WorldWideScience

Sample records for non-radial flow dimensions

  1. Insights on pumping well interpretation from flow dimension analysis: The learnings of a multi-context field database

    Science.gov (United States)

    Ferroud, Anouck; Chesnaux, Romain; Rafini, Silvain

    2018-01-01

    The flow dimension parameter n, derived from the Generalized Radial Flow model, is a valuable tool to investigate the actual flow regimes that really occur during a pumping test rather than suppose them to be radial, as postulated by the Theis-derived models. A numerical approach has shown that, when the flow dimension is not radial, using the derivative analysis rather than the conventional Theis and Cooper-Jacob methods helps to estimate much more accurately the hydraulic conductivity of the aquifer. Although n has been analysed in numerous studies including field-based studies, there is a striking lack of knowledge about its occurrence in nature and how it may be related to the hydrogeological setting. This study provides an overview of the occurrence of n in natural aquifers located in various geological contexts including crystalline rock, carbonate rock and granular aquifers. A comprehensive database is compiled from governmental and industrial sources, based on 69 constant-rate pumping tests. By means of a sequential analysis approach, we systematically performed a flow dimension analysis in which straight segments on drawdown-log derivative time series are interpreted as successive, specific and independent flow regimes. To reduce the uncertainties inherent in the identification of n sequences, we used the proprietary SIREN code to execute a dual simultaneous fit on both the drawdown and the drawdown-log derivative signals. Using the stated database, we investigate the frequency with which the radial and non-radial flow regimes occur in fractured rock and granular aquifers, and also provide outcomes that indicate the lack of applicability of Theis-derived models in representing nature. The results also emphasize the complexity of hydraulic signatures observed in nature by pointing out n sequential signals and non-integer n values that are frequently observed in the database.

  2. Stability of radial swirl flows

    International Nuclear Information System (INIS)

    Dou, H S; Khoo, B C

    2012-01-01

    The energy gradient theory is used to examine the stability of radial swirl flows. It is found that the flow of free vortex is always stable, while the introduction of a radial flow will induce the flow to be unstable. It is also shown that the pure radial flow is stable. Thus, there is a flow angle between the pure circumferential flow and the pure radial flow at which the flow is most unstable. It is demonstrated that the magnitude of this flow angle is related to the Re number based on the radial flow rate, and it is near the pure circumferential flow. The result obtained in this study is useful for the design of vaneless diffusers of centrifugal compressors and pumps as well as other industrial devices.

  3. Weighted radial dimension: an improved fractal measurement for highway transportation networks distribution

    Science.gov (United States)

    Feng, Yongjiu; Liu, Miaolong; Tong, Xiaohua

    2007-06-01

    An improved fractal measurement, the weighted radial dimension, is put forward for highway transportation networks distribution. The radial dimension (DL), originated from subway investigation in Stuttgart, is a fractal measurement for transportation systems under ideal assumption considering all the network lines to be homogeneous curves, ignoring the difference on spatial structure, quality and level, especially the highway networks. Considering these defects of radial dimension, an improved fractal measurement called weighted radial dimension (D WL) is introduced and the transportation system in Guangdong province is studied in detail using this novel method. Weighted radial dimensions are measured and calculated, and the spatial structure, intensity and connectivity of transportation networks are discussed in Guangdong province and the four sub-areas: the Pearl River Delta area, the East Costal area, the West Costal area and the Northern Guangdong area. In Guangdong province, the fractal spatial pattern characteristics of transportation system vary remarkably: it is the highest in the Pearl River Delta area, moderate in Costal area and lowest in the Northern Guangdong area. With the Pearl River Delta area as the centre, the weighted radial dimensions decrease with the distance increasing, while the decline level is smaller in the costal area and greater in the Northern Guangdong province. By analysis of the conic of highway density, it is recognized that the density decrease with the distance increasing from the calculation centre (Guangzhou), demonstrating the same trend as weighted radial dimensions shown. Evidently, the improved fractal measurement, weighted radial dimension, is an indictor describing the characteristics of highway transportation system more effectively and accurately.

  4. Scale dependency of fractional flow dimension in a fractured formation

    Directory of Open Access Journals (Sweden)

    Y.-C. Chang

    2011-07-01

    Full Text Available The flow dimensions of fractured media were usually predefined before the determination of the hydraulic parameters from the analysis of field data in the past. However, it would be improper to make assumption about the flow geometry of fractured media before site characterization because the hydraulic structures and flow paths are complex in the fractured media. An appropriate way to investigate the hydrodynamic behavior of a fracture system is to determine the flow dimension and aquifer parameters simultaneously. The objective of this study is to analyze a set of field data obtained from four observation wells during an 11-day hydraulic test at Chingshui geothermal field (CGF in Taiwan in determining the hydrogeologic properties of the fractured formation. Based on the generalized radial flow (GRF model and the optimization scheme, simulated annealing, an approach is therefore developed for the data analyses. The GRF model allows the flow dimension to be integer or fractional. We found that the fractional flow dimension of CGF increases near linearly with the distance between the pumping well and observation well, i.e. the flow dimension of CGF exhibits scale-dependent phenomenon. This study provides insights into interpretation of fracture flow at CGF and gives a reference for characterizing the hydrogeologic properties of fractured media.

  5. Stability of radial and non-radial pulsation modes of massive ZAMS models

    International Nuclear Information System (INIS)

    Odell, A.P.; Pausenwein, A.; Weiss, W.W.; Hajek, A.

    1987-01-01

    The authors have computed non-adiabatic eigenvalues for radial and non-radial pulsation modes of star models between 80 and 120 M solar with composition of chi=0.70 and Z=0.02. The radial fundamental mode is unstable in models with mass greater than 95 M solar , but the first overtone mode is always stable. The non-radial modes are all stable for all models, but the iota=2 f-mode is the closest to being driven. The non-radial modes are progressively more stable with higher iota and with higher n (for both rho- and g-modes). Thus, their results indicate that radial pulsation limits the upper mass of a star

  6. Numerical simulation of liquid-metal-flows in radial-toroidal-radial bends

    International Nuclear Information System (INIS)

    Molokov, S.; Buehler, L.

    1993-09-01

    Magnetohydrodynamic flows in a U-bend and right-angle bend are considered with reference to the radial-toroidal-radial concept of a self-cooled liquid-metal blanket. The ducts composing bends have rectangular cross-section. The applied magnetic field is aligned with the toroidal duct and perpendicular to the radial ones. At high Hartmann number the flow region is divided into cores and boundary layers of different types. The magnetohydrodynamic equations are reduced to a system of partial differential equations governing wall electric potentials and the core pressure. The system is solved numerically by two different methods. The first method is iterative with iteration between wall potential and the core pressure. The second method is a general one for the solution of the core flow equations in curvilinear coordinates generated by channel geometry and magnetic field orientation. Results obtained are in good agreement. They show, that the 3D-pressure drop of MHD flows in a U-bend is not a critical issue for blanket applications. (orig./HP) [de

  7. A user's evaluation of radial flow HEPA filters

    International Nuclear Information System (INIS)

    Purcell, J.A.

    1992-07-01

    High efficiency particulate air (HEPA) filters of rectangular cross section have been used to remove particulates and the associated radioactivity from air ventilation streams since the advent of nuclear materials processing. Use of round axial flow HEPA filters is also longstanding. The advantages of radial flow filters in a circular configuration have been well demonstrated in UKAEA during the last 5--7 years. An evaluation of radial flow filters for fissile process gloveboxes reveals several substantial benefits in addition to the advantages claimed in UKAEA Facilities. The radial flow filter may be provided in a favorable geometry resulting in improved criticality safety. The filter configuration lends to in-place testing at the glovebox to exhaust duct interface. This will achieve compliance with DOE Order 6430.1A, Section 99.0.2. Preliminary testing at SRS for radial flow filters manufactured by Flanders Filters, Inc. revealed compliance in all the usual specifications for filtration efficiency, pressure differential and materials of construction. An evaluation, further detailed in this report, indicates that the radial flow HEPA filter should be considered for inclusion in new ventilation system designs

  8. Link invariants for flows in higher dimensions

    International Nuclear Information System (INIS)

    Garcia-Compean, Hugo; Santos-Silva, Roberto

    2010-01-01

    Linking numbers in higher dimensions and their generalization including gauge fields are studied in the context of BF theories. The linking numbers associated with n-manifolds with smooth flows generated by divergence-free p-vector fields, endowed with an invariant flow measure, are computed in the context of quantum field theory. They constitute invariants of smooth dynamical systems (for nonsingular flows) and generalize previous proposals of invariants. In particular, they generalize Arnold's asymptotic Hopf invariant from three to higher dimensions. This invariant is generalized by coupling with a non-Abelian gauge flat connection with nontrivial holonomy. The computation of the asymptotic Jones-Witten invariants for flows is naturally extended to dimension n=2p+1. Finally, we give a possible interpretation and implementation of these issues in the context of 11-dimensional supergravity and string theory.

  9. On radial flow between parallel disks

    International Nuclear Information System (INIS)

    Wee, A Y L; Gorin, A

    2015-01-01

    Approximate analytical solutions are presented for converging flow in between two parallel non rotating disks. The static pressure distribution and radial component of the velocity are developed by averaging the inertial term across the gap in between parallel disks. The predicted results from the first approximation are favourable to experimental results as well as results presented by other authors. The second approximation shows that as the fluid approaches the center, the velocity at the mid channel slows down which is due to the struggle between the inertial term and the flowrate. (paper)

  10. Model for radial gas fraction profiles in vertical pipe flow

    International Nuclear Information System (INIS)

    Lucas, D.; Krepper, E.; Prasser, H.M.

    2001-01-01

    A one-dimensional model is presented, which predicts the radial volume fraction profiles from a given bubble size distribution. It bases on the assumption of an equilibrium of the forces acting on a bubble perpendicularly to the flow path (non drag forces). For the prediction of the flow pattern this model could be used within an procedure together with appropriate models for local bubble coalescence and break-up. (orig.)

  11. A visual study of radial inward choked flow of liquid nitrogen.

    Science.gov (United States)

    Hendricks, R. C.; Simoneau, R. J.; Hsu, Y. Y.

    1973-01-01

    Data and high speed movies were acquired on pressurized subcooled liquid nitrogen flowing radially inward through a 0.0076 cm gap. The stagnation pressure ranged from 0.7 to 4 MN/sq m. Steady radial inward choked flow appears equivalent to steady choked flow through axisymmetric nozzles. Transient choked flows through the radial gap are not uniform and the discharge pattern appears as nonuniform impinging jets. The critical mass flow rate data for the transient case appear different from those for the steady case. On the mass flow rate vs pressure map, the slope and separation of the isotherms appear to be less for transient than for steady radial choked flow.

  12. Radial collective flow in heavy-ion collisions at intermediate energies

    International Nuclear Information System (INIS)

    Borderie, B.

    1996-11-01

    The production of radial collective flow is associated with collisions leading to sources which undergo multifragmentation/explosion processes. After a theoretical survey of possible causes of production of radial flow, methods used to derive experimental values are discussed. Finally, a large set of data is presented which can be used to study and disentangle the different effects leading to radial collective flow. The dominant role of compression in the lower energy domain is emphasized. (author)

  13. Porous stainless steel hollow fibers with shrinkage-controlled small radial dimensions

    NARCIS (Netherlands)

    Luiten-Olieman, Maria W.J.; Raaijmakers, Michiel; Raaijmakers, Michiel J.T.; Winnubst, Aloysius J.A.; Wessling, Matthias; Nijmeijer, Arian; Benes, Nieck Edwin

    2011-01-01

    A method is presented for the preparation of thin (∼250 μm) porous stainless steel hollow fiber membranes based on dry–wet spinning of a particle-loaded polymer solution followed by heat treatment. Extraordinarily small radial dimensions were achieved by controlled shrinkage during thermal

  14. Stirling Engine With Radial Flow Heat Exchangers

    Science.gov (United States)

    Vitale, N.; Yarr, George

    1993-01-01

    Conflict between thermodynamical and structural requirements resolved. In Stirling engine of new cylindrical configuration, regenerator and acceptor and rejector heat exchangers channel flow of working gas in radial direction. Isotherms in regenerator ideally concentric cylinders, and gradient of temperature across regenerator radial rather than axial. Acceptor and rejector heat exchangers located radially inward and outward of regenerator, respectively. Enables substantial increase in power of engine without corresponding increase in diameter of pressure vessel.

  15. Comparison of Deterministic and Probabilistic Radial Distribution Systems Load Flow

    Science.gov (United States)

    Gupta, Atma Ram; Kumar, Ashwani

    2017-12-01

    Distribution system network today is facing the challenge of meeting increased load demands from the industrial, commercial and residential sectors. The pattern of load is highly dependent on consumer behavior and temporal factors such as season of the year, day of the week or time of the day. For deterministic radial distribution load flow studies load is taken as constant. But, load varies continually with a high degree of uncertainty. So, there is a need to model probable realistic load. Monte-Carlo Simulation is used to model the probable realistic load by generating random values of active and reactive power load from the mean and standard deviation of the load and for solving a Deterministic Radial Load Flow with these values. The probabilistic solution is reconstructed from deterministic data obtained for each simulation. The main contribution of the work is: Finding impact of probable realistic ZIP load modeling on balanced radial distribution load flow. Finding impact of probable realistic ZIP load modeling on unbalanced radial distribution load flow. Compare the voltage profile and losses with probable realistic ZIP load modeling for balanced and unbalanced radial distribution load flow.

  16. Transverse and radial flow in intermediate energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Vestfall, D. Gary

    1997-01-01

    We have studied transverse and radial flow in nucleus-nucleus collisions ranging in energy from 15 to 155 MeV/nucleon. We have measured the impact parameter dependence of the balance energy for Ar + Sc and compared the results with Quantum Molecular Dynamics calculations with and without momentum dependence. We have shown that transverse flow and the balance energy dependence on the isospin of the system using the systems 58 Fe + 58 Fe, 58 Ni + 58 Ni, and 58 Mn + 58 Fe. These results are compared with Boltzmann-Uehling-Uehlenbeck calculations incorporating isospin-dependence. We have measured radial flow for Ar + Sc and find that about 50% of the observed energy is related to radial flow. (author)

  17. Radial flow gas dynamic laser

    International Nuclear Information System (INIS)

    Damm, F.C.

    1975-01-01

    The unique gas dynamic laser provides outward radial supersonic flow from a toroidal shaped stacked array of a plurality of nozzles, through a diffuser having ring shaped and/or linear shaped vanes, and through a cavity which is cylindrical and concentric with the stacked array, with the resultant laser beam passing through the housing parallel to the central axis of the diffuser which is coincident with the axis of the gas dynamic laser. Therefore, greater beam extraction flexibility is attainable, because of fewer flow shock disturbances, as compared to the conventional unidirectional flow gas dynamic laser in which unidirectional supersonic flow sweeps through a rectangular cavity and is exhausted through a two-dimensional diffuser. (auth)

  18. [Comparison of chemical quality characteristics between radial striations and non-radial striations in tuberous root of Rehmannia glutinosa].

    Science.gov (United States)

    Xie, Cai-Xia; Zhang, Miao; Li, Ya-Jing; Geng, Xiao-Tong; Wang, Feng-Qing; Zhang, Zhong-Yi

    2017-11-01

    An HPLC method was established to determine the contents of catalpol, acteoside, rehmaionoside A, rehmaionoside D, leonuride in three part of Rehmanni glutinosa in Beijing No.1 variety R. glutinosa during the growth period, This method, in combination with its HPLC fingerprint was used to evaluate its overall quality characteristics.The results showed that:① the content of main components of R. glutinosa varied in different growth stages ;② there was a great difference of the content of main components between theradial striations and the non-radial striations; ③ the two sections almost have the same content distribution of catalpol, acteoside and rehmaionoside D; ④the content of rehmaionoside A in non-radial striations was higher than that in radial striations,while the content of leonuride in radial striations was higher than that in non-radial striations.; ⑤the HPLC fingerprint of radial striations, non-radial striations and whole root tuber were basically identical, except for the big difference in the content of chemical components. The result of clustering displayed that the radial striations, non-radial striations, and whole root were divided into two groups. In conclusion, there was a significant difference in the quality characteristics of radial striations and non-radial striations of R. glutinosa. This research provides a reference for quality evaluation and geoherbalism of R. glutinosa. Copyright© by the Chinese Pharmaceutical Association.

  19. Radially sheared azimuthal flows and turbulent transport in a cylindrical helicon plasma device

    International Nuclear Information System (INIS)

    Tynan, G R; Burin, M J; Holland, C; Antar, G; Diamond, P H

    2004-01-01

    A radially sheared azimuthal flow is observed in a cylindrical helicon plasma device. The shear flow is roughly azimuthally symmetric and contains both time-stationary and slowly varying components. The turbulent radial particle flux is found to peak near the density gradient maximum and vanishes at the shear layer location. The shape of the radial plasma potential profile associated with the azimuthal E x B flow is predicted accurately by theory. The existence of the mean shear flow in a plasma with finite flow damping from ion-neutral collisions and no external momentum input implies the existence of radial angular momentum transport from the turbulent Reynolds-stress

  20. Radial electric field and ion parallel flow in the quasi-symmetric and Mirror configurations of HSX

    Science.gov (United States)

    Kumar, S. T. A.; Dobbins, T. J.; Talmadge, J. N.; Wilcox, R. S.; Anderson, D. T.

    2018-05-01

    The radial electric field and the ion mean parallel flow are obtained in the helically symmetric experiment stellarator from toroidal flow measurements of C+6 ion at two locations on a flux surface, using the Pfirsch–Schlüter effect. Results from the standard quasi-helically symmetric magnetic configuration are compared with those from the Mirror configuration where the quasi-symmetry is deliberately degraded using auxiliary coils. For similar injected power, the quasi-symmetric configuration is observed to have significantly lower flows while the experimental observations from the Mirror geometry are in better agreement with neoclassical calculations. Indications are that the radial electric field near the core of the quasi-symmetric configuration may be governed by non-neoclassical processes.

  1. Waves on radial film flows

    Science.gov (United States)

    Cholemari, Murali R.; Arakeri, Jaywant H.

    2005-08-01

    We study the stability of surface waves on the radial film flow created by a vertical cylindrical water jet striking a horizontal plate. In such flows, surface waves have been found to be unstable and can cause transition to turbulence. This surface-wave-induced transition is different from the well-known Tollmien-Schlichting wave-induced transition. The present study aims at understanding the instability and the transition process. We do a temporal stability analysis by assuming the flow to be locally two-dimensional but including spatial variations to first order in the basic flow. The waves are found to be dispersive, mostly unstable, and faster than the mean flow. Spatial variation is the major destabilizing factor. Experiments are done to test the results of the linear stability analysis and to document the wave breakup and transition. Comparison between theory and experiments is fairly good and indicates the adequacy of the model.

  2. Some aspects of radial flow between parallel disks

    International Nuclear Information System (INIS)

    Tabatabai, M.; Pollard, A.

    1985-01-01

    Radial flow of air between two closely spaced parallel disks is examined experimentally. A comprehensive review of the previous work performed on similar flow situations is given by Tabatabai and Pollard. The present paper is a discussion of some of the results obtained so far and offers some observations on the decay of turbulence in this flow. (author)

  3. Gas flows in radial micro-nozzles with pseudo-shocks

    Science.gov (United States)

    Kiselev, S. P.; Kiselev, V. P.; Zaikovskii, V. N.

    2017-12-01

    In the present paper, results of an experimental and numerical study of supersonic gas flows in radial micro-nozzles are reported. A distinguishing feature of such flows is the fact that two factors, the nozzle divergence and the wall friction force, exert a substantial influence on the flow structure. Under the action of the wall friction force, in the micro-nozzle there forms a pseudo-shock that separates the supersonic from subsonic flow region. The position of the pseudo-shock can be evaluated from the condition of flow blockage in the nozzle exit section. A detailed qualitative and quantitative analysis of gas flows in radial micro-nozzles is given. It is shown that the gas flow in a micro-nozzle is defined by the complicated structure of the boundary layer in the micro-nozzle, this structure being dependent on the width-to-radius ratio of the nozzle and its inlet-to-outlet pressure ratio.

  4. A comparison between standard well test evaluation methods used in SKB's site investigations and the generalised radial flow concept

    International Nuclear Information System (INIS)

    Follin, Sven; Ludvigson, Jan-Erik; Leven, Jakob

    2011-09-01

    According to the strategy for hydrogeological characterisation within the SKB's site investigation programme, two single-hole test methods are available for testing and parameterisation of groundwater flow models - constant-head injection testing with the Pipe String System (PSS method) and difference flow logging with the Posiva Flow Log (PFL method). This report presents the results of an investigation to assess discrepancies in the results of single-hole transmissivity measurements using these methods in the Forsmark site characterisation. The investigation explores the possibility that the source of the discrepancy observed lies in the assumptions of the flow geometry that are inherent to the methods used for standard constant-head injection well test analysis and difference flow logging analysis, respectively. In particular, the report looks at the generalised radial flow (GRF) concept by Barker (1988) as a means that might explain some of the differences. A confirmation of the actual flow geometries (dimensions) observed during hydraulic injection tests could help to identify admissible conceptual models for the tested system, and place the hydraulic testing with the PSS and PFL test methods in its full hydrogeological context. The investigation analyses 151 constant-head injection tests in three cored boreholes at Forsmark. The results suggest that the transmissivities derived with standard constant-head injection well test analysis methods and with the GRF concept, respectively, are similar provided that the dominating flow geometry during the testing is radial (cylindrical). Thus, having flow geometries with dimensions other than 2 affects the value of the interpreted transmissivity. For example, a flow system with a dimension of 1 may require an order of magnitude or more, higher transmissivity to produce the same flow rates. The median of the GRF flow dimensions of all 151 constant-head injection tests is 2.06 with 33% of the tests in the range 1

  5. Blade bowing effects on radial equilibrium of inlet flow in axial compressor cascades

    Directory of Open Access Journals (Sweden)

    Han XU

    2017-10-01

    Full Text Available The circumferentially averaged equation of the inlet flow radial equilibrium in axial compressor was deduced. It indicates that the blade inlet radial pressure gradient is closely related to the radial component of the circumferential fluctuation (CF source item. Several simplified cascades with/without aerodynamic loading were numerically studied to investigate the effects of blade bowing on the inlet flow radial equilibrium. A data reduction program was conducted to obtain the CF source from three-dimensional (3D simulation results. Flow parameters at the passage inlet were focused on and each term in the radial equilibrium equation was discussed quantitatively. Results indicate that the inviscid blade force is the inducement of the inlet CF due to geometrical asymmetry. Blade bowing induces variation of the inlet CF, thus changes the radial pressure gradient and leads to flow migration before leading edge (LE in the cascades. Positive bowing drives the inlet flow to migrate from end walls to mid-span and negative bowing turns it to the reverse direction to build a new equilibrium. In addition, comparative studies indicate that the inlet Mach number and blade loading can efficiently impact the effectiveness of blade bowing on radial equilibrium in compressor design.

  6. Radial, sideward and elliptic flow at AGS energies

    Indian Academy of Sciences (India)

    the sideward flow, the elliptic flow and the radial transverse mass distribution of protons data at. AGS energies. In order to ... data on both sideward and elliptic flow, NL3 model is better at 2 A¡GeV, while NL23 model is at 4–8. A¡GeV. ... port approach RBUU which is based on a coupled set of covariant transport equations for.

  7. Secondary Flow Phenomena in Rotating Radial Straight Pipes

    OpenAIRE

    Cheng, K. C.; Wang, Liqiu

    1995-01-01

    Flow visualization results for secondary flow phenomena near the exit of a rotating radial-axis straight pipe (length ࡁ = 82 cm, inside diameter d = 3.81 cm, ࡁ/d 21.52) are presented to study the stabilizing (relaminarization) and destabilizing (early transition from laminar to turbulent flow) effects of Coriolis forces for Reynolds numbers Re = 500 ∼ 4,500 and rotating speeds n = 0 ∼ 200 rpm. The flow visualization was realised by smoke injection method. The main features of the trans...

  8. A comparison between standard well test evaluation methods used in SKB's site investigations and the generalised radial flow concept

    Energy Technology Data Exchange (ETDEWEB)

    Follin, Sven (SF GeoLogic AB (Sweden)); Ludvigson, Jan-Erik; Leven, Jakob (Geosigma AB (Sweden))

    2011-09-15

    According to the strategy for hydrogeological characterisation within the SKB's site investigation programme, two single-hole test methods are available for testing and parameterisation of groundwater flow models - constant-head injection testing with the Pipe String System (PSS method) and difference flow logging with the Posiva Flow Log (PFL method). This report presents the results of an investigation to assess discrepancies in the results of single-hole transmissivity measurements using these methods in the Forsmark site characterisation. The investigation explores the possibility that the source of the discrepancy observed lies in the assumptions of the flow geometry that are inherent to the methods used for standard constant-head injection well test analysis and difference flow logging analysis, respectively. In particular, the report looks at the generalised radial flow (GRF) concept by Barker (1988) as a means that might explain some of the differences. A confirmation of the actual flow geometries (dimensions) observed during hydraulic injection tests could help to identify admissible conceptual models for the tested system, and place the hydraulic testing with the PSS and PFL test methods in its full hydrogeological context. The investigation analyses 151 constant-head injection tests in three cored boreholes at Forsmark. The results suggest that the transmissivities derived with standard constant-head injection well test analysis methods and with the GRF concept, respectively, are similar provided that the dominating flow geometry during the testing is radial (cylindrical). Thus, having flow geometries with dimensions other than 2 affects the value of the interpreted transmissivity. For example, a flow system with a dimension of 1 may require an order of magnitude or more, higher transmissivity to produce the same flow rates. The median of the GRF flow dimensions of all 151 constant-head injection tests is 2.06 with 33% of the tests in the range 1

  9. Radial basis function neural network for power system load-flow

    International Nuclear Information System (INIS)

    Karami, A.; Mohammadi, M.S.

    2008-01-01

    This paper presents a method for solving the load-flow problem of the electric power systems using radial basis function (RBF) neural network with a fast hybrid training method. The main idea is that some operating conditions (values) are needed to solve the set of non-linear algebraic equations of load-flow by employing an iterative numerical technique. Therefore, we may view the outputs of a load-flow program as functions of the operating conditions. Indeed, we are faced with a function approximation problem and this can be done by an RBF neural network. The proposed approach has been successfully applied to the 10-machine and 39-bus New England test system. In addition, this method has been compared with that of a multi-layer perceptron (MLP) neural network model. The simulation results show that the RBF neural network is a simpler method to implement and requires less training time to converge than the MLP neural network. (author)

  10. Structure of the radial electric field and toroidal/poloidal flow in high temperature toroidal plasma

    International Nuclear Information System (INIS)

    Ida, Katsumi

    2001-01-01

    The structure of the radial electric field and toroidal/poloidal flow is discussed for the high temperature plasma in toroidal systems, tokamak and Heliotron type magnetic configurations. The spontaneous toroidal and poloidal flows are observed in the plasma with improved confinement. The radial electric field is mainly determined by the poloidal flow, because the contribution of toroidal flow to the radial electric field is small. The jump of radial electric field and poloidal flow are commonly observed near the plasma edge in the so-called high confinement mode (H-mode) plasmas in tokamaks and electron root plasma in stellarators including Heliotrons. In general the toroidal flow is driven by the momentum input from neutral beam injected toroidally. There is toroidal flow not driven by neutral beam in the plasma and it will be more significant in the plasma with large electric field. The direction of these spontaneous toroidal flows depends on the symmetry of magnetic field. The spontaneous toroidal flow driven by the ion temperature gradient is in the direction to increase the negative radial electric field in tokamak. The direction of spontaneous toroidal flow in Heliotron plasmas is opposite to that in tokamak plasma because of the helicity of symmetry of the magnetic field configuration. (author)

  11. Influences of flow loss and inlet distortions from radial inlets on the performances of centrifugal compressor stages

    International Nuclear Information System (INIS)

    Han, Feng Hui; Mao, Yi Jun; Tan, Ji Jian

    2016-01-01

    Radial inlets are typical upstream components of multistage centrifugal compressors. Unlike axial inlets, radial inlets generate additional flow loss and introduce flow distortions at impeller inlets. Such distortions negatively affect the aerodynamic performance of compressor stages. In this study, industrial centrifugal compressor stages with different radial inlets are investigated via numerical simulations. Two reference models were built, simulated, and compared with each original compressor stage to analyze the respective and coupling influences of flow loss and inlet distortions caused by radial inlets on the performances of the compressor stage and downstream components. Flow loss and inlet distortions are validated as the main factors through which radial inlets negatively affect compressor performance. Results indicate that flow loss inside radial inlets decreases the performance of the whole compressor stage but exerts minimal effect on downstream components. By contrast, inlet distortions induced by radial inlets negatively influence the performance of the whole compressor stage and exert significant effects on downstream components. Therefore, when optimizing radial inlets, the reduction of inlet distortions might be more effective than the reduction of flow loss. This research provides references and suggestions for the design and improvement of radial inlets

  12. Influences of flow loss and inlet distortions from radial inlets on the performances of centrifugal compressor stages

    Energy Technology Data Exchange (ETDEWEB)

    Han, Feng Hui; Mao, Yi Jun [School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an (China); Tan, Ji Jian [Dept. of Research and Development, Shenyang Blower Works Group Co., Ltd., Shenyang (China)

    2016-11-15

    Radial inlets are typical upstream components of multistage centrifugal compressors. Unlike axial inlets, radial inlets generate additional flow loss and introduce flow distortions at impeller inlets. Such distortions negatively affect the aerodynamic performance of compressor stages. In this study, industrial centrifugal compressor stages with different radial inlets are investigated via numerical simulations. Two reference models were built, simulated, and compared with each original compressor stage to analyze the respective and coupling influences of flow loss and inlet distortions caused by radial inlets on the performances of the compressor stage and downstream components. Flow loss and inlet distortions are validated as the main factors through which radial inlets negatively affect compressor performance. Results indicate that flow loss inside radial inlets decreases the performance of the whole compressor stage but exerts minimal effect on downstream components. By contrast, inlet distortions induced by radial inlets negatively influence the performance of the whole compressor stage and exert significant effects on downstream components. Therefore, when optimizing radial inlets, the reduction of inlet distortions might be more effective than the reduction of flow loss. This research provides references and suggestions for the design and improvement of radial inlets.

  13. Measurements of non-reacting and reacting flow fields of a liquid swirl flame burner

    Science.gov (United States)

    Chong, Cheng Tung; Hochgreb, Simone

    2015-03-01

    The understanding of the liquid fuel spray and flow field characteristics inside a combustor is crucial for designing a fuel efficient and low emission device. Characterisation of the flow field of a model gas turbine liquid swirl burner is performed by using a 2-D particle imaging velocimetry(PIV) system. The flow field pattern of an axial flow burner with a fixed swirl intensity is compared under confined and unconfined conditions, i.e., with and without the combustor wall. The effect of temperature on the main swirling air flow is investigated under open and non-reacting conditions. The result shows that axial and radial velocities increase as a result of decreased flow density and increased flow volume. The flow field of the main swirling flow with liquid fuel spray injection is compared to non-spray swirling flow. Introduction of liquid fuel spray changes the swirl air flow field at the burner outlet, where the radial velocity components increase for both open and confined environment. Under reacting condition, the enclosure generates a corner recirculation zone that intensifies the strength of radial velocity. The reverse flow and corner recirculation zone assists in stabilizing the flame by preheating the reactants. The flow field data can be used as validation target for swirl combustion modelling.

  14. Energy Performance and Radial Force of a Mixed-Flow Pump with Symmetrical and Unsymmetrical Tip Clearances

    Directory of Open Access Journals (Sweden)

    Yue Hao

    2017-01-01

    Full Text Available The energy performance and radial force of a mixed flow pump with symmetrical and unsymmetrical tip clearance are investigated in this paper. As the tip clearance increases, the pump head and efficiency both decrease. The center of the radial force on the principal axis is located at the coordinate origin when the tip clearance is symmetrical, and moves to the third quadrant when the tip clearance is unsymmetrical. Analysis results show that the total radial force on the principal axis is closely related to the fluctuation of mass flow rate in each single flow channel. Unsteady simulations show that the dominant frequencies of radial force on the hub and blade correspond to the blade number, vane number, or double blade number because of the rotor stator interaction. The radial force on the blade pressure side decreases with the tip clearance increase because of leakage flow. The unsymmetrical tip clearances in an impeller induce uneven leakage flow rate and then result in unsymmetrical work ability of each blade and flow pattern in each channel. Thus, the energy performance decreases and the total radial force increases for a mixed flow pump with unsymmetrical tip clearance.

  15. Axial and radial velocities in the creeping flow in a pipe

    Directory of Open Access Journals (Sweden)

    Zuykov Andrey L'vovich

    2014-05-01

    Full Text Available The article is devoted to analytical study of transformation fields of axial and radial velocities in uneven steady creeping flow of a Newtonian fluid in the initial portion of the cylindrical channel. It is shown that the velocity field of the flow is two-dimensional and determined by the stream function. The article is a continuation of a series of papers, where normalized analytic functions of radial axial distributions in uneven steady creeping flow in a cylindrical tube with azimuthal vorticity and stream function were obtained. There is Poiseuille profile for the axial velocity in the uniform motion of a fluid at an infinite distance from the entrance of the pipe (at x = ∞, here taken equal to zero radial velocity. There is uniform distribution of the axial velocity in the cross section at the tube inlet at x = 0, at which the axial velocity is constant along the current radius. Due to the axial symmetry of the flow on the axis of the pipe (at r = 0, the radial velocities and the partial derivative of the axial velocity along the radius, corresponding to the condition of the soft function extremum, are equal to zero. The authors stated vanishing of the velocity of the fluid on the walls of the pipe (at r = R , where R - radius of the tube due to its viscous sticking and tightness of the walls. The condition of conservation of volume flow along the tube was also accepted. All the solutions are obtained in the form of the Fourier - Bessel. It is shown that the hydraulic losses at uniform creeping flow of a Newtonian fluid correspond to Poiseuille - Hagen formula.

  16. Radial flow heat exchanger

    Science.gov (United States)

    Valenzuela, Javier

    2001-01-01

    A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

  17. One-dimensional analysis of plane and radial thin film flows including solid-body rotation

    Science.gov (United States)

    Thomas, S.; Hankey, W.; Faghri, A.; Swanson, T.

    1989-01-01

    The flow of a thin liquid film with a free surface along a horizontal plate which emanates from a pressurized vessel is examined by integrating the equations of motion across the thin liquid layer and discretizing the integrated equations using finite difference techniques. The effects of 0-g and solid-body rotation will be discussed. The two cases of interest are plane flow and radial flow. In plane flow, the liquid is considered to be flowing along a channel with no change in the width of the channel, whereas in radial flow the liquid spreads out radially over a disk, so that the area changes along the radius. It is desired to determine the height of the liquid film at any location along the plate of disk, so that the heat transfer from the plate or disk can be found. The possibility that the flow could encounter a hydraulic jump is accounted for.

  18. Flow control by combining radial pulsation and rotation of a cylinder in uniform flow

    Science.gov (United States)

    Oualli, H.; Hanchi, S.; Bouabdallah, A.; Gad-El-Hak, M.

    2008-11-01

    Flow visualizations and hot-wire measurements are carried out to study a circular cylinder undergoing simultaneous radial pulsation and rotation and placed in a uniform flow. The Reynolds number is in the range of 1,000--22,000, for which transition in the shear layers and near wake is expected. Our previous experimental and numerical investigations in this subcritical flow regime have established the existence of an important energy transfer mechanism from the mean flow to the fluctuations. Radial pulsations cause and enhance that energy transfer. Certain values of the amplitude and frequency of the pulsations lead to negative drag (i.e. thrust). The nonlinear interaction between the Magnus effect induced by the steady rotation of the cylinder and the near-wake modulated by the bluff body's pulsation leads to alteration of the omnipresent Kármán vortices and the possibility of optimizing the lift-to-drag ratio as well as the rates of heat and mass transfer. Other useful applications include the ability to enhance or suppress the turbulence intensity, and to avoid the potentially destructive lock-in phenomenon in the wake of bridges, electric cables and other structures.

  19. Lightweight link dimensioning using sFlow sampling

    DEFF Research Database (Denmark)

    de Oliviera Schmidt, Ricardo; Sadre, Ramin; Sperotto, Anna

    2013-01-01

    not be trivial in high-speed links. Aiming scalability, operators often deploy packet sampling on monitoring, but little is known how it affects link dimensioning. In this paper we assess the feasibility of lightweight link dimensioning using sFlow, which is a widely-deployed traffic monitoring tool. We...... implement sFlow sampling algorithm and use a previously proposed and validated dimensioning formula that needs traffic variance. We validate our approach using packet captures from real networks. Results show that the proposed procedure is successful for a range of sampling rates and that, due to randomness...... of sampling algorithm, the error introduced by scaling the traffic variance yields more conservative results that cope with short-term traffic fluctuations....

  20. Characterization of a Twin-Entry Radial Turbine under Pulsatile Flow Condition

    Directory of Open Access Journals (Sweden)

    Mahfoudh Cerdoun

    2016-01-01

    Full Text Available In automotive applications radial gas turbines are commonly fitted with a twin-entry volute connected to a divided exhaust manifold, ensuring a better scavenge process owing to less interference between engines’ cylinders. This paper is concerned with the study of the unsteady performances related to the pulsating flows of a twin-entry radial turbine in engine-like conditions and the hysteresis-like behaviour during the pulses period. The results show that the aerodynamic performances deviate noticeably from the steady state and depend mainly on the time shifting between the actual output power and the isentropic power, which is distantly related to the apparent length. The maximum of efficiency and output shaft power are accompanied by low entropy generation through the shroud entry side, and their instantaneous behaviours tend to follow mainly the inlet total pressure curve. As revealed a billow is created by the interaction between the main flow and the infiltrated flow, affecting the flow incidence at rotor entry and producing high losses.

  1. XD-GRASP: Golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing.

    Science.gov (United States)

    Feng, Li; Axel, Leon; Chandarana, Hersh; Block, Kai Tobias; Sodickson, Daniel K; Otazo, Ricardo

    2016-02-01

    To develop a novel framework for free-breathing MRI called XD-GRASP, which sorts dynamic data into extra motion-state dimensions using the self-navigation properties of radial imaging and reconstructs the multidimensional dataset using compressed sensing. Radial k-space data are continuously acquired using the golden-angle sampling scheme and sorted into multiple motion-states based on respiratory and/or cardiac motion signals derived directly from the data. The resulting undersampled multidimensional dataset is reconstructed using a compressed sensing approach that exploits sparsity along the new dynamic dimensions. The performance of XD-GRASP is demonstrated for free-breathing three-dimensional (3D) abdominal imaging, two-dimensional (2D) cardiac cine imaging and 3D dynamic contrast-enhanced (DCE) MRI of the liver, comparing against reconstructions without motion sorting in both healthy volunteers and patients. XD-GRASP separates respiratory motion from cardiac motion in cardiac imaging, and respiratory motion from contrast enhancement in liver DCE-MRI, which improves image quality and reduces motion-blurring artifacts. XD-GRASP represents a new use of sparsity for motion compensation and a novel way to handle motions in the context of a continuous acquisition paradigm. Instead of removing or correcting motion, extra motion-state dimensions are reconstructed, which improves image quality and also offers new physiological information of potential clinical value. © 2015 Wiley Periodicals, Inc.

  2. Non-isomorphic radial wavenumber dependencies of residual zonal flows in ion and electron Larmor radius scales, and effects of initial parallel flow and electromagnetic potentials in a circular tokamak

    Science.gov (United States)

    Yamagishi, Osamu

    2018-04-01

    Radial wavenumber dependencies of the residual zonal potential for E × B flow in a circular, large aspect ratio tokamak is investigated by means of the collisionless gyrokinetic simulations of Rosenbluth-Hinton (RH) test and the semi-analytic approach using an analytic solution of the gyrokinetic equation Rosenbluth and Hinton (1998 Phys. Rev. Lett. 80 724). By increasing the radial wavenumber from an ion Larmor radius scale {k}r{ρ }i≲ 1 to an electron Larmor radius scale {k}r{ρ }e≲ 1, the well-known level ˜ O[1/(1+1.6{q}2/\\sqrt{r/{R}0})] is retained, while the level remains O(1) when the wavenumber is decreased from the electron to the ion Larmor radius scale, if physically same adiabatic assumption is presumed for species other than the main species that is treated kinetically. The conclusion is not modified by treating both species kinetically, so that in the intermediate scale between the ion and electron Larmor radius scale it seems difficult to determine the level uniquely. The toroidal momentum conservation property in the RH test is also investigated by including an initial parallel flow in addition to the perpendicular flow. It is shown that by taking a balance between the initial parallel flow and perpendicular flows which include both E × B flow and diamagnetic flow in the initial condition, the mechanical toroidal angular momentum is approximately conserved despite the toroidal symmetry breaking due to the finite radial wavenumber zonal modes. Effect of electromagnetic potentials is also investigated. When the electromagnetic potentials are applied initially, fast oscillations which are faster than the geodesic acoustic modes are introduced in the decay phase of the zonal modes. Although the residual level in the long time limit is not modified, this can make the time required to reach the stationary zonal flows longer and may weaken the effectiveness of the turbulent transport suppression by the zonal flows.

  3. Inertia effects in the laminar radial flow of a power law fluid with an electromagnetic field

    International Nuclear Information System (INIS)

    Chen, C.-K.; Chen, K.-H.; Wu, C.-Y.

    1984-01-01

    An approximate study of the pressure distribution for the radial flow of a non-newtonian (power law) fluid between two parallel disks in the presence of an axial electrical field is obtained by using the momentum and energy integral methods. For a non-newtonian fluid it is shown that the inertia effect must be considered to be significant for the pressure distribution, especially for the power law fluids with n >= 1. Furthermore, it is seen that the inertia effect will also lower the load capacity of the disks. (Auth.)

  4. Non-gated vessel wall imaging of the internal carotid artery using radial scanning and fast spin echo sequence. Evaluation of vessel signal intensity by flow rate at 3.0 tesla

    International Nuclear Information System (INIS)

    Nakamura, Manami; Makabe, Takeshi; Ichikawa, Masaki; Hatakeyama, Ryohei; Sugimori, Hiroyuki; Sakata, Motomichi

    2013-01-01

    Vessel wall imaging using radial scanning does not use a blood flow suppression pulse with gated acquisition. It has been proposed that there may not be a flow void effect if the flow rate is slow; however, this has yet to be empirically tested. To clarify the relationship between the signal intensity of the vessel lumen and the blood flow rate in a flow phantom, we investigated the usefulness of vessel wall imaging at 3.0 tesla (T). We measured the signal intensity while changing the flow rate in the flow phantom. Radial scanning at 1.5 T showed sufficient flow voids at above medium flow rates. There was no significant difference in lumen signal intensity at the carotid artery flow rate. The signal intensity of the vessel lumen decreased sufficiently using the radial scan method at 3.0 T. We thus obtained sufficient flow void effects at the carotid artery flow rate. We conclude this technique to be useful for evaluating plaque if high contrast can be maintained for fixed tissue (such as plaque) and the vessel lumen. (author)

  5. Dimensions of flow during an experiential wilderness science program

    Science.gov (United States)

    Wang, Robert

    Over the past twenty-five years, there has been an alarming decline in academic performance among American students. This trend is seen in failing test scores, poor attendance, and low first-year retention rates at post-secondary institutions. There have been numerous studies that have examined this issue but few to offer solutions. Mihalyi Csikszentmihalyi, the originator of flow theory, suggests that poor academic performance might be best explained in terms of lack of student motivation and engagement (flow) rather than a lack of cognitive abilities. This study was designed to examine a series of activities conducted during an Experiential Wilderness Science Program at a college located in the Rocky Mountain region. Specifically, this study measured student engagement for each activity and described the dimensions (phenomenological, instructional, etc.) that were present when there was a high frequency of engagement among program participants. A combined quantitative and qualitative research methodology was utilized. The Experience Sampling Form (ESF) was administered to 41 freshman students participating in a 3-day wilderness science program to measure the frequency of engagement (flow) for nine different activities. A qualitative investigation using journals, participant interviews, and focus groups was used to describe the dimensions that were present when a high frequency of engagement among program participants was observed. Results revealed that engagement (flow) was highest during two challenge education activities and during a river sampling activity. Dimensions common among these activities included: an environment dimension, a motivation dimension, and an instruction dimension. The environment dimension included: incorporating novel learning activities, creating student interests, and introducing an element of perceived risk. The motivation dimension included: developing internal loci of control, facilitating high levels of self-efficacy, and

  6. Analysis of the cross flow in a radial inflow turbine scroll

    Science.gov (United States)

    Hamed, A.; Abdallah, S.; Tabakoff, W.

    1977-01-01

    Equations of motion were derived, and a computational procedure is presented, for determining the nonviscous flow characteristics in the cross-sectional planes of a curved channel due to continuous mass discharge or mass addition. An analysis was applied to the radial inflow turbine scroll to study the effects of scroll geometry and the through flow velocity profile on the flow behavior. The computed flow velocity component in the scroll cross-sectional plane, together with the through flow velocity profile which can be determined in a separate analysis, provide a complete description of the three dimensional flow in the scroll.

  7. Modulation of radial blood flow during Braille character discrimination task.

    Science.gov (United States)

    Murata, Jun; Matsukawa, K; Komine, H; Tsuchimochi, H

    2012-03-01

    Human hands are excellent in performing sensory and motor function. We have hypothesized that blood flow of the hand is dynamically regulated by sympathetic outflow during concentrated finger perception. To identify this hypothesis, we measured radial blood flow (RBF), radial vascular conductance (RVC), heart rate (HR), and arterial blood pressure (AP) during Braille reading performed under the blind condition in nine healthy subjects. The subjects were instructed to read a flat plate with raised letters (Braille reading) for 30 s by the forefinger, and to touch a blank plate as control for the Braille discrimination procedure. HR and AP slightly increased during Braille reading but remained unchanged during the touching of the blank plate. RBF and RVC were reduced during the Braille character discrimination task (decreased by -46% and -49%, respectively). Furthermore, the changes in RBF and RVC were much greater during the Braille character discrimination task than during the touching of the blank plate (decreased by -20% and -20%, respectively). These results have suggested that the distribution of blood flow to the hand is modulated via sympathetic nerve activity during concentrated finger perception.

  8. Radial electric fields for improved tokamak performance

    International Nuclear Information System (INIS)

    Downum, W.B.

    1981-01-01

    The influence of externally-imposed radial electric fields on the fusion energy output, energy multiplication, and alpha-particle ash build-up in a TFTR-sized, fusing tokamak plasma is explored. In an idealized tokamak plasma, an externally-imposed radial electric field leads to plasma rotation, but no charge current flows across the magnetic fields. However, a realistically-low neutral density profile generates a non-zero cross-field conductivity and the species dependence of this conductivity allows the electric field to selectively alter radial particle transport

  9. Three-dimensional inviscid analysis of radial-turbine flow and a limited comparison with experimental data

    Science.gov (United States)

    Choo, Y. K.; Civinskas, K. C.

    1985-01-01

    The three-dimensional inviscid DENTON code is used to analyze flow through a radial-inflow turbine rotor. Experimental data from the rotor are compared with analytical results obtained by using the code. The experimental data available for comparison are the radial distributions of circumferentially averaged values of absolute flow angle and total pressure downstream of the rotor exit. The computed rotor-exit flow angles are generally underturned relative to the experimental values, which reflect the boundary-layer separation at the trailing edge and the development of wakes downstream of the rotor. The experimental rotor is designed for a higher-than-optimum work factor of 1.126 resulting in a nonoptimum positive incidence and causing a region of rapid flow adjustment and large velocity gradients. For this experimental rotor, the computed radial distribution of rotor-exit to turbine-inlet total pressure ratios are underpredicted due to the errors in the finite-difference approximations in the regions of rapid flow adjustment, and due to using the relatively coarser grids in the middle of the blade region where the flow passage is highly three-dimensional. Additional results obtained from the three-dimensional inviscid computation are also presented, but without comparison due to the lack of experimental data. These include quasi-secondary velocity vectors on cross-channel surfaces, velocity components on the meridional and blade-to-blade surfaces, and blade surface loading diagrams. Computed results show the evolution of a passage vortex and large streamline deviations from the computational streamwise grid lines. Experience gained from applying the code to a radial turbine geometry is also discussed.

  10. Three-dimensional inviscid analysis of radial turbine flow and a limited comparison with experimental data

    Science.gov (United States)

    Choo, Y. K.; Civinskas, K. C.

    1985-01-01

    The three-dimensional inviscid DENTON code is used to analyze flow through a radial-inflow turbine rotor. Experimental data from the rotor are compared with analytical results obtained by using the code. The experimental data available for comparison are the radial distributions of circumferentially averaged values of absolute flow angle and total pressure downstream of the rotor exit. The computed rotor-exit flow angles are generally underturned relative to the experimental values, which reflect the boundary-layer separation at the trailing edge and the development of wakes downstream of the rotor. The experimental rotor is designed for a higher-than-optimum work factor of 1.126 resulting in a nonoptimum positive incidence and causing a region of rapid flow adjustment and large velocity gradients. For this experimental rotor, the computed radial distribution of rotor-exit to turbine-inlet total pressure ratios are underpredicted due to the errors in the finite-difference approximations in the regions of rapid flow adjustment, and due to using the relatively coarser grids in the middle of the blade region where the flow passage is highly three-dimensional. Additional results obtained from the three-dimensional inviscid computation are also presented, but without comparison due to the lack of experimental data. These include quasi-secondary velocity vectors on cross-channel surfaces, velocity components on the meridional and blade-to-blade surfaces, and blade surface loading diagrams. Computed results show the evolution of a passage vortex and large streamline deviations from the computational streamwise grid lines. Experience gained from applying the code to a radial turbine geometry is also discussed.

  11. Modeling of radial gas fraction profiles for bubble flow in vertical pipes

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, D.; Krepper, E.; Prasser, H.-M. [Forschungszentrum Rossendorf e.V., Institute of Safety Research, Dresden (Germany)

    2001-07-01

    The paper presents a method for the prediction of radial gas fraction profiles from a given bubble size distribution. The method is based on the assumption of the equilibrium of the forces acting on a bubble perpendicularly to the flow direction. Assuming a large number of bubble size classes radial distributions are calculated separately for all bubble classes. The sum of these distributions is the radial profile of the gas fraction. The results of the model are compared with experimental data for a number of gas and liquid volume flow rates. The experiments were performed at a vertical test loop (inner diameter 50 mm) in FZ-Rossendorf using a wire mesh sensor. The sensor enables the determination of void distributions in the cross section of the loop. A special evaluation procedure supplies bubble size distributions as well as local distributions of bubbles within a predefined interval of bubble sizes. There is a good agreement between experimental and calculated data. In particular the change from wall peaking to core peaking is well predicted. (authors)

  12. Modeling of radial gas fraction profiles for bubble flow in vertical pipes

    International Nuclear Information System (INIS)

    Lucas, D.; Krepper, E.; Prasser, H.-M.

    2001-01-01

    The paper presents a method for the prediction of radial gas fraction profiles from a given bubble size distribution. The method is based on the assumption of the equilibrium of the forces acting on a bubble perpendicularly to the flow direction. Assuming a large number of bubble size classes radial distributions are calculated separately for all bubble classes. The sum of these distributions is the radial profile of the gas fraction. The results of the model are compared with experimental data for a number of gas and liquid volume flow rates. The experiments were performed at a vertical test loop (inner diameter 50 mm) in FZ-Rossendorf using a wire mesh sensor. The sensor enables the determination of void distributions in the cross section of the loop. A special evaluation procedure supplies bubble size distributions as well as local distributions of bubbles within a predefined interval of bubble sizes. There is a good agreement between experimental and calculated data. In particular the change from wall peaking to core peaking is well predicted. (authors)

  13. Flow rate dependency of critical wall shear stress in a radial-flow cell

    DEFF Research Database (Denmark)

    Detry, J.G.; Jensen, Bo Boye Busk; Sindic, M.

    2009-01-01

    In the present work, a radial-flow cell was used to study the removal of starch particle aggregates from several solid substrates (glass, stainless steel, polystyrene and PTFE) in order to determine the critical wall shear stress value for each case. The particle aggregates were formed by aspersion...... of a water or ethanol suspension of starch granules on the surfaces. Depending on the substrate and on the suspending liquid, the aggregates differed in size and shape. Aggregate removal was studied at two flow rates. At the lower flow rate (Re-inlet = 955), the values of critical wall shear stress...... for the different surfaces suggested that capillary forces were, for all of them, playing an important role in aggregate adhesion since aqueous based aggregates were always more difficult to remove. At the higher flow rate (Re-inlet = 2016) the critical wall shear stress increased as a result of the change...

  14. A theory of self-organized zonal flow with fine radial structure in tokamak

    Science.gov (United States)

    Zhang, Y. Z.; Liu, Z. Y.; Xie, T.; Mahajan, S. M.; Liu, J.

    2017-12-01

    The (low frequency) zonal flow-ion temperature gradient (ITG) wave system, constructed on Braginskii's fluid model in tokamak, is shown to be a reaction-diffusion-advection system; it is derived by making use of a multiple spatiotemporal scale technique and two-dimensional (2D) ballooning theory. For real regular group velocities of ITG waves, two distinct temporal processes, sharing a very similar meso-scale radial structure, are identified in the nonlinear self-organized stage. The stationary and quasi-stationary structures reflect a particular feature of the poloidal group velocity. The equation set posed to be an initial value problem is numerically solved for JET low mode parameters; the results are presented in several figures and two movies that show the spatiotemporal evolutions as well as the spectrum analysis—frequency-wave number spectrum, auto power spectrum, and Lissajous diagram. This approach reveals that the zonal flow in tokamak is a local traveling wave. For the quasi-stationary process, the cycle of ITG wave energy is composed of two consecutive phases in distinct spatiotemporal structures: a pair of Cavitons growing and breathing slowly without long range propagation, followed by a sudden decay into many Instantons that carry negative wave energy rapidly into infinity. A spotlight onto the motion of Instantons for a given radial position reproduces a Blob-Hole temporal structure; the occurrence as well as the rapid decay of Caviton into Instantons is triggered by zero-crossing of radial group velocity. A sample of the radial profile of zonal flow contributed from 31 nonlinearly coupled rational surfaces near plasma edge is found to be very similar to that observed in the JET Ohmic phase [J. C. Hillesheim et al., Phys. Rev. Lett. 116, 165002 (2016)]. The theory predicts an interior asymmetric dipole structure associated with the zonal flow that is driven by the gradients of ITG turbulence intensity.

  15. Three-dimensional flow field measurements in a radial inflow turbine scroll using LDV

    Science.gov (United States)

    Malak, M. F.; Hamed, A.; Tabakoff, W.

    1986-01-01

    The results of an experimental study of the three-dimensional flow field in a radial inflow turbine scroll are presented. A two-color LDV system was used in the measurement of three orthogonal velocity components at 758 points located throughout the scroll and the unvaned portion of the nozzle. The cold flow experimental results are presented for through-flow velocity contours and the cross velocity vectors.

  16. CFD Analysis on the Effect of Radial Gap on Impeller-Diffuser Flow Interaction as well as on the Flow Characteristics of a Centrifugal Fan

    Directory of Open Access Journals (Sweden)

    K. Vasudeva Karanth

    2009-01-01

    Full Text Available The flow between the impeller exit and the diffuser entry (i.e., in the radial gap is generally considered to be complex. With the development of PIV and CFD tools such as moving mesh techniques, it is now possible to arrive at a prudent solution compatible with the physical nature of flow. In this work, numerical methodology involving moving mesh technique is used in predicting the real flow behavior, as exhibited when a target blade of the impeller is made to move past corresponding vane on the diffuser. Many research works have been undertaken using experimental and numerical methods on the impeller-diffuser interactive phenomenon. It is found from the literature that the effect of radial gap between impeller and diffuser on the interaction and on the performance of the fan has not been the focus of attention. Hence numerical analysis is undertaken in this work to explore and predict the flow behavior due to the radial gap. This has revealed the presence of an optimum radial gap which could provide better design characteristics or lower loss coefficient. It is found that there is a better energy conversion by the impeller and enhanced energy transformation by the diffuser, corresponding to optimum radial gap. The overall efficiency also found to increase for relatively larger gap.

  17. Extension of the flow-rate-of-strain tensor formulation of plasma rotation theory to non-axisymmetric tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, W. M. [Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Bae, C. [National Fusion Research Institute, Daejoen (Korea, Republic of)

    2015-06-15

    A systematic formalism for the calculation of rotation in non-axisymmetric tokamaks with 3D magnetic fields is described. The Braginskii Ωτ-ordered viscous stress tensor formalism, generalized to accommodate non-axisymmetric 3D magnetic fields in general toroidal flux surface geometry, and the resulting fluid moment equations provide a systematic formalism for the calculation of toroidal and poloidal rotation and radial ion flow in tokamaks in the presence of various non-axisymmetric “neoclassical toroidal viscosity” mechanisms. The relation among rotation velocities, radial ion particle flux, ion orbit loss, and radial electric field is discussed, and the possibility of controlling these quantities by producing externally controllable toroidal and/or poloidal currents in the edge plasma for this purpose is suggested for future investigation.

  18. A case of radial keratoneuritis in non-Acanthamoeba keratitis

    Directory of Open Access Journals (Sweden)

    Mutoh T

    2012-09-01

    Full Text Available Tetsuya Mutoh, Yukihiro Matsumoto, Makoto ChikudaDepartment of Ophthalmology, Dokkyo Medical University Koshigaya Hospital, Saitama, JapanAbstract: A case of non-Acanthamoeba keratitis with radial keratoneuritis, which is thought to be pathognomonic for Acanthamoeba keratitis, is reported. A healthy 32-year-old woman with a history of frequent replacement of her contact lenses due to wear was examined at Dokkyo Medical University Koshigaya Hospital (Saitama, Japan and found to have a slight corneal opacity that was accompanied by radial keratoneuritis. Based on both the patient’s clinical findings and past history, the presence of Acanthamoeba keratitis was highly suspected. However, direct light microscopy of corneal scrapings stained by the Parker ink–potassium hydroxide method only found Acanthamoeba-type material in the specimen collected at her initial visit. In all other specimens collected from the patient, no Acanthamoeba was found either when using the same method or when performing cultures of the surgical debridement of the corneal lesion. In addition, topical antifungal eye drops, systemic antifungal drugs, and surgical debridement were also not effective in this case. Since a precise diagnosis could not be made, the patient was treated with topical 0.1% betamethasone sodium, which ultimately resulted in a dramatic improvement of her corneal inflammation. At 23 days after initiation of topical administration of 0.1% betamethasone sodium, visual acuity was 20/250, with a slight corneal opacity noted at the original site of infection. The outcome of the current case suggests that radial keratoneuritis is not always pathognomonic for Acanthamoeba keratitis.Keywords: radial keratoneuritis, non-Acanthamoeba keratitis, topical corticosteroid

  19. Swirling flow and its influence on dc arcs in a duo-flow hybrid circuit breaker

    International Nuclear Information System (INIS)

    Kweon, K Y; Lee, H S; Yan, J D; Fang, M T C; Park, K Y

    2009-01-01

    The effects of swirling flow on the behaviour of dc SF 6 arcs in a duo-flow nozzle are computationally investigated in the electric current range 3-7 kA. A swirling flow is produced by the interaction of the magnetic field of a current-carrying coil and the plasma. Results show that a strong swirling flow is generated in regions where a large radial current density exists as a result of the conducting arc column rapidly changing its radial dimension. The presence of the swirling flow reduces the axis pressure, modifies the arc shape and slightly lowers the arc voltage (2-5%) in comparison with the case without considering the swirling flow. The different natures of swirling flows in a plasma jet/arc heater and in a hybrid circuit breaker are also discussed.

  20. Radial flow in 40Ar+45Sc reactions at E=35-115 MeV/nucleon

    Science.gov (United States)

    Pak, R.; Craig, D.; Gualtieri, E. E.; Hannuschke, S. A.; Lacey, R. A.; Lauret, J.; Llope, W. J.; Stone, N. T. B.; Vander Molen, A. M.; Westfall, G. D.; Yee, J.

    1996-10-01

    Collective radial flow of light fragments from 40Ar+45Sc reactions at beam energies between 35 and 115 MeV/nucleon has been investigated using the Michigan State University 4π Array. The mean transverse kinetic energy of the different fragment types increases with event centrality and increases as a function of the incident beam energy. Comparison of our measured values of shows agreement with predictions of Boltzmann-Uehling-Uhlenbeck model and WIX multifragmentation model calculations. The radial flow extracted from accounts for approximately half of the emitted particle's energy for the heavier fragments (Z>=4) at the highest beam energy studied.

  1. Radial lean direct injection burner

    Science.gov (United States)

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  2. Axisymmetric flow and heat transfer to modified second grade fluid over a radially stretching sheet

    Directory of Open Access Journals (Sweden)

    Masood Khan

    Full Text Available In the present work, an analysis is made to the two-dimensional axisymmetric flow and heat transfer of a modified second grade fluid over an isothermal non-linear radially stretching sheet. The momentum and energy equations are modelled and the boundary layer equations are derived. The governing equations for velocity and temperature are turned down into a system of ordinary differential equations by invoking appropriate transformations which are then solved numerically via fourth and fifth order Runge-Kutta Fehlberg method. Moreover, the influence of the pertinent parameters namely the generalized second grade parameter, stretching parameter, the power-law index and the generalized Prandtl number is graphically portrayed. It is inferred that the generalized second grade parameter uplifted the momentum boundary layer while lessened the thermal boundary layer. Furthermore, the impact of stretching parameter is more pronounced for the second grade fluid (m = 0 in contrast with the power-law fluid (k = 0. For some special cases, comparisons are made with previously reported results and an excellent agreement is established. Keywords: Modified second grade fluid, Axisymmetric flow, Heat transfer, Non-linear stretching sheet

  3. Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    International Nuclear Information System (INIS)

    Gilmore, Mark Allen

    2017-01-01

    Turbulence, and turbulence-driven transport are ubiquitous in magnetically confined plasmas, where there is an intimate relationship between turbulence, transport, instability driving mechanisms (such as gradients), plasma flows, and flow shear. Though many of the detailed physics of the interrelationship between turbulence, transport, drive mechanisms, and flow remain unclear, there have been many demonstrations that transport and/or turbulence can be suppressed or reduced via manipulations of plasma flow profiles. This is well known in magnetic fusion plasmas [e.g., high confinement mode (H-mode) and internal transport barriers (ITB's)], and has also been demonstrated in laboratory plasmas. However, it may be that the levels of particle transport obtained in such cases [e.g. H-mode, ITB's] are actually lower than is desirable for a practical fusion device. Ideally, one would be able to actively feedback control the turbulent transport, via manipulation of the flow profiles. The purpose of this research was to investigate the feasibility of using both advanced model-based control algorithms, as well as non-model-based algorithms, to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles. The University of New Mexico was responsible for the experimental portion of the project, while our collaborators at the University of Montana provided plasma transport modeling, and collaborators at Lehigh University developed and explored control methods.

  4. Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Mark Allen [Univ. of New Mexico, Albuquerque, NM (United States)

    2017-02-05

    Turbulence, and turbulence-driven transport are ubiquitous in magnetically confined plasmas, where there is an intimate relationship between turbulence, transport, instability driving mechanisms (such as gradients), plasma flows, and flow shear. Though many of the detailed physics of the interrelationship between turbulence, transport, drive mechanisms, and flow remain unclear, there have been many demonstrations that transport and/or turbulence can be suppressed or reduced via manipulations of plasma flow profiles. This is well known in magnetic fusion plasmas [e.g., high confinement mode (H-mode) and internal transport barriers (ITB’s)], and has also been demonstrated in laboratory plasmas. However, it may be that the levels of particle transport obtained in such cases [e.g. H-mode, ITB’s] are actually lower than is desirable for a practical fusion device. Ideally, one would be able to actively feedback control the turbulent transport, via manipulation of the flow profiles. The purpose of this research was to investigate the feasibility of using both advanced model-based control algorithms, as well as non-model-based algorithms, to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles. The University of New Mexico was responsible for the experimental portion of the project, while our collaborators at the University of Montana provided plasma transport modeling, and collaborators at Lehigh University developed and explored control methods.

  5. Comparison of Radial Access, Guided Femoral Access, and Non-Guided Femoral Access Among Women Undergoing Percutaneous Coronary Intervention.

    Science.gov (United States)

    Koshy, Linda M; Aberle, Laura H; Krucoff, Mitchell W; Hess, Connie N; Mazzaferri, Ernest; Jolly, Sanjit S; Jacobs, Alice; Gibson, C Michael; Mehran, Roxana; Gilchrist, Ian C; Rao, Sunil V

    2018-01-01

    This study was conducted to determine the association between radial access, guided femoral access, and non-guided femoral access on postprocedural bleeding and vascular complications after percutaneous coronary intervention (PCI). Bleeding events and major vascular complications after PCI are associated with increased morbidity, mortality, and cost. While the radial approach has been shown to be superior to the femoral approach in reducing bleeding and vascular complications, whether the use of micropuncture, fluoroscopy, or ultrasound mitigates these differences is unknown. We conducted a post hoc analysis of women in the SAFE-PCI for Women trial who underwent PCI and had the access method identified (n = 643). The primary endpoint of postprocedure bleeding or vascular complications occurring within 72 hours or at discharge was adjudicated by an independent clinical events committee and was compared based on three categories of access technique: radial, guided femoral (fluoroscopy, micropuncture, ultrasound), or non-guided femoral (none of the aforementioned). Differences between the groups were determined using multivariate logistic regression using radial access as the reference. Of the PCI population, 330 underwent radial access, 228 underwent guided femoral access, and 85 underwent non-guided femoral access. There was a statistically significant lower incidence of the primary endpoint with radial access vs non-guided femoral access; however, there was no significant difference between radial approach and femoral access guided by fluoroscopy, micropuncture, or ultrasound. This post hoc analysis demonstrates that while radial access is safer than non-guided femoral access, guided femoral access appears to be associated with similar bleeding events or vascular complications as radial access.

