WorldWideScience

Sample records for non-progressive auditory-pigmentary disorder

  1. Progressive Pigmentary Purpura

    Science.gov (United States)

    ... Category: Share: Yes No, Keep Private Progressive Pigmentary Purpura Share | Progressive pigmentary purpura (we will call it PPP) is a group ... conditions ( Schamberg's disease , Lichenoid dermatitis of Gourgerot-Blum, purpura annularis telangiectodes of Majocchi and Lichen aureus). Schamberg's ...

  2. [Spinocerebellar ataxia type 2 associated to pigmentary retinitis].

    Science.gov (United States)

    Jiménez-Caballero, Pedro Enrique; Serviá, Mónica

    2010-07-01

    Ocular disorders are useful in the characterisation of the different types of spinocerebellar ataxias (SCA); pigmentary retinitis is an alteration that is specifically associated to SCA type 7 and is characterised by night blindness, sensitivity to glare and progressive narrowing of the visual field. A 34-year-old woman with clinical symptoms of progressive ataxia and visual impairment secondary to pigmentary retinitis. The patient had a personal history with an autosomal dominant pattern of a similar disorder in her father and paternal grandmother. In the genetic study she presented a triplet expansion in the SCA type 2 gene. CONCLUSIONS; Although pigmentary retinitis belongs to the SCA type 7 phenotype, our patient presented this retinal disorder, as in other cases of SCA type 2. A genetic study for SCA type 2 must therefore be conducted in patients with a degenerative ataxic clinical picture and who present evidence of pigmentary retinitis.

  3. Effect of delayed auditory feedback on stuttering with and without central auditory processing disorders.

    Science.gov (United States)

    Picoloto, Luana Altran; Cardoso, Ana Cláudia Vieira; Cerqueira, Amanda Venuti; Oliveira, Cristiane Moço Canhetti de

    2017-12-07

    To verify the effect of delayed auditory feedback on speech fluency of individuals who stutter with and without central auditory processing disorders. The participants were twenty individuals with stuttering from 7 to 17 years old and were divided into two groups: Stuttering Group with Auditory Processing Disorders (SGAPD): 10 individuals with central auditory processing disorders, and Stuttering Group (SG): 10 individuals without central auditory processing disorders. Procedures were: fluency assessment with non-altered auditory feedback (NAF) and delayed auditory feedback (DAF), assessment of the stuttering severity and central auditory processing (CAP). Phono Tools software was used to cause a delay of 100 milliseconds in the auditory feedback. The "Wilcoxon Signal Post" test was used in the intragroup analysis and "Mann-Whitney" test in the intergroup analysis. The DAF caused a statistically significant reduction in SG: in the frequency score of stuttering-like disfluencies in the analysis of the Stuttering Severity Instrument, in the amount of blocks and repetitions of monosyllabic words, and in the frequency of stuttering-like disfluencies of duration. Delayed auditory feedback did not cause statistically significant effects on SGAPD fluency, individuals with stuttering with auditory processing disorders. The effect of delayed auditory feedback in speech fluency of individuals who stutter was different in individuals of both groups, because there was an improvement in fluency only in individuals without auditory processing disorder.

  4. The Effect of Working Memory Training on Auditory Stream Segregation in Auditory Processing Disorders Children

    OpenAIRE

    Abdollah Moossavi; Saeideh Mehrkian; Yones Lotfi; Soghrat Faghih zadeh; Hamed Adjedi

    2015-01-01

    Objectives: This study investigated the efficacy of working memory training for improving working memory capacity and related auditory stream segregation in auditory processing disorders children. Methods: Fifteen subjects (9-11 years), clinically diagnosed with auditory processing disorder participated in this non-randomized case-controlled trial. Working memory abilities and auditory stream segregation were evaluated prior to beginning and six weeks after completing the training program...

  5. The Asian dermatologic patient: review of common pigmentary disorders and cutaneous diseases.

    Science.gov (United States)

    Ho, Stephanie G Y; Chan, Henry H L

    2009-01-01

    The Asian patient with Fitzpatrick skin types III-V is rarely highlighted in publications on cutaneous disorders or cutaneous laser surgery. However, with changing demographics, Asians will become an increasingly important group in this context. Although high melanin content confers better photoprotection, photodamage in the form of pigmentary disorders is common. Melasma, freckles, and lentigines are the epidermal disorders commonly seen, whilst nevus of Ota and acquired bilateral nevus of Ota-like macules are common dermal pigmentary disorders. Post-inflammatory hyperpigmentation (PIH) occurring after cutaneous injury remains a hallmark of skin of color. With increasing use of lasers and light sources in Asians, prevention and management of PIH is of great research interest. Bleaching agents, chemical peels, intense pulsed light (IPL) treatments, and fractional skin resurfacing have all been used with some success for the management of melasma. Q-switched (QS) lasers are effective for the management of epidermal pigmentation but are associated with a high risk of PIH. Long-pulsed neodymium-doped yttrium aluminum garnet (Nd:YAG) lasers and IPL sources pose less of a PIH risk but require a greater number of treatment sessions. Dermal pigmentary disorders are better targeted by QS ruby, QS alexandrite, and QS 1064-nm Nd:YAG lasers, but hyper- and hypopigmentation may occur. Non-ablative skin rejuvenation using a combination approach with different lasers and light sources in conjunction with cooling devices allows different skin chromophores to be targeted and optimal results to be achieved, even in skin of color. Deep-tissue heating using radiofrequency and infra-red light sources affects the deep dermis and achieves enhanced skin tightening, resulting in eyebrow elevation, rhytide reduction, and contouring of the lower face and jawline. For management of severe degrees of photoaging, fractional resurfacing is useful for wrinkle and pigment reduction, as well as

  6. Electrophysiological assessment of auditory processing disorder in children with non-syndromic cleft lip and/or palate.

    Science.gov (United States)

    Ma, Xiaoran; McPherson, Bradley; Ma, Lian

    2016-01-01

    Cleft lip and/or palate is a common congenital craniofacial malformation found worldwide. A frequently associated disorder is conductive hearing loss, and this disorder has been thoroughly investigated in children with non-syndromic cleft lip and/or palate (NSCL/P). However, analysis of auditory processing function is rarely reported for this population, although this issue should not be ignored since abnormal auditory cortical structures have been found in populations with cleft disorders. The present study utilized electrophysiological tests to assess the auditory status of a large group of children with NSCL/P, and investigated whether this group had less robust central auditory processing abilities compared to craniofacially normal children. 146 children with NSCL/P who had normal peripheral hearing thresholds, and 60 craniofacially normal children aged from 6 to 15 years, were recruited. Electrophysiological tests, including auditory brainstem response (ABR), P1-N1-P2 complex, and P300 component recording, were conducted. ABR and N1 wave latencies were significantly prolonged in children with NSCL/P. An atypical developmental trend was found for long latency potentials in children with cleft compared to control group children. Children with unilateral cleft lip and palate showed a greater level of abnormal results compared with other cleft subgroups, whereas the cleft lip subgroup had the most robust responses for all tests. Children with NSCL/P may have slower than normal neural transmission times between the peripheral auditory nerve and brainstem. Possible delayed development of myelination and synaptogenesis may also influence auditory processing function in this population. Present research outcomes were consistent with previous, smaller sample size, electrophysiological studies on infants and children with cleft lip/palate disorders. In view of the these findings, and reports of educational disadvantage associated with cleft disorders, further research

  7. Children with speech sound disorder: Comparing a non-linguistic auditory approach with a phonological intervention approach to improve phonological skills

    Directory of Open Access Journals (Sweden)

    Cristina eMurphy

    2015-02-01

    Full Text Available This study aimed to compare the effects of a non-linguistic auditory intervention approach with a phonological intervention approach on the phonological skills of children with speech sound disorder. A total of 17 children, aged 7-12 years, with speech sound disorder were randomly allocated to either the non-linguistic auditory temporal intervention group (n = 10, average age 7.7 ± 1.2 or phonological intervention group (n = 7, average age 8.6 ± 1.2. The intervention outcomes included auditory-sensory measures (auditory temporal processing skills and cognitive measures (attention, short-term memory, speech production and phonological awareness skills. The auditory approach focused on non-linguistic auditory training (eg. backward masking and frequency discrimination, whereas the phonological approach focused on speech sound training (eg. phonological organisation and awareness. Both interventions consisted of twelve 45-minute sessions delivered twice per week, for a total of nine hours. Intra-group analysis demonstrated that the auditory intervention group showed significant gains in both auditory and cognitive measures, whereas no significant gain was observed in the phonological intervention group. No significant improvement on phonological skills was observed in any of the groups. Inter-group analysis demonstrated significant differences between the improvement following training for both groups, with a more pronounced gain for the non-linguistic auditory temporal intervention in one of the visual attention measures and both auditory measures. Therefore, both analyses suggest that although the non-linguistic auditory intervention approach appeared to be the most effective intervention approach, it was not sufficient to promote the enhancement of phonological skills.

  8. Pigment Dispersion Syndrome Progression to Pigmentary Glaucoma in a Latin American Population

    OpenAIRE

    Gomez Goyeneche, Hector Fernando; Hernandez-Mendieta, Diana Patricia; Rodriguez, Diego Andres; Sepulveda, Ana Irene; Toledo, Jose Daniel

    2016-01-01

    ABSTRACT Objective: To determine the progression of pigment dispersion syndrome (PDS) into pigmentary glaucoma (PG) in a population at the Central Military Hospital in Bogot?, Colombia. Materials and methods: A retrospective study was conducted, based on a review of medical records of patients with PDS evaluated in the Glaucoma Clinic. Data were collected in a database in excel and subsequently analyzed with the software Statistical Package for the Social Sciences (SPSS), performing Chi-squar...

  9. Pigment Dispersion Syndrome Progression to Pigmentary Glaucoma in a Latin American Population.

    Science.gov (United States)

    Gomez Goyeneche, Hector Fernando; Hernandez-Mendieta, Diana Patricia; Rodriguez, Diego Andres; Sepulveda, Ana Irene; Toledo, Jose Daniel

    2015-01-01

    To determine the progression of pigment dispersion syndrome (PDS) into pigmentary glaucoma (PG) in a population at the Central Military Hospital in Bogotá, Colombia. A retrospective study was conducted, based on a review of medical records of patients with PDS evaluated in the Glaucoma Clinic. Data were collected in a database in excel and subsequently analyzed with the software Statistical Package for the Social Sciences (SPSS), performing Chi-square test analysis and Spearman's rho test. Forty-eight eyes of 24 patients were included. Forty-two percent were women and 58% were men. Pigmentation of the trabecular meshwork was the most frequent clinical sign (100%), followed by Krukenberg's spindle (91.7%), the least frequent were the iris concavity and iris heterochromia (4.2%), the average of the spherical equivalent was of - 1.33 (SD 2.07). The rate of conversion of PDS to PG was 37.5%, after an average follow-up of 50.7 months. Having an intraocular pressure (IOP) greater than 21 mm Hg was statistically the only significant risk factor for conversion. We found several differences in frequency and clinical signs in these patients in contrast to previous data, probably due to different racial characteristics. The rate of progression is similar to previous reports despite of heterogeneity of these. Having IOP > 21 mm Hg was the only risk factor associated with progression in this sample. How to cite this article: Gomez Goyeneche HF, Hernandez-Mendieta DP, Rodriguez DA, Sepulveda AI, Toledo JD. Pigment Dispersion Syndrome Progression to Pigmentary Glaucoma in a Latin American Population. J Curr Glaucoma Pract 2015;9(3):69-72.

  10. Secondary pigmentary glaucoma in patients with underlying primary pigment dispersion syndrome.

    Science.gov (United States)

    Sivaraman, Kavitha R; Patel, Chirag G; Vajaranant, Thasarat S; Aref, Ahmad A

    2013-01-01

    Primary pigment dispersion syndrome (PPDS) is a bilateral condition that occurs in anatomically predisposed individuals. PPDS may evolve into pigmentary glaucoma, but it is difficult to predict which patients will progress. Secondary pigment dispersion is more often unilateral and acquired as a result of surgery, trauma, or intraocular tumor, but can likewise lead to pigmentary glaucoma. We report two cases of patients with bilateral PPDS who developed secondary pigment dispersion and pigmentary glaucoma in one eye. Patients with PPDS who acquire a secondary mechanism of pigment dispersion may be at an increased risk of progression to pigmentary glaucoma, presumably due to an increased burden of liberated pigment. In addition to regular surveillance for progression to glaucoma from PPDS, secondary causes of pigmentary dispersion in these eyes should be considered when patients present with grossly asymmetric findings. When secondary pigment dispersion is identified in eyes with PPDS, we recommend prompt intervention to alleviate the cause of secondary pigment dispersion and/or aggressive control of intraocular pressure to limit glaucomatous damage.

  11. Secondary pigmentary glaucoma in patients with underlying primary pigment dispersion syndrome

    Directory of Open Access Journals (Sweden)

    Sivaraman KR

    2013-03-01

    Full Text Available Kavitha R Sivaraman, Chirag G Patel, Thasarat S Vajaranant, Ahmad A ArefDepartment of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago School of Medicine, Chicago, IL, USAAbstract: Primary pigment dispersion syndrome (PPDS is a bilateral condition that occurs in anatomically predisposed individuals. PPDS may evolve into pigmentary glaucoma, but it is difficult to predict which patients will progress. Secondary pigment dispersion is more often unilateral and acquired as a result of surgery, trauma, or intraocular tumor, but can likewise lead to pigmentary glaucoma. We report two cases of patients with bilateral PPDS who developed secondary pigment dispersion and pigmentary glaucoma in one eye. Patients with PPDS who acquire a secondary mechanism of pigment dispersion may be at an increased risk of progression to pigmentary glaucoma, presumably due to an increased burden of liberated pigment. In addition to regular surveillance for progression to glaucoma from PPDS, secondary causes of pigmentary dispersion in these eyes should be considered when patients present with grossly asymmetric findings. When secondary pigment dispersion is identified in eyes with PPDS, we recommend prompt intervention to alleviate the cause of secondary pigment dispersion and/or aggressive control of intraocular pressure to limit glaucomatous damage.Keywords: primary pigment dispersion syndrome, pigmentary glaucoma

  12. Recent progress in the field of non-auditory health effects of noise. Trends and research needs

    NARCIS (Netherlands)

    Kluizenaar, Y. de; Matsui, T.

    2017-01-01

    With the aim to identify recent research achievements, current trends in research, remaining gaps of knowledge and priority areas of future research in the field of non-auditory health effects of noise, recent research progress was reviewed. A search was performed in PubMed (search terms “noise AND

  13. Update on pigment dispersion syndrome and pigmentary glaucoma.

    Science.gov (United States)

    Okafor, Kingsley; Vinod, Kateki; Gedde, Steven J

    2017-03-01

    The present article reviews the clinical features and pathogenesis of pigment dispersion syndrome and pigmentary glaucoma and provides an update regarding their diagnosis and management. Newer imaging modalities including ultrasound biomicroscopy and anterior segment optical coherence tomography facilitate visualization of the iris concavity characteristic of eyes with pigment dispersion syndrome and pigmentary glaucoma. Patients with pigmentary glaucoma may be distinguished from those with other glaucoma types by the presence of typical symptoms, personality type, and patterns of diurnal intraocular pressure fluctuation. Although laser iridotomy has been shown to alter iris anatomy in pigmentary glaucoma, it is not proven to slow visual field progression. Multiple trials have validated the safety and efficacy of filtering surgery in treating pigmentary glaucoma, with fewer studies published on the role of micro-invasive glaucoma surgery. Literature from the review period has further defined the unique clinical characteristics of pigment dispersion syndrome and pigmentary glaucoma. Laser surgery has a limited role in the management of these entities, whereas trabeculectomy remains an acceptable first-line surgical treatment. Further studies are needed to define the potential application of the newer micro-invasive glaucoma procedures in pigmentary glaucoma.

  14. Petaloid-pattern pigmentary retinopathy: a novel case report.

    Science.gov (United States)

    Padhi, Tapas Ranjan; Jalali, Subhadra; Panda, Krushna Gopal; Mukherjee, Sujoy; Mohan, Neha; Agroiya, Pushpalata; Das, Taraprasad

    2014-10-01

    We report the case of a 6-year-old girl with an unusual petaloid-pattern pigmentary retinopathy associated with nyctalopia and reduction of vision which had been invariably static over the past 5 years. We performed a comprehensive ophthalmic examination including fundoscopy, autofluorescent imaging, electroretinography and optical coherence tomography. There were diffuse retinal pigment epithelium (RPE) washout areas with blotches of pigment distributed in the pattern of a petal with marked chorioretinal atrophy and scar at the fovea. The arterial caliber was normal. Investigations ruled out intrauterine and neonatal infection. Systemically, she was healthy with normal intellect but with 3-month delayed milestones of development. She had used valproic acid for seizure disorder (without any organic central nervous system lesion) from 2-5 years of age. Electroretinography showed extinguished scotopic responses with slight reduction in cone responses. Optical coherence tomography showed a scar with attenuated RPE-choriocapillary complex at the macula. Her clinical profile did not fully match with any previously described pigmentary retinopathies except rod-cone dystrophy and choroidal dystrophy to a certain extent. The pigmentary retinopathy reported here is a combination of a petaloid pattern of pigmentary disturbance, stationary reduction of vision, nyctalopia, normal intellect and marginal delayed milestones. In the absence of such a description in the literature we named this disorder as petaloid-pattern pigmentary retinopathy.

  15. The relation between working memory capacity and auditory lateralization in children with auditory processing disorders.

    Science.gov (United States)

    Moossavi, Abdollah; Mehrkian, Saiedeh; Lotfi, Yones; Faghihzadeh, Soghrat; sajedi, Hamed

    2014-11-01

    Auditory processing disorder (APD) describes a complex and heterogeneous disorder characterized by poor speech perception, especially in noisy environments. APD may be responsible for a range of sensory processing deficits associated with learning difficulties. There is no general consensus about the nature of APD and how the disorder should be assessed or managed. This study assessed the effect of cognition abilities (working memory capacity) on sound lateralization in children with auditory processing disorders, in order to determine how "auditory cognition" interacts with APD. The participants in this cross-sectional comparative study were 20 typically developing and 17 children with a diagnosed auditory processing disorder (9-11 years old). Sound lateralization abilities investigated using inter-aural time (ITD) differences and inter-aural intensity (IID) differences with two stimuli (high pass and low pass noise) in nine perceived positions. Working memory capacity was evaluated using the non-word repetition, and forward and backward digits span tasks. Linear regression was employed to measure the degree of association between working memory capacity and localization tests between the two groups. Children in the APD group had consistently lower scores than typically developing subjects in lateralization and working memory capacity measures. The results showed working memory capacity had significantly negative correlation with ITD errors especially with high pass noise stimulus but not with IID errors in APD children. The study highlights the impact of working memory capacity on auditory lateralization. The finding of this research indicates that the extent to which working memory influences auditory processing depend on the type of auditory processing and the nature of stimulus/listening situation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Cortical Auditory Disorders: A Case of Non-Verbal Disturbances Assessed with Event-Related Brain Potentials

    Directory of Open Access Journals (Sweden)

    Sönke Johannes

    1998-01-01

    Full Text Available In the auditory modality, there has been a considerable debate about some aspects of cortical disorders, especially about auditory forms of agnosia. Agnosia refers to an impaired comprehension of sensory information in the absence of deficits in primary sensory processes. In the non-verbal domain, sound agnosia and amusia have been reported but are frequently accompanied by language deficits whereas pure deficits are rare. Absolute pitch and musicians’ musical abilities have been associated with left hemispheric functions. We report the case of a right handed sound engineer with the absolute pitch who developed sound agnosia and amusia in the absence of verbal deficits after a right perisylvian stroke. His disabilities were assessed with the Seashore Test of Musical Functions, the tests of Wertheim and Botez (Wertheim and Botez, Brain 84, 1961, 19–30 and by event-related potentials (ERP recorded in a modified 'oddball paradigm’. Auditory ERP revealed a dissociation between the amplitudes of the P3a and P3b subcomponents with the P3b being reduced in amplitude while the P3a was undisturbed. This is interpreted as reflecting disturbances in target detection processes as indexed by the P3b. The findings that contradict some aspects of current knowledge about left/right hemispheric specialization in musical processing are discussed and related to the literature concerning cortical auditory disorders.

