS IN TERTIARY TREATED AND UV DISINFECTED WASTEWATER DURING A UV DISINFECTION PILOT STUDY

    Science.gov (United States)

    An infectious enteric adenovirus was isolated from urban wastewater receiving tertiary treatment and ultraviolet (UV) disinfection. A pilot study was undertaken to investigate the efficacy of UV disinfection (low pressure, high intensity radiation) of total and fecal coliform bac...

  2. 42 CFR 71.42 - Disinfection of imports.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Disinfection of imports. 71.42 Section 71.42 Public... FOREIGN QUARANTINE Requirements Upon Arrival at U.S. Ports: Sanitary Inspection § 71.42 Disinfection of imports. When the cargo manifest of a carrier lists articles which may require disinfection under the...

  3. Disinfection of an infrared coagulation device used to treat hemorrhoids.

    Science.gov (United States)

    Rutala, William A; Gergen, Maria F; Weber, David J

    2012-02-01

    Infrared coagulation devices are used to treat internal hemorrhoids, and as semicritical items should undergo high-level disinfection between patients. We developed and validated a method for disinfecting an infrared coagulation device that cannot be immersed in disinfectant solution.

  4. 9 CFR 91.41 - Cleaning and disinfecting of aircraft.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Cleaning and disinfecting of aircraft... INSPECTION AND HANDLING OF LIVESTOCK FOR EXPORTATION Cleaning and Disinfecting of Aircraft § 91.41 Cleaning and disinfecting of aircraft. Prior to loading of animals, the stowage area of aircraft to be used to...

  5. Survival of Viral Biowarfare Agents in Disinfected Waters

    Science.gov (United States)

    2010-07-01

    disinfection at small systems AWWA water quality division disinfection systems committee,” Journal of the American Water Works Association, vol. 92...no. 5, pp. 24–31, 2000. [2] G. F. Connell, J. C. Routt, B. Macler et al., “Committee report: disinfection at large and medium-size systems AWWA water

  6. Activity and action screening of selected disinfectants

    Directory of Open Access Journals (Sweden)

    Kateřina Balharová

    2006-01-01

    Full Text Available This research work is aimed to monitoring of selected disinfectants´activity in operational conditions. Hereby there have been monitored two acidic disinfectants Despon K and Mikasan D, which have had-by their producer-stated different recommended concentration. These solutions were monitored in viewpoint of their activity at different temperature, time of circulation, pH and water hardness. In this work there were measured pH of solutions in unloaded medium to be compared with pH of solutions in loaded medium and this measuring was carried out regularly each week within a one month period. During this period there was also monitored total plate count (TPC, which was stated in the dairy, where samples were taken two-times monthly. It has been found, that the disinfectants Mikasan D and Mikal 94D are effective even by high water hardness.

  7. Intracellular mechanisms of solar water disinfection

    Science.gov (United States)

    Castro-Alférez, María; Polo-López, María Inmaculada; Fernández-Ibáñez, Pilar

    2016-12-01

    Solar water disinfection (SODIS) is a zero-cost intervention measure to disinfect drinking water in areas of poor access to improved water sources, used by more than 6 million people in the world. The bactericidal action of solar radiation in water has been widely proven, nevertheless the causes for this remain still unclear. Scientific literature points out that generation of reactive oxygen species (ROS) inside microorganisms promoted by solar light absorption is the main reason. For the first time, this work reports on the experimental measurement of accumulated intracellular ROS in E. coli during solar irradiation. For this experimental achievement, a modified protocol based on the fluorescent probe dichlorodihydrofluorescein diacetate (DCFH-DA), widely used for oxidative stress in eukaryotic cells, has been tested and validated for E. coli. Our results demonstrate that ROS and their accumulated oxidative damages at intracellular level are key in solar water disinfection.

  8. Transformation of pharmaceuticals during oxidation/disinfection processes in drinking water treatment.

    Science.gov (United States)

    Postigo, Cristina; Richardson, Susan D

    2014-08-30

    Pharmaceuticals are emerging contaminants of concern and are widespread in the environment. While the levels of these substances in finished drinking waters are generally considered too low for human health concern, there are now concerns about their disinfection by-products (DBPs) that can form during drinking water treatment, which in some cases have been proven to be more toxic than the parent compounds. The present manuscript reviews the transformation products of pharmaceuticals generated in water during different disinfection processes, i.e. chlorination, ozonation, chloramination, chlorine dioxide, UV, and UV/hydrogen peroxide, and the main reaction pathways taking place. Most of the findings considered for this review come from controlled laboratory studies involving reactions of pharmaceuticals with these oxidants used in drinking water treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Disinfection of sewage sludge with gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Melmed, L.N.; Comninos, D.K.

    1979-10-01

    Disinfection of sewage sludge by ionizing radiation, thermoradiation, and radiation combined with oxygenation was investigated in experimentation in Johannesburg, South Africa. Inactivation of Ascaris lumbricoides ova was used as the criterion of disinfection. Experimentation and methodology are explained. Complete inactivation could be obtained when 0.5 kGy radiation was applied at 50..cap alpha..C to a sludge containing 3% solids and when 0.4 kGy radiation was applied at 55..cap alpha..C to a sludge with 20% solids. (1 drawing, 5 graphs, 4 photos, 4 tables)

  10. [Sterilization and disinfection in clinical orthodontics].

    Science.gov (United States)

    Uzel, I; Haydar, B

    1989-11-01

    Recently a great deal of attention has been devoted to the spread of hepatitis b and aids viruses and the high risk of contamination of these viruses during the dental operations has made orthodontists more aware of the necessity of sterilization and disinfection. This article discusses the methods of sterilization and disinfection. Avoidance of corrosion of instruments and the use of a ultrasonic cleaner to avoid contamination has been explained. In the conclusion the measures that the orthodontist has to take in order to protect himself is discussed.

  11. Experimental study on disinfection effect of different dose of rapid hand disinfectant

    Directory of Open Access Journals (Sweden)

    Xiuhua Li

    2014-06-01

    Conclusion: In an effort to reduce the incidence of nosocomial infection, the medical personnel should sufficiently dry hands following handrubbing with disinfectant in a strict accordance with the six part washing technique for antiseptic handrubbing.

  12. EVALUATION OF THE IMMUNOMODULATORY EFFECTS OF THE DISINFECTION BYPRODUCT, SODIUM CHLORITE, IN FEMALE B6C3F1 MICE: A DRINKING WATER STUDY

    Science.gov (United States)

    Evaluation of the Immunomodulatory Effects of the Disinfection By-product, Sodium chlorite, in Female B6C3f1 mice: A Drinking Water Study. Niel A. Karrow, Tal, L. Guo, J. Ann McCay, Greg W. Johnson, Ronnetta D. Brown, Debrorah L. Musgrove, Dori R. Germolec, Robert W. Lueb...

  13. SDBD plasma jet for skin disinfection

    NARCIS (Netherlands)

    Creyghton, Y.L.M.; Meijer, S.R.; Verweij, P.E.; Zanden, F. van der; Leenders, P.H.M.

    2011-01-01

    A consortium consisting of the research institute TNO, the medical university and hospital St Radboud and two industrial enterprises is working on a non-thermal plasma treatment method for skin and wound disinfection. The group is seeking for cooperation, in particular in the field of validation

  14. Action of commonly used disinfectants against enteroviruses.

    Science.gov (United States)

    Narang, H K; Codd, A A

    1983-06-01

    The virucidal effect of some of the most commonly used hospital disinfectants against Coxsackie B4, Echovirus 11, Poliovirus type 1 and Rotavirus have been evaluated. It was found that 'Chloros', 'Totacide 28' and methylated spirits were completely virucidal to all the viruses under study. 'Stericol' and 'Lysol' had a limited effect while 'Hibiscrub' and 'Savlon' had no effect at all.

  15. 40 CFR 141.72 - Disinfection.

    Science.gov (United States)

    2010-07-01

    ... treatment must be sufficient to ensure at least 99.9 percent (3-log) inactivation of Giardia lamblia cysts... for Giardia lamblia cysts and viruses. If a system uses a disinfectant other than chlorine, the system....9 percent (3-log) inactivation and/or removal of Giardia lamblia cysts and at least 99.99 percent...

  16. Virucidal efficacy of hydrogen peroxide vapour disinfection

    NARCIS (Netherlands)

    Tuladhar, E.; Terpstra, P.; Koopmans, M.; Duizer, E.

    2012-01-01

    Background: Viral contamination of surfaces is thought to be important in transmission. Chemical disinfection can be an effective means of intervention, but little is known about the virucidal efficacy of hydrogen peroxide vapour (HPV) against enteric and respiratory viruses. Aim: To measure the

  17. Virucidal efficacy of hydrogen peroxide vapour disinfection

    NARCIS (Netherlands)

    Tuladhar, E.; Terpstra, P.; Koopmans, M.; Duizer, E.

    2012-01-01

    Background: Viral contamination of surfaces is thought to be important in transmission. Chemical disinfection can be an effective means of intervention, but little is known about the virucidal efficacy of hydrogen peroxide vapour (HPV) against enteric and respiratory viruses. Aim: To measure the vir

  18. symptoms in health personnel exposed to disinfectants

    African Journals Online (AJOL)

    2001-03-01

    Mar 1, 2001 ... (31.7%), watering of eyes (25%), skin rash (10%) and chronic cough (8.3%). Among users ... Further studies involving larger sample sizes, are necessary to ... exposure to disinfectants among health personnel in some. Kenyan health ..... Sun H.W., Feigal R.J. and Messer H.H. Cytotoxicity of gutaraldehyde ...

  19. SDBD plasma jet for skin disinfection

    NARCIS (Netherlands)

    Creyghton, Y.L.M.; Meijer, S.R.; Verweij, P.E.; Zanden, F. van der; Leenders, P.H.M.

    2011-01-01

    A consortium consisting of the research institute TNO, the medical university and hospital St Radboud and two industrial enterprises is working on a non-thermal plasma treatment method for skin and wound disinfection. The group is seeking for cooperation, in particular in the field of validation met

  20. Efficacy of various disinfectants against SARS coronavirus.

    Science.gov (United States)

    Rabenau, H F; Kampf, G; Cinatl, J; Doerr, H W

    2005-10-01

    The recent severe acute respiratory syndrome (SARS) epidemic in Asia and Northern America led to broad use of various types of disinfectant in order to control the public spread of the highly contagious virus. However, only limited data were available to demonstrate their efficacy against SARS coronavirus (SARS-CoV). We therefore investigated eight disinfectants for their activity against SARS-CoV according to prEN 14476. Four hand rubs were tested at 30s (Sterillium, based on 45% iso-propanol, 30% n-propanol and 0.2% mecetronium etilsulphate; Sterillium Rub, based on 80% ethanol; Sterillium Gel, based on 85% ethanol; Sterillium Virugard, based on 95% ethanol). Three surface disinfectants were investigated at 0.5% for 30 min and 60 min (Mikrobac forte, based on benzalkonium chloride and laurylamine; Kohrsolin FF, based on benzalkonium chloride, glutaraldehyde and didecyldimonium chloride; Dismozon pur, based on magnesium monoperphthalate), and one instrument disinfectant was investigated at 4% for 15 min, 3% for 30 min and 2% for 60 min [Korsolex basic, based on glutaraldehyde and (ethylenedioxy)dimethanol]. Three types of organic load were used: 0.3% albumin, 10% fetal calf serum, and 0.3% albumin with 0.3% sheep erythrocytes. Virus titres were determined by a quantitative test (endpoint titration) in 96-well microtitre plates. With all tested preparations, SARS-CoV was inactivated to below the limit of detection (reduction factor mostly > or =4), regardless of the type of organic load. In summary, SARS-CoV can be inactivated quite easily with many commonly used disinfectants.

  1. 40 CFR 141.541 - What are significant changes to disinfection practice?

    Science.gov (United States)

    2010-07-01

    ... disinfection practice? 141.541 Section 141.541 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Disinfection-Systems Serving Fewer Than 10,000 People Disinfection Benchmark § 141.541 What are significant changes to disinfection practice? Significant changes to disinfection practice include: (a) Changes to the...

  2. 40 CFR 141.540 - Who has to develop a disinfection benchmark?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Who has to develop a disinfection... Disinfection-Systems Serving Fewer Than 10,000 People Disinfection Benchmark § 141.540 Who has to develop a disinfection benchmark? If you are a subpart H system required to develop a disinfection profile under §§ 141...

  3. Anaerobic digestion of slaughterhouse by-products

    DEFF Research Database (Denmark)

    Hejnfelt, Anette; Angelidaki, Irini

    2009-01-01

    flour, fat, blood, hair, meat, ribs, raw waste were: 225, 497,487, 561, 582, 575, 359, 619 dm(3) kg(-1) respectively, corresponding to 50-100% of the calculated theoretical methane potential. Dilution of the by-products had a positive effect on the specific methane yield with the highest dilutions......Anaerobic digestion of animal by-products was investigated in batch and semi-continuously fed, reactor experiments at 55 degrees C and for some experiments also at 37 degrees C. Separate or mixed by-products from pigs were tested. The methane potential measured by batch assays for meat- and bone...

  4. Peracetic acid for secondary effluent disinfection: a comprehensive performance assessment.

    Science.gov (United States)

    Antonelli, M; Turolla, A; Mezzanotte, V; Nurizzo, C

    2013-01-01

    The paper is a review of previous research on secondary effluent disinfection by peracetic acid (PAA) integrated with new data about the effect of a preliminary flash-mixing step. The process was studied at bench and pilot scale to assess its performance for discharge in surface water and agricultural reuse (target microorganisms: Escherichia coli and faecal coliform bacteria). The purposes of the research were: (1) determining PAA decay and disinfection kinetics as a function of operating parameters, (2) evaluating PAA suitability as a disinfectant, (3) assessing long-term disinfection efficiency, (4) investigating disinfected effluent biological toxicity on some aquatic indicator organisms (Vibrio fischeri, Daphnia magna and Selenastrum capricornutum), (5) comparing PAA with conventional disinfectants (sodium hypochlorite, UV irradiation). PAA disinfection was capable of complying with Italian regulations on reuse (10 CFU/100 mL for E. coli) and was competitive with benchmarks. No regrowth phenomena were observed, as long as needed for agricultural reuse (29 h after disinfection), even at negligible concentrations of residual disinfectant. The toxic effect of PAA on the aquatic environment was due to the residual disinfectant in the water, rather than to chemical modification of the effluent.

  5. Proteobacteria become predominant during regrowth after water disinfection.

    Science.gov (United States)

    Becerra-Castro, Cristina; Macedo, Gonçalo; Silva, Adrian M T; Manaia, Célia M; Nunes, Olga C

    2016-12-15

    Disinfection processes aim at reducing the number of viable cells through the generation of damages in different cellular structures and molecules. Since disinfection involves unspecific mechanisms, some microbial populations may be selected due to resilience to treatment and/or to high post-treatment fitness. In this study, the bacterial community composition of secondarily treated urban wastewater and of surface water collected in the intake area of a drinking water treatment plant was compared before and 3-days after disinfection with ultraviolet radiation, ozonation or photocatalytic ozonation. The aim was to assess the dynamics of the bacterial communities during regrowth after disinfection. In all the freshly collected samples, Proteobacteria and Bacteroidetes were the predominant phyla (40-50% and 20-30% of the reads, respectively). Surface water differed from wastewater mainly in the relative abundance of Actinobacteria (17% and disinfected samples presented a shift of Gammaproteobacteria (from 8 to 10% to 33-65% of the reads) and Betaproteobacteria (from 14 to 20% to 31-37% of the reads), irrespective of the type of water and disinfection process used. Genera such as Pseudomonas, Acinetobacter or Rheinheimera presented a selective advantage after water disinfection. These variations were not observed in the non-disinfected controls. Given the ubiquity and genome plasticity of these bacteria, the results obtained suggest that disinfection processes may have implications on the microbiological quality of the disinfected water. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Transformation of pharmaceuticals during oxidation/disinfection processes in drinking water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Postigo, Cristina [Institute for Environmental Assessment and Water Research (IDAEA)—Spanish National Research Council (CID-CSIC), Barcelona (Spain); Richardson, Susan D., E-mail: richardson.susan@sc.edu [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC (United States)

    2014-08-30

    Graphical abstract: - Highlights: • Review of transformation pathways of pharmaceuticals during disinfection processes. • DBPs are formed with chlorine, chloramine, ozone, chlorine dioxide, UV, or UV/H{sub 2}O{sub 2}. • Chlorine reacts with amine and reduced sulfur groups and activated aromatic systems. • Chlorine dioxide and ozone react with electron-rich functional groups. • Potential health effects are noted for some pharmacuetical DBPs when available. - Abstract: Pharmaceuticals are emerging contaminants of concern and are widespread in the environment. While the levels of these substances in finished drinking waters are generally considered too low for human health concern, there are now concerns about their disinfection by-products (DBPs) that can form during drinking water treatment, which in some cases have been proven to be more toxic than the parent compounds. The present manuscript reviews the transformation products of pharmaceuticals generated in water during different disinfection processes, i.e. chlorination, ozonation, chloramination, chlorine dioxide, UV, and UV/hydrogen peroxide, and the main reaction pathways taking place. Most of the findings considered for this review come from controlled laboratory studies involving reactions of pharmaceuticals with these oxidants used in drinking water treatment.

  7. Advantages and disadvantages of chemical oxidation and disinfection by ozone and chlorine dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Fiessinger, F.; Richard, Y.; Montiel, A.; Musquere, P.

    1981-04-01

    Ozone and chlorine dioxide present definite advantages and disadvantages over chlorination. Chlorination, particularly for the removal of ammonia and the maintenance of a disinfectant residual in the distribution system has decisive advantages and will be difficult to replace. Ozone and chlorine dioxide seem to produce fewer carcinogenic by-products but the risk for acute toxicity, especially from the chlorites which follow chlorine dioxide, is higher than with chlorine. Chlorine dioxide and more particularly ozone should be considered as useful complements to chlorination, but no strong oxidative treatment should be applied before most of the organic matter has been removed.

  8. Evaluation and comparison of high-level microwave oven disinfection with chemical disinfection of dental gypsum casts.

    Science.gov (United States)

    Meghashri, K; Kumar, Prasanna; Prasad, D Krishna; Hegde, Rakshit

    2014-06-01

    The aim of this study was to evaluate and compare microwave disinfection with chemical disinfection of dental gypsum casts. A total of 120 casts were prepared from a silicone mold using Type III dental stone. Of the 120 casts, 60 casts were contaminated with 1 ml suspension of Staphylococcus aureus and 60 casts were contaminated with 1 ml suspension of Pseudomonas aeruginosa. Then, the casts were disinfected with microwave irradiation and chemical disinfection using the microwave oven and 0.5% sodium hypochlorite. Bacteriologic procedures were performed; the cfu/ml for each cast was calculated as a weighted mean. The results were analyzed using Kruskal-Wallis test and Mann-Whitney test. The untreated casts showed Brain heart infusion broth counts of 106 log cfu/ml compared to irradiated and chemically disinfected casts, in which 105 log reduction of cfu/ml was seen. These results satisfied the requirements of current infection control guidelines for the dental laboratory. The results obtained for chemical disinfection were in equivalence with microwave disinfection. Within the limitation of this in vitro study, it was found that microwave disinfection of casts for 5 min at 900 W gives high-level disinfection that complies with the current infection control guidelines for the dental laboratory and microwave disinfection method is an effective and validated method as chemical disinfection. How to cite the article: Meghashri K, Kumar P, Prasad DK, Hegde R. Evaluation and comparison of high-level microwave oven disinfection with chemical disinfection of dental gypsum casts. J Int Oral Health 2014;6(3):56-60 .

  9. Influence of different disinfecting modes on disinfection efficiency of outlet water from sand filter%不同的消毒方式对砂滤池出水消毒效果的影响

    Institute of Scientific and Technical Information of China (English)

    李芳; 陆少鸣

    2013-01-01

    Using pilot test with the mid-positioning O3-biological activated carbon filter,influences of different disinfection methods on disinfection efficiency of outlet water from sand filter were researched by the detection and analysis of microorganism,micro aquatic animals,DBPs and AOC.The results showed that the effect of chlorine disinfection was slightly weaker than ozone disinfection combined chlorination in removing microorganisms and micro aquatic animals.For the disinfection by-production of halogenated hydrocarbon and chlorate,chlorine disinfection produced more than ozone disinfection combined chlorination,the bromated is on the same level,while the formaldehyde is the opposite.The average AOC of sand filter effluent with chlorination and with ozone disinfection combined chlorination is 75.93 μg acetic acid carbon/L and 101.23 μg acetic acid carbon/L,respectively.The latter is more than 100 μg acetic acid carbon/L,which is unbeneficial for the biology stability of water distribution system.%采用中置O3-BAC工艺进行中试实验,通过对微生物、微型生物、消毒副产物和AOC进行检测分析,研究了不同的消毒方式对砂滤池出水消毒效果的影响.结果表明,氯消毒对微型生物、微生物的去除效果稍弱于臭氧联合氯消毒;对于消毒副产物而言,氯消毒产生的卤代烃、氯酸盐的含量高于臭氧联合氯消毒,产生的溴酸盐两者处于同一水平,而产生的甲醛则是氯消毒低于臭氧联合氯消毒;氯消毒最终砂滤池出水AOC平均含量75.93 μg乙酸碳/L,臭氧联合氯消毒为101.23μg乙酸碳/L,大于100 μg乙酸碳/L,不利于供水管网的生物稳定性.

  10. INFLUENCE OF PHYSICAL QUALITY CHANGES ON UV DISINFECTION OF WASTEWATER

    Directory of Open Access Journals (Sweden)

    F.Vaezi

    1997-06-01

    Full Text Available Ultraviolet Radiation (UVR has been accepted as an attractive alternative to chlorination for the disinfection of wastewater. In this study the effluent from Sahebgaranieh treatment plant was subjected to changes in UV transmission and turbidity in order to correlate these commonly measured parameters with the performance of a submerged -UV- reactor employed in disinfecting the effluent. Studies have shown successful performance of the reactor in disinfecting typical secondary effluents. Highly significant correlations are observed between TJV- transmission, turbidity, and the degree of coliforms inactivation which depend upon disinfection limit. Besides, the method was regarded suitable in disinfecting effluent samples, having suspended solids twice as much the discharge quality at disinfection detention time of 102 seconds. Average UV dosages ranged from 230 to 580 milliwatt - second per square centimeter.

  11. Reaction of silver nanoparticles in the disinfection process.

    Science.gov (United States)

    Yuan, Zhihua; Chen, Yunbin; Li, Tingting; Yu, Chang-Ping

    2013-10-01

    This study investigated the dissolution, aggregation, and reaction kinetics of silver nanoparticles (AgNPs) with the three types of water disinfectants (ultraviolet, sodium hypochlorite, and ozone) under the different conditions of pH, ionic strength, or humic acid (HA). The physicochemical changes of AgNPs were measured by using UV-Vis spectroscopy, transmission electron microscopy, and inductively coupled plasma optical emission spectrometer. The results showed that when AgNPs contacted the disinfectants, oxidative dissolution was the primary reaction. In addition, the reaction kinetics studies revealed that the reaction rate of AgNPs with disinfectants was significantly influenced by different disinfectants along with different pH and the presence of sodium nitrate and HA. Our research demonstrated the potential effect of disinfectants on AgNPs, which will improve our understanding of the fate of AgNPs in the disinfection processes in the water and wastewater treatment plant.

  12. 75 FR 49487 - Nanomaterial Case Study: Nanoscale Silver in Disinfectant Spray

    Science.gov (United States)

    2010-08-13

    ... AGENCY Nanomaterial Case Study: Nanoscale Silver in Disinfectant Spray AGENCY: Environmental Protection... period for the draft document ``Nanomaterial Case Study: Nanoscale Silver in Disinfectant Spray'' (EPA.... ] ADDRESSES: The draft ``Nanomaterial Case Study: Nanoscale Silver in Disinfectant Spray'' is available...

  13. 40 CFR 141.64 - Maximum contaminant levels for disinfection byproducts.

    Science.gov (United States)

    2010-07-01

    ... in this paragraph (a): Disinfection byproduct Best available technology Bromate Control of ozone... source water: Disinfection byproduct Best available technology Total trihalomethanes (TTHM) and... disinfection byproducts. 141.64 Section 141.64 Protection of Environment ENVIRONMENTAL PROTECTION...

  14. Water disinfecting; Desinfection d'eau

    Energy Technology Data Exchange (ETDEWEB)

    Parisot, F

    2009-04-15

    The Soxitis equipment is an innovating alternative to the use of chemical products for disinfecting cooling tower circuits. This equipment is based on a higher temperature electrolysis of the salt molecules contained in water. Present electrodes (titanium, tungsten, silver, copper or gold) used in similar systems are limited in voltage to 1.5 V. The Soxitis electrode can sustain 3 V which enlarges the spectrum of chemical reactions: chloride, ozone, hydrogen peroxide, persulfates, per-carbonates and hydroxide radicals are produced. The combining effect of all these products generates a disinfecting effect 4 times as high as chloride alone. As a consequence Soxitis uses 4 times less salt than present equipment and releases less corrosive water in the system. (A.C.)

