WorldWideScience

Sample records for non-radioactive bonding metal

  1. Bonding of radioactive contamination. IV. Effect of surface finish

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1983-01-01

    The mechanisms by which radioactive contamination would be bonded to a DWPF canister are being investigated. Previous investigations in this series have examined the effects of temperature, oxidation before contamination, and atmosphere composition control on the bonding of contamination. This memorandum describes the results of tests to determine the effect of special surface finishes on the bonding of contamination to waste glass canisters. Surface pretreatments which produce smoother canister surfaces actually cause radioactive contamination to be more tightly bonded to the metal surface than on an untreated surface. Based on the results of these tests it is recommended that the canister surface finish be specified as having a bright cold rolled mill finish equivalent to ASTM No. 2B. 7 references, 3 figures, 3 tables

  2. Transition from metal-ligand bonding to halogen bonding involving a metal as halogen acceptor a study of Cu, Ag, Au, Pt, and Hg complexes

    Science.gov (United States)

    Oliveira, Vytor; Cremer, Dieter

    2017-08-01

    Utilizing all-electron Dirac-exact relativistic calculations with the Normalized Elimination of the Small Component (NESC) method and the local vibrational mode approach, the transition from metal-halide to metal halogen bonding is determined for Au-complexes interacting with halogen-donors. The local stretching force constants of the metal-halogen interactions reveal a smooth transition from weak non-covalent halogen bonding to non-classical 3-center-4-electron bonding and finally covalent metal-halide bonding. The strongest halogen bonds are found for dialkylaurates interacting with Cl2 or FCl. Differing trends in the intrinsic halogen-metal bond strength, the binding energy, and the electrostatic potential are explained.

  3. Factors affecting the shear bond strength of metal and ceramic brackets bonded to different ceramic surfaces.

    Science.gov (United States)

    Abu Alhaija, Elham S J; Abu AlReesh, Issam A; AlWahadni, Ahed M S

    2010-06-01

    The aims of this study were to evaluate the shear bond strength (SBS) of metal and ceramic brackets bonded to two different all-ceramic crowns, IPS Empress 2 and In-Ceram Alumina, to compare the SBS between hydrofluoric acid (HFA), phosphoric acid etched, and sandblasted, non-etched all-ceramic surfaces. Ninety-six all-ceramic crowns were fabricated resembling a maxillary left first premolar. The crowns were divided into eight groups: (1) metal brackets bonded to sandblasted 9.6 per cent HFA-etched IPS Empress 2 crowns; (2) metal brackets bonded to sandblasted 9.6 per cent HFA-etched In-Ceram crowns; (3) ceramic brackets bonded to sandblasted 9.6 per cent HFA-etched IPS Empress 2 crowns; (4) ceramic brackets bonded to sandblasted 9.6 per cent HFA-etched In-Ceram crowns; (5) metal brackets bonded to sandblasted 37 per cent phosphoric acid-etched IPS Empress 2 crowns; (6) metal brackets bonded to sandblasted 37 per cent phosphoric acid-etched In-Ceram crowns; (7) metal brackets bonded to sandblasted, non-etched IPS Empress 2 crowns; and (8) metal brackets bonded to sandblasted, non-etched In-Ceram crowns. Metal and ceramic orthodontic brackets were bonded using a conventional light polymerizing adhesive resin. An Instron universal testing machine was used to determine the SBS at a crosshead speed of 0.1 mm/minute. Comparison between groups was performed using a univariate general linear model and chi-squared tests. The highest mean SBS was found in group 3 (120.15 +/- 45.05 N) and the lowest in group 8 (57.86 +/- 26.20 N). Of all the variables studied, surface treatment was the only factor that significantly affected SBS (P Empress 2 and In-Ceram groups.

  4. Bonding of radioactive contamination. III. Auger electron spectroscopic investigation

    International Nuclear Information System (INIS)

    Rankin, W.N.; Whitkop, P.G.

    1983-01-01

    The mechanisms by which radioactive contamination would be bonded to a DWPF canister surface are being investigated. Tests with low pressure water and air-injected water decontamination of radioactive specimens showed that bonding of contamination increases rapidly with postoxidation temperature. Even with the least severe temperature conditions expected on the waste glass canister, bonding is so great that decontamination cannot be affected by water-only techniques. A preoxidation film increased rather than decreased bonding. This memorandum describes detailed surface analyses of coupons simulating DWPF canister surfaces. Based on this examination we conclude: contamination will be dispersed throughout the oxide film on DWPF canisters. Contamination is concentrated at the surface, decreasing farther into the oxide film; some samples contain sludge contamination at the steel/oxide interface. This was not the case for semi-volatile (Cs 2 O) contamination; in samples with contamination at the steel/oxide interface, at least 80% of the contamination is usually in the oxide layer; no difference in contamination dispersion between preoxidized and non-preoxidized samples was found; and postoxidation atmosphere had no effect on the contamination dispersion within the oxide layer. 6 references, 9 figures

  5. Assessment of Bond Strength between Metal Brackets and Non-Glazed Ceramic in Different Surface Treatment Methods

    Directory of Open Access Journals (Sweden)

    I. Harririan

    2010-06-01

    Full Text Available Objective: The aim of this study was to evaluate the bond strength between metal brackets and non-glazed ceramic with three different surface treatment methods.Materials and Methods: Forty-two non-glazed ceramic disks were assigned into three groups. Group I and II specimens were etched with 9.5% hydrofluoric acid. Subsequently in group I, silane and adhesive were applied and in group II, bonding agent was used only.In group III, specimens were treated with 35% phosphoric acid and then silane and adhesive were applied. Brackets were bonded with light-cured composites. The specimens were stored in water in room temperature for 24 hours and then thermocycled 500 times between 5°C and 55°C.Results: The difference of tensile bond strength between groups I and III was not significant(P=0.999. However, the tensile bond strength of group II was significantly lower than groups I, and III (P<0.001. The adhesive remnant index scores between the threegroups had statistically significant differences (P<0.001.Conclusion: With the application of scotch bond multi-purpose plus adhesive, we can use phosphoric acid instead of hydrofluoric acid for bonding brackets to non-glazed ceramic restorations.

  6. Ultra-stiff metallic glasses through bond energy density design.

    Science.gov (United States)

    Schnabel, Volker; Köhler, Mathias; Music, Denis; Bednarcik, Jozef; Clegg, William J; Raabe, Dierk; Schneider, Jochen M

    2017-07-05

    The elastic properties of crystalline metals scale with their valence electron density. Similar observations have been made for metallic glasses. However, for metallic glasses where covalent bonding predominates, such as metalloid metallic glasses, this relationship appears to break down. At present, the reasons for this are not understood. Using high energy x-ray diffraction analysis of melt spun and thin film metallic glasses combined with density functional theory based molecular dynamics simulations, we show that the physical origin of the ultrahigh stiffness in both metalloid and non-metalloid metallic glasses is best understood in terms of the bond energy density. Using the bond energy density as novel materials design criterion for ultra-stiff metallic glasses, we are able to predict a Co 33.0 Ta 3.5 B 63.5 short range ordered material by density functional theory based molecular dynamics simulations with a high bond energy density of 0.94 eV Å -3 and a bulk modulus of 263 GPa, which is 17% greater than the stiffest Co-B based metallic glasses reported in literature.

  7. Crystallochemistry of rhenium compounds with metal-metal bonds

    International Nuclear Information System (INIS)

    Koz'min, P.A.; Surazhskaya, M.D.

    1980-01-01

    A review is presented including a brief description of atomic structure of 59 coordination rhenium compounds with metal-metal bond. The most important bond lengths and valent angles are presented for each compound. The dependence of rhenium-rhenium bond length on its multiplicity is discussed and possible causes of deviations from this dependence (namely, axial ligand presence, steric repulsion of ligands) are considered. On the basis of qualitative comparison of electronegativity of ligands in dimer compounds with quarternary bond of rhenium-rhenium a supposition is made on the influence of formal charge of atomic group and summary electro-negativity of ligands on the possibility of the metal-metal bond formation

  8. Radioactive materials in recycled metals.

    Science.gov (United States)

    Lubenau, J O; Yusko, J G

    1995-04-01

    In recent years, the metal recycling industry has become increasingly aware of an unwanted component in metal scrap--radioactive material. Worldwide, there have been 35 instances where radioactive sources were unintentionally smelted in the course of recycling metal scrap. In some cases contaminated metal consumer products were distributed internationally. In at least one case, serious radiation exposures of workers and the public occurred. Radioactive material appearing in metal scrap includes sources subject to licensing under the Atomic Energy Act and also naturally occurring radioactive material. U.S. mills that have smelted a radioactive source face costs resulting from decontamination, waste disposal, and lost profits that range from 7 to 23 million U.S. dollars for each event. To solve the problem, industry and the government have jointly undertaken initiatives to increase awareness of the problem within the metal recycling industry. Radiation monitoring of recycled metal scrap is being performed increasingly by mills and, to a lesser extent, by scrap processors. The monitoring does not, however, provide 100% protection. Improvements in regulatory oversight by the government could stimulate improved accounting and control of licensed sources. However, additional government effort in this area must be reconciled with competing priorities in radiation safety and budgetary constraints. The threat of radioactive material in recycled metal scrap will continue for the foreseeable future and, thus, poses regulatory policy challenges for both developed and developing nations.

  9. Studies of Metal-Metal Bonded Compounds in Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Berry, John F. [Univ. of Wisconsin, Madison, WI (United States)

    2018-01-19

    The overall goals of this research are (1) to define the fundamental coordination chemistry underlying successful catalytic transformations promoted by metal-metal bonded compounds, and (2) to explore new chemical transformations that occur at metal-metal bonded sites that could lead to the discovery of new catalytic processes. Transformations of interest include metal-promoted reactions of carbene, nitrene, or nitrido species to yield products with new C–C and C–N bonds, respectively. The most promising suite of transition metal catalysts for these transformations is the set of metal-metal bonded coordination compounds of Ru and Rh of the general formula M2(ligand)4, where M = Ru or Rh and ligand = a monoanionic, bridging ligand such as acetate. Development of new catalysts and improvement of catalytic conditions have been stymied by a general lack of knowledge about the nature of highly reactive intermediates in these reactions, the knowledge that is to be supplied by this work. Our three specific objectives for this year have been (A) to trap, isolate, and characterize new reactive intermediates of general relevance to catalysis, (B) to explore the electronic structure and reactivity of these unusual species, and how these two properties are interrelated, and (C) to use our obtained mechanistic knowledge to design new catalysts with a focus on Earth-abundant first-row transition metal compounds.

  10. Radioactive contamination of recycled metals

    International Nuclear Information System (INIS)

    Lubenau, J.O.; Cool, D.A.; Yusko, J.G.

    1996-01-01

    Radioactive sources commingled with metal scrap have become a major problem for the metals recycling industry worldwide. Worldwide there have been 38 confirmed reports of radioactive sources accidentally smelted with recycled metal. In some instances, contaminated metal products were subsequently distributed. The metal mills, their products and byproducts from the metal making process such as slags, crosses and dusts from furnaces can become contaminated. In the U.S., imported ferrous metal products such as reinforcement bars, pipe flanges, table legs and fencing components have been found contaminated with taco. U.S. steel mills have unintentionally smelted radioactive sources on 16 occasions. The resulting cost for decontamination waste disposal and temporary closure of the steel mill is typically USD 10,000,000 and has been as much as USD 23,000,000. Other metal recycling industries that have been affected by this problem include aluminum, copper, zinc, gold, lead and vanadium. (author)

  11. Stability of a metabolizable ester bond in radioimmunoconjugates

    International Nuclear Information System (INIS)

    Arano, Yasushi; Wakisaka, Kouji; Mukai, Takahiro; Uezono, Takashi; Motonari, Hiroshi; Akizawa, Hiromichi; Kairiyama, Claudia; Ohmomo, Yoshiro; Tanaka, Chiaki; Ishiyama, Munetaka; Sakahara, Harumi; Konishi, Junji; Yokoyama, Akira

    1996-01-01

    Ester bonds have been used as metabolizable linkages to reduce radioactivity levels in non-target tissues following the administration of antibodies labeled with metallic radionuclides. In this radiochemical design of antibodies, while the ester bonds should be cleaved rapidly in non-target tissues, high stability of the ester bonds in plasma is also required to preserve target radioactivity levels. To assess the structural requirements to stabilize the ester bond, a new benzyl-EDTA-derived bifunctional chelating agent with an ester bond, (1-[4-[4-(2-maleimidoethoxy)succinamido]benzyl]ethylenediamine-N,N,N',N'- tetraacetic acid; MESS-Bz-EDTA), was developed. MESS-Bz-EDTA was coupled with a thiolated monoclonal antibody (OST7, IgG 1 ) prepared by reducing its disulfide bonds to introduce the ester bond close and proximal to the antibody molecule. For comparison, 1-[4-(5-maleimidopentyl)aminobenzyl]ethylenediamine-N,N,N',N'-tetraacetic acid (EMCS-Bz-EDTA) and meleimidoethyl 3-[ 131 I]iodohippurate (MIH) was coupled to OST7 under the same conjunction chemistry. When incubated in 50% murine plasma or a buffered-solution of neutral pH, OST7-MESS-Bz-EDTA- 111 In rapidly released the radioactivity, and more than 95% of the initial radioactivity was liberated after a 24 h incubation in both solutions, due to a cleavage of the ester bond. On the other hand, only about 20% of the radioactivity was released from OST7-MIH- 131 I in both solutions during the same incubation period. In mice biodistribution studies, while a slightly faster radioactivity clearance from the blood with less radioactivity levels in the liver and kidneys was observed with OST7-MIH- 131 I than with OST7-EMCS-Bz-EDTA- 111 In, OST7-MESS-Bz-EDTA- 111 In indicated radioactivity clearance from the blood much faster than and almost comparable to that of OST7-MIH- 131 I and succinamidobenzyl-EDTA- 111 In, respectively. These findings as well as previous findings on radiolabeled antibodies with ester bonds

  12. Process for improving the separation efficiency in the isolation of radioactive isotopes in elementary or chemically bonded form from liquids and gases

    International Nuclear Information System (INIS)

    Schmidberger, R.; Kirch, R.; Kock, W.

    1986-01-01

    In the process for the improvement of the separation efficiency in the isolation of radioactive isotopes in elementary or chemically bonded form from liquids or gases by ion exchange and adsorption, non-radioactive isotopes of the element to be isolated are added to the fluid before the isolation, whereas at the same time a large surplus of the non-radioactive isotopes to the radioactive isotopes is achieved by addition of only small quantities of compounds of the non-radioactive isotopes. (orig./RB) [de

  13. Dislocations in materials with mixed covalent and metallic bonding

    International Nuclear Information System (INIS)

    Nguyen-Manh, D.; Cawkwell, M.J.; Groeger, R.; Mrovec, M.; Porizek, R.; Pettifor, D.G.; Vitek, V.

    2005-01-01

    Environment-dependent bond-order potentials have been developed for L1 0 TiAl, bcc Mo and fcc Ir. They comprise both the angular character of bonding and the screening effect of nearly free electrons. These potentials have been employed in atomistic studies of screw dislocations that revealed the non-planar character of their cores. It is argued that both covalent as well as metallic character of bonding govern these structures, which in turn control the mechanical behaviour

  14. Non-radioactive stand-in for radioactive contamination. I. Non-radioactive tests

    International Nuclear Information System (INIS)

    Rohe, M.J.; Rankin, W.N.; Postles, R.L.

    1985-01-01

    Candidate non-radioactive materials for use as a stand-in for radioactive contamination during application of a high-pressure, hot water decontamination were identified and evaluated. A stand-in for radioactive contamination is needed to evaluate the decontaminability of replacement canyon cranes at the manufacturers location where actual radioactive contamination cannot be used. This evaluation was conducted using high-pressure, hot-water at 420 psi, 190 0 F, and 20 gal/min through a 1/8-in.-diam nozzle, the decontamination technique preferred by SRP Separations Department for this application. A non-radioactive stand-in for radioactive contamination was desired that would be removed by direct blast stream contact but would remain intact on surfaces where direct contact does not occur. This memorandum describes identification of candidate non-radioactive stand-in materials and evaluation of these materials in screening tests and tests with high-pressure, hot-water blasting. The following non-radioactive materials were tested: carpenter's line chalk; typing correction fluid; dye penetrant developer; latex paint with attapulyite added; unaltered latex paint; gold enamel; layout fluid; and black enamel. Results show that blue layout fluid and gold enamel have similar adherence that is within the range expected for actual radioactive contamination. White latex paint has less adherence than expected for actual radioactive contamination. The film was removed at a rate of 2 . Black enamel has more adherence than expected from actual radioactive contamination. In these tests ASTM No. 2B surfaces were harder to clean than either ASTM No. 1 or electropolished surfaces which had similar cleaning properties. A 90 0 blast angle was more effective than a 45 0 blast angle. In these tests there was no discernible effect of blast distance between 1 and 3 ft

  15. Bonded carbon or ceramic fiber composite filter vent for radioactive waste

    Science.gov (United States)

    Brassell, Gilbert W.; Brugger, Ronald P.

    1985-02-19

    Carbon bonded carbon fiber composites as well as ceramic or carbon bonded ceramic fiber composites are very useful as filters which can separate particulate matter from gas streams entraining the same. These filters have particular application to the filtering of radioactive particles, e.g., they can act as vents for containers of radioactive waste material.

  16. [The bonding mechanisms of base metals for metal-ceramic crown microstructure analysis of bonding agent and gold bond between porcelain and base metals].

    Science.gov (United States)

    Wang, C C; Hsu, C S

    1996-06-01

    The use of base metal alloys for porcelain fused to a metal crown and bridges has increased recently because of lower price, high hardness, high tensile strength and high elastic modulus. The addition of beryllium to base metal alloys increased fluidity and improved casting fitness. Beryllium also controlled surface oxidation and bonding strength. The bonding agent and gold bonding agent also affected the bonding strength between porcelain and metal alloys. Four commercially available ceramic base alloys were studied (two alloys contained beryllium element, another two did not). The purpose of this investigation was to study the microstructure between porcelain matrix, bonding agent and alloy matrix interfaces. A scanning electron micro-probe analyzer and energy dispersive X-ray spectroscopy (EDXS) were used to study the distribution of elements (Ni, Cr, Mo, Cu, O, Si, Sn, Al) in four base alloys. The following results were obtained: 1. The thickness of the oxidized layer of Rexillium III alloy and Unitbond alloy (contained beryllium) was thinner than Unibond alloy and Wiron 88 alloy (no beryllium). 2. The thickness of the oxidized layer of alloys in air (10 minutes and 30 minutes) was thinner in Unitbond (2.45 microns and 3.80 microns) and thicker in Wiron 88 (4.39 microns and 5.96 microns). 3. The thickness of the oxidized layer occurring for a duration of ten minutes (in vaccum) showed that the Rexillium III alloy was the thinnest (1.93 microns), and Wiron 88 alloy was the thickest (2.30 microns). But in thirty minutes (vacuum), Unitbond alloy was the thinnest (3.37 microns), and Wiron 88 alloy was the thickest (5.51 microns). 4. The intensity of Cr elements was increased obviously near the interface between Unitbond alloy, Wiron 88 alloy (no beryllium) and oxidized layer, but the intensity of Ni and Mo elements was slightly increased. The intensity of Cr element was not increased markedly between Rexillium III alloy, Unitbond alloy (beryllium) and oxidized

  17. The Belgian approach and status on the radiological surveillance of radioactive substances in metal scrap and non-radioactive waste and the financing of orphan sources

    International Nuclear Information System (INIS)

    Braeckeveldt, Marnix; Preter, Peter De; Michiels, Jan; Pepin, Stephane; Schrauben, Manfred; Wertelaers, An

    2007-01-01

    Numerous facilities in the non-nuclear sector in Belgium (e.g. in the non-radioactive waste processing and management sector and in the metal recycling sector) have been equipped with measuring ports for detecting radioactive substances. These measuring ports prevent radioactive sources or radioactive contamination from ending up in the material fluxes treated by the sectors concerned. They thus play an important part in the protection of the workers and the people living in the neighbourhood of the facilities, as well as in the protection of the population and the environment in general. In 2006, Belgium's federal nuclear control agency (FANC/AFCN) drew up guidelines for the operators of non-nuclear facilities with a measuring port for detecting radioactive substances. These guidelines describe the steps to be followed by the operators when the port's alarm goes off. Following the publication of the European guideline 2003/122/EURATOM of 22 December 2003 on the control of high-activity sealed radioactive sources and orphan sources, a procedure has been drawn up by FANC/AFCN and ONDRAF/NIRAS, the Belgian National Agency for Radioactive Waste and Enriched Fissile Materials, to identify the responsible to cover the costs relating to the further management of detected sealed sources and if not found to declare the sealed source as an orphan source. In this latter case and from mid-2006 the insolvency fund managed by ONDRAF/NIRAS covers the cost of radioactive waste management. At the request of the Belgian government, a financing proposal for the management of unsealed orphan sources as radioactive waste was also established by FANC/AFCN and ONDRAF/NIRAS. This proposal applies the same approach as for sealed sources and thus the financing of unsealed orphan sources will also be covered by the insolvency fund. (authors)

  18. Chemical decontamination method for radioactive metal waste

    International Nuclear Information System (INIS)

    Tanaka, Akio; Onuma, Tsutomu; Yamazaki, Sei; Miura, Haruki.

    1993-01-01

    The present invention provides a chemical decontamination method for radioactive metal wastes, which are generated from radioactive material handling facilities and the surfaces of which are contaminated by radioactive materials. That is, it has a feature of applying acid dissolution simultaneously with mechanical grinding. The radioactive metal wastes are contained in a vessel such as a barrel together with abrasives in a sulfuric acid solution and rotated at several tens rotation per minute. By such procedures for the radioactive metal wastes, (1) cruds and passive membranes are mechanically removed, (2) exposed mother metal materials are uniformly brought into contact with sulfuric acid and further (3) the mother metal materials dissolve the cruds and the passive membranes also chemically by a reducing dissolution (so-called local cell effect). According to the method of the present invention, stainless steel metal wastes having cruds and passive membranes can rapidly and efficiently be decontaminated to a radiation level equal with that of ordinary wastes. (I.S.)

  19. Method of processing radioactive metal wastes

    International Nuclear Information System (INIS)

    Inoue, Yoichi; Kitagawa, Kazuo; Tsuzura, Katsuhiko.

    1980-01-01

    Purpose: To enable long and safety storage for radioactive metal wastes such as used fuel cans after the procession or used pipe, instruments and the likes polluted with various radioactive substances, by compacting them to solidify. Method: Metal wastes such as used fuel cans, which have been cut shorter and reprocessed, are pressed into generally hexagonal blocks. The block is charged in a capsule of a hexagonal cross section made of non-gas permeable materials such as soft steels, stainless steels and the likes. Then, the capsule is subjected to static hydraulic hot pressing as it is or after deaeration and sealing. While various combinations are possible for temperature, pressure and time as the conditions for the static hydraulic hot pressing, dense block with no residual gas pores can be obtained, for example, under the conditions of 900 0 C, 1000 Kg/cm 2 and one hour where the wastes are composed of zircaloy. (Kawakami, Y.)

  20. Molten salt oxidation of ion-exchange resins doped with toxic metals and radioactive metal surrogates

    International Nuclear Information System (INIS)

    Yang, Hee-Chul; Cho, Yong-Jun; Yoo, Jae-Hyung; Kim, Joon-Hyung; Eun, Hee-Chul

    2005-01-01

    Ion-exchange resins doped with toxic metals and radioactive metal surrogates were test-burned in a bench-scale molten salt oxidation (MSO) reactor system. The purposes of this study are to confirm the destruction performance of the two-stage MSO reactor system for the organic ion-exchange resin and to obtain an understanding of the behavior of the fixed toxic metals and the sulfur in the cationic exchange resins. The destruction of the organics is very efficient in the primary reactor. The primarily destroyed products such as carbon monoxide are completely oxidized in the secondary MSO reactor. The overall collection of the sulfur and metals in the two-stage MSO reactor system appeared to be very efficient. Over 99.5% of all the fixed toxic metals (lead and cadmium) and radioactive metal surrogates (cesium, cobalt, strontium) remained in the MSO reactor bottom. Thermodynamic equilibrium calculations and the XRD patterns of the spent salt samples revealed that the collected metals existed in the form of each of their carbonates or oxides, which are non-volatile species at the MSO system operating conditions. (author)

  1. Chemical decontamination method for radioactive metal waste

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Akimoto, Hidetoshi

    1991-01-01

    The invention relates to a decontamination method for radioactive metal waste products derived from equipment that handles radioactive materials whose surfaces have been contaminated; in particular it concerns a decontamination method that reduces the amount of radioactive waste by decontaminating radioactive waste substances to a level of radioactivity in line with normal waste products. In order to apply chemical decontamination to metal waste products whose surfaces are divided into carbon steel waste and stainless steel waste; the carbon steel waste is treated using only a primary process in which the waste is immersed in a sulfuric acid solution, while the stainless steel waste must be treated with both the primary process and then electrolytically reduces it for a specific length of time and a secondary process that uses a solution of sulfuric acid mixed with oxidizing metal salts. The method used to categorize metal waste into carbon steel waste and stainless steel waste involves determining the presence, or absence, of magnetism. Voltage is applied for a fixed duration; once that has stopped, electrolytic reduction repeats the operative cycle of applying, then stopping voltage until the potential of the radioactive metal waste is retained in the active region. 1 fig. 2 tabs

  2. Progress in cold roll bonding of metals

    International Nuclear Information System (INIS)

    Li Long; Nagai, Kotobu; Yin Fuxing

    2008-01-01

    Layered composite materials have become an increasingly interesting topic in industrial development. Cold roll bonding (CRB), as a solid phase method of bonding same or different metals by rolling at room temperature, has been widely used in manufacturing large layered composite sheets and foils. In this paper, we provide a brief overview of a technology using layered composite materials produced by CRB and discuss the suitability of this technology in the fabrication of layered composite materials. The effects of process parameters on bonding, mainly including process and surface preparation conditions, have been analyzed. Bonding between two sheets can be realized when deformation reduction reaches a threshold value. However, it is essential to remove surface contamination layers to produce a satisfactory bond in CRB. It has been suggested that the degreasing and then scratch brushing of surfaces create a strong bonding between the layers. Bonding mechanisms, in which the film theory is expressed as the major mechanism in CRB, as well as bonding theoretical models, have also been reviewed. It has also been showed that it is easy for fcc structure metals to bond compared with bcc and hcp structure metals. In addition, hardness on bonding same metals plays an important part in CRB. Applications of composites produced by CRB in industrial fields are briefly reviewed and possible developments of CRB in the future are also described. Corrections were made to the abstract and conclusion of this article on 18 June 2008. The corrected electronic version is identical to the print version. (topical review)

  3. Radiation sources and process

    International Nuclear Information System (INIS)

    Honious, H.B.; Janzow, E.F.; Malson, H.A.; Moyer, S.E.

    1980-01-01

    The invention relates to radiation sources comprising a substrate having an electrically-conductive non-radioactive metal surface, a layer of a metal radioactive isotope of the scandium group, which in addition to scandium, yttrium, lanthanum and actinium, includes all the lanthanide and actinide series of elements, with the actinide series usually being preferred because of the nature of the radioactive isotopes therein, particularly americium-241, curium-244, plutonium-238, californium-252 and promethium-147, and a non-radioactive bonding metal codeposited on the surface by electroplating the isotope and bonding metal from an electrolytic solution, the isotope being present in the layer in minor amount as compared to the bonding metal, and with or without a non-radioactive protective metal coating covering the isotoype and bonding metal on the surface, the coating being sufficiently thin to permit radiation to pass through the coating. The invention also relates to a process for providing radiation sources comprising codepositing a layer of the metal radioactive isotope with a non-radioactive bonding metal from an electrolytic solution in which the isotope is present in minor molar amount as compared to the bonding metal such that the codeposited layer contains a minor molar amount of the isotope compared to the bonding metal by electroplating on an electrically-conductive non-radioactive metal surface of a cathode substrate, and with or without depositing a nonradioactive protective metal coating over the isotope and bonding metal on the surface, the coating being sufficiently thin to permit radiation to pass through the coating

  4. Behavior of radioactive metal surrogates under various waste combustion conditions

    International Nuclear Information System (INIS)

    Yang, Hee Chul; Lee, Jae Hee; Kim, Jung Guk; Yoo, Jae Hyung; Kim, Joon Hyung

    2002-01-01

    A laboratory investigation of the behavior of radioactive metals under the various waste combustion atmospheres was conducted to predict the parameters that influence their partitioning behavior during waste incineration. Neodymium, samarium, cerium, gadolinium, cesium and cobalt were used as non-radioactive surrogate metals that are representative of uranium, plutonium, americium, curium, radioactive cesium, and radioactive cobalt, respectively. Except for cesium, all of the investigated surrogate metal compounds converted into each of their stable oxides at medium temperatures from 400 to 900 .deg. C, under oxygen-deficient and oxygen-sufficient atmospheres (0.001-atm and 0.21-atm O 2 ). At high temperatures above 1,400 .deg. C, cerium, neodymium and samarium in the form of their oxides started to vaporize but the vaporization rates were very slow up to 1500 .deg. C. Inorganic chlorine (NaCl) as well as organic chlorine (PVC) did not impact the volatility of investigated Nd 2 O 3 , CoO and Cs 2 O. The results of laboratory investigations suggested that the combustion chamber operating parameters affecting the entrainment of particulate and filtration equipment operating parameters affecting particle collection efficiency be the governing parameters of alpha radionuclides partitioning during waste incineration

  5. Method of melting decontamination of radioactive contaminated metals

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko; Miura, Noboru; Tsuchiya, Hiroyuki.

    1984-01-01

    Purpose: To improve the transfer efficiency of radioactive materials into slags. Method: Contaminated metals are melt with adding slagging agent in order to transfer the radioactive materials into the slag, where the slagging agent holds less free energy than that of metal oxides contaminated with radioactive materials in order to promote the transfer of the contaminated materials into the slag layer. This effect can also be attained on metals or alloys other than iron contaminated with radioactive materials. In the case of alloy, the slagging agent is to containing such metal oxide that free energy is less than that of the oxide of metal being the main ingredient element of the alloy. The decontamination effect can further be improved by containing halogenide such as calcium fluoride together with the metal oxide into the slagging agent. (Ikeda, J.)

  6. Process for cleaning radioactively contaminated metal surfaces

    International Nuclear Information System (INIS)

    Mihram, R.G.; Snyder, G.A.

    1975-01-01

    A process is described for removing radioactive scale from a ferrous metal surface, including the steps of initially preconditioning the surface by contacting it with an oxidizing solution (such as an aqueous solution of an alkali metal permanganate or hydrogen peroxide), then, after removal or decomposition of the oxidizing solution, the metallic surface is contacted with a cleaning solution which is a mixture of a mineral acid and a complexing agent (such as sulfuric acid and oxalic acid), and which preferably contains a corrosion inhibitor. A final step in the process is the treatment of the spent cleaning solution containing radioactive waste materials in solution by adding a reagent selected from the group consisting of calcium hydroxide or potassium permanganate and an alkali metal hydroxide to thereby form easily recovered metallic compounds containing substantially all of the dissolved metals and radioactivity. (auth)

  7. Bump Bonding Using Metal-Coated Carbon Nanotubes

    Science.gov (United States)

    Lamb, James L.; Dickie, Matthew R.; Kowalczyk, Robert S.; Liao, Anna; Bronikowski, Michael J.

    2012-01-01

    Bump bonding hybridization techniques use arrays of indium bumps to electrically and mechanically join two chips together. Surface-tension issues limit bump sizes to roughly as wide as they are high. Pitches are limited to 50 microns with bumps only 8-14 microns high on each wafer. A new process uses oriented carbon nanotubes (CNTs) with a metal (indium) in a wicking process using capillary actions to increase the aspect ratio and pitch density of the connections for bump bonding hybridizations. It merges the properties of the CNTs and the metal bumps, providing enhanced material performance parameters. By merging the bumps with narrow and long CNTs oriented in the vertical direction, higher aspect ratios can be obtained if the metal can be made to wick. Possible aspect ratios increase from 1:1 to 20:1 for most applications, and to 100:1 for some applications. Possible pitch density increases of a factor of 10 are possible. Standard capillary theory would not normally allow indium or most other metals to be drawn into the oriented CNTs, because they are non-wetting. However, capillary action can be induced through the ability to fabricate oriented CNT bundles to desired spacings, and the use of deposition techniques and temperature to control the size and mobility of the liquid metal streams and associated reservoirs. This hybridization of two technologies (indium bumps and CNTs) may also provide for some additional benefits such as improved thermal management and possible current density increases.

  8. Method for electrolytic decontamination of radioactive contaminated metals

    International Nuclear Information System (INIS)

    Tanaka, Akio; Horita, Masami; Onuma, Tsutomu; Kato, Koji

    1991-01-01

    The invention relates to an electrolytic decontamination method for radioactive contaminated metals. The contaminated sections are eluted by electrolysis after the surface of a piece of equipment used with radioactive substances has been immersed in an electrolyte. Metal contaminated by radioactive substances acts as the anode

  9. Processing method of radioactive metal wastes

    International Nuclear Information System (INIS)

    Uetake, Naoto; Urata, Megumu; Sato, Masao.

    1985-01-01

    Purpose: To reduce the volume and increase the density of radioactive metal wastes easily while preventing scattering of radioactivity and process them into suitable form to storage and treatment. Method: Metal wastes mainly composed of zirconium are discharged from nuclear power plants or fuel re-processing plants, and these metals such as zirconium and titanium vigorously react with hydrogen and rapidly diffuse as hydrides. Since the hydrides are extremely brittle and can be pulverized easily, they can be volume-reduced. However, since metal hydrides have no ductility, dehydrogenation is applied for the molding fabrication in view of the subsequent storage and processing. The dehydrogenation is easy like the hydrogenation and fine metal pieces can be molded in a small compression device. For the dehydrogenation, a temperature is slightly increased as compared with that in the hydrogenation, pressure is reduced through the vacuum evacuation system and the removed hydrogen is purified for reuse. The upper limit for the temperature of the hydrogenation is 680 0 C in order to prevent the scttering of radioactivity. (Kamimura, M.)

  10. Method of electrolytically decontaminating of radioactive metal wastes

    International Nuclear Information System (INIS)

    Oonuma, Tsutomu; Tanaka, Akio; Yamadera, Toshio.

    1985-01-01

    Purpose: To significantly reduce the volume of secondary wastes by separating from electrolytes metal ions containing radioactive metal ions dissolved therein in the form of elemental metals of a reduced volume with ease, as well as regenerating the electrolytes for re-use. Method: Contaminated portions at the surface of the radioactive metal wastes are dissolved in electrolytes and, when the metal ion concentration in the electrolytes reaches a predetermined level, the electrolytes are introduced to an acid recovery step and an electrodeposition step. The recovered acid is re-used as the electrolytes, while dissolved metal ions containing radioactive metal ions are deposited as elemental metals in the electrodeposition step. The electrolytes usable herein include those acids easily forming stable complex compounds with the metals or those not forming hydroxides of the contaminated metals. Combination of sodium sulfate and sulfuric acid, sodium chloride and hydrochloride or the like is preferred. (Kamimura, M.)

  11. Phytoremediation of water bodies contaminated with radioactive heavy metal

    International Nuclear Information System (INIS)

    Yan Zhen; Yuan Shichao; Ling Hui; Xie Shuibo

    2012-01-01

    The sources of the radioactive heavy metal in the water bodies were analyzed. The factors that affect phyto remediation of water contaminated with radioactive heavy metal were discussed. The plant species, mechanism and major technology of phyto remediation of water contaminated with radioactive heavy metal were particularly introduced. The prospective study was remarked. (authors)

  12. Role of contact bonding on electronic transport in metal-carbon nanotube-metal systems

    International Nuclear Information System (INIS)

    Deretzis, I; La Magna, A

    2006-01-01

    We have investigated the effects of the interfacial bond arrangement on the electronic transport features of metal-nanotube-metal systems. The transport properties of finite, defect-free armchair and zigzag single-walled carbon nanotubes attached to Au(111) metallic contacts have been calculated by means of the non-equilibrium Green functional formalism with the tight-binding and the extended Hueckel Hamiltonians. Our calculations show that the electrode material is not the only factor which rules contact transparency. Indeed, for the same electrode, but changing nanotube helicities, we have observed an overall complex behaviour of the transmission spectra due to band mixing and interference. A comparison of the two models shows that the tight-binding approach fails to give a satisfactory representation of the transmission function when a more accurate description of the C-C and Au-C chemical bonds has to be considered. We have furthermore examined the effect of interface geometry variance on conduction and found that the contact-nanotube distance has a significant impact, while the contact-nanotube symmetry plays a marginal, yet evident role

  13. Microstructure and bonding mechanism of Al/Ti bonded joint using Al-10Si-1Mg filler metal

    International Nuclear Information System (INIS)

    Sohn, Woong H.; Bong, Ha H.; Hong, Soon H.

    2003-01-01

    The microstructures and liquid state diffusion bonding mechanism of cp-Ti to 1050 Al using an Al-10.0wt.%Si-1.0wt.%Mg filler metal with 100 μm in thickness have been investigated at 620 deg. C under 1x10 -4 Torr. The effects of bonding process parameters on microstructure of bonded joint have been analyzed by using an optical microscope, AES, scanning electron microscopy and EDS. The interfacial bond strength of Al/Ti bonded joints was measured by the single lap shear test. The results show that the bonding at the interface between Al and filler metal proceeds by wetting the Al with molten filler metal, and followed by removal of oxide layer on surface of Al. The interface between Al and filler metal moved during the isothermal solidification of filler metal by the diffusion of Si from filler metal into Al layer. The interface between Al and filler metal became curved in shape with increasing bonding time due to capillary force at grain boundaries. The bonding at the interface between Ti and filler metal proceeds by the formation of two different intermetallic compound layers, identified as Al 5 Si 12 Ti 7 and Al 12 Si 3 Ti 5 , followed by the growth of the intermetallic compound layers. The interfacial bond strength at Al/Ti joint increased with increasing bonding time up to 25 min at 620 deg. C. However, the interfacial bond strength of Al/Ti joint decreased after bonding time of 25 min at 620 deg. C due to formation of cavities in Al near Al/intermetallic interfaces

  14. Cooperativity in Surface Bonding and Hydrogen Bonding of Water and Hydroxyl at Metal Surfaces

    DEFF Research Database (Denmark)

    Schiros, T.; Ogasawara, H.; Naslund, L. A.

    2010-01-01

    of the mixed phase at metal surfaces. The surface bonding can be considered to be similar to accepting a hydrogen bond, and we can thereby apply general cooperativity rules developed for hydrogen-bonded systems. This provides a simple understanding of why water molecules become more strongly bonded...... to the surface upon hydrogen bonding to OH and why the OH surface bonding is instead weakened through hydrogen bonding to water. We extend the application of this simple model to other observed cooperativity effects for pure water adsorption systems and H3O+ on metal surfaces.......We examine the balance of surface bonding and hydrogen bonding in the mixed OH + H2O overlayer on Pt(111), Cu(111), and Cu(110) via density functional theory calculations. We find that there is a cooperativity effect between surface bonding and hydrogen bonding that underlies the stability...

  15. Atomic bonding between metal and graphene

    KAUST Repository

    Wang, Hongtao

    2013-03-07

    To understand structural and chemical properties of metal-graphene composites, it is crucial to unveil the chemical bonding along the interface. We provide direct experimental evidence of atomic bonding between typical metal nano structures and graphene, agreeing well with density functional theory studies. Single Cr atoms are located in the valleys of a zigzag edge, and few-atom ensembles preferentially form atomic chains by self-assembly. Low migration barriers lead to rich dynamics of metal atoms and clusters under electron irradiation. We demonstrate no electron-instigated interaction between Cr clusters and pristine graphene, though Cr has been reported to be highly reactive to graphene. The metal-mediated etching is a dynamic effect between metal clusters and pre-existing defects. The resolved atomic configurations of typical nano metal structures on graphene offer insight into modeling and simulations on properties of metal-decorated graphene for both catalysis and future carbon-based electronics. © 2013 American Chemical Society.

  16. Radioactive metals disposal and recycling impact modelling

    International Nuclear Information System (INIS)

    Kemp, N.W.; Lunn, R.J.; Belton, V.; Kockar, I.

    2014-01-01

    Screening life cycle assessment models developed to investigate hypothetical disposal and recycling options for the Windscale Advanced Gas-cooled Reactor heat exchangers were used to generate more complex models addressing the main UK radioactive metals inventory. Both studies show there are significant environmental advantages in the metals recycling promoted by the current low level waste disposal policies, strategies and plans. Financial benefits from current metals treatment options are supported and offer even greater benefits when applied to the UK radioactive metals inventory as a whole. (authors)

  17. INEL metal recycle radioactive scrap metal survey report

    International Nuclear Information System (INIS)

    Funk, D.M.

    1994-09-01

    DOE requested that inventory and characterization of radioactive scrap metal (RSM) be conducted across the DOE complex. Past studies have estimated the metal available from unsubstantiated sources. In meetings held in FY-1993, with seven DOE sites represented and several DOE-HQ personnel present, INEL personnel discovered that these numbers were not reliable and that large stockpiles did not exist. INEL proposed doing in-field measurements to ascertain the amount of RSM actually available. This information was necessary to determine the economic viability of recycling and to identify feed stock that could be used to produce containers for radioactive waste. This inventory measured the amount of RSM available at the selected DOE sites. Information gathered included radionuclide content and chemical form, general radiation field, alloy type, and mass of metal

  18. Import of metal scrap - risks associated with radioactivity

    International Nuclear Information System (INIS)

    Elert, M.

    1992-11-01

    There is a growing concern in Sweden for the possibility that imported metal scrap is radioactive. The recent political and economical changes in eastern Europe and the increased cooperation with the CEC has affected Swedens import. In the last years, the import of metal scrap from the former USSR has increased considerably. In view of recent incidents, when radioactive materials have been found, the Swedish Radiation Protection Institute has detected a need for identifying the potential risk sources and evaluating the magnitude of the risk associated with the import of metal scrap. The purpose of this report is to provide some background material concerning import statistics, use of metal scrap in Sweden and to identify potential sources of radioactive metal scrap. In addition, the radionuclides of most concern has been identified and the possibility of detecting them in metal scrap shipments is analyzed

  19. TOPICAL REVIEW Progress in cold roll bonding of metals

    Directory of Open Access Journals (Sweden)

    Long Li, Kotobu Nagai and Fuxing Yin

    2008-01-01

    Full Text Available Layered composite materials have become an increasingly interesting topic in industrial development. Cold roll bonding (CRB, as a solid phase method of bonding same or different metals by rolling at room temperature, has been widely used in manufacturing large layered composite sheets and foils. In this paper, we provide a brief overview of a technology using layered composite materials produced by CRB and discuss the suitability of this technology in the fabrication of layered composite materials. The effects of process parameters on bonding, mainly including process and surface preparation conditions, have been analyzed. Bonding between two sheets can be realized when deformation reduction reaches a threshold value. However, it is essential to remove surface contamination layers to produce a satisfactory bond in CRB. It has been suggested that the degreasing and then scratch brushing of surfaces create a strong bonding between the layers. Bonding mechanisms, in which the film theory is expressed as the major mechanism in CRB, as well as bonding theoretical models, have also been reviewed. It has also been showed that it is easy for fcc structure metals to bond compared with bcc and hcp structure metals. In addition, hardness on bonding same metals plays an important part in CRB. Applications of composites produced by CRB in industrial fields are briefly reviewed and possible developments of CRB in the future are also described.

  20. ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS

    International Nuclear Information System (INIS)

    R.H. Little, P.R. Maul, J.S.S. Penfoldag

    2003-01-01

    This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of both the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible

  1. Method of handling radioactive alkali metal waste

    Science.gov (United States)

    Wolson, R.D.; McPheeters, C.C.

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  2. Method of handling radioactive alkali metal waste

    International Nuclear Information System (INIS)

    Mcpheeters, C.C.; Wolson, R.D.

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1

  3. Comparison of shear bond strength of the stainless steel metallic brackets bonded by three bonding systems

    Directory of Open Access Journals (Sweden)

    Mehdi Ravadgar

    2013-09-01

    Full Text Available Introduction: In orthodontic treatment, it is essential to establish a satisfactory bond between enamel and bracket. After the self-etch primers (SEPs were introduced for the facilitation of bracket bonding in comparison to the conventional etch-and-bond system, multiple studies have been carried out on their shear bond strengths which have yielded different results. This study was aimed at comparing shear bond strengths of the stainless steel metallic brackets bonded by three bonding systems. Methods: In this experimental in vitro study, 60 extracted human maxillary premolar teeth were randomly divided into three equal groups: in the first group, Transbond XT (TBXT light cured composite was bonded with Transbond plus self-etching primer (TPSEP in the second group, TBXT composite was bonded with the conventional method of acid etching and in the third group, the self cured composite Unite TM bonding adhesive was bonded with the conventional method of acid etching. In all the groups, Standard edgewise-022 metallic brackets (American Orthodontics, Sheboygan, USA were used. Twenty-four hours after the completion of thermocycling, shear bond strength of brackets was measured by Universal Testing Machine (Zwick. In order to compare the shear bond strengths of the groups, the variance analysis test (ANOVA was adopted and p≤0.05 was considered as a significant level. Results: Based on megapascal, the average shear bond strength for the first, second, and third groups was 8.27±1.9, 9.78±2, and 8.92±2.5, respectively. There was no significant difference in the shear bond strength of the groups. Conclusions: Since TPSEP shear bond strength is approximately at the level of the conventional method of acid etching and within the desirable range for orthodontic brackets shear bond strength, applying TPSEP can serve as a substitute for the conventional method of etch and bond, particularly in orthodontic operations.

  4. Comparison of shear bond strength of the stainless steel metallic brackets bonded by three bonding systems

    Directory of Open Access Journals (Sweden)

    Mehdi Ravadgar

    2013-09-01

    Full Text Available Introduction: In orthodontic treatment, it is essential to establish a satisfactory bond between enamel and bracket. After the self-etch primers (SEPs were introduced for the facilitation of bracket bonding in comparison to the conventional etch-and-bond system, multiple studies have been carried out on their shear bond strengths which have yielded different results. This study was aimed at comparing shear bond strengths of the stainless steel metallic brackets bonded by three bonding systems. Methods: In this experimental in vitro study, 60 extracted human maxillary premolar teeth were randomly divided into three equal groups: in the first group, Transbond XT (TBXT light cured composite was bonded with Transbond plus self-etching primer (TPSEP; in the second group, TBXT composite was bonded with the conventional method of acid etching; and in the third group, the self cured composite Unite TM bonding adhesive was bonded with the conventional method of acid etching. In all the groups, Standard edgewise-022 metallic brackets (American Orthodontics, Sheboygan, USA were used. Twenty-four hours after the completion of thermocycling, shear bond strength of brackets was measured by Universal Testing Machine (Zwick. In order to compare the shear bond strengths of the groups, the variance analysis test (ANOVA was adopted and p≤0.05 was considered as a significant level. Results: Based on megapascal, the average shear bond strength for the first, second, and third groups was 8.27±1.9, 9.78±2, and 8.92±2.5, respectively. There was no significant difference in the shear bond strength of the groups. Conclusions: Since TPSEP shear bond strength is approximately at the level of the conventional method of acid etching and within the desirable range for orthodontic brackets shear bond strength, applying TPSEP can serve as a substitute for the conventional method of etch and bond, particularly in orthodontic operations.

  5. The diffusion bonding of silicon carbide and boron carbide using refractory metals

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    Joining is an enabling technology for the application of structural ceramics at high temperatures. Metal foil diffusion bonding is a simple process for joining silicon carbide or boron carbide by solid-state, diffusive conversion of the metal foil into carbide and silicide compounds that produce bonding. Metal diffusion bonding trials were performed using thin foils (5 microm to 100 microm) of refractory metals (niobium, titanium, tungsten, and molybdenum) with plates of silicon carbide (both α-SiC and β-SiC) or boron carbide that were lapped flat prior to bonding. The influence of bonding temperature, bonding pressure, and foil thickness on bond quality was determined from metallographic inspection of the bonds. The microstructure and phases in the joint region of the diffusion bonds were evaluated using SEM, microprobe, and AES analysis. The use of molybdenum foil appeared to result in the highest quality bond of the metal foils evaluated for the diffusion bonding of silicon carbide and boron carbide. Bonding pressure appeared to have little influence on bond quality. The use of a thinner metal foil improved the bond quality. The microstructure of the bond region produced with either the α-SiC and β-SiC polytypes were similar

  6. Method of electrolytic decontamination of contaminated metal materials for radioactivity

    International Nuclear Information System (INIS)

    Harada, Yoshio; Ishibashi, Masaru; Matsumoto, Hiroyo.

    1985-01-01

    Purpose: To electrolytically eliminate radioactive materials from metal materials contaminated with radioactive materials, as well as efficiently remove metal ions leached out in an electrolyte. Method: In the case of anodic dissolution of metal materials contaminated with radioactivity in an electrolyte to eliminate radioactive contaminating materials on the surface of the metal materials, a portion of an electrolytic cell is defined with partition membranes capable of permeating metal ions therethrough. A cathode connected to a different power source is disposed to the inside of the partition membranes and fine particle of metals are suspended and floated in the electrolyte. By supplying an electric current between an insoluble anode disposed outside of the partition membranes and the cathode, metal ions permeating from the outside of the partition membranes are deposited on the fine metal particles. Accordingly, since metal ions in the electrolyte are removed, the electrolyte can always be kept clean. (Yoshihara, H.)

  7. Mushrooms pollution by radioactivity and heavy metals

    International Nuclear Information System (INIS)

    Delatouche, L.

    2001-01-01

    Some basic notions of radioactivity are recalled first (definition, origin, measurement units, long- and short-term effects..). Then, the pedology of soils and the properties and toxicity of 3 heavy metals (lead, cadmium, mercury) are presented to better understand the influence of some factors (genre, age, ecological type, pollution, conservation..) on the contamination of macro-mycetes by radioactivity and heavy metals. The role of chemists is to inform the consumers about these chemical and radioactive pollutions and to give some advices about the picking up (quantities, species and places to avoid) and the cooking of mushrooms. (J.S.)

  8. FFTF metal fuel pin sodium bond quality verification

    International Nuclear Information System (INIS)

    Pitner, A.L.; Dittmer, J.O.

    1988-12-01

    The Fast Flux Test Facility (FFTF) Series III driver fuel design consists of U-10Zr fuel slugs contained in a ferritic alloy cladding. A liquid metal, sodium bond between the fuel and cladding is required to prevent unacceptable temperatures during operation. Excessive voiding or porosity in the sodium thermal bond could result in localized fuel melting during irradiation. It is therefore imperative that bond quality be verified during fabrication of these metal fuel pins prior to irradiation. This document discusses this verification

  9. Saturated bonds and anomalous electronic transport in transition-metal aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, T.

    2006-05-22

    This thesis deals with the special electronic properties of the transition-metal aluminides. Following quasicrystals and their approximants it is shown that even materials with small elementary cells exhibit the same surprising effects. So among the transition-metal aluminides also semi-metallic and semiconducting compounds exist, although if they consist of classic-metallic components like Fe, Al, or Cr. These properties are furthermore coupled with a deep pseusogap respectively gap in the density of states and strongly covalent bonds. Bonds are described in this thesis by two eseential properties. First by the bond charge and second by the energetic effect of the bond. It results that in the caes of semiconducting transition-metal aluminides both a saturation of certain bonds and a bond-antibond alteration in the Fermi level is present. By the analysis of the near-order in form of the so-calles coordination polyeders it has been succeeded to establish a simple rule for semiconductors, the five-fold coordination for Al. This rule states that aluminium atoms with their three valence electrons are not able to build more than five saturated bonds to their nearest transition-metal neighbours. In excellent agreement with the bond angles predicted theoretically under assumption of equal-type bonds it results that all binary transition-element aluminide semiconductors exhibit for the Al atoms the same near order. Typical values for specific resistances of the studied materials at room temperature lie in the range of some 100 {mu}{omega}cm, which is farly larger than some 10 {mu}{omega}cm as in the case of the unalloyed metals. SUrprising is furthermore a high transport anisotropy with a ratio of the specific resistances up to 3.0. An essential result of this thesis can be seen in the coupling of the properties of the electronic transport and the bond properties. The small conducitivities could be explained by small values in the density of states and a bond

  10. Nuclear fuel cycle waste recycling technology deverlopment - Radioactive metal waste recycling technology development

    International Nuclear Information System (INIS)

    Oh, Won Zin; Moon, Jei Kwon; Jung, Chong Hun; Park, Sang Yoon

    1998-08-01

    With relation to recycling of the radioactive metal wastes which are generated during operation and decommissioning of nuclear facilities, the following were described in this report. 1. Analysis of the state of the art on the radioactive metal waste recycling technologies. 2. Economical assessment on the radioactive metal waste recycling. 3. Process development for radioactive metal waste recycling, A. Decontamination technologies for radioactive metal waste recycling. B. Decontamination waste treatment technologies, C. Residual radioactivity evaluation technologies. (author). 238 refs., 60 tabs., 79 figs

  11. Hydrogen and dihydrogen bonding of transition metal hydrides

    Science.gov (United States)

    Jacobsen, Heiko

    2008-04-01

    Intermolecular interactions between a prototypical transition metal hydride WH(CO) 2NO(PH 3) 2 and a small proton donor H 2O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20-30% of the bond energy and to 30-40% of the bond enthalpy. An energy decomposition analysis reveals that the H⋯H bond of transition metal hydrides contains both covalent and electrostatic contributions.

  12. Hydrogen and dihydrogen bonding of transition metal hydrides

    International Nuclear Information System (INIS)

    Jacobsen, Heiko

    2008-01-01

    Intermolecular interactions between a prototypical transition metal hydride WH(CO) 2 NO(PH 3 ) 2 and a small proton donor H 2 O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20-30% of the bond energy and to 30-40% of the bond enthalpy. An energy decomposition analysis reveals that the H...H bond of transition metal hydrides contains both covalent and electrostatic contributions

  13. Comparison of the tensile bond strength of high-noble, noble, and base metal alloys bonded to enamel.

    Science.gov (United States)

    Sen, D; Nayir, E; Pamuk, S

    2000-11-01

    Although the bond strengths of various resin composite luting materials have been reported in the literature, the evaluation of these systems with various cast alloys of different compositions has not been completely clarified. To evaluate the tensile bond strength of sandblasted high-noble, noble, and base metal alloys bonded to etched enamel by 2 different bonding agents of different chemical composition: Panavia-Ex (BIS-GMA) and Super-Bond (4-META acrylic). Flat enamel surfaces were prepared on buccal surfaces of 60 extracted noncarious human incisors. Teeth were divided into 3 groups of 20 each. Twenty circular disks of 5 mm diameter were prepared for casting for each group. Group I was cast with a high-noble, group II with a noble, and group III with a base metal alloy. The surfaces of the disks were sandblasted with 250 microm Al(2)O(3). Ten disks of each group were bonded to exposed enamel surfaces with Super-Bond and 10 disks with Panavia-Ex as recommended by the manufacturer. The tensile bond strength was measured with an Instron universal testing machine with a crosshead speed of 0.5 mm/min until failure occurred. Two-way ANOVA was used to evaluate the results. The differences in bond strengths of Super-Bond and Panavia-Ex with different alloys were not significant. The highest bond strengths were obtained in base metal alloys, followed by noble and high-noble alloys. These results were significant. Panavia-Ex and Super-Bond exhibited comparable tensile bond strengths. For both luting agents, the highest bond strengths were achieved with base metal alloys and the lowest with high-noble alloys.

  14. Immobilization and bonding scheme of radioactive iodine-129 in silver tellurite glass

    Science.gov (United States)

    Lee, Cheong Won; Pyo, Jae-Young; Park, Hwan-Seo; Yang, Jae Hwan; Heo, Jong

    2017-08-01

    Silver tellurite glasses with melting temperatures disposal site. Iodine waste loading in glasses was as high as 12.64 wt% of all metallic elements and 11.21 wt% including oxygen. Normalized elemental releases obtained from the product consistency test were well below US regulation of 2 g/m2. Iodines are surrounded by four Ag+ ions forming [Ag4I]3+ units that are further connected to tellurite network through bonds with non-bridging oxygens.

  15. Transboundary Movement of Radioactively Contaminated Scrap Metal - Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Nizamska, M., E-mail: m.nimzamska@bnra.bg [Emergency Planning and Preparedness Division, Bulgarian Nuclear Regulatory Agency, Sofia (Bulgaria)

    2011-07-15

    Starting in 1989, Bulgaria has undergone a comprehensive transformation of its economy and social conditions. Part of this process is related to the intensive privatization that started in 2001. This privatization included facilities, as well as sites that use radioactive material for different applications - industry, medicine, agriculture, science, etc. The rapid change of property ownership and, in some cases, the resulting bankruptcy, has caused difficulties in tracing and identifying radioactive sources and materials and a deterioration of the system of safety, physical protection, etc. of radioactive material. In some cases, radioactive sources were stolen because of the value of their protective containers and sold for scrap metal. This led to the occurrence of different types of radiation incidents, mainly related to the discovery of radioactive sources in scrap metal. The consequences of these incidents include the risk of radiation exposure of the workers at scrap metal yards or reprocessing facilities and of members of the public and, in addition, radioactive contamination of the environment. The Bulgarian Nuclear Regulatory Agency (BNRA) has been responding to these incidents and has carried out a series of measures to improve the control over materials (e.g. activated or surface contaminated materials) and radioactive sources and to strengthen the preventive, monitoring, emergency preparedness and mitigating measures at facility, national and transboundary levels. This paper presents an analysis of the lessons learned by the BNRA and of the control of the transboundary movement of radioactively contaminated scrap metal through the territory of Bulgaria. (author)

  16. Hydrogen and dihydrogen bonding of transition metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Heiko [KemKom, Libellenweg 2, 25917 Leck, Nordfriesland (Germany)], E-mail: jacobsen@kemkom.com

    2008-04-03

    Intermolecular interactions between a prototypical transition metal hydride WH(CO){sub 2}NO(PH{sub 3}){sub 2} and a small proton donor H{sub 2}O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20-30% of the bond energy and to 30-40% of the bond enthalpy. An energy decomposition analysis reveals that the H...H bond of transition metal hydrides contains both covalent and electrostatic contributions.

  17. Low temperature thermocompression bonding between aligned carbon nanotubes and metallized substrate

    Energy Technology Data Exchange (ETDEWEB)

    Chen, M X; Gan, Z Y; Liu, S [School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Song, X H, E-mail: chimish@163.com [Division of MOEMS, Wuhan National Lab for Optoelectronics, Wuhan 430074 (China)

    2011-08-26

    Vertically aligned carbon nanotube (VACNT) turf is proposed for use as an electrical and thermal contact material. For these applications, one route for circumventing the high temperatures required for VACNT growth using chemical vapor deposition (CVD) is used to grow firstly VACNTs on one substrate and then transfer them to other substrates. In this work, a nano thermocompression bonding technique between VACNTs and a metallized substrate is developed to allow dry mechanical transfer of the VACNTs. Unlike the diffusion bonding between two bulk materials, nano metal clusters have a high surface energy and the atoms are very active to form alloy with the contacted bulk metal material even at much lower temperatures, so nano thermocompression bonding can decrease the bonding temperature (150 deg. C) and pressure (1 MPa) and greatly shorten the bonding time from hours to 20 min. A debonding experiment shows that the bonding strength between VACNTs and the metallized layer is so high that a break is less likely to occur at the bonding interface.

  18. Method for testing the radioactivity of objects containing metal or concrete

    Energy Technology Data Exchange (ETDEWEB)

    Hanulik, J [Recytec SA, (Switzerland)

    1991-12-31

    Radioactively contaminated objects are placed into a borofluoric acid bath following a rough spot test and are precipitated in a measurable geometry on the cathode plates in the course of an electrolytic process, for example. In the course of the subsequent testing, the metals lying below a pre-determined maximum value of radioactive emissions are separated and supplied to the waste reclamation. The materials lying above this threshold value during the spot testing are first decontaminated and then placed in the acid bath. The borofluoric acid is not used up in this process and remains in the system. It is possible to use already radioactively contaminated boric acid from pressurized water reactors, to which it is merely required to add fluoric acid and to distill, for generating borofluoric acid. The method in accordance with the invention reduces the radioactive waste and reduces the testing and administrative effort required for the release of the non-radioactive materials. (author) 1 tab., 4 figs.

  19. Release of Radioactive Scrap Metal/Scrap Metal (RSM/SM) at Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    1993-01-01

    Reynolds Electrical and Engineering Company, Inc. (REECo) is the prime contractor to the US Department of Energy (DOE) in providing service and support for NTS operations. Mercury Base Camp is the main control point for the many forward areas at NTS, which covers 1,350 square miles. The forward areas are where above-ground and underground nuclear tests have been performed over the last 41 years. No metal (or other material) is returned to Mercury without first being tested for radioactivity. No radioactive metals are allowed to reenter Mercury from the forward areas, other than testing equipment. RAMATROL is the monitor check point. They check material in various ways, including swipe tests, and have a large assortment of equipment for testing. Scrap metal is also checked to address Resource Conservation and Recovery Act concerns. After addressing these issues, the scrap metals are categorized. Federal Property Management Regulations (FPMR) are followed by REECo. The nonradioactive scrap material is sold through the GSA on a scheduled basis. Radioactive scrap metal are presently held in forward areas where they were used. REECo has gained approval of their Nevada Test Site Defense Waste Acceptance Criteria, Certification, and Transfer Requirements, NVO-325 application, which will allow disposal on site, when RSM is declared a waste. The guideline that REECo uses for release limits is DOE Order 5480.11, Radiation Protection for Occupational Works, Attachment 2, Surface Radioactivity Guides, of this order, give release limits for radioactive materials. However, the removal of radioactive materials from NTS require approval by DOE Nevada Operations Office (DOE/NV) on a case-by-case basis. Requirements to consider before removal are found in DOE Order 5820.2A, Radioactive Waste Management

  20. Synthesis and characterization of some reduced ternary and quaternary molybdenum oxide phases with strong metal-metal bonds

    International Nuclear Information System (INIS)

    Lii, K.H.

    1985-10-01

    In the course of our research on reduced ternary and quaternary molybdenum oxides, very interesting compounds with strong metal-metal bonds were discovered. Among these solid-state materials are found discrete cluster arrays and structures with extended metal-metal bonding. Further study in this system has revealed that many new structures exist in this new realm. The synthesis, structures, bonding, and properties of these new oxides, which are briefly summarized in tabular form, are presented in this thesis. 144 refs., 63 figs., 79 tabs

  1. Biomaterial based novel polyurethane adhesives for wood to wood and metal to metal bonding

    Directory of Open Access Journals (Sweden)

    Mitesh Ramanlal Patel

    2009-01-01

    Full Text Available Polyurethane adhesives made from synthetic chemicals are non-biodegradable, costly and difficult to find raw materials from local market. To avoid solid pollution problem, cost effectiveness and easy availability of raw materials, biomaterials based polyurethane adhesives are used in current industrial interest. Direct use of castor oil in polyurethane adhesive gives limited hardness. Modification on active sites of castor oil to utilize double bond of unsaturated fatty acid and carboxyl group yields new modified or activated polyols, which can be utilized for polyurethane adhesive formulation. In view of this, we have synthesized polyurethane adhesives from polyester polyols, castor oil based polyols and epoxy based polyols with Isocyanate adducts based on castor oil and trimethylolpropane. To study the effects of polyurethane adhesive strength (i.e. lap shear strength on wood-to-wood and metal-to-metal bonding through various types of polyols, cross-linking density, isocyanate adducts and also to compare adhesive strength between wood to wood and metal to metal surface. These polyols and polyurethanes were characterized through GPC, NMR and IR-spectroscopy, gel and surface drying time. Thermal stability of PU adhesives was determined under the effect of cross-linking density (NCO/OH ratio. The NCO/OH ratio (1.5 was optimized for adhesives as the higher NCO/OH ratio (2.0 increasing cross-linking density and decreases adhesion. Lower NCO/OH ratio (1.0 provideslow cross-linking density and low strength of adhesives.

  2. Phosphorus organic extragents and sorbents of radioactive a heavy metals

    International Nuclear Information System (INIS)

    Trofimov, B.A.; Gusarova, N.K.; Malysheva, S.F.; Sukhov, B.G.

    2002-01-01

    A fundamentally new method for activation of phosphorus in heterogenous super-base media including the conditions of mechanical, ultrasonic and X-ray activation, opening up a new way to C-P bond formation is developed. The method is opens principally new possibilities for direct atom-economic synthesis of previously unknown or difficult to obtain organophosphorus compounds (primary, secondary, tertiary phosphines and phosphine oxides) from elemental phosphorus and orga-nyl halides, electrophilic alkenes, acetylenes and oxiranes. Thus, the phosphothion and phosphorylation of organic compounds with elemental phosphorus, phosphines and phosphine oxides opens the principal new approach to the synthesis of specific and selective extra-gents, sorbents and complex-forming agents which can be used in the processes of purification and disinfecting of soil and water from radioactive and heavy metals

  3. Study of the migration of toxic metals in steelmaking waste using radioactive tracing

    International Nuclear Information System (INIS)

    Andre, C.; Jauzein, M.; Charentus, T.; Margrita, R.; Dechelette, O.

    1991-01-01

    The danger presented by toxic metals contained in steelmaking wastes put into slag piles may be neutralized by suitably chosen alternation of these wastes when they are deposited. Presentation of a study method using radioactive tracing of the migration of toxic metal (cadmium, zinc, chromium) in steelmaking wastes (slag, blast furnace sludge). This non destructive method was used in columns in the laboratory, but may be used in on-site slag piles [fr

  4. Development for dissimilar metal joint between stainless steel and zirconium by explosive bonding technique

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Matsumoto, Toshimi; Asano, Chooichi; Funamoto, Takao; Hirose, Yasuo; Sasada, Yasuhiro.

    1988-01-01

    Development of dissimilar metal joints between stainless steel and Zr for application to nuclear fuel reprocessing equipment was studied. Two dissimilar metal joints (Zr to SUS 304 L joint and its joint using Ta as insert metal) were made by the explosive bonding technique. After bonding, microstructure, tensile strength and corrosion test of dissimilar metal joints were investigated. The results indicated that: (1) The good dissimilar metal joint is obtained between stainless steel and Zr with a Ta insert metal by using explosive bonding technique. (2) A Ta insert metal retards a growth of intermetallic compounds at the bonding interface. (3) The strength of the dissimilar metal joint in this study is higher than that of Zr metal. Any local attack was not observed at the bonding interface after corrosion test. (author)

  5. International measures needed to protect metal recycling facilities from radioactive materials

    International Nuclear Information System (INIS)

    Mattia, M.; Wiener, R.

    1999-01-01

    In almost every major city and region of every country, there is a recycling facility that is designed to process or consume scrap metal. These same countries will probably have widespread applications of radioactive materials and radiation generating equipment. This material and equipment will have metal as a primary component of its housing or instrumentation. It is this metal that will cause these sources of radioactivity, when lost, stolen or mishandled, to be taken to a metal recycling facility to be sold for the value of the metal. This is the problem that has faced scrap recycling facilities for many years. The recycling industry has spent millions of dollars for installation of radiation monitors and training in identification of radioactive material. It has expended millions more for the disposal of radioactive material that has mistakenly entered these facilities. Action must be taken to prevent this material from entering the conventional recycling process. There are more than 2,300 known incidents of radioactive material found in recycled metal scrap. Worldwide, more than 50 smeltings of radioactive sources have been confirmed. Seven fatal accidents involving uncontrolled radioactive material have also been documented. Hazardous exposures to radioactive material have plagued not just the workers at metal recycling facilities. The families of these workers, including their children, have been exposed to potentially harmful levels of radioactivity. The threat from this material does not stop there. Radioactive material that is not caught at recycling facilities can be melted and the radioactivity has been found in construction materials used to build homes, as well as shovels, fencing material, and furniture offered for sale to the general public. The time has come for the international community to address the issue of the uncontrolled sources of radioactive material. The following are the key points that must be addressed. (i) Identification of sources

  6. Forging Unsupported Metal-Boryl Bonds with Icosahedral Carboranes.

    Science.gov (United States)

    Saleh, Liban M A; Dziedzic, Rafal M; Khan, Saeed I; Spokoyny, Alexander M

    2016-06-13

    In contrast to the plethora of metal-catalyzed cross-coupling methods available for the installation of functional groups on aromatic hydrocarbons, a comparable variety of methods are currently not available for icosahedral carboranes, which are boron-rich three-dimensional aromatic analogues of aryl groups. Part of this is due to the limited understanding of the elementary steps for cross-coupling involving carboranes. Here, we report our efforts in isolating metal-boryl complexes to further our understanding of one of these elementary steps, oxidative addition. Structurally characterized examples of group 10 M-B bonds featuring icosahedral carboranes are completely unknown. Use of mercurocarboranes as a reagent to deliver M-B bonds saw divergent reactivity for platinum and palladium, with a Pt-B bond being isolated for the former, and a rare Pd-Hg bond being formed for the latter. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Comparison of Shear Bond Strengths of three resin systems for a Base Metal Alloy bonded to

    Directory of Open Access Journals (Sweden)

    Jlali H

    1999-12-01

    Full Text Available Resin-bonded fixed partial dentures (F.P.D can be used for conservative treatment of partially edentulous"npatients. There are numerous studies regarding the strength of resin composite bond to base meta! alloys. Shear bond"nstrength of three resin systems were invistigated. In this study these systems consisted of: Panavia Ex, Mirage FLC and"nMarathon V. Thirty base metal specimens were prepared from rexillium III alloy and divided into three groups. Then each"ngroup was bonded to enamel of human extracted molar teeth with these systems. All of specimens were stored in water at"n37ac for 48 hours. A shear force was applied to each specimen by the instron universal testing machine. A statistical"nevaluation of the data using one-way analysis of variance showed that there was highly significant difference (P<0.01"nbetween the bond strengths of these three groups."nThe base metal specimens bonded with panavia Ex luting agent, exhibited the highest mean bond strength. Shear bond"nstrength of the specimens bonded to enamel with Mirage F1C showed lower bond strenght than panavia EX. However, the"nlowest bond strength was obtained by the specimens bonded with Marathon V.