  6. Non Radial Oscillations in an Axisymmetric MHD Incompressible Fluid

    Indian Academy of Sciences (India)

    tribpo

    Abstract. It is well known from Helioseismology that the Sun exhibits oscillations on a global scale, most of which are non radial in nature. These oscillations help us to get a clear picture of the internal structure of the Sun as has been demonstrated by the theoretical and observational. (such as GONG) studies. In this study ...

  7. Non-radial radiative transfer in clese binaries. Application to the bolometric reflection effect in W UMa stars

    International Nuclear Information System (INIS)

    Pustylnik, I.

    1977-01-01

    In near-contact binary systems a significant portion of the total amount of the radiative energy is blocked between the facing hemispheres of two component stars. This circumstance combined with the lack of spherical symmetry of the radiation field may give rise to non-radial radiative transport. It is shown for a case of a spherical stellar atmosphere illuminated by a parallel beam of radiation that anisotropic scattering may be responsible for the non-radial component of the radiative flux. The effect of non-radial radiative transfer in close binaries would increase the total energy output observed at elongations at the expense of the radiative energy seen during conjunctions and would lead to colour changes qualitatively resembling those observed in many W UMa stars. Presumably it will be difficult to distinguish periodical light changes due to non-radial radiative transfer from those caused by distortions of the components or gravitational darkening. An order-of-magnitude estimate is made with the result that the bolometric amplitude of the non-radially scattered light probably does not exceed one per cent of the total luminosity of a binary system. (author)

  8. Optimal Power Flow in Multiphase Radial Networks with Delta Connections: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Changhong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Low, Steven H. [California Institute of Technology

    2017-11-27

    This paper focuses on multiphase radial distribution networks with mixed wye and delta connections, and proposes a semidefinite relaxation of the AC optimal power flow (OPF) problem. Two multiphase power-flow models are developed to facilitate the integration of delta-connected generation units/loads in the OPF problem. The first model extends traditional branch flow models - and it is referred to as extended branch flow model (EBFM). The second model leverages a linear relationship between per-phase power injections and delta connections, which holds under a balanced voltage approximation (BVA). Based on these models, pertinent OPF problems are formulated and relaxed to semidefinite programs (SDPs). Numerical studies on IEEE test feeders show that SDP relaxations can be solved efficiently by a generic optimization solver. Numerical evidences indicate that solving the resultant SDP under BVA is faster than under EBFM. Moreover, both SDP solutions are numerically exact with respect to voltages and branch flows. It is also shown that the SDP solution under BVA has a small optimality gap, while the BVA model is accurate in the sense that it reflects actual system voltages.

  9. Non-Newtonian Flow-Induced Deformation From Pressurized Cavities in Absorbing Porous Tissues

    Science.gov (United States)

    Ahmed, Aftab; Siddique, Javed

    2017-11-01

    We investigate the behavior of a spherical cavity in a soft biological tissue modeled as a deformable porous material during an injection of non-Newtonian fluid that follows a power law model. Fluid flows into the neighboring tissue due to high cavity pressure where it is absorbed by capillaries and lymphatics at a rate proportional to the local pressure. Power law fluid pressure and displacement of solid in the tissue are computed as function of radial distance and time. Numerical solutions indicate that shear thickening fluids exhibit less fluid pressure and induce small solid deformation as compared to shear thinning fluids. The absorption in the biological tissue increases as a consequence of flow induced deformation for power law fluids. In most cases non-Newtonian results are compared with viscous fluid case to magnify the differences.

  10. Concepts of radial and angular kinetic energies

    DEFF Research Database (Denmark)

    Dahl, Jens Peder; Schleich, W.P.

    2002-01-01

    We consider a general central-field system in D dimensions and show that the division of the kinetic energy into radial and angular parts proceeds differently in the wave-function picture and the Weyl-Wigner phase-space picture, Thus, the radial and angular kinetic energies are different quantities...

  11. On Analysis of Stationary Viscous Incompressible Flow Through a Radial Blade Machine

    Science.gov (United States)

    Neustupa, Tomáš

    2010-09-01

    The paper is concerned with the analysis of the two dimensional model of incompressible, viscous, stationary flow through a radial blade machine. This type of turbine is sometimes called Kaplan's turbine. In the technical area the use is either to force some regular characteristic to the flow of the medium going through the turbine (flow of melted iron, air conditioning) or to gain some energy from the flowing medium (water). The inflow and outflow part of boundary are in general a concentric circles. The larger one represents an inflow part of boundary the smaller one the outflow part of boundary. Between them are regularly spaced the blades of the machine. We study the existence of the weak solution in the case of nonlinear boundary condition of the "do-nothing" type. The model is interesting for study the behavior of the flow when the boundary is formed by mutually disjoint and separated parts.

  12. Computer program for the analysis of the cross flow in a radial inflow turbine scroll

    Science.gov (United States)

    Hamed, A.; Abdallah, S.; Tabakoff, W.

    1977-01-01

    A computer program was used to solve the governing of the potential flow in the cross sectional planes of a radial inflow turbine scroll. A list of the main program, the subroutines, and typical output example are included.

  13. Constraints on perturbative RG flows in six dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Stergiou, Andreas [Department of Physics, Yale University,217 Prospect St, New Haven, CT 06520 (United States); Stone, David [INFN, Sezione di Roma,Piazzale A. Moro 2, I-00185 Roma (Italy); Vitale, Lorenzo G. [Institut de Théorie des Phènoménes Physiques, EPFL,Route Cantonale, CH-1015 Lausanne (Switzerland)

    2016-08-01

    When conformal field theories (CFTs) are perturbed by marginally relevant deformations, renormalization group (RG) flows ensue that can be studied with perturbative methods, at least as long as they remain close to the original CFT. In this work we study such RG flows in the vicinity of six-dimensional unitary CFTs. Neglecting effects of scalar operators of dimension two and four, we use Weyl consistency conditions to prove the a-theorem in perturbation theory, and establish that scale implies conformal invariance. We identify a quantity that monotonically decreases in the flow to the infrared due to unitarity, showing that it does not agree with the one studied recently in the literature on the six-dimensional ϕ{sup 3} theory.

  14. Model-Based Optimization of Scaffold Geometry and Operating Conditions of Radial Flow Packed-Bed Bioreactors for Therapeutic Applications

    Directory of Open Access Journals (Sweden)

    Danilo Donato

    2014-01-01

    Full Text Available Radial flow perfusion of cell-seeded hollow cylindrical porous scaffolds may overcome the transport limitations of pure diffusion and direct axial perfusion in the realization of bioengineered substitutes of failing or missing tissues. Little has been reported on the optimization criteria of such bioreactors. A steady-state model was developed, combining convective and dispersive transport of dissolved oxygen with Michaelis-Menten cellular consumption kinetics. Dimensional analysis was used to combine more effectively geometric and operational variables in the dimensionless groups determining bioreactor performance. The effectiveness of cell oxygenation was expressed in terms of non-hypoxic fractional construct volume. The model permits the optimization of the geometry of hollow cylindrical constructs, and direction and magnitude of perfusion flow, to ensure cell oxygenation and culture at controlled oxygen concentration profiles. This may help engineer tissues suitable for therapeutic and drug screening purposes.

  15. Development and validation of a radial turbine efficiency and mass flow model at design and off-design conditions

    International Nuclear Information System (INIS)

    Serrano, José Ramón; Arnau, Francisco José; García-Cuevas, Luis Miguel; Dombrovsky, Artem; Tartoussi, Hadi

    2016-01-01

    Highlights: • A procedure for performance maps extrapolation of any radial turbine is presented. • Non measured VGT positions, speeds and blade to jet speed ratios can be extrapolated. • Calibration coefficients that can be fitted with a limited set of map data are used. • Experimental points at high blade to jet speed ratios have been used for validation. • The extrapolation accuracy is good in different map ranges and variables. - Abstract: Turbine performance at extreme off-design conditions is growing in importance for properly computing turbocharged reciprocating internal combustion engines behaviour during urban driving conditions at current and future homologation cycles. In these cases, the turbine operates at very low flow rates and power outputs and at very high blade to jet speed ratios during transitory periods due to turbocharger wheel inertia and the high pulsation level of engine exhaust flow. This paper presents a physically based method that is able to extrapolate radial turbines reduced mass flow and adiabatic efficiency in blade speed ratio, turbine rotational speed and stator vanes position. The model uses a very narrow range of experimental data from turbine maps to fit the necessary coefficients. By using a special experimental turbocharger gas stand, experimental data have been obtained for extremely low turbine power outputs for the sake of model validation. Even if the data used for fitting only covers the turbine normal operation zone, the extrapolation model provides very good agreement with the experiments at very high blade speed ratio points; producing also good results when extrapolating in rotational speed and stator vanes position.

  16. Thin viscoelastic disc subjected to radial non-stationary loading

    Directory of Open Access Journals (Sweden)

    Adámek V.

    2010-07-01

    Full Text Available The investigation of non-stationary wave phenomena in isotropic viscoelastic solids using analytical approaches is the aim of this paper. Concretely, the problem of a thin homogeneous disc subjected to radial pressure load nonzero on the part of its rim is solved. The external excitation is described by the Heaviside function in time, so the nonstationary state of stress is induced in the disc. Dissipative material behaviour of solid studied is represented by the discrete material model of standard linear viscoelastic solid in the Zener configuration. After the derivation of motion equations final form, the method of integral transforms in combination with the Fourier method is used for finding the problem solution. The solving process results in the derivation of integral transforms of radial and circumferential displacement components. Finally, the type of derived functions singularities and possible methods for their inverse Laplace transform are mentioned.

  17. Radial variation of basic density and wood cells dimensions of Cariniana legalis (Mart. O. Kuntze depending on the provenance

    Directory of Open Access Journals (Sweden)

    Israel Luiz de Lima

    2011-12-01

    Full Text Available Provenance tests can provide information about the silvicultural behavior and wood quality for the exploration of variability and conservation of genetic material for future use. This study aims to investigate the effect of provenances on some wood properties of the Cariniana legalis. Seedlings of three provenances (Porto Ferreira, Piracicaba and Campinas were planted in Luiz Antonio-SP using randomized block design with six replicates. After 26 years of planting, eighteen trees, six of each provenance, were felled. The properties studied were basic density and the cellular dimensions. The results revealed that the basic density, fiber length, fiber wall thickness, vessel element length, vessel diameter, uniseriate ray height and width were influenced by the provenances. A good positive relationship was found among the fiber length, fiber wall thickness, vessel element length; vessel diameter and multiseriate ray height with radial position and a negative relation between vessel frequency with the radial position.

  18. Radial electric field and transport near the rational surface and the magnetic island in LHD

    International Nuclear Information System (INIS)

    Ida, K.; Inagaki, S.; Tamura, N.

    2002-10-01

    The structure of the radial electric field and heat transport at the magnetic island in the Large Helical Device is investigated by measuring the radial profile of poloidal flow with charge exchange spectroscopy. The convective poloidal flow inside the island is observed when the n/m=1/1 external perturbation field becomes large enough to increase the magnetic island width above a critical value (15-20% of minor radius) in LHD. This convective poloidal flow results in a non-flat space potential inside the magnetic island. The sign of the curvature of the space potential depends on the radial electric field at the boundary of the magnetic island. The heat transport inside the magnetic island is studied with a cold pulse propagation technique. The experimental results show the existence of the radial electric field shear at the boundary of the magnetic island and a reduction of heat transport inside the magnetic island. (author)

  19. On radial stationary solutions to a model of non-equilibrium growth

    Czech Academy of Sciences Publication Activity Database

    Escudero, C.; Hakl, Robert; Peral, I.; Torres, P.J.

    2013-01-01

    Roč. 24, č. 3 (2013), s. 437-453 ISSN 0956-7925 Institutional support: RVO:67985840 Keywords : non-equilibrium growth * radial solutions * variational methods Subject RIV: BA - General Mathematics Impact factor: 1.081, year: 2013 http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8897362

  20. C{sub T} for non-unitary CFTs in higher dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, Hugh [Department of Applied Mathematics and Theoretical Physics, Wilberforce Road,Cambridge CB3 0WA, England (United Kingdom); Stergiou, Andreas [Department of Physics, Yale University,New Haven, CT 06520 (United States)

    2016-06-13

    The coefficient C{sub T} of the conformal energy-momentum tensor two-point function is determined for the non-unitary scalar CFTs with four- and six-derivative kinetic terms. The results match those expected from large-N calculations for the CFTs arising from the O(N) non-linear sigma and Gross-Neveu models in specific even dimensions. C{sub T} is also calculated for the CFT arising from (n−1)-form gauge fields with derivatives in 2n+2 dimensions. Results for (n−1)-form theory extended to general dimensions as a non-gauge-invariant CFT are also obtained; the resulting C{sub T} differs from that for the gauge-invariant theory. The construction of conformal primaries by subtracting descendants of lower-dimension primaries is also discussed. For free theories this also leads to an alternative construction of the energy-momentum tensor, which can be quite involved for higher-derivative theories.

  1. Radial flow in 40Ar+45Sc reactions at E=35 endash 115 MeV/nucleon

    International Nuclear Information System (INIS)

    Pak, R.; Craig, D.; Gualtieri, E.; Hannuschke, S.A.; Lacey, R.A.; Lauret, J.; Llope, W.J.; Stone, N.T.; Vander Molen, A.M.; Westfall, G.; Yee, J.

    1996-01-01

    Collective radial flow of light fragments from 40 Ar+ 45 Sc reactions at beam energies between 35 and 115 MeV/nucleon has been investigated using the Michigan State University 4π Array. The mean transverse kinetic energy left-angle E t right-angle of the different fragment types increases with event centrality and increases as a function of the incident beam energy. Comparison of our measured values of left-angle E t right-angle shows agreement with predictions of Boltzmann-Uehling-Uhlenbeck model and WIX multifragmentation model calculations. The radial flow extracted from left-angle E t right-angle accounts for approximately half of the emitted particle close-quote s energy for the heavier fragments (Z≥4) at the highest beam energy studied. copyright 1996 The American Physical Society

  2. Experimental feasibility study of radial injection cooling of three-pad radial air foil bearings

    Science.gov (United States)

    Shrestha, Suman K.

    Air foil bearings use ambient air as a lubricant allowing environment-friendly operation. When they are designed, installed, and operated properly, air foil bearings are very cost effective and reliable solution to oil-free turbomachinery. Because air is used as a lubricant, there are no mechanical contacts between the rotor and bearings and when the rotor is lifted off the bearing, near frictionless quiet operation is possible. However, due to the high speed operation, thermal management is one of the very important design factors to consider. Most widely accepted practice of the cooling method is axial cooling, which uses cooling air passing through heat exchange channels formed underneath the bearing pad. Advantage is no hardware modification to implement the axial cooling because elastic foundation structure of foil bearing serves as a heat exchange channels. Disadvantage is axial temperature gradient on the journal shaft and bearing. This work presents the experimental feasibility study of alternative cooling method using radial injection of cooling air directly on the rotor shaft. The injection speeds, number of nozzles, location of nozzles, total air flow rate are important factors determining the effectiveness of the radial injection cooling method. Effectiveness of the radial injection cooling was compared with traditional axial cooling method. A previously constructed test rig was modified to accommodate a new motor with higher torque and radial injection cooling. The radial injection cooling utilizes the direct air injection to the inlet region of air film from three locations at 120° from one another with each location having three axially separated holes. In axial cooling, a certain axial pressure gradient is applied across the bearing to induce axial cooling air through bump foil channels. For the comparison of the two methods, the same amount of cooling air flow rate was used for both axial cooling and radial injection. Cooling air flow rate was

  3. Evidence for radial flow of thermal dileptons in high-energy nuclear collisions

    CERN Document Server

    Arnaldi, R; Castor, J; Chaurand, B; Cicalò, C; Colla, A; Cortese, P; Damjanovic, S; David, A; De Falco, A; Devaux, A; Ducroux, L; Enyo, H; Fargeix, J; Ferretti, A; Floris, M; Förster, A; Force, P; Guettet, N; Guichard, A; Gulkanian, H R; Heuser, J M; Keil, M; Kluberg, L; Lourenço, C; Lozano, J; Manso, F; Martins, P; Masoni, A; Neves, A; Ohnishi, H; Oppedisano, C; Parracho, P; Pillot, P; Poghosyan, T; Puddu, G; Radermacher, E; Ramalhete, P; Rosinsky, P; Scomparin, E; Seixas, J; Serci, S; Shahoyan, R; Sonderegger, P; Specht, H J; Tieulent, R; Usai, G; Veenhof, R; Wöhri, H K

    2008-01-01

    The NA60 experiment at the CERN SPS has studied low-mass dimuon production in 158 AGeV In-In collisions. An excess of pairs above the known meson decays has been reported before. We now present precision results on the associated transverse momentum spectra. The slope parameter Teff extracted from the spectra rises with dimuon mass up to the rho, followed by a sudden decline above. While the initial rise is consistent with the expectations for radial flow of a hadronic decay source, the decline signals a transition to an emission source with much smaller flow. This may well represent the first direct evidence for thermal radiation of partonic origin in nuclear collisions.

  4. A nine-electrode probe for simultaneous measurement of all terms in the ideal radial Ohm's law

    International Nuclear Information System (INIS)

    Si, Jiahe; Wang, Zhehui

    2006-01-01

    A Nine-Electrode Probe (NEP) has been developed for simultaneous measurement of all terms in the ideal Ohm's law E+UxB=0 in the radial (r) direction in cylindrical geometry, where E is the electric field, U is the plasma flow velocity, and B is the magnetic field. The probe consists of two pairs of directional Langmuir probes ('Mach' probes) to measure the axial (z) and azimuthal (θ) plasma flows, two pairs of floating Langmuir probes at different radial positions to measure the radial electric field, and two B-dot coils to measure the axial and azimuthal magnetic field. The measurement is performed in the Flowing Magnetized Plasma (FMP) experiment. Two flow patterns are identified in the FMP experiment by the NEP. The peak-to-peak values of radial electric field fluctuation is 1.5-4 times of the mean values. Comparisons of UxBvertical bar r and E r show that E r + UxBvertical bar r is not zero within some periods of discharge. This deviation suggests non-ideal effects in Ohm's law can not be neglected

  5. Betti multiplets, flows across dimensions and c-extremization

    Science.gov (United States)

    Amariti, Antonio; Toldo, Chiara

    2017-07-01

    We consider 4d N = 1 SCFTs, topologically twisted on compact constant curvature Riemann surfaces, giving rise to 2d N = (0, 2) SCFTs. The exact R-current of these 2d SCFT extremizes the central charge c 2 d , similarly to the 4d picture, where the exact R-current maximizes the central charge a 4 d . There are global currents that do not mix with the R-current in 4d but their mixing becomes non trivial in 2d. In this paper we study the holographic dual of this process by analyzing a 5d N = 2 truncation of T 1,1 with one Betti vector multiplet, dual to the baryonic current on the CFT side. The holographic realization of the flow across dimensions connects AdS5 to AdS3 vacua in the supergravity picture. We verify the existence of the flow to AdS3 solutions and we retrieve the field theory results for the mixing of the Betti vector with the graviphoton. Moreover, we extract the central charge from the Brown-Henneaux formula, matching with the results obtained in field theory. We develop a general formalism to obtain the central charge of a 2d SCFT from 5d N = 2 gauged supergravity with a generic number of vector multiplets, showing that its extremization corresponds to an attractor mechanism for the scalars in the supergravity picture.

  6. Influence of the Constitutive Flow Law in FEM Simulation of the Radial Forging Process

    Directory of Open Access Journals (Sweden)

    Olivier Pantalé

    2013-01-01

    Full Text Available Radial forging is a widely used forming process for manufacturing hollow products in transport industry. As the deformation of the workpiece, during the process, is a consequence of a large number of high-speed strokes, the Johnson-Cook constitutive law (taking into account the strain rate seems to be well adapted for representing the material behavior even if the process is performed under cold conditions. But numerous contributions concerning radial forging analysis, in the literature, are based on a simple elastic-plastic formulation. As far as we know, this assumption has yet not been validated for the radial forging process. Because of the importance of the flow law in the effectiveness of the model, our purpose in this paper is to analyze the influence of the use of an elastic-viscoplastic formulation instead of an elastic-plastic one for modeling the cold radial forging process. In this paper we have selected two different laws for the simulations: the Johnson-Cook and the Ludwik ones, and we have compared the results in terms of forging force, product's thickness, strains, stresses, and CPU time. For the presented study we use an AISI 4140 steel, and we denote a fairly good agreement between the results obtained using both laws.

  7. Study of Flow Patterns in Radial and Back Swept Turbine Rotor under Design and Off-Design Conditions

    OpenAIRE

    Samip Shah; Salim Channiwala; Digvijay Kulshreshtha; Gaurang Chaudhari

    2016-01-01

    Paper details the numerical investigation of flow patterns in a conventional radial turbine compared with a back swept design for same application. The blade geometry of a designed turbine from a 25kW micro gas turbine was used as a baseline. A back swept blade was subsequently designed for the rotor, which departed from the conventional radial inlet blade angle to incorporate up to 25° inlet blade angle. A comparative numerical analysis between the two geometries is presented. While opera...

  8. Detonation in supersonic radial outflow

    KAUST Repository

    Kasimov, Aslan R.

    2014-11-07

    We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations are carried out in order to explore the stability of the steady-state solutions. It is found that both collapsing and expanding two-dimensional cellular detonations exist. The latter can be stabilized by putting several rigid obstacles in the flow downstream of the steady-state sonic locus. The problem of initiation of standing detonation stabilized in the radial flow is also investigated numerically. © 2014 Cambridge University Press.

  9. Two dimensional radial gas flows in atmospheric pressure plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Kim, Gwihyun; Park, Seran; Shin, Hyunsu; Song, Seungho; Oh, Hoon-Jung; Ko, Dae Hong; Choi, Jung-Il; Baik, Seung Jae

    2017-12-01

    Atmospheric pressure (AP) operation of plasma-enhanced chemical vapor deposition (PECVD) is one of promising concepts for high quality and low cost processing. Atmospheric plasma discharge requires narrow gap configuration, which causes an inherent feature of AP PECVD. Two dimensional radial gas flows in AP PECVD induces radial variation of mass-transport and that of substrate temperature. The opposite trend of these variations would be the key consideration in the development of uniform deposition process. Another inherent feature of AP PECVD is confined plasma discharge, from which volume power density concept is derived as a key parameter for the control of deposition rate. We investigated deposition rate as a function of volume power density, gas flux, source gas partial pressure, hydrogen partial pressure, plasma source frequency, and substrate temperature; and derived a design guideline of deposition tool and process development in terms of deposition rate and uniformity.

  10. Relationship between preoperative radial artery and postoperative arteriovenous fistula blood flow in hemodialysis patients.

    Science.gov (United States)

    Sato, Michiko; Io, Hiroaki; Tanimoto, Mitsuo; Shimizu, Yoshio; Fukui, Mitsumine; Hamada, Chieko; Horikoshi, Satoshi; Tomino, Yasuhiko

    2012-01-01

    It is recommended that arteriovenous fistula (AVF) blood flow should be more than 425 ml/min before cannulation. However, the relationship between preoperative radial artery flow (RAF) and postoperative AVF blood flow has still not been examined. Sixty-one patients with end-stage kidney disease (ESKD) were examined. They had an AVF prepared at Juntendo University Hospital from July 2006 through August 2007. Preoperative RAF and postoperative AVF blood flows were measured by ultrasonography. AVF blood flow gradually increased after the operation. AVF blood flow was significantly correlated with preoperative RAF. When preoperative RAF exceeded 21.4 ml/min, AVF blood flow rose to more than 425 ml/min. The postoperative AVF blood flow in the group with RAF of more than 20 ml/min was significantly higher than that in those with less than 20 ml/min. Preoperative RAF of less than 20 ml/min had a significantly high risk of primary AVF failure within 8 months compared with that of more than 20 ml/min. It appears that measurement of RAF by ultrasonography is useful for estimating AVF blood flow postoperatively and can predict the risk of complications in ESKD patients.

  11. Law of nonlinear flow in saturated clays and radial consolidation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    It was derived that micro-scale amount level of average pore radius of clay changed from 0.01 to 0.1 micron by an equivalent concept of flow in porous media. There is good agreement between the derived results and test ones. Results of experiments show that flow in micro-scale pore of saturated clays follows law of nonlinear flow. Theoretical analyses demonstrate that an interaction of solid-liquid interfaces varies inversely with permeability or porous radius. The interaction is an important reason why nonlinear flow in saturated clays occurs. An exact mathematical model was presented for nonlinear flow in micro-scale pore of saturated clays. Dimension and physical meanings of parameters of it are definite. A new law of nonlinear flow in saturated clays was established. It can describe characteristics of flow curve of the whole process of the nonlinear flow from low hydraulic gradient to high one. Darcy law is a special case of the new law. A mathematical model was presented for consolidation of nonlinear flow in radius direction in saturated clays with constant rate based on the new law of nonlinear flow. Equations of average mass conservation and moving boundary, and formula of excess pore pressure distribution and average degree of consolidation for nonlinear flow in saturated clay were derived by using an idea of viscous boundary layer, a method of steady state in stead of transient state and a method of integral of an equation. Laws of excess pore pressure distribution and changes of average degree of consolidation with time were obtained. Results show that velocity of moving boundary decreases because of the nonlinear flow in saturated clay. The results can provide geology engineering and geotechnical engineering of saturated clay with new scientific bases. Calculations of average degree of consolidation of the Darcy flow are a special case of that of the nonlinear flow.

  12. Comparison of radial 4D Flow-MRI with perivascular ultrasound to quantify blood flow in the abdomen and introduction of a porcine model of pre-hepatic portal hypertension.

    Science.gov (United States)

    Frydrychowicz, A; Roldan-Alzate, A; Winslow, E; Consigny, D; Campo, C A; Motosugi, U; Johnson, K M; Wieben, O; Reeder, S B

    2017-12-01

    Objectives of this study were to compare radial time-resolved phase contrast magnetic resonance imaging (4D Flow-MRI) with perivascular ultrasound (pvUS) and to explore a porcine model of acute pre-hepatic portal hypertension (PHTN). Abdominal 4D Flow-MRI and pvUS in portal and splenic vein, hepatic and both renal arteries were performed in 13 pigs of approximately 60 kg. In six pigs, measurements were repeated after partial portal vein (PV) ligature. Inter- and intra-reader comparisons and statistical analysis including Bland-Altman (BA) comparison, paired Student's t tests and linear regression were performed. PvUS and 4D Flow-MRI measurements agreed well; flow before partial PV ligature was 322 ± 30 ml/min in pvUS and 297 ± 27 ml/min in MRI (p = 0.294), and average BA difference was 25 ml/min [-322; 372]. Inter- and intra-reader results differed very little, revealed excellent correlation (R 2  = 0.98 and 0.99, respectively) and resulted in BA differences of -5 ml/min [-161; 150] and -2 ml/min [-28; 25], respectively. After PV ligature, PV flow decreased from 356 ± 50 to 298 ± 61 ml/min (p = 0.02), and hepatic arterial flow increased from 277 ± 36 to 331 ± 65 ml/min (p = n.s.). The successful in vivo comparison of radial 4D Flow-MRI to perivascular ultrasound revealed good agreement of abdominal blood flow although with considerable spread of results. A model of pre-hepatic PHTN was successfully introduced and acute responses monitored. • Radial 4D Flow-MRI in the abdomen was successfully compared to perivascular ultrasound. • Inter- and intra-reader testing demonstrated excellent reproducibility of upper abdominal 4D Flow-MRI. • A porcine model of acute pre-hepatic portal hypertension was successfully introduced. • 4D Flow-MRI successfully monitored acute changes in a model of portal hypertension.

  13. Radial basis functions in mathematical modelling of flow boiling in minichannels

    Directory of Open Access Journals (Sweden)

    Hożejowska Sylwia

    2017-01-01

    Full Text Available The paper addresses heat transfer processes in flow boiling in a vertical minichannel of 1.7 mm depth with a smooth heated surface contacting fluid. The heated element for FC-72 flowing in a minichannel was a 0.45 mm thick plate made of Haynes-230 alloy. An infrared camera positioned opposite the central, axially symmetric part of the channel measured the plate temperature. K-type thermocouples and pressure converters were installed at the inlet and outlet of the minichannel. In the study radial basis functions were used to solve a problem concerning heat transfer in a heated plate supplied with the controlled direct current. According to the model assumptions, the problem is treated as twodimensional and governed by the Poisson equation. The aim of the study lies in determining the temperature field and the heat transfer coefficient. The results were verified by comparing them with those obtained by the Trefftz method.

  14. An Analysis of Flow in Rotating Passage of Large Radial-Inlet Centrifugal Compressor at Tip Speed of 700 Feet Per Second

    National Research Council Canada - National Science Library

    Prian, Vasily

    1951-01-01

    An analysis was made of the flow in the rotating passages of a 48-inch diameter radial-inlet centrifugal impeller at a tip speed of 700 feet per second in order to provide more knowledge on the flow...

  15. Three dimensional LDV flow measurements and theoretical investigation in a radial inflow turbine scroll

    Science.gov (United States)

    Malak, Malak Fouad; Hamed, Awatef; Tabakoff, Widen

    1990-01-01

    A two-color LDV system was used in the measurement of three orthogonal velocity components at 758 points located throughout the scroll and the unvaned portion of the nozzle of a radial inflow turbine scroll. The cold flow experimental results are presented for the velocity field at the scroll tongue. In addition, a total pressure loss of 3.5 percent for the scroll is revealed from the velocity measurements combined with the static pressure readings. Moreover, the measurement of the three normal stresses of the turbulence has showed that the flow is anisotropic. Furthermore, the mean velocity components are compared with a numerical solution of the potential flow field using the finite element technique. The theoretical prediction of the exit flow angle variation agrees well with the experimental results. This variation leads to a higher scroll pattern factor which can be avoided by controlling the scroll cross sectional area distribution.

  16. Non-renormalizability of supersymmetric non-linear sigma models in four dimensions

    International Nuclear Information System (INIS)

    Spence, B.

    1985-01-01

    The one-loop, on-shell, ultraviolet-divergent part of the effective action is calculated for the N=1 and 2 supersymmetric non-linear sigma models in four dimensions. These infinities cannot be absorbed into a redefinition of the bare Kaehler potential and the theories are not renormalizable. (orig.)

  17. Approximate method of calculation of non-equilibrium flow parameters of chemically reacting nitrogen tetroxide in the variable cross-section channels with energy exchange

    International Nuclear Information System (INIS)

    Bazhin, M.A.; Fedosenko, G.Eh.; Shiryaeva, N.M.; Mal'ko, M.V.

    1986-01-01

    It is shown that adiabatic non-equilibrium chemically reacting gas flow with energy exchange in a variable cross-section channel may be subdivided into five possible types: 1) quasi-equilibrium flow; 2) flow in the linear region of deviation from equilibrium state; 3) quasi-frozen flow; 4) flow in the linear region of deviation from frozen state; 5) non-equilibrium flow. Criteria of quasi-equilibrium and quazi-frozen flows, including factors of external action of chemically reacting gas on flow, allow to obtain simple but sufficiently reliable approximate method of calculation of flow parameters. The considered method for solving the problem of chemically reacting nitrogen tetroxide in the variable cross-section channel with energy exchange can be used for evaluation of chemical reaction kinetics on the flow parameter in the stages of axial-flow and radial-flow turbines and in another practical problems

  18. On axisymmetric flow and heat transfer of Cross fluid over a radially stretching sheet

    Science.gov (United States)

    Khan, Masood; Manzur, Mehwish; ur Rahman, Masood

    In this article, an analysis is made on the axisymmetric flow and heat transfer of the Cross fluid over a radially stretching sheet. The present study provides with the boundary layer equations of the Cross fluid in cylindrical polar co-ordinates. The modelled momentum and energy equations are further simplified into non-linear ordinary differential equations by applying suitable similarity transformations. The system of equation is then numerically solved by the help of well-known shooting technique. The velocity and temperature profiles are plotted for some values of the governing parameters such as power-law index, local Weissenberg number and the Prandtl number. It is found that growing values of the power-law index elevated the momentum boundary layer structures while the thermal boundary layer thickness lessened correspondingly. Further, the numerical values of the local skin friction coefficient and the local Nusselt number are tabulated for several set of physical parameters. An outstanding agreement is observed by comparing the present results with the previously reported results in the literature as a special case.

  19. Extracting kinetic freeze-out temperature and radial flow velocity from an improved Tsallis distribution

    Energy Technology Data Exchange (ETDEWEB)

    Lao, Hai-Ling; Liu, Fu-Hu [Shanxi University, Institute of Theoretical Physics, Shanxi (China); Lacey, Roy A. [Stony Brook University, Departments of Chemistry and Physics, Stony Brook, NY (United States)

    2017-03-15

    We analyze the transverse-momentum (p{sub T}) spectra of identified particles (π{sup ±}, K{sup ±}, p, and anti p) produced in gold-gold (Au-Au) and lead-lead (Pb-Pb) collisions over a √(s{sub NN}) (center-of-mass energy per nucleon pair) range from 14.5 GeV (one of the Relativistic Heavy Ion Collider (RHIC) energies) to 2.76 TeV (one of the Large Hadron Collider (LHC) energies). For the spectra with a narrow p{sub T} range, an improved Tsallis distribution which is in fact the Tsallis distribution with radial flow is used. For the spectra with a wide p{sub T} range, a superposition of the improved Tsallis distribution and an inverse power law is used. Both the extracted kinetic freeze-out temperature (T{sub 0}) and radial flow velocity (β{sub T}) increase with the increase of √(s{sub NN}), which indicates a higher excitation and larger expansion of the interesting system at the LHC. Both the values of T{sub 0} and β{sub T} in central collisions are slightly larger than those in peripheral collisions, and they are independent of isospin and slightly dependent on mass. (orig.)

  20. Strong non-radial propagation of energetic electrons in solar corona

    Science.gov (United States)

    Klassen, A.; Dresing, N.; Gómez-Herrero, R.; Heber, B.; Veronig, A.

    2018-06-01

    Analyzing the sequence of solar energetic electron events measured at both STEREO-A (STA) and STEREO-B (STB) spacecraft during 17-21 July 2014, when their orbital separation was 34°, we found evidence of a strong non-radial electron propagation in the solar corona below the solar wind source surface. The impulsive electron events were associated with recurrent flare and jet (hereafter flare/jet) activity at the border of an isolated coronal hole situated close to the solar equator. We have focused our study on the solar energetic particle (SEP) event on 17 July 2014, during which both spacecraft detected a similar impulsive and anisotropic energetic electron event suggesting optimal connection of both spacecraft to the parent particle source, despite the large angular separation between the parent flare and the nominal magnetic footpoints on the source surface of STA and STB of 68° and 90°, respectively. Combining the remote-sensing extreme ultraviolet (EUV) observations, in-situ plasma, magnetic field, and energetic particle data we investigated and discuss here the origin and the propagation trajectory of energetic electrons in the solar corona. We find that the energetic electrons in the energy range of 55-195 keV together with the associated EUV jet were injected from the flare site toward the spacecraft's magnetic footpoints and propagate along a strongly non-radial and inclined magnetic field below the source surface. From stereoscopic (EUV) observations we estimated the inclination angle of the jet trajectory and the respective magnetic field of 63° ± 11° relative to the radial direction. We show how the flare accelerated electrons reach very distant longitudes in the heliosphere, when the spacecraft are nominally not connected to the particle source. This example illustrates how ballistic backmapping can occasionally fail to characterize the magnetic connectivity during SEP events. This finding also provides an additional mechanism (one among others

  1. Anatomical explanations for acute depressions in radial pattern of axial sap flow in two diffuse-porous mangrove species: implications for water use.

    Science.gov (United States)

    Zhao, Hewei; Yang, Shengchang; Guo, Xudong; Peng, Congjiao; Gu, Xiaoxuan; Deng, Chuanyuan; Chen, Luzhen

    2018-02-01

    Mangrove species have developed uniquely efficient water-use strategies in order to survive in highly saline and anaerobic environments. Herein, we estimated the stand water use of two diffuse-porous mangrove species of the same age, Sonneratia apetala Buch. Ham and Sonneratia caseolaris (L.) Engl., growing in a similar intertidal environment. Specifically, to investigate the radial patterns of axial sap flow density (Js) and understand the anatomical traits associated with them, we measured axial sap flow density in situ together with micromorphological observations. A significant decrease of Js was observed for both species. This result was accompanied by the corresponding observations of wood structure and blockages in xylem sapwood, which appeared to influence and, hence, explained the acute radial reductions of axial sap flow in the stems of both species. However, higher radial resistance in sapwood of S. caseolaris caused a steeper decline of Js radially when compared with S. apetala, thus explaining the latter's more efficient use of water. Without first considering acute reductions in Js into the sapwood from the outer bark, a total of ~55% and 51% of water use would have been overestimated, corresponding to average discrepancies in stand water use of 5.6 mm day-1 for S. apetala trees and 2.5 mm day-1 for S. caseolaris trees. This suggests that measuring radial pattern of Js is a critical factor in determining whole-tree or stand water use. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. The influence of thermodynamic state of mineral hydraulic oil on flow rate through radial clearance at zero overlap inside the hydraulic components

    Directory of Open Access Journals (Sweden)

    Knežević Darko M.

    2016-01-01

    Full Text Available In control hydraulic components (servo valves, LS regulators, etc. there is a need for precise mathematical description of fluid flow through radial clearances between the control piston and body of component at zero overlap, small valve opening and small lengths of overlap. Such a mathematical description would allow for a better dynamic analysis and stability analysis of hydraulic systems. The existing formulas in the literature do not take into account the change of the physical properties of the fluid with a change of thermodynamic state of the fluid to determine the flow rate through radial clearances in hydraulic components at zero overlap, a small opening, and a small overlap lengths, which leads to the formation of insufficiently precise mathematical models. In this paper model description of fluid flow through radial clearances at zero overlap is developed, taking into account the changes of physical properties of hydraulic fluid as a function of pressure and temperature. In addition, the experimental verification of the mathematical model is performed.

  3. Towards a generic method for inorganic porous hollow fibers preparation with shrinkage-controlled small radial dimensions, applied to Al2O3, Ni, SiC, stainless steel, and YSZ

    NARCIS (Netherlands)

    Luiten-Olieman, Maria W.J.; Raaijmakers, Michiel; Winnubst, Aloysius J.A.; Bor, Teunis Cornelis; Wessling, Matthias; Nijmeijer, Arian; Benes, Nieck Edwin

    2012-01-01

    A versatile method is presented for the preparation of porous inorganic hollow fibers with small tunable radial dimensions, down to ∼250 μm outer diameter. The approach allows fabrication of thin hollow fibers of various materials, as is demonstrated for alumina, nickel, silicon carbide, stainless

  4. Vortex Whistle in Radial Intake

    National Research Council Canada - National Science Library

    Tse, Man-Chun

    2004-01-01

    In a radial-to-axial intake with inlet guide vanes (IGV) at the entry, a strong flow circulation Gamma can be generated from the tangential flow components created by the IGVs when their setting exceed about halfclosing (approx. 45 deg...

  5. Forearm arterial anatomy and flow characteristics: a prospective observational study.

    Science.gov (United States)

    Pancholy, Samir B; Heck, Laura A; Patel, Tejas

    2015-04-01

    Morphometric data on Caucasian radial and ulnar arteries are limited, with no data on flow interdependence in the forearm arterial circuit. A total of 250 upper extremities in 125 patients were evaluated. Ultrasonography was performed and radial and ulnar artery lumen diameters were measured. Ulnar artery (UA) was compressed at the level of the wrist, and flow parameters in radial artery (RA) were recorded using duplex Doppler ultrasound. Radial and ulnar artery diameters were comparable at the level of the distal forearm (RA = 2.03 ± 0.28 mm, UA = 2.07 ± 0.27 mm; P=.14). There was no significant difference in radial or ulnar artery diameter between the dominant upper extremity and the non-dominant upper extremity. Upon compression of the ulnar artery, radial artery velocity-time integral (VTI) increased from 8.4 ± 3.8 cm to 12.8 ± 5.5 cm, which was statistically significant (Pforearm is comparable to UA. RA-VTI and likely flow significantly increase by compression of the UA. The smaller the radial artery, the larger the increase in radial artery flow with ulnar compression.

  6. Radial transfer effects for poloidal rotation

    Science.gov (United States)

    Hallatschek, Klaus

    2010-11-01

    Radial transfer of energy or momentum is the principal agent responsible for radial structures of Geodesic Acoustic Modes (GAMs) or stationary Zonal Flows (ZF) generated by the turbulence. For the GAM, following a physical approach, it is possible to find useful expressions for the individual components of the Poynting flux or radial group velocity allowing predictions where a mathematical full analysis is unfeasible. Striking differences between up-down symmetric flux surfaces and asymmetric ones have been found. For divertor geometries, e.g., the direction of the propagation depends on the sign of the ion grad-B drift with respect to the X-point, reminiscent of a sensitive determinant of the H-mode threshold. In nonlocal turbulence computations it becomes obvious that the linear energy transfer terms can be completely overwhelmed by the action of the turbulence. In contrast, stationary ZFs are governed by the turbulent radial transfer of momentum. For sufficiently large systems, the Reynolds stress becomes a deterministic functional of the flows, which can be empirically determined from the stress response in computational turbulence studies. The functional allows predictions even on flow/turbulence states not readily obtainable from small amplitude noise, such as certain transport bifurcations or meta-stable states.

  7. The effect of non-zero radial velocity on the impulse and circulation of starting jets

    Science.gov (United States)

    Krieg, Michael; Mohseni, Kamran

    2011-11-01

    Vortex ring formation dynamics are generally studied using two basic types of vortex generators. Piston cylinder vortex generators eject fluid through a long tube which ensures a purely axial jet; whereas, vortex ring generators which expel fluid through a flat plate with a circular orifice produce 2-D jets (non-zero radial velocity). At the nozzle exit plane of the orifice type vortex generator the radial component of velocity is linearly proportional to the radial distance from the axis of symmetry, reaching a maximum at the edge of the orifice with a magnitude around 10 % of the piston velocity (the ratio of the volume flux and the nozzle area). As the jet advances downstream the radial velocity quickly dissipates, and becomes purely axial less than a diameter away from the nozzle exit plane. The radial velocity gradient in the axial direction plays a key role in the rate at which circulation and impulse are ejected from the vortex generator. Though the radial component of velocity is small compared to the axial velocity, it has a significant effect on both the circulation and impulse of the starting jet because of this gradient. The extent of circulation and impulse enhancement is investigated through experimental DPIV data showing that the orifice device produces nearly double both circulation and energy (with identical piston velocity and stroke ratios).

  8. The dimension of attractors underlying periodic turbulent Poiseuille flow

    Science.gov (United States)

    Keefe, Laurence; Moin, Parviz; Kim, John

    1992-01-01

    A lower bound on the Liapunov dimenison, D-lambda, of the attractor underlying turbulent, periodic Poiseuille flow at a pressure-gradient Reynolds number of 3200 is calculated, on the basis of a coarse-grained (16x33x8) numerical solution, to be approximately 352. Comparison of Liapunov exponent spectra from this and a higher-resolution (16x33x16) simulation on the same spatial domain shows these spectra to have a universal shape when properly scaled. On the basis of these scaling properties, and a partial exponent spectrum from a still higher-resolution (32x33x32) simulation, it is argued that the actual dimension of the attractor underlying motion of the given computational domain is approximately 780. It is suggested that this periodic turbulent shear flow is deterministic chaos, and that a strange attractor does underly solutions to the Navier-Stokes equations in such flows.

  9. Non-linear time series analysis on flow instability of natural circulation under rolling motion condition

    International Nuclear Information System (INIS)

    Zhang, Wenchao; Tan, Sichao; Gao, Puzhen; Wang, Zhanwei; Zhang, Liansheng; Zhang, Hong

    2014-01-01

    Highlights: • Natural circulation flow instabilities in rolling motion are studied. • The method of non-linear time series analysis is used. • Non-linear evolution characteristic of flow instability is analyzed. • Irregular complex flow oscillations are chaotic oscillations. • The effect of rolling parameter on the threshold of chaotic oscillation is studied. - Abstract: Non-linear characteristics of natural circulation flow instabilities under rolling motion conditions were studied by the method of non-linear time series analysis. Experimental flow time series of different dimensionless power and rolling parameters were analyzed based on phase space reconstruction theory. Attractors which were reconstructed in phase space and the geometric invariants, including correlation dimension, Kolmogorov entropy and largest Lyapunov exponent, were determined. Non-linear characteristics of natural circulation flow instabilities under rolling motion conditions was studied based on the results of the geometric invariant analysis. The results indicated that the values of the geometric invariants first increase and then decrease as dimensionless power increases which indicated the non-linear characteristics of the system first enhance and then weaken. The irregular complex flow oscillation is typical chaotic oscillation because the value of geometric invariants is at maximum. The threshold of chaotic oscillation becomes larger as the rolling frequency or rolling amplitude becomes big. The main influencing factors that influence the non-linear characteristics of the natural circulation system under rolling motion are thermal driving force, flow resistance and the additional forces caused by rolling motion. The non-linear characteristics of the natural circulation system under rolling motion changes caused by the change of the feedback and coupling degree among these influencing factors when the dimensionless power or rolling parameters changes

  10. The problem of the first return attached to a pseudodifferential operator in dimension 3

    Directory of Open Access Journals (Sweden)

    Oscar F. Casas-Sánchez

    2015-12-01

    Full Text Available In this article we study the problem of first return associated to an elliptic pseudodifferential operator with non-radial symbol of dimension 3 over the p-adics. Resumen.El problema del primer retorno asociado a un operador seudodiferencial en dimensión 3 En este artículo estudiamos el problema del primer retorno asociado a un operador seudodiferencial elíptico con símbolo no radial de dimensión 3 sobre el cuerpo de los números pádicos.

  11. Quaternionic non abelian relativistic quantum fields in four dimensions

    International Nuclear Information System (INIS)

    Albeverio, S.; Hoeegh-Krohn, R.

    1986-01-01

    We give a simple construction of certain Lie-group valued Euclidean Markov random fields and quantum fields in four dimensions. These fields can be looked upon as non abelian extensions of electromagnetic fields. (orig.)

  12. An experimental study on quenching of a radially stratified heated porous bed

    International Nuclear Information System (INIS)

    Nayak, Arun K.; Sehgal, Bal Raj; Stepanyan, Armen V.

    2006-01-01

    The quenching characteristics of a volumetrically-heated particulate bed composed of radially stratified sand layers were investigated experimentally in the POMECO facility. The sand bed simulates the corium particulate debris bed which is formed when the molten corium released from the vessel fragments in water and deposits on the cavity floor during a postulated severe accident in a light water reactor (LWR). The electrically-heated bed was quenched by water from a water column established over top of it, and later also with water coming from its bottom, which was circulating from the water overlayer through downcomers. A series of experiments were conducted to reveal the effects of the size of downcomers, and their locations in the bed, on the quenching characteristics of the radially stratified debris beds. The downcomers were found to significantly increase the bed quenching rate. To simulate the non-condensable gases generated during the MCCI, air and argon were injected from the bottom of the bed at different flow rates. The effects of gas flow rate and its properties on the quenching behaviour were observed. The results indicate that the non-condensable gas flows reduce the quenching rate significantly. The gas properties also affect the quenching characteristics

  13. A parallel adaptive mesh refinement algorithm for predicting turbulent non-premixed combusting flows

    International Nuclear Information System (INIS)

    Gao, X.; Groth, C.P.T.

    2005-01-01

    A parallel adaptive mesh refinement (AMR) algorithm is proposed for predicting turbulent non-premixed combusting flows characteristic of gas turbine engine combustors. The Favre-averaged Navier-Stokes equations governing mixture and species transport for a reactive mixture of thermally perfect gases in two dimensions, the two transport equations of the κ-ψ turbulence model, and the time-averaged species transport equations, are all solved using a fully coupled finite-volume formulation. A flexible block-based hierarchical data structure is used to maintain the connectivity of the solution blocks in the multi-block mesh and facilitate automatic solution-directed mesh adaptation according to physics-based refinement criteria. This AMR approach allows for anisotropic mesh refinement and the block-based data structure readily permits efficient and scalable implementations of the algorithm on multi-processor architectures. Numerical results for turbulent non-premixed diffusion flames, including cold- and hot-flow predictions for a bluff body burner, are described and compared to available experimental data. The numerical results demonstrate the validity and potential of the parallel AMR approach for predicting complex non-premixed turbulent combusting flows. (author)

  14. Why is the radial flow in central pA collisions stronger than in AA?

    International Nuclear Information System (INIS)

    Kalaydzhyan, Tigran; Shuryak, Edward

    2014-01-01

    Both the transverse size and entropy density per area in central pA collisions is smaller than in central AA, and yet the radial flow is stronger. We propose an explanation to this puzzle. Using a weak attraction between strings through the σ-meson exchange, fitted to the lattice data, we find collective implosion of the “spaghetti” multi-string state. Collectivization of the sigma field of the strings is the QCD analog of the black hole formation occurring in holographic models

  15. Environmental efficiency analysis of transportation system in China: A non-radial DEA approach

    International Nuclear Information System (INIS)

    Chang, Young-Tae; Zhang, Ning; Danao, Denise; Zhang, Nan

    2013-01-01

    Many countries are worried about reducing energy consumption and environmental pollution while increasing the productivity and efficiency of their industries. This study intends to contribute to the literature by proposing a non-radial DEA model with the slacks-based measure (SBM) to analyze the environmental efficiency of China's transportation sector. The results show that most of the provinces in China do not have an eco-efficient transportation industry. The environmental efficiency levels in most of the provinces are lower than 50% of the ideal or target level. Therefore, China's transportation industry is environmentally very inefficient. China can reduce a great deal of carbon emissions in each province ranging from at least 1.6 million TOEs in Qinghai and at most 33 million TOEs in Guangdong and Shanghai. - Highlights: • Propose a non-radial DEA model with the slacks-based measure. • Analyze the environmental efficiency of China's transportation sector. • China's transportation industry is environmentally very inefficient. • Millions of TOE carbon emissions can be reduced in most of the provinces

  16. Turbulent intermittent structure in non-homogeneous non-local flows

    Science.gov (United States)

    Mahjoub, O. B.; Castilla, R.; Vindel, J. M.; Redondo, J. M.

    2010-05-01

    Data from SABLES98 experimental campaign have been used in order to study the influence of stability (from weak to strong stratification) on intermittency [1]. Standard instrumentation, 14 thermocouples and 3 sonic anemometers at three levels (5.8, 13.5 and 32 m) were available in September 1998 and calculations are done in order to evaluate structure functions and the scale to scale characteristics. Using BDF [2-4] as well as other models of cascades, the spectral equilibrium values were used to calculate fluxes of momentum and heat as well as non-homogeneous models and the turbulent mixing produced. The differences in structure and higher order moments between stable, convective and neutral turbulence were used to identify differences in turbulent intermittent mixing and velocity PDF's. The intermittency of atmospheric turbulence in strongly stable situations affected by buoyancy and internal waves are seen to modify the structure functions exponents and intermittency, depending on the modulus of the Richardson's number,Ri, as well as of the Monin-Obukhov and Ozmidov lengthscales. The topological aspects of the turbulence affected by stratification reduce the vertical length-scales to a maximum described by the Thorpe and the Ozmidov lenth-scales, but intermittency, Kurtosis and other higher order descriptors of the turbulence based on spectral wavelet analysis are also affected in a complex way [5,6]. The relationship between stratification, intermittency, µ(Ri) and the fractal dimension of the stable flows and between the dispersion, the fractal dimension are discussed. The data analyzed is from the campaign SABLES-98 at the north-west Iberian Peninsula plateau.(Cuxart et al. 2000). Conditional statistics of the relationship between µ(Ri) are confirmed as in (Vindel et al 2008)[4] and compared with laboratory experiments and with 2D-3D aspects of the turbulence cascade. The use of BDF [3] model comparing the corresponding relative scaling exponents which are

  17. Linear theory radial and nonradial pulsations of DA dwarf stars

    International Nuclear Information System (INIS)

    Starrfield, S.; Cox, A.N.; Hodson, S.; Pesnell, W.D.

    1982-01-01

    The Los Alamos stellar envelope and radial linear non-adiabatic computer code, along with a new Los Alamos non-radial code are used to investigate the total hydrogen mass necessary to produce the non-radial instability of DA dwarfs

  18. Regional bankfull-channel dimensions of non-urban wadeable streams in Indiana

    Science.gov (United States)

    Robinson, Bret A.

    2013-01-01

    During floods, damage to properties and community infrastructure may result from inundation and the processes of erosion. The damages imparted by erosion are collectively termed the fluvial erosion hazard (FEH), and the Indiana Silver Jackets Multi-agency Hazard Mitigation Taskforce is supporting a program to build tools that will assist Indiana property owners and communities with FEH-mitigation efforts. As part of that program, regional channel-dimension relations are identified for non-urban wadeable streams in Indiana. With a site-selection process that targeted the three largest physiographic regions of the state, field work was completed to measure channel-dimension and channel-geometry characteristics across Indiana. In total, 82 sites were identified for data collection; 25 in the Northern Moraine and Lake region, 31 in the Central Till Plain region, and 26 in the Southern Hills and Lowlands region. Following well established methods, for each data-collection site, effort was applied to identify bankfull stage, determine bankfull-channel dimensions, and document channel-geometry characteristics that allowed for determinations of channel classification. In this report, regional bankfull-channel dimension results are presented as a combination of plots and regression equations that identify the relations between drainage area and the bankfull-channel dimensions of width, mean depth, and cross-sectional area. This investigation found that the channel-dimension data support independent relations for each of the three physiographic regions noted above. Furthermore, these relations show that, for any given drainage area, northern Indiana channels have the smallest predicted dimensions, southern Indiana channels have the largest predicted dimensions, and central Indiana channels are intermediate in their predicted dimensions. When considering the suite of variables that influence bankfull-channel dimensions, it appears that contrasting runoff characteristics

  19. Methods and apparatus for radially compliant component mounting

    Science.gov (United States)

    Bulman, David Edward [Cincinnati, OH; Darkins, Jr., Toby George; Stumpf, James Anthony [Columbus, IN; Schroder, Mark S [Greenville, SC; Lipinski, John Joseph [Simpsonville, SC

    2012-03-27

    Methods and apparatus for a mounting assembly for a liner of a gas turbine engine combustor are provided. The combustor includes a combustor liner and a radially outer annular flow sleeve. The mounting assembly includes an inner ring surrounding a radially outer surface of the liner and including a plurality of axially extending fingers. The mounting assembly also includes a radially outer ring coupled to the inner ring through a plurality of spacers that extend radially from a radially outer surface of the inner ring to the outer ring.

  20. Analysis of radial and longitudinal field of plasma wakefield generated by a Laguerre-Gauss laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Firouzjaei, Ali Shekari; Shokri, Babak [Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran 19839-63113 (Iran, Islamic Republic of)

    2016-06-15

    In the present paper, we study the wakes known as the donut wake which is generated by Laguerre-Gauss (LG) laser pulses. Effects of the special spatial profile of a LG pulse on the radial and longitudinal wakefields are presented via an analytical model in a weakly non-linear regime in two dimensions. Different aspects of the donut-shaped wakefields have been analyzed and compared with Gaussian-driven wakes. There is also some discussion about the accelerating-focusing phase of the donut wake. Variations of longitudinal and radial wakes with laser amplitude, pulse length, and pulse spot size have been presented and discussed. Finally, we present the optimum pulse duration for such wakes.

  1. Evidence for non-radial fields in the Sun's photosphere and a possible explanation of the polar magnetic signal

    International Nuclear Information System (INIS)

    Pope, T.

    1975-01-01

    The appearance of the Hα fibrils suggests the presence of magnetic fields inclined at noticeably non-radial angles in the Sun's chromosphere. Evidence is presented to suggest that these angles continue into the photosphere. The presence even of small non-radial inclinations can significantly affect the appearance of regions observed by a longitudinal mangetograph. In particular, a simple bipolar loop can appear unbalanced when viewed near the limb. It is suggested that the observed polar signal may be nothing more than a geometric effect arising when a balanced but systematically aligned array of bipolar pairs is viewed at an angle. (Auth.)

  2. A tracer liquid image velocimetry for multi-layer radial flow in bioreactors.

    Science.gov (United States)

    Gao, Yu-Bao; Liang, Jiu-Xing; Luo, Yu-Xi; Yan, Jia

    2015-02-13

    This paper presents a Tracer Liquid Image Velocimetry (TLIV) for multi-layer radial flow in bioreactors used for cells cultivation of tissue engineering. The goal of this approach is to use simple devices to get good measuring precision, specialized for the case in which the uniform level of fluid shear stress was required while fluid velocity varied smoothly. Compared to the widely used Particles Image Velocimetry (PIV), this method adopted a bit of liquid as tracer, without the need of laser source. Sub-pixel positioning algorithm was used to overcome the adverse effects of the tracer liquid deformation. In addition, a neighborhood smoothing algorithm was used to restrict the measurement perturbation caused by diffusion. Experiments were carried out in a parallel plates flow chamber. And mathematical models of the flow chamber and Computational Fluid Dynamics (CFD) simulation were separately employed to validate the measurement precision of TLIV. The mean relative error between the simulated and measured data can be less than 2%, while in similar validations using PIV, the error was around 8.8%. TLIV avoided the contradiction between the particles' visibility and following performance with tested fluid, which is difficult to overcome in PIV. And TLIV is easier to popularize for its simple experimental condition and low cost.

  3. Current density and polarization curves for radial flow field patterns applied to PEMFCs (Proton Exchange Membrane Fuel Cells)

    International Nuclear Information System (INIS)

    Cano-Andrade, S.; Hernandez-Guerrero, A.; Spakovsky, M.R. von; Damian-Ascencio, C.E.; Rubio-Arana, J.C.

    2010-01-01

    A numerical solution of the current density and velocity fields of a 3-D PEM radial configuration fuel cell is presented. The energy, momentum and electrochemical equations are solved using a computational fluid dynamics (CFD) code based on a finite volume scheme. There are three cases of principal interest for this radial model: four channels, eight channels and twelve channels placed in a symmetrical path over the flow field plate. The figures for the current-voltage curves for the three models proposed are presented, and the main factors that affect the behavior of each of the curves are discussed. Velocity contours are presented for the three different models, showing how the fuel cell behavior is affected by the velocity variations in the radial configuration. All these results are presented for the case of high relative humidity. The favorable results obtained for this unconventional geometry seems to indicate that this geometry could replace the conventional commercial geometries currently in use.

  4. Comparison of radial 4D Flow-MRI with perivascular ultrasound to quantify blood flow in the abdomen and introduction of a porcine model of pre-hepatic portal hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Frydrychowicz, A. [University of Wisconsin - Madison, Department of Radiology, School of Medicine and Public Health, E3/366 Clinical Science Center, Madison, WI (United States); University Hospital Schleswig-Holstein, Campus Luebeck, Clinic for Radiology and Nuclear Medicine, Luebeck (Germany); University of Luebeck, Luebeck (Germany); Roldan-Alzate, A. [University of Wisconsin - Madison, Department of Radiology, School of Medicine and Public Health, E3/366 Clinical Science Center, Madison, WI (United States); University of Wisconsin, Department of Mechanical Engineering, Madison (United States); Winslow, E. [University of Wisconsin, Department of Surgery, Madison (United States); Consigny, D.; Campo, C.A.; Motosugi, U. [University of Wisconsin - Madison, Department of Radiology, School of Medicine and Public Health, E3/366 Clinical Science Center, Madison, WI (United States); Johnson, K.M. [University of Wisconsin, Department of Medical Physics, Madison (United States); Wieben, O. [University of Wisconsin - Madison, Department of Radiology, School of Medicine and Public Health, E3/366 Clinical Science Center, Madison, WI (United States); University of Wisconsin, Department of Medical Physics, Madison (United States); Reeder, S.B. [University of Wisconsin - Madison, Department of Radiology, School of Medicine and Public Health, E3/366 Clinical Science Center, Madison, WI (United States); University of Wisconsin, Department of Medical Physics, Madison (United States); University of Wisconsin, Department of Biomedical Engineering, Madison (United States); University of Wisconsin, Department of Medicine, Madison (United States); University of Wisconsin, Department of Emergency Medicine, Madison (United States)

    2017-12-15

    Objectives of this study were to compare radial time-resolved phase contrast magnetic resonance imaging (4D Flow-MRI) with perivascular ultrasound (pvUS) and to explore a porcine model of acute pre-hepatic portal hypertension (PHTN). Abdominal 4D Flow-MRI and pvUS in portal and splenic vein, hepatic and both renal arteries were performed in 13 pigs of approximately 60 kg. In six pigs, measurements were repeated after partial portal vein (PV) ligature. Inter- and intra-reader comparisons and statistical analysis including Bland-Altman (BA) comparison, paired Student's t tests and linear regression were performed. PvUS and 4D Flow-MRI measurements agreed well; flow before partial PV ligature was 322 ± 30 ml/min in pvUS and 297 ± 27 ml/min in MRI (p = 0.294), and average BA difference was 25 ml/min [-322; 372]. Inter- and intra-reader results differed very little, revealed excellent correlation (R {sup 2} = 0.98 and 0.99, respectively) and resulted in BA differences of -5 ml/min [-161; 150] and -2 ml/min [-28; 25], respectively. After PV ligature, PV flow decreased from 356 ± 50 to 298 ± 61 ml/min (p = 0.02), and hepatic arterial flow increased from 277 ± 36 to 331 ± 65 ml/min (p = n.s.). The successful in vivo comparison of radial 4D Flow-MRI to perivascular ultrasound revealed good agreement of abdominal blood flow although with considerable spread of results. A model of pre-hepatic PHTN was successfully introduced and acute responses monitored. (orig.)

  5. Tube Radial Distribution Flow Separation in a Microchannel Using an Ionic Liquid Aqueous Two-Phase System Based on Phase Separation Multi-Phase Flow.

    Science.gov (United States)

    Nagatani, Kosuke; Shihata, Yoshinori; Matsushita, Takahiro; Tsukagoshi, Kazuhiko

    2016-01-01

    Ionic liquid aqueous two-phase systems were delivered into a capillary tube to achieve tube radial distribution flow (TRDF) or annular flow in a microspace. The phase diagram, viscosity of the phases, and TRDF image of the 1-butyl-3-methylimidazolium chloride and NaOH system were examined. The TRDF was formed with inner ionic liquid-rich and outer ionic liquid-poor phases in the capillary tube. The phase configuration was explained using the viscous dissipation principle. We also examined the distribution of rhodamine B in a three-branched microchannel on a microchip with ionic liquid aqueous two-phase systems for the first time.

  6. Condition of damping of anomalous radial transport, determined by ordered convective electron dynamics

    International Nuclear Information System (INIS)

    Maslov, V.I.; Barchuk, S.V.; Lapshin, V.I.; Volkov, E.D.; Melentsov, Yu.V.

    2006-01-01

    It is shown, that at development of instability due to a radial gradient of density in the crossed electric and magnetic fields in nuclear fusion installations ordering convective cells can be excited. It provides anomalous particle transport. The spatial structures of these convective cells have been constructed. The radial dimensions of these convective cells depend on their amplitudes and on a radial gradient of density. The convective-diffusion equation for radial dynamics of the electrons has been derived. At the certain value of the universal controlling parameter, the convective cell excitation and the anomalous radial transport are suppressed. (author)

  7. Sharp Dissection versus Electrocautery for Radial Artery Harvesting

    Science.gov (United States)

    Marzban, Mehrab; Arya, Reza; Mandegar, Mohammad Hossein; Karimi, Abbas Ali; Abbasi, Kiomars; Movahed, Namvar; Abbasi, Seyed Hesameddin

    2006-01-01

    Radial arteries have been increasingly used during the last decade as conduits for coronary artery revascularization. Although various harvesting techniques have been described, there has been little comparative study of arterial damage and patency. A radial artery graft was used in 44 consecutive patients, who were randomly divided into 2 groups. In the 1st group, the radial artery was harvested by sharp dissection and in the 2nd, by electrocautery. These groups were compared with regard to radial artery free flow, harvest time, number of clips used, complications, and endothelial damage. Radial artery free flow before and after intraluminal administration of papaverine was significantly greater in the electrocautery group (84.3 ± 50.7 mL/min and 109.7 ± 68.5 mL/min) than in the sharp-dissection group (52.9 ± 18.3 mL/min and 69.6 ± 28.2 mL/ min) (P =0.003). Harvesting time by electrocautery was significantly shorter (25.4 ± 4.3 min vs 34.4 ± 5.9 min) (P =0.0001). Electrocautery consumed an average of 9.76 clips, versus 22.45 clips consumed by sharp dissection. The 2 groups were not different regarding postoperative complications, except for 3 cases of temporary paresthesia of the thumb in the electrocautery group; histopathologic examination found no endothelial damage. We conclude that radial artery harvesting by electrocautery is faster and more economical than harvesting by sharp dissection and is associated with better intraoperative flow and good preservation of endothelial integrity. PMID:16572861

  8. The radial flow method: constraints from laboratory experiments on the evolution of hydraulic properties of fractures during frictional sliding experiments

    Science.gov (United States)

    Kewel, M.; Renner, J.