  15. Disinfection properties of some bovine teat dips.

    Science.gov (United States)

    King, J S; Neave, F K; Westgarth, D R

    1977-02-01

    The efficacy of 18 disinfectant teat dips was tested on teats artificially contaminated with a milk suspension of Staphylococcus aureus. A solution of Na hypochlorite with 40 g/l available chlorine was significantly more bactericidal than one containing 1 g/1 available chlorine and than most other disinfectants tested. The method was not able to distinguish differences in efficacy between solution containing 40g/1 and 10g/1 available chlorine nor between these and some of the iodophors containing 5 g/1 available iodine. The additon of 190-416 g/1 (15-33% v/v) glycerol significantly reduced the bactericidal properties of 3 iodophors (5 g/1 available iodine), but soluble lanolin at approximately 20 g/1 did not appear to lower the efficiency of NaOC1 (45 g/1 available chlorine) or of an iodophor (5 g/1 available iodine).

  16. Safety and durability of low-density polyethylene bags in solar water disinfection applications.

    Science.gov (United States)

    Danwittayakul, Supamas; Songngam, Supachai; Fhulua, Tipawan; Muangkasem, Panida; Sukkasi, Sittha

    2017-08-01

    Solar water disinfection (SODIS) is a simple point-of-use process that uses sunlight to disinfect water for drinking. Polyethylene terephthalate (PET) bottles are typically used as water containers for SODIS, but a new SODIS container design has recently been developed with low-density polyethylene (LDPE) bags and can overcome the drawbacks of PET bottles. Two nesting layers of LDPE bags are used in the new design: the inner layer containing the water to be disinfected and the outer one creating air insulation to minimize heat loss from the water to the surroundings. This work investigated the degradation of LDPE bags used in the new design in actual SODIS conditions over a period of 12 weeks. The degradation of the LDPE bags was investigated weekly using a scanning electron microscope, Fourier transform infrared spectroscopy, ultraviolet-visible spectrophotometer, and tensile strength tester. It was found that the LDPE bags gradually degraded under the sunlight due to photo-oxidation reactions, especially in the outer bags, which were directly exposed to the sun and surroundings, leading to the reduction of light transmittance (by 11% at 300 nm) and tensile strength (by 33%). In addition, possible leaching of organic compounds into the water contained in the inner bags was examined using gas chromatography-mass spectrometer. 2,4-Di-tert-butylphenol was found in some SODIS water samples as well as the as-received water samples, in the concentration range of 1-4 μg/L, which passes the Environmental Protection Agency Drinking Water Guidance on Disinfection By-Products.

  17. Proteomic adaptations to starvation prepare Escherichia coli for disinfection tolerance.

    Science.gov (United States)

    Du, Zhe; Nandakumar, Renu; Nickerson, Kenneth W; Li, Xu

    2015-02-01

    Despite the low nutrient level and constant presence of secondary disinfectants, bacterial re-growth still occurs in drinking water distribution systems. The molecular mechanisms that starved bacteria use to survive low-level chlorine-based disinfectants are not well understood. The objective of this study is to investigate these molecular mechanisms at the protein level that prepare starved cells for disinfection tolerance. Two commonly used secondary disinfectants chlorine and monochloramine, both at 1 mg/L, were used in this study. The proteomes of normal and starved Escherichia coli (K12 MG1655) cells were studied using quantitative proteomics. Over 60-min disinfection, starved cells showed significantly higher disinfection tolerance than normal cells based on the inactivation curves for both chlorine and monochloramine. Proteomic analyses suggest that starvation may prepare cells for the oxidative stress that chlorine-based disinfection will cause by affecting glutathione metabolism. In addition, proteins involved in stress regulation and stress responses were among the ones up-regulated under both starvation and chlorine/monochloramine disinfection. By comparing the fold changes under different conditions, it is suggested that starvation prepares E. coli for disinfection tolerance by increasing the expression of enzymes that can help cells survive chlorine/monochloramine disinfection. Protein co-expression analyses show that proteins in glycolysis and pentose phosphate pathway that were up-regulated under starvation are also involved in disinfection tolerance. Finally, the production and detoxification of methylglyoxal may be involved in the chlorine-based disinfection and cell defense mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Disinfectant effect of Methylated Ethanol against Listeria species

    OpenAIRE

    2012-01-01

    This study was carried out in order to determine the disinfectant effect of Methylated spirit® (95% methanol and 5% ethanol) as a teat dip against Listeria species. Hand milking was employed to collect 576 (288 x 2) raw milk samples from different lactating cows within Sokoto metropolis (Nigeria). 288 samples were collected before disinfecting the udder teats with Methylated spirit®, while the other 288 were collected after disinfection with Methylated spirit®. The ...

  19. Field trial evaluation of premilking teat disinfection.

    Science.gov (United States)

    Pankey, J W; Wildman, E E; Drechsler, P A; Hogan, J S

    1987-04-01

    Efficacy of premiliking teat disinfection (predipping) with good udder preparation was compared with good udder preparation alone on four well-managed, commercial dairy farms. Three teat dip formulations containing iodophor were used for predipping. Predipping reduced the rate of intramammary infection with major mastitis pathogens approximately 54%. Infection rate with esculin-positive streptococci and coliforms was reduced more than 51%. Udder infections with coagulase-negative staphylococci were not controlled by predipping.

  20. Hand disinfection in hospitals - benefits and risks.

    Science.gov (United States)

    Kampf, Günter; Löffler, Harald

    2010-12-01

    The WHO regards hand hygiene as an essential tool for the prevention of noso-comial infections. The hygienic hand disinfection has a superior antimicrobial efficacy compared to hand washing and should be performed as the treatment of choice before and after a variety of activities at the point of patient care. Washing hands should be preferred when the hands are visibly soiled. Skin irritation is quite common among healthcare workers and is mainly caused by water, soap and long lasting occlusion. Compliance with hand disinfection in clinical practice is often low. Measures to improve compliance include training, provision of hand rubs where they are needed, and the responsibility of doctors to set a good example. Improved compliance in hand hygiene and targeted use of alcohol-based hand rubs can reduce the nosocomial infection rate by up to 40 %. The benefit of hand disinfection is therefore much larger than possible risks. © The Authors • Journal compilation © Blackwell Verlag GmbH, Berlin.

  1. Evaluation of toothbrush disinfection via different methods.

    Science.gov (United States)

    Basman, Adil; Peker, Ilkay; Akca, Gulcin; Alkurt, Meryem Toraman; Sarikir, Cigdem; Celik, Irem

    2016-01-01

    The aim of this study was to compare the efficacy of using a dishwasher or different chemical agents, including 0.12% chlorhexidine gluconate, 2% sodium hypochlorite (NaOCl), a mouthrinse containing essential oils and alcohol, and 50% white vinegar, for toothbrush disinfection. Sixty volunteers were divided into five experimental groups and one control group (n = 10). Participants brushed their teeth using toothbrushes with standard bristles, and they disinfected the toothbrushes according to instructed methods. Bacterial contamination of the toothbrushes was compared between the experimental groups and the control group. Data were analyzed by Kruskal-Wallis and Duncan's multiple range tests, with 95% confidence intervals for multiple comparisons. Bacterial contamination of toothbrushes from individuals in the experimental groups differed from those in the control group (p method for elimination of all tested bacterial species was 50% white vinegar, followed in order by 2% NaOCl, mouthrinse containing essential oils and alcohol, 0.12% chlorhexidine gluconate, dishwasher use, and tap water (control). The results of this study show that the most effective method for disinfecting toothbrushes was submersion in 50% white vinegar, which is cost-effective, easy to access, and appropriate for household use.

  2. Evaluation of toothbrush disinfection via different methods

    Directory of Open Access Journals (Sweden)

    Adil BASMAN

    2016-01-01

    Full Text Available The aim of this study was to compare the efficacy of using a dishwasher or different chemical agents, including 0.12% chlorhexidine gluconate, 2% sodium hypochlorite (NaOCl, a mouthrinse containing essential oils and alcohol, and 50% white vinegar, for toothbrush disinfection. Sixty volunteers were divided into five experimental groups and one control group (n = 10. Participants brushed their teeth using toothbrushes with standard bristles, and they disinfected the toothbrushes according to instructed methods. Bacterial contamination of the toothbrushes was compared between the experimental groups and the control group. Data were analyzed by Kruskal–Wallis and Duncan's multiple range tests, with 95% confidence intervals for multiple comparisons. Bacterial contamination of toothbrushes from individuals in the experimental groups differed from those in the control group (p < 0.05. The most effective method for elimination of all tested bacterial species was 50% white vinegar, followed in order by 2% NaOCl, mouthrinse containing essential oils and alcohol, 0.12% chlorhexidine gluconate, dishwasher use, and tap water (control. The results of this study show that the most effective method for disinfecting toothbrushes was submersion in 50% white vinegar, which is cost-effective, easy to access, and appropriate for household use.

  3. Effects of disinfectants in renal dialysis patients

    Energy Technology Data Exchange (ETDEWEB)

    Klein, E.

    1986-11-01

    Patients receiving hemodialysis therapy risk exposure to both disinfectants and sterilants. Dialysis equipment is disinfected periodically with strong solutions of hypochlorite or formaldehyde. Gross hemolysis resulting from accidental hypochlorite infusion has led to cardiac arrest, probably as a result of hyperkalemia. Formaldehyde is commonly used in 4% solutions to sterilize the fluid paths of dialysis controllers and to sterilize dialyzers before reuse. It can react with red cell antigenic surfaces leading to the formation of anti-N antibodies. The major exposure risk is the low concentration of disinfectant found in municipal water used to prepare 450 L dialysate weekly. With thrice-weekly treatment schedules, the quality requirements for water used to make this solution must be met rigorously. Standards for water used in the preparation of dialysate have recently been proposed but not all patients are treated with dialysate meeting such standards. The introduction of sterilants via tap water is insidious and has let to more pervasive consequences. Both chlorine and chloramines, at concentrations found in potable water, are strong oxidants that cause extensive protein denaturation and hemolysis. Oxidation of the Fe/sup 2 +/ in hemoglobin to Fe/sup 3 +/ forms methemoglobin, which is incapable of carrying either O/sub 2/ or CO/sub 2/. Chloramine can form not only methemoglobin, but can also denature proteins within the red cell, thus forming aggregates (Heinz bodies). Chloramines also inhibit hexose monophosphate shunt activity, a mechanism that makes the red cell even more susceptible to oxidant damage.

  4. Spiral-shaped reactor for water disinfection

    KAUST Repository

    Soukane, Sofiane

    2016-04-20

    Chlorine-based processes are still widely used for water disinfection. The disinfection process for municipal water consumption is usually carried out in large tanks, specifically designed to verify several hydraulic and disinfection criteria. The hydrodynamic behavior of contact tanks of different shapes, each with an approximate total volume of 50,000 m3, was analyzed by solving turbulent momentum transport equations with a computational fluid dynamics code, namely ANSYS fluent. Numerical experiments of a tracer pulse were performed for each design to generate flow through curves and investigate species residence time distribution for different inlet flow rates, ranging from 3 to 12 m3 s−1. A new nature-inspired Conch tank design whose shape follows an Archimedean spiral was then developed. The spiral design is shown to strongly outperform the other tanks’ designs for all the selected plug flow criteria with an enhancement in efficiency, less short circuiting, and an order of magnitude improvement in mixing and dispersion. Moreover, following the intensification philosophy, after 50% reduction in its size, the new design retains its properties and still gives far better results than the classical shapes.

  5. The catheter hub disinfection cap as esophageal foreign body.

    Science.gov (United States)

    Tawfik, Kareem O; Myer, Charles M; Shikary, Tasneem; Goldschneider, Kenneth R

    2015-12-01

    Disinfection caps are increasingly being used to prevent catheter-associated bloodstream infections. These devices, designed for continuous passive disinfection of catheter hubs, are typically small and often brightly colored. As such, they have the potential to become pediatric airway and esophageal foreign bodies. We report two patients who developed esophageal foreign body following ingestion of disinfection caps. Given the increasing use of these devices, it is imperative that health care providers be aware of this potential iatrogenic problem. We propose that the use of disinfection caps may not be appropriate in pediatric patients with risk factors for foreign body ingestion.

  6. Current and emergent strategies for disinfection of hospital environments.

    Science.gov (United States)

    Abreu, Ana C; Tavares, Rafaela R; Borges, Anabela; Mergulhão, Filipe; Simões, Manuel

    2013-12-01

    A significant number of hospital-acquired infections occur due to inefficient disinfection of hospital surfaces, instruments and rooms. The emergence and wide spread of multiresistant forms of several microorganisms has led to a situation where few compounds are able to inhibit or kill the infectious agents. Several strategies to disinfect both clinical equipment and the environment are available, often involving the use of antimicrobial chemicals. More recently, investigations into gas plasma, antimicrobial surfaces and vapour systems have gained interest as promising alternatives to conventional disinfectants. This review provides updated information on the current and emergent disinfection strategies for clinical environments.

  7. Bacterial spores survive treatment with commercial sterilants and disinfectants.

    Science.gov (United States)

    Sagripanti, J L; Bonifacino, A

    1999-09-01

    This study compared the activity of commercial liquid sterilants and disinfectants on Bacillus subtilis spores deposited on three types of devices made of noncorrodible, corrodible, or polymeric material. Products like Renalin, Exspor, Wavicide-01, Cidexplus, and cupric ascorbate were tested under conditions specified for liquid sterilization. These products, at the shorter times indicated for disinfection, and popular disinfectants, like Clorox, Cavicide, and Lysol were also studied. Data obtained with a sensitive and quantitative test suggest that commercial liquid sterilants and disinfectants are less effective on contaminated surfaces than generally acknowledged.

  8. Resistance to chemical disinfection under conditions of microgravity

    Science.gov (United States)

    Marchin, George L.

    1998-01-01

    In unit gravity, bacteria and disinfecting resin beads co-sediment to the septum in a fluid processing apparatus (FPA) resulting in effective chemical disinfection. In microgravity bacteria in suspension have access to a larger volume of the FPA because of a lack of sedimentation. Further, when disinfecting resin beads are added to the FPA they also remain in suspension reducing their effective concentration. Typically, therefore, disinfection experiments in microgravity return larger numbers of viable bacteria than ground-based controls. Preliminary experiments aboard the MIR Space Station with Pseudomonas aeruginosa additionally suggest that the longer bacteria are retained in microgravity the more resistant they become to chemical disinfection. This phenomenon is probably due to additional time to develop resistant biofilms on the interior of the FPA. To partially solve these problems we have developed additional disinfecting materials to use in conjunction with polyiodide containing resin beads. One of these materials carbon beads coated with 3-trimethoxy silylpropyl dimethyloctadecyl ammonium chloride (Dow-Corning 5700®), acts synergistically with polyiodide resin disinfectants. Carbon beads so treated are still able to remove aqueous iodine from the water stream while providing an additional level of chemical disinfection. This additional capability prevents contamination of the carbon beads with heterotrophic bacteria and insures that bacteria surviving iodine disinfection are efficiently devitalized.

  9. Impact of food disinfection on beneficial biothiol contents in vegetables.

    Science.gov (United States)

    Qiang, Zhimin; Demirkol, Omca; Ercal, Nuran; Adams, Craig

    2005-12-14

    In this work we investigated the impact of food disinfection on the beneficial biothiol contents in a suite of vegetables consumed daily, including spinach, green bean, asparagus, cucumber, and red pepper. Four disinfection technologies commonly studied and/or used in food processing and preservation, including hydrogen peroxide, free chlorine, and gaseous- and aqueous-phase ozone, were examined with common dosages and contact times. Results indicate that the common disinfection technologies may result in significant loss of beneficial biothiols in vegetables which are essentially important to human health. For example, as much as 70% of biothiols were lost when spinach was treated with hydrogen peroxide (5.0 wt %) for 30 min. Approximately 48-54% of biothiols were destroyed by free chlorine and gaseous- and aqueous-phase ozone under typical contacting conditions. In red pepper, about 60-71% of reduced glutathione was oxidized by the disinfectants. The potential decrease in biothiols during disinfection was dependent upon the biothiol type, the disinfectant, and the vegetable. The effectiveness of total bacterial inactivation by the four disinfection technologies was concurrently evaluated. Results show that free chlorine is most effective, achieving disinfection efficiencies of greater than 4 log for all study vegetables. This study may provide important information for the food industry to design optimum contacting methods for vegetables to simultaneously achieve sufficient bacterial disinfection while minimizing loss of beneficial biothiols.

  10. Anaerobic digestion of slaughterhouse by-products

    Energy Technology Data Exchange (ETDEWEB)

    Hejnfelt, Anette; Angelidaki, Irini [Department of Environmental Engineering, Technical University of Denmark, DTU, Building 113, DK-2800 Kgs. Lyngby (Denmark)

    2009-08-15

    Anaerobic digestion of animal by-products was investigated in batch and semi-continuously fed, reactor experiments at 55 C and for some experiments also at 37 C. Separate or mixed by-products from pigs were tested. The methane potential measured by batch assays for meat- and bone flour, fat, blood, hair, meat, ribs, raw waste were: 225, 497, 487, 561, 582, 575, 359, 619 dm{sup 3} kg{sup -1} respectively, corresponding to 50-100% of the calculated theoretical methane potential. Dilution of the by-products had a positive effect on the specific methane yield with the highest dilutions giving the best results. High concentrations of long-chain fatty acids and ammonia in the by-products were found to inhibit the biogas process at concentrations higher than 5 g lipids dm{sup -3} and 7 g N dm{sup -3} respectively. Pretreatment (pasteurization: 70 C, sterilization: 133 C), and alkali hydrolysis (NaOH) had no effect on achieved methane yields. Mesophilic digestion was more stable than thermophilic digestion, and higher methane yield was noticed at high waste concentrations. The lower yield at thermophilic temperature and high waste concentration was due to ammonia inhibition. Co-digestion of 5% pork by-products mixed with pig manure at 37 C showed 40% higher methane production compared to digestion of manure alone. (author)

  11. Production of various disinfection byproducts in indoor swimming pool waters treated with different disinfection methods.

    Science.gov (United States)

    Lee, Jin; Jun, Myung-Jin; Lee, Man-Ho; Lee, Min-Hwan; Eom, Seog-Won; Zoh, Kyung-Duk

    2010-11-01

    In this study, the concentrations of disinfection byproducts (DBPs), including trihalomethanes (THMs; chloroform, bromodichloromethane, dibromochloromethane, and bromoform), haloacetic acids (HAAs; dichloroacetic acid and trichloroacetic acid), haloacetonitriles (HANs; dichloroacetonitrile, trichloroacetonitrile, bromochloroacetonitrile, and dibromoacetonitrile), and chloral hydrate (CH) were measured in 86 indoor swimming pools in Seoul, Korea, treated using different disinfection methods, such as chlorine, ozone and chlorine, and a technique that uses electrochemically generated mixed oxidants (EGMOs). The correlations between DBPs and other environmental factors such as with total organic carbon (TOC), KMnO(4) consumption, free residual chlorine, pH, and nitrate (NO(3)(-)) in the pools were examined. The geometric mean concentrations of total DBPs in swimming pool waters were 183.1±2.5μg/L, 32.6±2.1μg/L, and 139.9±2.4μg/L in pools disinfected with chlorine, ozone/chlorine, and EGMO, respectively. The mean concentrations of total THMs (TTHMs), total HAAs (THAAs), total HANs (THANs), and CH differed significantly depending on the disinfection method used (P<0.01). Interestingly, THAAs concentrations were the highest, followed by TTHMs, CH, and THANs in all swimming pools regardless of disinfection method. TOC showed a good correlation with the concentrations of DBPs in all swimming pools (chlorine; r=0.82, P<0.01; ozone/chlorine; r=0.52, P<0.01, EGMO; r=0.39, P<0.05). In addition, nitrate was positively correlated with the concentrations of total DBPs in swimming pools disinfected with chlorine and ozone/chlorine (chlorine; r=0.58; ozone/chlorine; r=0.60, P<0.01), whereas was negative correlated with the concentrations of total DBPs (r=-0.53, P<0.01) in the EGMO-treated pools.

  12. Cements containing by-product gypsum

    Energy Technology Data Exchange (ETDEWEB)

    Bensted, J. [University of Greenwich, London (United Kingdom). School of Biological and Chemical Sciences

    1995-12-31

    Chemical by-product gypsum can readily replace natural gypsum in Portland cements and in blended cements like Portland pfa cement and Portland blast furnace cement without technical detriment in many instances. Indeed, sometimes the technical performance of the cement can be enhanced. The hydration chemistry is often changed, in that where there is at least some retardation of setting, more AFT phase (ettringite) is formed during early hydration at the expense of calcium silicate hydrates. By-product gypsum can also replace natural gypsum in speciality products like calcium aluminate cement-Portland cement mixes for producing quick setting cements and in calcium sulphoaluminate-type expansive cements. However, by-products gypsum have proved to be less successful for utilization in API Classes of oilwell cements, because of the greater difficulty in obtaining batch-to-batch consistency in properties like thickening time and slurry rheology. 11 refs., 3 figs., 5 tabs.

  13. CHRONIC EXPOSURE TO DIBROMOACETIC ACID, A WATER DISINFECTION BY-PRODUCT, DIMINISHES PRIMORDIAL FOLLICLE POPULATIONS IN THE RABBIT

    Science.gov (United States)

    To determine if dibromoacetic acid (DBA) affects folliculogenesis, four groups of female Dutch-belted rabbits were exposed daily to 0, 1, 5, or 50 mg DBA/kg body wt. in drinking water beginning in utero from gestation day 15 throughout life. Functionality of the endocrine axis w...

  14. Dechlorination of disinfection by-product monochloroacetic acid in drinking water by nanoscale palladized iron bimetallic particle

    Institute of Scientific and Technical Information of China (English)

    CHEN Chao; WANG Xiangyu; CHANG Ying; LIU Huiling

    2008-01-01

    Nanoscale palladized iron (Pd/Fe) bimetallic particles were prepared by reductive deposition method. The particles were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscope (SEM), transmission electron microscope (TEM), and Brunauer-Emmett-Teller-nitrogen (BET-N2) method. Data obtained from those methods indicated that nanoscale Pd/Fe bimetallic particles contained α-Fe0. Detected Pd to Fe ratio by weight (PFRW) was close to theoretical PFRW. Spherical granules with diameter of 47±11.5 nm connected with one another to form chains and the chains composed nanoscale Pd/Fe bimetallic particles. Specific surface area of particles was 51 m2/g. Factors, such as species of reductants, PFRW, dose of nanoscale Pd/Fe bimetallic particles added into solutions, solution initial pH, and a variety of solvents were studied. Dechlorination effect of monochloroacetic acid (MCAA) by different reductants followed the trend: nanoscale Pd/Fe bimetallic particles of 0.182% PFRW > nanoscale Fe > reductive Fe. When PFRW was lower than 0.083%, increasing PFRW would increase dechlorination efficiency (DE) of MCAA. But when the PFRW was higher than 0.083%, increasing PFRW caused decrease in DE. Adding more nanoscale Pd/Fe bimetallic particles to solution would enhance DE. The DE of MCAA decreased as initial pH of solution increased.

  15. Reducing Volatile Disinfection By-Products in Treated Drinking Water Using Aeration Technologies (WaterRF Report 4441)

    Science.gov (United States)

    The primary objective of this project was to evaluate cost-effective aeration technology solutions to address TTHM compliance at a water treatment plant clearwell. The project team worked closely with EPA Region 6 and the EPA Office of Research and Development (ORD) to identify a...

  16. CHRONIC EXPOSURE TO DIBROMOACETIC ACID, A WATER DISINFECTION BY-PRODUCT, DIMINISHES PRIMORDIAL FOLLICLE POPULATIONS IN THE RABBIT

    Science.gov (United States)

    To determine if dibromoacetic acid (DBA) affects folliculogenesis, four groups of female Dutch-belted rabbits were exposed daily to 0, 1, 5, or 50 mg DBA/kg body wt. in drinking water beginning in utero from gestation day 15 throughout life. Functionality of the endocrine axis w...

  17. Measuring the concentrations of drinking water disinfection by-products using capillary membrane sampling-flow injection analysis.

    Science.gov (United States)

    Geme, Gija; Brown, Michael A; Simone, Paul; Emmert, Gary L

    2005-10-01

    A capillary membrane sampling-flow injection analysis method is presented for selectively measuring the concentrations of total trihalomethanes (THMs) and total haloacetic acids (HAAs) in drinking water. The method is based on the reaction between nicotinamide and THM or HAA species to yield a fluorescent product. Two configurations are presented, one selective for total THMs and another selective for total HAAs. The construction of a capillary membrane sampler is described, and the results of method detection limit, accuracy and precision studies are reported for each method. Interference, selectivity and linearity studies are reported as well as the effect of temperature and ionic strength changes. Drinking water samples were analyzed by each proposed method and the results were compared to USEPA methods 502.2 and 552.3.