  17. Cortical auditory disorders: a case of non-verbal disturbances assessed with event-related brain potentials.

    Science.gov (United States)

    Johannes, Sönke; Jöbges, Michael E.; Dengler, Reinhard; Münte, Thomas F.

    1998-01-01

    In the auditory modality, there has been a considerable debate about some aspects of cortical disorders, especially about auditory forms of agnosia. Agnosia refers to an impaired comprehension of sensory information in the absence of deficits in primary sensory processes. In the non-verbal domain, sound agnosia and amusia have been reported but are frequently accompanied by language deficits whereas pure deficits are rare. Absolute pitch and musicians' musical abilities have been associated with left hemispheric functions. We report the case of a right handed sound engineer with the absolute pitch who developed sound agnosia and amusia in the absence of verbal deficits after a right perisylvian stroke. His disabilities were assessed with the Seashore Test of Musical Functions, the tests of Wertheim and Botez (Wertheim and Botez, Brain 84, 1961, 19-30) and by event-related potentials (ERP) recorded in a modified 'oddball paradigm'. Auditory ERP revealed a dissociation between the amplitudes of the P3a and P3b subcomponents with the P3b being reduced in amplitude while the P3a was undisturbed. This is interpreted as reflecting disturbances in target detection processes as indexed by the P3b. The findings that contradict some aspects of current knowledge about left/right hemispheric specialization in musical processing are discussed and related to the literature concerning cortical auditory disorders.

  18. The influence of (central) auditory processing disorder in speech sound disorders.

    Science.gov (United States)

    Barrozo, Tatiane Faria; Pagan-Neves, Luciana de Oliveira; Vilela, Nadia; Carvallo, Renata Mota Mamede; Wertzner, Haydée Fiszbein

    2016-01-01

    Considering the importance of auditory information for the acquisition and organization of phonological rules, the assessment of (central) auditory processing contributes to both the diagnosis and targeting of speech therapy in children with speech sound disorders. To study phonological measures and (central) auditory processing of children with speech sound disorder. Clinical and experimental study, with 21 subjects with speech sound disorder aged between 7.0 and 9.11 years, divided into two groups according to their (central) auditory processing disorder. The assessment comprised tests of phonology, speech inconsistency, and metalinguistic abilities. The group with (central) auditory processing disorder demonstrated greater severity of speech sound disorder. The cutoff value obtained for the process density index was the one that best characterized the occurrence of phonological processes for children above 7 years of age. The comparison among the tests evaluated between the two groups showed differences in some phonological and metalinguistic abilities. Children with an index value above 0.54 demonstrated strong tendencies towards presenting a (central) auditory processing disorder, and this measure was effective to indicate the need for evaluation in children with speech sound disorder. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  19. Molecular Etiology of Hereditary Single-Side Deafness: Its Association With Pigmentary Disorders and Waardenburg Syndrome.

    Science.gov (United States)

    Kim, Shin Hye; Kim, Ah Reum; Choi, Hyun Seok; Kim, Min Young; Chun, Eun Hi; Oh, Seung-Ha; Choi, Byung Yoon

    2015-10-01

    Unilateral sensorineural hearing loss (USNHL)/single-side deafness (SSD) is a frequently encountered disability in children. The etiology of a substantial portion of USNHL/SSD still remains unknown, and genetic causes have not been clearly elucidated. In this study, the authors evaluated the heritability of USNHL/SSD.The authors sequentially recruited 50 unrelated children with SSD. For an etiologic diagnosis, we performed a rigorous review on the phenotypes of family members of all children and conducted, if necessary, molecular genetic tests including targeted exome sequencing of 129 deafness genes.Among the 50 SSD children cohort, the authors identify 4 (8%) unrelated SSD probands from 4 families (SH136, SB173, SB177, and SB199) with another hearing impaired family members. Notably, all 4 probands in our cohort with a familial history of SSD also have pigmentary abnormalities such as brown freckles or premature gray hair within first degree relatives, which may indicate that genes whose products are involved with pigmentary disorder could be candidates for heritable SSD. Indeed, SH136 and SB199 turned out to segregate a mutation in MITF and PAX3, respectively, leading to a molecular diagnosis of Waardenburg syndrome (WS).We report, for the first time in the literature, a significant heritability of pediatric SSD. There is a strong association between the heritability of USNHL/SSD and the pigmentary abnormality, shedding a new light on the understanding of the molecular basis of heritable USNHL/SSD. In case of children with congenital SSD, it would be mandatory to rigorously screen pigmentary abnormalities. WS should also be included in the differential diagnosis of children with USNHL/SSD, especially in a familial form.

  20. Bilateral nanophthalmos and pigmentary retinal dystrophy--an unusual syndrome.

    Science.gov (United States)

    Proença, Helena; Castanheira-Dinis, A; Monteiro-Grillo, M

    2006-09-01

    To report the clinical picture of the rare association of nanophthalmos and pigmentary retinal dystrophy and its cataract surgery outcome. We report a case of a 60-year-old female who presented with bilateral slowly progressive visual loss. The patient presented with bilateral light perception visual acuity, exotropia, brunescent cataract hindering fundus examination and hypodontia. Ultrasonography revealed bilateral nanophthalmos. A visual-evoked potential was also performed preoperatively. Cataract surgery with +40D IOL implantation was uneventful. Postoperative fundus examination revealed pigmentary retinal dystrophy, confirmed by electrophysiologic tests. Glycosaminoglycan urinary excretion was normal. Congenital bilateral nanophthalmos may rarely be associated with pigmentary retinal dystrophy. We suggest thorough preoperative evaluation in nanophthalmic eyes for the exclusion of significant features concerning visual prognosis.

  1. Disparity in Cutaneous Pigmentary Response to LED vs Halogen Incandescent Visible Light: Results from a Single Center, Investigational Clinical Trial Determining a Minimal Pigmentary Visible Light Dose.

    Science.gov (United States)

    Soleymani, Teo; Cohen, David E; Folan, Lorcan M; Okereke, Uchenna R; Elbuluk, Nada; Soter, Nicholas A

    2017-11-01

    Background: While most of the attention regarding skin pigmentation has focused on the effects of ultraviolet radiation, the cutaneous effects of visible light (400 to 700nm) are rarely reported. The purpose of this study was to investigate the cutaneous pigmentary response to pure visible light irradiation, examine the difference in response to different sources of visible light irradiation, and determine a minimal pigmentary dose of visible light irradiation in melanocompetent subjects with Fitzpatrick skin type III - VI. The study was designed as a single arm, non-blinded, split-side dual intervention study in which subjects underwent visible light irradiation using LED and halogen incandescent light sources delivered at a fluence of 0.14 Watts/cm2 with incremental dose progression from 20 J/cm2 to 320 J/cm2. Pigmentation was assessed by clinical examination, cross-polarized digital photography, and analytic colorimetry. Immediate, dose-responsive pigment darkening was seen with LED light exposure in 80% of subjects, beginning at 60 Joules. No pigmentary changes were seen with halogen incandescent light exposure at any dose in any subject. This study is the first to report a distinct difference in cutaneous pigmentary response to different sources of visible light, and the first to demonstrate cutaneous pigment darkening from visible LED light exposure. Our findings raise the concern that our increasing daily artificial light surroundings may have clandestine effects on skin biology. J Drugs Dermatol. 2017;16(11):1105-1110..

  2. Comorbidity of Auditory Processing, Language, and Reading Disorders

    Science.gov (United States)

    Sharma, Mridula; Purdy, Suzanne C.; Kelly, Andrea S.

    2009-01-01

    Purpose: The authors assessed comorbidity of auditory processing disorder (APD), language impairment (LI), and reading disorder (RD) in school-age children. Method: Children (N = 68) with suspected APD and nonverbal IQ standard scores of 80 or more were assessed using auditory, language, reading, attention, and memory measures. Auditory processing…

  3. Auditory spatial attention to speech and complex non-speech sounds in children with autism spectrum disorder.

    Science.gov (United States)

    Soskey, Laura N; Allen, Paul D; Bennetto, Loisa

    2017-08-01

    One of the earliest observable impairments in autism spectrum disorder (ASD) is a failure to orient to speech and other social stimuli. Auditory spatial attention, a key component of orienting to sounds in the environment, has been shown to be impaired in adults with ASD. Additionally, specific deficits in orienting to social sounds could be related to increased acoustic complexity of speech. We aimed to characterize auditory spatial attention in children with ASD and neurotypical controls, and to determine the effect of auditory stimulus complexity on spatial attention. In a spatial attention task, target and distractor sounds were played randomly in rapid succession from speakers in a free-field array. Participants attended to a central or peripheral location, and were instructed to respond to target sounds at the attended location while ignoring nearby sounds. Stimulus-specific blocks evaluated spatial attention for simple non-speech tones, speech sounds (vowels), and complex non-speech sounds matched to vowels on key acoustic properties. Children with ASD had significantly more diffuse auditory spatial attention than neurotypical children when attending front, indicated by increased responding to sounds at adjacent non-target locations. No significant differences in spatial attention emerged based on stimulus complexity. Additionally, in the ASD group, more diffuse spatial attention was associated with more severe ASD symptoms but not with general inattention symptoms. Spatial attention deficits have important implications for understanding social orienting deficits and atypical attentional processes that contribute to core deficits of ASD. Autism Res 2017, 10: 1405-1416. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  4. Auditory Processing Disorder and Foreign Language Acquisition

    Science.gov (United States)

    Veselovska, Ganna

    2015-01-01

    This article aims at exploring various strategies for coping with the auditory processing disorder in the light of foreign language acquisition. The techniques relevant to dealing with the auditory processing disorder can be attributed to environmental and compensatory approaches. The environmental one involves actions directed at creating a…

  5. Subcortical pathways: Towards a better understanding of auditory disorders.

    Science.gov (United States)

    Felix, Richard A; Gourévitch, Boris; Portfors, Christine V

    2018-05-01

    Hearing loss is a significant problem that affects at least 15% of the population. This percentage, however, is likely significantly higher because of a variety of auditory disorders that are not identifiable through traditional tests of peripheral hearing ability. In these disorders, individuals have difficulty understanding speech, particularly in noisy environments, even though the sounds are loud enough to hear. The underlying mechanisms leading to such deficits are not well understood. To enable the development of suitable treatments to alleviate or prevent such disorders, the affected processing pathways must be identified. Historically, mechanisms underlying speech processing have been thought to be a property of the auditory cortex and thus the study of auditory disorders has largely focused on cortical impairments and/or cognitive processes. As we review here, however, there is strong evidence to suggest that, in fact, deficits in subcortical pathways play a significant role in auditory disorders. In this review, we highlight the role of the auditory brainstem and midbrain in processing complex sounds and discuss how deficits in these regions may contribute to auditory dysfunction. We discuss current research with animal models of human hearing and then consider human studies that implicate impairments in subcortical processing that may contribute to auditory disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. The influence of (central) auditory processing disorder on the severity of speech-sound disorders in children.

    Science.gov (United States)

    Vilela, Nadia; Barrozo, Tatiane Faria; Pagan-Neves, Luciana de Oliveira; Sanches, Seisse Gabriela Gandolfi; Wertzner, Haydée Fiszbein; Carvallo, Renata Mota Mamede

    2016-02-01

    To identify a cutoff value based on the Percentage of Consonants Correct-Revised index that could indicate the likelihood of a child with a speech-sound disorder also having a (central) auditory processing disorder . Language, audiological and (central) auditory processing evaluations were administered. The participants were 27 subjects with speech-sound disorders aged 7 to 10 years and 11 months who were divided into two different groups according to their (central) auditory processing evaluation results. When a (central) auditory processing disorder was present in association with a speech disorder, the children tended to have lower scores on phonological assessments. A greater severity of speech disorder was related to a greater probability of the child having a (central) auditory processing disorder. The use of a cutoff value for the Percentage of Consonants Correct-Revised index successfully distinguished between children with and without a (central) auditory processing disorder. The severity of speech-sound disorder in children was influenced by the presence of (central) auditory processing disorder. The attempt to identify a cutoff value based on a severity index was successful.

  7. Pigment dispersion syndrome and pigmentary glaucoma--a major review.

    Science.gov (United States)

    Niyadurupola, Nuwan; Broadway, David C

    2008-12-01

    Pigment dispersion syndrome (PDS) is an interesting condition that can lead to secondary open angle glaucoma. Pigmentary glaucoma is primarily a disease of young people, myopes and men. PDS is characterized by the presence of Krukenberg spindles, iris trans-illumination defects, trabecular meshwork pigmentation and backward bowing of the iris. Posterior bowing of the iris causes rubbing of the pigmented iris epithelium against lens structures, liberation of pigment and trabecular meshwork changes that result in reduced aqueous outflow with the risk of glaucoma. Peripheral laser iridotomy can reverse backward bowing of the iris and may prevent progression of pigmentary glaucoma.

  8. [Assessment of the efficiency of the auditory training in children with dyslalia and auditory processing disorders].

    Science.gov (United States)

    Włodarczyk, Elżbieta; Szkiełkowska, Agata; Skarżyński, Henryk; Piłka, Adam

    2011-01-01

    To assess effectiveness of the auditory training in children with dyslalia and central auditory processing disorders. Material consisted of 50 children aged 7-9-years-old. Children with articulation disorders stayed under long-term speech therapy care in the Auditory and Phoniatrics Clinic. All children were examined by a laryngologist and a phoniatrician. Assessment included tonal and impedance audiometry and speech therapists' and psychologist's consultations. Additionally, a set of electrophysiological examinations was performed - registration of N2, P2, N2, P2, P300 waves and psychoacoustic test of central auditory functions: FPT - frequency pattern test. Next children took part in the regular auditory training and attended speech therapy. Speech assessment followed treatment and therapy, again psychoacoustic tests were performed and P300 cortical potentials were recorded. After that statistical analyses were performed. Analyses revealed that application of auditory training in patients with dyslalia and other central auditory disorders is very efficient. Auditory training may be a very efficient therapy supporting speech therapy in children suffering from dyslalia coexisting with articulation and central auditory disorders and in children with educational problems of audiogenic origin. Copyright © 2011 Polish Otolaryngology Society. Published by Elsevier Urban & Partner (Poland). All rights reserved.

  9. Peripheral iridotomy for pigmentary glaucoma

    Science.gov (United States)

    Michelessi, Manuele; Lindsley, Kristina

    2016-01-01

    Background Glaucoma is a chronic optic neuropathy characterized by retinal ganglion cell death resulting in damage to the optic nerve head and the retinal nerve fiber layer. Pigment dispersion syndrome is characterized by a structural disturbance in the iris pigment epithelium (the densely pigmented posterior surface of the iris) that leads to dispersion of the pigment and its deposition on various structures within the eye. Pigmentary glaucoma is a specific form of open-angle glaucoma found in patients with pigment dispersion syndrome. Topcial medical therapy is usually the first-line treatment; however, peripheral laser iridotomy has been proposed as an alternate treatment. Peripheral laser iridotomy involves creating an opening in the iris tissue to allow drainage of fluid from the posterior chamber to the anterior chamber and vice versa. Equalizing the pressure within the eye may help to alleviate the friction that leads to pigment dispersion and prevent visual field deterioration. However, the effectiveness of peripheral laser iridotomy in reducing the development or progression of pigmentary glaucoma is unknown. Objectives The objective of this review was to assess the effects of peripheral laser iridotomy compared with other interventions, including medication, trabeculoplasty, and trabeculectomy, or no treatment, for pigment dispersion syndrome and pigmentary glaucoma. Search methods We searched a number of electronic databases including CENTRAL, MEDLINE and EMBASE and clinical trials websites such as (mRCT) and ClinicalTrials.gov. We last searched the electronic databases on 2 November 2015. Selection criteria We included randomized controlled trials (RCTs) that had compared peripheral laser iridotomy versus no treatment or other treatments for pigment dispersion syndrome and pigmentary glaucoma. Data collection and analysis We used standard methodological procedures for systematic reviews. Two review authors independently screened articles for eligibility

  10. Auditory-Motor Interactions in Pediatric Motor Speech Disorders: Neurocomputational Modeling of Disordered Development

    Science.gov (United States)

    Terband, H.; Maassen, B.; Guenther, F.H.; Brumberg, J.

    2014-01-01

    Background/Purpose Differentiating the symptom complex due to phonological-level disorders, speech delay and pediatric motor speech disorders is a controversial issue in the field of pediatric speech and language pathology. The present study investigated the developmental interaction between neurological deficits in auditory and motor processes using computational modeling with the DIVA model. Method In a series of computer simulations, we investigated the effect of a motor processing deficit alone (MPD), and the effect of a motor processing deficit in combination with an auditory processing deficit (MPD+APD) on the trajectory and endpoint of speech motor development in the DIVA model. Results Simulation results showed that a motor programming deficit predominantly leads to deterioration on the phonological level (phonemic mappings) when auditory self-monitoring is intact, and on the systemic level (systemic mapping) if auditory self-monitoring is impaired. Conclusions These findings suggest a close relation between quality of auditory self-monitoring and the involvement of phonological vs. motor processes in children with pediatric motor speech disorders. It is suggested that MPD+APD might be involved in typically apraxic speech output disorders and MPD in pediatric motor speech disorders that also have a phonological component. Possibilities to verify these hypotheses using empirical data collected from human subjects are discussed. PMID:24491630

  11. Relation between Working Memory Capacity and Auditory Stream Segregation in Children with Auditory Processing Disorder.

    Science.gov (United States)

    Lotfi, Yones; Mehrkian, Saiedeh; Moossavi, Abdollah; Zadeh, Soghrat Faghih; Sadjedi, Hamed

    2016-03-01

    This study assessed the relationship between working memory capacity and auditory stream segregation by using the concurrent minimum audible angle in children with a diagnosed auditory processing disorder (APD). The participants in this cross-sectional, comparative study were 20 typically developing children and 15 children with a diagnosed APD (age, 9-11 years) according to the subtests of multiple-processing auditory assessment. Auditory stream segregation was investigated using the concurrent minimum audible angle. Working memory capacity was evaluated using the non-word repetition and forward and backward digit span tasks. Nonparametric statistics were utilized to compare the between-group differences. The Pearson correlation was employed to measure the degree of association between working memory capacity and the localization tests between the 2 groups. The group with APD had significantly lower scores than did the typically developing subjects in auditory stream segregation and working memory capacity. There were significant negative correlations between working memory capacity and the concurrent minimum audible angle in the most frontal reference location (0° azimuth) and lower negative correlations in the most lateral reference location (60° azimuth) in the children with APD. The study revealed a relationship between working memory capacity and auditory stream segregation in children with APD. The research suggests that lower working memory capacity in children with APD may be the possible cause of the inability to segregate and group incoming information.

  12. Auditory Hypersensitivity in Children with Autism Spectrum Disorders

    Science.gov (United States)

    Lucker, Jay R.

    2013-01-01

    A review of records was completed to determine whether children with auditory hypersensitivities have difficulty tolerating loud sounds due to auditory-system factors or some other factors not directly involving the auditory system. Records of 150 children identified as not meeting autism spectrum disorders (ASD) criteria and another 50 meeting…

  13. Auditory-motor interactions in pediatric motor speech disorders: neurocomputational modeling of disordered development.