  8. Control and Management of Radioactive Material Inadvertently Incorporated into Scrap Metal. Proceedings of an International Conference

    International Nuclear Information System (INIS)

    2011-01-01

    Radioactive substances can become associated with scrap metal in various ways and if not discovered they can be incorporated into steel and non-ferrous metals through the melting process. This can cause health hazards as well as environmental concerns and there can be serious commercial implications. Numerous incidents have occurred in recent years involving the discovery of radioactive substances in scrap metal and, in some cases, in metal from the melting process. These incidents have proved to be very costly in relation to the recovery and cleanup operations required but also in terms of the potential loss of confidence of the industry in scrap metal as a resource. This has led the scrap metal industry to seek ways of managing the problem. In most countries, shipments of scrap metal are monitored but at different points in the distribution chain and to different extents and efficiencies. As yet, only limited efforts towards unifying and harmonizing monitoring strategies and methods in the context of scrap metal have been made at the international level. The Conference was organized into five sessions: the global perspective, national policies and strategies, compliance with radiological criteria, management of incidents with contaminated scrap metal, and improving confidence and protecting the interests of stakeholders. The aim of the first session was to present the views and perspectives of the different organizations concerned with radioactive material in scrap metal, scrap metal recycling, steel making, radiation source security and safety and international trade and economics. The second session covered some of the national policies and strategies being used to address the control of radioactive material that has been inadvertently incorporated into scrap metal were presented. In addition to the oral presentations, contributions describing the situation in many countries of the world in the form of posters were displayed. The many posters reporting national

  9. Control and Management of Radioactive Material Inadvertently Incorporated into Scrap Metal. Proceedings of an International Conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-15

    Radioactive substances can become associated with scrap metal in various ways and if not discovered they can be incorporated into steel and non-ferrous metals through the melting process. This can cause health hazards as well as environmental concerns and there can be serious commercial implications. Numerous incidents have occurred in recent years involving the discovery of radioactive substances in scrap metal and, in some cases, in metal from the melting process. These incidents have proved to be very costly in relation to the recovery and cleanup operations required but also in terms of the potential loss of confidence of the industry in scrap metal as a resource. This has led the scrap metal industry to seek ways of managing the problem. In most countries, shipments of scrap metal are monitored but at different points in the distribution chain and to different extents and efficiencies. As yet, only limited efforts towards unifying and harmonizing monitoring strategies and methods in the context of scrap metal have been made at the international level. The Conference was organized into five sessions: the global perspective, national policies and strategies, compliance with radiological criteria, management of incidents with contaminated scrap metal, and improving confidence and protecting the interests of stakeholders. The aim of the first session was to present the views and perspectives of the different organizations concerned with radioactive material in scrap metal, scrap metal recycling, steel making, radiation source security and safety and international trade and economics. The second session covered some of the national policies and strategies being used to address the control of radioactive material that has been inadvertently incorporated into scrap metal were presented. In addition to the oral presentations, contributions describing the situation in many countries of the world in the form of posters were displayed. The many posters reporting national

  10. Classification of solid wastes as non-radioactive wastes

    International Nuclear Information System (INIS)

    Suzuki, Masahiro; Tomioka, Hideo; Kamike, Kozo; Komatu, Junji

    1995-01-01

    The radioactive wastes generally include nuclear fuels, materials contaminated with radioactive contaminants or neutron activation to be discarded. The solid wastes arising from the radiation control area in nuclear facilities are used to treat and stored as radioactive solid wastes at the operation of nuclear facilities in Japan. However, these wastes include many non-radioactive wastes. Especially, a large amount of wastes is expected to generate at the decommissioning of nuclear facilities in the near future. It is important to classify these wastes into non-radioactive and radioactive wastes. The exemption or recycling criteria of radioactive solid wastes is under discussion and not decided yet in Japan. Under these circumstances, the Nuclear Safety Committee recently decided the concept on the category of non-radioactive waste for the wastes arising from decommissioning of nuclear facilities. The concept is based on the separation and removal of the radioactively contaminated parts from radioactive solid wastes. The residual parts of these solid wastes will be treated as non-radioactive waste if no significant difference in radioactivity between the similar natural materials and materials removed the radioactive contaminants. The paper describes the procedures of classification of solid wastes as non-radioactive wastes. (author)

  11. Radioactive scrap metal decontamination technology assessment report

    International Nuclear Information System (INIS)

    Buckentin, J.M.; Damkroger, B.K.; Schlienger, M.E.

    1996-04-01

    Within the DOE complex there exists a tremendous quantity of radioactive scrap metal. As an example, it is estimated that within the gaseous diffusion plants there exists in excess of 700,000 tons of contaminated stainless steel. At present, valuable material is being disposed of when it could be converted into a high quality product. Liquid metal processing represents a true recycling opportunity for this material. By applying the primary production processes towards the material's decontamination and re-use, the value of the strategic resource is maintained while drastically reducing the volume of material in need of burial. Potential processes for the liquid metal decontamination of radioactively contaminated metal are discussed and contrasted. Opportunities and technology development issues are identified and discussed. The processes compared are: surface decontamination; size reduction, packaging and burial; melting technologies; electric arc melting; plasma arc centrifugal treatment; air induction melting; vacuum induction melting; and vacuum induction melting and electroslag remelting

  12. Comparative study of metal and non-metal ion implantation in polymers: Optical and electrical properties

    International Nuclear Information System (INIS)

    Resta, V.; Quarta, G.; Farella, I.; Maruccio, L.; Cola, A.; Calcagnile, L.

    2014-01-01

    The implantation of 1 MeV metal ( 63 Cu + , 107 Ag + , 197 Au + ) and non-metal ( 4 He + , 12 C + ) ions in a polycarbonate (PC) matrix has been studied in order to evaluate the role of ion species in the modification of optical and electrical properties of the polymer. When the ion fluence is above ∼1 × 10 13 ions cm −2 , the threshold for latent tracks overlapping is overcome and π-bonded carbon clusters grow and aggregate forming a network of conjugated C=C bonds. For fluences around 1 × 10 17 ions cm −2 , the aggregation phenomena induce the formation of amorphous carbon and/or graphite like structures. At the same time, nucleation of metal nanoparticles (NPs) from implanted species can take place when the supersaturation threshold is overcome. The optical absorption of the samples increases in the visible range and the optical band gap redshifts from 3.40 eV up to 0.70 eV mostly due to the carbonization process and the formation of C 0x clusters and cluster aggregates. Specific structures in the extinction spectra are observed when metal ions are selected in contrast to the non-metal ion implanted PC, thus revealing the possible presence of noble metal based NPs interstitial to the C 0x cluster network. The corresponding electrical resistance decreases much more when metal ions are implanted with at least a factor of 2 orders of magnitude difference than the non-metal ions based samples. An absolute value of ∼10 7 Ω/sq has been measured for implantation with metals at doses higher than 5 × 10 16 ions cm −2 , being 10 17 Ω/sq the corresponding sheet resistance for pristine PC

  13. Comparative study of metal and non-metal ion implantation in polymers: Optical and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Resta, V., E-mail: vincenzo.resta@le.infn.it [Department of Engineering for Innovation, University of Salento, Via Monteroni, Lecce I-73100 (Italy); Quarta, G. [Department of Engineering for Innovation, University of Salento, Via Monteroni, Lecce I-73100 (Italy); Farella, I. [Institute for Microelectronics and Microsystems – Unit of Lecce, National Council of Research (IMM/CNR), Lecce I-73100 (Italy); Maruccio, L. [Department of Engineering for Innovation, University of Salento, Via Monteroni, Lecce I-73100 (Italy); Cola, A. [Institute for Microelectronics and Microsystems – Unit of Lecce, National Council of Research (IMM/CNR), Lecce I-73100 (Italy); Calcagnile, L. [Department of Engineering for Innovation, University of Salento, Via Monteroni, Lecce I-73100 (Italy)

    2014-07-15

    The implantation of 1 MeV metal ({sup 63}Cu{sup +}, {sup 107}Ag{sup +}, {sup 197}Au{sup +}) and non-metal ({sup 4}He{sup +}, {sup 12}C{sup +}) ions in a polycarbonate (PC) matrix has been studied in order to evaluate the role of ion species in the modification of optical and electrical properties of the polymer. When the ion fluence is above ∼1 × 10{sup 13} ions cm{sup −2}, the threshold for latent tracks overlapping is overcome and π-bonded carbon clusters grow and aggregate forming a network of conjugated C=C bonds. For fluences around 1 × 10{sup 17} ions cm{sup −2}, the aggregation phenomena induce the formation of amorphous carbon and/or graphite like structures. At the same time, nucleation of metal nanoparticles (NPs) from implanted species can take place when the supersaturation threshold is overcome. The optical absorption of the samples increases in the visible range and the optical band gap redshifts from 3.40 eV up to 0.70 eV mostly due to the carbonization process and the formation of C{sub 0x} clusters and cluster aggregates. Specific structures in the extinction spectra are observed when metal ions are selected in contrast to the non-metal ion implanted PC, thus revealing the possible presence of noble metal based NPs interstitial to the C{sub 0x} cluster network. The corresponding electrical resistance decreases much more when metal ions are implanted with at least a factor of 2 orders of magnitude difference than the non-metal ions based samples. An absolute value of ∼10{sup 7} Ω/sq has been measured for implantation with metals at doses higher than 5 × 10{sup 16} ions cm{sup −2}, being 10{sup 17} Ω/sq the corresponding sheet resistance for pristine PC.

  14. Radioactive materials in scrap metal, the situation in Switzerland

    International Nuclear Information System (INIS)

    Jossen, H.

    2005-01-01

    About 10 years ago, different happenings in the Swiss and international metal scrap recycling scene created a sensibility to unwanted radioactive substances in scrap metal. Italy, one of the main buyers for scrap metals, started at its borders with systematic checks, arranged by authorities. As a consequence, in Switzerland a concept was elaborated under cooperation of the recycling companies, the Italian authorities, the Federal Office of Public Health (BAG), Swiss Federal Nuclear Safety Inspectorate (HSK) and the Swiss National Accident Insurance Fund (Suva) to fulfil the different requirements. Individual radioprotection, protection of environment, protection of work yard and machinery and the quality assurance of the recycled metals and the resulting products requires adapted solutions with the main issues: training, suitable measuring equipment and an intervention-and waste management. Detected radioactive substances are professionally recovered, stored and submitted to the radioactive waste collection. The investigation of the happenings can lead to useful hints on gaps and on chances for improvements in general radioprotection. (orig.)

  15. Metal-Ligand Bonds of Second- and Third-Row d-Block Metals Characterized by Density Functional Theory

    Science.gov (United States)

    Jensen, Kasper P.

    2009-08-01

    This paper presents systematic data for 200 neutral diatomic molecules ML (M is a second- or third-row d-block metal and L = H, F, Cl, Br, I, C, N, O, S, or Se) computed with the density functionals TPSSh and BP86. With experimental structures and bond enthalpies available for many of these molecules, the computations first document the high accuracy of TPSSh, giving metal-ligand bond lengths with a mean absolute error of ˜0.01 Å for the second row and 0.03 Å for the third row. TPSSh provides metal-ligand bond enthalpies with mean absolute errors of 37 and 44 kJ/mol for the second- and third-row molecules, respectively. Pathological cases (e.g., HgC and HgN) have errors of up to 155 kJ/mol, more than thrice the mean (observed with both functionals). Importantly, the systematic error component is negligible as measured by a coefficient of the linear regression line of 0.99. Equally important, TPSSh provides uniform accuracy across all three rows of the d-block, which is unprecedented and due to the 10% exact exchange, which is close to optimal for the d-block as a whole. This work provides an accurate and systematic prediction of electronic ground-state spins, characteristic metal-ligand bond lengths, and bond enthalpies for many as yet uncharacterized diatomics, of interest to researchers in the field of second- and third-row d-block chemistry. We stress that the success of TPSSh cannot be naively extrapolated to other special situations such as, e.g., metal-metal bonds. The high accuracy of the procedure further implies that the effective core functions used to model relativistic effects are necessary and sufficient for obtaining accurate geometries and bond enthalpies of second- and third-row molecular systems.

  16. Chemical activation of molecules by metals: Experimental studies of electron distributions and bonding

    International Nuclear Information System (INIS)

    Lichtenberger, D.L.

    1991-10-01

    The formal relationship between measured molecular ionization energies and thermodynamic bond dissociation energies has been developed into a single equation which unifies the treatment of covalent bonds, ionic bonds, and partially ionic bonds. This relationship has been used to clarify the fundamental thermodynamic information relating to metal-hydrogen, metal-alkyl, and metal-metal bond energies. We have been able to obtain a direct observation and measurement of the stabilization energy provided by the agostic interaction of the C-H bond with the metal. The ionization energies have also been used to correlate the rates of carbonyl substitution reactions of (η 5 -C 5 H 4 X)Rh(CO) 2 complexes, and to reveal the electronic factors that control the stability of the transition state. The extent that the electronic features of these bonding interactions transfer to other chemical systems is being investigated in terms of the principle of additivity of ligand electronic effects. Specific examples under study include metal- phosphines, metal-halides, and metallocenes. Especially interesting has been the recent application of these techniques to the characterization of the soccer-ball shaped C 60 molecule, buckminsterfullerene, and its interaction with a metal surface. The high-resolution valence ionizations in the gas phase reveal the high symmetry of the molecule, and studies of thin films of C 60 reveal weak intermolecular interactions. Scanning tunneling and atomic force microscopy reveal the arrangement of spherical molecules on gold substrates, with significant delocalization of charge from the metal surface. 21 refs

  17. Unprecedented linking of two polyoxometalate units with a metal-metal multiple bond.

    Science.gov (United States)

    Sokolov, Maxim N; Korenev, Vladimir S; Izarova, Natalya V; Peresypkina, Eugenia V; Vicent, Cristian; Fedin, Vladimir P

    2009-03-02

    The reaction of (Bu(4)N)(2)[Re(2)Cl(8)] with lacunary Keggin polyoxometalate K(7)[PW(11)O(39)] in water produces a new dumbbell-shaped heteropolyoxometalate anion, [Re(2)(PW(11)O(39))(2)](8-), whose structure contains a central Re(2) core with a quadruple bond between Re atoms (Re-Re 2.25 A), coordinated to two polyoxometalate units. This complex represents the first example of the direct linking of two polyoxometalate units via a metal-metal multiple bond. The compounds were characterized by X-ray analysis, IR, and electrospray ionization mass spectrometry.

  18. Experimental Investigations on the Influence of Adhesive Oxides on the Metal-Ceramic Bond

    Directory of Open Access Journals (Sweden)

    Susanne Enghardt

    2015-01-01

    Full Text Available The objective of this study was to test the influence of selected base metals, which act as oxide formers, on the metal-ceramic bond of dental veneer systems. Using ion implantation techniques, ions of Al, In and Cu were introduced into near-surface layers of a noble metal alloy containing no base metals. A noble metal alloy with base metals added for oxide formation was used as a reference. Both alloys were coated with a low-temperature fusing dental ceramic. Specimens without ion implantation or with Al2O3 air abrasion were used as controls. The test procedures comprised the Schwickerath shear bond strength test (ISO 9693-1, profile height (surface roughness measurements (ISO 4287; ISO 4288; ISO 25178, scanning electron microscopy (SEM imaging, auger electron spectroscopy (AES and energy dispersive X-ray analysis (EDX. Ion implantation resulted in no increase in bond strength. The highest shear bond strengths were achieved after oxidation in air and air abrasion with Al2O3 (41.5 MPa and 47.8 MPa respectively. There was a positive correlation between shear bond strength and profile height. After air abrasion, a pronounced structuring of the surface occurred compared to ion implantation. The established concentration shifts in alloy and ceramic could be reproduced. However, their positive effects on shear bond strength were not confirmed. The mechanical bond appears to be of greater importance for metal-ceramic bonding.

  19. The state of the art on the radioactive metal waste recycling technologies

    International Nuclear Information System (INIS)

    Oh, Won Jin; Moon, Jei Kwon; Jung, Chong Hun; Park, Sang Yoon

    1997-09-01

    As the best strategy to manage the radioactive metal wastes which are generated during operation and decommissioning of nuclear facilities, the following recycling technologies are investigated. 1. decontamination technologies for radioactive metal waste recycling 2. decontamination waste treatment technologies. 3. residual radioactivity evaluation technologies. (author). 260 refs., 26 tabs., 31 figs

  20. Method of processing radioactive metallic sodium with recycling alcohols

    International Nuclear Information System (INIS)

    Sakai, Takuhiko; Mitsuzuka, Norimasa.

    1980-01-01

    Purpose: To employ high safety alcohol procession and decrease the amount of wastes in the procession of radioactive metallic sodium discharged from LMFBR type reactors. Method: Radioactive metallic sodium containing long half-decay period nuclides such as cesium, strontium, barium, cerium, lanthanum or zirconium is dissolved in an alcohol at about 70% purity. After extracting the sodium alcoholate thus formed, gaseous hydrochloride is blown-in to separate the sodium alcoholate into alcohol and sodium chloride, and regenerated alcohol is used again for dissolving sodium metal. The sodium chloride thus separated is processed into solid wastes. (Furukawa, Y.)

  1. Radioactive contamination in metal recycling industry - an environmental issue

    International Nuclear Information System (INIS)

    Agarwal, S.P.

    2012-01-01

    Metal recycling has become an important industrial activity worldwide; it is seen as being socially and environmentally beneficial because it conserves natural ore resources and saves energy. However, there have been several accidents over the past decades involving orphan radioactive sources or other radioactive material that were inadvertently collected as metal scrap that was destined for recycling. The consequences of these accidents have been serious with regard to the protection of people and the environment from the harmful effects of ionizing radiation as well as from an economic point of view. India produces and exports steel products to various countries. In the recent years there were rejection and return of steel products as they were found to be contaminated with trace quantities of radioactive materials. During investigation of incidents of radioactive contamination in steel products exported from India, it was observed that steel products are contaminated with low level radioactivity. Though radioactivity level in steel products is found to be too low to pose any significant hazards to the handling personnel or to the users or the public at large, its presence is undesirable and need to be probed as to how it has entered in the steel products. Atomic Energy Regulatory Board (AERB) has investigated the incidents of such nature in the recent past and it is gathered that the steel products are made out of steel produced in a foundry where metal scrap containing radioactive material has been used. In this talk, incidents of radioactive contamination, its roots cause, and its radiological impact on person, property and environment, lessons learnt, remedial measures and international concerns will be discussed

  2. Chemically reducing decontamination method for radioactive metal

    International Nuclear Information System (INIS)

    Tanaka, Akio; Onuma, Tsutomu; Sato, Hitoshi.

    1994-01-01

    The present invention concerns a decontamination method of electrolytically reducing radioactive metal wastes, then chemically dissolving the surface thereof with a strong acid decontaminating solution. This method utilizes dissolving characteristics of stainless steels in the strong acid solution. That is, in the electrolytic reduction operation, a portion of the metal wastes is brought into contact with a strong acid decontaminating solution, and voltage and current are applied to the portion and keep it for a long period of time so as to make the potential of the immersed portion of the metal wastes to an active soluble region. Then, the electrolytic reduction operation is stopped, and the metal wastes are entirely immersed in the decontaminating solution to decontaminate by chemical dissolution. As the decontaminating solution, strong acid such as sulfuric acid, nitric acid is used. Since DC current power source capacity required for causing reaction in the active soluble region can be decreased, the decontamination facility can be minimized and simplified, and necessary electric power can be saved even upon decontamination of radioactive metal wastes made of stainless steels and having a great area. Further, chemical dissolution can be conducted without adding an expensive oxidizing agent. (N.H.)

  3. Survey on non-nuclear radioactive waste

    International Nuclear Information System (INIS)

    2003-11-01

    On request from the Swedish Radiation Protection Authority, the Swedish government has in May 2002 set up a non-standing committee for non-nuclear radioactive waste. The objective was to elaborate proposals for a national system for the management of all types of non-nuclear radioactive wastes with special consideration of inter alia the polluter pays principle and the responsibility of the producers. The committee will deliver its proposals to the government 1 December 2003. SSI has assisted the committee to the necessary extent to fulfill the investigation. This report is a summery of SSI's background material concerning non-nuclear radioactive waste in Sweden

  4. Graphene composites containing chemically bonded metal oxides

    Indian Academy of Sciences (India)

    the oxide layers are chemically bonded to graphene (Zhang ... sists of three glass chambers, one to contain the metal halide. (TiCl4, SiCl4 ... In this step, the metal halide reacts with the oxygen function- ... 1·0 g of FeCl3 were vigorously stirred in 30 ml of ethylene ... Reaction with water vapour results in hydrolysis of the un-.

  5. Development of dissimilar metal transition joint by hot roll bonding technique

    International Nuclear Information System (INIS)

    Nagai, Takayuki; Takeda, Seiichiro; Tanaka, Yasumasa; Ogawa, Kazuhiro; Nakasuji, Kazuyuki; Ikenaga, Yoshiaki.

    1994-01-01

    Metallurgically bonded transition joints which enable to connect reprocessing equipments made of superior corrosion resistant valve metals (Ti-5Ta, Zr or Ti) with stainless steel piping is needed for nuclear fuel reprocessing plants. The authors have developed dissimilar metal transition joints between stainless steel and Ti-5Ta, Zr or Ti with an insert metal of Ta by the hot roll bonding process, using the newly developed mill called 'rotary reduction mill'. In the R and D program, appropriate bonding conditions in the manufacturing process of the joints were established. This report presents the structure of transition joints and the manufacturing process by the hot roll bonding technique. Then, the evaluation of mechanical and corrosion properties and the results of demonstration test of joints for practical use are described. (author)

  6. Development of dissimilar metal transition joint by hot roll bonding technique

    International Nuclear Information System (INIS)

    Nagai, Takayuki; Takeuchi, Masayuki; Takeda, Seiichiro; Shikakura, Sakae; Ogawa, Kazuhiro; Nakasuji, Kazuyuki; Kajimura, Haruhiko.

    1995-01-01

    Metallurgically bonded transition joints which enable to connect reprocessing equipments made of superior corrosion resistant valve metals (Ti-5Ta, Zr or Ti) with stainless steel piping is needed for nuclear fuel reprocessing plants. The authors have developed dissimilar metal transition joints between stainless steel and Ti-5Ta, Zr or Ti with an insert metal of Ta by the hot roll bonding process, using the newly developed mill called 'rotary reduction mill'. In the R and D program, appropriate bonding conditions in the manufacturing process of the joints were established. This report presents the structure of transition joints and the manufacturing process by hot roll bonding technique. Then, the evaluation of mechanical and corrosion properties and the results of demonstration test of joints for practical use are described. (author)

  7. Shear bond strength of metallic and ceramic brackets using color change adhesives.

    Science.gov (United States)

    Stumpf, Aisha de Souza Gomes; Bergmann, Carlos; Prietsch, José Renato; Vicenzi, Juliane

    2013-01-01

    To determine the shear bond strength of orthodontic brackets using color change adhesives that are supposed to aid in removing excess of bonding material and compare them to a traditional adhesive. Ninety metallic and ninety ceramic brackets were bonded to bovine incisors using two color change adhesives and a regular one. A tensile stress was applied by a universal testing machine. The teeth were observed in a microscope after debonding in order to determine the Adhesive Remnant Index (ARI). The statistical analysis (ANOVA, Tukey, and Kruskall-Wallis tests) demonstrated that the mean bond strength presented no difference when metallic and ceramic brackets were compared, but the bond resistance values were significantly different for the three adhesives used. The most common ARI outcome was the entire adhesive remaining on the enamel. The bond strength was similar for metallic and ceramic brackets when the same adhesive system was used. ARI scores demonstrated that bonding with these adhesives is safe even when ceramic brackets were used. On the other hand, bond strength was too low for orthodontic purposes when Ortho Lite Cure was used.

  8. Effect of layered manufacturing techniques, alloy powders, and layer thickness on metal-ceramic bond strength.

    Science.gov (United States)

    Ekren, Orhun; Ozkomur, Ahmet; Ucar, Yurdanur

    2018-03-01

    Direct metal laser sintering (DMLS) and direct metal laser melting (DMLM) have become popular for fabricating the metal frameworks of metal-ceramic restorations. How the type of layered manufacturing device, layer thickness, and alloy powder may affect the bond strength of ceramic to metal substructure is unclear. The purpose of this in vitro study was to evaluate the bond strength of dental porcelain to metal frameworks fabricated using different layered manufacturing techniques (DMLS and DMLM), Co-Cr alloy powders, and layer thicknesses and to evaluate whether a correlation exists between the bond strength and the number of ceramic remnants on the metal surface. A total of 75 bar-shaped metal specimens (n=15) were fabricated using either DMLS or DMLM. The powder alloys used were Keramit NP-S and EOS-Cobalt-Chrome SP-2 with layer thicknesses of 20 μm and 30 μm. After ceramic application, the metal-ceramic bond strength was evaluated with a 3-point-bend test. Three-way ANOVA followed by the Tukey honest significance difference test were used for statistical analysis (α=.05). De-bonding surface microstructure was observed with scanning electron microscopy. Energy dispersive spectroscopy analysis was conducted to evaluate the correlation between ceramic remnants on the metal surface and bond strength values. The mean bond strength value of DMLS was significantly higher than that of DMLM. While no statistically significant difference was found between layer thicknesses, alloy powders closely affected bond strength. Statistical comparisons revealed that the highest bond strength could be achieved with DMLS-Cobalt-Chrome SP2-20μm, and the lowest bond strength was observed in DMLS-Keramit NP-S-20μm (P≤.05). No correlation was found between porcelain remnants on the metal surface and bond strength values. The layered manufacturing device and the alloy powders evaluated in the current study closely affected the bond strength of dental porcelain to a metal framework

  9. Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes

    International Nuclear Information System (INIS)

    Dominick, J.

    2008-01-01

    This document details Lawrence Livermore National Laboratory's (LLNL) criteria and processes for determining if potentially volumetrically contaminated or potentially surface contaminated wastes are to be managed as material containing residual radioactivity or as non-radioactive. This document updates and replaces UCRL-AR-109662, Criteria and Procedures for the Certification of Nonradioactive Hazardous Waste (Reference 1), also known as 'The Moratorium', and follows the guidance found in the U.S. Department of Energy (DOE) document, Performance Objective for Certification of Non-Radioactive Hazardous Waste (Reference 2). The 1992 Moratorium document (UCRL-AR-109662) is three volumes and 703 pages. The first volume provides an overview of the certification process and lists the key radioanalytical methods and their associated Limits of Sensitivities. Volumes Two and Three contain supporting documents and include over 30 operating procedures, QA plans, training documents and organizational charts that describe the hazardous and radioactive waste management system in place in 1992. This current document is intended to update the previous Moratorium documents and to serve as the top-tier LLNL institutional Moratorium document. The 1992 Moratorium document was restricted to certification of Resource Conservation and Recovery Act (RCRA), State and Toxic Substances Control Act (TSCA) hazardous waste from Radioactive Material Management Areas (RMMA). This still remains the primary focus of the Moratorium; however, this document increases the scope to allow use of this methodology to certify other LLNL wastes and materials destined for off-site disposal, transfer, and re-use including non-hazardous wastes and wastes generated outside of RMMAs with the potential for DOE added radioactivity. The LLNL organization that authorizes off-site transfer/disposal of a material or waste stream is responsible for implementing the requirements of this document. The LLNL Radioactive and

  10. Method of decontaminating radioactive metal wastes

    International Nuclear Information System (INIS)

    Miyaji, Nobuyoshi.

    1985-01-01

    Purpose: To completely prevent the surface contamination of an equipment and decrease the amount of radioactive wastes to be resulted. Method: The surfaces of vessels, pipeways or the likes of nuclear reactor facilities to be contaminated with radioactive materials are appended with thin plates of metals identical or different from the constituents of the surfaces so as to be releasable after use. The material and the thickness of the plates and the method of appending then are determined depending on the state of use of the appended portions. Since only the stripped plates have to be processed as radioactive wastes, the amount of wastes can be decreased and, since the scrap materials can be reused, it is advantageous in view of the resource-saving. (Sekiya, K.)

  11. Statistical treatment of hazards result from radioactive material in metal scrap

    International Nuclear Information System (INIS)

    Salem, E.F.; Rashad, S.M.

    2013-01-01

    Radioactive sources have a wide range of uses in medicine and industry. Radioactive materials entering the public domain in an uncontrolled manner may creating a serious risk of radiation exposure for workers and the public as well as excessive costs for plant decontamination and waste of product to be borne by the metal industry. This paper describes the major accidents that had happened in the last decades due to radioactive material in metal scrap, provides assessment of associated hazards and lessons learned. This will help Regulatory Authority to introduce measures capable to avoid the recurrence of similar events. The study highlights the situation for metal scrap incidents in Egypt.

  12. Animal experimental investigations of the problem of the decorporation of radioactive metal ions

    International Nuclear Information System (INIS)

    Berner, W.

    1973-01-01

    Basically, it is possible to reduce the radiation exposure by excretion intensification of incorporated radioactive materials. Chelate agents have proved to be particularly effective for the accelerated elimination of radioactive metal ions. The kinetics of the distribution and excretion of 57 CoCl 2 , 65 ZnCl 2 and 203 HgCl 2 on the rat under the influence of the chelating agent penicillamin (D-ββ-dimethylcystein) was investigated and the reduction of the radiation exposure in man was calculated from the animal-experimentally gained data. At various times after the incorporation of metal ions, the whole body radioactivity and, after killing the animals, the radioactivity of the organs liver, kidney, spleen, skeleton, muscles and blood, were measured. From the course of the measured radioactivities with time, the biokinetic data of the radioactive metal ions (effective half-lives, selection factors and their components) were determined by means of regression analyses. The chelating agent was applied at different times before or after incorporation of the radioactive metal ions. (EK/LH) [de

  13. Summary of industrial impacts from recycled radioactive scrap metals

    International Nuclear Information System (INIS)

    Dehmel, J.-C.; Harrop, J.; MacKinney, J.A.

    1995-01-01

    During operation, decontamination, and dismantlement, nuclear facilities are generating significant quantities of radioactive scrap metal (RSM). Future decommissioning will generate even more RSM. The petroleum industry also generates RSM in the form of equipment contaminated with naturally occurring radioactivity. Finally, the accidental melting of radioactive sources in steel mills has generated smaller amounts of contaminated metals. Steel mills, smelters, and foundries could recycle these materials, which might then appear in finished products or as feedstocks used by other industries. If introduced in this manner, residual radioactivity can adversely affect the performance of certain products. Such products include computers and other devices that rely on integrated circuits. The most important effect of residual radioactivity on integrated circuits is a phenomenon known as 'single event upsets or soft errors.' Radioactivity can also adversely affect the performance of products such as photographic film and components designed to measure the presence of radioactivity. Radioactivity that raises background count-rates to higher levels could affect the performance of radiation monitoring systems and analytical equipment. Higher background count-rates would lead to reduced sensitivity and lower resolution in spectroscopic systems. The computer, photographic, and radiation measurement industries have taken steps to minimize the impact of residual radioactivity on their products. These steps include monitoring manufacturing processes, specifying material acceptance standards, and screening suppliers. As RSM is recycled, these steps may become more important and more costly. This paper characterizes potentially impacted industries and vulnerability and effects due to the presence of residual radioactivity. Finally, the paper describes practices used to limit the impact of residual radioactivity. (J.P.N.)

  14. Research on Lessening of Bonding Effects Between the Metallic and Non-Metallic Surfaces Through the Graphite Films Deposited with Pulsed Electrical Discharges Process

    Science.gov (United States)

    Marin, L.; Topala, P.

    2017-06-01

    The paper presents the results of experimental research on the physics of natural graphite film formation, the establishment of chemical composition and functional properties of the graphite films, formed on metal surfaces, as a result of the action of plasma in the air environment, at a normal pressure, under the electrical discharge in impulse conditions (EDI). The researchings were performed in the frame of doctoral thesis “Research on lessening of the bonding effects between the metallic and nonmetallic surfaces through the graphite films” and aimed to identify the phenomena that occur at the interface metal/ film of graphite, and to identify also the technological applications that it may have the surface treatment for submitting the films of graphite on metallic surfaces achieved through an innovative process of electrical pulsed discharges. After the research works from the PhD theme above mentioned, a number of interesting properties of graphite pellicle have been identified ie reducing of metal surface polarity. This led to drastic decreases for the values of adhesion when bonding of metal surfaces was performed using a structural polyurethane adhesive designed by ICECHIM. Following the thermo-gravimetric analysis, performed of the graphite film obtained by process of electrical pulsed discharges, have been also discovered other interesting properties for this, ie reversible mass additions at specific values of the working temperature Chemical and scanning electron microscopy analysis have revealed that on the metallic surface subjected to electrical pulsed discharges process, outside the graphite film, it is also obtained a series of spatial formation composed of carbon atoms fullerenes type which are responsible for the phenomenon of addition of mass.

  15. Handling and final storage of radioactive metal components

    International Nuclear Information System (INIS)

    Loennerberg, B.; Engelbrektson, A.; Neretnieks, I.

    1978-06-01

    After the dismounting of the fuel elements, the next stage is to undertake the final storing of the metal components, which have kept the fuel rods together. The components are transmitted to a pool where they are cut into pieces, compacted and placed in wire baskets. These are transferred in a water channel to a cell, where the metal components are embedded into concrete blocks. Thus the baskets are placed in prefabricated concrete containers, after which the metal parts are embedded into cement grout, injected from the bottom of the containers. The blocks are finally stored in rock tunnels constituting a storage similar to the repositories for vitrified waste and spent fuel, although somewhat simplified, taking advantage of the much lower amount of radioactive material in the case of metal components. Thus a depositioning depth of 300 m in rock is very much on the safe side and it is appropriate in this case to fill the tunnels with concrete, ensuring by its alcalinity a suffi ciently low rate of dissolution of the metal and migration of radioactive substances

  16. A contribution to the study of metal-ceramic bonding by direct vacuum brazing with reactive metals

    International Nuclear Information System (INIS)

    Guimaraes, A.S.

    1988-01-01

    Wettability and bonding tests were utilized to evaluate the behaviour of various specials alloys, for work at high temperature under vacuum, for the inter-bonding of silicon carbide, alumina ceramic, graphite (for electrical applications) and petroleum coke and their joining with themselves as the metals titanium, molybdenum, nickel and copper. The joints exhibiting effective bonding were investigated by means of optical microscopy, scanning electron microscopy and X-rays diffraction. Elemental mapping of the constituents and quantitative chemical microanalysis were also undertaken, via the energy dispersive analysis of X-rays (SEM/EDS). On the basis of the results the possible mechanisms of bond-formation have been discussed. It was verified that: a) of the filler metals studied, those which exhibited effective wettability on all the above materials were: 49Cu-49Ti-2Be, Zircaloy4-5Be and a commercial alloy Ticusil, which consisted of a Cu-Ag eutectic with a small addition of pure Ti, of nominal composition 26.7Cu-68.8Ag-4.5Ti; b) the alloys with high levels of reactive metals such as Ti and Zr tended to form low ductility bonds due to the formation of hard, brittle phases; c) the copper suffered pronounced erosion when in direct contact with alloys of high Ti and Zr contents, due to the formation of phases whose melting points were below the brazing temperature of those materials; e) the compounds detected as reaction products were identified as, TiC in the samples rich in carbon, such as the SiC ceramic and graphite joints, or the oxides Cu2Ti2O5 and Cu3TiO4 in the bonding of alumina to alloys including Ti in their composition or in that of the filler metal, proving that the effectiveness of the bond is dependent upon an initial and indispensable chemical bonding. (author)

  17. Management of radioactive scrap metal at SCK-CEN

    International Nuclear Information System (INIS)

    Noynaert, L.; Klein, M.; Cornelissen, R.; Ponnet, M.

    2000-01-01

    The environmental concern and public perception as well as the steadily increase of the conditioning and disposal costs are pushing the nuclear sector to minimise the amount of radioactive waste. Hence it is a strong incentive to prefer the management option 'recycling and reuse' instead of the option 'disposal and replacement'. The 'recycling and reuse' option requires the availability of decontamination techniques as well as measuring techniques allowing to prove that the release criteria are met. Therefore SCK-CEN has now two decontamination installations for scrap metal on its own site. One installation uses a wet abrasive technique while the other one uses a chemical process based on the Ce 4+ . These two installations, combined with the use of foundries for free release or for radioactive scrap metal recycling are now common practices at SCK-CEN and will allow to reduce the metallic waste to 10% of the metallic scrap production and the costs at least by a factor 2.5. (author)

  18. Shear bond strength of metallic and ceramic brackets using color change adhesives

    Directory of Open Access Journals (Sweden)

    Aisha de Souza Gomes Stumpf

    2013-04-01

    Full Text Available OBJECTIVE: To determine the shear bond strength of orthodontic brackets using color change adhesives that are supposed to aid in removing excess of bonding material and compare them to a traditional adhesive. METHODS: Ninety metallic and ninety ceramic brackets were bonded to bovine incisors using two color change adhesives and a regular one. A tensile stress was applied by a universal testing machine. The teeth were observed in a microscope after debonding in order to determine the Adhesive Remnant Index (ARI. RESULTS: The statistical analysis (ANOVA, Tukey, and Kruskall-Wallis tests demonstrated that the mean bond strength presented no difference when metallic and ceramic brackets were compared but the bond resistance values were significantly different for the three adhesives used. The most common ARI outcome was the entire adhesive remaining on the enamel. CONCLUSIONS: The bond strength was similar for metallic and ceramic brackets when the same adhesive system was used. ARI scores demonstrated that bonding with these adhesives is safe even when ceramic brackets were used. On the other hand, bond strength was too low for orthodontic purposes when Ortho Lite Cure was used.

  19. Analysis of surface bond lengths reported for chemisorption on metal surfaces

    Science.gov (United States)

    Mitchell, K. A. R.

    1985-01-01

    A review is given of bond length information available from the techniques of surface crystallography (particularly with LEED, SEXAFS and photoelectron diffraction) for chemisorption on well-defined surfaces of metals (M). For adsorbed main-group atoms (X), measured X-M interatomic distances for 38 combinations of X and M have been assessed with a bond order-bond length relation in combination with the Schomaker-Stevenson approach for determining single-bond lengths. When the surface bond orders are fixed primarily by the valency of X, this approach appears to provide a simple framework for predicing X-M surface bond lengths. Further, in cases where agreement has been reached from different surface crystallographic techniques, this framework has the potential for assessing refinements to the surface bonding model (e.g. in determining the roles of the effective surface valency of M, and of coordinate bonding and supplementary π bonding between X and M). Preliminary comparisons of structural data are also given for molecular adsorption (CO and ethylidyne) and for the chemisorption of other metal atoms.

  20. Chemical bonding of hydrogen molecules to transition metal complexes

    International Nuclear Information System (INIS)

    Kubas, G.J.

    1990-01-01

    The complex W(CO) 3 (PR 3 ) 2 (H 2 ) (CO = carbonyl; PR 3 = organophosphine) was prepared and was found to be a stable crystalline solid under ambient conditions from which the hydrogen can be reversibly removed in vacuum or under an inert atmosphere. The weakly bonded H 2 exchanges easily with D 2 . This complex represents the first stable compound containing intermolecular interaction of a sigma-bond (H-H) with a metal. The primary interaction is reported to be donation of electron density from the H 2 bonding electron pair to a vacant metal d-orbital. A series of complexes of molybdenum of the type Mo(CO)(H 2 )(R 2 PCH 2 CH 2 PR 2 ) 2 were prepared by varying the organophosphine substitutent to demonstrate that it is possible to bond either dihydrogen or dihydride by adjusting the electron-donating properties of the co-ligands. Results of infrared and NMR spectroscopic studies are reported. 20 refs., 5 fig

  1. Melting decontamination and recycling of radioactive polluted metals from uranium mining and metallurgy

    International Nuclear Information System (INIS)

    Chen Anquan

    2011-01-01

    Melting method is a primary method used for decontamination of radioactive polluted metal from uranium mining and metallurgy. The decontamination mechanism of the method, the way selection and its features are introduced. Taking the ten year's work of CNNC Uranium Mining and Metallurgy Radioactive Polluted Metal Melting Processing Center as example, the effects of processing radioactive polluted metals by smelting method are discussed. The surface pollution levels of radioactive polluted metal from uranium mining and metallurgy decreased from 4-48 Bq/cm 2 before decontamination to 0.004-0.016 Bq/cm 2 after decontamination, and the specific activity of its metal is less than 1 Bq/g, which is below the solution control level proposed by IAEARS-G1.7 'the application of the concepts of exclusion, immunity and solution control'. The metals after decontamination can be recycled by producing tooth plate and bucket teeth of excavator used in mines. (authors)

  2. Economic aspects of recycling U.S. Department of Energy radioactive scrap metal

    International Nuclear Information System (INIS)

    Harrop, J.; Numark, N.; MacKinney, J.

    1995-01-01

    The U.S. Department of Energy (DOE) has substantial quantities of scrap metal contaminated with low-levels of radioactivity. What is more important, current DOE Decommissioning and Dismantlement (D and D) plans will generate even more radioactive scrap metal. Disposition of this radioactive scrap metal could result in substantial costs to the DOE, but if certain options are exercised, could result in an economic gain. This paper outlines five basic options the DOE could follow for disposition of its radioactive scrap metal, and then examines the economic consequences of each option. A cost-benefit analysis was used to evaluate each of the five options. Real costs, derived from DOE studies and private industry, formed the basis for all analysis. These include transportation, packaging, processing (melt-refining) prices charged by industry, and burial fees and scrap metal storage facility operating and surveillance costs faced by the DOE. Other potential costs, such as the avoided costs of mining, and other less-well defined factors are assumed imbedded in the prices charged by industry for processing radioactive scrap metal. The results of this analysis show that burial cost is the most significant factor to consider in deciding which RSM disposition option to pursue. Moderate variations in burial costs can dramatically change the outcome of the cost-benefit analysis. (author)

  3. Option managing for radioactive metallic waste from the decommissioning of Kori Unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, David S.; Kim, Chagn Lak [KEPCO International Nuclear Graduate School (KINGS), Ulsan (Korea, Republic of)

    2017-06-15

    The purpose of this paper is to evaluate several leading options for the management of radioactive metallic waste against a set of general criteria including safety, cost effectiveness, radiological dose to workers and volume reduction. Several options for managing metallic waste generated from decommissioning are evaluated in this paper. These options include free release, controlled reuse, and direct disposal of radioactive metallic waste. Each of these options may involve treatment of the metal waste for volume reduction by physical cutting or melting. A multi-criteria decision analysis was performed using the Analytic Hierarchy Process (AHP) to rank the options. Melting radioactive metallic waste to produce metal ingots with controlled reuse or free release is found to be the most effective option.

  4. Causal Relationship Between Islamic Bonds, Oil Price and Precious Metals: Evidence From Asia Pacific

    Directory of Open Access Journals (Sweden)

    Metadjer Widad

    2018-05-01

    Full Text Available Sukuk or Islamic bonds as new “Halal” securities had wildly expanded in Muslim and non-Muslim capital markets. So, this study aims to investigate the causal relationship between Islamic bonds (sukuk, oil and precious metals “silver and gold” prices in Asia pacific. This study used VAR model relying on daily data. The findings of Granger causality test and impulse-responses analysis results provide substantial evidence in favor of the relation between sukuk and the commodity market variables (oil, gold, and silver meanwhile and unlike many empirical studies, don’t we have found that oil doesn’t cause changes in precious metals prices. Therefore, the idea that Islamic financial markets provide diversification benefits and they are safe havens during oil crisis cannot be supported empirically.DOI: 10.15408/aiq.v10i2.7171

  5. Monitoring system with integrated measuring sensors for radioactively contaminated iron and non-iron scrap metal (MerEN). Final report; Ueberwachungssystem mit integrierter Messsensorik fuer radioaktiv belastete Eisen- und Nichteisenschrotte (MerEN). Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Celebic, Enis; Gentes, Sascha [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Technologie und Management im Baubetrieb; Rutschmann, Michael; Goerisch, Uwe [Prof. Dr.-Ing. Uwe Goerisch GmbH Ingenieurbuero fuer Abfallwirtschaft, Karlsruhe (Germany); Wetzel, Ramona [Schrott Wetzel GmbH, Mannheim (Germany)

    2015-08-15

    Radioactive sources are used in the industry, in nuclear medicine, the military, as well as in research. Accidents and losses rarely occur, a proper and responsible handling of those sources provided. Radioactive sources represent a risk when divulged, moved, passed on without authorization or lost. Time and again, radioactive sources are found at scrap yards and metal processing facilities. The supervision of these radioactive materials is gaining importance in the light of the worldwide import and export of ferrous and non-ferrous scrap. The aim of the project was to develop a space monitoring system for radioactively contaminated ferrous and non-ferrous scrap, so it can be removed from the operating range and to protect staff. The monitoring system combines technical and application-specific requirements. As part of the research project, the system was designed based on the operational framework conditions, technical and economic possibilities, and the findings from the experimental phase. The prototype mainly consists of a mainframe computer, stationary and mobile detection units, and the data transfer technology. This has successfully been tested at a scrap yard. The effects of vibrations that occur on scrapyards were investigated. This was necessary to obtain functionality of the hardware. The experimental phase was carried out based on a pre-defined set-up. The aim was to test the individual scenarios, processing and logging of the date as well to interpret the test results. In the event of radioactive sources being found in discarded metal, a standard sequence of actions was designed to protect the yard's processes and its personnel against further radioactive damage. For the first time, active radiation monitoring was performed on scrap-processing machines and in the working range of mobile devices. With this, scrap yard operators will have the opportunity to detect radioactively contaminated material at an early stage and before radiation sources are

  6. CJSC ECOMET-S facility for reprocessing and utilisation of radioactive metal waste: operating experience

    International Nuclear Information System (INIS)

    Gelbutovsky, A.B.; Kishkin, S.A.; Mochenov, M.I.; Troshev, A.V.; Cheremisin, P.I.; Chernichenko, A.A.

    2006-01-01

    The principal objective of the paper is to present operating experience in management of radioactive metal waste, originating at nuclear power facilities of the Russian Federation. Issues of radioactive metal waste recycling by melting, with the purpose of unrestricted re-use in industry, or restricted re-use within the nuclear industry, have been considered. The necessity for using a method of melting at the final stage of radioactive metal waste recycling has been proved. Priority measures to be taken and results achieved in the implementation of the Governmental purpose-oriented programme 'Radioactive Metal Waste Reprocessing and Utilization' have been considered, the CJSC ECOMET-S being the main contractor on the Programme. Main specifications and results of operating a commercial melting facility, owned by CJSC 'ECOMET-S' and used to recycle low-level radioactive metal waste originated at the Leningrad Nuclear Power Plant, have been presented. (author)

  7. Melting method for radioactive solid wastes and device therefor

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Masahiko; Abe, Takashi; Nakayama, Junpei; Kusamichi, Tatsuhiko; Sakamoto, Koichi

    1998-11-17

    Upon melting radioactive solid wastes mixed with radioactive metal wastes and non metal materials such as concrete by cold crucible high frequency induction heating, induction coils are wound around the outer circumference of a copper crucible having a water cooling structure to which radioactive solid wastes are charged. A heating sleeve formed by a material which generates heat by an induction heating function of graphite is disposed to the inside of the crucible at a height not in contact with molten metals in the crucible vertically movably. Radioactive solid wastes are melted collectively by the induction heat of the induction coils and thermal radiation and heat conduction of the heating sleeve heated by the induction heat. With such procedures, non metal materials such as concrete and radioactive metal wastes in a mixed state can be melt collectively continuously highly economically. (T.M.)

  8. Environmental Exposure and Accelerated Testing of Rubber-to-Metal Vulcanized Bonded Assemblies

    Science.gov (United States)

    1974-11-01

    btadiene/acrylonitrile ( NBR ) rubber -to-metat -. canized bonded assemblies at the two exposure sites are shown in Table 5. After exposure for one year...AD-A0-17 368 EN~VIRONMENTAL EXPOSURE AND ACCELERATED TESTING OF RUBBER -TO-METAL VULCANIZED BONDED ASSEMBLIES John A. WilliamsI Rock Island Arseital...COMMERCE 325116 1AD R-TR-75-013 ENViRONMENTAL EXPOSURE AND ACCELERATED TESTING OF RUBBER -TO-METAL VULCANIZED BONDED ASSEMBLIES by __ John A. Williams

  9. Spatial Variation and Assessment of Heavy Metal and Radioactive Risk in Farmland around a Retired Uranium Mine

    Science.gov (United States)

    Liang, Jie; Shi, Chen-hao; Zeng, Guang-ming; Zhong, Min-zhou; Yuan, Yu-jie

    2017-07-01

    In recent years, heavy metal contamination in the environment has been attracted worldwide attention due to their toxicity, persistence,extensive sources and non-biodegradable properties. We herein investigate variation trend and risk of heavy metal and radiation distribution in the former mine stope, former mineral ore stockyard, and mine road with surface soils of a retired uranium mine in the mid-south of China. The mean concentrations (mg/kg) of Pb,Cd,Cu,Zn,As,Hg,Cr,Mn,Ni,U, and 232Th were analyzed according to the corresponding background values in Hunan, China. The Geo-accumulation index (Igeo ) were used for the assessment of pollution level of heavy metals and the radioactive elements of U and 232Th. Then, Pollution load index (PLI) and GIS techniquewere integrated to assess spatial distribution of heavy metal contamination and radioactive contamination. Results confirmed that three areas in the retired uranium mine was a primary source of pollution, which showed anthropogenic origin mainly from agricultural runoff, hydrometallurgy from chemical industries, radioactive tailings, and electroplating industriesfinally drained into Zishui River and Xiangjiang River. Based on the actual situation, some suggestions were put forward for the treatment of the retired uranium mine in conclusion.

  10. Devoluming method and device for radioactive metal wastes containing zirconium alloy

    International Nuclear Information System (INIS)

    Komatsu, Masahiko; Wada, Ryutaro.

    1996-01-01

    The present invention concerns a method of sealing radioactive metal wastes in a capsule and compressing the capsule for devoluming treatment. The method comprises a step of carrying radioactive metal wastes into a sealed chamber having a capacity somewhat greater than that of the capsule, a deaerating step of sucking the air in the sealed chamber to attain a substantially vacuum state, a compression-devoluming step of compression-devoluming the capsule by reducing the volume of the sealed chamber and a transporting step of transporting the devolumed capsule from the sealed chamber. The sealed chamber to which the capsule incorporated with radioactive metal wastes containing a zirconium alloy is carried is then deaerated into a substantially vacuum state. Even if ignitable powdery dusts are generated from the radioactive metal wastes crushed by compression-devoluming of the capsule in the succeeding compression-devoluming step, since the air necessary for ignition is not present, ignition of the powdery dusts is prevented. Alternatively, since the inside of the sealed chamber is filled with an inert gas, ignition of the powdery dusts can effectively be prevented. (N.H.)

  11. The choice among non-callable bonds and make whole, claw back and otherwise ordinary callable bonds

    OpenAIRE

    Booth, LD; Gounopoulos, D; Skinner, F

    2012-01-01

    This paper seeks to explain determinates of the choice and the pricing of various types of callable and non-callable bonds. We find that the popularity of different types of callable and non-callable bonds is significantly related to the economic environment. In addition, the popularity of claw back bonds appear to be driven by agency considerations, make whole bonds by the debt overhang problem, ordinary callable bonds by the need by banks to deal with interest rate changes and non-callable ...

  12. Radioactive waste from non-power applications in Sweden

    International Nuclear Information System (INIS)

    Haegg, Ann-Christin; Lindbom, Gunilla; Persson, Monica

    2001-01-01

    regulations enable the free release of small amounts of radioactive waste either to the municipal sewage system or for delivering to a municipal dumpsite. Identified issues. It is not possible for the SSI to conduct more than a limited number of inspections. SSI relies on the licensee to inform the SSI when the source is no longer in use. An incitement for this is the annual fee mentioned above. Sources with activity below 500 megaBq from facilities with a summary licence are not accounted for separately and can therefore be difficult to control. The only radioactive waste facility (recognised waste facility) with the capacity and the authorisation for taking care of disused radioactive sources and other forms of radioactive waste from Non-Power applications is Studsvik AB. The future costs for final disposal of this waste is unclear because of the lack of final repository. Studsvik has to make sure that future costs are covered by the fee they charges for taking care of radioactive waste. As the only recognised waste facility Studsvik can freely set the fee for taking care of radioactive waste. If the fee is set too high there's a risk that waste from some unserious license-holder will be lost' or kept in storage. Studsvik has no formal responsibility for taking care of used radioactive sources. It's not unrealistic that Studsvik in the future decides not to accept a specific waste-form. Commercial products: Approximately there are 10 millions fireguards containing about 40 kBq Am-241 in Sweden. The average lifetime of the fireguards is 10 years and implicates that about one million fireguards are disposed of each year. SSI has issued regulations stating that private persons are allowed to occasionally throw a fireguard on municipal dump-sites. Companies are allowed to throw up to five fireguards each month. Identified issues: An assumption for the regulations was that the fireguards were not disposed at the same time nor at the same place. A dilution was anticipated

  13. Relativistic Effects on Metal-Metal Bonding. Comparison of the Performance of ECP and Scalar DKH Description on the Picture of Metal-Metal Bonding in Re2Cl8(2-)

    Czech Academy of Sciences Publication Activity Database

    Ponec, Robert; Bučinský, L.; Gatti, C.

    2010-01-01

    Roč. 6, č. 10 (2010), s. 3113-3121 ISSN 1549-9618 R&D Projects: GA ČR GA203/09/0118 Grant - others:VEGA(SK) 1/0817/08; VEGA(SK) 1/0127/09; APVV(SK) 0093-07 Institutional research plan: CEZ:AV0Z40720504 Keywords : relativistic effects * metal-metal bonding Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.138, year: 2010

  14. Development of dissimilar metal transition joint by hot bond rolling

    International Nuclear Information System (INIS)

    Kurokawa, Hiroyuki; Nakasuji, Kazuyuki; Kajimura, Haruhiko; Nagai, Takayuki; Takeda, Seiichiro.

    1997-01-01

    Metallurgically bonded transition joints which enable to connect reprocessing equipments made of superior corrosion resistant valve metals (Ti-5Ta, Zr or Ti) to stainless steel piping are required for nuclear fuel reprocessing plants. The authors have developed dissimilar transition joints made of stainless steel and Ti-5Ta, Zr or Ti with an insert metal of Ta by the hot bond rolling process of clad bars and clad pipes, using a newly developed mill called 'rotary reduction mill'. This report presents the manufacturing process of dissimilar transition joints produced from the clad pipe with three layers by the hot bond rolling. First, the method of hot bond rolling of clad pipe is proposed. Then, the mechanical and corrosion properties of the dissimilar transition joints are evaluated in detail by carrying out various tests. Finally, the rolling properties in the clad pipe method are discussed. (author)

  15. Metal-mediated DNA base pairing: alternatives to hydrogen-bonded Watson-Crick base pairs.

    Science.gov (United States)

    Takezawa, Yusuke; Shionoya, Mitsuhiko

    2012-12-18

    With its capacity to store and transfer the genetic information within a sequence of monomers, DNA forms its central role in chemical evolution through replication and amplification. This elegant behavior is largely based on highly specific molecular recognition between nucleobases through the specific hydrogen bonds in the Watson-Crick base pairing system. While the native base pairs have been amazingly sophisticated through the long history of evolution, synthetic chemists have devoted considerable efforts to create alternative base pairing systems in recent decades. Most of these new systems were designed based on the shape complementarity of the pairs or the rearrangement of hydrogen-bonding patterns. We wondered whether metal coordination could serve as an alternative driving force for DNA base pairing and why hydrogen bonding was selected on Earth in the course of molecular evolution. Therefore, we envisioned an alternative design strategy: we replaced hydrogen bonding with another important scheme in biological systems, metal-coordination bonding. In this Account, we provide an overview of the chemistry of metal-mediated base pairing including basic concepts, molecular design, characteristic structures and properties, and possible applications of DNA-based molecular systems. We describe several examples of artificial metal-mediated base pairs, such as Cu(2+)-mediated hydroxypyridone base pair, H-Cu(2+)-H (where H denotes a hydroxypyridone-bearing nucleoside), developed by us and other researchers. To design the metallo-base pairs we carefully chose appropriate combinations of ligand-bearing nucleosides and metal ions. As expected from their stronger bonding through metal coordination, DNA duplexes possessing metallo-base pairs exhibited higher thermal stability than natural hydrogen-bonded DNAs. Furthermore, we could also use metal-mediated base pairs to construct or induce other high-order structures. These features could lead to metal-responsive functional

  16. System for Prevention, Detection and Response to Radioactive Materials in Scrap Metal in Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Makarovska, O., E-mail: makarovska@hq.snrc.gov.ua [State Nuclear Regulatory Committee of Ukraine, Kiev (Ukraine)

    2011-07-15

    The State control system to prevent, detect and respond to cases of radioactive material in scrap metal is functioning in Ukraine. The system includes regulations for the safe and secure management of metal scrap and administrative and technical measures to prevent, detect and respond to cases of radioactive material in scrap metal. The key elements of prevention are the system of licensing and supervision in the sphere of radioactive material use and the State system for inventory, registration and control of radiation sources. Metal scrap management is licensed by the Ministry of Industrial Policy and one of the licence conditions is radiation control of the scrap metal. State supervision of the operations with metal scrap is provided by Ministry of Health and Ministry of Environmental Protection according to the regulation 'State sanitary-ecological standard for metal scrap management'. Specific standards exist for the export of metal scrap. Export consignments are followed by a certificate that proves the radiological safety of the metal. Ukrainian metallurgical plants provide an input radiation control of metal scrap and an output control of the produced metal. Thus, there exists a five barrier system of metal scrap control: border control; exclusion zone perimeter control; metal scrap dealers control; metallurgical plants (input control and output control of produced metal); and export consignments radiological certification. To regain control over orphan sources (including occasional radioactive material in the scrap metal) the 'procedure for interaction of executive authorities and involved legal entities in case of revealing of radiation sources in no legal use' was approved by a Resolution of the Cabinet of Ministers of Ukraine. The investigation of each case with feedback, information of involved bodies, safe and secure storage of restored radioactive material are provided according to this procedure. (author)

  17. Influence of non-radioactive payload parameters on radioactive shipping packages

    International Nuclear Information System (INIS)

    Drez, P.E.; Murthy, D.V.S.; Temus, C.J.; Quinn, G.J.; Ozaki, C.

    1989-01-01

    The transport of radioactive waste materials in radioactive material (RAM) packages involves two components: the packaging used for transportation, and the waste which forms the payload. The payload is usually comprised of non-radioactive materials contaminated with radionuclides. The non-radionuclide payload characteristics can often be a controlling factor in determining the restrictions imposed on the certification of the package. This paper describes these package/payload interactions and the limiting parameters for the Transuranic Package Transporter-II (TRUPACT-II), designed for the transportation of Contact Handled Transuranic (CH-TRU) waste. The parameters discussed include the physical and chemical form of the payload, the configuration of the waste, and resulting gas generation and gas release phenomena. Brief descriptions of the TRUPACT-II package and its payload are presented initially

  18. Determination of bond energies by mass spectrometry. Some transition metal carbonyls

    International Nuclear Information System (INIS)

    Michels, G.D.

    1979-01-01

    Two groups of transition metal carbonyls have been studied, M(CO) 6 and M(CO) 5 CS complexes of the Group VIB metals and M 2 (CO) 10 complexes of the Group VIIB metals. Results for the hexacarbonyl complexes indicate that the measured fragmentation energies are in error by 0.25 +- 0.02 eV per CO produced. This is attributed to excitation of CO to the first vibrational state. Least-squares dissociation energies calculated from corrected data for M(CO) 5 CS complexes indicate that the M--CS bond is 3 to 4 times stronger than the M--CO bonds. Substitution of CS for CO in going from M(CO) 6 to M(CO) 5 CS weakens the remaining M--CO bonds by an average of 0.2 eV. Previously unreported MnTc(CO) 10 and TcRe(CO) 10 are prepared by halide substitution of Tc(CO) 5 Br and Re(CO) 5 Br with Mn(CO) 5 - and Tc(CO) 5 - , respectively. In the positive ion, metal and mixed-metal decacarbonyls are considered as (CO) 5 M + --M(CO) 5 complexes possessing five strong and five weak M--CO bonds. For Mn 2 (CO) 10 and Re 2 (CO) 10 , M + --M dissociation energies are 3.0 +- 0.1 and 4.0 +- 0.3 eV, respectively. These energies are 2.5 times greater than those reported for homolytic cleavage to M(CO) 5 + and M(CO) 5

  19. Liquid phase diffusion bonding of A1070 by using metal formate coated Zn sheet

    Science.gov (United States)

    Ozawa, K.; Koyama, S.; shohji, I.

    2017-05-01

    Aluminium alloy have high strength and easily recycle due to its low melting point. Therefore, aluminium is widely used in the manufacturing of cars and electronic devices. In recent years, the most common way for bonding aluminium alloy is brazing and friction stir welding. However, brazing requires positional accuracy and results in the formation of voids by the flax residue. Moreover, aluminium is an excellent heat radiating and electricity conducting material; therefore, it is difficult to bond together using other bonding methods. Because of these limitations, liquid phase diffusion bonding is considered to the suitable method for bonding aluminium at low temperature and low bonding pressure. In this study, the effect of metal formate coating processing of zinc surface on the bond strength of the liquid phase diffusion bonded interface of A1070 has been investigated by SEM observation of the interfacial microstructures and fractured surfaces after tensile test. Liquid phase diffusion bonding was carried out under a nitrogen gas atmosphere at a bonding temperature of 673 K and 713 K and a bonding load of 6 MPa (bonding time: 15 min). As a result of the metal formate coating processing, a joint having the ultimate tensile strength of the base aluminium was provided. It is hypothesized that this is because metallic zinc is generated as a result of thermal decomposition of formate in the bonded interface at lower bonding temperatures.

  20. Low-level radioactive waste from rare metals processing facilities

    International Nuclear Information System (INIS)

    Eng, J.; Hendricks, D.W.; Feldman, J.; Giardina, P.A.

    1980-01-01

    This paper reviews the situations at the existing Teledyne Wah Chang Co., Inc. located at Albany, Oregon, and the former Carborundum Corp./Amax Specialty Metals, Inc., facilities located at Parkersburg, West Virginia, and Akron, New York, in order to show the extent of the radioactivity problem at rare metals processing facilities and the need to identify for radiological review other rare metal and rare earth processing sites

  1. Rare-earth transition-metal intermetallics: Structure-bonding-property relationships

    Energy Technology Data Exchange (ETDEWEB)

    Han, M. K. [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    The explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding property relationships. The work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe13-xSix system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn{sub 13}-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides Re2-xFe4Si14-y and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi2: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb3Zn3.6Al7.4: Partially ordered structure of Tb3Zn3.6Al7.4 compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn39(CrxAl1-x)81

  2. Rare-Earth Transition-Metal Intermetallics: Structure-bonding-Property Relationships

    Energy Technology Data Exchange (ETDEWEB)

    Han, Mi-Kyung [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Our explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding-property relationships. Our work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe13-xSix system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn13-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides RE2-xFe4Si14-y and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi2: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb3Zn3.6Al7.4: Partially ordered structure of Tb3.6Zn13-xAl7.4 compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn39(CrxAl1-x

  3. Use of Portal Monitors for Detection of Technogenic Radioactive Sources in Scrap Metal

    Science.gov (United States)

    Solovev, D. B.; Merkusheva, A. E.

    2017-11-01

    The article considers the features of organization of scrap-metal primary radiation control on the specialized enterprises engaging in its deep processing and storage at using by primary technical equipment - radiation portal monitors. The issue of this direction relevance, validity of radiation control implementation with the use of radiation portal monitors, physical and organizational bases of radiation control are considered in detail. The emphasis is put on the considerable increase in the number of technogenic radioactive sources detected in scrap-metal that results in the entering into exploitation of radioactive metallic structures as different building wares. One of reasons of such increase of the number of technogenic radioactive sources getting for processing with scrap-metal is the absence of any recommendations on the radiation portal monitors exploitation. The practical division of the article offers to recommendation on tuning of the modes of work of radiation portal monitors depending on influence the weather factor thus allowing to considerably increase the percent of technogenic radioactive sources detection.

  4. Recycled scrap metal and soils/debris with low radioactive contents

    International Nuclear Information System (INIS)

    Carriker, A.W.

    1996-01-01

    Two types of large volume bulk shipments of materials with low radioactivity have characteristics that complicate compliance with normal transport regulations. Scrap metal for recycling sometimes contains radioactive material that was not known or identified by the shipper prior to it being offered for transport to a scrap recycle processor. If the radioactive material is not detected before the scrap is processed, radiological and economic problems may occur. If detected before processing, the scrap metal will often be returned to the shipper. Uranium mill-tailings and contaminated soils and debris have created potential public health problems that required the movement of large volumes of bulk material to isolated safe locations. Similarly, old radium processing sites have created contamination problems needing remediation. The US Department of Transportation has issued exemptions to shippers and carriers for returning rejected scrap metal to original shippers. Other exemptions simplify transport of mill-tailings and debris from sites being remediated. These exemptions provide relief from detailed radioassay of the radioactive content in each conveyance as well as relief from the normal requirements for packaging, shipping documents, marking, labelling, and placarding which would be required for some of the shipments if the exemptions were not issued. (Author)

  5. Binding of hydrocarbons and other extremely weak ligands to transition metal complexes that coordinate hydrogen: Investigation of cis-interactions and delocalized bonding involving sigma bonds

    International Nuclear Information System (INIS)

    Kubas, G.J.; Eckert, J.; Luo, X.L.

    1997-01-01

    This is the final report of a three-year Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). At the forefront of chemistry are efforts to catalytically transform the inert C-H bonds in alkanes to more useful products using metal compounds. The goal is to observe binding and cleavage of alkane C-H bonds on metals or to use related silane Si-H bonding as models, analogous to the discovery of hydrogen (H 2 ) binding to metals. Studies of these unique sigma complexes (M hor-ellipsis H-Y; Y double-bond H, Si, C) will aid in developing new catalysts or technologies relevant to DOE interest, e.g., new methods for tritium isotope separation. Several transition metals (Mo, W, Mn, and Pt) were found to reversibly bind and cleave H 2 , silanes, and halocarbons. The first metal-SiH 4 complexes, thus serving as a model for methane reactions. A second goal is to study the dynamics and energetics of H-Y bonds on metals by neutron scattering, and evidence for interactions between bound H-Y and nearby H atoms on metal complexes has been found

  6. Application of a modified electrochemical system for surface decontamination of radioactive metal waste

    International Nuclear Information System (INIS)

    Lee, J.H.; Lim, Y.K.; Yang, H.Y.; Shin, S.W.; Song, M.J.

    2003-01-01

    Conventional and modified electrolytic decontamination experiments were performed in a solution of sodium sulfate for the decontamination of carbon steel as the simulated metal wastes which are generated in large amounts from nuclear power plants. The effect of reaction time, current density and concentration of electrolytes in the modified electrolytic decontamination system were examined to remove the surface contamination of the simulated radioactive metal wastes. As for the results of this research, the modified electrochemical decontamination process can decontaminate more effectively than the conventional decontamination process by applying different anode material which causes higher induced electro-motive forces. When 0.5 M sodium sulfate, 0.4 A/cm 2 current density and 30 minutes reaction time were applied in the modified process, a 16 μm thickness change that is expected to remove most surface contamination in radioactive metal wastes was achieved on carbon steel which is the main material of radioactive metal waste in nuclear power plants. The decontamination efficiency of metal waste showed similar results with the small and large lab-scale modified electrochemical system. The application of this modified electrolytic decontamination system is expected to play a considerable role for decontamination of radioactive metal waste in nuclear power plants in the near future. (author)

  7. Volume Reduction of Decommissioning Radioactive Burnable and Metal Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Min, B. Y.; Lee, Y. J.; Yun, G. S.; Lee, K. W.; Moon, J. K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Choi, Y. K.; Cho, J. H. [SunKwang Atomic Energy Safety Co., Seoul (Korea, Republic of)

    2014-10-15

    A large quantity of radioactive waste was generated during the decommissioning projects. For the purpose of the volume reduction and clearance for decommissioning wastes from decommissioning projects, the incineration and high melting technology has been selected for the decommissioning wastes treatment. The volume reduction of the combustible wastes through the incineration technologies has merits from the view point of a decrease in the amount of waste to be disposed of resulting in a reduction of the disposal cost. Incineration is generally accepted as a method of reducing the volume of radioactive waste. The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. Incinerator burns waste at high temperature. Incineration of a mixture of chemically hazardous and radioactive materials, known as 'mixed waste,' has two principal goals: to reduce the volume and total chemical toxicity of the waste. Incineration itself does not destroy the metals or reduce the radioactivity of the waste. A proven melting technology is currently used for low-level waste (LLW) at several facilities worldwide. These facilities use melting as a means of processing LLW for unrestricted release of the metal or for recycling within the nuclear sector. About 16.4 tons of decommissioning combustible waste has been treated using Oxygen Enriched incineration. The incineration facility operated quite smoothly through the analysis major critical parameters of off-gas.

  8. Volume Reduction of Decommissioning Radioactive Burnable and Metal Wastes

    International Nuclear Information System (INIS)

    Min, B. Y.; Lee, Y. J.; Yun, G. S.; Lee, K. W.; Moon, J. K.; Choi, Y. K.; Cho, J. H.

    2014-01-01

    A large quantity of radioactive waste was generated during the decommissioning projects. For the purpose of the volume reduction and clearance for decommissioning wastes from decommissioning projects, the incineration and high melting technology has been selected for the decommissioning wastes treatment. The volume reduction of the combustible wastes through the incineration technologies has merits from the view point of a decrease in the amount of waste to be disposed of resulting in a reduction of the disposal cost. Incineration is generally accepted as a method of reducing the volume of radioactive waste. The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. Incinerator burns waste at high temperature. Incineration of a mixture of chemically hazardous and radioactive materials, known as 'mixed waste,' has two principal goals: to reduce the volume and total chemical toxicity of the waste. Incineration itself does not destroy the metals or reduce the radioactivity of the waste. A proven melting technology is currently used for low-level waste (LLW) at several facilities worldwide. These facilities use melting as a means of processing LLW for unrestricted release of the metal or for recycling within the nuclear sector. About 16.4 tons of decommissioning combustible waste has been treated using Oxygen Enriched incineration. The incineration facility operated quite smoothly through the analysis major critical parameters of off-gas

  9. Radioactive and non-radioactive polychlorinated biphenyl (PCB) management at Hanford

    International Nuclear Information System (INIS)

    Leonard, W.W.; Gretzinger, R.F.; Cox, G.R.

    1986-01-01

    Conformance to all state and federal regulations is the goal of Rockwell in the management of both radioactive and non-radioactive PCB's at Hanford. A continuing effort is being made to locate, remove, and properly dispose of all PCB's. As improved methods of management are developed, consideration will be given to them for their adaptation into the Hanford Site PCB Management Plan

  10. Chemical activation of molecules by metals: Experimental studies of electron distributions and bonding

    International Nuclear Information System (INIS)

    Lichienberger, D.L.

    1990-10-01

    This quarter has witnessed further progress both in our experimental methods of photoelectron spectroscopy and in our understanding the fundamental relationships between ionization energies and the chemistry of transition metal species. Progress continues on the new gas phase photoelectron spectrometer that combine improved capabilities for HeI/HeII UPS, XPS, and Auger investigations of organometallic molecules. Several measurements have been accomplished this year that were not possible previously. We have published the formal relationship between measured molecular ionization energies and thermodynamic bond dissociation energies, and applied the relationships to homonuclear and heteronuclear diatomic molecules, multiple bonds, and metal-ligand bonds. Studies of C-H bond activation have continued with examination of different degrees of Si-H bond addition to metals. the electronic effects of intermolecular interactions have been observed by comparing the ionizations of metal complexes in the gas phase with the ionizations of monolayer solid organometallic films prepared in ultra-high vacuum. The orientations of the molecules have been determined by scanning tunneling microscopy. Especially interesting has been the recent application of these techniques to the characterization of the soccer-ball shaped C 60 molecule, buckminsterfullerene. Studies of the following complexes are described : Fe, Os, Nb, Mo, Rh, Re, Al, and Mn. 19 refs

  11. Propensity of bond exchange as a window into the mechanical properties of metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, W.; Wang, X. L., E-mail: xlwang@um.cityu.edu.hk; Lan, S. [Department of Physics and Materials Science, City University of Hong Kong, Hong Kong (China); Pan, S. P. [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Lu, Z. P. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-02-09

    We investigated the mechanical properties of Zr-Cu-Al bulk metallic glasses, by compression experiment and molecular dynamics simulations. From the simulation, we found that the large, solvent atom, Zr, has high propensity of bond exchange compared to those of the smaller solute atoms. The difference in bond exchange is consistent with the observed disparity in mechanical behaviors: Zr-rich metallic glass exhibits low elastic modulus and large plastic strain. X-ray photoelectron spectroscopy measurements suggest that the increased propensity in bond exchange is related to the softening of Zr bonds with increasing Zr content.