    2017-12-01

    The variation of hydraulic properties during sliding events is of importance for source mechanics and analyses of the evolution in effective stresses. We conducted laboratory experiments on samples of Padang granite to elucidate the interrelation between shear displacement on faults and their hydraulic properties. The cylindrical samples of 30 mm diameter and 75 mm length were prepared with a ground sawcut, inclined 35° to the cylindrical axis and accessed by a central bore of 3 mm diameter. The conventional triaxial compression experiments were conducted at effective pressures of 30, 50, and 70 MPa at slip rates of 2×10-4 and 8×10-4 mm s-1. The nominally constant fluid pressure of 30 MPa was modulated by oscillations with an amplitude of up to 0.5 MPa. Permeability and specific storage capacity of the fault were determined using the oscillatory radial-flow method that rests on an analysis of amplitude ratio and phase shift between the oscillatory fluid pressure and the oscillatory fluid flow from and into the fault plane. This method allowed us to continuously monitor the hydraulic evolution during elastic loading and frictional sliding. The chosen oscillation period of 60 s guaranteed a resolution of hydraulic properties for slip increments as small as 20 μm. The determined hydraulic properties show a fairly uniform dependence on normal stress at hydrostatic conditions and initial elastic loading. The samples exhibited stable frictional sliding with modest strengthening with increasing strain. Since not all phase-shift values fell inside the theoretical range for purely radial pressure diffusion during frictional sliding, the records of equivalent hydraulic properties exhibit some gaps. In the phases with evaluable phase-shift values, permeability fluctuates by almost one order of magnitude over slip intervals of as little as 100 μm. We suppose that the observed fluctuations are related to comminution and reconfiguration of asperities on the fault planes

  9. A Generalised Assessment of Working Fluids and Radial Turbines for Non-Recuperated Subcritical Organic Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Martin T. White

    2018-03-01

    Full Text Available The aim of this paper is to conduct a generalised assessment of both optimal working fluids and radial turbine designs for small-scale organic Rankine cycle (ORC systems across a range of heat-source temperatures. The former has been achieved by coupling a thermodynamic model of subcritical, non-recperated cycles with the Peng–Robinson equation of state, and optimising the working-fluid and cycle parameters for heat-source temperatures ranging between 80 ° C and 360 ° C . The critical temperature of the working fluid is found to be an important parameter governing working-fluid selection. Moreover, a linear correlation between heat-source temperature and the optimal critical temperature that achieves maximum power output has been found for heat-source temperatures below 300 ° C ( T cr = 0.830 T hi + 41.27 . This correlation has been validated against cycle calculations completed for nine predefined working fluids using both the Peng–Robinson equation of state and using the REFPROP program. Ultimately, this simple correlation can be used to identify working-fluid candidates for a specific heat-source temperature. In the second half of this paper, the effect of the heat-source temperature on the optimal design of a radial-inflow turbine rotor for a 25 kW subcritical ORC system has been studied. As the heat-source temperature increases, the optimal blade-loading coefficient increases, whilst the optimal flow coefficient reduces. Furthermore, passage losses are dominant in turbines intended for low-temperature applications. However, at higher heat-source temperatures, clearance losses become more dominant owing to the reduced blade heights. This information can be used to identify the most direct route to efficiency improvements in these machines. Finally, it is observed that the transition from a conventional converging stator to a converging-diverging stator occurs at heat-source temperatures of approximately 165 ° C , whilst radially

  10. Radial Flow in a Multiphase Transport Model at FAIR Energies

    Directory of Open Access Journals (Sweden)

    Soumya Sarkar

    2018-01-01

    Full Text Available Azimuthal distributions of radial velocities of charged hadrons produced in nucleus-nucleus (AB collisions are compared with the corresponding azimuthal distribution of charged hadron multiplicity in the framework of a multiphase transport (AMPT model at two different collision energies. The mean radial velocity seems to be a good probe for studying radial expansion. While the anisotropic parts of the distributions indicate a kind of collective nature in the radial expansion of the intermediate “fireball,” their isotropic parts characterize a thermal motion. The present investigation is carried out keeping the upcoming Compressed Baryonic Matter (CBM experiment to be held at the Facility for Antiproton and Ion Research (FAIR in mind. As far as high-energy heavy-ion interactions are concerned, CBM will supplement the Relativistic Heavy-Ion Collider (RHIC and Large Hadron Collider (LHC experiments. In this context our simulation results at high baryochemical potential would be interesting, when scrutinized from the perspective of an almost baryon-free environment achieved at RHIC and LHC.

  11. Non-linear radial spinwave modes in thin magnetic disks

    International Nuclear Information System (INIS)

    Helsen, M.; De Clercq, J.; Vansteenkiste, A.; Van Waeyenberge, B.; Gangwar, A.; Back, C. H.; Weigand, M.

    2015-01-01

    We present an experimental investigation of radial spin-wave modes in magnetic nano-disks with a vortex ground state. The spin-wave amplitude was measured using a frequency-resolved magneto-optical spectrum analyzer, allowing for high-resolution resonance curves to be recorded. It was found that with increasing excitation amplitude up to about 10 mT, the lowest-order mode behaves strongly non-linearly as the mode frequency redshifts and the resonance peak strongly deforms. This behavior was quantitatively reproduced by micromagnetic simulations. Micromagnetic simulations showed that at higher excitation amplitudes, the spinwaves are transformed into a soliton by self-focusing, and collapse onto the vortex core, dispersing the energy in short-wavelength spinwaves. Additionally, this process can lead to switching of the vortex polarization through the injection of a Bloch point

  12. Non-Financial Dimensions of Family Firm Ownership

    DEFF Research Database (Denmark)

    Sluhan, Anne

    to an overarching research question about how non-financial dimensions of family firm ownership—exemplified by socioemotional wealth (SEW) and familiness—influence family firm internationalization. The dissertation contributes to varying literatures including family business, corporate governance, strategic...... of an acquisition is lower when family ownership is relatively balanced vis à vis non-family ownership. The final empirical chapter studies family firm behavior differently by exploring the notion of familiness within the context of an international acquisition. This study applies an action research methodology...... to an understanding of familiness in general, and specifically familiness in a context of internationalization. From a methodological perspective, the paper contributes rich data showing how action research can be used in a business setting, presenting a process that facilitates integration between two distinct...

  13. Non-Markovian quantum Brownian motion in one dimension in electric fields

    Science.gov (United States)

    Shen, H. Z.; Su, S. L.; Zhou, Y. H.; Yi, X. X.

    2018-04-01

    Quantum Brownian motion is the random motion of quantum particles suspended in a field (or an effective field) resulting from their collision with fast-moving modes in the field. It provides us with a fundamental model to understand various physical features concerning open systems in chemistry, condensed-matter physics, biophysics, and optomechanics. In this paper, without either the Born-Markovian or rotating-wave approximation, we derive a master equation for a charged-Brownian particle in one dimension coupled with a thermal reservoir in electric fields. The effect of the reservoir and the electric fields is manifested as time-dependent coefficients and coherent terms, respectively, in the master equation. The two-photon correlation between the Brownian particle and the reservoir can induce nontrivial squeezing dynamics to the particle. We derive a current equation including the source from the driving fields, transient current from the system flowing into the environment, and the two-photon current caused by the non-rotating-wave term. The presented results then are compared with that given by the rotating-wave approximation in the weak-coupling limit, and these results are extended to a more general quantum network involving an arbitrary number of coupled-Brownian particles. The presented formalism might open a way to better understand exactly the non-Markovian quantum network.

  14. Modelling of pressurized water reactor fuel, rod time dependent radial heat flow with boundary element method; Modeliranje spremenljivega radijalnega toplotnega toka tlacnovodne gorivne palice z metodo robnih elementov

    Energy Technology Data Exchange (ETDEWEB)

    Sarler, B [Institut Jozef Stefan, Ljubljana (Yugoslavia)

    1987-07-01

    The basic principles of the boundary element method numerical treatment of the radial flow heat diffusion equation are presented. The algorithm copes the time dependent Dirichlet and Neumann boundary conditions, temperature dependent material properties and regions from different materials in thermal contact. It is verified on the several analytically obtained test cases. The developed method is used for the modelling of unsteady radial heat flow in pressurized water reactor fuel rod. (author)

  15. Comparative PIV and LDA studies of Newtonian and non-Newtonian flows in an agitated tank.

    Science.gov (United States)

    Story, Anna; Jaworski, Zdzisław; Simmons, Mark J; Nowak, Emilia

    2018-01-01

    The paper presents results of an experimental study of the fluid velocity field in a stirred tank equipped with a Prochem Maxflo T (PMT) type impeller which was rotating at a constant frequency of N  = 4.1 or 8.2 s -1 inducing transitional ( Re  = 499 or 1307) or turbulent ( Re  = 2.43 × 10 4 ) flow of the fluid. The experiments were performed for a Newtonian fluid (water) and a non-Newtonian fluid (0.2 wt% aqueous solution of carboxymethyl cellulose, CMC) exhibiting mild viscoelastic properties. Measurements were carried out using laser light scattering on tracer particles which follow the flow (2-D PIV). For both the water and the CMC solution one primary and two secondary circulation loops were observed within the fluid volume; however, the secondary loops were characterized by much lower intensity. The applied PMT-type impeller produced in the Newtonian fluid an axial primary flow, whilst in the non-Newtonian fluid the flow was more radial. The results obtained in the form of the local mean velocity components were in satisfactory agreement with the literature data from LDA. Distribution of the shear rate in the studied system was also analyzed. For the non-Newtonian fluid an area was computed where the elastic force dominates over the viscous one. The area was nearly matching the region occupied by the primary circulation loop.

  16. RTOD- RADIAL TURBINE OFF-DESIGN PERFORMANCE ANALYSIS

    Science.gov (United States)

    Glassman, A. J.

    1994-01-01

    The RTOD program was developed to accurately predict radial turbine off-design performance. The radial turbine has been used extensively in automotive turbochargers and aircraft auxiliary power units. It is now being given serious consideration for primary powerplant applications. In applications where the turbine will operate over a wide range of power settings, accurate off-design performance prediction is essential for a successful design. RTOD predictions have already illustrated a potential improvement in off-design performance offered by rotor back-sweep for high-work-factor radial turbines. RTOD can be used to analyze other potential performance enhancing design features. RTOD predicts the performance of a radial turbine (with or without rotor blade sweep) as a function of pressure ratio, speed, and stator setting. The program models the flow with the following: 1) stator viscous and trailing edge losses; 2) a vaneless space loss between the stator and the rotor; and 3) rotor incidence, viscous, trailing-edge, clearance, and disk friction losses. The stator and rotor viscous losses each represent the combined effects of profile, endwall, and secondary flow losses. The stator inlet and exit and the rotor inlet flows are modeled by a mean-line analysis, but a sector analysis is used at the rotor exit. The leakage flow through the clearance gap in a pivoting stator is also considered. User input includes gas properties, turbine geometry, and the stator and rotor viscous losses at a reference performance point. RTOD output includes predicted turbine performance over a specified operating range and any user selected flow parameters. The RTOD program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 100K of 8 bit bytes. The RTOD program was developed in 1983.

  17. Dimension of non-conformal repellers: a survey

    International Nuclear Information System (INIS)

    Chen, Jianyu; Pesin, Yakov

    2010-01-01

    This paper is a survey of recent results on the dimension of repellers for expanding maps and limit sets for iterated function systems. While the case of conformal repellers is well understood, the study of non-conformal repellers is in its early stages though a number of interesting phenomena have been discovered, some remarkable results obtained and several interesting examples constructed. We will describe contemporary state of the art in the area with emphasis on some new emerging ideas and open problems. (invited article)

  18. Hydrodynamic structure of the boundary layers in a rotating cylindrical cavity with radial inflow

    International Nuclear Information System (INIS)

    Herrmann-Priesnitz, Benjamín; Torres, Diego A.; Calderón-Muñoz, Williams R.; Salas, Eduardo A.; Vargas-Uscategui, Alejandro; Duarte-Mermoud, Manuel A.

    2016-01-01

    A flow model is formulated to investigate the hydrodynamic structure of the boundary layers of incompressible fluid in a rotating cylindrical cavity with steady radial inflow. The model considers mass and momentum transfer coupled between boundary layers and an inviscid core region. Dimensionless equations of motion are solved using integral methods and a space-marching technique. As the fluid moves radially inward, entraining boundary layers develop which can either meet or become non-entraining. Pressure and wall shear stress distributions, as well as velocity profiles predicted by the model, are compared to numerical simulations using the software OpenFOAM. Hydrodynamic structure of the boundary layers is governed by a Reynolds number, Re, a Rossby number, Ro, and the dimensionless radial velocity component at the periphery of the cavity, U_o. Results show that boundary layers merge for Re > 0.1, and boundary layers become predominantly non-entraining for low Ro, low Re, and high U_o. Results may contribute to improve the design of technology, such as heat exchange devices, and turbomachinery.

  19. Hydrodynamic structure of the boundary layers in a rotating cylindrical cavity with radial inflow

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann-Priesnitz, Benjamín, E-mail: bherrman@ing.uchile.cl; Torres, Diego A. [Department of Mechanical Engineering, Universidad de Chile, Beauchef 851, Santiago (Chile); Advanced Mining Technology Center, Universidad de Chile, Av. Tupper 2007, Santiago (Chile); Calderón-Muñoz, Williams R. [Department of Mechanical Engineering, Universidad de Chile, Beauchef 851, Santiago (Chile); Energy Center, Universidad de Chile, Av. Tupper 2007, Santiago (Chile); Salas, Eduardo A. [CSIRO-Chile International Centre of Excellence, Apoquindo 2827, Floor 12, Santiago (Chile); Vargas-Uscategui, Alejandro [Department of Mechanical Engineering, Universidad de Chile, Beauchef 851, Santiago (Chile); CSIRO-Chile International Centre of Excellence, Apoquindo 2827, Floor 12, Santiago (Chile); Duarte-Mermoud, Manuel A. [Advanced Mining Technology Center, Universidad de Chile, Av. Tupper 2007, Santiago (Chile); Department of Electrical Engineering, Universidad de Chile, Av. Tupper 2007, Santiago (Chile)

    2016-03-15

    A flow model is formulated to investigate the hydrodynamic structure of the boundary layers of incompressible fluid in a rotating cylindrical cavity with steady radial inflow. The model considers mass and momentum transfer coupled between boundary layers and an inviscid core region. Dimensionless equations of motion are solved using integral methods and a space-marching technique. As the fluid moves radially inward, entraining boundary layers develop which can either meet or become non-entraining. Pressure and wall shear stress distributions, as well as velocity profiles predicted by the model, are compared to numerical simulations using the software OpenFOAM. Hydrodynamic structure of the boundary layers is governed by a Reynolds number, Re, a Rossby number, Ro, and the dimensionless radial velocity component at the periphery of the cavity, U{sub o}. Results show that boundary layers merge for Re < < 10 and Ro > > 0.1, and boundary layers become predominantly non-entraining for low Ro, low Re, and high U{sub o}. Results may contribute to improve the design of technology, such as heat exchange devices, and turbomachinery.

  20. Lessons from non-Abelian plasma instabilities in two spatial dimensions

    International Nuclear Information System (INIS)

    Arnold, Peter; Leang, P.-S.

    2007-01-01

    Plasma instabilities can play a fundamental role in quark-gluon plasma equilibration in the high energy (weak coupling) limit. Early simulations of the evolution of plasma instabilities in non-Abelian gauge theory, performed in one spatial dimension, found behavior qualitatively similar to traditional QED plasmas. Later simulations of the fully three-dimensional theory found different behavior, unlike traditional QED plasmas. To shed light on the origin of this difference, we study the intermediate case of two spatial dimensions. Depending on how the 'two-dimensional' theory is formulated, we can obtain either behavior

  1. Flow Characterization and Dynamic Analysis of a Radial Compressor with Passive Method of Surge Control

    Science.gov (United States)

    Guillou, Erwann

    Due to recent emission regulations, the use of turbochargers for force induction of internal combustion engines has increased. Actually, the trend in diesel engines is to downsize the engine by use of turbochargers that operate at higher pressure ratio. Unfortunately, increasing the rotational speed tends to reduce the turbocharger radial compressor range of operation which is limited at low mass flow rate by the occurrence of surge. In order to extent the operability of turbochargers, compressor housings can be equipped with a passive surge control device also known as ported shroud. This specific casing treatment has been demonstrated to enhance surge margin with minor negative impact on the compressor efficiency. However, the actual working mechanisms of the bypass system remain not well understood. In order to optimize the design of the ported shroud, it is then crucial to identify the dynamic flow changes induced by the implementation of the device to control instabilities. Experimental methods were used to assess the development of instabilities from stable, stall and eventually surge regimes of a ported shroud centrifugal compressor. Systematic comparison was conducted with the same compressor design without ported shroud. Hence, the full pressure dynamic survey of both compressors' performance characteristics converged toward two different and probably interrelated driving mechanisms to the development and/or propagation of unsteadiness within each compressor. One related the pressure disturbances at the compressor inlet, and notably the more apparent development of perturbations in the non-ported compressor impeller, whereas the other was attributed to the pressure distortions induced by the presence of the tongue in the asymmetric design of the compressor volute. Specific points of operation were selected to carry out planar flow measurements. At normal working, both standard and stereoscopic particle imaging velocimetry (PIV) measurements were performed

  2. Detonation in supersonic radial outflow

    KAUST Repository

    Kasimov, Aslan R.; Korneev, Svyatoslav

    2014-01-01

    We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations

  3. On Numerical Methods in Non-Newtonian Flows

    International Nuclear Information System (INIS)

    Fileas, G.

    1982-12-01

    The constitutive equations for non-Newtonian flows are presented and the various flow models derived from continuum mechanics and molecular theories are considered and evaluated. Detailed account is given of numerical simulation employing differential and integral models of different kinds of non-Newtonian flows using finite-difference and finite-element techniques. Appreciating the fact that no book or concentrated material on Numerical Non-Newtonian Fluid Flow exists at the present, procedures for computer set-ups are described and references are given for finite-difference, finite-element and molecular-theory based programmes for several kinds of flow. Achievements and unreached goals in the field of numerical simulation of non-Newtonian flows are discussed and the lack of numerical work in the fields of suspension flows and heat transfer is pointed out. Finally, FFOCUS is presented as a newly built computer program which can simulate freezing flows on Newtonian fluids through various geometries and is aimed to be further developed to handle non-Newtonian freezing flows and certain types of suspension phenomena involved in corium flow after a hypothetical core melt-down accident in a PWR. (author)

  4. Reducing NO(x) emissions from a nitric acid plant of domestic petrochemical complex: enhanced conversion in conventional radial-flow reactor of selective catalytic reduction process.

    Science.gov (United States)

    Abbasfard, Hamed; Hashemi, Seyed Hamid; Rahimpour, Mohammad Reza; Jokar, Seyyed Mohammad; Ghader, Sattar

    2013-01-01

    The nitric acid plant of a domestic petrochemical complex is designed to annually produce 56,400 metric tons (based on 100% nitric acid). In the present work, radial-flow spherical bed reactor (RFSBR) for selective catalytic reduction of nitric oxides (NO(x)) from the stack of this plant was modelled and compared with the conventional radial-flow reactor (CRFR). Moreover, the proficiency of a radial-flow (water or nitrogen) membrane reactor was also compared with the CRFR which was found to be inefficient at identical process conditions. In the RFSBR, the space between the two concentric spheres is filled by a catalyst. A mathematical model, including conservation of mass has been developed to investigate the performance of the configurations. The model was checked against the CRFR in a nitric acid plant located at the domestic petrochemical complex. A good agreement was observed between the modelling results and the plant data. The effects of some important parameters such as pressure and temperature on NO(x) conversion were analysed. Results show 14% decrease in NO(x) emission annually in RFSBR compared with the CRFR, which is beneficial for the prevention of NO(x) emission, global warming and acid rain.

  5. Final Technical Report: Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Eugenio

    2014-05-02

    The strong coupling between the different physical variables involved in the plasma transport phenomenon and the high complexity of its dynamics call for a model-based, multivariable approach to profile control where those predictive models could be exploited. The overall objective of this project has been to extend the existing body of work by investigating numerically and experimentally active control of unstable fluctuations, including fully developed turbulence and the associated cross-field particle transport, via manipulation of flow profiles in a magnetized laboratory plasma device. Fluctuations and particle transport can be monitored by an array of electrostatic probes, and Ex B flow profiles can be controlled via a set of biased concentric ring electrodes that terminate the plasma column. The goals of the proposed research have been threefold: i- to develop a predictive code to simulate plasma transport in the linear HELCAT (HELicon-CAThode) plasma device at the University of New Mexico (UNM), where the experimental component of the proposed research has been carried out; ii- to establish the feasibility of using advanced model-based control algorithms to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles, iii- to investigate the fundamental nonlinear dynamics of turbulence and transport physics. Lehigh University (LU), including Prof. Eugenio Schuster and one full-time graduate student, has been primarily responsible for control-oriented modeling and model-based control design. Undergraduate students have also participated in this project through the National Science Foundation Research Experience for Undergraduate (REU) program. The main goal of the LU Plasma Control Group has been to study the feasibility of controlling turbulence-driven transport by shaping the radial poloidal flow profile (i.e., by controlling flow shear) via biased concentric ring electrodes.

  6. A model of two-stream non-radial accretion for binary X-ray pulsars

    International Nuclear Information System (INIS)

    Lipunov, V.M.

    1982-01-01

    The general case of non-radial accretion is assumed to occur in real binary systems containing X-ray pulsars. The structure and the stability of the magnetosphere, the interaction between the magnetosphere and accreted matter, as well as evolution of neutron star in close binary system are examined within the framework of the two-stream model of nonradial accretion onto a magnetized neutron star. Observable parameters of X-ray pulsars are explained in terms of the model considered. (orig.)

  7. Non-hydrostatic layered flows over a sill

    International Nuclear Information System (INIS)

    Jamali, Mirmosadegh

    2013-01-01

    This work takes a new approach to solving non-hydrostatic equations of layered flows over bottom topography. A perturbation technique is used to find explicit expressions for a flow for different regimes of single- and two-layer flows over a sill. Excellent agreement with previous solutions and experimental data is obtained, and more details of the non-hydrostatic flow over a sill are revealed. The proposed method is simple and compact and removes the need for complex numerical techniques to solve the non-hydrostatic equations. It is shown that in the approach-controlled regime of two-layer flow over a sill, the flow upstream and farther downstream the sill crest can be described by the hydrostatic theory, and the flow is non-hydrostatic over only a short distance on the downstream side of the crest. (paper)

  8. CFD study of leakage flows in shroud cavities of a compressor impeller

    Science.gov (United States)

    Soldatova, K.

    2017-08-01

    The flow character in a gap between shroud disc of an impeller and a stator surface (shroud cavity) influences disc friction loss, labyrinth seal loss (parasitic losses) and thrust force. Flow calculations inside the shroud cavity of a model of centrifugal compressor stage and its labyrinth seal in a range of flow rates and axial width and radial gap are presented. The results are presented in terms of non-dimensional coefficients of flow, disc friction and seal leakage losses coefficients and pressure coefficient. The distributions meridional and tangential flow velocities correspond to the continuity and equilibrium equations - flow radial circulation exists in wide cavity and is absent in narrow cavities. The radial pressure distributions as measured and calculated are not fully comparable. The possible reason is that CFD-calculated leakage coefficient is less than calculated by A.Stodola formula. The influence of a cavity width on the losses and the thrust force requires a balanced design.

  9. An efficient semi-implicit method for three-dimensional non-hydrostatic flows in compliant arterial vessels.

    Science.gov (United States)

    Fambri, Francesco; Dumbser, Michael; Casulli, Vincenzo

    2014-11-01

    Blood flow in arterial systems can be described by the three-dimensional Navier-Stokes equations within a time-dependent spatial domain that accounts for the elasticity of the arterial walls. In this article, blood is treated as an incompressible Newtonian fluid that flows through compliant vessels of general cross section. A three-dimensional semi-implicit finite difference and finite volume model is derived so that numerical stability is obtained at a low computational cost on a staggered grid. The key idea of the method consists in a splitting of the pressure into a hydrostatic and a non-hydrostatic part, where first a small quasi-one-dimensional nonlinear system is solved for the hydrostatic pressure and only in a second step the fully three-dimensional non-hydrostatic pressure is computed from a three-dimensional nonlinear system as a correction to the hydrostatic one. The resulting algorithm is robust, efficient, locally and globally mass conservative, and applies to hydrostatic and non-hydrostatic flows in one, two and three space dimensions. These features are illustrated on nontrivial test cases for flows in tubes with circular or elliptical cross section where the exact analytical solution is known. Test cases of steady and pulsatile flows in uniformly curved rigid and elastic tubes are presented. Wherever possible, axial velocity development and secondary flows are shown and compared with previously published results. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Active Flow Control in a Radial Vaned Diffuser for Surge Margin Improvement: A Multislot Suction Strategy

    Directory of Open Access Journals (Sweden)

    Aurélien Marsan

    2017-01-01

    Full Text Available This work is the final step of a research project that aims at evaluating the possibility of delaying the surge of a centrifugal compressor stage using a boundary-layer suction technique. It is based on Reynolds-Averaged Navier-Stokes numerical simulations. Boundary-layer suction is applied within the radial vaned diffuser. Previous work has shown the necessity to take into account the unsteady behavior of the flow when designing the active flow control technique. In this paper, a multislot strategy is designed according to the characteristics of the unsteady pressure field. Its implementation results in a significant increase of the stable operating range predicted by the unsteady RANS numerical model. A hub-corner separation still exists further downstream in the diffuser passage but does not compromise the stability of the compressor stage.

  11. Radial vibration and ultrasonic field of a long tubular ultrasonic radiator.

    Science.gov (United States)

    Shuyu, Lin; Zhiqiang, Fu; Xiaoli, Zhang; Yong, Wang; Jing, Hu

    2013-09-01

    The radial vibration of a metal long circular tube is studied analytically and its electro-mechanical equivalent circuit is obtained. Based on the equivalent circuit, the radial resonance frequency equation is derived. The theoretical relationship between the radial resonance frequency and the geometrical dimensions is studied. Finite element method is used to simulate the radial vibration and the radiated ultrasonic field and the results are compared with those from the analytical method. It is concluded that the radial resonance frequency for a solid metal rod is larger than that for a metal tube with the same outer radius. The radial resonance frequencies from the analytical method are in good agreement with those from the numerical method. Based on the acoustic field analysis, it is concluded that the long metal tube with small wall thickness is superior to that with large wall thickness in producing radial vibration and ultrasonic radiation. Therefore, it is expected to be used as an effective radial ultrasonic radiator in ultrasonic sewage treatment, ultrasonic antiscale and descaling and other ultrasonic liquid handling applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. A QCQP Approach for OPF in Multiphase Radial Networks with Wye and Delta Connections: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zamzam, Ahmed, S.; Zhaoy, Changhong; Dall' Anesey, Emiliano; Sidiropoulos, Nicholas D.

    2017-06-27

    This paper examines the AC Optimal Power Flow (OPF) problem for multiphase distribution networks featuring renewable energy resources (RESs). We start by outlining a power flow model for radial multiphase systems that accommodates wye-connected and delta-connected RESs and non-controllable energy assets. We then formalize an AC OPF problem that accounts for both types of connections. Similar to various AC OPF renditions, the resultant problem is a non convex quadratically-constrained quadratic program. However, the so-called Feasible Point Pursuit-Successive Convex Approximation algorithm is leveraged to obtain a feasible and yet locally-optimal solution. The merits of the proposed solution approach are demonstrated using two unbalanced multiphase distribution feeders with both wye and delta connections.

  13. Solar wind acceleration in a prescribed flow geometry

    International Nuclear Information System (INIS)

    Biernat, H.; Koemle, N.; Lichtenegger, H.

    1985-01-01

    It is known that the flow tubes above coronal holes diverge stronger than radial and that the magnetic field lines may be considerably curved near the border of the holes. The authors investigate the consequences of such a magnetic field geometry on the flow of the solar wind plasma in the vicinity of the Sun. For this purpose the one-dimensional conservation equations are solved along prescribed flow tubes. A temperature profile based on observational data (EUV rocket-observations) is used in the calculations. In an alternative approach the temperature is determined by a polytropic index, which is assumed to be variable. The authors study how both curvature and non-radial divergence of the flow tubes modify the velocity, the density, and the energy balance of the solar wind plasma. (Auth.)

  14. Design, construction and mechanical optimisation process of electrode with radial current flow in the scala tympani.

    Science.gov (United States)

    Deman, P R; Kaiser, T M; Dirckx, J J; Offeciers, F E; Peeters, S A

    2003-09-30

    A 48 contact cochlear implant electrode has been constructed for electrical stimulation of the auditory nerve. The stimulating contacts of this electrode are organised in two layers: 31 contacts on the upper surface directed towards the habenula perforata and 17 contacts connected together as one longitudinal contact on the underside. The design of the electrode carrier aims to make radial current flow possible in the cochlea. The mechanical structure of the newly designed electrode was optimised to obtain maximal insertion depth. Electrode insertion tests were performed in a transparent acrylic model of the human cochlea.

  15. Non-Abelian gauge fields in two spatial dimensions

    International Nuclear Information System (INIS)

    Hagen, C.R.

    1987-01-01

    Generalizing an earlier work on the Abelian case the most general non-Abelian gauge theory in two spatial dimensions is derived. It is shown that local gauge invariance leads to a new term in the action which in turn requires that the gauge current operator have a part which is bilinear in the non-Abelian gauge field-strength tensor. Although a radiation (or axial) gauge quantization is possible, this approach is found not to yield the maximal set of commutation relations among the basic fields. The latter goal can be accomplished only by a rather unusual gauge choice which has not previously been studied. Quantization conditions on the coupling constant implied by invariance under large gauge transformations are also derived

  16. Disk mini-adsorbers with radial flow for determination of 234Th concentration in seawater

    International Nuclear Information System (INIS)

    Gulin, S.B.; Gorelov, Yu.S.; Sidorov, I.G.; Proskurnin, V.Yu.

    2013-01-01

    A modified method has been developed for measuring the 234 Th concentration in seawater, which is based upon the use of MnO 2 -impregnated disk mini adsorbers with radial flow connected in-line and the direct beta counting of 234 Th and/or its daughter 234m Pa. This allows determining the 234 Th concentration in a relatively small volume of seawater (20-50 L) with the possibility to check the extraction efficiency in every individual sample. The field testing, which was carried out at different areas of Sevastopol Bay during different seasons, has shown applicability of the proposed method to evaluate particle fluxes in marine environments within a wide range of concentrations of suspended matter. (author)

  17. Radial Transport and Meridional Circulation in Accretion Disks

    Energy Technology Data Exchange (ETDEWEB)

    Philippov, Alexander A. [Department of Astrophysical Sciences, Princeton University, Ivy Lane, Princeton, NJ 08540 (United States); Rafikov, Roman R., E-mail: sashaph@princeton.edu [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States)

    2017-03-10

    Radial transport of particles, elements and fluid driven by internal stresses in three-dimensional (3D) astrophysical accretion disks is an important phenomenon, potentially relevant for the outward dust transport in protoplanetary disks, origin of the refractory particles in comets, isotopic equilibration in the Earth–Moon system, etc. To gain better insight into these processes, we explore the dependence of meridional circulation in 3D disks with shear viscosity on their thermal stratification, and demonstrate a strong effect of the latter on the radial flow. Previous locally isothermal studies have normally found a pattern of the radial outflow near the midplane, switching to inflow higher up. Here we show, both analytically and numerically, that a flow that is inward at all altitudes is possible in disks with entropy and temperature steeply increasing with height. Such thermodynamic conditions may be typical in the optically thin, viscously heated accretion disks. Disks in which these conditions do not hold should feature radial outflow near the midplane, as long as their internal stress is provided by the shear viscosity. Our results can also be used for designing hydrodynamical disk simulations with a prescribed pattern of the meridional circulation.

  18. Numerical simulation of radial compressor stage

    Science.gov (United States)

    Syka, T.; Luňáček, O.

    2013-04-01

    Article describes numerical simulations of air flow in radial compressor stage in NUMECA CFD software. In simulations geometry variants with and without seals are used. During tasks evaluating was observed seals influence on flow field and performance parameters of compressor stage. Also is described CFDresults comparison with results from design software based on experimental measurements and monitoring of influence of seals construction on compressor stage efficiency.

  19. Numerical simulation of radial compressor stage

    OpenAIRE

    Luňáček O.; Syka T.

    2013-01-01

    Article describes numerical simulations of air flow in radial compressor stage in NUMECA CFD software. In simulations geometry variants with and without seals are used. During tasks evaluating was observed seals influence on flow field and performance parameters of compressor stage. Also is described CFDresults comparison with results from design software based on experimental measurements and monitoring of influence of seals construction on compressor stage efficiency.

  20. Radial-piston pump for drive of test machines

    Science.gov (United States)

    Nizhegorodov, A. I.; Gavrilin, A. N.; Moyzes, B. B.; Cherkasov, A. I.; Zharkevich, O. M.; Zhetessova, G. S.; Savelyeva, N. A.

    2018-01-01

    The article reviews the development of radial-piston pump with phase control and alternating-flow mode for seismic-testing platforms and other test machines. The prospects for use of the developed device are proved. It is noted that the method of frequency modulation with the detection of the natural frequencies is easily realized by using the radial-piston pump. The prospects of further research are given proof.

  1. Drying and radial shrinkage characteristics and changes in color ...

    African Journals Online (AJOL)

    Drying and radial shrinkage characteristics and changes in color and shape of carrots tissues during air drying were studied. Slices dimensions were obtained by computer vision and the color was quantified by chroma, hue, whitening index and total carotenoids contents. The drying time became shorter of 1 h when ...

  2. Non self-similar collapses described by the non-linear Schroedinger equation

    International Nuclear Information System (INIS)

    Berge, L.; Pesme, D.

    1992-01-01

    We develop a rapid method in order to find the contraction rates of the radially symmetric collapsing solutions of the nonlinear Schroedinger equation defined for space dimensions exceeding a threshold value. We explicitly determine the asymptotic behaviour of these latter solutions by solving the non stationary linear problem relative to the nonlinear Schroedinger equation. We show that the self-similar states associated with the collapsing solutions are characterized by a spatial extent which is bounded from the top by a cut-off radius

  3. Numerical simulation of radial compressor stage

    Directory of Open Access Journals (Sweden)

    Luňáček O.

    2013-04-01

    Full Text Available Article describes numerical simulations of air flow in radial compressor stage in NUMECA CFD software. In simulations geometry variants with and without seals are used. During tasks evaluating was observed seals influence on flow field and performance parameters of compressor stage. Also is described CFDresults comparison with results from design software based on experimental measurements and monitoring of influence of seals construction on compressor stage efficiency.

  4. Non-Radial Oscillation Modes of Superfluid Neutron Stars Modeled with CompOSE

    Directory of Open Access Journals (Sweden)

    Prashanth Jaikumar

    2018-03-01

    Full Text Available We compute the principal non-radial oscillation mode frequencies of Neutron Stars described with a Skyrme-like Equation of State (EoS, taking into account the possibility of neutron and proton superfluidity. Using the CompOSE database and interpolation routines to obtain the needed thermodynamic quantities, we solve the fluid oscillation equations numerically in the background of a fully relativistic star, and identify imprints of the superfluid state. Though these modes cannot be observed with current technology, increased sensitivity of future Gravitational-Wave Observatories could allow us to observe these oscillations and potentially constrain or refine models of dense matter relevant to the interior of neutron stars.

  5. Scaling laws for radial foil bearings

    Science.gov (United States)

    Honavara Prasad, Srikanth

    The effects of fluid pressurization, structural deformation of the compliant members and heat generation in foil bearings make the design and analysis of foil bearings very complicated. The complex fluid-structural-thermal interactions in foil bearings also make modeling efforts challenging because these phenomena are governed by highly non-linear partial differential equations. Consequently, comparison of various bearing designs require detailed calculation of the flow fields (velocities, pressures), bump deflections (structural compliance) and heat transfer phenomena (viscous dissipation in the fluid, frictional heating, temperature profile etc.,) resulting in extensive computational effort (time/hardware). To obviate rigorous computations and aid in feasibility assessments of foil bearings of various sizes, NASA developed the "rule of thumb" design guidelines for estimation of journal bearing load capacity. The guidelines are based on extensive experimental data. The goal of the current work is the development of scaling laws for radial foil bearings to establish an analytical "rule of thumb" for bearing clearance and bump stiffness. The use of scale invariant Reynolds equation and experimentally observed NASA "rule of thumb" yield scale factors which can be deduced from first principles. Power-law relationships between: a. Bearing clearance and bearing radius, and b. bump stiffness and bearing radius, are obtained. The clearance and bump stiffness values obtained from scaling laws are used as inputs for Orbit simulation to study various cases. As the clearance of the bearing reaches the dimensions of the material surface roughness, asperity contact breaks the fluid film which results in wear. Similarly, as the rotor diameter increases (requiring larger bearing diameters), the load capacity of the fluid film should increase to prevent dry rubbing. This imposes limits on the size of the rotor diameter and consequently bearing diameter. Therefore, this thesis aims

  6. NON-RADIAL OSCILLATIONS IN M-GIANT SEMI-REGULAR VARIABLES: STELLAR MODELS AND KEPLER OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Stello, Dennis; Compton, Douglas L.; Bedding, Timothy R.; Kiss, Laszlo L.; Bellamy, Beau [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Christensen-Dalsgaard, Jørgen; Kjeldsen, Hans [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); García, Rafael A. [Laboratoire AIM, CEA/DSM-CNRS, Université Paris 7 Diderot, IRFU/SAp, Centre de Saclay, F-91191 Gif-sur-Yvette (France); Mathur, Savita, E-mail: stello@physics.usyd.edu.au [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States)

    2014-06-10

    The success of asteroseismology relies heavily on our ability to identify the frequency patterns of stellar oscillation modes. For stars like the Sun this is relatively easy because the mode frequencies follow a regular pattern described by a well-founded asymptotic relation. When a solar-like star evolves off the main sequence and onto the red giant branch its structure changes dramatically, resulting in changes in the frequency pattern of the modes. We follow the evolution of the adiabatic frequency pattern from the main sequence to near the tip of the red giant branch for a series of models. We find a significant departure from the asymptotic relation for the non-radial modes near the red giant branch tip, resulting in a triplet frequency pattern. To support our investigation we analyze almost four years of Kepler data of the most luminous stars in the field (late K and early M type) and find that their frequency spectra indeed show a triplet pattern dominated by dipole modes even for the most luminous stars in our sample. Our identification explains previous results from ground-based observations reporting fine structure in the Petersen diagram and sub-ridges in the period-luminosity diagram. Finally, we find ''new ridges'' of non-radial modes with frequencies below the fundamental mode in our model calculations, and we speculate they are related to f modes.

  7. Sap flow measurements combining sap-flux density radial profiles with punctual sap-flux density measurements in oak trees (Quercus ilex and Quercus pyrenaica) - water-use implications in a water-limited savanna-

    Science.gov (United States)

    Reyes, J. Leonardo; Lubczynski1, Maciek W.

    2010-05-01

    Sap flow measurement is a key aspect for understanding how plants use water and their impacts on the ecosystems. A variety of sensors have been developed to measure sap flow, each one with its unique characteristics. When the aim of a research is to have accurate tree water use calculations, with high temporal and spatial resolution (i.e. scaled), a sensor with high accuracy, high measurement efficiency, low signal-to-noise ratio and low price is ideal, but such has not been developed yet. Granier's thermal dissipation probes (TDP) have been widely used in many studies and various environmental conditions because of its simplicity, reliability, efficiency and low cost. However, it has two major flaws when is used in semi-arid environments and broad-stem tree species: it is often affected by high natural thermal gradients (NTG), which distorts the measurements, and it cannot measure the radial variability of sap-flux density in trees with sapwood thicker than two centimeters. The new, multi point heat field deformation sensor (HFD) is theoretically not affected by NTG, and it can measure the radial variability of the sap flow at different depths. However, its high cost is a serious limitation when simultaneous measurements are required in several trees (e.g. catchment-scale studies). The underlying challenge is to develop a monitoring schema in which HFD and TDP are combined to satisfy the needs of measurement efficiency and accuracy in water accounting. To assess the level of agreement between TDP and HFD methods in quantifying sap flow rates and temporal patterns on Quercus ilex (Q.i ) and Quercus pyrenaica trees (Q.p.), three measurement schemas: standard TDP, TDP-NTG-corrected and HFD were compared in dry season at the semi-arid Sardon area, near Salamanca in Spain in the period from June to September 2009. To correct TDP measurements with regard to radial sap flow variability, a radial sap flux density correction factor was applied and tested by adjusting TDP

  8. A Comparative study of solidification of Al-Cu alloy under flow of cylindrical radial heat and the unidirectional vertically

    Directory of Open Access Journals (Sweden)

    Jean Robert P. Rodrigues

    2014-09-01

    Full Text Available In spite of technological importance of solidification of metallic alloys under radial heat flow, relatively few studies have been carried out in this area. In this work the solidification of Al 4.5 wt% Cu cylinders against a steel massive mold is analyzed and compared with unidirectional solidification against a cooled mold. Initially temperature variations at different positions in the casting and in the mold were measured during solidification using a data acquisition system. These temperature variations were introduced in a numerical method in order to determine the variation of heat transfer coefficient at metal/mold interface by inverse method. The primary and secondary dendrite arm spacing variations were measured through optical microscopy. Comparisons carried out between experimental and numerical data showed that the numerical method describes well the solidification processes under radial heat flux.

  9. Scenario-based energy efficiency and productivity in China: A non-radial directional distance function analysis

    International Nuclear Information System (INIS)

    Wang, H.; Zhou, P.; Zhou, D.Q.

    2013-01-01

    Improving energy efficiency and productivity is one of the most cost-effective ways for achieving the sustainable development target in China. This paper employs non-radial directional distance function approach to empirically investigate energy efficiency and energy productivity by including CO 2 emissions as an undesirable output. Three production scenarios, namely energy conservation (EC), energy conservation and emission reduction (ECER), and energy conservation, emission reduction and economic growth (ECEREG), are specified to assess China's energy efficiency and productivity growth during the period of Eleventh Five-Year Plan. Our empirical results show that there exist substantial differences in China's total-factor energy efficiency and productivity under different scenarios. Under the ECEREG scenario, the national average total-factor energy efficiency score was 0.6306 in 2005–2010, while the national average total-factor energy productivity increased by 0.27% annually during the period. The main driving force for energy productivity growth in China was energy technological change rather than energy efficiency change. - Highlights: • China's regional energy efficiency and productivity in 2005–2010 are evaluated. • Three production scenarios are considered. • Non-radial directional distance function with CO 2 emissions is employed. • Technological change is the main driver for China's energy productivity growth

  10. User-friendly Tool for Power Flow Analysis and Distributed Generation Optimisation in Radial Distribution Networks

    Directory of Open Access Journals (Sweden)

    M. F. Akorede

    2017-06-01

    Full Text Available The intent of power distribution companies (DISCOs is to deliver electric power to their customers in an efficient and reliable manner – with minimal energy loss cost. One major way to minimise power loss on a given power system is to install distributed generation (DG units on the distribution networks. However, to maximise benefits, it is highly crucial for a DISCO to ensure that these DG units are of optimal size and sited in the best locations on the network. This paper gives an overview of a software package developed in this study, called Power System Analysis and DG Optimisation Tool (PFADOT. The main purpose of the graphical user interface-based package is to guide a DISCO in finding the optimal size and location for DG placement in radial distribution networks. The package, which is also suitable for load flow analysis, employs the GUI feature of MATLAB. Three objective functions are formulated into a single optimisation problem and solved with fuzzy genetic algorithm to simultaneously obtain DG optimal size and location. The accuracy and reliability of the developed tool was validated using several radial test systems, and the results obtained are evaluated against the existing similar package cited in the literature, which are impressive and computationally efficient.

  11. Study protocol: non-displaced distal radial fractures in adult patients: three weeks vs. five weeks of cast immobilization: a randomized trial.

    Science.gov (United States)

    Bentohami, Abdelali; de Korte, Niels; Sosef, Nico; Goslings, Johan Carel; Bijlsma, Taco; Schep, Niels

    2014-01-20

    Up to 30% of patients suffer from long-term functional restrictions following conservative treatment of distal radius fractures. Whether duration of cast immobilisation influences functional outcome remains unclear. The aim of the study is to evaluate whether the duration of immobilization of non or minimally displaced distal radial fractures can be safely reduced. We will compare three weeks of plaster cast immobilization with five weeks of plaster cast immobilization in adult patient with non or minimally displaced distal radial fractures. a prospective randomized clinical trial. adult (>18 years) (independent in activities of daily living) patients with a non/minimal displaced distal radius fracture (dorsal angulation 15°, ulnar positive variance immobilization versus five weeks of plaster cast immobilization.Main study parameters: primary outcome parameters: Patient related wrist evaluation (PRWE) Quick Disability of Arm, Shoulder and Hand (QUICKDASH) score after a one year follow-up, and secondary parameters: range of motion, pain level (VAS) and complications. The expectation of this study is that shorter duration of plaster cast immobilisation is beneficial for the patient with a distal radius fracture. This risk of specific complications is low and generally similar in both treatment options. Moreover, the burden of the study is not much higher compared to standard treatment. Follow-up is standardized according to current trauma guidelines. Literature indicates that both treatment options from the study are accepted for displaced distal radius fractures. No clear advantage for one treatment options is found at present in the literature, although there is no level I evidence present. This trial will provide level-1 evidence for the comparison of consolidation and functional outcome between two treatment options for non-displaced distal radial fractures. The gathered data may support the development of a clinical guideline for conservative treatment of

  12. Study on the radial vibration and acoustic field of an isotropic circular ring radiator.

    Science.gov (United States)

    Lin, Shuyu; Xu, Long

    2012-01-01

    Based on the exact analytical theory, the radial vibration of an isotropic circular ring is studied and its electro-mechanical equivalent circuit is obtained. By means of the equivalent circuit model, the resonance frequency equation is derived; the relationship between the radial resonance frequency, the radial displacement amplitude magnification and the geometrical dimensions, the material property is analyzed. For comparison, numerical method is used to simulate the radial vibration of isotropic circular rings. The resonance frequency and the radial vibrational displacement distribution are obtained, and the radial radiation acoustic field of the circular ring in radial vibration is simulated. It is illustrated that the radial resonance frequencies from the analytical method and the numerical method are in good agreement when the height is much less than the radius. When the height becomes large relative to the radius, the frequency deviation from the two methods becomes large. The reason is that the exact analytical theory is limited to thin circular ring whose height must be much less than its radius. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Ghost anomalous dimension in asymptotically safe quantum gravity

    International Nuclear Information System (INIS)

    Eichhorn, Astrid; Gies, Holger

    2010-01-01

    We compute the ghost anomalous dimension within the asymptotic-safety scenario for quantum gravity. For a class of covariant gauge fixings and using a functional renormalization group scheme, the anomalous dimension η c is negative, implying an improved UV behavior of ghost fluctuations. At the non-Gaussian UV fixed point, we observe a maximum value of η c ≅-0.78 for the Landau-deWitt gauge within the given scheme and truncation. Most importantly, the backreaction of the ghost flow onto the Einstein-Hilbert sector preserves the non-Gaussian fixed point with only mild modifications of the fixed-point values for the gravitational coupling and cosmological constant and the associated critical exponents; also their gauge dependence is slightly reduced. Our results provide further evidence for the asymptotic-safety scenario of quantum gravity.

  14. Optimization of a radially cooled pebble bed reactor - HTR2008-58117

    International Nuclear Information System (INIS)

    Boer, B.; Kloosterman, J. L.; Lathouwers, D.; Van Der Hagen, T. H. J. J.; Van Dam, H.

    2008-01-01

    By altering the coolant flow direction in a pebble bed reactor from axial to radial, the pressure drop can be reduced tremendously. In this case the coolant flows from the outer reflector through the pebble bed and finally to flow paths in the inner reflector. As a consequence, the fuel temperatures are elevated due to the reduced heat transfer of the coolant. However, the power profile and pebble size in a radially cooled pebble bed reactor can be optimized to achieve lower fuel temperatures than current axially cooled designs, while the low pressure drop can be maintained. The radial power profile in the core can be altered by adopting multi-pass fuel management using several radial fuel zones in the core. The optimal power profile yielding a flat temperature profile is derived analytically and is approximated by radial fuel zoning. In this case, the pebbles pass through the outer region of the core first and each consecutive pass is located in a fuel zone closer to the inner reflector. Thereby, the resulting radial distribution of the fissile material in the core is influenced and the temperature profile is close to optimal. The fuel temperature in the pebbles can be further reduced by reducing the standard pebble diameter from 6 cm to a value as low as I cm. An analytical investigation is used to demonstrate the effects on the fuel temperature and pressure drop for both radial and axial cooling. Finally, two-dimensional numerical calculations were performed, using codes for neutronics, thermal-hydraulics and fuel depletion analysis, in order to validate the results for the optimized design that were obtained from the analytical investigations. It was found that for a radially cooled design with an optimized power profile and reduced pebble diameter (below 3.5 cm) both a reduction in the pressure drop (Δp = -2.6 bar), which increases the reactor efficiency with several percent, and a reduction in the maximum fuel temperature (ΔT = -50 deg. C) can be achieved

  15. Effects of Radial Gap Ratio between Impeller and Vaned Diffuser on Performance of Centrifugal Compressors

    Directory of Open Access Journals (Sweden)

    Mohammadjavad Hosseini

    2017-07-01

    Full Text Available A high-performance centrifugal compressor is needed for numerous industry applications nowadays. The radial gap ratio between the impeller and the diffuser vanes plays an important role in the improvement of the compressor performance. In this paper, the effects of the radial gap ratio on a high-pressure ratio centrifugal compressor are investigated using numerical simulations. The performance and the flow field are compared for six different radial gap ratios and five rotational speeds. The minimal radial gap ratio was 1.04 and the maximal was 1.14. Results showed that reducing the radial gap ratio decreases the choke mass flow rate. For the tip-speed Mach number (impeller inlet with Mu < 1, the pressure recovery and the loss coefficients are not sensitive to the radial gap ratio. However, for Mu ≥ 1, the best radial gap ratio is 1.08 for the pressure recovery and the loss coefficients. Furthermore, the impeller pressure ratio and efficiency are reduced by increasing the radial gap ratio. Finally, the compressor efficiency was compared for different radial gap ratios. For Mu < 1, the radial gap ratio does not have noticeable effects. In comparison, the radial gap ratio of 1.08 has the best performance for Mu ≥ 1.

  16. A pure Eulerian method for multi-material fluid flows in dimension 1,2 and 3

    International Nuclear Information System (INIS)

    Braeunig, J.Ph.

    2007-12-01

    The method described in this report is designed to simulate multi-material fluid flows, by solving compressible Euler equations with sharp interface capturing, in dimension 2 and 3. Materials are supposed to be non-miscible and to follow different equations of state. The main purpose of this work is to design an interface reconstruction method with no diffusion at all between materials of any Eulerian quantity. One novelty of our approach is the use of a pure Eulerian finite volume scheme in an interface reconstruction method. A new concept is introduced, the 'condensate', which allows to handle mixed cells containing two or more materials and to calculate the evolution of the interface on the fixed Eulerian grid. Moreover, this method allows a free sliding of materials on each others. The accuracy of the method is evaluated on academic 1D benchmarks and its robustness is tested with severe 2D benchmarks. (author)

  17. Numerical analysis of a non equilibrium two-component two-compressible flow in porous media

    KAUST Repository

    Saad, Bilal Mohammed

    2013-09-01

    We propose and analyze a finite volume scheme to simulate a non equilibrium two components (water and hydrogen) two phase flow (liquid and gas) model. In this model, the assumption of local mass non equilibrium is ensured and thus the velocity of the mass exchange between dissolved hydrogen and hydrogen in the gas phase is supposed finite. The proposed finite volume scheme is fully implicit in time together with a phase-by-phase upwind approach in space and it is discretize the equations in their general form with gravity and capillary terms We show that the proposed scheme satisfies the maximum principle for the saturation and the concentration of the dissolved hydrogen. We establish stability results on the velocity of each phase and on the discrete gradient of the concentration. We show the convergence of a subsequence to a weak solution of the continuous equations as the size of the discretization tends to zero. At our knowledge, this is the first convergence result of finite volume scheme in the case of two component two phase compressible flow in several space dimensions.

  18. Gas bubble dimensions in Archean lava flows indicate low air pressure at 2.7 Ga

    Science.gov (United States)

    Som, S. M.; Buick, R.; Hagadorn, J.; Blake, T.; Perreault, J.; Harnmeijer, J.; Catling, D. C.

    2014-12-01

    Air pressure constrains atmospheric composition, which, in turn, is linked to the Earth system through biogeochemical cycles and fluxes of volatiles from and to the Earth's interior. Previous studies have only placed maximum levels on surface air pressure for the early Earth [1]. Here, we calculate an absolute value for Archean barometric pressure using gas bubble size (vesicle) distributions in uninflated basaltic lava flows that solidified at sea level 2.7 billion years ago in the Pilbara Craton, Western Australia. These vesicles have been filled in by secondary minerals deposited during metasomatism and so are now amydules, but thin sections show that infilling did not change vesicle dimensions. Amygdule dimensions are measured using high-resolution X-ray tomography from core samples obtained from the top and bottom of the lava flows. The modal size expressed at the top and at the bottom of an uninflated flow can be linked to atmospheric pressure using the ideal gas law. Such a technique has been verified as a paleoaltimeter using Hawaiian Quaternary lava flows [2]. We use statistical methods to estimate the mean and standard deviation of the volumetric size of the amygdules by applying 'bootstrap'resampling and the Central Limit Theorem. Our data indicate a surprisingly low atmospheric pressure. Greater nitrogen burial under anaerobic conditions likely explains lower pressure. Refs: [1] Som et al. (2012) Nature 484, 359-262. D. L. Sahagian et al. (2002) J. Geol., 110, 671-685.

  19. Abelian versus non-abelian Higgs model in three dimensions

    International Nuclear Information System (INIS)

    Buchmueller, W.; Philipsen, O.

    1995-04-01

    We study the phase structure of the abelian Higgs model in three dimensions based on perturbation theory and a set of gauge independent gap equations for Higgs boson and vector boson masses. Contrary to the non-abelian Higgs model, the vector boson mass vanishes in the symmetric phase. In the Higgs phase the gap equations yield masses consistent with perturbation theory. The phase transition is first-order for small values of the scalar self-coupling λ, where the employed loop expansion is applicable. (orig.)

  20. Turbulent characteristics of shear-thinning fluids in recirculating flows

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.S. [Inst. Superior de Engenharia do Porto (Portugal). Dept. de Engenharia Quimica; Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Mecanica e Gestao Industrial, Faculdade de Engenharia da Universidade do Porto, Rua dos Bragas, 4050-123 Porto (Portugal)

    2000-03-01

    A miniaturised fibre optic laser-Doppler anemometer was used to carry out a detailed hydrodynamic investigation of the flow downstream of a sudden expansion with 0.1-0.2% by weight shear-thinning aqueous solutions of xanthan gum. Upstream of the sudden expansion the pipe flow was fully-developed and the xanthan gum solutions exhibited drag reduction with corresponding lower radial and tangential normal Reynolds stresses, but higher axial Reynolds stress near the wall and a flatter axial mean velocity profile in comparison with Newtonian flow. The recirculation bubble length was reduced by more than 20% relative to the high Reynolds number Newtonian flow, and this was attributed to the occurrence further upstream of high turbulence for the non-Newtonian solutions, because of advection of turbulence and earlier high turbulence production in the shear layer. Comparisons with the measurements of Escudier and Smith (1999) with similar fluids emphasized the dominating role of inlet turbulence. The present was less anisotropic, and had lower maximum axial Reynolds stresses (by 16%) but higher radial turbulence (20%) than theirs. They reported considerably longer recirculating bubble lengths than we do for similar non-Newtonian fluids and Reynolds numbers. (orig.)

  1. A novel method for flow pattern identification in unstable operational conditions using gamma ray and radial basis function

    International Nuclear Information System (INIS)

    Roshani, G.H.; Nazemi, E.; Roshani, M.M.

    2017-01-01

    Changes of fluid properties (especially density) strongly affect the performance of radiation-based multiphase flow meter and could cause error in recognizing the flow pattern and determining void fraction. In this work, we proposed a methodology based on combination of multi-beam gamma ray attenuation and dual modality densitometry techniques using RBF neural network in order to recognize the flow regime and determine the void fraction in gas-liquid two phase flows independent of the liquid phase changes. The proposed system is consisted of one 137 Cs source, two transmission detectors and one scattering detector. The registered counts in two transmission detectors were used as the inputs of one primary Radial Basis Function (RBF) neural network for recognizing the flow regime independent of liquid phase density. Then, after flow regime identification, three RBF neural networks were utilized for determining the void fraction independent of liquid phase density. Registered count in scattering detector and first transmission detector were used as the inputs of these three RBF neural networks. Using this simple methodology, all the flow patterns were correctly recognized and the void fraction was predicted independent of liquid phase density with mean relative error (MRE) of less than 3.28%. - Highlights: • Flow regime and void fraction were determined in two phase flows independent of the liquid phase density changes. • An experimental structure was set up and the required data was obtained. • 3 detectors and one gamma source were used in detection geometry. • RBF networks were utilized for flow regime and void fraction determination.

  2. Adaptive Queue Management with Restraint on Non-Responsive Flows

    Directory of Open Access Journals (Sweden)

    Lan Li

    2003-12-01

    Full Text Available This paper proposes an adaptive queue management scheme (adaptive RED to improve Random Early Detection (RED on restraining non-responsive flows. Due to a lack of flow control mechanism, non-responsive flows can starve responsive flows for buffer and bandwidth at the gateway. In order to solve the disproportionate resource problem, RED framework is modified in this way: on detecting when the non-responsive flows starve the queue, packet-drop intensity (Max_p in RED can be adaptively adjusted to curb non-responsive flows for resource fair-sharing, such as buffer and bandwidth fair-sharing. Based on detection of traffic behaviors, intentionally restraining nonresponsive flows is to increase the throughput and decrease the drop rate of responsive flows. Our experimental results based on adaptive RED shows that the enhancement of responsive traffic and the better sharing of buffer and bandwidth can be achieved under a variety of traffic scenarios.

  3. Coupled Model of channels in parallel and neutron kinetics in two dimensions

    International Nuclear Information System (INIS)

    Cecenas F, M.; Campos G, R.M.; Valle G, E. del

    2004-01-01

    In this work an arrangement of thermohydraulic channels is presented that represent those four quadrants of a nucleus of reactor type BWR. The channels are coupled to a model of neutronic in two dimensions that allow to generate the radial profile of power of the reactor. Nevertheless that the neutronic pattern is of two dimensions, it is supplemented with axial additional information when considering the axial profiles of power for each thermo hydraulic channel. The stationary state is obtained the one it imposes as frontier condition the same pressure drop for all the channels. This condition is satisfied to iterating on the flow of coolant in each channel to equal the pressure drop in all the channels. This stationary state is perturbed later on when modifying the values for the effective sections corresponding to an it assembles. The calculation in parallel of the neutronic and the thermo hydraulic is carried out with Vpm (Virtual parallel machine) by means of an outline teacher-slave in a local net of computers. (Author)

  4. Microbial enhancement of non-Darcy flow: Theoretical consideration

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jianxin; Schneider, D.R.

    1995-12-31

    In the near well-bore region and perforations, petroleum fluids usually flow at high velocities and may exhibit non-Darcy-flow behavior. Microorganisms can increase permeability and porosity by removing paraffin or asphaltene accumulations. They can also reduce interfacial tension by producing biosurfactants. These changes can significantly affect non-Darcy flow behavior. Theoretical analysis shows that microbial activities can enhance production by decreasing the turbulence pressure drop and in some cases increasing the drag force exerted to the oil phase. This implies that the effects of microbial activities on non-Darcy flow are important and should be considered in the evaluation of microbial well stimulation and enhanced oil recovery.

  5. Investigation of radial dose effect on single event upset cross-section due to heavy ions using GEANT4

    International Nuclear Information System (INIS)

    Boorboor, S.; Feghhi, S.A.H.; Jafari, H.

    2015-01-01

    The heavy ions are the main cause to produce single event upset (SEU) damage on electronic devices since they are high LET radiations. The dimension of electronic components in new technology, arise a challenge in radiation effect estimations. Accurate investigations require fully considering the ion track in energy deposition as a radial dose distribution. In this work, the distribution of delta rays as well as LET have been calculated to determine ionization structure around ion track by a Monte Carlo code, GEANT4. The radial dose of several heavy ions with different energy in silicon was investigated and compared with the works by other authors in this field. The results showed that heavy ions with identical LET can have different SEU cross-section in silicon transistors. As a demonstrative example, according to our results, the error probability for 4.8 GeV iron was 8 times greater than that for 15 MeV carbon ions, in transistors with new process technology which have small dimension and low critical charges. Our results show that considering radial dose distribution considerably improves the accuracy of the SEU cross-section estimation in electronic devices especially for new technologies. - Highlights: • The single event upset is produced by heavy ions interaction on electronic devices. • The radial dose of several heavy ions in silicon was calculated by GEANT4. • Heavy ions with identical LET had different SEU cross-section in silicon transistors. • Low dimension and critical charge devices were more sensitive to radial dose effect

  6. Flowing and heat transfer characteristics of turbulent flow in typical rod bundles at rolling motion

    International Nuclear Information System (INIS)

    Yan Binghuo; Yu Lei; Gu Hanyang

    2011-01-01

    The influence mechanism of rolling motion on the flowing and heat transfer characteristics of turbulent flow in typical four rod bundles was investigated with Fluent code. The flowing and heat transfer characteristics of turbulent flow in rod bundles can be affected by rolling motion. But the flowing similarity of turbulent flow in adiabatic and non-adiabatic can not be affected. If the rolling period is small, the radial additional force can make the parameter profiles, the turbulent flowing and heat transfer change greatly. At rolling motion, as the pitch to diameter ratio decreases, especially if it is less than 1.1, the flowing and heat transfer of turbulent flow at rolling motion change significantly. The variation of pitch to diameter ratio can change the profiles of secondary flow and turbulent kinetic energy in cross-section greatly. (authors)

  7. Supersymmetric RG flows and Janus from type II orbifold compactification

    Energy Technology Data Exchange (ETDEWEB)

    Karndumri, Parinya; Upathambhakul, Khem [Chulalongkorn University, String Theory and Supergravity Group, Department of Physics, Faculty of Science, Bangkok (Thailand)

    2017-07-15

    We study holographic RG flow solutions within four-dimensional N = 4 gauged supergravity obtained from type IIA and IIB string theories compactified on T{sup 6}/Z{sub 2} x Z{sub 2} orbifold with gauge, geometric and non-geometric fluxes. In type IIB non-geometric compactifications, the resulting gauged supergravity has ISO(3) x ISO(3) gauge group and admits an N = 4 AdS{sub 4} vacuum dual to an N = 4 superconformal field theory (SCFT) in three dimensions. We study various supersymmetric RG flows from this N = 4 SCFT to N = 4 and N = 1 non-conformal field theories in the IR. The flows preserving N = 4 supersymmetry are driven by relevant operators of dimensions Δ = 1, 2 or alternatively by one of these relevant operators, dual to the dilaton, and irrelevant operators of dimensions Δ = 4 while the N = 1 flows in addition involve marginal deformations. Most of the flows can be obtained analytically. We also give examples of supersymmetric Janus solutions preserving N = 4 and N = 1 supersymmetries. These solutions should describe two-dimensional conformal defects within the dual N = 4 SCFT. Geometric compactifications of type IIA theory give rise to N = 4 gauged supergravity with ISO(3) x U(1){sup 6} gauge group. In this case, the resulting gauged supergravity admits an N = 1 AdS{sub 4} vacuum. We also numerically study possible N = 1 RG flows to non-conformal field theories in this case. (orig.)

  8. Axisymmetric free convection boundary-layer flow past slender bodies

    NARCIS (Netherlands)

    Kuiken, H.K.