  18. GENOMIC ADAPTATION OF THE EMBRYONIC STEM CELL TEST (EST) FOR A TOXICOLOGICAL STUDY OF DRINKING WATER DISINFECTION BY-PRODUCTS

    Science.gov (United States)

    Among the many promised and potential applications of embryonic stem cells, in vitro toxicology is one area in which ES cells have already proven their utility. In 2003, the Embryonic Stem Cell Test (EST) protocol was validated in Europe as an in vitro alternative to live animal...

  19. Effect of ozonation of swimming pool water on formation of volatile disinfection by-products - A laboratory study

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Spiliotopoulou, Aikaterini; Cheema, Waqas Akram;

    2016-01-01

    byproducts during subsequent chlorination. The ozone reaction was observed to behave according to first order kinetics. For tap water half-life was 4 min whilst polluted and unpolluted pool water exhibited half-life of 8 and 11 min, respectively. When ozonation dosage was repeated half-life of ozone...

  20. QSPR for predicting chloroform formation in drinking water disinfection.

    Science.gov (United States)

    Luilo, G B; Cabaniss, S E

    2011-01-01

    Chlorination is the most widely used technique for water disinfection, but may lead to the formation of chloroform (trichloromethane; TCM) and other by-products. This article reports the first quantitative structure-property relationship (QSPR) for predicting the formation of TCM in chlorinated drinking water. Model compounds (n = 117) drawn from 10 literature sources were divided into training data (n = 90, analysed by five-way leave-many-out internal cross-validation) and external validation data (n = 27). QSPR internal cross-validation had Q² = 0.94 and root mean square error (RMSE) of 0.09 moles TCM per mole compound, consistent with external validation Q2 of 0.94 and RMSE of 0.08 moles TCM per mole compound, and met criteria for high predictive power and robustness. In contrast, log TCM QSPR performed poorly and did not meet the criteria for predictive power. The QSPR predictions were consistent with experimental values for TCM formation from tannic acid and for model fulvic acid structures. The descriptors used are consistent with a relatively small number of important TCM precursor structures based upon 1,3-dicarbonyls or 1,3-diphenols.

  1. ACTION OF NEWER DISINFECTANTS ON MULTIDRUG RESISTANT BACTERIA

    Directory of Open Access Journals (Sweden)

    Bipasa

    2014-03-01

    Full Text Available BACKGROUND: Current procedures for infection control in hospital environments have not been successful in curbing the rise in infections by multi-drug-resistant (MDR pathogens. Emergence of resistance to chemical disinfectants is increasing steadily and has been reported worldwide. So prevention of multidrug-resistant health care associated infections (HAI has become a priority issue and great challenge to clinicians. This requires appropriate sterilization and disinfection procedures and strict adherence to protocol in infection control policy. There is a need to evaluate the efficacy of newer disinfectants which have come into the market for better control of HAI. AIMS AND OBJECTIVES: The aim of this study was to evaluate and compare disinfection efficacy of three newer disinfectants– Novacide (didecyldimethylammonium chloride and polyhexamethylene biguanide, Silvicide a strong oxidizing agent (hydrogen peroxide and silver nitrate and Virkon, a powerful oxidizing agent (a stabilized blend of peroxygen compounds and potassium salts, pitting them against two time-honored conventional disinfectants phenol and lysol and testing them against common MDR clinical isolates, reference strains and spores. MATERIALS AND METHODS: All the disinfectants at different dilutions were tested for bactericidal efficacy by liquid suspension time-kill tests. A heavy initial microbial load was simulated by preparing bacterial inoculum. Numbers of viable cells were counted and reduction in microbial colony counts before and after disinfectant exposure was expressed as log reduction. RESULTS: Among the disinfectants, Novacide was most effective. All clinical MDR bacterial isolates and reference strains were killed within 30 seconds of exposure at 0.156% solution, whereas spores got killed after 30 minutes of exposure at 2.5% solution which is the recommended concentration. For Silvicide all vegetative bacteria were killed at 5% solution after 20 minutes contact time

  2. Torrefaction of agricultural by-products (abstract)

    Science.gov (United States)

    Torrefaction of biomass involves heating at 200°C-300°C under inert atmosphere to remove volatiles and produce materials with higher energy values and low moisture. Agricultural by-products, such as apple, grape, olive, and tomato pomaces as well as almond and walnut shells, were torrefied at differ...

  3. Comparing irradiation parameters on disinfecting enterrecoccus faecalis in root canal disinfection

    Science.gov (United States)

    Sarp, Ayşe. S.; Gülsoy, Murat

    2016-02-01

    Although conventional method carries all the debris, studies on persisting infections in root canals show bacteria and their toxins spread from the root canal and contaminate the apical region. Thus developes apical periodontitis or symptoms, and loss of tooth. Even if the treatment has adequate success, anatomy of root canal system can be very complexwith accessory canals. The disinfecting effect of laser radiation has only recently been used in dentistry. Laser irradiation has a bactericidal effect. Each wavelength has its own advantages and limitations according to their different absorption characteristics, depending on their 'absorption coefficient'. The sterilizing efficiency of two types of wavelengths, a new fiber laser 1940- nm Thulium fiber Laser and an 2940 nm Er:YAG Laser were compared in this study. Irradiation with a power of 0.50 W with 1940- nm Thulium fiber Laser disinfected 95,15% of bacteria, however irradiation with same laser power with Er:YAG Laser caused a reduction of 96,48 %. But there was no significant difference in the disinfection effect of two different laser groups ( p < 0.05, Mann- U-Whitney Test). In addition to this, Er :YAG Laser caused three times more reduction from its own positive control group where 1940- nm Thulium fiber Laser caused 2,5 times effective disinfection.

  4. TRIBROMOPYRROLE, BROMINATED ACIDS, AND OTHER DISINFECTION BYPRODUCTS PRODUCED BY DISINFECTION OF DRINKING WATER RICH IN BROMIDE

    Science.gov (United States)

    Using gas chromatography/mass spectrometry (GC/MS), we investigated the formation of disinfection byproducts (DBPs) from high bromide waters (2 mg/L) treated with chlorine or chlorine dioxide used in combination with chlorine and chloramines. This study represents the first comp...

  5. [Genotoxicity of drinking water during chlorine and chloramine disinfection and the influence of disinfection conditions using the umu-test].

    Science.gov (United States)

    Liu, Qing; Zhang, Li-Ping; Liu, Wen-Jun; Nie, Xue-Biao; Zhang, Su-Xia; Zhang, Shun

    2010-01-01

    In this study, the effects of disinfectant dosage, reaction time and the ratio of Cl2 to N of disinfectant on genotoxicity of effluent of ozone-biological activated carbon (O3-BAC) during chlorine or chloramine disinfection were investigated using umu-test. It was found that, the genotoxicity of effluent of O3-BAC before disinfection ranged from 20-70 ng/L, and it increased after disinfection by chlorine or chloramines. With the same reaction time(24 h), genotoxicity after chlorination (40-95 ng/L) was higher than that after chloramination (20-40 ng/L) under same initial dosage. For chlorination, with initial dosage increasing from 0 mg/L to 10 mg/L, genotoxicity increased firstly, and got the maximum value at about 0.5-1 mg/L dosage, then decreased and got the minimum value at about 3-5 mg/L dosage, and finally increased again. For chloramination, genotoxicity didn't change that much. With the dosage of 3 mg/L and reaction time increasing from 0 h to 72 h, no matter for chlorine or chloramines disinfection, genotoxicity of effluent of O3-BAC both increased firstly, and got the maximum value at about 2 h, then decreased and got the minimum value at about 18 h, and finally increased again, and genotoxicity after chlorine disinfection (83-120 ng/L) was higher than that after chloramines disinfection (20-62 ng/L) under same reaction time. Further more, effects of the different ratios of Cl2 to N of disinfectant on genotoxicity of effluent of O3-BAC were also studied. Results of this study demonstrate that under test conditions, chloramine disinfection is safer than chlorine disinfection in the aspect of genotoxicity for drinking water, and the changes of genotoxicity are different from those of total HAAs.

  6. Disinfection of water in recirculating aquaculture systems with peracetic acid

    Science.gov (United States)

    Peracetic acid (PAA) has become a favoured alternative to chlorination in the disinfection of municipal waste water in recent years. It is also commonly used in the food industry as a disinfectant. Based on PAA concentration, the disulfide linkage in enzymes and proteins of microorganisms can be bro...

  7. Mass Disinfection of Documents Affected by Microorganisms: One Practical Experience.

    Science.gov (United States)

    Dobrusina, Svetlana; Velikova, Tatiana

    This paper presents the results of disinfecting treatment of more than 200,000 documents damaged by microorganisms in connection with moving the documents from depositories to a new building of the National Library of Russia. For disinfection, a preparation Metatin GT made by a Swedish firm ACIMA was applied. Metatin GT meets three basic…

  8. 9 CFR 53.6 - Disinfection of animals.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Disinfection of animals. 53.6 Section 53.6 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF..., PLEUROPNEUMONIA, RINDERPEST, AND CERTAIN OTHER COMMUNICABLE DISEASES OF LIVESTOCK OR POULTRY § 53.6 Disinfection...

  9. Endoscope disinfection and its pitfalls - requirement for retrograde surveillance cultures

    NARCIS (Netherlands)

    Buss, A. J.; Been, M. H.; Borgers, R. P.; Stokroos, I.; Melchers, W. J. G.; Peters, F. T. M.; Limburg, A. J.; Degener, J. E.

    Background and study aims: Several endoscopy-related outbreaks of infection have been reported in recent years. For early recognition of inadequate disinfection of endoscopes we designed a microbiological surveillance system to evaluate the efficacy of the cleaning and disinfection procedure, and to

  10. [Scanning electron microscope study of chemically disinfected endodontic files].

    Science.gov (United States)

    Navarro, G; Mateos, M; Navarro, J L; Canalda, C

    1991-01-01

    Forty stainless steel endodontic files were observed at scanning electron microscopy after being subjected to ten disinfection cycles of 10 minutes each one, immersed in different chemical disinfectants. Corrosion was not observed on the surface of the files in circumstances that this study was made.

  11. Biofilm and siderophore effects on secondary waste water disinfection.

    Science.gov (United States)

    Saidi, N; Kouki, S; Mehri, I; Ben Rejeb, A; Belila, A; Hassen, A; Ouzari, H

    2011-10-01

    The efficiency of ultraviolet (UV) light disinfection of wastewater effluent using a large-scale pilot system was studied. The relationship between biofilm and siderophore production and UV doses received by Pseudomonas aeruginosa strain ATCC 15442 was determined. UV decreased pyoverdine production and enhanced biofilm production. Consequently external factors conditioned by both pyoverdine and biofilm may affect the UV effect on bacterial disinfection.

  12. Nanomaterial Case Study: Nanoscale Silver in Disinfectant Spray (Final Report)

    Science.gov (United States)

    EPA announced the release of the final report, Nanomaterial Case Study: Nanoscale Silver in Disinfectant Spray. This report represents a case study of engineered nanoscale silver (nano-Ag), focusing on the specific example of nano-Ag as possibly used in disinfectant spr...

  13. HIGH-RATE DISINFECTION TECHNIQUES FOR COMBIND SEWER OVERFLOW

    Science.gov (United States)

    This paper presents high-rate disinfection technologies for combined sewer overflow (CSO). The high-rate disinfection technologies of interest are: chlorination/dechlorination, ultraviolet light irradiation (UV), chlorine dioxide (ClO2 ), ozone (O3), peracetic acid (CH3COOOH )...

  14. Nanomaterial Case Study: Nanoscale Silver in Disinfectant Spray (Final Report)

    Science.gov (United States)

    EPA announced the release of the final report, Nanomaterial Case Study: Nanoscale Silver in Disinfectant Spray. This report represents a case study of engineered nanoscale silver (nano-Ag), focusing on the specific example of nano-Ag as possibly used in disinfectant spr...

  15. 9 CFR 51.31 - Disinfecting premises, conveyances, and materials.

    Science.gov (United States)

    2010-01-01

    ... ANIMALS DESTROYED BECAUSE OF BRUCELLOSIS Indemnity for Sheep, Goats, and Horses § 51.31 Disinfecting... brucellosis, must be properly cleaned and disinfected in accordance with recommendations of the APHIS or State... the Veterinarian in Charge determines that an extension will not adversely affect the...

  16. Endoscope disinfection and its pitfalls - requirement for retrograde surveillance cultures

    NARCIS (Netherlands)

    Buss, A. J.; Been, M. H.; Borgers, R. P.; Stokroos, I.; Melchers, W. J. G.; Peters, F. T. M.; Limburg, A. J.; Degener, J. E.

    2008-01-01

    Background and study aims: Several endoscopy-related outbreaks of infection have been reported in recent years. For early recognition of inadequate disinfection of endoscopes we designed a microbiological surveillance system to evaluate the efficacy of the cleaning and disinfection procedure, and to

  17. Disinfectant effect of Methylated Ethanol against Listeria species

    Directory of Open Access Journals (Sweden)

    Y Yakubu

    2012-04-01

    Full Text Available This study was carried out in order to determine the disinfectant effect of Methylated spirit® (95% methanol and 5% ethanol as a teat dip against Listeria species. Hand milking was employed to collect 576 (288 x 2 raw milk samples from different lactating cows within Sokoto metropolis (Nigeria. 288 samples were collected before disinfecting the udder teats with Methylated spirit®, while the other 288 were collected after disinfection with Methylated spirit®. The samples were analyzed using selective culture and isolation technique in which the 288 samples collected before disinfection, 114 (39.6% were positive for Listeria species. Among the positive samples 44 (38.6% were Listeria innocua, 16 (14.0% Listeria ivanovii, 36 (31.6% Listeria monocytogenes, 11 (9.6% Listeria welshimeri and 7 (6.1% Listeria seeligeri, while none of the 288 samples collected after disinfection was positive. The study has shown high prevalence of Listeria species in milk collected without washing/disinfecting the teats and has also established the sensitivity of Listeria species to methylated ethanol which can be used as dip for disinfecting udder teats before milking in order to prevent contamination with Listeria species and other methylated spirit-sensitive organisms. This study is essential to educate Fulani herdsmen and other milk handlers on the importance of disinfecting udder teats before milking. [Vet. World 2012; 5(2.000: 91-93

  18. Characterization of Bacillus amyloliquefacien contaminating 75% alcohol disinfectant

    Institute of Scientific and Technical Information of China (English)

    Wanming ZHANG; Yuesha YUAN; Cangli BIAN; Wen ZHANG; Lan WANG; Xianyu TU; Huqiang HUANG

    2008-01-01

    The clinical characterization of Bacillus amy-loliquefacien contaminating 75% alcohol disinfectants were studied. The bacteria were cultured and observed by using bacterial examination under the hospital infec-tion monitor. According to the regulations, the resistance of bacterial to physical and chemical factors was tested. Drug sensitivity tests for 20 commonly used medicines were carried out using a K-B method. The bacterial plas-mids were analyzed using the Birnboim method. The bac-teria were found after being cultured in the clinically-used 75% alcohol disinfectant fluid. Their total number was more than 800 cfu/mL and they were identified as Bacillus amyloliquefacien. The bacteria were also found to be resistant to boiling for 5 min. It grew well in 95% alcohol disinfectant and was insensitive to 84 disinfectant fluids containing chlorine (1000 mg/L) and such disinfec-tants as ozone. They were able to be sterilized better through routine ultraviolet exposure for 30 min or gas pressure. The bacteria contained a 2.5 kb plasmid and were sensitive to 13 drugs and insensitive to 7 drugs of the 20 drugs tested. It was suggested that alcohol dis-infectant fluid was easily contaminated by Bacillus amy-loliquefacien, and the bacteria was resistant to disinfectant fluids such as alcohol and 84 disinfectants.

  19. The Viral Efficacy of three Disinfectants on Hepatitis B virus

    Directory of Open Access Journals (Sweden)

    Arami Sakineh

    2015-01-01

    Full Text Available   Background and Aims: Hepatitis B is an important infection route in dentistry requiring different disinfectants to prevent its transmission. The aim of this study was to compare the effects of chemical disinfectants (FD366, ISORAPID and 5% sodium hypochlorite 2/100 to remove Hepatitis B infections from the dental surfaces.   Materials and Methods: In this experimental laboratory trial, serum of 10 HBV patients was poured into microtubes, FD366, ISORAPID and hypochlorite disinfectants were added to them. PCR experiments with viral diagnostic kits were used to diagnose the virus genome. Real time PCR was used to evaluate after incubation with the disinfectants. The reductions occurred in the viral load of Hepatitis B were statistically analyzed using Kruskal-wallis and Mann-Whitney U tests .   Results: No significant antiviral efficacy was noted following the application of FD366 and ISORAPID disinfectants (P=0/07. However, hypochlorite showed the most efficacy to disinfect Hepatitis B and a significant difference was found among them (P<0.0001.   Conclusion: Under the study limitations, FD366 and ISORAPID disinfectants did not show adequate efficacy to remove Hepatitis B virus. Hypochlorite was the most effective disinfectant.

  20. Peracetic Acid as a Green Disinfectant for Combined Sewer Overflows

    Science.gov (United States)

    This cooperative research and development agreement between U.S. EPA, Solvay, MSDGC, and CB&I is evaluating the potential of PAA for disinfection of Muddy Creek CSO wastewater and comparing that with sodium hypochlorite disinfection. This presentation will document the effectiven...

  1. Zero-G Condensing Heat Exchanger with Integral Disinfection

    Science.gov (United States)

    Burke, Kenneth A. (Inventor)

    2012-01-01

    The system that operates in a zero gravity environment and has an integral ozone generating capability is disclosed. The system contributes to the control of metabolic water vapors in the air, and also provided disinfection of any resulting condensate within the system, as well as disinfection of the air stream that flows throughout the disclosed system.

  2. Impact of disinfection on drinking water biofilm bacterial community.

    Science.gov (United States)

    Mi, Zilong; Dai, Yu; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-11-01

    Disinfectants are commonly applied to control the growth of microorganisms in drinking water distribution systems. However, the effect of disinfection on drinking water microbial community remains poorly understood. The present study investigated the impacts of different disinfectants (chlorine and chloramine) and dosages on biofilm bacterial community in bench-scale pipe section reactors. Illumina MiSeq sequencing illustrated that disinfection strategy could affect both bacterial diversity and community structure of drinking water biofilm. Proteobacteria tended to predominate in chloraminated drinking water biofilms, while Firmicutes in chlorinated and unchlorinated biofilms. The major proteobacterial groups were influenced by both disinfectant type and dosage. In addition, chloramination had a more profound impact on bacterial community than chlorination.

  3. Cleaning and disinfection practice in the meat industries of Europe.

    Science.gov (United States)

    Salvat, G; Colin, P

    1995-06-01

    The application and efficacy of cleaning and disinfection methods are reviewed, together with the relevant European and French legislation. European Commission Hygiene Directive 93/43/EEC of 14 June 1993 proposes the adoption of hazard analysis and critical control points (HACCP) for the meat industry, and this includes cleaning and disinfection. It is necessary to organise a team for washing, cleaning, rinsing, disinfection and final rinsing; three different types of organisation are compared. Application of HACCP and its contribution to the shelf life of products and their contamination with Listeria monocytogenes is discussed in the light of practical experience with poultry meat and cured pork products. Various means of verifying the efficacy of cleaning and disinfection (turbidimetry, adenosine triphosphate assay and macroscopic observation) are compared with the techniques of conventional microbiology. The authors conclude that cleaning and disinfection are essential for application of HACCP to the meat industry.

  4. Disinfection of contaminated water by using solar irradiation.

    Science.gov (United States)

    Caslake, Laurie F; Connolly, Daniel J; Menon, Vilas; Duncanson, Catriona M; Rojas, Ricardo; Tavakoli, Javad

    2004-02-01

    Contaminated water causes an estimated 6 to 60 billion cases of gastrointestinal illness annually. The majority of these cases occur in rural areas of developing nations where the water supply remains polluted and adequate sanitation is unavailable. A portable, low-cost, and low-maintenance solar unit to disinfect unpotable water has been designed and tested. The solar disinfection unit was tested with both river water and partially processed water from two wastewater treatment plants. In less than 30 min in midday sunlight, the unit eradicated more than 4 log10 U (99.99%) of bacteria contained in highly contaminated water samples. The solar disinfection unit has been field tested by Centro Panamericano de Ingenieria Sanitaria y Ciencias del Ambiente in Lima, Peru. At moderate light intensity, the solar disinfection unit was capable of reducing the bacterial load in a controlled contaminated water sample by 4 log10 U and disinfected approximately 1 liter of water in 30 min.

  5. Effects of disinfectants in renal dialysis patients.

    Science.gov (United States)

    Klein, E

    1986-01-01

    Patients receiving hemodialysis therapy risk exposure to both disinfectants and sterilants. Dialysis equipment is disinfected periodically with strong solutions of hypochlorite or formaldehyde. More recently, reuse of dialyzers has introduced the use of additional sterilants, such as hydrogen peroxide and peracetic acid. The use of these sterilants is recognized by the center staffs and the home patient as a potential risk, and residue tests are carried out for the presence of these sterilants at the ppm level. Gross hemolysis resulting from accidental hypochlorite infusion has led to cardiac arrest, probably as a result of hyperkalemia. Formaldehyde is commonly used in 4% solutions to sterilize the fluid paths of dialysis controllers and to sterilize dialyzers before reuse. It can react with red cell antigenic surfaces leading to the formation of anti-N antibodies. Such reactions probably do not occur with hypochlorite or chloramines. The major exposure risk is the low concentration of disinfectant found in municipal water used to prepare 450 L dialysate weekly. With thrice-weekly treatment schedules, the quality requirements for water used to make this solution must be met rigorously. Standards for water used in the preparation of dialysate have recently been proposed but not all patients are treated with dialysate meeting such standards. The introduction of sterilants via tap water is insidious and has led to more pervasive consequences. Both chlorine and chloramines, at concentrations found in potable water, are strong oxidants that cause extensive protein denaturation and hemolysis. Oxidation of the Fe2+ in hemoglobin to Fe3+ forms methemoglobin, which is incapable of carrying either O2 or CO2.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3816735

  6. The role of surface disinfection in infection prevention

    Science.gov (United States)

    Gebel, Jürgen; Exner, Martin; French, Gary; Chartier, Yves; Christiansen, Bärbel; Gemein, Stefanie; Goroncy-Bermes, Peter; Hartemann, Philippe; Heudorf, Ursel; Kramer, Axel; Maillard, Jean-Yves; Oltmanns, Peter; Rotter, Manfred; Sonntag, Hans-Günther

    2013-01-01

    Background: The Rudolf Schuelke Foundation addresses topics related to hygiene, infection prevention and public health. In this context a panel of scientists from various European countries discussed “The Role of Surface Disinfection in Infection Prevention”. The most important findings and conclusions of this meeting are summarised in the present consensus paper. Aim: Although the relevance of surface disinfection is increasingly being accepted, there are still a number of issues which remain controversial. In particular, the following topics were addressed: Transferral of microbes from surface to patients as a cause of infection, requirements for surface disinfectants, biocidal resistance and toxicity, future challenges. Methods and findings: After discussion and review of current scientific literature the authors agreed that contaminated surfaces contribute to the transmission of pathogens and may thus pose an infection hazard. Targeted surface disinfection based on a risk profile is seen as an indispensable constituent in a multibarrier approach of universal infection control precautions. Resistance and cross-resistance depend on the disinfectant agent as well as on the microbial species. Prudent implementation of surface disinfection regimens tested to be effective can prevent or minimize adverse effects. Conclusions: Disinfection must be viewed as a holistic process. There is a need for defining standard principles for cleaning and disinfection, for ensuring compliance with these principles by measures such as written standard operating procedures, adequate training and suitable audit systems. Also, test procedures must be set up in order to demonstrate the efficacy of disinfectants including new application methods such as pre-soaked wipes for surface disinfection. PMID:23967396

  7. The role of surface disinfection in infection prevention

    Directory of Open Access Journals (Sweden)

    Gebel, Jürgen

    2013-04-01

    Full Text Available [english] Background: The Rudolf Schuelke Foundation addresses topics related to hygiene, infection prevention and public health. In this context a panel of scientists from various European countries discussed “The Role of Surface Disinfection in Infection Prevention”. The most important findings and conclusions of this meeting are summarised in the present consensus paper.Aim: Although the relevance of surface disinfection is increasingly being accepted, there are still a number of issues which remain controversial. In particular, the following topics were addressed: Transferral of microbes from surface to patients as a cause of infection, requirements for surface disinfectants, biocidal resistance and toxicity, future challenges.Methods and findings: After discussion and review of current scientific literature the authors agreed that contaminated surfaces contribute to the transmission of pathogens and may thus pose an infection hazard. Targeted surface disinfection based on a risk profile is seen as an indispensable constituent in a multibarrier approach of universal infection control precautions. Resistance and cross-resistance depend on the disinfectant agent as well as on the microbial species. Prudent implementation of surface disinfection regimens tested to be effective can prevent or minimize adverse effects.Conclusions: Disinfection must be viewed as a holistic process. There is a need for defining standard principles for cleaning and disinfection, for ensuring compliance with these principles by measures such as written standard operating procedures, adequate training and suitable audit systems. Also, test procedures must be set up in order to demonstrate the efficacy of disinfectants including new application methods such as pre-soaked wipes for surface disinfection.