  12. Nature of the metal-support interface in supported metal catalysts: results from x-ray absorption spectroscopy

    NARCIS (Netherlands)

    Koningsberger, D.C.; Gates, B.C.

    1992-01-01

    X-ray absorption spectra characterizing the metal-support interface in supported metal complexes and supported metal catalysts are summarized and evaluated with 29 refs. Mononuclear transition metal complexes on non-reducible metal oxide supports are bonded with metal-oxygen bonds of .apprx.2.15

  13. Bad metal behaviour in the new Hg-rich amalgam KHg{sub 6} with polar metallic bonding

    Energy Technology Data Exchange (ETDEWEB)

    Tambornino, Frank; Hoch, Constantin, E-mail: constantin.hoch@cup.uni-muenchen.de

    2015-01-05

    Highlights: • The novel Hg-rich amalgam KHg{sub 6} was synthesised by electrocrystallisation. • The structure was investigated by single crystal and powder diffraction. • Thermal decomposition, electric resistance and magnetic susceptibiliy were examined. • Band structure, total and partial density of states and Bader charges were calculated. • Bad metal behaviour results from ionic, metallic and covalent bonding contributions. - Abstract: The new mercury-rich amalgam KHg{sub 6} crystallises with the BaHg{sub 6} structure type (orthorhombic, space group Pnma (No. 62), a = 13.394(9) Å, b = 5.270(3) Å, c = 10.463 Å). It was prepared by electrolysis of a solution of KI in N,N′-Dimethylformamide at 343 K at a reactive Hg cathode. The structure of KHg{sub 6} shows motifs of ionic packing, covalent Hg cluster formation and metallic properties. KHg{sub 6} decomposes peritectically at 443 K. The combination of alkali metals with a noble metal with moderate electron affinity results in the formation of polar metal–metal bonding with considerable but incomplete electron transfer from the electropositive to the electronegative sublattice, resulting in typical “bad metal behaviour”, illustrated by resistance and susceptibility measurements and quantum theoretical calculations.

  14. A novel metal-to-metal bonding process through in-situ formation of Ag nanoparticles using Ag2O microparticles

    International Nuclear Information System (INIS)

    Hirose, Akio; Tatsumi, Hiroaki; Takeda, Naoya; Akada, Yusuke; Ogura, Tomo; Ide, Eiichi; Morita, Toshiaki

    2009-01-01

    The metal-to-metal bonding has been successfully achieved via the bonding process using Ag metallo-organic nanoparticles at a bonding temperature of around 300-, which can be alternative to the current microsoldering in electronics assembly using high-temperature solders. However, further reduction of bonding temperature and/or bonding pressure is needed. In the present research, a novel bonding process through in-situ formation of Ag nanoparticles instead of the filler material of the Ag metallo-organic nanoparticles has been developed. The Ag nanoparticles can form by the reduction of Ag 2 O particles. In this study, the Ag 2 O particles were mixed with triethylene glycol as a reducing agent to form a paste for bonding. The Au coated cylindrical specimens were bonded using the paste. The Ag nanoparticles formed at around 130 to 160 through the reduction process of Ag2O particles with triethylene glycol. The Ag nanoparticles were immediately sintered each other due to a great surface energy per volume. A transmission electron microscope observation revealed that the sintered Ag metallurgically bonded to the Au substrate at around 160 and a dense Ag layer formed after further heating. The tensile strength of the joint bonded at 250 under a bonding pressure of 5MPa was around 60MPa

  15. Metal-Free Approaches to Sterically-Hindered Bonds

    Science.gov (United States)

    Dunham, Veronica Vin-yi

    Developing methods to perform cross coupling reactions by means of catalysis is highly desirable in chemistry. Many industries in today's society, such as the petroleum, agriculture, pharmaceutical, electronics, and polymer industry, use catalysis to some extent whether it is to make molecules that offer crop protection or toward the synthesis of the active ingredient of a medication. It is noteworthy that over 90% of chemicals are made through catalytic processes and that the catalyst market reached $17 billion in 2014, which demonstrates the demand for such methods. While transition metal catalysts have advantages such as low catalyst loading, broad reactivity, and that they have been well studied, some disadvantages are that they can be relatively expensive and sometimes air sensitive which can make them challenging to use. Organocatalysis, specifically noncovalent catalysis operating through hydrogen bond donating interactions, offers an environmentally-friendly alternative to transition metal catalysis. Our lab utilizes organocatalysis as a strategy to synthesize challenging, sterically-hindered bonds. Nitrimines have been identified as powerful coupling partners for the sustainable construction of new sterically congested carbon-carbon and carbon-heteroatom bonds. Using urea catalysis, a metal-free method to synthesize previously inaccessible enamines has been developed. Conventional routes to synthesize enamines as important building blocks toward target molecules generally require Lewis/Bronsted acids or expensive transition metals; however, these methods are often unsuccessful when stericallyhindered substrates are used. To address this synthetic challenge, it was hypothesized that hydrogen bonding interactions between a urea organocatalyst and nitrimine would generate a reactive species suited for the effective carbon-nitrogen coupling with amines to give the desired enamine products. This reaction provides high yields (up to 99%) of enamines using a

  16. Non-destructive nuclear forensics of radioactive samples

    Energy Technology Data Exchange (ETDEWEB)

    Rogge, R.B. [Canadian Neutron Beam Centre, Chalk River, ON (Canada); Alexander, Q.; Bentoumi, G.; Dimayuga, F. [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Flacau, R. [Canadian Neutron Beam Centre, Chalk River, ON (Canada); Li, G.; Li, L.; Sur, B. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    It is a matter of public safety and security to be able to examine suspicious packages of unknown origin. If the package is radioactive and sealed (i.e., the radioactive materials contained in the package, including their chemical and physical forms, are unknown), there is a significant risk on how to handle the package and eventually safely dispose of its contents. Within the context of nuclear security, nuclear forensics helps address the key issue of identifying the nature and origin of radioactive and nuclear material in order to improve physical protection measures and prevent future theft or diversion of these materials. Nuclear forensics utilizes analytical techniques, destructive and non-destructive, developed for applications related to nuclear fuel cycles. This paper demonstrates the non-destructive examination techniques that can be used to inspect encapsulated radioactive samples. Results of γ spectroscopy, X-ray spectroscopy, neutron imaging, neutron diffraction, and delayed neutron analysis as applied to an examination of sealed capsules containing unknown radioactive materials are presented. The paper also highlights the value of these techniques to the overall nuclear forensic investigation to determine the origin of these unknown radioactive materials. (author)

  17. Effects of non-radioactive material around radioactive material on PET image quality

    International Nuclear Information System (INIS)

    Toshimitsu, Shinya; Yamane, Azusa; Hirokawa, Yutaka; Kangai, Yoshiharu

    2015-01-01

    Subcutaneous fat is a non-radioactive material surrounding the radioactive material. We developed a phantom, and examined the effect of subcutaneous fat on PET image quality. We created a cylindrical non-radioactive mimic of subcutaneous fat, placed it around a cylindrical phantom in up to three layers with each layer having a thickness of 20 mm to reproduce the obesity caused by subcutaneous fat. In the cylindrical phantom, hot spheres and cold spheres were arranged. The radioactivity concentration ratio between the hot spheres and B.G. was 4:1. The radioactivity concentration of B.G. was changed as follows : 1.33, 2.65, 4.00, and 5.30 kBq/mL. 3D-PET image were collected during 10 minutes. When the thickness of the mimicked subcutaneous fat increased from 0 mm to 60 mm, noise equivalent count decreased by 58.9-60.9% at each radioactivity concentration. On the other hand, the percentage of background variability increased 2.2-5.2 times. Mimic subcutaneous fat did not decrease the percentage contrast of the hot spheres, and did not affect the cold spheres. Subcutaneous fat decreases the noise equivalent count and increases the percentage of background variability, which degrades PET image quality. (author)

  18. Beyond low-level activity: On a 'non-radioactive' gas mantle

    International Nuclear Information System (INIS)

    Poljanc, Karin; Steinhauser, Georg; Sterba, Johannes H.; Buchtela, Karl; Bichler, Max

    2007-01-01

    Gas mantles for camping gas lanterns sometimes contain thorium compounds. During the last years, the use of thorium-free gas mantles has become more and more popular due to the avoidance of a radioactive heavy metal. We investigated a gas mantle type that is declared to be 'non-radioactive' and that can be bought in Austria at the moment. Methods used were Instrumental Neutron Activation Analysis (INAA), γ-spectroscopy, and Liquid Scintillation Counting (LSC). We found massive thorium contents of up to 259 mg per gas mantle. Leaching experiments showed that only 0.4% of the Th but approximately 90% of the decay products of 232 Th can be leached under conditions simulating sucking and chewing with human saliva. In this paper, the investigation of these gas mantles including the consideration of the environmental hazard caused by disposed mantles and the health hazard for unsuspecting consumers is presented and legal consequences are discussed for this fraud

  19. Comparative evaluation of shear bond strength of metallic brackets bonded with two different bonding agents under dry conditions and with saliva contamination.

    Science.gov (United States)

    Khanehmasjedi, Mashallah; Naseri, Mohammad Ali; Khanehmasjedi, Samaneh; Basir, Leila

    2017-02-01

    This study compared the shear bond strength of metallic brackets bonded with Single Bond and Assure bonding agents under dry and saliva-contamination conditions. Sixty sound premolar teeth were selected, and stainless-steel brackets were bonded on enamel surfaces with Single Bond and Assure bonding agents under dry condition or with saliva contamination. Shear bond strength values of brackets were measured in a universal testing machine. The adhesive remnant index scores were determined after debonding of the brackets under a stereomicroscope. One-way analysis of variance (ANOVA) was used to analyze bond strength. Two-by-two comparisons were made with post hoc Tukey tests (pbrackets to tooth structure were 9.29±8.56 MPa and 21.25±8.93 MPa with the use of Assure resin bonding agent under saliva-contamination and dry conditions, respectively. These values were 10.13±6.69 MPa and 14.09±6.6 MPa, respectively, under the same conditions with the use of Single Bond adhesive. Contamination with saliva resulted in a significant decrease in the bond strength of brackets to tooth structure with the application of Assure adhesive resin (pbrackets to tooth structures. Contamination with saliva significantly decreased the bond strength of Assure bonding agent compared with dry conditions. Copyright © 2016. Published by Elsevier Taiwan LLC.

  20. Control of Transboundary Movement of Radioactive Material Inadvertently Incorporated into Scrap Metal and Semi-finished Products of the Metal Recycling Industries. Results of the Meetings Conducted to Develop a Draft Code of Conduct

    International Nuclear Information System (INIS)

    2014-02-01

    In 2010, the IAEA initiated the development of a code of conduct on the transboundary movement of radioactive material inadvertently incorporated into scrap metal and semi- finished products of the metal recycling industries (Metal Recycling Code of Conduct). The Metal Recycling Code of Conduct was intended to harmonize the approaches of Member States in relation to the discovery of radioactive material that may inadvertently be present in scrap metals and semi-finished products subject to transboundary movement, and their safe handling and management to facilitate regulatory control. The Metal Recycling Code of Conduct was envisaged as being complementary to the Safety Guide on Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries (IAEA Safety Standards Series No. SSG-17), which provides recommendations, principally within a national context, on the protection of workers, members of the public and the environment in relation to the control of radioactive material inadvertently incorporated in scrap metal. In February 2013, the third open-ended meeting of technical and legal experts to develop the Metal Recycling Code of Conduct was organized. The objective of this meeting was to address the comments received from Member States and to finalize the text of the draft Metal Recycling Code of Conduct. Representatives from 55 Member States, one non-Member State and the EU, together with seven observers from the metal recycling industry, reviewed the comments and revised the draft accordingly. In September 2013, in Resolution GC(57)/RES/9, the IAEA General Conference recorded that it 'Appreciates the intensive efforts undertaken by the Secretariat to develop a code of conduct on the transboundary movement of scrap metal, or materials produced from scrap metal, that may inadvertently contain radioactive material, and encourages the Secretariat to make the results of the discussion conducted on this issue available to

  1. Health risk and impact evaluation for recycling of radioactive scrap metal

    International Nuclear Information System (INIS)

    Nieves, L.A.; Chen, S.Y.; Murphie, W.E.; Lilly, M.J. III

    1994-01-01

    The DoE, Office of Environmental Restoration and Waste Management, is participating with the Organization for Economic Cooperation and Development in providing analytical support for developing international standards for recycling of radioactive scrap metals. For this purpose, Argonne National Laboratory is assessing health, environmental and societal implications of recycling and/or disposal process alternatives. This effort includes development of international inventory estimates for contaminated metals; investigation of international scrap metal markets; assessment of radiological and non-radiological human health risks; impacts on environmental quality and resources; and investigation of social and political factors. The RSM disposal option is being assessed with regard to the environmental and health impacts of replacing the metals if they are withdrawn from use. Impact estimates are developed for steel as an illustrative example because steel comprises a major portion of the scrap metal inventory. Current and potential sources of RSM include nuclear power plants, fuel cycle and weapons production facilities, industrial and medical facilities and equipment, and petroleum and phosphate rock extraction equipment. Millions of metric tons (t) of scrap iron and steel, stainless steel, and copper, as well as lesser quantities of aluminum, nickel, lead, and zirconium, are likely to become available in the future as these facilities are withdrawn from service

  2. The prospect for recycle of radioactive scrap metals to products for restricted and unrestricted use

    International Nuclear Information System (INIS)

    Liby, A.L.

    1995-01-01

    Large quantities of radioactive scrap metals will arise from decontamination and decommissioning of nuclear power plants and DOE facilities. Much of this metal can be easily decontaminated and released to the existing secondary metals industry for recycling. For metal that can not be readily released, recycle into restricted-use end products is an economically attractive alternative to burial as low level radioactive waste. This paper will examine sources and types of scrap metal, technical approaches, potential products, and economics of metals recycle. Construction, licensing, environmental compliance, and possible reuse of existing nuclear facilities for metals recycling will be discussed. (author)

  3. A methodology for estimating potential doses and risks from recycling U.S. Department of Energy radioactive scrap metals

    International Nuclear Information System (INIS)

    MacKinney, J.A.

    1995-01-01

    The U.S. Environmental Protection Agency (EPA) is considering writing regulations for the controlled use of materials originating from radioactively contaminated zones which may be recyclable. These materials include metals, such as steel (carbon and stainless), nickel, copper, aluminum and lead, from the decommissioning of federal, and non-federal facilities. To develop criteria for the release of such materials, a risk analysis of all potential exposure pathways should be conducted. These pathways include direct exposure to the recycled material by the public and workers, both individual and collective, as well as numerous other potential exposure pathways in the life of the material. EPA has developed a risk assessment methodology for estimating doses and risks associated with recycling radioactive scrap metals. This methodology was applied to metal belonging to the U.S. Department of Energy. This paper will discuss the draft EPA risk assessment methodology as a tool for estimating doses and risks from recycling. (author)

  4. Tensile bond strength of metal bracket bonding to glazed ceramic surfaces with different surface conditionings.

    Science.gov (United States)

    Akhoundi, Ms Ahmad; Kamel, M Rahmati; Hashemi, Sh Mahmood; Imani, M

    2011-01-01

    The objective of this study was to compare the tensile bond strength of metal brackets bonding to glazed ceramic surfaces using three various surface treatments. Forty two glazed ceramic disks were assigned to three groups. In the first and second groups the specimens were etched with 9.5% hydrofluoric acid (HFA). Subsequently in first group, ceramic primer and adhesive were applied, but in second group a bonding agent alone was used. In third group, specimens were treated with 35% phosphoric acid followed by ceramic primer and adhesive application. Brackets were bonded with light cure composites. The specimens were stored in distilled water in the room temperature for 24 hours and thermocycled 500 times between 5°C and 55°C. The universal testing machine was used to test the tensile bond strength and the adhesive remenant index scores between three groups was evaluated. The data were subjected to one-way ANOVA, Tukey and Kruskal-Wallis tests respectively. The tensile bond strength was 3.69±0.52 MPa forfirst group, 2.69±0.91 MPa for second group and 3.60±0.41 MPa for third group. Group II specimens showed tensile strength values significantly different from other groups (Ptensile bond strength.

  5. Uranium(III)-carbon multiple bonding supported by arene δ-bonding in mixed-valence hexauranium nanometre-scale rings.

    Science.gov (United States)

    Wooles, Ashley J; Mills, David P; Tuna, Floriana; McInnes, Eric J L; Law, Gareth T W; Fuller, Adam J; Kremer, Felipe; Ridgway, Mark; Lewis, William; Gagliardi, Laura; Vlaisavljevich, Bess; Liddle, Stephen T

    2018-05-29

    Despite the fact that non-aqueous uranium chemistry is over 60 years old, most polarised-covalent uranium-element multiple bonds involve formal uranium oxidation states IV, V, and VI. The paucity of uranium(III) congeners is because, in common with metal-ligand multiple bonding generally, such linkages involve strongly donating, charge-loaded ligands that bind best to electron-poor metals and inherently promote disproportionation of uranium(III). Here, we report the synthesis of hexauranium-methanediide nanometre-scale rings. Combined experimental and computational studies suggest overall the presence of formal uranium(III) and (IV) ions, though electron delocalisation in this Kramers system cannot be definitively ruled out, and the resulting polarised-covalent U = C bonds are supported by iodide and δ-bonded arene bridges. The arenes provide reservoirs that accommodate charge, thus avoiding inter-electronic repulsion that would destabilise these low oxidation state metal-ligand multiple bonds. Using arenes as electronic buffers could constitute a general synthetic strategy by which to stabilise otherwise inherently unstable metal-ligand linkages.

  6. Thermal bonding of light water reactor fuel using nonalkaline liquid-metal alloy

    International Nuclear Information System (INIS)

    Wright, R.F.; Tulenko, J.S.; Schoessow, G.J.; Connell, R.G. Jr.; Dubecky, M.A.; Adams, T.

    1996-01-01

    Light water reactor (LWR) fuel performance is limited by thermal and mechanical constraints associated with the design, fabrication, and operation of fuel in a nuclear reactor. A technique is explored that extends fuel performance by thermally bonding LWR fuel with a nonalkaline liquid-metal alloy. Current LWR fuel rod designs consist of enriched uranium oxide fuel pellets enclosed in a zirconium alloy cylindrical clad. The space between the pellets and the clad is filled by an inert gas. Because of the low thermal conductivity of the gas, the gas space thermally insulates the fuel pellets from the reactor coolant outside the fuel rod, elevating the fuel temperatures. Filling the gap between the fuel and clad with a high-conductivity liquid metal thermally bonds the fuel to the cladding and eliminates the large temperature change across the gap while preserving the expansion and pellet-loading capabilities. The application of liquid-bonding techniques to LWR fuel is explored to increase LWR fuel performance and safety. A modified version of the ESCORE fuel performance code (ESBOND) is developed to analyze the in-reactor performance of the liquid-metal-bonded fuel. An assessment of the technical feasibility of this concept for LWR fuel is presented, including the results of research into materials compatibility testing and the predicted lifetime performance of liquid-bonded LWR fuel. The results show that liquid-bonded boiling water reactor peak fuel temperatures are 400 F lower at beginning of life and 200 F lower at end of life compared with conventional fuel

  7. A Metal Bump Bonding Method Using Ag Nanoparticles as Intermediate Layer

    Science.gov (United States)

    Fu, Weixin; Nimura, Masatsugu; Kasahara, Takashi; Mimatsu, Hayata; Okada, Akiko; Shoji, Shuichi; Ishizuka, Shugo; Mizuno, Jun

    2015-11-01

    The future development of low-temperature and low-pressure bonding technology is necessary for fine-pitch bump application. We propose a bump structure using Ag nanoparticles as an intermediate layer coated on a fine-pitch Cu pillar bump. The intermediate layer is prepared using an efficient and cost-saving squeegee-coating method followed by a 100°C baking process. This bump structure can be easily flattened before the bonding process, and the low-temperature sinterability of the nanoparticles is retained. The bonding experiment was successfully performed at 250°C and 39.8 MPa and the bonding strength was comparable to that achieved via other bonding technology utilizing metal particles or porous material as bump materials.

  8. Shear bond strength and debonding characteristics of metal and ceramic brackets bonded with conventional acid-etch and self-etch primer systems: An in-vivo study.

    Science.gov (United States)

    Mirzakouchaki, Behnam; Shirazi, Sajjad; Sharghi, Reza; Shirazi, Samaneh; Moghimi, Mahsan; Shahrbaf, Shirin

    2016-02-01

    Different in-vitro studies have reported various results regarding shear bond strength (SBS) of orthodontic brackets when SEP technique is compared to conventional system. This in-vivo study was designed to compare the effect of conventional acid-etching and self-etching primer adhesive (SEP) systems on SBS and debonding characteristics of metal and ceramic orthodontic brackets. 120 intact first maxillary and mandibular premolars of 30 orthodontic patients were selected and bonded with metal and ceramic brackets using conventional acid-etch or self-etch primer system. The bonded brackets were incorporated into the wire during the study period to simulate the real orthodontic treatment condition. The teeth were extracted and debonded after 30 days. The SBS, debonding characteristics and adhesive remnant indices (ARI) were determined in all groups. The mean SBS of metal brackets was 10.63±1.42 MPa in conventional and 9.38±1.53 MPa in SEP system, (P=0.004). No statistically significant difference was noted between conventional and SEP systems in ceramic brackets. The frequency of 1, 2 and 3 ARI scores and debonding within the adhesive were the most common among all groups. No statistically significant difference was observed regarding ARI or failure mode of debonded specimens in different brackets or bonding systems. The SBS of metal brackets bonded using conventional system was significantly higher than SEP system, although the SBS of SEP system was clinically acceptable. No significant difference was found between conventional and SEP systems used with ceramic brackets. Total SBS of metal brackets was significantly higher than ceramic brackets. Due to adequate SBS of SEP system in bonding the metal brackets, it can be used as an alternative for conventional system. Shear bond strength, Orthodontic brackets, Adhesive remnant index, self-etch.

  9. Finding high-temperature superconductors by metallizing the σ-bonding electrons

    International Nuclear Information System (INIS)

    Gao Miao; Lu Zhongyi; Xiang Tao

    2015-01-01

    Raising superconducting transition temperature (T_c) is an important task of fundamental research on superconductivity. It is also a prerequisite for the large scale application of superconductors. Since the microscopic mechanism of high-T_c superconductivity is unknown, the conventional approach for increasing T_c is either to apply high pressure to a material which has the potential to become superconducting, or to push it close to an antiferromagnetic or some other quantum instability point by chemical doping. In this article, the authors point out that another general approach for raising T_c is to lift the σ-bonding bands to the Fermi level, or to metallize the σ-bonding elections. This approach can increase the probability of finding a novel high-T_c superconductor because the coupling of σ-bonding electrons with phonons is generally strong and the superconducting transition induced by this interaction can occur at relatively high temperatures. After elucidating the underlying mechanism, the authors discuss a number of schemes to metallize σ-bonding electrons, and present their recent prediction for the crystalline and electronic structures of two potential high-T_c superconductors, Li_2B_3C and Li_3B_4C_2, with T_c higher than 50 K. (authors)

  10. From covalent bonding to coalescence of metallic nanorods

    Directory of Open Access Journals (Sweden)

    Lee Soohwan

    2011-01-01

    Full Text Available Abstract Growth of metallic nanorods by physical vapor deposition is a common practice, and the origin of their dimensions is a characteristic length scale that depends on the three-dimensional Ehrlich-Schwoebel (3D ES barrier. For most metals, the 3D ES barrier is large so the characteristic length scale is on the order of 200 nm. Using density functional theory-based ab initio calculations, this paper reports that the 3D ES barrier of Al is small, making it infeasible to grow Al nanorods. By analyzing electron density distributions, this paper shows that the small barrier is the result of covalent bonding in Al. Beyond the infeasibility of growing Al nanorods by physical vapor deposition, the results of this paper suggest a new mechanism of controlling the 3D ES barrier and thereby nanorod growth. The modification of local degree of covalent bonding, for example, via the introduction of surfactants, can increase the 3D ES barrier and promote nanorod growth, or decrease the 3D ES barrier and promote thin film growth.

  11. A metallization and bonding approach for high performance carbon nanotube thermal interface materials

    International Nuclear Information System (INIS)

    Cross, Robert; Graham, Samuel; Cola, Baratunde A; Fisher, Timothy; Xu Xianfan; Gall, Ken

    2010-01-01

    A method has been developed to create vertically aligned carbon nanotube (VACNT) thermal interface materials that can be attached to a variety of metallized surfaces. VACNT films were grown on Si substrates using standard CVD processing followed by metallization using Ti/Au. The coated CNTs were then bonded to metallized substrates at 220 deg. C. By reducing the adhesion of the VACNTs to the growth substrate during synthesis, the CNTs can be completely transferred from the Si growth substrate and used as a die attachment material for electronic components. Thermal resistance measurements using a photoacoustic technique showed thermal resistances as low as 1.7 mm 2 K W -1 for bonded VACNT films 25-30 μm in length and 10 mm 2 K W -1 for CNTs up to 130 μm in length. Tensile testing demonstrated a die attachment strength of 40 N cm -2 at room temperature. Overall, these metallized and bonded VACNT films demonstrate properties which are promising for next-generation thermal interface material applications.

  12. Catalyst of a metal heteropoly acid salt that is insoluble in a polar solvent on a non-metallic porous support and method of making

    Science.gov (United States)

    Wang, Yong [Richland, WA; Peden, Charles H. F. [West Richland, WA; Choi, Saemin [Richland, WA

    2002-10-29

    The present invention includes a catalyst having (a) a non-metallic support having a plurality of pores; (b) a metal heteropoly acid salt that is insoluble in a polar solvent on the non-metallic support; wherein at least a portion of the metal heteropoly acid salt is dispersed within said plurality of pores. The present invention also includes a method of depositing a metal heteropoly acid salt that is insoluble in a polar solvent onto a non-metallic support having a plurality of pores. The method has the steps of: (a) obtaining a first solution containing a first precursor of a metal salt cation; (b) obtaining a second solution containing a second precursor of a heteropoly acid anion in a solvent having a limited dissolution potential for said first precursor; (c) impregnating the non-metallic support with the first precursor forming a first precursor deposit within the plurality of pores, forming a first precursor impregnated support; (d) heating said first precursor impregnated support forming a bonded first precursor impregnated support; (e) impregnating the second precursor that reacts with the precursor deposit and forms the metal heteropoly acid salt.

  13. Microstructure of bonding interface for resistance welding of Zr-based metallic glass sheets

    International Nuclear Information System (INIS)

    Kuroda, Toshio; Ikeuchi, Kenji; Shimada, Masahiro; Kobayashi, Akira; Kimura, Hisamichi; Inoue, Akihisa

    2009-01-01

    Resistance welding of Zr 55 Cu 30 Al 10 Ni 5 metallic glass sheets was investigated at 723 K in a supercooled liquid region. The welding time was changed from 5 s to 20 s at 723 K. The joint interface of the metallic glass was no defect and no crack. X-ray diffraction technique of the bonding interface of specimens was performed. The specimens showed halo patterns showing existence of only glassy phase, when the welding time was 5 s and 10 s. X-ray diffraction patterns of specimen bonded for 20 s showed crystalline peaks with halo patterns for the welding for 20 s. The crystalline phase at the bonding interface was small. Transmission electron micrograph at the bonding interface showed nanostructures of NiZr 2 and Al 5 Ni 3 Zr 2 . (author)

  14. Tensile Bond Strength of Metal Bracket Bonding to Glazed Ceramic Surfaces With Different Surface Conditionings

    Directory of Open Access Journals (Sweden)

    M. Imani

    2011-12-01

    Full Text Available Objective: The objective of this study was to compare the tensile bond strength of metal brackets bonding to glazed ceramic surfaces using three various surface treatments.Materials and Methods: Forty two glazed ceramic disks were assigned to three groups. In the first and second groups the specimens were etched with 9.5% hydrofluoric acid (HFA. Subsequently in first group, ceramic primer and adhesive were applied, but in second group a bonding agent alone was used. In third group, specimens were treated with 35% phosphoric acid followed by ceramic primerand adhesive application. Brackets were bonded with light cure composites. The specimens were stored in distilled water in the room temperature for 24 hours and thermocycled 500 times between 5°C and 55°C. The universal testing machine was used to test the tensile bond strength and the adhesive remenant index scores between three groups was evaluated. The data were subjected to one-way ANOVA, Tukey and Kruskal-Wallis tests respectively.Results: The tensile bond strength was 3.69±0.52 MPa forfirst group, 2.69±0.91 MPa for second group and 3.60±0.41 MPa for third group. Group II specimens showed tensile strength values significantly different from other groups (P<0.01.Conclusion: In spite of limitations in laboratory studies it may be concluded that in application of Scotch bond multipurpose plus adhesive, phosphoric acid can be used instead of HFA for bonding brackets to the glazed ceramic restorations with enough tensile bond strength.

  15. Investigation of radioactive contamination at non-radioactive drains of the Tsuruga Nuclear Power Station

    International Nuclear Information System (INIS)

    Koide, Hiroaki; Imanaka, Tetsuji; Ebisawa, Toru; Kawano, Shinji; Kobayashi, Keiji.

    1982-05-01

    In April, 1981, it was disclosed that a drainage area at the Tsuruga Nuclear Power Station was so much contaminated with radioactivites. Although Ministry of International Trade and Industry (MITI) officially provided an explanation of a process that resulted in the contamination, many problems remain unsolved on account of insufficient and limited investigations. The authors collected mud samples from contaminated manholes and examined radioactivities in them through the measurement of #betta#- and #betta#-spectra. Chemical separation of the samples was carried out in order to obtain precise concentration of radioactive cesium. Results are as follows: i) the concentration of radioactivities does not show monotonous decrease along the stream line but an anomalous peak at downstream manholes, ii) at the manhole specified No. 6 located rather downstream, 137 Cs concentration is significantly high and the composition of radioactive nuclides is quite different from that in the other manholes, and iii) additional radioactive contamination was observed in other manholes of non-radioactive drains which would not be influenced by the accident explained by MITI. Our present work has provided much more data than by MITI and made it clear that the overall data cnnot be consistent with the simple MITI explanation; a single radioactive release accident caused the disclosed contamination. It is concluded that non-radioactive water drains at the Tsuruga Nuclear Power Station had been under continual contamination. (author)

  16. Metal-ceramic bond strength of Co-Cr alloy fabricated by selective laser melting.

    Science.gov (United States)

    Xiang, Nan; Xin, Xian-Zhen; Chen, Jie; Wei, Bin

    2012-06-01

    This study was to evaluated the metal-ceramic bond strength of a Co-Cr dental alloy prepared using a selective laser melting (SLM) technique. Two groups comprised of twenty Co-Cr metal bars each were prepared using either a SLM or traditional lost-wax casting method. Ten bars from each group were moulded into standard ISO 9693:1999 dimensions of 25 mm × 3 mm × 0.5 mm with 1.1 mm of porcelain fused onto an 8 mm × 3 mm rectangular area in the centre of each bar. Metal-ceramic bonding was assessed using a three-point bending test. Fracture mode analysis and area fraction of adherence porcelain (AFAP) were determined by measuring Si content of specimens by SEM/EDS. Student's t-test within the groups demonstrated no significant difference for the mean bond strength between the SLM and traditional cast sample groups. While SEM/EDS analysis indicated a mixed fracture mode on the debonding interface of both the SLM and the cast groups, the SLM group showed significantly more porcelain adherence than the control group (p<0.05). The SLM metal-ceramic system exhibited a bonding strength that exceeds the requirement of ISO 9691:1999(E) and it even showed a better behaviour in porcelain adherence test comparable to traditional cast methods. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Activities and Issues in Monitoring Scrap Metal Against Radioactive Sources

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.Y., E-mail: sychen@anl.gov [Argonne National Laboratory, Argonne, IL (United States)

    2011-07-15

    Over the past few decades, the global scrap metal industry has grown increasingly vigilant regarding radioactive contamination. Accidental melts of radioactive sources in some smelting facilities, in particular, have caused considerable damage and required recovery efforts costing tens of millions of dollars. In response, the industry has developed and deployed countermeasures. Increasingly expensive and sophisticated radiation monitoring devices have been implemented at key scrap entry points - ports and scrapyards. Recognition of the importance of such endeavors has led to a series of activities aimed at establishing organized and coordinated efforts among the interested parties. Recent concerns over the potential use of radioactive sources for radiological devices in terrorist acts have substantially heightened the need for national and international authorities to further control, intercept, and secure the sources that have escaped the regulatory domain. Enhanced collaboration by the government and industry could substantially improve the effectiveness of efforts at control; the 'Spanish Protocol' as developed by the Spanish metal industry and government regulators is a good example of such collaboration. (author)

  18. Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries. Specific Safety Guide

    International Nuclear Information System (INIS)

    2014-01-01

    Accidents involving orphan sources and other radioactive material in the metal recycling and production industries have resulted in serious radiological accidents as … well as in harmful environmental, social and economic impacts. This Safety Guide provides recommendations, the implementation of which should prevent such accidents and provide confidence that scrap metal and recycled products are safe. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Responsibilities; 4. Monitoring for radioactive material; 5. Response to the discovery of radioactive material; 6. Remediation of contaminated areas; 7. Management of recovered radioactive material; Annex I: Review of events involving radioactive material in the metal recycling and production industries; Annex II: Categorization of radioactive sources; Annex III: Some examples of national and international initiatives

  19. Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries. Specific Safety Guide

    International Nuclear Information System (INIS)

    2012-01-01

    Accidents involving orphan sources and other radioactive material in the metal recycling and production industries have resulted in serious radiological accidents as well as in harmful environmental, social and economic impacts. This Safety Guide provides recommendations, the implementation of which should prevent such accidents and provide confidence that scrap metal and recycled products are safe. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Responsibilities; 4. Monitoring for radioactive material; 5. Response to the discovery of radioactive material; 6. Remediation of contaminated areas; 7. Management of recovered radioactive material; Annex I: Review of events involving radioactive material in the metal recycling and production industries; Annex II: Categorization of radioactive sources; Annex III: Some examples of national and international initiatives.

  20. Unifying Exchange Sensitivity in Transition-Metal Spin-State Ordering and Catalysis through Bond Valence Metrics.

    Science.gov (United States)

    Gani, Terry Z H; Kulik, Heather J

    2017-11-14

    Accurate predictions of spin-state ordering, reaction energetics, and barrier heights are critical for the computational discovery of open-shell transition-metal (TM) catalysts. Semilocal approximations in density functional theory, such as the generalized gradient approximation (GGA), suffer from delocalization error that causes them to overstabilize strongly bonded states. Descriptions of energetics and bonding are often improved by introducing a fraction of exact exchange (e.g., erroneous low-spin GGA ground states are instead correctly predicted as high-spin with a hybrid functional). The degree of spin-splitting sensitivity to exchange can be understood based on the chemical composition of the complex, but the effect of exchange on reaction energetics within a single spin state is less well-established. Across a number of model iron complexes, we observe strong exchange sensitivities of reaction barriers and energies that are of the same magnitude as those for spin splitting energies. We rationalize trends in both reaction and spin energetics by introducing a measure of delocalization, the bond valence of the metal-ligand bonds in each complex. The bond valence thus represents a simple-to-compute property that unifies understanding of exchange sensitivity for catalytic properties and spin-state ordering in TM complexes. Close agreement of the resulting per-metal-organic-bond sensitivity estimates, together with failure of alternative descriptors demonstrates the utility of the bond valence as a robust descriptor of how differences in metal-ligand delocalization produce differing relative energetics with exchange tuning. Our unified description explains the overall effect of exact exchange tuning on the paradigmatic two-state FeO + /CH 4 reaction that combines challenges of spin-state and reactivity predictions. This new descriptor-sensitivity relationship provides a path to quantifying how predictions in transition-metal complex screening are sensitive to the

  1. Development on inspection and recognition procedure of clearance level of radioactivity in metal wastes, to secure social safety for reused metals

    International Nuclear Information System (INIS)

    Hattori, Takatoshi

    2002-01-01

    The Central Research Institute of Electric Power Industry developed a new procedure automatically measurable on radioactivity level in metal wastes in high precision by using the newest three-dimensional (3D) shape measuring technology and 3D Monte-Carlo computing technology (a code to probabilistically compute formation and movement of gamma-ray from metal wastes to detectors) to contribute to inspection and recognition of clearance level of radioactivity. This procedure can prove no super micro amount of radioactivity of 250 Bq in metal wastes of testing objects. As this proof is an evaluation of conservative safety side showing no pollution at any 100 sq cm of surface of the metal wastes on considering for taking-out reference on matters, for its price, the procedure cancelled all of labors to test all of metal wastes surfaces by survey meter, and so on, and feasibility of overlook of pollution at places difficult to measure by using survey meters can perfectly excluded. Its practical tester is planned to produce at 2002 fiscal year, and testing performance against actual metal wastes is planned to confirm by its proof-test on 2003 to 2004 fiscal years. (G.K.)

  2. Ultra-low coupling loss fully-etched apodized grating coupler with bonded metal mirror

    DEFF Research Database (Denmark)

    Ding, Yunhong; Peucheret, Christophe; Ou, Haiyan

    2014-01-01

    A fully etched apodized grating coupler with bonded metal mirror is designed and demonstrated on the silicon-on-insulator platform, showing an ultra-low coupling loss of only 1.25 dB with 3 dB bandwidth of 69 nm.......A fully etched apodized grating coupler with bonded metal mirror is designed and demonstrated on the silicon-on-insulator platform, showing an ultra-low coupling loss of only 1.25 dB with 3 dB bandwidth of 69 nm....

  3. Technical possibilities to support separation of radioactive elements from metallic waste

    International Nuclear Information System (INIS)

    Bjoerkvall, Johan; Ye, Guozhu; Lindberg, Maria

    2014-01-01

    In the nuclear industry metallic objects can be either surface or bulk contaminated. Surface contaminated objects are often decontaminated by chemical or mechanical means, but are there other possibilities? During melting slags are formed either spontaneously or by adding slag forming compounds. However, one question that frequently arises is: Can all nuclides be separated by adding slag forming compounds? This question is not entirely correct as it is not only the radioactive nuclides that are separated from the metal but all atoms of that element present in the melt, radioactive and stable isotopes alike. Part of the answer lays in thermodynamics. Thermodynamics cannot positively answer the question with yes, as there are also practical and economical aspects to take into account, but if the answer is no there will never be any practical or economical efforts that will override nature. This paper will describe the theoretical baseline for evaluating the possibilities to separate certain elements during the melting process, mainly from steel but other metals will also touched on. The most common elements that have radioactive isotopes of interest is of course cobalt (Co-60, Co-58), but other elements of interest are manganese (Mn-54), strontium (Sr- 90), antimony (Sb-125) and of course heavy elements such as uranium, plutonium and americium. The paper will also describe methods used in the normal metal melting industry to separate elements from the base metal melted. This section will cover practical methods used as well as developed methods that are very seldom used due to time or financial constraints. (authors)

  4. Techniques for hot-press-bonding dissimilar metal combinations

    International Nuclear Information System (INIS)

    Watson, R.D.

    1966-05-01

    High strength diffusionless bonds can be produced in a variety of dissimilar metal combinations by the hot press bonding technique covered by Canadian Patent application 904,548 June 6, 1964. Some of the combinations that can be joined successfully are Zircaloy-2 and 416 stainless steel, 416 stainless steel and mild steel, 1S aluminum and mild steel, Zircaloy-2 and M257 SAP, and Zircaloy-2 and 1S aluminum. Several other combinations were attempted but suitable joints could not be produced. The methods of producing the joints, the joint strength that can be developed and a discussion of some of the problems associated with making the joints are included in the report. (author)

  5. Development of Radioactive Inventory Evaluation System using 3D Shape and Multiple Radiation Measurement

    International Nuclear Information System (INIS)

    Lee, Sang Chul; Kim, Won Seok; Han, Byong Su; Moon, Joo Hyun

    2013-01-01

    The increase of the operating NPPs and the superannuation of the equipment in NPPs cause a large amount of the metal radioactive waste. Presently the metal radioactive wastes are stored in the temporary storage facility in NPPs because of the delay of the construction of the final disposal facility. The radioactive level of general metal radioactive wastes is low, and the radioactive level can be lowered by the simple decontamination process. If the radioactive wastes are disposed as the industry waste, the disposal cost is diminished largely. For the disposal of the radioactive wastes as the industrial wastes, the radioactive level of the target wastes are evaluated. It is difficult to know the position of the source term for most of the metal radioactive and the source term is distributed non-homogeneously. And the self-shielding effect of the metal material makes the evaluation more difficult. In this study, the radioactive inventory evaluation system for the metal radioactive waste is developed. For the correction of the uncertainty of the position and the non-homogeneity of the source term, the 3D shape and multiple radiation measurement are used. The existing gamma-ray measurement system for the metal radioactive waste cannot reflect the position and the distribution of the source term and the effect of self-shielding. This evaluation system suggested in this system can calculate the reasonable value regarding to the position and the distribution of the source term and the effect of self-shielding. By the calculation of the partial inventory of the target metal waste, the advantage in the application of the clearance criteria can be obtained

  6. Can the same principles be used for the management of radioactive and non-radioactive waste?

    International Nuclear Information System (INIS)

    Bengtsson, Gunnar.

    1989-01-01

    Non-radioactive waste has a much more complex composition than radioactive waste and appears in much larger quantities. The two types of waste have, however, some properties in common when it comes to their longterm impact on health and the environment. The occurrence in both of substances that may exist for generations and may cause cancer provides one example. Both types of waste also always occur together. It is therefore proposed that the same basic principles could be applied for the management of radioactive and non-radioactive waste. By doing so one may increase the efficiency of policy development, research and practical management. This is particurlarly importand for the very costly restoration of old disposal sites which have earlier been poorly managed. (author)

  7. DOE`s radioactively - contaminated metal recycling: The policy and its implementation

    Energy Technology Data Exchange (ETDEWEB)

    Warren, S.; Rizkalla, E.

    1997-02-01

    In 1994, the Department of Energy`s Office of Environmental Restoration initiated development of a recycling policy to minimize the amount of radioactively-contaminated metal being disposed of as waste. During the following two years, stakeholders (including DOE and contractor personnel, regulators, members of the public, and representatives of labor and industry) were invited to identify key issues of concern, and to provide input on the final policy. As a result of this process, a demonstration policy for recycling radioactively-contaminated carbon steel resulting from decommissioning activities within the Environmental Management program was signed on September 20, 1996. It specifically recognizes that the Office of Environmental Management has a tremendous opportunity to minimize the disposal of metals as waste by the use of disposal containers fabricated from contaminated steel. The policy further recognizes the program`s demand for disposal containers, and it`s role as the major generator of radioactively-contaminated steel.

  8. Waste processing system for product contaminated with radioactivity

    International Nuclear Information System (INIS)

    Sotoyama, Koichi; Takaya, Jun-ichi; Takahashi, Suehiro.

    1987-01-01

    Purpose: To enable to processing contaminated products while separating them into metals at high contamination level and non-metals at low contamination level. Constitution: Pulverized radioactive wastes conveyed on a conveyor belt are uniformly irradiated by a ring-illumination device and then they are picked-up by a television camera or the like. The picked-up signals are sent to an image processing device, applied with appropriate binarization and metal objects are separated by utilizing the light absorbing property of non-metal and light reflection property of metals. The graviational center for the metal object is calculated from the binarized image, the positional information is provided to a robot controller and the metal object is transferred to another position by a robot. Since only the metal object at high radioactive contamination level can be taken out separately, it is no more necessary to process the entire wastes as the high level decontamination products, to thereby provide an economical advantage. (Sekiya, K.)

  9. Effects of silica coating and silane surface conditioning on the bond strength of rebonded metal and ceramic brackets

    Directory of Open Access Journals (Sweden)

    Saadet Atsü

    2011-06-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the effects of tribochemical silica coating and silane surface conditioning on the bond strength of rebonded metal and ceramic brackets. MATERIAL AND METHODS: Twenty debonded metal and 20 debonded ceramic brackets were randomly assigned to receive one of the following surface treatments (n=10 for each group: (1 sandblasting (control; (2 tribochemical silica coating combined with silane. Brackets were rebonded to the enamel surface on the labial and lingual sides of premolars with a light-polymerized resin composite. All specimens were stored in distilled water for 1 week and then thermocycled (5,000 cycles between 5-55ºC. Shear bond strength values were measured using a universal testing machine. Student's t-test was used to compare the data (α=0.05. Failure mode was assessed using a stereomicroscope, and the treated and non-treated bracket surfaces were observed by scanning electron microscopy. RESULTS: Rebonded ceramic brackets treated with silica coating followed by silanization had significantly greater bond strength values (17.7±4.4 MPa than the sandblasting group (2.4±0.8 MPa, P<0.001. No significant difference was observed between the rebonded metal brackets treated with silica coating with silanization (15±3.9 MPa and the sandblasted brackets (13.6±3.9 MPa. Treated rebonded ceramic specimens primarily exhibited cohesive failure in resin and adhesive failure at the enamel-adhesive interface. CONCLUSIONS: In comparison to sandblasting, silica coating with aluminum trioxide particles followed by silanization resulted in higher bond strengths of rebonded ceramic brackets.

  10. Metal-free oxidative olefination of primary amines with benzylic C-H bonds through direct deamination and C-H bond activation.

    Science.gov (United States)

    Gong, Liang; Xing, Li-Juan; Xu, Tong; Zhu, Xue-Ping; Zhou, Wen; Kang, Ning; Wang, Bin

    2014-09-14

    An oxidative olefination reaction between aliphatic primary amines and benzylic sp(3) C-H bonds has been achieved using N-bromosuccinimide as catalyst and tert-butyl hydroperoxide as oxidant. The olefination proceeds under mild metal-free conditions through direct deamination and benzylic C-H bond activation, and provides easy access to biologically active 2-styrylquinolines with (E)-configuration.

  11. Sensitive non-radioactive detection of HIV-1

    DEFF Research Database (Denmark)

    Teglbjærg, Lars Stubbe; Nielsen, C; Hansen, J E

    1992-01-01

    This report describes the use of the polymerase chain reaction (PCR) for the non-radioactive detection of HIV-1 proviral genomic sequences in HIV-1 infected cells. We have developed a sensitive assay, using three different sets of nested primers and our results show that this method is superior...... to standard PCR for the detection of HIV-1 DNA. The assay described features the use of a simple and inexpensive sample preparation technique and a non-radioactive hybridization procedure for confirmation of results. To test the suitability of the assay for clinical purposes, we tested cell samples from 76...

  12. Metal-ceramic bond strength between a feldspathic porcelain and a Co-Cr alloy fabricated with Direct Metal Laser Sintering technique.

    Science.gov (United States)

    Dimitriadis, Konstantinos; Spyropoulos, Konstantinos; Papadopoulos, Triantafillos

    2018-02-01

    The aim of the present study was to record the metal-ceramic bond strength of a feldspathic dental porcelain and a Co-Cr alloy, using the Direct Metal Laser Sintering technique (DMLS) for the fabrication of metal substrates. Ten metal substrates were fabricated with powder of a dental Co-Cr alloy using DMLS technique (test group) in dimensions according to ISO 9693. Another ten substrates were fabricated with a casing dental Co-Cr alloy using classic casting technique (control group) for comparison. Another three substrates were fabricated using each technique to record the Modulus of Elasticity ( E ) of the used alloys. All substrates were examined to record external and internal porosity. Feldspathic porcelain was applied on the substrates. Specimens were tested using the three-point bending test. The failure mode was determined using optical and scanning electron microscopy. The statistical analysis was performed using t-test. Substrates prepared using DMLS technique did not show internal porosity as compared to those produced using the casting technique. The E of control and test group was 222 ± 5.13 GPa and 227 ± 3 GPa, respectively. The bond strength was 51.87 ± 7.50 MPa for test group and 54.60 ± 6.20 MPa for control group. No statistically significant differences between the two groups were recorded. The mode of failure was mainly cohesive for all specimens. Specimens produced by the DMLS technique cover the lowest acceptable metal-ceramic bond strength of 25 MPa specified in ISO 9693 and present satisfactory bond strength for clinical use.

  13. Synchrotron radiation studies of local structure and bonding in transition metal aluminides and rare earth transition metal magnetic nitrides. Final report, August 1, 1990--July 14, 1993

    International Nuclear Information System (INIS)

    Budnick, J.I.; Pease, D.M.

    1995-01-01

    The following areas of study are reported on: bonding and near neighbor force constants in NiAl, CoAl, FeAl via temperature dependent EXAFS; alloys formed when Fe or Ga is microalloyed into a NiAl matrix; EXAFS studies of nitrided versus non nitrided Y 2 Fe 17 ; and transition metal x-ray spectra as related to magnetic moments

  14. The effect of enamel bleaching on the shear bond strengths of metal and ceramic brackets.

    Science.gov (United States)

    Oztaş, E; Bağdelen, G; Kiliçoğlu, H; Ulukapi, H; Aydin, I

    2012-04-01

    The aim of this study was to evaluate the effects of bleaching and delayed bonding on the shear bond strengths of metal and ceramic brackets bonded with light and chemically cure composite resin to human enamel. One hundred and twenty extracted human premolar teeth were randomly divided into three groups of 40 each. The first two groups were bleached with 20 per cent carbamide peroxide (CP) at-home bleaching agent. No bleaching procedures were applied to the third group and served as control. The first two and control groups were divided into equal subgroups according to different adhesive-bracket combinations. Specimens in group 1 (n = 40) were bonded 24 hours after bleaching process was completed while the specimens in group 2 (n = 40) were bonded 14 days after. The specimens in all groups were debonded with a Universal testing machine while the modified adhesive remnant index was used to evaluate fracture properties. No statistically significant differences were found between the shear bond strengths of metal and ceramic brackets bonded to bleached enamel after 24 hours, 14 days, and unbleached enamel with light or chemical cure adhesives (P > 0.05). The mode of failure was mostly at the bracket/adhesive interface and cohesive failures within the resin were also observed. Our findings indicated that at-home bleaching agents that contain 20 per cent CP did not significantly affect the shear bond strength of metal and ceramic orthodontic brackets to enamel when bonding is performed 24 hours or 14 days after bleaching.

  15. Separation of non-hazardous, non-radioactive components from ICPP calcine via chlorination

    International Nuclear Information System (INIS)

    Nelson, L.O.

    1995-05-01

    A pyrochemical treatment method for separating non-radioactive from radioactive components in solid granular waste accumulated at the Idaho Chemical Processing Plant was investigated. The goal of this study was to obtain kinetic and chemical separation data on the reaction products of the chlorination of the solid waste, known as calcine. Thermodynamic equilibrium calculations were completed to verify that a separation of radioactive and non-radioactive calcine components was possible. Bench-scale chlorination experiments were completed subsequently in a variety of reactor configurations including: a fixed-bed reactor (reactive gases flowed around and not through the particle bed), a packed/fluidized-bed reactor, and a packed-bed reactor (reactive gases flowed through the particle bed). Chemical analysis of the reaction products generated during the chlorination experiments verified the predictions made by the equilibrium calculations. An empirical first-order kinetic rate expression was developed for each of the reactor configurations. 20 refs., 16 figs., 21 tabs

  16. Proposal of threshold levels for the definition of non-radioactive wastes

    International Nuclear Information System (INIS)

    Yoshida, Yoshikazu

    1979-01-01

    With increasing amounts of radioactive wastes along with the advances of nuclear power generation and radioactive material utilizations, the needs for management cost reduction and resource saving have arisen. Under the situation, the threshold levels for the definition of non-radioactive solid wastes are required. The problem has been studied by an ad hoc committee in Nuclear Safety Research Association, by the request of the Science and Technology Agency. The matters described are the procedures of deriving the threshold levels, the feasibility studies of the management of waste threshold-level with several enterprises, and future subjects of study. The threshold levels are grouped in two, i.e. the unconditional level and the conditional level. According to the unconditional threshold level, solid wastes are separated definitely into radioactive and non-radioactive ones. According to the conditional threshold level, under certain conditions, some radioactive solid wastes according to the unconditional level are regarded as non-radioactive ones. (J.P.N.)

  17. Effect of radioactive chromate on the corrosion and polarisation of mild steel in sodium chloride solution

    International Nuclear Information System (INIS)

    Subramanyan, N.; Ramakrishnaiah, K.; Iyer, S.V.; Kapali, V.

    1980-01-01

    Corrosion tests of mild steel in 0.01% sodium chloride containing radioactive chromate and non-radioactive chromate have been carried out. It has been observed that the labelled sodium chromate has a deleterious effect on the inhibitive action of non-radioactive chromate. The effect of radioactive chromate on the potentiostatic polarization of m.s. in sodium chloride solution containing non-radioactive sodium chromate has also been studied. It is observed that both the cathodic and the anodic polarisation of the metal is diminished in the presence of radioactive chromate. The behaviour of the system in the presence of radioactive chromate is attributed both to the action of depolarisers produced by radiolysis of water and to the effect of gamma radiation on the metal. (author)

  18. Transport properties of metal-metal and metal-insulator heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Fadlallah Elabd, Mohamed Mostafa

    2010-06-09

    In this study we present results of electronic structure and transport calculations for metallic and metal-insulator interfaces, based on density functional theory and the non-equilibrium Green's function method. Starting from the electronic structure of bulk Al, Cu, Ag, and Au interfaces, we study the effects of different kinds of interface roughness on the transmission coefficient (T(E)) and the I-V characteristic. In particular, we compare prototypical interface distortions, including vacancies, metallic impurities, non-metallic impurities, interlayer, and interface alloy. We find that vacancy sites have a huge effect on transmission coefficient. The transmission coefficient of non-metallic impurity systems has the same behaviour as the transmission coefficient of vacancy system, since these systems do not contribute to the electronic states at the Fermi energy. We have also studied the transport properties of Au-MgO-Au tunnel junctions. In particular, we have investigated the influence of the thickness of the MgO interlayer, the interface termination, the interface spacing, and O vacancies. Additional interface states appear in the O-terminated configuration due to the formation of Au-O bonds. An increasing interface spacing suppresses the Au-O bonding. Enhancement of T(E) depends on the position and density of the vacancies (the number of vacancies per unit cell). (orig.)

  19. Analysis of factors influencing the bond strength in roll bonding processes

    Science.gov (United States)

    Khaledi, Kavan; Wulfinghoff, Stephan; Reese, Stefanie

    2018-05-01

    Cold Roll Bonding (CRB) is recognized as an industrial technique in which the metal sheets are joined together in order to produce laminate metal composites. In this technique, a metallurgical bond resulting from severe plastic deformation is formed between the rolled metallic layers. The main objective of this paper is to analyse different factors which may affect the bond formation in rolling processes. To achieve this goal, first, an interface model is employed which describes both the bonding and debonding. In this model, the bond strength evolution between the metallic layers is calculated based on the film theory of bonding. On the other hand, the debonding process is modelled by means of a bilinear cohesive zone model. In the numerical section, different scenarios are taken into account to model the roll bonding process of metal sheets. The numerical simulation includes the modelling of joining during the roll bonding process followed by debonding in a Double Cantilever Beam (DCB) peeling test. In all simulations, the metallic layers are regarded as elastoplastic materials subjected to large plastic deformations. Finally, the effects of some important factors on the bond formation are numerically investigated.

  20. Autoradiographic investigation of the removal of non-metallic inclusions in connection with the steel remelting process in vacuum furnaces

    International Nuclear Information System (INIS)

    Kolaski, H.; Siewierski, J.

    1978-01-01

    The labelled radioactive non-metallic inclusions in steel were obtained through deoxidation of steel with an activated aluminium alloy containing 1% rare earths. Quantity and distribution of the non-metallic inclusions in the steel were determined by applying autoradiography to the longitudinal and cross sections of the steel slabs. After remelting in an electronic furnace the distribution of non-metallic inclusions was determined by autoradiography of the lateral surfaces and the cross section of the slabs. It was found that 50 - 70% of the inclusions could be removed. The results obtained from autoradiographic investigation allow the exploration of the mechanism of the removal of inclusions. (author)

  1. Chemical Bond Energies of 3d Transition Metals Studied by Density Functional Theory

    DEFF Research Database (Denmark)

    Moltved, Klaus A.d; Kepp, Kasper P.

    2018-01-01

    Despite their vast importance to inorganic chemistry, materials science and catalysis, the accuracy of modelling the formation or cleavage of metal-ligand (M-L) bonds depends greatly on the chosen functional and the type of bond in a way that is not systematically understood. In order to approach...

  2. Evaluation of radioactive scrap metal recycling

    International Nuclear Information System (INIS)

    Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

    1995-12-01

    This report evaluates the human health risks and environmental and socio-political impacts of options for recycling radioactive scrap metal (RSM) or disposing of and replacing it. Argonne National Laboratory (ANL) is assisting the US Department of Energy (DOE), Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, in assessing the implications of RSM management alternatives. This study is intended to support the DOE contribution to a study of metal recycling being conducted by the Task Group on Recycling and Reuse of the Organization for Economic Cooperation and Development. The focus is on evaluating the justification for the practice of recycling RSM, and the case of iron and steel scrap is used as an example in assessing the impacts. To conduct the evaluation, a considerable set of data was compiled and developed. Much of this information is included in this document to provide a source book of information

  3. Evaluation of radioactive scrap metal recycling

    Energy Technology Data Exchange (ETDEWEB)

    Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

    1995-12-01

    This report evaluates the human health risks and environmental and socio-political impacts of options for recycling radioactive scrap metal (RSM) or disposing of and replacing it. Argonne National Laboratory (ANL) is assisting the US Department of Energy (DOE), Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, in assessing the implications of RSM management alternatives. This study is intended to support the DOE contribution to a study of metal recycling being conducted by the Task Group on Recycling and Reuse of the Organization for Economic Cooperation and Development. The focus is on evaluating the justification for the practice of recycling RSM, and the case of iron and steel scrap is used as an example in assessing the impacts. To conduct the evaluation, a considerable set of data was compiled and developed. Much of this information is included in this document to provide a source book of information.

  4. BONDING ALUMINUM METALS

    Science.gov (United States)

    Noland, R.A.; Walker, D.E.

    1961-06-13

    A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.

  5. Effects of two soft drinks on shear bond strength and adhesive remnant index of orthodontic metal brackets.

    Science.gov (United States)

    Sajadi, Soodabeh Sadat; Eslami Amirabadi, Gholamreza; Sajadi, Sepideh

    2014-07-01

    Bond failure of brackets during orthodontic treatment is a common problem; which results in treatment interference, increased treatment time and prolonged clinical time for rebonding of failed brackets. The purpose of this study was to evaluate the effects of Coca-Cola and a non-alcoholic beer on the shear bond strength and adhesive remnant index (ARI) of orthodontic metal brackets in vitro. Eighty intact human premolars were divided into two experimental groups of Coca-Cola and non-alcoholic beer (Istak), and a control group of artificial saliva. Over a period of thirty days, the test groups were immersed in the respective soft drinks for 5 minutes, twice a day. For the remainder of the time, they were kept in artificial saliva at 37°C. The control group was stored in artificial saliva during the experiment. All samples were subjected to shearing forces using Universal Testing Machine. ARI was determined with a stereomicroscope at ×12 magnification. The data of shear bond strength were statistically analyzed by one-way ANOVA and Tukey's Post-Hoc test and the data of ARI scores were analyzed by Kruskal-Wallis test. No significant difference was observed in ARIs of the three groups (P≤ 0.552). The shear bond strength of Coke group was significantly lower than that of the two other groups (P≤ 0.035); but there was no significant difference between the shear bond strength of Istak and the control group (P≤ 0.999). Coca-Cola decreased the shear bond strength of orthodontic brackets.

  6. Radioactive Scrap Metal (RSM) recycling: A doe white paper

    International Nuclear Information System (INIS)

    Chatterjee, S.; Moore, H.H.; Ghoshal, A.

    1992-01-01

    An effective White Paper on recycling radioactive scrap metals has been drafted at the request of the U.S. Department of Energy (DOE) recently. The paper has received the praise and commendation of the DOE's Director of Environmental Management. However, obstructionist posturing by the petty bureaucrats in DOE continues to plague the meaningful implementation of RSM recycling. The key findings of the White Paper study and its major recommendations have discussed in this paper. The study indicates that several technologies, such as melt refining and electro refining, are currently available for surface and volume decontamination of metals. The unit cost of decontamination was found to vary from $700 to $400/ton; recycling of most low-contaminated metals can therefore be cost-effective vis-a vis the average cost of low-level radioactive wastes disposal of %400 to $2800/ton. Major recycling demonstration projects with emphasis on restricted RSM reuse options have been recommended. Volume contamination standard for unrestricted release should be established only after adequate studies of health effects and scientific/industrial effects of RSM reuse has been conducted by the Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC). Some of the significant technical data developed during this study have also been briefly discussed in this paper. (author)

  7. Preventing disulfide bond formation weakens non-covalent forces among lysozyme aggregates.

    Directory of Open Access Journals (Sweden)

    Vijay Kumar Ravi

    Full Text Available Nonnative disulfide bonds have been observed among protein aggregates in several diseases like amyotrophic lateral sclerosis, cataract and so on. The molecular mechanism by which formation of such bonds promotes protein aggregation is poorly understood. Here in this work we employ previously well characterized aggregation of hen eggwhite lysozyme (HEWL at alkaline pH to dissect the molecular role of nonnative disulfide bonds on growth of HEWL aggregates. We employed time-resolved fluorescence anisotropy, atomic force microscopy and single-molecule force spectroscopy to quantify the size, morphology and non-covalent interaction forces among the aggregates, respectively. These measurements were performed under conditions when disulfide bond formation was allowed (control and alternatively when it was prevented by alkylation of free thiols using iodoacetamide. Blocking disulfide bond formation affected growth but not growth kinetics of aggregates which were ∼50% reduced in volume, flatter in vertical dimension and non-fibrillar in comparison to control. Interestingly, single-molecule force spectroscopy data revealed that preventing disulfide bond formation weakened the non-covalent interaction forces among monomers in the aggregate by at least ten fold, thereby stalling their growth and yielding smaller aggregates in comparison to control. We conclude that while constrained protein chain dynamics in correctly disulfide bonded amyloidogenic proteins may protect them from venturing into partial folded conformations that can trigger entry into aggregation pathways, aberrant disulfide bonds in non-amyloidogenic proteins (like HEWL on the other hand, may strengthen non-covalent intermolecular forces among monomers and promote their aggregation.

  8. Effect of various commercially available mouthrinses on shear bond strength of orthodontic metal brackets: An in vitro study

    Directory of Open Access Journals (Sweden)

    Nazeer Ahmed Meeran

    2013-01-01

    Conclusion: Alcohol containing mouthrinses affect the shear bond strength of the metal orthodontic brackets bonded with composite resin (Transbond XT in the present study, more when compared with alcohol-free mouthrinses. It is, therefore, highly advisable to avoid alcohol containing mouthrinses in patients undergoing orthodontic treatment and use alcohol-free mouthrinses as adjuncts to regular oral hygiene procedures for maintaining good enamel integrity and periodontal health, without compromising the shear bond strength of the bonded metal brackets.

  9. Beyond low-level activity: On a 'non-radioactive' gas mantle

    Energy Technology Data Exchange (ETDEWEB)

    Poljanc, Karin [Atominstitut der Osterreichischen Universitaeten, Vienna University of Technology, Stadionallee 2, 1020 Vienna (Austria); Steinhauser, Georg [Atominstitut der Osterreichischen Universitaeten, Vienna University of Technology, Stadionallee 2, 1020 Vienna (Austria)]. E-mail: georg.steinhauser@ati.ac.at; Sterba, Johannes H. [Atominstitut der Osterreichischen Universitaeten, Vienna University of Technology, Stadionallee 2, 1020 Vienna (Austria); Buchtela, Karl [Atominstitut der Osterreichischen Universitaeten, Vienna University of Technology, Stadionallee 2, 1020 Vienna (Austria); Bichler, Max [Atominstitut der Osterreichischen Universitaeten, Vienna University of Technology, Stadionallee 2, 1020 Vienna (Austria)

    2007-03-01

    Gas mantles for camping gas lanterns sometimes contain thorium compounds. During the last years, the use of thorium-free gas mantles has become more and more popular due to the avoidance of a radioactive heavy metal. We investigated a gas mantle type that is declared to be 'non-radioactive' and that can be bought in Austria at the moment. Methods used were Instrumental Neutron Activation Analysis (INAA), {gamma}-spectroscopy, and Liquid Scintillation Counting (LSC). We found massive thorium contents of up to 259 mg per gas mantle. Leaching experiments showed that only 0.4% of the Th but approximately 90% of the decay products of {sup 232}Th can be leached under conditions simulating sucking and chewing with human saliva. In this paper, the investigation of these gas mantles including the consideration of the environmental hazard caused by disposed mantles and the health hazard for unsuspecting consumers is presented and legal consequences are discussed for this fraud.

  10. Effects of different etching methods and bonding procedures on shear bond strength of orthodontic metal brackets applied to different CAD/CAM ceramic materials.

    Science.gov (United States)

    Buyuk, S Kutalmış; Kucukekenci, Ahmet Serkan

    2018-03-01

    To investigate the shear bond strength (SBS) of orthodontic metal brackets applied to different types of ceramic surfaces treated with different etching procedures and bonding agents. Monolithic CAD/CAM ceramic specimens (N = 120; n = 40 each group) of feldspathic ceramic Vita Mark II, resin nanoceramic Lava Ultimate, and hybrid ceramic Vita Enamic were fabricated (14 × 12 × 3 mm). Ceramic specimens were separated into four subgroups (n = 10) according to type of surface treatment and bonding onto the ceramic surface. Within each group, four subgroups were prepared by phosphoric acid, hydrofluoric acid, Transbond XT primer, and Clearfill Ceramic primer. Mandibular central incisor metal brackets were bonded with light-cure composite. The SBS data were analyzed using three-way analysis of variance (ANOVA) and Tukey HSD tests. The highest SBS was found in the Vita Enamic group, which is a hybrid ceramic, etched with hydrofluoric acid and applied Transbond XT Adhesive primer (7.28 ± 2.49 MPa). The lowest SBS was found in the Lava Ultimate group, which is a resin nano-ceramic etched with hydrofluoric acid and applied Clearfill ceramic primer (2.20 ± 1.21 MPa). CAD/CAM material types and bonding procedures affected bond strength ( P .05). The use of Transbond XT as a primer bonding agent resulted in higher SBS.

  11. Using graphitic foam as the bonding material in metal fuel pins for sodium fast reactors

    International Nuclear Information System (INIS)

    Karahan, Aydın; Kazimi, Mujid S.

    2013-01-01

    The study evaluates the possible use of graphite foam as the bonding material between U–Pu–Zr metallic fuel and steel clad for sodium fast reactor applications using FEAST-METAL fuel performance code. Furthermore, the applicability of FEAST-METAL to the advanced fuel designs is demonstrated. Replacing the sodium bond with a chemically stable foam material would eliminate fuel clad metallurgical interactions, and allow for fuel swelling under low external stress. Hence, a significant improvement is expected for the steady state and transient performance. FEAST-METAL was used to assess the thermo-mechanical behavior of the new fuel form and a reference metallic fuel pin. Nearly unity conversion ratio, 75% smear density U–15Pu–6Zr metallic fuel pin with sodium bond, and T91 cladding was selected as a reference case. It was found that operating the reference case at high clad temperatures (600–660 °C) results in (1) excessive clad wastage formation/clad thinning due to lanthanide migration and formation of brittle phases at clad inner surface, and (2) excessive clad hoop strain at the upper axial section due mainly to the occurrence of thermal creep. The combination of these two factors may lead to cladding breach. The work concludes that replacing the sodium bond with 80% porous graphite foam and reducing the fuel smear density to 70%, it is likely that the fuel clad metallurgical interaction would be eliminated while the fuel swelling is allowed without excessive fuel clad mechanical interaction. The suggested design appears as an alternative for a high performance metallic fuel design for sodium fast reactors

  12. Using graphitic foam as the bonding material in metal fuel pins for sodium fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karahan, Aydın, E-mail: karahan@alum.mit.edu; Kazimi, Mujid S.

    2013-10-15

    The study evaluates the possible use of graphite foam as the bonding material between U–Pu–Zr metallic fuel and steel clad for sodium fast reactor applications using FEAST-METAL fuel performance code. Furthermore, the applicability of FEAST-METAL to the advanced fuel designs is demonstrated. Replacing the sodium bond with a chemically stable foam material would eliminate fuel clad metallurgical interactions, and allow for fuel swelling under low external stress. Hence, a significant improvement is expected for the steady state and transient performance. FEAST-METAL was used to assess the thermo-mechanical behavior of the new fuel form and a reference metallic fuel pin. Nearly unity conversion ratio, 75% smear density U–15Pu–6Zr metallic fuel pin with sodium bond, and T91 cladding was selected as a reference case. It was found that operating the reference case at high clad temperatures (600–660 °C) results in (1) excessive clad wastage formation/clad thinning due to lanthanide migration and formation of brittle phases at clad inner surface, and (2) excessive clad hoop strain at the upper axial section due mainly to the occurrence of thermal creep. The combination of these two factors may lead to cladding breach. The work concludes that replacing the sodium bond with 80% porous graphite foam and reducing the fuel smear density to 70%, it is likely that the fuel clad metallurgical interaction would be eliminated while the fuel swelling is allowed without excessive fuel clad mechanical interaction. The suggested design appears as an alternative for a high performance metallic fuel design for sodium fast reactors.

  13. Microstructure and properties of hot roll bonding layer of dissimilar metals. 2. Bonding interface microstructure of Zr/stainless steel by hot roll bonding and its controlling

    International Nuclear Information System (INIS)

    Yasuyama, Masanori; Ogawa, Kazuhiro; Taka, Takao; Nakasuji, Kazuyuki; Nakao, Yoshikuni; Nishimoto, Kazutoshi.

    1996-01-01

    The hot roll bonding of zirconium and stainless steel inserted with tantalium was investigated using the newly developed rolling mill. The effect of hot rolling temperatures of zirconium/stainless steel joints on bonding interface structure was evaluated. Intermetallic compound layer containing cracks was observed at the bonding interface between stainless steel and tantalium when the rolling temperature was above 1373K. The hardness of the bonding layer of zirconium and tantalium bonded above 1273K was higher than tantalium or zirconium base metal in spite of absence of intermetallic compound. The growth of reaction layer at the stainless steel and tantalium interface and at the tantalium and zirconium interface was conforming a parabolic low when that was isothermally heated after hot roll bonding, and the growth rate was almost same as that of static diffusion bonding without using hot roll bonding process. It is estimated that the strain caused by hot roll bonding gives no effect on the growth of reaction layer. It was confirmed that the dissimilar joint of zirconium and stainless steel with insert of tantalium having the sound bonding interface were obtained at the suitable bonding temperature of 1173K by the usage of the newly developed hot roll bonding process. (author)

  14. Treatment of heterogeneous mixed wastes: Enzyme degradation of cellulosic materials contaminated with hazardous organics and toxic and radioactive metals

    International Nuclear Information System (INIS)

    Vanderberg, L.A.; Foreman, T.M.; Attrep, M. Jr.; Brainard, J.R.; Sauer, N.