    1968-01-01

    Radial curvature effects on axisymmetric free convection boundary-layer flow are investigated for vertical cylinders and cones for some special non-uniform temperature differences between the surface and the ambient fluid. The solution is given as a power series expansion, the first term being equal

  9. Least Square NUFFT Methods Applied to 2D and 3D Radially Encoded MR Image Reconstruction

    Science.gov (United States)

    Song, Jiayu; Liu, Qing H.; Gewalt, Sally L.; Cofer, Gary; Johnson, G. Allan

    2009-01-01

    Radially encoded MR imaging (MRI) has gained increasing attention in applications such as hyperpolarized gas imaging, contrast-enhanced MR angiography, and dynamic imaging, due to its motion insensitivity and improved artifact properties. However, since the technique collects k-space samples nonuniformly, multidimensional (especially 3D) radially sampled MRI image reconstruction is challenging. The balance between reconstruction accuracy and speed becomes critical when a large data set is processed. Kaiser-Bessel gridding reconstruction has been widely used for non-Cartesian reconstruction. The objective of this work is to provide an alternative reconstruction option in high dimensions with on-the-fly kernels calculation. The work develops general multi-dimensional least square nonuniform fast Fourier transform (LS-NUFFT) algorithms and incorporates them into a k-space simulation and image reconstruction framework. The method is then applied to reconstruct the radially encoded k-space, although the method addresses general nonuniformity and is applicable to any non-Cartesian patterns. Performance assessments are made by comparing the LS-NUFFT based method with the conventional Kaiser-Bessel gridding method for 2D and 3D radially encoded computer simulated phantoms and physically scanned phantoms. The results show that the LS-NUFFT reconstruction method has better accuracy-speed efficiency than the Kaiser-Bessel gridding method when the kernel weights are calculated on the fly. The accuracy of the LS-NUFFT method depends on the choice of scaling factor, and it is found that for a particular conventional kernel function, using its corresponding deapodization function as scaling factor and utilizing it into the LS-NUFFT framework has the potential to improve accuracy. When a cosine scaling factor is used, in particular, the LS-NUFFT method is faster than Kaiser-Bessel gridding method because of a quasi closed-form solution. The method is successfully applied to 2D and

  10. Qualidade de sementes de soja em função do horário de colheita e do sistema de trilha de fluxo radial e axial Soybean seeds quality in function of the harvest time and the radial or axial rotary flow track system

    Directory of Open Access Journals (Sweden)

    Maria C Marcondes

    2010-04-01

    Full Text Available O trabalho objetivou avaliar dois tipos de colhedoras, de fluxo radial e axial, em relação à qualidade física e fisiológica de sementes de duas cultivares de soja, BRS 184 e BRS 133, colhidas em dois horários, às 10 e 18 horas. A colhedora de fluxo radial trabalhou a 5,0 km h-1 , com o cilindro batedor a 750 rotações por minuto (rpm. A colhedora de fluxo axial trabalhou a 8,0 km h-1, e rotor com 650 rpm. Para a avaliação da qualidade física e fisiológica das sementes, foram realizados testes de germinação, envelhecimento acelerado, tetrazólio, dano mecânico (hipoclorito, umidade de campo e laboratório, sementes quebradas (bandinha e pureza. A colheita realizada às 18 horas, com grau de umidade menor que 12%, ocasionou maiores danos mecânicos nas sementes da cultivar BRS 184. A colhedora de sistema de fluxo axial resultou em sementes de melhor qualidade fisiológica para a cultivar BRS 184, e em menores percentuais de sementes quebradas e maior pureza para ambas as cultivares, comparativamente à colhedora de sistema de trilha com fluxo radial.This experiment aimed to evaluate two types of harvest combines, the radial flow and axial flow rotary, regarding the physical and physiological seed quality of BRS 184 and BRS 133 soybeans cultivars, harvested in two periods of the day, at 10 a.m. and 6 p.m. The conventional combine worked moving at 5.0 km h-1, cylinder speed at 750 rotations per minute (rpm. The axial rotary combine worked moving at 8.0 km h, rotorspeed at 650 rpm. The germination test, vigour test, tetrazolium, mechanical (hypochlorite damage, field and laboratory humidity test, broken seeds test and purity test were used to evaluate the physical and physiological quality of the seeds. The experiment performed at 6 pm, with a humidity level inferior to 12%, presented greater mechanical damages in BRS 184 seeds. The axial flow rotary harvest presented better seed physiological quality for BRS 184 cultivar, less

  11. Pulmonary artery imaging under free-breathing using golden-angle radial bSSFP MRI: a proof of concept.

    Science.gov (United States)

    Fyrdahl, Alexander; Vargas Paris, Roberto; Nyrén, Sven; Holst, Karen; Ugander, Martin; Lindholm, Peter; Sigfridsson, Andreas

    2018-03-14

    To evaluate the feasibility of an improved motion and flow robust methodology for imaging the pulmonary vasculature using non-contrast-enhanced, free-breathing, golden-angle radial MRI. Healthy volunteers (n = 10, age 46 ± 11 years, 50% female) and patients (n = 2, ages 27 and 84, both female) were imaged at 1.5 T using a Cartesian and golden-angle radial 2D balanced SSFP pulse sequence. The acquisitions were made under free breathing without contrast agent enhancement. The radial acquisitions were reconstructed at 3 temporal footprints. All series were scored from 1 to 5 for perceived diagnostic quality, artifact level, and vessel sharpness in multiple anatomical locations. In addition, vessel sharpness and blood-to-blood clot contrast were measured. Quantitative measurements showed higher vessel sharpness for golden-angle radial (n = 76, 0.79 ± 0.11 versus 0.71 ± 0.16, p golden-angle radial in the 2 patients. At comparable temporal footprints, golden-angle radial was scored higher for diagnostic quality (mean ± SD, 2.3 ± 0.7 versus 2.2 ± 0.6, p < .01) and vessel sharpness (2.2 ± 0.8 versus 2.1 ± 0.5, p < .01), whereas the artifact level did not differ (3.0 ± 0.9 versus 3.0 ± 1.0, p = .80). The ability to retrospectively choose a temporal resolution and perform sliding-window reconstructions was demonstrated in patients. In pulmonary artery imaging, the motion and flow robustness of a radial trajectory does both improve image quality over Cartesian trajectory in healthy volunteers, and allows for flexible selection of temporal footprints and the ability to perform real-time sliding window reconstructions, which could potentially provide further diagnostic insight. © 2018 International Society for Magnetic Resonance in Medicine.

  12. Lectures on mean curvature flows

    CERN Document Server

    Zhu, Xi-Ping

    2002-01-01

    "Mean curvature flow" is a term that is used to describe the evolution of a hypersurface whose normal velocity is given by the mean curvature. In the simplest case of a convex closed curve on the plane, the properties of the mean curvature flow are described by Gage-Hamilton's theorem. This theorem states that under the mean curvature flow, the curve collapses to a point, and if the flow is diluted so that the enclosed area equals \\pi, the curve tends to the unit circle. In this book, the author gives a comprehensive account of fundamental results on singularities and the asymptotic behavior of mean curvature flows in higher dimensions. Among other topics, he considers in detail Huisken's theorem (a generalization of Gage-Hamilton's theorem to higher dimension), evolution of non-convex curves and hypersurfaces, and the classification of singularities of the mean curvature flow. Because of the importance of the mean curvature flow and its numerous applications in differential geometry and partial differential ...

  13. Long-term consequences of non-intentional flows of substances: Modelling non-intentional flows of lead in the Dutch economic system and evaluating their environmental consequences

    International Nuclear Information System (INIS)

    Elshkaki, Ayman; Voet, Ester van der; Holderbeke, Mirja van; Timmermans, Veerle

    2009-01-01

    Substances may enter the economy and the environment through both intentional and non-intentional flows. These non-intentional flows, including the occurrence of substances as pollutants in mixed primary resources (metal ores, phosphate ores and fossil fuels) and their presence in re-used waste streams from intentional use may have environmental and economic consequences in terms of pollution and resource availability. On the one hand, these non-intentional flows may cause pollution problems. On the other hand, these flows have the potential to be a secondary source of substances. This article aims to quantify and model the non-intentional flows of lead, to evaluate their long-term environmental consequences, and compare these consequences to those of the intentional flows of lead. To meet this goal, the model combines all the sources of non-intentional flows of lead within one model, which also includes the intentional flows. Application of the model shows that the non-intentional flows of lead related to waste streams associated with intentional use are decreasing over time, due to the increased attention given to waste management. However, as contaminants in mixed primary resources application, lead flows are increasing as demand for these applications is increasing.

  14. Design and Numerical Simulation of Radial Inflow Turbine Volute

    Science.gov (United States)

    Shah, Samip P.; Channiwala, S. A.; Kulshreshtha, D. B.; Chaudhari, Gaurang

    2014-12-01

    The volute of a radial inflow turbine has to be designed to ensure that the desired rotor inlet conditions like absolute Mach number, flow angle etc. are attained. For the reasonable performance of vaneless volute turbine care has to be taken for reduction in losses at an appropriate flow angle at the rotor inlet, in the direction of volute, whose function is to convert gas energy into kinetic energy and direct the flow towards the rotor inlet at an appropriate flow angle with reduced losses. In literature it was found that the incompressible approaches failed to provide free vortex and uniform flow at rotor inlet for compressible flow regimes. So, this paper describes a non-dimensional design procedure for a vaneless turbine volute for compressible flow regime and investigates design parameters, such as the distribution of area ratio and radius ratio as a function of azimuth angle. The nondimensional design is converted in dimensional form for three different volute cross sections. A commercial computational fluid dynamics code is used to develop numerical models of three different volute cross sections. From the numerical models, losses generation in the different volutes are identified and compared. The maximum pressure loss coefficient for Trapezoidal cross section is 0.1075, for Bezier-trapezoidal cross section is 0.0677 and for circular cross section is 0.0438 near tongue region, which suggested that the circular cross section will give a better efficiency than other types of volute cross sections.

  15. Issues in measure-preserving three dimensional flow integrators: Self-adjointness, reversibility, and non-uniform time stepping

    International Nuclear Information System (INIS)

    Finn, John M.

    2015-01-01

    Properties of integration schemes for solenoidal fields in three dimensions are studied, with a focus on integrating magnetic field lines in a plasma using adaptive time stepping. It is shown that implicit midpoint (IM) and a scheme we call three-dimensional leapfrog (LF) can do a good job (in the sense of preserving KAM tori) of integrating fields that are reversible, or (for LF) have a “special divergence-free” (SDF) property. We review the notion of a self-adjoint scheme, showing that such schemes are at least second order accurate and can always be formed by composing an arbitrary scheme with its adjoint. We also review the concept of reversibility, showing that a reversible but not exactly volume-preserving scheme can lead to a fractal invariant measure in a chaotic region, although this property may not often be observable. We also show numerical results indicating that the IM and LF schemes can fail to preserve KAM tori when the reversibility property (and the SDF property for LF) of the field is broken. We discuss extensions to measure preserving flows, the integration of magnetic field lines in a plasma and the integration of rays for several plasma waves. The main new result of this paper relates to non-uniform time stepping for volume-preserving flows. We investigate two potential schemes, both based on the general method of Feng and Shang [Numer. Math. 71, 451 (1995)], in which the flow is integrated in split time steps, each Hamiltonian in two dimensions. The first scheme is an extension of the method of extended phase space, a well-proven method of symplectic integration with non-uniform time steps. This method is found not to work, and an explanation is given. The second method investigated is a method based on transformation to canonical variables for the two split-step Hamiltonian systems. This method, which is related to the method of non-canonical generating functions of Richardson and Finn [Plasma Phys. Controlled Fusion 54, 014004 (2012

  16. Least-square NUFFT methods applied to 2-D and 3-D radially encoded MR image reconstruction.

    Science.gov (United States)

    Song, Jiayu; Liu, Yanhui; Gewalt, Sally L; Cofer, Gary; Johnson, G Allan; Liu, Qing Huo

    2009-04-01

    Radially encoded MRI has gained increasing attention due to its motion insensitivity and reduced artifacts. However, because its samples are collected nonuniformly in the k-space, multidimensional (especially 3-D) radially sampled MRI image reconstruction is challenging. The objective of this paper is to develop a reconstruction technique in high dimensions with on-the-fly kernel calculation. It implements general multidimensional nonuniform fast Fourier transform (NUFFT) algorithms and incorporates them into a k-space image reconstruction framework. The method is then applied to reconstruct from the radially encoded k-space data, although the method is applicable to any non-Cartesian patterns. Performance comparisons are made against the conventional Kaiser-Bessel (KB) gridding method for 2-D and 3-D radially encoded computer-simulated phantoms and physically scanned phantoms. The results show that the NUFFT reconstruction method has better accuracy-efficiency tradeoff than the KB gridding method when the kernel weights are calculated on the fly. It is found that for a particular conventional kernel function, using its corresponding deapodization function as a scaling factor in the NUFFT framework has the potential to improve accuracy. In particular, when a cosine scaling factor is used, the NUFFT method is faster than KB gridding method since a closed-form solution is available and is less computationally expensive than the KB kernel (KB griding requires computation of Bessel functions). The NUFFT method has been successfully applied to 2-D and 3-D in vivo studies on small animals.

  17. Classification of the Group Invariant Solutions for Contaminant Transport in Saturated Soils under Radial Uniform Water Flows

    Directory of Open Access Journals (Sweden)

    M. M. Potsane

    2014-01-01

    Full Text Available The transport of chemicals through soils to the groundwater or precipitation at the soils surfaces leads to degradation of these resources. Serious consequences may be suffered in the long run. In this paper, we consider macroscopic deterministic models describing contaminant transport in saturated soils under uniform radial water flow backgrounds. The arising convection-dispersion equation given in terms of the stream functions is analyzed using classical Lie point symmetries. A number of exotic Lie point symmetries are admitted. Group invariant solutions are classified according to the elements of the one-dimensional optimal systems. We analyzed the group invariant solutions which satisfy the physical boundary conditions.

  18. Optimization of MNSR upper reflector material and dimensions

    International Nuclear Information System (INIS)

    Albarhoum, M.

    2007-04-01

    Calculations for the optimization of the material and dimensions of the Syrian MNSR was performed. Calculations showed that the considerably important reflectors in this case are Beryllium, Heavy water and Graphite. Dimensions of the reflector cannot any way exceed the Shim Tray dimensions. Two different ways of filling the Shim Tray with the reflector material were established: 1- the radial filling mode, and 2- the axial mode. Both modes can be performed using single sectors or cumulative ones. The axial mode proved to be better than the radial one. The axial cumulative mode proved to be more efficient than the single axial one. The axial cumulative mode was studied from two points of view; the neutronic and the economic ones. From the neutronic point of view the beryllium proved to be the best reflector, and the best dimensions were found to coincide with a thickness equal to 0.11235 cm with the bottom end being 0.4494 cm distant from the bottom of the Shim Tray. From the economic point of view it was found that the cost of the reactivity unit is the smallest when the Graphite is used. Results of this study can be applied directly to the Syrian MNSR since fabrication of any plastic containment for the reflector can easily be achieved. This is because the reactivity worth resulting from mass unit of the reflector varies depending on its position positions in the Shim Tray.(author)

  19. Generalized hypervirial and Blanchard's recurrence relations for radial matrix elements

    International Nuclear Information System (INIS)

    Dong Shihai; Chen Changyuan; Lozada-Cassou, M

    2005-01-01

    Based on the Hamiltonian identity, we propose a generalized expression of the second hypervirial for an arbitrary central potential wavefunction in arbitrary dimensions D. We demonstrate that the new proposed second hypervirial formula is very powerful in deriving the general Blanchard's and Kramers' recurrence relations among the radial matrix elements. As their useful and important applications, we derive all general Blanchard's and Kramers' recurrence relations and some identities for the Coulomb-like potential, harmonic oscillator and Kratzer oscillator. The recurrence relation and identity between the exponential functions and the powers of the radial function are established for the Morse potential. The corresponding general Blanchard's and Kramers' recurrence relations in 2D are also briefly studied

  20. Radial dose distribution of 192Ir and 137Cs seed sources

    International Nuclear Information System (INIS)

    Thomason, C.; Higgins, P.

    1989-01-01

    The radial dose distributions in water around /sup 192/ Ir seed sources with both platinum and stainless steel encapsulation have been measured using LiF thermoluminescent dosimeters (TLD) for distances of 1 to 12 cm along the perpendicular bisector of the source to determine the effect of source encapsulation. Similar measurements also have been made around a /sup 137/ Cs seed source of comparable dimensions. The data were fit to a third order polynomial to obtain an empirical equation for the radial dose factor which then can be used in dosimetry. The coefficients of this equation for each of the three sources are given. The radial dose factor of the stainless steel encapsulated /sup 192/ Ir and that of the platinum encapsulated /sup 192/ Ir agree to within 2%. The radial dose distributions measured here for /sup 192/ Ir with either type of encapsulation and for /sup 137/ Cs are indistinguishable from those of other authors when considering uncertainties involved. For clinical dosimetry based on isotropic point or line source models, any of these equations may be used without significantly affecting accuracy

  1. Multi objective Flower Pollination Algorithm for solving capacitor placement in radial distribution system using data structure load flow analysis

    Directory of Open Access Journals (Sweden)

    Tamilselvan V.

    2016-06-01

    Full Text Available The radial distribution system is a rugged system, it is also the most commonly used system, which suffers by loss and low voltage at the end bus. This loss can be reduced by the use of a capacitor in the system, which injects reactive current and also improves the voltage magnitude in the buses. The real power loss in the distribution line is the I2R loss which depends on the current and resistance. The connection of the capacitor in the bus reduces the reactive current and losses. The loss reduction is equal to the increase in generation, necessary for the electric power provided by firms. For consumers, the quality of power supply depends on the voltage magnitude level, which is also considered and hence the objective of the problem becomes the multi objective of loss minimization and the minimization of voltage deviation. In this paper, the optimal location and size of the capacitor is found using a new computational intelligent algorithm called Flower Pollination Algorithm (FPA. To calculate the power flow and losses in the system, novel data structure load flow is introduced. In this, each bus is considered as a node with bus associated data. Links between the nodes are distribution lines and their own resistance and reactance. To validate the developed FPA solutions standard test cases, IEEE 33 and IEEE 69 radial distribution systems are considered.

  2. Effects of non-uniform core flow on peak cladding temperature: MOXY/SCORE sensitivity calculations

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.C.

    1979-08-15

    The MOXY/SCORE computer program is used to evaluate the potential effect on peak cladding temperature of selective cooling that may result from a nonuniform mass flux at the core boundaries during the blowdown phase of the LOFT L2-4 test. The results of this study indicate that the effect of the flow nonuniformity at the core boundaries will be neutralized by a strong radial flow redistribution in the neighborhood of core boundaries. The implication is that the flow nonuniformity at the core boundaries has no significant effect on the thermal-hydraulic behavior and cladding temperature at the hot plane.

  3. Effects of non-uniform core flow on peak cladding temperature: MOXY/SCORE sensitivity calculations

    International Nuclear Information System (INIS)

    Chang, S.C.

    1979-01-01

    The MOXY/SCORE computer program is used to evaluate the potential effect on peak cladding temperature of selective cooling that may result from a nonuniform mass flux at the core boundaries during the blowdown phase of the LOFT L2-4 test. The results of this study indicate that the effect of the flow nonuniformity at the core boundaries will be neutralized by a strong radial flow redistribution in the neighborhood of core boundaries. The implication is that the flow nonuniformity at the core boundaries has no significant effect on the thermal-hydraulic behavior and cladding temperature at the hot plane

  4. Framework for detection and localization of coronary non-calcified plaques in cardiac CTA using mean radial profiles.

    Science.gov (United States)

    Jawaid, Muhammad Moazzam; Riaz, Atif; Rajani, Ronak; Reyes-Aldasoro, Constantino Carlos; Slabaugh, Greg

    2017-10-01

    The high mortality rate associated with coronary heart disease (CHD) has driven intensive research in cardiac imaging and image analysis. The advent of computed tomography angiography (CTA) has turned non-invasive diagnosis of cardiovascular anomalies into reality as calcified coronary plaques can be easily identified due to their high intensity values. However, the detection of non-calcified plaques in CTA is still a challenging problem because of lower intensity values, which are often similar to the nearby blood and muscle tissues. In this work, we propose the use of mean radial profiles for the detection of non-calcified plaques in CTA imagery. Accordingly, we computed radial profiles by averaging the image intensity in concentric rings around the vessel centreline in a first stage. In the subsequent stage, an SVM classifier is applied to identify the abnormal coronary segments. For occluded segments, we further propose a derivative-based method to localize the position and length of the plaque inside the segment. A total of 32 CTA volumes were analysed and a detection accuracy of 88.4% with respect to the manual expert was achieved. The plaque localization accuracy was computed using the Dice similarity coefficient and a mean of 83.2% was achieved. The consistent performance for multi-vendor, multi-institution data demonstrates the reproducibility of our method across different CTA datasets with a good agreement with manual expert annotations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A linear stability analysis of thermal convection in spherical shells with variable radial gravity based on the Tau-Chebyshev method

    International Nuclear Information System (INIS)

    Avila, Ruben; Cabello-González, Ares; Ramos, Eduardo

    2013-01-01

    Highlights: • The Tau-Chebyshev method solves the linear fluid flow equations in spherical shells. • The fluid motion is driven by a central force proportional to the radial position. • The full Navier–Stokes equations are solved by the spectral element method. • The linear results are verified with the solution of the Navier–Stokes equations. • The solution of the linear problems is used to initiate non-linear calculations. -- Abstract: The onset of thermal convection in a non-rotating spherical shell is investigated using linear theory. The Tau-Chebyshev spectral method is used to integrate the linearized equations. We investigate the onset of thermal convection by considering two cases of the radial gravitational field (i) a local acceleration, acting radially inward, that is proportional to the distance from the center r, and (ii) a radial gravitational central force that is proportional to r −n . The former case has been widely analyzed in the literature, because it constitutes a simplified model that is usually used, in astrophysics and geophysics, and is studied here to validate the numerical method. The latter case was analyzed since the case n = 5 has been experimentally realized (by means of the dielectrophoretic effect) under microgravity condition, in the experimental container called GeoFlow, inside the International Space Station. Our study is aimed to clarify the role of (i) a radially inward central force (either proportional to r or to r −n ), (ii) a base conductive temperature distribution provided by either a uniform heat source or an imposed temperature difference between outer and inner spheres, and (iii) the aspect ratio η (ratio of the radii of the inner and outer spheres), on the critical Rayleigh number. In all cases the surface of the spheres has been assumed to be rigid. The results obtained with the linear theory based on the Tau-Chebyshev spectral method are compared with those of the integration of the full non

  6. Growing Season Stem Water Status Assessment of Qinghai Spruce through the Sap Flow and Stem Radial Variations in the Qilian Mountains of China

    Directory of Open Access Journals (Sweden)

    Quanyan Tian

    2017-12-01

    Full Text Available Global climate change is likely to change precipitation patterns with consequences for tree water use and growth in semi-arid areas. However, little is known about the effects of variability in precipitation on growth- and water-related physiological processes of native trees in dry areas of northwestern China. In this study, sap flow and stem radial variability in four Qinghai spruce trees (Picea crassifolia were monitored in the Qilian Mountains, China. Tree water deficit (ΔW and basal area increment (BAI were calculated using stem radial variation; water-use efficiency (WUE was then estimated as the ratio of BAI and sap flow (Jt. The results showed that sap flow density (Js increased logarithmically with increasing ΔW when ΔW < 50 μm, and then gradually stabilized. Multiple factor generalized additive models (GAM showed that Js was closely related to all measured environmental variables except for daily mean temperature and relative air humidity. ΔW was related to the minimum daily temperature and soil water content. WUE exhibited higher values in early July. Low WUE was observed under conditions of prolonged dry weather, but it quickly increased during rainy days. WUE decreased after precipitation events due to high transpiration. We concluded that, in these semi-arid areas, precipitation is the most important controlling factor in tree growth and transpiration.

  7. Four-fluxes and non-perturbative superpotentials in two dimensions

    International Nuclear Information System (INIS)

    Lerche, W.

    1998-01-01

    We show how certain non-perturbative superpotentials W(Σ), which are the two-dimensional analogs of the Seiberg-Witten prepotential in 4d, can be computed via geometric engineering from 4-folds. We analyze an explicit example for which the relevant compact geometry of the 4-fold is given by P 1 fibered over P 2 . In the field theory limit, this gives an effective U(1) gauge theory with N=(2,2) supersymmetry in two dimensions. We find that the analog of the SW curve is a K3 surface, and that the complex FI coupling is given by the modular parameter of this surface. The FI potential itself coincides with the middle period of a meromorphic differential. However, it only shows up in the effective action if a certain 4-flux is switched on, and then supersymmetry appears to be non-perturbatively broken. (orig.)

  8. Effect of radial electric field inhomogeneity on anomalous cross field plasma flux in Heliotron/Torsatron

    International Nuclear Information System (INIS)

    Yamagishi, Tomejiro; Sanuki, Heiji.

    1996-01-01

    Anomalous cross field plasma fluxes induced by the electric field fluctuations has been evaluated in a rotating plasma with shear flow in a helical system. The anomalous ion flux is evaluated by the contribution from ion curvature drift resonance continuum in the test particle model. The radial electric field induces the Doppler frequency shift which disappears in the frequency integrated anomalous flux. The inhomogeneity of the electric field (shear flow effect), however, induces a new force term in the flux. The curvature drift resonance also induces a new force term '/ which, however, did not make large influence in the ion flux in the CHS configuration. The shear flow term in the flux combined with the electric field in neoclassical flux reduces to a first order differential equation which governs the radial profile of the electric field. Numerical results indicate that the shear flow effect is important for the anomalous cross field flux and for determination of the radial electric field particularly in the peripheral region. (author)

  9. PIV investigation of the flow induced by a passive surge control method in a radial compressor

    Energy Technology Data Exchange (ETDEWEB)

    Guillou, Erwann; Gancedo, Matthieu; Gutmark, Ephraim [University of Cincinnati, Department of Aerospace Engineering, Cincinnati, OH (United States); Mohamed, Ashraf [Honeywell Turbo Technologies, Greater Los Angeles, CA (United States)

    2012-09-15

    Due to recent emission regulations, the use of turbochargers for force induction of internal combustion engines has increased. Actually, the trend in diesel engines is to downsize the engine by use of turbochargers that operate at higher pressure ratios. Unfortunately, increasing the impeller rotational speed of turbocharger radial compressors tends to reduce their range of operation, which is limited at low mass flow rate by the occurrence of surge. In order to extend the operability of turbochargers, compressor housings can be equipped with a passive surge control device such as a ''ported shroud.'' This specific casing treatment has been demonstrated to enhance the surge margin with minor negative impact on the compressor efficiency. However, the actual working mechanisms of the system remain not well understood. Hence, in order to optimize the design of the ported shroud, it is crucial to identify the dynamic flow changes induced by the implementation of the device to control instabilities. From the full dynamic survey of the compressor performance characteristics obtained with and without ported shroud, specific points of operation were selected to carry out planar flow visualization. At normal working, both standard and stereoscopic particle imaging velocimetry (PIV) measurements were performed to evaluate instantaneous and mean velocity flow fields at the inlet of the compressor. At incipient and full surge, phase-locked PIV measurements were added. As a result, satisfying characterization of the compressor instabilities was provided at different operational speeds. Combining transient pressure data and PIV measurements, the time evolution of the complex flow patterns occurring at surge was reconstructed and a better insight into the bypass mechanism was achieved. (orig.)

  10. PIV investigation of the flow induced by a passive surge control method in a radial compressor

    Science.gov (United States)

    Guillou, Erwann; Gancedo, Matthieu; Gutmark, Ephraim; Mohamed, Ashraf

    2012-09-01

    Due to recent emission regulations, the use of turbochargers for force induction of internal combustion engines has increased. Actually, the trend in diesel engines is to downsize the engine by use of turbochargers that operate at higher pressure ratios. Unfortunately, increasing the impeller rotational speed of turbocharger radial compressors tends to reduce their range of operation, which is limited at low mass flow rate by the occurrence of surge. In order to extend the operability of turbochargers, compressor housings can be equipped with a passive surge control device such as a "ported shroud." This specific casing treatment has been demonstrated to enhance the surge margin with minor negative impact on the compressor efficiency. However, the actual working mechanisms of the system remain not well understood. Hence, in order to optimize the design of the ported shroud, it is crucial to identify the dynamic flow changes induced by the implementation of the device to control instabilities. From the full dynamic survey of the compressor performance characteristics obtained with and without ported shroud, specific points of operation were selected to carry out planar flow visualization. At normal working, both standard and stereoscopic particle imaging velocimetry (PIV) measurements were performed to evaluate instantaneous and mean velocity flow fields at the inlet of the compressor. At incipient and full surge, phase-locked PIV measurements were added. As a result, satisfying characterization of the compressor instabilities was provided at different operational speeds. Combining transient pressure data and PIV measurements, the time evolution of the complex flow patterns occurring at surge was reconstructed and a better insight into the bypass mechanism was achieved.

  11. Non-Newtonian fluid flow in 2D fracture networks

    Science.gov (United States)

    Zou, L.; Håkansson, U.; Cvetkovic, V.

    2017-12-01

    Modeling of non-Newtonian fluid (e.g., drilling fluids and cement grouts) flow in fractured rocks is of interest in many geophysical and industrial practices, such as drilling operations, enhanced oil recovery and rock grouting. In fractured rock masses, the flow paths are dominated by fractures, which are often represented as discrete fracture networks (DFN). In the literature, many studies have been devoted to Newtonian fluid (e.g., groundwater) flow in fractured rock using the DFN concept, but few works are dedicated to non-Newtonian fluids.In this study, a generalized flow equation for common non-Newtonian fluids (such as Bingham, power-law and Herschel-Bulkley) in a single fracture is obtained from the analytical solutions for non-Newtonian fluid discharge between smooth parallel plates. Using Monte Carlo sampling based on site characterization data for the distribution of geometrical features (e.g., density, length, aperture and orientations) in crystalline fractured rock, a two dimensional (2D) DFN model is constructed for generic flow simulations. Due to complex properties of non-Newtonian fluids, the relationship between fluid discharge and the pressure gradient is nonlinear. A Galerkin finite element method solver is developed to iteratively solve the obtained nonlinear governing equations for the 2D DFN model. Using DFN realizations, simulation results for different geometrical distributions of the fracture network and different non-Newtonian fluid properties are presented to illustrate the spatial discharge distributions. The impact of geometrical structures and the fluid properties on the non-Newtonian fluid flow in 2D DFN is examined statistically. The results generally show that modeling non-Newtonian fluid flow in fractured rock as a DFN is feasible, and that the discharge distribution may be significantly affected by the geometrical structures as well as by the fluid constitutive properties.

  12. Axisymmetric ideal magnetohydrodynamic equilibria with incompressible flows

    International Nuclear Information System (INIS)

    Tasso, H.; Throumoulopoulos, G.N.

    1997-12-01

    It is shown that the ideal MHD equilibrium states of an axisymmetric plasma with incompressible flows are governed by an elliptic partial differential equation for the poloidal magnetic flux function ψ containing five surface quantities along with a relation for the pressure. Exact equilibria are constructed including those with non vanishing poloidal and toroidal flows and differentially varying radial electric fields. Unlike the case in cylindrical incompressible equilibria with isothermal magnetic surfaces which should have necessarily circular cross sections [G. N. Throumoulopoulos and H. Tasso, Phys. Plasmas 4, 1492 (1997)], no restriction appears on the shapes of the magnetic surfaces in the corresponding axisymmetric equilibria. The latter equilibria satisfy a set of six ordinary differential equations which for flows parallel to the magnetic field B can be solved semianalytically. In addition, it is proved the non existence of incompressible axisymmetric equilibria with (a) purely poloidal flows and (b) non-parallel flows with isothermal magnetic surfaces and vertical stroke B vertical stroke = vertical stroke B vertical stroke (ψ) (omnigenous equilibria). (orig.)

  13. Application of radial basis function in densitometry of stratified regime of liquid-gas two phase flows

    International Nuclear Information System (INIS)

    Roshani, G.H.; Nazemi, E.; Roshani, M.M.

    2017-01-01

    In this paper, a novel method is proposed for predicting the density of liquid phase in stratified regime of liquid-gas two phase flows by utilizing dual modality densitometry technique and artificial neural network (ANN) model of radial basis function (RBF). The detection system includes a 137 Cs radioactive source and two NaI(Tl) detectors for registering transmitted and scattered photons. At the first step, a Monte Carlo simulation model was utilized to obtain the optimum position for the scattering detector in dual modality densitometry configuration. At the next step, an experimental setup was designed based on obtained optimum position for detectors from simulation in order to generate the required data for training and testing the ANN. The results show that the proposed approach could be successfully applied for predicting the density of liquid phase in stratified regime of gas-liquid two phase flows with mean relative error (MRE) of less than 0.701. - Highlights: • Density of liquid phase in stratified regime of two phase flows was predicted. • Combination of dual modality densitometry technique and ANN was utilized. • Detection system includes a 137 Cs radioactive source and two NaI(Tl) detectors. • MCNP simulation was done to obtain the optimum position for the scattering detector. • An experimental setup was designed to generate the required data for training the ANN.

  14. Excitation of higher radial modes of azimuthal surface waves in the electron cyclotron frequency range by rotating relativistic flow of electrons in cylindrical waveguides partially filled by plasmas

    Science.gov (United States)

    Girka, Igor O.; Pavlenko, Ivan V.; Thumm, Manfred

    2018-05-01

    Azimuthal surface waves are electromagnetic eigenwaves of cylindrical plasma-dielectric waveguides which propagate azimuthally nearby the plasma-dielectric interface across an axial external stationary magnetic field. Their eigenfrequency in particular can belong to the electron cyclotron frequency range. Excitation of azimuthal surface waves by rotating relativistic electron flows was studied in detail recently in the case of the zeroth radial mode for which the waves' radial phase change within the layer where the electrons gyrate is small. In this case, just the plasma parameters cause the main influence on the waves' dispersion properties. In the case of the first and higher radial modes, the wave eigenfrequency is higher and the wavelength is shorter than in the case of the zeroth radial mode. This gain being of interest for practical applications can be achieved without any change in the device design. The possibility of effective excitation of the higher order radial modes of azimuthal surface waves is demonstrated here. Getting shorter wavelengths of the excited waves in the case of higher radial modes is shown to be accompanied by decreasing growth rates of the waves. The results obtained here are of interest for developing new sources of electromagnetic radiation, in nano-physics and in medical physics.

  15. Global flow of glasma in high energy nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Guangyao; Fries, Rainer J., E-mail: rjfries@comp.tamu.edu

    2013-06-25

    We discuss the energy flow of the classical gluon fields created in collisions of heavy nuclei at collider energies. We show how the Yang–Mills analog of Faraday's Law and Gauss' Law predicts the initial gluon flux tubes to expand or bend. The resulting transverse and longitudinal structure of the Poynting vector field has a rich phenomenology. Besides the well-known radial and elliptic flow in transverse direction, classical quantum chromodynamics predicts a rapidity-odd transverse flow that tilts the fireball for non-central collisions, and it implies a characteristic flow pattern for collisions of non-symmetric systems A+B. The rapidity-odd transverse flow translates into a directed particle flow v{sub 1} which has been observed at RHIC and LHC. The global flow fields in heavy ion collisions could be a powerful check for the validity of classical Yang–Mills dynamics in high energy collisions.

  16. The influence of collisional and anomalous radial diffusion on parallel ion transport in edge plasmas

    International Nuclear Information System (INIS)

    Helander, P.; Hazeltine, R.D.; Catto, P.J.

    1996-01-01

    The orderings in the kinetic equations commonly used to study the plasma core of a tokamak do not allow a balance between parallel ion streaming and radial diffusion, and are, therefore, inappropriate in the plasma edge. Different orderings are required in the edge region where radial transport across the steep gradients associated with the scrape-off layer is large enough to balance the rapid parallel flow caused by conditions close to collecting surfaces (such as the Bohm sheath condition). In the present work, we derive and solve novel kinetic equations, allowing for such a balance, and construct distinctive transport laws for impure, collisional, edge plasmas in which the perpendicular transport is (i) due to Coulomb collisions of ions with heavy impurities, or (ii) governed by anomalous diffusion driven by electrostatic turbulence. In both the collisional and anomalous radial transport cases, we find that one single diffusion coefficient determines the radial transport of particles, momentum and heat. The parallel transport laws and parallel thermal force in the scrape-off layer assume an unconventional form, in which the relative ion-impurity flow is driven by a combination of the conventional parallel gradients, and new (i) collisional or (ii) anomalous terms involving products of radial derivatives of the temperature and density with the radial shear of the parallel velocity. Thus, in the presence of anomalous radial diffusion, the parallel ion transport cannot be entirely classical, as usually assumed in numerical edge computations. The underlying physical reason is the appearance of a novel type of parallel thermal force resulting from the combined action of anomalous diffusion and radial temperature and velocity gradients. In highly sheared flows the new terms can modify impurity penetration into the core plasma

  17. Non-flow correlations and elliptic flow fluctuations in Au+Au collisions at sNN=200 GeV

    Science.gov (United States)

    Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.

    2010-03-01

    This article presents results on event-by-event elliptic flow fluctuations in Au+Au collisions at sNN= 200 GeV, where the contribution from non-flow correlations has been subtracted. An analysis method is introduced to measure non-flow correlations, relying on the assumption that non-flow correlations are most prominent at short ranges (|Δη|2), relative elliptic flow fluctuations of approximately 30-40% are observed. These results are consistent with predictions based on spatial fluctuations of the participating nucleons in the initial nuclear overlap region. It is found that the long-range non-flow correlations in Au+Au collisions would have to be more than an order of magnitude stronger compared to the p+p data to lead to the observed azimuthal anisotropy fluctuations with no intrinsic elliptic flow fluctuations.

  18. Rayleigh-Taylor instability of cylindrical jets with radial motion

    International Nuclear Information System (INIS)

    Chen, X.M.; Schrock, V.E.; Peterson, P.F.

    1997-01-01

    Rayleigh-Taylor instability of an interface between fluids with different densities subjected to acceleration normal to itself has interested researchers for almost a century. The classic analyses of a flat interface by Rayleigh and Taylor have shown that this type of instability depends on the direction of acceleration and the density differences of the two fluids. Plesset later analyzed the stability of a spherically symmetric flows (and a spherical interface) and concluded that the instability also depends on the velocity of the interface as well as the direction and magnitude of radial acceleration. The instability induced by radial motion in cylindrical systems seems to have been neglected by previous researchers. This paper analyzes the Rayleigh-Taylor type of instability for a cylindrical surface with radial motions. The results of the analysis show that, like the spherical case, the radial velocity also plays an important role. As an application, the example of a liquid jet surface in an Inertial Confinement Fusion (ICF) reactor design is analyzed. (orig.)

  19. Non-homogeneous flow profiles in sheared bacterial suspensions

    Science.gov (United States)

    Samanta, Devranjan; Cheng, Xiang

    Bacterial suspensions under shear exhibit interesting rheological behaviors including the remarkable ``superfluidic'' state with vanishing viscosity at low shear rates. Theoretical studies have shown that such ``superfluidic'' state is linked with non-homogeneous shear flows, which are induced by coupling between nematic order of active fluids and hydrodynamics of shear flows. However, although bulk rheology of bacterial suspensions has been experimentally studied, shear profiles within bacterial suspensions have not been explored so far. Here, we experimentally investigate the flow behaviors of E. coli suspensions under planar oscillatory shear. Using confocal microscopy and PIV, we measure velocity profiles across gap between two shear plates. We find that with increasing shear rates, high-concentration bacterial suspensions exhibit an array of non-homogeneous flow behaviors like yield-stress flows and shear banding. We show that these non-homogeneous flows are due to collective motion of bacterial suspensions. The phase diagram of sheared bacterial suspensions is systematically mapped as functions of shear rates an bacterial concentrations. Our experiments provide new insights into rheology of bacterial suspensions and shed light on shear induced dynamics of active fluids. Chemical Engineering and Material Science department.

  20. New universality class in three dimensions

    DEFF Research Database (Denmark)

    Codello, A.; Safari, M.; Vacca, G. P.

    2017-01-01

    We study the Blume-Capel universality class in d=103-ϵ dimensions. The renormalization group flow is extracted by looking at poles in fractional dimension of three loop diagrams using MS. The theory is the only nontrivial universality class which admits an expansion to three dimensions with ϵ=13<...

  1. Exponential Convergence for Numerical Solution of Integral Equations Using Radial Basis Functions

    Directory of Open Access Journals (Sweden)

    Zakieh Avazzadeh

    2014-01-01

    Full Text Available We solve some different type of Urysohn integral equations by using the radial basis functions. These types include the linear and nonlinear Fredholm, Volterra, and mixed Volterra-Fredholm integral equations. Our main aim is to investigate the rate of convergence to solve these equations using the radial basis functions which have normic structure that utilize approximation in higher dimensions. Of course, the use of this method often leads to ill-posed systems. Thus we propose an algorithm to improve the results. Numerical results show that this method leads to the exponential convergence for solving integral equations as it was already confirmed for partial and ordinary differential equations.

  2. Non-power law behavior of the radial profile of phase-space density of halos

    International Nuclear Information System (INIS)

    Popolo, A. Del

    2011-01-01

    We study the pseudo phase-space density, ρ(r)/σ 3 (r), of ΛCDM dark matter halos with and without baryons (baryons+DM, and pure DM), by using the model introduced in Del Popolo (2009), which takes into account the effect of dynamical friction, ordered and random angular momentum, baryons adiabatic contraction and dark matter baryons interplay. We examine the radial dependence of ρ(r)/σ 3 (r) over 9 orders of magnitude in radius for structures on galactic and cluster of galaxies scales. We find that ρ(r)/σ 3 (r) is approximately a power-law only in the range of halo radius resolved by current simulations (down to 0.1% of the virial radius) while it has a non-power law behavior below the quoted scale, with inner profiles changing with mass. The non-power-law behavior is more evident for halos constituted both of dark matter and baryons while halos constituted just of dark matter and with angular momentum chosen to reproduce a Navarro-Frenk-White (NFW) density profile, are characterized by an approximately power-law behavior. The results of the present paper lead to conclude that density profiles of the NFW type are compatible with a power-law behavior of ρ(r)/σ 3 (r), while those flattening to the halo center, like those found in Del Popolo (2009) or the Einasto profile, or the Burkert profile, cannot produce radial profile of the pseudo-phase-space density that are power-laws at all radii. The results argue against universality of the pseudo phase-space density and as a consequence argue against universality of density profiles constituted by dark matter and baryons as also discussed in Del Popolo (2009)

  3. Generalized Riemann problem for reactive flows

    International Nuclear Information System (INIS)

    Ben-Artzi, M.

    1989-01-01

    A generalized Riemann problem is introduced for the equations of reactive non-viscous compressible flow in one space dimension. Initial data are assumed to be linearly distributed on both sides of a jump discontinuity. The resolution of the singularity is studied and the first-order variation (in time) of flow variables is given in exact form. copyright 1989 Academic Press, Inc

  4. TECHNIQUE FOR DETERMINATION OF SURFACE FRACTAL DIMENSION AND MORPHOLOGY OF MESOPOROUS TITANIA USING DYNAMIC FLOW ADSORPTION AND ITS CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    Silvester Tursiloadi

    2010-06-01

    Full Text Available A technique to determine the surface fractal dimension of mesoporous TiO­2 using a dynamic flow adsorption instrument is described. Fractal dimension is an additional technique to characterize surface morphology. Surface fractal dimension, a quantitative measurement of surface ruggedness, can be determined by adsorbing a homologous series of adsorbates onto an adsorbent sample of mesoporous TiO­2. Titania wet gel prepared by hydrolysis of Ti-alkoxide was immersed in the flow of supercritical CO2 at 60 °C and the solvent was extracted.  Mesoporous TiO­2 consists of anatase nano-particles, about 5nm in diameter, have been obtained. After calcination at 600 °C, the average pore size of the extracted gel, about 20nm in diameter, and the pore volume, about 0.35cm3g-1, and the specific surface area, about 58 m2g-1. Using the N2 adsorption isotherm, the surface fractal dimension, DS, has been estimated according to the Frenkel-Halsey-Hill (FHH theory. The N2 adsorption isotherm for the as-extracted aerogel indicates the mesoporous structure. Two linear regions are found for the FHH plot of the as-extracted aerogel. The estimated surface fractal dimensions are about 2.49 and 2.68. Both of the DS  values indicate rather complex surface morphology. The TEM observation shows that there are amorphous and crystalline particles. Two values of DS may be attributed to these two kinds of particles. The two regions are in near length scales, and the smaller DS, DS =2.49, for the smaller region. This result indicates that there are two kinds of particles, probably amorphous and anatase particles as shown by the TEM observation.     Keywords: surface fractal dimensions, CO2 supercritically extraction, sol-gel, aerogel, titania

  5. A Note on Unsteady Temperature Equation For Gravity Flow of A ...

    African Journals Online (AJOL)

    We present an analytical study of unsteady temperature energy equation for gravity of a fluid with non – Newtonian behaviour through a porous medium. For the case of radial axisymmetric flow, the governing partial differential equation is transformed into an ordinary differential equation through similarity variables.

  6. Circumbinary, not transitional: on the spiral arms, cavity, shadows, fast radial flows, streamers, and horseshoe in the HD 142527 disc

    Science.gov (United States)

    Price, Daniel J.; Cuello, Nicolás; Pinte, Christophe; Mentiplay, Daniel; Casassus, Simon; Christiaens, Valentin; Kennedy, Grant M.; Cuadra, Jorge; Sebastian Perez, M.; Marino, Sebastian; Armitage, Philip J.; Zurlo, Alice; Juhasz, Attila; Ragusa, Enrico; Laibe, Guillaume; Lodato, Giuseppe

    2018-06-01

    We present 3D hydrodynamical models of the HD 142527 protoplanetary disc, a bright and well-studied disc that shows spirals and shadows in scattered light around a 100 au gas cavity, a large horseshoe dust structure in mm continuum emission, together with mysterious fast radial flows and streamers seen in gas kinematics. By considering several possible orbits consistent with the observed arc, we show that all of the main observational features can be explained by one mechanism - the interaction between the disc and the observed binary companion. We find that the spirals, shadows, and horseshoe are only produced in the correct position angles by a companion on an inclined and eccentric orbit approaching periastron - the `red' family from Lacour et al. Dust-gas simulations show radial and azimuthal concentration of dust around the cavity, consistent with the observed horseshoe. The success of this model in the HD 142527 disc suggests other mm-bright transition discs showing cavities, spirals, and dust asymmetries may also be explained by the interaction with central companions.

  7. Experimental and theoretical study of friction torque from radial ball bearings

    Science.gov (United States)

    Geonea, Ionut; Dumitru, Nicolae; Dumitru, Ilie

    2017-10-01

    In this paper it is presented a numerical simulation and an experimental study of total friction torque from radial ball bearings. For this purpose it is conceived a virtual CAD model of the experimental test bench for bearing friction torque measurement. The virtual model it is used for numerical simulation in Adams software, that allows dynamic study of multi-body systems and in particularly with facility Adams Machinery of dynamic behavior of machine parts. It is manufactured an experimental prototype of the test bench for radial ball bearings friction torque measurement. In order to measure the friction torque of the tested bearings it is used an equal resistance elastic beam element, with strain gauge transducer to measure bending deformations. The actuation electric motor of the bench has the shaft mounted on two bearings and the motor housing is fixed to the free side of the elastic beam, which is bended by a force proportional with the total friction torque. The beam elastic element with strain gauge transducer is calibrated in order to measure the force occurred. Experimental determination of the friction torque is made for several progressive radial loads. It is established the correlation from the friction torque and bearing radial load. The bench allows testing of several types and dimensions of radial bearings, in order to establish the bearing durability and of total friction torque.

  8. Do ray cells provide a pathway for radial water movement in the stems of conifer trees?

    Science.gov (United States)

    David M. Barnard; Barbara Lachenbruch; Katherine A. McCulloh; Peter Kitin; Frederick C. Meinzer

    2013-01-01

    The pathway of radial water movement in tree stems presents an unknown with respect to whole-tree hydraulics. Radial profiles have shown substantial axial sap flow in deeper layers of sapwood (that may lack direct connection to transpiring leaves), which suggests the existence of a radial pathway for water movement. Rays in tree stems include ray tracheids and/or ray...

  9. Fourth order Douglas implicit scheme for solving three dimension reaction diffusion equation with non-linear source term

    Science.gov (United States)

    Hasnain, Shahid; Saqib, Muhammad; Mashat, Daoud Suleiman

    2017-07-01

    This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit) to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.

  10. Fourth order Douglas implicit scheme for solving three dimension reaction diffusion equation with non-linear source term

    Directory of Open Access Journals (Sweden)

    Shahid Hasnain

    2017-07-01

    Full Text Available This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.

  11. Bayesian inversion of surface-wave data for radial and azimuthal shear-wave anisotropy, with applications to central Mongolia and west-central Italy

    Science.gov (United States)

    Ravenna, Matteo; Lebedev, Sergei

    2018-04-01

    Seismic anisotropy provides important information on the deformation history of the Earth's interior. Rayleigh and Love surface-waves are sensitive to and can be used to determine both radial and azimuthal shear-wave anisotropies at depth, but parameter trade-offs give rise to substantial model non-uniqueness. Here, we explore the trade-offs between isotropic and anisotropic structure parameters and present a suite of methods for the inversion of surface-wave, phase-velocity curves for radial and azimuthal anisotropies. One Markov chain Monte Carlo (McMC) implementation inverts Rayleigh and Love dispersion curves for a radially anisotropic shear velocity profile of the crust and upper mantle. Another McMC implementation inverts Rayleigh phase velocities and their azimuthal anisotropy for profiles of vertically polarized shear velocity and its depth-dependent azimuthal anisotropy. The azimuthal anisotropy inversion is fully non-linear, with the forward problem solved numerically at different azimuths for every model realization, which ensures that any linearization biases are avoided. The computations are performed in parallel, in order to reduce the computing time. The often challenging issue of data noise estimation is addressed by means of a Hierarchical Bayesian approach, with the variance of the noise treated as an unknown during the radial anisotropy inversion. In addition to the McMC inversions, we also present faster, non-linear gradient-search inversions for the same anisotropic structure. The results of the two approaches are mutually consistent; the advantage of the McMC inversions is that they provide a measure of uncertainty of the models. Applying the method to broad-band data from the Baikal-central Mongolia region, we determine radial anisotropy from the crust down to the transition-zone depths. Robust negative anisotropy (Vsh < Vsv) in the asthenosphere, at 100-300 km depths, presents strong new evidence for a vertical component of asthenospheric

  12. Modelling of radial electric field profile for different divertor configurations

    International Nuclear Information System (INIS)

    Rozhansky, V; Kaveeva, E; Voskoboynikov, S; Counsell, G; Kirk, A; Meyer, H; Coster, D; Conway, G; Schirmer, J; Schneider, R

    2006-01-01

    The impact of divertor configuration on the structure of the radial electric field has been simulated by the B2SOLPS5.0 transport fluid code. It is shown that the change in the parallel flows in the scrape-off layer, which are transported through the separatrix due to turbulent viscosity and diffusivity, should result in variation of the radial electric field and toroidal rotation in the separatrix vicinity. The modelling predictions are compared with the measurements of the radial electric field for the low field side equatorial mid-plane of ASDEX Upgrade in lower, upper and double-null (DN) divertor configurations. The parallel (toroidal) flows in the scrape-off layer and mechanisms for their formation are analysed for different geometries. It is demonstrated that a spike in the electric field exists at the high field side equatorial mid-plane in the connected DN divertor configuration. Its origin is connected with different potential drops between the separatrix vicinity and divertor plates in the two disconnected scrape-off layers, while the separatrix should be at almost the same potential. The spike might be important for additional turbulent suppression

  13. Performance analysis of flow lines with non-linear flow of material

    CERN Document Server

    Helber, Stefan

    1999-01-01

    Flow line design is one of the major tasks in production management. The decision to install a set of machines and buffers is often highly irreversible. It determines both cost and revenue to a large extent. In order to assess the economic impact of any possible flow line design, production rates and inventory levels have to be estimated. These performance measures depend on the allocation of buffers whenever the flow of material is occasionally disrupted, for example due to machine failures or quality problems. The book describes analytical methods that can be used to evaluate flow lines much faster than with simulation techniques. Based on these fast analytical techniques, it is possible to determine a flow line design that maximizes the net present value of the flow line investment. The flow of material through the line may be non-linear, for example due to assembly operations or quality inspections.

  14. Non-axial-symmetric Alfven waves in cylindrical, radial inhomogeneous plasmas

    International Nuclear Information System (INIS)

    Raeuchle, E.

    1978-08-01

    The propagation of nonaxialsymmetric Alfven waves is investigated theoretically. Eigenfunctions and dispersion relations are calculated numerically for radial inhomogeneous cylindrical plasmas. In the MHD treatment resistivity, neutral particle loading and ion cyclotron effects are included. The investigations are of importance for plasma heating by Alfven waves. (orig.) [de

  15. Non-Equilibrium Thermodynamics in Multiphase Flows

    CERN Document Server

    Mauri, Roberto

    2013-01-01

    Non-equilibrium thermodynamics is a general framework that allows the macroscopic description of irreversible processes. This book introduces non-equilibrium thermodynamics and its applications to the rheology of multiphase flows. The subject is relevant to graduate students in chemical and mechanical engineering, physics and material science. This book is divided into two parts. The first part presents the theory of non-equilibrium thermodynamics, reviewing its essential features and showing, when possible, some applications. The second part of this book deals with how the general theory can be applied to model multiphase flows and, in particular, how to determine their constitutive relations. Each chapter contains problems at the end, the solutions of which are given at the end of the book. No prior knowledge of statistical mechanics is required; the necessary prerequisites are elements of transport phenomena and on thermodynamics. “The style of the book is mathematical, but nonetheless it remains very re...

  16. Optical cage generated by azimuthal- and radial-variant vector beams.

    Science.gov (United States)

    Man, Zhongsheng; Bai, Zhidong; Li, Jinjian; Zhang, Shuoshuo; Li, Xiaoyu; Zhang, Yuquan; Ge, Xiaolu; Fu, Shenggui

    2018-05-01

    We propose a method to generate an optical cage using azimuthal- and radial-variant vector beams in a high numerical aperture optical system. A new kind of vector beam that has azimuthal- and radial-variant polarization states is proposed and demonstrated theoretically. Then, an integrated analytical model to calculate the electromagnetic field and Poynting vector distributions of the input azimuthal- and radial-variant vector beams is derived and built based on the vector diffraction theory of Richards and Wolf. From calculations, a full polarization-controlled optical cage is obtained by simply tailoring the radial index of the polarization, the uniformity U of which is up to 0.7748, and the cleanness C is zero. Additionally, a perfect optical cage can be achieved with U=1, and C=0 by introducing an amplitude modulation; its magnetic field and energy flow are also demonstrated in detail. Such optical cages may be helpful in applications such as optical trapping and high-resolution imaging.

  17. Assessing the performance of Taiwan’s environmental protection system with a non-radial network DEA approach

    International Nuclear Information System (INIS)

    Huang, Chin-wei; Chiu, Yung-ho; Fang, Wei-ta; Shen, Neng

    2014-01-01

    Previous studies involving environmental performance purely focus on analyzing environmental or waste treatment efficiencies. This study combines various aspects of environmental protection and establishes a non-radial network DEA approach to evaluate the performance of an environmental protection system. The empirical methodology assumes that the system consists of three stages: administrative, executive processes, and protection effectiveness. The executive process includes waste treatment and pollution auditing divisions. In addition to assessing efficiencies, the empirical evaluation further explores the internal and external influences on performances and contributes implications and suggestions for environmental policy makers. The proposed model is utilized to gauge the performance of an environmental protection system for 20 municipalities in Taiwan. The results indicate the following: (1) for improving environmental quality, the government needs to put forth greater efforts in environmental audits; (2) improving productivity per unit so as to increase achievements in the executive process is more important for raising performance on environmental work, in addition to increasing workers and equipment for environmental protection; (3) a high degree of industrialization negatively influences administrative efficiency and educated residents have a greater comprehension for administrative operations, which can help in efficient budget utilization. - Highlights: • A non-radial network DEA approach to evaluate the Performance of Environmental Protection System. • The performance of waste treatment performs better than the efficiency of auditing. • Governmental expenditure is more efficiently utilized in the administrative process. • The effectiveness of achieved protection is a critical indicator for revealing environmental quality in a region

  18. Core radial electric field and transport in Wendelstein 7-X plasmas

    Science.gov (United States)

    Pablant, N. A.; Langenberg, A.; Alonso, A.; Beidler, C. D.; Bitter, M.; Bozhenkov, S.; Burhenn, R.; Beurskens, M.; Delgado-Aparicio, L.; Dinklage, A.; Fuchert, G.; Gates, D.; Geiger, J.; Hill, K. W.; Höfel, U.; Hirsch, M.; Knauer, J.; Krämer-Flecken, A.; Landreman, M.; Lazerson, S.; Maaßberg, H.; Marchuk, O.; Massidda, S.; Neilson, G. H.; Pasch, E.; Satake, S.; Svennson, J.; Traverso, P.; Turkin, Y.; Valson, P.; Velasco, J. L.; Weir, G.; Windisch, T.; Wolf, R. C.; Yokoyama, M.; Zhang, D.; W7-X Team

    2018-02-01

    The results from the investigation of neoclassical core transport and the role of the radial electric field profile (Er) in the first operational phase of the Wendelstein 7-X (W7-X) stellarator are presented. In stellarator plasmas, the details of the Er profile are expected to have a strong effect on both the particle and heat fluxes. Investigation of the radial electric field is important in understanding neoclassical transport and in validation of neoclassical calculations. The radial electric field is closely related to the perpendicular plasma flow (u⊥) through the force balance equation. This allows the radial electric field to be inferred from measurements of the perpendicular flow velocity, which can be measured using the x-ray imaging crystal spectrometer and correlation reflectometry diagnostics. Large changes in the perpendicular rotation, on the order of Δu⊥˜ 5 km/s (ΔEr ˜ 12 kV/m), have been observed within a set of experiments where the heating power was stepped down from 2 MW to 0.6 MW. These experiments are examined in detail to explore the relationship between heating power temperature, and density profiles and the radial electric field. Finally, the inferred Er profiles are compared to initial neoclassical calculations based on measured plasma profiles. The results from several neoclassical codes, sfincs, fortec-3d, and dkes, are compared both with each other and the measurements. These comparisons show good agreement, giving confidence in the applicability of the neoclassical calculations to the W7-X configuration.

  19. Harmonic scalpel versus electrocautery for harvest of radial artery conduits: Reduced risk of spasm and intimal injury on optical coherence tomography

    Science.gov (United States)

    Brazio, Philip S.; Laird, Patrick C.; Xu, Chenyang; Gu, Junyan; Burris, Nicholas S.; Brown, Emile N.; Kon, Zachary N.; Poston, Robert S.

    2009-01-01

    Objective Vasospasm is the primary obstacle to widespread adoption of the radial artery as a conduit in coronary artery bypass grafting. We used optical coherence tomography, a catheter-based intravascular imaging modality, to measure the degree of radial artery spasm induced by means of harvest with electrocautery or a harmonic scalpel in patients undergoing coronary artery bypass grafting. Methods Radial arteries were harvested from 44 consecutive patients with a harmonic scalpel (n = 15) or electrocautery (n = 29). Vessels were imaged before harvesting and after removal from the arm, with saphenous vein tracts serving as internal controls. Optical coherence tomographic findings for the degree of harvesting-induced injury were validated against histologic measures. Results Optical coherence tomographic measures of endovascular dimensions and injury correlated strongly with histologic findings. Mean luminal volume, a measure of vasospasm, decreased significantly less after harvesting with a harmonic scalpel (9% ± 7%) than with electrocautery (35% ± 6%, P = .015). Completely intact intima was present in 11 (73%) of 15 radial arteries harvested with a harmonic scalpel (73%) compared with 9 of 29 arteries harvested by means of electrocautery (31%, P = .011). Intraoperative flow measurements and patency rates at 5 days postoperatively were not significantly different among groups. Conclusions Optical coherence tomography provides a level of speed and accuracy for quantifying endothelial injury and vasospasm that has not been described for any other modality, suggesting potential as an intraoperative quality assurance tool. Our optical coherence tomographic findings suggest that the harmonic scalpel induces less spasm and intimal injury compared with electrocautery. PMID:19026820

  20. Non Newtonian Behavior of Blood in Presence of Arterial Occlusion

    OpenAIRE

    Dr.Arun Kumar Maiti

    2016-01-01

    The objective of the present numerical model is to investigate the effect of shape of stenosis on blood flow through an artery using Bingham plastic fluid model. Blood is modeled as Bingham plastic fluid in a uniform circular tube with an axially symmetric but radially non symmetric stenosis. The expressions for flux, dimensionless resistance to flow with stenosis shape parameter, stenosis length and stenosis size have been shown graphically

  1. Accurate evaluation of viscoelasticity of radial artery wall during flow-mediated dilation in ultrasound measurement

    Science.gov (United States)

    Sakai, Yasumasa; Taki, Hirofumi; Kanai, Hiroshi

    2016-07-01

    In our previous study, the viscoelasticity of the radial artery wall was estimated to diagnose endothelial dysfunction using a high-frequency (22 MHz) ultrasound device. In the present study, we employed a commercial ultrasound device (7.5 MHz) and estimated the viscoelasticity using arterial pressure and diameter, both of which were measured at the same position. In a phantom experiment, the proposed method successfully estimated the elasticity and viscosity of the phantom with errors of 1.8 and 30.3%, respectively. In an in vivo measurement, the transient change in the viscoelasticity was measured for three healthy subjects during flow-mediated dilation (FMD). The proposed method revealed the softening of the arterial wall originating from the FMD reaction within 100 s after avascularization. These results indicate the high performance of the proposed method in evaluating vascular endothelial function just after avascularization, where the function is difficult to be estimated by a conventional FMD measurement.

  2. Radial nerve dysfunction

    Science.gov (United States)

    Neuropathy - radial nerve; Radial nerve palsy; Mononeuropathy ... Damage to one nerve group, such as the radial nerve, is called mononeuropathy . Mononeuropathy means there is damage to a single nerve. Both ...

  3. Flow regime classification in air-magnetic fluid two-phase flow.

    Science.gov (United States)

    Kuwahara, T; De Vuyst, F; Yamaguchi, H

    2008-05-21

    A new experimental/numerical technique of classification of flow regimes (flow patterns) in air-magnetic fluid two-phase flow is proposed in the present paper. The proposed technique utilizes the electromagnetic induction to obtain time-series signals of the electromotive force, allowing us to make a non-contact measurement. Firstly, an experiment is carried out to obtain the time-series signals in a vertical upward air-magnetic fluid two-phase flow. The signals obtained are first treated using two kinds of wavelet transforms. The data sets treated are then used as input vectors for an artificial neural network (ANN) with supervised training. In the present study, flow regimes are classified into bubbly, slug, churn and annular flows, which are generally the main flow regimes. To validate the flow regimes, a visualization experiment is also performed with a glycerin solution that has roughly the same physical properties, i.e., kinetic viscosity and surface tension, as a magnetic fluid used in the present study. The flow regimes from the visualization are used as targets in an ANN and also used in the estimation of the accuracy of the present method. As a result, ANNs using radial basis functions are shown to be the most appropriate for the present classification of flow regimes, leading to small classification errors.

  4. Magnetostatic analysis of a rotor system supported by radial active magnetic bearings

    Directory of Open Access Journals (Sweden)

    Ferfecki P.

    2009-06-01

    Full Text Available The development and the design of a radial active magnetic bearing (AMB reflects a complex process of the multidisciplinary rotor dynamics, electromagnetism and automatic control analysis. Modelling is performed by application of the physical laws from different areas, e.g. Newton's laws of motion and Maxwell's equations. The new approach in the numerical modelling of radial AMB and design methodology allowing automatic generation of primary dimensions of the radial AMB is proposed. Instead of the common way of computation of electromagnetic forces by linearizing at the centre position of the rotor with respect to rotor displacement and coil current, the finite element computation of electromagnetic forces is used. The heteropolar radial AMB consisting of eight pole shoes was designed by means of the built up algorithms for rotor system with two discs fixed on the cantilever shaft. A study of the influence of the nonlinear magnetization characteristics of a rotor and stator material on the equilibrium position of a rotor system is carried out. The performed numerical study shows that results obtained from the analytical nonlinear relation for electromagnetic forces can be considerably different from forces computed with magnetostatic finite element analysis.

  5. Non-local two phase flow momentum transport in S BWR

    International Nuclear Information System (INIS)

    Espinosa P, G.; Salinas M, L.; Vazquez R, A.

    2015-09-01

    The non-local momentum transport equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection, diffusion and transport properties for two-phase flow. For instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail. The S BWR was considered to study the non-local effects on the two-phase flow thermal-hydraulic core performance in steady-state, and the results were compared with the classical local averaging volume conservation equations. (Author)

  6. Non-local two phase flow momentum transport in S BWR

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa P, G.; Salinas M, L.; Vazquez R, A., E-mail: gepe@xanum.uam.mx [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Apdo. Postal 55-535, 09340 Ciudad de Mexico (Mexico)

    2015-09-15

    The non-local momentum transport equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection, diffusion and transport properties for two-phase flow. For instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail. The S BWR was considered to study the non-local effects on the two-phase flow thermal-hydraulic core performance in steady-state, and the results were compared with the classical local averaging volume conservation equations. (Author)

  7. Mechanism of flow choking at shock boiling-up of a liquid

    International Nuclear Information System (INIS)

    Labuntsov, D.A.; Avdeev, A.A.