    Science.gov (United States)

    Terband, H; Maassen, B; Guenther, F H; Brumberg, J

    2014-01-01

    Differentiating the symptom complex due to phonological-level disorders, speech delay and pediatric motor speech disorders is a controversial issue in the field of pediatric speech and language pathology. The present study investigated the developmental interaction between neurological deficits in auditory and motor processes using computational modeling with the DIVA model. In a series of computer simulations, we investigated the effect of a motor processing deficit alone (MPD), and the effect of a motor processing deficit in combination with an auditory processing deficit (MPD+APD) on the trajectory and endpoint of speech motor development in the DIVA model. Simulation results showed that a motor programming deficit predominantly leads to deterioration on the phonological level (phonemic mappings) when auditory self-monitoring is intact, and on the systemic level (systemic mapping) if auditory self-monitoring is impaired. These findings suggest a close relation between quality of auditory self-monitoring and the involvement of phonological vs. motor processes in children with pediatric motor speech disorders. It is suggested that MPD+APD might be involved in typically apraxic speech output disorders and MPD in pediatric motor speech disorders that also have a phonological component. Possibilities to verify these hypotheses using empirical data collected from human subjects are discussed. The reader will be able to: (1) identify the difficulties in studying disordered speech motor development; (2) describe the differences in speech motor characteristics between SSD and subtype CAS; (3) describe the different types of learning that occur in the sensory-motor system during babbling and early speech acquisition; (4) identify the neural control subsystems involved in speech production; (5) describe the potential role of auditory self-monitoring in developmental speech disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Relation between Working Memory Capacity and Auditory Stream Segregation in Children with Auditory Processing Disorder

    Directory of Open Access Journals (Sweden)

    Yones Lotfi

    2016-03-01

    Full Text Available Background: This study assessed the relationship between working memory capacity and auditory stream segregation by using the concurrent minimum audible angle in children with a diagnosed auditory processing disorder (APD. Methods: The participants in this cross-sectional, comparative study were 20 typically developing children and 15 children with a diagnosed APD (age, 9–11 years according to the subtests of multiple-processing auditory assessment. Auditory stream segregation was investigated using the concurrent minimum audible angle. Working memory capacity was evaluated using the non-word repetition and forward and backward digit span tasks. Nonparametric statistics were utilized to compare the between-group differences. The Pearson correlation was employed to measure the degree of association between working memory capacity and the localization tests between the 2 groups. Results: The group with APD had significantly lower scores than did the typically developing subjects in auditory stream segregation and working memory capacity. There were significant negative correlations between working memory capacity and the concurrent minimum audible angle in the most frontal reference location (0° azimuth and lower negative correlations in the most lateral reference location (60° azimuth in the children with APD. Conclusion: The study revealed a relationship between working memory capacity and auditory stream segregation in children with APD. The research suggests that lower working memory capacity in children with APD may be the possible cause of the inability to segregate and group incoming information.

  15. Infantile spasms and pigmentary mosaicism

    DEFF Research Database (Denmark)

    Hansen, Lars K; Bygum, Anette; Krogh, Lotte N

    2010-01-01

    Summary We present a 3-year-old boy with pigmentary mosaicism and persistent intractable infantile spasms due to mosaicism of chromosome 7. Getting the diagnosis of pigmentary mosaicism in a child with infantile spasms may not be easy, as most diagnostic work-up is done in infancy, at a time when...

  16. Effect of age at cochlear implantation on auditory and speech development of children with auditory neuropathy spectrum disorder.

    Science.gov (United States)

    Liu, Yuying; Dong, Ruijuan; Li, Yuling; Xu, Tianqiu; Li, Yongxin; Chen, Xueqing; Gong, Shusheng

    2014-12-01

    To evaluate the auditory and speech abilities in children with auditory neuropathy spectrum disorder (ANSD) after cochlear implantation (CI) and determine the role of age at implantation. Ten children participated in this retrospective case series study. All children had evidence of ANSD. All subjects had no cochlear nerve deficiency on magnetic resonance imaging and had used the cochlear implants for a period of 12-84 months. We divided our children into two groups: children who underwent implantation before 24 months of age and children who underwent implantation after 24 months of age. Their auditory and speech abilities were evaluated using the following: behavioral audiometry, the Categories of Auditory Performance (CAP), the Meaningful Auditory Integration Scale (MAIS), the Infant-Toddler Meaningful Auditory Integration Scale (IT-MAIS), the Standard-Chinese version of the Monosyllabic Lexical Neighborhood Test (LNT), the Multisyllabic Lexical Neighborhood Test (MLNT), the Speech Intelligibility Rating (SIR) and the Meaningful Use of Speech Scale (MUSS). All children showed progress in their auditory and language abilities. The 4-frequency average hearing level (HL) (500Hz, 1000Hz, 2000Hz and 4000Hz) of aided hearing thresholds ranged from 17.5 to 57.5dB HL. All children developed time-related auditory perception and speech skills. Scores of children with ANSD who received cochlear implants before 24 months tended to be better than those of children who received cochlear implants after 24 months. Seven children completed the Mandarin Lexical Neighborhood Test. Approximately half of the children showed improved open-set speech recognition. Cochlear implantation is helpful for children with ANSD and may be a good optional treatment for many ANSD children. In addition, children with ANSD fitted with cochlear implants before 24 months tended to acquire auditory and speech skills better than children fitted with cochlear implants after 24 months. Copyright © 2014

  17. A European Perspective on Auditory Processing Disorder-Current Knowledge and Future Research Focus

    Directory of Open Access Journals (Sweden)

    Vasiliki (Vivian Iliadou

    2017-11-01

    Full Text Available Current notions of “hearing impairment,” as reflected in clinical audiological practice, do not acknowledge the needs of individuals who have normal hearing pure tone sensitivity but who experience auditory processing difficulties in everyday life that are indexed by reduced performance in other more sophisticated audiometric tests such as speech audiometry in noise or complex non-speech sound perception. This disorder, defined as “Auditory Processing Disorder” (APD or “Central Auditory Processing Disorder” is classified in the current tenth version of the International Classification of diseases as H93.25 and in the forthcoming beta eleventh version. APDs may have detrimental effects on the affected individual, with low esteem, anxiety, and depression, and symptoms may remain into adulthood. These disorders may interfere with learning per se and with communication, social, emotional, and academic-work aspects of life. The objective of the present paper is to define a baseline European APD consensus formulated by experienced clinicians and researchers in this specific field of human auditory science. A secondary aim is to identify issues that future research needs to address in order to further clarify the nature of APD and thus assist in optimum diagnosis and evidence-based management. This European consensus presents the main symptoms, conditions, and specific medical history elements that should lead to auditory processing evaluation. Consensus on definition of the disorder, optimum diagnostic pathway, and appropriate management are highlighted alongside a perspective on future research focus.

  18. Acute auditory agnosia as the presenting hearing disorder in MELAS.

    Science.gov (United States)

    Miceli, Gabriele; Conti, Guido; Cianfoni, Alessandro; Di Giacopo, Raffaella; Zampetti, Patrizia; Servidei, Serenella

    2008-12-01

    MELAS is commonly associated with peripheral hearing loss. Auditory agnosia is a rare cortical auditory impairment, usually due to bilateral temporal damage. We document, for the first time, auditory agnosia as the presenting hearing disorder in MELAS. A young woman with MELAS (A3243G mtDNA mutation) suffered from acute cortical hearing damage following a single stroke-like episode, in the absence of previous hearing deficits. Audiometric testing showed marked central hearing impairment and very mild sensorineural hearing loss. MRI documented bilateral, acute lesions to superior temporal regions. Neuropsychological tests demonstrated auditory agnosia without aphasia. Our data and a review of published reports show that cortical auditory disorders are relatively frequent in MELAS, probably due to the strikingly high incidence of bilateral and symmetric damage following stroke-like episodes. Acute auditory agnosia can be the presenting hearing deficit in MELAS and, conversely, MELAS should be suspected in young adults with sudden hearing loss.

  19. Disease course of patients with unilateral pigmentary retinopathy.

    Science.gov (United States)

    Potsidis, Emorfily; Berson, Eliot L; Sandberg, Michael A

    2011-11-29

    To evaluate the change in ocular function by eye in patients with unilateral pigmentary retinopathy. Longitudinal regression was used to estimate mean exponential rates of change in Goldmann visual field area (V4e white test light) and in full-field electroretinogram (ERG) amplitudes to 0.5- and 30-Hz white flashes in 15 patients with unilateral pigmentary retinopathy. Snellen visual acuity was assessed case by case. Mean annual rates of change for the affected eyes were -4.9% for visual field area, -4.7% for ERG amplitude to 0.5-Hz flashes, and -4.6% for ERG amplitude to 30-Hz flashes. All three rates were faster than the corresponding age-related rates of change for the fellow normal eyes (P = 0.0006, P = 0.003, P = 0.03, respectively). An initial cone ERG implicit time to 30-Hz flashes in affected eyes ≥ 40 ms predicted a faster mean rate of decline of visual field area and of ERG amplitude to 0.5- and 30-Hz flashes (P 35 years of age than in patients presenting at a younger age (P = 0.0004). The affected eye in unilateral pigmentary retinopathy shows a progressive loss of peripheral retinal function that cannot be attributed to aging alone and that is faster in eyes with a more prolonged initial cone ERG implicit time. Patients presenting at >35 years of age are at greater risk for losing visual acuity.

  20. Development of a quantitative assessment method of pigmentary skin disease using ultraviolet optical imaging.

    Science.gov (United States)

    Lee, Onseok; Park, Sunup; Kim, Jaeyoung; Oh, Chilhwan

    2017-11-01

    The visual scoring method has been used as a subjective evaluation of pigmentary skin disorders. Severity of pigmentary skin disease, especially melasma, is evaluated using a visual scoring method, the MASI (melasma area severity index). This study differentiates between epidermal and dermal pigmented disease. The study was undertaken to determine methods to quantitatively measure the severity of pigmentary skin disorders under ultraviolet illumination. The optical imaging system consists of illumination (white LED, UV-A lamp) and image acquisition (DSLR camera, air cooling CMOS CCD camera). Each camera is equipped with a polarizing filter to remove glare. To analyze images of visible and UV light, images are divided into frontal, cheek, and chin regions of melasma patients. Each image must undergo image processing. To reduce the curvature error in facial contours, a gradient mask is used. The new method of segmentation of front and lateral facial images is more objective for face-area-measurement than the MASI score. Image analysis of darkness and homogeneity is adequate to quantify the conventional MASI score. Under visible light, active lesion margins appear in both epidermal and dermal melanin, whereas melanin is found in the epidermis under UV light. This study objectively analyzes severity of melasma and attempts to develop new methods of image analysis with ultraviolet optical imaging equipment. Based on the results of this study, our optical imaging system could be used as a valuable tool to assess the severity of pigmentary skin disease. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Auditory processing in autism spectrum disorder

    DEFF Research Database (Denmark)

    Vlaskamp, Chantal; Oranje, Bob; Madsen, Gitte Falcher

    2017-01-01

    Children with autism spectrum disorders (ASD) often show changes in (automatic) auditory processing. Electrophysiology provides a method to study auditory processing, by investigating event-related potentials such as mismatch negativity (MMN) and P3a-amplitude. However, findings on MMN in autism...... a hyper-responsivity at the attentional level. In addition, as similar MMN deficits are found in schizophrenia, these MMN results may explain some of the frequently reported increased risk of children with ASD to develop schizophrenia later in life. Autism Res 2017, 10: 1857–1865....

  2. Auditory feedback perturbation in children with developmental speech disorders

    NARCIS (Netherlands)

    Terband, H.R.; van Brenk, F.J.; van Doornik-van der Zee, J.C.

    2014-01-01

    Background/purpose: Several studies indicate a close relation between auditory and speech motor functions in children with speech sound disorders (SSD). The aim of this study was to investigate the ability to compensate and adapt for perturbed auditory feedback in children with SSD compared to

  3. Association between language development and auditory processing disorders

    Directory of Open Access Journals (Sweden)

    Caroline Nunes Rocha-Muniz

    2014-06-01

    Full Text Available INTRODUCTION: It is crucial to understand the complex processing of acoustic stimuli along the auditory pathway ;comprehension of this complex processing can facilitate our understanding of the processes that underlie normal and altered human communication. AIM: To investigate the performance and lateralization effects on auditory processing assessment in children with specific language impairment (SLI, relating these findings to those obtained in children with auditory processing disorder (APD and typical development (TD. MATERIAL AND METHODS: Prospective study. Seventy-five children, aged 6-12 years, were separated in three groups: 25 children with SLI, 25 children with APD, and 25 children with TD. All went through the following tests: speech-in-noise test, Dichotic Digit test and Pitch Pattern Sequencing test. RESULTS: The effects of lateralization were observed only in the SLI group, with the left ear presenting much lower scores than those presented to the right ear. The inter-group analysis has shown that in all tests children from APD and SLI groups had significantly poorer performance compared to TD group. Moreover, SLI group presented worse results than APD group. CONCLUSION: This study has shown, in children with SLI, an inefficient processing of essential sound components and an effect of lateralization. These findings may indicate that neural processes (required for auditory processing are different between auditory processing and speech disorders.

  4. Determination Of Association Of Pigmentary Glaucoma With Pigment Dispersion Syndrome.

    Science.gov (United States)

    Shah, Imtiaz Ali; Shah, Shujaat Ali; Nagdev, Partab Rai; Abbasi, Safdar Ali; Abbasi, Naeem Ali; Katpar, Safdar Akhtar

    2017-01-01

    Pigment Dispersion Syndrome (PDS) is an autosomal dominant disorder of white males between 20 to 40 years of age characterized by deposition of pigment on the lens, zonules of lens, trabecular meshwork and corneal endothelium (Krukenberg's spindle) in addition to radial, spoke like transillumination defects in the mid peripheral iris. This study was conducted to determine the frequency of occurrence of Pigmentary Glaucoma in patients with Pigment Dispersion Syndrome (PDS). This longitudinal follow up study included patients presenting with Krukenberg's spindle on the endothelial side of cornea and pigmentation of angle of anterior chamber seen on slit lamp examination and gonioscopy. Seventy-two cases of PDS were included in the study, amongst them 63 (87.50%) were males. Mean age was 35.00±6.54 years (range 24-46 years). Forty-seven (65.28%) patients had an IOP in the range of 10-14 mmHg, 22 (30.56%) patients had an IOP in the range of 15-18 mmHg and 3 (4.17%) patients developed an IOP of greater than 19 mmHg. Fundoscopy showed myopic degeneration in 49 (68.06%) patients and optic disc cupping in 3 (4.17%) patients. Four (5.56%) patients had refractive error between +1D to +3D, 9 (12.50%) patients had refractive error between -1D to -4D, 21 (29.17%) patients had refractive error between -5 D to -8 D and 38 (52.78%) patients had refractive error between -9 D to -12 D. Our study showed that one patient having PDS developed glaucoma at 5 years of follow up and three patients developed glaucoma at 14 years of follow up. On the basis of this study we conclude that early onset primary open angle glaucoma associated with PDS or Juvenile glaucoma associated with PDS might have been mistaken as Pigmentary Glaucoma in Pakistani patients and a distinct entity in the form of Pigmentary Glaucoma may be non-existent.

  5. Pigmentary retinopathy associated with the mitochondrial DNA 3243 point mutation.

    Science.gov (United States)

    Sue, C M; Mitchell, P; Crimmins, D S; Moshegov, C; Byrne, E; Morris, J G

    1997-10-01

    Fourteen patients from four unrelated families were studied to determine the prevalence of retinal pigmentary abnormalities associated with the MELAS A to G 3243 point mutation. Neurologic and ophthalmic examinations, retinal photography, pattern shift visual evoked potentials, and electroretinography were performed in all patients. Eight of the 14 patients had retinal pigmentary abnormalities characterized by symmetric areas of depigmentation involving predominantly the posterior pole and midperipheral retina. None of the patients had optic atrophy and only one patient with pigmentary retinal abnormalities had impaired visual acuity. None of the diabetic subjects (n = 6) had signs of diabetic retinopathy. Fluorescein angiography demonstrated mottled hyper- and hypofluorescent areas indicating multiple window defects in the retinal pigmentary epithelium. Visual evoked potentials showed delayed P100 responses in four of the eight patients with retinal pigmentary abnormalities. We conclude that there is a high prevalence of retinal pigmentary abnormalities in patients with MELAS A to G 3243 point mutation. These abnormalities are usually asymptomatic and best detected by retinal photography.

  6. Assessment of auditory and vestibular functions in vitiligo patients

    Directory of Open Access Journals (Sweden)

    Eman Abd Elmohsin Dawoud

    2017-09-01

    Conclusion: The results in this study showed that 50% of vitiligo patients suffered from peripheral vestibular disorders in addition to auditory affection. Vitiligo patients require routine monitoring for auditory and vestibular functions for early identification and monitoring of changes as the disease progress.

  7. What is the risk of developing pigmentary glaucoma from pigment dispersion syndrome?

    Science.gov (United States)

    Siddiqui, Yasmin; Ten Hulzen, Richard D; Cameron, J Douglas; Hodge, David O; Johnson, Douglas H

    2003-06-01

    To determine the probability of converting from pigment dispersion syndrome to pigmentary glaucoma. Retrospective community-based study of all newly diagnosed cases of pigment dispersion syndrome or pigmentary glaucoma. Subjects were patients newly diagnosed with pigment dispersion syndrome or pigmentary glaucoma from 1976 to 1999 in Olmsted County, Minnesota. Criteria for pigment dispersion syndrome were two of three signs: midperipheral, radial iris transillumination defects; Krukenberg spindle; heavy trabecular meshwork pigmentation. Criteria for pigmentary glaucoma were pigment dispersion syndrome and two of three findings: intraocular pressure (IOP) greater than 21 mm, optic nerve damage, or visual field loss. Kaplan-Meier survival curves were used to determine the probability of conversion to pigmentary glaucoma. A total of 113 patients were newly diagnosed with pigment dispersion syndrome over the 24-year period. Of these, 9 persons developed pigmentary glaucoma or elevated IOP requiring therapy. The probability of converting to pigmentary glaucoma was 10% at 5 years and 15% at 15 years. An additional 23 patients were found to have pigmentary glaucoma at their initial examination. The mean age at diagnosis of pigmentary glaucoma was 42 +/- 12 years; 78% of patients were male, whereas 58% of patients with pigmentary dispersion syndrome glaucoma were male. The most significant risk factor for conversion to pigmentary glaucoma was an IOP greater than 21 mm Hg at initial examination, whereas age, refractive error, and family history of glaucoma were not correlated with conversion. The risk of developing pigmentary glaucoma from pigment dispersion syndrome was 10% at 5 years and 15% at 15 years. Young, myopic men were most likely to have pigmentary glaucoma. An IOP greater than 21 mm Hg at initial examination was associated with an increased risk of conversion.

  8. The memory systems of children with (central) auditory disorder.

    Science.gov (United States)

    Pires, Mayra Monteiro; Mota, Mailce Borges; Pinheiro, Maria Madalena Canina

    2015-01-01

    This study aims to investigate working, declarative, and procedural memory in children with (central) auditory processing disorder who showed poor phonological awareness. Thirty 9- and 10-year-old children participated in the study and were distributed into two groups: a control group consisting of 15 children with typical development, and an experimental group consisting of 15 children with (central) auditory processing disorder who were classified according to three behavioral tests and who showed poor phonological awareness in the CONFIAS test battery. The memory systems were assessed through the adapted tests in the program E-PRIME 2.0. The working memory was assessed by the Working Memory Test Battery for Children (WMTB-C), whereas the declarative memory was assessed by a picture-naming test and the procedural memory was assessed by means of a morphosyntactic processing test. The results showed that, when compared to the control group, children with poor phonological awareness scored lower in the working, declarative, and procedural memory tasks. The results of this study suggest that in children with (central) auditory processing disorder, phonological awareness is associated with the analyzed memory systems.

  9. Auditory evoked potentials: predicting speech therapy outcomes in children with phonological disorders

    Directory of Open Access Journals (Sweden)

    Renata Aparecida Leite

    2014-03-01

    Full Text Available OBJECTIVES: This study investigated whether neurophysiologic responses (auditory evoked potentials differ between typically developed children and children with phonological disorders and whether these responses are modified in children with phonological disorders after speech therapy. METHODS: The participants included 24 typically developing children (Control Group, mean age: eight years and ten months and 23 children clinically diagnosed with phonological disorders (Study Group, mean age: eight years and eleven months. Additionally, 12 study group children were enrolled in speech therapy (Study Group 1, and 11 were not enrolled in speech therapy (Study Group 2. The subjects were submitted to the following procedures: conventional audiological, auditory brainstem response, auditory middle-latency response, and P300 assessments. All participants presented with normal hearing thresholds. The study group 1 subjects were reassessed after 12 speech therapy sessions, and the study group 2 subjects were reassessed 3 months after the initial assessment. Electrophysiological results were compared between the groups. RESULTS: Latency differences were observed between the groups (the control and study groups regarding the auditory brainstem response and the P300 tests. Additionally, the P300 responses improved in the study group 1 children after speech therapy. CONCLUSION: The findings suggest that children with phonological disorders have impaired auditory brainstem and cortical region pathways that may benefit from speech therapy.