    1999-01-01

    The redirection and downsizing of the US Department of Energy's nuclear weapons complex requires that many facilities be decontaminated and decommissioned (D and D). At Los Alamos National Laboratory, much of the low-level radioactive, mixed, and hazardous/chemical waste volume handled by waste management operations was produced by D and D and environmental restoration activities. A combination of technologies--air stripping and biodegradation of volatile organics, enzymatic digestion of cellulosics, and metal ion extraction--was effective in treating a radiologically contaminated heterogeneous paint-stripping waste. Treatment of VOCs using a modified bioreactor avoided radioactive contamination of byproduct biomass and inhibition of biodegradation by toxic metal ions in the waste. Cellulase digestion of bulk cellulose minimized the final solid waste volume by 80%. Moreover, the residue passed TCLP for RCRA metals. Hazardous metals and radioactivity in byproduct sugar solutions were removed using polymer filtration, which employs a combination of water-soluble chelating polymers and ultrafiltration to separate and concentrate metal contaminants. Polymer filtration was used to concentrate RCRA metals and radioactivity into <5% of the original wastewater volume. Permeate solutions had no detectable radioactivity and were below RCRA-allowable discharge limits for Pb and Cr

  15. The synthesis and properties of some organometallic compounds containing group IV (Ge, Sn)-group II (Zn, Cd) metal---metal bonds

    NARCIS (Netherlands)

    Des Tombe, F.J.A.; Kerk, G.J.M. van der; Creemers, H.M.J.C.; Carey, N.A.D.; Noltes, J.G.

    1972-01-01

    The reactions of triphenylgermane and triphenyltin hydride with coordinatively saturated organozinc or organocadmium compounds give organometallic complexes containing Group IV (Ge, Sn)-Group II(Zn, Cd) metal---metal bonds. The 2,2′-bipyridine complexes show solvent-dependent charge-transfer

  16. In situ metalation of free base phthalocyanine covalently bonded to silicon surfaces

    Directory of Open Access Journals (Sweden)

    Fabio Lupo

    2014-11-01

    Full Text Available Free 4-undecenoxyphthalocyanine molecules were covalently bonded to Si(100 and porous silicon through thermic hydrosilylation of the terminal double bonds of the undecenyl chains. The success of the anchoring strategy on both surfaces was demonstrated by the combination of X-ray photoelectron spectroscopy with control experiments performed adopting the commercially available 2,3,9,10,16,17,23,24-octakis(octyloxy-29H,31H-phthalocyanine, which is not suited for silicon anchoring. Moreover, the study of the shape of the XPS N 1s band gave relevant information on the interactions occurring between the anchored molecules and the substrates. The spectra suggest that the phthalocyanine ring interacts significantly with the flat Si surface, whilst ring–surface interactions are less relevant on porous Si. The surface-bonded molecules were then metalated in situ with Co by using wet chemistry. The efficiency of the metalation process was evaluated by XPS measurements and, in particular, on porous silicon, the complexation of cobalt was confirmed by the disappearance in the FTIR spectra of the band at 3290 cm−1 due to –NH stretches. Finally, XPS results revealed that the different surface–phthalocyanine interactions observed for flat and porous substrates affect the efficiency of the in situ metalation process.

  17. Release process for non-real property containing residual radioactive material

    International Nuclear Information System (INIS)

    Ranek, N.L.; Chen, S.Y.; Kamboj, S.; Hensley, J.; Burns, D.; Fleming, R.; Warren, S.; Wallo, A.

    1997-01-01

    It is DOE's objective to operate its facilities and to conduct its activities so that radiation exposures to members of the public are maintained within acceptable limits and exposures to residual radioactive materials are controlled. To accomplish this, DOE has adopted Order DOE 5400.51 'Radiation Protection of the Public and the Environment', and will be promulgating IO CR Part 834 to codify and clarify the requirements of DOE 5400.5. Under both DOE 5400.5 and 10 CR Part 834, radioactively contaminated DOE property is prohibited from release unless specific actions have been completed prior to the release. This paper outlines a ten-step process that, if followed, will assist DOE Operations and contractor personnel in ensuring that the required actions established by Order DOE 5400.5 and 10 CR Part 834 have been appropriately completed prior to the release for reuse or recycle of non-real property (e.g., office furniture, computers, hand tools, machinery, vehicles and scrap metal). Following the process will assist in ensuring that radiological doses to the public from the released materials will meet applicable regulatory standards and be as low as reasonably achievable (ALARA)

  18. Assessment of recycling or disposal alternatives for radioactive scrap metal

    International Nuclear Information System (INIS)

    Murphie, W.E.; Lilly, M.J. III

    1993-01-01

    The US Department of Energy, Office of Environmental Restoration and Waste Management, is participating with the Organization for Economic Cooperation and Development (OECD) is an evaluation of management alternatives for radioactive scarp metals. For this purpose, Argonne National Laboratory is assessing alternatives for radioactive scrap metals. For this purpose, Argonne National Laboratory is assessing environmental and societal implications of recycling and/or disposal process alternatives (with metal replacement). Findings will be presented in a report from the OECD Task Group. This paper focuses on the radiological risk assessment and dose estimate sensitivity analysis. A ''tiered'' concept for release categories, with and without use restrictions, is being developed. Within the tiers, different release limits may be indicated for specific groupings of radionuclides. Depending on the spectrum of radionuclides that are present and the level of residual activity after decontamination and/or smelting, the scrap may be released for unrestricted public use or for specified public uses, or it may be recycled within the nuclear industry. The conversatism of baseline dose estimates is examined, and both more realistic parameter values and protective measures for workers are suggested

  19. Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries. Specific Safety Guide (Arabic Edition)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-09-01

    Accidents involving orphan sources and other radioactive material in the metal recycling and production industries have resulted in serious radiological accidents as well as in harmful environmental, social and economic impacts. This Safety Guide provides recommendations, the implementation of which should prevent such accidents and provide confidence that scrap metal and recycled products are safe. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Responsibilities; 4. Monitoring for radioactive material; 5. Response to the discovery of radioactive material; 6. Remediation of contaminated areas; 7. Management of recovered radioactive material; Annex I: Review of events involving radioactive material in the metal recycling and production industries; Annex II: Categorization of radioactive sources; Annex III: Some examples of national and international initiatives.

  20. Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries. Specific Safety Guide (Arabic Edition)

    International Nuclear Information System (INIS)

    2014-01-01

    Accidents involving orphan sources and other radioactive material in the metal recycling and production industries have resulted in serious radiological accidents as well as in harmful environmental, social and economic impacts. This Safety Guide provides recommendations, the implementation of which should prevent such accidents and provide confidence that scrap metal and recycled products are safe. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Responsibilities; 4. Monitoring for radioactive material; 5. Response to the discovery of radioactive material; 6. Remediation of contaminated areas; 7. Management of recovered radioactive material; Annex I: Review of events involving radioactive material in the metal recycling and production industries; Annex II: Categorization of radioactive sources; Annex III: Some examples of national and international initiatives

  1. Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries. Specific Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    Accidents involving orphan sources and other radioactive material in the metal recycling and production industries have resulted in serious radiological accidents as well as in harmful environmental, social and economic impacts. This Safety Guide provides recommendations, the implementation of which should prevent such accidents and provide confidence that scrap metal and recycled products are safe. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Responsibilities; 4. Monitoring for radioactive material; 5. Response to the discovery of radioactive material; 6. Remediation of contaminated areas; 7. Management of recovered radioactive material; Annex I: Review of events involving radioactive material in the metal recycling and production industries; Annex II: Categorization of radioactive sources; Annex III: Some examples of national and international initiatives

  2. Surface analysis applied to metal-ceramic and bioceramic interfacial bonding

    International Nuclear Information System (INIS)

    Smart, R.St.C.; Arora, P.S.; Steveson, M.; Kawashima, N.; Cavallaro, G.P.; Ming, H.; Skinner, W.M.

    1999-01-01

    Full text: Low temperature plasma reactions, combined with sol-gel coatings, have been used to produce a variety of ceramic surface layers on metal substrates and interfacial layers between metals and oxides or other ceramics. These layers can be designed to be compositionally and functionally graded from the metal to bulk ceramic material, eg. silica, alumina, hydroxyapatite. The graded layers are generally <50nm thick, continuous, fully bonded to the substrate and deformable without disbonding. The objectives in design of these layers have been to produce: metal surfaces protected from oxidation, corrosion and acid attack; improved metal-ceramic bonding; and bioceramic titanium-based interfaces to bioactive hydroxyapatite for improved dental and medical implants. Modified Auger parameter studies for Si in XPS spectra show that the structure on the metal surfaces grades from amorphous, dehydroxylated silica on the outer surface through layer silicates, chain silicates, pyrosilicates to orthosilicates close to the metal interface. At the metal interface, detached grains of the metal are imaged with interpenetration of the oxide and silicate species linking the layer to the oxidised metal surface. The ∼30nm layer has a substantially increased frictional load compared with the untreated oxidised metal, i.e. behaviour consistent with either stronger adhesion of the coating to the substrate or a harder surface. The composition, structure and thickness of these layers can be controlled by the duration of each plasma reaction and the choice of the final reagent. The mechanisms of reaction in each process step have been elucidated with a combination of XPS, TOF-SIMS, TEM, SEM and FTIR. Similar, graded titanium/oxide/silicate/silica ceramic surface layers have been shown to form using the low temperature plasma reactions on titanium alloys used in medical and dental implants. Thicker (i.e. μm) overlayers of ceramic materials can be added to the graded surface layers

  3. Decontamination of radioactive cesium in soil using nano-size metallic calcium dispersing

    International Nuclear Information System (INIS)

    Mitoma, Yoshiharu; Fukuoka, Takezo; Matsue, Hideaki; Kobayashi, Hidemasa; Shiraishi, Hiroaki; Kajitani, Mikio

    2013-01-01

    In Japan, the major concern on radioactive cesium ( 134 Cs and 137 Cs) deposition and soil contamination due to the emission form the Fukushima Dai-ichi nuclear power plant showed up after a massive quake on March 11, 2011. Soil contamination with radioactive cesium has a long-term radiological impact due to its long half-life (30 years for 137 Cs) and its high biological hazard. Therefore, much attention has been paid to decontaminate Cs-contaminated soil with washing and/or extraction by adopting solvents. However, such wet methods have some disadvantages, i.e. forming of secondary effluents and additional cost for their treatment. We have recently shown that the nano-size metallic calcium/calcium oxide/iron dispersing mixture (Fe-nCa) is most effective for heavy metals immobilization and volume reduction method under dry condition. Thus, we applied this method to treat real radioactive cesium contaminated soils in dry condition. Simple stirring of the contaminated soil with Fe-nCa achieved about above 90% of radioactive Cs decontamination rate and the volume reduction level also reached around 50-60%. In this paper, we showed the effectiveness of a Fe-nCa method for the rapid remediation and volume reduction method of real radioactive cesium contaminated soils under dry conditions and our challenges for sophistication applying machine and reagents. (author)

  4. Mixed radioactive and chemotoxic wastes (RMW)

    International Nuclear Information System (INIS)

    Dejonghe, I.P.

    1991-01-01

    During the first decades of development of nuclear energy, organizations involved in the management of nuclear wastes had their attention focused essentially on radioactive components. The impression may have prevailed that, considering the severe restrictions on radioactive materials, the protection measured applied for radioactive components of wastes would be more than adequate to cope with potential hazards from non radioactive components associated with radioactive wastes. More recently it was acknowledged that such interpretation is not necessarily justified in all cases since certain radioactive wastes also contain non-negligible amounts of heavy metals or hazardous organic components which, either, do not decay, or are subject to completely different decay (decomposition) mechanisms. The main purposes of the present study are to analyze whether mixed radioactive wastes are likely to occur in Europe and in what form, whether one needs a basis for integration for evaluating various forms of toxicity and by which practical interventions possible problems can be avoided or at least reduced. (au)

  5. Radical bonding: structure and stability of bis(phenalenyl) complexes of divalent metals from across the periodic table.

    Science.gov (United States)

    Craciun, Smaranda; Donald, Kelling J

    2009-07-06

    We examine the bonding possibilities of the bis(phenalenyl) MP(2) sandwich complexes of the divalent metals M = Be, Mg, Ca, Sr, Ba, Zn, Cd, and Hg, at the B3LYP level of theory. The outcome is an extraordinarily diverse class of low symmetry bis(phenalenyl)metal complexes in which bonding preferences and binding enthalpies differ dramatically. The lowest energy group 2 metal MP(2) complexes include an intriguing eta(1),eta(3) BeP(2) structure, and bent eta(6),eta(6) systems for M = Ca, Sr, and Ba. The group 12 bis(phenalenyl) complexes are thermodynamically unstable eta(1),eta(1) slip-sandwich structures. To better understand changes in the structural preferences going from the (eta(6),eta(6)) group 2 to the (eta(1),eta(1)) group 12 complexes, we explored the bonding in the bis(phenalenyl) complexes of transition metals with stable +2 oxidations states between Ca and Zn in period 4. The computed binding enthalpies are large and negative for nearly all of the minimum energy bis(phenalenyl) complexes of the group 2 and the transition metals; they are tiny for MgP(2), and are quite positive for the group 12 systems. The structural preferences and stability of the complexes is a subtle negotiation of several influences: the (un)availability of (n - 1)d and np, orbitals for bonding, the cost of the rehybridization at carbon sites in the phenalenyl rings in preparation for bonding to the metals, and the (P---P) interaction between the phenalenyl radicals.

  6. Electronic tongue - an array of non-specific chemical sensors - for analysis of radioactive solutions

    International Nuclear Information System (INIS)

    Legin, A.; Rudnitskaya, A.; Babain, V.

    2006-01-01

    Multisensor systems, combining chemical sensor arrays with multivariate data processing engines (electronic tongue) rapidly and successfully developing in the last years are capable of simultaneous quantitative analysis of several species, e.g. metals, in complex real solutions. The expansion of the metals (metal ions) and species to be detected in radioactive waste requires permanent enhancement of sensing materials and sensors, with seriously different properties from those known earlier. A prospective direction of R and D of novel sensing materials is exploitation of radiochemical extraction systems and application of extraction substances as active components of new sensors. The sensors based on bidentate phosphorous organic compounds and their combinations with chlorinated cobalt dicarbollide displayed high sensitivity and selectivity to rare-earth metal ions La 3+ , Pr 3+ , Nd 3+ , Eu 3+ . The results indicated good promise for the development of novel analytical tools for detection of multivalent metal cations in different media, particularly in corrosive solutions such as radioactive wastes and solutions derived from spent nuclear fuel. The sensors and sensor arrays made on their basis can play an important role in the development of 'electronic tongue' systems for rapid analytical determinations of different components in complex radioactive solutions

  7. Covalent bonding in heavy metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Bagus, Paul S.; Nelin, Connie J.; Hrovat, Dave A.; Ilton, Eugene S.

    2017-04-07

    Novel theoretical methods were used to quantify the magnitude and the energetic contributions of 4f/5f-O2p and 5d/6d-O2p interactions to covalent bonding in lanthanide and actinide oxides. Although many analyses have neglected the involvement of the frontier d orbitals, the present study shows that f and d covalency are of comparable importance. Two trends are identified. As is expected, the covalent mixing is larger when the nominal oxidation state is higher. More subtly, the importance of the nf covalent mixing decreases sharply relative to (n+1)d as the nf occupation increases. Atomic properties of the metal cations that drive these trends are identified.

  8. Management options for recycling radioactive scrap metals

    Energy Technology Data Exchange (ETDEWEB)

    Dehmel, J.C.; MacKinney, J.; Bartlett, J.

    1997-02-01

    The feasibility and advantages of recycling radioactive scrap metals (RSM) have yet to be assessed, given the unique technical, regulatory, safety, and cost-benefit issues that have already been raised by a concerned recycling industry. As is known, this industry has been repeatedly involved with the accidental recycling of radioactive sources and, in some cases, with costly consequences. If recycling were deemed to be a viable option, it might have to be implemented with regulatory monitoring and controls. Its implementation may have to consider various and complex issues and address the requirements and concerns of distinctly different industries. There are three basic options for the recycling of such scraps. They are: (1) recycling through the existing network of metal-scrap dealers and brokers, (2) recycling directly and only with specific steelmills, or (3) recycling through regional processing centers. Under the first option, scrap dealers and brokers would receive material from RSM generators and determine at which steelmills such scraps would be recycled. For the second option, RSM generators would deal directly with selected steelmills under specific agreements. For the third option, generators would ship scraps only to regional centers for processing and shipment to participating steelmills. This paper addresses the potential advantages of each option, identifies the types of arrangements that would need to be secured among all parties, and attempts to assess the receptivity of the recycling industry to each option.

  9. Fibre-matrix bond strength studies of glass, ceramic, and metal matrix composites

    Science.gov (United States)

    Grande, D. H.; Mandell, J. F.; Hong, K. C. C.

    1988-01-01

    An indentation test technique for compressively loading the ends of individual fibers to produce debonding has been applied to metal, glass, and glass-ceramic matrix composites; bond strength values at debond initiation are calculated using a finite-element model. Results are correlated with composite longitudinal and interlaminar shear behavior for carbon and Nicalon fiber-reinforced glasses and glass-ceramics including the effects of matrix modifications, processing conditions, and high-temperature oxidation embrittlement. The data indicate that significant bonding to improve off-axis and shear properties can be tolerated before the longitudinal behavior becomes brittle. Residual stress and other mechanical bonding effects are important, but improved analyses and multiaxial interfacial failure criteria are needed to adequately interpret bond strength data in terms of composite performance.

  10. The study on the overseas recycling technology of the radioactive metallic wastes

    International Nuclear Information System (INIS)

    Kim, H. R.; Jung, Y. S.; Sin, J. I.

    2002-01-01

    It was understood that regulation criteria for material release varied with countries and that international standards were not setup. But, most advanced countries are continuously studying on the recycling of metallic wastes for the purpose of the reuse of resources and disposal cost reduction. Practically, the advanced countries make a lot of cost profits compared with disposal as their metallic wastes are recycled and reused through technology like melting. In our case, the recycle criteria for radioactive waste containing radioactive nuclide with long half-life such as Cs-137(half-life: 30y) and Co-60(half-life: 5.26y) including others, which are generated from the nuclear fission or dismantling of nuclear facilities, are not yet established. Therefore, it is required that the recommendation and legalization of the regulatory criteria be carried out for the recycle and reuse of metallic wastes to be generated from the dismantling of domestic nuclear facilities in the future

  11. Metal-organic cooperative catalysis in C-H and C-C bond activation and its concurrent recovery.

    Science.gov (United States)

    Park, Young Jun; Park, Jung-Woo; Jun, Chul-Ho

    2008-02-01

    The development of an efficient catalytic activation (cleavage) system for C-H and C-C bonds is an important challenge in organic synthesis, because these bonds comprise a variety of organic molecules such as natural products, petroleum oils, and polymers on the earth. Among many elegant approaches utilizing transition metals to activate C-H and C-C bonds facilely, chelation-assisted protocols based on the coordinating ability of an organic moiety have attracted great attention, though they have often suffered from the need for an intact coordinating group in a substrate. In this Account, we describe our entire efforts to activate C-H or C-C bonds adjacent to carbonyl groups by employing a new concept of metal-organic cooperative catalysis (MOCC), which enables the temporal installation of a 2-aminopyridyl group into common aldehydes or ketones in a catalytic way. Consequently, a series of new catalytic reactions such as alcohol hydroacylation, oxo-ester synthesis, C-C triple bond cleavage, hydrative dimerization of alkynes, and skeletal rearrangements of cyclic ketones was realized through MOCC. In particular, in the quest for an optimized MOCC system composed of a Wilkinson's catalyst (Ph 3P) 3RhCl and an organic catalyst (2-amino-3-picoline), surprising efficiency enhancements could be achieved when benzoic acid and aniline were introduced as promoters for the aldimine formation process. Furthermore, a notable accomplishment of C-C bond activation has been made using 2-amino-3-picoline as a temporary chelating auxiliary in the reactions of unstrained ketones with various terminal olefins and Wilkinson's catalyst. In the case of seven-membered cyclic ketones, an interesting ring contraction to five- or six-membered ones takes place through skeletal rearrangements initiated by the C-C bond activation of MOCC. On the other hand, the fundamental advances of these catalytic systems into recyclable processes could be achieved by immobilizing both metal and organic

  12. Shear bond strength of metallic brackets: influence of saliva contamination

    Directory of Open Access Journals (Sweden)

    Luciana Borges Retamoso

    2009-06-01

    Full Text Available OBJECTIVE: To evaluate the influence of saliva contamination on shear bond strength and the bond failure pattern of 3 adhesive systems (Transbond XT, AdheSE and Xeno III on orthodontic metallic brackets bonded to human enamel. MATERIAL AND METHODS: Seventy-two permanent human molars were cut longitudinally in a mesiodistal direction, producing seventy-two specimens randomly divided into six groups. Each system was tested under 2 different enamel conditions: no contamination and contaminated with saliva. In T, A and X groups, the adhesive systems were applied to the enamel surface in accordance with manufacturer's instructions. In TS, AS and XS groups, saliva was applied to enamel surface followed by adhesive system application. The samples were stored in distilled water at 37ºC for 24 h, and then tested for shear bond strength in a universal testing machine (Emic, DL 2000 running at a crosshead speed of 1 mm/min. After bond failure, the enamel surfaces were observed under an optical microscope at 40x magnification. RESULTS: The control and contaminated groups showed no significant difference in shear bond strength for the same adhesive system. However, shear bond strength of T group (17.03±4.91 was significantly higher than that of AS (8.58±1.73 and XS (10.39±4.06 groups (p<0.05. Regarding the bond failure pattern, TS group had significantly higher scores of no adhesive remaining on the tooth in the bonding area than other groups considering the adhesive remnant index (ARI used to evaluate the amount of adhesive left on the enamel. CONCLUSIONS: Saliva contamination showed little influence on the 24-h shear bond strength of orthodontic brackets.

  13. Bonding of Metal Orthodontic Attachments to Sandblasted Porcelain and Zirconia Surfaces

    Directory of Open Access Journals (Sweden)

    Amitoj S. Mehta

    2016-01-01

    Full Text Available This study evaluates tensile bond strength (TBS of metal orthodontic attachments to sandblasted feldspathic porcelain and zirconia with various bonding protocols. Thirty-six (36 feldspathic and 36 zirconia disc samples were prepared, glazed, embedded in acrylic blocks and sandblasted, and divided into three groups according to one or more of the following treatments: hydrofluoric acid 4% (HF, Porcelain Conditioner silane primer, Reliance Assure® primer, Reliance Assure plus® primer, and Z Prime™ plus zirconia primer. A round traction hook was bonded to each sample. Static tensile bond strength tests were performed in a universal testing machine and adhesive remnant index (ARI scoring was done using a digital camera. One-way ANOVA and Pearson chi-square tests were used to analyze TBS (MPa and ARI scores. No statistically significant mean differences were found in TBS among the different bonding protocols for feldspathic and zirconia, p values = 0.369 and 0.944, respectively. No statistically significant distribution of ARI scores was found among the levels of feldspathic, p value = 0.569. However, statistically significant distribution of ARI scores was found among the levels of zirconia, p value = 0.026. The study concluded that silanization following sandblasting resulted in tensile bond strengths comparable to other bonding protocols for feldspathic and zirconia surface.

  14. Effects of femtosecond laser and other surface treatments on the bond strength of metallic and ceramic orthodontic brackets to zirconia.

    Science.gov (United States)

    García-Sanz, Verónica; Paredes-Gallardo, Vanessa; Bellot-Arcís, Carlos; Mendoza-Yero, Omel; Doñate-Buendía, Carlos; Montero, Javier; Albaladejo, Alberto

    2017-01-01

    Femtosecond laser has been proposed as a method for conditioning zirconia surfaces to boost bond strength. However, metallic or ceramic bracket bonding to femtosecond laser-treated zirconia surfaces has not been tested. This study compared the effects of four conditioning techniques, including femtosecond laser irradiation, on shear bond strength (SBS) of metallic and ceramic brackets to zirconia.Three hundred zirconia plates were divided into five groups: 1) control (C); 2) sandblasting (APA); 3) silica coating and silane (SC); 4) femtosecond laser (FS); 5) sandblasting followed by femtosecond laser (APA+SC). A thermal imaging camera measured temperature changes in the zirconia during irradiation. Each group was divided into 2 subgroups (metallic vs ceramic brackets). SBS was evaluated using a universal testing machine. The adhesive remnant index (ARI) was registered and surfaces were observed under SEM. Surface treatment and bracket type significantly affected the bracket-zirconia bond strength. SBS was significantly higher (pbrackets in all groups (APA+FS > APA > FS > SC > control) than metallic brackets (APA+FS > FS > SC > APA > control). For metallic brackets, groups SC (5.99 ± 1.86 MPa), FS (6.72 ± 2.30 MPa) and APA+FS (7.22 ± 2.73 MPa) reported significantly higher bond strengths than other groups (p brackets, the highest bond strength values were obtained in groups APA (25.01 ± 4.45 MPa), FS (23.18 ± 6.51 MPa) and APA+FS (29.22 ± 8.20 MPa).Femtosecond laser enhances bond strength of ceramic and metallic brackets to zirconia. Ceramic brackets provide significantly stronger adhesion than metallic brackets regardless of the surface treatment method.

  15. The importance of atomic and molecular correlation on the bonding in transition metal compounds

    Science.gov (United States)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Walch, Stephen P.

    1986-01-01

    The determination of accurate spectroscopic parameters for molecular systems containing transition metal atoms is shown to require extensive data sets and a high level correlation treatment, and techniques and their limitations are considered. Extensive results reported on the transition metal atoms, hydrides, oxides, and dimers makes possible the design of a calculation to correctly describe the mixing of different atomic asymptotes, and to give a correct balance between molecular bonding and exchange interactions. Examples considered include the dipole moment of the 2Delta state of NiH, which can help determine the mixture of 3d(8)4s(2) and 3d(9)4s(1) in the NiH wavefunction, and the bonding in CrO, where an equivalent description of the relative energies associated with the Cr 3d-3d atomic exchange and the Cr-O bond is important.

  16. Development of DOE complexwide authorized release protocols for radioactive scrap metals

    International Nuclear Information System (INIS)

    Chen, S. Y.

    1998-01-01

    Within the next few decades, several hundred thousand tons of metal are expected to be removed from nuclear facilities across the U.S. Department of Energy (DOE) complex as a result of decontamination and decommissioning (D and D) activities. These materials, together with large quantities of tools, equipment, and other items that are commonly recovered from site cleanup or D and D activities, constitute non-real properties that warrant consideration for reuse or recycle, as permitted and practiced under the current DOE policy. The provisions for supporting this policy are contained in the Draft Handbook for Controlling Release for Reuse or Recycle of Property Containing Residual Radioactive Material published by DOE in 1997 and distributed to DOE field offices for interim use and implementation. The authorized release of such property is intended to permit its beneficial use across the entire DOE complex. The objective of this study is to develop readily usable computer-based release protocols to facilitate implementation of the Handbook in evaluating the scrap metals for reuse and recycle. The protocols provide DOE with an effective oversight tool for managing release activities

  17. Non-bonding interactions and non-covalent delocalization effects play a critical role in the relative stability of group 12 complexes arising from interaction of diethanoldithiocarbamate with the cations of transition metals Zn(II), Cd(II), and Hg(II): a theoretical study.

    Science.gov (United States)

    Bahrami, Homayoon; Farhadi, Saeed; Siadatnasab, Firouzeh

    2016-07-01

    The chelating properties of diethanoldithiocarbamate (DEDC) and π-electron flow from the nitrogen atom to the sulfur atom via a plane-delocalized π-orbital system (quasi ring) was studied using a density functional theory method. The molecular structure of DEDC and its complexes with Zn(II), Cd(II), and Hg(II) were also considered. First, the geometries of this ligand and DEDC-Zn(II), DEDC-Cd(II), and DEDC-Hg(II) were optimized, and the formation energies of these complexes were then calculated based on the electronic energy, or sum of electronic energies, with the zero point energy of each species. Formation energies indicated the DEDC-Zn(II) complex as the most stable complex, and DEDC-Cd(II) as the least stable. Structural data showed that the N1-C2 π-bond was localized in the complexes rather than the ligand, and a delocalized π-bond over S7-C2-S8 was also present. The stability of DEDC-Zn(II), DEDC-Cd(II), and DEDC-Hg(II) complexes increased in the presence of the non-specific effects of the solvent (PCM model), and their relative stability did not change. There was π-electron flow or resonance along N1-C2-S7 and along S7-C2-S8 in the ligand. The π-electron flow or resonance along N1-C2-S7 was abolished when the metal interacted with sulfur atoms. Energy belonging to van der Waals interactions and non-covalent delocalization effects between the metal and sulfur atoms of the ligand was calculated for each complex. The results of nucleus-independent chemical shift (NICS) indicated a decreasing trend as Zn(II) Hg(II) for the aromaticity of the quasi-rings. Finally, by ignoring van der Waals interactions and non-covalent delocalization effects between the metal and sulfur atoms of the ligand, the relative stability of the complexes was changed as follows:[Formula: see text] Graphical Abstract Huge electronic cloud localized on Hg(II) in the Hg(II)-DEDC complex.

  18. The study on recycle scheme of the metallic radioactive wastes (II)

    International Nuclear Information System (INIS)

    Shin, J. I.; Park, J. H.; Jung, K. J.

    2003-01-01

    It was understood that regulation criteria for material release varied with countries and that international standards were not setup. But, most advanced countries are continuously studying on the recycling of metallic wastes for the purpose of the reuse of resources and disposal cost reduction. Practically, the advanced countries make a lot of cost profits compared with disposal as their metallic wastes are recycled and reused through technology like melting. The reasonable international standards are also expected to be set in the near future because of the aggressive cooperation between international agencies such as IAEA and NEA toward recycling these wastes. In our case, the recycle criteria for radioactive waste containing radioactive nuclide with long half-life such as Cs-137(half-life: 30y) and Co-60(half-life: 5.26y) including others, which are generated from the nuclear fission or dismantling of nuclear facilities, are not yet established. Therefore, it is required that the recommendation and legalization of the regulatory criteria be carried out for the recycle and reuse of metallic wastes to be generated from the dismantling of domestic nuclear facilities in the future

  19. Assessment of natural radioactivity and heavy metals in water and soil around seismically active area

    International Nuclear Information System (INIS)

    Oktay Baykara; Mahmut Dogru; Firat University, Elazig

    2010-01-01

    The natural radioactivity concentration and some heavy metals in various water and soil samples collected from seismically active area have been determined. Gross-alpha and beta concentrations of different 33 water samples and some heavy metal (Fe, Pb, Cu, K, Mn, Cr and Zn) concentration in 72 soil samples collected from two major fault systems (North and East Anatolian Active Fault Systems) in Turkey have been studied. This survey regarding gross-alpha and beta radioactivity and some heavy metals concentrations was carried out by means of Krieger method using a gross-alpha and beta-counting system and atomic absorption spectrometry (AAS), respectively. Also, gross annual effective dose from the average gross-alpha activity in waters were calculated. (author)

  20. Removal and treatment of radioactive, organochlorine, and heavy metal contaminants from solid surfaces

    International Nuclear Information System (INIS)

    Grieco, S.A.; Neubauer, E.D.

    1996-01-01

    The U.S. Department of Energy (DOE) is defining decontamination and decommissioning (D ampersand D) obligations at its sites. Current D ampersand D activities are generally labor intensive, use chemical reagents that are difficult to treat, and may expose workers to radioactive and hazardous chemicals. Therefore, new technologies are desired that minimize waste, allow much of the decommissioned materials to be reused rather than disposed of as waste, and produce wastes that will meet disposal criteria. The O'Brien ampersand Gere companies tested a scouring decontamination system on concrete and steel surfaces contaminated with radioactive and hazardous wastes under the sponsorship of Martin Marietta Energy Systems, Inc. (MMES) at DOE's K-25 former gaseous diffusion plant in Oak Ridge, Tennessee. The scouring system removes fixed radioactive and hazardous contamination yet leaves the surface intact. Blasting residuals are treated using physical/chemical processes. Bench- and pilot-scale testing of the system was conducted on surfaces contaminated with uranium, technetium, heavy metals, and PCBs. Areas of concrete and metal surfaces were blasted. Residuals were dissolved in tap water and treated for radioactive, hazardous, and organochlorine constituents. The treatment system comprised pH adjustment, aeration, solids settling, filtration, carbon adsorption, and ion exchange. This system produced treated water and residual solid waste. Testing demonstrated that the system is capable of removing greater than 95% of radioactive and PCB surface contamination to below DOE's unrestricted use release limits; aqueous radionuclides, heavy metals, and PCBs were below DOE and USEPA treatment objectives after treatment. Waste residuals volume was decreased by 71 %. Preliminary analyses suggest that this system provides significant waste volume reduction and is more economical than alternative surface decontamination techniques that are commercially available or under development

  1. Direct measurement and modulation of single-molecule coordinative bonding forces in a transition metal complex

    DEFF Research Database (Denmark)

    Hao, Xian; Zhu, Nan; Gschneidtner, Tina

    2013-01-01

    remain a daunting challenge. Here we demonstrate an interdisciplinary and systematic approach that enables measurement and modulation of the coordinative bonding forces in a transition metal complex. Terpyridine is derived with a thiol linker, facilitating covalent attachment of this ligand on both gold...... substrate surfaces and gold-coated atomic force microscopy tips. The coordination and bond breaking between terpyridine and osmium are followed in situ by electrochemically controlled atomic force microscopy at the single-molecule level. The redox state of the central metal atom is found to have...

  2. Corrosion behaviour of metallic and non-metallic materials in various media in the Anhydrite and Gypsum Mine Felsenau/AG

    International Nuclear Information System (INIS)

    Laske, D.; Wiedemann, K.H.

    1983-10-01

    The final underground disposal of radioactive wastes necessitates container materials with a good long-term resistance against corrosion from both external agents and the solidification matrix inside. For low- and medium-level active waste, repositories in anhydrite sites, among others, are under consideration. Sheet and plate samples from 14 metallic and 8 non-metallic materials have been tested for 5 years in a tunnel in the Anhydrite and Gypsum Mine Felsenau/AG for their corrosion resistance in the tunnel atmosphere, anhydrite powder, gypsum powder, gypsum, and cement. From the metallic materials tested, only chromium-nickel steel is corrosion resistant to all the media present. Zinc plated and tin plated iron sheet as well as aluminium and aluminium alloys are corrosion resistant only in the atmosphere of the tunnel, and lead plated iron sheet is resistant also in cement. Aluminium is dissolved in cement. Uncovered iron sheet undergoes severe corrosion. The non-metallic coatings tested (lacquer, stove lacquer, or synthetic resins) partially flake off already after one year's testing and are therefore not appropriate for iron sheet corrosion protection. No influence of the different media has been observed after 5 years on the 8 plastic materials tested (6 without, and 2 with glass fiber reinforcement). (author)

  3. Proceedings of the NEA Workshop on the Management of Non-Nuclear Radioactive Waste

    International Nuclear Information System (INIS)

    Zafiropoulos, Demetre; Dilday, Daniel; Siemann, Michael; Ciambrella, Massimo; Lazo, Edward; Sartori, Enrico; ); Dionisi, Mario; Long, Juliet; Nicholson, David; Chambers, Douglas; Garcia Alves, Joao Henrique; McMahon, Ciara; Bruno, Gerard; Fan, Zhiwen; ); Ripani, Marco; Nielsen, Mette; Solente, Nicolas; Templeton, John; Paratore, Angelo; Feinhals, Joerg; Pandolfi, Dana; Sarchiapone, Lucia; Picentino, Bruno; Simms, Helen; Beer, Hans-Frieder; Deryabin, Sergey; Ulrici, Luisa; Bergamaschi, Carlo; Nottestad, Stacy; Anagnostakis, Marios

    2017-05-01

    All NEA member countries, whether or not they have nuclear power plants, are faced with appropriately managing non-nuclear radioactive waste produced through industrial, research and medical activities. Sources of such waste can include national laboratory and university research activities, used and lost industrial gauges and radiography sources, hospital nuclear medicine activities and in some circumstances, naturally occurring radioactive material (NORM) activities. Although many of these wastes are not long-lived, the shear variety of sources makes it difficult to generically assess their physical (e.g. volume, chemical form, mixed waste) or radiological (e.g. activity, half-life, concentration) characteristics. Additionally, the source-specific nature of these wastes poses questions and challenges to their regulatory and practical management at a national level. This had generated interest from both the radiological protection and radioactive waste management communities, and prompted the Committee on Radiological Protection and Public Health (CRPPH) to organise, in collaboration with the Radioactive Waste Management Committee (RWMC), a workshop tackling some of the key issues of this challenging topic. The key objectives of the NEA Workshop on the Management of Non-Nuclear Radioactive Waste were to address the particularities of managing non-nuclear waste in all its sources and forms and to share and exchange national experiences. Presentations and discussions addressed both technical aspects and national frameworks. Technical aspects included: - the range of non-nuclear waste sources, activities, volumes and other relevant characteristics; - waste storage and repository capacities and life cycles; - safety considerations for mixed wastes management; - human resources and knowledge management; - legal, regulatory and financial assurance, and liability issues. Taking into account the entire non-nuclear waste life-cycle, the workshop covered planning and

  4. Adhesive bonding of super-elastic titanium-nickel alloy castings with a phosphate metal conditioner and an acrylic adhesive.

    Science.gov (United States)

    Matsumura, H; Tanoue, N; Yanagida, H; Atsuta, M; Koike, M; Yoneyama, T

    2003-06-01

    The purpose of the current study was to evaluate the bonding characteristics of super-elastic titanium-nickel (Ti-Ni) alloy castings. Disk specimens were cast from a Ti-Ni alloy (Ti-50.85Ni mol%) using an arc centrifugal casting machine. High-purity titanium and nickel specimens were also prepared as experimental references. The specimens were air-abraded with alumina, and bonded with an adhesive resin (Super-Bond C & B). A metal conditioner containing a phosphate monomer (Cesead II Opaque Primer) was also used for priming the specimens. Post-thermocycling average bond strengths (MPa) of the primed groups were 41.5 for Ti-Ni, 30.4 for Ti and 19.5 for Ni, whereas those of the unprimed groups were 21.6 for Ti, 19.3 for Ti-Ni and 9.3 for Ni. Application of the phosphate conditioner elevated the bond strengths of all alloy/metals (P elastic Ti-Ni alloy castings can be achieved with a combination of a phosphate metal conditioner and a tri-n-butylborane-initiated adhesive resin.

  5. Management of radioactive wastes from non-power applications. The Cuban experience

    International Nuclear Information System (INIS)

    Benitez, J.C.; Salgado, M.; Jova, L.

    2001-01-01

    Full text: Origin of Radioactive Wastes. The wastes arisen from the applications of radioisotopes in medicine are mainly liquids and solid materials contaminated with short lived radionuclides and sealed sources used in radiotherapy and for sterilization of medical materials. Radioactive wastes from industrial applications are generally disused sealed sources used in level detection, quality control, smoke detection and non-destructive testing. The principal forms of wastes generated by research institutes are miscellaneous liquids, trash, biological wastes, and scintillation vials, sealed sources and targets. Solid radioactive wastes are mainly produced during research works, cleaning and decontamination activities and they consist of rags, paper, cellulose, plastics, gloves, clothing, overshoes, etc. Laboratory materials such as cans, polyethylene bags and glass bottles also contribute to the solid waste inventory. Small quantities of non-compactable wastes are also collected and received for treatment. They include wood pieces, metal scrap, defective components and tools. Radioactive Waste Management Policy and Infrastructure. Since 1994 the Cuban integral policy of nuclear development is entrusted to the Nuclear Energy Agency of the Ministry of Science, Technology and Environment (CITMA). The National Center for Nuclear Safety (CNSN) is responsible for the licensing and supervision of radioactive and nuclear installations. The CPHR is in charge of waste management policy and therefore is responsible for centralized collection, transportation, treatment, conditioning, long term storage, and disposal of radioactive waste, as well as for developing new waste conditioning and containment methods. Radioactive Waste Management Facilities. Waste Treatment and Conditioning Plant (WTCP). The present facility is a building that includes a technological area of 100 m 2 and a laboratory area with a surface of around 30 m 2 . Other areas to be distinguished inside the

  6. Comparison of porcelain bond strength of different metal frameworks prepared by using conventional and recently introduced fabrication methods.

    Science.gov (United States)

    Kaleli, Necati; Saraç, Duygu

    2017-07-01

    Most studies evaluating dental laser sintering systems have focused on the marginal accuracy of the restorations. However, the bond strength at the metal-ceramic interface is another important factor that affects the survival of restorations, and currently, few studies focus on this aspect. The purpose of this in vitro study was to compare the porcelain bond strength of cobalt-chromium (Co-Cr) metal frameworks prepared by using the conventional lost-wax technique, milling, direct metal laser sintering (DMLS), and laser cusing, a direct process powder-bed system. A total of 96 metal frameworks (n=24 in each group) were prepared by using conventional lost-wax (group C), milling (group M), DMLS (group LS), and direct process powder-bed (group LC) methods according to International Organization for Standardization standard ISO 9693-1. After porcelain application, a 3-point bend test was applied to each specimen by using a universal testing machine. Data were statistically analyzed using 1-way ANOVA and Tukey honest significant difference tests (α=.05). Failure types at the metal-ceramic interfaces were examined using stereomicroscopy. Additionally, 1 specimen from each group was prepared for scanning electron microscopy analysis to evaluate the surface topography of metal frameworks. The mean bond strength was 38.08 ±3.82 MPa for group C, 39.29 ±3.51 MPa for group M, 40.73 ±3.58 MPa for group LS, and 41.24 ±3.75 MPa for group LC. Statistically significant differences were observed among the 4 groups (P=.016). All groups, except for LS, exhibited adhesive and mixed type bond failure. Both of the laser sintering methods were found to be successful in terms of metal-ceramic bond strength. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  7. Metal-Ligand Bonds of Second- and Third-Row d-Block Metals Characterized by Density Functional Theory

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2009-01-01

    This paper presents systematic data for 200 neutral diatomic molecules ML (M is it second- or third-row d-block metal and L = H, F, Cl, Br, I, C, N, O, S, or Se) Computed with the density functionals TPSSh and BP86. With experimental Structures and bond enthalpies available for many of these mole...

  8. ‘… a metal conducts and a non-metal doesn't’

    Science.gov (United States)

    Edwards, P. P.; Lodge, M. T. J.; Hensel, F.; Redmer, R.

    2010-01-01

    In a letter to one of the authors, Sir Nevill Mott, then in his tenth decade, highlighted the fact that the statement ‘… a metal conducts, and a non-metal doesn’t’ can be true only at the absolute zero of temperature, T=0 K. But, of course, experimental studies of metals, non-metals and, indeed, the electronic and thermodynamic transition between these canonical states of matter must always occur above T=0 K, and, in many important cases, for temperatures far above the absolute zero. Here, we review the issues—theoretical and experimental—attendant on studies of the metal to non-metal transition in doped semiconductors at temperatures close to absolute zero (T=0.03 K) and fluid chemical elements at temperatures far above absolute zero (T>1000 K). We attempt to illustrate Mott’s insights for delving into such complex phenomena and experimental systems, finding intuitively the dominant features of the science, and developing a coherent picture of the different competing electronic processes. A particular emphasis is placed on the idea of a ‘Mott metal to non-metal transition’ in the nominally metallic chemical elements rubidium, caesium and mercury, and the converse metallization transition in the nominally non-metal elements hydrogen and oxygen. We also review major innovations by D. A. Goldhammer (Goldhammer 1913 Dispersion und absorption des lichtes) and K. F. Herzfeld (Herzfeld 1927 Phys. Rev. 29, 701–705. (doi:10.1103/PhysRev.29.701)) in a pre-quantum theory description of the metal–non-metal transition, which emphasize the pivotal role of atomic properties in dictating the metallic or non-metallic status of the chemical elements of the periodic table under ambient and extreme conditions; a link with Pauling’s ‘metallic orbital’ is also established here. PMID:20123742

  9. Non-radioactive waste management in a Nuclear Energy Research Institution

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Helio A.; Martins, Elaine A.J.; Cotrim, Marycel E.B.; Pires, Maria A. F., E-mail: helioaf@ipen.br, E-mail: elaine@ipen.br, E-mail: mecotrim@ipen.br, E-mail: mapires@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEM-SP), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente

    2013-07-01

    For more than 50 years, non-radioactive materials have been used in processes at IPEN to support the nuclear fuel development and all related activities. Reagents, raw materials, products and by-products have been stored. Many of these are hazardous highly toxic or reactants materials. Some years ago actions sent part of these non-radioactive waste materials to proper disposal (technical incineration) resulting in an Institutional Non-Radioactive Waste Management Program. In 2005, an internal set of procedures and information entitled - Guia de Procedimentos para Armazenamento, Tratamento e Descarte de Residuos de Laboratorio Quimico - (Guide of Procedures for Storage, Treatment, and Disposal of Chemistry Laboratory Wastes) - was published to be used at the IPEN's facilities. A data base managed by software was created in order to allow the Units to input data and information about the routinely generated wastes and those already existing. Even after disposing so huge amount of wastes, a latent demand still exists. Several goals were achieved notably a well-organized and roomy space; safer storage places; local, state, and nationwide laws enforcement (for radioactive and non-radioactive materials); and improvement in chemicals control as hazardous and aged materials are more frequently disposed. A special stress was conducted to know and follow laws, regulations, and technical norms as the entire process is very detailed and this is not a day-by-day routine for the IPEN's technical personnel. The immediate consequence is that the safer the workplace the safer the nuclear related activities are done. (author)

  10. Non-radioactive waste management in a Nuclear Energy Research Institution

    International Nuclear Information System (INIS)

    Furusawa, Helio A.; Martins, Elaine A.J.; Cotrim, Marycel E.B.; Pires, Maria A. F.

    2013-01-01

    For more than 50 years, non-radioactive materials have been used in processes at IPEN to support the nuclear fuel development and all related activities. Reagents, raw materials, products and by-products have been stored. Many of these are hazardous highly toxic or reactants materials. Some years ago actions sent part of these non-radioactive waste materials to proper disposal (technical incineration) resulting in an Institutional Non-Radioactive Waste Management Program. In 2005, an internal set of procedures and information entitled - Guia de Procedimentos para Armazenamento, Tratamento e Descarte de Residuos de Laboratorio Quimico - (Guide of Procedures for Storage, Treatment, and Disposal of Chemistry Laboratory Wastes) - was published to be used at the IPEN's facilities. A data base managed by software was created in order to allow the Units to input data and information about the routinely generated wastes and those already existing. Even after disposing so huge amount of wastes, a latent demand still exists. Several goals were achieved notably a well-organized and roomy space; safer storage places; local, state, and nationwide laws enforcement (for radioactive and non-radioactive materials); and improvement in chemicals control as hazardous and aged materials are more frequently disposed. A special stress was conducted to know and follow laws, regulations, and technical norms as the entire process is very detailed and this is not a day-by-day routine for the IPEN's technical personnel. The immediate consequence is that the safer the workplace the safer the nuclear related activities are done. (author)

  11. Evaluation of the costs and benefits of recycling radioactively contaminated scrap metal

    International Nuclear Information System (INIS)

    Durman, E.C.; Tsirigotis, P.; MacKinney, J.A.

    1995-01-01

    The U.S. Environmental Protection Agency (EPA) is evaluating the economic and technical issues associated with the potential recycling of radioactive scrap metals (RSM). These metals, usually only slightly contaminated, originate primarily from the decommissioning and decontamination (D and D) of federal facilities, licensees of the Nuclear Regulatory Commission, and certain unlicensed industries. EPA conducted a study entitled Analysis of the Potential Recycling of Department of Energy Radioactive Scrap Metal, September 6, 1994, for the U.S. Department of Energy (DOE) to provide information and tools to DOE for assessing DOE's problem with RSM from the D and D of their sites. EPA is now initiating an evaluation of RSM recycling to support a recycling regulation. Although the study prepared for DOE will provide a useful start for the regulatory analysis, additional information must be gathered to analyze the impacts of a recycling regulation that will apply to all potential generators of RSM. This paper summarizes cost-benefit issues related to an RSM recycling regulatory analysis, including: the quantity of potentially recyclable contaminated metals; costs of disposal at federal and private waste repositories; all potential environmental, health, and safety, and market impacts; and the potential for adverse effects on radio-sensitive industries. (author)

  12. A National system for the Management of Non-nuclear Radioactive Waste in Sweden

    International Nuclear Information System (INIS)

    Lindhe, J. C.

    2004-01-01

    The Swedish government in May 2002 set up a non-standing committee for non-nuclear radioactive waste. The objective was to suggest a national system for the management of all types of non-nuclear radioactive waste with special consideration to the principle of polluter pays and the responsibility of the producers. The committee delivered its recommendations to the government at the end of last year. Funding for future costs for nuclear waste management and final storage is collected in a state governed funding system. For non-nuclear waste, however, there are no means today to secure the funding. If a company goes bankrupt and leaves radioactive waste behind it might be up to the taxpayers to pay for its safe management. This is due to the fact that the cost for the waste is paid at the time one wants to dispose of it and it is usually the last owner of a product etc. that has to pay. Sometimes the price comes as a surprise and the owner might not have the money available. Thus the waste might be kept longer than otherwise and might even end up as orphan waste. To solve this dilemma the committee recommends a funding system in parallel with the system for the nuclear waste. The cost for the waste should be paid up front before the waste has been created. E.g. when a customer buys a product the cost for the future waste management would be included in the price and he will not have to pay for this the day he disposes the product by returning it to the producer or leaves it to a waste-collecting organisation. It should be the responsibility of the producer (manufacturer, importer or re-seller) to guarantee the funding for the waste management. In summary the non-nuclear radioactive waste is divided into three main groups: waste from products, waste from practices and other waste. Waste from products includes household products as well as products used in research, industry and hospitals etc. For this category it is easy to identify a producer who imports or

  13. Hydrogen production during processing of radioactive sludge containing noble metals

    International Nuclear Information System (INIS)

    Ha, B.C.; Ferrara, D.M.; Bibler, N.E.

    1992-01-01

    Hydrogen was produced when radioactive sludge from Savannah River Site radioactive waste containing noble metals was reacted with formic acid. This will occur in a process tank in the Defense Waste Facility at SRS when waste is vitrified. Radioactive sludges from four tanks were tested in a lab-scale apparatus. Maximum hydrogen generation rates varied from 5 x10 -7 g H 2 /hr/g of sludge from the least reactive sludge (from Waste Tank 51) to 2 x10 -4 g H 2 /hr/g of sludge from the most reactive sludge (from Waste Tank 11). The time required for the hydrogen generation to reach a maximum varied from 4.1 to 25 hours. In addition to hydrogen, carbon dioxide and nitrous oxide were produced and the pH of the reaction slurry increased. In all cases, the carbon dioxide and nitrous oxide were generated before the hydrogen. The results are in agreement with large-scale studies using simulated sludges

  14. Non-silicon substrate bonding mediated by poly(dimethylsiloxane) interfacial coating

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hainan [Department of BioNano Technology, Gachon University, Gyeonggi-do 461-701 (Korea, Republic of); Lee, Nae Yoon, E-mail: nylee@gachon.ac.kr [Department of BioNano Technology, Gachon University, Gyeonggi-do 461-701 (Korea, Republic of); Gachon Medical Research Institute, Gil Medical Center, Inchon 405-760 (Korea, Republic of)

    2015-02-01

    Graphical abstract: Low-molecular-weight PDMS coating on the surfaces of non-silicon substrates such as thermoplastics ensures permanent sealing with a silicone elastomer, PDMS, simply by surface oxidization followed by ambient condition bonding, mediated by a robust siloxane bond formation at the interface. - Highlights: • Non-silicon thermoplastic was bonded with poly(dimethylsiloxane) silicone elastomer. • Low-molecular-weight PDMS interfacial layer was chemically coated on thermoplastic. • Bonding was realized by corona treatment and physical contact under ambient condition. • Bonding is universally applicable regardless of thermoplastic type and property. • Homogeneous PDMS-like microchannel was obtained inside the thermoplastic-PDMS microdevice. - Abstract: In this paper, we introduce a simple and robust strategy for bonding poly(dimethylsiloxane) (PDMS) with various thermoplastic substrates to fabricate a thermoplastic-based closed microfluidic device and examine the feasibility of using the proposed method for realizing plastic–plastic bonding. The proposed bonding strategy was realized by first coating amine functionality on an oxidized thermoplastic surface. Next, the amine-functionalized surface was reacted with a monolayer of low-molecular-weight PDMS, terminated with epoxy functionality, by forming a robust amine-epoxy bond. Both the PDMS-coated thermoplastic and PDMS were then oxidized and permanently assembled at 25 °C under a pressure of 0.1 MPa for 15 min, resulting in PDMS-like surfaces on all four inner walls of the microchannel. Surface characterizations were conducted, including water contact angle measurement, X-ray photoelectron spectroscopy (XPS), and fluorescence measurement, to confirm the successful coating of the thin PDMS layer on the plastic surface, and the bond strength was analyzed by conducting a peel test, burst test, and leakage test. Using the proposed method, we could successfully bond various thermoplastics such

  15. Novel non-platinum metal catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel non-platinum metal catalyst material for use in low temperature fuel cells and electrolysers and to fuel cells and electrolysers comprising the novel non-platinum metal catalyst material. The present invention also relates to a novel method for synthesizing...... the novel non-platinum metal catalyst material....

  16. Implementation and application of a method for quantifying metals and non-metals in drainage water from soils fertilized with phosphogypsum

    International Nuclear Information System (INIS)

    Silva, Camila Goncalves Bof

    2010-01-01

    Phosphogypsum is a waste generated in phosphoric acid production by the 'wet process'. The immense amount of phosphogypsum yearly produced (around 150 million tons) is receiving attention from environmental protection agencies all over the word, given its potential of contamination. In Brazil, this material has been used for many decades, especially for agricultural application on cropland. Although the phosphogypsum is mainly composed of dehydrated calcium sulfate, it can have high levels of impurities, such as metals (Cd, Cr, Cu, Pb), non-metals (As and Se) and radioactive elements from natural series of 232 Th and 238 U. Therefore, its continuous application as an agricultural agent can result not just in soil contamination, but also contamination of the surface and groundwater due to the runoff and infiltration process. The concern associated with the contamination of aquatic environments increases; when water is used for human consumption, requiring progressive adoption of more restrictive limits. However, some of the conventional analytical techniques used to determine the maximum limit of contaminants in water have detection limits above the maximum limits established by the environmental legislation. This work was aimed to evaluate the mobility of metals and non-metals in soils and, consequently, the contamination of drainage water through greenhouse-scale leaching and transport of toxic elements from soils fertilized with phosphogypsum. Hence, methods were studied and implemented for determination of metals (Cd, Cr, Cu and Pb) using Furnace Graphite Atomic Absorption Spectrometry (GF AAS), as well as for non-metals (As and Se) using Inductively Coupled Plasma Mass Spectrometry (lCP-MS). Effects of different chemical modifiers on the determination of Cd, Cr, Cu and Pb concentration by GF AAS were also investigated. In general, it was observed that the metal and non-metal concentration were below than the actual detection limit of the equipment for all

  17. Use of Eichornia crassipes for treatment of low level liquid radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Hafez, N.; Ramadan, Y.S.; Hassanin, R.A.; Gafez, M.B. (Atomic Energy Authority, Hot Lab. Center, Cairo (Egypt))

    1993-01-01

    Radioactive and non-radioactive isotopes of cobalt, cerium and cesium were found to be accumulated inside Eichornia crassipes (the water hyacinth). The rate and extent of accumulation were dependent upon environmental parameters such as pH, temperature and interference by certain anions and cations. The accumulation rate of radioactive isotopes inside Eichornia crassipes, were more rapid than non-active ions. The results showed that accumulation of such metals inside the plant could be used successfully in the treatment of low-level liquid radioactive wastes. (author) 4 figs., 2 tabs., 15 refs.

  18. Use of Eichornia crassipes for treatment of low level liquid radioactive waste

    International Nuclear Information System (INIS)

    Hafez, N.; Ramadan, Y.S.; Hassanin, R.A.; Gafez, M.B.

    1993-01-01

    Radioactive and non-radioactive isotopes of cobalt, cerium and cesium were found to be accumulated inside Eichornia crassipes (the water hyacinth). The rate and extent of accumulation were dependent upon environmental parameters such as pH, temperature and interference by certain anions and cations. The accumulation rate of radioactive isotopes inside Eichornia crassipes, were more rapid than non-active ions. The results showed that accumulation of such metals inside the plant could be used successfully in the treatment of low-level liquid radioactive wastes. (author) 4 figs., 2 tabs., 15 refs

  19. Mechanical tunability via hydrogen bonding in metal-organic frameworks with the perovskite architecture.

    Science.gov (United States)

    Li, Wei; Thirumurugan, A; Barton, Phillip T; Lin, Zheshuai; Henke, Sebastian; Yeung, Hamish H-M; Wharmby, Michael T; Bithell, Erica G; Howard, Christopher J; Cheetham, Anthony K

    2014-06-04

    Two analogous metal-organic frameworks (MOFs) with the perovskite architecture, [C(NH2)3][Mn(HCOO)3] (1) and [(CH2)3NH2][Mn(HCOO)3] (2), exhibit significantly different mechanical properties. The marked difference is attributed to their distinct modes of hydrogen bonding between the A-site amine cation and the anionic framework. The stronger cross-linking hydrogen bonding in 1 gives rise to Young's moduli and hardnesses that are up to twice those in 2, while the thermal expansion is substantially smaller. This study presents clear evidence that the mechanical properties of MOF materials can be substantially tuned via hydrogen-bonding interactions.

  20. Metal and ligand K-edge XAS of organotitanium complexes: metal 4p and 3d contributions to pre-edge intensity and their contributions to bonding.

    Science.gov (United States)

    George, Serena DeBeer; Brant, Patrick; Solomon, Edward I

    2005-01-19

    Titanium cyclopentadienyl (Cp) complexes play important roles as homogeneous polymerization catalysts and have recently received attention as potential anticancer agents. To systematically probe the contribution of the Cp to bonding in organotitanium complexes, Ti K-edge XAS has been applied to TiCl(4) and then to the mono- and bis-Cp complexes, TiCpCl(3) and TiCp(2)Cl(2). Ti K-edge XAS is used as a direct probe of metal 3d-4p mixing and provides insight into the contribution of the Cp to bonding. These data are complimented by Cl K-edge XAS data, which provide a direct probe of the effect of the Cp on the bonding to the spectator chloride ligand. The experimental results are correlated to DFT calculations. A model for metal 3d-4p mixing is proposed, which is based on covalent interactions with the ligands and demonstrates that metal K-pre-edge intensities may be used as a measure of ligand-metal covalency in molecular Ti(IV) systems in noncentrosymmetric environments.

  1. Evaluation of metal-ceramic bond characteristics of three dental Co-Cr alloys prepared with different fabrication techniques.

    Science.gov (United States)

    Wang, Hongmei; Feng, Qing; Li, Ning; Xu, Sheng

    2016-12-01

    Limited information is available regarding the metal-ceramic bond strength of dental Co-Cr alloys fabricated by casting (CAST), computer numerical control (CNC) milling, and selective laser melting (SLM). The purpose of this in vitro study was to evaluate the metal-ceramic bond characteristics of 3 dental Co-Cr alloys fabricated by casting, computer numerical control milling, and selective laser melting techniques using the 3-point bend test (International Organization for Standardization [ISO] standard 9693). Forty-five specimens (25×3×0.5 mm) made of dental Co-Cr alloys were prepared by CAST, CNC milling, and SLM techniques. The morphology of the oxidation surface of metal specimens was evaluated by scanning electron microscopy (SEM). After porcelain application, the interfacial characterization was evaluated by SEM equipped with energy-dispersive spectrometry (EDS) analysis, and the metal-ceramic bond strength was assessed with the 3-point bend test. Failure type and elemental composition on the debonding interface were assessed by SEM/EDS. The bond strength was statistically analyzed by 1-way ANOVA and Tukey honest significant difference test (α=.05). The oxidation surfaces of the CAST, CNC, and SLM groups were different. They were porous in the CAST group but compact and irregular in the CNC and SLM groups. The metal-ceramic interfaces of the SLM and CNC groups showed excellent combination compared with those of the CAST group. The bond strength was 37.7 ±6.5 MPa for CAST, 43.3 ±9.2 MPa for CNC, and 46.8 ±5.1 MPa for the SLM group. Statistically significant differences were found among the 3 groups tested (P=.028). The debonding surfaces of all specimens exhibited cohesive failure mode. The oxidation surface morphologies and thicknesses of dental Co-Cr alloys are dependent on the different fabrication techniques used. The bond strength of all 3 groups exceed the minimum acceptable value of 25 MPa recommended by ISO 9693; hence, dental Co-Cr alloy

  2. Slovenian System for Protecting Against Radioactive Material in Scrap Metal Shipments

    Energy Technology Data Exchange (ETDEWEB)

    Stritar, A.; Cesarek, J.; Vokal Nemec, B., E-mail: andrej.stritar@gov.si [Slovenian Nuclear Safety Administration, Ljubljana (Slovenia)

    2011-07-15

    The Slovenian experience shows that the majority of detected orphan sources are associated with imports of scrap metal to Slovenia and transits of that material through Slovenia. Such orphan sources originate from past industrial activities and weak regulatory control in the countries of origin. In order to minimise the number of sources outside regulatory control several regulatory and law enforcement measures have been implemented. To prevent illicit trafficking across the border the 'First line of defence' - customs and police - are equipped with radiation detection devices. Since 2002, the Slovenian Nuclear Safety Administration (SNSA) has provided a 24-hour on-duty officer, who gives advice in case of the discovery of an orphan source. The majority of scrap metal collectors and re-cyclers are equipped with portal monitors and/or hand-held radiation detection equipment. Generally, good cooperation has been established between different organizations within Slovenia, with neighbouring countries and with some international organizations. To regulate the scrap metal activities, a new Decree on checking the radioactivity of shipments of metal scrap has been in force since 1 January 2008. This decree requires that every importer has to present a certificate of radiation measurement before any shipment of scrap metal is brought into Slovenia. Such measurements can be performed only by certified organizations. These organizations can obtain certification from the SNSA providing that they have the prescribed measuring devices, adequate training and procedures, and that their capabilities have been checked by a technical support organization. The experience after one year of application of the decree is positive. Awareness, including the adequacy of response, has increased. The paper discusses the general scheme for protection against illicit radioactive material in scrap metal shipments and the Slovenian experience in the last decade. (author)

  3. Reduction of multiple carbon-carbon bonds by gaseous tritium as a method for production of preparations with high molar radioactivity

    International Nuclear Information System (INIS)

    Shevchenko, V.P.; Potapova, A.V.; Myasoedov, N.F.

    1989-01-01

    A study was made on the effect of temperature, pressure of gas mixture, degree of catalyst saturation with hydrogen, nature of solvent, catalyst and nonsaturated compound on the yield and molar radioactivity of tritium labelled preparations. It is shown that variation of conditions of the hydrogenation reaction of edge double bond enables to increase sufficiently the total molar radioactivity of such compounds in result of reaction of isotope exchange. The developed method enables to prepare multiple-labelled biologically active compounds (0.45-3.33 PBq/mol) with high chemical yield (70-99 %)

  4. Method of bonding metals to ceramics and other materials

    Science.gov (United States)

    Gruen, D.M.; Krauss, A.R.; DeWald, A.P.; Chienping Ju; Rigsbee, J.M.

    1993-01-05

    A composite and method of forming same wherein the composite has a non-metallic portion and an alloy portion wherein the alloy comprises an alkali metal and a metal which is an electrical conductor such as Cu, Ag, Al, Sn or Au and forms an alloy with the alkali metal. A cable of superconductors and composite is also disclosed.

  5. Reliability Tests of Aluminium Wedge Wire Bonding on Auto-catalytic Silver Immersion Gold (ASIG) PCB Metallization

    CERN Document Server

    Drozd, A; Kaufmann, S; Manolescu, F; McGill, I

    2011-01-01

    The Auto-catalytic Silver Immersion Gold (ASIG) PCB metallization is a new process that has clear advantages for PCB assembly especially with regard to lead-free soldering. As it may become a popular process in the future for electronics used in physics experiments, the quality of this metallization for aluminium wire bonding has been studied. Aluminium wedge wire bonding continues to be the interconnection method of choice for many physics detector sensors, for high density signal routing and for unpackaged die. Although advertised as having good quality for aluminium wire bonding, this study was performed to verify this claim as well as to test the longer term reliability of the wire bonds taking into consideration the environmental conditions and life-expectancy of devices, in particular for high energy physics detector applications. The tests were performed on PCBs made with the ASIG and ENIG (Electro-less Nickel Immersion Gold) processes at the same time in order to make a comparison with the current ind...

  6. Distribution of stable and radioactive metals among the biomass compartments of the macrophytes of the Yenisei river and estimation of the dose rate

    International Nuclear Information System (INIS)

    Zotina, T.A.; Bolsunovskiy, A.Ya.; Sukovatyj, A.G.

    2008-01-01

    Artificial radioactive metals are annually detected in the biomass of submerged macrophytes in the zone radioactive contamination of the Yenisei river. It has been shown by other authors that metals are not uniformly distributed in the biomass of aquatic macrophytes. In this research the distribution of stable and radioactive isotopes of metals was investigated among the biomass compartments of the macrophytes from the Yenisei river with chemical fractionation technique. Dose rates from the intra- and extracellular radionuclides have been estimated. According to the data obtained the distribution of metals among intra- and extracellular compartments was different. The major portion of Co, Mn and Zn was accumulated in the biomass in more mobile form, than Cr and Fe. Artificial radioactive isotopes were detected in the same compartments as stable metals. Essential portion of artificial radionuclides and stable metals was detected in the particles of seston, attached to the surface of the macrophytes.

  7. Further studies on melting of radioactive metallic wastes from the dismantling of nuclear installations

    International Nuclear Information System (INIS)

    Diepenau, H.; Seidler, M.

    1991-01-01

    Melting of radioactive waste metal from the dismantling/refurbishing of nuclear installations is an acceptable way for nuclear waste recycling. This material can be used for the casting of qualified products such as type A- and type B-waste containers. The results of the melting facility -TAURUS- were used to build the industrial scale melting facility -CARLA- at Siempelkamp. The test results and the longterm-behaviour of the facility showed that the licensing conditions can be respected. The radiation exposure of workers was in the range of the admissible limit for non-exposed people. The radiation exposure of the environment is far below the value of the German Radiation Protection Law. The activity distribution within the product is homogeneous, so that its activity can be measured exactly before it is sent back in the nuclear area. By melting waste copper it is possible to respect the specific limits for unrestricted reuse, whereas for brass the limit for conditioned reuse in the industrial field was reached. Radioactive carbon can only be bound in form of small graphite lamellas or nodules in the cast iron; i.e. radioactive carbon can only be added to the melt as crushed material. During the research programme 2000 Mg of waste steel was melted at industrial scale and mainly products such as shielding blocks and waste containers were produced. 12 figs., 27 tabs., 6 refs

  8. Joining of dissimilar metals by diffusion bonding. Titanium alloy with aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Akca, Enes [International Univ. of Sarajevo (Bosnia and Herzegovina). Research and Development Center; International Univ. of Sarajevo (Bosnia and Herzegovina). Dept. of Mechanical Engineering; Gursel, Ali [International Univ. of Sarajevo (Bosnia and Herzegovina). Dept. of Mechanical Engineering

    2017-05-01

    This paper presents a novel diffusion bonding process of commercially pure aluminum to Ti-6Al-4V alloy at 520, 560, 600 and 640 C for 30, 45 and 60 minutes under argon gas shielding without the use of interlayer. The approach is to overcome the difficulties in fusion welding of dissimilar alloys. Diffusion bonding is a dissimilar metal welding process which can be applied to the materials without causing any physical deformations. Processed samples were metallographically prepared, optically examined followed by Vickers microhardness test and subjected to tensile test in order to determine joint strength. Scanning electron microscopy and energy dispersive spectroscopy were used in this work to investigate the compositional changes across the joint region. Elemental composition of the region has been successfully defined between titanium alloy and aluminum. The maximum tensile strength was obtained from the samples bonded at the highest temperatures of 600 and 640 C.

  9. Low cycle fatigue lifetime of HIP bonded Bi-metallic first wall structures of fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hatano, Toshihisa; Sato, Satoshi; Furuya, Kazuyuki; Kuroda, Toshimasa; Enoeda, Mikio; Takatsu, Hideyuki [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Hashimoto, Toshiyuki; Kitamura, Kazunori

    1998-10-01

    A HIP bonded bi-metallic panel composed of a dispersion strengthened copper (DSCu) layer and type 316L stainless steel (SS316L) cooling pipes is the reference design of the ITER first wall. To examine the fatigue lifetime of the first wall panel under cyclic mechanical loads, low cycle fatigue tests of HIP bonded bi-metallic specimens made of SS316L and DSCu were conducted with the stress ratio of -1.0 and five nominal strain range conditions ranging from 0.2 to 1.0%. Elasto-plastic analysis has also been conducted to evaluate local strain ranges under the nominal strains applied. Initial cracks were observed at the inner surface of the SS316L cooling pipes for all of the specimens tested, which was confirmed by the elasto-plastic analysis that the maximum strains of the test specimens were developed at the same locations. It was found that the HIP bonded bi-metallic test specimens had a fatigue lifetime longer than that of the SS316L raw material obtained by round bar specimens. Similarly, the fatigue lifetime of the DSCu/SS316L HIP interface was also longer than the round bar test results for the HIP joints. From these results, it has been confirmed that the bi-metallic first wall panel with built-in cooling pipes made by HIP bonding has a sufficient fatigue lifetime in comparison with the raw fatigue data of the materials, which also suggests that the fatigue lifetime evaluation has an adequate margin against fracture if it follows the design fatigue curve based on the material fatigue data. (author)

  10. The adhesive bonding of beryllium structural components

    International Nuclear Information System (INIS)

    Fullerton-Batten, R.C.