  8. Effect of Sodium Hypochlorite Instead of Liquid Chlorine Disinfection on Water Quality in Waterworks%次氯酸钠代替液氯消毒对自来水厂供水水质的影响

    Institute of Scientific and Technical Information of China (English)

    白晓慧; 支兴华; 朱斌; 马玉英

    2012-01-01

    对使用同一水源的两条相同制水工艺分别采用次氯酸钠和液氯消毒,对比研究了两种消毒剂的消毒效果及消毒副产物的生成特性.结果表明,两种消毒剂对菌落总数和异养菌的去除效果都较好,出厂水的菌落总数和异养菌数都未超过100 CFU/mL,微生物安全性可以得到保障.两种消毒剂对三氯甲烷和四氯化碳含量的控制水平均可达到《生活饮用水卫生标准》(GB5749-2006)的要求.液氯消毒出水中的三氯甲烷和卤乙酸含量比次氯酸钠消毒出水中的略高,四氯化碳含量基本相同.采用次氯酸钠替代液氯消毒可有效降低水厂生产安全风险,同时在保证消毒效果的前提下有利于降低水中消毒副产物的生成水平.%Sodium hypochlorite and liquid chlorine were used for disinfection in two same water treatment processes using a common water source. Their specific disinfection efficiency and production of disinfection by-products were compared. The results showed that both disinfection processes could efficiently disinfect total bacteria and heterotrophic bacteria to below 100 CFU/mL. Microbial safety was guaranteed by the two disinfectants. Trichleromethane and carbon tetrachloride in the finished water satisfied the requirement of the Standards for Drinking Water Quality (GB 5749 - 2006). The concentration of trichloromethane and haloacetic acid in the finished water from the liquid chlorine disinfection process was a little higher than that from the sodium hypochlorite disinfection process. The output concentration of carbon tetrachloride was the same. Sodium hypochlorite disinfection, compared to liquid chlorine disinfection , effectively reduces production safety risk and the formation of disinfection by-products in waterworks.

  9. Valorization of rapeseed grain by-products

    Directory of Open Access Journals (Sweden)

    Kormanjos Sandor M.

    2016-01-01

    Full Text Available After technological processing of rapeseed significant amounts of useful and useless waste products stand out. The aim of the present study was to investigate the chemical composition, content of glucosinolates, microbiological safety, and presence of mycotoxins and heavy element contents of useful rapeseed by-products which are intended for animal nutrition. Feed components as well as complete mixtures for animal feed must be safe and in accordance with the requirements of the current national regulation. The investigated useful by-products contained significant amounts of proteins (21.80% and fat (33.78%. As a part of the research, extrusion of the mixture containing rapeseed by-products and maize in the ratio of 50:50% was performed. The process of extrusion was carried out at 130 °C. Based on the obtained results it was noticed that the investigated extruded mixture is a convenient protein-energy supplement suitable for animal feed production with significantly reduced glucosinolate content (from 10.30 to 7.82 µmol/g. It was also observed that the extrusion of feed mixture led to the reduction of the number of microorganisms which ensures safe feedstuff for animal feed production.

  10. 40 CFR 141.53 - Maximum contaminant level goals for disinfection byproducts.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Maximum contaminant level goals for disinfection byproducts. 141.53 Section 141.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... disinfection byproducts. MCLGs for the following disinfection byproducts are as indicated: Disinfection...

  11. THE SYNTHESIS OF A NEW TYPE OF DISINFECTANT RESIN AND ITS ANTIBACTERIAL ACTIVITY

    Institute of Scientific and Technical Information of China (English)

    LiWenlan; HenChangxiu; 等

    1998-01-01

    Polymer supported alkyl dimethyl benzyl ammonium chloride resin disinfectant used for the disinfection of drinking water has been synthesized,and its antibacterial activities have been determined,compared with the commercially used triiodine disinfectant resin.The resin disinfectant was generated successfully when use the combination of surface active agents and ultrosonic.

  12. Auto Disinfectant Cleaner using AVR microcontroller

    Directory of Open Access Journals (Sweden)

    M. Huned

    2012-09-01

    Full Text Available The trend of microcontroller in industrial as well as domestic application is increasing now-a-days. The use of microcontroller is increasing due to the following advantages/features of controller such as Processor reset, Device clocking, central processor, RAM, I/O pins and Instruction cycle timers. There are two types ofmicrocontroller available. They are- Embedded (8,16,32-bit and Digital Signal Processors. Now-a-days advanced controllers such as PIC, ARM and AVR are widely used in which AVR is used mostly due to several advantages. The disinfectant cleaner used by doctors to clean the medical instruments specially used in Endoscopy are very large in size, bulky and costly. The design of Disinfectant Cleaner is cost effective, light in weight, mobile and user friendly. Atmel AVR 8- and 32-bit microcontrollers deliver a unique combination of performance, power efficiency, and design flexibility. Optimized to speed time to market, they are based on the industry's most code-efficient architecture for C and assembly programming. No other microcontrollers deliver more computing performance with better power efficiency.

  13. Translational science in disinfection for regenerative endodontics.

    Science.gov (United States)

    Diogenes, Anibal R; Ruparel, Nikita B; Teixeira, Fabricio B; Hargreaves, Kenneth M

    2014-04-01

    The endodontic management of permanent immature teeth is fraught with challenges. Although treatment modalities for vital pulp therapy in these teeth provide long-term favorable outcome, the outcomes from the treatment of pulp necrosis and apical periodontitis are significantly less predictable. Immature teeth diagnosed with pulp necrosis have been traditionally treated with apexification or apexogenesis approaches. Unfortunately, these treatments provide little to no benefit in promoting continued root development. Regenerative endodontic procedures have emerged as an important alternative in treating teeth with otherwise questionable long-term prognosis because of thin, fragile dentinal walls and a lack of immunocompetency. These procedures rely heavily on root canal chemical disinfection of the root canal system. Traditionally, irrigants and medicaments have been chosen for their maximum antimicrobial effect without consideration for their effects on stem cells and the dentinal microenvironment. Translational research has been crucial to provide evidence for treatment modifications that aim to increase favorable outcome while steering away from common pitfalls in the currently used protocols. In this review, recent advances learned from translational research related to disinfection in regenerative endodontics are presented and discussed. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Cleansing and Disinfection in the Food Industry

    Directory of Open Access Journals (Sweden)

    Ruhtan Baskaya

    2009-02-01

    Full Text Available In the applications of industrial hygiene, it is of utmost importance to define the potential risk factors in the business enterprise in question, to pay sufficient consideration to those factors, and to spend every effort for their checking and elimination. In that sense, cleansing and disinfection applications have a basic importance. Food hygiene covers all the efforts spent in order to ensure the proper conditions for the production of healthy food at every stage of the production process, extending from the farm to the table. Cleansing is the removal of the dirt or food leftovers found on the tools and equipment contacting food, and preventing their conversion into a convenient millieu for the reproduction of microorganisms. Cleansing is the process of removing not only the visible dirts and leftovers, but also a large part of the visible microorganisms. Disinfection is applied after cleansing; it is the process of disintegration of microorganisms which can cause contamination, or reduction of those microorganisms to minimum levels so that they can not create any harmful effects. [TAF Prev Med Bull 2009; 8(1.000: 93-106

  15. Disinfection byproduct formation from lignin precursors.

    Science.gov (United States)

    Hua, Guanghui; Kim, Junsung; Reckhow, David A

    2014-10-15

    Lignin is the most abundant aromatic plant component in terrestrial ecosystems. This study was conducted to determine the contribution of lignin residues in natural water to the formation of disinfection byproducts (DBPs) in drinking water. We investigated the formation of different classes of DBPs from lignin model compounds, lignin polymers, and humic substances using two common disinfection techniques, chlorination and chloramination. The contributions of lignin to the overall formation of DBPs from these organic products were determined based on the observed abundances of individual lignin phenols and their DBP yields. Model lignin phenols generally produced higher trichloroacetic acid (TCAA) yields than chloroform and dichloroacetic acid (DCAA) during chlorination. Lignin phenols generally produced higher DBP yields but lower percentages of unknown total organic halogen compared to bulk humic substances and lignin polymers. The relative significance of lignin phenols as chlorination DBP precursors generally follows the order of TCAA > DCAA&chloroform. The relative significance of lignin phenols to DBP formation by chloramination follows the order: TCAA > DCAA&DCAN > chloroform. Overall, lignin phenols are more important as TCAA precursors than as chloroform and DCAA precursors.

  16. Virus Sensitivity Index of UV disinfection.

    Science.gov (United States)

    Tang, Walter Z; Sillanpää, Mika

    2015-01-01

    A new concept of Virus Sensitivity Index (VSI) is defined as the ratio between the first-order inactivation rate constant of a virus, ki, and that of MS2-phage during UV disinfection, kr. MS2-phage is chosen as the reference virus because it is recommended as a virus indicator during UV reactor design and validation by the US Environmental Protection Agency. VSI has wide applications in research, design, and validation of UV disinfection systems. For example, it can be used to rank the UV disinfection sensitivity of viruses in reference to MS2-phage. There are four major steps in deriving the equation between Hi/Hr and 1/VSI. First, the first-order inactivation rate constants are determined by regression analysis between Log I and fluence required. Second, the inactivation rate constants of MS2-phage are statistically analysed at 3, 4, 5, and 6 Log I levels. Third, different VSI values are obtained from the ki of different viruses dividing by the kr of MS2-phage. Fourth, correlation between Hi/Hr and 1/VSI is analysed by using linear, quadratic, and cubic models. As expected from the theoretical analysis, a linear relationship adequately correlates Hi/Hr and 1/VSI without an intercept. VSI is used to quantitatively predict the UV fluence required for any virus at any log inactivation (Log I). Four equations were developed at 3, 4, 5, and 6 Log I. These equations have been validated using external data which are not used for the virus development. At Log I less than 3, the equation tends to under-predict the required fluence at both low Log I such as 1 and 2 Log I. At Log I greater than 3 Log I, the equation tends to over-predict the fluence required. The reasons for these may very likely be due to the shoulder at the beginning and the tailing at the end of the collimated beam test experiments. At 3 Log I, the error percentage is less than 6%. The VSI is also used to predict inactivation rate constants under two different UV disinfection

  17. UV Disinfection System for Cabin Air

    Science.gov (United States)

    Lim, Soojung

    Ultraviolet (UV) radiation is commonly used for disinfection of water. As a result of advancements made in the last 10-15 years, the analysis and design of UV disinfection systems for water is well developed. UV disinfection is also used for disinfection of air; however, despite the fact the UV-air systems have a longer record of application than UV-water systems, the methods used to analyze and design UV-air disinfection systems remain quite empirical. It is well-established that the effectiveness of UV-air systems is strongly affected by the type of microorganisms, the irradiation level/type (lamp power and wavelength), duration of irradiation (exposure time), air movement pattern (mixing degree), and relative humidity. This paper will describe ongoing efforts to evaluate, design and test a UV-air system based on first principles. Specific issues to be addressed in this work will include laboratory measurements of relevant kinetics (i.e., UV dose-response behavior) and numerical simulations designed to represent fluid mechanics and the radiation intensity field. UV dose-response behavior of test microorganism was measured using a laboratory (bench-scale) system. Target microorganisms (e.g., bacterial spores) were first applied to membrane filters at sub-monolayer coverage. The filters were then transferred to an environmental chamber at fixed relative humidity (RH) and allowed to equilibrate with their surroundings. Microorganisms were then subjected to UV exposure under a collimated beam. The experiment was repeated at RH values ranging from 20% to 100%. UV dose-response behavior was observed to vary with RH. For example, at 100% RH, a UV dose of 20 mJ/cm2 accomplished 90% (1 log10 units) of the B. subtilis spore inactivation, whereas 99 % (2 log10 units) inactivation was accomplished at this same UV dose under 20% RH conditions. However, at higher doses, the result was opposite of that in low dose. Reactor behavior is simulated using an integrated application

  18. A review of heterogeneous photocatalysis for water and surface disinfection.

    Science.gov (United States)

    Byrne, John Anthony; Dunlop, Patrick Stuart Morris; Hamilton, Jeremy William John; Fernández-Ibáñez, Pilar; Polo-López, Inmaculada; Sharma, Preetam Kumar; Vennard, Ashlene Sarah Margaret

    2015-03-30

    Photo-excitation of certain semiconductors can lead to the production of reactive oxygen species that can inactivate microorganisms. The mechanisms involved are reviewed, along with two important applications. The first is the use of photocatalysis to enhance the solar disinfection of water. It is estimated that 750 million people do not have accessed to an improved source for drinking and many more rely on sources that are not safe. If one can utilize photocatalysis to enhance the solar disinfection of water and provide an inexpensive, simple method of water disinfection, then it could help reduce the risk of waterborne disease. The second application is the use of photocatalytic coatings to combat healthcare associated infections. Two challenges are considered, i.e., the use of photocatalytic coatings to give "self-disinfecting" surfaces to reduce the risk of transmission of infection via environmental surfaces, and the use of photocatalytic coatings for the decontamination and disinfection of medical devices. In the final section, the development of novel photocatalytic materials for use in disinfection applications is reviewed, taking account of materials, developed for other photocatalytic applications, but which may be transferable for disinfection purposes.

  19. ASSESSMENT OF ACTION OF DISINFECTANTS AGAINST LISTERIA MONOCYTOGENES BIOFILMS

    Directory of Open Access Journals (Sweden)

    T. K. CABEÇA

    2008-12-01

    Full Text Available

    The purpose of this study was to assess the action of various disinfectants used in food industry against biofilm cells of Listeria monocytogenes formed on stainless steel surfaces during 24, 72 and 120 hours. Numbers of viable biofilm cells decreased after treatment with all the tested disinfectants (iodine, biguanide, quaternary ammonium compounds, peracetic acid and sodium hypochlorite. Sodium hypochlorite was the most effective disinfectant against the biofilm cells, while biguanide and iodine were the least. Scanning electron microscopy observations demonstrated attached cells on stainless steel surfaces after treatment with all the disinfectants. These observations showed that microorganisms were not completely removed from stainless steel surfaces after treatment with the disinfectants, however, the attachment did not means the viability of remaining cells. The biofilm age in hours (24, 72 and 120 had no apparent influence on resistance of microbiological cells to the disinfectants under study. In conclusion biofilm cells of L. monocytogenes can withstand disinfectants action.

  20. Automatic application of teat disinfectant through the milking machine cluster.

    Science.gov (United States)

    Grindal, R J; Priest, D J

    1989-08-01

    An automatic device, which infuses disinfectant into the mouthpiece of the liner of the milking machine cluster as teatcups are removed, is described. Application at this time avoids any delay in disinfection, reduces the workload in the parlour and increases reliability of application. The teats of 20 cows were contaminated before each milking by immersion in a suspension of Staphylococcus aureus and Streptococcus agalactiae and then disinfected manually or automatically with iodophor after milking. Str. agalactiae was recovered from less than 5% of swabs and there was no difference between the results from the two methods. Neither method of disinfection was as effective against Staph. aureus and the recovery rate was significantly greater for the automatic method for both swabs from teat barrel (P less than 0.05) and teat apex (P less than 0.001). Rates of intramammary infection for quarters automatically or manually disinfected were similar and low (3/40 v. 6/40 respectively). The automatic method facilitates cluster removal by relieving vacuum and decreasing frictional contact at the mouthpiece lip, and utilizes approximately half the quantity of disinfectant used by manual dipping (0.9 v. 1.9 ml/teat). However, iodine contamination in the milk from the iodophor teat disinfectant was significantly increased from 14.4 to 102.2 micrograms 12/100 ml milk when no backflushing was practised.

  1. Ortho-phthalaldehyde exposure levels among endoscope disinfection workers.

    Science.gov (United States)

    Miyajima, Keiko; Yoshida, Jin; Kumagai, Shinji

    2010-01-01

    Recently, the use of ortho-phthalaldehyde (OPA) has been increasing as an alternative to glutaraldehyde for endoscope disinfection. To better understand OPA exposure and its health effects among disinfection workers, we conducted environmental monitoring and administered a questionnaire in 17 endoscope disinfection rooms. There were 9 manual disinfection rooms using immersion vats for scope disinfection and 8 automatic rooms using automatic washers. OPA exposure concentration during the disinfection process of scope was significantly higher in the manual group (median: 1.43ppb, range: not detected (ND-5.37ppb) than in the automatic group (median: 0.35 ppb, range: ND-0.69 ppb). Similarly, during charging and discharging the antiseptic solution, OPA levels were significantly higher in the manual group (median: 2.58 ppb, range: 0.92-10.0 ppb) than in the automatic group (median: 0.46ppb, range: ND-1.35 ppb). Time-weighted averages of OPA exposure concentration during work shifts were 0.33 to 1.15 ppb (median 0.66 ppb) in the manual group and 0.13 to 1.28 ppb (median 0.33 ppb) in the automatic group, which suggests that manual workers are exposed to OPA at higher levels. Among 80 female disinfection workers who used only antiseptic solutions containing OPA, the incidence of disinfection-related complaints were 10% skin, 9% eye, and 16% respiratory symptoms. These findings suggest that it is desirable to introduce automatic washers to decrease OPA exposure levels among disinfection workers.

  2. Evaluation of alternative methods for the disinfection of toothbrushes

    Directory of Open Access Journals (Sweden)

    Edson Yukio Komiyama

    2010-03-01

    Full Text Available The aim of this study was to evaluate alternative methods for the disinfection of toothbrushes considering that most of the previously proposed methods are expensive and cannot be easily implemented. Two-hundred toothbrushes with standardized dimensions and bristles were included in the study. The toothbrushes were divided into 20 experimental groups (n = 10, according to microorganism considered and chemical agent used. The toothbrushes were contaminated in vitro by standardized suspensions of Streptococcus mutans, Streptococcus pyogenes, Staphylococcus aureus or Candida albicans. The following disinfectants were tested: 0.12% chlorhexidine digluconate, 50% white vinegar, a triclosan-containing dentifrice solution, and a perborate-based tablet solution. The disinfection method was immersion in the disinfectant for 10 min. After the disinfection procedure, the number of remaining microbial cells was evaluated. The values of cfu/toothbrush of each group of microorganism after disinfection were compared by Kruskal-Wallis ANOVA and Dunn's test for multiple comparisons (5%. The chlorhexidine digluconate solution was the most effective disinfectant. The triclosan-based dentifrice solution promoted a significant reduction of all microorganisms' counts in relation to the control group. As to the disinfection with 50% vinegar, a significant reduction was observed for all the microorganisms, except for C. albicans. The sodium perborate solution was the less effective against the tested microorganisms. Solutions based on triclosan-containing dentifrice may be considered effective, nontoxic, cost-effective, and an easily applicable alternative for the disinfection of toothbrushes. The vinegar solution reduced the presence of S. aureus, S. mutans and S. pyogenes on toothbrushes.

  3. Disinfection of bacterially contaminated hydrophilic PVS impression materials.

    Science.gov (United States)

    Estafanous, Emad Wadie; Palenik, Charles John; Platt, Jeffrey A

    2012-01-01

    This study evaluated disinfection of bacterially contaminated hydrophilic polyvinylsiloxane (PVS) and polyether impressions. Four light-bodied PVS (Examix, Genie, Take 1, Aquasil) and one polyether (Impregum) impression materials were evaluated using three disinfectants (EcoTru [EnviroSystems], ProSpray [Certol], and bleach [diluted 1:9]) as spray and immersion disinfections for 10-minute exposures. Pseudomonas aeruginosa ATCC 15442, Salmonella choleraesius ATCC 10708, and Staphylococcus aureus ATCC 6538 was the microbial challenge. Test specimens were prepared using aluminum molds with ten tapered cones. Mucin covered each cone, followed by 0.01 mL of each bacterium. Impressions were made using low viscosity impression material that was injected over the cones and filled custom trays. One-half of the impressions were spray disinfected, while the others underwent immersion disinfection. Trays that were contaminated but not disinfected served as positive controls, while those not bacterially contaminated or disinfected served as negative controls. The impressions were poured with Silky Rock Die Stone, and after setting, two cones were placed within a sterile capsule and triturated into powder. Four milliliters of TRIS buffer (0.05 M, pH 7.0) containing sodium thiosulfate (0.0055% w/v) were poured in each tube. After mixing, the solution was serially diluted and spread-plated onto selective agars. After incubation, colony counting occurred. No viable bacteria transferred to casts from either spray- or immersion-disinfected impressions. Negative controls produced no microbial colonies. Positive controls produced on average 3.35 × 10(5) bacterial cells. Results suggest the methods used could disinfect contaminated impression materials. Microbial transfer from nondisinfected impressions to cones approached 33.5%. © 2011 by the American College of Prosthodontists.

  4. Dose requirements for UVC disinfection of catheter biofilms

    DEFF Research Database (Denmark)

    Bak, Jimmy; Ladefoged, Søren D.; Tvede, Michael

    2009-01-01

    Bacterial biofilms on permanent catheters are the major sources of infection. Exposure to ultraviolet-C (UVC) light has been proposed as a method for disinfecting the inner surface of catheters. Specification of a UVC-based device for in vivo disinfection is based on the knowledge of the required...... newly inserted catheters free of contamination. The combination of high doses required to kill mature biofilm and the limited effect of current UVC light sources result in a relative long treatment time (similar to 60 min). If a UVC-based method is to be of practical use for disinfection of catheters...

  5. Disinfection of dental impressions and occlusal records by ultraviolet radiation.

    Science.gov (United States)

    Larsen, T; Fiehn, N E; Peutzfeldt, A; Owall, B

    2000-06-01

    As chemical disinfection of dental impressions may cause adverse effects on materials and the dental personnel this study examined disinfection by ultraviolet radiation. Alginate, addition silicone rubber and red wax contaminated by Streptococcus salivarius, Fusobacterium nucleatum and five other bacteria in different suspension media were radiated for up to 18 min, and the number of colony forming units was compared to non-radiated controls. The effect of ultraviolet radiation differed among bacterial species and depended on the organic content in the suspension. Generally, the bacterial reduction after ultraviolet radiation was below 4 log steps and thus insufficient for disinfection of dental impressions.

  6. Efficacy of various surface disinfectants on an irregular surface.

    Science.gov (United States)

    Lado, E A; Anekal, S; Stout, F W

    1993-04-01

    Representative samples of hard surface disinfectants were tested against Pseudomonas aeruginosa (ATCC 27853) on frosted glass rods. The same protocol was followed by two investigators on 100 rods for each product tested. Results showed Sporicidin surface disinfectant (Ash Dentsply, York, Pa.) and household bleach 1:10 to be most effective against P. aeruginosa. Lysol disinfectant spray (Lehn & Fink Products, Montvale, N.J.), performed similarly whereas Biocide (Biotrol International, Woods Cross, Utah) failed to inhibit growth on more than half of the rods treated. Failure of the iodophor may be attributed to the use of cotton-filled gauze, because cellulose is believed to react with nascent iodine.

  7. Sterilization, high-level disinfection, and environmental cleaning.

    Science.gov (United States)

    Rutala, William A; Weber, David J

    2011-03-01

    Failure to perform proper disinfection and sterilization of medical devices may lead to introduction of pathogens, resulting in infection. New techniques have been developed for achieving high-level disinfection and adequate environmental cleanliness. This article examines new technologies for sterilization and high-level disinfection of critical and semicritical items, respectively, and because semicritical items carry the greatest risk of infection, the authors discuss reprocessing semicritical items such as endoscopes and automated endoscope reprocessors, endocavitary probes, prostate biopsy probes, tonometers, laryngoscopes, and infrared coagulation devices. In addition, current issues and practices associated with environmental cleaning are reviewed.

  8. Occurrence of bromate, chlorite and chlorate in drinking waters disinfected with hypochlorite reagents. Tracing their origins.

    Science.gov (United States)

    Garcia-Villanova, Rafael J; Oliveira Dantas Leite, M Vilani; Hernández Hierro, J Miguel; de Castro Alfageme, Santiago; García Hernández, Cristina

    2010-05-15

    Bromate was first reported as a disinfection by-product from ozonated waters, but more recently it has been reported also as a result of treatment using hypochlorite solutions worldwide. The aim of this study was to study the scope of this phenomenon in the drinking waters (n=509) of Castilla y León, Spain, and in the hypochlorite disinfectant reagents. Two thirds of the treated waters monitored were found to have bromate concentrations higher than 1 microg/l, and of them a median value of 8 microg/l and a maximum of 49 microg/l. These concentrations are higher than those reported so far, however, a great variability can be found. Median values for chlorite were of 5 microg/l, and of 119 microg/l for chlorate. Only 7 out of 40 hypochlorite feedstock solutions were negative for bromate, the rest showing a median of 1022 mg/l; and 4 out of 14 calcium hypochlorite pellets were also negative, the rest with a median of 240 mg/kg. Although bromate is cited as potentially added to water from calcium hypochlorite pellets, no reference is found in scientific literature regarding its real content. Chlorite (median 2646 mg/l) and chlorate (median 20,462 mg/l) and chlorite (median 695 mg/kg) and chlorate (median 9516 mg/kg) were also monitored, respectively, in sodium hypochlorite solutions and calcium hypochlorite pellets. The levels of chlorite and chlorate in water are considered satisfactory, but not those of bromate, undoubtedly owing to the high content of bromide in the raw brines employed by the chlor-alkali manufacturers. Depending on the manufacturer, the bromate concentrations in the treated waters may be very heterogeneous owing to the lack of specification for this contaminant in the disinfectant reagents -the European Norms EN 900 and 901 do not mention it. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Biological efficacy and toxic effect of emergency water disinfection process based on advanced oxidation technology.