    1982-01-01

    The theory of the outflow of a saturated or non-heated liquid with thermodynamic parameters reaching the critical point from diaphragms and short nozzles has been developed basing on the concept of the boiling-up jump. Three characteristic flow conditions have been revealed: hydraulic, conditions when boiling-up jump is formed, and conditions of radial expansion of the flow. If the initial flow's parameters are low, the hydraulic conditions are realized. The expansion of the flow-passage cross-section of flow small jets by the final value takes place when the spinoidal overheating is reached near the exit cut-off at a small distance equal to the thickness of the boiling-up zone; and that causes the intensive jet dispersion in the radial direction. In case of overheatings close to the thermodynamic critical point, a boiling-up jump is formed inside the channel. The mechanism of flow choking has been analyzed; recommendations on calculation of the critical flow rate of a boiling-up liquid are given. The studied mechanism of flow choking at shock boiling-up of the flow permits to draw a rather detailed physical picture of the phenomenon and to give an explanation of the majority of experimentally-observed effects

  8. Radial gradient and radial deviation radiomic features from pre-surgical CT scans are associated with survival among lung adenocarcinoma patients.

    Science.gov (United States)

    Tunali, Ilke; Stringfield, Olya; Guvenis, Albert; Wang, Hua; Liu, Ying; Balagurunathan, Yoganand; Lambin, Philippe; Gillies, Robert J; Schabath, Matthew B

    2017-11-10

    The goal of this study was to extract features from radial deviation and radial gradient maps which were derived from thoracic CT scans of patients diagnosed with lung adenocarcinoma and assess whether these features are associated with overall survival. We used two independent cohorts from different institutions for training (n= 61) and test (n= 47) and focused our analyses on features that were non-redundant and highly reproducible. To reduce the number of features and covariates into a single parsimonious model, a backward elimination approach was applied. Out of 48 features that were extracted, 31 were eliminated because they were not reproducible or were redundant. We considered 17 features for statistical analysis and identified a final model containing the two most highly informative features that were associated with lung cancer survival. One of the two features, radial deviation outside-border separation standard deviation, was replicated in a test cohort exhibiting a statistically significant association with lung cancer survival (multivariable hazard ratio = 0.40; 95% confidence interval 0.17-0.97). Additionally, we explored the biological underpinnings of these features and found radial gradient and radial deviation image features were significantly associated with semantic radiological features.

  9. Characterizing Psychological Dimensions in Non-Pathological Subjects through Autonomic Nervous System Dynamics

    Directory of Open Access Journals (Sweden)

    Mimma eNardelli

    2015-03-01

    Full Text Available The objective assessment of psychological traits of healthy subjects and psychiatric patients has been growing interest in clinical and bioengineering research fields during the last decade. Several experimental evidences strongly suggest that a link between Autonomic Nervous System (ANS dynamics and specific dimensions such as anxiety, social phobia, stress and emotional regulation might exist. Nevertheless, an extensive investigation on a wide range of psycho-cognitive scales and ANS non-invasive markers gathered from standard and nonlinear analysis still needs to be addressed. In this study, we analyzed the discerning and correlation capabilities of a comprehensive set of ANS features and psycho-cognitive scales in 29 non-pathological subjects monitored during resting conditions. In particular, the state of the art of standard and nonlinear analysis was performed on Heart Rate Variability, InterBreath Interval series, and Inter-Beat Respiration series, which were considered as monovariate and multivariate measurements. Experimental results show that each ANS feature is linked to specific psychological traits. Moreover, nonlinear analysis outperforms the psychological assessment with respect to standard analysis. Considering that the current clinical practice relies only on subjective scores from interviews and questionnaires, this study provides objective tools for the assessment of psychological dimensions.

  10. Effects of the radial electric field in a quasisymmetric stellarator

    International Nuclear Information System (INIS)

    Landreman, Matt; Catto, Peter J

    2011-01-01

    Recent calculations have shown that a radial electric field can significantly alter the neoclassical ion heat flux, ion flow, bootstrap current and residual zonal flow in a tokamak, even when the E x B drift is much smaller than the ion thermal speed. Here we show the novel analytical methods used in these calculations can be adapted to a quasisymmetric stellarator. The methods are based on using the conserved helical momentum ψ * instead of the poloidal or toroidal flux as a radial coordinate in the kinetic equation. The banana-regime calculations also employ a model collision operator that keeps only the velocity-space derivatives normal to the trapped-passing boundary, even as this boundary is shifted and deformed by the E x B drift. We prove the isomorphism between quasisymmetric stellarators and tokamaks extends to the finite-E x B generalizations of both banana-regime and plateau-regime neoclassical theory and the residual zonal flow. The plateau-regime results may be relevant to the HSX stellarator, and both the plateau- and banana-regime results can be used to validate stellarator transport codes.

  11. Analysis of the test results for the two-phase critical flow with non-condensible gas

    International Nuclear Information System (INIS)

    Chang, S. K.; Chung, C. H.; Park, H. S.; Min, K. H.; Choi, N. H.; Kim, C. H.; Lee, S. H.; Kim, H. C.; Chang, M. H.

    2002-07-01

    The two-phase critical flow test was performed for simulating the pipe break accident of SMART reactor. The requirements of the critical flow test are 7∼20mm pipe break dia., 7∼12MPa stagnation pressure, 0∼60 .deg. C subcooling degree and 0∼0.5kg/s N 2 gas flow rate. The test section is sharp edged pipe type which has the dimension of I.D.=20, L=300mm and I.D.=10.9, L=1000mm. The test conditions are 4, 7, 10 MPa at stagnation pressure, 0, 20, 50 .deg. C of subcooling degree and 0.028∼0.39 kg/s of N 2 injection gas flowrate. The measured data at test section and other components in terms of pressure, temperature and flowrate were collected in DAS computer with maintaining the steady state conditions at least 60 seconds. From the test results, the critical characteristics of the break pipe were analysed and verified the capacity of the test facility. For the verification of the Modified Henry-Fauske model which can predict the two-phase critical flow with non-condensible gas, the code simulation using MARS which contains the option of the Modified Henry -Fauske model was performed. The simulation results of steady-state two-phase critical flow experiments show that they agree with the measured critical flow rates within 6% root-mean-square error

  12. Homogeneous non-equilibrium two-phase critical flow model

    International Nuclear Information System (INIS)

    Schroeder, J.J.; Vuxuan, N.

    1987-01-01

    An important aspect of nuclear and chemical reactor safety is the ability to predict the maximum or critical mass flow rate from a break or leak in a pipe system. At the beginning of such a blowdown, if the stagnation condition of the fluid is subcooled or slightly saturated thermodynamic non-equilibrium exists in the downstream, e.g. the fluid becomes superheated to a degree determined by the liquid pressure. A simplified non-equilibrium model, explained in this report, is valid for rapidly decreasing pressure along the flow path. It presumes that fluid has to be superheated by an amount governed by physical principles before it starts to flash into steam. The flow is assumed to be homogeneous, i.e. the steam and liquid velocities are equal. An adiabatic flow calculation mode (Fanno lines) is employed to evaluate the critical flow rate for long pipes. The model is found to satisfactorily describe critical flow tests. Good agreement is obtained with the large scale Marviken tests as well as with small scale experiments. (orig.)

  13. Electrical conductivity modeling in fractal non-saturated porous media

    Science.gov (United States)

    Wei, W.; Cai, J.; Hu, X.; Han, Q.

    2016-12-01

    The variety of electrical conductivity in non-saturated conditions is important to study electric conduction in natural sedimentary rocks. The electrical conductivity in completely saturated porous media is a porosity-function representing the complex connected behavior of single conducting phases (pore fluid). For partially saturated conditions, the electrical conductivity becomes even more complicated since the connectedness of pore. Archie's second law is an empirical electrical conductivity-porosity and -saturation model that has been used to predict the formation factor of non-saturated porous rock. However, the physical interpretation of its parameters, e.g., the cementation exponent m and the saturation exponent n, remains questionable. On basis of our previous work, we combine the pore-solid fractal (PSF) model to build an electrical conductivity model in non-saturated porous media. Our theoretical porosity- and saturation-dependent models contain endmember properties, such as fluid electrical conductivities, pore fractal dimension and tortuosity fractal dimension (representing the complex degree of electrical flowing path). We find the presented model with non-saturation-dependent electrical conductivity datasets indicate excellent match between theory and experiments. This means the value of pore fractal dimension and tortuosity fractal dimension change from medium to medium and depends not only on geometrical properties of pore structure but also characteristics of electrical current flowing in the non-saturated porous media.

  14. A Review Relevant to Turbomachinery Flows

    Directory of Open Access Journals (Sweden)

    James P. Johnston

    1998-01-01

    “buoyancy” currents in cases where density gradients occur. Turbulence modification involves reduction (stabilization or increase (destabilization of turbulent Reynolds stresses by Coriolis forces; effects which areof special importance for the understanding and prediction of flows in radial and mixed flow pump and compressor rotors. Stabilization/destabilization effects are discussed by a selective review of the basic research literature on flows in straight, radial, rotating channels and diffusers.

  15. Thermodynamics properties study of diatomic molecules with q-deformed modified Poschl-Teller plus Manning Rosen non-central potential in D dimensions using SUSYQM approach

    Science.gov (United States)

    Suparmi, A.; Cari, C.; Pratiwi, B. N.

    2016-04-01

    D-dimensional Dirac equation of q-deformed modified Poschl-Teller plus Manning Rosen non-central potential was solved using supersymmetric quantum mechanics (SUSY QM). The relativistic energy spectra were analyzed by using SUSY QM and shape invariant properties from radial part of D dimensional Dirac equation and the angular quantum numbers were obtained from angular part of D dimensional Dirac equation. The SUSY operators was used to generate the D dimensional relativistic wave functions both for radial and angular parts. In the non-relativistic limit, the relativistic energy equation was reduced to the non-relativistic energy. In the classical limit, the partition function of vibrational, the specific heat of vibrational, and the mean energy of vibrational of some diatomic molecules were calculated from the equation of non-relativistic energy with the help of error function and Mat-lab 2011.

  16. A novel structure of permanent-magnet-biased radial hybrid magnetic bearing

    International Nuclear Information System (INIS)

    Sun Jinji; Fang Jiancheng

    2011-01-01

    The paper proposes a novel structure for a permanent-magnet-biased radial hybrid magnetic bearing. Based on the air gap between the rotor and stator of traditional radial hybrid magnetic bearings, a subsidiary air gap is first constructed between the permanent magnets and the inner magnetic parts. Radial magnetic bearing makes X and Y magnetic fields independent of each other with separate stator poles, and the subsidiary air gap makes control flux to a close loop. As a result, magnetic field coupling of the X and Y channels is decreased significantly by the radial hybrid magnetic bearing and makes it easier to design control systems. Then an external rotor structure is designed into the radial hybrid magnetic bearing. The working principle of the radial hybrid magnetic bearing and its mathematical model is discussed. Finally, a non-linear magnetic network method is proposed to analyze the radial hybrid magnetic bearing. Simulation results indicate that magnetic fields in the two channels of the proposed radial hybrid magnetic bearing decouple well from each other.

  17. A novel structure of permanent-magnet-biased radial hybrid magnetic bearing

    Energy Technology Data Exchange (ETDEWEB)

    Sun Jinji, E-mail: sunjinji@aspe.buaa.edu.c [Key Laboratory of Fundamental Science for National Defense, Novel Inertial Instrument and Navigation System Technology, School of Instrument Science and Opto-electronics Engineering, Beijing University of Aeronautics and Astronautics, 100191 (China); Fang Jiancheng [Key Laboratory of Fundamental Science for National Defense, Novel Inertial Instrument and Navigation System Technology, School of Instrument Science and Opto-electronics Engineering, Beijing University of Aeronautics and Astronautics, 100191 (China)

    2011-01-15

    The paper proposes a novel structure for a permanent-magnet-biased radial hybrid magnetic bearing. Based on the air gap between the rotor and stator of traditional radial hybrid magnetic bearings, a subsidiary air gap is first constructed between the permanent magnets and the inner magnetic parts. Radial magnetic bearing makes X and Y magnetic fields independent of each other with separate stator poles, and the subsidiary air gap makes control flux to a close loop. As a result, magnetic field coupling of the X and Y channels is decreased significantly by the radial hybrid magnetic bearing and makes it easier to design control systems. Then an external rotor structure is designed into the radial hybrid magnetic bearing. The working principle of the radial hybrid magnetic bearing and its mathematical model is discussed. Finally, a non-linear magnetic network method is proposed to analyze the radial hybrid magnetic bearing. Simulation results indicate that magnetic fields in the two channels of the proposed radial hybrid magnetic bearing decouple well from each other.

  18. Diagonalizing quadratic bosonic operators by non-autonomous flow equations

    CERN Document Server

    Bach, Volker

    2016-01-01

    The authors study a non-autonomous, non-linear evolution equation on the space of operators on a complex Hilbert space. They specify assumptions that ensure the global existence of its solutions and allow them to derive its asymptotics at temporal infinity. They demonstrate that these assumptions are optimal in a suitable sense and more general than those used before. The evolution equation derives from the Brocketâe"Wegner flow that was proposed to diagonalize matrices and operators by a strongly continuous unitary flow. In fact, the solution of the non-linear flow equation leads to a diagonalization of Hamiltonian operators in boson quantum field theory which are quadratic in the field.

  19. Flowing to four dimensions

    International Nuclear Information System (INIS)

    Dudas, Emilian; Papineau, Chloe; Rubakov, Valery

    2006-01-01

    We analyze the properties of a model with four-dimensional brane-localized Higgs type potential of a six dimensional scalar field satisfying the Dirichlet boundary condition on the boundary of a transverse two-dimensional compact space. The regularization of the localized couplings generates classical renormalization group running. A tachyonic mass parameter grows in the infrared, in analogy with the QCD gauge coupling in four dimensions. We find a phase transition at a critical value of the bare mass parameter such that the running mass parameter becomes large in the infrared precisely at the compactification scale. Below the critical coupling, the theory is in symmetric phase, whereas above it spontaneous symmetry breaking occurs. Close to the phase transition point there is a very light mode in the spectrum. The massive Kaluza-Klein spectrum at the critical coupling becomes independent of the UV cutoff

  20. Stability of a radial immiscible drive

    Energy Technology Data Exchange (ETDEWEB)

    Bataille, J

    1968-11-01

    The stability of the displacement front between 2 immiscible fluids of radial flow between 2 parallel plates (Hele-Shaw model) is studied mathematically by superposing onto the circular displacement front a sinusoidal perturbation. The equations are reduced to dimensionless variables, and it is shown that the stable and unstable domains in a plot: dimensionless viscosity vs. dimensionless time are separated by a polygonal contour, each side of the contour being characterized by the (integer) number of perturbations along the circumference. There is a critical reduced time below which the perturbations are amortized but beyond which they are amplified. Experimental results have been in fair general agreement with theoretical results, the divergence between them being attributable to neglecting capillary phenomena, which may become very important at large radial distances. One test with miscible fluids has shown that even in this case, there is a critical time or an equivalent critical radius.

  1. Rayleigh-Taylor instability of cylindrical jets with radial motion

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiang M. [GE Nuclear, Wilmington, NC (United States); Schrock, V.E.; Peterson, P.F. [Univ. of California, Berkeley, CA (United States)

    1995-09-01

    Rayleigh-Taylor instability of an interface between fluids with different densities subjected to accelleration normal to itself has interested researchers for almost a century. The classic analyses of a flat interface by Rayleigh and Taylor have shown that this type of instability depends on the direction of acceleration and the density differences of the two fluids. Plesset later analyzed the stability of a spherically symmetric flows (and a spherical interface) and concluded that the instability also depends on the velocity of the interface as well as the direction and magnitude of radial acceleration. The instability induced by radial motion in cylindrical systems seems to have been neglected by previous researchers. This paper analyzes the Rayleigh-Taylor type of the spherical case, the radial velocity also plays an important role. As an application, the example of a liquid jet surface in an Inertial Confinement Fusion (ICF) reactor design is analyzed.

  2. Effects of radial diffuser hydraulic design on a double-suction centrifugal pump

    Science.gov (United States)

    Hou, H. C.; Zhang, Y. X.; Xu, C.; Zhang, J. Y.; Li, Z. L.

    2016-05-01

    In order to study effects of radial diffuser on hydraulic performance of crude oil pump, the steady CFD numerical method is applied and one large double-suction oil pump running in long-distance pipeline is considered. The research focuses on analysing the influence of its diffuser vane profile on hydraulic performance of oil pump. The four different types of cylindrical vane have been designed by in-house codes mainly including double arcs (DA), triple arcs (TA), equiangular spiral line (ES) and linear variable angle spiral line (LVS). During design process diffuser vane angles at inlet and outlet are tentatively given within a certain range and then the wrapping angle of the four types of diffuser vanes can be calculated automatically. Under the given inlet and outlet angles, the linear variable angle spiral line profile has the biggest wrapping angle and profile length which is good to delay channel diffusion but bring more friction hydraulic loss. Finally the vane camber line is thickened at the certain uniform thickness distribution and the 3D diffuser models are generated. The whole flow passage of oil pump with different types of diffusers under various flow rate conditions are numerically simulated based on RNG k-ɛ turbulent model and SIMPLEC algorithm. The numerical results show that different types of diffusers can bring about great difference on the hydraulic performance of oil pump, of which the ES profile diffuser with its proper setting angle shows the best hydraulic performance and its inner flow field is improved obviously. Compared with the head data from model sample, all designed diffusers can make a certain improvement on head characteristic. At the large flow rate conditions the hydraulic efficiency increases obviously and the best efficiency point shift to the large flow rate range. The ES profile diffuser embodies the better advantages on pump performance which can be explained theoretically that the diffuser actually acts as a diffusion

  3. Radial head button holing: a cause of irreducible anterior radial head dislocation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Su-Mi; Chai, Jee Won; You, Ja Yeon; Park, Jina [Seoul National University Seoul Metropolitan Government Boramae Medical Center, Department of Radiology, Seoul (Korea, Republic of); Bae, Kee Jeong [Seoul National University Seoul Metropolitan Government Boramae Medical Center, Department of Orthopedic Surgery, Seoul (Korea, Republic of)

    2016-10-15

    ''Buttonholing'' of the radial head through the anterior joint capsule is a known cause of irreducible anterior radial head dislocation associated with Monteggia injuries in pediatric patients. To the best of our knowledge, no report has described an injury consisting of buttonholing of the radial head through the annular ligament and a simultaneous radial head fracture in an adolescent. In the present case, the radiographic findings were a radial head fracture with anterior dislocation and lack of the anterior fat pad sign. Magnetic resonance imaging (MRI) clearly demonstrated anterior dislocation of the fractured radial head through the torn annular ligament. The anterior joint capsule and proximal portion of the annular ligament were interposed between the radial head and capitellum, preventing closed reduction of the radial head. Familiarity with this condition and imaging findings will aid clinicians to make a proper diagnosis and fast decision to perform an open reduction. (orig.)

  4. Radial reflection diffraction tomography

    Science.gov (United States)

    Lehman, Sean K.

    2012-12-18

    A wave-based tomographic imaging method and apparatus based upon one or more rotating radially outward oriented transmitting and receiving elements have been developed for non-destructive evaluation. At successive angular locations at a fixed radius, a predetermined transmitting element can launch a primary field and one or more predetermined receiving elements can collect the backscattered field in a "pitch/catch" operation. A Hilbert space inverse wave (HSIW) algorithm can construct images of the received scattered energy waves using operating modes chosen for a particular application. Applications include, improved intravascular imaging, bore hole tomography, and non-destructive evaluation (NDE) of parts having existing access holes.

  5. New type shift operators for circular well potential in two dimensions

    International Nuclear Information System (INIS)

    Sun Guohua; Dong Shihai

    2010-01-01

    New type shift operators for circular well potential in two dimensions are identified. These so-called shift operators connect those quantum systems with the different potentials but with same energy spectrum. It should be noted that these operators depend on both the radial circular and angular variables r and φ. We find that the operators P ± =P x ±P y play the role of the shift operators. The radial linear momentum P r =-ih(∂)/(∂r) , the angular momentum L z =-ih(∂)/(∂φ) and the Hamiltonian form a complete set of commuting operators with the SO(2) symmetry.

  6. Calculation of hydrostatic radial bearing for main circulating pump of 500 BIKS type

    International Nuclear Information System (INIS)

    Hnatek, T.; Sojka, P.

    1978-01-01

    Computer calculations of the radial hydrostatic bearing were performed for the main circulating pump of the 500 BIKS type designed for WWER reactors. The calculations were based on the Reynolds equation of thin layer hydrodynamic pressure in turbulent flow. Relations were derived for orifice reducer flow. In contrast to previous calculations conducted for laminar flow, the results are more accurate because the nature of bearing lubrication evidently is turbulent. The required loading of 21,700 N in normal pump operation is fully compensated at a full eccentricity of 0.77. Operating tests of the pump also confirmed that the actual radial forces on the rotor did not attain the desired loading. On the other hand, thanks to the bearing brass design, the bearing is capable of short-time operation with limit eccentricity, ie., at start, in deceleration and in emergency conditions. (Z.M.)

  7. Axial and radial water transport and internal water storage in tropical forest canopy trees.

    Science.gov (United States)

    Shelley A. James; Frederick C. Meinzer; Guillermo Goldstein; David Woodruff; Timothy Jones; Teresa Restom; Monica Mejia; Michael Clearwater; Paula. Campanello

    2003-01-01

    Heat and stable isotope tracers were used to study axial and radial water transport in relation to sapwood anatomical characteristics and internal water storage in four canopy tree species of a seasonally dry tropical forest in Panama. Anatomical characteristics of the wood and radial profiles of sap flow were measured at the base, upper trunk, and crown of a single...

  8. Modeling Marine Electromagnetic Survey with Radial Basis Function Networks

    Directory of Open Access Journals (Sweden)

    Agus Arif

    2014-11-01

    Full Text Available A marine electromagnetic survey is an engineering endeavour to discover the location and dimension of a hydrocarbon layer under an ocean floor. In this kind of survey, an array of electric and magnetic receivers are located on the sea floor and record the scattered, refracted and reflected electromagnetic wave, which has been transmitted by an electric dipole antenna towed by a vessel. The data recorded in receivers must be processed and further analysed to estimate the hydrocarbon location and dimension. To conduct those analyses successfuly, a radial basis function (RBF network could be employed to become a forward model of the input-output relationship of the data from a marine electromagnetic survey. This type of neural networks is working based on distances between its inputs and predetermined centres of some basis functions. A previous research had been conducted to model the same marine electromagnetic survey using another type of neural networks, which is a multi layer perceptron (MLP network. By comparing their validation and training performances (mean-squared errors and correlation coefficients, it is concluded that, in this case, the MLP network is comparatively better than the RBF network[1].[1] This manuscript is an extended version of our previous paper, entitled Radial Basis Function Networks for Modeling Marine Electromagnetic Survey, which had been presented on 2011 International Conference on Electrical Engineering and Informatics, 17-19 July 2011, Bandung, Indonesia.

  9. Effect of ion orbit loss on the structure in the H-mode tokamak edge pedestal profiles of rotation velocity, radial electric field, density, and temperature

    International Nuclear Information System (INIS)

    Stacey, Weston M.

    2013-01-01

    An investigation of the effect of ion orbit loss of thermal ions and the compensating return ion current directly on the radial ion flux flowing in the plasma, and thereby indirectly on the toroidal and poloidal rotation velocity profiles, the radial electric field, density, and temperature profiles, and the interpretation of diffusive and non-diffusive transport coefficients in the plasma edge, is described. Illustrative calculations for a high-confinement H-mode DIII-D [J. Luxon, Nucl. Fusion 42, 614 (2002)] plasma are presented and compared with experimental results. Taking into account, ion orbit loss of thermal ions and the compensating return ion current is found to have a significant effect on the structure of the radial profiles of these quantities in the edge plasma, indicating the necessity of taking ion orbit loss effects into account in interpreting or predicting these quantities

  10. Quantitative tomographic measurements of opaque multiphase flows

    Energy Technology Data Exchange (ETDEWEB)

    GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN; O' HERN,TIMOTHY J.; CECCIO,STEVEN L.

    2000-03-01

    An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDT and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.

  11. Bilateral radial neck fractures – A Case Report

    Directory of Open Access Journals (Sweden)

    ABY Ng

    2007-11-01

    Full Text Available Radial head and neck fractures are the most frequently seen elbow fractures. The usual cause of this injury is a fall onto an outstretched hand with a partly flexed elbow. We report here an unusual case of bilateral non-displaced radial neck fractures in a patient who presented with complaints of pain in both elbows following a simple fall. This case highlights the need for a high index of suspicion in the diagnosis of multiple injuries, no matter how `trivial` the mechanism of injury.

  12. Relations of the Big-Five personality dimensions to autodestructive behavior in clinical and non-clinical adolescent populations.

    Science.gov (United States)

    Kotrla Topic, Marina; Perkovic Kovacevic, Marina; Mlacic, Boris

    2012-10-01

    To examine the relationship between the Big-Five personality model and autodestructive behavior symptoms, namely Autodestructiveness and Suicidal Depression in two groups of participants: clinical and non-clinical adolescents. Two groups of participants, clinical (adolescents with diagnosis of psychiatric disorder based on clinical impression and according to valid diagnostic criteria, N=92) and non-clinical (high-school students, N=87), completed two sets of questionnaires: the Autodestructiveness Scale which provided data on Autodestructiveness and Suicidal Depression, and the International Personality Item Pool (IPIP), which provided data on the Big -Five personality dimensions. Clinical group showed significantly higher values on the Autodestructiveness scale in general, as well as on Suicidal Depression, Aggressiveness, and Borderline subscales than the non-clinical group. Some of the dimensions of the Big-Five personality model, ie, Emotional Stability, Conscientiousness, and Agreeableness showed significant relationship (hierarchical regression analyses, P values for β coefficients from 0.000 to 0.021) with Autodestructiveness and Suicidal Depression, even after controlling for the sex and group effects or, when analyzing Suicidal Depression, after controlling the effect of other subscales. The results indicate that dimensions of the Big-Five model are important when evaluating adolescent psychiatric patients and adolescents from general population at risk of self-destructive behavior.

  13. Inverse scattering solution of non-linear evolution equations in one space dimension: an introduction

    International Nuclear Information System (INIS)

    Alvarez-Estrada, R.F.

    1979-01-01

    A comprehensive review of the inverse scattering solution of certain non-linear evolution equations of physical interest in one space dimension is presented. We explain in some detail the interrelated techniques which allow to linearize exactly the following equations: (1) the Korteweg and de Vries equation; (2) the non-linear Schrodinger equation; (3) the modified Korteweg and de Vries equation; (4) the Sine-Gordon equation. We concentrate in discussing the pairs of linear operators which accomplish such an exact linearization and the solution of the associated initial value problem. The application of the method to other non-linear evolution equations is reviewed very briefly

  14. Toroidal magnetic confinement of non-neutral plasmas

    International Nuclear Information System (INIS)

    Yoshida, Zensho; Ogawa, Yuichi; Morikawa, Junji; Himura, Haruhiko; Kondo, Shigeo; Nakashima, Chihiro; Kakuno, Shuichi; Iqbal, Muhamad; Volponi, Francesco; Shibayama, Norihisa; Tahara, Shigeru

    1999-01-01

    A new method of toroidal non-neutral plasma trap has been developed with applying the chaos-induced radial transport of particles near a magnetic null point. A pure electron plasma is produced by injecting an electron beam. The poloidal gyroradius of an electron at the energy of 1 keV is of order 10 mm, which determines the length scale of the chaotic region. Amongst various applications of toroidal non-neutral plasmas, a possibility of producing very high-β plasma, which is suitable for advanced fusion, has been examined. The self-electric field of a non-neutral plasma can generate a strong shear flow. When the flow velocity is comparable to the Alfven speed (which is smaller than the ion sound speed, if β>1), a high-β equilibrium can be produced in which the plasma pressure is primarily balanced by the dynamic pressure of the flow. This configuration is described by a generalized Bernoulli law

  15. Double-trace flows and the swampland

    Science.gov (United States)

    Giombi, Simone; Perlmutter, Eric

    2018-03-01

    We explore the idea that large N, non-supersymmetric conformal field theories with a parametrically large gap to higher spin single-trace operators may be obtained as infrared fixed points of relevant double-trace deformations of superconformal field theories. After recalling the AdS interpretation and some potential pathologies of such flows, we introduce a concrete example that appears to avoid them: the ABJM theory at finite k, deformed by \\int O^2, where O is the superconformal primary in the stress-tensor multiplet. We address its relation to recent conjectures based on weak gravity bounds, and discuss the prospects for a wider class of similarly viable flows. Next, we proceed to analyze the spectrum and correlation functions of the putative IR CFT, to leading non-trivial order in 1 /N. This includes analytic computations of the change under double-trace flow of connected four-point functions of ABJM superconformal primaries; and of the IR anomalous dimensions of infinite classes of double-trace composite operators. These would be the first analytic results for anomalous dimensions of finite-spin composite operators in any large N CFT3 with an Einstein gravity dual.

  16. Analytical Solutions of a Space-Time Fractional Derivative of Groundwater Flow Equation

    Directory of Open Access Journals (Sweden)

    Abdon Atangana

    2014-01-01

    Full Text Available The classical Darcy law is generalized by regarding the water flow as a function of a noninteger order derivative of the piezometric head. This generalized law and the law of conservation of mass are then used to derive a new equation for groundwater flow. Two methods including Frobenius and Adomian decomposition method are used to obtain an asymptotic analytical solution to the generalized groundwater flow equation. The solution obtained via Frobenius method is valid in the vicinity of the borehole. This solution is in perfect agreement with the data observed from the pumping test performed by the institute for groundwater study on one of their boreholes settled on the test site of the University of the Free State. The test consisted of the pumping of the borehole at the constant discharge rate Q and monitoring the piezometric head for 350 minutes. Numerical solutions obtained via Adomian method are compared with the Barker generalized radial flow model for which a fractal dimension for the flow is assumed. Proposition for uncertainties in groundwater studies was given.

  17. Unparticles and anomalous dimensions in the cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Karch, Andreas [Department of Physics, University of Washington,3910 15th Ave. NE, Seattle, WA 98195-1560 (United States); Limtragool, Kridsanaphong; Phillips, Philip W. [Department of Physics and Institute for Condensed Matter Theory, University of Illinois,1110 W. Green Street, Urbana, IL 61801 (United States)

    2016-03-25

    Motivated by the overwhelming evidence some type of quantum criticality underlies the power-law for the optical conductivity and T−linear resistivity in the cuprates, we demonstrate here how a scale-invariant or unparticle sector can lead to a unifying description of the observed scaling forms. We adopt the continuous mass formalism or multi band (flavor) formalism of the unparticle sector by letting various microscopic parameters be mass-dependent. In particular, we show that an effective mass that varies with the flavor index as well as a running band edge and lifetime capture the AC and DC transport phenomenology of the cuprates. A key consequence of the running mass is that the effective dynamical exponent can differ from the underlying bare critical exponent, thereby providing a mechanism for realizing the fractional values of the dynamical exponent required in a previous analysis http://dx.doi.org/10.1103/PhysRevB.91.155126. We also predict that regardless of the bare dynamical exponent, z, a non-zero anomalous dimension for the current is required. Physically, the anomalous dimension arises because the charge depends on the flavor, mass or energy. The equivalent phenomenon in a d+1 gravitational construction is the running of the charge along the radial direction. The nature of the superconducting instability in the presence of scale invariant stuff shows that the transition temperature is not necessarily a monotonic function of the pairing interaction.

  18. Radial tear of posterior horn of the medial meniscus and osteonecrosis of the knee

    International Nuclear Information System (INIS)

    Motoyama, Tatsuo; Ihara, Hidetoshi; Kawashima, Mahito

    2003-01-01

    We studied the relation between a radial tear of the posterior horn of the medial meniscus and osteonecrosis of the knee. Thirty-eight knees of 37 patients were diagnosed as medial meniscus tear and received arthroscopic knee surgery. We divided them into two groups: knees having radial tear of the posterior horn of the medial meniscus (posterior horn group) and knees containing radial tear except for posterior horn, horizontal tear, degenerative tear, and flap tear of the medial meniscus (non-posterior horn group). The posterior horn group consisted of 14 knees (average age: 65.1 years old) and the non-posterior horn group consisted of 24 knees (average age: 59.6 years old). All cases underwent MRI before arthroscopy. MRI findings were classified into three types (typical osteonecrosis, small osteonecrosis, and non-osteonecrosis). In the posterior horn group, typical osteonecrosis were five knees and small osteonecrosis were five knees, while in the non-posterior horn group only three knees were small osteonecrosis. These findings suggest the relevance between radial tear of the posterior horn of the medial meniscus and osteonecrosis of the knee (Mann-Whitney test p<0.01). The etiology of spontaneous osteonecrosis of the knee joint is unknown, however one etiology could be the radial tear of the posterior horn of the medial meniscus. (author)

  19. Hydrodynamic simulation of elliptic flow

    CERN Document Server

    Kolb, P F; Ruuskanen, P V; Heinz, Ulrich W

    1999-01-01

    We use a hydrodynamic model to study the space-time evolution transverse to the beam direction in ultrarelativistic heavy-ion collisions with nonzero impact parameters. We focus on the influence of early pressure on the development of radial and elliptic flow. We show that at high energies elliptic flow is generated only during the initial stages of the expansion while radial flow continues to grow until freeze-out. Quantitative comparisons with SPS data from semiperipheral Pb+Pb collisions suggest the applicability of hydrodynamical concepts already $\\approx$ 1 fm/c after impact.

  20. A Numerical Study of Non-hydrostatic Shallow Flows in Open Channels

    Science.gov (United States)

    Zerihun, Yebegaeshet T.

    2017-06-01

    The flow field of many practical open channel flow problems, e.g. flow over natural bed forms or hydraulic structures, is characterised by curved streamlines that result in a non-hydrostatic pressure distribution. The essential vertical details of such a flow field need to be accounted for, so as to be able to treat the complex transition between hydrostatic and non-hydrostatic flow regimes. Apparently, the shallow-water equations, which assume a mild longitudinal slope and negligible vertical acceleration, are inappropriate to analyse these types of problems. Besides, most of the current Boussinesq-type models do not consider the effects of turbulence. A novel approach, stemming from the vertical integration of the Reynolds-averaged Navier-Stokes equations, is applied herein to develop a non-hydrostatic model which includes terms accounting for the effective stresses arising from the turbulent characteristics of the flow. The feasibility of the proposed model is examined by simulating flow situations that involve non-hydrostatic pressure and/or nonuniform velocity distributions. The computational results for free-surface and bed pressure profiles exhibit good correlations with experimental data, demonstrating that the present model is capable of simulating the salient features of free-surface flows over sharply-curved overflow structures and rigid-bed dunes.

  1. Macromolecular Design Strategies for Preventing Active-Material Crossover in Non-Aqueous All-Organic Redox-Flow Batteries.

    Science.gov (United States)

    Doris, Sean E; Ward, Ashleigh L; Baskin, Artem; Frischmann, Peter D; Gavvalapalli, Nagarjuna; Chénard, Etienne; Sevov, Christo S; Prendergast, David; Moore, Jeffrey S; Helms, Brett A

    2017-02-01

    Intermittent energy sources, including solar and wind, require scalable, low-cost, multi-hour energy storage solutions in order to be effectively incorporated into the grid. All-Organic non-aqueous redox-flow batteries offer a solution, but suffer from rapid capacity fade and low Coulombic efficiency due to the high permeability of redox-active species across the battery's membrane. Here we show that active-species crossover is arrested by scaling the membrane's pore size to molecular dimensions and in turn increasing the size of the active material above the membrane's pore-size exclusion limit. When oligomeric redox-active organics (RAOs) were paired with microporous polymer membranes, the rate of active-material crossover was reduced more than 9000-fold compared to traditional separators at minimal cost to ionic conductivity. This corresponds to an absolute rate of RAO crossover of less than 3 μmol cm -2  day -1 (for a 1.0 m concentration gradient), which exceeds performance targets recently set forth by the battery industry. This strategy was generalizable to both high and low-potential RAOs in a variety of non-aqueous electrolytes, highlighting the versatility of macromolecular design in implementing next-generation redox-flow batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Optimal design of high damping force engine mount featuring MR valve structure with both annular and radial flow paths

    International Nuclear Information System (INIS)

    Nguyen, Q H; Choi, S B; Lee, Y S; Han, M S

    2013-01-01

    This paper focuses on the optimal design of a compact and high damping force engine mount featuring magnetorheological fluid (MRF). In the mount, a MR valve structure with both annular and radial flows is employed to generate a high damping force. First, the configuration and working principle of the proposed MR mount is introduced. The MRF flows in the mount are then analyzed and the governing equations of the MR mount are derived based on the Bingham plastic behavior of the MRF. An optimal design of the MR mount is then performed to find the optimal structure of the MR valve to generate a maximum damping force with certain design constraints. In addition, the gap size of MRF ducts is empirically chosen considering the ‘lockup’ problem of the mount at high frequency. Performance of the optimized MR mount is then evaluated based on finite element analysis and discussions on performance results of the optimized MR mount are given. The effectiveness of the proposed MR engine mount is demonstrated via computer simulation by presenting damping force and power consumption. (paper)

  3. Optimal design of high damping force engine mount featuring MR valve structure with both annular and radial flow paths

    Science.gov (United States)

    Nguyen, Q. H.; Choi, S. B.; Lee, Y. S.; Han, M. S.

    2013-11-01

    This paper focuses on the optimal design of a compact and high damping force engine mount featuring magnetorheological fluid (MRF). In the mount, a MR valve structure with both annular and radial flows is employed to generate a high damping force. First, the configuration and working principle of the proposed MR mount is introduced. The MRF flows in the mount are then analyzed and the governing equations of the MR mount are derived based on the Bingham plastic behavior of the MRF. An optimal design of the MR mount is then performed to find the optimal structure of the MR valve to generate a maximum damping force with certain design constraints. In addition, the gap size of MRF ducts is empirically chosen considering the ‘lockup’ problem of the mount at high frequency. Performance of the optimized MR mount is then evaluated based on finite element analysis and discussions on performance results of the optimized MR mount are given. The effectiveness of the proposed MR engine mount is demonstrated via computer simulation by presenting damping force and power consumption.

  4. The structural and phase state formed in construction titanium alloy by radial forging

    Energy Technology Data Exchange (ETDEWEB)

    Shlyakhova, Galina V.; Danilov, Vladimir I.; Orlova, Dina V.; Zuev, Lev B. [Institute of Strength Physics and Materials Science SB RAS, Tomsk (Russian Federation); Zavodchikov, Aleksandr S. [Perm State Technical University, Perm (Russian Federation)

    2011-07-01

    The feasibility of rod manufacture from construction titanium alloy using radial forging on a high duty machine SXK16 was investigated. The investigations were carried on for titanium rod samples using the methods of metallography, electron transmission microscophy and X-ray analysis. The results obtained are described herein. It is found that radial forging results in the formation of homogeneous fine-grained structure.Using radial forging process, high-quality items are produced. As-worked material has submicrocrystalline globular structure and an optimal α:β phase ratio. Besides, the technology is more cost-effective relative to conventional flow charts. Key words: forging, titanium alloy, fine-grain structure, substructure, pore size.

  5. A large-strain radial consolidation theory for soft clays improved by vertical drains

    OpenAIRE

    Geng, X; Yu, H-S

    2017-01-01

    A system of vertical drains with combined vacuum and surcharge preloading is an effective solution for promoting radial flow, accelerating consolidation. However, when a mixture of soil and water is deposited at a low initial density, a significant amount of deformation or surface settlement occurs. Therefore, it is necessary to introduce large-strain theory, which has been widely used to manage dredged disposal sites in one-dimensional theory, into radial consolidation theory. A governing eq...

  6. Numerical analysis of non-Newtonian rheology effect on hydrocyclone flow field

    Directory of Open Access Journals (Sweden)

    Lin Yang

    2015-03-01

    Full Text Available In view of the limitations of the existing Newton fluid effects on the vortex flow mechanism study, numerical analysis of non Newton fluid effects was presented. Using Reynolds stress turbulence model (RSM and mixed multiphase flow model (Mixture of FLUENT (fluid calculation software and combined with the constitutive equation of apparent viscosity of non-Newtonian fluid, the typical non-Newtonian fluid (drilling fluid, polymer flooding sewage and crude oil as medium and Newton flow field (water as medium were compared by quantitative analysis. Based on the research results of water, the effects of non-Newtonian rheology on the key parameters including the combined vortex motion index n and tangential velocity were analyzed. The study shows that: non-Newtonian rheology has a great effect on tangential velocity and n value, and tangential velocity decreases with non-Newtonian increasing. The three kinds of n values (constant segment are: 0.564(water, 0.769(polymer flooding sewage, 0.708(drilling fluid and their variation amplitudes are larger than Newtonian fluid. The same time, non-Newtonian rheology will lead to the phenomenon of turbulent drag reduction in the vortex flow field. Compared with the existing formula calculation results shown, the calculation result of non-Newtonian rheology is most consistent with the simulation result, and the original theory has large deviations. The study provides reference for theory research of non-Newtonian cyclone separation flow field.

  7. Computational Fluid Dynamics Simulations of Gas-Phase Radial Dispersion in Fixed Beds with Wall Effects

    Directory of Open Access Journals (Sweden)

    Anthony G. Dixon

    2017-10-01

    Full Text Available The effective medium approach to radial fixed bed dispersion models, in which radial dispersion of mass is superimposed on axial plug flow, is based on a constant effective dispersion coefficient, DT. For packed beds of a small tube-to-particle diameter ratio (N, the experimentally-observed decrease in this parameter near the tube wall is accounted for by a lumped resistance located at the tube wall, the wall mass transfer coefficient km. This work presents validated computational fluid dynamics (CFD simulations to obtain detailed radial velocity and concentration profiles for eight different computer-generated packed tubes of spheres in the range 5.04 ≤ N ≤ 9.3 and over a range of flow rates 87 ≤ Re ≤ 870 where Re is based on superficial velocity and the particle diameter dp. Initial runs with pure air gave axial velocity profiles vz(r averaged over the length of the packing. Then, simulations with the tube wall coated with methane yielded radial concentration profiles. A model with only DT could not describe the radial concentration profiles. The two-parameter model with DT and km agreed better with the bed-center concentration profiles, but not with the sharp decreases in concentration close to the tube wall. A three-parameter model based on classical two-layer mixing length theory, with a wall-function for the decrease in transverse radial convective transport in the near-wall region, showed greatly improved ability to reproduce the near-wall concentration profiles.

  8. Design of Radial Inflow Turbine for 30 kW Microturbine

    Directory of Open Access Journals (Sweden)

    Sangsawangmatum Thanate

    2017-01-01

    Full Text Available Microturbines are small gas turbines that have the capacity range of 25-300 kW. The main components of microturbine are compressor, turbine, combustor and recuperator. This research paper focuses on the design of radial inflow turbine that operates in 30 kW microturbine. In order to operate the 30 kW microturbine with the back work ratio of 0.5, the radial inflow turbine should be designed to produce power at 60 kW. With the help of theory of turbo-machinery and the analytical methods, the design parameters are derived. The design results are constructed in 3D geometry. The 3D fluid-geometry is validated by computational fluid dynamics (CFD simulation. The simulation results show the airflow path, the temperature distribution, the pressure distribution and Mach number. According to the simulation results, there is no flow blockage between vanes and no shock flow occurs in the designed turbine.

  9. Modelling and analysis of radial thermal stresses and temperature ...

    African Journals Online (AJOL)

    user

    it acts as an insulating medium and prevents the heat flow, hence the need of providing insulation coating on valves is ... geometry metal components (piston, liner and cylinder head) and found a satisfactory .... model. Step8: Find the radial thermal stress at all the nodal point with the use of temperature ..... Cast iron St. 70.

  10. Turbulence spectra, transport, and E × B flows in helical plasmas

    International Nuclear Information System (INIS)

    Watanabe, T.-H.; Nunami, M.; Sugama, H.; Satake, S.; Matsuoka, S.; Ishizawa, A.; Tanaka, K.; Maeyama, Shinya

    2012-11-01

    Gyrokinetic simulation of ion temperature gradient turbulence and zonal flows for helical plasmas has been validated against the Large Helical Device experiments with high ion temperature, where a reduced modeling of ion heat transport is also considered. It is confirmed by the entropy transfer analysis that the turbulence spectrum elongated in the radial wavenumber space is associated with successive interactions with zonal flows. A novel multi-scale simulation for turbulence and zonal flows in poloidally-rotating helical plasmas has demonstrated strong zonal flow generation by turbulence, which implies that turbulent transport processes in non-axisymmetric systems are coupled to neoclassical transport through the macroscopic E × B flows determined by the ambipolarty condition for neoclassical particle fluxes. (author)

  11. Measurement of Wear in Radial Journal Bearings

    NARCIS (Netherlands)

    Ligterink, D.J.; Ligterink, D.J.; de Gee, A.W.J.

    1996-01-01

    this article, the measurement of wear in radial journal bearings is discussed, where a distinction is made between stationary and non-stationary contact conditions. Starting with Holm/Archard's wear law, equations are derived for the calculation of the specific wear rate k of the bearing material as

  12. A DNS Investigation of Non-Newtonian Turbulent Open Channel Flow

    Science.gov (United States)

    Guang, Raymond; Rudman, Murray; Chryss, Andrew; Slatter, Paul; Bhattacharya, Sati

    2010-06-01

    The flow of non-Newtonian fluids in open channels has great significance in many industrial settings from water treatment to mine waste disposal. The turbulent behaviour during transportation of these materials is of interest for many reasons, one of which is keeping settleable particles in suspension. The mechanism governing particle transport in turbulent flow has been studied in the past, but is not well understood. A better understanding of the mechanism operating in the turbulent flow of non-Newtonian suspensions in open channel would lead to improved design of many of the systems used in the mining and mineral processing industries. The objective of this paper is to introduce our work on the Direct Numerical Simulation of turbulent flow of non-Newtonian fluids in an open channel. The numerical method is based on spectral element/Fourier formulation. The flow simulation of a Herschel-Bulkley fluid agrees qualitatively with experimental results. The simulation results over-predict the flow velocity by approximately 15% for the cases considered, although the source of the discrepancy is difficult to ascertain. The effect of variation in yield stress and assumed flow depth are investigated and used to assess the sensitivity of the flow to these physical parameters. This methodology is seen to be useful in designing and optimising the transport of slurries in open channels.

  13. Non-darcy flow behavior mean high-flux injection wells in porous and fractured formations

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yu-Shu

    2003-04-25

    This paper presents a study of non-Darcy fluid flow through porous and fractured rock, which may occur near wells during high-flux injection of waste fluids into underground formations. Both numerical and analytical models are used in this study. General non-Darcy flow is described using the Forchheimer equation, implemented in a three-dimensional, multiphase flow reservoir simulator. The non-Darcy flow through a fractured reservoir is handled using a general dual continuum approach, covering commonly used conceptual models, such as double porosity, dual permeability, explicit fracture, etc. Under single-phase flow conditions, an approximate analytical solution, as an extension of the Warren-Root solution, is discussed. The objectives of this study are (1) to obtain insights into the effect of non-Darcy flow on transient pressure behavior through porous and fractured reservoirs and (2) to provide type curves for well test analyses of non-Darcy flow wells. The type curves generated include various types of drawdown, injection, and buildup tests with non-Darcy flow occurring in porous and fractured reservoirs. In addition, non-Darcy flow into partially penetrating wells is also considered. The transient-pressure type curves for flow in fractured reservoirs are based on the double-porosity model. Type curves provided in this work for non-Darcy flow in porous and fractured reservoirs will find their applications in well test interpretation using a type-curve matching technique.

  14. Radial scar/complex sclerosing lesion of the breast--value of ultrasound.

    Science.gov (United States)

    Grunwald, S; Heyer, H; Kühl, A; Schwesinger, G; Schimming, A; Köhler, G; Ohlinger, R

    2007-04-01

    Although benign, radial scar/complex sclerosing adenosis is a lesion which histopathologically resembles tubular carcinoma. On physical examination, it is difficult to distinguish radial scar from a malignant tumour. Mammography cannot differentiate radial scar from malignancy. This clinical study aims to delineate the role of preoperative ultrasonography with emphasis on the question whether ultrasonography could lower the number of false-positive readings and therefore the number of open biopsies required. In this examination, we present the clinical, mammographic, ultrasonographic, and histopathological features of 6 cases of radial scars. Although most authors describe radial scars as non-palpable, 2 of 6 lesions were indeed palpable. On mammograms, radial scars have a spiculated appearance, a feature observed in all of our cases. Numerous ultrasonographic characteristics are listed in the literature, but ultrasonography is not reported to have clear-cut advantages. Although this study did not elucidate any unique ultrasonographic features to characterise these lesions, the analysis of all ultrasonographic results made us recognise a set of "nearly specific ultrasonographic features" of radial scars. Current B-mode imaging does not appear to lead to the desirable reduction of the rate of unnecessary open biopsies.

  15. Experiments and theory in non-linear thermal transport, heat flow instabilities and plasma jet formation in inertial confinement

    International Nuclear Information System (INIS)

    Haines, M.G.; Bond, D.J.; Chuaqui, H.H.

    1983-01-01

    The paper reports experimental and theoretical contributions to the understanding of non-linear heat flow and the phenomenon of jet-like filamentary structures in inertial-confinement fusion. When lateral heat flow is minimized, through applying more carefully a radially symmetric irradiation at 1.05 and 0.53 μm on a spherical target, it is found that a heat flux in excess of 10% of the free-streaming limit is consistent with simulations and experimental measurements with particle and X-ray diagnostics. A similar result has been found in a scaled experiment in a plasma of electron density 4x10 16 cm - 3 when the condition Tsub(e) approx.=Tsub(i) is satisfied. These results are in marked contrast to earlier assertions, mainly from plane-target measurements, that the flux limiter is 3%, but in agreement with theoretical calculations of steady non-linear heat flow using a discrete-ordinate method. Thus, no anomalous inhibition of heat flow is found, consistent with theoretical predictions that ion-acoustic turbulence is of no importance in dense (n>=10 21 cm - 3 , T approx.= 1 keV) plasmas. However, in the low-density scaled experiment, under conditions where Tsub(e)>>Tsub(i) is found that ion-acoustic turbulence is present, and the flux limiter is 4%. By using shadowgraphic and schlieren techniques with an optical diagnostic probe, fine-scale jet-like structures have been observed on a scale-length of approx. 10 μm on spherical targets. They occur even outside the laser-irradiated region, and are not connected with irregularities in the laser beam; they are more pronounced with higher-Z materials and with shorter-wavelength lasers, and have megagauss magnetic fields associated with them. Electromagnetic instabilities driven by heat flow are the probable cause of the jets, and of the three known modes the thermal instability, enhanced by radiation loss, agrees more closely with the experiments than the Weibel and thermomagnetic modes, since the latter only occur

  16. Determination of radial profile of ICF hot spot's state by multi-objective parameters optimization

    International Nuclear Information System (INIS)

    Dong Jianjun; Deng Bo; Cao Zhurong; Ding Yongkun; Jiang Shaoen

    2014-01-01

    A method using multi-objective parameters optimization is presented to determine the radial profile of hot spot temperature and density. And a parameter space which contain five variables: the temperatures at center and the interface of fuel and remain ablator, the maximum model density of remain ablator, the mass ratio of remain ablator to initial ablator and the position of interface between fuel and the remain ablator, is used to described the hot spot radial temperature and density. Two objective functions are set as the variances of normalized intensity profile from experiment X-ray images and the theory calculation. Another objective function is set as the variance of experiment average temperature of hot spot and the average temperature calculated by theoretical model. The optimized parameters are obtained by multi-objective genetic algorithm searching for the five dimension parameter space, thereby the optimized radial temperature and density profiles can be determined. The radial temperature and density profiles of hot spot by experiment data measured by KB microscope cooperating with X-ray film are presented. It is observed that the temperature profile is strongly correlated to the objective functions. (authors)

  17. Computing modal dispersion characteristics of radially Asymmetric ...

    African Journals Online (AJOL)

    We developed a matrix theory that applies to with non-circular/circular but concentric layers fibers. And we compute the dispersion characteristics of radially unconventional fiber, known as Asymmetric Bragg fiber. An attempt has been made to determine how the modal characteristics change as circular Bragg fiber is ...

  18. Neurogenic radial glia in the outer subventricular zone of human neocortex.

    Science.gov (United States)

    Hansen, David V; Lui, Jan H; Parker, Philip R L; Kriegstein, Arnold R

    2010-03-25

    Neurons in the developing rodent cortex are generated from radial glial cells that function as neural stem cells. These epithelial cells line the cerebral ventricles and generate intermediate progenitor cells that migrate into the subventricular zone (SVZ) and proliferate to increase neuronal number. The developing human SVZ has a massively expanded outer region (OSVZ) thought to contribute to cortical size and complexity. However, OSVZ progenitor cell types and their contribution to neurogenesis are not well understood. Here we show that large numbers of radial glia-like cells and intermediate progenitor cells populate the human OSVZ. We find that OSVZ radial glia-like cells have a long basal process but, surprisingly, are non-epithelial as they lack contact with the ventricular surface. Using real-time imaging and clonal analysis, we demonstrate that these cells can undergo proliferative divisions and self-renewing asymmetric divisions to generate neuronal progenitor cells that can proliferate further. We also show that inhibition of Notch signalling in OSVZ progenitor cells induces their neuronal differentiation. The establishment of non-ventricular radial glia-like cells may have been a critical evolutionary advance underlying increased cortical size and complexity in the human brain.

  19. Numerical Analyses of the Non-Newtonian Flow Performance and Thermal Effect on a Bearing Coated with a High Tin Content

    Directory of Open Access Journals (Sweden)

    K. Mehala

    2016-12-01

    Full Text Available The hydrodynamic bearings are stressed by severe workings conditions, such as speed, load, and the oil will be increasingly solicit by pressure and shear. The Newtonian behavior is far from being awarded in this case, the most loaded bearings operating at very high speeds; the shear rate of the oil is of higher order. A numerical analysis of the behavior of non-Newtonian fluid for plain cylindrical journal bearing finite dimension coated with antifriction material with a high tin content, for to facilitate the accommodation of the surfaces and save the silk of the shaft in the case of a contact. this analyses is implemented using the code-ANSYS CFX, by solving the energy equation with the finite difference method, considering that laminar regime and the fluid is non Newtonian by using the power law Ostwald model, the coefficient n is equal to 1.25 and for different model such as Bingham, cross and Hereshek-Bulkley model. This study aims to better predict the non-Newtonian behavior of the oil film in bearings operating under more severe conditions. The purpose conducted during this study is to predict the effect of non-Newtonian behavior of the film; the journal bearing operating under severe conditions, the speed of rotation varies from 1000 to 9000 rpm and the bearing working under radial load 2 to 10 kN. Temperature and the pressure within the fluid film assumed non-Newtonian are high, with a coefficient n greater than 1 that is to say for viscoelastic fluids.

  20. Turbine exhaust diffuser with region of reduced flow area and outer boundary gas flow

    Science.gov (United States)

    Orosa, John

    2014-03-11

    An exhaust diffuser system and method for a turbine engine. The outer boundary may include a region in which the outer boundary extends radially inwardly toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. At least one gas jet is provided including a jet exit located on the outer boundary. The jet exit may discharge a flow of gas downstream substantially parallel to an inner surface of the outer boundary to direct a portion of the exhaust flow in the diffuser toward the outer boundary to effect a radially outward flow of at least a portion of the exhaust gas flow toward the outer boundary to balance an aerodynamic load between the outer and inner boundaries.

  1. Flow aerodynamics modeling of an MHD swirl combustor - calculations and experimental verification

    International Nuclear Information System (INIS)

    Gupta, A.K.; Beer, J.M.; Louis, J.F.; Busnaina, A.A.; Lilley, D.G.

    1981-01-01

    This paper describes a computer code for calculating the flow dynamics of constant density flow in the second stage trumpet shaped nozzle section of a two stage MHD swirl combustor for application to a disk generator. The primitive pressure-velocity variable, finite difference computer code has been developed to allow the computation of inert nonreacting turbulent swirling flows in an axisymmetric MHD model swirl combustor. The method and program involve a staggered grid system for axial and radial velocities, and a line relaxation technique for efficient solution of the equations. Tue produces as output the flow field map of the non-dimensional stream function, axial and swirl velocity. 19 refs

  2. A solution of the dispersion-convection equation of radial tracer transportation by the finite element variational method

    International Nuclear Information System (INIS)

    Hubert, J.

    1979-01-01

    The variational finite element method (of the Rayleigh-Ritz type) has been applied to solve the standard diffusion-convection equation of radial flow in a dispersive medium. It was shown that the imposing of the boundary condition ΔC/Δx = 0 (=null concentration gradient) introduced great errors in computation results. To remedy it this condition was imposed at the free end of the artifical domain. Its other end joined to the downstream boundary of the investigated domain. The results of calculations compared with the known analytical solutions of the parallel flow show their good accuracy. The method was used to discuss the applicability of the approximate analytical solutions of the radial flow. (author)

  3. Radial expansion for spinning conformal blocks

    CERN Document Server

    Costa, Miguel S.; Penedones, João; Trevisani, Emilio

    2016-07-12

    This paper develops a method to compute any bosonic conformal block as a series expansion in the optimal radial coordinate introduced by Hogervorst and Rychkov. The method reduces to the known result when the external operators are all the same scalar operator, but it allows to compute conformal blocks for external operators with spin. Moreover, we explain how to write closed form recursion relations for the coefficients of the expansions. We study three examples of four point functions in detail: one vector and three scalars; two vectors and two scalars; two spin 2 tensors and two scalars. Finally, for the case of two external vectors, we also provide a more efficient way to generate the series expansion using the analytic structure of the blocks as a function of the scaling dimension of the exchanged operator.

  4. Intra-assembly flow redistribution in LMFBRs: a simple computational approach

    International Nuclear Information System (INIS)

    Khatib-Rahbar, M.; Cazzoli, E.G.

    1983-01-01

    The liquid metal fast breeder reactor (LMFBR) core consists of fuel, blanket, control, and shielding assemblies packed in a hexagonal configuration. Radial blanket assemblies occupy peripheral locations in the reactor core and are characterized by steep power gradients, while inner blanket assemblies are located within the fuel assembly region and have higher power levels but flatter distributions. It is due to the presence of this radial power gradient that large sodium temperature distributions exist at full power operation. However, at low power, low flow natural convection conditions, a significant flow redistribution takes place leading to considerable radial temperature flattening. The purpose of the present study is to formulate a simple flow-regime dependent model supported by experimental data for prediction of sodium temperature flattening due to buoyancy-induced flow redistribution in LMFBR subassemblies with significant radial power gradient

  5. Improved abdominal MRI in non-breath-holding children using a radial k-space sampling technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Hyuk; Choi, Young Hun; Cheon, Jung Eun; Lee, So Mi; Cho, Hyun Hae; Kim, Woo Sun; Kim, In One [Seoul National University Children' s Hospital, Department of Radiology, Seoul (Korea, Republic of); Shin, Su Mi [SMG-SNU Boramae Medical Center, Department of Radiology, Seoul (Korea, Republic of)

    2015-06-15

    Radial k-space sampling techniques have been shown to reduce motion artifacts in adult abdominal MRI. To compare a T2-weighted radial k-space sampling MRI pulse sequence (BLADE) with standard respiratory-triggered T2-weighted turbo spin echo (TSE) in pediatric abdominal imaging. Axial BLADE and respiratory-triggered turbo spin echo sequences were performed without fat suppression in 32 abdominal MR examinations in children. We retrospectively assessed overall image quality, the presence of respiratory, peristaltic and radial artifact, and lesion conspicuity. We evaluated signal uniformity of each sequence. BLADE showed improved overall image quality (3.35 ± 0.85 vs. 2.59 ± 0.59, P < 0.001), reduced respiratory motion artifact (0.51 ± 0.56 vs. 1.89 ± 0.68, P < 0.001), and improved lesion conspicuity (3.54 ± 0.88 vs. 2.92 ± 0.77, P = 0.006) compared to respiratory triggering turbo spin-echo (TSE) sequences. The bowel motion artifact scores were similar for both sequences (1.65 ± 0.77 vs. 1.79 ± 0.74, P = 0.691). BLADE introduced a radial artifact that was not observed on the respiratory triggering-TSE images (1.10 ± 0.85 vs. 0, P < 0.001). BLADE was associated with diminished signal variation compared with respiratory triggering-TSE in the liver, spleen and air (P < 0.001). The radial k-space sampling technique improved the quality and reduced respiratory motion artifacts in young children compared with conventional respiratory-triggered turbo spin-echo sequences. (orig.)

  6. Hybrid simulations of radial transport driven by the Rayleigh-Taylor instability

    Science.gov (United States)

    Delamere, P. A.; Stauffer, B. H.; Ma, X.

    2017-12-01

    Plasma transport in the rapidly rotating giant magnetospheres is thought to involve a centrifugally-driven flux tube interchange instability, similar to the Rayleigh-Taylor (RT) instability. In three dimensions, the convective flow patterns associated with the RT instability can produce strong guide field reconnection, allowing plasma mass to move radially outward while conserving magnetic flux (Ma et al., 2016). We present a set of hybrid (kinetic ion / fluid electron) plasma simulations of the RT instability using high plasma beta conditions appropriate for Jupiter's inner and middle magnetosphere. A density gradient, combined with a centrifugal force, provide appropriate RT onset conditions. Pressure balance is achieved by initializing two ion populations: one with fixed temperature, but varying density, and the other with fixed density, but a temperature gradient that offsets the density gradient from the first population and the centrifugal force (effective gravity). We first analyze two-dimensional results for the plane perpendicular to the magnetic field by comparing growth rates as a function of wave vector following Huba et al. (1998). Prescribed perpendicular wave modes are seeded with an initial velocity perturbation. We then extend the model to three dimensions, introducing a stabilizing parallel wave vector. Boundary conditions in the parallel direction prohibit motion of the magnetic field line footprints to model the eigenmodes of the magnetodisc's resonant cavity. We again compare growth rates based on perpendicular wave number, but also on the parallel extent of the resonant cavity, which fixes the size of the largest parallel wavelength. Finally, we search for evidence of strong guide field magnetic reconnection within the domain by identifying areas with large parallel electric fields or changes in magnetic field topology.

  7. Non-gated fetal MRI of umbilical blood flow in an acardiac twin

    Energy Technology Data Exchange (ETDEWEB)

    Hata, Nobuhiko [University of Tokyo, Graduate School of Information Science and Technology, Tokyo (Japan); Brigham and Women' s Hospital, Department of Radiology, Boston, MA (United States); Wada, Toru [University of Tokyo, Graduate School of Information Science and Technology, Tokyo (Japan); Kashima, Kyoko; Okada, Yoshiyuki [National Center for Child Health and Development, Department of Radiology, Tokyo (Japan); Unno, Nobuya [Nagano Children' s Hospital, Center for Perinatal Medicine, Nagano (Japan); Kitagawa, Michihiro [National Center for Child Health and Development, Department of Prenatal Medicine and Maternal Care, Tokyo (Japan); Chiba, Toshio [National Center for Child Health and Development, Department of Strategic Medicine, Tokyo (Japan)

    2005-08-01

    Currently, the standard method of diagnosis of twin reversed arterial perfusion (TRAP) sequence is ultrasound imaging. The use of MRI for flow visualization may be a useful adjunct to US imaging for assessing the presence of retrograde blood flow in the acardiac fetus and/or umbilical artery. The technical challenge in fetal MRI flow imaging, however, is that fetal electrocardiogram (ECG) monitoring required for flow imaging is currently unavailable in the MRI scanner. A non-gated MRI flow imaging technique that requires no ECG monitoring was developed using the t-test to detect blood flow in 20 slices of phase-contrast MRI images randomly scanned at the same location over multiple cardiac cycles. A feasibility study was performed in a 24-week acardiac twin that showed no umbilical flow sonographically. Non-gated MRI flow images clearly indicated the presence of blood flow in the umbilical artery to the acardiac twin; however, there was no blood flow beyond the abdomen. This study leads us to conjecture that non-gated MRI flow imaging is sensitive in detecting low-range blood flow velocity and can be an adjunct to Doppler US imaging. (orig.)

  8. Non-gated fetal MRI of umbilical blood flow in an acardiac twin

    International Nuclear Information System (INIS)

    Hata, Nobuhiko; Wada, Toru; Kashima, Kyoko; Okada, Yoshiyuki; Unno, Nobuya; Kitagawa, Michihiro; Chiba, Toshio

    2005-01-01

    Currently, the standard method of diagnosis of twin reversed arterial perfusion (TRAP) sequence is ultrasound imaging. The use of MRI for flow visualization may be a useful adjunct to US imaging for assessing the presence of retrograde blood flow in the acardiac fetus and/or umbilical artery. The technical challenge in fetal MRI flow imaging, however, is that fetal electrocardiogram (ECG) monitoring required for flow imaging is currently unavailable in the MRI scanner. A non-gated MRI flow imaging technique that requires no ECG monitoring was developed using the t-test to detect blood flow in 20 slices of phase-contrast MRI images randomly scanned at the same location over multiple cardiac cycles. A feasibility study was performed in a 24-week acardiac twin that showed no umbilical flow sonographically. Non-gated MRI flow images clearly indicated the presence of blood flow in the umbilical artery to the acardiac twin; however, there was no blood flow beyond the abdomen. This study leads us to conjecture that non-gated MRI flow imaging is sensitive in detecting low-range blood flow velocity and can be an adjunct to Doppler US imaging. (orig.)

  9. Generation of parasitic axial flow by drift wave turbulence with broken symmetry: Theory and experiment

    Science.gov (United States)

    Hong, R.; Li, J. C.; Hajjar, R.; Chakraborty Thakur, S.; Diamond, P. H.; Tynan, G. R.