    1977-01-01

    Where service conditions permit, adhesive bonding is a highly recommendable, reliable means of joining beryllium structural parts. Several important programs have successfully used adhesive bonding for joining structural and non-structural beryllium components. Adhesive bonding minimizes stress concentrations associated with other joining techniques and considerably improves fatigue resistance. In addition, no degradation of base metal properties occur. In many instances, structural joints can be fabricated more cheaply by adhesive bonding or in combination with adhesive bonding than by any other method used alone. An evaluation program on structural adhesive bonding of beryllium sheet components is described. A suitable surface pretreatment for beryllium adherends prior to bonding is given. Tensile shear strength and fatigue properties of FM 1000 and FM 123-5 adhesive bonded joints are reviewed and compared with data obtained from riveted joints of similar geometry. (author)

  11. Oxidation study on as-bonded intermetallic of copper wire–aluminum bond pad metallization for electronic microchip

    International Nuclear Information System (INIS)

    Joseph Sahaya Anand, T.; Yau, Chua Kok; Huat, Lim Boon

    2012-01-01

    In this work, influence of Copper free air ball (FAB) oxidation towards Intermetallic Compound (IMC) at Copper wire–Aluminum bond pad metallization (Cu/Al) is studied. Samples are synthesized with different Copper FAB oxidation condition by turning Forming Gas supply ON and OFF. Studies are performed using Optical Microscope (OM), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and line-scan Energy Dispersive X-ray (EDX). SEM result shows there is a cross-sectional position offset from center in sample synthesized with Forming Gas OFF. This is due to difficulty of determining the position of cross-section in manual grinding/polishing process and high occurrence rate of golf-clubbed shape of oxidized Copper ball bond. TEM inspection reveals that the Copper ball bond on sample synthesized with Forming Gas OFF is having intermediate oxidation. Besides, the presence of IMC at the bonding interface of Cu/Al for both samples is seen. TEM study shows voids form at the bonding interface of Forming Gas ON sample belongs to unbonded area; while that in Forming Gas OFF sample is due to volume shrinkage of IMC growth. Line-scan EDX shows the phases present in the interfaces of as-bonded samples are Al 4 Cu 9 (∼3 nm) for sample with Forming Gas ON and mixed CuAl and CuAl 2 (∼15 nm) for sample with Forming Gas OFF. Thicker IMC in sample with Forming Gas OFF is due to cross-section is positioned at high stress area that is close to edge of ball bond. Mechanical ball shear test shows that shear strength of sample with Forming Gas OFF is about 19% lower than that of sample with Forming Gas ON. Interface temperature is estimated at 437 °C for as-bonded sample with Forming Gas ON by using empirical parabolic law of volume diffusion. -- Highlights: ► 3 nm Al 4 Cu 9 are found in sample prepared with Forming Gas ON. ► 15 nm mixed CuAl + CuAl 2 are found in sample prepared with Forming Gas OFF. ► Voids are present at the bonding interfaces of both

  12. Oxidation study on as-bonded intermetallic of copper wire-aluminum bond pad metallization for electronic microchip

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Sahaya Anand, T., E-mail: anand@utem.edu.my [Faculty of Manufacturing Engineering, University Technical Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia); Yau, Chua Kok [Faculty of Manufacturing Engineering, University Technical Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia); University of Technical Malaysia Supported by Infineon Technology - Malaysia - Sdn. Bhd., Melaka (Malaysia); Huat, Lim Boon [Department of Innovation, Infineon Technology - Malaysia - Sdn. Bhd., FTZ Batu Berendam, 75350 Melaka (Malaysia)

    2012-10-15

    In this work, influence of Copper free air ball (FAB) oxidation towards Intermetallic Compound (IMC) at Copper wire-Aluminum bond pad metallization (Cu/Al) is studied. Samples are synthesized with different Copper FAB oxidation condition by turning Forming Gas supply ON and OFF. Studies are performed using Optical Microscope (OM), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and line-scan Energy Dispersive X-ray (EDX). SEM result shows there is a cross-sectional position offset from center in sample synthesized with Forming Gas OFF. This is due to difficulty of determining the position of cross-section in manual grinding/polishing process and high occurrence rate of golf-clubbed shape of oxidized Copper ball bond. TEM inspection reveals that the Copper ball bond on sample synthesized with Forming Gas OFF is having intermediate oxidation. Besides, the presence of IMC at the bonding interface of Cu/Al for both samples is seen. TEM study shows voids form at the bonding interface of Forming Gas ON sample belongs to unbonded area; while that in Forming Gas OFF sample is due to volume shrinkage of IMC growth. Line-scan EDX shows the phases present in the interfaces of as-bonded samples are Al{sub 4}Cu{sub 9} ({approx}3 nm) for sample with Forming Gas ON and mixed CuAl and CuAl{sub 2} ({approx}15 nm) for sample with Forming Gas OFF. Thicker IMC in sample with Forming Gas OFF is due to cross-section is positioned at high stress area that is close to edge of ball bond. Mechanical ball shear test shows that shear strength of sample with Forming Gas OFF is about 19% lower than that of sample with Forming Gas ON. Interface temperature is estimated at 437 Degree-Sign C for as-bonded sample with Forming Gas ON by using empirical parabolic law of volume diffusion. -- Highlights: Black-Right-Pointing-Pointer 3 nm Al{sub 4}Cu{sub 9} are found in sample prepared with Forming Gas ON. Black-Right-Pointing-Pointer 15 nm mixed CuAl + CuAl{sub 2} are found

  13. Influence of various surface-conditioning methods on the bond strength of metal brackets to ceramic surfaces

    NARCIS (Netherlands)

    Schmage, P; Nergiz, [No Value; Herrmann, W; Ozcan, M; Nergiz, Ibrahim; �zcan, Mutlu

    With the increase in adult orthodontic treatment comes the need to find a reliable method for bonding orthodontic brackets onto metal or ceramic crowns and fixed partial dentures. In this study, shear bond strength and surface roughness tests were used to examine the effect of 4 different surface

  14. Tunable differentiation of tertiary C-H bonds in intramolecular transition metal-catalyzed nitrene transfer reactions.

    Science.gov (United States)

    Corbin, Joshua R; Schomaker, Jennifer M

    2017-04-13

    Metal-catalyzed nitrene transfer reactions are an appealing and efficient strategy for accessing tetrasubstituted amines through the direct amination of tertiary C-H bonds. Traditional catalysts for these reactions rely on substrate control to achieve site-selectivity in the C-H amination event; thus, tunability is challenging when competing C-H bonds have similar steric or electronic features. One consequence of this fact is that the impact of catalyst identity on the selectivity in the competitive amination of tertiary C-H bonds has not been well-explored, despite the potential for progress towards predictable and catalyst-controlled C-N bond formation. In this communication, we report investigations into tunable and site-selective nitrene transfers between tertiary C(sp 3 )-H bonds using a combination of transition metal catalysts, including complexes based on Ag, Mn, Rh and Ru. Particularly striking was the ability to reverse the selectivity of nitrene transfer by a simple change in the identity of the N-donor ligand supporting the Ag(i) complex. The combination of our Ag(i) catalysts with known Rh 2 (ii) complexes expands the scope of successful catalyst-controlled intramolecular nitrene transfer and represents a promising springboard for the future development of intermolecular C-H N-group transfer methods.

  15. Influencing the bonding and assembly of a multiterminal molecule on a metal surface

    Energy Technology Data Exchange (ETDEWEB)

    Lukas, Maya; Doessel, Kerrin; Fink, Karin; Fuhr, Olaf [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, D-76021 Karlsruhe (Germany); DFG Center of Functional Nanostructures (CFN), D-76049 Karlsruhe (Germany); Schramm, Alexandrina; Stroh, Christophe [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, D-76021 Karlsruhe (Germany); Mayor, Marcel [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, D-76021 Karlsruhe (Germany); DFG Center of Functional Nanostructures (CFN), D-76049 Karlsruhe (Germany); University of Basel, Department of Chemistry, CH-4056 Basel (Switzerland); Loehneysen, Hilbert von [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, D-76021 Karlsruhe (Germany); DFG Center of Functional Nanostructures (CFN), D-76049 Karlsruhe (Germany); Karlsruhe Institute of Technology (KIT), Physics Institute and Institute for Solid State Physics, D-76049 Karlsruhe (Germany)

    2011-07-01

    The bond of a molecule to a metallic electrode is known to have a crucial influence on the molecular conductance. As electronic functionalities are integrated into molecules or several subunits are connected to a three-dimensional multiterminal molecule, it is not obvious that a ''well-known'' chemical linker group will lead to the bonding configuration known from simpler molecules. We investigated a series of tripodal molecules on metal surfaces by STM. The chemical linker groups and the complex connecting the three wire-units are varied. We find that the position of molecules on the surface is governed by a subtle balance of intermolecular and molecule-surface interactions, partly in strong contrast to expectations. This emphasizes the need to characterize the nature of molecule-electrode contacts along with the investigation of the electronic conductance.

  16. Beneficial reuse of US DOE Radioactive scrap metal

    Energy Technology Data Exchange (ETDEWEB)

    Motl, G.P.

    1995-01-19

    The US Department of Energy (DOE) has more than 2.5 million tons of radioactive scrap metal (RSM) that is either in inventory or expected to be generated over the next 25 years as major facilities within the weapons complex are decommissioned. Since much of this metal cannot be decontaminated easily, past practice has been to either retain this material in inventory or ship it to DOE disposal sites for burial. In an attempt to conserve natural resources and to avoid burial of this material at DOE disposal sites, options are now being explored to ``beneficially reuse`` this material. Under the beneficial reuse concept, RSM that cannot be decontaminated and free released is used in applications where the inherent contamination is not a detriment to its end use. This paper describes initiatives currently in progress in the United States that support the DOE beneficial reuse concept.

  17. Beneficial reuse of US DOE Radioactive scrap metal

    International Nuclear Information System (INIS)

    Motl, G.P.

    1995-01-01

    The US Department of Energy (DOE) has more than 2.5 million tons of radioactive scrap metal (RSM) that is either in inventory or expected to be generated over the next 25 years as major facilities within the weapons complex are decommissioned. Since much of this metal cannot be decontaminated easily, past practice has been to either retain this material in inventory or ship it to DOE disposal sites for burial. In an attempt to conserve natural resources and to avoid burial of this material at DOE disposal sites, options are now being explored to ''beneficially reuse'' this material. Under the beneficial reuse concept, RSM that cannot be decontaminated and free released is used in applications where the inherent contamination is not a detriment to its end use. This paper describes initiatives currently in progress in the United States that support the DOE beneficial reuse concept

  18. Study of casks shielded with heavy metal to transport highly radioactive substances

    International Nuclear Information System (INIS)

    Lucchesi, R.F.; Hara, D.H.S.; Martinez, L.G.; Mucsi, C.S.; Rossi, J.L.

    2014-01-01

    Nowadays, Brazil relies on casks produced abroad for transportation in its territory of substances that are sources of high radioactivity, especially the Mo-99. The product of the radioactive decay of the Mo-99 is the Tc-99m, which is used in nuclear medicine for administration to humans in the form of injectable radioactive drugs for the image diagnosis of numerous pathologies. This paper aims to study the existing casks in order to propose materials for the construction of the core part as shielding against gamma radiation. To this purpose, the existing literature on the subject was studied, as well as evaluation of existing and available casks. The study was focused on the core of which is made of heavy metals, especially depleted uranium for shielding the emitted radiation. (author)

  19. Radioactive labelling of peptidic hormones

    International Nuclear Information System (INIS)

    Fromageot, P.; Pradelles, P.; Morgat, J.L.; Levine, H.

    1976-01-01

    The labelling of peptidic hormones requires stability, specificity and sensitivity of the label. Introduction of a radioactive atome is one way to satisfy these criteria. Several processes have been described to prepare radioactive TRF: synthesis of the peptide with labelled aminoacids or introduction of the label into the hormone. In that approach, tritium can be substituted in the imidazole ring, via precursors activating the proper carbon. Monoiodo TRF leads essentially to tritium labelling of the 5 positions whereas monoazo TRF allows the preparation of 3 H TRF labelled in the 2 positions. Di-substituted TRF leads to labelling into the 2 and 5 carbons. Labelled analogs of TRF can be prepared with labelled iodine; further developments of peptide labelling, will be presented. In particular, the homolytic scission of the C-iodine, bond by photochemical activation. The nascent carbon radical can be stabilized by a tritiated scavenger. This approach eliminates the use of heavy metal catalysts

  20. Approach and issues toward development of risk-based release standards for radioactive scrap metal recycle and reuse

    International Nuclear Information System (INIS)

    Chen, S.Y.; Nieves, L.A.; Nabelssi, B.K.; LePoire, D.J.

    1994-01-01

    The decontamination and decommissioning of nuclear facilities is expected to generate large amounts of slightly radioactive scrap metal (RSM). It is likely that some of these materials will be suitable for recycling and reuse. The amount of scrap steel from DOE facilities, for instance, is estimated to be more than one million tons (Hertzler 1993). However, under current practice and without the establishment of acceptable recycling standards, the RSM would be disposed of primarily as radioactive low-level waste (LLW). In the United States, no specific standards have been developed for the unrestricted release of bulk contaminated materials. Although standards for unrestricted release of radioactive surface contamination (NRC 1974) have existed for about 20 years, the release of materials is not commonly practiced because of the lack of risk-based justifications. Recent guidance from international bodies (IAEA 1988) has established a basis for deriving risk-based release limits for radioactive materials. It is important, therefore, to evaluate the feasibility of recycling and associated issues necessary for the establishment of risk-based release limits for the radioactive metals

  1. Effect of various commercially available mouthrinses on shear bond strength of orthodontic metal brackets: an in vitro study.

    Science.gov (United States)

    Meeran, Nazeer Ahmed; George, Ashwin Mathew

    2013-01-01

    Alcohol is known to degrade and dissolve the bisphenol A glycidyl methacrylate present in the composite resin. The effect of alcohol containing mouthrinses on the shear bond strength of orthodontic metal brackets bonded with composite resin has not been verified until date and is the purpose of this study. The aims and objectives of the present study were to evaluate (1) Whether there is a significant difference in the shear bond strength of metal orthodontic brackets after the 1 year (12 h) and 2 years simulation (24 h) of mouth rinsing with 4 different commercially available mouthrinses (2 alcoholic and 2 alcohol-free mouthrinses) when compared to the control. (2) Whether alcohol containing mouthrinses have more adverse effect on the shear bond strength when compared with alcohol-free mouthrinses. (3) To assess the site of bond failure using adhesive remnant index. Experimental - laboratory based. A total of 100 upper premolars extracted for orthodontic purpose were collected immediately after extraction, cleared soft-tissue debris and blood and immediately stored in distilled water with 0.1% thymol crystals added to inhibit bacterial growth. Two alcohol containing mouthrinses and two alcohol-free mouthrinses were used and the bonded teeth were placed in the mouthrinses for a stipulated period of time (1 year simulation and 2 years simulation) and shear bond strength were tested using Lloyd Universal Testing Machine. The data were analyzed using analysis of variance and paired samples t-test. After the 1 year and 2 years simulation time, samples stored in alcohol containing mouthrinses showed lower bond strength (P orthodontic brackets bonded with composite resin (Transbond XT in the present study), more when compared with alcohol-free mouthrinses. It is, therefore, highly advisable to avoid alcohol containing mouthrinses in patients undergoing orthodontic treatment and use alcohol-free mouthrinses as adjuncts to regular oral hygiene procedures for maintaining

  2. Magnetic behavior in heterometallic one-dimensional chains or octanuclear complex regularly aligned with metal-metal bonds as -Rh-Rh-Pt-Cu-Pt

    Science.gov (United States)

    Uemura, Kazuhiro

    2018-06-01

    Heterometallic one-dimensional chains, [{Rh2(O2CCH3)4}{Pt2Cu(piam)4(NH3)4}]n(PF6)2n (1 and 2, piam = pivalamidate) and [{Rh2(O2CCH3)4}{Pt2Cu(piam)4(NH3)4}2](CF3CO2)2(ClO4)2·2H2O (3), are paramagnetic one-dimensional chains or octanuclear complexes that are either aligned as -Rh-Rh-Pt-Cu-Pt- (1 and 2) or as Pt-Cu-Pt-Rh-Rh-Pt-Cu-Pt (3) with metal-metal bonds. Compounds 1-3 have rare structures, from the standpoint of that the paramagnetic species of Cu atoms are linked by direct metal-metal bonds. Magnetic susceptibility measurements for 1-3 performed at temperatures of 2 K-300 K indicated that the unpaired electrons localize in the Cu 3dx2-y2 orbitals, where S = 1/2 Cu(II) atoms are weakly antiferromagnetically coupled with J = -0.35 cm-1 (1), -0.47 cm-1 (2), and -0.45 cm-1 (3).

  3. Effects of at-home and in-office bleaching agents on the shear bond strength of metal, ceramic, and composite brackets to enamel.

    Science.gov (United States)

    Rahul, M; Kumar, P Anil; Nair, Amal S; Mathew, Shino; Amaladas, Antony Shijoy; Ommen, Anna

    2017-01-01

    This study aimed to evaluate the effects of at-home and in-office bleaching on the shear bond strength (SBS) of metal, ceramic, and composite orthodontic brackets and to compare their SBSs. A total of 96 human lower premolar teeth were used for this study. Six teeth were used for scanning electron microscopic study while the remaining ninety were divided into three equal groups. Each group was further subdivided into three subgroups with ten samples each. Three protocols were used. In the at-home bleaching group (n = 30), opalescence non-PF (potassium nitrate and fluoride) bleaching agent (10% carbamide peroxide) was applied onto the teeth daily for 14 days and left for 8 h each day. Teeth in the in-office group (n = 30) were treated twice in consecutive days with Opalescence boost PF (40% hydrogen peroxide). After bleaching, the specimens were stored in distilled water for 1 day before bonding. SBS testing was performed on all teeth using Instron universal testing machine. Analysis of variance indicated a significant difference (P brackets in control group (Ib) and minimum was shown by composite brackets of in-office bleached group (IIIc). The results showed that at-home bleaching did not affect the SBS significantly whereas in-office bleaching reduced SBS of metal, ceramic, and composite brackets significantly. It is preferable to use metal or ceramic brackets than composite brackets for bonding 24 h after bleaching.

  4. Introduction of a cation in aqueous solution by electrolytic dissolution of metal. Applications to the decontamination of radioactive effluents

    International Nuclear Information System (INIS)

    Gauchon, Jean-Paul

    1979-01-01

    This research thesis aims at comparing results obtained in chemical decontamination of radioactive effluents with a metallic cation introduced by metal electro-dissolution or by dose addition. After an overview of methods used for the purification of radioactive effluents and a more precise presentation of chemical co-precipitation, the author reports preliminary tests of the application of chemical co-precipitation to the decontamination of radioactive effluents, reports the analysis of iron, zinc and copper behaviour in aqueous environment by means of thermodynamic diagrams and current-voltage curves. He reports the design and use of two electro-dissolution sets, and the application of copper electrolytic dissolution to the elimination of ruthenium in radioactive effluents. He finally addresses the purification treatment of effluents of nuclear reactors

  5. Phase stability, physical properties of rhenium diboride under high pressure and the effect of metallic bonding on its hardness

    International Nuclear Information System (INIS)

    Zhong, Ming-Min; Kuang, Xiao-Yu; Wang, Zhen-Hua; Shao, Peng; Ding, Li-Ping; Huang, Xiao-Fen

    2013-01-01

    Highlights: •The transition pressure P t between the ReB 2 –ReB 2 and MoB 2 –ReB 2 phases is firstly determinate. •The single-bonded B–B feather remains in ReB 2 compounds. •A semiempirical method to evaluate the hardness of crystals with partial metallic bond is presented. •The large hardness (39.1 GPa) of ReB 2 –ReB 2 indicate that it is a superhard material. •The zigzag interconnected B–Re and B–B covalent bonds underlie the ultraincompressibilities. -- Abstract: Using first-principles calculations, the elastic constants, thermodynamic property and structural phase transition of rhenium diboride under pressure are investigated by means of the pseudopotential plane-waves method, as well as the effect of metallic bond on its hardness. Eight candidate structures of known transition-metal compounds are chosen to probe for rhenium diboride ReB 2 . The calculated lattice parameters are consistent with the experimental and theoretical values. Based on the third order Birch–Murnaghan equation of states, the transition pressure P t between the ReB 2 –ReB 2 and MoB 2 –ReB 2 phases is firstly determinate. Elastic constants, shear modulus, Young’s modulus, Poisson’s ratio and Debye temperature are derived. The single-bonded B–B feather remains in ReB 2 compounds. Furthermore, according to Mulliken overlap population analysis, a semiempirical method to evaluate the hardness of multicomponent crystals with partial metallic bond is presented. Both strong covalency and a zigzag topology of interconnected bonds underlie the ultraincompressibilities. In addition, the superior performance and large hardness (39.1 GPa) of ReB 2 –ReB 2 indicate that it is a superhard material

  6. C-N Bond Activation and Ring Opening of a Saturated N-Heterocyclic Carbene by Lateral Alkali-Metal-Mediated Metalation.

    Science.gov (United States)

    Hernán-Gómez, Alberto; Kennedy, Alan R; Hevia, Eva

    2017-06-01

    Combining alkali-metal-mediated metalation (AMMM) and N-heterocyclic carbene (NHC) chemistry, a novel C-N bond activation and ring-opening process is described for these increasingly important NHC molecules, which are generally considered robust ancillary ligands. Here, mechanistic investigations on reactions of saturated NHC SIMes (SIMes=[:C{N(2,4,6-Me 3 C 6 H 2 )CH 2 } 2 ]) with Group 1 alkyl bases suggest this destructive process is triggered by lateral metalation of the carbene. Exploiting co-complexation and trans-metal-trapping strategies with lower polarity organometallic reagents (Mg(CH 2 SiMe 3 ) 2 and Al(TMP)iBu 2 ), key intermediates in this process have been isolated and structurally defined. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A Mononuclear Non-Heme Manganese(IV)-Oxo Complex Binding Redox-Inactive Metal Ions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Junying; Lee, Yong-Min; Davis, Katherine M.; Wu, Xiujuan; Seo, Mi Sook; Cho, Kyung-Bin; Yoon, Heejung; Park, Young Jun; Fukuzumi, Shunichi; Pushkar, Yulia N.; Nam, Wonwoo [Ewha; (Purdue); (Osaka)

    2013-05-29

    Redox-inactive metal ions play pivotal roles in regulating the reactivities of high-valent metal–oxo species in a variety of enzymatic and chemical reactions. A mononuclear non-heme Mn(IV)–oxo complex bearing a pentadentate N5 ligand has been synthesized and used in the synthesis of a Mn(IV)–oxo complex binding scandium ions. The Mn(IV)–oxo complexes were characterized with various spectroscopic methods. The reactivities of the Mn(IV)–oxo complex are markedly influenced by binding of Sc3+ ions in oxidation reactions, such as a ~2200-fold increase in the rate of oxidation of thioanisole (i.e., oxygen atom transfer) but a ~180-fold decrease in the rate of C–H bond activation of 1,4-cyclohexadiene (i.e., hydrogen atom transfer). The present results provide the first example of a non-heme Mn(IV)–oxo complex binding redox-inactive metal ions that shows a contrasting effect of the redox-inactive metal ions on the reactivities of metal–oxo species in the oxygen atom transfer and hydrogen atom transfer reactions.

  8. Preliminary assessment of metal-porcelain bonding strength of CoCrW alloy after 3 wt.% Cu addition

    International Nuclear Information System (INIS)

    Lu, Yanjin; Zhao, Chaoqian; Ren, Ling; Guo, Sai; Gan, Yiliang; Yang, Chunguang; Wu, Songquan; Lin, Junjie; Huang, Tingting; Yang, Ke; Lin, Jinxin

    2016-01-01

    In this work, a novel Cu-bearing CoCrW alloy fabricated by selective laser melting for dental application has been studied. For its successful application, the bonding strength of metal-porcelain is essential to be systematically investigated. Therefore, the aim of this study was to evaluate the metal-porcelain bonding strength of CoCrWCu alloy by three-point bending test, meanwhile the Ni-free CoCrW alloy was used as control. The oxygen content was investigated by an elemental analyzer; X-ray photoelectron spectroscopy (XPS) was used to analyze the surface chemical composition of CoCrW based alloy after preoxidation treatment; the fracture mode was investigated by X-ray energy spectrum analysis (EDS) and scanning electron microscope (SEM). Result from the oxygen content analysis showed that the content of oxygen dramatically increased after the Cu addition. And the XPS suggested that Co-oxidation, Cr_2O_3, CrO_2, WO_3, Cu_2O and CuO existed on the preoxidated surface of the CoCrWCu alloy; the three-point bending test showed that the bonding strength of the CoCrWCu alloy was 43.32 MPa, which was lower than that of the CoCrW group of 47.65 MPa. However, the average metal-porcelain bonding strength is significantly higher than the minimum value in the ISO 9693 standard. Results from the SEM images and EDS indicated that the fracture mode of CoCrWCu-porcelain was mixed between cohesive and adhesive. Based on the results obtained in this study, it can be indicated that the Cu-bearing CoCrW alloy fabricated by the selective laser melting is a promising candidate for use in dental application. - Highlights: • The bonding strength of metal-porcelain was slightly decreased with Cu addition; • Cu not only led to promote the diffusion of O and W element but also inhibited the diffusivity of Co in the outward direction; • The changed oxidation behavior resulted in lowering the bonding strength;

  9. Preliminary assessment of metal-porcelain bonding strength of CoCrW alloy after 3 wt.% Cu addition

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yanjin; Zhao, Chaoqian [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155Yangqiao Road West, Fuzhou (China); Ren, Ling [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang (China); Guo, Sai; Gan, Yiliang [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155Yangqiao Road West, Fuzhou (China); Yang, Chunguang [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang (China); Wu, Songquan; Lin, Junjie; Huang, Tingting [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155Yangqiao Road West, Fuzhou (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang (China); Lin, Jinxin, E-mail: franklin@fjirsm.ac.cn [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155Yangqiao Road West, Fuzhou (China)

    2016-06-01

    In this work, a novel Cu-bearing CoCrW alloy fabricated by selective laser melting for dental application has been studied. For its successful application, the bonding strength of metal-porcelain is essential to be systematically investigated. Therefore, the aim of this study was to evaluate the metal-porcelain bonding strength of CoCrWCu alloy by three-point bending test, meanwhile the Ni-free CoCrW alloy was used as control. The oxygen content was investigated by an elemental analyzer; X-ray photoelectron spectroscopy (XPS) was used to analyze the surface chemical composition of CoCrW based alloy after preoxidation treatment; the fracture mode was investigated by X-ray energy spectrum analysis (EDS) and scanning electron microscope (SEM). Result from the oxygen content analysis showed that the content of oxygen dramatically increased after the Cu addition. And the XPS suggested that Co-oxidation, Cr{sub 2}O{sub 3}, CrO{sub 2}, WO{sub 3}, Cu{sub 2}O and CuO existed on the preoxidated surface of the CoCrWCu alloy; the three-point bending test showed that the bonding strength of the CoCrWCu alloy was 43.32 MPa, which was lower than that of the CoCrW group of 47.65 MPa. However, the average metal-porcelain bonding strength is significantly higher than the minimum value in the ISO 9693 standard. Results from the SEM images and EDS indicated that the fracture mode of CoCrWCu-porcelain was mixed between cohesive and adhesive. Based on the results obtained in this study, it can be indicated that the Cu-bearing CoCrW alloy fabricated by the selective laser melting is a promising candidate for use in dental application. - Highlights: • The bonding strength of metal-porcelain was slightly decreased with Cu addition; • Cu not only led to promote the diffusion of O and W element but also inhibited the diffusivity of Co in the outward direction; • The changed oxidation behavior resulted in lowering the bonding strength;.

  10. Maternal bonding styles in smokers and non-smokers: a comparative study

    OpenAIRE

    Csala, Iren; Elemery, Monika; Martinovszky, Fruzsina; Dome, Peter; Dome, Balazs; Faludi, Gabor; Sandor, Imola; Gyorffy, Zsuzsa; Birkas, Emma; Lazary, Judit

    2016-01-01

    Background Parental bonding has been implicated in smoking behavior, and the quality of maternal bonding (MB) has been associated with poor mental health and substance use. However, little is known about the association of MB and the smoking of the offspring. Methods In our study, 129 smokers and 610 non-smoker medical students completed the parental bonding instrument, which measures MB along two dimensions: care and overprotection. Four categories can be created by high and low scores on ca...

  11. A Discovery of Strong Metal-Support Bonding in Nanoengineered Au-Fe3O4 Dumbbell-like Nanoparticles by in Situ Transmission Electron Microscopy.

    Science.gov (United States)

    Han, Chang Wan; Choksi, Tej; Milligan, Cory; Majumdar, Paulami; Manto, Michael; Cui, Yanran; Sang, Xiahan; Unocic, Raymond R; Zemlyanov, Dmitry; Wang, Chao; Ribeiro, Fabio H; Greeley, Jeffrey; Ortalan, Volkan

    2017-08-09

    The strength of metal-support bonding in heterogeneous catalysts determines their thermal stability, therefore, a tremendous amount of effort has been expended to understand metal-support interactions. Herein, we report the discovery of an anomalous "strong metal-support bonding" between gold nanoparticles and "nano-engineered" Fe 3 O 4 substrates by in situ microscopy. During in situ vacuum annealing of Au-Fe 3 O 4 dumbbell-like nanoparticles, synthesized by the epitaxial growth of nano-Fe 3 O 4 on Au nanoparticles, the gold nanoparticles transform into the gold thin films and wet the surface of nano-Fe 3 O 4 , as the surface reduction of nano-Fe 3 O 4 proceeds. This phenomenon results from a unique coupling of the size-and shape-dependent high surface reducibility of nano-Fe 3 O 4 and the extremely strong adhesion between Au and the reduced Fe 3 O 4 . This strong metal-support bonding reveals the significance of controlling the metal oxide support size and morphology for optimizing metal-support bonding and ultimately for the development of improved catalysts and functional nanostructures.

  12. Studies of hyperfine magnetic fields in transition metals by radioactive ion implantation

    International Nuclear Information System (INIS)

    Kawase, Yoichi; Uehara, Shin-ichi; Nasu, Saburo; Ni Xinbo.

    1994-01-01

    In order to investigate hyperfine magnetic fields in transition metals by a time-differential perturbed angular correlation (TDPAC) technique, radioactive probes of 140 Cs obtained by KUR-ISOL have been implanted on transition metals of Fe, Ni and Co. Lamor precessions of 140 Ce used as a probe nucleus have been observed clearly and the hyperfine fields have been determined precisely corresponding to implanted sites in host metal. The irradiation effects caused by implantation have been examined by annealing the irradiated specimen at about 723 K. Some of the Lamor precessions have disappeared by the annealing. Discussions have been made on the occupied sites after implantation and the recovery process of induced damages by annealing. (author)

  13. Survey on non-nuclear radioactive waste; Kartlaeggning av radioaktivt avfall fraan icke kaernteknisk verksamhet

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-11-01

    On request from the Swedish Radiation Protection Authority, the Swedish government has in May 2002 set up a non-standing committee for non-nuclear radioactive waste. The objective was to elaborate proposals for a national system for the management of all types of non-nuclear radioactive wastes with special consideration of inter alia the polluter pays principle and the responsibility of the producers. The committee will deliver its proposals to the government 1 December 2003. SSI has assisted the committee to the necessary extent to fulfill the investigation. This report is a summery of SSI's background material concerning non-nuclear radioactive waste in Sweden.

  14. Alkali Metal Cation versus Proton and Methyl Cation Affinities: Structure and Bonding Mechanism.

    Science.gov (United States)

    Boughlala, Zakaria; Fonseca Guerra, Célia; Bickelhaupt, F Matthias

    2016-06-01

    We have analyzed the structure and bonding of gas-phase Cl-X and [HCl-X](+) complexes for X(+)= H(+), CH3 (+), Li(+), and Na(+), using relativistic density functional theory (DFT). We wish to establish a quantitative trend in affinities of the anionic and neutral Lewis bases Cl(-) and HCl for the various cations. The Cl-X bond becomes longer and weaker along X(+) = H(+), CH3 (+), Li(+), and Na(+). Our main purpose is to understand the heterolytic bonding mechanism behind the intrinsic (i.e., in the absence of solvent) alkali metal cation affinities (AMCA) and how this compares with and differs from those of the proton affinity (PA) and methyl cation affinity (MCA). Our analyses are based on Kohn-Sham molecular orbital (KS-MO) theory in combination with a quantitative energy decomposition analysis (EDA) that pinpoints the importance of the different features in the bonding mechanism. Orbital overlap appears to play an important role in determining the trend in cation affinities.

  15. The influence of size and structure of metal orthodontic bracket base on bond strength on tooth enamel

    Directory of Open Access Journals (Sweden)

    Mitić Vladimir

    2009-01-01

    Full Text Available Introduction. The factors which may influence the bond strength of the applied orthodontic brackets on the tooth surface are the size and structure of the bracket base. Objective. The aim of the paper was to investigate the influence of size and shape of different types of brackets on bond strength on the enamel and analyze the remaining quality of adhesive material on the tooth surface after debonding of orthodontic brackets (adhesive remnant index - ARI. Methods. In this study, three types of metal brackets of different sizes and shapes of Dentaurum manufacturer were used (Utratrimm, Equilibrium 2, Discovery, Dentaurum, Inspringen, Germany. The brackets were applied onto the middle part of the anatomic crowns of buccal surfaces of 30 premolars extracted for orthodontic reasons. In addition, the pre-treatment of teeth by 37% orthophosphoric acid and adhesive material System1+ (Dentaurum, Germany were used. Results. The mean value of the bonded brackets bond strength of Discovery type after debonding was 8.67±0.32 MPa, while the value of the bonded brackets bond strength of Equilibrium 2 type amounted to 8.62±0.22 MPa. The value of the bonded brackets bond strength of Ultratrimm type after debonding was 8.22±0.49 MPa. There were no statistical differences in the values of bond strength regarding all three groups of the investigated orthodontic brackets (F=4.56; p<0.05. Conclusion. The base size and design of metal orthodontic brackets did not play a significant role in bond strength, while the values of ARI index were identical in all three investigated groups.

  16. Controlling the Outcome of Melting Radioactive Sources in Scrap Metal: from Exclusion, Exemption and Clearance towards a 'Codex Metallarius'

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, A.J., E-mail: agonzale@sede.arn.gov.ar [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina)

    2011-07-15

    Orphan radiation sources have been inadvertently incorporated into scrap metal and traces of radioactive residues have appeared in finished metal products causing public anxiety, despair in industry and governmental concern. The international principles of exclusion, exemption and clearance can be used to tackle this problem. They are described in detail, as they are becoming universally established for defining the scope of radiation protection regulations. However, notwithstanding the relevance of these principles, the paper suggests a straightforward professional consensus for discontinuing radiological control of commodities with minute traces of radioactive residues. The consensus should unambiguously specify a generic activity concentration in inedible commodities, including metals, below which radiological control may be effectively relinquished. A subsequent legally binding intergovernmental undertaking could resolve the current regulatory ambiguity, facilitate commercial exchange and ensure adequate public protection. For metals, it might take the form of a 'Codex Metallarius' (similar to the existing Codex Alimentarius for edible commodities) establishing a generic level of radiological acceptability for finished metal products. Furthermore, it is proposed that there should be an international convention to prevent radioactive sources becoming orphaned from regulatory control and then inadvertently appearing in trash and scrap. (author)

  17. EPA's Radioactive Source Program

    International Nuclear Information System (INIS)

    Kopsick, D.

    2004-01-01

    The US EPA is the lead Federal agency for emergency responses to unknown radiological materials, not licensed, owned or operated by a Federal agency or an Agreement state (Federal Radiological Emergency Response Plan, 1996). The purpose of EPA's clean materials programme is to keep unwanted and unregulated radioactive material out of the public domain. This is achieved by finding and securing lost sources, maintaining control of existing sources and preventing future losses. The focus is on both, domestic and international fronts. The domestic program concentrates on securing lost sources, preventing future losses, alternative technologies like tagging of radioactive sources in commerce, pilot radioactive source roundup, training programs, scrap metal and metal processing facilities, the demolition industry, product stewardship and alternatives to radioactive devices (fewer radioactive source devices means fewer orphan sources). The international program consists of securing lost sources, preventing future losses, radiation monitoring of scrap metal at ports and the international scrap metal monitoring protocol

  18. Oxidative addition of C--H bonds in organic molecules to transition metal centers

    International Nuclear Information System (INIS)

    Bergman, R.G.

    1989-04-01

    Alkanes are among the most chemically inert organic molecules. They are reactive toward a limited range of reagents, such as highly energetic free radicals and strongly electrophilic and oxidizing species. This low reactivity is a consequence of the C--H bond energies in most saturated hydrocarbons. These values range from 90 to 98 kcal/mole for primary and secondary C--H bonds; in methane, the main constituent of natural gas, the C--H bond energy is 104 kcal/mole. This makes methane one of the most common but least reactive organic molecules in nature. This report briefly discusses the search for metal complexes capable of undergoing the C--H oxidative addition process allowing alkane chemistry to be more selective than that available using free radical reagents. 14 refs

  19. Comparison of Shear Bond Strength of RMGI and Composite Resin for Orthodontic Bracket Bonding

    Science.gov (United States)

    Yassaei, Soghra; Davari, Abdolrahim; Goldani Moghadam, Mahjobeh; Kamaei, Ahmad

    2014-01-01

    Objective: The aim of this study was to compare the shear bond strength (SBS) of resin modified glass ionomer (RMGI) and composite resin for bonding metal and ceramic brackets. Materials and Methods: Eighty-eight human premolars extracted for orthodontic purposes were divided into 4 groups (n=22). In groups 1 and 2, 22 metal and ceramic brackets were bonded using composite resin (Transbond XT), respectively. Twenty-two metal and ceramic brackets in groups 3 and 4, respectively were bonded using RMGI (Fuji Ortho LC, Japan). After photo polymerization, the teeth were stored in water and thermocycled (500 cycles between 5° and 55°). The SBS value of each sample was determined using a Universal Testing Machine. The amount of residual adhesive remaining on each tooth was evaluated under a stereomicroscope. Statistical analyses were done using two-way ANOVA. Results: RMGI bonded brackets had significantly lower SBS value compared to composite resin bonded groups. No statistically significant difference was observed between metal and ceramic brackets bonded with either the RMGI or composite resin. The comparison of the adhesive remnant index (ARI) scores between the groups indicated that the bracket failure mode was significantly different among groups (Porthodontic bonding purposes; however the provided SBS is still within the clinically acceptable range. PMID:25628663

  20. Composite interlayer for diffusion bonding

    International Nuclear Information System (INIS)

    1976-01-01

    A ductile interlayer is described, which is useful for transient liquid phase diffusion bonding of metallic articles; the interlayer consisting of a melting point depressant and a plurality of ductile lamellae which are free from carbides, aluminides and borides. The composition and fabrication of the lamellae, and the process for bonding the metallic articles, depend on the composition of the metals to be bonded, and are exemplified in the specification. (U.K.)

  1. Strength of Al and Al-Mg/alumina bonds prepared using ultrahigh vacuum diffusion bonding

    International Nuclear Information System (INIS)

    King, W.E.; Campbell, G.H.; Wien, W.L.; Stoner, S.L.

    1994-01-01

    The authors have measured the cross-breaking strength of Al and Al-Mg alloys bonded with alumina. Diffusion bonding of Al and Al-Mg alloys requires significantly more bonding time than previously thought to obtain complete bonding. In contrast to previous diffusion bonding studies, fracture morphologies are similar to those obtained in bonds formed by liquid phase reaction; i.e., bonds are as strong or stronger than the ceramic; and fracture tends to propagate in the metal for pure Al and near the interface in the ceramic for the alloys. There are indications that the fracture morphology depends on Mg content and therefore on plasticity in the metal

  2. High-temperature, high-pressure bonding of nested tubular metallic components

    International Nuclear Information System (INIS)

    Quinby, T.C.

    1980-01-01

    This invention is a tool for effecting high-temperature, high compression bonding between the confronting faces of nested, tubular, metallic components. In a typical application, the tool is used to produce tubular target assemblies for irradiation in nuclear reactors or particle accelerators, the target assembly comprising a uranium foil and an aluminum-alloy substrate. The tool preferably is composed throughout of graphite. It comprises a tubular restraining member in which a mechanically expandable tubular core is mounted to form an annulus with the member. The components to be bonded are mounted in nested relation in the annulus. The expandable core is formed of individually movable, axially elongated segments whose outer faces cooperatively define a cylindrical pressing surface and whose inner faces cooperatively define two opposed, inwardly tapered, axial bores. Tapered rams extend respectively into the bores. The loaded tool is mounted in a conventional hot-press provided with evacuation means, heaters for maintaining its interior at bonding temperature, and hydraulic cylinders for maintaining a selected inwardly directed pressure on the tapered rams. With the hotpress evacuated and the loaded tool at the desired temperature, the cylinders are actuated to apply the selected pressure to the rams. The rams in turn expand the segmented core to maintain the nested components in compression against the restraining member. These conditions are maintained until the confronting faces of the nested components are joined in a continuous, uniform bond characterized by high thermal conductivity

  3. High-temperature, high-pressure bonding of nested tubular metallic components

    Science.gov (United States)

    Quinby, T.C.

    A tool is described for effecting high-temperature, high-compression bonding between the confronting faces of nested, tubular, metallic components. In a typical application, the tool is used to produce tubular target assemblies for irradiation in nuclear reactors or particle accelerators. The target assembly comprising a uranum foil and an aluninum-alloy substrate. The tool is composed of graphite. It comprises a tubular restraining member in which a mechanically expandable tubular core is mounted to form an annulus. The components to be bonded are mounted in nested relation in the annulus. The expandable core is formed of individually movable, axially elongated segments whose outer faces cooperatively define a cylindrical pressing surface and whose inner faces cooperatively define two opposed, inwardly tapered, axial bores. Tapered rams extend into the bores. The loaded tool is mounted in a conventional hot-press provided with evacuation means, heaters for maintaining its interior at bonding temperature, and hydraulic cylinders for maintaining a selected inwardly directed pressure on the tapered rams. With the hot-press evacuated and the loaded tool at the desired temperature, the cylinders are actuated to apply the selected pressure to the rams. The rams in turn expand the segmented core to maintain the nested components in compression against the restraining member. These conditions are maintained until the confronting faces of the nested components are joined in a continuous, uniform bond characterized by high thermal conductivity.

  4. Effect of chemical composition of Ni-Cr dental casting alloys on the bonding characterization between porcelain and metal.

    Science.gov (United States)

    Huang, H-H; Lin, M-C; Lee, T-H; Yang, H-W; Chen, F-L; Wu, S-C; Hsu, C-C

    2005-03-01

    The purpose of this study was to investigate the influence of chemical composition of Ni-Cr dental casting alloys on the bonding behaviour between porcelain and metal. A three-point bending test was used to measure the fracture load of alloy after porcelain firing. A scanning electron microscope, accompanied by an energy dispersion spectrometer, was used to analyse the morphology and chemical composition of the fracture surface. An X-ray photoelectron spectrometer and glow discharge spectrometer were used to identify the structure and cross-sectional chemical composition, respectively, of oxide layers on Ni-Cr alloys after heat treatment at 990 degrees C for 5 min. Results showed that the oxide layers formed on all Ni-Cr alloys contained mainly Cr2O3, NiO, and trace MoO3. The Ni-Cr alloy with a higher Cr content had a thicker oxide layer, as well as a weaker bonding behaviour of porcelain/metal interface. The presence of Al (as Al2O3) and Be (as BeO) on the oxide layer suppressed the growth of the oxide layer, leading to a better porcelain/metal bonding behaviour. However, the presence of a small amount of Ti (as TiO2) on the oxide layer did not have any influence on the bonding behaviour. The fracture propagated along the interface between the opaque porcelain and metal, and exhibited an adhesive type of fracture morphology.

  5. Application of the UNECE Recommendations on Monitoring and Response Procedures for Radioactive Scrap Metal: From Theory to Practice

    Energy Technology Data Exchange (ETDEWEB)

    Magold, M.; Mansourian-Stephenson, S., E-mail: stephanie.mansourian-stephenson@unece.org [United Nations Economic Council for Europe, Geneva (Switzerland)

    2011-07-15

    The work of the United Nations Economic Commission for Europe (UNECE) in addressing the issue of radioactive material appearing inadvertently in scrap metal is summarized. After hosting several meetings of national and international representatives of the scrap metal industry and radiation protection experts, the UNECE issued recommendations in 2006 on Monitoring and Response Procedures for Radioactive Scrap Metal. Since then, the UNECE has been exploring, with its Member States, the extent to which the Recommendations have been utilized - by means of a questionnaire. In this paper the results of the questionnaire are presented and, on the basis of the results of the questionnaire, conclusions are drawn and recommendations made for international action in this field for the future. (author)

  6. Effects of at-home and in-office bleaching agents on the shear bond strength of metal, ceramic, and composite brackets to enamel

    Directory of Open Access Journals (Sweden)

    M Rahul

    2017-01-01

    Full Text Available Aims and Objectives: This study aimed to evaluate the effects of at-home and in-office bleaching on the shear bond strength (SBS of metal, ceramic, and composite orthodontic brackets and to compare their SBSs. Subjects and Methods: A total of 96 human lower premolar teeth were used for this study. Six teeth were used for scanning electron microscopic study while the remaining ninety were divided into three equal groups. Each group was further subdivided into three subgroups with ten samples each. Three protocols were used. In the at-home bleaching group (n = 30, opalescence non-PF (potassium nitrate and fluoride bleaching agent (10% carbamide peroxide was applied onto the teeth daily for 14 days and left for 8 h each day. Teeth in the in-office group (n = 30 were treated twice in consecutive days with Opalescence boost PF (40% hydrogen peroxide. After bleaching, the specimens were stored in distilled water for 1 day before bonding. SBS testing was performed on all teeth using Instron universal testing machine. Results: Analysis of variance indicated a significant difference (P < 0.005 among the groups. Maximum SBS was shown by ceramic brackets in control group (Ib and minimum was shown by composite brackets of in-office bleached group (IIIc. Conclusions: The results showed that at-home bleaching did not affect the SBS significantly whereas in-office bleaching reduced SBS of metal, ceramic, and composite brackets significantly. It is preferable to use metal or ceramic brackets than composite brackets for bonding 24 h after bleaching.

  7. Method for decontaminating radiation metal waste

    International Nuclear Information System (INIS)

    Onuma, Tsutomu; Tanaka, Akio; Akimoto, Hidetoshi

    1991-01-01

    This report describes a method for decontaminating radiation metal waste characterized by the following properties: in order to decontaminate radiation metal waste of various shapes produced by facilities involved with radioactive substances, non-complex shapes are decontaminated by electropolishing the materials in a neutral saline solution. Complex shapes are chemically decontaminated by means of an acid solution containing permanganic acid or an alkaline solution and a mineral acid solution. After neutralizing the solutions used for chemical decontamination, the radioactive material is separated and removed. Further, in the decontamination method for radioactive metal waste, a supernatant liquid is reused as the electrolyte in electropolishing decontamination. Permanganic ions (MnO 4 - ) are reduced to manganese dioxide (MnO 2 ) and deposited prior to neutralizing the solution used for chemical decontamination. Once manganese dioxide (MnO 2 ) has been separated and removed, it is re-used as the electrolyte in electropolishing decontamination by means of a process identical to the separation process for radioactive substances. 3 figs

  8. Assessment of DOE radioactive scrap metal disposition options

    International Nuclear Information System (INIS)

    Butler, C.R.; Kasper, K.M.; Bossart, S.J.

    1997-01-01

    The DOE has amassed a large amount of radioactively-contaminated scrap metal (RSM) as a result of past operations and decontamination and decommissioning (D ampersand D) projects. The volume of RSM will continue to increase as a result of the D ampersand D of more than 6,000 surplus facilities and many of the 14,000 operating facilities in the DOE complex. RSM can be either surface contaminated or volumetrically contaminated, or both, with varying amounts of radioactivity. Several options exist for the disposition of this RSM, including disposal as radioactive waste, recycling by decontamination and free-release for unrestricted use, or recycling for restricted reuse inside a DOE controlled area. The DOE Office of Science and Technology (EM-50) has been actively investing in technology and strategy development in support of restricted-reuse RSM recycling for the past several years. This paper will assess the nature of the RSM recycling issue, review past investment by DOE to develop technologies and strategies to recycle RSM, and then discuss some recommendations concerning future investments in support of RSM management. Available information on the supply of RSM will be presented in Section II. The regulatory and policy framework concerning recycling RSM will be presented in Section III. A review of DOE investment in RSM recycling technology and current programs will be presented in Section IV. The current and projected industrial capacity will be described in Section V. And, finally, a discussion of issues and recommendations regarding DOE technology development interests in RSM recycling will be presented in Section VI and VII, respectively

  9. Assessment of DOE radioactive scrap metal disposition options

    Energy Technology Data Exchange (ETDEWEB)

    Butler, C.R.; Kasper, K.M. [Waste Policy Institute, Morgantown, WV (United States); Bossart, S.J. [Department of Energy, Morgantown, WV (United States)

    1997-02-01

    The DOE has amassed a large amount of radioactively-contaminated scrap metal (RSM) as a result of past operations and decontamination and decommissioning (D&D) projects. The volume of RSM will continue to increase as a result of the D&D of more than 6,000 surplus facilities and many of the 14,000 operating facilities in the DOE complex. RSM can be either surface contaminated or volumetrically contaminated, or both, with varying amounts of radioactivity. Several options exist for the disposition of this RSM, including disposal as radioactive waste, recycling by decontamination and free-release for unrestricted use, or recycling for restricted reuse inside a DOE controlled area. The DOE Office of Science and Technology (EM-50) has been actively investing in technology and strategy development in support of restricted-reuse RSM recycling for the past several years. This paper will assess the nature of the RSM recycling issue, review past investment by DOE to develop technologies and strategies to recycle RSM, and then discuss some recommendations concerning future investments in support of RSM management. Available information on the supply of RSM will be presented in Section II. The regulatory and policy framework concerning recycling RSM will be presented in Section III. A review of DOE investment in RSM recycling technology and current programs will be presented in Section IV. The current and projected industrial capacity will be described in Section V. And, finally, a discussion of issues and recommendations regarding DOE technology development interests in RSM recycling will be presented in Section VI and VII, respectively.

  10. Exploring 3D non-interpenetrated metal-organic framework with malonate-bridged Co(II) coordination polymer: structural elucidation and theoretical study

    Science.gov (United States)

    Hossain, Anowar; Mandal, Tripti; Mitra, Monojit; Manna, Prankrishna; Bauzá, Antonio; Frontera, Antonio; Seth, Saikat Kumar; Mukhopadhyay, Subrata

    2017-12-01

    A Co(II)-based coordination polymer with tetranuclear cobalt(II)-malonate cluster has been easily generated by aqueous medium self-assembly from Cobalt(II) chloride hexahydrate and malonic acid. The structure exhibits a non-interpenetrating, highly undulating two-dimensional (2D) bi-layer network with (4,4) topology. The crystal structure is composed of infinite interdigitated 2D metal-organic bi-layers which extended to an intricate 3D framework through the interbilayer hydrogen bonds. We have studied energetically by means of Density Functional Theory (DFT) calculations the H-bonding interactions that connect the 2D metal-organic bi-layers. The finite theoretical models have been used to compute conventional O‒H•••O and unconventional C‒H•••O interactions which plays a key role to build 3D architecture.

  11. Quadruple metal-metal bonds with strong donor ligands. Ultraviolet photoelectron spectroscopy of M{sub 2}(form){sub 4} (M = Cr, Mo, W; form = N,N{prime}-diphenylformamidinate)

    Energy Technology Data Exchange (ETDEWEB)

    Lichtenberger, D.L.; Lynn, M.A.; Chisholm, M.H.

    1999-12-29

    The He I photoelectron spectra of M{sub 2}(form){sub 4}(M = Cr, Mo, W; form - N,N{prime}-diphenylformamidinate) and Mo{sub 2}(cyform){sub 4} (cyform = N,N{prime}-dicyclohexylformamidinate) are presented. For comparison, the Ne I, He I, and He II photoelectron spectra of Mo{sub 2}(p-CH{sub 3}-form){sub 4} have also been obtained. The valence ionization features of these molecules are interpreted based on (1) the changes that occur with the metal and ligand substitutions, (2) the changes in photoelectron cross sections with excitation source, and (3) the changes from previously studied dimetal complexes. These photoelectron spectra are useful for revealing the effects that better electron donor ligands have on the valence electronic structure of M{sub 2}(L-L){sub 4} systems. Comparison with the He I spectra of the isoelectronic M{sub 2}(O{sub 2}CCH{sub 3}){sub 4} compounds is particularly revealing. Unlike with the more electron-withdrawing acetate ligand, several formamidinate-based ionizations derived from the nitrogen p{sub {pi}} orbitals occur among the metal-metal {sigma}, {pi}, and {delta} ionization bands. Although these formamidinate-based levels are close in energy to the occupied metal-metal bonds, they have little direct mixing interaction with them. The shift of the metal-metal bond ionizations to lower ionization energies for the formamidinate systems is primarily a consequence of the lower electronegativity of the ligand and the better {pi} donation into empty metal levels. The metal-metal {delta} orbital experiences some additional net bonding interaction with ligand orbitals of the same symmetry. Also, an additional bonding interaction from ligand-to-metal electron donation to the {delta}* orbital is identified. These spectra suggest a greater degree of metal-ligand covalency than in the related M{sub 2}(O{sub 2}CCH{sub 3}){sub 4} systems. Fenske-Hall molecular orbital and density functional (ADF) calculations agree with the assignment and

  12. Beneficial reuse `96: The fourth annual conference on the recycle and reuse of radioactive scrap metal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    From October 22-24, 1996 the University of Tennessee`s Energy, Environment and Resources Center and the Oak Ridge National Laboratory`s Center for Risk Management cosponsored Beneficial Reuse `96: The Fourth Annual Conference on the Recycle and Reuse of Radioactive Materials. Along with the traditional focus on radioactive scrap metals, this year`s conference included a wide range of topics pertaining to naturally occurring radioactive materials (NORM), and contaminated concrete reuse applications. As with previous Beneficial Reuse conferences, the primary goal of this year`s conference was to bring together stakeholder representatives for presentations, panel sessions and workshops on significant waste minimization issues surrounding the recycle and reuse of contaminated metals and other materials. A wide range of industry, government and public stakeholder groups participated in this year`s conference. An international presence from Canada, Germany and Korea helped to make Beneficial Reuse `96 a well-rounded affair. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  13. Development of 3D Visualization Technology for Medium-and Large-sized Radioactive Metal Wastes from Decommissioning Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A Rim; Park, Chan Hee; Lee, Jung Min; Kim, Rinah; Moon, Joo Hyun [Dongguk Univ., Gyongju (Korea, Republic of)

    2013-10-15

    The most important point of decommissioning nuclear facilities and nuclear power plants is to spend less money and do this process safely. In order to perform a better decommissioning nuclear facilities and nuclear power plants, a data base of radioactive waste from decontamination and decommissioning of nuclear facilities should be constructed. This data base is described herein, from the radioactive nuclide to the shape of component of nuclear facilities, and representative results of the status and analysis are presented. With the increase in number of nuclear facilities at the end of their useful life, the demand of decommissioning technologies will continue to grow for years to come. This analysis of medium-and large-sized radioactive metal wastes and 3D visualization technology of the radioactive metal wastes using the 3D-SCAN are planned to be used for constructing data bases. The data bases are expected to be used on development of the basic technologies for decommissioning nuclear facilities 4 session.

  14. Determination of naturally occurring radioactive materials and heavy metals in soil sample at industrial site area Gebeng, Pahang

    International Nuclear Information System (INIS)

    Muhammad Dzulkhairi Zulkifly

    2012-01-01

    A study has been carried out to determine the natural occurring radioactivity and heavy metal at an industrial site area Gebeng, Pahang. Sampling has been done in four different stations. This study has been carried out to determine the natural radioactivity ( 238 U, 232 Th, 40 K and 226 Ra) and heavy metal in soil sample. Natural radioactivities were determined using Gamma Spectrometry System, the heavy metal determination was done using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The result for analysis radioactivity concentration showed that Uranium-238 were in the range of 28.18 ± 4.78 Bq/ kg - 39.63 ± 4.79 Bq/ kg, while the concentration for Thorium-232 were in the range of 45.66 ± 5.49 Bq/ kg - 72.43 ± 9.47 Bq/ kg and for the Radium-226, the concentration were in the range of 8.93 ± 1.15 Bq/ kg - 14.29 ± 2.61 Bq/ kg. The concentration of Potassium-40 were in the range of 51.06 ± 12.18 Bq/ kg - 426.28 ± 137.70 Bq/ kg. 8 heavy metals have been found from the four different stations which are Al, Fe, V, Mn, Cr, Cu, Zn and Pb. Fe show the highest concentration among the other heavy metal while Pb show the lowest concentration. From this study, the specific activities of natural radionuclide in almost all stations were below the world limit average for soil, which is 35 Bq/ kg for Uranium-238 and Radium-226, while Thorium-232 and Potassium-40 were above the world limit average which are 30 Bq/ kg and 400 Bq/ kg. (author)

  15. Radioactive metallic stent for palliative treatment of esopageal cancer using Ho-166: an experimental study in canine model

    Energy Technology Data Exchange (ETDEWEB)

    Won, J. H.; Lee, J. D. [College of Medicine, Yonsei Univ., Seoul (Korea, Republic of); Wang, H. J.; Lim, H. E.; Park, C. H. [College of Medicine, Ajou Univ., Inchon (Korea, Republic of); Park, K. B. [KAERI, Taejon (Korea, Republic of)

    1999-07-01

    Self-expandable metallic stents are widely used for palliative treatment of esophageal cancer, however, tumor overgrowth and short survaval limit its long-term effect. The purpose of this study is to evaluate tissue response of the radiation effect in normal canine esophagus whether metallic stents coated with radioactive H-166 is effective for patients survival and preservation of stent patency longer than stents without radioactive materials. Ho-166 was incorporated within polyurethan (50{mu}) and coated over the outer surface of self-expandable metallic stents. Metallic stents with radioactivity of 4.0-7.8mCi (Group A), 1.0-1.8 mCi (Group B) and 0.5-0.7mCi (Group C) were placed in normal mid-esophagus in twelve dogs (Group A), five (Group B) and another five dogs (Group C) respectively, and the stents were tightly anchored by surgery to prevent migration. Estimated radiation dose was 6-70 Gy in Group C. Fluoroscopy confirmed stents in esophagus without migration for at least two days. The dogs were sacrified at two or three months later and histopathologic examinations were performed. In group A, mid-esophagus stricture, mucosal ulceration were found in all specimens. Severe fibrosis and degeneration of muscular propria, upper one half were found in three and complete fibrosis of esophageal wall, however, esophageal perforation was found but muscular layer was intact. In group C, no histological changes was demonstrated in three but submucosal inflammation with intact mucosa in two. In therapeutic dose level (group B), radioactive metallic stent showed radiation effect within esophageal wall without complication which might give additional palliative effect in malignant espohageal stricture.

  16. Cleavage of hydrogen by activation at a single non-metal centre - towards new hydrogen storage materials.

    Science.gov (United States)

    Grabowski, Sławomir J

    2015-05-28

    Molecular surfaces of non-metal species are often characterized by both positive and negative regions of electrostatic potential (EP) at a non-metal centre. This centre may activate molecular hydrogen which further leads to the addition reaction. The positive EP regions at the non-metal centres correspond to σ-holes; the latter sites are enhanced by electronegative substituents. This is why the following simple moieties; PFH2, SFH, AsFH2, SeFH, BrF3, PF(CH3)2 and AsF(CH3)2, were chosen here to analyze the H2 activation and its subsequent splitting at the P, As, S, Se and Br centres. Also the reverse H-H bond reforming process is analyzed. MP2/aug-cc-pVTZ calculations were performed for systems corresponding to different stages of these processes. The sulphur centre in the SFH moiety is analyzed in detail since the potential barrier height for the addition reaction for this species is the lowest of the moieties analyzed here. The results of calculations show that the SFH + H2 → SFH3 reaction in the gas phase is endothermic but it is exothermic in polar solvents.

  17. Recycling radioactive scrap metal by producing concrete shielding with steel granules

    International Nuclear Information System (INIS)

    Sappok, M.

    1996-01-01

    Siempelkamp foundry at Krefeld, Germany, developed a method for recycling radioactively contaminated steel from nuclear installations. The material is melted and used for producing shielding plates, containers, etc., on a cast-iron basis. Because the percentage of stainless steel has recently increased significantly, problems in the production of high-quality cast iron components have also grown. The metallurgy, the contents of nickel and chromium especially, does not allow for the recycling of stainless steel in a percentage to make this process economical. In Germany, the state of the art is to use shielded concrete containers for the transport of low active waste; this concrete is produced by using hematite as an additive for increasing shielding efficiency. The plan was to produce steel granules from radioactive scrap metal as a substitute for hematite in shielding concrete

  18. Contribution of nuclear analysis methods to the certification of BCR reference materials for non-metals in non-ferrous metals

    International Nuclear Information System (INIS)

    Pauwels, J.

    1979-01-01

    A number of reference materials for oxygen in different non-ferrous metals have been certified by BCR in the frame of a multidisciplinary Community project. The contribution of nuclear analysis methods is illustrated by several examples concerning the optimization of sample preparation techniques, the analysis of low and high oxygen non-ferrous metals and the extension of the program to other non-metals, especially nitrogen and carbon. (author)

  19. Non-Classical C–H···X Hydrogen Bonding and Its Role in Asymmetric Organocatalysis

    KAUST Repository

    Ajitha, Manjaly John; Huang, Kuo-Wei

    2016-01-01

    Non-classical hydrogen bonds (NCHBs) have attracted significant interest in the past decade particularly because of their important role in asymmetric catalytic systems. These weak interactions (< 4 kcal/mol) offer much flexibility1 Introduction2 Hydrogen Bonds (HBs) and Non-Classical Hydrogen Bonds (NCHBs)3 Early Developments in NCHBs4 Selected Examples of NCHBs in Organic Transformations5 Recent Examples of NCHBs in Enantioselective Reactions6 Conclusions and Outlook

  20. Management of radioactive waste from non-power applications in the Netherlands

    International Nuclear Information System (INIS)

    Codee, H.D.K.

    2002-01-01

    Radioactive waste results from the use of radioactive materials in hospitals, research establishments, industry and nuclear power plants. The Netherlands forms a good example of a country with a small and in the near future ending nuclear power programme. The radioactive waste from non-power applications therefore strongly influences the management choices. A dedicated waste management company COVRA, the Central Organisation for Radioactive Waste manages all radioactive waste produced in the Netherlands. For the small volume, but broad spectrum of radioactive waste, a management system was developed based on the principle to isolate, to control and to monitor the waste. Long-term storage is an important element in this management strategy. It is not seen as a 'wait and see' option but as a necessary step in the strategy that will ultimately result in final removal of the waste. Since the waste will remain retrievable for a long time new technologies and new disposal options can be applied when available and feasible. (author)

  1. Shear Bond Strength of Orthodontic Brackets Bonded to Zirconium Crowns.

    Science.gov (United States)

    Mehmeti, Blerim; Azizi, Bleron; Kelmendi, Jeta; Iljazi-Shahiqi, Donika; Alar, Željko; Anić-Milošević, Sandra

    2017-06-01

    An increasing demand for esthetic restorations has resulted in an increased use of all-ceramic restorations, such as zirconium. However, one of the challenges the orthodontist must be willing to face is how to increase bond strength between the brackets and various ceramic restorations.Bond strength can beaffected bybracket type, by the material that bracketsaremade of, and their base surface design or retention mode. ​: A im: of this study was to perform a comparative analysis of the shear bond strength (SBS) of metallic and ceramic orthodontic brackets bonded to all-zirconium ceramic surfaces used for prosthetic restorations, and also to evaluate the fracture mode of these two types of orthodontic brackets. Twenty samples/semi-crowns of all-zirconium ceramic, on which orthodontic brackets were bonded, 10 metallic and 10 ceramic polycrystalline brackets, were prepared for this research. SBS has been testedby Universal Testing Machine, with a load applied using a knife edged rod moving at a fixed rate of 1 mm/min, until failure occurred. The force required to debond the brackets was recorded in Newton, then SBS was calculated to MPa. In addition, the samples were analyzed using a digital camera magnifier to determine Adhesive Remnant Index (ARI). Statistical data were processed using t-test, and the level of significance was set at α = 0.05. Higher shear bond strength values were observed in metallic brackets bonded to zirconium crowns compared tothoseof ceramic brackets, with a significant difference. During the test, two of the ceramic brackets were partially or totally damaged. Metallic brackets, compared to ceramic polycrystalline brackets, seemed tocreate stronger adhesion with all-zirconium surfaces due to their better retention mode. Also, ceramic brackets showed higher fragility during debonding.

  2. Heavy metal and proximate composition associated with the ...

    African Journals Online (AJOL)

    User

    2014-05-08

    May 8, 2014 ... Levels of Cu, Mn, Pd and Zn in mushroom samples analysed were ... metal concentration in soil and fungal factors such as species ..... Levels of trace elements in the fruiting bodies ... Toxicity of non-radioactive heavy metals.

  3. Diffusion bonding techniques

    International Nuclear Information System (INIS)

    Peters, R.D.

    1978-01-01

    The applications of diffusion bonding at the General Electric Neutron Devices Department are briefly discussed, with particular emphasis on the gold/gold or gold/indium joints made between metallized alumina ceramic parts in the vacuum switch tube and the crystal resonator programs. Fixtures which use the differential expansion of dissimilar metals are described and compared to one that uses hydraulic pressure to apply the necessary bonding force

  4. Effect of Adhesive Type on the Shear Bond Strength of Metal Brackets to Two Ceramic Substrates

    Directory of Open Access Journals (Sweden)

    Mohammad Sadegh Ahmad Akhoundi

    2014-04-01

    Full Text Available Increased number of adult patients requesting orthodontic treatment result in bonding bracket to ceramic restorations more than before. The aim of this study was to evaluate and compare the shear bond strength of orthodontic brackets bonded to two types of ceramic bases with conventional orthodontic bonding resin and a new nano-filled composite resin.Twenty four feldespathic porcelain and 24 lithium disilicate ceramic disks were fabricated. All of the samples were conditioned by sandblasting, hydrofluoric acid and silane. Maxillary incisor metal brackets were bonded to half of the disks in each group by conventional orthodontic bonding resin and the other half bonded with a nano-filled composite. The samples then were thermocycled for 2000 cycle between 5-55° C. Shear bond strength was measured and the mode of failure was examined. Randomly selected samples were also evaluated by SEM.The lowest bond strength value was found infeldespathic ceramic bonded by nano-filled composite (p<0.05. There was not any statistically significant difference between other groups regarding bond strength. The mode of failure in the all groups except group 1 was cohesive and porcelain damages were detected.Since less damages to feldspathic porcelain was observed when the nano-filled composite was used to bond brackets, the use of nano-filled composite resins can be suggested for bonding brackets to feldspathic porcelain restorations.

  5. Search for a metallic dangling-bond wire on n-doped H-passivated semiconductor surfaces

    DEFF Research Database (Denmark)

    Engelund, Mads; Papior, Nick Rübner; Brandimarte, Pedro

    2016-01-01

    We have theoretically investigated the electronic properties of neutral and n-doped dangling bond (DB) quasi-one-dimensional structures (lines) in the Si(001):H and Ge(001):H substrates with the aim of identifying atomic-scale interconnects exhibiting metallic conduction for use in on-surface cir...

  6. Bonding and vibrational dynamics of a large π-conjugated molecule on a metal surface

    International Nuclear Information System (INIS)

    Temirov, R; Soubatch, S; Lassise, A; Tautz, F S

    2008-01-01

    The interplay between the substrate bonding of a large π-conjugated semiconductor molecule and the dynamical properties of the metal-organic interface is studied, employing the prototypical PTCDA/Ag(111) monolayer as an example. Both the coupling of molecular vibrations to the electron-hole-pair continuum of the metal surface and the inelastic scattering of tunnelling electrons by the molecular vibrations on their passage through the molecule are considered. The results of both types of experiment are consistent with the findings of measurements which probe the geometric and electronic structure of the adsorbate-substrate complex directly; generally speaking, they can be understood in the framework of standard theories for the electron-vibron coupling. While the experiments reported here in fact provide additional qualitative insights into the substrate bonding of our π-conjugated model molecule, their detailed quantitative understanding would require a full calculation of the dynamical interface properties, which is currently not available

  7. The metal-carbonyl bond in Ni(CO)4 and Fe(CO)5 - A clear-cut analysis

    Science.gov (United States)

    Bauschlicher, C. W., Jr.; Bagus, P. S.

    1984-01-01

    A detailed analysis of the metal-carbonyl bonding in Ni(CO)4 and Fe(CO)5, based on the newly developed contained space orbital variation (CSOV) method, is carried out to investigate various contributing factors to the interaction. Three aspects about the metal-CO interaction are presented: (1) the frozen orbital repulsion between the metal 4s and the CO is large; (2) the metal to CO pi donation is energetically much more important than the CO to the metal sigma donation; and (3) the metal 4s and 4p orbitals make a very small contribution (smaller than 0.4 eV) to the interaction energy; the largest portion of this contribution arises from the CO to metal sigma donation.

  8. Metal nanostructures for non-enzymatic glucose sensing

    International Nuclear Information System (INIS)

    Tee, Si Yin; Teng, Choon Peng; Ye, Enyi

    2017-01-01

    This review covers the recent development of metal nanostructures in electrochemical non-enzymatic glucose sensing. It highlights a variety of nanostructured materials including noble metals, other transition metals, bimetallic systems, and their hybrid with carbon-based nanomaterials. Particularly, attention is devoted to numerous approaches that have been implemented for improving the sensors performance by tailoring size, shape, composition, effective surface area, adsorption capability and electron-transfer properties. The correlation of the metal nanostructures to the glucose sensing performance is addressed with respect to the linear concentration range, sensitivity and detection limit. In overall, this review provides important clues from the recent scientific achievements of glucose sensor nanomaterials which will be essentially useful in designing better and more effective electrocatalysts for future electrochemical sensing industry. - Highlights: • Overview of recent development of metal nanostructures in electrochemical non-enzymatic glucose sensing. • Special attention is focussed on noble metals, other transition metals, bimetallic systems, and their hybrid with carbon-based nanomaterials. • Merits and limitations of various metal nanostructures in electrochemical non-enzymatic glucose sensing. • Strategies to improve the glucose sensing performance of metal nanostructures as electrocatalysts.

  9. Decontamination method for radioactively contaminated material

    International Nuclear Information System (INIS)

    Shoji, Yuichi; Mizuguchi, Hiroshi; Sakai, Hitoshi; Komatsubara, Masaru

    1998-01-01

    Radioactively contaminated materials having surfaces contaminated by radioactive materials are dissolved in molten salts by the effect of chlorine gas. The molten salts are brought into contact with a low melting point metal to reduce only radioactive materials by substitution reaction and recover them into the low melting point metal. Then, a low melting point metal phase and a molten salt phase are separated. The low melting point metal phase is evaporated to separate the radioactive materials from molten metals. On the other hand, other metal ions dissolved in the molten salts are reduced into metals by electrolysis at an anode and separated from the molten salts and served for regeneration. The low melting point metals are reutilized together with contaminated lead, after subjected to decontamination, generated from facilities such as nuclear power plant or lead for disposal. Since almost all materials including the molten salts and the molten metals can be enclosed, the amount of wastes can be reduced. In addition, radiation exposure of operators who handle them can be reduced. (T.M.)

  10. Influence of Temporary Cements on the Bond Strength of Self-Adhesive Cement to the Metal Coronal Substrate.

    Science.gov (United States)

    Peixoto, Raniel Fernandes; De Aguiar, Caio Rocha; Jacob, Eduardo Santana; Macedo, Ana Paula; De Mattos, Maria da Gloria Chiarello; Antunes, Rossana Pereira de Almeida

    2015-01-01

    This research evaluated the influence of temporary cements (eugenol-containing [EC] or eugenol-free [EF]) on the tensile strength of Ni-Cr copings fixed with self-adhesive resin cement to the metal coronal substrate. Thirty-six temporary crowns were divided into 4 groups (n=9) according to the temporary cements: Provy, Dentsply (eugenol-containing), Temp Cem, Vigodent (eugenol-containing), RelyX Temp NE, 3M ESPE (eugenol-free) and Temp Bond NE, Kerr Corp (eugenol-free). After 24 h of temporary cementation, tensile strength tests were performed in a universal testing machine at a crosshead speed of 0.5 mm/min and 1 kN (100 kgf) load cell. Afterwards, the cast metal cores were cleaned by scraping with curettes and air jet. Thirty-six Ni-Cr copings were cemented to the cast metal cores with self-adhesive resin cement (RelyX U200, 3M ESPE). Tensile strength tests were performed again. In the temporary cementation, Temp Bond NE (12.91 ± 2.54) and Temp Cem (12.22 ± 2.96) presented the highest values of tensile strength and were statistically similar to each other (p>0.05). Statistically significant difference (pcementation of Ni-Cr copings with self-adhesive resin cement. In addition, Temp Cem (120.68 ± 48.27) and RelyX Temp NE (103.04 ± 26.09) showed intermediate tensile strength values. In conclusion, the Provy eugenol-containing temporary cement was associated with the highest bond strength among the resin cements when Ni-Cr copings were cemented to cast metal cores. However, the eugenol cannot be considered a determining factor in increased bond strength, since the other tested cements (1 eugenol-containing and 2 eugenol-free) were similar.