    Science.gov (United States)

    Tian, Yiping; Yuan, Xiaoli; Xu, Shujing; Li, Rihong; Zhou, Xinying; Zhang, Zhitao

    2015-12-01

    An innovative and removable water treatment system consisted of strong electric field discharge and hydrodynamic cavitation based on advanced oxidation technologies was developed for reactive free radicals producing and waterborne pathogens eliminating in the present study. The biological efficacy and toxic effects of this advanced oxidation system were evaluated during water disinfection treatments. Bench tests were carried out with synthetic microbial-contaminated water, as well as source water in rainy season from a reservoir of Dalian city (Liaoning Province, China). Results showed that high inactivation efficiency of Escherichia coli (>5 log) could be obtained for synthetic contaminated water at a low concentration (0.5-0.7 mg L(-1)) of total oxidants in 3-10 s. The numbers of wild total bacteria (108 × 10(3) CFU mL(-1)) and total coliforms (260 × 10(2) MPN 100 mL(-1)) in source water greatly reduced to 50 and 0 CFU mL(-1) respectively after treated by the advanced oxidation system, which meet the microbiological standards of drinking water, and especially that the inactivation efficiency of total coliforms could reach 100%. Meanwhile, source water qualities were greatly improved during the disinfection processes. The values of UV254 in particular were significantly reduced (60-80%) by reactive free radicals. Moreover, the concentrations of possible disinfection by-products (formaldehyde and bromide) in treated water were lower than detection limits, indicating that there was no harmful effect on water after the treatments. These investigations are helpful for the ecotoxicological studies of advanced oxidation system in the treatments of chemical polluted water or waste water. The findings of this work suggest that the developed water treatment system is ideal in the acute phases of emergencies, which also could offer additional advantages over a wide range of applications in water pollution control.

  10. ADVANCED GASIFICATION BY-PRODUCT UTILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Rodney Andrews; Aurora Rubel; Jack Groppo; Ari Geertsema; M. Mercedes Maroto-Valer; Zhe Lu; Harold Schobert

    2005-04-01

    The results of laboratory investigations and supporting technical assessments conducted under DOE Subcontract No. DE-FG26-03NT41795 are reported for the period September 1, 2003 to August 31, 2004. This contract is with the University of Kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Research and The Pennsylvania State University Energy Institute. The worked described was part of a project entitled ''Advanced Gasification By-Product Utilization''. This work involves the development of technologies for the separation and characterization of coal gasification slags from operating gasification units, activation of these materials to increase mercury and nitrogen oxide capture efficiency, assessment of these materials as sorbents for mercury and nitrogen oxides, and characterization of these materials for use as polymer fillers.

  11. Antimicrobial-Coated Granules for Disinfecting Water

    Science.gov (United States)

    Akse, James R.; Holtsnider, John T.; Kliestik, Helen

    2011-01-01

    Methods of preparing antimicrobialcoated granules for disinfecting flowing potable water have been developed. Like the methods reported in the immediately preceding article, these methods involve chemical preparation of substrate surfaces (in this case, the surfaces of granules) to enable attachment of antimicrobial molecules to the surfaces via covalent bonds. A variety of granular materials have been coated with a variety of antimicrobial agents that include antibiotics, bacteriocins, enzymes, bactericides, and fungicides. When employed in packed beds in flowing water, these antimicrobial-coated granules have been proven effective against gram-positive bacteria, gram-negative bacteria, fungi, and viruses. Composite beds, consisting of multiple layers containing different granular antimicrobial media, have proven particularly effective against a broad spectrum of microorganisms. These media have also proven effective in enhancing or potentiating the biocidal effects of in-line iodinated resins and of very low levels of dissolved elemental iodine.

  12. Effects of wastewater disinfection on waterborne bacteria and viruses

    Science.gov (United States)

    Blatchley, E. R.; Gong, W.-L.; Alleman, J.E.; Rose, J.B.; Huffman, D.E.; Otaki, M.; Lisle, J.T.

    2007-01-01

    Wastewater disinfection is practiced with the goal of reducing risks of human exposure to pathogenic microorganisms. In most circumstances, the efficacy of a wastewater disinfection process is regulated and monitored based on measurements of the responses of indicator bacteria. However, inactivation of indicator bacteria does not guarantee an acceptable degree of inactivation among other waterborne microorganisms (e.g., microbial pathogens). Undisinfected effluent samples from several municipal wastewater treatment facilities were collected for analysis. Facilities were selected to provide a broad spectrum of effluent quality, particularly as related to nitrogenous compounds. Samples were subjected to bench-scale chlorination and dechlorination and UV irradiation under conditions that allowed compliance with relevant discharge regulations and such that disinfectant exposures could be accurately quantified. Disinfected samples were subjected to a battery of assays to assess the immediate and long-term effects of wastewater disinfection on waterborne bacteria and viruses. In general, (viable) bacterial populations showed an immediate decline as a result of disinfectant exposure; however, incubation of disinfected samples under conditions that were designed to mimic the conditions in a receiving stream resulted in substantial recovery of the total bacterial community. The bacterial groups that are commonly used as indicators do not provide an accurate representation of the response of the bacterial community to disinfectant exposure and subsequent recovery in the environment. UV irradiation and chlorination/dechlorination both accomplished measurable inactivation of indigenous phage; however, the extent of inactivation was fairly modest under the conditions of disinfection used in this study. UV irradiation was consistently more effective as a virucide than chlorination/dechlorination under the conditions of application, based on measurements of virus (phage

  13. A prototype catheter designed for ultraviolet C disinfection

    DEFF Research Database (Denmark)

    Bak, Jimmy; Begovic, Tanja

    2013-01-01

    Background Disinfection of the intraluminal space of single-lumen polymer tubes can be obtained by ultraviolet C (UVC) light exposure from an external light source. In existing catheters UVC disinfection is hampered by the design of the catheter hub and tube connector. Aim To demonstrate...... that it is possible to design a single-lumen catheter with a hub, tube connector and tube parts that can be UVC-disinfected throughout its entire lumen. Methods Two single-lumen catheters were designed: one control and one for UVC exposure. They were contaminated with Pseudomonas aeruginosa (104–105 cfu/mL) before...... UVC light exposure, sampling and plate counting. Findings Two minutes of UVC exposure was sufficient to obtain 4 log10 disinfection for the full-length prototype catheter. This exposure corresponds to ∼40 mJ/cm2 at the catheter tip and indicates that even shorter exposure times can be achieved...

  14. Waterline ATS B. globigii spore water disinfection data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Disinfection of B. globigii spores (a non-pathogenic surrogate for B. anthracis) in clean and dirty water using the ATS-Waterline system, which uses ultraviolet...

  15. Disinfection of Biofilms in Tubes with Ultraviolet Light

    DEFF Research Database (Denmark)

    Bak, Jimmy; Begovic, Tanja

    2009-01-01

    Bacterial biofilms on long-term catheters are a major source of infection. We demonstrate here the potential of UVC light emitting diodes (LED) for disinfection purposes in catheter like tubes contaminated with biofilm. We show that UVC Light propagation is possible through teflon tubes using...... that the UVC light attenuation inside the tube can be described by an exponential function depending of tube length and various loss mechanisms. The disinfection efficiency of the UVC diodes is demonstrated on tubes contaminated artificially with a Pseudomonas aeruginosa biofilm. The tubes were connected....../ml. The disinfection rates obtained were to close to 100 % (detection limit: 10 CFU/ml). Based on the our investigations we conclude that there is a potential of using LED UVC light sources for disinfection of tubes with thin or transparent biofilms....

  16. Disinfection of low quality wastewaters by ultraviolet irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zukovs, G.; Kollar, J.; Monteith, H.D.; Ho, K.W.A.; Ross, S.A.

    1986-03-01

    Pilot-scale disinfection of simulated combined sewer overflow (CSO) by ultraviolet light (UV) and by high-rate chlorination were compared. Disinfection efficiency was evaluated over a range of dosages and contact times for fecal coliforms, enterococci, P. Aeruginosa, and Salmonella spp. Fecal coliform were reduced 3.0 to 3.2 logs at a UV dose of approximately 350,000..mu.. W s/cm/sup 2/. High-rate chlorination, at a contact time of 2.0 minutes and total residual chlorine concentration of approximately 25 mg/L (as Cl/sub 2/), reduced fecal coliforms by 4.0 logs. Pathogens were reduced to detection limits by both processes. Neither photoreactivation nor regrowth occurred int he disinfected effluents. The estimated capital costs of CSO disinfection by UV irradiation were consistently higher than for chlorination/dechlorination; operation and maintenance costs were similar. 19 references.

  17. Effect of hydrodynamic cavitation on zooplankton: A tool for disinfection

    Digital Repository Service at National Institute of Oceanography (India)

    Sawant, S.S.; Anil, A.C.; Venkat, K.; Gaonkar, C.; Kolwalkar, J.; Khandeparker, L.; Desai, D.V.; Mahulkar, A.V.; Ranade, V.V.; Pandit, A.B.

    Application of hydrodynamic cavitation for disinfection of water is gaining momentum, as it provides environmentally and economically sound options. In this effort, the effect of cavitating conditions created by differential pump valve opening...

  18. Selecting a Sustainable Disinfection Technique for Wastewater Reuse Projects

    Directory of Open Access Journals (Sweden)

    Jorge Curiel-Esparza

    2014-09-01

    Full Text Available This paper presents an application of the Analytical Hierarchy Process (AHP by integrating a Delphi process for selecting the best sustainable disinfection technique for wastewater reuse projects. The proposed methodology provides project managers a tool to evaluate problems with multiple criteria and multiple alternatives which involve non-commeasurable decision criteria, with expert opinions playing a major role in the selection of these treatment technologies. Five disinfection techniques for wastewater reuse have been evaluated for each of the nine criteria weighted according to the opinions of consulted experts. Finally, the VIKOR method has been applied to determine a compromise solution, and to establish the stability of the results. Therefore, the expert system proposed to select the optimal disinfection alternative is a hybrid method combining the AHP with the Delphi method and the VIKOR technique, which is shown to be appropriate in realistic scenarios where multiple stakeholders are involved in the selection of a sustainable disinfection technique for wastewater reuse projects.

  19. Sterilization and Disinfection Procedures by Dental Practitioners in ...

    African Journals Online (AJOL)

    Sterilization and Disinfection Procedures by Dental Practitioners in Nigeria. ... At least one HIV/AIDS known and at least one suspected HIV/AIDS patients ... a reasonable percentage of them are conscientious and aware of the risk factors.

  20. IDENTIFICATION OF TI02/UV DISINFECTION BYPRODUCTS IN DRINKING WATER

    Science.gov (United States)

    Due to concern over the presence of trihalomethanes (THMs) and other chlorinated byproducts in chlorinated drinking water, alternative disinfection methods are being explored. One of the alternative treatment methods currently being evaluated for potential use with small systems ...

  1. [Effectiveness of alcoholic hand disinfectants against methicillin resistant Staphylococcus aureus].

    Science.gov (United States)

    Kampf, G; Jarosch, R; Rüden, H

    1997-03-01

    In order to determine the efficacy of hand disinfectants based on alcohol against three MRSA strains and 3 methicillin-susceptible S. aureus strains (MSSA), 1-propanol (60%) as well as Sterillium and Spitaderm were investigated in the quantitative suspension test at various dilutions and reactions times (15, 30 and 60s). All undiluted disinfectants revealed reduction factors > 6 against MRSA and MSSA after 30s. Diluted disinfectants (50%) were significantly less effective against MRSA at short reaction times (15 s) (p Sterillium in a dilution of 50% did not reach 5 reduction factors against either MRSA or MSSA after 30 s. The impact of an appropriate use of hand disinfectants in order to break chains of infections with MRSA is obvious.

  2. IDENTIFICATION OF TI02/UV DISINFECTION BYPRODUCTS IN DRINKING WATER

    Science.gov (United States)

    Due to concern over the presence of trihalomethanes (THMs) and other chlorinated byproducts in chlorinated drinking water, alternative disinfection methods are being explored. One of the alternative treatment methods currently being evaluated for potential use with small systems ...

  3. Application of solar treatment for the disinfection of geophagic clays ...

    African Journals Online (AJOL)

    Elvis Fosso-Kankeu

    Key words: Geophagic clays, solar treatment, microorganisms, moisture content, organic carbon, mining sites, markets. ..... medicines to treat the causes and the symptoms of ..... Solar disinfection of drinking water protects against cholera in.

  4. Severe anaphylaxis to a new disinfectant: polyhexanide, a chlorhexidine polymer.

    Science.gov (United States)

    Olivieri, J; Eigenmann, P A; Hauser, C

    1998-10-03

    We describe the cases of an 18-year-old female and a 15-year-old male who developed severe anaphylaxis following contact of surgical wounds with the disinfectant Lavasept, containing polyhexanide, a polymerised form of chlorhexidine, during orthopaedic interventions. According to the manufacturer, this product is the only polyhexanide containing medical disinfectant, has recently been commercialised and is only available in Switzerland. One of the patients denied previous contact with this compound but both patients were previously exposed to chlorhexidine. Immediate-type hypersensitivity to polyhexanide was suggested by positive skin prick tests in the two patients and by negative skin tests in control individuals. Skin tests with chlorhexidine in the patients remained negative. We conclude that contact with the new disinfectant Lavasept can trigger anaphylactic reactions, even in the absence of previous history of exposure to this compound. It remains to be established whether this new disinfectant is a frequent anaphylactogen.

  5. Microwave Disinfection in a Ventilation and Air-Conditioning System

    Institute of Scientific and Technical Information of China (English)

    LU Zhen; ZHANG Ji-li; MA Liang-dong; HE Juan

    2009-01-01

    Because of its broad spectrum and high efficiency,the microwave disinfection was used to control the airborne microbial contaminates in VAC system.Some microwave disinfection devices were developed com-bined with air filter,the design and calculation method was presented,and the disinfection effects on White staphylococcus,Staphylococcus aureus,Bacillus Subtilis,Escherichi coli were measured.The results show that the major influence factors on disinfection effect are microwave power,water-content of filter material,dis-infecting duration.After 15 min,the kill ratio is>90%,and the log value is>1.The microwave field is uni-form and the kill effect of bacteria on each surface of filter is the same,without statistically significant differ-ence.

  6. Effects of different cavity‑disinfectants and potassium titanyl ...

    African Journals Online (AJOL)

    2014-10-25

    Oct 25, 2014 ... Methodology: Twelve primary molar teeth were used in this study. One‑third ... After applying the cavity‑disinfectants, an adhesive (prime and bond NT) was applied to .... 532 nm, a new wavelength for dental applications, has.

  7. Effects of ozonation on disinfection byproduct formation and speciation during subsequent chlorination.

    Science.gov (United States)

    Mao, Yuqin; Wang, Xiaomao; Yang, Hongwei; Wang, Haoyu; Xie, Yuefeng F

    2014-12-01

    Ozone has been widely used for drinking water treatment recently. This study was conducted to investigate the effect of dosing ozone on the formation potentials and speciation of disinfection by-products (DBPs, brominated DBPs in particular) during subsequent chlorination. Trihalomethanes (THMs), trihaloacetic acids (THAAs), dihaloacetic acids (DHAAs), dihaloacetonitriles (DHANs), chloral hydrate (CH)and trichloronitromethane (TCNM) were included. The results showed that the yields of THMs, THAAs and DHAAs reached the maxima at 1.83, 0.65 and 0.56 μM, respectively, corresponding to an ozone dose approximately at 2 mg L(-1). The formation potentials of CH and TCNM increased, while that of DHAN decreased, with the increase of ozone dose up to 6 mg L(-1). The bromide incorporation factor values of THMs, THAAs, DHAAs and DHANs increased from 0.62, 0.37, 0.45 and 0.39 at O3=0 mg L(-1) to 0.89, 0.65, 0.62 and 0.89 at O3=6 mg L(-1), respectively. It indicated that the use of ozone as a primary disinfectant may cause a shift to more brominated DBPs during subsequent chlorination, and the shift may be more evident with increased ozone dose. The total percentage of brominated DBPs (as bromide) reached the maximum value of 55% at 2 mg L(-1) ozone dose.

  8. Monitoring and improving the effectiveness of surface cleaning and disinfection.

    Science.gov (United States)

    Rutala, William A; Weber, David J

    2016-05-02

    Disinfection of noncritical environmental surfaces and equipment is an essential component of an infection prevention program. Noncritical environmental surfaces and noncritical medical equipment surfaces may become contaminated with infectious agents and may contribute to cross-transmission by acquisition of transient hand carriage by health care personnel. Disinfection should render surfaces and equipment free of pathogens in sufficient numbers to prevent human disease (ie, hygienically clean).

  9. The effectiveness of photocatalytic ionisation disinfection of filter materials.

    Science.gov (United States)

    Pietrzak, Katarzyna; Gutarowska, Beata

    2013-01-01

    The purpose of this study was to determine the effectiveness of photocatalytic ionisation as a disinfection method for filter materials contaminated by microorganisms, and to assess how air relative humidity (RH), time and microbe type influence the effectiveness of this disinfection. In the quantitative analysis of a used car air filter, bacterial contamination equalled 1.2 x 10(5) cfu/cm2, fungal contamination was 3.8 x 10(6) cfu/cm2, and the isolated microorganisms were Aspergillus niger, Bacillus megaterium, Cladosporium herbarum, Cryptococcus laurenti, Micrococcus sp., Rhodotorula glutinis and Staphylococcus cohnii. In the model experiment, three isolates (C. herbarum, R. glutinis, S. cohnii) and 3 ATCC species (A. niger, E. coli, S. aureus) were used for photocatalytic ionisation disinfection. The conditions of effective photocatalytic ionisation disinfection (R > or = 99.9%) were established as 2-3 h at RH = 77% (bacteria) and 6-24 h at RH = 53% (fungi). RH has an influence on the effectiveness of the photocatalytic disinfection process; the highest effectiveness was obtained for bacteria at RH = 77%, with results 5% higher than for RH = 49%. The studies show that the sensitivity of microorganisms to photocatalytic ionisation disinfection is ordered as follows: Gram-positive bacteria (S. cohnii, S. aureus), Gram-negative bacteria (E. coli), yeasts (R. glutinis), and moulds (C. herbarum, A. niger). Of all the mathematical models used for the description of death dynamics after photocatalytic ionisation disinfection, the Chick-Watson model is the most useful, but for more resistant microorganisms, the delayed Chick-Watson model is highly recommended. It therefore seems, that the presented disinfection method of photocatalytic ionisation can be successfully used to clean filtration materials.

  10. Efficiency of hydrogen peroxide in improving disinfection of ICU rooms

    OpenAIRE

    Blazejewski, Caroline; Wallet, Frédéric; Rouzé, Anahita; Le Guern, Rémi; Ponthieux, Sylvie; Salleron, Julia; Nseir, Saad

    2015-01-01

    Introduction The primary objective of this study was to determine the efficiency of hydrogen peroxide (H2O2) techniques in disinfection of ICU rooms contaminated with multidrug-resistant organisms (MDRO) after patient discharge. Secondary objectives included comparison of the efficiency of a vaporizator (HPV, Bioquell®) and an aerosolizer using H2O2, and peracetic acid (aHPP, Anios®) in MDRO environmental disinfection, and assessment of toxicity of these techniques. Methods This prospective c...

  11. Disinfectants in health care: finding an alternative to chlorine dioxide.

    Science.gov (United States)

    Keward, Josephine

    Cleanliness of the clinical environment has a direct impact on healthcare-associated infection (HCAI) incidence and there is increasing evidence of its importance with regard to infection prevention and control. While traditional high-level disinfectants have excellent antimicrobial properties, these are typically offset against issues such as corrosiveness, toxicity, cost and user acceptance. Recent years have seen several user-friendly sporicidal disinfectants emerge onto the market. Antimicrobial profile and user acceptance determine the clinical success of any disinfectant. Therefore, product adoption is often a two-stage process with a tabletop evaluation of the appropriate technical data, including efficacy claims, followed by an in-use product evaluation. The first part of this article demonstrates the importance of the clinical environment with respect to HCAI and examines some of the issues around disinfectants used in health care and considerations when selecting a new disinfectant for use. The second part reports the experiences of the Infection Prevention and Control team at Alder Hey Children's Hospital in their assessment and subsequent adoption of a new user-friendly sporicidal disinfectant into clinical practice.

  12. Disinfection of Needleless Connector Hubs: Clinical Evidence Systematic Review

    Science.gov (United States)

    Moureau, Nancy L.

    2015-01-01

    Background. Needleless connectors (NC) are used on virtually all intravascular devices, providing an easy access point for infusion connection. Colonization of NC is considered the cause of 50% of postinsertion catheter-related infections. Breaks in aseptic technique, from failure to disinfect, result in contamination and subsequent biofilm formation within NC and catheters increasing the potential for infection of central and peripheral catheters. Methods. This systematic review evaluated 140 studies and 34 abstracts on NC disinfection practices, the impact of hub contamination on infection, and measures of education and compliance. Results. The greatest risk for contamination of the catheter after insertion is the NC with 33–45% contaminated, and compliance with disinfection as low as 10%. The optimal technique or disinfection time has not been identified, although scrubbing with 70% alcohol for 5–60 seconds is recommended. Studies have reported statistically significant results in infection reduction when passive alcohol disinfection caps are used (48–86% reduction). Clinical Implications. It is critical for healthcare facilities and clinicians to take responsibility for compliance with basic principles of asepsis compliance, to involve frontline staff in strategies, to facilitate education that promotes understanding of the consequences of failure, and to comply with the standard of care for hub disinfection. PMID:26075093

  13. Ammonia disinfection of corn grains intended for ethanol fermentation

    Directory of Open Access Journals (Sweden)

    Magdalena Broda

    2009-12-01

    Full Text Available Background. Bacterial contamination is an ongoing problem for commercial bioethanol plants. It concerns factories using grain and also other raw materials for ethanol fermentation. Bacteria compete with precious yeasts for sugar substrates and micronutrients, secrete lactic and acetic acids, which are toxic for yeast and this competition leads to significant decrease of bioethanol productivity. For this study, bacterial contamination of corn grain was examined. Then the grain was treated by ammonia solution to reduce microbial pollution and after that the microbiological purity of grain was tested one more time. Disinfected and non-disinfected corn grains were ground and fermentation process was performed. Microbiological purity of this process and ethanol yield was checked out. Material and methods. The grain was disinfected by ammonia solution for two weeks. Then the grain was milled and used as a raw material for the ethanol fermentation. The fermentation process was carried out in 500-ml Erlenmeyer flasks. Samples were withdrawn for analysis at 0, 24, 48, 72 hrs. The number of total viable bacteria, lactic acid bacteria, acetic acid bacteria, anaerobic bacteria and the quantity of yeasts and moulds were signified by plate method. Results. Ammonia solution effectively reduces bacterial contamination of corn grain. Mash from grain disinfected by ammonia contains less undesirable microorganisms than mash from crude grain. Moreover, ethanol yield from disinfected grain is at the highest level. Conclusions. The ammonia solution proved to be a good disinfection agent for grain used as a raw material for bioethanol fermentation process.

  14. Microbial contamination of fruit and vegetables and their disinfection.

    Science.gov (United States)

    Oie, Shigeharu; Kiyonaga, Hiroko; Matsuzaka, Yuuki; Maeda, Kumiko; Masuda, Yuki; Tasaka, Katsuko; Aritomi, Sanae; Yamashita, Akiko; Kamiya, Akira

    2008-10-01

    We evaluated the microbial contamination of 17 types of vegetable and 10 types of fruit after 30-s washing with tap water with and without subsequent disinfection by 10-min immersion in 0.01% (100 ppm) sodium hypochlorite. The mean microbial contamination level of 9 types of leafy vegetable was 2.8 x 10(5) colony-forming units (CFU)/g after washing with water and 3.4 x 10(4) CFU/g after washing followed by disinfection. The mean microbial contamination level of 8 types of nonleafy vegetable was 3.4 x 10(4) CFU/g after washing with water and 1.0 x 10(4) CFU/g after washing followed by disinfection. The mean microbial contamination level of 10 types of unpeeled fleshy fruit was 9.3 x 10(3) CFU/g after washing with water and 1.3 x 10(3) CFU/g after washing followed by disinfection. The contaminants in vegetables and unpeeled fruit were similar after washing and after washing followed by disinfection, including Pseudomonas fluorescens and Pseudomonas aeruginosa. The contamination did not markedly decrease even after disinfection with sodium hypochlorite. However, the flesh of each type of peeled fruit showed no or only low levels of contamination (

  15. Effect of well disinfection on arsenic in ground water

    Science.gov (United States)

    Gotkowitz, M.; Ellickson, K.; Clary, A.; Bowman, G.; Standridge, J.; Sonzogni, W.