  10. Secondary pigmentary glaucoma in patients with underlying primary pigment dispersion syndrome

    OpenAIRE

    Sivaraman, Kavitha R; Patel, Chirag G; Vajaranant, Thasarat S; Aref, Ahmad A

    2013-01-01

    Kavitha R Sivaraman, Chirag G Patel, Thasarat S Vajaranant, Ahmad A ArefDepartment of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago School of Medicine, Chicago, IL, USAAbstract: Primary pigment dispersion syndrome (PPDS) is a bilateral condition that occurs in anatomically predisposed individuals. PPDS may evolve into pigmentary glaucoma, but it is difficult to predict which patients will progress. Secondary pigment dispersion is more oft...

  11. Auditory and visual sustained attention in children with speech sound disorder.

    Directory of Open Access Journals (Sweden)

    Cristina F B Murphy

    Full Text Available Although research has demonstrated that children with specific language impairment (SLI and reading disorder (RD exhibit sustained attention deficits, no study has investigated sustained attention in children with speech sound disorder (SSD. Given the overlap of symptoms, such as phonological memory deficits, between these different language disorders (i.e., SLI, SSD and RD and the relationships between working memory, attention and language processing, it is worthwhile to investigate whether deficits in sustained attention also occur in children with SSD. A total of 55 children (18 diagnosed with SSD (8.11 ± 1.231 and 37 typically developing children (8.76 ± 1.461 were invited to participate in this study. Auditory and visual sustained-attention tasks were applied. Children with SSD performed worse on these tasks; they committed a greater number of auditory false alarms and exhibited a significant decline in performance over the course of the auditory detection task. The extent to which performance is related to auditory perceptual difficulties and probable working memory deficits is discussed. Further studies are needed to better understand the specific nature of these deficits and their clinical implications.

  12. A homozygous MYO7A mutation associated to Usher syndrome and unilateral auditory neuropathy spectrum disorder.

    Science.gov (United States)

    Xia, Hong; Hu, Pengzhi; Yuan, Lamei; Xiong, Wei; Xu, Hongbo; Yi, Junhui; Yang, Zhijian; Deng, Xiong; Guo, Yi; Deng, Hao

    2017-10-01

    Usher syndrome (USH) is an autosomal recessive disorder characterized by sensorineural hearing loss, progressive visual loss and night blindness due to retinitis pigmentosa (RP), with or without vestibular dysfunction. The purpose of this study was to detect the causative gene in a consanguineous Chinese family with USH. A c.3696_3706del (p.R1232Sfs*72) variant in the myosin VIIa gene (MYO7A) was identified in the homozygous state by exome sequencing. The co‑segregation of the MYO7A c.3696_3706del variant with the phenotype of deafness and progressive visual loss in the USH family was confirmed by Sanger sequencing. The variant was absent in 200 healthy controls. Therefore, the c.3696_3706del variant may disrupt the interaction between myosin VIIa and other USH1 proteins, and impair melanosome transport in retinal pigment epithelial cells. Notably, bilateral auditory brainstem responses were absent in two patients of the USH family, while distortion product otoacoustic emissions were elicited in the right ears of the two patients, consistent with clinical diagnosis of unilateral auditory neuropathy spectrum disorder. These data suggested that the homozygous c.3696_3706del variant in the MYO7A gene may be the disease‑causing mutation for the disorder in this family. These findings broaden the phenotype spectrum of the MYO7A gene, and may facilitate understanding of the molecular pathogenesis of the disease, and genetic counseling for the family.

  13. Auditory Processing Assessment in Children with Attention Deficit Hyperactivity Disorder: An Open Study Examining Methylphenidate Effects.

    Science.gov (United States)

    Lanzetta-Valdo, Bianca Pinheiro; Oliveira, Giselle Alves de; Ferreira, Jane Tagarro Correa; Palacios, Ester Miyuki Nakamura

    2017-01-01

    Introduction  Children with Attention Deficit Hyperactivity Disorder can present Auditory Processing (AP) Disorder. Objective  The study examined the AP in ADHD children compared with non-ADHD children, and before and after 3 and 6 months of methylphenidate (MPH) treatment in ADHD children. Methods  Drug-naive children diagnosed with ADHD combined subtype aging between 7 and 11 years, coming from public and private outpatient service or public and private school, and age-gender-matched non-ADHD children, participated in an open, non-randomized study from February 2013 to December 2013. They were submitted to a behavioral battery of AP tests comprising Speech with white Noise, Dichotic Digits (DD), and Pitch Pattern Sequence (PPS) and were compared with non-ADHD children. They were followed for 3 and 6 months of MPH treatment (0.5 mg/kg/day). Results  ADHD children presented larger number of errors in DD ( p  < 0.01), and less correct responses in the PPS ( p  < 0.0001) and in the SN ( p  < 0.05) tests when compared with non-ADHD children. The treatment with MPH, especially along 6 months, significantly decreased the mean errors in the DD ( p  < 0.01) and increased the correct response in the PPS ( p  < 0.001) and SN ( p  < 0.01) tests when compared with the performance before MPH treatment. Conclusions  ADHD children show inefficient AP in selected behavioral auditory battery suggesting impaired in auditory closure, binaural integration, and temporal ordering. Treatment with MPH gradually improved these deficiencies and completely reversed them by reaching a performance similar to non-ADHD children at 6 months of treatment.

  14. Auditory and communicative abilities in the auditory neuropathy spectrum disorder and mutation in the Otoferlin gene: clinical cases study.

    Science.gov (United States)

    Costa, Nayara Thais de Oliveira; Martinho-Carvalho, Ana Claudia; Cunha, Maria Claudia; Lewis, Doris Ruthi

    2012-01-01

    This study had the aim to investigate the auditory and communicative abilities of children diagnosed with Auditory Neuropathy Spectrum Disorder due to mutation in the Otoferlin gene. It is a descriptive and qualitative study in which two siblings with this diagnosis were assessed. The procedures conducted were: speech perception tests for children with profound hearing loss, and assessment of communication abilities using the Behavioral Observation Protocol. Because they were siblings, the subjects in the study shared family and communicative context. However, they developed different communication abilities, especially regarding the use of oral language. The study showed that the Auditory Neuropathy Spectrum Disorder is a heterogeneous condition in all its aspects, and it is not possible to make generalizations or assume that cases with similar clinical features will develop similar auditory and communicative abilities, even when they are siblings. It is concluded that the acquisition of communicative abilities involves subjective factors, which should be investigated based on the uniqueness of each case.

  15. Auditory Training for Children with Processing Disorders.

    Science.gov (United States)

    Katz, Jack; Cohen, Carolyn F.

    1985-01-01

    The article provides an overview of central auditory processing (CAP) dysfunction and reviews research on approaches to improve perceptual skills; to provide discrimination training for communicative and reading disorders; to increase memory and analysis skills and dichotic listening; to provide speech-in-noise training; and to amplify speech as…

  16. Prediction of cognitive outcome based on the progression of auditory discrimination during coma.

    Science.gov (United States)

    Juan, Elsa; De Lucia, Marzia; Tzovara, Athina; Beaud, Valérie; Oddo, Mauro; Clarke, Stephanie; Rossetti, Andrea O

    2016-09-01

    To date, no clinical test is able to predict cognitive and functional outcome of cardiac arrest survivors. Improvement of auditory discrimination in acute coma indicates survival with high specificity. Whether the degree of this improvement is indicative of recovery remains unknown. Here we investigated if progression of auditory discrimination can predict cognitive and functional outcome. We prospectively recorded electroencephalography responses to auditory stimuli of post-anoxic comatose patients on the first and second day after admission. For each recording, auditory discrimination was quantified and its evolution over the two recordings was used to classify survivors as "predicted" when it increased vs. "other" if not. Cognitive functions were tested on awakening and functional outcome was assessed at 3 months using the Cerebral Performance Categories (CPC) scale. Thirty-two patients were included, 14 "predicted survivors" and 18 "other survivors". "Predicted survivors" were more likely to recover basic cognitive functions shortly after awakening (ability to follow a standardized neuropsychological battery: 86% vs. 44%; p=0.03 (Fisher)) and to show a very good functional outcome at 3 months (CPC 1: 86% vs. 33%; p=0.004 (Fisher)). Moreover, progression of auditory discrimination during coma was strongly correlated with cognitive performance on awakening (phonemic verbal fluency: rs=0.48; p=0.009 (Spearman)). Progression of auditory discrimination during coma provides early indication of future recovery of cognitive functions. The degree of improvement is informative of the degree of functional impairment. If confirmed in a larger cohort, this test would be the first to predict detailed outcome at the single-patient level. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Retinitis pigmentosa, pigmentary retinopathies, and neurologic diseases.

    Science.gov (United States)

    Bhatti, M Tariq

    2006-09-01

    Retinitis pigmentosa (RP) refers to a group of inherited retinal diseases with phenotypic and genetic heterogeneity. The pathophysiologic basis of the progressive visual loss in patients with RP is not completely understood but is felt to be due to a primary retinal photoreceptor cell degenerative process mainly affecting the rods of the peripheral retina. In most cases RP is seen in isolation (nonsyndromic), but in some other cases it may be a part of a genetic, metabolic, or neurologic syndrome or disorder. Nyctalopia, or night blindness, is the most common symptom of RP. The classic fundus appearance of RP includes retinal pigment epithelial cell changes resulting in retinal hypo- or hyperpigmentation ("salt-and-pepper"), retinal granularity, and bone spicule formation. The retinal vessels are often narrowed or attenuated and there is a waxy pallor appearance of the optic nerve head. Electroretinography will demonstrate rod and cone photoreceptor cell dysfunction and is a helpful test in the diagnosis and monitoring of patients with RP. A detailed history with pedigree analysis, a complete ocular examination, and the appropriate paraclinical testing should be performed in patients complaining of visual difficulties at night or in dim light. This review discusses the clinical manifestations of RP as well as describing the various systemic diseases, with a special emphasis on neurologic diseases, associated with a pigmentary retinopathy.

  18. Auditory and visual interhemispheric communication in musicians and non-musicians.

    Directory of Open Access Journals (Sweden)

    Rebecca Woelfle

    Full Text Available The corpus callosum (CC is a brain structure composed of axon fibres linking the right and left hemispheres. Musical training is associated with larger midsagittal cross-sectional area of the CC, suggesting that interhemispheric communication may be faster in musicians. Here we compared interhemispheric transmission times (ITTs for musicians and non-musicians. ITT was measured by comparing simple reaction times to stimuli presented to the same hemisphere that controlled a button-press response (uncrossed reaction time, or to the contralateral hemisphere (crossed reaction time. Both visual and auditory stimuli were tested. We predicted that the crossed-uncrossed difference (CUD for musicians would be smaller than for non-musicians as a result of faster interhemispheric transfer times. We did not expect a difference in CUDs between the visual and auditory modalities for either musicians or non-musicians, as previous work indicates that interhemispheric transfer may happen through the genu of the CC, which contains motor fibres rather than sensory fibres. There were no significant differences in CUDs between musicians and non-musicians. However, auditory CUDs were significantly smaller than visual CUDs. Although this auditory-visual difference was larger in musicians than non-musicians, the interaction between modality and musical training was not significant. Therefore, although musical training does not significantly affect ITT, the crossing of auditory information between hemispheres appears to be faster than visual information, perhaps because subcortical pathways play a greater role for auditory interhemispheric transfer.

  19. Auditory and visual interhemispheric communication in musicians and non-musicians.

    Science.gov (United States)

    Woelfle, Rebecca; Grahn, Jessica A

    2013-01-01

    The corpus callosum (CC) is a brain structure composed of axon fibres linking the right and left hemispheres. Musical training is associated with larger midsagittal cross-sectional area of the CC, suggesting that interhemispheric communication may be faster in musicians. Here we compared interhemispheric transmission times (ITTs) for musicians and non-musicians. ITT was measured by comparing simple reaction times to stimuli presented to the same hemisphere that controlled a button-press response (uncrossed reaction time), or to the contralateral hemisphere (crossed reaction time). Both visual and auditory stimuli were tested. We predicted that the crossed-uncrossed difference (CUD) for musicians would be smaller than for non-musicians as a result of faster interhemispheric transfer times. We did not expect a difference in CUDs between the visual and auditory modalities for either musicians or non-musicians, as previous work indicates that interhemispheric transfer may happen through the genu of the CC, which contains motor fibres rather than sensory fibres. There were no significant differences in CUDs between musicians and non-musicians. However, auditory CUDs were significantly smaller than visual CUDs. Although this auditory-visual difference was larger in musicians than non-musicians, the interaction between modality and musical training was not significant. Therefore, although musical training does not significantly affect ITT, the crossing of auditory information between hemispheres appears to be faster than visual information, perhaps because subcortical pathways play a greater role for auditory interhemispheric transfer.

  20. A efetividade do treinamento auditivo na desordem do processamento auditivo central: estudo de caso The effectiveness of the auditory training in the central auditory processing disorder: a case study

    Directory of Open Access Journals (Sweden)

    Lorena Kozlowski

    2004-06-01

    battery and an increased P300 latency time and the central auditory processing evaluation, which have shown the presence of a severe hearing processing disorder, characterized by the alteration of decoding, integration and memory process, and significant difficulties, particularly in selective attention and auditory closure. Auditory training to enhance development of the altered hearing abilities was conducted for four months. The progress observed in P300 latency time and the hearing processing disorder was still present but now at a moderate level at the end of the study. Also, this improvement was more significant in the integration process and showed an improvement in the auditory closure. It is concluded that the effectiveness of the auditory training through the development of the hearing abilities could be verified through the P300 and behavioral tests.

  1. Behavioural and neuroanatomical correlates of auditory speech analysis in primary progressive aphasias.

    Science.gov (United States)

    Hardy, Chris J D; Agustus, Jennifer L; Marshall, Charles R; Clark, Camilla N; Russell, Lucy L; Bond, Rebecca L; Brotherhood, Emilie V; Thomas, David L; Crutch, Sebastian J; Rohrer, Jonathan D; Warren, Jason D

    2017-07-27

    Non-verbal auditory impairment is increasingly recognised in the primary progressive aphasias (PPAs) but its relationship to speech processing and brain substrates has not been defined. Here we addressed these issues in patients representing the non-fluent variant (nfvPPA) and semantic variant (svPPA) syndromes of PPA. We studied 19 patients with PPA in relation to 19 healthy older individuals. We manipulated three key auditory parameters-temporal regularity, phonemic spectral structure and prosodic predictability (an index of fundamental information content, or entropy)-in sequences of spoken syllables. The ability of participants to process these parameters was assessed using two-alternative, forced-choice tasks and neuroanatomical associations of task performance were assessed using voxel-based morphometry of patients' brain magnetic resonance images. Relative to healthy controls, both the nfvPPA and svPPA groups had impaired processing of phonemic spectral structure and signal predictability while the nfvPPA group additionally had impaired processing of temporal regularity in speech signals. Task performance correlated with standard disease severity and neurolinguistic measures. Across the patient cohort, performance on the temporal regularity task was associated with grey matter in the left supplementary motor area and right caudate, performance on the phoneme processing task was associated with grey matter in the left supramarginal gyrus, and performance on the prosodic predictability task was associated with grey matter in the right putamen. Our findings suggest that PPA syndromes may be underpinned by more generic deficits of auditory signal analysis, with a distributed cortico-subcortical neuraoanatomical substrate extending beyond the canonical language network. This has implications for syndrome classification and biomarker development.

  2. Comparison of Auditory Brainstem Response in Noise Induced Tinnitus and Non-Tinnitus Control Subjects

    Directory of Open Access Journals (Sweden)

    Ghassem Mohammadkhani

    2009-12-01

    Full Text Available Background and Aim: Tinnitus is an unpleasant sound which can cause some behavioral disorders. According to evidence the origin of tinnitus is not only in peripheral but also in central auditory system. So evaluation of central auditory system function is necessary. In this study Auditory brainstem responses (ABR were compared in noise induced tinnitus and non-tinnitus control subjects.Materials and Methods: This cross-sectional, descriptive and analytic study is conducted in 60 cases in two groups including of 30 noise induced tinnitus and 30 non-tinnitus control subjects. ABRs were recorded ipsilateraly and contralateraly and their latencies and amplitudes were analyzed.Results: Mean interpeak latencies of III-V (p= 0.022, I-V (p=0.033 in ipsilatral electrode array and mean absolute latencies of IV (p=0.015 and V (p=0.048 in contralatral electrode array were significantly increased in noise induced tinnitus group relative to control group. Conclusion: It can be concluded from that there are some decrease in neural transmission time in brainstem and there are some sign of involvement of medial nuclei in olivery complex in addition to lateral lemniscus.

  3. [Retinal pigmentary degeneration--clinical features, diagnostics and possibilities of treatment].

    Science.gov (United States)

    Grześk, Magdalena; Malukiewicz-Wiśniewska, Grazyna

    2007-01-01

    The purpose of this study was to evaluate clinical course of retinitis pigmentosa taking into consideration models of inheritance and possible treatment. Retinitis pigmentosa belongs to heterogeneous group of hereditary disorders, which are connected with gradual loss of the photoreceptor function, firstly rod cells subsequently cones, which is accompanied by the retinal pigmentary epithelium disorder. Retinitis pigmentosa connected with X chromosome is one of the most severe form of this disease that in polish population takes place with frequency at average 10-15% which is similar to ADRP--10-20%. Course of RP, despite many similarities may differ from each other and prognosis depends on model of inheritance. Unfortunately, in spite of many efforts, nowadays medicine do not have successful treatment for patients with RP.

  4. Unilateral pigmentary degeneration of the retina associated with heterochromia iridis.

    Science.gov (United States)

    Grisanti, S; Diestelhorst, M; Lebek, J; Walter, P; Heimann, K

    1998-12-01

    For the past 5 years, a 56-year-old patient has been displaying monocular progressive pigmentary changes in the left eye. Heterochromy of the left eye has been known since childhood. The other eye is clinically and functionally normal. The patient was adopted and he has no children. Therefore, we have no family history. The patient was examined clinically and by means of electroretinography, electrooculography, perimetry, computer tomography, pulsatile ocular blood flow (POBF) measurement, serology and Doppler sonography. Electrophysiology displayed a considerable reduction of scotopic and photopic ERGs, a reduced dark-through, and a reduced light-rise in the left eye, whereas the fellow eye was normal. The visual field was limited to 5 deg around the fixation point, and a peripheral crescent-shaped arch encircled the temporal-inferior quadrant concomitant to the pigmentary changes. By computer tomography and Doppler sonography a vascular affection was excluded. The left eye displayed lower POBF values. All serological tests were found negative. The clinical picture and negative exclusion criteria indicate a unilateral retinitis pigmentosa. However, with regard to the literature an unequivocal diagnosis can only be made upon hereditary evidence.

  5. Tinnitus alters resting state functional connectivity (RSFC) in human auditory and non-auditory brain regions as measured by functional near-infrared spectroscopy (fNIRS).

    Science.gov (United States)

    San Juan, Juan; Hu, Xiao-Su; Issa, Mohamad; Bisconti, Silvia; Kovelman, Ioulia; Kileny, Paul; Basura, Gregory

    2017-01-01

    Tinnitus, or phantom sound perception, leads to increased spontaneous neural firing rates and enhanced synchrony in central auditory circuits in animal models. These putative physiologic correlates of tinnitus to date have not been well translated in the brain of the human tinnitus sufferer. Using functional near-infrared spectroscopy (fNIRS) we recently showed that tinnitus in humans leads to maintained hemodynamic activity in auditory and adjacent, non-auditory cortices. Here we used fNIRS technology to investigate changes in resting state functional connectivity between human auditory and non-auditory brain regions in normal-hearing, bilateral subjective tinnitus and controls before and after auditory stimulation. Hemodynamic activity was monitored over the region of interest (primary auditory cortex) and non-region of interest (adjacent non-auditory cortices) and functional brain connectivity was measured during a 60-second baseline/period of silence before and after a passive auditory challenge consisting of alternating pure tones (750 and 8000Hz), broadband noise and silence. Functional connectivity was measured between all channel-pairs. Prior to stimulation, connectivity of the region of interest to the temporal and fronto-temporal region was decreased in tinnitus participants compared to controls. Overall, connectivity in tinnitus was differentially altered as compared to controls following sound stimulation. Enhanced connectivity was seen in both auditory and non-auditory regions in the tinnitus brain, while controls showed a decrease in connectivity following sound stimulation. In tinnitus, the strength of connectivity was increased between auditory cortex and fronto-temporal, fronto-parietal, temporal, occipito-temporal and occipital cortices. Together these data suggest that central auditory and non-auditory brain regions are modified in tinnitus and that resting functional connectivity measured by fNIRS technology may contribute to conscious phantom

  6. Tinnitus alters resting state functional connectivity (RSFC in human auditory and non-auditory brain regions as measured by functional near-infrared spectroscopy (fNIRS.