  11. Evaluation of the electrorefining technique for the processing of radioactive scrap metals

    Energy Technology Data Exchange (ETDEWEB)

    Kessinger, G.F.

    1993-10-01

    This report presents the results of a literature study performed to identify applications of the electrorefining technique to the decontamination of radioactively-contaminated scrap metal (RSM). Upon the completion of the literature search and the review of numerous references, it was concluded that there were applications of this technique that were appropriate for the decontamination of some types of RSM, especially when the desired product is a pure elemental metal of high purity. It was also concluded that this technique was not well-suited for the decontamination of RSM stainless steels and other alloys, when it was desired that the metallurgical characteristics of the alloy be present in the decontaminated product.

  12. Evaluation of the electrorefining technique for the processing of radioactive scrap metals

    International Nuclear Information System (INIS)

    Kessinger, G.F.

    1993-10-01

    This report presents the results of a literature study performed to identify applications of the electrorefining technique to the decontamination of radioactively-contaminated scrap metal (RSM). Upon the completion of the literature search and the review of numerous references, it was concluded that there were applications of this technique that were appropriate for the decontamination of some types of RSM, especially when the desired product is a pure elemental metal of high purity. It was also concluded that this technique was not well-suited for the decontamination of RSM stainless steels and other alloys, when it was desired that the metallurgical characteristics of the alloy be present in the decontaminated product

  13. Optimal Performance Simulation of a Metal Fiber Filter for Capturing Radioactive Aerosols

    International Nuclear Information System (INIS)

    Lee, Seung Uk; Lee, Chan Hyun; Park, Min Chan; Lee, Jaek Eun

    2016-01-01

    In this study, the metal fiber filter used for removing radioactive aerosol is systematically dissected and studied in order to figure out the optimal design which can be applied to the actual operation conditions in nuclear heating, ventilation and air conditioning (HVAC) systems for particle collection. In order to derive the optimal design for metal fiber HEPA filter, a numerical model is developed and its results are compared to experimental data to test reliability. Moreover, sensitivity analysis is performed using important parameters to determine which parameters have large influence on the filter performance. Using the model developed in this study, optimal design parameters for pleated metal fiber filters are derived which include fiber diameter less than 4 μm, solidity larger than 0.2, filter thickness larger than 1 mm, and face velocity lower than 5 cm/s. With these conditions, the metal filter qualified for the HEPA filter standard which specified 99.97% efficiency in the 0.3 μm particle size range.

  14. Recovering method for high level radioactive material

    International Nuclear Information System (INIS)

    Fukui, Toshiki

    1998-01-01

    Offgas filters such as of nuclear fuel reprocessing facilities and waste control facilities are burnt, and the burnt ash is melted by heating, and then the molten ashes are brought into contact with a molten metal having a low boiling point to transfer the high level radioactive materials in the molten ash to the molten metal. Then, only the molten metal is evaporated and solidified by drying, and residual high level radioactive materials are recovered. According to this method, the high level radioactive materials in the molten ashes are transferred to the molten metal and separated by the difference of the distribution rate of the molten ash and the molten metal. Subsequently, the molten metal to which the high level radioactive materials are transferred is heated to a temperature higher than the boiling point so that only the molten metal is evaporated and dried to be removed, and residual high level radioactive materials are recovered easily. On the other hand, the molten ash from which the high level radioactive material is removed can be discarded as ordinary industrial wastes as they are. (T.M.)

  15. The application of metal cutting technologies in tasks performed in radioactive environments

    International Nuclear Information System (INIS)

    Fogle, R.F.; Younkins, R.M.

    1997-01-01

    The design and use of equipment to perform work in radioactive environments is uniquely challenging. Some tasks require that the equipment be operated by a person wearing a plastic suit or full face respirator and donning several pairs of rubber gloves. Other applications may require that the equipment be remotely controlled. Other important, design considerations include material compatibility, mixed waste issues, tolerance to ionizing radiation, size constraints and weight capacities. As always, there is the ''We need it ASAP'' design criteria. This paper describes four applications where different types of metal cutting technologies were used to successfully perform tasks in radioactive environments. The technologies include a plasma cutting torch, a grinder with an abrasive disk, a hydraulic shear, and a high pressure abrasive water jet cutter

  16. Interaction of amines with native aluminium oxide layers in non-aqueous environment: Application to the understanding of the formation of epoxy-amine/metal interphases

    International Nuclear Information System (INIS)

    Mercier, D.; Rouchaud, J.-C.; Barthes-Labrousse, M.-G.

    2008-01-01

    Interaction of propylamine (PA), 1,2-diaminoethane (DAE) or 3-aminomethyl-3,5,5-trimethylcyclohexylamine (isophorone diamine, IPDA) with native aluminium oxide layers in non-aqueous environment has been studied using time-resolved inductively coupled plasma optical emission spectroscopy (ICP-OES) and X-ray photoelectron spectroscopy (XPS). The formation of several surface complexes has been evidenced. Monodentate and bidentate metal-bond surface complexes (MBSC) result from interactions between the amine terminations of the molecule and aluminium cations by donation of the N lone electron pair to the metal ion (Lewis-like mechanism leading to O-Al...N bonds). Monodentate and bidentate hydrogen-bond surface complexes (HBSC) are due to interaction of the amino group with surface hydroxyl groups by protonation of the amine termination (Bronsted-like mechanism leading to the formation of Al-OH...N bonds) or interaction with carbonaceous contamination (C x O y H z ...N bonds). Diamines can also form mixed complexes with one amino group forming an O-Al...N bond and the other group forming an Al-OH...N or C x O y H z ...N bond. Al-OH...N and C x O y H z ...N bonds are less stable under vacuum than O-Al...N bonds, leading to partial desorption of the DAE molecules in vacuum and modification of the interaction modes. Only DAE and IPDA can lead to partial dissolution of the aluminium native (hydr)oxide films. A detailed mechanism of dissolution has been proposed based on the formation of mononuclear bidentate (chelate) MBSC by ligand exchange between the terminal η 1 -OH and bridged μ 2 -OH surface sites and the amino terminations of the molecule. The detachment of this complex from the surface is likely to be the precursor step to the formation of the interphase in epoxy-amine/metal systems

  17. Some reduced ternary and quaternary oxides of molybdenum. A family of compounds with strong metal-metal bonds

    International Nuclear Information System (INIS)

    Torardi, C.C.; McCarley, R.E.

    1981-01-01

    Several new, reduced ternary and quaternary oxides of molybdenum are reported, each containing molybdenum in an average oxidation state 2 sealed in Mo tubes held at 1100 0 C for ca. 7 days. Refinement of the substructure of the new compound Ba 0 62 Mo 4 O 6 was based on an orthorhombic cells, with a = 9.509(2), b = 9.825(2), c = 2.853(1) A, Z = 2 in space group Pbam; weak supercell reflections indicate the true structure has c = 8(2.853) A. The chief structural feature is closely related to that of NaMo 4 O 6 which consists of infinite chains of Mo 6 octahedral clusters fused on opposite edges, bridged on the outer edges by O atoms and crosslinked by Mo-O-Mo bonding to create four-sided tunnels in which the Ba 2+ ions are located. The structure of Ba 1 13 Mo 8 O 16 is triclinic, a = 7.311(1), b = 7.453(1), c = 5.726(1) A, α = 101.49(2), β = 99.60(2), γ = 89.31(2) 0 , Z = 1, space group P1. It is a low-symmetry, metal-metal bonded variant of the hollandite structure, in which two different infinite chains, built up from Mo 4 O 8 2- and Mo 4 O 8 0 26- cluster units, respectively, are interlinked via Mo-O-Mo bridge bonding to create again four-sided tunnels in which the Ba 2+ ions reside. Other compounds prepared and characterized by analyses and x-ray powder diffraction data are Pb/sub x/Mo 4 O 6 (x approx. 0.6), LiZn 2 Mo 3 O 8 , , CaMo 5 O 8 , K 2 Mo 12 O 19 , and Na 2 Mo 12 O 19

  18. The Effect of Artificial Aging on The Bond Strength of Heat-activated Acrylic Resin to Surface-treated Nickel-chromium-beryllium Alloy.

    Science.gov (United States)

    Al Jabbari, Youssef S; Zinelis, Spiros; Al Taweel, Sara M; Nagy, William W

    2016-01-01

    The debonding load of heat-activated polymethylmethacrylate (PMMA) denture base resin material to a nickel-chromium-beryllium (Ni-Cr-Be) alloy conditioned by three different surface treatments and utilizing two different commercial bonding systems was investigated. Denture resin (Lucitone-199) was bonded to Ni-Cr-Be alloy specimens treated with Metal Primer II, the Rocatec system with opaquer and the Rocatec system without opaquer. Denture base resin specimens bonded to non-treated sandblasted Ni-Cr-Be alloy were used as controls. Twenty samples for each treatment condition (80 specimens) were tested. The 80 specimens were divided into two categories, thermocycled and non-thermocycled, containing four groups of ten specimens each. The non-thermocycled specimens were tested after 48 hours' storage in room temperature water. The thermocycled specimens were tested after 2,000 cycles in 4°C and 55°C water baths. The debonding load was calculated in Newtons (N), and collected data were subjected by non parametric test Kruskal-Wallis One Way Analysis of Variance on Ranks and Dunn's post hoc test at the α = 0.05. The Metal Primer II and Rocatec system without opaquer groups produced significantly higher bond strengths (119.9 and 67.6 N), respectively, than did the sandblasted and Rocatec system with opaquer groups, where the bond strengths were 2.6 N and 0 N, respectively. The Metal Primer II was significantly different from all other groups (P<0.05). The bond strengths of all groups were significantly decreased (P<0.05) after thermocycling. Although thermocycling had a detrimental effect on the debonding load of all surface treatments tested, the Metal Primer II system provided higher values among all bonding systems tested, before and after thermocycling.

  19. Formation of metal-F bonds during frictional sliding : Influence of water and applied load

    NARCIS (Netherlands)

    Shen, J. T.; Pei, Y. T.; De Hosson, J. Th. M.

    2016-01-01

    Effects of water lubrication and applied load on the formation of PTFE transfer films and metal-F bonds during sliding when PTFE filled composites sliding against steel and Al2O3 are investigated. In water lubricated conditions, XPS analysis reveals that a thin layer of water molecules at the

  20. Development of HIP bonding procedure and mechanical properties of HIP bonded joints for reduced activation ferritic steel F-82H

    International Nuclear Information System (INIS)

    Oda, Masahiro; Kurasawa, Toshimasa; Kuroda, Toshimasa; Hatano, Toshihisa; Takatsu, Hideyuki

    1997-03-01

    Structural materials of blanket components in fusion DEMO reactors will receive a neutron wall load more than 3-5MW/m 2 as well as exposed by surface heat flux more than 0.5MW/m 2 . A reduced activation ferritic steel F-82H has been developed by JAERI in collaboration with NKK from viewpoints of resistance for high temperature and neutron loads and lower radioactivity. This study intends to obtain basic performance of F-82H to establish the fabrication procedure of the first wall and blanket box by using Hot Isostatic Pressing (HIP) bonding. Before HIP bonding tests, effects of heat treatment temperature and surface roughness on mechanical properties of joints were investigated in the heat treatment tests and diffusion bonding tests, respectively. From these results, the optimum HIP bonding conditions and the post heat treatment were selected. Using these conditions, the HIP bonding tests were carried out to evaluate HIP bondability and to obtain mechanical properties of the joints. Sufficient HIP bonding performance was obtained under the temperature of 1040degC, the compressive stress of 150MPa, the holding time of 2h, and the surface roughness ∼μ m. Mechanical properties of HIP bonded joints with these conditions were similar to those of as-received base metal. An oxide formation on the surface to be bonded would need to be avoided for sufficient bonding. The bonding ratio, Charpy impact value and fatigue performance of the joints strongly depended on the HIP conditions, especially temperature, while micro-structure, Vickers hardness and tensile properties had little dependence on the HIP temperature. The surface roughness strongly affected the bonding ratio and would be required to be in the level of a few μ m. In the HIP bonding test of the welded material, the once-melted surface could be jointed by the HIP bonding under the above-mentioned procedure. (J.P.N.)

  1. Worker exposures from recycling surface contaminated radioactive scrap metal

    International Nuclear Information System (INIS)

    Kluk, A.; Phillips, J.W.; Culp, J.

    1996-01-01

    Current DOE policy permits release from DOE control of real property with residual levels of surficial radioactive contamination if the contamination is below approved guidelines. If the material contains contamination that is evenly distributed throughout its volume (referred to as volumetric contamination), then Departmental approval for release must be obtained in advance. Several DOE sites presently recycle surface contaminated metal, although the quantities are small relative to the quantities of metal processed by typical mini-mills, hence the potential radiation exposures to mill workers from processing DOE metals and the public from the processed metal are at present also a very small fraction of their potential value. The exposures calculated in this analysis are based on 100% of the scrap metal being processed at the maximum contamination levels and are therefore assumed to be maximum values and not likely to occur in actual practice. This paper examines the relationship between the surface contamination limits established under DOE Order 5400.5, open-quotes Radiation Protection of the Public and the Environment,close quotes and radiation exposures to workers involved in the scrap metal recycling process. The analysis is limited to surficial contamination at or below the guideline levels established in DOE Order 5400.5 at the time of release. Workers involved in the melting and subsequent fabrication of products are not considered radiation workers (no requirements for monitoring) and must be considered members of the public. The majority of the exposures calculated in this analysis range from tenths of a millirem per year (mrem/yr) to less than 5 mrem/yr. The incremental risk of cancer associated with these exposures ranges from 10 -8 cancers per year to 10 -6 cancers per year

  2. Twisted Amides: From Obscurity to Broadly Useful Transition-Metal-Catalyzed Reactions by N-C Amide Bond Activation.

    Science.gov (United States)

    Liu, Chengwei; Szostak, Michal

    2017-05-29

    The concept of using amide bond distortion to modulate amidic resonance has been known for more than 75 years. Two classic twisted amides (bridged lactams) ingeniously designed and synthesized by Kirby and Stoltz to feature fully perpendicular amide bonds, and as a consequence emanate amino-ketone-like reactivity, are now routinely recognized in all organic chemistry textbooks. However, only recently the use of amide bond twist (distortion) has advanced to the general organic chemistry mainstream enabling a host of highly attractive N-C amide bond cross-coupling reactions of broad synthetic relevance. In this Minireview, we discuss recent progress in this area and present a detailed overview of the prominent role of amide bond destabilization as a driving force in the development of transition-metal-catalyzed cross-coupling reactions by N-C bond activation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Leakage of radioactive materials from particle accelerator facilities by non-radiation disasters like fire and flooding and its environmental impacts

    Science.gov (United States)

    Lee, A.; Jung, N. S.; Mokhtari Oranj, L.; Lee, H. S.

    2018-06-01

    The leakage of radioactive materials generated at particle accelerator facilities is one of the important issues in the view of radiation safety. In this study, fire and flooding at particle accelerator facilities were considered as the non-radiation disasters which result in the leakage of radioactive materials. To analyse the expected effects at each disaster, the case study on fired and flooded particle accelerator facilities was carried out with the property investigation of interesting materials presented in the accelerator tunnel and the activity estimation. Five major materials in the tunnel were investigated: dust, insulators, concrete, metals and paints. The activation levels on the concerned materials were calculated using several Monte Carlo codes (MCNPX 2.7+SP-FISPACT 2007, FLUKA 2011.4c and PHITS 2.64+DCHAIN-SP 2001). The impact weight to environment was estimated for the different beam particles (electron, proton, carbon and uranium) and the different beam energies (100, 430, 600 and 1000 MeV/nucleon). With the consideration of the leakage path of radioactive materials due to fire and flooding, the activation level of selected materials, and the impacts to the environment were evaluated. In the case of flooding, dust, concrete and metal were found as a considerable object. In the case of fire event, dust, insulator and paint were the major concerns. As expected, the influence of normal fire and flooding at electron accelerator facilities would be relatively low for both cases.

  4. National policy for control of radioactive sources and radioactive waste from non-power applications in Lithuania

    International Nuclear Information System (INIS)

    Klevinskas, G.; Mastauskas, A.

    2001-01-01

    According to the Law on Radiation Protection of the Republic of Lithuania (passed in 1999), the Radiation Protection Centre of the Ministry of Health is the regulatory authority responsible for the radiation protection of public and of workers using sources of ionizing radiation in Lithuania. One of its responsibilities is the control of radioactive sources from the beginning of their 'life cycle', when they are imported in, used, transported and placed as spent into the radioactive waste storage facilities. For the effective control of sources there is national authorization system (notification- registration-licensing) based on the international requirements and recommendations introduced, which also includes keeping and maintaining the Register of Sources, controlling and investigating events while illegally carrying on or in possession of radioactive material, decision making and performing the state radiation protection supervision and control of users of radioactive sources, controlling, within the limits of competence, the radioactive waste management activities in nuclear and non-nuclear power applications. According to the requirements set out in the Law on Radiation Protection and the Government Resolution 'On Establishment of the State Register of the Sources of Ionizing Radiation and Exposure of Workers' (1999) and supplementary legal acts, all licence-holders conducting their activities with sources of ionizing radiation have to present all necessary data to the State Register after annual inventory of sources, after installation of new sources, after decommissioning of sources, after disposal of spent sources, after finishing the activities with the generators of ionizing radiation. The information to the Radiation Protection Centre has to be presented every week from the Customs Department of the Ministry of Finance about all sources of ionizing radiation imported to or exported from Lithuania and the information about the companies performed these

  5. On the self-diffusion process in liquid metals and alloys by the radioactive tracer method

    International Nuclear Information System (INIS)

    Ganovici, L.

    1978-01-01

    A theoretical and experimental study of self-diffusion process in liquid metals and alloys is presented. There are only a few pure metals for which diffusion coefficients in a liquid state are known. The thesis aims at increasing the number of liquid metals for which diffusion coefficients are available, by determining these values for liquids: Cd, Tl, Sb and Te. The self-diffusion coefficients of Te in some tellurium based liquid alloys such as Tl 2 Te, PbTe and Bi 90 Te 10 were also determined. Self-diffusion coefficients have been measured using two radioactive tracer methods: a) the capillary-reservoir method; b) the semi-infinite capillary method. The self-diffusion coefficients were derived from the measured radioactive concentration profile, using the solutions of Fick's second law for appropriate initial and limit conditions. The temperature dependence study of self-diffusion coefficients in liquids Cd, Tl, Sb and Te, was used to check some theoretical models on the diffusion mechanism in metallic melts. The experimental diffusion data interpreted in terms of the Arrhenius type temperature dependence, was used to propose two simple empiric relations for determining self diffusion coefficients of group I liquid metals and for liquid semi-metals. It was established a marked decrease of self-diffusion coefficients of liquid Te close to the solidification temperature. The diffusivity of Te in liquid Tl 2 Te points to an important decrease close to the solidification temperature. A simplified model was proposed for the diffusion structural unit in this alloy and the hard sphere model for liquid metals was checked by comparing the theoretical and experimental self-diffusion coefficients. (author)

  6. In vitro analysis of shear bond strength and adhesive remnant index of different metal brackets

    Directory of Open Access Journals (Sweden)

    Fernanda de Souza Henkin

    Full Text Available ABSTRACT Introduction: There is a great variety of orthodontic brackets in the Brazilian market, and constantly evaluating them is critical for professionals to know their properties, so as to be able to choose which product best suits their clinical practice. Objectives: To evaluate the bond strength and the adhesive remnant index (ARI of different brands of metal brackets. Material and Methods: A total of 105 bovine incisors were used, and brackets of different brands were bonded to teeth. Seven different bracket brands were tested (MorelliTM, American OrthodonticsTM, TP OrthodonticsTM, Abzil-3MTM, OrthometricTM, TecnidentTM and UNIDENTM. Twenty-four hours after bonding, shear bond strength test was performed; and after debonding, the ARI was determined by using an optical microscope at a 10-fold increase. Results: Mean shear bond strength values ranged from 3.845 ± 3.997 (MorelliTM to 9.871 ± 5.106 MPa (TecnidentTM. The majority of the ARI index scores was 0 and 1. Conclusion: Among the evaluated brackets, the one with the lowest mean shear bond strength values was MorelliTM. General evaluation of groups indicated that a greater number of bond failure occurred at the enamel/adhesive interface.

  7. In vitro analysis of shear bond strength and adhesive remnant index of different metal brackets

    Science.gov (United States)

    Henkin, Fernanda de Souza; de Macêdo, Érika de Oliveira Dias; Santos, Karoline da Silva; Schwarzbach, Marília; Samuel, Susana Maria Werner; Mundstock, Karina Santos

    2016-01-01

    ABSTRACT Introduction: There is a great variety of orthodontic brackets in the Brazilian market, and constantly evaluating them is critical for professionals to know their properties, so as to be able to choose which product best suits their clinical practice. Objectives: To evaluate the bond strength and the adhesive remnant index (ARI) of different brands of metal brackets. Material and Methods: A total of 105 bovine incisors were used, and brackets of different brands were bonded to teeth. Seven different bracket brands were tested (MorelliTM, American OrthodonticsTM, TP OrthodonticsTM, Abzil-3MTM, OrthometricTM, TecnidentTM and UNIDENTM). Twenty-four hours after bonding, shear bond strength test was performed; and after debonding, the ARI was determined by using an optical microscope at a 10-fold increase. Results: Mean shear bond strength values ranged from 3.845 ± 3.997 (MorelliTM) to 9.871 ± 5.106 MPa (TecnidentTM). The majority of the ARI index scores was 0 and 1. Conclusion: Among the evaluated brackets, the one with the lowest mean shear bond strength values was MorelliTM. General evaluation of groups indicated that a greater number of bond failure occurred at the enamel/adhesive interface. PMID:28125142

  8. Reducing Uncontrolled Radioactive Sources through Tracking and Training: US Environmental Protection Agency Initiatives

    Energy Technology Data Exchange (ETDEWEB)

    Kopsick, D.A., E-mail: kopsick.deborah@epa.gov [US Environmental Protection Agency, Washington, DC (United States)

    2011-07-15

    The international metal processing industries are very concerned about the importation of scrap metal contaminated with radioactive materials. When radioactive sources fall out of regulatory control, improper handling can cause serious injury and death. There is no one way to address this problem and various US governmental and industry entities have developed radiation source control programmes that function within their authorities. The US Environmental Protection Agency's (EPA) mission is to protect public health and the environment. To ensure this protection, EPA's approach to orphan sources in scrap metal has focused on regaining control of lost sources and preventing future losses. EPA has accomplished this through a number of avenues including training development, product stewardship, identification of non-radiation source alternatives, physical tagging of sources, field testing of innovative radiation detection instrumentation and development of international best practices. In order to achieve its goal of enhanced control on contaminated scrap metal and orphaned radioactive sources, EPA has forged alliances with the metals industry, other Federal agencies, state governments and the IAEA. (author)

  9. Porous Hydrogen-Bonded Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Yi-Fei Han

    2017-02-01

    Full Text Available Ordered porous solid-state architectures constructed via non-covalent supramolecular self-assembly have attracted increasing interest due to their unique advantages and potential applications. Porous metal-coordination organic frameworks (MOFs are generated by the assembly of metal coordination centers and organic linkers. Compared to MOFs, porous hydrogen-bonded organic frameworks (HOFs are readily purified and recovered via simple recrystallization. However, due to lacking of sufficiently ability to orientate self-aggregation of building motifs in predictable manners, rational design and preparation of porous HOFs are still challenging. Herein, we summarize recent developments about porous HOFs and attempt to gain deeper insights into the design strategies of basic building motifs.

  10. Current bonding systems for resin-bonded restorations and fixed partial dentures made of silver–palladium–copper–gold alloy

    Directory of Open Access Journals (Sweden)

    Hideo Matsumura

    2011-02-01

    Full Text Available This review article describes about the bonding systems for noble metal alloys, bonding techniques of restorations and fixed partial dentures (FPDs made of Ag–Pd–Cu–Au alloys, and their clinical performance. Thione monomers, 6-(4-vinylbenzyl-n-propyl amino-1,3,5-triazine-2,4-dithione (VTD, 6-methacryloyloxyhexyl-2-thiouracil-5-carboxylate (MTU-6, and 10-methacryloxydecyl 6,8-dithiooctanoate (MDDT, has been proved effective for bonding noble metal alloys. An acrylic adhesive consists of the tri-n-butylborane (TBB initiator, methyl methacrylate (MMA monomer liquid with 5% 4-methacryloyloxyethyl trimellitate anhydride (4-META, and poly(methyl methacrylate (PMMA, is being used for bonding metallic restorations to abutment surfaces. Clinical performance of restorations and FPDs made of Ag–Pd–Cu–Au alloys is overall excellent when they are seated with the currently available noble metal bonding systems.

  11. Bond deformation paths and electronic instabilities of ultraincompressible transition metal diborides: Case study of OsB2 and IrB2

    Science.gov (United States)

    Zhang, R. F.; Legut, D.; Wen, X. D.; Veprek, S.; Rajan, K.; Lookman, T.; Mao, H. K.; Zhao, Y. S.

    2014-09-01

    The energetically most stable orthorhombic structure of OsB2 and IrB2 is dynamically stable for OsB2 but unstable for IrB2. Both diborides have substantially lower shear strength in their easy slip systems than their metal counterparts. This is attributed to an easy sliding facilitated by out-of-plane weakening of metallic Os-Os bonds in OsB2 and by an in-plane bond splitting instability in IrB2. A much higher shear resistance of Os-B and B-B bonds than Os-Os ones is found, suggesting that the strengthened Os-B and B-B bonds are responsible for hardness enhancement in OsB2. In contrast, an in-plane electronic instability in IrB2 limits its strength. The electronic structure of deformed diborides suggests that the electronic instabilities of 5d orbitals are their origin of different bond deformation paths. Neither IrB2 nor OsB2 can be intrinsically superhard.

  12. Access to the meta position of arenes through transition metal catalysed C-H bond functionalisation: a focus on metals other than palladium.

    Science.gov (United States)

    Mihai, Madalina T; Genov, Georgi R; Phipps, Robert J

    2018-01-02

    The elaboration of simple arenes in order to access more complex substitution patterns is a crucial endeavor for synthetic chemists, given the central role that aromatic rings play in all manner of important molecules. Classical methods are now routinely used alongside stoichiometric organometallic approaches and, most recently, transition metal catalysis in the range of methodologies that are available to elaborate arene C-H bonds. Regioselectivity is an important consideration when selecting a method and, of all those available, it is arguably those that target the meta position that are fewest in number. The rapid development of transition metal-catalysed C-H bond functionalisation over the last few decades has opened new possibilities for meta-selective C-H functionalisation through the diverse reactivity of transition metals and their compatibility with a wide range of directing groups. The pace of discovery of such processes has grown rapidly in the last five years in particular and it is the purpose of this review to examine these but in doing so to place the focus on metals other than palladium, the specific contributions of which have been very recently reviewed elsewhere. It is hoped this will serve to highlight to the reader the breadth of current strategies and mechanisms that have been used to tackle this challenge, which may inspire further progress in the field.

  13. Photo-assisted cyanation of transition metal nitrates coupled with room temperature C-C bond cleavage of acetonitrile.

    Science.gov (United States)

    Zou, Shihui; Li, Renhong; Kobayashi, Hisayoshi; Liu, Juanjuan; Fan, Jie

    2013-03-07

    It is a challenge to use acetonitrile as a cyanating agent because of the difficulty in cleaving its C-CN bond. Herein, we report a mild photo-assisted route to conduct the cyanation of transition metal nitrates using acetonitrile as the cyanating agent coupled with room-temperature C-C bond cleavage. DFT calculations and experimental observations suggest a radical-involved reaction mechanism, which excludes toxicity from free cyanide ions.

  14. Non radioactive precursor import into chloroplasts

    International Nuclear Information System (INIS)

    Lombardo, V.A.; Ottado, J.

    2003-01-01

    Full text: Eukaryotic cells have a subcellular organization based on organelles. Protein transport to these organelles is quantitatively important because the majority of cellular proteins are codified in nuclear genes and then delivered to their final destination. Most of the chloroplast proteins are translated on cytoplasmic ribosomes as larger precursors with an amino terminal transit peptide that is necessary and sufficient to direct the precursor to the chloroplast. Once inside the organelle the transit peptide is cleaved and the mature protein adopts its folded form. In this work we developed a system for the expression and purification of the pea ferredoxin-NADP + reductase precursor (preFNR) for its import into chloroplasts in non radioactive conditions. We constructed a preFNR fused in its carboxy terminus to a 6 histidines peptide (preFNR-6xHis) that allows its identification using a commercial specific antibody. The construction was expressed, purified, processed and precipitated, rendering a soluble and active preFNR-6xHis that was used in binding and import into chloroplasts experiments. The reisolated chloroplasts were analyzed by SDS-PAGE, electro-blotting and revealed by immuno-detection using either colorimetric or chemiluminescent reactive. We performed also import experiments labeling preFNR and preFNR-6xHis with radioactive methionine as controls. We conclude that preFNR-6xHis is bound and imported into chloroplasts as the wild type preFNR and that both colorimetric or chemiluminescent detection methods are useful to avoid the manipulation of radioactive material. (author)

  15. Polymeric radioactive waste disposal containers: an investigation into the application of polymers vice metals to house low and intermediate level radioactive waste

    International Nuclear Information System (INIS)

    Walker, M.W.; Bonin, H.W.; Bui, V.T.

    2001-01-01

    The research carried out in Canada in the design of containers for the disposal of radioactive waste has focussed on spent nuclear fuel, even though the quantities of other currently stored radioactive wastes are substantially greater. Research carried out at the Royal Military College of Canada on the effects of mixed fields of radiation on high polymer adhesives and composite materials has shown that some polymers are quite resistant to radiation and could well serve in the fabrication of radioactive waste disposal containers. The purpose of this research was to determine if thermoplastic polymers could be used as superior materials to replace metals in the application of low and intermediate level radioactive waste disposal containers. Polymers have the advantage that they do not corrode like metals. The experimental methods, used in this research, focused on the effects of radiation on the properties of the materials. Polypropylene, Nylon 66, Polycarbonate, and Polyurethane, with and without glass fibre reinforcement, were studied. The method involved irradiating injection moulded tensile test bars with the SLOWPOKE-2 reactor to accumulate doses ranging from 0.5 to 3.0 MGy. To determine the effects of the various doses on the materials, density, tensile, differential scanning calorimetry, and scanning electron microscopy tests were run. For each polymer, the test methods supported predominant crosslinking of polymeric chains severed by radiation. This was evident from observed changes in the mechanical and chemical properties of the polymers, typical of crosslinking. The mechanical changes included an overall increase in density, an increase in Young's modulus, a decrease in strain at break, and only minor changes in strength. The chemical changes included differences in chemical transition temperatures characteristic of radiation damage. The test methods also evidenced minor radiation degradation at the fibre/matrix interfaces in the glass fibre reinforced

  16. The estimation of H-bond and metal ion-ligand interaction energies in the G-Quadruplex ⋯ Mn+ complexes

    Science.gov (United States)

    Mostafavi, Najmeh; Ebrahimi, Ali

    2018-06-01

    In order to characterize various interactions in the G-quadruplex ⋯ Mn+ (G-Q ⋯ Mn+) complexes, the individual H-bond (EHB) and metal ion-ligand interaction (EMO) energies have been estimated using the electron charge densities (ρs) calculated at the X ⋯ H (X = N and O) and Mn+ ⋯ O (Mn+ is an alkaline, alkaline earth and transition metal ion) bond critical points (BCPs) obtained from the atoms in molecules (AIM) analysis. The estimated values of EMO and EHB were evaluated using the structural parameters, results of natural bond orbital analysis (NBO), aromaticity indexes and atomic charges. The EMO value increase with the ratio of ionic charge to radius, e/r, where a linear correlation is observed between EMO and e/r (R = 0.97). Meaningful relationships are also observed between EMO and indexes used for aromaticity estimation. The ENH value is higher than EOH in the complexes; this is in complete agreement with the trend of N⋯Hsbnd N and O⋯Hsbnd N angles, the E (2) value of nN → σ*NH and nO → σ*NH interactions and the difference between the natural charges on the H-bonded atom and the hydrogen atom of guanine (Δq). In general, the O1MO2 angle becomes closer to 109.5° with the increase in EMO and decrease in EHB in the presence of metal ion.

  17. Solidification method of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Tsutomu; Chino, Koichi; Sasahira, Akira; Ikeda, Takashi

    1992-07-24

    Metal solidification material can completely seal radioactive wastes and it has high sealing effect even if a trace amount of evaporation should be caused. In addition, the solidification operation can be conducted safely by using a metal having a melting point of lower than that of the decomposition temperature of the radioactive wastes. Further, the radioactive wastes having a possibility of evaporation and scattering along with oxidation can be solidified in a stable form by putting the solidification system under an inert gas atmosphere. Then in the present invention, a metal is selected as a solidification material for radioactive wastes, and a metal, for example, lead or tin having a melting point of lower than that of the decomposition temperature of the wastes is used in order to prevent the release of the wastes during the solidification operation. Radioactive wastes which are unstable in air and scatter easily, for example, Ru or the like can be converted into a stable solidification product by conducting the solidification processing under an inert gas atmosphere. (T.M.).

  18. Assessment of recycling or disposal alternatives for radioactive scrap metal

    International Nuclear Information System (INIS)

    Murphie, W.E.; Lilly, M.J. III; Nieves, L.A.; Chen, S.Y.

    1993-01-01

    The US Department of Energy, Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, is participating with the Organization for Economic Cooperation and Development in providing analytical support for evaluation of management alternatives for radioactive scrap metals. For this purpose, Argonne National Laboratory is assessing environmental and societal implications of recycling and/or disposal process alternatives. This effort includes development of inventory estimates for contaminated metals; investigation of scrap metal market structure, processes, and trends; assessment of radiological and nonradiological effects of recycling; and investigation of social and political factors that are likely to either facilitate or constrain recycling opportunities. In addition, the option of scrap metal disposal is being assessed, especially with regard to the environmental and health impacts of replacing these metals if they are withdrawn from use. This paper focuses on the radiological risk assessment and dose estimate sensitivity analysis. A open-quotes tieredclose quotes concept for release categories, with and without use restrictions, is being developed. Within the tiers, different release limits may be indicated for specific groupings of radionuclides. Depending on the spectrum of radionuclides that are present and the level of residual activity after decontamination and/or smelting, the scrap may be released for unrestricted public use or for specified public uses, or it may be recycled within the nuclear industry. The conservatism of baseline dose estimates is examined, and both more realistic parameter values and protective measures for workers are suggested

  19. A real time evaluation technique of fatigue damage in adhesively bonded composite metal joints

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Hyun; Kwon Oh Yang [Dept. of Mechanical Engineering, Inje Univesity, Kimhae (Korea, Republic of)

    1999-05-15

    One of the problems for practical use of fiber-reinforced composite material is performance degradation by fatigue damage in the joints. The study is to develope a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between quality of bonded parts and AUP's. We obtained a curve showing the correlation between AUP's calculated from signals obtained from single-lap and double-lap joints and the degree of fatigue damage at bonding interface during fatigue test. The curve is an analogy to the one showing stiffness reduction(E/E{sub 0}) of polymer matrix composites by fatigue damage. From those facts, it is possible to predict degree of damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joint whereas amplitude and AUP1 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the real structure.

  20. A real time evaluation technique of fatigue damage in adhesively bonded composite metal joints

    International Nuclear Information System (INIS)

    Kim, Tae Hyun; Kwon Oh Yang

    1999-01-01

    One of the problems for practical use of fiber-reinforced composite material is performance degradation by fatigue damage in the joints. The study is to develope a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between quality of bonded parts and AUP's. We obtained a curve showing the correlation between AUP's calculated from signals obtained from single-lap and double-lap joints and the degree of fatigue damage at bonding interface during fatigue test. The curve is an analogy to the one showing stiffness reduction(E/E 0 ) of polymer matrix composites by fatigue damage. From those facts, it is possible to predict degree of damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joint whereas amplitude and AUP1 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the real structure.

  1. Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Sulena; Hedberg, Jonas, E-mail: jhed@kth.se; Blomberg, Eva [KTH Royal Institute of Technology, Division of Surface and Corrosion Science, Department of Chemistry (Sweden); Wold, Susanna [KTH Royal Institute of Technology, Division of Applied Physical Chemistry, Department of Chemistry (Sweden); Odnevall Wallinder, Inger [KTH Royal Institute of Technology, Division of Surface and Corrosion Science, Department of Chemistry (Sweden)

    2016-09-15

    In this study, we elucidate the effect of different sonication techniques to efficiently prepare particle dispersions from selected non-functionalized NPs (Cu, Al, Mn, ZnO), and corresponding consequences on the particle dose, surface charge and release of metals. Probe sonication was shown to be the preferred method for dispersing non-inert, non-functionalized metal NPs (Cu, Mn, Al). However, rapid sedimentation during sonication resulted in differences between the real and the administered doses in the order of 30–80 % when sonicating in 1 and 2.56 g/L NP stock solutions. After sonication, extensive agglomeration of the metal NPs resulted in rapid sedimentation of all particles. DLVO calculations supported these findings, showing the strong van der Waals forces of the metal NPs to result in significant NP agglomeration. Metal release from the metal NPs was slightly increased by increased sonication. The addition of a stabilizing agent (bovine serum albumin) had an accelerating effect on the release of metals in sonicated solutions. For Cu and Mn NPs, the extent of particle dissolution increased from <1.6 to ~5 % after sonication for 15 min. A prolonged sonication time (3–15 min) had negligible effects on the zeta potential of the studied NPs. In all, it is shown that it is of utmost importance to carefully investigate how sonication influences the physico-chemical properties of dispersed metal NPs. This should be considered in nanotoxicology investigations of metal NPs.Graphical Abstract.

  2. Radiation physics of non-metallic crystals. Volume III, No. 3. Radiatsionnaya fizika nemetallicheskikh kristallov. Tom III, Chast 3

    Energy Technology Data Exchange (ETDEWEB)

    Konozenko, I D [ed.

    1971-01-01

    Separate articles are presented on studies concerned with radiation phenomena in ionic crystals and dielectrics. Topics include energy losses and electron escape in monocrystals, non-stationary acoustic absorption in monocrystals, charge behavior in radioactive dielectrics, the effects of electron radiation on the electroconductivity of organic dielectrics, adsorption of polyatomic gases in adsorbents, catalysis and inhibition of solid inorganic salt radiolysis, and the formation of additive paramagnetic centers in gamma radiated salts of alkaline earth metals. 253 references.

  3. Inorganic material candidates to replace a metallic or non-metallic concrete containment liner

    Energy Technology Data Exchange (ETDEWEB)

    Seni, C [Atomic Energy of Canada Ltd., Mississauga, ON (Canada); Mills, R H [Toronto Univ., ON (Canada)

    1994-12-31

    Internal liners for concrete containments are generally organic or metals. They have to be able to inhibit radioactive leakage into the environment, but both types have shortcomings. The results of research to develop a better liner are published in this paper. The best material found was fibre-reinforced mortar. Of the fibres considered, steel, kevlar and glass were the best, each showing advantages and disadvantages. 1 ref., 9 tabs., 12 figs.

  4. Inorganic material candidates to replace a metallic or non-metallic concrete containment liner

    International Nuclear Information System (INIS)

    Seni, C.; Mills, R.H.

    1994-01-01

    Internal liners for concrete containments are generally organic or metals. They have to be able to inhibit radioactive leakage into the environment, but both types have shortcomings. The results of research to develop a better liner are published in this paper. The best material found was fibre-reinforced mortar. Of the fibres considered, steel, kevlar and glass were the best, each showing advantages and disadvantages. 1 ref., 9 tabs., 12 figs

  5. Development of radioactive stent using HANARO research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Bae; Kim, J. R.; Han, H. S.; Shin, B. C.; Kim, Y. M.; Cho, U. K.; Han, K. H.; Park, W. W.; Chung, Y. J

    1997-10-01

    Radioactive cylindrical was prepared by neutron irradiation of pre-made non-radioactive `1`6`5 Ho-sleeve, which was made by casting polyurethane solution containing `1`6`5`Ho(NO{sub 3}){sub 3} in THF+DMF (10:1) solvent in cylindrical glass tube. Its length and diameter could be easily controlled by glass tube used as a mold. The radioactive stent assembly (`1`6`5Ho-SA) was prepared by covering the metallic stent with radioactive sleeve and then treated both ends with epoxy glue for prevention of peeling off the radioactive sleeve from stent (post-irradiation method). Other preparation method of radioactive stent is similar to that of the first one except using radioactive `1`6`6Ho(NO{sub 3}){sub 3} and glass tube fitted with metallic stent before casting (pre-irradiation method). Scanning electron microscopy and autoradiography exhibited that the distribution of `1`6`5Ho and `1`6`6Ho(NO{sub 3}) compounds in polyurethane matrix was nearly homogeneous. The present preparation methods of radioactive sleeve and stent are quite different from conventional method which metallic stent is coated or implanted with radionuclide. The ease with which the radioactive stent can be prepared and its homogeneous radiation emission make it an attractive radiation applicator for the treatment of esophagus cancer. As an animal studies, 6 pathologic specimens were obtained. An animal with 4 mCi of `1`6`6Ho-SA showed loss of epithelial tissue and inflammation at the submucosal layer 4 weeks after the procedure. Considerable improvement of the inflammatory reaction was observed 7 weeks post-therapy without complication. In case treated with 6 mCi of `1`6`6Ho-SA, tissue destruction and widening of the esophageal lumen were observed and the inflammatory reaction propagated into the muscle layer. In case with 9 mCi of `1`6`6Ho-SA, severe esophagitis with cellular proliferation were seen, which resulted in further narrowing of the lumen. (author). 58 refs., 5 tabs., 14 figs

  6. Development of radioactive stent using HANARO research reactor

    International Nuclear Information System (INIS)

    Park, Kyung Bae; Kim, J. R.; Han, H. S.; Shin, B. C.; Kim, Y. M.; Cho, U. K.; Han, K. H.; Park, W. W.; Chung, Y. J.

    1997-10-01

    Radioactive cylindrical was prepared by neutron irradiation of pre-made non-radioactive '1'6'5 Ho-sleeve, which was made by casting polyurethane solution containing '1'6'5'Ho(NO 3 ) 3 in THF+DMF (10:1) solvent in cylindrical glass tube. Its length and diameter could be easily controlled by glass tube used as a mold. The radioactive stent assembly ('1'6'5Ho-SA) was prepared by covering the metallic stent with radioactive sleeve and then treated both ends with epoxy glue for prevention of peeling off the radioactive sleeve from stent (post-irradiation method). Other preparation method of radioactive stent is similar to that of the first one except using radioactive '1'6'6Ho(NO 3 ) 3 and glass tube fitted with metallic stent before casting (pre-irradiation method). Scanning electron microscopy and autoradiography exhibited that the distribution of '1'6'5Ho and '1'6'6Ho(NO 3 ) compounds in polyurethane matrix was nearly homogeneous. The present preparation methods of radioactive sleeve and stent are quite different from conventional method which metallic stent is coated or implanted with radionuclide. The ease with which the radioactive stent can be prepared and its homogeneous radiation emission make it an attractive radiation applicator for the treatment of esophagus cancer. As an animal studies, 6 pathologic specimens were obtained. An animal with 4 mCi of '1'6'6Ho-SA showed loss of epithelial tissue and inflammation at the submucosal layer 4 weeks after the procedure. Considerable improvement of the inflammatory reaction was observed 7 weeks post-therapy without complication. In case treated with 6 mCi of '1'6'6Ho-SA, tissue destruction and widening of the esophageal lumen were observed and the inflammatory reaction propagated into the muscle layer. In case with 9 mCi of '1'6'6Ho-SA, severe esophagitis with cellular proliferation were seen, which resulted in further narrowing of the lumen. (author). 58 refs., 5 tabs., 14 figs

  7. Actinide-pnictide (An-Pn) bonds spanning non-metal, metalloid, and metal combinations (An=U, Th; Pn=P, As, Sb, Bi)

    Energy Technology Data Exchange (ETDEWEB)

    Rookes, Thomas M.; Wildman, Elizabeth P.; Gardner, Benedict M.; Wooles, Ashley J.; Gregson, Matthew; Tuna, Floriana; Liddle, Stephen T. [School of Chemistry, The University of Manchester (United Kingdom); Balazs, Gabor; Scheer, Manfred [Institute of Inorganic Chemistry, University of Regensburg (Germany)

    2018-01-26

    The synthesis and characterisation is presented of the compounds [An(Tren{sup DMBS}){Pn(SiMe_3)_2}] and [An(Tren{sup TIPS}){Pn(SiMe_3)_2}] [Tren{sup DMBS}=N(CH{sub 2}CH{sub 2}NSiMe{sub 2}Bu{sup t}){sub 3}, An=U, Pn=P, As, Sb, Bi; An=Th, Pn=P, As; Tren{sup TIPS}=N(CH{sub 2}CH{sub 2}NSiPr{sup i}{sub 3}){sub 3}, An=U, Pn=P, As, Sb; An=Th, Pn=P, As, Sb]. The U-Sb and Th-Sb moieties are unprecedented examples of any kind of An-Sb molecular bond, and the U-Bi bond is the first two-centre-two-electron (2c-2e) one. The Th-Bi combination was too unstable to isolate, underscoring the fragility of these linkages. However, the U-Bi complex is the heaviest 2c-2e pairing of two elements involving an actinide on a macroscopic scale under ambient conditions, and this is exceeded only by An-An pairings prepared under cryogenic matrix isolation conditions. Thermolysis and photolysis experiments suggest that the U-Pn bonds degrade by homolytic bond cleavage, whereas the more redox-robust thorium compounds engage in an acid-base/dehydrocoupling route. (copyright 2018 The Authors. Published by Wiley-VCH Verlag GmbH and Co. KGaA.)

  8. Secondary defects in non-metallic solids

    International Nuclear Information System (INIS)

    Ashbee, K.H.G.; Hobbs, L.W.

    1977-01-01

    This paper points out features of secondary defect formation which are peculiar to non-metallic solids (excluding elemental semiconductors). Most of the materials of interest are compounds of two or more (usually more or less ionic) atomic species, and immediate consequence of which is a need to maintain both stoichiometry (or accommodate non-stoichiometry) and order. Primary defects in these solids, whether produced thermally, chemically or by irradiation, seldom are present or aggregate in exactly stoichiometric proportions, and the resulting extending defect structures can be quite distinct from those found in metallic solids. Where stoichiometry is maintained, it is often convenient to describe extended defects in terms of alterations in the arrangement of 'molecular' units. The adoption of this procedure enables several novel features of extended defect structures in non-metals to be explained. There are several ways in which a range of non-stoichiometry can be accommodated, which include structural elimination of point defects, nucleation of new coherent phases of altered stoichiometry, and decomposition. (author)

  9. Al/Ni metal intermetallic composite produced by accumulative roll bonding and reaction annealing

    International Nuclear Information System (INIS)

    Mozaffari, A.; Hosseini, M.; Manesh, H. Danesh

    2011-01-01

    Highlights: → Al/Ni metallic composites produced by accumulative roll bonding were heat treated at different temperatures and periods, to investigate the effect of reaction annealing on the structure and mechanical properties. → Based on the annealing conditions, various intermetallic phases were formed. The structure and composition of the composites were detected by SEM and XRD techniques. → The strength of the initial metallic composite can be improved due to the formation of the hard intermetallic phases, by the heat treatment process. - Abstract: In this research, Al/Ni multilayers composites were produced by accumulative roll bonding and then annealed at different temperatures and durations. The structure and mechanical properties of the fabricated metal intermetallic composites (MICs) were investigated. Scanning electron microscopy and X-ray diffraction analyses were used to evaluate the structure and composition of the composite. The Al 3 Ni intermetallic phase is formed in the Al/Ni interface of the samples annealed at 300 and 400 deg. C. When the temperature increased to 500 deg. C, the Al 3 Ni 2 phase was formed in the composite structure and grew, while the Al 3 Ni and Al phases were simultaneously dissociated. At these conditions, the strength of MIC reached the highest content and was enhanced by increasing time. At 600 deg. C, the AlNi phase was formed and the mechanical properties of MIC were intensively degraded due to the formation of structural porosities.

  10. Perovskite-Ni composite: a potential route for management of radioactive metallic waste.

    Science.gov (United States)

    Mahadik, Pooja Sawant; Sengupta, Pranesh; Halder, Rumu; Abraham, G; Dey, G K

    2015-04-28

    Management of nickel - based radioactive metallic wastes is a difficult issue. To arrest the release of hazardous material to the environment it is proposed to develop perovskite coating for the metallic wastes. Polycrystalline BaCe0.8Y0.2O3-δ perovskite with orthorhombic structure has been synthesized by sol-gel route. Crystallographic analyses show, the perovskite belong to orthorhombic Pmcn space group at room temperature, and gets converted to orthorhombic Incn space group at 623K, cubic Pm3m space group (with a=4.434Å) at 1173K and again orthorhombic Pmcn space group at room temperature after cooling. Similar observations have been made from micro-Raman study as well. Microstructural studies of BaCe0.8Y0.2O3-δ-NiO/Ni composites showed absence of any reaction product at the interface. This suggests that both the components (i.e. perovskite and NiO/Ni) of the composite are compatible to each other. Interaction of BaCe0.8Y0.2O3-δ-NiO/Ni composites with simulated barium borosilicate waste glass melt also did not reveal any reaction product at the interfaces. Importantly, uranium from the waste glass melt was found to be partitioned within BaCe0.8Y0.2O3-δ perovskite structure. It is therefore concluded that BaCe0.8Y0.2O3-δ can be considered as a good coating material for management of radioactive Ni based metallic wastes. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Radioactive air emissions from non-uranium mining operations

    International Nuclear Information System (INIS)

    Silhanek, J.S.; Andrews, V.E.

    1981-01-01

    Section 122 of the Clean Air Act Amendments of 1977, Public Law 9595, directed the Administrator of the Environmental Protection Agency to review all relevant information and determine whether emissions of radioactive pollutants into ambient air will cause or contribute to air pollution which may reasonably be anticipated to endanger public health. A section of this document presented a theoretical analysis of the radioactive airborne emissions from several non-uranium mines including iron, copper, zinc, clay, limestone, fluorspar, and phosphate. Since 1978 EPA's Las Vegas Laboratory has been gathering field data on actual radionuclide emissions from these mines to support the earlier theoretical analysis. The purpose of this paper is to present the results of those field measurements in comparison with the assumed values for the theoretical analysis

  12. Corrosion of metal containers containing cemented radioactive wastes

    International Nuclear Information System (INIS)

    Duffo, G.S.; Farina, S.B.; Schulz, F.M.; Marotta, F

    2010-01-01

    Nuclear activities generate different kinds of radioactive wastes. In the case of Argentina, wastes classified as low and medium level are conditioned in metal drums for final disposal in a repository whose design is based on the use of multiple and independent barriers. Nuclear energy plants generate a large volume of mid-level radioactive wastes, consisting mainly of ion-exchange resins contaminated by fission products. Other contaminated products such as gloves, papers, clothing, rubber and plastic tubing, can be incinerated and the ashes from the combustion also constitute wastes that must be disposed of. These wastes (resins and ashes) must be immobilized in order to avoid the release of radionuclides into the environment. The wastes usually undergo a process of cementing to immobilize them. This work aims to systematically study the process of degradation by corrosion of the steel drums in contact with the cemented resins and with the ashes cemented with the addition of different types and concentrations of aggressive compounds (chloride and sulfate). The specimens are configured so that the parameters of interest for the steel in contact with the cemented materials can be measured. The variables of corrosion potential, electric resistivity of the matrix and polarization resistance (PR) were monitored and show that the presence of chloride increases the susceptibility to corrosion of the drum steel that is in contact with the cement resin matrix

  13. Investigation of the potential of silica-bonded macrocyclic ligands for separation of metal ions from nuclear waste

    International Nuclear Information System (INIS)

    Camaioni, D.M.; Colton, N.G.; Bruening, R.L.

    1992-01-01

    This report describes the testing of some novel separations materials known as SuperLig trademark materials for their ability to separate efficiently and selectively certain metal ions from a synthetic, nonradioactive nuclear waste solution. The materials, developed and patented by IBC Advanced Technologies, are highly selective macrocyclic ligands that have been covalently bonded to silica gel. The SuperLig trademark materials that were tested are: (1) SuperLig trademark 601 for barium (Ba 2+ ) and strontium (Sr 2+ ) separation, (2) SuperLig trademark 602 for cesium (Cs + ) and rubidium (Rb + ) separation, (3) SuperLig trademark 27 for palladium (Pd 2+ ) separation, and (4) SuperLig trademark II for silver (Ag + ) and ruthenium (Ru 3+ ) separation. Our observations show that the technology for separating metal ions using silica-bonded macrocycles is essentially sound and workable to varying degrees of success that mainly depend on the affinity of the macrocycle for the metal ion of interest. It is expected that ligands will be discovered or synthesized that are amenable to separating metal ions of interest using this technology. Certainly more development, testing, and evaluation is warranted. 3 figs., 11 tabs

  14. Maternal bonding styles in smokers and non-smokers: a comparative study.

    Science.gov (United States)

    Csala, Iren; Elemery, Monika; Martinovszky, Fruzsina; Dome, Peter; Dome, Balazs; Faludi, Gabor; Sandor, Imola; Gyorffy, Zsuzsa; Birkas, Emma; Lazary, Judit

    2016-01-01

    Parental bonding has been implicated in smoking behavior, and the quality of maternal bonding (MB) has been associated with poor mental health and substance use. However, little is known about the association of MB and the smoking of the offspring. In our study, 129 smokers and 610 non-smoker medical students completed the parental bonding instrument, which measures MB along two dimensions: care and overprotection. Four categories can be created by high and low scores on care and overprotection: optimal parenting (OP; high care/low overprotection); affectionless control (ALC; low care/high overprotection); affectionate constraint (AC; high care/high overprotection), and neglectful parenting (NP; low care/low overprotection). Nicotine dependence was assessed by the Fagerstrom Nicotine Dependence Test, exhaled CO level, and daily cigarette consumption (CPD). Higher CPD was significantly associated with lower overprotection ( p  = 0.016) and higher care ( p  = 0.023) scores. The odds for being a smoker were significantly higher in the neglectful maternal bonding style compared to the other rearing styles ( p  = 0.022). Besides, smokers showed significantly higher care and lower overprotection scores with the Mann-Whitney U-test than non-smokers, although these associations did not remain significant in multiple regression models. Our results indicate that focusing on early life relationship between patient and mother can be important in psychotherapeutic interventions for smoking. Registration trials retrospectively registered.

  15. Shear Bond Strength of Three Orthodontic Bonding Systems on Enamel and Restorative Materials.

    Science.gov (United States)

    Hellak, Andreas; Ebeling, Jennifer; Schauseil, Michael; Stein, Steffen; Roggendorf, Matthias; Korbmacher-Steiner, Heike

    2016-01-01

    Objective. The aim of this in vitro study was to determine the shear bond strength (SBS) and adhesive remnant index (ARI) score of two self-etching no-mix adhesives (iBond ™ and Scotchbond ™ ) on different prosthetic surfaces and enamel, in comparison with the commonly used total etch system Transbond XT ™ . Materials and Methods . A total of 270 surfaces (1 enamel and 8 restorative surfaces, n = 30) were randomly divided into three adhesive groups. In group 1 (control) brackets were bonded with Transbond XT primer. In the experimental groups iBond adhesive (group 2) and Scotchbond Universal adhesive (group 3) were used. The SBS was measured using a Zwicki 1120 ™ testing machine. The ARI and SBS were compared statistically using the Kruskal-Wallis test ( P ≤ 0.05). Results . Significant differences in SBS and ARI were found between the control group and experimental groups. Conclusions . Transbond XT showed the highest SBS on human enamel. Scotchbond Universal on average provides the best bonding on all other types of surface (metal, composite, and porcelain), with no need for additional primers. It might therefore be helpful for simplifying bonding in orthodontic procedures on restorative materials in patients. If metal brackets have to be bonded to a metal surface, the use of a dual-curing resin is recommended.

  16. Radioactively contaminated metallic materials: the search for a global solution; Materiales metalicos con contaminacion radiactiva: en busca de una solucion global

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, S.

    2009-07-01

    Radioactively contaminated metallic materials: the search for a global solution. Tarragona hosted the first International Conference on Control and Management of Inadvertent Radioactive Material in Metal Scrap, which was sponsored by the IAEA and organised by various Spanish entities, among them the CSN. The meeting served for the exchange of ideas and precautionary measures, a field in which Spain already has a long and recognised experience, and focussed on the voluntary Protocol, endorsed by the majority of the Spanish steelyards. (Author)

  17. Study of the Adherence Mechanism Between the Metal and Inorganic Coating with Mill Addition of Li2Ni8O10 Nano Powder

    Institute of Scientific and Technical Information of China (English)

    QIAN Hui-chun; JIANG Wei-zhong

    2009-01-01

    The adherence strength between the metal and the inorganic coating can be greatly increased by mill addition of Li2Ni8O10,. The interface structure between metal and the inorganic coating with excellent adherence has been studied by investigating the chemical composition and the microstructure as well as elements valence bond on the interface with the help of scanning electron microscope (SEM), electron microprobe, and Auger electron spectroscope (AES). The results show that there is a non-stoichiometrical transitional layer on the interface between metal and the inorganic coating with excellent adherence, the adherence between metal and the non-stoichiometrical transitional layer is achieved by the metallic bond and the adherence between the non-stoichiometrical transitional layer and the inorganic coating is produced by ionic and covalent bond. The non-stoichiometrical transitional layer results in the strong adherence.

  18. Territory of Upper Volta. Interest and Programme of Prospecting for Radioactive Metals

    International Nuclear Information System (INIS)

    1958-04-01

    The costs of a programme for prospecting for radioactive metals (esp. Uranium) can amount to a total cost of the order of 600 to 700 millions FF over 10 years. Such a programme represents a rather high risk, because in order to succeed, a reserve capable to pay for the programme must be found in the foreseen period. The first part of the report describes the Uranium reserves already known in Africa [fr

  19. An attemp to use a pulsed CO2 laser for decontamination of radioactive metal surfaces

    OpenAIRE

    MILAN S. TRTICA; SCEPAN S. MILJANIC; NATASA N. STJEPANOVIC

    2000-01-01

    There is a growing interest in laser radioactive decontamination of metal surfaces. It offers advantages over conventional methods: improved safety, reduction of secondary waste, reduced waste volume, acceptable cost. The main mechanism of cleaning by lasers is ablation. A pulsed TEA CO2 laser was used in this work for surface cleaning in order to show that ablation of metal surfaces is possible even at relatively low pulse energies, and to suggest that it could be competitive with other lase...

  20. Correlation of mechanical properties with nondestructive evaluation of babbitt metal/bronze composite interface

    Science.gov (United States)

    Ijiri, Y.; Liaw, P. K.; Taszarek, B. J.; Frohlich, S.; Gungor, M. N.

    1988-09-01

    Interfaces of the babbitt metal-bronze composite were examined ultrasonically and were fractured using the Chalmers test method. It was found that the ultrasonic results correlated with the bond strength, the ductility, and the degree of bonding at the tested interface. Specifically, high ultrasonic reflection percentages were associated with low bond strength, low ductility, and low percentages of bonded regions. The fracture mechanism in the bonded area of the babbitt-bronze interface is related to the presence of the intermetallic compound, Cu6Sn5, at the interface. It is suggested that the non-destructive ultrasonic technique can detect the bond integrity of babbitted metals.

  1. Apparatus for eliminating electrodeposition of radioactive nuclide

    International Nuclear Information System (INIS)

    Inomata, Ichiro; Ishibe, Tadao; Matsunaga, Masaaki; Konuki, Ryoichi; Suzuki, Kazunori; Watanabe, Minoru; Tomoshige, Shozo; Kondo, Kozo.

    1990-01-01

    In a conventional device for eliminating by radioactive nuclides electrodeposition, a liquid containing radioactive nuclides is electrolyzed under a presence of non-radioactive heavy metals and removing radioactive nuclides by electrodepositing them together with the heavy metals. Two anode plates are opposed in an electrolysis vessel of this device. A plurality (4 to 6) of cathode plates are arranged between the anodes in parallel with them and the cathode surfaces opposed to the anodes are insulated. Further, such a plurality of cathode plates are grouped into respective units. Alternatively, the anode plate is made of platinum-plated titanium material and the cathode plate is made of stainless steel. In the thus constituted electrodeposition eliminating device, since the cathode surface directed to the anodes on both ends are insulated, all of electric current from the anode reach the core cathode after flowing around the cathodes at both ends. As a result, there is no substantial difference in the flowing length of the electrolyzing current to each of the cathodes and these is neither difference in the electrodeposition amount. The electrodeposited products are adhered uniformly and densely to the electrodes and, simultaneously, Co-60 and Mn-54, etc. are also electrodeposited. (I.S.)

  2. Study of radioactive sources accumulation with application of thermoluminescence dosemeters on the base of alkaline earth metals sulfates

    International Nuclear Information System (INIS)

    Tokbergenov, I.; Sadykov, T.

    2001-01-01

    Methodic for study of accumulation and distribution of radioactive sources in a nature objects is developed. An essence of the method consists of in that quantity of accumulated radioactive sources in a nature objects is defining by absorption dose measured with help of thermoluminescent dosemeters on the base of alkaline earth metals sulfates such as CaSO 4 :Dy and SrSO 4 :Eu

  3. Metal-metal bonding and aromaticity in [M2(NHCHNH)3]2 (μ-E)2 (E = O, S; M = Nb, Mo, Tc, Ru, Rh).

    Science.gov (United States)

    Yan, Xiuli; Meng, Lingpeng; Sun, Zheng; Li, Xiaoyan

    2016-02-01

    The nature of M-M bonding and aromaticity of [M2(NHCHNH)3]2(μ-E)2 (E = O, S; M = Nb, Mo, Tc, Ru, Rh) was investigated using atoms in molecules (AIM) theory, electron localization function (ELF), natural bond orbital (NBO) and molecular orbital analysis. These analyses led to the following main conclusions: in [M2(NHCHNH)3]2(μ-E)2 (E = O, S; M = Nb, Mo, Tc, Ru, Rh), the Nb-Nb, Ru-Ru, and Rh-Rh bonds belong to "metallic" bonds, whereas Mo-Mo and Tc-Tc drifted toward the "dative" side; all these bonds are partially covalent in character. The Nb-Nb, Mo-Mo, and Tc-Tc bonds are stronger than Ru-Ru and Rh-Rh bonds. The M-M bonds in [M2(NHCHNH)3]2(μ-S)2 are stronger than those in [M2(NHCHNH)3]2(μ-O)2 for M = Nb, Mo, Tc, and Ru. The NICS(1)ZZ values show that all of the studied molecules, except [Ru2(NHCHNH)3]2(μ-O)2, are aromaticity molecules. O-bridged compounds have more aromaticity than S-bridged compounds. Graphical Abstract Left Molecular graph, and right electron localization function (ELF) isosurface of [M2(NHCHNH)3]2(μ-E)2(E = O, S; M = Nb, Mo, Tc, Ru, Rh).

  4. Contact of ZnSb thermoelectric material to metallic electrodes using S-Bond 400 solder alloy

    DEFF Research Database (Denmark)

    Malik, Safdar Abbas; Le, Thanh Hung; Van Nong, Ngo

    2018-01-01

    and metallic electrodes. In this paper, we investigate the joining of ZnSb to Ni and Ag electrodes using a commercial solder alloy S-Bond 400 and hot-pressing technique. Ti and Cr layers are also introduced as a diffusion barrier and microstructure at the interfaces is observed by scanning electron microscopy....... We found that S-bond 400 solder reacts with Ag and Ni electrodes to form different alloys at the interfaces. Cr layer was found to be broken after joining, resulting in a thicker reaction/diffusion layer at the interface, while Ti layer was preserved....

  5. Radioactive substance removing device

    International Nuclear Information System (INIS)

    Takeuchi, Jun; Tayama, Ryuichi; Teruyama, Hidehiko; Hikichi, Takayoshi.

    1992-01-01

    If inert gases are jetted from a jetting device to liquid metals in a capturing vessel, the inert gases are impinged on the inner wall surface of the capturing vessel, to reduce the thickness of a boundary layer as a diffusion region of radioactive materials formed between the inner wall surface of the capturing vessel and the liquid metals. Further, a portion of the boundary layer is peeled off to increase the adsorption amount of radioactive materials by the capturing vessel. When the inert gases are jetted on the inner or outer circumference of the capturing vessel to rotate the capturing vessel, the flow of the liquid metals is formed along with the rotation, and the thickness of the boundary layer is reduced or the boundary layer is peeled off to increase the absorption amount of the radioactive materials. If gas bubbles are formed in the liquid metals by the inert gases, the liquid metals are stirred by the gas bubbles to reduce the thickness of the boundary layer or peel it off, thereby enabling to increase the adsorption amount of the radioactive materials. Since it is not necessary to pass through the rotational member to the wall surface of the vessel, safety and reliability can be improved. (N.H.)

  6. The technologically-reinforced natural radioactivity

    International Nuclear Information System (INIS)

    2005-01-01

    Technologically-reinforced natural radioactivity comes from mining industries, geological resources and ores de-confinement, and from separation, purification, transformation and use of by-products or products. Partly based on a survey and questionnaires sent to industrial organisations, this report proposes a large and detailed overview of this kind of radioactivity for different sectors or specific activities: the French phosphate sector, the international rare Earth and heavy ores sector, the French monazite sector, the ilmenite sector, the French and international zirconium sector, the non-ferrous metal sector, the international and French drinkable, mineral and spring water sector, the international wastewater sector, the French drilling sector, the international and French geothermal sector, the international and French gas and oil sector, the international and French coal sector, the international and French biomass sector, the international and French paper-making industry, and the management of wastes with technologically-reinforced natural radioactivity in France

  7. Airborne radioactive emission control technology. Volume II

    International Nuclear Information System (INIS)

    Skoski, L.; Berlin, R.; Corby, D.; Clancy, J.; Hoopes, G.

    1980-03-01

    This report reviews the current and future control technology for airborne emissions from a wide variety of industries/facilities, including uranium mining and milling, other nuclear fuel cycle facilities, other NRC-licensed and DOE facilities, fossil fuel facilities, selected metal and non-metal extraction industries, and others. Where specific radioactivity control technology is lacking, a description of any existing control technology is given. Future control technology is assessed in terms of improvements to equipment performance and process alterations. A catalogue of investigated research on advanced control technologies is presented

  8. Airborne radioactive emission control technology. Volume III

    International Nuclear Information System (INIS)

    Skoski, L.; Berlin, R.; Corby, D.; Clancy, J.; Hoopes, G.

    1980-03-01

    This report reviews the current and future control technology for airborne emissions from a wide variety of industries/facilities, including uranium mining and milling, other nuclear fuel cycle facilities, other NRC-licensed and DOE facilities, fossil fuel facilities, selected metal and non-metal extraction industries, and others. Where specific radioactivity control technology is lacking, a description of any existing control technology is given. Future control technology is assessed in terms of improvements to equipment performance and process alterations. A catalogue of investigated research on advanced control technologies is presented

  9. Airborne radioactive emission control technology. Volume I

    International Nuclear Information System (INIS)

    Skoski, L.; Berlin, R.; Corby, D.; Clancy, J.; Hoopes, G.

    1980-03-01

    This report reviews the current and future control technology for airborne emissions from a wide variety of industries/facilities, includimg uranium mining and milling, other nuclear fuel cycle facilities, other NRC-licensed and DOE facilities, fossil fuel facilities, selected metal and non-metal extraction industries, and others. Where specific radioactivity control technology is lacking a description of any existing control technology is given. Future control technology is assessed in terms of improvements to equipment performance and process alterations. A catalogue of investigated research on advanced control technologies is presented

  10. Treatment of transverse patellar fractures: a comparison between metallic and non-metallic implants.

    Science.gov (United States)

    Heusinkveld, Maarten H G; den Hamer, Anniek; Traa, Willeke A; Oomen, Pim J A; Maffulli, Nicola

    2013-01-01

    Several methods of transverse patellar fixation have been described. This study compares the clinical outcome and the occurrence of complications of various fixation methods. The databases PubMed, Web of Science, Science Direct, Google Scholar and Google were searched. A direct comparison between fixation techniques using mixed or non-metallic implants and metallic K-wire and tension band fixation shows no significant difference in clinical outcome between both groups. Additionally, studies reporting novel operation techniques show good clinical results. Studies describing the treatment of patients using non-metallic or mixed implants are fewer compared with those using metallic fixation. A large variety of clinical scoring systems were used for assessing the results of treatment, which makes direct comparison difficult. More data of fracture treatment using non-metallic or mixed implants is needed to achieve a more balanced comparison.

  11. Considerations on the significance of a holistic approach of the issue of heavy metal and radioactive pollution

    International Nuclear Information System (INIS)

    Vadineanu, Angheluta

    1990-01-01

    The paper takes into consideration the aspects of heavy metal and radioactive pollution. Models of ecological system structure such as structural homomorphic models and mathematical models are discussed. The results of measurements of metal migration (Pb, Mn, Cu, Fe, Zn) in aquatic ecosystems are presented. The radionuclide distribution in sediments, soil and water as well as the impact on human population by external irradiation is considered

  12. A Comparative Evaluation of the Effect of Bonding Agent on the Tensile Bond Strength of Two Pit and Fissure Sealants Using Invasive and Non-invasive Techniques: An in-vitro Study.

    Science.gov (United States)

    Singh, Shamsher; Adlakha, Vivek; Babaji, Prashant; Chandna, Preetika; Thomas, Abi M; Chopra, Saroj

    2013-10-01

    Newer technologies and the development of pit and fissure sealants have shifted the treatment philosophy from 'drill and fill' to that of 'seal and heal'. The purpose of this in-vitro study was to evaluate the effects of bonding agents on the tensile bond strengths of two pit and fissure sealants by using invasive and non-invasive techniques. One hundred and twenty bicuspids were collected and teeth were divided into two groups: Group-I (Clinpro) and Group-II (Conseal f) with 60 teeth in each group. For evaluating tensile bond strengths, occlusal surfaces of all the teeth were flattened by reducing buccal and lingual cusps without disturbing fissures. Standardised polyvinyl tube was bonded to occlusal surfaces with respective materials. Sealants were applied, with or without bonding agents, in increments and they were light cured. Tensile bond strengths were determined by using Universal Testing Machine. Data were then statistically analysed by using Student t-test for comparison. A statistically significant difference was found in tensile bond strength in invasive with bonding agent group than in non-invasive with bonding agent group. This study revealed that invasive techniques increase the tensile bond strengths of sealants as compared to non- invasive techniques and that the use of a bonding agent as an intermediate layer between the tooth and fissure sealant is beneficial for increasing the bond strength.

  13. Nitrogen-tuned bonding mechanism of Li and Ti adatom embedded graphene

    International Nuclear Information System (INIS)

    Lee, Sangho; Chung, Yong-Chae

    2013-01-01

    The effects of nitrogen defects on the bonding mechanism and resultant binding energy between the metal and graphene layer were investigated using density functional theory (DFT) calculations. For the graphitic N-doped graphene, Li adatom exhibited ionic bonding character, while Ti adatom showed features of covalent bonding similar to that of pristine graphene. However, in the cases of pyridinic and pyrrolic structures, partially covalent bonding characteristic occurred around N atoms in the process of binding with metals, and this particular bond formation enhanced the bond strength of metal on the graphene layer as much as it exceeded the cohesive energy of the metal bulk. Thus, Li and Ti metals are expected to be dispersed with atomic accuracy on the pyridinic and pyrrolic N-doped graphene layers. These results demonstrate that the bonding mechanism of metal–graphene complex can change according to the type of N defect, and this also affects the binding results. - Graphical abstract: Display Omitted - Highlights: • Nitrogen defects changed the bonding mechanism between metal and graphene. • Bonding character and binding results were investigated using DFT calculations. • Covalent bonding character occurred around pyridinic and pyrrolic N-doped graphene. • Pyridinic and pyrrolic N atoms are effective for metal dispersion on the graphene

  14. Metal-metal bonds involving the f elements. 4. Molecular orbital studies of metal-metal and metal-ligand interactions in dinuclear uranium(V) systems

    International Nuclear Information System (INIS)

    Cayton, R.H.; Novo-Gradac, K.J.; Bursten, B.E.