    2018-05-01

    Detailed measurements of intrinsic axial flow generation parallel to the magnetic field in the controlled shear decorrelation experiment linear plasma device with no axial momentum input are presented and compared to theory. The results show a causal link from the density gradient to drift-wave turbulence with broken spectral symmetry and development of the axial mean parallel flow. As the density gradient steepens, the axial and azimuthal Reynolds stresses increase and radially sheared azimuthal and axial mean flows develop. A turbulent axial momentum balance analysis shows that the axial Reynolds stress drives the radially sheared axial mean flow. The turbulent drive (Reynolds power) for the azimuthal flow is an order of magnitude greater than that for axial flow, suggesting that the turbulence fluctuation levels are set by azimuthal flow shear regulation. The direct energy exchange between axial and azimuthal mean flows is shown to be insignificant. Therefore, the axial flow is parasitic to the turbulence-zonal flow system and is driven primarily by the axial turbulent stress generated by that system. The non-diffusive, residual part of the axial Reynolds stress is found to be proportional to the density gradient and is formed due to dynamical asymmetry in the drift-wave turbulence.

  10. The fourth-order non-linear sigma models and asymptotic freedom in four dimensions

    International Nuclear Information System (INIS)

    Buchbinder, I.L.; Ketov, S.V.

    1991-01-01

    Starting with the most general Lagrangian of the fourth-order non-linear sigma model in four space-time dimensions, we calculate the one-loop, on-shell ultra-violet-divergent part of the effective action. The formalism is based on the background field method and the generalised Schwinger-De Witt technique. The multiplicatively renormalisable case is investigated in some detail. The renormalisation group equations are obtained, and the conditions for a realisation of asymptotic freedom are considered. (orig.)

  11. Non-Newtonian Hele-Shaw Flow and the Saffman-Taylor Instability

    International Nuclear Information System (INIS)

    Kondic, L.; Shelley, M.J.; Palffy-Muhoray, P.

    1998-01-01

    We explore the Saffman-Taylor instability of a gas bubble expanding into a shear thinning liquid in a radial Hele-Shaw cell. Using Darcy close-quote s law generalized for non-Newtonian fluids, we perform simulations of the full dynamical problem. The simulations show that shear thinning significantly influences the developing interfacial patterns. Shear thinning can suppress tip splitting, and produce fingers which oscillate during growth and shed side branches. Emergent length scales show reasonable agreement with a general linear stability analysis. copyright 1998 The American Physical Society

  12. AUTO-EXPANSIVE FLOW

    Science.gov (United States)

    Physics suggests that the interplay of momentum, continuity, and geometry in outward radial flow must produce density and concomitant pressure reductions. In other words, this flow is intrinsically auto-expansive. It has been proposed that this process is the key to understanding...

  13. Salivary flow and composition in diabetic and non-diabetic subjects.

    Science.gov (United States)

    Lasisi, T J; Fasanmade, A A

    2012-06-07

    The study investigated the effects of type 2 diabetes mellitus on salivary flow and composition in humans compared to healthy sex and age matched controls. Forty adult human subjects divided into 20 diabetic and 20 non-diabetic healthy subjects were included. Saliva samples were collected and analysed for glucose, total protein, calcium, sodium, potassium, chloride and bicarbonate. Salivary flow rate was also determined. The results showed that salivary glucose and potassium levels were significantly higher (p = 0.01 and 0.002 respectively) in diabetic patients compared with non-diabetic participants. It was also found that the diabetic patients had significant reduction in salivary flow rate when compared with non-diabetic individuals. In contrast, there was no significant difference in levels of total protein, Na+, Ca++, Cl- and HCO3- between the two groups. These results suggest that some oral diseases associated with diabetes mellitus may be due to altered levels of salivary glucose, potassium and flow.

  14. Optimal Operation of Radial Distribution Systems Using Extended Dynamic Programming

    DEFF Research Database (Denmark)

    Lopez, Juan Camilo; Vergara, Pedro P.; Lyra, Christiano

    2018-01-01

    An extended dynamic programming (EDP) approach is developed to optimize the ac steady-state operation of radial electrical distribution systems (EDS). Based on the optimality principle of the recursive Hamilton-Jacobi-Bellman equations, the proposed EDP approach determines the optimal operation o...... approach is illustrated using real-scale systems and comparisons with commercial programming solvers. Finally, generalizations to consider other EDS operation problems are also discussed.......An extended dynamic programming (EDP) approach is developed to optimize the ac steady-state operation of radial electrical distribution systems (EDS). Based on the optimality principle of the recursive Hamilton-Jacobi-Bellman equations, the proposed EDP approach determines the optimal operation...... of the EDS by setting the values of the controllable variables at each time period. A suitable definition for the stages of the problem makes it possible to represent the optimal ac power flow of radial EDS as a dynamic programming problem, wherein the 'curse of dimensionality' is a minor concern, since...

  15. Non-Darcy behavior of two-phase channel flow.

    Science.gov (United States)

    Xu, Xianmin; Wang, Xiaoping

    2014-08-01

    We study the macroscopic behavior of two-phase flow in porous media from a phase-field model. A dissipation law is first derived from the phase-field model by homogenization. For simple channel geometry in pore scale, the scaling relation of the averaged dissipation rate with the velocity of the two-phase flow can be explicitly obtained from the model which then gives the force-velocity relation. It is shown that, for the homogeneous channel surface, Dacry's law is still valid with a significantly modified permeability including the contribution from the contact line slip. For the chemically patterned surfaces, the dissipation rate has a non-Darcy linear scaling with the velocity, which is related to a depinning force for the patterned surface. Our result offers a theoretical understanding on the prior observation of non-Darcy behavior for the multiphase flow in either simulations or experiments.

  16. Design of Radial Turbo-Expanders for Small Organic Rankine Cycle System

    Science.gov (United States)

    Arifin, M.; Pasek, A. D.

    2015-09-01

    This paper discusses the design of radial turbo-expanders for ORC systems. Firstly, the rotor blades were design and the geometry and the perfromance were calculated using several working fluid such as R134a, R143a, R245fa, n-Pentane, and R123. Then, a numerical study was carried out in the fluid flow area with R134a and R123 as the working fluid. Analyses were performed using Computational Fluid Dynamics (CFD) ANSYS CFX on two real gas models, with the k-epsilon and SST (shear stress transport) turbulence models. The results analysis shows the distribution of Mach number, pressure, velocity and temperature along the rotor blade of the radial turbo-expanders and estimation of performance at various operating conditions. CFD analysis show that if the flow area divided into 250,000 grid mesh, and using real gas model SST at steady state condition, 0.4 kg/s of mass flow rate, 15,000 rpm rotor speed, 5 bar inlet pressure, and 373K inlet temperature, the turbo expander produces 6.7 kW, and 5.5 kW of power when using R134a and R123 respectively.

  17. Steady laminar flow of fractal fluids

    Energy Technology Data Exchange (ETDEWEB)

    Balankin, Alexander S., E-mail: abalankin@ipn.mx [Grupo Mecánica Fractal, ESIME, Instituto Politécnico Nacional, México D.F., 07738 (Mexico); Mena, Baltasar [Laboratorio de Ingeniería y Procesos Costeros, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Sisal, Yucatán, 97355 (Mexico); Susarrey, Orlando; Samayoa, Didier [Grupo Mecánica Fractal, ESIME, Instituto Politécnico Nacional, México D.F., 07738 (Mexico)

    2017-02-12

    We study laminar flow of a fractal fluid in a cylindrical tube. A flow of the fractal fluid is mapped into a homogeneous flow in a fractional dimensional space with metric induced by the fractal topology. The equations of motion for an incompressible Stokes flow of the Newtonian fractal fluid are derived. It is found that the radial distribution for the velocity in a steady Poiseuille flow of a fractal fluid is governed by the fractal metric of the flow, whereas the pressure distribution along the flow direction depends on the fractal topology of flow, as well as on the fractal metric. The radial distribution of the fractal fluid velocity in a steady Couette flow between two concentric cylinders is also derived. - Highlights: • Equations of Stokes flow of Newtonian fractal fluid are derived. • Pressure distribution in the Newtonian fractal fluid is derived. • Velocity distribution in Poiseuille flow of fractal fluid is found. • Velocity distribution in a steady Couette flow is established.

  18. Treatment of two-phase turbulent mixing, void drift and diversion cross-flow in a hydraulically non-equilibrium subchannel flow

    International Nuclear Information System (INIS)

    Sadatomi, Michio; Kawahara, Akimaro; Sato, Yoshifusa

    1997-01-01

    A practical way of treating two-phase turbulent mixing, void drift and diversion cross-flow on a subchannel analysis has been studied. Experimental data on the axial variations of subchannel flow parameters, such as flow rates of both phases, pressure, void fraction and concentrations of tracers for both phases, were obtained for hydraulically non-equilibrium two-phase subchannel flows in a vertical multiple channel made up of two-identical circular subchannels. These data were analyzed on the basis of the following four assumptions: (1) the turbulent mixing is independent of both the void drift and the diversion cross-flow; (2) the turbulent mixing rates of both phases in a non-equilibrium flow are equal to those in the equilibrium flow that the flow under consideration will attain; (3) the void drift is independent of the diversion cross-flow; and (4) the lateral gas velocity due to the void drift is predictable from Lahey et al.'s void settling model even in a non-equilibrium flow with the diversion cross-flow. The validity of the assumptions (1) and (2) was assured by comparing the concentration distribution data with the calculations, and that of the assumptions (3) and (4) by analyzing the data on flow rates of both phases, pressure and void fraction (author)

  19. Flow measurements in a model centrifugal pump by 3-D PIV

    International Nuclear Information System (INIS)

    Yang, H; Xu, H R; Liu, C

    2012-01-01

    PIV (Particle Image Velocimetry), as an non-intrusive flow measurements technology, is widely used to investigate the flow fields in many areas. 3-D (three Dimensional) PIV has seldom been used to measure flow field in rotational impeller of centrifugal pump due to the difficulty of calibration in samll space. In this article, a specially manufactured water tank was used to perform the calibration for 3-D PIV measurement. The instantaneous absolute velocity in one impeller passage was obtained by merging of three sub zones and the relative velocity was acquired by velocity decomposition. The result shows that, when the pump runs at the condition of design flow rate, the radial component velocity W r appears a concave distribution except the condition of R=45 mm. With the increase of radius, the circumference location of the minimum radial component velocity W r moves from the pressure side to the suction side. At the same time, the tangential component velocity W θ on the suction side decreases gradually with the increase of radius, while the component on the pressure side increases gradually. The secondary flow in different radius section has also been shown. At last, the error of PIV measurements was analyzed, which shows that the test results are accurate and the measured data is reliable.

  20. DSMC simulation of feed jet flow in gas centrifuge

    International Nuclear Information System (INIS)

    Jiang Dongjun; Zeng Shi

    2011-01-01

    Feed jet flow acts an important role for the counter-current in gas centrifuge. Direct simulation Monte-Carlo (DSMC) method was adopted to simulate the structure of the radial feed jet model. By setting the proper boundary conditions and the collision model of molecules, the flow distributions of the 2D radial feed jet were acquired under different feed conditions, including the wave structure of feed jet and the profile of the flow parameters. The analyses of the calculation results note the following flow phenomena: Near the radial outflow boundary, the obvious peaks of the flow parameters exist; higher speed of feed gas brings stronger influence on the flow field of the centrifuge; including the density, pressure and velocity of the gas, the distribution of the temperature is affected by the feed jet, at the outflow boundary, temperature to double times of the average value. (authors)

  1. Numerical Simulation of Hydraulic Fracture Propagation Guided by Single Radial Boreholes

    Directory of Open Access Journals (Sweden)

    Tiankui Guo

    2017-10-01

    Full Text Available Conventional hydraulic fracturing is not effective in target oil development zones with available wellbores located in the azimuth of the non-maximum horizontal in-situ stress. To some extent, we think that the radial hydraulic jet drilling has the function of guiding hydraulic fracture propagation direction and promoting deep penetration, but this notion currently lacks an effective theoretical support for fracture propagation. In order to verify the technology, a 3D extended finite element numerical model of hydraulic fracturing promoted by the single radial borehole was established, and the influences of nine factors on propagation of hydraulic fracture guided by the single radial borehole were comprehensively analyzed. Moreover, the term ‘Guidance factor (Gf’ was introduced for the first time to effectively quantify the radial borehole guidance. The guidance of nine factors was evaluated through gray correlation analysis. The experimental results were consistent with the numerical simulation results to a certain extent. The study provides theoretical evidence for the artificial control technology of directional propagation of hydraulic fracture promoted by the single radial borehole, and it predicts the guidance effect of a single radial borehole on hydraulic fracture to a certain extent, which is helpful for planning well-completion and fracturing operation parameters in radial borehole-promoted hydraulic fracturing technology.

  2. Absolute and convective instabilities of a film flow down a vertical fiber subjected to a radial electric field

    Science.gov (United States)

    Liu, Rong; Chen, Xue; Ding, Zijing

    2018-01-01

    We consider the motion of a gravity-driven flow down a vertical fiber subjected to a radial electric field. This flow exhibits rich dynamics including the formation of droplets, or beads, driven by a Rayleigh-Plateau mechanism modified by the presence of gravity as well as the Maxwell stress at the interface. A spatiotemporal stability analysis is performed to investigate the effect of electric field on the absolute-convective instability (AI-CI) characteristics. We performed a numerical simulation on the nonlinear evolution of the film to examine the transition from CI to AI regime. The numerical results are in excellent agreement with the spatiotemporal stability analysis. The blowup behavior of nonlinear simulation predicts the formation of touchdown singularity of the interface due to the effect of electric field. We try to connect the blowup behavior with the AI-CI characteristics. It is found that the singularities mainly occur in the AI regime. The results indicate that the film may have a tendency to form very sharp tips due to the enhancement of the absolute instability induced by the electric field. We perform a theoretical analysis to study the behaviors of the singularities. The results show that there exists a self-similarity between the temporal and spatial distances from the singularities.

  3. Relations of the Big-Five personality dimensions to autodestructive behavior in clinical and non-clinical adolescent populations

    Science.gov (United States)

    Kotrla Topić, Marina; Perković Kovačević, Marina; Mlačić, Boris

    2012-01-01

    Aim To examine the relationship between the Big-Five personality model and autodestructive behavior symptoms, namely Autodestructiveness and Suicidal Depression in two groups of participants: clinical and non-clinical adolescents. Methods Two groups of participants, clinical (adolescents with diagnosis of psychiatric disorder based on clinical impression and according to valid diagnostic criteria, N = 92) and non-clinical (high-school students, N = 87), completed two sets of questionnaires: the Autodestructiveness Scale which provided data on Autodestructiveness and Suicidal Depression, and the International Personality Item Pool (IPIP), which provided data on the Big -Five personality dimensions. Results Clinical group showed significantly higher values on the Autodestructiveness scale in general, as well as on Suicidal Depression, Aggressiveness, and Borderline subscales than the non-clinical group. Some of the dimensions of the Big-Five personality model, ie, Emotional Stability, Conscientiousness, and Agreeableness showed significant relationship (hierarchical regression analyses, P values for β coefficients from Big-Five model are important when evaluating adolescent psychiatric patients and adolescents from general population at risk of self-destructive behavior. PMID:23100207

  4. Multi-Use Non-Intrusive Flow Characterization System (FCS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a Multi-Use Non-Intrusive Flow Characterization System (FCS) for densified, normal boiling point, and two-phase cryogenic flows, capable of...

  5. Visualization study of flow in axial flow inducer.

    Science.gov (United States)

    Lakshminarayana, B.

    1972-01-01

    A visualization study of the flow through a three ft dia model of a four bladed inducer, which is operated in air at a flow coefficient of 0.065, is reported in this paper. The flow near the blade surfaces, inside the rotating passages, downstream and upstream of the inducer is visualized by means of smoke, tufts, ammonia filament, and lampblack techniques. Flow is found to be highly three dimensional, with appreciable radial velocity throughout the entire passage. The secondary flows observed near the hub and annulus walls agree with qualitative predictions obtained from the inviscid secondary flow theory.

  6. Determinations of its Absolute Dimensions and Distance by the Analyses of Light and Radial-Velocity Curves of the Contact Binary -I. V417 Aquilae

    Directory of Open Access Journals (Sweden)

    Jae Woo Lee

    2004-06-01

    Full Text Available New photometric and spectroscopic solutions of W-type overcontact binary V417 Aql were obtained by solving the UBV light curves of Samec et al. (1997 and radial-velocity ones of Lu & Rucinski (1999 with the 2003 version of the Wilson-Devinney binary code. In the light curve synthesis the light of a third-body, which Qian (2003 proposed, was considered and obtained about 2.7%, 2.2%, and 0.4% for U, B, and V bandpasses, respectively. The model with third-light is better fitted to eclipse parts than that with no third-light. Absolute dimensions of V417 Aql are determined from our solution as M1=0.53 M⊙, M2=1.45 M⊙, R1=0.84 R⊙ and R2=1.31 M⊙, and the distance to it is deduced as about 216pc. Our distance is well consistent with that (204pc derived from Rucinski & Duerbeck's (1997 relation, MV=MV(log P, B-V, but is more distant than that (131±40pc determined by the Hipparcos trigonometric parallax. The difference may result from the relatively large error of Hipparcos parallax for V417 Aql.

  7. Texture segmentation of non-cooperative spacecrafts images based on wavelet and fractal dimension

    Science.gov (United States)

    Wu, Kanzhi; Yue, Xiaokui

    2011-06-01

    With the increase of on-orbit manipulations and space conflictions, missions such as tracking and capturing the target spacecrafts are aroused. Unlike cooperative spacecrafts, fixing beacons or any other marks on the targets is impossible. Due to the unknown shape and geometry features of non-cooperative spacecraft, in order to localize the target and obtain the latitude, we need to segment the target image and recognize the target from the background. The data and errors during the following procedures such as feature extraction and matching can also be reduced. Multi-resolution analysis of wavelet theory reflects human beings' recognition towards images from low resolution to high resolution. In addition, spacecraft is the only man-made object in the image compared to the natural background and the differences will be certainly observed between the fractal dimensions of target and background. Combined wavelet transform and fractal dimension, in this paper, we proposed a new segmentation algorithm for the images which contains complicated background such as the universe and planet surfaces. At first, Daubechies wavelet basis is applied to decompose the image in both x axis and y axis, thus obtain four sub-images. Then, calculate the fractal dimensions in four sub-images using different methods; after analyzed the results of fractal dimensions in sub-images, we choose Differential Box Counting in low resolution image as the principle to segment the texture which has the greatest divergences between different sub-images. This paper also presents the results of experiments by using the algorithm above. It is demonstrated that an accurate texture segmentation result can be obtained using the proposed technique.

  8. Local fractional variational iteration algorithm II for non-homogeneous model associated with the non-differentiable heat flow

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2015-10-01

    Full Text Available In this article, we begin with the non-homogeneous model for the non-differentiable heat flow, which is described using the local fractional vector calculus, from the first law of thermodynamics in fractal media point view. We employ the local fractional variational iteration algorithm II to solve the fractal heat equations. The obtained results show the non-differentiable behaviors of temperature fields of fractal heat flow defined on Cantor sets.

  9. Performance of a high-work, low-aspect-ratio turbine stator tested with a realistic inlet radial temperature gradient

    Science.gov (United States)

    Stabe, Roy G.; Schwab, John R.

    1991-01-01

    A 0.767-scale model of a turbine stator designed for the core of a high-bypass-ratio aircraft engine was tested with uniform inlet conditions and with an inlet radial temperature profile simulating engine conditions. The principal measurements were radial and circumferential surveys of stator-exit total temperature, total pressure, and flow angle. The stator-exit flow field was also computed by using a three-dimensional Navier-Stokes solver. Other than temperature, there were no apparent differences in performance due to the inlet conditions. The computed results compared quite well with the experimental results.

  10. A large strain radial consolidation theory for soft clays improved by vertical drains\\ud

    OpenAIRE

    Geng, Xueyu; Yu, Hai-sui

    2017-01-01

    A system of vertical drains with combined vacuum and surcharge preloading is an effective 10 solution for promoting radial flow, accelerating consolidation. However, when a mixture of soil and\\ud 11 water is deposited at a low initial density, a significant amount of deformation or surface settlement 12 occurs. Therefore, it is necessary to introduce large strain theory, which has been widely used to manage\\ud 13 dredged disposal sites in one-dimensional theory, into radial consolidation theo...

  11. Universality Results for Multi-layer Radial Hele-Shaw Flows

    Science.gov (United States)

    Daripa, Prabir; Gin, Craig; Daripa Research Team

    2014-03-01

    Saffman-Taylor instability is a well known viscosity driven instability of an interface separating two immiscible fluids. We study linear stability of this displacement process in multi-layer radial Hele-Shaw geometry involving an arbitrary number of immiscible fluid phases. Universal stability results have been obtained and applied to design displacement processes that are considerably less unstable than the pure Saffman-Taylor case. In particular, we derive universal formula which gives specific values of the viscosities of the fluid layers corresponding to smallest unstable band. Other similar universal results will also be presented. The talk is based on ongoing work. Supported by an NPRP Grant # 08-777-1-141 from the Qatar National Research Fund (a member of the Qatar Foundation). The statements made herein are solely the responsibility of the authors.

  12. Vibration due to non-circularity of a rotating ring having discrete radial supports - With application to thin-walled rotor/magnetic bearing systems

    Science.gov (United States)

    Fakkaew, Wichaphon; Cole, Matthew O. T.

    2018-06-01

    This paper investigates the vibration arising in a thin-walled cylindrical rotor subject to small non-circularity and coupled to discrete space-fixed radial bearing supports. A Fourier series description of rotor non-circularity is incorporated within a mathematical model for vibration of a rotating annulus. This model predicts the multi-harmonic excitation of the rotor wall due to bearing interactions. For each non-circularity harmonic there is a set of distinct critical speeds at which resonance can potentially arise due to flexural mode excitation within the rotor wall. It is shown that whether each potential resonance occurs depends on the multiplicity and symmetry of the bearing supports. Also, a sufficient number of evenly spaced identical supports will eliminate low order resonances. The considered problem is pertinent to the design and operation of thin-walled rotors with active magnetic bearing (AMB) supports, for which small clearances exist between the rotor and bearing and so vibration excitation must be limited to avoid contacts. With this motivation, the mathematical model is further developed for the case of a distributed array of electromagnetic actuators controlled by feedback of measured rotor wall displacements. A case study involving an experimental system with short cylindrical rotor and a single radial AMB support is presented. The results show that flexural mode resonance is largely avoided for the considered design topology. Moreover, numerical predictions based on measured non-circularity show good agreement with measurements of rotor wall vibration, thereby confirming the validity and utility of the theoretical model.

  13. Comparison of Mixing Calculations for Reacting and Non-Reacting Flows in a Cylindrical Duct

    Science.gov (United States)

    Oechsle, V. L.; Mongia, H. C.; Holdeman, J. D.

    1994-01-01

    A production 3-D elliptic flow code has been used to calculate non-reacting and reacting flow fields in an experimental mixing section relevant to a rich burn/quick mix/lean burn (RQL) combustion system. A number of test cases have been run to assess the effects of the variation in the number of orifices, mass flow ratio, and rich-zone equivalence ratio on the flow field and mixing rates. The calculated normalized temperature profiles for the non-reacting flow field agree qualitatively well with the normalized conserved variable isopleths for the reacting flow field indicating that non-reacting mixing experiments are appropriate for screening and ranking potential rapid mixing concepts. For a given set of jet momentum-flux ratio, mass flow ratio, and density ratio (J, MR, and DR), the reacting flow calculations show a reduced level of mixing compared to the non-reacting cases. In addition, the rich-zone equivalence ratio has noticeable effect on the mixing flow characteristics for reacting flows.

  14. Effect of Low Co-flow Air Velocity on Hydrogen-air Non-premixed Turbulent Flame Model

    Directory of Open Access Journals (Sweden)

    Noor Mohsin Jasim

    2017-08-01

    Full Text Available The aim of this paper is to provide information concerning the effect of low co-flow velocity on the turbulent diffusion flame for a simple type of combustor, a numerical simulated cases of turbulent diffusion hydrogen-air flame are performed. The combustion model used in this investigation is based on chemical equilibrium and kinetics to simplify the complexity of the chemical mechanism. Effects of increased co-flowing air velocity on temperature, velocity components (axial and radial, and reactants have been investigated numerically and examined. Numerical results for temperature are compared with the experimental data. The comparison offers a good agreement. All numerical simulations have been performed using the Computational Fluid Dynamics (CFD commercial code FLUENT. A comparison among the various co-flow air velocities, and their effects on flame behavior and temperature fields are presented.

  15. Non-stationary flow of hydraulic oil in long pipe

    Directory of Open Access Journals (Sweden)

    Hružík Lumír

    2014-03-01

    Full Text Available The paper deals with experimental evaluation and numerical simulation of non-stationary flow of hydraulic oil in a long hydraulic line. Non-stationary flow is caused by a quick closing of valves at the beginning and the end of the pipe. Time dependence of pressure is measured by means of pressure sensors at the beginning and the end of the pipe. A mathematical model of a given circuit is created using Matlab SimHydraulics software. The long line is simulated by means of segmented pipe. The simulation is verified by experiment.

  16. Analysis of VAWT aerodynamics and design using the Actuator Cylinder flow model

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Schmidt Paulsen, Uwe; Vita, Luca

    2014-01-01

    The actuator cylinder (AC) flow model is defined as the ideal VAWT rotor. Radial directed volume forces are applied on the circular path of the VAWT rotor airfoil and constitute an energy conversion in the flow. The power coefficient for the ideal as well as the real energy conversion is defined....... obtainable power coefficient for a fixed pitch VAWT is constrained by the fundamental cyclic variation of inflow angle and relative velocity leading to a loading that deviates considerably from the uniform loading.......The actuator cylinder (AC) flow model is defined as the ideal VAWT rotor. Radial directed volume forces are applied on the circular path of the VAWT rotor airfoil and constitute an energy conversion in the flow. The power coefficient for the ideal as well as the real energy conversion is defined....... The describing equations for the two-dimensional AC model are presented and a solution method splitting the final solution in a linear and non-linear part is briefly described. A family of loadforms approaching the uniform loading is used to study the ideal energy conversion indicating that the maximum power...

  17. Characterization of non equilibrium effects on high quality critical flows

    International Nuclear Information System (INIS)

    Camelo, E.; Lemonnier, H.; Ochterbeck, J.

    1995-01-01

    The appropriate design of various pieces of safety equipment such as relief systems, relies on the accurate description of critical flow phenomena. Most of the systems of industrial interest are willing to be described by one-dimensional area-averaged models and a large fraction of them involves multi-component high gas quality flows. Within these circumstances, the flow is very likely to be of an annular dispersed nature and its description by two-fluid models requires various closure relations. Among the most sensitive closures, there is the interfacial area and the liquid entrained fraction. The critical flowrate depends tremendously on the accurate description of the non equilibrium which results from the correctness of the closure equations. In this study, two-component flows are emphasized and non equilibrium results mainly form the differences in the phase velocities. It is therefore of the utmost importance to have reliable data to characterize non equilibrium phenomena and to assess the validity of the closure models. A comprehensive description of air-water nozzle flows, with emphasis on the effect of the nozzle geometry, has been undertaken and some of the results are presented here which helps understanding the overall flow dynamics. Besides the critical flowrate, the presented material includes pressure profiles, droplet size and velocity, liquid film flowrate and liquid film thickness

  18. Characterization of non equilibrium effects on high quality critical flows

    Energy Technology Data Exchange (ETDEWEB)

    Camelo, E.; Lemonnier, H.; Ochterbeck, J. [Commissariat a l Energie Atomique, Grenoble (France)] [and others

    1995-09-01

    The appropriate design of various pieces of safety equipment such as relief systems, relies on the accurate description of critical flow phenomena. Most of the systems of industrial interest are willing to be described by one-dimensional area-averaged models and a large fraction of them involves multi-component high gas quality flows. Within these circumstances, the flow is very likely to be of an annular dispersed nature and its description by two-fluid models requires various closure relations. Among the most sensitive closures, there is the interfacial area and the liquid entrained fraction. The critical flowrate depends tremendously on the accurate description of the non equilibrium which results from the correctness of the closure equations. In this study, two-component flows are emphasized and non equilibrium results mainly form the differences in the phase velocities. It is therefore of the utmost importance to have reliable data to characterize non equilibrium phenomena and to assess the validity of the closure models. A comprehensive description of air-water nozzle flows, with emphasis on the effect of the nozzle geometry, has been undertaken and some of the results are presented here which helps understanding the overall flow dynamics. Besides the critical flowrate, the presented material includes pressure profiles, droplet size and velocity, liquid film flowrate and liquid film thickness.

  19. Nonlinear dynamics and rheology of active fluids: simulations in two dimensions.

    Science.gov (United States)

    Fielding, S M; Marenduzzo, D; Cates, M E

    2011-04-01

    We report simulations of a continuum model for (apolar, flow aligning) active fluids in two dimensions. Both free and anchored boundary conditions are considered, at parallel confining walls that are either static or moving at fixed relative velocity. We focus on extensile materials and find that steady shear bands, previously shown to arise ubiquitously in one dimension for the active nematic phase at small (or indeed zero) shear rate, are generally replaced in two dimensions by more complex flow patterns that can be stationary, oscillatory, or apparently chaotic. The consequences of these flow patterns for time-averaged steady-state rheology are examined. ©2011 American Physical Society

  20. On the interplay between turbulence and poloidal flows in plasmas

    International Nuclear Information System (INIS)

    Hidalgo, C.; Pedrosa, M.A.; Garcia-Cortes, I.

    1999-01-01

    The radial profile of Reynolds stress has been measured in the plasma boundary region of tokamaks and stellarator plasmas. The electrostatic Reynolds stress (proportional to r E-tilde θ >) shows a radial gradient close to the velocity shear layer location, showing that this mechanism can drive significant poloidal flows in the plasma boundary region of fusion plasmas. The generation of poloidal flows by Ion Bernstein Wave (IBW) is under investigation in toroidal plasmas. The radial gradient in the Reynolds stress increases with RF power and radial electric fields are modified at the RF resonance layer. (author)

  1. Beam energy dependence of elliptic flow in heavy-ion collision

    International Nuclear Information System (INIS)

    Otuka, Naohiko; Isse, Masatsugu; Ohnishi, Akira; Pradip Kumar Sahu; Nara, Yasushi

    2002-01-01

    We study radial flow and elliptic flow in relativistic heavy-ion collisions at energies from GSI-SIS to BNL-RHIC energies using hadronic cascade model JAM. The excitation function of radial flow shows the softening of hadronic matter from BNL-AGS to CERN-SPS energies. JAM model reproduces transverse mass spectra at BNL-AGS, CERN-SPS at BNL-RHIC energies as well as elliptic flow upto CERN-SPS. For elliptic flow at BNL-RHIC energy (√s=130 GeV), while JAM gives the enough flow at fragment region, it fails at mid rapidity. (author)

  2. Evidence of non-Darcy flow and non-Fickian transport in fractured media at laboratory scale

    Directory of Open Access Journals (Sweden)

    C. Cherubini

    2013-07-01

    Full Text Available During a risk assessment procedure as well as when dealing with cleanup and monitoring strategies, accurate predictions of solute propagation in fractured rocks are of particular importance when assessing exposure pathways through which contaminants reach receptors. Experimental data obtained under controlled conditions such as in a laboratory allow to increase the understanding of the fundamental physics of fluid flow and solute transport in fractures. In this study, laboratory hydraulic and tracer tests have been carried out on an artificially created fractured rock sample. The tests regard the analysis of the hydraulic loss and the measurement of breakthrough curves for saline tracer pulse inside a rock sample of parallelepiped shape (0.60 × 0.40 × 0.08 m. The convolution theory has been applied in order to remove the effect of the acquisition apparatus on tracer experiments. The experimental results have shown evidence of a non-Darcy relationship between flow rate and hydraulic loss that is best described by Forchheimer's law. Furthermore, in the flow experiments both inertial and viscous flow terms are not negligible. The observed experimental breakthrough curves of solute transport have been modeled by the classical one-dimensional analytical solution for the advection–dispersion equation (ADE and the single rate mobile–immobile model (MIM. The former model does not properly fit the first arrival and the tail while the latter, which recognizes the existence of mobile and immobile domains for transport, provides a very decent fit. The carried out experiments show that there exists a pronounced mobile–immobile zone interaction that cannot be neglected and that leads to a non-equilibrium behavior of solute transport. The existence of a non-Darcian flow regime has showed to influence the velocity field in that it gives rise to a delay in solute migration with respect to the predicted value assuming linear flow. Furthermore, the

  3. The radial-hedgehog solution in Landau–de Gennes' theory for nematic liquid crystals

    KAUST Repository

    MAJUMDAR, APALA

    2011-09-06

    We study the radial-hedgehog solution in a three-dimensional spherical droplet, with homeotropic boundary conditions, within the Landau-de Gennes theory for nematic liquid crystals. The radial-hedgehog solution is a candidate for a global Landau-de Gennes minimiser in this model framework and is also a prototype configuration for studying isolated point defects in condensed matter physics. The static properties of the radial-hedgehog solution are governed by a non-linear singular ordinary differential equation. We study the analogies between Ginzburg-Landau vortices and the radial-hedgehog solution and demonstrate a Ginzburg-Landau limit for the Landau-de Gennes theory. We prove that the radial-hedgehog solution is not the global Landau-de Gennes minimiser for droplets of finite radius and sufficiently low temperatures and prove the stability of the radial-hedgehog solution in other parameter regimes. These results contain quantitative information about the effect of geometry and temperature on the properties of the radial-hedgehog solution and the associated biaxial instabilities. © Copyright Cambridge University Press 2011.

  4. The radial-hedgehog solution in Landau–de Gennes' theory for nematic liquid crystals

    KAUST Repository

    MAJUMDAR, APALA

    2011-01-01

    We study the radial-hedgehog solution in a three-dimensional spherical droplet, with homeotropic boundary conditions, within the Landau-de Gennes theory for nematic liquid crystals. The radial-hedgehog solution is a candidate for a global Landau-de Gennes minimiser in this model framework and is also a prototype configuration for studying isolated point defects in condensed matter physics. The static properties of the radial-hedgehog solution are governed by a non-linear singular ordinary differential equation. We study the analogies between Ginzburg-Landau vortices and the radial-hedgehog solution and demonstrate a Ginzburg-Landau limit for the Landau-de Gennes theory. We prove that the radial-hedgehog solution is not the global Landau-de Gennes minimiser for droplets of finite radius and sufficiently low temperatures and prove the stability of the radial-hedgehog solution in other parameter regimes. These results contain quantitative information about the effect of geometry and temperature on the properties of the radial-hedgehog solution and the associated biaxial instabilities. © Copyright Cambridge University Press 2011.

  5. Radial Flow Effects On A Retreating Rotor Blade

    Science.gov (United States)

    2014-05-01

    birds , marine life and even insect wings. In some cases such as helicopters, wind turbines and compres- sors, dynamic stall becomes the primary...on dynamic stall and reverse flow as applied to a helicopter rotor in forward flight and a wind turbine operating at a yaw angle. While great...occurring on a retreating blade with a focus on dynamic stall and reverse flow as applied to a helicopter rotor in forward flight and a wind turbine

  6. Radial flow towards well in leaky unconfined aquifer

    Science.gov (United States)

    Mishra, P. K.; Kuhlman, K. L.

    2012-12-01

    An analytical solution is developed for three-dimensional flow towards a partially penetrating large- diameter well in an unconfined aquifer bounded below by a leaky aquitard of finite or semi-infinite extent. The analytical solution is derived using Laplace and Hankel transforms, then inverted numerically. Existing solutions for flow in leaky unconfined aquifers neglect the unsaturated zone following an assumption of instantaneous drainage due to Neuman. We extend the theory of leakage in unconfined aquifers by (1) including water flow and storage in the unsaturated zone above the water table, and (2) allowing the finite-diameter pumping well to partially penetrate the aquifer. The investigation of model-predicted results shows that aquitard leakage leads to significant departure from the unconfined solution without leakage. The investigation of dimensionless time-drawdown relationships shows that the aquitard drawdown also depends on unsaturated zone properties and the pumping-well wellbore storage effects.

  7. The in situ permeable flow sensor: A device for measuring groundwater flow velocity

    International Nuclear Information System (INIS)

    Ballard, S.; Barker, G.T.; Nichols, R.L.

    1994-03-01

    A new technology called the In Situ Permeable Flow Sensor has been developed at Sandia National Laboratories. These sensors use a thermal perturbation technique to directly measure the direction and magnitude of the full three dimensional groundwater flow velocity vector in unconsolidated, saturated, porous media. The velocity measured is an average value characteristic of an approximately 1 cubic meter volume of the subsurface. During a test at the Savannah River Site in South Carolina, two flow sensors were deployed in a confined aquifer in close proximity to a well which was screened over the entire vertical extent of the aquifer and the well was pumped at four different pumping rates. In this situation horizontal flow which is radially directed toward the pumping well is expected. The flow sensors measured horizontal flow which was directed toward the pumping well, within the uncertainty in the measurements. The observed magnitude of the horizontal component of the flow velocity increased linearly with pumping rate, as predicted by theoretical considerations. The measured horizontal component of the flow velocity differed from the predicted flow velocity, which was calculated with the assumptions that the hydraulic properties of the aquifer were radially homogeneous and isotropic, by less than a factor of two. Drawdown data obtained from other wells near the pumping well during the pump test indicate that the hydraulic properties of the aquifer are probably not radially homogeneous but the effect of the inhomogeneity on the flow velocity field around the pumping well was not modeled because the degree and distribution of the inhomogeneity are unknown. Grain size analysis of core samples from wells in the area were used to estimate the vertical distribution of hydraulic conductivity

  8. New Method for Mesh Moving Based on Radial Basis Function Interpolation

    NARCIS (Netherlands)

    De Boer, A.; Van der Schoot, M.S.; Bijl, H.

    2006-01-01

    A new point-by-point mesh movement algorithm is developed for the deformation of unstructured grids. The method is based on using radial basis function, RBFs, to interpolate the displacements of the boundary nodes to the whole flow mesh. A small system of equations has to be solved, only involving

  9. Oxygen distribution in packed-bed membrane reactors for partial oxidations: effect of the radial porosity profiles on the product selectivity

    NARCIS (Netherlands)

    Kurten, U.; van Sint Annaland, M.; Kuipers, J.A.M.

    2004-01-01

    A two-dimensional, pseudohomogeneous reactor model was presented to describe the radial and axial concentration profiles in a packed-bed membrane reactor and the local velocity field while accounting for the influences due to the distributive membrane flow and the radial porosity profile. The effect

  10. Theoretical and Experimental Study of Radial Velocity Generation for Extending Bandwidth of Magnetohydrodynamic Angular Rate Sensor at Low Frequency

    Directory of Open Access Journals (Sweden)

    Yue Ji

    2015-12-01

    Full Text Available The magnetohydrodynamics angular rate sensor (MHD ARS has received much attention for its ultra-low noise in ultra-broad bandwidth and its impact resistance in harsh environments; however, its poor performance at low frequency hinders its work in long time duration. The paper presents a modified MHD ARS combining Coriolis with MHD effect to extend the measurement scope throughout the whole bandwidth, in which an appropriate radial flow velocity should be provided to satisfy simplified model of the modified MHD ARS. A method that can generate radial velocity by an MHD pump in MHD ARS is proposed. A device is designed to study the radial flow velocity generated by the MHD pump. The influence of structure and physical parameters are studied by numerical simulation and experiment of the device. The analytic expression of the velocity generated by the energized current drawn from simulation and experiment are consistent, which demonstrates the effectiveness of the method generating radial velocity. The study can be applied to generate and control radial velocity in modified MHD ARS, which is essential for the two effects combination throughout the whole bandwidth.

  11. Hydrodynamics of piston-driven laminar pulsating flow: Part 2. Fully developed flow

    International Nuclear Information System (INIS)

    Aygun, Cemalettin; Aydin, Orhan

    2014-01-01

    Highlights: • The piston-driven laminar pulsating flow in a pipe is studied. • Fully developed flow is examined analytically, numerically and experimentally. • An increase in F results an increase in the amplitude of the centerline velocity. • The characters of the radial velocity profiles critically depend on both the frequency and the phase angle. • The near/off-wall flow reversals are observed for F = 105, 226 and 402. - Abstract: Piston-driven pulsating flow is a specific type of pressure-driven pulsating flows. In this study, piston-driven laminar pulsating flow in a pipe is studied. This study mainly exists of two parts: developing flow and fully developed flow. In this part, hydrodynamically fully developed flow is examined analytically, numerically and experimentally. A constant value of the time-averaged Reynolds number is considered, Re = 1000. In the theoretical studies, both analytical and numerical, an inlet velocity profile representing the experimental case, i.e., the piston driven flow, is assumed. In the experiments, in the hydrodynamically fully developed region, radial velocity distribution and pressure drop are obtained using hot-wire anemometer and pressure transmitter, respectively. The effect pulsation frequency on the friction coefficient as well as velocity profiles are obtained. A good agreement is observed among analytical, numerical and experimental results

  12. Stress modeling in colloidal dispersions undergoing non-viscometric flows

    Science.gov (United States)

    Dolata, Benjamin; Zia, Roseanna

    2017-11-01

    We present a theoretical study of the stress tensor for a colloidal dispersion undergoing non-viscometric flow. In such flows, the non-homogeneous suspension stress depends on not only the local average total stresslet-the sum of symmetric first moments of both the hydrodynamic traction and the interparticle force-but also on the average quadrupole, octupole, and higher-order moments. To compute the average moments, we formulate a six dimensional Smoluchowski equation governing the microstructural evolution of a suspension in an arbitrary fluid velocity field. Under the conditions of rheologically slow flow, where the Brownian relaxation of the particles is much faster than the spatiotemporal evolution of the flow, the Smoluchowski equation permits asymptotic solution, revealing a suspension stress that follows a second-order fluid constitutive model. We obtain a reciprocal theorem and utilize it to show that all constitutive parameters of the second-order fluid model may be obtained from two simpler linear-response problems: a suspension undergoing simple shear and a suspension undergoing isotropic expansion. The consequences of relaxing the assumption of rheologically slow flow, including the appearance of memory and microcontinuum behaviors, are discussed.

  13. Study of microvascular non-Newtonian blood flow modulated by electroosmosis.

    Science.gov (United States)

    Tripathi, Dharmendra; Yadav, Ashu; Anwar Bég, O; Kumar, Rakesh

    2018-05-01

    An analytical study of microvascular non-Newtonian blood flow is conducted incorporating the electro-osmosis phenomenon. Blood is considered as a Bingham rheological aqueous ionic solution. An externally applied static axial electrical field is imposed on the system. The Poisson-Boltzmann equation for electrical potential distribution is implemented to accommodate the electrical double layer in the microvascular regime. With long wavelength, lubrication and Debye-Hückel approximations, the boundary value problem is rendered non-dimensional. Analytical solutions are derived for the axial velocity, volumetric flow rate, pressure gradient, volumetric flow rate, averaged volumetric flow rate along one time period, pressure rise along one wavelength and stream function. A plug swidth is featured in the solutions. Via symbolic software (Mathematica), graphical plots are generated for the influence of Bingham plug flow width parameter, electrical Debye length and Helmholtz-Smoluchowski velocity (maximum electro-osmotic velocity) on the key hydrodynamic variables. This study reveals that blood flow rate accelerates with decreasing the plug width (i.e. viscoplastic nature of fluids) and also with increasing the Debye length parameter. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Advanced flow MRI: emerging techniques and applications

    International Nuclear Information System (INIS)

    Markl, M.; Schnell, S.; Wu, C.; Bollache, E.; Jarvis, K.; Barker, A.J.; Robinson, J.D.; Rigsby, C.K.

    2016-01-01

    Magnetic resonance imaging (MRI) techniques provide non-invasive and non-ionising methods for the highly accurate anatomical depiction of the heart and vessels throughout the cardiac cycle. In addition, the intrinsic sensitivity of MRI to motion offers the unique ability to acquire spatially registered blood flow simultaneously with the morphological data, within a single measurement. In clinical routine, flow MRI is typically accomplished using methods that resolve two spatial dimensions in individual planes and encode the time-resolved velocity in one principal direction, typically oriented perpendicular to the two-dimensional (2D) section. This review describes recently developed advanced MRI flow techniques, which allow for more comprehensive evaluation of blood flow characteristics, such as real-time flow imaging, 2D multiple-venc phase contrast MRI, four-dimensional (4D) flow MRI, quantification of complex haemodynamic properties, and highly accelerated flow imaging. Emerging techniques and novel applications are explored. In addition, applications of these new techniques for the improved evaluation of cardiovascular (aorta, pulmonary arteries, congenital heart disease, atrial fibrillation, coronary arteries) as well as cerebrovascular disease (intra-cranial arteries and veins) are presented.

  15. Non-laminar flow model for the impedance of a rod-pinch diode

    International Nuclear Information System (INIS)

    Ottinger, Paul F.; Schumer, Joseph W.; Strasburg, Sean D.; Swanekamp, Stephen B.; Oliver, Bryan V.

    2002-01-01

    A previous laminar flow model for the rod-pinch diode is extended to include a transverse pressure term to study the effects of non-laminar flow. The non-laminar nature of the flow has a significant impact on the diode impedance. Results show that the introduction of the transverse pressure decreases the diode impedance predicted by the model bringing it into better agreement with experimental data

  16. Robust Non-Local TV-L1 Optical Flow Estimation with Occlusion Detection.

    Science.gov (United States)

    Zhang, Congxuan; Chen, Zhen; Wang, Mingrun; Li, Ming; Jiang, Shaofeng

    2017-06-05

    In this paper, we propose a robust non-local TV-L1 optical flow method with occlusion detection to address the problem of weak robustness of optical flow estimation with motion occlusion. Firstly, a TV-L1 form for flow estimation is defined using a combination of the brightness constancy and gradient constancy assumptions in the data term and by varying the weight under the Charbonnier function in the smoothing term. Secondly, to handle the potential risk of the outlier in the flow field, a general non-local term is added in the TV-L1 optical flow model to engender the typical non-local TV-L1 form. Thirdly, an occlusion detection method based on triangulation is presented to detect the occlusion regions of the sequence. The proposed non-local TV-L1 optical flow model is performed in a linearizing iterative scheme using improved median filtering and a coarse-to-fine computing strategy. The results of the complex experiment indicate that the proposed method can overcome the significant influence of non-rigid motion, motion occlusion, and large displacement motion. Results of experiments comparing the proposed method and existing state-of-the-art methods by respectively using Middlebury and MPI Sintel database test sequences show that the proposed method has higher accuracy and better robustness.

  17. Radial excitations in nucleon-nucleon scattering

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.; Carbonell, J.; Gignoux, C.

    1986-01-01

    In the non-relativistic constituent quark model, the role of the radial excitations of the nucleon is studied within a resonating group approach of the nucleon-nucleon scattering. It is shown that, rather than the inclusion of new channels, it is important to include mixed-symmetry spin-isospin components in the nucleon wave function. It is also found that during the collision there is no significant deformation of the nucleon. (orig.)

  18. Dynamics of zonal flows in helical systems.

    Science.gov (United States)

    Sugama, H; Watanabe, T-H

    2005-03-25

    A theory for describing collisionless long-time behavior of zonal flows in helical systems is presented and its validity is verified by gyrokinetic-Vlasov simulation. It is shown that, under the influence of particles trapped in helical ripples, the response of zonal flows to a given source becomes weaker for lower radial wave numbers and deeper helical ripples while a high-level zonal-flow response, which is not affected by helical-ripple-trapped particles, can be maintained for a longer time by reducing their bounce-averaged radial drift velocity. This implies a possibility that helical configurations optimized for reducing neoclassical ripple transport can simultaneously enhance zonal flows which lower anomalous transport.

  19. A Mathematical Model for Scheduling a Batch Processing Machine with Multiple Incompatible Job Families, Non-identical Job dimensions, Non-identical Job sizes, Non-agreeable release times and due dates

    International Nuclear Information System (INIS)

    Ramasubramaniam, M; Mathirajan, M

    2013-01-01

    The paper addresses the problem scheduling a batch processing machine with multiple incompatible job families, non-identical job dimensions, non-identical job sizes and non-agreeable release dates to minimize makespan. The research problem is solved by proposing a mixed integer programming model that appropriately takes into account the parameters considered in the problem. The proposed is validated using a numerical example. The experiment conducted show that the model can pose significant difficulties in solving the large scale instances. The paper concludes by giving the scope for future work and some alternative approaches one can use for solving these class of problems.

  20. Transient well flow in vertically heterogeneous aquifers

    Science.gov (United States)

    Hemker, C. J.

    1999-11-01

    A solution for the general problem of computing well flow in vertically heterogeneous aquifers is found by an integration of both analytical and numerical techniques. The radial component of flow is treated analytically; the drawdown is a continuous function of the distance to the well. The finite-difference technique is used for the vertical flow component only. The aquifer is discretized in the vertical dimension and the heterogeneous aquifer is considered to be a layered (stratified) formation with a finite number of homogeneous sublayers, where each sublayer may have different properties. The transient part of the differential equation is solved with Stehfest's algorithm, a numerical inversion technique of the Laplace transform. The well is of constant discharge and penetrates one or more of the sublayers. The effect of wellbore storage on early drawdown data is taken into account. In this way drawdowns are found for a finite number of sublayers as a continuous function of radial distance to the well and of time since the pumping started. The model is verified by comparing results with published analytical and numerical solutions for well flow in homogeneous and heterogeneous, confined and unconfined aquifers. Instantaneous and delayed drainage of water from above the water table are considered, combined with the effects of partially penetrating and finite-diameter wells. The model is applied to demonstrate that the transient effects of wellbore storage in unconfined aquifers are less pronounced than previous numerical experiments suggest. Other applications of the presented solution technique are given for partially penetrating wells in heterogeneous formations, including a demonstration of the effect of decreasing specific storage values with depth in an otherwise homogeneous aquifer. The presented solution can be a powerful tool for the analysis of drawdown from pumping tests, because hydraulic properties of layered heterogeneous aquifer systems with

  1. Turbulent behaviour of non-cohesive sediment gravity flows at unexpectedly high flow density

    Science.gov (United States)

    Baker, Megan; Baas, Jaco H.; Malarkey, Jonathan; Kane, Ian

    2016-04-01

    Experimental lock exchange-type turbidity currents laden with non-cohesive silica-flour were found to be highly dynamic at remarkably high suspended sediment concentrations. These experiments were conducted to produce sediment gravity flows of volumetric concentrations ranging from 1% to 52%, to study how changes in suspended sediment concentration affects the head velocities and run-out distances of these flows, in natural seawater. Increasing the volumetric concentration of suspended silica-flour, C, up to C = 46%, within the flows led to a progressive increase in the maximum head velocity. This relationship suggests that suspended sediment concentration intensifies the density difference between the turbulent suspension and the ambient water, which drives the flow, even if almost half of the available space is occupied by sediment particles. However, from C = 46% to C = 52% a rapid reduction in the maximum head velocity was measured. It is inferred that at C = 46%, friction from grain-to-grain interactions begins to attenuate turbulence within the flows. At C > 46%, the frictional stresses become progressively more dominant over the turbulent forces and excess density, thus producing lower maximum head velocities. This grain interaction process started to rapidly reduce the run-out distance of the silica-flour flows at equally high concentrations of C ≥ 47%. All flows with C tank, but the head velocities gradually reduced along the tank. Bagnold (1954, 1963) estimated that, for sand flows, grain-to-grain interactions start to become important in modulating turbulence at C > 9%. Yet, the critical flow concentration at which turbulence modulation commenced for these silica-flour laden flows appeared to be much higher. We suggest that Bagnold's 9% criterion cannot be applied to flows that carry fine-grained sediment, because turbulent forces are more important than dispersive forces, and frictional forces start to affect the flows only at concentrations just

  2. Reactor core flow measurements during plant start-up using non-intrusive flow meter CROSSFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, V.; Sharp, B.; Gurevich, A., E-mail: vkanda@amag-inc.com, E-mail: bsharp@amag-inc.com, E-mail: agurevich@amag-inc.com [Advanced Measurement & Analysis Group Inc., Ontario (Canada); Gurevich, Y., E-mail: yuri.gurevich@daystartech.ca [Daystar Technologies Inc., Ontario (Canada); Selvaratnarajah, S.; Lopez, A., E-mail: sselvaratnarajah@amag-inc.com, E-mail: alopez@amag-inc.com [Advanced Measurement & Analysis Group Inc., Ontario (Canada)

    2013-07-01

    For the first time, direct measurements of the total reactor coolant flow and the flow distribution between the inner reactor zone and the outer zone were conducted using the non-intrusive clamp on ultrasonic cross-correlation flow meter, CROSSFLOW, developed and manufactured by Advanced Measurement & Analysis Group Inc. (AMAG). The measurements were performed at Bruce Power A Unit 1 on the Pump Discharge piping of the Primary Heat Transport (PHT) system during start-up. This paper describes installation processes, hydraulic testing, uncertainty analysis and traceability of the measurements to certified standards. (author)

  3. Neutronics of a mixed-flow gas-core reactor

    International Nuclear Information System (INIS)

    Soran, P.D.; Hansen, G.E.

    1977-11-01

    The study was made to investigate the neutronic feasibility of a mixed-flow gas-core reactor. Three reactor concepts were studied: four- and seven-cell radial reactors and a seven-cell scallop reactor. The reactors were fueled with UF 6 (either U-233 or U-235) and various parameters were varied. A four-cell reactor is not practical nor is the U-235 fueled seven-cell radial reactor; however, the 7-cell U-233 radial and scallop reactors can satisfy all design criteria. The mixed flow gas core reactor is a very attractive reactor concept and warrants further investigation

  4. Hereditary non-polyposis colorectal cancer/Lynch syndrome in three dimensions.

    Science.gov (United States)

    Kravochuck, Sara E; Church, James M

    2017-12-01

    Hereditary non-polyposis colorectal cancer (HNPCC) is defined by family history, and Lynch syndrome (LS) is defined genetically. However, universal tumour testing is now increasingly used to screen for patients with defective mismatch repair. This mixing of the results of family history, tumour testing and germline testing produces multiple permutations and combinations that can foster confusion. We wanted to clarify hereditary colorectal cancer using the three dimensions of classification: family history, tumour testing and germline testing. Family history (Amsterdam I or II criteria versus not Amsterdam criteria) was used to define patients and families with HNPCC. Tumour testing and germline testing were then performed to sub-classify patients and families. The permutations of these classifications are applied to our registry. There were 234 HNPCC families: 129 had LS of which 55 were three-dimensional Lynch (family history, tumour testing and germline testing), 66 were two-dimensional Lynch and eight were one-dimensional Lynch. A total of 10 families had tumour Lynch (tumours with microsatellite instability or loss of expression of a mismatch repair protein but an Amsterdam-negative family and negative germline testing), five were Lynch like (Amsterdam-positive family, tumours with microsatellite instability or loss of expression of a mismatch repair protein on immunohistochemistry but negative germline testing), 26 were familial colorectal cancer type X and 95 were HNPCC. Hereditary colorectal cancer can be confusing. Sorting families in three dimensions can clarify the confusion and may direct further testing and, ultimately, surveillance. © 2016 Royal Australasian College of Surgeons.

  5. On approximation of non-Newtonian fluid flow by the finite element method

    Science.gov (United States)

    Svácek, Petr

    2008-08-01

    In this paper the problem of numerical approximation of non-Newtonian fluid flow with free surface is considered. Namely, the flow of fresh concrete is addressed. Industrial mixtures often behaves like non-Newtonian fluids exhibiting a yield stress that needs to be overcome for the flow to take place, cf. [R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, vol. 1, Fluid Mechanics, Wiley, New York, 1987; R.P. Chhabra, J.F. Richardson, Non-Newtonian Flow in the Process Industries, Butterworth-Heinemann, London, 1999]. The main interest is paid to the mathematical formulation of the problem and to discretization with the aid of finite element method. The described numerical procedure is applied onto the solution of several problems.

  6. Invariant and partially-invariant solutions of the equations describing a non-stationary and isentropic flow for an ideal and compressible fluid in (3 + 1) dimensions

    Science.gov (United States)

    Grundland, A. M.; Lalague, L.

    1996-04-01

    This paper presents a new method of constructing, certain classes of solutions of a system of partial differential equations (PDEs) describing the non-stationary and isentropic flow for an ideal compressible fluid. A generalization of the symmetry reduction method to the case of partially-invariant solutions (PISs) has been formulated. We present a new algorithm for constructing PISs and discuss in detail the necessary conditions for the existence of non-reducible PISs. All these solutions have the defect structure 0305-4470/29/8/019/img1 and are computed from four-dimensional symmetric subalgebras. These theoretical considerations are illustrated by several examples. Finally, some new classes of invariant solutions obtained by the symmetry reduction method are included. These solutions represent central, conical, rational, spherical, cylindrical and non-scattering double waves.

  7. Are Titan's radial Labyrinth terrains surface expressions of large laccoliths?

    Science.gov (United States)

    Schurmeier, L.; Dombard, A. J.; Malaska, M.; Radebaugh, J.

    2017-12-01

    The Labyrinth terrain unit may be the one of the best examples of the surface expression of Titan's complicated history. They are characterized as highly eroded, dissected, and elevated plateaus and remnant ridges, with an assumed composition that is likely organic-rich based on radar emissivity. How these features accumulated organic-rich sediments and formed topographic highs by either locally uplifting or surviving pervasive regional deflation or erosion is an important question for understanding the history of Titan. There are several subsets of Labyrinth terrains, presumably with differing evolutionary histories and formation processes. We aim to explain the formation of a subset of Labyrinth terrain units informally referred to as "radial Labyrinth terrains." They are elevated and appear dome-like, circular in planform, have a strong radial dissection pattern, are bordered by Undifferentiated Plains units, and are found in the mid-latitudes. Based on their shape, clustering, and dimensions, we suggest that they may be the surface expression of large subsurface laccoliths. A recent study by Manga and Michaut (Icarus, 2017) explained Europa's lenticulae (pits, domes, spots) with the formation of saucer-shaped sills that form laccoliths around the brittle-ductile transition depth within the ice shell (1-5 km). Here, we apply the same scaling relationships and find that the larger size of radial labyrinth terrains with Titan's higher gravity implies deeper intrusion depths of around 20-40 km. This intrusion depth matches the expected brittle-ductile transition on Titan based on our finite element simulations and yield strength envelope analyses. We hypothesize that Titan's radial labyrinth terrains formed as cryovolcanic (water) intrusions that rose to the brittle-ductile transition within the ice shell where they spread horizontally, and uplifted the overlying ice. The organic-rich sedimentary cover also uplifted, becoming more susceptible to pluvial and fluvial

  8. Influence of mesh non-orthogonality on numerical simulation of buoyant jet flows

    International Nuclear Information System (INIS)

    Ishigaki, Masahiro; Abe, Satoshi; Sibamoto, Yasuteru; Yonomoto, Taisuke

    2017-01-01

    Highlights: • Influence of mesh non-orthogonality on numerical solution of buoyant jet flows. • Buoyant jet flows are simulated with hexahedral and prismatic meshes. • Jet instability with prismatic meshes may be overestimated compared to that with hexahedral meshes. • Modified solvers that can reduce the influence of mesh non-orthogonality and reduce computation time are proposed. - Abstract: In the present research, we discuss the influence of mesh non-orthogonality on numerical solution of a type of buoyant flow. Buoyant jet flows are simulated numerically with hexahedral and prismatic mesh elements in an open source Computational Fluid Dynamics (CFD) code called “OpenFOAM”. Buoyant jet instability obtained with the prismatic meshes may be overestimated compared to that obtained with the hexahedral meshes when non-orthogonal correction is not applied in the code. Although the non-orthogonal correction method can improve the instability generated by mesh non-orthogonality, it may increase computation time required to reach a convergent solution. Thus, we propose modified solvers that can reduce the influence of mesh non-orthogonality and reduce the computation time compared to the existing solvers in OpenFOAM. It is demonstrated that calculations for a buoyant jet with a large temperature difference are performed faster by the modified solver.

  9. Influence of mesh non-orthogonality on numerical simulation of buoyant jet flows

    Energy Technology Data Exchange (ETDEWEB)

    Ishigaki, Masahiro, E-mail: ishigaki.masahiro@jaea.go.jp; Abe, Satoshi; Sibamoto, Yasuteru; Yonomoto, Taisuke

    2017-04-01

    Highlights: • Influence of mesh non-orthogonality on numerical solution of buoyant jet flows. • Buoyant jet flows are simulated with hexahedral and prismatic meshes. • Jet instability with prismatic meshes may be overestimated compared to that with hexahedral meshes. • Modified solvers that can reduce the influence of mesh non-orthogonality and reduce computation time are proposed. - Abstract: In the present research, we discuss the influence of mesh non-orthogonality on numerical solution of a type of buoyant flow. Buoyant jet flows are simulated numerically with hexahedral and prismatic mesh elements in an open source Computational Fluid Dynamics (CFD) code called “OpenFOAM”. Buoyant jet instability obtained with the prismatic meshes may be overestimated compared to that obtained with the hexahedral meshes when non-orthogonal correction is not applied in the code. Although the non-orthogonal correction method can improve the instability generated by mesh non-orthogonality, it may increase computation time required to reach a convergent solution. Thus, we propose modified solvers that can reduce the influence of mesh non-orthogonality and reduce the computation time compared to the existing solvers in OpenFOAM. It is demonstrated that calculations for a buoyant jet with a large temperature difference are performed faster by the modified solver.

  10. Massively Parallel Dimension Independent Adaptive Metropolis

    KAUST Repository

    Chen, Yuxin

    2015-01-01

    parameter dimension, by respecting the variance, for Gaussian targets. The result- ing algorithm, referred to as the dimension-independent adaptive Metropolis (DIAM) algorithm, also shows improved performance with respect to adaptive Metropolis on non

  11. Inflation and conformal invariance: the perspective from radial quantization

    Energy Technology Data Exchange (ETDEWEB)

    Kehagias, Alex [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece); Theoretical Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Riotto, Antonio [Department of Theoretical Physics and Center for Astroparticle Physics (CAP) 24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland)

    2017-05-15

    According to the dS/CFT correspondence, correlators of fields generated during a primordial de Sitter phase are constrained by three-dimensional conformal invariance. Using the properties of radially quantized conformal field theories and the operator-state correspondence, we glean information on some points. The Higuchi bound on the masses of spin-s states in de Sitter is a direct consequence of reflection positivity in radially quantized CFT{sub 3} and the fact that scaling dimensions of operators are energies of states. The partial massless states appearing in de Sitter correspond from the boundary CFT{sub 3} perspective to boundary states with highest weight for the conformal group. Finally, we discuss the inflationary consistency relations and the role of asymptotic symmetries which transform asymptotic vacua to new physically inequivalent vacua by generating long perturbation modes. We show that on the CFT{sub 3} side, asymptotic symmetries have a nice quantum mechanics interpretation. For instance, acting with the asymptotic dilation symmetry corresponds to evolving states forward (or backward) in ''time'' and the charge generating the asymptotic symmetry transformation is the Hamiltonian itself. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Development of a Thermo-chemical Non-equilibrium Solver for Hypervelocity Flows

    Science.gov (United States)

    Balasubramanian, R.; Anandhanarayanan, K.

    2015-04-01

    In the present study, a three dimensional flowsolver is indigenously developed to numerically simulate hypervelocity thermal and chemical non equilibrium reactive air flow past flight vehicles. The two-temperature, five species, seventeen reactions, thermo-chemical non equilibrium, non-ionizing, air-chemistry model of Park is implemented in a compressible viscous code CERANS and solved in the finite volume framework. The energy relaxation is addressed by a conservation equation for the vibrational energy of the gas mixture resulting in the evaluation of its vibrational temperature. The AUSM-PW+ numerical flux function has been used for modeling the convective fluxes and a central differencing approximation is used for modeling the diffusive fluxes. The flowsolver had been validated for specifically chosen test cases with inherent flow complexities of non-ionizing hypervelocity thermochemical nonequilibrium flows and results obtained are in good agreement with results available in open literature.

  13. Non-equilibrium in flowing atmospheric plasmas

    International Nuclear Information System (INIS)

    Haas, J.C.M. de.

    1986-01-01

    This thesis deals with the fundamental aspects of two different plasmas applied in technological processes. The first one is the cesium seeded argon plasma in a closed cycle Magnetohydrodynamic (MHD) generator, the second is the thermal argon plasma in a cascade arc with an imposed flow. In Chapter 2 the influence of non-equilibrium on the mass and energy balances of a plasma is worked out. The general theory presented there can be applied to both the plasma in an MHD generator and to the cascade arc with imposed flow. Introductions to these plasmas are given in the Chapters 3 and 6 respectively. These chapters are both followed by two chapters which treat the theoretical and the experimental investigations. The results are summarized in Chapter 9. (Auth.)

  14. 1/ r potential in higher dimensions

    Science.gov (United States)

    Chakraborty, Sumanta; Dadhich, Naresh

    2018-01-01

    In Einstein gravity, gravitational potential goes as 1/r^{d-3} in d non-compactified spacetime dimensions, which assumes the familiar 1 / r form in four dimensions. On the other hand, it goes as 1/r^{α }, with α =(d-2m-1)/m, in pure Lovelock gravity involving only one mth order term of the Lovelock polynomial in the gravitational action. The latter offers a novel possibility of having 1 / r potential for the non-compactified dimension spectrum given by d=3m+1. Thus it turns out that in the two prototype gravitational settings of isolated objects, like black holes and the universe as a whole - cosmological models, the Einstein gravity in four and mth order pure Lovelock gravity in 3m+1 dimensions behave in a similar fashion as far as gravitational interactions are considered. However propagation of gravitational waves (or the number of degrees of freedom) does indeed serve as a discriminator because it has two polarizations only in four dimensions.