    Directory of Open Access Journals (Sweden)

    Juan San Juan

    Full Text Available Tinnitus, or phantom sound perception, leads to increased spontaneous neural firing rates and enhanced synchrony in central auditory circuits in animal models. These putative physiologic correlates of tinnitus to date have not been well translated in the brain of the human tinnitus sufferer. Using functional near-infrared spectroscopy (fNIRS we recently showed that tinnitus in humans leads to maintained hemodynamic activity in auditory and adjacent, non-auditory cortices. Here we used fNIRS technology to investigate changes in resting state functional connectivity between human auditory and non-auditory brain regions in normal-hearing, bilateral subjective tinnitus and controls before and after auditory stimulation. Hemodynamic activity was monitored over the region of interest (primary auditory cortex and non-region of interest (adjacent non-auditory cortices and functional brain connectivity was measured during a 60-second baseline/period of silence before and after a passive auditory challenge consisting of alternating pure tones (750 and 8000Hz, broadband noise and silence. Functional connectivity was measured between all channel-pairs. Prior to stimulation, connectivity of the region of interest to the temporal and fronto-temporal region was decreased in tinnitus participants compared to controls. Overall, connectivity in tinnitus was differentially altered as compared to controls following sound stimulation. Enhanced connectivity was seen in both auditory and non-auditory regions in the tinnitus brain, while controls showed a decrease in connectivity following sound stimulation. In tinnitus, the strength of connectivity was increased between auditory cortex and fronto-temporal, fronto-parietal, temporal, occipito-temporal and occipital cortices. Together these data suggest that central auditory and non-auditory brain regions are modified in tinnitus and that resting functional connectivity measured by fNIRS technology may contribute to

  7. The Relationship between Types of Attention and Auditory Processing Skills: Reconsidering Auditory Processing Disorder Diagnosis

    Science.gov (United States)

    Stavrinos, Georgios; Iliadou, Vassiliki-Maria; Edwards, Lindsey; Sirimanna, Tony; Bamiou, Doris-Eva

    2018-01-01

    Measures of attention have been found to correlate with specific auditory processing tests in samples of children suspected of Auditory Processing Disorder (APD), but these relationships have not been adequately investigated. Despite evidence linking auditory attention and deficits/symptoms of APD, measures of attention are not routinely used in APD diagnostic protocols. The aim of the study was to examine the relationship between auditory and visual attention tests and auditory processing tests in children with APD and to assess whether a proposed diagnostic protocol for APD, including measures of attention, could provide useful information for APD management. A pilot study including 27 children, aged 7–11 years, referred for APD assessment was conducted. The validated test of everyday attention for children, with visual and auditory attention tasks, the listening in spatialized noise sentences test, the children's communication checklist questionnaire and tests from a standard APD diagnostic test battery were administered. Pearson's partial correlation analysis examining the relationship between these tests and Cochrane's Q test analysis comparing proportions of diagnosis under each proposed battery were conducted. Divided auditory and divided auditory-visual attention strongly correlated with the dichotic digits test, r = 0.68, p attention battery identified as having Attention Deficits (ADs). The proposed APD battery excluding AD cases did not have a significantly different diagnosis proportion than the standard APD battery. Finally, the newly proposed diagnostic battery, identifying an inattentive subtype of APD, identified five children who would have otherwise been considered not having ADs. The findings show that a subgroup of children with APD demonstrates underlying sustained and divided attention deficits. Attention deficits in children with APD appear to be centred around the auditory modality but further examination of types of attention in both

  8. Behavioral Signs of (Central) Auditory Processing Disorder in Children With Nonsyndromic Cleft Lip and/or Palate: A Parental Questionnaire Approach.

    Science.gov (United States)

    Ma, Xiaoran; McPherson, Bradley; Ma, Lian

    2016-03-01

    Objective Children with nonsyndromic cleft lip and/or palate often have a high prevalence of middle ear dysfunction. However, there are also indications that they may have a higher prevalence of (central) auditory processing disorder. This study used Fisher's Auditory Problems Checklist for caregivers to determine whether children with nonsyndromic cleft lip and/or palate have potentially more auditory processing difficulties compared with craniofacially normal children. Methods Caregivers of 147 school-aged children with nonsyndromic cleft lip and/or palate were recruited for the study. This group was divided into three subgroups: cleft lip, cleft palate, and cleft lip and palate. Caregivers of 60 craniofacially normal children were recruited as a control group. Hearing health tests were conducted to evaluate peripheral hearing. Caregivers of children who passed this assessment battery completed Fisher's Auditory Problems Checklist, which contains 25 questions related to behaviors linked to (central) auditory processing disorder. Results Children with cleft palate showed the lowest scores on the Fisher's Auditory Problems Checklist questionnaire, consistent with a higher index of suspicion for (central) auditory processing disorder. There was a significant difference in the manifestation of (central) auditory processing disorder-linked behaviors between the cleft palate and the control groups. The most common behaviors reported in the nonsyndromic cleft lip and/or palate group were short attention span and reduced learning motivation, along with hearing difficulties in noise. Conclusion A higher occurrence of (central) auditory processing disorder-linked behaviors were found in children with nonsyndromic cleft lip and/or palate, particularly cleft palate. Auditory processing abilities should not be ignored in children with nonsyndromic cleft lip and/or palate, and it is necessary to consider assessment tests for (central) auditory processing disorder when an

  9. Assessment of children with suspected auditory processing disorder: a factor analysis study.

    Science.gov (United States)

    Ahmmed, Ansar U; Ahmmed, Afsara A; Bath, Julie R; Ferguson, Melanie A; Plack, Christopher J; Moore, David R

    2014-01-01

    To identify the factors that may underlie the deficits in children with listening difficulties, despite normal pure-tone audiograms. These children may have auditory processing disorder (APD), but there is no universally agreed consensus as to what constitutes APD. The authors therefore refer to these children as children with suspected APD (susAPD) and aim to clarify the role of attention, cognition, memory, sensorimotor processing speed, speech, and nonspeech auditory processing in susAPD. It was expected that a factor analysis would show how nonauditory and supramodal factors relate to auditory behavioral measures in such children with susAPD. This would facilitate greater understanding of the nature of listening difficulties, thus further helping with characterizing APD and designing multimodal test batteries to diagnose APD. Factor analysis of outcomes from 110 children (68 male, 42 female; aged 6 to 11 years) with susAPD on a widely used clinical test battery (SCAN-C) and a research test battery (MRC Institute of Hearing Research Multi-center Auditory Processing "IMAP"), that have age-based normative data. The IMAP included backward masking, simultaneous masking, frequency discrimination, nonverbal intelligence, working memory, reading, alerting attention and motor reaction times to auditory and visual stimuli. SCAN-C included monaural low-redundancy speech (auditory closure and speech in noise) and dichotic listening tests (competing words and competing sentences) that assess divided auditory attention and hence executive attention. Three factors were extracted: "general auditory processing," "working memory and executive attention," and "processing speed and alerting attention." Frequency discrimination, backward masking, simultaneous masking, and monaural low-redundancy speech tests represented the "general auditory processing" factor. Dichotic listening and the IMAP cognitive tests (apart from nonverbal intelligence) were represented in the "working

  10. Retinal pigmentary changes in chronic uveitis mimicking retinitis pigmentosa.

    Science.gov (United States)

    Sevgi, D Damla; Davoudi, Samaneh; Comander, Jason; Sobrin, Lucia

    2017-09-01

    To present retinal pigmentary changes mimicking retinitis pigmentosa (RP) as a finding of advanced uveitis. We retrospectively reviewed charts of patients without a family history of inherited retinal degenerations who presented with retinal pigment changes and signs of past or present intraocular inflammation. Comprehensive eye examination including best-corrected visual acuity, slit-lamp examination and dilated fundus examination was performed on all patients in addition to color fundus photography, optical coherence tomography, fluorescein angiography (FA), and full-field electroretinogram testing. We identified five patients with ages ranging from 33 to 66 years, who presented with RP-like retinal pigmentary changes which were eventually attributed to longstanding uveitis. The changes were bilateral in three cases and unilateral in two cases. Four of five cases presented with active inflammation, and the remaining case showed evidence of active intraocular inflammation during follow-up. This study highlights the overlapping features of advanced uveitis and RP including the extensive pigmentary changes. Careful review of possible past uveitis history, detailed examination of signs of past or present inflammation and ancillary testing, with FA often being most helpful, are required for the correct diagnosis. This is important, because intervention can prevent further damage if the cause of the pigmentary changes is destructive inflammation.

  11. Vestibular Stimulation and Auditory Perception in Children with Attention Deficit Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Azin Salamati

    2014-09-01

    Full Text Available Objectives: Rehabilitation strategies play a pivotal role in reliving the inappropriate behaviors and improving children's performance during school. Concentration and visual and auditory comprehension in children are crucial to effective learning and have drawn interest from researchers and clinicians. Vestibular function deficits usually cause high level of alertness and vigilance, and problems in maintaining focus, paying selective attention, and altering in precision and attention to the stimulus. The aim of this study is to investigate the correlation between vestibular stimulation and auditory perception in children with attention deficit hyperactivity disorder. Methods: Totally 30 children aged from 7 to 12 years with attention deficit hyperactivity disorder participated in this study. They were assessed based on the criteria of diagnostic and statistical manual of mental disorders. After obtaining guardian and parental consent, they were enrolled and randomly matched on age to two groups of intervention and control. Integrated visual and auditory continuous performance test was carried out as a pre-test. Those in the intervention group received vestibular stimulation during the therapy sessions, twice a week for 10 weeks. At the end the test was done to both groups as post-test. Results: The pre-and post-test scores were measured and compared the differences between means for two subject groups. Statistical analyses found a significant difference for the mean differences regarding auditory comprehension improvement. Discussion: The findings suggest that vestibular training is a reliable and powerful option treatment for attention deficit hyperactivity disorder especially along with other trainings, meaning that stimulating the sense of balance highlights the importance of interaction between inhabitation and cognition.

  12. Auditory and Respiratory Health Disorders Among Workers in an ...

    African Journals Online (AJOL)

    For early detection of respiratory and auditory disorders, spirometry and audiometry should be included in the periodic medical examination. Accurate health records of workers, so, those at risk can be monitored, and/or pre-placed. Using personal protective equipments especially masks and ear muffles as well as prohibit ...

  13. Differential Diagnosis of Speech Sound Disorder (Phonological Disorder): Audiological Assessment beyond the Pure-tone Audiogram.

    Science.gov (United States)

    Iliadou, Vasiliki Vivian; Chermak, Gail D; Bamiou, Doris-Eva

    2015-04-01

    According to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, diagnosis of speech sound disorder (SSD) requires a determination that it is not the result of other congenital or acquired conditions, including hearing loss or neurological conditions that may present with similar symptomatology. To examine peripheral and central auditory function for the purpose of determining whether a peripheral or central auditory disorder was an underlying factor or contributed to the child's SSD. Central auditory processing disorder clinic pediatric case reports. Three clinical cases are reviewed of children with diagnosed SSD who were referred for audiological evaluation by their speech-language pathologists as a result of slower than expected progress in therapy. Audiological testing revealed auditory deficits involving peripheral auditory function or the central auditory nervous system. These cases demonstrate the importance of increasing awareness among professionals of the need to fully evaluate the auditory system to identify auditory deficits that could contribute to a patient's speech sound (phonological) disorder. Audiological assessment in cases of suspected SSD should not be limited to pure-tone audiometry given its limitations in revealing the full range of peripheral and central auditory deficits, deficits which can compromise treatment of SSD. American Academy of Audiology.

  14. Auditory Processing Disorder (For Parents)

    Science.gov (United States)

    ... role. Auditory cohesion problems: This is when higher-level listening tasks are difficult. Auditory cohesion skills — drawing inferences from conversations, understanding riddles, or comprehending verbal math problems — require heightened auditory processing and language levels. ...

  15. Auditory Integration Training

    Directory of Open Access Journals (Sweden)

    Zahra Jafari

    2002-07-01

    Full Text Available Auditory integration training (AIT is a hearing enhancement training process for sensory input anomalies found in individuals with autism, attention deficit hyperactive disorder, dyslexia, hyperactivity, learning disability, language impairments, pervasive developmental disorder, central auditory processing disorder, attention deficit disorder, depressin, and hyperacute hearing. AIT, recently introduced in the United States, and has received much notice of late following the release of The Sound of a Moracle, by Annabel Stehli. In her book, Mrs. Stehli describes before and after auditory integration training experiences with her daughter, who was diagnosed at age four as having autism.

  16. Whole-exome sequencing analysis of Waardenburg syndrome in a Chinese family

    Science.gov (United States)

    Chen, Dezhong; Zhao, Na; Wang, Jing; Li, Zhuoyu; Wu, Changxin; Fu, Jie; Xiao, Han

    2017-01-01

    Waardenburg syndrome (WS) is a dominantly inherited, genetically heterogeneous auditory-pigmentary syndrome characterized by non-progressive sensorineural hearing loss and iris discoloration. By whole-exome sequencing (WES), we identified a nonsense mutation (c.598C>T) in PAX3 gene, predicted to be disease causing by in silico analysis. This is the first report of genetically diagnosed case of WS PAX3 c.598C>T nonsense mutation in Chinese ethnic origin by WES and in silico functional prediction methods. PMID:28690861

  17. Whole-exome sequencing analysis of Waardenburg syndrome in a Chinese family.

    Science.gov (United States)

    Chen, Dezhong; Zhao, Na; Wang, Jing; Li, Zhuoyu; Wu, Changxin; Fu, Jie; Xiao, Han

    2017-01-01

    Waardenburg syndrome (WS) is a dominantly inherited, genetically heterogeneous auditory-pigmentary syndrome characterized by non-progressive sensorineural hearing loss and iris discoloration. By whole-exome sequencing (WES), we identified a nonsense mutation (c.598C>T) in PAX3 gene, predicted to be disease causing by in silico analysis. This is the first report of genetically diagnosed case of WS PAX3 c.598C>T nonsense mutation in Chinese ethnic origin by WES and in silico functional prediction methods.

  18. Auditory Training Effects on the Listening Skills of Children With Auditory Processing Disorder.

    Science.gov (United States)

    Loo, Jenny Hooi Yin; Rosen, Stuart; Bamiou, Doris-Eva

    2016-01-01

    Children with auditory processing disorder (APD) typically present with "listening difficulties,"' including problems understanding speech in noisy environments. The authors examined, in a group of such children, whether a 12-week computer-based auditory training program with speech material improved the perception of speech-in-noise test performance, and functional listening skills as assessed by parental and teacher listening and communication questionnaires. The authors hypothesized that after the intervention, (1) trained children would show greater improvements in speech-in-noise perception than untrained controls; (2) this improvement would correlate with improvements in observer-rated behaviors; and (3) the improvement would be maintained for at least 3 months after the end of training. This was a prospective randomized controlled trial of 39 children with normal nonverbal intelligence, ages 7 to 11 years, all diagnosed with APD. This diagnosis required a normal pure-tone audiogram and deficits in at least two clinical auditory processing tests. The APD children were randomly assigned to (1) a control group that received only the current standard treatment for children diagnosed with APD, employing various listening/educational strategies at school (N = 19); or (2) an intervention group that undertook a 3-month 5-day/week computer-based auditory training program at home, consisting of a wide variety of speech-based listening tasks with competing sounds, in addition to the current standard treatment. All 39 children were assessed for language and cognitive skills at baseline and on three outcome measures at baseline and immediate postintervention. Outcome measures were repeated 3 months postintervention in the intervention group only, to assess the sustainability of treatment effects. The outcome measures were (1) the mean speech reception threshold obtained from the four subtests of the listening in specialized noise test that assesses sentence perception in

  19. Auditory Processing Disorder in Relation to Developmental Disorders of Language, Communication and Attention: A Review and Critique

    Science.gov (United States)

    Dawes, Piers; Bishop, Dorothy

    2009-01-01

    Background: Auditory Processing Disorder (APD) does not feature in mainstream diagnostic classifications such as the "Diagnostic and Statistical Manual of Mental Disorders, 4th Edition" (DSM-IV), but is frequently diagnosed in the United States, Australia and New Zealand, and is becoming more frequently diagnosed in the United Kingdom. Aims: To…

  20. Non-right handed primary progressive apraxia of speech.

    Science.gov (United States)

    Botha, Hugo; Duffy, Joseph R; Whitwell, Jennifer L; Strand, Edythe A; Machulda, Mary M; Spychalla, Anthony J; Tosakulwong, Nirubol; Senjem, Matthew L; Knopman, David S; Petersen, Ronald C; Jack, Clifford R; Lowe, Val J; Josephs, Keith A

    2018-07-15

    In recent years a large and growing body of research has greatly advanced our understanding of primary progressive apraxia of speech. Handedness has emerged as one potential marker of selective vulnerability in degenerative diseases. This study evaluated the clinical and imaging findings in non-right handed compared to right handed participants in a prospective cohort diagnosed with primary progressive apraxia of speech. A total of 30 participants were included. Compared to the expected rate in the population, there was a higher prevalence of non-right handedness among those with primary progressive apraxia of speech (6/30, 20%). Small group numbers meant that these results did not reach statistical significance, although the effect sizes were moderate-to-large. There were no clinical differences between right handed and non-right handed participants. Bilateral hypometabolism was seen in primary progressive apraxia of speech compared to controls, with non-right handed participants showing more right hemispheric involvement. This is the first report of a higher rate of non-right handedness in participants with isolated apraxia of speech, which may point to an increased vulnerability for developing this disorder among non-right handed participants. This challenges prior hypotheses about a relative protective effect of non-right handedness for tau-related neurodegeneration. We discuss potential avenues for future research to investigate the relationship between handedness and motor disorders more generally. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Auditory disorders and acquisition of the ability to localize sound in children born to HIV-positive mothers

    Directory of Open Access Journals (Sweden)

    Carla Gentile Matas

    Full Text Available The objective of the present study was to evaluate children born to HIV-infected mothers and to determine whether such children present auditory disorders or poor acquisition of the ability to localize sound. The population studied included 143 children (82 males and 61 females, ranging in age from one month to 30 months. The children were divided into three groups according to the classification system devised in 1994 by the Centers for Disease Control and Prevention: infected; seroreverted; and exposed. The children were then submitted to audiological evaluation, including behavioral audiometry, visual reinforcement audiometry and measurement of acoustic immittance. Statistical analysis showed that the incidence of auditory disorders was significantly higher in the infected group. In the seroreverted and exposed groups, there was a marked absence of auditory disorders. In the infected group as a whole, the findings were suggestive of central auditory disorders. Evolution of the ability to localize sound was found to be poorer among the children in the infected group than among those in the seroreverted and exposed groups.

  2. EEG synchronization to modulated auditory tones in schizophrenia, schizoaffective disorder, and schizotypal personality disorder.

    Science.gov (United States)

    Brenner, Colleen A; Sporns, Olaf; Lysaker, Paul H; O'Donnell, Brian F

    2003-12-01

    The authors tested whether neural synchronization deficits were present in subjects with schizophrenia and schizotypal personality disorder. Amplitude-modulated tones were used to evaluate auditory steady-state evoked potential entrainment in a combined group of 21 subjects with schizophrenia or schizoaffective disorder, 11 subjects with schizotypal personality disorder, and 22 nonpsychiatric comparison subjects. The schizophrenia or schizoaffective disorder group exhibited decreased power compared to the schizotypal personality disorder and nonpsychiatric comparison groups. There were no differences between groups in N100 amplitude. Subjects with schizophrenia but not subjects with schizotypal personality disorder have deficits in steady-state responses to periodic stimuli, despite an intact response to sensory-evoked potentials (N100). These deficits reflect aberrant neural synchronization or resolution and may contribute to disturbed perceptual and cognitive integration in schizophrenia.