    1991-01-01

    The electronic structures of a series of dinuclear uranium(V) complexes have been investigated using Xα-SW molecular orbital calculations including quasirelativistic corrections. Complexes of the formula U 2 H 10 and U 2 (OH) 10 were used to model the metal-ligand σ and π interactions, respectively, in the known species U 2 (O-i-Pr) 10 . Two basic geometries were investigated: a vertex-sharing bioctahedron with only terminal ligands (D 4h symmetry) and an edge-sharing bioctahedron containing two bridging ligands (D 2h symmetry). The latter geometry, which is that of U 2 (O-i-Pr) 10 , was also examined at U-U bonding and nonbonding distances. The calculations indicate that the U-U interactions are significantly perturbed when H is replaced by OH, owing to strong donation from the OH pπ orbitals into selected U 5f orbitals. The result is a lack of any appreciable U-U interaction for U 2 (OH) 10 in either the D 4h or D 2h geometry. In addition, the overall OH π donation to the U 5f levels is enhanced in the D 2h geometry. The electronic structure of a hypothetical U(V) dimer, Cp 2 U 2 O 4 , was also examined in both bridged and unsupported geometries. The unbridged geometry, like that for U 2 (OH) 10 , suffered from a destabilization of the U-U σ orbital due to ligand π donation and revealed no net U-U bonding. However, the geometry exhibiting two bridging oxo ligands maintains the U-U σ-bonding MO as its lowest energy U 5f orbital. 21 refs., 8 figs., 8 tabs

  15. The bonding of heavy metals on nitric acid-etched coal fly ashes functionalized with 2-mercaptoethanol or thioglycolic acid

    International Nuclear Information System (INIS)

    Muñoz, M.I.; Aller, A.J.; Littlejohn, D.

    2014-01-01

    Coal fly ash is a waste by-product of the coal fire industry, which generates many environmental problems. Alternative uses of this material would provide efficient solutions for this by-product. In this work, nitric acid-etched coal fly ash labelled with 2-mercaptoethanol or thioglycolic acid was assessed for retention of Al(III), As(III), Cu(II), Cd(II), Fe(III), Mn(II), Hg(II), Ni(II), Pb(II) and Zn(II) ions. The bonding characteristics between the organic compounds with the solid support, as well as with the metal ions, were evaluated using various surface analytical techniques. Visualization of the organically-functionalized coal fly ash particle was possible using scanning electron microscopy (SEM), while the elemental composition of the functionalized material, before and after retention of the metal ions, was obtained by energy dispersive (ED)-X ray spectrometry (XRS) and electrothermal atomic absorption spectrometry (ETAAS). Fourier transform infrared (FT-IR) spectrometry and Raman spectrometry were used to obtain information about the functional groups. It was found that some metal(oid) ions (As, Ni, Pb, Zn) were coordinated through the mercaptan group, while other metal(oid)s (Al, Cd, Cu, Fe, Hg, Mn) were apparently bonded to oxygen atoms. A low-cost and effective solid phase retention system for extraction of heavy metals from aqueous solutions was thus developed. - Graphical abstract: Nitric acid-etched coal fly ash labelled with 2-mercaptoethanol or thioglycolic acid was intended for the retention of heavy metals. The bonding characteristics between the organic compounds with the solid support, as well as with the metal ions, were evaluated using surface analytical techniques. - Highlights: • Coal fly ashes were organically-functionalized. • Organically-functionalized coal fly ashes were spectrometrically characterized. • Organically-functionalized coal fly ashes can be used as an effective solid sorbent for metal(oid)s. • This retention

  16. Effect of alloy type and surface conditioning on roughness and bond strength of metal brackets

    NARCIS (Netherlands)

    Nergiz, I.; Schmage, P.; Herrmann, W.; Ozcan, M.; Nergiz, [No Value

    2004-01-01

    The effect of 5 different surface conditioning methods on bonding of metal brackets to cast dental alloys was examined. The surface conditioning methods were fine (30-µm) or rough (125-µm) diamond bur, sandblasting (50-µm or 110-µm aluminum oxide [Al2O3]), and silica coating (30-µm silica). Fifty

  17. Shear Bond Strength of Three Orthodontic Bonding Systems on Enamel and Restorative Materials

    Directory of Open Access Journals (Sweden)

    Andreas Hellak

    2016-01-01

    Full Text Available Objective. The aim of this in vitro study was to determine the shear bond strength (SBS and adhesive remnant index (ARI score of two self-etching no-mix adhesives (iBond™ and Scotchbond™ on different prosthetic surfaces and enamel, in comparison with the commonly used total etch system Transbond XT™. Materials and Methods. A total of 270 surfaces (1 enamel and 8 restorative surfaces, n=30 were randomly divided into three adhesive groups. In group 1 (control brackets were bonded with Transbond XT primer. In the experimental groups iBond adhesive (group 2 and Scotchbond Universal adhesive (group 3 were used. The SBS was measured using a Zwicki 1120™ testing machine. The ARI and SBS were compared statistically using the Kruskal–Wallis test (P≤0.05. Results. Significant differences in SBS and ARI were found between the control group and experimental groups. Conclusions. Transbond XT showed the highest SBS on human enamel. Scotchbond Universal on average provides the best bonding on all other types of surface (metal, composite, and porcelain, with no need for additional primers. It might therefore be helpful for simplifying bonding in orthodontic procedures on restorative materials in patients. If metal brackets have to be bonded to a metal surface, the use of a dual-curing resin is recommended.

  18. Fixation by ion exchange of toxic materials in a glass matrix

    International Nuclear Information System (INIS)

    Litovitz, T.A.; Simmons, C.J.; Simmons, J.H.; Macedo, P.B.

    1981-01-01

    A process for disposing of toxic materials such as radioactive waste comprises reacting a porous silicate glass or silica gel, having interconnected pores and alkali metal cations. Group 1b metal cations and/or ammonium cation bonded to silicon through divalent oxygen linkages on the internal surfaces of said pores, with a toxic material containing toxic cations as well as non-cationic portions. The toxic cations are capable of displacing the alkali metal cations, Group 1b metal cations and/or ammonium cations to provide a distribution of internal silicon-bonded toxic cation oxide groups within the pores of the glass or silica gel. (author)

  19. Development of Non-Noble Metal Ni-Based Catalysts for Dehydrogenation of Methylcyclohexane

    KAUST Repository

    Al-ShaikhAli, Anaam H.

    2016-11-30

    Liquid organic chemical hydride is a promising candidate for hydrogen storage and transport. Methylcyclohexane (MCH) to toluene (TOL) cycle has been considered as one of the feasible hydrogen carrier systems, but selective dehydrogenation of MCH to TOL has only been achieved using the noble Pt-based catalysts. The aim of this study is to develop non-noble, cost-effective metal catalysts that can show excellent catalytic performance, mainly maintaining high TOL selectivity achievable by Pt based catalysts. Mono-metallic Ni based catalyst is a well-known dehydrogenation catalyst, but the major drawback with Ni is its hydrogenolysis activity to cleave C-C bonds, which leads to inferior selectivity towards dehydrogenation of MCH to TOL. This study elucidate addition of the second metal to Ni based catalyst to improve the TOL selectivity. Herein, ubiquitous bi-metallic nanoparticles catalysts were investigated including (Ni–M, M: Ag, Zn, Sn or In) based catalysts. Among the catalysts investigated, the high TOL selectivity (> 99%) at low conversions was achieved effectively using the supported NiZn catalyst under flow of excess H2. In this work, a combined study of experimental and computational approaches was conducted to determine the main role of Zn over Ni based catalyst in promoting the TOL selectivity. A kinetic study using mono- and bimetallic Ni based catalysts was conducted to elucidate reaction mechanism and site requirement for MCH dehydrogenation reaction. The impact of different reaction conditions (feed compositions, temperature, space velocity and stability) and catalyst properties were evaluated. This study elucidates a distinctive mechanism of MCH dehydrogenation to TOL reaction over the Ni-based catalysts. Distinctive from Pt catalyst, a nearly positive half order with respect to H2 pressure was obtained for mono- and bi-metallic Ni based catalysts. This kinetic data was consistent with rate determining step as (somewhat paradoxically) hydrogenation

  20. Polymeric radioactive waste disposal containers: an investigation into the application of polymers vice metals to house low and intermediate level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Walker, M.W.; Bonin, H.W.; Bui, V.T. [Royal Military College of Canada, Kingston, Ontario (Canada)

    2001-07-01

    The research carried out in Canada in the design of containers for the disposal of radioactive waste has focussed on spent nuclear fuel, even though the quantities of other currently stored radioactive wastes are substantially greater. Research carried out at the Royal Military College of Canada on the effects of mixed fields of radiation on high polymer adhesives and composite materials has shown that some polymers are quite resistant to radiation and could well serve in the fabrication of radioactive waste disposal containers. The purpose of this research was to determine if thermoplastic polymers could be used as superior materials to replace metals in the application of low and intermediate level radioactive waste disposal containers. Polymers have the advantage that they do not corrode like metals. The experimental methods, used in this research, focused on the effects of radiation on the properties of the materials. Polypropylene, Nylon 66, Polycarbonate, and Polyurethane, with and without glass fibre reinforcement, were studied. The method involved irradiating injection moulded tensile test bars with the SLOWPOKE-2 reactor to accumulate doses ranging from 0.5 to 3.0 MGy. To determine the effects of the various doses on the materials, density, tensile, differential scanning calorimetry, and scanning electron microscopy tests were run. For each polymer, the test methods supported predominant crosslinking of polymeric chains severed by radiation. This was evident from observed changes in the mechanical and chemical properties of the polymers, typical of crosslinking. The mechanical changes included an overall increase in density, an increase in Young's modulus, a decrease in strain at break, and only minor changes in strength. The chemical changes included differences in chemical transition temperatures characteristic of radiation damage. The test methods also evidenced minor radiation degradation at the fibre/matrix interfaces in the glass fibre

  1. Analysis of disposition alternatives for radioactively contaminated scrap metal

    International Nuclear Information System (INIS)

    Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

    1997-01-01

    Millions of tonnes of slightly radioactive, scrap iron and steel, stainless steel, and copper are likely to become available as nuclear and other facilities and equipment are withdrawn from service. Disposition of this material is an international policy issue under consideration currently. The major alternatives for managing this material are to either develop a regulatory process for decontamination and recycling that will safeguard human health or to dispose of the scrap and replace the metal stocks. To evaluate the alternatives, we estimate quantities of scrap arising from nuclear power plant decommissioning, evaluate potential price impacts of recycling on regional markets, and assess the health and environmental impacts of the management alternatives. We conclude that decontaminating and recycling the scrap is the superior alternative

  2. Decontamination of radioactive metal surfaces by plasma arc gouging

    International Nuclear Information System (INIS)

    Osamu, K.; Makoto, K.; Takao, K.

    1983-01-01

    Experiments have been carried out to develop a new decontamination method that applies plasma arc gouging for removal of a thin surface layer from radioactively contaminated metallic wastes. Plasma arc gouging has been carried out on stainless steel and carbon steel pipes. The torch nozzle and gouging angle have been optimized to increase the decontamination rate. A water film is formed on the pipe surface to reduce both dust concentration in the off-gas and prevent slag particles, which are splashed up by the plasma gas, from adhering to the gouged surface. Using chromium-electroplated carbon steel pipes as samples, a decontamination factor of >10 3 is obtained after gouging to a depth of about0.5 mm in combination with ultrasonic cleaning

  3. Understanding Emerging Market Sovereign Bond Yield Spread: Role of Default and Non-Default Determinants

    Directory of Open Access Journals (Sweden)

    Adelia Surya Pratiwi

    2015-04-01

    Full Text Available This paper is motivated by the fact that emerging market assets size has been expanding and trying to use sovereign debt market as part of capital market as main research focus. It is highlighting the distinction between default and non-default determinants and examining their significance in explaining emerging market sovereign bond yield spread. Using Cross-Sectional Fixed-Effect Panel Estimator, we found that both default (as proxied by Credit Rating and Outlook Index and non-default (as proxied by 3-month Fed Funds Futures determinants has significant explanatory power to sovereign bond yield spread. Extensively, we also found the significance to add volatility of 3-month Fed Funds Futures and Fed Target Rate basis and volatility of advanced stock markets as variables to stand for non-default determinants in the model. The significance of the latter model is strengthened by higher forecasting as well as indicates the significant role of US market to emerging market sovereign bond market.

  4. The analysis on the current status of the overseas recycle technology of the metallic radioactive wastes

    International Nuclear Information System (INIS)

    Shin, Jae In; Kim, Hee Reyoung; Jung, Kee Jung

    2002-05-01

    It was understood that regulation criteria for material release varied with countries and that international standards were not setup. But, most advanced countries are continuously studying on the recycling of metallic wastes for the purpose of the reuse of resources and disposal cost reduction. Practically, the advanced countries make a lot of cost profits compared with disposal as their metallic wastes are recycled and reused through technology like melting. The reasonable international standards are also expected to be set in the near future because of the aggressive cooperation between international agencies such as IAEA and NEA toward recycling these wastes. In our case, the recycle criteria for radioactive waste containing radioactive nuclide with long half-life such as Cs-137(half-life: 30y) and Co-60(half-life: 5.26y) including others, which are generated from the nuclear fission or dismantling of nuclear facilities, are not yet established. Therefore, it is required that the recommendation and legalization of the regulatory criteria be carried out for the recycle and reuse of metallic wastes to be generated from the dismantling of domestic nuclear facilities in the future

  5. Non-fuel cycle radioactive waste policy in Turkey

    International Nuclear Information System (INIS)

    Izmir, A.I.; Uslu, I.

    2001-01-01

    2000. By categorizing the disposal of 'solid', 'liquid' and 'gaseous' waste, an efficient management system is achieved. Solid radioactive waste consists mainly of protective clothing, plastic sheets and bags, gloves, masks, organs and tissues, animal carcasses, filters, overshoes, paper wipes, towels, metal and glass, hand tools, discarded radiopharmaceuticals containers and discarded equipment. It generally contains a relatively low level of radioactivity when compared to liquid wastes. Special consideration should always be given to the management of contaminated sharp objects, such as needles and syringes, scalpel blades, blood lancets, glass ampoules, etc. Short-lived solid radioactive wastes are stored in the waste storage rooms of the facilities until their activities reduce to an acceptable level to be released to the municipal waste disposal area. The liquid waste can be discharged to sewage system when its activity concentration come down to permissible discharge level which is based on IAEA S S-70. The liquid waste from iodine therapy patients is mostly collected and stored in storage tanks. If the treated patient number is low the waste should be collected separately in shielded drums and stored in waste storage rooms of the facilities until its activity concentration level decreases to an acceptable level. b) Management of Sealed Sources. Sealed radiation sources are widely used in industry, medicine and research in Turkey. Sealed sources have a life cycle, which begins with manufacture and culminates in disposal. Each source life cycle comprises a number of potential stages. A source life cycle can involve individuals in the following key organisations: regulator, manufacturer, Original Equipment Manufacturer, distributor, user (one or subsequent users), waste management organisation, and operator of storage or disposal facility. The large number of organisations potentially involved and their interactions mean that life cycles tend to be complex and can

  6. Radioactive sources and contaminated materials in scrap: monitoring, detection and remedial actions

    International Nuclear Information System (INIS)

    Gallini, R.; Berna, V.; Bonora, A.; Santini, M.

    1999-01-01

    The scrap recycling in steel and other metal mills represents one of the most relevant activities in the Province of Brescia (Lombardy, Italy). In our Province more than 20 million tonnes of metal scrap are recycled every year by a melting process. Since 1990, many accidents which took place were caused by the unwanted melting of radioactive sources, that were probably hidden in metal scrap. In 1993, the Italian Government stated directives to monitor metal scrap imported from non-EC countries because of the suspicion of the illegal traffic of radioactive materials. In 1996, a law imposed the control of all metal scrap, regardless of their origins. Since 1993, our staff have controlled thousands of railway wagons and trucks. Approximately a hundred steel mills and foundries of aluminium, cooper, brass, etc. have also been controlled and many samples have been collected (flue dust, slag, finished products). During these controls, contaminated areas have been brought to light in two warehouses (Cs 137), in 6 companies (Cs 137 and Am 241), in two landfills of industrial waste (Cs 137) and in a quarry (Cs 137). Up to now the contaminated areas have been cleaned, except for the last one. About 150 radioactive sources on contaminated materials have been found in metal scrap. We found radioactive sources of Co 60, Ra 226, Ir 192, Kr 85, Am 241, while the contamination of metals was mainly due to Ra 226. The situation described above justifies an accurate control of the amount of scrap to reduce the risk of contamination of the workers in the working areas, in the environment and in the general public. (author)

  7. Factors affecting the equilibrium constant of homolysis of complexes with metal-carbon σ bonds in aqueous solutions. Pulse radiolysis studies

    International Nuclear Information System (INIS)

    Meyerstein, D.; Ben-Gurion Univ. of the Negev, Beersheba

    1989-01-01

    Pulse-Radiolysis is a powerful technique for the determination of the equilibrium constants of the homolytic cleavage of metal-carbon σ bonds in aqueous solutions. In most systems studied the observed reaction is: L m-1 M (n+1) -R + L ↔ ML m. n + ·R. Therefore the results do not enable a direct determination of the metal-carbon bond dissociation energies. The results obtained indicate that these equilibrium constants are not directly related to the redox potential of either L .m M (n) or of ·R, or to the activation energies for the homolytic cleavage of a family of similarly substituted ethanes. (author)

  8. The effects of government bond purchases on leverage constraints of banks and non-financial firms

    OpenAIRE

    Kühl, Michael

    2016-01-01

    This paper investigates how government bond purchases affect leverage-constrained banks and non-financial firms by utilising a stochastic general equilibrium model. My results indicate that government bond purchases not only reduce non-financial firms' borrowing costs, amplified through a reduction in expected defaults, but also lower banks' profit margins. In an economy in which loans priced at par dominate in banks' balance sheets - as a reflection of the euro area's structure - the leverag...

  9. Thai students' mental model of chemical bonding

    Science.gov (United States)

    Sarawan, Supawadee; Yuenyong, Chokchai

    2018-01-01

    This Research was finding the viewing about concept of chemical bonding is fundamental to subsequent learning of various other topics related to this concept in chemistry. Any conceptions about atomic structures that students have will be shown their further learning. The purpose of this study is to interviews conceptions held by high school chemistry students about metallic bonding and to reveal mental model of atomic structures show according to the educational level. With this aim, the questionnaire prepared making use of the literature and administered for analysis about mental model of chemical bonding. It was determined from the analysis of answers of questionnaire the 10th grade, 11th grade and 12th grade students. Finally, each was shown prompts in the form of focus cards derived from curriculum material that showed ways in which the bonding in specific metallic substances had been depicted. Students' responses revealed that learners across all three levels prefer simple, realistic mental models for metallic bonding and reveal to chemical bonding.

  10. Safe management of smoke detectors containing radioactive sources

    International Nuclear Information System (INIS)

    Salgado, M.; Benitez, J.C.; Castillo, R.A.; Berdellans, A.; Hernandez, J.M.; Pirez, C.J.; Soto, P.G.

    2013-01-01

    Ionic smoke detectors contain radioactive sources that could be Am-241, Pu-238, Pu-239, Kr-85, etc. According to Cuban regulations (Resolution 96 /2003 of the Minister of Science Technology and Environment), smoke detectors, once become disused, should be managed as radioactive waste. For this reason, disused smoke detectors should be transferred to the Centre for Radiation Protection and Hygiene, the organization responsible for radioactive waste management in the country. More than 20 000 smoke detectors have been collected by the CPHR and stored at the Centralized Waste Management Facility. There are 28 different models of smoke detectors of different origin. They contain between 18 - 37 kBq of Am-241 or between 0.37 - 37 MBq of Plutonium or around 37 MBq of Kr-85. The safe management of ionic smoke detectors consists in dismantling the devices, recovering the radioactive sources and conditioning them for long term storage and disposal. The rest of non-radioactive materials should be segregated (plastic, metal and electronic components) for recycling. A technical manual was developed with specific instructions for dismantling each model of smoke detector and recovering the radioactive sources. Instructions for segregation of non-radioactive components are also included in the manual. Most of smoke detectors contain long lived radioactive sources (Am-241, Pu-238, Pu-239), so especial attention was given to the management of these sources. A methodology was developed for conditioning of radioactive sources, consisting in encapsulating them for long term storage. The retrievability of the sources (sealed capsules with radioactive sources) for future disposal was also considered. A documented procedure was elaborated for these operations. (author)

  11. Symptom profiles and parental bonding in homicidal versus non-violent male schizophrenia patients.

    Science.gov (United States)

    Halmai, Tamás; Tényi, Tamás; Gonda, Xénia

    2017-01-30

    To compare the intensity and the profile of psychotic symptoms and the characteristics of parental bonding of male schizophrenia patients with a history of homicide and those without a history of violent behaviour. Clinical question - We hypothesized more intense psychotic symptoms, especially positive symptoms as signs of a more severe psychopathology in the background of homicidal behaviour. We also hypothesized a more negatively perceived pattern (less Care more Overprotection) of parental bonding in the case of homicidal schizophrenia patients than in non-violent patients and non-violent healthy controls. Symptom severity and symptom profiles were assessed with the Positive and Negative Syndrome Scale in a group of male schizophrenia patients (n=22) with the history of committed or attempted homicide, and another group (n=19) of male schizophrenia patients without a history of violent behaviour. Care- and Overprotection were assessed using the Parental Bonding Instrument (PBI) in a third group of non-violent healthy controls (n=20), too. Positive, negative and general psychopathology symptoms in the homicidal schizophrenia group were significantly (pOverprotection than violent patients and healthy controls. Homicidal schizophrenia patients showed a pattern similar to the one in the healthy control group. It seems imperative to register intense positive psychotic symptoms as predictive markers for later violent behaviour. In the subgroup of male homicidal schizophrenia patients negatively experienced parental bonding does not appear to be major contributing factor to later homicidal behaviour.

  12. Relativity-Induced Bonding Pattern Change in Coinage Metal Dimers M2 (M = Cu, Ag, Au, Rg).

    Science.gov (United States)

    Li, Wan-Lu; Lu, Jun-Bo; Wang, Zhen-Ling; Hu, Han-Shi; Li, Jun

    2018-05-07

    The periodic table provides a fundamental protocol for qualitatively classifying and predicting chemical properties based on periodicity. While the periodic law of chemical elements had already been rationalized within the framework of the nonrelativistic description of chemistry with quantum mechanics, this law was later known to be affected significantly by relativity. We here report a systematic theoretical study on the chemical bonding pattern change in the coinage metal dimers (Cu 2 , Ag 2 , Au 2 , Rg 2 ) due to the relativistic effect on the superheavy elements. Unlike the lighter congeners basically demonstrating ns- ns bonding character and a 0 g + ground state, Rg 2 shows unique 6d-6d bonding induced by strong relativity. Because of relativistic spin-orbit (SO) coupling effect in Rg 2 , two nearly degenerate SO states, 0 g + and 2 u , exist as candidate of the ground state. This relativity-induced change of bonding mechanism gives rise to various unique alteration of chemical properties compared with the lighter dimers, including higher intrinsic bond energy, force constant, and nuclear shielding. Our work thus provides a rather simple but clear-cut example, where the chemical bonding picture is significantly changed by relativistic effect, demonstrating the modified periodic law in heavy-element chemistry.

  13. Unique Bond Breaking in Crystalline Phase Change Materials and the Quest for Metavalent Bonding.

    Science.gov (United States)

    Zhu, Min; Cojocaru-Mirédin, Oana; Mio, Antonio M; Keutgen, Jens; Küpers, Michael; Yu, Yuan; Cho, Ju-Young; Dronskowski, Richard; Wuttig, Matthias

    2018-05-01

    Laser-assisted field evaporation is studied in a large number of compounds, including amorphous and crystalline phase change materials employing atom probe tomography. This study reveals significant differences in field evaporation between amorphous and crystalline phase change materials. High probabilities for multiple events with more than a single ion detected per laser pulse are only found for crystalline phase change materials. The specifics of this unusual field evaporation are unlike any other mechanism shown previously to lead to high probabilities of multiple events. On the contrary, amorphous phase change materials as well as other covalently bonded compounds and metals possess much lower probabilities for multiple events. Hence, laser-assisted field evaporation in amorphous and crystalline phase change materials reveals striking differences in bond rupture. This is indicative for pronounced differences in bonding. These findings imply that the bonding mechanism in crystalline phase change materials differs substantially from conventional bonding mechanisms such as metallic, ionic, and covalent bonding. Instead, the data reported here confirm a recently developed conjecture, namely that metavalent bonding is a novel bonding mechanism besides those mentioned previously. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Method of decontaminating radioactive-contaminated instruments

    Energy Technology Data Exchange (ETDEWEB)

    Urata, M; Fujii, M; Kitaguchi, H

    1982-03-29

    Purpose: To enable safety processing of liquid wastes by recovering radioactive metal ions remaining in the electrolytes after the decontamination procedure thereby decreasing the radioactivity. Method: In a decontamination tank containing electrolytes consisting of diluted hydrochloric acid and diluted sulfuric acid, are provided a radioactive contaminated instrument connected to an anode and a collector electrode made of stainless steel connected to a cathode respectively. Upon applying electrical current, the portion of the mother material to be decontaminated is polished electrolytically into metal ions and they are deposited as metal on the collection electrode. After completion of the decontamination, an ultrasonic wave generator is operated to strip and remove the oxide films. Thereafter, the anode is replaced with the carbon electrode and electrical current is supplied continuously, whereby the remaining metal ions are deposited and recovered as the metal on the collection electrode.

  15. Direct conversion of radioactive and chemical waste containing metals, ceramics, amorphous solids, and organics to glass

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1994-01-01

    The Glass Material Oxidation and Dissolution System (CMODS) is a new process for direct conversion of radioactive, mixed, and chemical wastes to glass. The wastes can be in the chemical forms of metals, ceramics, amorphous solids, and organics. GMODS destroys organics and it incorporates heavy metals and radionuclides into a glass. Processable wastes may include miscellaneous spent fuels (SF), SF hulls and hardware, plutonium wastes in different forms, high-efficiency particulate air (HEPA) filters, ion-exchange resins, failed equipment, and laboratory wastes. Thermodynamic calculations indicate theoretical feasibility. Small-scale laboratory experiments (< 100 g per test) have demonstrated chemical laboratory feasibility for several metals. Additional work is needed to demonstrate engineering feasibility

  16. Treatment and storage of radioactive wastes at Institute for Energy Technology, Kjeller, Norway and a short survey of non-radioactive hazardous wastes in Norway

    International Nuclear Information System (INIS)

    Lundby, J.E.

    1988-08-01

    The treatment and storage of low-level and intermediate-level radioactive wastes in Norway is described. A survey of non-radioactive hazardous wastes and planned processing methods for their treatment in Norway is given. It seems that processing methods developed for radioactive wastes to a greater extent could be adopted to hazardous wastes, and that an increased interdisciplinary waste cooperation could be a positive contribution to the solution of the hazardous waste problems

  17. Use of radioactive indicators for the quantitative determination of non-metall inclusions in steel

    International Nuclear Information System (INIS)

    Rewienska-Kosciuk, B.; Michalik, J.

    1979-01-01

    Methods of determining and investigating the sources of non-metal inclusions in steel are presented together with some results of radiometric investigations. The experience of several years of research in industries as well as profound studies of world literature were used as a basis for systematic and critical discussion of the methods used. Optimum methods have been chosen for the quantitative determination of oxide inclusions and for the identification of their origin (e.g. from the refractory furnace lining, the tap-hole, the runner, the ladle or mold slag). Problems of tracers (type, quantity, condition, activity), of the labelling method suitable for the various origins of inclusions, of sampling, of chemical processing of the material sampled, as well as of radiometric measuring techniques (including possible activation) are discussed. Finally, a method for the determination of inclusions resulting from the deoxidation of steel is briefly outlined. (author)

  18. Accuracy of the DLPNO-CCSD(T) method for non-covalent bond dissociation enthalpies from coinage metal cation complexes

    KAUST Repository

    Minenkov, Yury; Chermak, Edrisse; Cavallo, Luigi

    2015-01-01

    The performance of the domain based local pair-natural orbital coupled-cluster (DLPNO-CCSD(T)) method has been tested to reproduce the experimental gas phase ligand dissociation enthalpy in a series of Cu+, Ag+ and Au+ complexes. For 33 Cu+ - non-covalent ligand dissociation enthalpies all-electron calculations with the same method result in MUE below 2.2 kcal/mol, although a MSE of 1.4 kcal/mol indicates systematic underestimation of the experimental values. Inclusion of scalar relativistic effects for Cu either via effective core potential (ECP) or Douglass-Kroll-Hess Hamiltonian, reduces the MUE below 1.7 kcal/mol and the MSE to -1.0 kcal/mol. For 24 Ag+ - non-covalent ligand dissociation enthalpies the DLPNO-CCSD(T) method results in a mean unsigned error (MUE) below 2.1 kcal/mol and vanishing mean signed error (MSE). For 15 Au+ - non-covalent ligand dissociation enthalpies the DLPNO-CCSD(T) methods provides larger MUE and MSE, equal to 3.2 and 1.7 kcal/mol, which might be related to poor precision of the experimental measurements. Overall, for the combined dataset of 72 coinage metal ion complexes DLPNO-CCSD(T) results in a MUE below 2.2 kcal/mol and an almost vanishing MSE. As for a comparison with computationally cheaper density functional theory (DFT) methods, the routinely used M06 functional results in MUE and MSE equal to 3.6 and -1.7 kca/mol. Results converge already at CC-PVTZ quality basis set, making highly accurate DLPNO-CCSD(T) estimates to be affordable for routine calculations (single-point) on large transition metal complexes of > 100 atoms.

  19. Accuracy of the DLPNO-CCSD(T) method for non-covalent bond dissociation enthalpies from coinage metal cation complexes

    KAUST Repository

    Minenkov, Yury

    2015-08-27

    The performance of the domain based local pair-natural orbital coupled-cluster (DLPNO-CCSD(T)) method has been tested to reproduce the experimental gas phase ligand dissociation enthalpy in a series of Cu+, Ag+ and Au+ complexes. For 33 Cu+ - non-covalent ligand dissociation enthalpies all-electron calculations with the same method result in MUE below 2.2 kcal/mol, although a MSE of 1.4 kcal/mol indicates systematic underestimation of the experimental values. Inclusion of scalar relativistic effects for Cu either via effective core potential (ECP) or Douglass-Kroll-Hess Hamiltonian, reduces the MUE below 1.7 kcal/mol and the MSE to -1.0 kcal/mol. For 24 Ag+ - non-covalent ligand dissociation enthalpies the DLPNO-CCSD(T) method results in a mean unsigned error (MUE) below 2.1 kcal/mol and vanishing mean signed error (MSE). For 15 Au+ - non-covalent ligand dissociation enthalpies the DLPNO-CCSD(T) methods provides larger MUE and MSE, equal to 3.2 and 1.7 kcal/mol, which might be related to poor precision of the experimental measurements. Overall, for the combined dataset of 72 coinage metal ion complexes DLPNO-CCSD(T) results in a MUE below 2.2 kcal/mol and an almost vanishing MSE. As for a comparison with computationally cheaper density functional theory (DFT) methods, the routinely used M06 functional results in MUE and MSE equal to 3.6 and -1.7 kca/mol. Results converge already at CC-PVTZ quality basis set, making highly accurate DLPNO-CCSD(T) estimates to be affordable for routine calculations (single-point) on large transition metal complexes of > 100 atoms.

  20. Bond Formation in Diatomic Transition Metal Hydrides: Insights from the Analysis of Domain-Averaged Fermi Holes

    Czech Academy of Sciences Publication Activity Database

    Cooper, D.L.; Ponec, Robert

    2013-01-01

    Roč. 113, č. 2 (2013), s. 102-111 ISSN 0020-7608 R&D Projects: GA ČR GA203/09/0118 Institutional support: RVO:67985858 Keywords : transition metal hydrides * bond formation * analysis of domain averaged Fermi holes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.166, year: 2013

  1. Effectiveness of different adhesive primers on the bond strength between an indirect composite resin and a base metal alloy.

    Science.gov (United States)

    Sarafianou, Aspasia; Seimenis, Ioannis; Papadopoulos, Triantafillos

    2008-05-01

    There is a need for achieving reliable chemical bond strength between veneering composites resins and casting alloys through the use of simplified procedures. The purpose of this study was to examine the shear bond strength of an indirect composite resin to a Ni-Cr alloy, using 4 primers and 2 airborne-particle-abrasion procedures. Fifty-six Ni-Cr (Heraenium NA) discs, 10 mm in diameter and 1.5 mm in height, were fabricated. Twenty-four discs were airborne-particle abraded with 50-microm Al2O3 particles, while another 24 were airborne-particle abraded with 250-microm Al2O3 particles. The following primers were applied on 6 discs of each airborne-particle-abrasion treatment group: Solidex Metal Photo Primer (MPP50, MPP250), Metal Primer II (MPII50, MPII250), SR Link (SRL50, SRL250), and Tender Bond (TB50, TB250). The Rocatec system was used on another 6 discs, airborne-particle abraded according to the manufacturer's recommendations, which served as the control group (R). Two more discs were airborne-particle abraded with 50-microm and 250-microm Al2O3 particles, respectively, to determine the Al content on their surfaces, without any bonding procedure. The indirect composite resin used was Sinfony. Specimens were thermally cycled (5 degrees C and 55 degrees C, 30-second dwell time, 5000 cycles) and tested in shear mode in a universal testing machine. The failure mode was determined with an optical microscope, and selected specimens were subjected to energy dispersive spectroscopy (EDS). Mean bond strength values were analyzed using 2-way ANOVA followed by Tukey's multiple comparison tests (alpha=.05) and compared to the control group using 1-way ANOVA followed by Tukey's multiple comparison tests (alpha=.05). The groups abraded with 50-microm particles exhibited significantly higher bond strength compared to the groups abraded with 250-microm particles. Group MPII50 exhibited the highest mean value (17.4 +/-2 MPa). Groups MPP50, MPP250, and TB50, TB250 showed

  2. Radioactive metal scrap recycling by melting process at the Chernobyl site

    International Nuclear Information System (INIS)

    Steinwarz, W.

    1995-01-01

    Within its TACIS programme the European Union ordered a feasibility study on the cleaning-up of the Chernobyl area from radioactively contaminated metallic material. The study was performed by a Ukrainian German Working Group under the leadership of Siempelkamp and finalized at the end of March 1994. The on-site evaluation for the 30 km exclusion zone showed an overall mass of metal scrap of min. 100,000 Mg with a maximum specific activity of 400 Bq/g based on 48 open depositories within the restricted area. Dominant radionuclides were Cs-137 and Sr-90 accompanied by a very low proportion of α-activity. The study report showed the technical feasibility of a melting plant designed with a throughput of 10'000 Mg per year and its suitability for the overall concept to handle the Chernobyl waste. The main task for the near future can be identified as the establishing of a sound financial concept. (author) 5 figs., 3 tabs., 2 refs

  3. A Real-time Evaluation Technique of Fatigue Damage in Adhesively Bonded Composite-Metal Joints

    International Nuclear Information System (INIS)

    Kwon, Oh Yang; Kim, Tae Hyun

    1999-01-01

    One of the problems for practical use of fiber-reinforced plastics is the performance degradation by fatigue damage in the joints. The study is to develop a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between the qualify of bonded parts and AUP's. We obtained a curve showing the correlation between the degree of fatigue damage and AUP's calculated from signals acquired during fatigue loading of single-lap and double-lap joints of CFRP and Al6061. The curve is an analogy to the one showing stiffness reduction (E/Eo) of polymer matrix composites by fatigue damage. From those facts, it is plausible to predict the degree of fatigue damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joints whereas Amplitude and AUP2 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the application for real structures

  4. A Real-time Evaluation Technique of Fatigue Damage in Adhesively Bonded Composite-Metal Joints

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Oh Yang; Kim, Tae Hyun [Inha University, Incheon (Korea, Republic of)

    1999-12-15

    One of the problems for practical use of fiber-reinforced plastics is the performance degradation by fatigue damage in the joints. The study is to develop a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between the qualify of bonded parts and AUP's. We obtained a curve showing the correlation between the degree of fatigue damage and AUP's calculated from signals acquired during fatigue loading of single-lap and double-lap joints of CFRP and Al6061. The curve is an analogy to the one showing stiffness reduction (E/Eo) of polymer matrix composites by fatigue damage. From those facts, it is plausible to predict the degree of fatigue damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joints whereas Amplitude and AUP2 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the application for real structures

  5. Performance simulation of serpentine type metallic and non-metallic solar collector

    International Nuclear Information System (INIS)

    Al-Sageer, A. A. M.; Alowa, M. I.; Saad, M.

    2006-01-01

    This paper presents a theoretical investigation of metallic and non-metalic solar water collector models for evaluating its performane parameters. The determined parameters include heat removal factor , overall heat loss coefficients, heat gain, daily and hourly efficiencies. The present study reports that, under forced circulation lest, the non-metallic collector has an inferior performance parameters when compared to that of the metallic one. It was also revealed that the overall heat loss coefficients of both collectors show weak dependence on the flow rate variations. It was also noticed that the heat removal factor forboth models is more sensitive to the flow rate variations. Also noticed that the heat removal factor for both models is more sensitive to the flow rate variations. Also, a comparision of performance parameters of the theoretical and experimental studies showed good agreements for most hours of the day, except the results obtained at the early morning and late after noon hours.(Author)

  6. The distribution of radioiodine administrated to pregnant mice and the effect of non radioactive iodide

    International Nuclear Information System (INIS)

    Okui, Toyo; Kobayashi, Satoshi

    1987-01-01

    Radioiodine, 131 I, which has a high fission yield in the nuclear reactor, is easily taken into the human body, accumilating in the thyroid gland, when released to the environment. 131 I was administrated orally to pregnant mice, and its transportation to the tissues, particularly the fetus, was examined closely. And further, the non-radioactive iodide, i.e., KI, was administrated to see its radiation protection effect. The transportation of 131 I to the fetus is the second highest, following the thyroid gland in the mother mouse. This transportation to the fetus becomes the higher, the larger the gestation period at which the 131 I administration is made. The administration of the non-radioactive iodide has large radiation protection effect in the thyroid gland of the mother mouse and of the fetus. But, depending on its concentration, the non-radioactive iodide may conversely increase overall exposure of the fetus. (Mori, K.)

  7. Control of Orphan Sources and Other Radioactive Material in the Metal Recycling and Production Industries. Specific Safety Guide (Spanish Edition); Control de fuentes huérfanas y otros materiales radiactivos en las industrias de reciclado y producción de metales. Guía de seguridad específica

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-12-15

    Accidents involving orphan sources and other radioactive material in the metal recycling and production industries have resulted in serious radiological accidents as well as in harmful environmental, social and economic impacts. This Safety Guide provides recommendations, the implementation of which should prevent such accidents and provide confidence that scrap metal and recycled products are safe. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Responsibilities; 4. Monitoring for radioactive material; 5. Response to the discovery of radioactive material; 6. Remediation of contaminated areas; 7. Management of recovered radioactive material; Annex I: Review of events involving radioactive material in the metal recycling and production industries; Annex II: Categorization of radioactive sources; Annex III: Some examples of national and international initiatives.

  8. Two-component bond for coating materials coming into contact with radioactivity

    International Nuclear Information System (INIS)

    Svoboda, L.; Fajfr, K.

    1989-01-01

    The two-component bonding agent consists of an epoxy resin of the diane-bis-glycidyl ether type and an amine hardener containing benzyl alcohol and bis-2-ethylhexyl phthalate. The claimed bond features high radiation stability and very good decontaminability. Thanks to low viscosity of the bond, pigmented reactor-plastics can be prepared. The procedure is described of applying the bond onto a concrete surface. (E.S.)

  9. Method of decontaminating radioactive-contaminated instruments

    International Nuclear Information System (INIS)

    Urata, Megumu; Fujii, Masaaki; Kitaguchi, Hiroshi.

    1982-01-01

    Purpose: To enable safety processing of liquid wastes by recovering radioactive metal ions remaining in the electrolytes after the decontamination procedure thereby decreasing the radioactivity. Method: In a decontamination tank containing electrolytes consisting of diluted hydrochloric acid and diluted sulfuric acid, are provided a radioactive contaminated instrument connected to an anode and a collector electrode made of stainless steel connected to a cathode respectively. Upon applying electrical current, the portion of the mother material to be decontaminated is polished electrolytically into metal ions and they are deposited as metal on the collection electrode. After completion of the decontamination, an ultrasonic wave generator is operated to strip and remove the oxide films. Thereafter, the anode is replaced with the carbon electrode and electrical current is supplied continuously, whereby the remaining metal ions are deposited and recovered as the metal on the collection electrode. (Yoshino, Y.)

  10. Development and application of RP-HPLC methods for the analysis of transition metals and their radioactive isotops in radioactive waste

    International Nuclear Information System (INIS)

    Seekamp, S.

    1999-07-01

    A major criterion in the final disposal of nuclear waste is to keep possible changes in the geosphere due to the introduction of radioactive waste as small as possible and to prevent any escape into the biosphere in the long term. The Federal Office for Radiation Protection (BfS) has therefore established limit values for a number of nuclides. Verifying these limits has to date involved laborious wet chemical analysis. In order to accelerate quantification there is a need to develop rapid multielement methods. HPLC methods represent a starting point for this development. Chemical separation is necessary to quantify β-emitters via their radioactive radiation since they are characterized by a continuous energy spectrum. A method for quantifying transition metals and their radioactive isotopes from radioactive waste has been created by using a chelating agent to select the analytes and RP-HPLC to separate the complexes formed. In addition to separating the matrix, complexation on a precolumn has the advantage of enriching the analytes. The subject of this thesis is the development and application of the method including studies of the mobile and stationary phase, as well as the optimization of all parameters, such as pH value, sample volume etc., which influence separation, enrichment or detection. The method developed was successfully tested using cement samples. It was also used for investigations of ion exchange resins and for trace analysis in calcium fluoride. Furthermore, the transferability of the method to actinides was examined by using a different complexing agent. (orig.) [de

  11. Metal-isonitrile adducts for preparing radionuclide complexes

    International Nuclear Information System (INIS)

    Carpenter, A.P.; Linder, K.E.; Maheu, L.J.; Patz, M.A.; Thompson, J.S.; Tulip, T.H.; Subramanyam, V.

    1988-01-01

    An method for preparing a coordination complex of isonitrile ligand and a radioisotope of Te, Ru, Co, Pt, Re, Os, Ir, W, Re, Cr, Mo, Mn, Ni, Rh, Nb and Ta from a non-radioactive metal adduct of the isonitrile

  12. Metal interactions with boron clusters

    International Nuclear Information System (INIS)

    Grimes, R.N.

    1982-01-01

    This book presents information on the following topics: the structural and bonding features of metallaboranes and metallacarboranes; transition-metal derivatives of nido-boranes and some related species; interactions of metal groups with the octahydrotriborate (1-) anion, B 3 H 8 ; metallaboron cage compounds of the main group metals; closo-carborane-metal complexes containing metal-carbon and metal-boron omega-bonds; electrochemistry of metallaboron cage compounds; and boron clusters with transition metal-hydrogen bonds

  13. The use of ceramic membranes for radioactive solutions purification

    International Nuclear Information System (INIS)

    Zakrzewska-Trznadel, G.

    2002-01-01

    Membrane permeation combined with complexation was tested for radioactive wastes processing purpose. The results of experiments with MEMBRALOX and CeRAM INSIDE filtering elements are presented in the paper. The pore size of ceramic membranes was in 1kD-100 nm range. The experiments were performed with non-active and with radioactive model solutions and original radioactive waste samples. To achieve high decontamination factors the process was enhanced by chemical complexation. Such complexants as poly(acrylic) acid and polyacrylic)acid salts of different crosslinking, polyethylenimine and cyanoferrates were tested. The experiments showed the significant increase of retention and decontamination factors while before ultrafiltration macromolecular ligands were added. The effectiveness of complexation by each ligand is strongly dependent on pH and alkali metals concentration. (author)

  14. Factors affecting acceptability of radioactive metal recycling to the public and stakeholders

    International Nuclear Information System (INIS)

    Nieves, L.A.; Burke, C.J.

    1995-01-01

    The perception of risk takes place within a cultural context that is affected by individual and societal values, risk information, personal experience, and the physical environment. Researchers have found that measures of open-quotes voluntariness of risk assumption,close quotes of open-quotes disaster potential,close quotes and of open-quotes benefitclose quotes are important in explaining risk acceptability. A review of cross-cultural studies of risk perception and risk acceptance, as well as an informal stakeholder survey, are used to assess the public acceptability of radioactive scrap metal recycling

  15. Equilibrium and non-equilibrium metal-ceramic interfaces

    International Nuclear Information System (INIS)

    Gao, Y.; Merkle, K.L.

    1992-01-01

    Metal-ceramic interfaces in thermodynamic equilibrium (Au/ZrO 2 ) and non-equilibrium (Au/MgO) have been studied by TEM and HREM. In the Au/ZrO 2 system, ZrO 2 precipitates formed by internal oxidation of a 7%Zr-Au alloy show a cubic ZrO 2 phase. It appears that formation of the cubic ZrO 2 is facilitated by alignment with the Au matrix. Most of the ZrO 2 precipitates have a perfect cube-on-cube orientation relationship with the Au matrix. The large number of interfacial steps observed in a short-time annealing experiment indicate that the precipitates are formed by the ledge growth mechanism. The lowest interfacial energy is indicated by the dominance of closed-packed [111] Au/ZrO 2 interfaces. In the Au/MgO system, composite films with small MgO smoke particles embedded in a Au matrix were prepared by a thin film technique. HREM observations show that most of the Au/MgO interfaces have a strong tendency to maintain a dense lattice structure across the interfaces irrespective of whether the interfaces are incoherent or semi-coherent. This paper reports that this indicates that there may be a relatively strong bond between MgO and Au

  16. Non-Destructive Testing for Control of Radioactive Waste Package

    Science.gov (United States)

    Plumeri, S.; Carrel, F.

    2015-10-01

    Characterization and control of radioactive waste packages are important issues in the management of a radioactive waste repository. Therefore, Andra performs quality control inspection on radwaste package before disposal to ensure the compliance of the radwast characteristics with Andra waste disposal specifications and to check the consistency between Andra measurements results and producer declared properties. Objectives of this quality control are: assessment and improvement of producer radwaste packages quality mastery, guarantee of the radwaste disposal safety, maintain of the public confidence. To control radiological characteristics of radwaste package, non-destructive passive methods (gamma spectrometry and neutrons counting) are commonly used. These passive methods may not be sufficient, for instance to control the mass of fissile material contained inside radwaste package. This is particularly true for large concrete hull of heterogeneous radwaste containing several actinides mixed with fission products like 137Cs. Non-destructive active methods, like measurement of photofission delayed neutrons, allow to quantify the global mass of actinides and is a promising method to quantify mass of fissile material. Andra has performed different non-destructive measurements on concrete intermediate-level short lived nuclear waste (ILW-SL) package to control its nuclear material content. These tests have allowed Andra to have a first evaluation of the performance of photofission delayed neutron measurement and to identify development needed to have a reliable method, especially for fissile material mass control in intermediate-level long lived waste package.

  17. Use of a New Method Involving Labelling with Non-Radioactive Elements and Activation Analysis to Investigate Wear

    International Nuclear Information System (INIS)

    Radvan, M.; Reven'ska-Kos'tsjuk, B.; Vez'ranovski, E

    1967-01-01

    In view of the considerable difficulties in using the labelled-atom method to investigate the wear of bearings in agricultural machines under operating conditions, and also to investigate the wear of fire-proof materials in steel production (owing to the occurrence of exogenous non-metallic inclusions), the authors turned their attention to labelling these parts with nonradioactive elements, which were then determined by activation analysis. In the work carried out by this method either mixtures of rare-earth oxides or lanthanum oxide alone were used as tracers, because of their useful nuclear properties. The use of rare-earth elements is also justified by the fact that their chemical properties differ from those of the remaining elements in the material investigated, which means that they can be separated from the respective carriers. In investigations of the wear of agricultural machine bearings made from cast-iron modified with rare-earth elements in an amount too low to cause structural changes, the authors used the modifier as a tracer. The wear of polyamide bearings was also investigated. The use of activation analysis is particularly interesting in this case, since certain properties of the polyamide make standard methods of investigation completely impossible. The products of wear were separated from the oil or grease by extraction or combustion. In determinations of non-metallic exogenous inclusions in ball-bearing steel, caused by certain fireproof materials, the wear of these materials was investigated using modem steel production technology. The aim of these investigations was to determine the effect of vacuum extraction and the use of induction mixers on the passage of fire-resistant particles into the steel. A method of determination was developed based on chemical separation of the tracer after activation with an appropriate surplus of non-radioactive carrier, and also a method of separating it before activation with a calcium carrier. The authors

  18. Pharmacological study of radioactive-gold colloid transport by blood and by serous exudate

    International Nuclear Information System (INIS)

    Rousselet, J.

    1966-06-01

    After giving the essential physico-chemical properties of the colloids, the author considers the biological role of these substances and, in connection with their transport by the blood, their capture by elements of the reticula-endothelial system. A summary is given of present knowledge concerning the role of serous proteins in the transport of substances, particularly that of radio-active colloidal gold. The blood fractions which can take part in colloidal gold transport are the red blood corpuscles, the leukocytes and histiocytic elements as well as the plasma. The radioactive distribution in these various fractions is obtained by autoradiography of blood sediments. After showing the importance of the role of the plasma in radioactive particle transport, the author, describes the attempts made to detect a possible of colloidal gold 198 on the various serous proteins using various methods of separation. The ''in vitro'' and ''in vivo'' bonds between colloidal gold-198 particles and either the serous proteins or healthy specimens or the effusion liquids of pathological origin in man, or due to an experimental inflammation with carregenin in the rat, have been studied. The bonding appears to be effective because of the protective macromolecular layer formed by the gelatine. The different positions of the colloidal grains on the electrophoregram can only be explained by their different physico-chemical characteristics. Gold in the ionic form, on the other hand, is combined only with the albumen is the amount metal present does not exceed a certain value. (author) [fr

  19. Shear bond strength of metal brackets to feldspathic porcelain treated by Nd:YAG laser and hydrofluoric acid.

    Science.gov (United States)

    Hosseini, Mohammad Hashem; Sobouti, Farhad; Etemadi, Ardavan; Chiniforush, Nasim; Shariati, Mahsa

    2015-02-01

    Adult orthodontic treatment requires bonding orthodontic attachment to dental restorations. Ceramics are commonly used as esthetic restorative materials for the crowns and bridges. The present study evaluated the shear bond strength of metal orthodontic brackets to the feldspathic porcelain surfaces following conditioning by different powers of neodymium-doped yttrium aluminum garnet (Nd:YAG) laser and hydrofluoric acid as a conventional method. Seventy-two glazed porcelain samples were prepared and randomly attributed to six equal groups of 12. In the conventional hydrofluoric (HF) group, the specimens were etched by 9.6% hydrofluoric acid for 4 min. In laser groups, samples were conditioned by 0.75-, 1-, 1.25-, 1.5-, and 2-W Nd:YAG laser for 10 s. Metal brackets were bonded to porcelain samples and after being stored in distilled water for 24 h, they were subjected to thermocycling for 500 cycles. The debonding was carried out by a Zwick testing machine. The data were statistically analyzed by ANOVA and Tamhane multiple comparisons tests. The mean ± SD of the shear bond strength in the laser group 0.75, 1, 1.25, 1.5, and 2 W and HF group was 2.2 ± 0.9, 4.2 ± 1.1, 4.9 ± 2.4, 7 ± 1.7, 9.6 ± 2.7, and 9.4 ± 2.5, respectively. Together with the increased power of laser, the mean shear bond strength was increased continuously and no significant differences were found between the HF group and the laser groups with power of 1.5 or 2 W. Also, there was no significant difference between all test groups in ARI scores. There was no significant difference between bond strength of laser groups with power of 1.5 and 2 W and HF-etched group. So, Nd:YAG laser with appropriate parameters can be used as an alternative method for porcelain etching.

  20. Cask for radioactive material and method for preventing release of neutrons from radioactive material

    International Nuclear Information System (INIS)

    Gaffney, M.F.; Shaffer, P.T.

    1981-01-01

    A cask for radioactive material, such as nuclear reactor fuel or spent nuclear reactor fuel, includes a plurality of associated walled internal compartments for containing such radioactive material, with neutron absorbing material present to absorb neutrons emitted by the radioactive material, and a plurality of thermally conductive members, such as longitudinal copper or aluminum castings, about the compartment and in thermal contact with the compartment walls and with other such thermally conductive members and having thermal contact surfaces between such members extending, preferably radially, from the compartment walls to external surfaces of the thermally conductive members, which surfaces are preferably in the form of a cylinder. The ends of the shipping cask also preferably include a neutron absorber and a conductive metal covering to dissipate heat released by decay of the radioactive material. A preferred neutron absorber utilized is boron carbide, preferably as plasma sprayed with metal powder or as particles in a matrix of phenolic polymer, and the compartment walls are preferably of stainless steel, copper or other corrosion resistant and heat conductive metal or alloy. The invention also relates to shipping casks, storage casks and other containers for radioactive materials in which a plurality of internal compartments for such material, e.g., nuclear reactor fuel rods, are joined together, preferably in modular construction with surrounding heat conductive metal members, and the modules are joined together to form a major part of a finished shipping cask, which is preferably of cylindrical shape. Also within the invention are methods of safely storing radioactive materials which emit neutrons, while dissipating the heat thereof, and of manufacturing the present shipping casks

  1. A comparative evaluation of the retention of metallic brackets bonded with resin-modified glass ionomer cement under different enamel preparations: A pilot study

    Directory of Open Access Journals (Sweden)

    Padmaja Sharma

    2013-01-01

    Full Text Available Introduction: For orthodontists, the ideal bonding material should be less moisture-sensitive and should release fluoride, thereby reducing unfavorable iatrogenic decalcification. Resin-Modified Glass Ionomer Cements (RMGICs, due to their ability to bond in the presence of saliva and blood can be a very good bonding agent for orthodontic attachments especially in the areas of mouth, which are difficult to access. Moreover, their fluoride releasing property makes them an ideal bonding agent for patients with poor oral hygiene. However, their immediate bond strength is said to be too low to immediately ligate the initial wire, which could increase the total number of appointments. The effect of sandblasting and the use of sodium hypochlorite (NaOCL on the immediate bond failure of RMGIC clinically have not been reported in the literature until the date. This investigation intended to assess the effect of sandblasting (of the bracket base and enamel and NaOCL on the rate of bond failure (with immediate ligation at 30 min of Fuji Ortho LC and its comparison with that of conventional light cured composite resin over a period of 1 year. Materials and Methods: 400 sample teeth were further divided into 4 groups of 100 each and bonded as follows: (1 Group 1: Normal metallic brackets bonded with Fuji Ortho LC. (2 Group 2: Sandblasted bracket base and enamel surface, brackets bonded with Fuji Ortho LC. (3 Group 3: Deproteinized enamel surface using sodium hypochlorite and brackets bonded with Fuji Ortho LC. (4 Group 4: Normal metallic bracket bonded with Transbond XT after etching enamel with 37% phosphoric acid. This group served as control group. Results and Conclusion: Results showed that sandblasting the bracket base and enamel, can significantly reduce the bond failure rate of RMGIC.

  2. Physical mechanisms of Cu-Cu wafer bonding

    International Nuclear Information System (INIS)

    Rebhan, B.

    2014-01-01

    Modern manufacturing processes of complex integrated semiconductor devices are based on wafer-level manufacturing of components which are subsequently interconnected. When compared with classical monolithic bi-dimensional integrated circuits (2D ICs), the new approach of three-dimensional integrated circuits (3D ICs) exhibits significant benefits in terms of signal propagation delay and power consumption due to the reduced metal interconnection length and allows high integration levels with reduced form factor. Metal thermo-compression bonding is a process suitable for 3D interconnects applications at wafer level, which facilitates the electrical and mechanical connection of two wafers even processed in different technologies, such as complementary metal oxide semiconductor (CMOS) and microelectromechanical systems (MEMS). Due to its high electrical conductivity, copper is a very attractive material for electrical interconnects. For Cu-Cu wafer bonding the process requires typically bonding for around 1 h at 400°C and high contact pressure applied during bonding. Temperature reduction below such values is required in order to solve issues regarding (i) throughput in the wafer bonder, (ii) wafer-to-wafer misalignment after bonding and (iii) to minimise thermo-mechanical stresses or device degradation. The aim of this work was to study the physical mechanisms of Cu-Cu bonding and based on this study to further optimise the bonding process for low temperatures. The critical sample parameters (roughness, oxide, crystallinity) were identified using selected analytical techniques and correlated with the characteristics of the bonded Cu-Cu interfaces. Based on the results of this study the impact of several materials and process specifications on the bonding result were theoretically defined and experimentally proven. These fundamental findings subsequently facilitated low temperature (LT) metal thermo-compression Cu-Cu wafer bonding and even room temperature direct

  3. Mechanical and Non-Destructive Study of CFRP Adhesive Bonds Subjected to Pre-Bond Thermal Treatment and De-Icing Fluid Contamination

    Directory of Open Access Journals (Sweden)

    Paweł H. Malinowski

    2018-04-01

    Full Text Available Composite materials are commonly used in many branches of industry. One of the effective methods to join the carbon fibre reinforced polymer (CFRP parts includes the use of adhesives. There is a search on effective methods for quality assurance of bonded parts. In the research here reported the influence of surface pre-bond modification on the adhesive bonds of CFRP plates has been analyzed. Adherends surface modifications, to include defects affecting the bonding quality, were obtained through surface thermal treatment, surface contamination with de-icing fluid and a combination of both the previously described treatments. Characterization of bonded joints was performed by means of mechanical testing, ultrasounds and electromechanical impedance (EMI measurements. The study here proposed has also the aim to evaluate the ability of different destructive and non-destructive techniques to assess the quality of the bonds. While mechanical tests were strongly affected by the surface modifications, results obtained ultrasound and EMI test have demonstrate only a limited ability of these techniques to differentiate between the different samples. In fact, ultrasounds did not show any changes in the bondline, due to pre-bond modifications. However, this technique was able to detect delamination in CFRP for one of the samples thermally treated at 280 °C. Electromechanical impedance (EMI measurements showed similar behavior as mechanical tests for samples thermally treated at 260 °C and 280 °C, and for the sample whose surface modification was made with a combination of thermally and de-icing fluid treatments.

  4. Effect of Bonding Pressure and Bonding Time on the Tensile Properties of Cu-Foam / Cu-Plate Diffusion Bonded Joint

    International Nuclear Information System (INIS)

    Kim, Sang-Ho; Heo, Hoe-Jun; Kang, Chung-Yun; Yoon, Tae-Jin

    2016-01-01

    Open cell Cu foam, which has been widely utilized in various industries because of its high thermal conductivity, lightweight and large surface area, was successfully joined with Cu plate by diffusion bonding. To prevent excessive deformation of the Cu foam during bonding process, the bonding pressure should be lower than 500 kPa at 800 ℃ for 60 min and bonding pressure should be lowered with increasing holding time. The bonding strength was evaluated by tensile tests. The tensile load of joints increased with the bonding pressure and holding time. In the case of higher bonding pressure or time, the bonded length at the interface was usually longer than the cross-sectional length of the foam, so fracture occurred at the foam. For the same reason, base metal (foam) fracture mainly occurred at the node-plate junction rather than in the strut-plate junction because the bonded surface area of the node was relatively larger than that of the strut.

  5. Molecular modeling in the development of metal radiopharmaceuticals

    International Nuclear Information System (INIS)

    Green, M.A.

    1993-10-01

    We began this project with a compilation of a structural library to serve as a data base containing descriptions of the molecular features of metal-labeled radiopharmaceuticals known to efficiently cross the blood-brain barrier. Such a data base is needed in order to identify structural features (size, shape, molecular surface areas and volumes) that are critical in allowing blood-brain barrier penetration. Nine metal complexes have been added to this structural library. We have completed a detailed comparison of four molecular mechanics computer programs QUANTA, SYBYL, BOYD, and MM2DREW to assess their applicability to modeling the structures of low molecular weight metal complexes. We tested the ability of each program to reproduce the crystallographic structures of 38 complexes between nickel(II) and saturated N-donor ligands. The programs were evaluated in terns of their ability to reproduce structural features such as bond lengths, bond angles, and torsion angles. Recently, we investigated the synthesis and characterization of lipophilic cationic gallium complexes with hexadentate bis(salicylaldimine) ligands. This work identified the first gallium-68 radiopharrnaceuticals that can be injected intravenously and that subsequently exhibit significant myocardial uptake followed by prolonged myocardial retention of 68 Ga radioactivity. Tracers of this type remain under investigation as agents for evaluation of myocardial perfusion with positron emission tomography

  6. Refining technology for the recycling of stainless steel radioactive scrap metals, FY 94 bi-annual report

    International Nuclear Information System (INIS)

    Mizia, R.E.; Atteridge, D.G.; Buckentin, J.; Carter, J.; Davis, H.L.; Devletian, J.H.; Scholl, M.R.; Turpin, R.B.; Webster, S.L.

    1994-08-01

    The research addressed under this project is the recycling of metallic nuclear-related by-product materials under the direction of Westinghouse Idaho Nuclear Company (WINCO). The program addresses the recycling of radioactive scrap metals (RSM) for beneficial re-use within the DOE complex; in particular, this program addresses the recycling of stainless steel RSM. It is anticipated that various stainless steel components under WINCO control at the Idaho Falls Engineering Laboratory (INEL), such as fuel pool criticality barriers and fuel storage racks will begin to be recycled in FY94-95. The end product of this recycling effort is expected to be waste and overpack canisters for densified high level waste for the Idaho Waste Immobilization Facility and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific components of this problem area that are presently being, or have been, addressed by CAAMSEC are: (1) the melting/remelting of stainless steel RSM into billet form; (2) the melting/remelting initial research focus will be on the use of radioactive surrogates to study; (3) the cost effectiveness of RSM processing oriented towards privatization of RSM reuse and/or resale. Other components of this problem that may be addressed under program extension are: (4) the melting/remelting of carbon steel; (5) the processing of billet material into product form which shall meet all applicable ASTM requirements; and, (6) the fabrication of an actual prototypical product; the present concept of an end product is a low carbon Type 304/316 stainless steel cylindrical container for densified and/or vitrified high level radioactive waste and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific work reported herein covers the melting/remelting of stainless steel open-quotes scrapclose quotes metal into billet form and the study of surrogate material removal effectiveness by various remelting techniques

  7. Unwilling U-U bonding in U-2@C-80: cage-driven metal-metal bonds in di-uranium fullerenes

    Czech Academy of Sciences Publication Activity Database

    Foroutan-Nejad, C.; Vícha, J.; Marek, R.; Patzschke, M.; Straka, Michal

    2015-01-01

    Roč. 17, č. 37 (2015), s. 24182-24192 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GA14-03564S Institutional support: RVO:61388963 Keywords : actinide-actinide bond * endohedral actinide fullerene * cage-driven bonding Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.449, year: 2015 http://pubs.rsc.org/en/content/articlepdf/2015/cp/c5cp04280a

  8. Potential for recycling of slightly radioactive metals arising from decommissioning within nuclear sector in Slovakia.

    Science.gov (United States)

    Hrncir, Tomas; Strazovec, Roman; Zachar, Matej

    2017-09-07

    The decommissioning of nuclear installations represents a complex process resulting in the generation of large amounts of waste materials containing various concentrations of radionuclides. Selection of an appropriate strategy of management of the mentioned materials strongly influences the effectiveness of decommissioning process keeping in mind safety, financial and other relevant aspects. In line with international incentives for optimization of radioactive material management, concepts of recycling and reuse of materials are widely discussed and applications of these concepts are analysed. Recycling of some portion of these materials within nuclear sector (e.g. scrap metals or concrete rubble) seems to be highly desirable from economical point of view and may lead to conserve some disposal capacity. However, detailed safety assessment along with cost/benefit calculations and feasibility study should be developed in order to prove the safety, practicality and cost effectiveness of possible recycling scenarios. Paper discussed the potential for recycling of slightly radioactive metals arising from decommissioning of NPPs within nuclear sector in Slovakia. Various available recycling scenarios are introduced and method for overall assessment of various recycling scenarios is outlined including the preliminary assessment of safety and financial aspects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Recycle and reuse of radioactive scrap metals within the department of energy

    International Nuclear Information System (INIS)

    Adams, V.; Murphie, W.; Gresalfi, M.

    2000-01-01

    The United States Department of Energy (DOE) National Center of Excellence for Metals Recycle (NMR) is pursuing recycle and reuse alternatives to burial of radioactive scrap metal. This approach is being implemented in a safe and environmentally sound manner, while significantly lowering dis-positioning cost and accelerating cleanup activities. This paper will define the NMR's success to date in promoting safe and cost effective recycle and reuse strategies for DOE's excess metals, through the use of case studies. The paper will also present actual volumes of metal moved by DOE into restricted and unrestricted uses since 1997. In addition, this paper will discuss the principle underlying the Three Building Decommissioning and Decontamination (D and D) Project in Oak Ridge, Tennessee. In January 2000, the Secretary of Energy placed a moratorium on the unrestricted release of volumetrically contaminated metals from the DOE sites. Pursuant to that moratorium, the Secretary also established a ''Re-Use and Recycling Task Force'' to conduct a review of DOE policies regarding the management and release of all materials for recycle and reuse from DOE facilities. This task force was charged to develop a set of recommendations to ensure the protection of public health and the environment, openness and public trust, and fiscal responsibility. This paper will present an overview of the DOE's present range of recycle and reuse alternatives to disposal, as practiced by the NMR, and discuss the policy and issues associated with the task force mission. (authors)

  10. Radioactive waste from non-licensed activities - identification of waste, compilation of principles and guidance, and proposed system for final management

    International Nuclear Information System (INIS)

    Jones, C.; Pers, K.

    2001-07-01

    Presently national guidelines for the handling of radioactive waste from non-licensed activities are lacking in Sweden. Results and information presented in this report are intended to form a part of the basis for decisions on further work within the Swedish Radiation Protection Institute on regulations or other guidelines on final management and final disposal of this type of waste. An inventory of radioactive waste from non-licensed activities is presented in the report. In addition, existing rules and principles used in Sweden - and internationally - on the handling of radioactive and toxic waste and non-radioactive material are summarized. Based on these rules and principles a system is suggested for the final management of radioactive material from non-licensed activities. A model is shown for the estimation of dose as a consequence of leaching of radio-nuclides from different deposits. The model is applied on different types of waste, e.g. peat ashes, light concrete and low-level waste from a nuclear installation

  11. Analysis of Disulfide Bond Formation

    NARCIS (Netherlands)

    Braakman, Ineke; Lamriben, Lydia; van Zadelhoff, Guus; Hebert, Daniel N.

    2017-01-01

    In this unit, protocols are provided for detection of disulfide bond formation in cultures of intact cells and in an in vitro translation system containing isolated microsomes or semi-permeabilized cells. First, the newly synthesized protein of interest is biosynthetically labeled with radioactive

  12. The ''invisible'' radioactive scale

    International Nuclear Information System (INIS)

    Bjoernstad, T.; Ramsoey, T.

    1999-04-01

    Production and up-concentration of naturally occurring radioactive material (NORM) in the petroleum industry has attracted steadily increasing attention during the last 15 years. Most production engineers today associate this radioactivity with precipitates (scales) and sludges in production tubing, pumps, valves, separators, settling tanks etc., wherever water is being transported or treated. 226 Ra and 228 Ra are the most well known radioactive constituents in scale. Surprisingly little known is the radioactive contamination by 210 Pb and progeny 210 Bi and 210 Po. These are found in combination with 226 Ra in ordinary scale, often in layer of non-radioactive metallic lead in water transportation systems, but also in pure gas and condensate handling systems ''unsupported'' by 226 Ra, but due to transportation and decay of the noble gas 222 Rn in NG/LNG. This latter contamination may be rather thin, in some cases virtually invisible. When, in addition, the radiation energies are low enough for not being detectable on the equipment outer surface, its existence has for most people in the industry been a secret. The report discusses transportation and deposition mechanisms, detection methods and provides some examples of measured results from the North Sea on equipment sent for maintenance. It is concluded that a regular measurement program for this type of contamination should be mandatory under all dismantling processes of transportation and fluid handling equipment for fluids and gases offshore and onshore

  13. Comparative evaluation of shear bond strength of metallic brackets bonded with two different bonding agents under dry conditions and with saliva contamination

    Directory of Open Access Journals (Sweden)

    Mashallah Khanehmasjedi

    2017-02-01

    Conclusion: Application of Single Bond and Assure bonding agents resulted in adequate bond strength of brackets to tooth structures. Contamination with saliva significantly decreased the bond strength of Assure bonding agent compared with dry conditions.

  14. Diffusion bonding in compact heat exchangers

    International Nuclear Information System (INIS)

    Southall, David

    2009-01-01

    Heatric's diffusion bonding process is a solid-state joining technology that produces strong, compact, all-metal heat exchanger cores. Diffusion bonding allows for a large quantity of joints to be made in geometries that would normally be inaccessible for conventional welding techniques. Since Heatric's diffusion bonding process uses no interlayer or braze alloy, the resulting heat exchanger core has consistent chemistry throughout and, under carefully controlled conditions, a return to parent metal strength can be reached. This paper will provide an overview of the diffusion bonding process and its origins, and also its application to compact heat exchanger construction. The paper will then discuss recent work that has been done to compare mechanical properties of Heatric's diffusion bonded material with material that has been conventionally welded, as well as with material tested in the as-received condition. (author)

  15. Characterization of hot bonding of bi-metal C45/25CrMo4 by plane strain compression test

    Science.gov (United States)

    Enaim, Mohammed; Langlois, Laurent; Zimmer-Chevret, Sandra; Bigot, Régis; Krumpipe, Pierre

    2018-05-01

    The need to produce multifunctional parts in order to conform to complex specifications becomes crucial in today's industrial context. This is why new processes are under study to develop multi-material parts which can satisfy this kind of requirements. This paper investigates the possibility of producing hot bonding of bi-metal C45/25CrMo4 parts by forging. This manufacturing process is a solid state joining process that involves, simultaneously, the welding and shaping of multi-material part. In this study, the C45/25CrMo4 bimetal was investigated. The forging is conducted at 1100°C and the influence of reduction rate on microstructure and bonding was investigated. The bonding model is inspired from Bay's model. Following this model, two parameters govern the solid-state bonding at the interface between materials: normal contact pressure and surface expansion. The objective is to check the bonding quality under different pressure and surface expansion. To achieve this goal, the plane strain compression test is chosen as the characterization test. Finally, simulations and experiments of this test are compared.

  16. Radioactive contaminants in the subsurface: the influence of complexing ligands on trace metal speciation

    International Nuclear Information System (INIS)

    Hummel, W.