  15. Non-equilibrium flow and sediment transport distribution over mobile river dunes

    Science.gov (United States)

    Hoitink, T.; Naqshband, S.; McElroy, B. J.

    2017-12-01

    Flow and sediment transport are key processes in the morphodynamics of river dunes. During floods in several rivers (e.g., the Elkhorn, Missouri, Niobrara, and Rio Grande), dunes are observed to grow rapidly as flow strength increases, undergoing an unstable transition regime, after which they are washed out in what is called upper stage plane bed. This morphological evolution of dunes to upper stage plane bed is the strongest bed-form adjustment during non-equilibrium flows and is associated with a significant change in hydraulic roughness and water levels. Detailed experimental investigations, however, have mostly focused on fixed dunes limited to equilibrium flow and bed conditions that are rare in natural channels. Our understanding of the underlying sedimentary processes that result into the washing out of dunes is therefore very limited. In the present study, using the Acoustic Concentration and Velocity Profiler (ACVP), we were able to quantify flow structure and sediment transport distribution over mobile non-equilibrium dunes. Under these non-equilibrium flow conditions average dune heights were decreasing while dune lengths were increasing. Preliminary results suggest that this morphological behaviour is due to a positive phase lag between sediment transport maximum and topographic maximum leading to a larger erosion on the dune stoss side compared to deposition on dune lee side.

  16. Comparison of Vibrational Relaxation Modeling for Strongly Non-Equilibrium Flows

    Science.gov (United States)

    2014-01-01

    important pro- cess in a wide range of high speed flows. High temperature shock layers that form in front of hypersonic vehicles can lead to significant...continuum flows for use in traditional Computational Fluid Dynamics ( CFD ) and non-continuum flows for use with rarefied flow de- scriptions, such as the...145 .98 4396 V. Summary and Conclusions The form of two vibrational relaxation models that are commonly used in DSMC and CFD simula- tions have been

  17. Transient two-phase flow

    International Nuclear Information System (INIS)

    Hsu, Y.Y.

    1974-01-01

    The following papers related to two-phase flow are summarized: current assumptions made in two-phase flow modeling; two-phase unsteady blowdown from pipes, flow pattern in Laval nozzle and two-phase flow dynamics; dependence of radial heat and momentum diffusion; transient behavior of the liquid film around the expanding gas slug in a vertical tube; flooding phenomena in BWR fuel bundles; and transient effects in bubble two-phase flow. (U.S.)

  18. State-to-state modeling of non-equilibrium air nozzle flows

    Science.gov (United States)

    Nagnibeda, E.; Papina, K.; Kunova, O.

    2018-05-01

    One-dimensional non-equilibrium air flows in nozzles are studied on the basis of the state-to-state description of vibrational-chemical kinetics. Five-component mixture N2/O2/NO/N/O is considered taking into account Zeldovich exchange reactions of NO formation, dissociation, recombination and vibrational energy transitions. The equations for vibrational and chem-ical kinetics in a flow are coupled to the conservation equations of momentum and total energy and solved numerically for different conditions in a nozzle throat. The vibrational distributions of nitrogen and oxygen molecules, number densities of species as well as the gas temperature and flow velocity along a nozzle axis are analysed using the detailed state-to-state flow description and in the frame of the simplified one-temperature thermal equilibrium kinetic model. The comparison of the results showed the influence of non-equilibrium kinetics on macroscopic nozzle flow parameters. In the state-to-state approach, non-Boltzmann vibrational dis-tributions of N2 and O2 molecules with a plateau part at intermediate levels are found. The results are found with the use of the complete and simplified schemes of reactions and the impact of exchange reactions, dissociation and recombination on variation of vibrational level populations, mixture composition, gas velocity and temperature along a nozzle axis is shown.

  19. Non-spherical granular flows down inclined chutes

    NARCIS (Netherlands)

    Hidalgo, R.C.; Rubio-Largo, S.M.; Alonso-Marroquin, F.; Weinhart, T.

    2017-01-01

    In this work, we numerically examine the steady-state granular flow of 3D non-spherical particles down an inclined plane. We use a hybrid CPU/GPU implementation of the discrete element method of nonspherical elongated particles. Thus, a systematic study of the system response is performed varying

  20. The effect of radial migration on galactic disks

    International Nuclear Information System (INIS)

    Vera-Ciro, Carlos; D'Onghia, Elena; Navarro, Julio; Abadi, Mario

    2014-01-01

    We study the radial migration of stars driven by recurring multi-arm spiral features in an exponential disk embedded in a dark matter halo. The spiral perturbations redistribute angular momentum within the disk and lead to substantial radial displacements of individual stars, in a manner that largely preserves the circularity of their orbits and that results, after 5 Gyr (∼40 full rotations at the disk scale length), in little radial heating and no appreciable changes to the vertical or radial structure of the disk. Our results clarify a number of issues related to the spatial distribution and kinematics of migrators. In particular, we find that migrators are a heavily biased subset of stars with preferentially low vertical velocity dispersions. This 'provenance bias' for migrators is not surprising in hindsight, for stars with small vertical excursions spend more time near the disk plane, and thus respond more readily to non-axisymmetric perturbations. We also find that the vertical velocity dispersion of outward migrators always decreases, whereas the opposite holds for inward migrators. To first order, newly arrived migrators simply replace stars that have migrated off to other radii, thus inheriting the vertical bias of the latter. Extreme migrators might therefore be recognized, if present, by the unexpectedly small amplitude of their vertical excursions. Our results show that migration, understood as changes in angular momentum that preserve circularity, can strongly affect the thin disk, but cast doubts on models that envision the Galactic thick disk as a relic of radial migration.

  1. Liquid velocity in upward and downward air-water flows

    International Nuclear Information System (INIS)

    Sun Xiaodong; Paranjape, Sidharth; Kim, Seungjin; Ozar, Basar; Ishii, Mamoru

    2004-01-01

    Local characteristics of the liquid phase in upward and downward air-water two-phase flows were experimentally investigated in a 50.8-mm inner-diameter round pipe. An integral laser Doppler anemometry (LDA) system was used to measure the axial liquid velocity and its fluctuations. No effect of the flow direction on the liquid velocity radial profile was observed in single-phase liquid benchmark experiments. Local multi-sensor conductivity probes were used to measure the radial profiles of the bubble velocity and the void fraction. The measurement results in the upward and downward two-phase flows are compared and discussed. The results in the downward flow demonstrated that the presence of the bubbles tended to flatten the liquid velocity radial profile, and the maximum liquid velocity could occur off the pipe centerline, in particular at relatively low flow rates. However, the maximum liquid velocity always occurred at the pipe center in the upward flow. Also, noticeable turbulence enhancement due to the bubbles in the two-phase flows was observed in the current experimental flow conditions. Furthermore, the distribution parameter and the void-weighted area-averaged drift velocity were obtained based on the definitions

  2. MHD free convection flow of a non-Newtonian power-law fluid over ...

    African Journals Online (AJOL)

    ... flow have been presented for various parameters such as Prandtl number, flow behavior index (n), porous plate parameter and magnetic parameter. The local Nusselt number and skin friction coefficient is also presented graphically. Keywords: Magnetohydrodynamic flow; free convection flow; Non-Newtonian power-law

  3. Accelerated Dimension-Independent Adaptive Metropolis

    KAUST Repository

    Chen, Yuxin

    2016-10-27

    This work describes improvements by algorithmic and architectural means to black-box Bayesian inference over high-dimensional parameter spaces. The well-known adaptive Metropolis (AM) algorithm [H. Haario, E. Saksman, and J. Tamminen, Bernoulli, (2001), pp. 223--242] is extended herein to scale asymptotically uniformly with respect to the underlying parameter dimension for Gaussian targets, by respecting the variance of the target. The resulting algorithm, referred to as the dimension-independent adaptive Metropolis (DIAM) algorithm, also shows improved performance with respect to adaptive Metropolis on non-Gaussian targets. This algorithm is further improved, and the possibility of probing high-dimensional (with dimension $d \\\\geq 1000$) targets is enabled, via GPU-accelerated numerical libraries and periodically synchronized concurrent chains (justified a posteriori). Asymptotically in dimension, this GPU implementation exhibits a factor of four improvement versus a competitive CPU-based Intel MKL (math kernel library) parallel version alone. Strong scaling to concurrent chains is exhibited, through a combination of longer time per sample batch (weak scaling) with fewer necessary samples to convergence. The algorithm performance is illustrated on several Gaussian and non-Gaussian target examples, in which the dimension may be in excess of one thousand.

  4. Geometric flows in Horava-Lifshitz gravity

    CERN Document Server

    Bakas, Ioannis; Lust, Dieter; Petropoulos, Marios

    2010-01-01

    We consider instanton solutions of Euclidean Horava-Lifshitz gravity in four dimensions satisfying the detailed balance condition. They are described by geometric flows in three dimensions driven by certain combinations of the Cotton and Ricci tensors as well as the cosmological-constant term. The deformation curvature terms can have competing behavior leading to a variety of fixed points. The instantons interpolate between any two fixed points, which are vacua of topologically massive gravity with Lambda > 0, and their action is finite. Special emphasis is placed on configurations with SU(2) isometry associated with homogeneous but generally non-isotropic Bianchi IX model geometries. In this case, the combined Ricci-Cotton flow reduces to an autonomous system of ordinary differential equations whose properties are studied in detail for different couplings. The occurrence and stability of isotropic and anisotropic fixed points are investigated analytically and some exact solutions are obtained. The correspond...

  5. Validation of Noninvasive MOEMS-Assisted Measurement System Based on CCD Sensor for Radial Pulse Analysis

    Directory of Open Access Journals (Sweden)

    Rolanas Dauksevicius

    2013-04-01

    Full Text Available Examination of wrist radial pulse is a noninvasive diagnostic method, which occupies a very important position in Traditional Chinese Medicine. It is based on manual palpation and therefore relies largely on the practitioner’s subjective technical skills and judgment. Consequently, it lacks reliability and consistency, which limits practical applications in clinical medicine. Thus, quantifiable characterization of the wrist pulse diagnosis method is a prerequisite for its further development and widespread use. This paper reports application of a noninvasive CCD sensor-based hybrid measurement system for radial pulse signal analysis. First, artery wall deformations caused by the blood flow are calibrated with a laser triangulation displacement sensor, following by the measurement of the deformations with projection moiré method. Different input pressures and fluids of various viscosities are used in the assembled artificial blood flow system in order to test the performance of laser triangulation technique with detection sensitivity enhancement through microfabricated retroreflective optical element placed on a synthetic vascular graft. Subsequently, the applicability of double-exposure whole-field projection moiré technique for registration of blood flow pulses is considered: a computational model and representative example are provided, followed by in vitro experiment performed on a vascular graft with artificial skin atop, which validates the suitability of the technique for characterization of skin surface deformations caused by the radial pulsation.

  6. Large-eddy simulations of the non-reactive flow in the Sydney swirl burner

    International Nuclear Information System (INIS)

    Yang Yang; Kær, Søren Knudsen

    2012-01-01

    Highlights: ► Rational mesh and grid system for LES are discussed. ► Validated results are provided and discrepancy of mean radial velocity component is discussed. ► Flow structures are identified using vorticity field. ► We performed POD on cross sections to assist in understanding of coherent structures. - Abstract: This paper presents a numerical investigation using large-eddy simulation. Two isothermal cases from the Sydney swirling flame database with different swirl numbers were tested. Rational grid system and mesh details were presented firstly. Validations showed overall good agreement in time averaged results. In medium swirling case, there are two reverse-flow regions with a collar-like structure between them. The existence of strong unsteady structure, precessing vortex core, was proven. Coherent structures are detached from the instantaneous field. Q-criterion was used to visualize vorticity field with distinct clear structure of vortice tubes. Dominating spatial–temporal structures contained in different cross sections were extracted using proper orthogonal decomposition. In high swirling case, there is only one long reverse-flow region. In this paper, we proved the capability of a commercial CFD package in predicting complex flow field and presented the potential of large eddy simulation in understanding dynamics.

  7. A hybrid hydrostatic and non-hydrostatic numerical model for shallow flow simulations

    Science.gov (United States)

    Zhang, Jingxin; Liang, Dongfang; Liu, Hua

    2018-05-01

    Hydrodynamics of geophysical flows in oceanic shelves, estuaries, and rivers, are often studied by solving shallow water model equations. Although hydrostatic models are accurate and cost efficient for many natural flows, there are situations where the hydrostatic assumption is invalid, whereby a fully hydrodynamic model is necessary to increase simulation accuracy. There is a growing concern about the decrease of the computational cost of non-hydrostatic pressure models to improve the range of their applications in large-scale flows with complex geometries. This study describes a hybrid hydrostatic and non-hydrostatic model to increase the efficiency of simulating shallow water flows. The basic numerical model is a three-dimensional hydrostatic model solved by the finite volume method (FVM) applied to unstructured grids. Herein, a second-order total variation diminishing (TVD) scheme is adopted. Using a predictor-corrector method to calculate the non-hydrostatic pressure, we extended the hydrostatic model to a fully hydrodynamic model. By localising the computational domain in the corrector step for non-hydrostatic pressure calculations, a hybrid model was developed. There was no prior special treatment on mode switching, and the developed numerical codes were highly efficient and robust. The hybrid model is applicable to the simulation of shallow flows when non-hydrostatic pressure is predominant only in the local domain. Beyond the non-hydrostatic domain, the hydrostatic model is still accurate. The applicability of the hybrid method was validated using several study cases.

  8. Cross-coupling effects in chemically non-equilibrium viscous compressible flows

    International Nuclear Information System (INIS)

    Kustova, E.V.; Giordano, D.

    2011-01-01

    Graphical abstract: Self-cosistent kinetic-theory description of chemical-reaction rates and mean normal stress in one-temperature viscous compressible gas flows. Reaearch highlights: → In chemically non-equilibrium viscous compressible flows, the rate of each reaction depends on the velocity divergence and rates of all other reactions. → Cross effects between the rates of chemical reactions and normal mean stress can be found in the symmetric form and expressed in terms of the reaction affinities. → In the case of small affinities, the entropy production is unconditionally non-negative; in the case of finite affinities, the entropy production related to the scalar forces has no definite sign. - Abstract: A closed self-consistent description of a one-temperature non-equilibrium reacting flow is presented on the basis of the kinetic theory methods. A general case including internal degrees of freedom, dissociation-recombination and exchange reactions, and arbitrary values of affinities of chemical reactions is considered. Chemical-reaction rates and mean normal stress in viscous compressible flows are studied and a symmetric cross coupling between these terms is found. It is shown that the rate of each chemical reaction and the mean normal stress depend on velocity divergence and affinities of all chemical reactions; the law of mass action is violated in viscous flows. The results obtained in the frame of linear irreversible thermodynamics can be deduced from the proposed model for the particular case of small affinities. The reciprocal Onsager-Casimir relations are verified, the symmetry of kinetic coefficients is demonstrated, and the entropy production in a viscous flow is studied.

  9. Investigation of flow dynamics of liquid phase in a pilot-scale trickle bed reactor using radiotracer technique

    International Nuclear Information System (INIS)

    Pant, H.J.; Sharma, V.K.

    2016-01-01

    A radiotracer investigation was carried out to measure residence time distribution (RTD) of liquid phase in a trickle bed reactor (TBR). The main objectives of the investigation were to investigate radial and axial mixing of the liquid phase, and evaluate performance of the liquid distributor/redistributor at different operating conditions. Mean residence times (MRTs), holdups (H) and fraction of flow flowing along different quadrants were estimated. The analysis of the measured RTD curves indicated radial non-uniform distribution of liquid phase across the beds. The overall RTD of the liquid phase, measured at the exit of the reactor was simulated using a multi-parameter axial dispersion with exchange model (ADEM), and model parameters were obtained. The results of model simulations indicated that the TBR behaved as a plug flow reactor at most of the operating conditions used in the investigation. The results of the investigation helped to improve the existing design as well as to design a full-scale industrial TBR for petroleum refining applications. - Highlights: • Residence time distributions of liquid phase were measured in a trickle bed reactor. • Bromine-82 as ammonium bromide was used as a radiotracer. • Mean residence times, holdups and radial distribution of liquid phase were quantified. • Axial dispersion with exchange model was used to simulate the measured data. • The trickle bed reactor behaved as a plug flow reactor.

  10. Self-consistent model for the radial current generation during fishbone activity

    International Nuclear Information System (INIS)

    Lutsenko, V.V.; Marchenko, V.S.

    2002-01-01

    Line broadened quasilinear burst model, originally developed for the bump-on-tail instability [H. L. Berk et al., Nucl. Fusion 35, 1661 (1995)], is extended to the problem of sheared flow generation by the fishbone burst. It is supposed that the radial current of the resonant fast ions can be sufficient to create the transport barrier

  11. Non-uniform overland flow-infiltration model for roadside swales

    Science.gov (United States)

    García-Serrana, María; Gulliver, John S.; Nieber, John L.

    2017-09-01

    There is a need to quantify the hydrologic performance of vegetated roadside swales (drainage ditches) as stormwater control measures (SCMs). To quantify their infiltration performance in both the side slope and the channel of the swale, a model has been developed for coupling a Green-Ampt-Mein-Larson (GAML) infiltration submodel with kinematic wave submodels for both overland flow down the side slope and open channel flow for flow in the ditch. The coupled GAML submodel and overland flow submodel has been validated using data collected in twelve simulated runoff tests in three different highways located in the Minneapolis-St. Paul metropolitan area, MN. The percentage of the total water infiltrated into the side slope is considerably greater than into the channel. Thus, the side slope of a roadside swale is the main component contributing to the loss of runoff by infiltration and the channel primarily conveys the water that runs off the side slope, for the typical design found in highways. Finally, as demonstrated in field observations and the model, the fraction of the runoff/rainfall infiltrated (Vi∗) into the roadside swale appears to increase with a dimensionless saturated hydraulic conductivity (Ks∗), which is a function of the saturated hydraulic conductivity, rainfall intensity, and dimensions of the swale and contributing road surface. For design purposes, the relationship between Vi∗ and Ks∗ can provide a rough estimate of the fraction of runoff/rainfall infiltrated with the few essential parameters that appear to dominate the results.

  12. A NEW DIMENSION IN ACTIVITY REPORTING AND THE PERFORMANCE OF THE ENTERPRISE – NON-FINANCIAL REPORTING

    Directory of Open Access Journals (Sweden)

    Liana Gadau

    2016-07-01

    Full Text Available Currently the focus is on the fact that non-financial reporting is essential for the transition to a sustainable economy which combines long-term profitability with social inclusion and protection of natural resources. Therefore, the present requirements of the European Union institutions on reporting non-financial enterprises and large groups of enterprises require that they report to both environmental and social as well as issues regarding compliance with human rights issues on combating corruption and bribery.It aims to increase the transparency and comparability among large companies. The merit and importance of non-financial reporting is that business goes beyond performance reporting financial size classical concept of performance thus completing two new dimensions, environmental and social.

  13. Simulation and modeling of turbulent non isothermal vapor-droplet dispersed flow

    International Nuclear Information System (INIS)

    Baalbaki, Daoud

    2011-01-01

    One of the reference accident that may occur in PWR (Pressurized Water Reactor) is LOCA (Loss of Coolant Accident). The LOCA is studied to design some emergency systems implemented in the basic nuclear installations. The LOCA corresponds to the break of a pipe in the primary loop. This accident is associated with a loss of pressure which leads to the vaporization of the water in the reactor core and then to the rise of the temperature of the assemblies. In this study, we focus on the area of vapor-droplet flow, where the cooling effectiveness of such a mixture is a major concern. The droplets act as heat sinks for the vapor and control the vapor temperature profile which, in turn, determines the wall heat transfer rate. Our general objective is to ameliorate the modeling of the vapor-droplet flow (i.e. at CFD scale). Particularly the estimation of the radial distribution of the droplets. The volume fraction distribution of the two phases depends on the size and dispersion of the droplets in the flow. The size of the droplets is controlled by the rupture and coalescence mechanisms and the interfacial mass transfer (evaporation/condensation). The distribution of the droplets is controlled by the transfer of momentum between the two phases. Our study focuses particularly on the latter point. We are restricted to flows where the liquid water flows under the form of non-deformable spherical droplets that do not interact with each other. Both phases are treated by a two-fluid approach Euler-Euler. In chapter 2, a description of two-phase flow model is presented, using separate mass, momentum, and energy equations for the two phases. These separate balance equations are obtained in an averaging process starting from the local instantaneous conservation equations of the individual phases. During the averaging process, important information on local flow processes are lost and, consequently, additional correlations are needed in order to close the system of equations. The

  14. Mixing-induced quantum non-Markovianity and information flow

    Science.gov (United States)

    Breuer, Heinz-Peter; Amato, Giulio; Vacchini, Bassano

    2018-04-01

    Mixing dynamical maps describing open quantum systems can lead from Markovian to non-Markovian processes. Being surprising and counter-intuitive, this result has been used as argument against characterization of non-Markovianity in terms of information exchange. Here, we demonstrate that, quite the contrary, mixing can be understood in a natural way which is fully consistent with existing theories of memory effects. In particular, we show how mixing-induced non-Markovianity can be interpreted in terms of the distinguishability of quantum states, system-environment correlations and the information flow between system and environment.

  15. Exceptional circles of radial potentials

    International Nuclear Information System (INIS)

    Music, M; Perry, P; Siltanen, S

    2013-01-01

    A nonlinear scattering transform is studied for the two-dimensional Schrödinger equation at zero energy with a radial potential. Explicit examples are presented, both theoretically and computationally, of potentials with nontrivial singularities in the scattering transform. The singularities arise from non-uniqueness of the complex geometric optics solutions that define the scattering transform. The values of the complex spectral parameter at which the singularities appear are called exceptional points. The singularity formation is closely related to the fact that potentials of conductivity type are ‘critical’ in the sense of Murata. (paper)

  16. The effect of texture on the shaft surface on the sealing performance of radial lip seals

    Science.gov (United States)

    Guo, Fei; Jia, XiaoHong; Gao, Zhi; Wang, YuMing

    2014-07-01

    On the basis of elastohydrodynamic model, the present study numerically analyzes the effect of various microdimple texture shapes, namely, circular, square, oriented isosceles triangular, on the pumping rate and the friction torque of radial lip seals, and determines the microdimple texture shape that can produce positive pumping rate. The area ratio, depth and shape dimension of a single texture are the most important geometric parameters which influence the tribological performance. According to the selected texture shape, parameter analysis is conducted to determine the optimal combination for the above three parameters. Simultaneously, the simulated performances of radial lip seal with texture on the shaft surface are compared with those of the conventional lip seal without any texture on the shaft surface.

  17. Instrumentation to Monitor Transient Periodic Developing Flow in Non-Newtonian Slurries

    Energy Technology Data Exchange (ETDEWEB)

    Bamberger, Judith A.; Enderlin, Carl W.

    2013-11-15

    Staff at Pacific Northwest National Laboratory have conducted mixing and mobilization experiments with non-Newtonian slurries that exhibit Bingham plastic and shear thinning behavior and shear strength. This paper describes measurement techniques applied to identify the interface between flowing and stationary regions of non-Newtonian slurries that are subjected to transient, periodic, developing flows. Techniques were developed to identify the boundary between the flowing and stationary regions, time to mix, characteristic velocities of the flow field produced by the symmetrically spaced nozzles, and the velocity of the upwell formed in the center of the tank by the intersection of flow from four symmetrically spaced nozzles that impinge upon the tank floor. Descriptions of the instruments and instrument performance are presented. These techniques were an effective approach to characterize mixing phenomena, determine mixing energy required to fully mobilize vessel contents and to determine mixing times for process evaluation.

  18. Extension of CE/SE method to non-equilibrium dissociating flows

    KAUST Repository

    Wen, C.Y.

    2017-12-08

    In this study, the hypersonic non-equilibrium flows over rounded nose geometries are numerically investigated by a robust conservation element and solution element (CE/SE) code, which is based on hybrid meshes consisting of triangular and quadrilateral elements. The dissociating and recombination chemical reactions as well as the vibrational energy relaxation are taken into account. The stiff source terms are solved by an implicit trapezoidal method of integration. Comparison with laboratory and numerical cases are provided to demonstrate the accuracy and reliability of the present CE/SE code in simulating hypersonic non-equilibrium flows.

  19. Comparison of Blood Lipids, Blood Pressures and Left Ventricular Cavity Dimension between Soccer Players and Non-Athletes

    Science.gov (United States)

    Gokhan, Ismail; Kurkcu, Recep; Cekin, Resul

    2013-01-01

    In this study, it was aimed to compare the investigate the effects of regular exercise on blood lipids, blood pressure and left ventricular cavity dimensions function between soccer players and non-athletes in football players. This study consisted included a total of 30 subjects, including an experimental group including 18 soccer players…

  20. Antiproton compression and radial measurements

    CERN Document Server

    Andresen, G B; Bowe, P D; Bray, C C; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jorgensen, L V; Kurchaninov, L; Lambo, R; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Page R D; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Seif El Nasr, S; Silveira, D M; Storey, J W; Thompson, R I; Van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2008-01-01

    Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, achieved by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile, and its relation to that of the electron plasma. We also measure the outer radial profile by ejecting antiprotons to the trap wall using an octupole magnet.

  1. A novel tubular linear motor equipped with radially anisotropic NdFeB ring magnets

    International Nuclear Information System (INIS)

    Hor, P.J.

    1998-01-01

    The paper describes the design synthesis and optimisation of a novel tubular linear motor employing radially magnetised anisotropic ring magnets. Design issues, related to optimising the dimensions for maximum acceleration capability, minimum cogging force and low harmonic distortion in the emf waveform, are discussed. The influence of inhomogeneities in the magnets on the performance of a prototype motor is discussed, and its dynamic performance is validated experimentally against a typical target specification for automated high-speed manufacturing applications. (orig.)

  2. On the zero mass limit of the non linear sigma model in four dimensions

    International Nuclear Information System (INIS)

    Gomes, M.; Koeberle, R.

    The existence of the zero mass limit for the non-linear sigma-model in four dimensions is shown to all orders in renormalized perturbation theory. The main ingredient in the proof is the imposition of many current axial vector Ward identities and the tool used is Lowenstein's momentum-space subtraction procedure. Instead of introducing anisotropic symmetry breaking mass terms, which do not vanish in the symmetry limit, it is necessary to allow for 'soft' anisotropic derivative coupling in order to obtain the correct Ward indentities [pt

  3. Flow performance of highly loaded axial fan with bowed rotor blades

    Science.gov (United States)

    Chen, L.; Liu, X. J.; Yang, A. L.; Dai, R.

    2013-12-01

    In this paper, a partial bowed rotor blade was proposed for a newly designed high loaded axial fan. The blade was positively bowed 30 degrees from hub to 30 percent spanwise position. Flows of radial blade and bowed blade fans were numerically compared for various operation conditions. Results show that the fan's performance is improved. At the designed condition with flow coefficient of 0.52, the efficiency of the bowed blade fan is increased 1.44% and the static pressure rise is increased 11%. Comparing the flow structures, it can be found that the separated flow in the bowed fan is reduced and confined within 20 percent span, which is less than the 35 percent in the radial fan. It means that the bowed blade generates negative blade force and counteracts partial centrifugal force. It is alleviates the radial movements of boundary layers in fan's hub region. Flow losses due to 3D mixing are reduced in the rotor. Inlet flow to downstream stator is also improved.

  4. 1/r potential in higher dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Sumanta [Indian Association for the Cultivation of Science, Department of Theoretical Physics, Kolkata (India); IUCAA, Pune (India); Dadhich, Naresh [IUCAA, Pune (India); Center for Theoretical Physics, New Delhi (India)

    2018-01-15

    In Einstein gravity, gravitational potential goes as 1/r{sup d-3} in d non-compactified spacetime dimensions, which assumes the familiar 1/r form in four dimensions. On the other hand, it goes as 1/r{sup α}, with α = (d - 2m - 1)/m, in pure Lovelock gravity involving only one mth order term of the Lovelock polynomial in the gravitational action. The latter offers a novel possibility of having 1/r potential for the non-compactified dimension spectrum given by d = 3m + 1. Thus it turns out that in the two prototype gravitational settings of isolated objects, like black holes and the universe as a whole - cosmological models, the Einstein gravity in four and mth order pure Lovelock gravity in 3m + 1 dimensions behave in a similar fashion as far as gravitational interactions are considered. However propagation of gravitational waves (or the number of degrees of freedom) does indeed serve as a discriminator because it has two polarizations only in four dimensions. (orig.)

  5. Effect of a flow-corrective insert on the flow pattern in a pebble bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yu; Gui, Nan; Yang, Xingtuan [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China); Tu, Jiyuan [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China); School of Aerospace, Mechanical & Manufacturing Engineering, RMIT University, Melbourne 3083, VIC (Australia); Jiang, Shengyao, E-mail: shengyaojiang@sina.com [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2016-04-15

    Highlights: • Effect of an insert on improving flow uniformity and eliminating stagnant zone is studied. • Three values concerned with the stagnant zone, radial uniformity and flow sequence are used. • Outlet diameter is a critical parameter that determines balancing mechanism of the insert. • Height/location is varied to let the insert work in unbalanced region and avoid adverse effect. - Abstract: A flow-corrective insert is adopted in the pebble-bed high temperature gas-cooled reactor (HTGR) to improve flow performance of the pebble flow for the first time. 3D discrete element method (DEM) modeling is employed to study this slow and dense granular flow. It is verified that locating a properly designed insert in the bed can help transform unsatisfactory flow field to the preferred flow pattern for pebble bed reactors. Three characteristic values on the stagnant zone, radial uniformity and flow sequence of pebble flow are defined to evaluate uniformity of the overall flow field quantitatively. The results demonstrate that the pebble bed equipped with an insert performs better than normal beds from all these three aspects. Moreover, based on numerical experiments, several universal tips for insert design on height, location and outlet diameter are suggested.

  6. Decomposition by tree dimension in Horn clause verification

    DEFF Research Database (Denmark)

    Kafle, Bishoksan; Gallagher, John Patrick; Ganty, Pierre

    2015-01-01

    In this paper we investigate the use of the concept of tree dimension in Horn clause analysis and verification. The dimension of a tree is a measure of its non-linearity - for example a list of any length has dimension zero while a complete binary tree has dimension equal to its height. We apply ...

  7. Polymer electrolyte fuel cells: flow field for efficient air operation

    Energy Technology Data Exchange (ETDEWEB)

    Buechi, F N; Tsukada, A; Haas, O; Scherer, G G [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    A new flow field was designed for a polymer electrolyte fuel cell stack with an active area of 200 cm{sup 2} for operation at low air stoichiometry and low air over pressure. Optimum of gas flow and channel dimensions were calculated based on the required pressure drop in the fluid. Single cells and a bi-cell stack with the new flow field show an improved current/voltage characteristic when operated at low air stoichiometries as compared to that of the previous non optimized design. (author) 4 figs., 3 refs.

  8. Piecewise - Parabolic Methods for Parallel Computation with Applications to Unstable Fluid Flow in 2 and 3 Dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, P. R.

    2003-03-26

    This report summarizes the results of the project entitled, ''Piecewise-Parabolic Methods for Parallel Computation with Applications to Unstable Fluid Flow in 2 and 3 Dimensions'' This project covers a span of many years, beginning in early 1987. It has provided over that considerable period the core funding to my research activities in scientific computation at the University of Minnesota. It has supported numerical algorithm development, application of those algorithms to fundamental fluid dynamics problems in order to demonstrate their effectiveness, and the development of scientific visualization software and systems to extract scientific understanding from those applications.

  9. Coupled Model of channels in parallel and neutron kinetics in two dimensions; Modelo acoplado de canales en paralelo y cinetica neutronica en dos dimensiones

    Energy Technology Data Exchange (ETDEWEB)

    Cecenas F, M.; Campos G, R.M. [Instituto de Investigaciones Electricas, Av. Reforma 113, Col. Palmira, 62490 Cuernavaca, Morelos (Mexico)]. E-mail: mcf@iie.org.mx; Valle G, E. del [IPN, ESFM, 07738 Mexico D.F. (Mexico)

    2004-07-01

    In this work an arrangement of thermohydraulic channels is presented that represent those four quadrants of a nucleus of reactor type BWR. The channels are coupled to a model of neutronic in two dimensions that allow to generate the radial profile of power of the reactor. Nevertheless that the neutronic pattern is of two dimensions, it is supplemented with axial additional information when considering the axial profiles of power for each thermo hydraulic channel. The stationary state is obtained the one it imposes as frontier condition the same pressure drop for all the channels. This condition is satisfied to iterating on the flow of coolant in each channel to equal the pressure drop in all the channels. This stationary state is perturbed later on when modifying the values for the effective sections corresponding to an it assembles. The calculation in parallel of the neutronic and the thermo hydraulic is carried out with Vpm (Virtual parallel machine) by means of an outline teacher-slave in a local net of computers. (Author)

  10. A unified theory in higher dimensions

    International Nuclear Information System (INIS)

    Kapetanakis, D.; Zoupanos, G.

    1990-01-01

    We present a grand unified model defined in ten dimensions and based on the group SO(13). The model is dimensionally reduced over the non-simply-connected space [Su(3)/U(1)xU(1)]/Z 2 giving in four dimensions the standard model. (orig.)

  11. Fluid flow dynamics in MAS systems

    Science.gov (United States)

    Wilhelm, Dirk; Purea, Armin; Engelke, Frank

    2015-08-01

    The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3 mm-rotor diameter has been analyzed for spinning rates up to 67 kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3 mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7 mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor.

  12. Annular flow of cement slurries; Escoamento anular de pastas de cimento

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Maria das Gracas Pena; Martins, Andre Leibsohn; Oliveira, Antonio Augusto J. de [PETROBRAS, Rio de Janeiro (Brazil). Centro de Pesquisas. Setor de Tecnologia de Perfuracao

    1990-12-31

    This paper considers the analysis of laminar, transitory and turbulent flow regimes of cement slurries of various compositions flowing in annular sections. It is an experimental study to evaluate the performance of dozens of equations found in the literature that reflect the rheological behavior of non-Newtonian fluids, the dimensioning of annular sections, the delimitation of the transitory zone and the estimative of friction losses in the turbulent flow regime. A large-scale physical simulator (SHS-Surface Hydraulic Simulator), was designed and constructed at the PETROBRAS Research Center in order to obtain flow parameters. A computer program capable of analysing and drawing conclusions from the behavior of non-Newtonian fluids flowing in different geometries and energetic conditions was also developed. These were considered as essential stages for the development of the project. (author) 17 refs., 9 figs., 18 tabs.

  13. Non-identical particle femtoscopy in models with single freeze-out

    International Nuclear Information System (INIS)

    Kisiel, Adam

    2007-01-01

    We present femtoscopic results from hydrodynamics-inspired thermal models with single freeze-out. Non-identical particle femtoscopy is studied and compared to results of identical particle correlations. Special emphasis is put on shifts between average space-time emission points of non-identical particles of different masses. They are found to be sensitive to both the spatial shift coming from radial flow, as well as average emission time difference coming from the resonance decays. The Terminator Monte-Carlo program was chosen for this study because it realistically models both of these effects. In order to analyze the results we present and test the methodology of non-identical particle correlations. (author)

  14. Spatial stochasticity and non-continuum effects in gas flows

    Energy Technology Data Exchange (ETDEWEB)

    Dadzie, S. Kokou, E-mail: k.dadzie@glyndwr.ac.uk [Mechanical and Aeronautical Engineering, Glyndwr University, Mold Road, Wrexham LL11 2AW (United Kingdom); Reese, Jason M., E-mail: jason.reese@strath.ac.uk [Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ (United Kingdom)

    2012-02-06

    We investigate the relationship between spatial stochasticity and non-continuum effects in gas flows. A kinetic model for a dilute gas is developed using strictly a stochastic molecular model reasoning, without primarily referring to either the Liouville or the Boltzmann equations for dilute gases. The kinetic equation, a stochastic version of the well-known deterministic Boltzmann equation for dilute gas, is then associated with a set of macroscopic equations for the case of a monatomic gas. Tests based on a heat conduction configuration and sound wave dispersion show that spatial stochasticity can explain some non-continuum effects seen in gases. -- Highlights: ► We investigate effects of molecular spatial stochasticity in non-continuum regime. ► Present a simplify spatial stochastic kinetic equation. ► Present a spatial stochastic macroscopic flow equations. ► Show effects of the new model on sound wave dispersion prediction. ► Show effects of the new approach in density profiles in a heat conduction.

  15. Resurgence of the Cusp Anomalous Dimension

    International Nuclear Information System (INIS)

    Dorigoni, Daniele; Hatsuda, Yasuyuki

    2015-06-01

    We revisit the strong coupling limit of the cusp anomalous dimension in planar N=4 super Yang-Mills theory. It is known that the strong coupling expansion is asymptotic and non-Borel summable. As a consequence, the cusp anomalous dimension receives non-perturbative corrections, and the complete strong coupling expansion should be a resurgent transseries. We reveal that the perturbative and non-perturbative parts in the transseries are closely interrelated. Solving the Beisert-Eden-Staudacher equation systematically, we analyze in detail the large order behavior in the strong coupling perturbative expansion and show that the non-perturbative information is indeed encoded there. An ambiguity of (lateral) Borel resummations of the perturbative expansion is precisely canceled by the contributions from the non-perturbative sectors, and the final result is real and unambiguous.

  16. Resurgence of the cusp anomalous dimension

    Energy Technology Data Exchange (ETDEWEB)

    Dorigoni, Daniele; Hatsuda, Yasuyuki [DESY Theory Group, DESY Hamburg,Notkestrasse 85, D-22603 Hamburg (Germany)

    2015-09-21

    We revisit the strong coupling limit of the cusp anomalous dimension in planar N=4 super Yang-Mills theory. It is known that the strong coupling expansion is asymptotic and non-Borel summable. As a consequence, the cusp anomalous dimension receives non-perturbative corrections, and the complete strong coupling expansion should be a resurgent transseries. We reveal that the perturbative and non-perturbative parts in the transseries are closely interrelated. Solving the Beisert-Eden-Staudacher equation systematically, we analyze in detail the large order behavior in the strong coupling perturbative expansion and show that the non-perturbative information is indeed encoded there. An ambiguity of (lateral) Borel resummations of the perturbative expansion is precisely canceled by the contributions from the non-perturbative sectors, and the final result is real and unambiguous.

  17. Resurgence of the Cusp Anomalous Dimension

    Energy Technology Data Exchange (ETDEWEB)

    Dorigoni, Daniele; Hatsuda, Yasuyuki [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group

    2015-06-15

    We revisit the strong coupling limit of the cusp anomalous dimension in planar N=4 super Yang-Mills theory. It is known that the strong coupling expansion is asymptotic and non-Borel summable. As a consequence, the cusp anomalous dimension receives non-perturbative corrections, and the complete strong coupling expansion should be a resurgent transseries. We reveal that the perturbative and non-perturbative parts in the transseries are closely interrelated. Solving the Beisert-Eden-Staudacher equation systematically, we analyze in detail the large order behavior in the strong coupling perturbative expansion and show that the non-perturbative information is indeed encoded there. An ambiguity of (lateral) Borel resummations of the perturbative expansion is precisely canceled by the contributions from the non-perturbative sectors, and the final result is real and unambiguous.

  18. Investigation on the Flow in a Rotor-Stator Cavity with Centripetal Through-Flow

    Directory of Open Access Journals (Sweden)

    Bo Hu

    2017-10-01

    Full Text Available Daily and Nece distinguished four flow regimes in an enclosed rotor-stator cavity, which are dependent on the circumferential Reynolds number and dimensionless axial gap width. A diagram of the different flow regimes including the respective mean profiles for both tangential and radial velocity was developed. The coefficients for the different flow regimes have also been correlated. In centrifugal pumps and turbines, the centripetal through-flow is quite common from the outer radius of the impeller to the impeller eye, which has a strong influence on the radial pressure distribution, axial thrust and frictional torque. The influence of the centripetal through-flow on the cavity flow with different circumferential Reynolds numbers and dimensionless axial gap width is not sufficiently investigated. It is also quite important to convert the 2D Daily and Nece diagram into 3D by introducing the through-flow coefficient. In order to investigate the impact of the centripetal through-flow, a test rig is designed and built up at the University of Duisburg-Essen. The design of the test rig is described. The impact of the above mentioned parameters on the velocity profile, pressure distribution, axial thrust and frictional torque are presented and analyzed in this paper. The 3D Daily and Nece diagram introducing the through-flow coefficient is also organized in this paper.

  19. Fractal dimension analysis for robust ultrasonic non-destructive evaluation (NDE) of coarse grained materials

    Science.gov (United States)

    Li, Minghui; Hayward, Gordon

    2018-04-01

    Over the recent decades, there has been a growing demand on reliable and robust non-destructive evaluation (NDE) of structures and components made from coarse grained materials such as alloys, stainless steels, carbon-reinforced composites and concrete; however, when inspected using ultrasound, the flaw echoes are usually contaminated by high-level, time-invariant, and correlated grain noise originating from the microstructure and grain boundaries, leading to pretty low signal-to-noise ratio (SNR) and the flaw information being obscured or completely hidden by the grain noise. In this paper, the fractal dimension analysis of the A-scan echoes is investigated as a measure of complexity of the time series to distinguish the echoes originating from the real defects and the grain noise, and then the normalized fractal dimension coefficients are applied to the amplitudes as the weighting factor to enhance the SNR and defect detection. Experiments on industrial samples of the mild steel and the stainless steel are conducted and the results confirm the great benefits of the method.

  20. A unified theory in higher dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Kapetanakis, D. (National Research Centre for the Physical Sciences Democritos, Athens (Greece)); Zoupanos, G. (European Organization for Nuclear Research, Geneva (Switzerland))

    1990-10-11

    We present a grand unified model defined in ten dimensions and based on the group SO(13). The model is dimensionally reduced over the non-simply-connected space (Su(3)/U(1)xU(1))/Z{sub 2} giving in four dimensions the standard model. (orig.).

  1. Map of fluid flow in fractal porous medium into fractal continuum flow.

    Science.gov (United States)

    Balankin, Alexander S; Elizarraraz, Benjamin Espinoza

    2012-05-01

    This paper is devoted to fractal continuum hydrodynamics and its application to model fluid flows in fractally permeable reservoirs. Hydrodynamics of fractal continuum flow is developed on the basis of a self-consistent model of fractal continuum employing vector local fractional differential operators allied with the Hausdorff derivative. The generalized forms of Green-Gauss and Kelvin-Stokes theorems for fractional calculus are proved. The Hausdorff material derivative is defined and the form of Reynolds transport theorem for fractal continuum flow is obtained. The fundamental conservation laws for a fractal continuum flow are established. The Stokes law and the analog of Darcy's law for fractal continuum flow are suggested. The pressure-transient equation accounting the fractal metric of fractal continuum flow is derived. The generalization of the pressure-transient equation accounting the fractal topology of fractal continuum flow is proposed. The mapping of fluid flow in a fractally permeable medium into a fractal continuum flow is discussed. It is stated that the spectral dimension of the fractal continuum flow d(s) is equal to its mass fractal dimension D, even when the spectral dimension of the fractally porous or fissured medium is less than D. A comparison of the fractal continuum flow approach with other models of fluid flow in fractally permeable media and the experimental field data for reservoir tests are provided.

  2. Modeling of two-phase flow with thermal and mechanical non-equilibrium

    International Nuclear Information System (INIS)

    Houdayer, G.; Pinet, B.; Le Coq, G.; Reocreux, M.; Rousseau, J.C.

    1977-01-01

    To improve two-phase flow modeling by taking into account thermal and mechanical non-equilibrium a joint effort on analytical experiment and physical modeling has been undertaken. A model describing thermal non-equilibrium effects is first presented. A correlation of mass transfer has been developed using steam water critical flow tests. This model has been used to predict in a satisfactory manner blowdown tests. It has been incorporated in CLYSTERE system code. To take into account mechanical non-equilibrium, a six equations model is written. To get information on the momentum transfers special nitrogen-water tests have been undertaken. The first results of these studies are presented

  3. Role of parallel flow curvature on the mitigation of Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Sarmah, D.; Sen, S.; Cairns, R.A.

    2001-01-01

    The effect of a radially varying parallel equilibrium flow on the stability of the Rayleigh-Taylor (RT) mode is studied analytically in the presence of a sheared magnetic field. It is shown that the parallel flow curvature can completely stabilize the RT mode. The flow curvature also has a robust effect on the radial structure of the mode. Possible implications of these theoretical findings to recent experiments are also discussed

  4. MRI of radial displacement of the meniscus in the knee

    International Nuclear Information System (INIS)

    Chen Jian; Lv Houshan; Lao Shan; Guan Zhenpeng; Hong Nan; Liang Hao

    2006-01-01

    Objective: To describe the phenomenon of radial displacement of the meniscus of the knees in the study population with MR imaging, and to establish MRI diagnostic criteria for radial displacement of the meniscus and displacement index. Methods: MR signs of radial displacement of the meniscus were evaluated retrospectively in 398 patients with knee symptoms who were examined with non- weight bearing MR images from Jan. 2000 to Feb. 2004. The patients younger than 18 years old, with joint effusion or serious arthropathy were excluded and 312 patients were eligible to be enrolled in this study. The criterion for radial displacement of the meniscus was defined as the location of the edge of meniscal body beyond the femoral and tibial outer border line. A displacement index, defined as the ratio of meniscal overhang to meniscal width, was used to quantify meniscal displacement. Results: The prevalence of radial displacement of the meniscus was 16.7% (52/312) and 13.9% (21/151) in right knee and 19.3% (31/161 )in left knee, respectively. There was no significant difference between left and right knee (χ 2 =1.60, P>0.05) and the ratio between medial and lateral meniscus was 7.8:1. The average displacement index was 0.54±0.24. The displacement indices were significant higher in older group (F=3.63, P<0.05). The incidence and indices of radial displacement of the meniscus for patients under or above 50 year older were 12.0%(17/142), 0.46±0.22 and 20.6% (35/170), 0.64±0.20, respectively. Difference was highly significant (t=0.84, P<0.01). Conclusion: It was concluded that radial displacement of the meniscus in knees was not a rare finding with MR imaging in patients with knee symptoms. The incidence increased in older age group. Further investigations were recommended to understand the etiology and clinical significance of the phenomenon of radial displacement of the meniscus. (authors)

  5. BPS black holes in a non-homogeneous deformation of the stu model of N=2, D=4 gauged supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Klemm, Dietmar [Dipartimento di Fisica, Università di Milano, and INFN - Sezione di Milano,Via Celoria 16, I-20133 Milano (Italy); Marrani, Alessio [Centro Studi e Ricerche ‘Enrico Fermi’, Via Panisperna 89A, I-00184 Roma (Italy); Dipartimento di Fisica e Astronomia ‘Galileo Galilei’, Università di Padova, and INFN - Sezione di Padova,Via Marzolo 8, I-35131 Padova (Italy); Petri, Nicolò; Santoli, Camilla [Dipartimento di Fisica, Università di Milano, and INFN - Sezione di Milano,Via Celoria 16, I-20133 Milano (Italy)

    2015-09-29

    We consider a deformation of the well-known stu model of N=2, D=4 supergravity, characterized by a non-homogeneous special Kähler manifold, and by the smallest electric-magnetic duality Lie algebra consistent with its upliftability to five dimensions. We explicitly solve the BPS attractor equations and construct static supersymmetric black holes with radial symmetry, in the context of U(1) dyonic Fayet-Iliopoulos gauging, focussing on axion-free solutions. Due to non-homogeneity of the scalar manifold, the model evades the analysis recently given in the literature. The relevant physical properties of the resulting black hole solution are discussed.

  6. Gray's BIS/BAS dimensions in non-comorbid, non-medicated social anxiety disorder.

    NARCIS (Netherlands)

    Morgan, B.E.; Honk, J. van; Hermans, E.J.; Scholten, M.R.; Stein, D.J.; Kahn, R.S.

    2009-01-01

    Gray's behavioural inhibition and behavioural activation (BIS/BAS) neural systems model has led to research on approach and withdrawal as the two most fundamental dimensions of affective behaviour, and their role in psychopathology. Although Gray proposed the BIS as the neurological basis of

  7. Slip-flow and heat transfer of a non-newtonian nanofluid in a microtube.

    Science.gov (United States)

    Niu, Jun; Fu, Ceji; Tan, Wenchang

    2012-01-01

    The slip-flow and heat transfer of a non-Newtonian nanofluid in a microtube is theoretically studied. The power-law rheology is adopted to describe the non-Newtonian characteristics of the flow, in which the fluid consistency coefficient and the flow behavior index depend on the nanoparticle volume fraction. The velocity profile, volumetric flow rate and local Nusselt number are calculated for different values of nanoparticle volume fraction and slip length. The results show that the influence of nanoparticle volume fraction on the flow of the nanofluid depends on the pressure gradient, which is quite different from that of the Newtonian nanofluid. Increase of the nanoparticle volume fraction has the effect to impede the flow at a small pressure gradient, but it changes to facilitate the flow when the pressure gradient is large enough. This remarkable phenomenon is observed when the tube radius shrinks to micrometer scale. On the other hand, we find that increase of the slip length always results in larger flow rate of the nanofluid. Furthermore, the heat transfer rate of the nanofluid in the microtube can be enhanced due to the non-Newtonian rheology and slip boundary effects. The thermally fully developed heat transfer rate under constant wall temperature and constant heat flux boundary conditions is also compared.

  8. Squeeze flow of a Carreau fluid during sphere impact

    KAUST Repository

    Uddin, J.

    2012-07-19

    We present results from a combined numerical and experimental investigation into the squeeze flow induced when a solid sphere impacts onto a thin, ultra-viscous film of non-Newtonian fluid. We examine both the sphere motion through the liquid as well as the fluid flow field in the region directly beneath the sphere during approach to a solid plate. In the experiments we use silicone oil as the model fluid, which is well-described by the Carreau model. We use high-speed imaging and particle tracking to achieve flow visualisation within the film itself and derive the corresponding velocity fields. We show that the radial velocity either diverges as the gap between the sphere and the wall diminishes (Z tip → 0) or that it reaches a maximum value and then decays rapidly to zero as the sphere comes to rest at a non-zero distance (Z tip = Z min ) away from the wall. The horizontal shear rate is calculated and is responsible for significant viscosity reduction during the approach of the sphere. Our model of this flow, based on lubrication theory, is solved numerically and compared to experimental trials. We show that our model is able to correctly describe the physical features of the flow observed in the experiments.

  9. Squeeze flow of a Carreau fluid during sphere impact

    KAUST Repository

    Uddin, J.; Marston, J. O.; Thoroddsen, Sigurdur T

    2012-01-01

    We present results from a combined numerical and experimental investigation into the squeeze flow induced when a solid sphere impacts onto a thin, ultra-viscous film of non-Newtonian fluid. We examine both the sphere motion through the liquid as well as the fluid flow field in the region directly beneath the sphere during approach to a solid plate. In the experiments we use silicone oil as the model fluid, which is well-described by the Carreau model. We use high-speed imaging and particle tracking to achieve flow visualisation within the film itself and derive the corresponding velocity fields. We show that the radial velocity either diverges as the gap between the sphere and the wall diminishes (Z tip → 0) or that it reaches a maximum value and then decays rapidly to zero as the sphere comes to rest at a non-zero distance (Z tip = Z min ) away from the wall. The horizontal shear rate is calculated and is responsible for significant viscosity reduction during the approach of the sphere. Our model of this flow, based on lubrication theory, is solved numerically and compared to experimental trials. We show that our model is able to correctly describe the physical features of the flow observed in the experiments.

  10. Perturbative calculations of flow patterns in free convection between coaxial cylinders. Non-linear temperature dependences of the fluid properties

    International Nuclear Information System (INIS)

    Navarro, J. A.; Madariaga, J. A.; Santamaria, C. M.; Saviron, J. M.

    1980-01-01

    10 refs. Flow pattern calculations in natural convection between two vertical coaxial cylinders are reported. It is assumed trough the paper. that fluid properties, viscosity, thermal conductivity and density, depend no-linearly on temperature and that the aspects (height/radius) ratio of the cylinders is high. Velocity profiles are calculated trough a perturbative scheme and analytic results for the three first perturbation orders are presented. We outline also an iterative method to estimate the perturbations on the flow patterns which arise when a radial composition gradient is established by external forces in a two-component fluid. This procedure, based on semiempirical basis, is applied to gaseous convection. The influence of the molecules gas properties on tho flow is also discussed. (Author) 10 refs

  11. Content validation of the dimensions constituting non-adherence to treatment of arterial hypertension

    Directory of Open Access Journals (Sweden)

    Jose Wicto Pereira Borges

    2013-10-01

    Full Text Available The objective of the study was to validate the content of the dimensions that constituted nonadherence to treatment of arterial systemic hypertension. It was a methodological study of content validation. Initially an integrative review was conducted that demonstrated four dimensions of nonadherence: person, disease/treatment, health service, and environment. Definitions of these dimensions were evaluated by 17 professionals, who were specialists in the area, including: nurses, pharmacists and physicians. The Content Validity Index was calculated for each dimension (IVCi and the set of the dimensions (IVCt, and the binomial test was conducted. The results permitted the validation of the dimensions with an IVCt of 0.88, demonstrating reasonable systematic comprehension of the phenomena of nonadherence.

  12. Critical non-Abelian vortex in four dimensions and little string theory

    Science.gov (United States)

    Shifman, M.; Yung, A.

    2017-08-01

    As was shown recently, non-Abelian vortex strings supported in four-dimensional N =2 supersymmetric QCD with the U(2) gauge group and Nf=4 quark multiplets (flavors) become critical superstrings. In addition to the translational moduli, non-Abelian strings under consideration carry six orientational and size moduli. Together, they form a ten-dimensional target space required for a superstring to be critical. The target space of the string sigma model is a product of the flat four-dimensional space and a Calabi-Yau noncompact threefold, namely, the conifold. We study closed string states which emerge in four dimensions and identify them with hadrons of four-dimensional N =2 QCD. One massless state was found previously; it emerges as a massless hypermultiplet associated with the deformation of the complex structure of the conifold. In this paper, we find a number of massive states. To this end, we exploit the approach used in LST little string theory, namely, the equivalence between the critical string on the conifold and noncritical c =1 string with the Liouville field and a compact scalar at the self-dual radius. The states we find carry "baryonic" charge (its definition differs from standard). We interpret them as "monopole necklaces" formed (at strong coupling) by the closed string with confined monopoles attached.

  13. Non-Newtonian fluid flow in annular pipes and entropy generation ...

    Indian Academy of Sciences (India)

    analytical solution for the flow of third-grade non-Newtonian fluid in a pipe .... where c1,c2,d1,d2,t0,1,2...7,h1,h2,k1,2... ,12,m1 and m2 are defined as ..... Yurusoy M 2004 Flow of a third grade fluid between concentric circular cylinders. Math.

  14. A generalised groundwater flow equation using the concept of non ...

    African Journals Online (AJOL)

    The classical Darcy law is generalised by regarding the water flow as a function of a non-integer order derivative of the piezometric head. This generalised law and the law of conservation of mass are then used to derive a new equation for groundwater flow. Numerical solutions of this equation for various fractional orders of ...

  15. Optimal combustor dimensions for the catalytic combustion of methane-air mixtures in micro-channels

    International Nuclear Information System (INIS)

    Chen, Junjie; Song, Wenya; Xu, Deguang

    2017-01-01

    Highlights: • The effect of combustor dimensions on the combustion stability was elucidated. • Wall thermal properties are important for optimizing combustor dimensions. • The optimal wall thickness increases with flow velocity. • The optimal combustor length depends on the wall thermal conductivity. • Stability diagrams were constructed and design recommendations were made. - Abstract: This paper addresses the question of choosing appropriate combustor dimensions for the self-sustained catalytic combustion in parallel plate micro-channels. The combustion characteristics and stability of methane-air mixtures over platinum in catalytic micro-combustors were studied, using a two-dimensional computational fluid dynamics (CFD) model with detailed chemistry and transport. The effects of gap size, wall thickness, and combustor length on the combustion stability and combustor performance were explored to provide guidelines for optimal design of combustor dimensions. Combustion stability diagrams were constructed, and design recommendations were made. The effect of wall thermal conductivity on the mechanisms of extinction and blowout, and its implications on optimal combustor geometry were studied. It was shown that combustor dimensions are vital in determining the combustion stability of the system. The choice of appropriate combustor dimensions is crucial in achieving stable combustion, due to a rather narrow operating space determined by stability, material, and conversion constraints. The optimal gap size depends on whether the flow velocity or flow rate is kept constant. For most practical wall materials in the range of metals to highly conductive ceramics, larger combustors are more stable at a fixed flow velocity, whereas smaller combustors are recommended for a fixed flow rate at the expense of hot spots. The optimal wall thickness increases with flow velocity. Higher flow velocities can be sustained in combustors with low-conductivity materials using

  16. Validation of vibration-dissociation coupling models in hypersonic non-equilibrium separated flows

    Science.gov (United States)

    Shoev, G.; Oblapenko, G.; Kunova, O.; Mekhonoshina, M.; Kustova, E.

    2018-03-01

    The validation of recently developed models of vibration-dissociation coupling is discussed in application to numerical solutions of the Navier-Stokes equations in a two-temperature approximation for a binary N2/N flow. Vibrational-translational relaxation rates are computed using the Landau-Teller formula generalized for strongly non-equilibrium flows obtained in the framework of the Chapman-Enskog method. Dissociation rates are calculated using the modified Treanor-Marrone model taking into account the dependence of the model parameter on the vibrational state. The solutions are compared to those obtained using traditional Landau-Teller and Treanor-Marrone models, and it is shown that for high-enthalpy flows, the traditional and recently developed models can give significantly different results. The computed heat flux and pressure on the surface of a double cone are in a good agreement with experimental data available in the literature on low-enthalpy flow with strong thermal non-equilibrium. The computed heat flux on a double wedge qualitatively agrees with available data for high-enthalpy non-equilibrium flows. Different contributions to the heat flux calculated using rigorous kinetic theory methods are evaluated. Quantitative discrepancy of numerical and experimental data is discussed.

  17. A Non-Equilibrium Sediment Transport Model for Dam Break Flow over Moveable Bed Based on Non-Uniform Rectangular Mesh

    Directory of Open Access Journals (Sweden)

    Gangfeng Wu

    2018-05-01

    Full Text Available The use of multiple-level non-uniform rectangular mesh in coupled flow and sediment transport modeling is preferred to achieve high accuracy in important region without increasing computational cost greatly. Here, a robust coupled hydrodynamic and non-equilibrium sediment transport model is developed on non-uniform rectangular mesh to simulate dam break flow over movable beds. The enhanced shallow water and sediment transport equations are adopted to consider the mass and momentum exchange between the flow phase and sediment phase. The flux at the interface is calculated by the positivity preserving central upwind scheme, which belongs to Godunov-type Riemann-problem-solver-free central schemes and is less expensive than other popular Riemann solvers while still capable of tracking wet/dry fronts accurately. The nonnegative water depth reconstruction method is used to achieve second-order accuracy in space. The model was first verified against two laboratory experiments of dam break flow over irregular fixed bed. Then the quantitative performance of the model was further investigated by comparing the computational results with measurement data of dam break flow over movable bed. The good agreements between the measurements and the numerical simulations are found for the flow depth, velocity and bed changes.

  18. Physical mechanism determining the radial electric field and its radial structure in a toroidal plasma

    International Nuclear Information System (INIS)

    Ida, Katsumi; Miura, Yukitoshi; Itoh, Sanae

    1994-10-01

    Radial structures of plasma rotation and radial electric field are experimentally studied in tokamak, heliotron/torsatron and stellarator devices. The perpendicular and parallel viscosities are measured. The parallel viscosity, which is dominant in determining the toroidal velocity in heliotron/torsatron and stellarator devices, is found to be neoclassical. On the other hand, the perpendicular viscosity, which is dominant in dictating the toroidal rotation in tokamaks, is anomalous. Even without external momentum input, both a plasma rotation and a radial electric field exist in tokamaks and heliotrons/torsatrons. The observed profiles of the radial electric field do not agree with the theoretical prediction based on neoclassical transport. This is mainly due to the existence of anomalous perpendicular viscosity. The shear of the radial electric field improves particle and heat transport both in bulk and edge plasma regimes of tokamaks. (author) 95 refs

  19. Modeling of flow-dominated MHD instabilities at WiPPAL using NIMROD

    Science.gov (United States)

    Flanagan, K.; McCollam, K. J.; Milhone, J.; Mirnov, V. V.; Nornberg, M. D.; Peterson, E. E.; Siller, R.; Forest, C. B.

    2017-10-01

    Using the NIMROD (non-ideal MHD with rotation - open discussion) code developed at UW-Madison, we model two different flow scenarios to study the onset of MHD instabilities in flow-dominated plasmas in the Big Red Ball (BRB) and the Plasma Couette Experiment (PCX). Both flows rely on volumetric current drive, where a large current is drawn through the plasma across a weak magnetic field, injecting J × B torque across the whole volume. The first scenario uses a vertical applied magnetic field and a mostly radial injected current to create Couette-like flows which may excite the magnetorotational instability (MRI). In the other scenario, a quadrupolar field is applied to create counter-rotating von Karman-like flow that demonstrates a dynamo-like instability. For both scenarios, the differences between Hall and MHD Ohm's laws are explored. The implementation of BRB geometry in NIMROD, details of the observed flows, and instability results are shown. This work was funded by DoE and NSF.

  20. Large eddy simulation of a buoyancy-aided flow in a non-uniform channel – Buoyancy effects on large flow structures

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Y. [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); He, S., E-mail: s.he@sheffield.ac.uk [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2017-02-15

    Highlights: • Buoyancy may greatly redistribute the flow in a non-uniform channel. • Flow structures in the narrow gap are greatly changed when buoyancy is strong. • Large flow structures exist in wider gap, which is enhanced when heat is strong. • Buoyancy reduces mixing factor caused by large flow structures in narrow gap. - Abstract: It has been a long time since the ‘abnormal’ turbulent intensity distribution and high inter-sub-channel mixing rates were observed in the vicinity of the narrow gaps formed by the fuel rods in nuclear reactors. The extraordinary flow behaviour was first described as periodic flow structures by Hooper and Rehme (1984). Since then, the existences of large flow structures were demonstrated by many researchers in various non-uniform flow channels. It has been proved by many authors that the Strouhal number of the flow structure in the isothermal flow is dependent on the size of the narrow gap, not the Reynolds number once it is sufficiently large. This paper reports a numerical investigation on the effect of buoyancy on the large flow structures. A buoyancy-aided flow in a tightly-packed rod-bundle-like channel is modelled using large eddy simulation (LES) together with the Boussinesq approximation. The behaviour of the large flow structures in the gaps of the flow passage are studied using instantaneous flow fields, spectrum analysis and correlation analysis. It is found that the non-uniform buoyancy force in the cross section of the flow channel may greatly redistribute the velocity field once the overall buoyancy force is sufficiently strong, and consequently modify the large flow structures. The temporal and axial spatial scales of the large flow structures are influenced by buoyancy in a way similar to that turbulence is influenced. These scales reduce when the flow is laminarised, but start increasing in the turbulence regeneration region. The spanwise scale of the flow structures in the narrow gap remains more or

  1. Intra-annual dynamics of non-structural carbohydrates in the cambium of mature conifer trees reflects radial growth demands.

    Science.gov (United States)

    Simard, Sonia; Giovannelli, Alessio; Treydte, Kerstin; Traversi, Maria Laura; King, Gregory M; Frank, David; Fonti, Patrick

    2013-09-01

    The presence of soluble carbohydrates in the cambial zone, either from sugars recently produced during photosynthesis or from starch remobilized from storage organs, is necessary for radial tree growth. However, considerable uncertainties on carbohydrate dynamics and the consequences on tree productivity exist. This study aims to better understand the variation in different carbon pools at intra-annual resolution by quantifying how cambial zone sugar and starch concentrations fluctuate over the season and in relation to cambial phenology. A comparison between two physiologically different species growing at the same site, i.e., the evergreen Picea abies Karst. and the deciduous Larix decidua Mill., and between L. decidua from two contrasting elevations, is presented to identify mechanisms of growth limitation. Results indicate that the annual cycle of sugar concentration within the cambial zone is coupled to the process of wood formation. The highest sugar concentration is observed when the number of cells in secondary wall formation and lignification stages is at a maximum, subsequent to most radial growth. Starch disappears in winter, while other freeze-resistant non-structural carbohydrates (NSCs) increase. Slight differences in NSC concentration between species are consistent with the differing climate sensitivity of the evergreen and deciduous species investigated. The general absence of differences between elevations suggests that the cambial activity of trees growing at the treeline was not limited by the availability of carbohydrates at the cambial zone but instead by environmental controls on the growing season duration.

  2. Non-symmetric bi-stable flow around the Ahmed body

    International Nuclear Information System (INIS)

    Meile, W.; Ladinek, T.; Brenn, G.; Reppenhagen, A.; Fuchs, A.