  3. Precise colocalization of interacting structural and pigmentary elements generates extensive color pattern variation in Phelsuma lizards

    Science.gov (United States)

    2013-01-01

    Background Color traits in animals play crucial roles in thermoregulation, photoprotection, camouflage, and visual communication, and are amenable to objective quantification and modeling. However, the extensive variation in non-melanic pigments and structural colors in squamate reptiles has been largely disregarded. Here, we used an integrated approach to investigate the morphological basis and physical mechanisms generating variation in color traits in tropical day geckos of the genus Phelsuma. Results Combining histology, optics, mass spectrometry, and UV and Raman spectroscopy, we found that the extensive variation in color patterns within and among Phelsuma species is generated by complex interactions between, on the one hand, chromatophores containing yellow/red pteridine pigments and, on the other hand, iridophores producing structural color by constructive interference of light with guanine nanocrystals. More specifically, we show that 1) the hue of the vivid dorsolateral skin is modulated both by variation in geometry of structural, highly ordered narrowband reflectors, and by the presence of yellow pigments, and 2) that the reflectivity of the white belly and of dorsolateral pigmentary red marks, is increased by underlying structural disorganized broadband reflectors. Most importantly, these interactions require precise colocalization of yellow and red chromatophores with different types of iridophores, characterized by ordered and disordered nanocrystals, respectively. We validated these results through numerical simulations combining pigmentary components with a multilayer interferential optical model. Finally, we show that melanophores form dark lateral patterns but do not significantly contribute to variation in blue/green or red coloration, and that changes in the pH or redox state of pigments provide yet another source of color variation in squamates. Conclusions Precisely colocalized interacting pigmentary and structural elements generate extensive

  4. Auditory and Visual Working Memory Functioning in College Students with Attention-Deficit/Hyperactivity Disorder and/or Learning Disabilities.

    Science.gov (United States)

    Liebel, Spencer W; Nelson, Jason M

    2017-12-01

    We investigated the auditory and visual working memory functioning in college students with attention-deficit/hyperactivity disorder, learning disabilities, and clinical controls. We examined the role attention-deficit/hyperactivity disorder subtype status played in working memory functioning. The unique influence that both domains of working memory have on reading and math abilities was investigated. A sample of 268 individuals seeking postsecondary education comprise four groups of the present study: 110 had an attention-deficit/hyperactivity disorder diagnosis only, 72 had a learning disability diagnosis only, 35 had comorbid attention-deficit/hyperactivity disorder and learning disability diagnoses, and 60 individuals without either of these disorders comprise a clinical control group. Participants underwent a comprehensive neuropsychological evaluation, and licensed psychologists employed a multi-informant, multi-method approach in obtaining diagnoses. In the attention-deficit/hyperactivity disorder only group, there was no difference between auditory and visual working memory functioning, t(100) = -1.57, p = .12. In the learning disability group, however, auditory working memory functioning was significantly weaker compared with visual working memory, t(71) = -6.19, p attention-deficit/hyperactivity disorder only group, there were no auditory or visual working memory functioning differences between participants with either a predominantly inattentive type or a combined type diagnosis. Visual working memory did not incrementally contribute to the prediction of academic achievement skills. Individuals with attention-deficit/hyperactivity disorder did not demonstrate significant working memory differences compared with clinical controls. Individuals with a learning disability demonstrated weaker auditory working memory than individuals in either the attention-deficit/hyperactivity or clinical control groups. © The Author 2017. Published by Oxford University

  5. Random Gap Detection Test (RGDT) performance of individuals with central auditory processing disorders from 5 to 25 years of age.

    Science.gov (United States)

    Dias, Karin Ziliotto; Jutras, Benoît; Acrani, Isabela Olszanski; Pereira, Liliane Desgualdo

    2012-02-01

    The aim of the present study was to assess the auditory temporal resolution ability in individuals with central auditory processing disorders, to examine the maturation effect and to investigate the relationship between the performance on a temporal resolution test with the performance on other central auditory tests. Participants were divided in two groups: 131 with Central Auditory Processing Disorder and 94 with normal auditory processing. They had pure-tone air-conduction thresholds no poorer than 15 dB HL bilaterally, normal admittance measures and presence of acoustic reflexes. Also, they were assessed with a central auditory test battery. Participants who failed at least one or more tests were included in the Central Auditory Processing Disorder group and those in the control group obtained normal performance on all tests. Following the auditory processing assessment, the Random Gap Detection Test was administered to the participants. A three-way ANOVA was performed. Correlation analyses were also done between the four Random Gap Detection Test subtests data as well as between Random Gap Detection Test data and the other auditory processing test results. There was a significant difference between the age-group performances in children with and without Central Auditory Processing Disorder. Also, 48% of children with Central Auditory Processing Disorder failed the Random Gap Detection Test and the percentage decreased as a function of age. The highest percentage (86%) was found in the 5-6 year-old children. Furthermore, results revealed a strong significant correlation between the four Random Gap Detection Test subtests. There was a modest correlation between the Random Gap Detection Test results and the dichotic listening tests. No significant correlation was observed between the Random Gap Detection Test data and the results of the other tests in the battery. Random Gap Detection Test should not be administered to children younger than 7 years old because

  6. The Central Auditory Processing Kit[TM]. Book 1: Auditory Memory [and] Book 2: Auditory Discrimination, Auditory Closure, and Auditory Synthesis [and] Book 3: Auditory Figure-Ground, Auditory Cohesion, Auditory Binaural Integration, and Compensatory Strategies.

    Science.gov (United States)

    Mokhemar, Mary Ann

    This kit for assessing central auditory processing disorders (CAPD), in children in grades 1 through 8 includes 3 books, 14 full-color cards with picture scenes, and a card depicting a phone key pad, all contained in a sturdy carrying case. The units in each of the three books correspond with auditory skill areas most commonly addressed in…

  7. Waardenburg Syndrome: A Report of Two Familial Case Series

    OpenAIRE

    Safal Khanal, BOptom; Pragati Gautam, MD; Nabin Paudel, BOptom

    2013-01-01

    Background: Waardenburg syndrome is a rare autosomally-inherited developmental disorder characterized by sensorineural deafness in association with pigmentary anomalies comprising various ocular features including dystopia canthorum, iris heterochromia, eyebrow flare, and fundus alterations. It is a congenital non-progressive genetic disorder that has been found to result in hearing loss, reduced vision, reduced self esteem, problems related to appearance, and decreased intellectual functioni...

  8. Decreased Somatosensory Activity to Non-threatening Touch in Combat Veterans with Posttraumatic Stress Disorder

    OpenAIRE

    Badura-Brack, Amy S.; Becker, Katherine M.; McDermott, Timothy J.; Ryan, Tara J.; Becker, Madelyn M.; Hearley, Allison R.; Heinrichs-Graham, Elizabeth; Wilson, Tony W.

    2015-01-01

    Posttraumatic stress disorder (PTSD) is a severe psychiatric disorder prevalent in combat veterans. Previous neuroimaging studies have demonstrated that patients with PTSD exhibit abnormal responses to non-threatening visual and auditory stimuli, but have not examined somatosensory processing. Thirty male combat veterans, 16 with PTSD and 14 without, completed a tactile stimulation task during a 306-sensor magnetoencephalography (MEG) recording. Significant oscillatory neural responses were i...

  9. Review: Auditory Integration Training

    Directory of Open Access Journals (Sweden)

    Zahra Ja'fari

    2003-01-01

    Full Text Available Auditory integration training (AIT is a hearing enhancement training process for sensory input anomalies found in individuals with autism, attention deficit hyperactive disorder, dyslexia, hyperactivity, learning disability, language impairments, pervasive developmental disorder, central auditory processing disorder, attention deficit disorder, depression, and hyper acute hearing. AIT, recently introduced in the United States, and has received much notice of late following the release of the sound of a miracle, by Annabel Stehli. In her book, Mrs. Stehli describes before and after auditory integration training experiences with her daughter, who was diagnosed at age four as having autism.

  10. Intraoperative Electrocochleographic Characteristics of Auditory Neuropathy Spectrum Disorder in Cochlear Implant Subjects

    Directory of Open Access Journals (Sweden)

    William J. Riggs

    2017-07-01

    Full Text Available Auditory neuropathy spectrum disorder (ANSD is characterized by an apparent discrepancy between measures of cochlear and neural function based on auditory brainstem response (ABR testing. Clinical indicators of ANSD are a present cochlear microphonic (CM with small or absent wave V. Many identified ANSD patients have speech impairment severe enough that cochlear implantation (CI is indicated. To better understand the cochleae identified with ANSD that lead to a CI, we performed intraoperative round window electrocochleography (ECochG to tone bursts in children (n = 167 and adults (n = 163. Magnitudes of the responses to tones of different frequencies were summed to measure the “total response” (ECochG-TR, a metric often dominated by hair cell activity, and auditory nerve activity was estimated visually from the compound action potential (CAP and auditory nerve neurophonic (ANN as a ranked “Nerve Score”. Subjects identified as ANSD (45 ears in children, 3 in adults had higher values of ECochG-TR than adult and pediatric subjects also receiving CIs not identified as ANSD. However, nerve scores of the ANSD group were similar to the other cohorts, although dominated by the ANN to low frequencies more than in the non-ANSD groups. To high frequencies, the common morphology of ANSD cases was a large CM and summating potential, and small or absent CAP. Common morphologies in other groups were either only a CM, or a combination of CM and CAP. These results indicate that responses to high frequencies, derived primarily from hair cells, are the main source of the CM used to evaluate ANSD in the clinical setting. However, the clinical tests do not capture the wide range of neural activity seen to low frequency sounds.

  11. A hierarchy of event-related potential markers of auditory processing in disorders of consciousness

    Directory of Open Access Journals (Sweden)

    Steve Beukema

    2016-01-01

    Full Text Available Functional neuroimaging of covert perceptual and cognitive processes can inform the diagnoses and prognoses of patients with disorders of consciousness, such as the vegetative and minimally conscious states (VS;MCS. Here we report an event-related potential (ERP paradigm for detecting a hierarchy of auditory processes in a group of healthy individuals and patients with disorders of consciousness. Simple cortical responses to sounds were observed in all 16 patients; 7/16 (44% patients exhibited markers of the differential processing of speech and noise; and 1 patient produced evidence of the semantic processing of speech (i.e. the N400 effect. In several patients, the level of auditory processing that was evident from ERPs was higher than the abilities that were evident from behavioural assessment, indicating a greater sensitivity of ERPs in some cases. However, there were no differences in auditory processing between VS and MCS patient groups, indicating a lack of diagnostic specificity for this paradigm. Reliably detecting semantic processing by means of the N400 effect in passively listening single-subjects is a challenge. Multiple assessment methods are needed in order to fully characterise the abilities of patients with disorders of consciousness.

  12. Speech and non-speech processing in children with phonological disorders: an electrophysiological study

    Directory of Open Access Journals (Sweden)

    Isabela Crivellaro Gonçalves

    2011-01-01

    Full Text Available OBJECTIVE: To determine whether neurophysiological auditory brainstem responses to clicks and repeated speech stimuli differ between typically developing children and children with phonological disorders. INTRODUCTION: Phonological disorders are language impairments resulting from inadequate use of adult phonological language rules and are among the most common speech and language disorders in children (prevalence: 8 - 9%. Our hypothesis is that children with phonological disorders have basic differences in the way that their brains encode acoustic signals at brainstem level when compared to normal counterparts. METHODS: We recorded click and speech evoked auditory brainstem responses in 18 typically developing children (control group and in 18 children who were clinically diagnosed with phonological disorders (research group. The age range of the children was from 7-11 years. RESULTS: The research group exhibited significantly longer latency responses to click stimuli (waves I, III and V and speech stimuli (waves V and A when compared to the control group. DISCUSSION: These results suggest that the abnormal encoding of speech sounds may be a biological marker of phonological disorders. However, these results cannot define the biological origins of phonological problems. We also observed that speech-evoked auditory brainstem responses had a higher specificity/sensitivity for identifying phonological disorders than click-evoked auditory brainstem responses. CONCLUSIONS: Early stages of the auditory pathway processing of an acoustic stimulus are not similar in typically developing children and those with phonological disorders. These findings suggest that there are brainstem auditory pathway abnormalities in children with phonological disorders.

  13. The singular nature of auditory and visual scene analysis in autism.

    Science.gov (United States)

    Lin, I-Fan; Shirama, Aya; Kato, Nobumasa; Kashino, Makio

    2017-02-19

    Individuals with autism spectrum disorder often have difficulty acquiring relevant auditory and visual information in daily environments, despite not being diagnosed as hearing impaired or having low vision. Resent psychophysical and neurophysiological studies have shown that autistic individuals have highly specific individual differences at various levels of information processing, including feature extraction, automatic grouping and top-down modulation in auditory and visual scene analysis. Comparison of the characteristics of scene analysis between auditory and visual modalities reveals some essential commonalities, which could provide clues about the underlying neural mechanisms. Further progress in this line of research may suggest effective methods for diagnosing and supporting autistic individuals.This article is part of the themed issue 'Auditory and visual scene analysis'. © 2017 The Author(s).

  14. Auditory and Non-Auditory Contributions for Unaided Speech Recognition in Noise as a Function of Hearing Aid Use.

    Science.gov (United States)

    Gieseler, Anja; Tahden, Maike A S; Thiel, Christiane M; Wagener, Kirsten C; Meis, Markus; Colonius, Hans

    2017-01-01

    Differences in understanding speech in noise among hearing-impaired individuals cannot be explained entirely by hearing thresholds alone, suggesting the contribution of other factors beyond standard auditory ones as derived from the audiogram. This paper reports two analyses addressing individual differences in the explanation of unaided speech-in-noise performance among n = 438 elderly hearing-impaired listeners ( mean = 71.1 ± 5.8 years). The main analysis was designed to identify clinically relevant auditory and non-auditory measures for speech-in-noise prediction using auditory (audiogram, categorical loudness scaling) and cognitive tests (verbal-intelligence test, screening test of dementia), as well as questionnaires assessing various self-reported measures (health status, socio-economic status, and subjective hearing problems). Using stepwise linear regression analysis, 62% of the variance in unaided speech-in-noise performance was explained, with measures Pure-tone average (PTA), Age , and Verbal intelligence emerging as the three most important predictors. In the complementary analysis, those individuals with the same hearing loss profile were separated into hearing aid users (HAU) and non-users (NU), and were then compared regarding potential differences in the test measures and in explaining unaided speech-in-noise recognition. The groupwise comparisons revealed significant differences in auditory measures and self-reported subjective hearing problems, while no differences in the cognitive domain were found. Furthermore, groupwise regression analyses revealed that Verbal intelligence had a predictive value in both groups, whereas Age and PTA only emerged significant in the group of hearing aid NU.

  15. Speech discrimination difficulties in High-Functioning Autism Spectrum Disorder are likely independent of auditory hypersensitivity.

    Directory of Open Access Journals (Sweden)

    William Andrew Dunlop

    2016-08-01

    Full Text Available Autism Spectrum Disorder (ASD, characterised by impaired communication skills and repetitive behaviours, can also result in differences in sensory perception. Individuals with ASD often perform normally in simple auditory tasks but poorly compared to typically developed (TD individuals on complex auditory tasks like discriminating speech from complex background noise. A common trait of individuals with ASD is hypersensitivity to auditory stimulation. No studies to our knowledge consider whether hypersensitivity to sounds is related to differences in speech-in-noise discrimination. We provide novel evidence that individuals with high-functioning ASD show poor performance compared to TD individuals in a speech-in-noise discrimination task with an attentionally demanding background noise, but not in a purely energetic noise. Further, we demonstrate in our small sample that speech-hypersensitivity does not appear to predict performance in the speech-in-noise task. The findings support the argument that an attentional deficit, rather than a perceptual deficit, affects the ability of individuals with ASD to discriminate speech from background noise. Finally, we piloted a novel questionnaire that measures difficulty hearing in noisy environments, and sensitivity to non-verbal and verbal sounds. Psychometric analysis using 128 TD participants provided novel evidence for a difference in sensitivity to non-verbal and verbal sounds, and these findings were reinforced by participants with ASD who also completed the questionnaire. The study was limited by a small and high-functioning sample of participants with ASD. Future work could test larger sample sizes and include lower-functioning ASD participants.

  16. Readability of Questionnaires Assessing Listening Difficulties Associated with (Central) Auditory Processing Disorders

    Science.gov (United States)

    Atcherson, Samuel R.; Richburg, Cynthia M.; Zraick, Richard I.; George, Cassandra M.

    2013-01-01

    Purpose: Eight English-language, student- or parent proxy-administered questionnaires for (central) auditory processing disorders, or (C)APD, were analyzed for readability. For student questionnaires, readability levels were checked against the approximate reading grade levels by intended administration age per the questionnaires' developers. For…

  17. Increased BOLD Signals Elicited by High Gamma Auditory Stimulation of the Left Auditory Cortex in Acute State Schizophrenia

    Directory of Open Access Journals (Sweden)

    Hironori Kuga, M.D.

    2016-10-01

    We acquired BOLD responses elicited by click trains of 20, 30, 40 and 80-Hz frequencies from 15 patients with acute episode schizophrenia (AESZ, 14 symptom-severity-matched patients with non-acute episode schizophrenia (NASZ, and 24 healthy controls (HC, assessed via a standard general linear-model-based analysis. The AESZ group showed significantly increased ASSR-BOLD signals to 80-Hz stimuli in the left auditory cortex compared with the HC and NASZ groups. In addition, enhanced 80-Hz ASSR-BOLD signals were associated with more severe auditory hallucination experiences in AESZ participants. The present results indicate that neural over activation occurs during 80-Hz auditory stimulation of the left auditory cortex in individuals with acute state schizophrenia. Given the possible association between abnormal gamma activity and increased glutamate levels, our data may reflect glutamate toxicity in the auditory cortex in the acute state of schizophrenia, which might lead to progressive changes in the left transverse temporal gyrus.

  18. Are mice pigmentary genes throwing light on humans?

    Directory of Open Access Journals (Sweden)

    Bose S

    1993-01-01

    Full Text Available In this article the rapid advances made in the molecular genetics of inherited disorders of hypo and hyperpigmentation during the past three years are reviewed. The main focus is on studies in mice as compared to homologues in humans. The main hypomelanotic diseases included are, piebaldism (white spotting due to mutations of c-KIT, PDGF and MGF genes; vitiligo (microphathalmia mice mutations of c-Kit and c-fms genes; Waardenburg syndrome (splotch locus mutations of mice PAX-3 or human Hup-2 genes; albinism (mutations of tyrosinase genes, Menkes disease (Mottled mouse, premature graying (mutations in light/brown locus/gp75/ TRP-1; Griscelli disease (mutations in TRP-1 and steel; Prader-willi and Angelman syndromes, tyrosinase-positive oculocutaneous albinism and hypomelanosis of lto (mutations of pink-eyed dilution gene/mapping to human chromosomes 15 q 11.2 - q12; and human platelet storage pool deficiency diseases due to defects in pallidin, an erythrocyte membrane protein (pallid mouse / mapping to 4.2 pallidin gene. The genetic characterization of hypermelanosis includes, neurofibromatosis 1 (Café-au-lait spots and McCune-Albright Syndrome. Rapid evolving knowledge about pigmentary genes will increase further the knowledge about these hypo and hyperpigmentary disorders.

  19. Synchrony of auditory brain responses predicts behavioral ability to keep still in children with autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Yuko Yoshimura

    2016-01-01

    Full Text Available The auditory-evoked P1m, recorded by magnetoencephalography, reflects a central auditory processing ability in human children. One recent study revealed that asynchrony of P1m between the right and left hemispheres reflected a central auditory processing disorder (i.e., attention deficit hyperactivity disorder, ADHD in children. However, to date, the relationship between auditory P1m right-left hemispheric synchronization and the comorbidity of hyperactivity in children with autism spectrum disorder (ASD is unknown. In this study, based on a previous report of an asynchrony of P1m in children with ADHD, to clarify whether the P1m right-left hemispheric synchronization is related to the symptom of hyperactivity in children with ASD, we investigated the relationship between voice-evoked P1m right-left hemispheric synchronization and hyperactivity in children with ASD. In addition to synchronization, we investigated the right-left hemispheric lateralization. Our findings failed to demonstrate significant differences in these values between ASD children with and without the symptom of hyperactivity, which was evaluated using the Autism Diagnostic Observational Schedule, Generic (ADOS-G subscale. However, there was a significant correlation between the degrees of hemispheric synchronization and the ability to keep still during 12-minute MEG recording periods. Our results also suggested that asynchrony in the bilateral brain auditory processing system is associated with ADHD-like symptoms in children with ASD.