    2007-01-01

    in Swiss radioactive waste disposal projects. Within the scope of this TDB project I reviewed extensively thermodynamic data for Th, Pd, Al, and solubility and metal complexation of silicates, the review considering not only U, Np, Pu, Am, Tc, Ni, Se and Zr, but also the major constituents of ground and surface waters, i.e. H, Na, K, Mg and Ca. The decision to evaluate the organic ligands oxalate, citrate, ethylenediaminetetraacetate (edta) and α-isosaccharinate (isa) was based on two aspects, namely the importance of the ligands in radioactive waste problems, and the availability of experimental data. (ii) In many case studies involving inorganic and simple organic ligands a serious lack of reliable thermodynamic data is encountered. There, a new modeling approach to estimate the effects of these missing data was applied. This so called 'backdoor approach' begins with the question: 'What total concentration of a ligand is necessary to significantly influence the speciation, and hence the solubility, of a given trace metal?' Radioactive waste contains substantial amounts of ion-exchange resins from decontamination procedures. Degradation of these organic waste forms by radiolysis in a repository is a source of concern in radioactive waste management. Radiolytic degradation experiments with strong acidic ion exchange resins resulted in the formation of the complexing ligands oxalate and ligand X, whose structure could not be identified. In the case of anion exchange resins, ammonia and methylamines were detected. I assessed the influence of these ligands on radionuclide speciation in groundwater and cement pore water of a repository using the 'backdoor approach'. Prussian Blue, Fe III 4 [Fe II (CN) 6 ] 3 , and structurally related transition metal compounds like Ni 2 [Fe(CN) 6 ] are used as cesium ion exchangers in decontamination procedures of liquid radioactive waste. The used ion exchangers are conditioned as cementitious waste form for interim storage and finally

  17. New bonding configuration on Si(111) and Ge(111) surfaces induced by the adsorption of alkali metals

    DEFF Research Database (Denmark)

    Lottermoser, L.; Landemark, E.; Smilgies, D.M.

    1998-01-01

    The structure of the (3×1) reconstructions of the Si(111) and Ge(111) surfaces induced by adsorption of alkali metals has been determined on the basis of surface x-ray diffraction and low-energy electron diffraction measurements and density functional theory. The (3×1) surface results primarily f...... from the substrate reconstruction and shows a new bonding configuration consisting of consecutive fivefold and sixfold Si (Ge) rings in 〈11̅ 0〉 projection separated by channels containing the alkali metal atoms. © 1998 The American Physical Society...

  18. The chemical bond as an emergent phenomenon.

    Science.gov (United States)

    Golden, Jon C; Ho, Vinh; Lubchenko, Vassiliy

    2017-05-07

    We first argue that the covalent bond and the various closed-shell interactions can be thought of as symmetry broken versions of one and the same interaction, viz., the multi-center bond. We use specially chosen molecular units to show that the symmetry breaking is controlled by density and electronegativity variation. We show that the bond order changes with bond deformation but in a step-like fashion, regions of near constancy separated by electronic localization transitions. These will often cause displacive transitions as well so that the bond strength, order, and length are established self-consistently. We further argue on the inherent relation of the covalent, closed-shell, and multi-center interactions with ionic and metallic bonding. All of these interactions can be viewed as distinct sectors on a phase diagram with density and electronegativity variation as control variables; the ionic and covalent/secondary sectors are associated with on-site and bond-order charge density wave, respectively, the metallic sector with an electronic fluid. While displaying a contiguity at low densities, the metallic and ionic interactions represent distinct phases separated by discontinuous transitions at sufficiently high densities. Multi-center interactions emerge as a hybrid of the metallic and ionic bond that results from spatial coexistence of delocalized and localized electrons. In the present description, the issue of the stability of a compound is that of the mutual miscibility of electronic fluids with distinct degrees of electron localization, supra-atomic ordering in complex inorganic compounds coming about naturally. The notions of electronic localization advanced hereby suggest a high throughput, automated procedure for screening candidate compounds and structures with regard to stability, without the need for computationally costly geometric optimization.

  19. Late metal carbene complexes generated by multiple C-H activations: examining the continuum of M=C bond reactivity.

    Science.gov (United States)

    Whited, Matthew T; Grubbs, Robert H

    2009-10-20

    Unactivated C(sp(3))-H bonds are ubiquitous in organic chemicals and hydrocarbon feedstocks. However, these resources remain largely untapped, and the development of efficient homogeneous methods for hydrocarbon functionalization by C-H activation is an attractive and unresolved challenge for synthetic chemists. Transition-metal catalysis offers an attractive possible means for achieving selective, catalytic C-H functionalization given the thermodynamically favorable nature of many desirable partial oxidation schemes and the propensity of transition-metal complexes to cleave C-H bonds. Selective C-H activation, typically by a single cleavage event to produce M-C(sp(3)) products, is possible through myriad reported transition-metal species. In contrast, several recent reports have shown that late transition metals may react with certain substrates to perform multiple C-H activations, generating M=C(sp(2)) complexes for further elaboration. In light of the rich reactivity of metal-bound carbenes, such a route could open a new manifold of reactivity for catalytic C-H functionalization, and we have targeted this strategy in our studies. In this Account, we highlight several early examples of late transition-metal complexes that have been shown to generate metal-bound carbenes by multiple C-H activations and briefly examine factors leading to the selective generation of metal carbenes through this route. Using these reports as a backdrop, we focus on the double C-H activation of ethers and amines at iridium complexes supported by Ozerov's amidophosphine PNP ligand (PNP = [N(2-P(i)Pr(2)-4-Me-C(6)H(3))(2)](-)), allowing isolation of unusual square-planar iridium(I) carbenes. These species exhibit reactivity that is distinct from the archetypal Fischer and Schrock designations. We present experimental and theoretical studies showing that, like the classical square-planar iridium(I) organometallics, these complexes are best described as nucleophilic at iridium. We discuss

  20. Study of casks shielded with heavy metal to transport highly radioactive substances; Estudo de embalados com blindagem em metal pesado para transporte de substancias altamente radioativas

    Energy Technology Data Exchange (ETDEWEB)

    Lucchesi, R.F.; Hara, D.H.S.; Martinez, L.G.; Mucsi, C.S.; Rossi, J.L., E-mail: rflguimaraes@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2014-07-01

    Nowadays, Brazil relies on casks produced abroad for transportation in its territory of substances that are sources of high radioactivity, especially the Mo-99. The product of the radioactive decay of the Mo-99 is the Tc-99m, which is used in nuclear medicine for administration to humans in the form of injectable radioactive drugs for the image diagnosis of numerous pathologies. This paper aims to study the existing casks in order to propose materials for the construction of the core part as shielding against gamma radiation. To this purpose, the existing literature on the subject was studied, as well as evaluation of existing and available casks. The study was focused on the core of which is made of heavy metals, especially depleted uranium for shielding the emitted radiation. (author)

  1. Non-hydrolytic metal oxide films for perovskite halide overcoating and stabilization

    Science.gov (United States)

    Martinson, Alex B.; Kim, In Soo

    2017-09-26

    A method of protecting a perovskite halide film from moisture and temperature includes positioning the perovskite halide film in a chamber. The chamber is maintained at a temperature of less than 200 degrees Celsius. An organo-metal compound is inserted into the chamber. A non-hydrolytic oxygen source is subsequently inserted into the chamber. The inserting of the organo-metal compound and subsequent inserting of the non-hydrolytic oxygen source into the chamber is repeated for a predetermined number of cycles. The non-hydrolytic oxygen source and the organo-metal compound interact in the chamber to deposit a non-hydrolytic metal oxide film on perovskite halide film. The non-hydrolytic metal oxide film protects the perovskite halide film from relative humidity of greater than 35% and a temperature of greater than 150 degrees Celsius, respectively.

  2. Microstructure and mechanical properties of diffusion bonded Al/Mg2Si metal matrix in situ composite

    International Nuclear Information System (INIS)

    Nami, H.; Halvaee, A.; Adgi, H.; Hadian, A.

    2010-01-01

    In this research, Al/Mg 2 Si composite produced by gravity casting, was joined by diffusion welding technique at 6 MPa pressure with various welding temperatures and durations. This metal matrix composite (MMC) containing 15% Mg 2 Si particles was produced by in situ technique. Specific diffusion bonding process was introduced as a low vacuum technique. Microstructure and shear strength of the joined areas were determined. Scanning electron microscopy examination was carried out on the welded interfaces and shear tests were conducted to the samples interface to find out the effect of welding temperatures and durations on the weldability. It was found that high welding temperatures resulted in increase of shear strength. However, increase in welding duration did not make any detectable changes. The bonded interface could be developed as a wavy state depending on the amount of parent material deformation that was associated with bonding temperature. Results indicated that MMC can be joined by diffusion welding technique successfully with satisfactory shear strength.

  3. Metal recycling technology and related issues in the United States, a BNFL perspective

    International Nuclear Information System (INIS)

    Bradbury, P.; Dam, S.; Starke, W.

    1995-01-01

    Radioactively contaminated metallic materials comprise a large part of the potential waste products which result from nuclear facility repair, refurbishment, and decommissioning. United States Government (Departments of Energy and Defense) facilities, U.S. nuclear power plants, and other commercial nuclear fuel cycle facilities have large inventories of radioactive scrap metal which could be decontaminated and recycled into useful radioactive and non-radioactive products. Residual radioactivity and recycling criteria is needed to avoid the high cost of disposal and the waste of natural resources. In the United Kingdom, BNFL has decommissioned the gaseous diffusion plant at Capenhurst and has recycled a large fraction of the metallic scrap into the metals market. Other structural materials have also been released as uncontaminated scrap. U.K. release criteria for residual radionuclide contamination have been applied to these operations. A variety of techniques were utilized to size reduce large components, to remove radioactivity, and to survey and release these materials. These methods and the application of release criteria has a direct relationship to methods which would be applicable in the U.S. and in other countries. This paper will describe the specific U.K. technology and experience in the decontamination, recycle, and release of scrap metal. It will also describe the U.S. environment for metal recycle, including the volumes and levels of contamination, and the current and proposed release criteria. Comparisons will be presented between the U.S. and U.K., both in technology and methodology for recycle and in regulatory criteria for residual radioactivity and material release and for ultimate decommissioning. The paper will then provide suggested approaches and criteria for U.S. recycling and decommissioning. (author)

  4. Modelling of non-metallic particles motion process in foundry alloys

    Directory of Open Access Journals (Sweden)

    P. L. Żak

    2015-04-01

    Full Text Available The behaviour of non-metallic particles in the selected composites was analysed, in the current study. The calculations of particles floating in liquids differing in viscosity were performed. Simulations based on the Stokes equation were made for spherical SiC particles and additionally the particle size influence on Reynolds number was analysed.The movement of the particles in the liquid metal matrix is strictly connected with the agglomerate formation problem.Some of collisions between non-metallic particles lead to a permanent connection between them. Creation of the two spherical particles and a metallic phase system generates the adhesion force. It was found that the adhesion force mainly depends on the surface tension of the liquid alloy and radius of non-metallic particles.

  5. Novel manufacturing process of nanoparticle/Al composite filler metals of tungsten inert gas welding by accumulative roll bonding

    Energy Technology Data Exchange (ETDEWEB)

    Fattahi, M., E-mail: fattahi.put@gmail.com [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Noei Aghaei, V. [Aerospace Engineering Department, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Dabiri, A.R. [Technical Inspection Engineering Department, Petroleum University of Technology, Abadan (Iran, Islamic Republic of); Amirkhanlou, S. [Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad (Iran, Islamic Republic of); Akhavan, S.; Fattahi, Y. [Materials Engineering Department, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of)

    2015-11-11

    In the present work, accumulative roll bonding (ARB) was used as an effective method for manufacturing nanoparticle/Al composite filler metals of tungsten inert gas (TIG) welding. After welding, the distribution of ceramic nanoparticles and mechanical properties of welds were investigated. By applying ARB, ceramic nanoparticles were uniformly dispersed in the composite filler metals. Consequently, the welds produced by these filler metals had a uniform dispersion of ceramic nanoparticles in their compositions. The test results showed that the yield strength of welds was greatly increased when using the nanoparticle/Al composite filler metals. The improvement in the yield strength was attributed to the coefficient of thermal expansion mismatch and Orowan strengthening mechanisms. Therefore, according to the results presented in this paper, it can be concluded that the nanoparticle/Al composite filler metals can serve as a novel filler metal for TIG welding of aluminum and its alloys.

  6. Method of waste stabilization with dewatered chemically bonded phosphate ceramics

    Science.gov (United States)

    Wagh, Arun; Maloney, Martin D.

    2010-06-29

    A method of stabilizing a waste in a chemically bonded phosphate ceramic (CBPC). The method consists of preparing a slurry including the waste, water, an oxide binder, and a phosphate binder. The slurry is then allowed to cure to a solid, hydrated CBPC matrix. Next, bound water within the solid, hydrated CBPC matrix is removed. Typically, the bound water is removed by applying heat to the cured CBPC matrix. Preferably, the quantity of heat applied to the cured CBPC matrix is sufficient to drive off water bound within the hydrated CBPC matrix, but not to volatalize other non-water components of the matrix, such as metals and radioactive components. Typically, a temperature range of between 100.degree. C.-200.degree. C. will be sufficient. In another embodiment of the invention wherein the waste and water have been mixed prior to the preparation of the slurry, a select amount of water may be evaporated from the waste and water mixture prior to preparation of the slurry. Another aspect of the invention is a direct anyhydrous CBPC fabrication method wherein water is removed from the slurry by heating and mixing the slurry while allowing the slurry to cure. Additional aspects of the invention are ceramic matrix waste forms prepared by the methods disclosed above.

  7. Treating radioactive effluent

    International Nuclear Information System (INIS)

    Kirkham, I.A.

    1981-01-01

    In the treatment of radioactive effluent it is known to produce a floc being a suspension of precipitates carrying radioactive species in a mother liquor containing dissolved non-radioactive salts. It is also known and accepted practice to encapsulate the floc in a solid matrix by treatment with bitumen, cement and the like. In the present invention the floc is washed with water prior to encapsulation in the solid matrix whereby to displace the mother liquor containing the dissolved non-radioactive salts. This serves to reduce the final amount of solidified radioactive waste with consequent advantages in the storage and disposal thereof. (author)

  8. Electron capture detector based on a non-radioactive electron source: operating parameters vs. analytical performance

    Directory of Open Access Journals (Sweden)

    E. Bunert

    2017-12-01

    Full Text Available Gas chromatographs with electron capture detectors are widely used for the analysis of electron affine substances such as pesticides or chlorofluorocarbons. With detection limits in the low pptv range, electron capture detectors are the most sensitive detectors available for such compounds. Based on their operating principle, they require free electrons at atmospheric pressure, which are usually generated by a β− decay. However, the use of radioactive materials leads to regulatory restrictions regarding purchase, operation, and disposal. Here, we present a novel electron capture detector based on a non-radioactive electron source that shows similar detection limits compared to radioactive detectors but that is not subject to these limitations and offers further advantages such as adjustable electron densities and energies. In this work we show first experimental results using 1,1,2-trichloroethane and sevoflurane, and investigate the effect of several operating parameters on the analytical performance of this new non-radioactive electron capture detector (ECD.

  9. Mechanical measurement of hydrogen bonded host-guest systems under non-equilibrium, near-physiological conditions.

    Science.gov (United States)

    Naranjo, Teresa; Cerrón, Fernando; Nieto-Ortega, Belén; Latorre, Alfonso; Somoza, Álvaro; Ibarra, Borja; Pérez, Emilio M

    2017-09-01

    Decades after the birth of supramolecular chemistry, there are many techniques to measure noncovalent interactions, such as hydrogen bonding, under equilibrium conditions. As ensembles of molecules rapidly lose coherence, we cannot extrapolate bulk data to single-molecule events under non-equilibrium conditions, more relevant to the dynamics of biological systems. We present a new method that exploits the high force resolution of optical tweezers to measure at the single molecule level the mechanical strength of a hydrogen bonded host-guest pair out of equilibrium and under near-physiological conditions. We utilize a DNA reporter to unambiguously isolate single binding events. The Hamilton receptor-cyanuric acid host-guest system is used as a test bed. The force required to dissociate the host-guest system is ∼17 pN and increases with the pulling rate as expected for a system under non-equilibrium conditions. Blocking one of the hydrogen bonding sites results in a significant decrease of the force-to-break by 1-2 pN, pointing out the ability of the method to resolve subtle changes in the mechanical strength of the binding due to the individual H-bonding components. We believe the method will prove to be a versatile tool to address important questions in supramolecular chemistry.

  10. Influence of heat-pretreatments on the microstructural and mechanical properties of galfan-coated metal bonds

    Science.gov (United States)

    Hordych, Illia; Rodman, Dmytro; Nürnberger, Florian; Schmidt, Hans Christian; Orive, Alejandro Gonzalez; Homberg, Werner; Grundmeier, Guido; Maier, Hans Jürgen

    2018-05-01

    In the present study, heat-treatment assisted bonding of galfan-coated low-carbon steel sheets was investigated. Steel sheets were bonded by cold rolling subsequently to a heat treatment in the temperature range from 400 °C to 550°C. The reduction ratio during cold rolling was varied in the range from 50% to 80%. Such high reduction ratios were achieved by splitting the bonding process into three stages. By employing heat-treatments, the mechanical properties of the bonds were improved. The heat-pretreatment allowed the formation of brittle intermetallic phases that were easily fractured in the rolling gap during the bonding process. Thus, juvenile non-oxidized surfaces were formed, which facilitated the bonding between the steel layers, and thus increased the bond strength. The intermetallic phases were actively formed at temperatures of 450 °C and above; however increasing temperatures resulted in decreasing mechanical properties due to oxidation processes. The local microstructure was analyzed by scanning electron microscopy in order to characterize the contact zone on the micro level with a focus on the formation of intermetallic phases. The mechanical properties were determined in tensile shear tests. Interestingly, it was found that the galfan coating allowed for bonding at room temperature, and the aluminum fraction was primarily responsible for the enhanced oxide formation during the heat-pretreatment.

  11. Study by X-ray diffraction of the crystalline structure versus time of a radioactive implanted coral and of a non radioactive implanted coral

    International Nuclear Information System (INIS)

    Irigaray, J.L.; Oudadesse, H.; Sauvage, T.; El Fadl, H.

    1993-01-01

    The corals used as biomaterials in bone surgery consist of 98% calcium carbonate in the form of aragonite and have orthorhombic crystalline structure. This structure changes progressively into a bone structure in an hexagonal form when the coral is implanted in cortical or spongy surroundings. For this experiment, a radioactive and a non radioactive coral have been implanted in the metaphysics of the ovine femur. The transformation of the orthorhombic structure into the hexagonal bone structure has been studied for the two types of implant. This makes it possible to verify if radioactivity modifies the process of transformation of the implanted biocoral. (K.A.) 3 refs.; 7 figs

  12. Study by X-ray diffraction of the crystalline structure versus time of a radioactive implanted coral and of a non radioactive implanted coral

    Energy Technology Data Exchange (ETDEWEB)

    Irigaray, J.L.; Oudadesse, H.; Sauvage, T.; El Fadl, H. [Clermont-Ferrand-2 Univ., 63 - Aubiere (France). Lab. de Physique Corpusculaire; Lefevre, J.; Barlet, J.P. [Institut National de Recherches Agronomiques, 63 -Saint-Genes-Champanelle (France)

    1993-12-31

    The corals used as biomaterials in bone surgery consist of 98% calcium carbonate in the form of aragonite and have orthorhombic crystalline structure. This structure changes progressively into a bone structure in an hexagonal form when the coral is implanted in cortical or spongy surroundings. For this experiment, a radioactive and a non radioactive coral have been implanted in the metaphysics of the ovine femur. The transformation of the orthorhombic structure into the hexagonal bone structure has been studied for the two types of implant. This makes it possible to verify if radioactivity modifies the process of transformation of the implanted biocoral. (K.A.) 3 refs.; 7 figs.

  13. Assessment of Radioactive Materials and Heavy Metals in the Surface Soil around the Bayanwula Prospective Uranium Mining Area in China.

    Science.gov (United States)

    Bai, Haribala; Hu, Bitao; Wang, Chengguo; Bao, Shanhu; Sai, Gerilemandahu; Xu, Xiao; Zhang, Shuai; Li, Yuhong

    2017-03-14

    The present work is the first systematic and large scale study on radioactive materials and heavy metals in surface soil around the Bayanwula prospective uranium mining area in China. In this work, both natural and anthropogenic radionuclides and heavy metals in 48 surface soil samples were analyzed using High Purity Germanium (HPGe) γ spectrometry and inductively coupled plasma-mass spectrometry (ICP-MS). The obtained mean activity concentrations of 238 U, 226 Ra, 232 Th, 40 K, and 137 Cs were 25.81 ± 9.58, 24.85 ± 2.77, 29.40 ± 3.14, 923.0 ± 47.2, and 5.64 ± 4.56 Bq/kg, respectively. The estimated average absorbed dose rate and annual effective dose rate were 76.7 ± 3.1 nGy/h and 83.1 ± 3.8 μ Sv, respectively. The radium equivalent activity, external hazard index, and internal hazard index were also calculated, and their mean values were within the acceptable limits. The estimated lifetime cancer risk was 3.2 × 10 -4 /Sv. The heavy metal contents of Cr, Ni, Cu, Zn, As, Cd, and Pb from the surface soil samples were measured and their health risks were then assessed. The concentrations of all heavy metals were much lower than the average backgrounds in China except for lead which was about three times higher than that of China's mean. The non-cancer and cancer risks from the heavy metals were estimated, which are all within the acceptable ranges. In addition, the correlations between the radionuclides and the heavy metals in surface soil samples were determined by the Pearson linear coefficient. Strong positive correlations between radionuclides and the heavy metals at the 0.01 significance level were found. In conclusion, the contents of radionuclides and heavy metals in surface soil around the Bayanwula prospective uranium mining area are at a normal level.

  14. Improved methods for testing bond and intrinsic strength and fatigue of thermally sprayed metallic and ceramic coatings

    International Nuclear Information System (INIS)

    Schweitzer, K.K.; Ziehl, M.H.; Schwaminger, C.

    1991-01-01

    Conventional bond strength tests for thermally sprayed coatings represent only a rough means of obtaining overall strength values, with no differentiation between adhesion at the interface and intrinsic coating properties. In order to obtain information about the influence of substrate surface preparation on the adhesion of a Tribaloy T700 coating, tensile bond strength and modified crack-opening displacement (COD) specimens were tested by deliberate crack initiation at the interface. Crack initiation was achieved by weakening of the interface at the outer diameter in the case of bond strength specimens or at the notch root in the case of COD specimens. This made it possible to look at the influence of surface roughness and grit contamination on the coating adhesion separately. Modified COD specimens with the notch in the centre of the coating were used to determine crack-opening energies and critical stress intensity factors of atmospheric plasma-sprayed NiAl and low pressure plasma-sprayed CoNiCrAlY bond coatings and a ZrO 2 7Y 2 O 3 thermal barrier coating (TBC). Additionally, bond strength specimens were stressed dynamically, and it could be demonstrated that Woehler (S/N) diagrams can be established for a metallic NiAl bond coating and even for a ceramic ZrO 2 7Y 2 O 3 TBC. (orig.)

  15. Application of digital radiography for the non-destructive characterization of radioactive waste packages

    International Nuclear Information System (INIS)

    Lierse, C.; Goebel, H.; Kaciniel, E.; Buecherl, T.; Krebs, K.

    1995-01-01

    Digital radiography (DR) using gamma-rays is a powerful tool for the non-destructive determination of various parameters which are relevant within the quality control procedure of radioactive waste packages prior to an interim storage or a final disposal. DR provides information about the waste form and the extent of filling in a typical container. It can identify internal structures and defects, gives their geometric dimensions and helps to detect non-declared inner containers, shielding materials etc. From a digital radiographic image the waste matrix homogeneity may be determined and mean attenuation coefficients as well as density values for selected regions of interest can be calculated. This data provides the basis for an appropriate attenuation correction of gamma emission measurements (gamma scanning) and makes a reliable quantification of gamma emitters in waste containers possible. Information from DR measurements are also used for the selection of interesting height positions of the object which are subsequently inspected in more detail by other non-destructive methods, e. g. by transmission computerized tomography (TCT). The present paper gives important technical specifications of an integrated tomography system (ITS) which is used to perform digital radiography as well as transmission/emission computerized tomography (TCT/ECT) on radioactive waste packages. It describes the DR mode and some of its main applications and shows typical examples of radiographs of real radioactive waste drums

  16. Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel.

    Science.gov (United States)

    Sekhri, Sahil; Mittal, Sanjeev; Garg, Sandeep

    2016-01-01

    In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non-significant (p > 0.05). Surface treatment of enamel increases the bond strength of self adhesive resin cement.

  17. Method of preparing initial multilayer radioactive pellets in production of planar radioactive sources

    International Nuclear Information System (INIS)

    Stopek, K.; Satorie, Z.

    1982-01-01

    A compact radioactive foil is placed into a press mould on a thin surface layer of compacted or powder metal and is covered with powder metal. In order to achieve the required dimension and activity the radioactive foil is cut from a large sheet. The multilayer pellet is compacted and rolled using routine methods applied in powder metallurgy. This method excludes the possibility of destroying the active pellet during handling, improves its mechanical properties and is seven times less time demanding than methods used so far. (M.D.)

  18. Polymer derived non-oxide ceramics modified with late transition metals.

    Science.gov (United States)

    Zaheer, Muhammad; Schmalz, Thomas; Motz, Günter; Kempe, Rhett

    2012-08-07

    This tutorial review highlights the methods for the preparation of metal modified precursor derived ceramics (PDCs) and concentrates on the rare non-oxide systems enhanced with late transition metals. In addition to the main synthetic strategies for modified SiC and SiCN ceramics, an overview of the morphologies, structures and compositions of both, ceramic materials and metal (nano) particles, is presented. Potential magnetic and catalytic applications have been discussed for the so manufactured metal containing non-oxide ceramics.

  19. Waterproofing improvement of radioactive waste asphalt solid

    International Nuclear Information System (INIS)

    Adachi, Katsuhiko; Yamaguchi, Takashi; Ikeoka, Akira.

    1981-01-01

    Purpose: To improve the waterproofing of asphalt solid by adding an alkaline earth metal salt and, further, paraffin, into radioactive liquid waste when processing asphalt solidification of the radioactive liquid waste. Method: Before processing molten asphalt solidification of radioactive liquid waste, soluble salts of alkaline earth metal such as calcium chloride, magnesium chloride, or the like is added to the radioactive liquid waste. Paraffin having a melting point of higher than 60 0 C, for example, is added to the asphalt, and waterproofing can be remarkably improved. The waste asphalt solid thus fabricated can prevent the swelling thereof, and can improve its waterproofing. (Yoshihara, H.)

  20. Method of processing radioactive liquid waste

    International Nuclear Information System (INIS)

    Motojima, Kenji; Kawamura, Fumio.

    1981-01-01

    Purpose: To increase the efficiency of removing radioactive cesium from radioactive liquid waste by employing zeolite affixed to metallic compound ferrocyanide as an adsorbent. Method: Regenerated liquid waste of a reactor condensation desalting unit, floor drain and so forth are collected through respective supply tubes to a liquid waste tank, and the liquid waste is fed by a pump to a column filled with zeolite containing a metallic compound ferrocyanide, such as with copper, zinc, manganese, iron, cobalt, nickel or the like. The liquid waste from which radioactive cesium is removed is dried and pelletized by volume reducing and solidifying means. (Yoshino, Y.)

  1. Microstructure, hardness, corrosion resistance and porcelain shear bond strength comparison between cast and hot pressed CoCrMo alloy for metal-ceramic dental restorations.

    Science.gov (United States)

    Henriques, B; Soares, D; Silva, F S

    2012-08-01

    The purpose of this study was to compare the microstructure, hardness, corrosion resistance and metal-porcelain bond strength of a CoCrMo dental alloy obtained by two routes, cast and hot pressing. CoCrMo alloy substrates were obtained by casting and hot pressing. Substrates' microstructure was examined by the means of Optical Microscopy (OM) and by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscopy (EDS). Hardness tests were performed in a microhardness indenter. The electrochemical behavior of substrates was investigated through potentiodynamic tests in a saline solution (8g NaCl/L). Substrates were bonded to dental porcelain and metal-porcelain bond strength was assessed by the means of a shear test performed in a universal test machine (crosshead speed: 0.5 mm/min) until fracture. Fractured surfaces as well as undestroyed interface specimens were examined with Stereomicroscopy and SEM-EDS. Data was analyzed with Shapiro-Wilk test to test the assumption of normality. The t-test (pmicrostructures whereas hot pressed specimens exhibited a typical globular microstructure with a second phase spread through the matrix. The hardness registered for hot pressed substrates was greater than that of cast specimens, 438±24HV/1 and 324±8HV/1, respectively. Hot pressed substrates showed better corrosion properties than cast ones, i.e. higher OCP; higher corrosion potential (E(corr)) and lower current densities (i(corr)). No significant difference was found (p<0.05) in metal-ceramic bond strength between cast (116.5±6.9 MPa) and hot pressed (114.2±11.9 MPa) substrates. The failure type analysis revealed an adhesive failure for all specimens. Hot pressed products arise as an alternative to cast products in dental prosthetics, as they impart enhanced mechanical and electrochemical properties to prostheses without compromising the metal-ceramic bond strength. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Ion sources development at GANIL for radioactive beams and high charge state ions

    International Nuclear Information System (INIS)

    Leroy, R.; Barue, C.; Canet, C.; Dupuis, M.; Flambard, J.L.; Gaubert, G.; Gibouin, S.; Huguet, Y.; Jardin, P.; Lecesne, N.; Leherissier, P.; Lemagnen, F.; Pacquet, J.Y.; Pellemoine-Landre, F.; Rataud, J.P.; Saint-Laurent, M.G.; Villari, A.C.C.; Maunoury, L.

    2001-01-01

    The GANIL laboratory has in charge the production of ion beams for nuclear and non nuclear physics. This article reviews the last developments that are underway in the fields of radioactive ion beam production, increase of the metallic ion intensities and production of highly charges ion beams. (authors)

  3. Destructive and non-destructive tests for radioactive waste packages Task 3 Characterization of radioactive waste forms. A series of final reports (1985-89) No 43

    International Nuclear Information System (INIS)

    Odoj, R.

    1991-01-01

    On the basis of preliminary waste acceptance requirements quality control of radioactive waste has to be performed prior to interim storage or final disposal. The quality control can either be achieved by random tests on conditioned radioactive waste packages or by process qualification of the conditioning processes. One of the most important criteria is the activity of the radioactive waste product or packages. To get some first information on the waste package γ-spectrometric measurement is performed as non-destructive test. Besides the γ-emitting nuclides the α and β-emitting nuclides can be estimated by calculation if the waste was generated in nuclear power plants and the nuclide relations are known. If the non-destructive determination of nuclides is not sufficient or the non-radioactive content of the waste packages has to be identified sampling from the waste packages has to be performed. This can best be done by core drilling. To avoid the need of water for cooling the drill head, air cooled core drilling is investigated. As mixed wastes is not allowed for final disposal the determination of possible organic toxic materials like PCB, dioxin and furane-compounds in cemented wastes is conducted by GC-MS-investigations. For getting more knowledge in the field of process qualification concerning super compaction, instrumentation of the super compaction process is investigated and tested

  4. The non-agricultural areas of Canada and radioactivity

    International Nuclear Information System (INIS)

    Meyerhof, Dorothy; Marshall, Heather

    1990-01-01

    Approximately 90% of the Canadian land mass is non-agricultural. It is a source of food to native peoples and sport hunters. Although agricultural areas have been extensively monitored for the transfer of radionuclides through the food chain, very little work has been done on radionuclides in the natural environment in Canada. The exceptions are specific problems such as radiocesium in the lichen-caribou food chain in the Arctic and natural radioactivity in the vicinity of uranium mines. A systematic study of natural food chains is being initiated. This paper presents the results of the study so far and proposed future directions. (author)

  5. Growth of micrometric oxide layers to explore laser decontamination of metallic surfaces

    OpenAIRE

    Carvalho Luisa; Pacquentin Wilfried; Tabarant Michel; Maskrot Hicham; Semerok Alexandre

    2017-01-01

    The nuclear industry produces a wide range of radioactive waste in terms of hazard level, contaminants and material. For metallic equipment like steam generators, the radioactivity is mainly located in the oxide surface. In order to study and develop safe techniques for dismantling and for decontamination, it is important to have access to oxide layers with a representative distribution of non-radioactive contaminants. In this paper we propose a method for the creation of oxide layers on stai...

  6. Devoluming method of acidic radioactive liquid waste and processing system therefor

    International Nuclear Information System (INIS)

    Shirai, Takamori; Honda, Tadahiro

    1998-01-01

    Radioactive liquid wastes such as liquid wastes discharged from chemical decontamination (containing free acids, metal salts dissolved in acids, not-dissolved iron rust and radioactive metals) are introduced to an acid recovering device using a diffusion permeation membrane and separated to a deacidified liquid and separated acid liquid. The separated acid liquid mainly comprising free acids is recovered to a tank for recovered acids, and used repeatedly for removing crud. The deacidified liquid mainly comprising salts is concentrated in a reverse osmosis membrane (RO) concentration device. RO concentrated liquid containing radioactive metals is dried, and salts are decomposed in a drying/salt-decomposing device and separated into metal oxides and a mixed gas of an acidic gas and steams. The gas is cooled in an acid absorbing device and recovered as free acids. The metal oxides containing radioactive metals are solidified. (I.N.)

  7. Radiation damage in non-metals

    International Nuclear Information System (INIS)

    Stoneham, A.M.

    1980-01-01

    Work on the problem of radiation damage in non-metals over the past 25 years is reviewed with especial emphasis on the contribution made at AERE, Harwell and in particular by members of the Theoretical Physics Division. In the years between 1954 and the end of the 1960's the main thrust in the radiation damage of non-metals was model-building including devising defect models and mechanisms that were qualitatively acceptable, and compiling systematic data. The early 1970's made greater quantitative demands as computer techniques made theory more powerful. In many cases it was possible to predict defect properties accurately, so that one could distinguish between different defect models which were hard to tell apart by experiment alone. In the late 1970's the most important aspect has moved towards mechanisms of defect processes, especially in cases where experiment by itself is limited by timescale, by complexity, by the unintentional impurities inevitable in real crystals, or by the extreme conditions required. (UK)

  8. Guangxi non-ferrous metal industry speeding up its restructuring

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>Non-ferrous metal industry in Guangxi takes an important position in China.However,the waste of resources is severe due to its simple industrial structure,small size of enterprises, sloppy technology,scattered layout,obstructed market and indiscriminate mining.Starting from last year,Guangxi began the project of building a world-influential non-ferrous metal

  9. Graphene–Noble Metal Nano-Composites and Applications for Hydrogen Sensors

    Directory of Open Access Journals (Sweden)

    Sukumar Basu

    2017-10-01

    Full Text Available Graphene based nano-composites are relatively new materials with excellent mechanical, electrical, electronic and chemical properties for applications in the fields of electrical and electronic devices, mechanical appliances and chemical gadgets. For all these applications, the structural features associated with chemical bonding that involve other components at the interface need in-depth investigation. Metals, polymers, inorganic fibers and other components improve the properties of graphene when they form a kind of composite structure in the nano-dimensions. Intensive investigations have been carried out globally in this area of research and development. In this article, some salient features of graphene–noble metal interactions and composite formation which improve hydrogen gas sensing properties—like higher and fast response, quick recovery, cross sensitivity, repeatability and long term stability of the sensor devices—are presented. Mostly noble metals are effective for enhancing the sensing performance of the graphene–metal hybrid sensors, due to their superior catalytic activities. The experimental evidence for atomic bonding between metal nano-structures and graphene has been reported in the literature and it is theoretically verified by density functional theory (DFT. Multilayer graphene influences gas sensing performance via intercalation of metal and non-metal atoms through atomic bonding.

  10. Z-H Bond Activation in (Di)hydrogen Bonding as a Way to Proton/Hydride Transfer and H2 Evolution.

    Science.gov (United States)

    Belkova, Natalia V; Filippov, Oleg A; Shubina, Elena S

    2018-02-01

    The ability of neutral transition-metal hydrides to serve as a source of hydride ion H - or proton H + is well appreciated. The hydride ligands possessing a partly negative charge are proton accepting sites, forming a dihydrogen bond, M-H δ- ⋅⋅⋅ δ+ HX (M=transition metal or metalloid). On the other hand, some metal hydrides are able to serve as a proton source and give hydrogen bond of M-H δ+ ⋅⋅⋅X type (X=organic base). In this paper we analyse recent works on transition-metal and boron hydrides showing i) how formation of an intermolecular complex between the reactants changes the Z-H (M-H and X-H) bond polarity and ii) what is the implication of such activation in the mechanisms of hydrides reactions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The mineral base and productive capacities of metals and non-metals of Kosovo

    Science.gov (United States)

    Rizaj, M.; Beqiri, E.; McBow, I.; O'Brien, E. Z.; Kongoli, F.

    2008-08-01

    All historical periods of Kosovo—Ilirik, Roman, Medieval, Turkish, and former Yugoslavian—are linked with the intensive development of mining and metallurgy. This activity influenced and still is influencing the overall position of Kosovo as a country. For example, according to a 2006 World Bank report as well as other studies, Kosovo has potential lignite resources (geological reserves) of about 1.5 billion tonnes, which are ranked fifth in the world in importance. Other significant Kosovan mineral resources include lead, zinc, gold, silver, bauxite, and uranium, and rare metals accompanying those minerals, including indium, cadmium, thallium, gallium, and bismuth. These rare metals are of particular importance in developing advanced industrial technologies. Kosovo also has reserves of high-quality non-metals, including magnesite, quartz grit, bentonite, argil, talc, and asbestos. No database exists for these non-metal reserves, and further research and studies are needed.

  12. Convertible bond valuation focusing on Chinese convertible bond market

    OpenAIRE

    Yang, Ke

    2010-01-01

    This paper mainly discusses the methods of valuation of convertible bonds in Chinese market. Different from common convertible bonds in European market, considering the complicate features of Chinese convertible bond, this paper represents specific pricing approaches for pricing convertible bonds with different provisions along with the increment of complexity of these provisions. More specifically, this paper represents the decomposing method and binomial tree method for pricing both of Non-...

  13. A comparative analysis of managing radioactive waste in the Canadian nuclear and non-nuclear industries

    Energy Technology Data Exchange (ETDEWEB)

    Batters, S.; Benovich, I.; Gerchikov, M. [AMEC NSS Ltd., Toronto, ON (Canada)

    2011-07-01

    Management of radioactive waste in nuclear industries in Canada is tightly regulated. The regulated nuclear industries include nuclear power generation, uranium mining and milling, nuclear medicine, radiation research and education and industrial users of nuclear material (e.g. radiography, thickness gauges, etc). In contrast, management of Naturally Occurring Radioactive Material (NORM) waste is not regulated by the Canadian Nuclear Safety Commission (CNSC), with the exception of transport above specified concentrations. Although these are radioactive materials that have always been present in various concentrations in the environment and in the tissues of every living animal, including humans, the hazards of similar quantities of NORM radionuclides are identical to those of the same or other radionuclides from regulated industries. The concentration of NORM in most natural substances is so low that the associated risk is generally regarded as negligible, however higher concentrations may arise as the result of industrial operations such as: oil and gas production, mineral extraction and processing (e.g. phosphate fertilizer production), metal recycling, thermal electric power generation, water treatment facilities. Health Canada has published the Canadian Guidelines for the Management of Naturally Occurring Radioactive Materials (NORM). This paper presents a comparative analysis of the requirements for management of radioactive waste in the regulated nuclear industries and of the guidelines for management of NORM waste. (author)

  14. A comparative analysis of managing radioactive waste in the Canadian nuclear and non-nuclear industries

    International Nuclear Information System (INIS)

    Batters, S.; Benovich, I.; Gerchikov, M.

    2011-01-01

    Management of radioactive waste in nuclear industries in Canada is tightly regulated. The regulated nuclear industries include nuclear power generation, uranium mining and milling, nuclear medicine, radiation research and education and industrial users of nuclear material (e.g. radiography, thickness gauges, etc). In contrast, management of Naturally Occurring Radioactive Material (NORM) waste is not regulated by the Canadian Nuclear Safety Commission (CNSC), with the exception of transport above specified concentrations. Although these are radioactive materials that have always been present in various concentrations in the environment and in the tissues of every living animal, including humans, the hazards of similar quantities of NORM radionuclides are identical to those of the same or other radionuclides from regulated industries. The concentration of NORM in most natural substances is so low that the associated risk is generally regarded as negligible, however higher concentrations may arise as the result of industrial operations such as: oil and gas production, mineral extraction and processing (e.g. phosphate fertilizer production), metal recycling, thermal electric power generation, water treatment facilities. Health Canada has published the Canadian Guidelines for the Management of Naturally Occurring Radioactive Materials (NORM). This paper presents a comparative analysis of the requirements for management of radioactive waste in the regulated nuclear industries and of the guidelines for management of NORM waste. (author)

  15. 21 CFR 888.3120 - Ankle joint metal/polymer non-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ankle joint metal/polymer non-constrained cemented... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3120 Ankle joint metal/polymer non-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer non...

  16. Selectivity in inter polymer complexation involving phenolic copolymer, poly electrolytes, non-ionic polymers and transition metal ions

    International Nuclear Information System (INIS)

    Vasheghani Farahani, B.; Hosseinpour Rajabi, F.

    2006-01-01

    Selectivity in inter polymer complex formation involving a typical four-component phenolic copolymer (ρ-chloro phenol-ρ-aminophenol-ρ-toluidine-ρ-cresol- HCHO copolymer), poly electrolytes such as polyethylene imine and polyacrylic acid, a non-ionic homopolymer polyvinyl pyrrolidone, and some transition metal ions (e.g., Cu (II), Ni (11)) have been studied in dimethylformamide-methanol solvents mixture. The coordinating groups of phenolic copolymer form complexes through hydrogen bonding and ion-dipole interactions. The different stages of interactions have been studied by several experimental techniques, e.g., viscometry, potentiometry and conductometry. Some schemes have been suggested to explain the mode of interaction between these components

  17. Magnetic nanostructures: radioactive probes and recent developments

    International Nuclear Information System (INIS)

    Prandolini, M J

    2006-01-01

    The miniaturization of magnetic sensors and storage devices down to the nano-scale leads to drastic changes in magnetic phenomena compared with the same devices with a larger size. Excited-nuclear-probe (radioactive probe) techniques are ideal for investigating these new magnetic nanostructures. By observing the magnetic hyperfine fields (and in some cases the electric-field-gradients (EFGs)) at the nuclei of radioactive probes, microscopic information about the magnetic environment of the probes is acquired. The magnetic hyperfine field is particularly sensitive to the s-spin polarization of the conduction electrons and to the orbital magnetic moment of the probe atom. Three methods of inserting radioactive probes into magnetic nanostructures are presented; neutron activation, recoil implantation and 'soft-landing', followed by descriptions of their application to selected examples. In some cases, these methods offer the simultaneous creation and observation of new magnetic materials at the atomic scale. This review focuses firstly on the induced magnetism in noble-metal spacer layers between either ferromagnetic (FM) or FM/antiferromagnetic (AFM) layers in a trilayer structure. Using the method of low-temperature nuclear orientation, the s-spin polarization of noble-metal probes was measured and was found to be very sensitive to the magnetic properties at both the FM and AFM interfaces. Secondly, the recoil implantation of radioactive Fe probes into rare-earth hosts and d-band alloys and subsequent measurement using time-differential perturbed angular distribution offer the possibility of controlling the chemical composition and number of nearest-neighbours. This method was used to prepare local 3d-magnetic clusters in a non-magnetic matrix and to observe their magnetic behaviour. Finally, non-magnetic radioactive probes were 'soft-landed' onto Ni surfaces and extremely lattice-expanded ultrathin Ni films. By measuring the magnetic hyperfine fields and EFGs at

  18. Assessment of radioactive materials and heavy metals in the surface soil around uranium mining area of Tongliao, China.

    Science.gov (United States)

    Haribala; Hu, Bitao; Wang, Chengguo; Gerilemandahu; Xu, Xiao; Zhang, Shuai; Bao, Shanhu; Li, Yuhong

    2016-08-01

    Natural and artificial radionuclides and heavy metals in the surface soil of the uranium mining area of Tongliao, China, were measured using gamma spectrometry, flame atomic absorption spectrophotometry, graphite furnace atomic absorption spectrophotometry and microwave dissolution atomic fluorescence spectrometry respectively. The estimated average activity concentrations of (238)U, (232)Th, (226)Ra, (40)K and (137)Cs are 27.53±16.01, 15.89±5.20, 12.64±4.27, 746.84±38.24 and 4.23±4.76Bq/kg respectively. The estimated average absorbed dose rate in the air and annual effective dose rate are 46.58±5.26nGy/h and 57.13±6.45μSv, respectively. The radium equivalent activity, external and internal hazard indices were also calculated and their mean values are within the acceptable limits. The heavy metal concentrations of Pb, Cd, Cu, Zn, Hg and As from the surface soil were measured and their health risks were then determined. Although the content of Cd is much higher than the average background in China, its non-cancer and cancer risk indices are all within the acceptable ranges. These calculated hazard indices to estimate the potential radiological health risk in soil and the dose rate are well below their permissible limit. In addition the correlations between the radioactivity concentrations of the radionuclides and the heavy metals in soil were determined by the Pearson linear coefficient. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Naturally occurring radioactive elements, arsenic and other metals in drinking water from private wells

    International Nuclear Information System (INIS)

    Ek, Britt-Marie; Thunholm, Bo; Oestergren, Inger; Falk, Rolf; Mjoenes, Lars

    2008-04-01

    Approximately 50 % of all drinking water is extracted from groundwater. For private supply of drinking water almost 100 % emanates from groundwater. For approximately 1.2 of the 9 million Swedish citizens, private wells are the primary water source where 700 000 get their water from wells drilled in the bedrock. Radioactive elements and metals that occur naturally in the bedrock can be found in the well water. The radioactive elements include radon-222 ( 222 Rn), uranium (U), radium-226 ( 226 Ra) as well as polonium-210 ( 210 Po) and lead-210 ( 210 Pb), which are long-lived progeny of radon. In 2001 SGU and SSI initiated a collaboration to investigate the occurrence of radioactive elements and metals in water from private wells. Data sampling and analysis was completed in 2006. The aim of the project was to map the occurrence of radioactive elements in drinking water from private wells and to estimate their respective dose contribution. Another aim was to map metals and other elements in the water, to study temporal variations and possible co-variations between analysed elements. Sampling was conducted in a random fashion throughout the country. However, in regions where bedrock and soils are known to show enhanced concentrations of radioactive elements and arsenic the sampling density was increased. The analyses comprises: total beta activity, total alpha activity, radium-226, radon-222, uranium, aluminium, chloride, calcium, vanadium, chromium, iron, manganese, cobalt, nickel, copper, zink, arsenic, strontium, molybdenum, cadmium, barium, lead, thorium, boron, sodium, manganese, potassium, silica, alkalinity, sulfate, fluoride, phosphate, nitrate, pH and electric conductivity. In a few cases chemistry analyses of polonium-210 and lead-210 have been done. It was observed that the south-western part of Sweden, with exception for granite areas in the county of Bohuslaen, has relatively low concentrations of natural radioactive elements in the drinking water. The

  20. Dentin surface treatment using a non-thermal argon plasma brush for interfacial bonding improvement in composite restoration

    Science.gov (United States)

    Ritts, Andy Charles; Li, Hao; Yu, Qingsong; Xu, Changqi; Yao, Xiaomei; Hong, Liang; Wang, Yong

    2010-01-01

    The objective of this study is to investigate the treatment effects of non-thermal atmospheric gas plasmas on dentin surfaces for composite restoration. Extracted unerupted human third molars were used by removing the crowns and etching the exposed dentin surfaces with 35% phosphoric acid gel. The dentin surfaces were treated by using a non-thermal atmospheric argon plasma brush for various durations. The molecular changes of the dentin surfaces were analyzed using FTIR/ATR and an increase in carbonyl groups on dentin surfaces was detected with plasma treated dentin. Adper Single Bond Plus adhesive and Filtek Z250 dental composite were applied as directed. To evaluate the dentin/composite interfacial bonding, the teeth thus prepared were sectioned into micro-bars as the specimens for tensile test. Student Newman Keuls tests showed that the bonding strength of the composite restoration to peripheral dentin was significantly increased (by 64%) after 30 s plasma treatment. However, the bonding strength to plasma treated inner dentin did not show any improvement. It was found that plasma treatment of peripheral dentin surface up to 100 s gave an increase in interfacial bonding strength, while a prolong plasma treatment of dentin surfaces, e.g., 5 min treatments, showed a decrease in interfacial bonding strength. PMID:20831586

  1. New Approach for Fractioning Metal Compounds Studies in Soils

    Science.gov (United States)

    Minkina, Tatiana; Motuzova, Galina; Mandzhieva, Saglara; Bauer, Tatiana; Burachevskaya, Marina; Sushkova, Svetlana; Nevidomskaya, Dina; Kalinitchenko, Valeriy

    2016-04-01

    A combined approach for fractioning metal compounds in soils on the basis of sequential (Tessier, 1979) and parallel extractions (1 N NH4Ac, pH 8; 1% EDTA in NH4Ac; and 1N HCl) is proposed. Metal compounds in sequential and parallel extracts are grouped according to the strength of their bonds with soil components. A given group includes metal compounds with similar strengths of bonds and, hence, with similar migration capacities. The groups of firmly and loosely bound metal compounds can be distinguished. This approach has been used to assess the group composition of Zn, Cu, and Pb compounds in an ordinary chernozem and its changes upon the soil contamination with metals. Contamination of an ordinary chernozem from Rostov oblast with heavy metals caused a disturbance of the natural ratios between the metal compounds. In the natural soil, firmly bound metals predominate (88-95%of the total content), which is mainly caused by the fixation of metals in lattices of silicate minerals (56-83%of the total content). The mobility of the metals in the natural soil is low (5-12%) and is mainly related to metal compounds loosely bound with the soil carbonates. Upon the soil contamination with metals (application rates of 100-300 mg/kg), the content of all the metal compounds increases, but the ratio between them shifts towards a higher portion of the potentially mobile metal compounds (up to 30-40% of the bulk contents of the metals). Organic substances and non-silicate Fe, Al, and Mn minerals become the main carriers of the firmly and loosely bound metals. The strengths of their bonds with Cu, Pb, and Zn differ. Lead in the studied chernozems is mainly fixed in a loosely bound form with organic matter, whereas copper and zinc are fixed both by the organic matter and by the non-silicate Fe, Al, and Mn compounds. Firm fixation of the applied Cu and Pb is mainly ensured by the soil organic matter and non-silicate minerals, whereas firm fixation of Zn is mainly due to non

  2. Gained experiences concerning the treatment of radioactive metal scrap from German NPP'S in Studsvik - Gained experience concerning the treatment of radioactive metal scrap from German nuclear power plants

    International Nuclear Information System (INIS)

    Westerwinter, Boris; Buckanie, Niemma

    2014-01-01

    The company Gesellschaft fuer Nuklear-Service mbH, Essen/Germany (GNS), operates on behalf of the utilities E.ON, RWE, EnBW and VENE since the nineteen-nineties - amongst its other duties - on the waste management of metal scrap which originates from German nuclear power plants. The main objective within this responsibility is to maximize the value of recyclable fractions for re-use while minimizing the resulting radioactive waste. To achieve the aforementioned objective, melting of metallic scrap proved to be an outstanding choice. The use of this technique combined with all accompanying processes and regulations is accepted by the competent authorities and independent experts as a qualified treatment method over the entire time period. The motivation of this paper is to reflect on the experiences gained concerning the planning, implementation and results, acquired by GNS by using the Studsvik service. The focus will be on characteristics within processing of such campaigns. (authors)

  3. Creep effects in diffusion bonding of oxygen-free copper

    CERN Document Server

    Moilanen, Antti

    Diffusion is the transport of atoms or particles through the surrounding material. Various microstructural changes in metals are based on the diffusion phenomena. In solid metals the diffusion is closely related to crystallographic defects. In single-component metals the dominant mechanism of diffusion is the vacancy mechanism. Diffusion bonding is a direct technological application of diffusion. It is an advanced solidstate joining process in which the surfaces of two components are brought to contact with each other and heated under a pressing load in a controlled environment. During the process, the contact surfaces are bonded by atomic diffusion across the interface and as a result, one solid piece is formed. The condition of high temperature and low applied stress combined with relatively long process duration enables the creep effects to take place in bonded metals. Furthermore, creep causes unwanted permanent deformations in the bonded components. Some authors suggest that there could be a threshold fo...

  4. Integration of European Bond Markets

    DEFF Research Database (Denmark)

    Christiansen, Charlotte

    2014-01-01

    I investigate the time variation in the integration of EU government bond markets. The integration is measured by the explanatory power of European factor portfolios for the individual bond markets for each year. The integration of the government bond markets is stronger for EMU than non-EMU memb......I investigate the time variation in the integration of EU government bond markets. The integration is measured by the explanatory power of European factor portfolios for the individual bond markets for each year. The integration of the government bond markets is stronger for EMU than non...

  5. Radioactive wear measurements of cutting tools made of metal in cutting aluminium alloys

    International Nuclear Information System (INIS)

    Frevert, E.

    1977-01-01

    The possibility of making quick checkings of the inhomogeneities of turning materials with radioactive wear measurements has been tested. After activation analysis of the long-lived radioisotopes of cutting tools made of hard metal a method for loss-free collection of the turnings has been developed. The detection limit of the abrasion is about 10 -8 g, the measuring times are 5-10 minutes. Special radiation protection measures are not necessary. An analysis of the abrasion showed that at the beginning of cutting the amount of cobalt is 6 times higher than in the normal composition of the used cutting tools. (author)

  6. Modification of Non-Metallic Inclusions by Rare-Earth Elements in Microalloyed Steels

    Directory of Open Access Journals (Sweden)

    M. Opiela

    2012-04-01

    Full Text Available The modification of the chemical composition of non-metallic inclusions by rare-earth elements in the new-developed microalloyed steels was discussed in the paper. The investigated steels are assigned to production of forged elements by thermo- mechanical treatment. The steels were melted in a vaccum induction furnace and modification of non-metallic inclusions was carried out by the michmetal in the amount of 2.0 g per 1 kg of steel. It was found that using material charge of high purity and a realization of metallurgical process in vacuous conditions result in a low concentration of sulfur (0.004%, phosphorus (from 0.006 to 0.008% and oxygen (6 ppm. The high metallurgical purity is confirmed by a small fraction of non-metallic inclusions averaging 0.075%. A large majority of non-metallic inclusions are fine, globular oxide-sulfide or sulfide particles with a mean size 17m2. The chemical composition and morphology of non-metallic inclusions was modified by Ce, La and Nd, what results a small deformability of non- metallic inclusions during hot-working.

  7. Isolation and characterization of a uranium(VI)-nitride triple bond

    Science.gov (United States)

    King, David M.; Tuna, Floriana; McInnes, Eric J. L.; McMaster, Jonathan; Lewis, William; Blake, Alexander J.; Liddle, Stephen T.

    2013-06-01

    The nature and extent of covalency in uranium bonding is still unclear compared with that of transition metals, and there is great interest in studying uranium-ligand multiple bonds. Although U=O and U=NR double bonds (where R is an alkyl group) are well-known analogues to transition-metal oxo and imido complexes, the uranium(VI)-nitride triple bond has long remained a synthetic target in actinide chemistry. Here, we report the preparation of a uranium(VI)-nitride triple bond. We highlight the importance of (1) ancillary ligand design, (2) employing mild redox reactions instead of harsh photochemical methods that decompose transiently formed uranium(VI) nitrides, (3) an electrostatically stabilizing sodium ion during nitride installation, (4) selecting the right sodium sequestering reagent, (5) inner versus outer sphere oxidation and (6) stability with respect to the uranium oxidation state. Computational analyses suggest covalent contributions to U≡N triple bonds that are surprisingly comparable to those of their group 6 transition-metal nitride counterparts.

  8. Simple inorganic complexes but intricate hydrogen bonding ...

    Indian Academy of Sciences (India)

    Administrator

    We are interested in obtaining single crystals of metal-opda complexes because their crystal structures would show complex hydrogen bonding network due to the presence of. –NH2 groups in the opda ligand (hydrogen bonding donor sites) and inorganic anions having mostly oxo groups (hydrogen bonding acceptor sites) ...

  9. Sealed radioactive sources toolkit

    International Nuclear Information System (INIS)

    Mac Kenzie, C.

    2005-09-01

    The IAEA has developed a Sealed Radioactive Sources Toolkit to provide information to key groups about the safety and security of sealed radioactive sources. The key groups addressed are officials in government agencies, medical users, industrial users and the scrap metal industry. The general public may also benefit from an understanding of the fundamentals of radiation safety

  10. High-Performance Epoxy-Resin-Bonded Magnets Produced from the Sm2Fe17Nx Powders Coated by Copper and Zinc Metals

    Science.gov (United States)

    Noguchi, Kenji; Machida, Ken-ichi; Adachi, Gin-ya

    2001-04-01

    Fine powders of Sm2Fe17Nx coated with copper metal reduced from CuCl2 and/or zinc metal subsequently derived by photo-decomposition of diethylzinc [Zn(C2H5)2] were prepared, and their magnetic properties were characterized in addition to those of epoxy-resin-bonded magnets produced from the coated powders (Cu/Sm2Fe17Nx, Zn/Sm2Fe17Nx and Zn/Cu/Sm2Fe17Nx). The remanence (Br) and maximum energy product [(\\mathit{BH})max] of double metal-coated Zn/Cu/Sm2Fe17Nx powders were maintained at higher levels than those of single Zn metal-coated Sm2Fe17Nx ones (Zn/Sm2Fe17Nx) even after heat treatment at 673 K since the oxidation resistance and thermal stability were effectively improved by formation of the thick and uniform protection layer on the surface of Sm2Fe17Nx particles. Moreover, the epoxy-resin-bonded magnets produced from the Zn/Cu/Sm2Fe17Nx powders possessed good corrosion resistance in air at 393 K which it resulted in the smaller thermal irreversible flux loss than that of uncoated and single Zn metal-coated Sm2Fe17Nx powders in the temperature range of above 393 K.

  11. ESI-MS study on non-covalent bond complex of rhFKBP12 and new neurogrowth promoter

    Institute of Scientific and Technical Information of China (English)

    WANG; Hongxia; (王红霞); ZHANG; Xuemin; (张学敏); YANG; Songcheng; (杨松成); XIAO; Junhai; (肖军海); NIE; Aihua; (聂爱华); ZHAO; Liqin; (赵丽琴); LI; Song; (李松)

    2003-01-01

    An ESI-MS method for studying the non-covalent bond complex of rhFKBP12 with its nonimmunosuppressive ligands was developed. The method was used to screen out three compounds capable of binding to rhFKBP12 non-covalently from 52 compounds. By competing binding experiment, the binding site and the relative binding strength of these three compounds 000107, 000308 and A2B12 with rhFKBP12 were measured. All of them have the same binding site as FK506 does. X-ray crystalline diffraction experiment of non-covalent bond complex of 000107, 000308 with rhFKBP12 by Tsinghua University showed the same results. Among them 000308 has good effect on stimulating neurite to grow in chicken sensory neuronal cultures.

  12. Correlation between metal-ceramic bond strength and coefficient of linear thermal expansion difference

    Directory of Open Access Journals (Sweden)

    Stella Crosara Lopes

    2009-04-01

    Full Text Available The purpose of this study was to evaluate the metal-ceramic bond strength (MCBS of 6 metal-ceramic pairs (2 Ni-Cr alloys and 1 Pd-Ag alloy with 2 dental ceramics and correlate the MCBS values with the differences between the coefficients of linear thermal expansion (CTEs of the metals and ceramics. Verabond (VB Ni-Cr-Be alloy, Verabond II (VB2, Ni-Cr alloy, Pors-on 4 (P, Pd-Ag alloy, and IPS (I and Duceram (D ceramics were used for the MCBS test and dilatometric test. Forty-eight ceramic rings were built around metallic rods (3.0 mm in diameter and 70.0 mm in length made from the evaluated alloys. The rods were subsequently embedded in gypsum cast in order to perform a tensile load test, which enabled calculating the CMBS. Five specimens (2.0 mm in diameter and 12.0 mm in length of each material were made for the dilatometric test. The chromel-alumel thermocouple required for the test was welded into the metal test specimens and inserted into the ceramics. ANOVA and Tukey's test revealed significant differences (p=0.01 for the MCBS test results (MPa, with PI showing higher MCBS (67.72 than the other pairs, which did not present any significant differences. The CTE (10-6 oC-1 differences were: VBI (0.54, VBD (1.33, VB2I (-0.14, VB2D (0.63, PI (1.84 and PD (2.62. Pearson's correlation test (r=0.17 was performed to evaluate of correlation between MCBS and CTE differences. Within the limitations of this study and based on the obtained results, there was no correlation between MCBS and CTE differences for the evaluated metal-ceramic pairs.

  13. Correlation between metal-ceramic bond strength and coefficient of linear thermal expansion difference.

    Science.gov (United States)

    Lopes, Stella Crosara; Pagnano, Valéria Oliveira; Rollo, João Manuel Domingos de Almeida; Leal, Mônica Barbosa; Bezzon, Osvaldo Luiz

    2009-01-01

    The purpose of this study was to evaluate the metal-ceramic bond strength (MCBS) of 6 metal-ceramic pairs (2 Ni-Cr alloys and 1 Pd-Ag alloy with 2 dental ceramics) and correlate the MCBS values with the differences between the coefficients of linear thermal expansion (CTEs) of the metals and ceramics. Verabond (VB) Ni-Cr-Be alloy, Verabond II (VB2), Ni-Cr alloy, Pors-on 4 (P), Pd-Ag alloy, and IPS (I) and Duceram (D) ceramics were used for the MCBS test and dilatometric test. Forty-eight ceramic rings were built around metallic rods (3.0 mm in diameter and 70.0 mm in length) made from the evaluated alloys. The rods were subsequently embedded in gypsum cast in order to perform a tensile load test, which enabled calculating the CMBS. Five specimens (2.0 mm in diameter and 12.0 mm in length) of each material were made for the dilatometric test. The chromel-alumel thermocouple required for the test was welded into the metal test specimens and inserted into the ceramics. ANOVA and Tukey's test revealed significant differences (p=0.01) for the MCBS test results (MPa), with PI showing higher MCBS (67.72) than the other pairs, which did not present any significant differences. The CTE (10(-6) oC(-1)) differences were: VBI (0.54), VBD (1.33), VB2I (-0.14), VB2D (0.63), PI (1.84) and PD (2.62). Pearson's correlation test (r=0.17) was performed to evaluate of correlation between MCBS and CTE differences. Within the limitations of this study and based on the obtained results, there was no correlation between MCBS and CTE differences for the evaluated metal-ceramic pairs.

  14. Processing method for liquid waste containing various kinds of radioactive material

    International Nuclear Information System (INIS)

    Toyabe, Keiji; Nabeshima, Masahiro; Ozeki, Noboru; Muraki, Tsutomu.

    1996-01-01

    Various kind of radioactive materials and heavy metal elements dissolved in liquid wastes are removed from the liquid wastes by adsorbing them on chitin or chitosan. In this case, a hydrogen ion concentration in the liquid wastes is adjusted to a pH value of from 1 to 3 depending on the kinds of the radioactive materials and heavy metal elements to be removed. Since chitin or chitosan has a special ion exchange performance or adsorbing performance, chemical species comprising radioactive materials or heavy metals dissolved in the liquid wastes are adsorbed thereto by ion adsorption or physical adsorption. With such procedures, radioactive materials and heavy metal elements are removed from the liquid wastes, and the concentration thereof can be reduced to such a level that they can be discharged into environments. On the other hand, since chitin or chitosan adsorbing the radioactive materials and heavy metal elements has a structure of polysaccharides, it is easily burnt into gaseous carbon dioxide. Accordingly, the amount of secondary wastes can remarkably be reduced. (T.M.)

  15. Entrapment of krypton in sputter deposited metals: a storage medium for radioactive gases

    International Nuclear Information System (INIS)

    Tingey, G.L.; McClanahan, E.D.; Bayne, M.A.; Moss, R.W.

    1979-04-01

    Sputter deposition of metals with a negative substrate bias results in a deposit containing relatively large concentrations of the sputtering gas. This phenomenon has been applied as a technique for storage of the radioactive gas, 85 Kr, which is generated in nuclear fuels for power production. Alloys which sputter to yield an amorphous product have been shown to contain up to 12 atom % Kr [42 cm 3 of Kr(STP)/g of deposit; concentration equivalent to a gas at 4380 psi pressure]. Release from these metals occurs at so low a rate that extrapolation to long times yields a 85 Kr release at 300 0 C of about 0.06% in 100 years. A preliminary evaluation of the engineering feasibility and economics of the sputtering process indicates that 85 Kr can be effectively trapped in a solid matrix with currently available techniques on a scale required for handling DOE-generated waste or commercial reprocessed fuels and that the cost should not be a limiting factor

  16. Metal decontamination for waste minimization using liquid metal refining technology

    International Nuclear Information System (INIS)

    Joyce, E.L. Jr.; Lally, B.; Ozturk, B.; Fruehan, R.J.

    1993-01-01

    The current Department of Energy Mixed Waste Treatment Project flowsheet indicates that no conventional technology, other than surface decontamination, exists for metal processing. Current Department of Energy guidelines require retrievable storage of all metallic wastes containing transuranic elements above a certain concentration. This project is in support of the National Mixed Low Level Waste Treatment Program. Because of the high cost of disposal, it is important to develop an effective decontamination and volume reduction method for low-level contaminated metals. It is important to be able to decontaminate complex shapes where surfaces are hidden or inaccessible to surface decontamination processes and destruction of organic contamination. These goals can be achieved by adapting commercial metal refining processes to handle radioactive and organic contaminated metal. The radioactive components are concentrated in the slag, which is subsequently vitrified; hazardous organics are destroyed by the intense heat of the bath. The metal, after having been melted and purified, could be recycled for use within the DOE complex. In this project, we evaluated current state-of-the-art technologies for metal refining, with special reference to the removal of radioactive contaminants and the destruction of hazardous organics. This evaluation was based on literature reports, industrial experience, plant visits, thermodynamic calculations, and engineering aspects of the various processes. The key issues addressed included radioactive partitioning between the metal and slag phases, minimization of secondary wastes, operability of the process subject to widely varying feed chemistry, and the ability to seal the candidate process to prevent the release of hazardous species

  17. N-Heterocyclic carbenes on close-packed coinage metal surfaces: bis-carbene metal adatom bonding scheme of monolayer films on Au, Ag and Cu.

    Science.gov (United States)

    Jiang, Li; Zhang, Bodong; Médard, Guillaume; Seitsonen, Ari Paavo; Haag, Felix; Allegretti, Francesco; Reichert, Joachim; Kuster, Bernhard; Barth, Johannes V; Papageorgiou, Anthoula C

    2017-12-01

    By means of scanning tunnelling microscopy (STM), complementary density functional theory (DFT) and X-ray photoelectron spectroscopy (XPS) we investigate the binding and self-assembly of a saturated molecular layer of model N -heterocyclic carbene (NHC) on Cu(111), Ag(111) and Au(111) surfaces under ultra-high vacuum (UHV) conditions. XPS reveals that at room temperature, coverages up to a monolayer exist, with the molecules engaged in metal carbene bonds. On all three surfaces, we resolve similar arrangements, which can be interpreted only in terms of mononuclear M(NHC) 2 (M = Cu, Ag, Au) complexes, reminiscent of the paired bonding of thiols to surface gold adatoms. Theoretical investigations for the case of Au unravel the charge distribution of a Au(111) surface covered by Au(NHC) 2 and reveal that this is the energetically preferential adsorption configuration.

  18. Growth of micrometric oxide layers for the study of metallic surfaces decontamination by laser

    OpenAIRE

    Carvalho Luisa; Pacquentin Wilfried; Tabarant Michel; Maskrot Hicham; Semerok Alexandre

    2017-01-01

    The nuclear industry produces a wide range of radioactive waste in term of level of hazard, contaminants and material. For metallic equipment like steam generators, the radioactivity is mainly located in the oxide surface. In order to study and develop techniques for dismantling and for decontamination in a safe way, it is important to have access to oxide layers with a representative distribution of non-radioactive contaminants. We propose a method of formation of oxide layer on stainless st...

  19. Intermetallic nickel silicide nanocatalyst-A non-noble metal-based general hydrogenation catalyst.

    Science.gov (United States)

    Ryabchuk, Pavel; Agostini, Giovanni; Pohl, Marga-Martina; Lund, Henrik; Agapova, Anastasiya; Junge, Henrik; Junge, Kathrin; Beller, Matthias

    2018-06-01

    Hydrogenation reactions are essential processes in the chemical industry, giving access to a variety of valuable compounds including fine chemicals, agrochemicals, and pharmachemicals. On an industrial scale, hydrogenations are typically performed with precious metal catalysts or with base metal catalysts, such as Raney nickel, which requires special handling due to its pyrophoric nature. We report a stable and highly active intermetallic nickel silicide catalyst that can be used for hydrogenations of a wide range of unsaturated compounds. The catalyst is prepared via a straightforward procedure using SiO 2 as the silicon atom source. The process involves thermal reduction of Si-O bonds in the presence of Ni nanoparticles at temperatures below 1000°C. The presence of silicon as a secondary component in the nickel metal lattice plays the key role in its properties and is of crucial importance for improved catalytic activity. This novel catalyst allows for efficient reduction of nitroarenes, carbonyls, nitriles, N-containing heterocycles, and unsaturated carbon-carbon bonds. Moreover, the reported catalyst can be used for oxidation reactions in the presence of molecular oxygen and is capable of promoting acceptorless dehydrogenation of unsaturated N-containing heterocycles, opening avenues for H 2 storage in organic compounds. The generality of the nickel silicide catalyst is demonstrated in the hydrogenation of over a hundred of structurally diverse unsaturated compounds. The wide application scope and high catalytic activity of this novel catalyst make it a nice alternative to known general hydrogenation catalysts, such as Raney nickel and noble metal-based catalysts.

  20. Functionalized metal organic frameworks for effective capture of radioactive organic iodides

    KAUST Repository

    Li, Baiyan

    2017-06-27

    Highly efficient capture of radioactive organic iodides (ROIs) from off-gas mixtures remains a substantial challenge for nuclear waste treatment. Current materials utilized for ROI sequestration suffer from low capacity, high cost (e.g. use of noble metals), and poor recyclability. Recently, we have developed a new strategy to tackle this challenge by functionalizing MOF materials with tertiary amines to create molecular traps for the effective capture and removal of ROIs (e.g. radioactive methyl iodide) from nuclear wastes. To further enhance the uptake capacity and performance of CH3I capture by ROI molecular traps, herein, we carry out a systematic study to investigate the effect of different amine molecules on ROI capture. The results demonstrate a record-high CH3I saturation uptake capacity of 80% for MIL-101-Cr-DMEDA at 150 °C, which is 5.3 times that of Ag0@MOR (15 wt%), a leading adsorbent material for capturing ROIs during nuclear fuel reprocessing. Furthermore, the CH3I decontamination factors (DFs) for MIL-101-Cr-DMEDA are as high as 5000 under simulated reprocessing conditions, largely exceeding that of facility regulatory requirements (DF = 3000). In addition, MIL-101-Cr-DMEDA can be recycled without loss of capacity, illustrating yet another advantage compared to known industrial adsorbents, which are typically of a