    2016-01-01

    Highlights: • The non-symmetric bi-stable flow around the Ahmed body is investigated experimentally. • Bi-stability, described for symmetric flow by Cadot and co-workers, was found in nonsymmetric flow also. • The flow field randomly switches between two states. • The flow is subject to a spanwise instability identified by Cadot and co-workers for symmetric flow. • Aerodynamic forces fluctuate strongly due to the bi-stability. - Abstract: The flow around the Ahmed body at varying Reynolds numbers under yawing conditions is investigated experimentally. The body geometry belongs to a regime subject to spanwise flow instability identified in symmetric flow by Cadot and co-workers (Grandemange et al., 2013b). Our experiments cover the two slant angles 25° and 35° and Reynolds numbers up to 2.784 × 10"6. Special emphasis lies on the aerodynamics under side wind influence. For the 35° slant angle, forces and moments change significantly with the yawing angle in the range 10° ≤ |β| ≤ 15°. The lift and the pitching moment exhibit strong fluctuations due to bi-stable flow around a critical angle β of ±12.5°, where the pitching moment changes sign. Time series of the forces and moments are studied and explained by PIV measurements in the flow field near the rear of the body.

  3. Mejoramiento de imágenes usando funciones de base radial Images improvement using radial basis functions

    Directory of Open Access Journals (Sweden)

    Jaime Alberto Echeverri Arias

    2009-07-01

    Full Text Available La eliminación del ruido impulsivo es un problema clásico del procesado no lineal para el mejoramiento de imágenes y las funciones de base radial de soporte global son útiles para enfrentarlo. Este trabajo presenta una técnica de interpolación que disminuye eficientemente el ruido impulsivo en imágenes, mediante el uso de interpolante obtenido por funciones de base radial en el marco de la investigación enfocada en el desarrollo de un Sistema de recuperación de imágenes de recursos acuáticos amazónicos. Esta técnica primero etiqueta los píxeles de la imagen que son ruidosos y, mediante la interpolación, genera un valor de reconstrucción de dicho píxel usando sus vecinos. Los resultados obtenidos son comparables y muchas veces mejores que otras técnicas ya publicadas y reconocidas. Según el análisis de resultados, se puede aplicar a imágenes con altas tasas de ruido, manteniendo un bajo error de reconstrucción de los píxeles "ruidosos", así como la calidad visual.Global support radial base functions are effective in eliminating impulsive noise in non-linear processing. This paper introduces an interpolation technique which efficiently reduces image impulsive noise by means of an interpolant obtained through radial base functions. These functions have been used in a research project designed to develop a system for the recovery of images of Amazonian aquatic resources. This technique starts with the tagging by interpolation of noisy image pixels. Thus, a value of reconstruction for the noisy pixels is generated using neighboring pixels. The results obtained with this technique have proved comparable and often better than those obtained with previously known techniques. According to results analysis, this technique can be successfully applied on images with high noise levels. The results are low error in noisy pixel reconstruction and better visual quality.

  4. Effect of blade sweep on inlet flow in axial compressor cascades

    Directory of Open Access Journals (Sweden)

    Hao Chang

    2015-02-01

    Full Text Available This paper presents comparative numerical studies to investigate the effects of blade sweep on inlet flow in axial compressor cascades. A series of swept and straight cascades was modeled in order to obtain a general understanding of the inlet flow field that is induced by sweep. A computational fluid dynamics (CFD package was used to simulate the cascades and obtain the required three-dimensional (3D flow parameters. A circumferentially averaged method was introduced which provided the circumferential fluctuation (CF terms in the momentum equation. A program for data reduction was conducted to obtain a circumferentially averaged flow field. The influences of the inlet flow fields of the cascades were studied and spanwise distributions of each term in the momentum equation were analyzed. The results indicate that blade sweep does affect inlet radial equilibrium. The characteristic of radial fluid transfer is changed and thus influencing the axial velocity distributions. The inlet flow field varies mainly due to the combined effect of the radial pressure gradient and the CF component. The axial velocity varies consistently with the incidence variation induced by the sweep, as observed in the previous literature. In addition, factors that might influence the radial equilibrium such as blade camber angles, solidity and the effect of the distance from the leading edge are also taken into consideration and comparatively analyzed.

  5. Numerical method for solution of transient, homogeneous, equilibrium, two-phase flows in one space dimension

    International Nuclear Information System (INIS)

    Shin, Y.W.; Wiedermann, A.H.

    1979-10-01

    A solution method is presented for transient, homogeneous, equilibrium, two-phase flows of a single-component fluid in one space dimension. The method combines a direct finite-difference procedure and the method of characteristics. The finite-difference procedure solves the interior points of the computing domain; the boundary information is provided by a separate procedure based on the characteristics theory. The solution procedure for boundary points requires information in addition to the physical boundary conditions. This additional information is obtained by a new procedure involving integration of characteristics in the hodograph plane. Sample problems involving various combinations of basic boundary types are calculated for two-phase water/steam mixtures and single-phase nitrogen gas, and compared with independent method-of-characteristics solutions using very fine characteristic mesh. In all cases, excellent agreement is demonstrated

  6. Turbulent flow and temperature noise simulation by a multiparticle Monte Carlo method

    International Nuclear Information System (INIS)

    Hughes, G.; Overton, R.S.

    1980-10-01

    A statistical method of simulating real-time temperature fluctuations in liquid sodium pipe flow, for potential application to the estimation of temperature signals generated by subassembly blockages in LMFBRs is described. The method is based on the empirical characterisation of the flow by turbulence intensity and macroscale, radial velocity correlations and spectral form. These are used to produce realisations of the correlated motion of successive batches of representative 'marker particles' released at discrete time intervals into the flow. Temperature noise is generated by the radial mixing of the particles as they move downstream from an assumed mean temperature profile, where they acquire defined temperatures. By employing multi-particle batches, it is possible to perform radial heat transfer calculations, resulting in axial dissipation of the temperature noise levels. A simulated temperature-time signal is built up by recording the temperature at a given point in the flow as each batch of particles reaches the radial measurement plane. This is an advantage over conventional techniques which can usually only predict time-averaged parameters. (U.K.)

  7. Flow performance of highly loaded axial fan with bowed rotor blades

    International Nuclear Information System (INIS)

    Chen, L; Liu, X J; Yang, A L; Dai, R

    2013-01-01

    In this paper, a partial bowed rotor blade was proposed for a newly designed high loaded axial fan. The blade was positively bowed 30 degrees from hub to 30 percent spanwise position. Flows of radial blade and bowed blade fans were numerically compared for various operation conditions. Results show that the fan's performance is improved. At the designed condition with flow coefficient of 0.52, the efficiency of the bowed blade fan is increased 1.44% and the static pressure rise is increased 11%. Comparing the flow structures, it can be found that the separated flow in the bowed fan is reduced and confined within 20 percent span, which is less than the 35 percent in the radial fan. It means that the bowed blade generates negative blade force and counteracts partial centrifugal force. It is alleviates the radial movements of boundary layers in fan's hub region. Flow losses due to 3D mixing are reduced in the rotor. Inlet flow to downstream stator is also improved

  8. Transition from steady to periodic liquid-metal magnetohydrodynamic flow in a sliding electrical contact

    Science.gov (United States)

    Talmage, Gita; Walker, John S.; Brown, Samuel H.; Sondergaard, Neal A.

    1993-09-01

    In homopolar motors and generators, large dc electric currents pass through the sliding electrical contacts between rotating copper disks (rotors) and static copper surfaces shrouding the rotor tips (stators). A liquid metal in the small radial gap between the rotor tip and concentric stator surface can provide a low-resistance, low-drag electrical contact. Since there is a strong magnetic field in the region of the electrical contacts, there are large electromagnetic body forces on the liquid metal. The primary, azimuthal motion consists of simple Couette flow, plus an electromagnetically driven flow with large extremes of the azimuthal velocity near the rotor corners. The secondary flow involves the radial and axial velocity components, is driven by the centrifugal force associated with the primary flow, and is opposed by the electromagnetic body force, so that the circulation varies inversely as the square of the magnetic-field strength. Three flow regimes are identified as the angular velocity Ω of the rotor is increased. For small Ω, the primary flow is decoupled from the secondary flow. As Ω increases, the secondary flow begins to convect the azimuthal-velocity peaks radially outward, which in turn changes the centrifugal force driving the secondary flow. At some critical value of Ω, the flow becomes periodic through the coupling of the primary and secondary flows. The azimuthal-velocity peaks begin to move radially in and out with an accompanying oscillation in the secondary-flow strength.

  9. The Ground State Energy of a Dilute Bose Gas in Dimension $n\\geq 3$

    DEFF Research Database (Denmark)

    Aaen, Anders Gottfred

    We consider a Bose gas in spatial dimension n≥3 with a repulsive, radially symmetric two-body potential V. In the limit of low density ρ, the ground state energy per particle in the thermodynamic limit is shown to be (n−2)|Sn−1|an−2ρ, where |Sn−1| denotes the surface measure of the unit sphere...... in Rn, and a is the scattering length of V. Furthermore, for smooth and compactly supported two-body potentials, we derive an upper bound to the ground state energy with a correction term (1+γ)8π4a6ρ2|ln(a4ρ)| in 4 dimensions, where 0... dimensions. Finally, we use a grand canonical construction to give a simplified proof of the second order upper bound to the Lee-Huang-Yang formula, a result first obtained by Yau and Yin. We also test this method in 4 dimensions, but with a negative outcome....

  10. A pure Eulerian method for multi-material fluid flows in dimension 1,2 and 3; Sur la simulation d'ecoulements multi-materiaux par une methode eulerienne directe avec capture d'interfaces en dimensions 1,2 et 3

    Energy Technology Data Exchange (ETDEWEB)

    Braeunig, J.Ph

    2007-12-15

    The method described in this report is designed to simulate multi-material fluid flows, by solving compressible Euler equations with sharp interface capturing, in dimension 2 and 3. Materials are supposed to be non-miscible and to follow different equations of state. The main purpose of this work is to design an interface reconstruction method with no diffusion at all between materials of any Eulerian quantity. One novelty of our approach is the use of a pure Eulerian finite volume scheme in an interface reconstruction method. A new concept is introduced, the 'condensate', which allows to handle mixed cells containing two or more materials and to calculate the evolution of the interface on the fixed Eulerian grid. Moreover, this method allows a free sliding of materials on each others. The accuracy of the method is evaluated on academic 1D benchmarks and its robustness is tested with severe 2D benchmarks. (author)

  11. Study on the REV Size of Fractured Rock in the Non-Darcy Flow Based on the Dual-Porosity Model

    Directory of Open Access Journals (Sweden)

    Yuan Wang

    2018-01-01

    Full Text Available For the problem of whether the representative elementary volume (REV obtained in the Darcy flow is also applicable to the case of the non-Darcy flow, the study on the REV size within the non-Darcy flow is proposed tentatively. The concept of the REV in the non-Darcy flow is based on the definition of the REV. According to the determination of the REV in the Darcy flow, the intrinsic permeability k and non-Darcy coefficient β are used simultaneously for the determination of the REV in the non-Darcy flow. The pore pressure cohesive element (PPCE is developed with the subroutine in ABAQUS. Then the simulation method of the Darcy and non-Darcy flow in the fractured rock mass is built using the PPCE. The proposed plan is examined through the comparison with existing research results. It is validated that this technic is efficient and accurate in simulating the Darcy and non-Darcy flow in the fractured rock mass. Combined with fracture networks generated by Monte Carlo Simulation technique, the PPCE is applied to the study on the REV size. Both conditions of the Darcy and non-Darcy flow are simulated for comparison. The simulation results of this model show that the REV of the non-Darcy flow is inconsistent with the REV of the Darcy flow, and the REV of the non-Darcy flow is more significant than the REV of the Darcy flow. The intrinsic permeability k tensors obtained in the Darcy flow and the non-Darcy flow are basically the same.

  12. 3D Model Studies on the Effect of Bed and Powder Type Upon Radial Static Pressure and Powder Distribution in Metallurgical Shaft Furnaces

    Directory of Open Access Journals (Sweden)

    Panic B.

    2017-09-01

    Full Text Available The flow of gases in metallurgical shaft furnaces has a decisive influence on the course and process efficiency. Radial changes in porosity of the bed cause uneven flow of gas along the radius of the reactor, which sometimes is deliberate and intentional. However, holdup of solid particles in descending packed beds of metallurgical shaft furnaces can lead to unintentional changes in porosity of the bed along the radial reactor. Unintentional changes in porosity often disrupt the flow of gas causing poor performance of the furnace. Such disruptions of flow may occur in the blast furnace due to high level of powder content in gas caused by large amount of coal dust/powder insufflated as fuel substitute. The paper describes the model test results of radial distribution of static pressure and powder hold up within metallurgical reactor. The measurements were carried out with the use of 3D physical model of two-phase flow gas-powder in the moving (descending packed bed. Sinter or blast furnace pellets were used as packed bed while carbon powder or iron powder were used as the powder. Wide diversity within both static pressure distribution and powder distribution along the radius of the reactor were observed once the change in the type of powder occurred.

  13. Finite-orbit-width effect and the radial electric field in neoclassical transport phenomena

    International Nuclear Information System (INIS)

    Satake, S.; Okamoto, M.; Nakajima, N.; Sugama, H.; Yokoyama, M.; Beidler, C.D.

    2005-01-01

    Modeling and detailed simulation of neoclassical transport phenomena both in 2D and 3D toroidal configurations are shown. The emphasis is put on the effect of finiteness of the drift-orbit width, which brings a non-local nature to neoclassical transport phenomena. Evolution of the self-consistent radial electric field in the framework of neoclassical transport is also investigated. The combination of Monte-Carlo calculation for ion transport and numerical solver of ripple-averaged kinetic equation for electrons makes it possible to calculate neoclassical fluxes and the time evolution of the radial electric field in the whole plasma region, including the finite-orbit-width (FOW) effects and global evolution of geodesic acoustic mode (GAM). The simulation results show that the heat conductivity around the magnetic axis is smaller than that obtained from standard neoclassical theory and that the evolution of GAM oscillation on each flux surface is coupled with other surfaces if the FOW effect is significant. A global simulation of radial electric field evolution in a non-axisymmetric plasma is also shown. (author)

  14. Investigation of radial power and temperature effects in large-scale reflood experiments

    International Nuclear Information System (INIS)

    Motley, F.

    1983-01-01

    The largest reflood test facility in the world has been designed and constructed by the Japan Atomic Energy Research Institute (JAERI). The experimental test facility, known as the Cylindrical Core Test Facility (CCTF), models a full-height core section and the four primary loops of a Pressurized Water Reactor (PWR). The radial power distribution and temperature distribution were varied during the testing program. The test results indicate that the radial effects, while noticeable, do not appreciably alter the overall quenching behavior of the facility. The Transient Reactor Analysis Code (TRAC) correctly predicted the experimental results of several of the tests. The code results indicate that the core flow pattern adjusts multidimensionally to mitigate the effects of increased power or stored energy

  15. Miniaturized heat flux sensor for high enthalpy plasma flow characterization

    International Nuclear Information System (INIS)

    Gardarein, Jean-Laurent; Battaglia, Jean-Luc; Lohlec, Stefan; Jullien, Pierre; Van Ootegemd, Bruno; Couzie, Jacques; Lasserre, Jean-Pierre

    2013-01-01

    An improved miniaturized heat flux sensor is presented aiming at measuring extreme heat fluxes of plasma wind tunnel flows. The sensor concept is based on an in-depth thermocouple measurement with a miniaturized design and an advanced calibration approach. Moreover, a better spatial estimation of the heat flux profile along the flow cross section is realized with this improved small sensor design. Based on the linearity assumption, the heat flux is determined using the impulse response of the sensor relating the heat flux to the temperature of the embedded thermocouple. The non-integer system identification (NISI) procedure is applied that allows a calculation of the impulse response from transient calibration measurements with a known heat flux of a laser source. The results show that the new sensor leads to radially highly resolved heat flux measurement for a flow with only a few centimetres in diameter, the so far not understood non-symmetric heat flux profiles do not occur with the new sensor design. It is shown that this former effect is not a physical effect of the flow, but a drawback of the classical sensor design. (authors)

  16. SU(1,1) coherent states for Dirac–Kepler–Coulomb problem in D+1 dimensions with scalar and vector potentials

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda-Guillén, D., E-mail: dogphysics@gmail.com [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Ed. 9, Unidad Profesional Adolfo López Mateos, C.P. 07738, México D.F. (Mexico); Mota, R.D. [Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Culhuacán, Instituto Politécnico Nacional, Av. Santa Ana No. 1000, Col. San Francisco Culhuacán, Delegación Coyoacán, C.P. 04430, México D.F. (Mexico); Granados, V.D. [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Ed. 9, Unidad Profesional Adolfo López Mateos, C.P. 07738, México D.F. (Mexico)

    2014-08-14

    We decouple the Dirac's radial equations in D+1 dimensions with Coulomb-type scalar and vector potentials through appropriate transformations. We study each of these uncoupled second-order equations in an algebraic way by using an su(1,1) algebra realization. Based on the theory of irreducible representations, we find the energy spectrum and the radial eigenfunctions. We construct the Perelomov coherent states for the Sturmian basis, which is the basis for the unitary irreducible representation of the su(1,1) Lie algebra. The physical radial coherent states for our problem are obtained by applying the inverse original transformations to the Sturmian coherent states. - Highlights: • We solve the most general Dirac–Kepler–Coulomb problem. • The eigenfunctions and energy spectrum are obtained in a purely algebraic way. • We construct the radial SU(1,1) coherent states for the Kepler–Coulomb problem.

  17. SU(1,1) coherent states for Dirac–Kepler–Coulomb problem in D+1 dimensions with scalar and vector potentials

    International Nuclear Information System (INIS)

    Ojeda-Guillén, D.; Mota, R.D.; Granados, V.D.

    2014-01-01

    We decouple the Dirac's radial equations in D+1 dimensions with Coulomb-type scalar and vector potentials through appropriate transformations. We study each of these uncoupled second-order equations in an algebraic way by using an su(1,1) algebra realization. Based on the theory of irreducible representations, we find the energy spectrum and the radial eigenfunctions. We construct the Perelomov coherent states for the Sturmian basis, which is the basis for the unitary irreducible representation of the su(1,1) Lie algebra. The physical radial coherent states for our problem are obtained by applying the inverse original transformations to the Sturmian coherent states. - Highlights: • We solve the most general Dirac–Kepler–Coulomb problem. • The eigenfunctions and energy spectrum are obtained in a purely algebraic way. • We construct the radial SU(1,1) coherent states for the Kepler–Coulomb problem

  18. Development of micro-scale axial and radial turbines for low-temperature heat source driven organic Rankine cycle

    International Nuclear Information System (INIS)

    Al Jubori, Ayad; Daabo, Ahmed; Al-Dadah, Raya K.; Mahmoud, Saad; Ennil, Ali Bahr

    2016-01-01

    Highlights: • One and three-dimensional analysis with real gas properties are integrated. • Micro axial and radial-inflow turbines configurations are investigated. • Five organic working fluids are considered. • The maximum total isentropic efficiency of radial-inflow turbine 83.85%. • The maximum ORC thermal efficiency based on radial-inflow turbine is 10.60%. - Abstract: Most studies on the organic Rankine cycle (ORC) focused on parametric studies and selection working fluids to maximize the performance of organic Rankine cycle but without attention for turbine design features which are crucial to achieving them. The rotational speed, expansion ratio, mass flow rate and turbine size have markedly effect on turbine performance. For this purpose organic Rankine cycle modeling, mean-line design and three-dimensional computational fluid dynamics analysis were integrated for both micro axial and radial-inflow turbines with five organic fluids (R141b, R1234yf, R245fa, n-butane and n-pentane) for realistic low-temperature heat source <100 °C like solar and geothermal energy. Three-dimensional simulation is performed using ANSYS"R"1"7-CFX where three-dimensional Reynolds-averaged Navier-Stokes equations are solved with k-omega shear stress transport turbulence model. Both configurations of turbines are designed at wide range of mass flow rate (0.1–0.5) kg/s for each working fluid. The results showed that n-pentane has the highest performance at all design conditions where the maximum total-to-total efficiency and power output of radial-inflow turbine are 83.85% and 8.893 kW respectively. The performance of the axial turbine was 83.48% total-to-total efficiency and 8.507 kW power output. The maximum overall size of axial turbine was 64.685 mm compared with 70.97 mm for radial-inflow turbine. R245fa has the lowest overall size for all cases. The organic Rankine cycle thermal efficiency was about 10.60% with radial-inflow turbine and 10.14% with axial turbine

  19. Supersymmetric approach for Killingbeck radial potential plus noncentral potential in Schrodinger equation

    International Nuclear Information System (INIS)

    Cari, C.; Suparmi, A.; Yunianto, M.; Pratiwi, B. N.

    2016-01-01

    Killingbeck radial potential, which consists of harmonic oscillator, linier and Coulomb potentials, is combined with non-central potential. The solution of three dimensional Schrodinger equation for Killingbeck potential is combined with Poschl-Teller potential and Symmetrical Top non-central potentials are investigated using supersymmetry (SUSY) operator. The non-relativistic energy is obtained which is infuenced by potentials and the wave functions are produced by using SUSY operator. (paper)

  20. Nonunitary Lagrangians and Unitary Non-Lagrangian Conformal Field Theories

    Science.gov (United States)

    Buican, Matthew; Laczko, Zoltan

    2018-02-01

    In various dimensions, we can sometimes compute observables of interacting conformal field theories (CFTs) that are connected to free theories via the renormalization group (RG) flow by computing protected quantities in the free theories. On the other hand, in two dimensions, it is often possible to algebraically construct observables of interacting CFTs using free fields without the need to explicitly construct an underlying RG flow. In this Letter, we begin to extend this idea to higher dimensions by showing that one can compute certain observables of an infinite set of unitary strongly interacting four-dimensional N =2 superconformal field theories (SCFTs) by performing simple calculations involving sets of nonunitary free four-dimensional hypermultiplets. These free fields are distant cousins of the Majorana fermion underlying the two-dimensional Ising model and are not obviously connected to our interacting theories via an RG flow. Rather surprisingly, this construction gives us Lagrangians for particular observables in certain subsectors of many "non-Lagrangian" SCFTs by sacrificing unitarity while preserving the full N =2 superconformal algebra. As a by-product, we find relations between characters in unitary and nonunitary affine Kac-Moody algebras. We conclude by commenting on possible generalizations of our construction.

  1. Nonunitary Lagrangians and Unitary Non-Lagrangian Conformal Field Theories.

    Science.gov (United States)

    Buican, Matthew; Laczko, Zoltan

    2018-02-23

    In various dimensions, we can sometimes compute observables of interacting conformal field theories (CFTs) that are connected to free theories via the renormalization group (RG) flow by computing protected quantities in the free theories. On the other hand, in two dimensions, it is often possible to algebraically construct observables of interacting CFTs using free fields without the need to explicitly construct an underlying RG flow. In this Letter, we begin to extend this idea to higher dimensions by showing that one can compute certain observables of an infinite set of unitary strongly interacting four-dimensional N=2 superconformal field theories (SCFTs) by performing simple calculations involving sets of nonunitary free four-dimensional hypermultiplets. These free fields are distant cousins of the Majorana fermion underlying the two-dimensional Ising model and are not obviously connected to our interacting theories via an RG flow. Rather surprisingly, this construction gives us Lagrangians for particular observables in certain subsectors of many "non-Lagrangian" SCFTs by sacrificing unitarity while preserving the full N=2 superconformal algebra. As a by-product, we find relations between characters in unitary and nonunitary affine Kac-Moody algebras. We conclude by commenting on possible generalizations of our construction.

  2. Radial retinotomy in the macula.

    Science.gov (United States)

    Bovino, J A; Marcus, D F

    1984-01-01

    Radial retinotomy is an operative procedure usually performed in the peripheral or equatorial retina. To facilitate retinal attachment, the authors used intraocular scissors to perform radial retinotomy in the macula of two patients during vitrectomy surgery. In the first patient, a retinal detachment complicated by periretinal proliferation and macula hole formation was successfully reoperated with the aid of three radial cuts in the retina at the edges of the macular hole. In the second patient, an intraoperative retinal tear in the macula during diabetic vitrectomy was also successfully repaired with the aid of radial retinotomy. In both patients, retinotomy in the macula was required because epiretinal membranes, which could not be easily delaminated, were hindering retinal reattachment.

  3. Investigation of flow dynamics of liquid phase in a pilot-scale trickle bed reactor using radiotracer technique.

    Science.gov (United States)

    Pant, H J; Sharma, V K

    2016-10-01

    A radiotracer investigation was carried out to measure residence time distribution (RTD) of liquid phase in a trickle bed reactor (TBR). The main objectives of the investigation were to investigate radial and axial mixing of the liquid phase, and evaluate performance of the liquid distributor/redistributor at different operating conditions. Mean residence times (MRTs), holdups (H) and fraction of flow flowing along different quadrants were estimated. The analysis of the measured RTD curves indicated radial non-uniform distribution of liquid phase across the beds. The overall RTD of the liquid phase, measured at the exit of the reactor was simulated using a multi-parameter axial dispersion with exchange model (ADEM), and model parameters were obtained. The results of model simulations indicated that the TBR behaved as a plug flow reactor at most of the operating conditions used in the investigation. The results of the investigation helped to improve the existing design as well as to design a full-scale industrial TBR for petroleum refining applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Study of stream flow effects on bubble motion

    International Nuclear Information System (INIS)

    Sami, S.S.

    1983-01-01

    The formation of air bubbles at constant-pressure by submerged orifices was investigated in both quiescent and moving streams inside a vertical tube. Parameters affecting the bubble rise velocity, such as bubble generating frequency and diameter, were studied and analyzed for bubbles rising in a chain and homogeneous mixture. A special technique for measuring bubble motion parameters has been developed, tested, and employed throughout the experimental investigation. The method is based on a water-air impedance variation. Results obtained in stagnant liquid show that increasing the bubble diameter serves to increase bubble rise velocity, while an opposite trend has been observed for stream liquid where the bubble diameter increase reduces the bubble rise velocity. The increase of bubble generation frequency generally increases the bubble rise velocity. Experimental data covered with bubble radial distribution showed symmetrical profiles of bubble velocity and frequency, and the radial distribution of the velocity profiles sometimes has two maxima and one minimum depending on the liquid velocity. Finally, in stagnant liquid, a normalized correlation has been developed to predict the terminal rise velocity in terms of bubble generating frequency, bubble diameter, single bubble rise velocity, and conduit dimensions. Another correlation is presented for forced bubbly flow, where the bubble rise velocity is expressed as a function of bubble generating frequency, bubble diameter, and water superficial velocity

  5. Cyclic and heteroclinic flows near general static spherically symmetric black holes

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Ayyesha K.; Jamil, Mubasher [National University of Sciences and Technology(NUST), Department of Mathematics, School of Natural Sciences (SNS), Islamabad (Pakistan); Azreg-Ainou, Mustapha [Baskent University, Engineering Faculty, Ankara (Turkey); Faizal, Mir [University of Lethbridge, Department of Physics and Astronomy, Alberta (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada)

    2016-05-15

    We investigate the Michel-type accretion onto a static spherically symmetric black hole. Using a Hamiltonian dynamical approach, we show that the standard method employed for tackling the accretion problem has masked some properties of the fluid flow. We determine new analytical solutions that are neither transonic nor supersonic as the fluid approaches the horizon(s); rather, they remain subsonic for all values of the radial coordinate. Moreover, the three-velocity vanishes and the pressure diverges on the horizon(s), resulting in a flow-out of the fluid under the effect of its own pressure. This is in favor of the earlier prediction that pressure-dominant regions form near the horizon. This result does not depend on the form of the metric and it applies to a neighborhood of any horizon where the time coordinate is timelike. For anti-de Sitter-like f(R) black holes we discuss the stability of the critical flow and determine separatrix heteroclinic orbits. For de Sitter-like f(R) black holes, we construct polytropic cyclic, non-homoclinic, physical flows connecting the two horizons. These flows become non-relativistic for Hamiltonian values higher than the critical value, allowing for a good estimate of the proper period of the flow. (orig.)

  6. Radial head dislocation during proximal radial shaft osteotomy.

    Science.gov (United States)

    Hazel, Antony; Bindra, Randy R

    2014-03-01

    The following case report describes a 48-year-old female patient with a longstanding both-bone forearm malunion, who underwent osteotomies of both the radius and ulna to improve symptoms of pain and lack of rotation at the wrist. The osteotomies were templated preoperatively. During surgery, after performing the planned radial shaft osteotomy, the authors recognized that the radial head was subluxated. The osteotomy was then revised from an opening wedge to a closing wedge with improvement of alignment and rotation. The case report discusses the details of the operation, as well as ways in which to avoid similar shortcomings in the future. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  7. Radial basis function and its application in tourism management

    Science.gov (United States)

    Hu, Shan-Feng; Zhu, Hong-Bin; Zhao, Lei

    2018-05-01

    In this work, several applications and the performances of the radial basis function (RBF) are briefly reviewed at first. After that, the binomial function combined with three different RBFs including the multiquadric (MQ), inverse quadric (IQ) and inverse multiquadric (IMQ) distributions are adopted to model the tourism data of Huangshan in China. Simulation results showed that all the models match very well with the sample data. It is found that among the three models, the IMQ-RBF model is more suitable for forecasting the tourist flow.

  8. Transonic flow of steam with non-equilibrium and homogenous condensation

    Science.gov (United States)

    Virk, Akashdeep Singh; Rusak, Zvi

    2017-11-01

    A small-disturbance model for studying the physical behavior of a steady transonic flow of steam with non-equilibrium and homogeneous condensation around a thin airfoil is derived. The steam thermodynamic behavior is described by van der Waals equation of state. The water condensation rate is calculated according to classical nucleation and droplet growth models. The current study is based on an asymptotic analysis of the fluid flow and condensation equations and boundary conditions in terms of the small thickness of the airfoil, small angle of attack, closeness of upstream flow Mach number to unity and small amount of condensate. The asymptotic analysis gives the similarity parameters that govern the problem. The flow field may be described by a non-homogeneous transonic small-disturbance equation coupled with a set of four ordinary differential equations for the calculation of the condensate mass fraction. An iterative numerical scheme which combines Murman & Cole's (1971) method with Simpson's integration rule is applied to solve the coupled system of equations. The model is used to study the effects of energy release from condensation on the aerodynamic performance of airfoils operating at high pressures and temperatures and near the vapor-liquid saturation conditions.

  9. Non-invasive and non-intrusive gas flow measurement based on the dynamic thermal characteristics of a pipeline

    Science.gov (United States)

    Fan, Zichuan; Cai, Maolin; Xu, Weiqing

    2012-10-01

    This paper proposes a non-intrusive and non-invasive method for measuring the gas flow rate in pneumatic industry. A heater unit is fixed on the partial circumference of the external wall of a pipeline and emits specific thermal pulses in a predetermined mode. Two sensors attached to the external wall detect the upstream temperature, and the gas flow can be measured according to the relationship between the flow rate and the dynamic thermal characteristics of the pipeline. To determine the preferable relationship, the temperature field model of the measurement system is built. Then, based on the measurement modes and the corresponding simulations, the objective functions for the gas flow specified on different dynamic thermal characteristics are established. Additionally, the minimum measurement time of the method, named reference time scale, is proposed. Further, robustness tests of the measurement method are derived by considering the influences of multiple factors on the objective functions. The experiments confirm that this method does not need to open the pipeline and disturb the flow regime in order to obtain the data; this method also avoids the typical time-consuming and complex operations, resists ambient temperature disturbance and achieves approximately acceptable results.

  10. Non-invasive and non-intrusive gas flow measurement based on the dynamic thermal characteristics of a pipeline

    International Nuclear Information System (INIS)

    Fan, Zichuan; Cai, Maolin; Xu, Weiqing

    2012-01-01

    This paper proposes a non-intrusive and non-invasive method for measuring the gas flow rate in pneumatic industry. A heater unit is fixed on the partial circumference of the external wall of a pipeline and emits specific thermal pulses in a predetermined mode. Two sensors attached to the external wall detect the upstream temperature, and the gas flow can be measured according to the relationship between the flow rate and the dynamic thermal characteristics of the pipeline. To determine the preferable relationship, the temperature field model of the measurement system is built. Then, based on the measurement modes and the corresponding simulations, the objective functions for the gas flow specified on different dynamic thermal characteristics are established. Additionally, the minimum measurement time of the method, named reference time scale, is proposed. Further, robustness tests of the measurement method are derived by considering the influences of multiple factors on the objective functions. The experiments confirm that this method does not need to open the pipeline and disturb the flow regime in order to obtain the data; this method also avoids the typical time-consuming and complex operations, resists ambient temperature disturbance and achieves approximately acceptable results. (paper)

  11. Non-intrusive accurate and traceable flow measurements in nuclear power plant systems

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, A.; Kanda, V.; Sharp, B.; Lopez, A. [Advanced Measurement and Analysis Group Inc., ON (Canada); Gurevich, Y. [Daystar Technologies Inc., ON (Canada)

    2014-07-01

    Ultrasonic cross correlation flow meters, are a non-intrusive flow measurement technology based on measurement of the transport velocity of turbulent structures, and have many advantages over other ultrasonic flow measurement methods. The cross correlation flow meter CROSSFLOW, produced and operated by the Canadian company Advanced Measurement and Analysis Group Inc., is used in nuclear power plants around the world, for various application. This paper describes the operating principals of the ultrasonic cross correlation flow meter, its advantages over other ultrasonic flow measurement methods, its application around the world. (author)

  12. The physical dimension of international trade. Part 1. Direct global flows between 1962 and 2005

    International Nuclear Information System (INIS)

    Dittrich, Monika; Bringezu, Stefan

    2010-01-01

    The physical dimension of international trade is attaining increased importance. This article describes a method to calculate complete physical trade flows for all countries which report their trade to the UN. The method is based on the UN Comtrade database and it was used to calculate world-wide physical trade flows for all reporting countries in nine selected years between 1962 and 2005. The results show increasing global trade with global direct material trade flows reaching about 10 billion tonnes in 2005, corresponding to a physical trade volume of about 20 billion tonnes (adding both total imports and total exports). The share from European countries is declining, mainly in favour of Asian countries. The dominant traded commodity in physical units was fossil fuels, mainly oil. Physical trade balances were used to identify the dominant resource suppliers and demanders. Australia was the principal resource supplier over the period with a diverse material export structure. It was followed by mainly oil-exporting countries with varying volumes. As regards to regions, Latin America, south-east Asian islands and central Asia were big resource exporters, mostly with increasing absolute amounts of net exports. The largest net importers were Japan, the United States and single European countries. Emerging countries like the 'Asian Tigers' with major industrial productive sectors are growing net importers, some of them to an even higher degree than European countries. Altogether, with the major exception of Australia and Canada, industrialized countries are net importers and developing countries and transition countries are net exporters, but there are important differences within these groups. (author)

  13. Negative Saturation Approach for Non-Isothermal Compositional Two-Phase Flow Simulations

    NARCIS (Netherlands)

    Salimi, H.; Wolf, K.H.; Bruining, J.

    2011-01-01

    This article deals with developing a solution approach, called the non-isothermal negative saturation (NegSat) solution approach. The NegSat solution approach solves efficiently any non-isothermal compositional flow problem that involves phase disappearance, phase appearance, and phase transition.

  14. Mood Dimensions Show Distinct Within-Subject Associations With Non-exercise Activity in Adolescents: An Ambulatory Assessment Study

    Directory of Open Access Journals (Sweden)

    Elena D. Koch

    2018-03-01

    Full Text Available Physical activity is known to preserve both physical and mental health. However, the physical activity levels of a large proportion of adolescents are insufficient. This is critical, since physical activity levels in youth have been shown to translate into adulthood. Whereas in adult populations, mood has been supposed to be one important psychological factor that drives physical activity in everyday life, this issue has been poorly studied in adolescent populations. Ambulatory Assessment is the state-of-the-art approach to investigate how mood and non-exercise activity fluctuate within persons in everyday life. Through assessments in real time and real life, this method provides ecological validity, bypassing several limitations of traditional assessment methods (e.g., recall biases. To investigate whether mood is associated with non-exercise activity in adolescents, we equipped a community-based sample comprising 113 participants, aged 12–17 years, with GPS-triggered e-diaries querying for valence, energetic arousal, and calmness, and with accelerometers continuously measuring physical activity in their everyday lives for 1 week. We excluded all acceleration data due to participants' exercise activities and thereafter we parameterized non-exercise activity as the mean value across 10-min intervals of movement acceleration intensity following each e-diary prompt. We used multilevel analyses to compute the effects of the mood dimensions on non-exercise activity within 10-min intervals directly following each e-diary prompt. Additionally, we conducted explorative analyses of the time course of the effects, i.e., on different timeframes of non-exercise activity up to 300 min following the mood assessment. The results showed that valence (p < 0.001 and energetic arousal (p < 0.001 were positively associated with non-exercise activity within the 10 min interval, whereas calmness (p < 0.001 was negatively associated with non-exercise activity

  15. A Canine Non-Weight-Bearing Model with Radial Neurectomy for Rotator Cuff Repair.

    Directory of Open Access Journals (Sweden)

    Xiaoxi Ji

    Full Text Available The major concern of using a large animal model to study rotator cuff repair is the high rate of repair retears. The purpose of this study was to test a non-weight-bearing (NWB canine model for rotator cuff repair research.First, in the in vitro study, 18 shoulders were randomized to 3 groups. 1 Full-width transections repaired with modified Mason-Allen sutures using 3-0 polyglactin suture, 2 Group 1 repaired using number 2 (#2 polyester braid and long-chain polyethylene suture, and 3 Partial-width transections leaving the superior 2 mm infraspinatus tendon intact without repair. In the in vivo study of 6 dogs, the infraspinatus tendon was partially transected as the same as the in vitro group 3. A radial neurectomy was performed to prevent weight bearing. The operated limb was slung in a custom-made jacket for 6 weeks.In the in vitro study, mean ultimate tensile load and stiffness in Group 2 were significantly higher than Group 1 and 3 (p<0.05. In the in vivo study, gross inspection and histology showed that the preserved superior 2-mm portion of the infraspinatus tendon remained intact with normal structure.Based on the biomechanical and histological findings, this canine NWB model may be an appropriate and useful model for studies of rotator cuff repair.

  16. Non-Steady Oscillatory Flow in Coarse Granular Materials

    DEFF Research Database (Denmark)

    Andersen, O. H.; Gent, M. R. A. van; Meer, J. W. van der

    1992-01-01

    Stationary and oscillatory flow through coarse granular materials have been investigated experimentally at Delft Hydraulics in their oscillating water tunnel with the objective of determining the coefficients of the extended Forchheimer equation. Cylinders, spheres and different types of rock have....... Further, for the non-stationary term, the virtual mass coefficient will be derived....

  17. Radial cracks and fracture mechanism of radially oriented ring 2:17 type SmCo magnets

    International Nuclear Information System (INIS)

    Tian Jianjun; Pan Dean; Zhou Hao; Yin Fuzheng; Tao Siwu; Zhang Shengen; Qu Xuanhui

    2009-01-01

    Radially oriented ring 2:17 type SmCo magnets have different microstructure in the radial direction (easy magnetization) and axial direction (hard magnetization). The structure of the cross-section in radial direction is close-packed atomic plane, which shows cellular microstructure. The microstructure of the cross-section in axial direction consists of a mixture of rhombic microstructure and parallel lamella phases. So the magnets have obvious anisotropy of thermal expansion in different directions. The difference of the thermal expansion coefficients reaches the maximum value at 830-860 deg. C, which leads to radial cracks during quenching. The magnets have high brittlement because there are fewer slip systems in crystal structure. The fracture is brittle cleavage fracture.

  18. Profiles of zonal flows and turbulence mode numbers and probe system in the HL-2A tokamak

    International Nuclear Information System (INIS)

    Hong Wenyu; Zhao Kaijun; Yan Longwen; Dong Jiaqi; Cheng Jun; Qian Jun

    2009-01-01

    The toroidal and poloidal symmetries (m-0, n-0) of the measured low frequency zonal flows (f=0-5 kHz) and geodesic acoustic mode zonal flow (f=16 kHz) electric potential and radial promulgate features were unambiguously identified with displaced Langmuir probe arrays in the edge plasma of the HL-2A tokamak for the first time. The finite radial wave vector (K r-LF =0.6 cm -1 , K r-GAM =2 cm -1 ) of the flows was simultaneously estimated. The formation mechanism of the flows is identified to be nonlinear three wave coupling between high frequency turbulent fluctuations and the flows. Changes of zonal flow amplitude bring by ECRH power and the boundary safety factors were simply studied. Moreover, change of zonal flow amplitude in radial direction was too observed. (authors)

  19. The Three Dimensional Flow Field at the Exit of an Axial-Flow Turbine Rotor

    Science.gov (United States)

    Lakshminarayana, B.; Ristic, D.; Chu, S.

    1998-01-01

    A systematic and comprehensive investigation was performed to provide detailed data on the three dimensional viscous flow phenomena downstream of a modem turbine rotor and to understand the flow physics such as origin, nature, development of wakes, secondary flow, and leakage flow. The experiment was carried out in the Axial Flow Turbine Research Facility (AFTRF) at Penn State, with velocity measurements taken with a 3-D LDV System. Two radial traverses at 1% and 10% of chord downstream of the rotor have been performed to identify the three-dimensional flow features at the exit of the rotor blade row. Sufficient spatial resolution was maintained to resolve blade wake, secondary flow, and tip leakage flow. The wake deficit is found to be substantial, especially at 1% of chord downstream of the rotor. At this location, negative axial velocity occurs near the tip, suggesting flow separation in the tip clearance region. Turbulence intensities peak in the wake region, and cross- correlations are mainly associated with the velocity gradient of the wake deficit. The radial velocities, both in the wake and in the endwall region, are found to be substantial. Two counter-rotating secondary flows are identified in the blade passage, with one occupying the half span close to the casino and the other occupying the half span close to the hub. The tip leakage flow is well restricted to 10% immersion from the blade tip. There are strong vorticity distributions associated with these secondary flows and tip leakage flow. The passage averaged data are in good agreement with design values.

  20. Experimental study on liquid velocity in upward and downward two-phase flows

    International Nuclear Information System (INIS)

    Sun, X.; Paranjape, S.; Kim, S.; Ozar, B.; Ishii, M.

    2003-01-01

    Local characteristics of the liquid phase in upward and downward air-water two-phase flows were experimentally investigated in a 50.8-mm inner-diameter round pipe. An integral Laser Doppler Anemometry (LDA) system was used to measure the axial liquid velocity and its fluctuations. No effect of the flow direction on the liquid velocity radial profile was observed in single-phase liquid benchmark experiments. Local multi-sensor conductivity probes were used to measure the radial profiles of the bubble velocity and the void fraction. The measurement results in the upward and downward two-phase flows are compared and discussed. The results in the downward flow demonstrated that the presence of the bubbles tended to flatten the liquid velocity radial profile, and the maximum liquid velocity could occur off the pipe centerline, in particular at relatively low flow rates. However, the maximum liquid velocity always occurred at the pipe center in the upward flow. Also, noticeable turbulence enhancement due to the bubbles in the two-phase flows was observed in the current experimental flow conditions. Furthermore, the distribution parameter and the void weighted area-averaged drift velocity were obtained based on the definitions

  1. Production and release of infectious hepatitis C virus from human liver cell cultures in the three-dimensional radial-flow bioreactor

    International Nuclear Information System (INIS)

    Aizaki, Hideki; Nagamori, Seishi; Matsuda, Mami; Kawakami, Hayato; Hashimoto, Osamu; Ishiko, Hiroaki; Kawada, Masaaki; Matsuura, Tomokazu; Hasumura, Satoshi; Matsuura, Yoshiharu; Suzuki, Tetsuro; Miyamura, Tatsuo

    2003-01-01

    Lack of efficient culture systems for hepatitis C virus (HCV) has been a major obstacle in HCV research. Human liver cells grown in a three-dimensional radial-flow bioreactor were successfully infected following inoculation with plasma from an HCV carrier. Subsequent detection of increased HCV RNA suggested viral replication. Furthermore, transfection of HCV RNA transcribed from full-length cDNA also resulted in the production and release of HCV virions into supernatant. Infectivity was shown by successful secondary passage to a new culture. Introduction of mutations in RNA helicase and polymerase regions of HCV cDNA abolished virus replication, indicating that reverse genetics of this system is possible. The ability to replicate and detect the extracellular release of HCV might provide clues with regard to the persistent nature of HCV infection. It will also accelerate research into the pathogenicity of HCV, as well as the development of prophylactic agents and new therapy

  2. Power transmission in combined compressors comprising a radial and side channel stage. Final report and appendices; Untersuchungen ueber die Energieuebertragung in kombinierten Verdichtern aus Radial- und Seitenkanalstufe. Abschlussbericht und Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Surek, D.

    2001-07-30

    In the field of turbo-compressors, the following problems must be solved in order to extend the range of operation: (a) Prevention of rotating stall at part load; (b) Extension of the permissible operating range at part load; (c) Extension of the operation range of radial and side channel compressors in higher vacuum below p{sub s}=50kPa. (c) can be achieved by changing the flow pattern in the rotor and in the region of interaction between the blade wheel and guide wheel of radial compressors or by actively influencing transient flow, e.g. by coupling radial compressor stages with a side channel compressor stage as final stage. The contribution goes into detail about the latter solution. [German] Fuer den Turboverdichterbau sind gegenwaertig folgende Probleme zur Erweiterung der Betriebsbereiche dringend zu loesen: (a) Vermeiden oder beseitigen von Rotating Stall im Teillastbereich,(b) Erweiterung des zulaessigen Arbeitsbereiches im Teillastgebiet, (c) Erschliessung des Arbeitsbereichs von Radial- und Seitenkanalverdichtern im hoeheren Vakuumbereich unterhalb von p{sub s}=50 kPa. Die Erweiterung des zulaessigen Arbeitsbereichs im Teillastgebiet kann durch Veraenderung der Stroemungsstruktur im Laufrad und im Interaktionsbereich zwischen Lauf- und Leitrad von Radialverdichtern oder durch die aktive Beeinflussung der instationaeren Stroemung z.B. durch Kopplung von Radialverdichterstufen mit einer Seitenkanalverdichterstufe als Endstufe erfolgen. Seitenkanalverdichter verfuegen ueber stabile Kennlinien im gesamten Betriebsbereich. Im Kombinationsbetrieb einer Radialverdichterstufe mit nach- oder vorgeschalteter Seitenkanalverdichterstufe praegte die Seitenkanalverdichterstufe dem Kombinationsverdichter ihr stabiles Kennlinienverhalten auf, so dass sich eine stabile Gesamtkennlinie ergibt. Eine Pumpgrenze tritt nicht mehr auf, so dass der Betrieb von Verdichterkombinationen aus Radial- und Seitenkanalstufe im gesamten Kennlinienbereich moeglich ist. Die

  3. Massively Parallel Dimension Independent Adaptive Metropolis

    KAUST Repository

    Chen, Yuxin

    2015-05-14

    This work considers black-box Bayesian inference over high-dimensional parameter spaces. The well-known and widely respected adaptive Metropolis (AM) algorithm is extended herein to asymptotically scale uniformly with respect to the underlying parameter dimension, by respecting the variance, for Gaussian targets. The result- ing algorithm, referred to as the dimension-independent adaptive Metropolis (DIAM) algorithm, also shows improved performance with respect to adaptive Metropolis on non-Gaussian targets. This algorithm is further improved, and the possibility of probing high-dimensional targets is enabled, via GPU-accelerated numerical libraries and periodically synchronized concurrent chains (justified a posteriori). Asymptoti- cally in dimension, this massively parallel dimension-independent adaptive Metropolis (MPDIAM) GPU implementation exhibits a factor of four improvement versus the CPU-based Intel MKL version alone, which is itself already a factor of three improve- ment versus the serial version. The scaling to multiple CPUs and GPUs exhibits a form of strong scaling in terms of the time necessary to reach a certain convergence criterion, through a combination of longer time per sample batch (weak scaling) and yet fewer necessary samples to convergence. This is illustrated by e ciently sampling from several Gaussian and non-Gaussian targets for dimension d 1000.

  4. Weyl consistency conditions in non-relativistic quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Sridip; Grinstein, Benjamín [Department of Physics, University of California,San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States)

    2016-12-05

    Weyl consistency conditions have been used in unitary relativistic quantum field theory to impose constraints on the renormalization group flow of certain quantities. We classify the Weyl anomalies and their renormalization scheme ambiguities for generic non-relativistic theories in 2+1 dimensions with anisotropic scaling exponent z=2; the extension to other values of z are discussed as well. We give the consistency conditions among these anomalies. As an application we find several candidates for a C-theorem. We comment on possible candidates for a C-theorem in higher dimensions.

  5. Vortex-induced phase slip dissipation in a torioidal Bose-Einstein condensate flowing through a barrier

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Lee A [Los Alamos National Laboratory

    2009-01-01

    We study the phase slips superfluid dissipation mechanism with a BEC flowing through a repulsive barrier inside a torus. The barrier is adiabatically raised across the annulus while the condensate is flowing with a finite quantized angular momentum. We found that, at a critical height, a vortex reaches the barrier moving radially from the inner region to eventually circulate along the annulus. At a slightly higher barrier, an anti-vortex also enters into the annulus from the outward region. The vortex and anti-vortex decrease the total angular momentum by leaving behind their respective paths a 2{pi} phase slip. When they collide or orbit along the same loop, the condensate suffers a global 2{pi} phase slip and the total angular momentum decreases by one quantum. The analysis is based on numerical simulations of the dynamical Gross-Pitaevskii equation both in two- and three-dimensions, the latter with the experimental parameters of the torus trap recently created at the NIST institute.

  6. Role of advanced refuelling and heating on edge Reynolds stress-induced poloidal flow in HL-1M

    International Nuclear Information System (INIS)

    Hong Wenyu; Wang Enyao; Li Qiang; Cao Jianyong; Yan Longwen

    2002-01-01

    The radial profile of electrostatic Reynolds stress, plasma poloidal rotations, radial and poloidal electric fields have been measured in the plasma boundary region of the HL-1M tokamak using a multi-array of Mach/Langmuir probes. In the experiments of ohmic discharge, lower hybrid current drive, supersonic molecular beam injection (SMBI) and multi-shot pellet injection, the correlation between the Reynolds stress and poloidal flow in the edge plasma is presented. The radial profile changes of the Reynolds stress and poloidal flow velocity V pol with lower hybrid wave injection power and SMBI injection are obtained. The results indicate that the sheared poloidal flow can be generated in tokamak plasma due to the radially varying Reynolds stress

  7. Shape Recovery of Elastic Red Blood Cells from Shear Flow Induced Deformation in Three Dimensions

    Science.gov (United States)

    Peng, Yan; Gounley, John

    2015-11-01

    Red blood cells undergo substantial shape changes in vivo. Modeled as an elastic capsule, the shape recovery of a three dimensional biconcave capsule from shear flow is studied for different preferred elastic and bending configuration. The fluid-structure interaction is modeled using the multiple-relaxation time lattice Boltzmann (LBM) and immersed boundary (IBM) methods. Based on the studies of the limited shape memory observed in three dimensions, the shape recovery is caused by the preferred elastic configuration, at least when paired with a constant spontaneous curvature. For these capsules, the incompleteness of the shape recovery observed precludes any conjecture about whether a single or multiple phase(s) are necessary to describe the recovery process. Longer simulations and a more stable methodology will be necessary. Y. Peng acknowledges support from Old Dominion University Research Foundation Grant #503921 and National Science Foundation Grant DMS-1319078.

  8. Logical-rules and the classification of integral dimensions: Individual differences in the processing of arbitrary dimensions

    Directory of Open Access Journals (Sweden)

    Anthea G. Blunden

    2015-01-01

    Full Text Available A variety of converging operations demonstrate key differences between separable dimensions, which can be analyzed independently, and integral dimensions, which are processed in a non-analytic fashion. A recent investigation of response time distributions, applying a set of logical rule-based models, demonstrated that integral dimensions are pooled into a single coactive processing channel, in contrast to separable dimensions, which are processed in multiple, independent processing channels. This paper examines the claim that arbitrary dimensions created by factorially morphing four faces are processed in an integral manner (i.e., coactively. In two experiments, sixteen participants completed a categorization task in which either upright or inverted morph stimuli were classified in a speeded fashion. Analyses focused on contrasting different assumptions about the psychological representation of the stimuli, perceptual and decisional separability, and the processing architecture. We report consistent individual differences which demonstrate a mixture of some observers who demonstrate coactive processing with other observers who process the dimensions in a parallel self-terminating manner.

  9. Crosshole Investigations

    International Nuclear Information System (INIS)

    Noy, D.; Barker, J.; Black, J.H.; Holmes, D.C.

    1988-02-01

    The crosshole sinusoidal testing was carried out using computer-controlled test equipment to generate the sinusoidally varying head in a single zone (the 'source') isolated by packers. A second ('receiver') borehole contained a number of straddle intervals and was used to observe the propagation of the sinusoidal signal. The number of positive responses was limited and flow appeared to be concentrated within a few 'channels'. Analysis was attempted using single fissure, regularly fissured and porous medium models. None gave satisfactory fits to the measured data. A new analysis involving the 'dimension' of the flow test has been developed to analyse the results of the crosshole sinusoidal testing. This analysis allows the dimension of the flow to assume non-integer values whereas conventionally the dimension is taken as either one, two, or three: for example, radial flow in a uniform planar fissure would be two dimensional. The new model is found to give a more consistent description of the test data than the conventional models and suggests a complex pattern of fracture properties within each fracture zone. However, the results presented must be considered as being preliminary since we still have much to learn about how to best apply this model and present the results. Also, it is not yet clear how the derived value of 'dimension' can be related to the transport properties of the rock. (authors)

  10. Thermal freeze-out and longitudinally non-uniform collective expansion flow in relativistic heavy ion collisions

    CERN Document Server

    Feng Sheng Qin; LianShouLiu

    2002-01-01

    The non-uniform longitudinal flow model (NUFM) proposed recently is extended to include also the transverse flow. The resulting longitudinally non-uniform collective expansion model (NUCEM) is applied to the calculation of rapidity distribution of kaons, lambdas and protons in relativistic heavy ion collisions at CERN-SPS energies. The model results are compared with the 200 A GeV/c S-S and 158 A GeV/c Pb-Pb collision data. The central dips observed in experiments are reproduced in a natural way. It is found that the depth of the central dip depends on the magnitude of the parameter e and the mass of produced particles, i.e. the non-uniformity of the longitudinal flow which is described by the parameter e determines the depth of the central dip for produced particles. Comparing with one-dimensional non-uniform longitudinal flow model, the rapidity distribution of lighter strange particle kaon also shows a dip due to the effect of transverse flow

  11. Non-Abelian fractional quantum Hall states for hard-core bosons in one dimension

    Science.gov (United States)

    Paredes, Belén

    2012-05-01

    I present a family of one-dimensional bosonic liquids analogous to non-Abelian fractional quantum Hall states. A new quantum number is introduced to characterize these liquids, the chiral momentum, which differs from the usual angular or linear momentum in one dimension. As their two-dimensional counterparts, these liquids minimize a k-body hard-core interaction with the minimum total chiral momentum. They exhibit global order, with a hidden organization of the particles in k identical copies of a one-dimensional Laughlin state. For k=2 the state is a p-wave paired phase corresponding to the Pfaffian quantum Hall state. By imposing conservation of the total chiral momentum, an exact parent Hamiltonian is derived which involves long-range tunneling and interaction processes with an amplitude decaying with the chord distance. This family of non-Abelian liquids is shown to be in formal correspondence with a family of spin-(k)/(2) liquids which are total singlets made out of k indistinguishable resonating valence bond states. The corresponding spin Hamiltonians are obtained.

  12. Radial scars detected mammographically in a breast cancer screening programme

    International Nuclear Information System (INIS)

    Azavedo, E.; Svane, G.

    1992-01-01

    Radial scars are getting more and more common since implementation of mammography as diagnostic tool in screening women for breast cancer. At Karolinska Hospital, 18987 asymptomatic women, aged 50-69, were screened for breast cancer through mammography during August 1989-May 1991. A total of 735 (3.87%) were recalled for additional views after initial mammograms and 463 (2.44%) were assessed with help of cytology. In all 175 women (0.92%) were selected for surgery and 146 (0.77%) had histologically verified cancers. The remaining 29 (0.15%) had non- malignant lesions of which 11 (0.06%) were radial scars. All radial scars were diagnosed on mammograms and later confirmed with histology. The radiologic characteristics were found to be a) rather thick and long radiating structures accompanied by radiolucent linear structures parallel to some of the spicules, b) absence of calcifications, c) radiolucent areas in the body of the lesion, d) an average mean size of 6 mm and e) changing image in different views. Most of the lesions, 73% (8/11), were in moderately dense breasts and there was no specific relation to the right or left breast. A majority of radial scars, 64% (7/11), were found in the upper outer quadrants, 3/11 in the lower outer quadrants and 1/11 in the lower inner quadrant. Literature shows that histology uses many synonyms for radial scars and therefore team work between radiologists and pathologists is suggested for better conformity of the diagnosis. (author). 32 refs.; 1 fig

  13. Extending cavitation models to subcooled and superheated nozzle flow

    International Nuclear Information System (INIS)

    Schmidt, D.P.; Corradini, M.L.

    1997-01-01

    Existing models for cavitating flow are extended to apply to discharge of hot liquid through nozzles. Two types of models are considered: an analytical model and a two-dimensional numerical model. The analytical model of cavitating nozzle flow is reviewed and shown to apply to critical nozzle flow where the liquid is subcooled with respect to the downstream conditions. In this model the liquid and vapor are assumed to be in thermodynamic equilibrium. The success of this analytical model suggests that hydrodynamic effects dominate the subcooled nozzle flow. For more detailed predictions an existing multi-dimensional cavitation model based on hydrodynamic non-equilibrium is modified to apply to discharge of hot liquid. Non-equilibrium rate data from experimental measurements are used to close the equations. The governing equations are solved numerically in time and in two spatial dimensions on a boundary fitted grid. Results are shown for flow through sharp nozzles, and the coefficient of discharge is found to agree with experimental measurements for both subcooled and flashing fluid. (author)

  14. Effect of shear in the radial electric field on confinement in JET

    Energy Technology Data Exchange (ETDEWEB)

    O` Brien, D P; Balet, B; Deliyanakis, N; Cordey, J G; Stubberfield, P M [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    The role of the radial electric field during enhanced confinement of JET discharges is studied. Results from two series of experiments are presented: beam dominated with the addition of a small amount of ICRH, and ICRH dominated discharges, showing that for high performance ICRH heated discharges which obtain the high confinement regime, there is evidence against the E x B flow stabilisation. 4 refs., 4 figs.

  15. Non-equilibrium reacting gas flows kinetic theory of transport and relaxation processes

    CERN Document Server

    Nagnibeda, Ekaterina; Nagnibeda, Ekaterina

    2009-01-01

    This volume develops the kinetic theory of transport phenomena and relaxation processes in the flows of reacting gas mixtures. The theory is applied to the modeling of non-equilibrium flows behind strong shock waves, in the boundary layer, and in nozzles.

  16. The Optical Flow Technique on the Research of Solar Non-potentiality

    Science.gov (United States)

    Liu, Ji-hong; Zhang, Hong-qi

    2010-06-01

    Several optical flow techniques, which have being applied to the researches of solar magnetic non-potentiality recently, have been summarized here. And a few new non-potential parameters which can be derived from them have been discussed, too. The main components of the work are presented as follows: (1) The optical flow techniques refers to a series of new image analyzing techniques arisen recently on the researches of solar magnetic non-potentiality. They mainly include LCT (local correlation tracking), ILCT (inductive equation combining with LCT), MEF (minimum energy effect), DAVE (differential affine velocity estimator) and NAVE (nonlinear affine velocity estimator). Their calculating and applying conditions, merits and deficiencies, all have been discussed detailedly in this work. (2) Benefit from the optical flow techniques, the transverse velocity fields of the magnetic features on the solar surface may be determined by a time sequence of high-quality images currently produced by high-resolution observations either from the ground or in space. Consequently, several new non-potential parameters may be acquired, such as the magnetic helicity flux, the induced electric field in the photosphere, the non-potential magnetic stress (whose area integration is the Lorentz force), etc. Then we can determine the energy flux across the photosphere, and subsequently evaluate the energy budget. Former works on them by small or special samples have shown that they are probably related closely to the erupting events, such as flare, filament eruptions and coronal mass ejections.

  17. Manipulation of viscous fingering in a radially tapered cell geometry

    Science.gov (United States)

    Bongrand, Grégoire; Tsai, Peichun Amy

    2018-06-01

    When a more mobile fluid displaces another immiscible one in a porous medium, viscous fingering propagates with a partial sweep, which hinders oil recovery and soil remedy. We experimentally investigate the feasibility of tuning such fingering propagation in a nonuniform narrow passage with a radial injection, which is widely used in various applications. We show that a radially converging cell can suppress the common viscous fingering observed in a uniform passage, and a full sweep of the displaced fluid is then achieved. The injection flow rate Q can be further exploited to manipulate the viscous fingering instability. For a fixed gap gradient α , our experimental results show a full sweep at a small Q but partial displacement with fingering at a sufficient Q . Finally, by varying α , we identify and characterize the variation of the critical threshold between stable and unstable displacements. Our experimental results reveal good agreement with theoretical predictions by a linear stability analysis.

  18. Nonlinear entropy transfer in ETG-TEM turbulence via TEM driven zonal flows

    International Nuclear Information System (INIS)

    Asahi, Yuuichi; Tsutsui, Hiroaki; Tsuji-Iio, Shunji; Ishizawa, Akihiro; Sugama, Hideo; Watanabe, Tomohiko

    2015-01-01

    Nonlinear interplay of the electron temperature gradient (ETG) modes and the trapped electron modes (TEMs) was investigated by means of gyrokinetic simulation. Focusing on the situation where both TEMs and ETG modes are linearly unstable, the effects of TEM-driven zonal flows on ETG turbulence were examined by means of entropy transfer analysis. In a statistically steady turbulence where the TEM driven zonal flows are dominant, it turned out that the zonal flows meditate the entropy transfer of the ETG modes from the low to high radial wavenumber regions. The successive entropy transfer broadens the potential fluctuation spectrum in the radial wavenumber direction. In contrast, in the situation where ETG modes are unstable but TEMs are stable, the pure ETG turbulence does not produce strong zonal flows, leading to a rather narrow spectrum in the radial wavenumber space and a higher transport level. (author)

  19. Rapid analytical assessment of the mechanical perturbations induced by non-isothermal injection into a subsurface formation.

    Science.gov (United States)

    De Simone, Silvia; Carrera, Jesús; María Gómez Castro, Berta

    2016-04-01

    Fluid injection into geological formations is required for several engineering operations, e.g. geothermal energy production, hydrocarbon production and storage, CO2 storage, wastewater disposal, etc. Non-isothermal fluid injection causes alterations of the pressure and temperature fields, which affect the mechanical stability of the reservoir. This coupled thermo-hydro-mechanical behavior has become a matter of special interest because of public concern about induced seismicity. The response is complex and its evaluation often requires numerical modeling. Nevertheless, analytical solutions are useful in improving our understanding of interactions, identifying the controlling parameters, testing codes and in providing a rapid assessment of the system response to an alteration. We present an easy-to-use solution to the transient advection-conduction heat transfer problem for parallel and radial flow. The solution is then applied to derive analytical expressions for hydraulic and thermal driven displacements and stresses. The validity is verified by comparison with numerical simulations and yields fairly accurate results. The solution is then used to illustrate some features of the poroelastic and thermoelastic response and, in particular, the sensitivity to the external mechanical constraints and to the reservoir dimension.

  20. Proppant backflow: Mechanical and flow considerations

    Energy Technology Data Exchange (ETDEWEB)

    McLennan, John [Univ. of Utah, Salt Lake City, UT (United States); Walton, Ian [Univ. of Utah, Salt Lake City, UT (United States); Moore, Joseph [Univ. of Utah, Salt Lake City, UT (United States); Brinton, Dan [Univ. of Utah, Salt Lake City, UT (United States); Lund, Jeff [TerraTek Inc., Salt Lake City, UT (United States)

    2015-09-01

    One of the concerns of using proppant in geothermal wells, and particularly in enhanced geothermal systems, is proppant flowback. Particulate proppant maintain post-closure conductivity in hydraulically opened fractures. If that proppant is displaced from the near-wellbore region, either due to overflushing during stimulation or flowback to the wellbore at any time, the reduced fracture width chokes the injection or production. Two intermediate-scale laboratory analogs of a propped hydraulic fracture were prepared, and fluid was flowed through a normally stressed, propped fracture into a central wellbore. The tests were conducted in a polyaxial load frame. Acoustic/microseismic activity was measured during the injection programs. In one scenario—radial flow through a transverse fracture to a wellbore—the results suggest the creation of flow channels and nominally intact propped zones around the channels, maintaining fracture aperture. In the other—linear flow through a longitudinal fracture into a wellbore—there was substantially more proppant removal. The measurements have shown a greater tendency for proppant flowback in a linear flow situation (proppant movement is kinematically more restricted for radial convergent flow). The pressure gradients causing flow are exceedingly small and restraining flowback will be difficult. Convergent flow relationships could be an issue for injector wells, which will experience fluid flowback during hard shutdowns.