  20. Peeling the Onion of Auditory Processing Disorder: A Language/Curricular-Based Perspective

    Science.gov (United States)

    Wallach, Geraldine P.

    2011-01-01

    Purpose: This article addresses auditory processing disorder (APD) from a language-based perspective. The author asks speech-language pathologists to evaluate the functionality (or not) of APD as a diagnostic category for children and adolescents with language-learning and academic difficulties. Suggestions are offered from a…

  1. Delayed Mismatch Field Latencies in Autism Spectrum Disorder with Abnormal Auditory Sensitivity: A Magnetoencephalographic Study.

    Science.gov (United States)

    Matsuzaki, Junko; Kagitani-Shimono, Kuriko; Sugata, Hisato; Hanaie, Ryuzo; Nagatani, Fumiyo; Yamamoto, Tomoka; Tachibana, Masaya; Tominaga, Koji; Hirata, Masayuki; Mohri, Ikuko; Taniike, Masako

    2017-01-01

    Although abnormal auditory sensitivity is the most common sensory impairment associated with autism spectrum disorder (ASD), the neurophysiological mechanisms remain unknown. In previous studies, we reported that this abnormal sensitivity in patients with ASD is associated with delayed and prolonged responses in the auditory cortex. In the present study, we investigated alterations in residual M100 and MMFs in children with ASD who experience abnormal auditory sensitivity. We used magnetoencephalography (MEG) to measure MMF elicited by an auditory oddball paradigm (standard tones: 300 Hz, deviant tones: 700 Hz) in 20 boys with ASD (11 with abnormal auditory sensitivity: mean age, 9.62 ± 1.82 years, 9 without: mean age, 9.07 ± 1.31 years) and 13 typically developing boys (mean age, 9.45 ± 1.51 years). We found that temporal and frontal residual M100/MMF latencies were significantly longer only in children with ASD who have abnormal auditory sensitivity. In addition, prolonged residual M100/MMF latencies were correlated with the severity of abnormal auditory sensitivity in temporal and frontal areas of both hemispheres. Therefore, our findings suggest that children with ASD and abnormal auditory sensitivity may have atypical neural networks in the primary auditory area, as well as in brain areas associated with attention switching and inhibitory control processing. This is the first report of an MEG study demonstrating altered MMFs to an auditory oddball paradigm in patients with ASD and abnormal auditory sensitivity. These findings contribute to knowledge of the mechanisms for abnormal auditory sensitivity in ASD, and may therefore facilitate development of novel clinical interventions.

  2. A homozygous mutation in RNU4ATAC as a cause of microcephalic osteodysplastic primordial dwarfism type I (MOPD I) with associated pigmentary disorder.

    Science.gov (United States)

    Abdel-Salam, Ghada M H; Miyake, Noriko; Eid, Maha M; Abdel-Hamid, Mohamed S; Hassan, Nihal A; Eid, Ola M; Effat, Laila K; El-Badry, Tarek H; El-Kamah, Ghada Y; El-Darouti, Mohamed; Matsumoto, Naomichi

    2011-11-01

    The designation microcephalic osteodysplastic primordial dwarfism (MOPD) refers to a group of autosomal recessive disorders, comprising microcephaly, growth retardation, and a skeletal dysplasia. The different types of MOPD have been delineated on the basis of clinical, radiological, and genetic criteria. We describe two brothers, born to healthy, consanguineous parents, with intrauterine and postnatal growth retardation, microcephaly with abnormal gyral pattern and partial agenesis of corpus callosum, and skeletal anomalies reminiscent of those described in MOPD type I. This was confirmed by the identification of the homozygous g.55G > A mutation of RNU4ATAC encoding U4atac snRNA. The sibs had yellowish-gray hair, fair skin, and deficient retinal pigmentation. Skin biopsy showed abnormal melanin function but OCA genes were normal. The older sib had an intracranial hemorrhage at 1 week after birth, the younger developed chilblains-like lesions at the age 2½ years old but analysis of the SAMHD1 and TREX1 genes did not show any mutations. To the best of our knowledge, vasculopathy and pigmentary disorders have not been reported in MOPD I. Copyright © 2011 Wiley Periodicals, Inc.

  3. Pigment dispersion syndrome and pigmentary glaucoma: a review and update.

    Science.gov (United States)

    Scuderi, Gianluca; Contestabile, Maria Teresa; Scuderi, Luca; Librando, Aloisa; Fenicia, Vito; Rahimi, Siavash

    2018-05-02

    Potential factors influencing stereopsis were investigated in patients with both refractive accommodative esotropia (RAE) and amblyopia. Pigment dispersion syndrome (PDS) is a condition where anomalous iridozonular contact leads to pigment dispersion throughout the anterior segment and the released pigment is abnormally deposited on various ocular structures. The clinical presentation of PDS is defined by the presence of pigmented cells on the corneal endothelium, an increase of pigmentation of the trabecular meshwork, and mid-periphery transillumination defects of the iris. This syndrome, more common in myopes, is usually bilateral and can be associated with ocular hypertension or glaucoma. Secondary open-angle pigmentary glaucoma (PG) can develop due to reduction of the outflow of aqueous humour and consequent increase in intraocular pressure leading to glaucomatous optic neuropathy. Diagnosis of PG is commonly between 40 and 50 years of age, occurring more frequently in men. The advent of ultrasound biomicroscopy and anterior segment optical coherence tomography has contributed to enhancing our knowledge on the condition. Typical alterations of the anterior segment are the posterior insertion of the iris and iris concavity. Treatment of PG should be initiated early to hinder disease progression, glaucomatous damage, and vision loss. Management is based on medical therapy, laser iridotomy, selective laser trabeculoplasty, and filtration procedures. The differential diagnosis of PDS with other disorders can be challenging and awareness of the condition together with meticulous ophthalmologic examination allows early diagnosis followed by appropriate management strategies. The present review is a comprehensive report on the clinical characteristics, pathogenesis, current management, and status quo of PDS and PG.

  4. Delayed Mismatch Field Latencies in Autism Spectrum Disorder with Abnormal Auditory Sensitivity: A Magnetoencephalographic Study

    Directory of Open Access Journals (Sweden)

    Junko Matsuzaki

    2017-09-01

    Full Text Available Although abnormal auditory sensitivity is the most common sensory impairment associated with autism spectrum disorder (ASD, the neurophysiological mechanisms remain unknown. In previous studies, we reported that this abnormal sensitivity in patients with ASD is associated with delayed and prolonged responses in the auditory cortex. In the present study, we investigated alterations in residual M100 and MMFs in children with ASD who experience abnormal auditory sensitivity. We used magnetoencephalography (MEG to measure MMF elicited by an auditory oddball paradigm (standard tones: 300 Hz, deviant tones: 700 Hz in 20 boys with ASD (11 with abnormal auditory sensitivity: mean age, 9.62 ± 1.82 years, 9 without: mean age, 9.07 ± 1.31 years and 13 typically developing boys (mean age, 9.45 ± 1.51 years. We found that temporal and frontal residual M100/MMF latencies were significantly longer only in children with ASD who have abnormal auditory sensitivity. In addition, prolonged residual M100/MMF latencies were correlated with the severity of abnormal auditory sensitivity in temporal and frontal areas of both hemispheres. Therefore, our findings suggest that children with ASD and abnormal auditory sensitivity may have atypical neural networks in the primary auditory area, as well as in brain areas associated with attention switching and inhibitory control processing. This is the first report of an MEG study demonstrating altered MMFs to an auditory oddball paradigm in patients with ASD and abnormal auditory sensitivity. These findings contribute to knowledge of the mechanisms for abnormal auditory sensitivity in ASD, and may therefore facilitate development of novel clinical interventions.

  5. Manipulation of Auditory Inputs as Rehabilitation Therapy for Maladaptive Auditory Cortical Reorganization

    Directory of Open Access Journals (Sweden)

    Hidehiko Okamoto

    2018-01-01

    Full Text Available Neurophysiological and neuroimaging data suggest that the brains of not only children but also adults are reorganized based on sensory inputs and behaviors. Plastic changes in the brain are generally beneficial; however, maladaptive cortical reorganization in the auditory cortex may lead to hearing disorders such as tinnitus and hyperacusis. Recent studies attempted to noninvasively visualize pathological neural activity in the living human brain and reverse maladaptive cortical reorganization by the suitable manipulation of auditory inputs in order to alleviate detrimental auditory symptoms. The effects of the manipulation of auditory inputs on maladaptively reorganized brain were reviewed herein. The findings obtained indicate that rehabilitation therapy based on the manipulation of auditory inputs is an effective and safe approach for hearing disorders. The appropriate manipulation of sensory inputs guided by the visualization of pathological brain activities using recent neuroimaging techniques may contribute to the establishment of new clinical applications for affected individuals.

  6. Perception of non-verbal auditory stimuli in Italian dyslexic children.

    Science.gov (United States)

    Cantiani, Chiara; Lorusso, Maria Luisa; Valnegri, Camilla; Molteni, Massimo

    2010-01-01

    Auditory temporal processing deficits have been proposed as the underlying cause of phonological difficulties in Developmental Dyslexia. The hypothesis was tested in a sample of 20 Italian dyslexic children aged 8-14, and 20 matched control children. Three tasks of auditory processing of non-verbal stimuli, involving discrimination and reproduction of sequences of rapidly presented short sounds were expressly created. Dyslexic subjects performed more poorly than control children, suggesting the presence of a deficit only partially influenced by the duration of the stimuli and of inter-stimulus intervals (ISIs).

  7. Noise sensitivity, rather than noise level, predicts the non-auditory effects of noise in community samples: a population-based survey

    Directory of Open Access Journals (Sweden)

    Jangho Park

    2017-04-01

    Full Text Available Abstract Background Excessive noise affects human health and interferes with daily activities. Although environmental noise may not directly cause mental illness, it may accelerate and intensify the development of latent mental disorders. Noise sensitivity (NS is considered a moderator of non-auditory noise effects. In the present study, we aimed to assess whether NS is associated with non-auditory effects. Methods We recruited a community sample of 1836 residents residing in Ulsan and Seoul, South Korea. From July to November 2015, participants were interviewed regarding their demographic characteristics, socioeconomic status, medical history, and NS. The non-auditory effects of noise were assessed using the Center of Epidemiologic Studies Depression, Insomnia Severity index, State Trait Anxiety Inventory state subscale, and Stress Response Inventory-Modified Form. Individual noise levels were recorded from noise maps. A three-model multivariate logistic regression analysis was performed to identify factors that might affect psychiatric illnesses. Results Participants ranged in age from 19 to 91 years (mean: 47.0 ± 16.1 years, and 37.9% (n = 696 were male. Participants with high NS were more likely to have been diagnosed with diabetes and hyperlipidemia and to use psychiatric medication. The multivariable analysis indicated that even after adjusting for noise-related variables, sociodemographic factors, medical illness, and duration of residence, subjects in the high NS group were more than 2 times more likely to experience depression and insomnia and 1.9 times more likely to have anxiety, compared with those in the low NS group. Noise exposure level was not identified as an explanatory value. Conclusions NS increases the susceptibility and hence moderates there actions of individuals to noise. NS, rather than noise itself, is associated with an elevated susceptibility to non-auditory effects.

  8. Infant auditory short-term memory for non-linguistic sounds.

    Science.gov (United States)

    Ross-Sheehy, Shannon; Newman, Rochelle S

    2015-04-01

    This research explores auditory short-term memory (STM) capacity for non-linguistic sounds in 10-month-old infants. Infants were presented with auditory streams composed of repeating sequences of either 2 or 4 unique instruments (e.g., flute, piano, cello; 350 or 700 ms in duration) followed by a 500-ms retention interval. These instrument sequences either stayed the same for every repetition (Constant) or changed by 1 instrument per sequence (Varying). Using the head-turn preference procedure, infant listening durations were recorded for each stream type (2- or 4-instrument sequences composed of 350- or 700-ms notes). Preference for the Varying stream was taken as evidence of auditory STM because detection of the novel instrument required memory for all of the instruments in a given sequence. Results demonstrate that infants listened longer to Varying streams for 2-instrument sequences, but not 4-instrument sequences, composed of 350-ms notes (Experiment 1), although this effect did not hold when note durations were increased to 700 ms (Experiment 2). Experiment 3 replicates and extends results from Experiments 1 and 2 and provides support for a duration account of capacity limits in infant auditory STM. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Temporal processing and long-latency auditory evoked potential in stutterers.

    Science.gov (United States)

    Prestes, Raquel; de Andrade, Adriana Neves; Santos, Renata Beatriz Fernandes; Marangoni, Andrea Tortosa; Schiefer, Ana Maria; Gil, Daniela

    Stuttering is a speech fluency disorder, and may be associated with neuroaudiological factors linked to central auditory processing, including changes in auditory processing skills and temporal resolution. To characterize the temporal processing and long-latency auditory evoked potential in stutterers and to compare them with non-stutterers. The study included 41 right-handed subjects, aged 18-46 years, divided into two groups: stutterers (n=20) and non-stutters (n=21), compared according to age, education, and sex. All subjects were submitted to the duration pattern tests, random gap detection test, and long-latency auditory evoked potential. Individuals who stutter showed poorer performance on Duration Pattern and Random Gap Detection tests when compared with fluent individuals. In the long-latency auditory evoked potential, there was a difference in the latency of N2 and P3 components; stutterers had higher latency values. Stutterers have poor performance in temporal processing and higher latency values for N2 and P3 components. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  10. Temporal processing and long-latency auditory evoked potential in stutterers

    Directory of Open Access Journals (Sweden)

    Raquel Prestes

    Full Text Available Abstract Introduction: Stuttering is a speech fluency disorder, and may be associated with neuroaudiological factors linked to central auditory processing, including changes in auditory processing skills and temporal resolution. Objective: To characterize the temporal processing and long-latency auditory evoked potential in stutterers and to compare them with non-stutterers. Methods: The study included 41 right-handed subjects, aged 18-46 years, divided into two groups: stutterers (n = 20 and non-stutters (n = 21, compared according to age, education, and sex. All subjects were submitted to the duration pattern tests, random gap detection test, and long-latency auditory evoked potential. Results: Individuals who stutter showed poorer performance on Duration Pattern and Random Gap Detection tests when compared with fluent individuals. In the long-latency auditory evoked potential, there was a difference in the latency of N2 and P3 components; stutterers had higher latency values. Conclusion: Stutterers have poor performance in temporal processing and higher latency values for N2 and P3 components.

  11. Posterior microphthalmos pigmentary retinopathy syndrome.

    Science.gov (United States)

    Pehere, Niranjan; Jalali, Subhadra; Deshmukh, Himanshu; Kannabiran, Chitra

    2011-04-01

    Posterior Microphthalmos Pigmentary Retinopathy Syndrome (PMPRS). Posterior microphthalmos (PM) is a relatively infrequent type of microphthalmos where posterior segment is predominantly affected with normal anterior segment measurements. Herein, we report two siblings with posterior microphthalmos retinopathy syndrome with postulated autosomal recessive mode of inheritance. A 13-year-old child had PM and retinitis pigmentosa (RP) and his 7-year-old sister had PM, RP, and foveoschisis. The genetics of this syndrome and variable phenotype is discussed. Importance of being aware of posterior microphthalmos and its posterior segment associations is highlighted.

  12. Molecular Genetics of Pigment Dispersion Syndrome and Pigmentary Glaucoma: New Insights into Mechanisms

    Directory of Open Access Journals (Sweden)

    Adrian A. Lahola-Chomiak

    2018-01-01

    Full Text Available We explore the ideas and advances surrounding the genetic basis of pigment dispersion syndrome (PDS and pigmentary glaucoma (PG. As PG is the leading cause of nontraumatic blindness in young adults and current tailored interventions have proven ineffective, a better understanding of the underlying causes of PDS, PG, and their relationship is essential. Despite PDS being a subclinical disease, a large proportion of patients progress to PG with associated vision loss. Decades of research have supported a genetic component both for PDS and conversion to PG. We review the body of evidence supporting a genetic basis in humans and animal models and reevaluate classical mechanisms of PDS/PG considering this new evidence.

  13. Molecular Genetics of Pigment Dispersion Syndrome and Pigmentary Glaucoma: New Insights into Mechanisms.

    Science.gov (United States)

    Lahola-Chomiak, Adrian A; Walter, Michael A

    2018-01-01

    We explore the ideas and advances surrounding the genetic basis of pigment dispersion syndrome (PDS) and pigmentary glaucoma (PG). As PG is the leading cause of nontraumatic blindness in young adults and current tailored interventions have proven ineffective, a better understanding of the underlying causes of PDS, PG, and their relationship is essential. Despite PDS being a subclinical disease, a large proportion of patients progress to PG with associated vision loss. Decades of research have supported a genetic component both for PDS and conversion to PG. We review the body of evidence supporting a genetic basis in humans and animal models and reevaluate classical mechanisms of PDS/PG considering this new evidence.

  14. Suicidality and hospitalisation in patients with borderline personality disorder who experience auditory verbal hallucinations

    NARCIS (Netherlands)

    Slotema, C. W.; Niemantsverdriet, Ellis; Blom, J. D.; van der Gaag, M.; Hoek, H. W.; Sommer, I. E. C.

    Background: In patients with borderline personality disorder (BPD), about 22-50% experience auditory verbal hallucinations (AVH). However, the impact of these hallucinations on suicidal ideation, suicide attempts, crisis-service interventions, and hospital admissions is unknown. Methods: In a

  15. A eficácia do treinamento auditivo formal em indivíduos com transtorno de processamento auditivo Formal auditory training efficacy in individuals with auditory processing disorder

    Directory of Open Access Journals (Sweden)

    Tatiane Eisencraft Zalcman

    2007-12-01

    Full Text Available OBJETIVO: Verificar a eficácia de um programa de Treinamento Auditivo comparando o desempenho inicial, nos testes comportamentais, com o desempenho após o treinamento auditivo aplicado em indivíduos com Transtorno de Processamento Auditivo. MÉTODOS: Participaram do estudo 30 sujeitos com idades entre oito e 16 anos, que passaram por uma avaliação comportamental inicial do processamento auditivo em que foram utilizados dois testes monóticos e dois dicóticos. Posteriormente foram submetidos a um programa de treinamento de auditivo durante oito semanas, a fim de reabilitar as habilidades auditivas encontradas alteradas na avaliação inicial do processamento auditivo e por fim passaram por uma nova avaliação comportamental do processamento auditivo. RESULTADOS: Após o treinamento auditivo houve melhora em todos os testes aplicados. No teste PSI, pré-treinamento auditivo, as crianças, as crianças tinham uma média de acerto de 66,8% que passou para 86,2% após o treinamento auditivo. No teste de fala com ruído, as crianças tinham uma média de acerto de 69,3% pré-treinamento auditivo que passou a ser 80,5% pós-treinamento auditivo. No teste DNV, a média de acerto pré-treinamento auditivo era de 72,6% e passou a ser 91,4%. Finalmente, no teste SSW a treinamento auditivo média de acerto era de 42,2% pré-treinamento auditivo e passou a ser 88,9% pós. CONCLUSÃO: O programa de treinamento auditivo utilizado foi eficaz na reabilitação das habilidades auditivas encontradas alteradas nas crianças com Transtorno de Processamento Auditivo.PURPOSE: To assess the effectiveness of the Auditory Training comparing the performance in the behavioral tests before and after auditory training in individuals with Auditory Processing Disorders. METHODS: Thirty individuals with ages ranging from eight to 16 years were submitted to an auditory processing evaluation, which consisted of two monotic and two dichotic tests. After that, the

  16. Functional MR imaging of cerebral auditory cortex with linguistic and non-linguistic stimulation: preliminary study

    International Nuclear Information System (INIS)

    Kang, Su Jin; Kim, Jae Hyoung; Shin, Tae Min

    1999-01-01

    To obtain preliminary data for understanding the central auditory neural pathway by means of functional MR imaging (fMRI) of the cerebral auditory cortex during linguistic and non-linguistic auditory stimulation. In three right-handed volunteers we conducted fMRI of auditory cortex stimulation at 1.5 T using a conventional gradient-echo technique (TR/TE/flip angle: 80/60/40 deg). Using a pulsed tone of 1000 Hz and speech as non-linguistic and linguistic auditory stimuli, respectively, images-including those of the superior temporal gyrus of both hemispheres-were obtained in sagittal plases. Both stimuli were separately delivered binaurally or monoaurally through a plastic earphone. Images were activated by processing with homemade software. In order to analyze patterns of auditory cortex activation according to type of stimulus and which side of the ear was stimulated, the number and extent of activated pixels were compared between both temporal lobes. Biaural stimulation led to bilateral activation of the superior temporal gyrus, while monoaural stimulation led to more activation in the contralateral temporal lobe than in the ipsilateral. A trend toward slight activation of the left (dominant) temporal lobe in ipsilateral stimulation, particularly with a linguistic stimulus, was observed. During both biaural and monoaural stimulation, a linguistic stimulus produced more widespread activation than did a non-linguistic one. The superior temporal gyri of both temporal lobes are associated with acoustic-phonetic analysis, and the left (dominant) superior temporal gyrus is likely to play a dominant role in this processing. For better understanding of physiological and pathological central auditory pathways, further investigation is needed

  17. Pigmented skin disorders: Evaluation and treatment

    NARCIS (Netherlands)

    Kroon, M.W.