    2008-01-01

    Domestic water wells are routinely subjected to in situ chemical disinfection treatments to control nuisance or pathogenic bacteria. Most treatments are chlorine based and presumably cause strongly oxidizing conditions in the wellbore. Water resource managers in Wisconsin were concerned that such treatments might facilitate release of arsenic from sulfide minerals disseminated within a confined sandstone aquifer. To test this hypothesis, a well was subjected to four disinfection treatments over 9 months time. The first treatment consisted of routine pumping of the well without chemical disinfection; three subsequent treatments included chlorine disinfection and pumping. Pretreatment arsenic concentrations in well water ranged from 7.4 to 18 ??g/L. Elevated arsenic concentrations up to 57 ??g/L in the chemical treatment solutions purged from the well are attributed to the disintegration or dissolution of biofilms or scale. Following each of the four treatments, arsenic concentrations decreased to less than 10 ??g/L during a period of pumping. Arsenic concentrations generally returned to pretreatment levels under stagnant, nonpumping conditions imposed following each treatment. Populations of iron-oxidizing, heterotrophic, and sulfate-reducing bacteria decreased following chemical treatments but were never fully eradicated from the well. Strongly oxidizing conditions were induced by the chlorine-based disinfections, but the treatments did not result in sustained increases in well water arsenic. Results suggest that disruption of biofilm and mineral deposits in the well and the water distribution system in tandem with chlorine disinfection can improve water quality in this setting. ?? 2008 The Author(s).

  16. SAFER STERILE COMPOUNDING: Choosing and Using Disinfectants for the Cleanroom.

    Science.gov (United States)

    Kastango, Eric S; Douglass, Kate; Patel, Kedar; Givehchi, Babak; Brister, Paul; Postlewaite, Jay; Taraban, Laura

    2015-01-01

    Compounders worldwide are responsible for ensuring that the sterile preparations they dispense are pure, potent, and safe. To achieve that result, proper cleaning and disinfection of International Organization for Standardization controlled environments must occur. Because those tasks must be performed according to established standards, the compounding pharmacist must research regulatory requirements and appropriate products for use. In this report, we focus on U.S. regulations, guiding entities, and effective products that enable compliance with the increasingly stringent procedures required for pharmaceutical compounding. We also review cleaning and disinfecting processes, discuss the importance of correctly choosing and using disinfectants and/ or sporicidal disinfectants with surface claims in the cleanroom, and provide answers to questions frequently asked by staff who use those agents. In addition, we profile specific disinfectants that are compliant with UnitedStates Pharmacopeia Chapter and current good manufacturing practice standards. Biological safety cabinets and compounding aseptic containment isolators must undergo an additional process that deactivates hazardous drug residues and removes them from the interior surfaces of those devices before they are cleaned and disinfected, but that discussion is beyond the scope of this article.

  17. Mechanisms of Escherichia coli inactivation by several disinfectants.

    Science.gov (United States)

    Cho, Min; Kim, Jaeeun; Kim, Jee Yeon; Yoon, Jeyong; Kim, Jae-Hong

    2010-06-01

    The objective of this study was to elucidate dominant mechanisms of inactivation, i.e. surface attack versus intracellular attack, during application of common water disinfectants such as ozone, chlorine dioxide, free chlorine and UV irradiation. Escherichia coli was used as a representative microorganism. During cell inactivation, protein release, lipid peroxidation, cell permeability change, damage in intracellular enzyme and morphological change were comparatively examined. For the same level of cell inactivation by chemical disinfectants, cell surface damage was more pronounced with strong oxidant such as ozone while damage in inner cell components was more apparent with weaker oxidant such as free chlorine. Chlorine dioxide showed the inactivation mechanism between these two disinfectants. The results suggest that the mechanism of cell inactivation is primarily related to the reactivity of chemical disinfectant. In contrast to chemical disinfectants, cell inactivation by UV occurred without any changes measurable with the methods employed. Understanding the differences in inactivation mechanisms presented herein is critical to identify rate-limiting steps involved in the inactivation process as well as to develop more effective disinfection strategies.

  18. Disinfection of Needleless Connector Hubs: Clinical Evidence Systematic Review

    Directory of Open Access Journals (Sweden)

    Nancy L. Moureau

    2015-01-01

    Full Text Available Background. Needleless connectors (NC are used on virtually all intravascular devices, providing an easy access point for infusion connection. Colonization of NC is considered the cause of 50% of postinsertion catheter-related infections. Breaks in aseptic technique, from failure to disinfect, result in contamination and subsequent biofilm formation within NC and catheters increasing the potential for infection of central and peripheral catheters. Methods. This systematic review evaluated 140 studies and 34 abstracts on NC disinfection practices, the impact of hub contamination on infection, and measures of education and compliance. Results. The greatest risk for contamination of the catheter after insertion is the NC with 33–45% contaminated, and compliance with disinfection as low as 10%. The optimal technique or disinfection time has not been identified, although scrubbing with 70% alcohol for 5–60 seconds is recommended. Studies have reported statistically significant results in infection reduction when passive alcohol disinfection caps are used (48–86% reduction. Clinical Implications. It is critical for healthcare facilities and clinicians to take responsibility for compliance with basic principles of asepsis compliance, to involve frontline staff in strategies, to facilitate education that promotes understanding of the consequences of failure, and to comply with the standard of care for hub disinfection.

  19. A Review of Heterogeneous Photocatalysis for Water and Surface Disinfection

    Directory of Open Access Journals (Sweden)

    John Anthony Byrne

    2015-03-01

    Full Text Available Photo-excitation of certain semiconductors can lead to the production of reactive oxygen species that can inactivate microorganisms. The mechanisms involved are reviewed, along with two important applications. The first is the use of photocatalysis to enhance the solar disinfection of water. It is estimated that 750 million people do not have accessed to an improved source for drinking and many more rely on sources that are not safe. If one can utilize photocatalysis to enhance the solar disinfection of water and provide an inexpensive, simple method of water disinfection, then it could help reduce the risk of waterborne disease. The second application is the use of photocatalytic coatings to combat healthcare associated infections. Two challenges are considered, i.e., the use of photocatalytic coatings to give “self-disinfecting” surfaces to reduce the risk of transmission of infection via environmental surfaces, and the use of photocatalytic coatings for the decontamination and disinfection of medical devices. In the final section, the development of novel photocatalytic materials for use in disinfection applications is reviewed, taking account of materials, developed for other photocatalytic applications, but which may be transferable for disinfection purposes.

  20. Peracetic acid as disinfectant of municipal wastewaters; L'acido peracetico nella disinfezione dei reflui urbani

    Energy Technology Data Exchange (ETDEWEB)

    Funari, E. [Istituto Superiore di Sanita' , Laboratorio di Igiene Ambientale, Reparto di Medicina Ambientale, Rome (Italy); Lopez, A. [Consiglio Nazionale delle Ricerche, Istituto di Ricerca sulle Acque, Reparto di Chimica e Tecnologia delle Acque, Bari (Italy)

    2000-09-01

    Based on the currently available literature, this paper is aimed at providing a sort of the <> on the use of peracetic acid (C{sub 3}COOOH{identical_to} Paa) as disinfectant of biologically treated municipal wastewater: the growing interest for this substance, used since many years in other sectors (e.g., food-industry, breweries, etc.) is mainly due to the claimed limited formation, if any, of harmful disinfecting by-products (Dbp) with consequent lack of toxicity in Paa treated wastewaters. Such features are just the opposite of those of chlorine, i.e. the most used disinfectant for municipal wastewater. During chlorine-disinfecting, in fact, numerous harmful organo-chlorinated Dbp are formed and, accordingly, the toxicity of chlorinated effluents results very high. In spite of the above reported <> properties of Paa, its use at large scale facilities is still restricted and this not only because of its costs but even for the limited knowledge concerning: the actual disinfecting effectiveness towards different pathogens, the nature and the toxicological properties of its potential Dbp, and the disinfecting performances at large scale facilities. The present paper, besides reporting an extensive and useful collection of references concerning Paa, provides a critical review on the current knowledge regarding specific Paa features such as: its disinfecting effectiveness towards different pathogenic micro-organisms, the nature and the toxicity of its disinfecting by-products, the environmental impact of Paa treated effluents, and the operative conditions used at large scale wastewater treatment plants. [Italian] Il presente lavoro, basandosi sui dati disponibili in letteratura, si propone di fare il punto sull'impiego dell'acido peracetico (CH{sub 3}COOOH{identical_to} PAA) come disinfettante di reflui urbani depurati. Il crescente interesse nei confronti di questa sostenza, gia' nota come disinfettante in

  1. Identification of non-regulated aromatic amines of toxicological concern which can be cleaved from azo dyes used in clothing textiles.

    Science.gov (United States)

    Brüschweiler, Beat J; Küng, Simon; Bürgi, Daniel; Muralt, Lorenz; Nyfeler, Erich

    2014-07-01

    Azo dyes in textiles may release aromatic amines after enzymatic cleavage by skin bacteria or after dermal absorption and metabolism in the human body. From the 896 azo dyes with known chemical structure in the available textile dyes database, 426 azo dyes (48%) can generate one or more of the 22 regulated aromatic amines in the European Union in Annex XVII of REACH. Another 470 azo dyes (52%) can be cleaved into exclusively non-regulated aromatic amines. In this study, a search for publicly available toxicity data on non-regulated aromatic amines was performed. For a considerable percentage of non-regulated aromatic amines, the toxicity database was found to be insufficient or non-existent. 62 non-regulated aromatic amines with available toxicity data were prioritized by expert judgment with objective criteria according to their potential for carcinogenicity, genotoxicity, and/or skin sensitization. To investigate the occurrence of azo dye cleavage products, 153 random samples of clothing textiles were taken from Swiss retail outlets and analyzed for 22 high priority non-regulated aromatic amines of toxicological concern. Eight of these 22 non-regulated aromatic amines of concern could be detected in 17% of the textile samples. In 9% of the samples, one or more of the aromatic amines of concern could be detected in concentrations >30 mg/kg, in 8% of the samples between 5 and 30 mg/kg. The highest measured concentration was 622 mg/kg textile. There is an obvious need to assess consumer health risks for these non-regulated aromatic amines and to fill this gap in the regulation of clothing textiles.

  2. Laboratory and field investigation of chemical disinfection of combined sewer overflow in Copenhagen area

    DEFF Research Database (Denmark)

    Chhetri, Ravi Kumar; Thornberg, Dines; Berner, Jesper

    We investigated the possibility to apply performic acid (PFA) and peracetic acid (PAA) for disinfection of combined sewer overflow (CSO) in existing CSO management infrastructures. The disinfection power of PFA and PAA to Escherichia coli (E. coli) and enterococcus were studied in batch scale...... and pre-field experiment. There were no toxicological effect measured by Vibrio fischeri when CSO was disinfected with PFA, slight toxicological effect was observed on CSO disinfected with PAA. When the design for PFA based disinfection was applied to CSO collected from an authentic event. Disinfection...

  3. Disinfection and Sterilization in Health Care Facilities: An Overview and Current Issues.

    Science.gov (United States)

    Rutala, William A; Weber, David J

    2016-09-01

    When properly used, disinfection and sterilization can ensure the safe use of invasive and noninvasive medical devices. The method of disinfection and sterilization depends on the intended use of the medical device: critical items (contact sterile tissue) must be sterilized before use; semicritical items (contact mucous membranes or nonintact skin) must be high-level disinfected; and noncritical items (contact intact skin) should receive low-level disinfection. Cleaning should always precede high-level disinfection and sterilization. Current disinfection and sterilization guidelines must be strictly followed.

  4. Perturbation of xenobiotic metabolism in Dreissena polymorpha model exposed in situ to surface water (Lake Trasimene) purified with various disinfectants.

    Science.gov (United States)

    Sapone, Andrea; Canistro, Donatella; Vivarelli, Fabio; Paolini, Moreno

    2016-02-01

    Sanitation is of crucial importance for the microbiological safety of drinking water. However, chlorination of water rich in organic material produces disinfection by-products (DBPs), many of which have been reported to be mutagenic and/or carcinogenic compounds such as haloacetic acids and trihalomethanes. Epidemiological studies have suggested a link between drinking water consumption and cancer. We previously observed that Cyprinus carpio fish exposed to DBPs, may be subject to epigenetic effects such as those referable to the up-regulation of cytochrome P450 (CYP) superfamily (ex. co-mutagenesis/co-carcinogenesis and oxidative stress) that has been associated to non-genotoxic carcinogenesis. Our goal was to study the xenobiotic metabolism in mollusks exposed in situ to surface water of Lake Trasimene (Central Italy) treated with several disinfectants such as the traditional chlorine dioxide (ClO2), sodium hypochlorite (NaClO) or the relatively new one peracetic acid (PAA). The freshwater bivalves (Dreissena polymorpha) being selected as biomarker, have the unique ability to accumulate pollutants. Freshwater bivalves were maintained in surface water containing each disinfectant individually (1-2 mg/L). Following an exposure period up to 20 days during the fall period, microsomes were collected from the mussels, then tested for various monooxygenases. Strong CYP inductions were observed. These data indicate that drinking water disinfection generates harmful DBP mixtures capable of determining a marked perturbation of CYP-supported reactions. This phenomenon, being associated to an increased pro-carcinogen bioactivation and persistent oxidative stress, could provide an explanation for the observational studies connecting the regular consumption of drinking water to increased risk of various cancers in humans.

  5. In vitro study on the disinfectability of two split-septum needle-free connection devices using different disinfection procedures

    Science.gov (United States)

    Engelhart, Steffen; Exner, Martin; Simon, Arne

    2015-01-01

    This in vitro study investigated the external disinfection of two needle-free connection devices (NFC) using Octeniderm® (spraying and wiping technique) vs. Descoderm® pads (wiping technique). The split-septum membrane of the NFC was contaminated with >105 CFU K. pneumoniae or S. epidermidis. The efficacy of the disinfection at 30 sec. exposure time was controlled by taking a swab sample and by flushing the NFC with sterile 0.9% sodium chloride solution. Disinfection with octenidine dihydrochloride 0.1 g, 1-Propanol 30.0 g, and 2-Propanol 45.0 g in 100 g solution was highly effective (CFU reduction ≥4 log) against both microorganisms, whereas the use of 63.1 g 2-Propanol in 100 ml solution led to residual contamination with S. epidermidis. Our investigation underlines that (i) in clinical practice disinfection of NFCs before use is mandatory, and that (ii) details of disinfection technique are of utmost importance regarding their efficacy. Our investigation revealed no significant differences between both split-septum NFC types. Clinical studies are needed to confirm a possible superiority of disinfectants with long-lasting residual antimicrobial activity. PMID:26693394

  6. In vitro study on the disinfectability of two split-septum needle-free connection devices using different disinfection procedures

    Directory of Open Access Journals (Sweden)

    Engelhart, Steffen

    2015-12-01

    Full Text Available This in vitro study investigated the external disinfection of two needle-free connection devices (NFC using Octeniderm (spraying and wiping technique vs. Descoderm pads (wiping technique. The split-septum membrane of the NFC was contaminated with >10 CFU . The efficacy of the disinfection at 30 sec. exposure time was controlled by taking a swab sample and by flushing the NFC with sterile 0.9% sodium chloride solution. Disinfection with octenidine dihydrochloride 0.1 g, 1-Propanol 30.0 g, and 2-Propanol 45.0 g in solution was highly effective (CFU reduction ≥4 log against both microorganisms, whereas the use of 63.1 g 2-Propanol in 100 ml solution led to residual contamination with . Our investigation underlines that (i in clinical practice disinfection of NFCs before use is mandatory, and that (ii details of disinfection technique are of utmost importance regarding their efficacy. Our investigation revealed no significant differences between both split-septum NFC types. Clinical studies are needed to confirm a possible superiority of disinfectants with long-lasting residual antimicrobial activity.

  7. Advanced Gasification By-Product Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Rodney Andrews; Aurora Rubel; Jack Groppo; Ari Geertsema; Frank Huggins; M. Mercedes Maroto-Valer; Brandie M. Markley; Harold Schobert

    2006-02-01

    With the recent passing of new legislation designed to permanently cap and reduce mercury emissions from coal-fired utilities, it is more important than ever to develop and improve upon methods of controlling mercury emissions. One promising technique is carbon sorbent injection into the flue gas of the coal-fired power plant. Currently, this technology is very expensive as costly commercially activated carbons are used as sorbents. There is also a significant lack of understanding of the interaction between mercury vapor and the carbon sorbent, which adds to the difficulty of predicting the amount of sorbent needed for specific plant configurations. Due to its inherent porosity and adsorption properties as well as on-site availability, carbons derived from gasifiers are potential mercury sorbent candidates. Furthermore, because of the increasing restricted use of landfilling, the coal industry is very interested in finding uses for these materials as an alternative to the current disposal practice. The results of laboratory investigations and supporting technical assessments conducted under DOE Subcontract No. DE-FG26-03NT41795 are reported for the period September 1, 2004 to August 31, 2005. This contract is with the University of Kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Research and The Pennsylvania State University Energy Institute. The worked described was part of a project entitled ''Advanced Gasification By-Product Utilization''. This work involves the development of technologies for the separation and characterization of coal gasification slags from operating gasification units, activation of these materials to increase mercury and nitrogen oxide capture efficiency, assessment of these materials as sorbents for mercury and nitrogen oxides, and characterization of these materials for use as polymer fillers.

  8. Disparity in disinfection byproducts concentration between hot and cold tap water.

    Science.gov (United States)

    Liu, Boning; Reckhow, David A

    2015-03-01

    The quality of water entering a distribution system may differ substantially from the quality at the point of exposure to the consumer. This study investigated temporal variations in the levels of regulated and non-regulated disinfection byproducts (DBPs) in cold and hot tap water in a home on a medium-sized municipal water system. In addition, samples were collected directly from the water plant with some being held in accordance with a simulated distribution system (SDS) test protocol. The location for this work was a system in western Massachusetts, USA that uses free chlorine as a final disinfectant. Very little short term variability of DBPs at the point of entry (POE) was observed. The concentration of DBPs in the time-variable SDS test was similar to concentrations in the cold water tap. For most DBPs, the concentrations continued to increase as the cold water tap sample was held for the time-variable SDS incubation period. However, the impact of heating on DBP levels was compound specific. For example, the concentrations of trihalomethanes (THMs), dichloroacetic acid (DCAA) and chloropicrin (CP) were substantially higher in the hot water tap than in the cold water time-variable SDS samples. In contrast, the concentration of trichloroacetic acid (TCAA) was lower in the heated hot tap water, but about equal to that observed in the cold tap water. The situation was more pronounced for dichloroacetonitrile (DCAN), bromodichloroacetic acid (BDCAA), bromochloroacetic acid (BCAA) and 1,1,1-trichloropropanone (TCP), which all showed lower concentrations in the hot water then in either of the cold water samples (instantaneous or time-variable SDS). The latter was viewed as a clear indication of thermally-induced decomposition. The ratio of unknown total organic halide (UTOX) to TOX was substantially lower in the hot tap water as the THM to TOX ratio became correspondingly larger. The results of this study show that DBP exposure in the home is not well represented by

  9. Environmental assessment of disinfection methods by electron beam, UV and ozone using LCA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kun Mo; Jeong, In Tae; Choi, Yo Han; Kim, Jin Yong; Puruitichaiwiboon, Phirada; Park, Jeong Gun; Baek, Chun Youl; Chun, Yoon Young [Ajou University, Suwon (Korea, Republic of)

    2008-02-15

    It is a research to compare E-Beam radiation as a disinfection facility of effluent from wastewater treatment facility and other type of existing disinfection facility from environmental aspect. Research process: International Standard ISO14044:2006 Life Cycle Assessment Methodology: Eco-indicator 99 Methodology Software: SimaPro 7.1.2(PRe consultant, Netherland) Database: IDEMAT 2001, Ecoinvent system process, Ecoinvent unit process, BUWAL 250 Comparison disinfection facility: UltraViolet disinfection facility, Ozone disinfection facility Result: - E-Beam radiation disinfection facility has superior environmental performance in 7 environmental impact category such as carcinogenic effects, respiratory effects caused by organic substances, respiratory effects caused by inorganic substances, climate change, ozone layer depletion, ecological toxicity and acidification/eutrofication. - The result shows that environmental impact of E-Beam radiation disinfection facility is the smallest among disinfection facilities while 20yrs is given as life time. - The energy used in use stage is key environmental issue. E-beam radiation disinfection facility consumes 320 times less than others in order to achieve reference disinfection ratio (95.4%) with reference flow rate (100,000m{sup 3}/day) condition. - Therefore, more increasing design life time of disinfection facility, superior environmental and economic performance of E-Beam radiation disinfection facility than those of other disinfection facilities

  10. Enterobacter cloacae outbreak in the NICU related to disinfected thermometers.

    Science.gov (United States)

    van den Berg, R W; Claahsen, H L; Niessen, M; Muytjens, H L; Liem, K; Voss, A

    2000-05-01

    In the first week ot December 1997, an increasing incidence of neonates colonized with multi-drug resistant Enterobacter cloacae (MR-E. cloacae) was observed in the neonatal Intensive care unit of our 950-bed university hospital. Initially, re-enforcement of infection control practices including hand disinfection and cohort isolation seemed to be sufficient to control the outbreak. Nevertheless, an increasing number of newly admitted patients was paralleled by another rise in the incidence of colonized neonates. Since E. cloacae was initially found in urine specimens of the patients, surveillance and environmental cultures were aimed at procedures and instruments that might colonize the gastro-intestinal and/or urinary tract. E, cloacae was isolated from a single cap of an electronic digital thermometer. Despite banning of this possible source, newly admitted neonates still became colonized. The unit was closed for further admissions and a second round of extensive screening was started; this time including all available thermometers and continuous rectal temperature probes. Ready-to-use 'disinfected thermometers and probes were found to be colonized with MR-E. cloacae. Observation of disinfection procedures and a laboratory investigation revealed that 'rushed disinfection with alcohol 80% led to a 1 in 10 chance of thermometers still being contaminated. Furthermore, alcoholic hand rub used for convenience disinfection failed to disinfect thermometers in 40% and 20% of the cases when done in a 'rushed' or 'careful' fashion, respectively. Adequate disinfection of the thermometers led to the control of the outbreak, with no new occurrence of MR-E. cloacae in the following months.

  11. Electrochemical disinfection of toilet wastewater using wastewater electrolysis cell.

    Science.gov (United States)

    Huang, Xiao; Qu, Yan; Cid, Clément A; Finke, Cody; Hoffmann, Michael R; Lim, Keahying; Jiang, Sunny C

    2016-04-01

    The paucity of proper sanitation facilities has contributed to the spread of waterborne diseases in many developing countries. The primary goal of this study was to demonstrate the feasibility of using a wastewater electrolysis cell (WEC) for toilet wastewater disinfection. The treated wastewater was designed to reuse for toilet flushing and agricultural irrigation. Laboratory-scale electrochemical (EC) disinfection experiments were performed to investigate the disinfection efficiency of the WEC with four seeded microorganisms (Escherichia coli, Enterococcus, recombinant adenovirus serotype 5, and bacteriophage MS2). In addition, the formation of organic disinfection byproducts (DBPs) trihalomethanes (THMs) and haloacetic acids (HAA5) at the end of the EC treatment was also investigated. The results showed that at an applied cell voltage of +4 V, the WEC achieved 5-log10 reductions of all four seeded microorganisms in real toilet wastewater within 60 min. In contrast, chemical chlorination (CC) disinfection using hypochlorite [NaClO] was only effective for the inactivation of bacteria. Due to the rapid formation of chloramines, less than 0.5-log10 reduction of MS2 was observed in toilet wastewater even at the highest [NaClO] dosage (36 mg/L, as Cl2) over a 1 h reaction. Experiments using laboratory model waters showed that free reactive chlorine generated in situ during EC disinfection process was the main disinfectant responsible for the inactivation of microorganisms. However, the production of hydroxyl radicals [OH], and other reactive oxygen species by the active bismuth-doped TiO2 anode were negligible under the same electrolytic conditions. The formation of THMs and HAA5 were found to increase with higher applied cell voltage. Based on the energy consumption estimates, the WEC system can be operated using solar energy stored in a DC battery as the sole power source.

  12. Electrochemical disinfection of toilet wastewater using wastewater electrolysis cell

    Science.gov (United States)

    Huang, Xiao; Qu, Yan; Cid, Clément A.; Finke, Cody; Hoffmann, Michael R.; Lim, Keahying; Jiang, Sunny C.

    2016-01-01

    The paucity of proper sanitation facilities has contributed to the spread of waterborne diseases in many developing countries. The primary goal of this study was to demonstrate the feasibility of using a wastewater electrolysis cell (WEC) for toilet wastewater disinfection. The treated wastewater was designed to reuse for toilet flushing and agricultural irrigation. Laboratory-scale electrochemical (EC) disinfection experiments were performed to investigate the disinfection efficiency of the WEC with four seeded microorganisms (Escherichia coli, Enterococcus, recombinant adenovirus serotype 5, and bacteriophage MS2). In addition, the formation of organic disinfection byproducts (DBPs) trihalomethanes (THMs) and haloacetic acids (HAA5) at the end of the EC treatment was also investigated. The results showed that at an applied cell voltage of +4 V, the WEC achieved 5-log10 reductions of all four seeded microorganisms in real toilet wastewater within 60 min. In contrast, chemical chlorination (CC) disinfection using hypochlorite [NaClO] was only effective for the inactivation of bacteria. Due to the rapid formation of chloramines, less than 0.5-log10 reduction of MS2 was observed in toilet wastewater even at the highest [NaClO] dosage (36 mg/L, as Cl2) over a 1 h reaction. Experiments using laboratory model waters showed that free reactive chlorine generated in situ during EC disinfection process was the main disinfectant responsible for the inactivation of microorganisms. However, the production of hydroxyl radicals [•OH], and other reactive oxygen species by the active bismuth-doped TiO2 anode were negligible under the same electrolytic conditions. The formation of THMs and HAA5 were found to increase with higher applied cell voltage. Based on the energy consumption estimates, the WEC system can be operated using solar energy stored in a DC battery as the sole power source. PMID:26854604

  13. Overcoming the problem of residual microbial contamination in dental suction units left by conventional disinfection using novel single component suction handpieces in combination with automated flood disinfection.

    Science.gov (United States)

    Boyle, M A; O'Donnell, M J; Russell, R J; Galvin, N; Swan, J; Coleman, D C

    2015-10-01

    Decontaminating dental chair unit (DCU) suction systems in a convenient, safe and effective manner is problematic. This study aimed to identify and quantify the extent of the problems using 25 DCUs, methodically eliminate these problems and develop an efficient approach for reliable, effective, automated disinfection. DCU suction system residual contamination by environmental and human-derived bacteria was evaluated by microbiological culture following standard aspiration disinfection with a quaternary ammonium disinfectant or alternatively, a novel flooding approach to disinfection. Disinfection of multicomponent suction handpieces, assembled and disassembled, was also studied. A prototype manual and a novel automated Suction Tube Cleaning System (STCS) were developed and tested, as were novel single component suction handpieces. Standard aspiration disinfection consistently failed to decontaminate DCU suction systems effectively. Semi-confluent bacterial growth (101-500 colony forming units (CFU) per culture plate) was recovered from up to 60% of suction filter housings and from up to 19% of high and 37% of low volume suction hoses. Manual and automated flood disinfection of DCU suction systems reduced this dramatically (ranges for filter cage and high and low volume hoses of 0-22, 0-16 and 0-14CFU/plate, respectively) (Psuction handpieces could not be adequately disinfected without prior removal and disassembly. Novel single component handpieces, allowed their effective disinfection in situ using the STCS, which virtually eliminated contamination from the entire suction system. Flood disinfection of DCU suction systems and single component handpieces radically improves disinfection efficacy and considerably reduces potential cross-infection and cross-contamination risks. DCU suction systems become heavily contaminated during use. Conventional disinfection does not adequately control this. Furthermore, multicomponent suction handpieces cannot be adequately

  14. APPLICATION OF THE COMBINED UV AND CHLORINE DISINFECTION IN WATER PLANT%紫外线和化合氯联合消毒在水厂的应用研究

    Institute of Scientific and Technical Information of China (English)

    潘晓; 王祥勇; 陈洪斌

    2012-01-01

    Based on the pilot and productive ultraviolet disinfection devices in a water plant in the south China, we studied the combined UV and chlorine disinfection effect on biological activated carbon effluent, evaluated the effect of UV disinfection system in the water treatment plant. Studies have shown that the removal rate of biological activated carbon effluent bacteria number could reach 2.6 Ig in 480 J/m2 UV dose condition, but UV have no continuous sterilization. UV disinfection system in water treatment plant generally performed wells, the total number of bacteria from the combined UV and chlorine disinfection system effluent was 0, ultraviolet disinfection efficiency reduced after a long time running. Biological activated carbon process have better control effect on chloramines disinfection by-products, U V disinfection does not increase the chlorine disinfection by-products formation.%以南方某水厂的中试和生产紫外消毒装置为基础,考察了紫外和化合氯联合消毒对生物活性炭出水细菌的杀灭效果,对紫外消毒在该水厂的应用效果进行了评价.研究表明,在480 J/m2的剂量下,生物活性炭出永细菌对数去除率可达2.6 lg,但是紫外无持续杀菌作用,水厂的紫外消毒装置总体效果良好,紫外化合氯消毒后出水细菌总数为0,紫外线消毒长时间运行后灭菌效率有所降低;生物活性炭工艺对氯胺消毒副产物有较好的控制效果,紫外消毒未增加氯消毒副产物的生成量.

  15. Chronic toxicity of parabens and their chlorinated by-products in Ceriodaphnia dubia.

    Science.gov (United States)

    Terasaki, Masanori; Abe, Ryoko; Makino, Masakazu; Tatarazako, Norihisa

    2015-01-01

    The chronic toxicity of 12 compounds of parabens and their chlorinated by-products was investigated using 7-day Ceriodaphnia dubia test under static renewal condition in order to generate information on how to disinfect by-products of preservatives that are discharged in aquatic systems. The mortality and inhibition of reproduction tended to increase with increasing hydrophobicity and decreased with the degree of chlorination of parabens. The EC50 values for mortality, offspring number, and first brood production ranged between 0.30-3.1, 0.047-12, and 1.3-6.3 mg L(-1) , respectively. For the number of neonates, the most sensitive endpoint, the no-observed-effect concentration (NOEC) and lowest-observed-effect concentration (LOEC) values ranged from 0.63 to 10 mg L(-1) and from 1.2 to 19 mg L(-1) , respectively. Methylparaben (MP), benzylparaben (BnP), and dichlorinated BnP (Cl2 BnP) elicited a significant decrease in offspring numbers even at their lowest concentration tested; the NOEC for these compounds was determined to be less than the lowest test concentration (1.3, 0.04, and 0.63 mg L(-1) for MP, BnP, and Cl2 BnP, respectively). Propylparaben (PP), chlorinated PP, isopropylparaben (iPP), and chlorinated iPP exhibited nonmonotonic concentration-dependent response; their NOEC and LOEC values could not be determined. The multivariate approach involving principal component analysis and hierarchical cluster analysis revealed four groups that corresponded to the toxicological profiles of parabens. Our results suggested that disinfection of parabens by chlorination could reduce aquatic toxicity of original compounds. The findings obtained in our study together with the data available on paraben concentrations in aquatic systems can be used to perform preliminary risk assessment by comparing the predicted environmental concentration (PEC) with the predicted no-effect concentration (PNEC) for the marine aquatic environment. The calculated PEC/PNEC ratios ranged from 0

  16. [Sensitivity of surface microorganisms to disinfectants].

    Science.gov (United States)

    Krzywicka, H; Janowska, J; Tadeusiak, B

    1991-01-01

    The influence of humidity and temperature on survival of S. aureus and P. aeruginosa on the surfaces of titles, glass and blanket carriers has been estimated. The number of CFU was examined after exposure time 6 and 24 hours in temperatures of 21 degrees C, 37 degrees C and RH 35%, 95%. It was observed: 1. The important reduction of numbers of both microorganisms at temperature 37 degrees C and RH 95%, 2. The relatively high number of survival cells of P. aeruginosa on the surface of blankets at temp. 21 degrees C and RH 95%. The microorganisms on the carriers were previously kept for 24 h at temp. 21 degrees C, RH 35% and 95% and then exposed to solutions of chloramine, formalin, lysol and Sterinol (QAC). It was observed that there was a great dependence of the disinfecting effect on the degree of dessication of the surfaces. In all cases the resistance of contaminated carriers stored 24 h was higher at 95% RH than at 35% RH.

  17. Designing plasmas for chronic wound disinfection

    Science.gov (United States)

    Nosenko, T.; Shimizu, T.; Morfill, G. E.

    2009-11-01

    Irradiation with low-temperature atmospheric-pressure plasma provides a promising method for chronic wound disinfection. To be efficient for this purpose, plasma should meet the following criteria: it should significantly reduce bacterial density in the wounded area, cause a long-term post-irradiation inhibition of bacterial growth, yet without causing any negative effect on human cells. In order to design plasmas that would satisfy these requirements, we assessed the relative contribution of different components with respect to bactericidal properties due to irradiation with argon plasma. We demonstrate that plasma-generated UV radiation is the main short-term sterilizing factor of argon plasma. On the other hand, plasma-generated reactive nitrogen species (RNS) and reactive oxygen species (ROS) cause a long-term 'after-irradiation' inhibition of bacterial growth and, therefore, are important for preventing wound recolonization with bacteria between two treatments. We also demonstrate that at certain concentrations plasma-generated RNS and ROS cause significant reduction of bacterial density, but have no adverse effect on human skin cells. Possible mechanisms of the different effects of plasma-generated reactive species on bacteria and human cells are discussed. The results of this study suggest that argon plasma for therapeutic purposes should be optimized in the direction of reducing the intensity of plasma-generated UV radiation and increasing the density of non-UV plasma products.

  18. Recent findings in pulsed light disinfection.

    Science.gov (United States)

    Kramer, B; Wunderlich, J; Muranyi, P

    2017-04-01

    Nonthermal disinfection technologies are gaining increasing interest in the field of minimally processed food in order to improve the microbial safety or to extend the shelf life. Especially fresh-cut produce or meat and fish products are vulnerable to microbial spoilage, but, due to their sensitivity, they require gentle preservation measures. The application of intense light pulses of a broad spectral range comprising ultraviolet, visible and near infrared irradiation is currently investigated as a potentially suitable technology to reduce microbial loads on different food surfaces or in beverages. Considerable research has been performed within the last two decades, in which the impact of various process parameters or microbial responses as well as the suitability of pulsed light (PL) for food applications has been examined. This review summarizes the outcome of the latest studies dealing with the treatment of various foods including the impact of PL on food properties as well as recent findings about the microbicidal action and relevant process parameters. © 2016 The Society for Applied Microbiology.

  19. Water disinfection through photoactive modified titania.

    Science.gov (United States)

    Sethi, Diptipriya; Pal, Ajoy; Sakthivel, Ramasamy; Pandey, Sony; Dash, Tapan; Das, Trupti; Kumar, Rohit

    2014-01-05

    TiO(2), N-TiO(2) and S-TiO(2) samples have been prepared by various chemical methods. These samples were characterized by X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), Laser Raman spectrometer, UV-Visible spectrophotometer, field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). X-ray powder diffraction study reveals that all three samples are single anatase phase of titania and the crystallinity of titania decreases with sulphur doping whereas nitrogen doping does not affect it. UV-Visible (diffuse) reflectance spectra shows that doping of titania with nitrogen and sulphur shift the absorption edge of titania from ultraviolet to visible region. XPS study confirms that both nitrogen and sulphur are well doped in the titania lattice. It is observed that nitrogen occupies at both substitutional and interstitial position in the lattice of titania. FE-SEM and TEM studies demonstrate that the particles are below 50nm range. It is found that S and N doping of titania increased its water disinfection property in the order TiO(2)UV-Visible light irradiation.

  20. Comparison of Susceptibilities of M. tuberculosis H37Ra and M. chelonei subsp. Abscessus to Disinfectants

    Institute of Scientific and Technical Information of China (English)

    GUO-QING WANG; CHAO-WU ZHANG; HENG-CHUAN LIU; ZHAO-BIN CHEN

    2005-01-01

    Objective To determine the susceptibilities of M. tuberculosis H37Ra and M. chelonei subsp. absecessus to several frequently-used disinfectants and to evaluate the practicability of surrogating M. tuberculosis by the latter. Methods A suspension quantitative bactericidal test was set up in accordance with Chinese Technique Standard for Disinfection to evaluate the susceptibility of each mycobacteria strain to each selected disinfectant. Killing log value was used as criterion in comparing the susceptibility to disinfectants between the two strains. Results M. chelonei subsp. abscessus was more resistant to chlorine disinfectant than M. tuberculosis while the two strains were similarly resistant to iodophor disinfectant, peracetic acid, alcohol and glutaraldehyde disinfectant. Conclusion M. chelonei subsp. abscessus has the potential to surrogate M. tuberculosis in evaluating mycobactericidal efficacies of disinfectants.

  1. Residual viral and bacterial contamination of surfaces after cleaning and disinfection

    NARCIS (Netherlands)

    Tuladhar, E.; Hazeleger, W.C.; Koopmans, M.; Zwietering, M.H.; Beumer, R.R.; Duizer, E.

    2012-01-01

    Environmental surfaces contaminated with pathogens can be sources of indirect transmission, and cleaning and disinfection are common interventions focused on reducing contamination levels. We determined the efficacy of cleaning and disinfection procedures for reducing contamination by noroviruses, r

  2. Residual viral and bacterial contamination of surfaces after cleaning and disinfection

    NARCIS (Netherlands)

    Tuladhar, E.; Hazeleger, W.C.; Koopmans, M.; Zwietering, M.H.; Beumer, R.R.; Duizer, E.

    2012-01-01

    Environmental surfaces contaminated with pathogens can be sources of indirect transmission, and cleaning and disinfection are common interventions focused on reducing contamination levels. We determined the efficacy of cleaning and disinfection procedures for reducing contamination by noroviruses,

  3. Disinfection of aircraft : Appropriate disinfectants and standard operating procedures for highly infectious diseases.

    Science.gov (United States)

    Klaus, Joachim; Gnirs, Peter; Hölterhoff, Sabine; Wirtz, Angela; Jeglitza, Matthias; Gaber, Walter; Gottschalk, Rene

    2016-12-01

    For infectious diseases caused by highly pathogenic agents (e. g., Ebola/Lassa fever virus, SARS-/MERS-CoV, pandemic influenza virus) which have the potential to spread over several continents within only a few days, international Health Protection Authorities have taken appropriate measures to limit the consequences of a possible spread. A crucial point in this context is the disinfection of an aircraft that had a passenger on board who is suspected of being infected with one of the mentioned diseases. Although, basic advice on hygiene and sanitation on board an aircraft is given by the World Health Organization, these guidelines lack details on available and effective substances as well as standardized operating procedures (SOP). The purpose of this paper is to give guidance on the choice of substances that were tested by a laboratory of Lufthansa Technik and found compatible with aircraft components, as well as to describe procedures which ensure a safe and efficient disinfection of civil aircrafts. This guidance and the additional SOPs are made public and are available as mentioned in this paper.

  4. Advanced Gasification By-Product Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Rodney Andrews; Aurora Rubel; Jack Groppo; Brock Marrs; Ari Geertsema; Frank Huggins; M. Mercedes Maroto-Valer; Brandie M. Markley; Zhe Lu; Harold Schobert

    2006-08-31

    With the passing of legislation designed to permanently cap and reduce mercury emissions from coal-fired utilities, it is more important than ever to develop and improve upon methods of controlling mercury emissions. One promising technique is carbon sorbent injection into the flue gas of the coal-fired power plant. Currently, this technology is very expensive as costly commercially activated carbons are used as sorbents. There is also a significant lack of understanding of the interaction between mercury vapor and the carbon sorbent, which adds to the difficulty of predicting the amount of sorbent needed for specific plant configurations. Due to its inherent porosity and adsorption properties as well as on-site availability, carbons derived from gasifiers are potential mercury sorbent candidates. Furthermore, because of the increasing restricted use of landfilling, the coal industry is very interested in finding uses for these materials as an alternative to the current disposal practice. The results of laboratory investigations and supporting technical assessments conducted under DOE Subcontract No. DE-FG26-03NT41795 are reported. This contract was with the University of Kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Research and The Pennsylvania State University Energy Institute. The worked described was part of a project entitled ''Advanced Gasification By-Product Utilization''. This work involved the development of technologies for the separation and characterization of coal gasification slags from operating gasification units, activation of these materials to increase mercury and nitrogen oxide capture efficiency, assessment of these materials as sorbents for mercury and nitrogen oxides, assessment of the potential for leaching of Hg captured by the carbons, analysis of the slags for cement applications, and characterization of these materials for use as polymer fillers. The

  5. Advanced Gasification By-Product Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Rodney Andrews; Aurora Rubel; Jack Groppo; Brock Marrs; Ari Geertsema; Frank Huggins; M. Mercedes Maroto-Valer; Brandie M. Markley; Zhe Lu; Harold Schobert

    2006-08-31

    With the passing of legislation designed to permanently cap and reduce mercury emissions from coal-fired utilities, it is more important than ever to develop and improve upon methods of controlling mercury emissions. One promising technique is carbon sorbent injection into the flue gas of the coal-fired power plant. Currently, this technology is very expensive as costly commercially activated carbons are used as sorbents. There is also a significant lack of understanding of the interaction between mercury vapor and the carbon sorbent, which adds to the difficulty of predicting the amount of sorbent needed for specific plant configurations. Due to its inherent porosity and adsorption properties as well as on-site availability, carbons derived from gasifiers are potential mercury sorbent candidates. Furthermore, because of the increasing restricted use of landfilling, the coal industry is very interested in finding uses for these materials as an alternative to the current disposal practice. The results of laboratory investigations and supporting technical assessments conducted under DOE Subcontract No. DE-FG26-03NT41795 are reported. This contract was with the University of Kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Research and The Pennsylvania State University Energy Institute. The worked described was part of a project entitled ''Advanced Gasification By-Product Utilization''. This work involved the development of technologies for the separation and characterization of coal gasification slags from operating gasification units, activation of these materials to increase mercury and nitrogen oxide capture efficiency, assessment of these materials as sorbents for mercury and nitrogen oxides, assessment of the potential for leaching of Hg captured by the carbons, analysis of the slags for cement applications, and characterization of these materials for use as polymer fillers. The

  6. Effectiveness of Four Disinfectants against Ebola Virus on Different Materials

    Directory of Open Access Journals (Sweden)

    Sophie Smither

    2016-07-01

    Full Text Available The West Africa Ebola virus (EBOV outbreak has highlighted the need for effective disinfectants capable of reducing viral load in a range of sample types, equipment and settings. Although chlorine-based products are widely used, they can also be damaging to equipment or apparatus that needs continuous use such as aircraft use for transportation of infected people. Two aircraft cleaning solutions were assessed alongside two common laboratory disinfectants in a contact kill assay with EBOV on two aircraft relevant materials representative of a porous and non-porous surface. A decimal log reduction of viral titre of 4 is required for a disinfectant to be deemed effective and two of the disinfectants fulfilled this criteria under the conditions tested. One product, Ardrox 6092, was found to perform similarly to sodium hypochlorite, but as it does not have the corrosive properties of sodium hypochlorite, it could be an alternative disinfectant solution to be used for decontamination of EBOV on sensitive apparatus.

  7. Water disinfection by solar photocatalysis using compound parabolic collectors

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, P.; Blanco, J.; Sichel, C.; Malato, S. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Plataforma Solar de Almeria (PSA), P.O. Box 22, 04200 Tabernas, Almeria (Spain)

    2005-04-15

    TiO{sub 2} solar photocatalysis has been proven to be a degradation process for aqueous organic contaminant leading to total mineralisation of a large number of compounds. Furthermore, the interest in using this technique for water disinfection has grown in the last decade. Recent publications have reported photokilling of bacteria and viruses by TiO{sub 2} photocatalysis. Therefore, solar photocatalysis disinfection seems to be a very promising process, which could help to improve public health in rural areas of developing countries. The objective of this work was to assess the feasibility of using TiO{sub 2} solar photocatalysis to disinfect water supplies for future applications in developing countries. This article reviews the viability of solar photocatalysis for disinfection in low cost compound parabolic collectors, using sunlight and titanium dioxide semiconductor, both applied as slurry and supported. We report on the bactericidal action of TiO{sub 2} on a pure culture of Escherichia coli with a low cost photoreactor based on compound parabolic collectors. The influence of different experimental set-ups and parameters are also analysed. The results and potential application of the solar photocatalysis technology to water disinfection are studied within the frame of two research EU projects whose objective consist on the development of a fully autonomous solar reactor system to purify drinking water in remote locations of developing countries.

  8. Assessment of disinfection of hospital surfaces using different monitoring methods

    Directory of Open Access Journals (Sweden)

    Adriano Menis Ferreira

    2015-06-01

    Full Text Available OBJECTIVE: to assess the efficiency of cleaning/disinfection of surfaces of an Intensive Care Unit.METHOD: descriptive-exploratory study with quantitative approach conducted over the course of four weeks. Visual inspection, bioluminescence adenosine triphosphate and microbiological indicators were used to indicate cleanliness/disinfection. Five surfaces (bed rails, bedside tables, infusion pumps, nurses' counter, and medical prescription table were assessed before and after the use of rubbing alcohol at 70% (w/v, totaling 160 samples for each method. Non-parametric tests were used considering statistically significant differences at p<0.05.RESULTS: after the cleaning/disinfection process, 87.5, 79.4 and 87.5% of the surfaces were considered clean using the visual inspection, bioluminescence adenosine triphosphate and microbiological analyses, respectively. A statistically significant decrease was observed in the disapproval rates after the cleaning process considering the three assessment methods; the visual inspection was the least reliable.CONCLUSION: the cleaning/disinfection method was efficient in reducing microbial load and organic matter of surfaces, however, these findings require further study to clarify aspects related to the efficiency of friction, its frequency, and whether or not there is association with other inputs to achieve improved results of the cleaning/disinfection process.

  9. Electrochemical disinfection using the gas diffusion electrode system.

    Science.gov (United States)

    Xu, Wenying; Li, Ping; Dong, Bin

    2010-01-01

    A study on the electrochemical disinfection with H2O2 generated at the gas diffusion electrode (GDE) from active carbon/polytetrafluoroethylene was performed in a non-membrane cell. The effects of Pt load and the pore-forming agent content in GDE, and operating conditions were investigated. The experimental results showed that nearly all bacterial cultures inoculated in the secondary effluent from wastewater treatment plant could be inactivated within 30 min at a current density of 10 mA/cm2. The disinfection improved with increasing Pt load. Addition of the pore-forming agent NH4HCO3 improved the disinfection, while a drop in the pH value resulted in a rapid rise of germicidal efficacy and the disinfection time was shortened with increasing oxygen flow rate. Adsorption was proved to be ineffective in destroying bacteria, while germicidal efficacy increased with current density. The acceleration rate was different, it initially increased with current density. Then decreased, and finally reached a maximum at a current density of 6.7 mA/cm2. The disinfection also improved with decreasing total bacterial count. The germicidal efficacy in the cathode compartment was approximately the same as in the anode compartment, indicating that the contribution of direct oxidation and the indirect treatment of bacterial cultures by hydroxyl radical was similar to the oxidative indirect effect of the generated H2O2.

  10. Conventional and Alternative Disinfection Methods of Legionella in Water Distribution Systems – Review

    Directory of Open Access Journals (Sweden)

    Pūle Daina

    2016-12-01

    Full Text Available Prevalence of Legionella in drinking water distribution systems is a widespread problem. Outbreaks of Legionella caused diseases occur despite various disinfectants are used in order to control Legionella. Conventional methods like thermal disinfection, silver/copper ionization, ultraviolet irradiation or chlorine-based disinfection have not been effective in the long term for control of biofilm bacteria. Therefore, research to develop more effective disinfection methods is still necessary.

  11. 40 CFR 141.708 - Requirements when making a significant change in disinfection practice.

    Science.gov (United States)

    2010-07-01

    ... change in disinfection practice. 141.708 Section 141.708 Protection of Environment ENVIRONMENTAL... Treatment for Cryptosporidium Disinfection Profiling and Benchmarking Requirements § 141.708 Requirements when making a significant change in disinfection practice. (a) Following the completion of initial...

  12. 9 CFR 51.8 - Disinfection of premises, conveyances, and materials.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Disinfection of premises, conveyances... ANIMALS DESTROYED BECAUSE OF BRUCELLOSIS Indemnity for Cattle, Bison, and Swine § 51.8 Disinfection of... for disinfection to 30 days when request for such extension is received by him prior to the expiration...

  13. 9 CFR 50.13 - Disinfection of premises, conveyances, and materials.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Disinfection of premises, conveyances... ANIMALS DESTROYED BECAUSE OF TUBERCULOSIS General Indemnity § 50.13 Disinfection of premises, conveyances... for disinfection to 30 days when request for such extension is received by him prior to the expiration...

  14. 9 CFR 95.24 - Methods for disinfection of hides, skins, and other materials.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Methods for disinfection of hides... ENTRY INTO THE UNITED STATES § 95.24 Methods for disinfection of hides, skins, and other materials... subjected to disinfection by methods found satisfactory and approved from time to time by the Deputy...

  15. 9 CFR 55.4 - Disinfection of premises, conveyances, and materials.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Disinfection of premises, conveyances... CONTROL OF CHRONIC WASTING DISEASE Chronic Wasting Disease Indemnification Program § 55.4 Disinfection of... paid will be responsible for expenses incurred in connection with the cleaning and disinfection, except...

  16. 9 CFR 53.7 - Disinfection of premises, conveyances, and materials.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Disinfection of premises, conveyances... LIVESTOCK OR POULTRY § 53.7 Disinfection of premises, conveyances, and materials. All premises, including... disinfection shall be shared according to the agreement reached under § 53.2 with the State in which the work...

  17. 9 CFR 52.7 - Disinfection of premises, conveyances, and materials.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Disinfection of premises, conveyances... SWINE DESTROYED BECAUSE OF PSEUDORABIES § 52.7 Disinfection of premises, conveyances, and materials. All... cleaning and disinfection, unless an official pseudorabies epidemiologist determines that a shorter or...

  18. 40 CFR 141.533 - What data must my system collect to calculate a disinfection profile?

    Science.gov (United States)

    2010-07-01

    ... system uses chlorine, the pH of the disinfected water at each residual disinfectant concentration... calculate a disinfection profile? 141.533 Section 141.533 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS...

  19. Suspensions or biofilms, and other factors that affect disinfectant testing on pathogens

    NARCIS (Netherlands)

    Luppens, S.B.I.

    2002-01-01

    Disinfectants are very important for the maintenance of proper hygiene in the food industry. In Europe, candidate disinfectants have to be tested on suspended bacteria in so called suspension tests, before they can be approved as disinfectants. In the food industry bacteria usually are attached to s

  20. Is compliance with hand disinfection in the intensive care unit related to work experience?

    Science.gov (United States)

    Noritomi, Danilo Teixeira; Chierego, Marialuisa; Byl, Bauduin; Menestrina, Nicola; Carollo, Tiziana; Struelens, Marc; Vincent, Jean-Louis

    2007-03-01

    The performance of hand disinfection by staff in a 31-bed department of intensive care was monitored. During 32 hours of observation, 727 opportunities for hand disinfection were observed, and the compliance rate was 27.9%. The level of work experience was not correlated with hand disinfection compliance rates.

  1. Evaluation of effectiveness of chemical disinfectants in reducing bacterial growth on orthodontic instruments.

    Science.gov (United States)

    Reddy, R Vamshidhar; Tanveer, K; Sharma, K Dinesh; Kokkula, Naveen; Suresh, P L; Sudhakar, Meher

    2013-11-01

    Infection control requires serious effort in all fields of dentistry including orthodontics. Though there are various means of sterilization and disinfection in dental office, chemical disinfection is the most preferred method among orthodontists. The purpose of this study is to evaluate different chemical sterilization and disinfection methods used in orthodontic offices, which would guide the orthodontists in infection control.

  2. Clinical evaluation of chlorine dioxide for disinfection of dental instruments.

    Science.gov (United States)

    Watamoto, Takao; Egusa, Hiroshi; Sawase, Takashi; Yatani, Hirofumi

    2013-01-01

    This study aimed to clinically evaluate the disinfection efficacy of chlorine dioxide (ClO2) for used dental instruments. An imprint culture technique demonstrated that ultrasonic cleaning of intraorally applied dental mirrors in 0.02% ClO2 for 10 minutes resulted in compete removal of microorganisms for 10 subjects. Hepatitis C virus (HCV) RNA was detected by real-time polymerase chain reaction on periodontal curettes after subgingival scaling in four HCV-infected patients and was completely removed by the same treatment procedure. Therefore, the combination of ultrasonic cleaning with ClO2 may provide an alternative to toxic disinfectants, such as glutaraldehyde and sodium hypochlorite, for disinfecting dental instruments.

  3. A novel cupping-assisted plasma treatment for skin disinfection

    Science.gov (United States)

    Xiong, Zilan; Graves, David B.

    2017-02-01

    A novel plasma treatment method/plasma source called cupping-assisted plasma treatment/source for skin disinfection is introduced. The idea combines ancient Chinese ‘cupping’ technology with plasma sources to generate active plasma inside an isolated, pressure-controlled chamber attached to the skin. Advantages of lower pressure include reducing the threshold voltage for plasma ignition and improving the spatial uniformity of the plasma treatment. In addition, with reduced pressure inside the cup, skin pore permeability might be increased and it improves attachment of the plasma device to the skin. Moreover, at a given pressure, plasma-generated active species are restricted inside the cup, raising local reactive species concentration and enhancing the measured surface disinfection rate. A surface micro-discharge (SMD) device is used as an example of a working plasma source. We report discharge characteristics and disinfection efficiency as a function of pressure and applied voltage.

  4. [Disinfection of wood in mushroom growing cellars with Mycetox].

    Science.gov (United States)

    Szymański, J; Wazny, J

    1995-01-01

    Since the use od phenolic disinfectants for impregnating and disinfecting of wood in mushroom--growing cellars was banned in Poland for ecologic and hygienic reasons, the new product, namely Mycetox, containing quaternary ammonium compound and boric acid has been registered for this purpose. Mycetox belongs to new generation products and is non toxic for man and the environment. It is first Polish product developed for the general disinfection as well as for impregnating purposes in mushroom farms. The efficacy of Mycetox in mushroom-growing cellars has been evaluated basing on its fungicidal properties in the different substrates used for the cultivation of mushrooms. Also its influence on mushroom spawn growth, crop yield, and the penetration of spawn into wooden cages impregnated with Mycetox as well as its influence on blanching of mushrooms has been investigated.

  5. Drinking water and biofilm disinfection by Fenton-like reaction.

    Science.gov (United States)

    Gosselin, F; Madeira, L M; Juhna, T; Block, J C

    2013-10-01

    A Fenton-like disinfection process was conducted with Fenton's reagent (H2O2) at pH 3 or 5 on autochthonous drinking water biofilms grown on corroded or non-corroded pipe material. The biofilm disinfection by Fenton-like oxidation was limited by the low content of iron and copper in the biomass grown on non-corroded plumbing. It was slightly improved by spiking the distribution system with some additional iron source (soluble iron II or ferrihydrite particles appeared as interesting candidates). However successful in situ disinfection of biofilms was only achieved in fully corroded cast iron pipes using H2O2 and adjusting the pH to 5. These new results provide additional support for the use of Fenton's processes for cleaning drinking water distribution systems contaminated with biological agents or organics.

  6. Hydrogen peroxide room disinfection--ready for prime time?

    Science.gov (United States)

    Huttner, Benedikt D; Harbarth, Stephan

    2015-05-08

    Non-manual techniques for terminal disinfection of hospital rooms have gained increasing interest in recent years as means to reduce transmission of multidrug-resistant organisms (MDROs). A prospective crossover study by Blazejewski and colleagues in five ICUs of a French academic hospital with a high prevalence of MDRO carriers showed that two different hydrogen peroxide (H2O2)-based non-touch disinfection techniques reduced environmental contamination with MDROs after routine cleaning. This study provides further evidence of the 'in use' bioburden reduction offered by these techniques. Before H2O2-based non-touch disinfection can be recommended for routine clinical use outside specific outbreak situations, further studies need to show whether the environmental contamination reduction provided by these techniques is clinically relevant and results in reduced cross-infections with MDROs.

  7. Disinfection procedures for in vitro propagation of Anthurium

    Directory of Open Access Journals (Sweden)

    Silva Jaime A. Teixeira da

    2015-06-01

    Full Text Available Disinfection of plant material is the most important step of the tissue culture protocol. In this process, an attempt is made to eliminate microbial contaminants from the surface and interior of plant material, thus giving the explant a fighting chance at survival in vitro. Initial cultures of Anthurium species and cultivars, which are usually established from ex vitro material grown in a greenhouse, pots or in the field, easily contaminate the in vitro milieu. This review highlights the differences in disinfection protocols that exist for different species or cultivars of Anthurium. The protocol needs to be adjusted based on the material used: spadices, spathes, seeds, leaves, or roots. Regrettably, most of the currently published protocols, derived from a literature that spans over 100 published papers, have numerous weaknesses and flaws in the information provided pertaining to disinfection and infection levels. Advice for future Anthurium researchers should thus be followed cautiously.

  8. Eliminating Medical Waste Liabilities Through Mobile Maceration and Disinfection

    Energy Technology Data Exchange (ETDEWEB)

    R. A. Rankin; N. R. Soelberg; K. M. Klingler; C. W. Lagle; L. L. Byers

    2006-02-01

    Commercial medical waste treatment technologies include incineration, melting, autoclaving, and chemical disinfection. Incineration disinfects, destroys the original nature of medical waste, and reduces the waste volume by converting organic waste content to carbon dioxide and water, leaving only residual inorganic ash. However, medical waste incinerator numbers have plummeted from almost 2,400 in 1995 to 115 in 2003 and to about 62 in 2005, due to negative public perception and escalating compliance costs associated with increasingly strict regulations. High-temperature electric melters have been designed and marketed as incinerator alternatives, but they are also costly and generally must comply with the same incinerator emissions regulations and permitting requirements. Autoclave processes disinfect medical waste at much lower operating temperatures than incinerators operate at, but are sometimes subject to limitations such as waste segregration requirements to be effective. Med-Shred, Inc. has developed a patented mobile shredding and chemical disinfecting process for on-site medical waste treatment. Medical waste is treated on-site at customer facilities by shredding and disinfecting the waste. The treated waste can then be transported in compliance with Health Insurance Portability and Accountability Act of 1996 (HIPAA) requirements to a landfill for disposal as solid municipal waste. A team of Idaho National Laboratory engineers evaluated the treatment process design. The process effectiveness has been demonstrated in mycobacterium tests performed by Analytical Services Incorporated. A process description and the technical and performance evaluation results are presented in the paper. A treatment demonstration and microbiological disinfecting tests show that the processor functions as it was intended.

  9. Effects of disinfectants and detergents on skin irritation.

    Science.gov (United States)

    Slotosch, Caroline M; Kampf, Günter; Löffler, Harald

    2007-10-01

    We investigated the biological response of regular human skin to alcohol-based disinfectants and detergents in a repetitive test design. Using non-invasive diagnostic tools such as transepidermal water loss, laser-Doppler flowmetry and corneometry, we quantified the irritative effects of a propanol-based hand disinfectant (Sterillium), its propanol mixture (2-propanol 45% w/w and 1-propanol 30% w/w), sodium lauryl sulfate (SLS) 0.5% and distilled water. The substances were applied in a 2-D patch test in a repetitive occlusive test design to the back. Additionally, we performed a wash test on the forearms that was supposed to mimic the skin affection in the normal daily routine of health care workers. In this controlled half-side test design, we included the single application of the hand rub, SLS 0.5% and water as well as a tandem application of the same substances. Patch test and wash test showed similar results. The alcohol-based test preparations showed minimal irritation rather comparable to the application of water. However, the detergent SLS produced stronger barrier disruption, erythema and dryness than the alcohol-based preparations. There was no additional irritation at the combined use of SLS and disinfectants. By contrary, there was even a decrease in barrier disruption and erythema induced by the tandem application of SLS followed by alcohol-based disinfection compared with the use of SLS alone. These findings show a less irritant effect of alcohol-based disinfectants on the skin than detergents. Our study shows that there is no summation of irritating effects of a common detergent and propanol and that the combination of washing and disinfection has a rather protective aspect compared with washing alone.

  10. Generation of ozone foam and its application for disinfection

    Science.gov (United States)

    Hiragaki, Keisuke; Ishimaru, Tomiya; Nakanishi, Masaru; Muraki, Ryouji; Nieda, Masanori; Yamabe, Chobei

    2015-07-01

    Generated ozone foam was applied to the disinfection of Pseudomonas fluorescens. The effect of disinfection has been confirmed experimentally and new equipment for the disinfection of hands using this ozone foam has been put on the market for the practical use. The ozone foam was produced in the foam generator after mixing the water including surfactant (30 mL/min) and air including ozone (1000 ppm = 2.14 g/m3 ~ 1600 ppm = 3.4 g/m3, 300 mL/min). The liquid-to-gas ratio is 100 L/m3. The concentration of dissolved ozone in the thin liquid films of the bubbles was about 3 mg/L which was measured by the chemical method of the KI absorption and titration of sodium thiosulfate solution. The disinfection test samples were prepared using the PET disk on which Pseudomonas fluorescens of its number of more than 108 were attached. Test sample was inserted into ozone foam set on the glass plate for one to 6 min. The survival rate log (N/N0 decreased with time and its value of about-2.6 (i.e., ~1/400) was obtained at 6 min (2 min × 3 times repeated). It was also confirmed that the ozone foam was useful for the disinfection of hands. For more effective disinfection (in case of taking a long time for foam melting), the ozone foam was broken by force and changed into ozone water by which the survival rate decreased ×4 (i.e., N/N0 = 1/10 000) at 4 ~ 6 min. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  11. Combined UV treatment and ozonation for the removal of by-product precursors in swimming pool water

    DEFF Research Database (Denmark)

    Cheema, Waqas Akram; Kaarsholm, Kamilla Marie Speht; Andersen, Henrik Rasmus

    2017-01-01

    Both UV treatment and ozonation are used to reduce different types of disinfection by-products (DBPs) in swimming pools. UV treatment is the most common approach, as it is particularly efficient at removing combined chlorine. However, the UV treatment of pool water increases chlorine reactivity...... and the formation of chloro-organic DBPs such as trihalomethanes. Based on the similar selective reactivity of ozone and chlorine, we hypothesised that the created reactivity to chlorine, as a result of the UV treatment of dissolved organic matter in swimming pool water, might also be expressed as increased...... reactivity to ozone. Moreover, ozonation might saturate the chlorine reactivity created by UV treatment and mitigate increased formation of a range of volatile DBPs. We found that UV treatment makes pool water highly reactive to ozone. The subsequent reactivity to chlorine decreases with increasing ozone...

  12. Heuristic optimization of a continuous flow point-of-use UV-LED disinfection reactor using computational fluid dynamics.

    Science.gov (United States)

    Jenny, Richard M; Jasper, Micah N; Simmons, Otto D; Shatalov, Max; Ducoste, Joel J

    2015-10-15

    Alternative disinfection sources such as ultraviolet light (UV) are being pursued to inactivate pathogenic microorganisms such as Cryptosporidium and Giardia, while simultaneously reducing the risk of exposure to carcinogenic disinfection by-products (DBPs) in drinking water. UV-LEDs offer a UV disinfecting source that do not contain mercury, have the potential for long lifetimes, are robust, and have a high degree of design flexibility. However, the increased flexibility in design options will add a substantial level of complexity when developing a UV-LED reactor, particularly with regards to reactor shape, size, spatial orientation of light, and germicidal emission wavelength. Anticipating that LEDs are the future of UV disinfection, new methods are needed for designing such reactors. In this research study, the evaluation of a new design paradigm using a point-of-use UV-LED disinfection reactor has been performed. ModeFrontier, a numerical optimization platform, was coupled with COMSOL Multi-physics, a computational fluid dynamics (CFD) software package, to generate an optimized UV-LED continuous flow reactor. Three optimality conditions were considered: 1) single objective analysis minimizing input supply power while achieving at least (2.0) log10 inactivation of Escherichia coli ATCC 11229; and 2) two multi-objective analyses (one of which maximized the log10 inactivation of E. coli ATCC 11229 and minimized the supply power). All tests were completed at a flow rate of 109 mL/min and 92% UVT (measured at 254 nm). The numerical solution for the first objective was validated experimentally using biodosimetry. The optimal design predictions displayed good agreement with the experimental data and contained several non-intuitive features, particularly with the UV-LED spatial arrangement, where the lights were unevenly populated throughout the reactor. The optimal designs may not have been developed from experienced designers due to the increased degrees of

  13. Control of dangerous substances in discharges and microbiological abatement: European framework and a case study of an ozone disinfection system.

    Science.gov (United States)

    Ostoich, M; Serena, F; Falletti, L; Fantoni, A

    2013-01-01

    Directive 2000/60/EC requires the achievement of a 'good chemical status' for surface water within pre-established dates. Disinfection is needed to achieve compulsory final microbial limit values (in Italy for wastewater discharges the parameter Escherichia coli - EC - is imposed by law with a maximum limit value of 5,000 cfu/100 mL). Liquid waste and disinfection by-products must be considered when designing appropriate monitoring of dangerous substances; the specific classes of substances must be investigated according to the typology of received wastewaters and liquid wastes (where applicable) and specific analytical techniques, with Limit of Detection (LOD) lower than the limit values, must be applied; the difficulties faced by national and regional environmental control Agencies is that these techniques have to be applied during ordinary activity and not only for research purposes. The study aims to present the control of dangerous substances, as a screening view, in wastewater treatment plant (WWTP) discharges in the province of Venice (Northern Italy) for the period 2007-2010 based on available data from institutional controls. In addition, the wastewater disinfection process with ozone applied to a medium size WWTP (45,000 Population Equivalents) is presented as a case study, with a view to assessing the microbiological abatement efficacy and the presence of dangerous substances. Discharge quality of the WWTPs in the province of Venice presented mean values that were higher than the LOD, but only for certain metals. For the Paese plant, zinc and chloroform were the only micro-pollutants detected with a higher level than the LOD. From microbiological data in the period 2006-2011 the disinfection abatement efficiency for Paese was, in most cases above 99% for EC, faecal coliform (FC), faecal streptococci (FS) while efficiency was slightly lower for total coliform (TC); however, the proposed criterion aimed at respecting 99.99% abatement was not completely

  14. Chlorine dioxide water disinfection: a prospective epidemiology study

    Energy Technology Data Exchange (ETDEWEB)

    Michael, G.E.; Miday, R.K.; Bercz, J.P.; Miller, R.G.; Greathouse, D.G.; Kraemer, D.F.; Lucas, J.B.

    1981-01-01

    An epidemiologic study of 198 persons exposed for 3 months to drinking water disinfected with chlorine dioxide was conducted in a rural village. A control population of 118 nonexposed persons was also studied. Pre-exposure hematologic and serum chemical parameters were compared with test results after 115 days of exposure. Chlorite ion levels in the water averaged approximately 5 ppM during the study period. Statistical analysis (ANOVA) of the data failed to identify any significant exposure-related effects. This study suggests that future evaluations of chlorine dioxide disinfection should be directed toward populations with potentially increased sensitivity to hemolytic agents.

  15. [Disinfectants in health service institutions and frequency of their use].

    Science.gov (United States)

    Kieć-Swierczyńska, M

    1995-01-01

    On the basis of information obtained from sanitary and epidemiological stations places all over the country and from hospitals of the Lodz region it was found that about 60 types of disinfectants are now under use in Poland. The most frequent ones are: lysoformine, chloramine, aldesan, virkon, hypochloride, septil R, cidex, lysol, denatured alcohol, secuspet, aerodesine 2000, desoform, iodoseptane. Some of them contain well known allergenic factors (glutaraldehyde, benzalkonium, hydroquinone, phenol). Bearing in mind an increasing incidence of occupational skin diseases among health service workers it is postulated to continue studies of allergenic properties of disinfectants.

  16. Efficacy of various spray disinfectants on irreversible hydrocolloid impressions.

    Science.gov (United States)

    Westerholm, H S; Bradley, D V; Schwartz, R S

    1992-01-01

    This study evaluated the effectiveness of eight disinfectant sprays on irreversible hydrocolloid impressions contaminated with three microorganisms (Staphylococcus aureus, Mycobacterium phlei, or Bacillus subtilis) or mixed oral flora. Alcide LD, OMC II, Biocide, and Professional Lysol Spray were relatively ineffective under the test conditions. Sporicidin and 0.525% sodium hypochlorite were able to effect a 4-log10 (99.99%) reduction against S aureus only. A 4-log10 reduction in bacterial counts was achieved by 5.25% sodium hypochlorite and Impresept in all tests except against B subtilis. Full-strength sodium hypochlorite (5.25%) was the most effective disinfectant overall and required the shortest contact time.

  17. Use of Hydrogen Peroxide to Disinfect Hydroponic Plant Growth Systems

    Science.gov (United States)

    Barta, Daniel J.; Henderson, Keith

    2000-01-01

    Hydrogen peroxide was studied as an alternative to conventional bleach and rinsing methods to disinfect hydroponic plant growth systems. A concentration of 0.5% hydrogen peroxide was found to be effective. Residual hydrogen peroxide can be removed from the system by repeated rinsing or by flowing the solution through a platinum on aluminum catalyst. Microbial populations were reduced to near zero immediately after treatment but returned to pre-disinfection levels 2 days after treatment. Treating nutrient solution with hydrogen peroxide and planting directly into trays being watered with the nutrient solution without replenishment, was found to be detrimental to lettuce germination and growth.

  18. Suitability of Sterillium Gel for surgical hand disinfection.

    Science.gov (United States)

    Kampf, G; Kapella, M

    2003-07-01

    In some countries, alcohol-based hand gels are used for hygienic hand disinfection but their efficacy and suitability for surgical hand disinfection has never been investigated. The efficacy of Sterillium Gel was investigated according to prEN 12791 in two separate experiments. Finger tips of 20 volunteers per experiment were sampled for resident skin bacteria before surgical hand disinfection. In a cross-over design, each volunteer carried out a surgical hand disinfection with the reference alcohol [n-propanol 60%, (v/v)] or Sterillium Gel [ethanol 85% (v/v)] for 3 min. After the product application, one hand was sampled for the immediate effect, the other hand was gloved for 3 h and then sampled for the sustained effect. Samples were analysed for remaining resident bacteria. The mean of the pre-value, the 0 h and 3 h values of the reference disinfection and the test product were calculated. With the reference alcohol, respective mean immediate log10-reduction factors of 2.06+/-0.76 and 2.23+/-1.13 were found in both experiments. The mean sustained effects with the reference alcohol were 2.03+/-1.14 and 1.44+/-0.81. Sterillium Gel achieved respective mean immediate effects of 2.48+/-1.06 and 2.13+/-0.81, the mean sustained effects were 2.77+/-0.95 and 2.18+/-0.72. They proved significantly larger than those obtained with the reference alcohol (PSterillium Gel, therefore, more than fulfils the efficacy requirements for surgical hand disinfection of prEN 12791. In addition, 25 of 26 operating theatre healthcare workers in an orthopaedic hospital found it suitable for surgical hand disinfection after a single use, which included putting on a pair of surgical gloves. Although none of them had ever used an alcohol-based gel before, they had rather been accustomed to alcohol-based liquid products for years. The main reasons given for the positive assessment were better skin feeling after use, smell and easier donning of the surgical gloves. No significant correlation

  19. A Novel Type of Thermal Solar Water Disinfection Unit

    OpenAIRE

    Dietl, Jochen; Engelbart, Hendryk; Sielaff, Axel

    2015-01-01

    A novel type of solar thermal water disinfection unit is presented in this work. The system is safe and easy to use and can be built with basic tools and widely available materials. In the unit, water is disinfected by temperature increase up to the boiling point and output is controlled by the change in density. For employing the change in density to control the water output, a dimensioning procedure is suggested, giving the required height of the water reservoir, the heating section and ...

  20. Modulation of cytochrome P450 and induction of DNA damage in Cyprinus carpio exposed in situ to surface water treated with chlorine or alternative disinfectants in different seasons.

    Science.gov (United States)

    Canistro, Donatella; Melega, Simone; Ranieri, Dario; Sapone, Andrea; Gustavino, Bianca; Monfrinotti, Monica; Rizzoni, Marco; Paolini, Moreno

    2012-01-03

    Epidemiological studies have shown an association between consumption of disinfected drinking water and adverse health outcomes. The chemicals used to disinfect water react with occurring organic matter and anthropogenic contaminants in the source water, resulting in the formation of disinfection by-products (DBPs). The observations that some DBPs are carcinogenic in animal models have raised public concern over the possible adverse health effects for humans. Here, the modulation of liver cytochrome P450-linked monooxygenases (MFO) and the genotoxic effects in erythrocytes of Cyprinus carpio fish exposed in situ to surface drinking water in the presence of disinfectants, such as sodium hypochlorite (NaClO), chlorine dioxide (ClO(2)) and peracetic acid (PAA), were investigated in winter and summer. A complex induction/suppression pattern of CYP-associated MFOs in winter was observed for all disinfectants. For example, a 3.4- to 15-fold increase was recorded of the CYP2B1/2-linked dealkylation of penthoxyresorufin with NaClO (10 days) and PAA (20 days). In contrast, ClO(2) generated the most notable inactivation, the CYP2E1-supported hydroxylation of p-nitrophenol being decreased up to 71% after 10 days' treatment. In summer, the degree of modulation was modest, with the exception of CYP3A1/2 and CYP1A1 supported MFOs (62% loss after 20 days PAA). The micronucleus (MN) induction in fish circulating erythrocytes was also analysed as an endpoint of genotoxic potential in the same fish population. Significant increases of MN induction were detected at the latest sampling time on fish exposed to surface water treated with chlorinate-disinfectants, both in winter (NaClO) and summer (NaClO and ClO(2)), while no effect was observed in fish exposed to PAA-treated water. These results show that water disinfection may be responsible for harmful outcomes in terms of MFO perturbation and DNA damage; if extrapolated to humans, they ultimately offer a possible rationale for the