    2015-01-01

    Pigmentary disorders are disturbances of human skin color. Minor changes in the cellular physiology of the skin can dramatically affect pigment production in positive or negative manner. In this these, associated diseases, therapeutical options and disease parameters for the pigmentation disorder

  18. The Impacts of Language Background and Language-Related Disorders in Auditory Processing Assessment

    Science.gov (United States)

    Loo, Jenny Hooi Yin; Bamiou, Doris-Eva; Rosen, Stuart

    2013-01-01

    Purpose: To examine the impact of language background and language-related disorders (LRDs--dyslexia and/or language impairment) on performance in English speech and nonspeech tests of auditory processing (AP) commonly used in the clinic. Method: A clinical database concerning 133 multilingual children (mostly with English as an additional…

  19. Short-Term Memory and Auditory Processing Disorders: Concurrent Validity and Clinical Diagnostic Markers

    Science.gov (United States)

    Maerlender, Arthur

    2010-01-01

    Auditory processing disorders (APDs) are of interest to educators and clinicians, as they impact school functioning. Little work has been completed to demonstrate how children with APDs perform on clinical tests. In a series of studies, standard clinical (psychometric) tests from the Wechsler Intelligence Scale for Children, Fourth Edition…

  20. Large cross-sectional study of presbycusis reveals rapid progressive decline in auditory temporal acuity.

    Science.gov (United States)

    Ozmeral, Erol J; Eddins, Ann C; Frisina, D Robert; Eddins, David A

    2016-07-01

    The auditory system relies on extraordinarily precise timing cues for the accurate perception of speech, music, and object identification. Epidemiological research has documented the age-related progressive decline in hearing sensitivity that is known to be a major health concern for the elderly. Although smaller investigations indicate that auditory temporal processing also declines with age, such measures have not been included in larger studies. Temporal gap detection thresholds (TGDTs; an index of auditory temporal resolution) measured in 1071 listeners (aged 18-98 years) were shown to decline at a minimum rate of 1.05 ms (15%) per decade. Age was a significant predictor of TGDT when controlling for audibility (partial correlation) and when restricting analyses to persons with normal-hearing sensitivity (n = 434). The TGDTs were significantly better for males (3.5 ms; 51%) than females when averaged across the life span. These results highlight the need for indices of temporal processing in diagnostics, as treatment targets, and as factors in models of aging. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Changes in auditory memory performance following the use of frequency-modulated system in children with suspected auditory processing disorders.

    Science.gov (United States)

    Umat, Cila; Mukari, Siti Z; Ezan, Nurul F; Din, Normah C

    2011-08-01

    To examine the changes in the short-term auditory memory following the use of frequency-modulated (FM) system in children with suspected auditory processing disorders (APDs), and also to compare the advantages of bilateral over unilateral FM fitting. This longitudinal study involved 53 children from Sekolah Kebangsaan Jalan Kuantan 2, Kuala Lumpur, Malaysia who fulfilled the inclusion criteria. The study was conducted from September 2007 to October 2008 in the Department of Audiology and Speech Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia. The children's age was between 7-10 years old, and they were assigned into 3 groups: 15 in the control group (not fitted with FM); 19 in the unilateral; and 19 in the bilateral FM-fitting group. Subjects wore the FM system during school time for 12 weeks. Their working memory (WM), best learning (BL), and retention of information (ROI) were measured using the Rey Auditory Verbal Learning Test at pre-fitting, post (after 12 weeks of FM usage), and at long term (one year after the usage of FM system ended). There were significant differences in the mean WM (p=0.001), BL (p=0.019), and ROI (p=0.005) scores at the different measurement times, in which the mean scores at long-term were consistently higher than at pre-fitting, despite similar performances at the baseline (p>0.05). There was no significant difference in performance between unilateral- and bilateral-fitting groups. The use of FM might give a long-term effect on improving selected short-term auditory memories of some children with suspected APDs. One may not need to use 2 FM receivers to receive advantages on auditory memory performance.

  2. Interaction of language, auditory and memory brain networks in auditory verbal hallucinations

    NARCIS (Netherlands)

    Curcic-Blake, Branislava; Ford, Judith M.; Hubl, Daniela; Orlov, Natasza D.; Sommer, Iris E.; Waters, Flavie; Allen, Paul; Jardri, Renaud; Woodruff, Peter W.; David, Olivier; Mulert, Christoph; Woodward, Todd S.; Aleman, Andre

    Auditory verbal hallucinations (AVH) occur in psychotic disorders, but also as a symptom of other conditions and even in healthy people. Several current theories on the origin of AVH converge, with neuroimaging studies suggesting that the language, auditory and memory/limbic networks are of

  3. Age effects and normative data on a Dutch test battery for auditory processing disorders.

    NARCIS (Netherlands)

    Neijenhuis, C.A.M.; Snik, A.F.M.; Priester, G.; Kordenoordt, S. van; Broek, P. van den

    2002-01-01

    A test battery compiled to diagnose auditory processing disorders (APDs) in an adult population was used on a population of 9-16-year-old children. The battery consisted of eight tests (words -in noise, filtered speech, binaural fusion, dichotic digits, frequency and duration patterns, backward

  4. Beneficial auditory and cognitive effects of auditory brainstem implantation in children.

    Science.gov (United States)

    Colletti, Liliana

    2007-09-01

    This preliminary study demonstrates the development of hearing ability and shows that there is a significant improvement in some cognitive parameters related to selective visual/spatial attention and to fluid or multisensory reasoning, in children fitted with auditory brainstem implantation (ABI). The improvement in cognitive paramenters is due to several factors, among which there is certainly, as demonstrated in the literature on a cochlear implants (CIs), the activation of the auditory sensory canal, which was previously absent. The findings of the present study indicate that children with cochlear or cochlear nerve abnormalities with associated cognitive deficits should not be excluded from ABI implantation. The indications for ABI have been extended over the last 10 years to adults with non-tumoral (NT) cochlear or cochlear nerve abnormalities that cannot benefit from CI. We demonstrated that the ABI with surface electrodes may provide sufficient stimulation of the central auditory system in adults for open set speech recognition. These favourable results motivated us to extend ABI indications to children with profound hearing loss who were not candidates for a CI. This study investigated the performances of young deaf children undergoing ABI, in terms of their auditory perceptual development and their non-verbal cognitive abilities. In our department from 2000 to 2006, 24 children aged 14 months to 16 years received an ABI for different tumour and non-tumour diseases. Two children had NF2 tumours. Eighteen children had bilateral cochlear nerve aplasia. In this group, nine children had associated cochlear malformations, two had unilateral facial nerve agenesia and two had combined microtia, aural atresia and middle ear malformations. Four of these children had previously been fitted elsewhere with a CI with no auditory results. One child had bilateral incomplete cochlear partition (type II); one child, who had previously been fitted unsuccessfully elsewhere

  5. Psychometric properties of Persian version of the Sustained Auditory Attention Capacity Test in children with attention deficit-hyperactivity disorder.

    Science.gov (United States)

    Soltanparast, Sanaz; Jafari, Zahra; Sameni, Seyed Jalal; Salehi, Masoud

    2014-01-01

    The purpose of the present study was to evaluate the psychometric properties (validity and reliability) of the Persian version of the Sustained Auditory Attention Capacity Test in children with attention deficit hyperactivity disorder. The Persian version of the Sustained Auditory Attention Capacity Test was constructed to assess sustained auditory attention using the method provided by Feniman and colleagues (2007). In this test, comments were provided to assess the child's attentional deficit by determining inattention and impulsiveness error, the total scores of the sustained auditory attention capacity test and attention span reduction index. In the present study for determining the validity and reliability of in both Rey Auditory Verbal Learning test and the Persian version of the Sustained Auditory Attention Capacity Test (SAACT), 46 normal children and 41 children with Attention Deficit Hyperactivity (ADHD), all right-handed and aged between 7 and 11 of both genders, were evaluated. In determining convergent validity, a negative significant correlation was found between the three parts of the Rey Auditory Verbal Learning test (first, fifth, and immediate recall) and all indicators of the SAACT except attention span reduction. By comparing the test scores between the normal and ADHD groups, discriminant validity analysis showed significant differences in all indicators of the test except for attention span reduction (pAttention Capacity test has good validity and reliability, that matches other reliable tests, and it can be used for the identification of children with attention deficits and if they suspected to have Attention Deficit Hyperactivity Disorder.

  6. Non-verbal auditory cognition in patients with temporal epilepsy before and after anterior temporal lobectomy

    Directory of Open Access Journals (Sweden)

    Aurélie Bidet-Caulet

    2009-11-01

    Full Text Available For patients with pharmaco-resistant temporal epilepsy, unilateral anterior temporal lobectomy (ATL - i.e. the surgical resection of the hippocampus, the amygdala, the temporal pole and the most anterior part of the temporal gyri - is an efficient treatment. There is growing evidence that anterior regions of the temporal lobe are involved in the integration and short-term memorization of object-related sound properties. However, non-verbal auditory processing in patients with temporal lobe epilepsy (TLE has raised little attention. To assess non-verbal auditory cognition in patients with temporal epilepsy both before and after unilateral ATL, we developed a set of non-verbal auditory tests, including environmental sounds. We could evaluate auditory semantic identification, acoustic and object-related short-term memory, and sound extraction from a sound mixture. The performances of 26 TLE patients before and/or after ATL were compared to those of 18 healthy subjects. Patients before and after ATL were found to present with similar deficits in pitch retention, and in identification and short-term memorisation of environmental sounds, whereas not being impaired in basic acoustic processing compared to healthy subjects. It is most likely that the deficits observed before and after ATL are related to epileptic neuropathological processes. Therefore, in patients with drug-resistant TLE, ATL seems to significantly improve seizure control without producing additional auditory deficits.

  7. Non-auditory effects of noise in industry. V. A field study in a shipyard

    NARCIS (Netherlands)

    van Dijk, F. J.; Verbeek, J. H.; de Fries, F. F.

    1987-01-01

    Workers of a shipbuilding and a machine shop department of a shipyard, with average noise levels of 98 dB(A) and 85.5 dB(A) respectively, were compared with respect to auditory and non-auditory effects. The distribution of years of noise exposure and of age was similar in both departments. No

  8. Auditory agnosia due to long-term severe hydrocephalus caused by spina bifida - specific auditory pathway versus nonspecific auditory pathway.

    Science.gov (United States)

    Zhang, Qing; Kaga, Kimitaka; Hayashi, Akimasa

    2011-07-01

    A 27-year-old female showed auditory agnosia after long-term severe hydrocephalus due to congenital spina bifida. After years of hydrocephalus, she gradually suffered from hearing loss in her right ear at 19 years of age, followed by her left ear. During the time when she retained some ability to hear, she experienced severe difficulty in distinguishing verbal, environmental, and musical instrumental sounds. However, her auditory brainstem response and distortion product otoacoustic emissions were largely intact in the left ear. Her bilateral auditory cortices were preserved, as shown by neuroimaging, whereas her auditory radiations were severely damaged owing to progressive hydrocephalus. Although she had a complete bilateral hearing loss, she felt great pleasure when exposed to music. After years of self-training to read lips, she regained fluent ability to communicate. Clinical manifestations of this patient indicate that auditory agnosia can occur after long-term hydrocephalus due to spina bifida; the secondary auditory pathway may play a role in both auditory perception and hearing rehabilitation.

  9. Treinamento auditivo para transtorno do processamento auditivo: uma proposta de intervenção terapêutica Auditory training for auditory processing disorder: a proposal for therapeutic intervention

    Directory of Open Access Journals (Sweden)

    Alessandra Giannella Samelli

    2010-04-01

    Full Text Available OBJETIVO: verificar a eficácia de um programa informal de treinamento auditivo específico para transtornos do Processamento Auditivo, em um grupo de pacientes com esta alteração, por meio da comparação de pré e pós-testes. MÉTODOS: participaram deste estudo 10 indivíduos de ambos os sexos, da faixa etária entre sete e 20 anos. Todos realizaram avaliação audiológica completa e do processamento auditivo (testes: Fala com Ruído, Sttagered Spondaic Word - SSW, Dicótico de Dígitos, Padrão de Frequência. Após 10 sessões individuais de treinamento auditivo, nas quais foram trabalhadas diretamente as habilidades auditivas alteradas, a avaliação do processamento auditivo foi refeita. RESULTADOS: as porcentagens médias de acertos nas situações pré e pós-treinamento auditivo demonstraram diferenças estatisticamente significantes em todos os testes realizados. CONCLUSÃO: o programa de treinamento auditivo informal empregado mostrou-se eficaz em um grupo de pacientes com transtorno do processamento auditivo, uma vez que determinou diferença estatisticamente significante entre o desempenho pré e pós-testes na avaliação do processamento auditivo, indicando melhora das habilidades auditivas alteradas.PURPOSE: to check the auditory training efficacy in patients with (central auditory processing disorder, by comparing pre and post results. METHODS: ten male and female subjects, from 7 to 20-year old, took part in this study. All participants were submitted to audiological and (central auditory processing evaluations, which included Speech Recognition under in Noise, Staggered Spondaic Word, Dichotic Digits and Frequency Pattern Discrimination tests. Evaluation was carried out after 10 auditory training sessions. RESULTS: statistical differences were verified comparing pre and post results concerning the mean percentage for all tests. CONCLUSION: the informal auditory training program used showed to be efficient for patients with

  10. Judging the urgency of non-verbal auditory alarms: a case study.

    Science.gov (United States)

    Arrabito, G Robert; Mondor, Todd; Kent, Kimberley

    2004-06-22

    When designed correctly, non-verbal auditory alarms can convey different levels of urgency to the aircrew, and thereby permit the operator to establish the appropriate level of priority to address the alarmed condition. The conveyed level of urgency of five non-verbal auditory alarms presently used in the Canadian Forces CH-146 Griffon helicopter was investigated. Pilots of the CH-146 Griffon helicopter and non-pilots rated the perceived urgency of the signals using a rating scale. The pilots also ranked the urgency of the alarms in a post-experiment questionnaire to reflect their assessment of the actual situation that triggers the alarms. The results of this investigation revealed that participants' ratings of perceived urgency appear to be based on the acoustic properties of the alarms which are known to affect the listener's perceived level of urgency. Although for 28% of the pilots the mapping of perceived urgency to the urgency of their perception of the triggering situation was statistically significant for three of the five alarms, the overall data suggest that the triggering situations are not adequately conveyed by the acoustic parameters inherent in the alarms. The pilots' judgement of the triggering situation was intended as a means of evaluating the reliability of the alerting system. These data will subsequently be discussed with respect to proposed enhancements in alerting systems as it relates to addressing the problem of phase of flight. These results call for more serious consideration of incorporating situational awareness in the design and assignment of auditory alarms in aircraft.

  11. Examination of the Relation between an Assessment of Skills and Performance on Auditory-Visual Conditional Discriminations for Children with Autism Spectrum Disorder

    Science.gov (United States)

    Kodak, Tiffany; Clements, Andrea; Paden, Amber R.; LeBlanc, Brittany; Mintz, Joslyn; Toussaint, Karen A.

    2015-01-01

    The current investigation evaluated repertoires that may be related to performance on auditory-to-visual conditional discrimination training with 9 students who had been diagnosed with autism spectrum disorder. The skills included in the assessment were matching, imitation, scanning, an auditory discrimination, and a visual discrimination. The…

  12. Left auditory cortex gamma synchronization and auditory hallucination symptoms in schizophrenia

    Directory of Open Access Journals (Sweden)

    Shenton Martha E

    2009-07-01

    Full Text Available Abstract Background Oscillatory electroencephalogram (EEG abnormalities may reflect neural circuit dysfunction in neuropsychiatric disorders. Previously we have found positive correlations between the phase synchronization of beta and gamma oscillations and hallucination symptoms in schizophrenia patients. These findings suggest that the propensity for hallucinations is associated with an increased tendency for neural circuits in sensory cortex to enter states of oscillatory synchrony. Here we tested this hypothesis by examining whether the 40 Hz auditory steady-state response (ASSR generated in the left primary auditory cortex is positively correlated with auditory hallucination symptoms in schizophrenia. We also examined whether the 40 Hz ASSR deficit in schizophrenia was associated with cross-frequency interactions. Sixteen healthy control subjects (HC and 18 chronic schizophrenia patients (SZ listened to 40 Hz binaural click trains. The EEG was recorded from 60 electrodes and average-referenced offline. A 5-dipole model was fit from the HC grand average ASSR, with 2 pairs of superior temporal dipoles and a deep midline dipole. Time-frequency decomposition was performed on the scalp EEG and source data. Results Phase locking factor (PLF and evoked power were reduced in SZ at fronto-central electrodes, replicating prior findings. PLF was reduced in SZ for non-homologous right and left hemisphere sources. Left hemisphere source PLF in SZ was positively correlated with auditory hallucination symptoms, and was modulated by delta phase. Furthermore, the correlations between source evoked power and PLF found in HC was reduced in SZ for the LH sources. Conclusion These findings suggest that differential neural circuit abnormalities may be present in the left and right auditory cortices in schizophrenia. In addition, they provide further support for the hypothesis that hallucinations are related to cortical hyperexcitability, which is manifested by

  13. The role of the speech-language pathologist in identifying and treating children with auditory processing disorder.

    Science.gov (United States)

    Richard, Gail J

    2011-07-01

    A summary of issues regarding auditory processing disorder (APD) is presented, including some of the remaining questions and challenges raised by the articles included in the clinical forum. Evolution of APD as a diagnostic entity within audiology and speech-language pathology is reviewed. A summary of treatment efficacy results and issues is provided, as well as the continuing dilemma for speech-language pathologists (SLPs) charged with providing treatment for referred APD clients. The role of the SLP in diagnosing and treating APD remains under discussion, despite lack of efficacy data supporting auditory intervention and questions regarding the clinical relevance and validity of APD.

  14. Multiple benefits of personal FM system use by children with auditory processing disorder (APD).

    Science.gov (United States)

    Johnston, Kristin N; John, Andrew B; Kreisman, Nicole V; Hall, James W; Crandell, Carl C

    2009-01-01

    Children with auditory processing disorders (APD) were fitted with Phonak EduLink FM devices for home and classroom use. Baseline measures of the children with APD, prior to FM use, documented significantly lower speech-perception scores, evidence of decreased academic performance, and psychosocial problems in comparison to an age- and gender-matched control group. Repeated measures during the school year demonstrated speech-perception improvement in noisy classroom environments as well as significant academic and psychosocial benefits. Compared with the control group, the children with APD showed greater speech-perception advantage with FM technology. Notably, after prolonged FM use, even unaided (no FM device) speech-perception performance was improved in the children with APD, suggesting the possibility of fundamentally enhanced auditory system function.

  15. Multimodal Diffusion-MRI and MEG Assessment of Auditory and Language System Development in Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Jeffrey I Berman

    2016-03-01

    Full Text Available Background: Auditory processing and language impairments are prominent in children with autism spectrum disorder (ASD. The present study integrated diffusion MR measures of white-matter microstructure and magnetoencephalography (MEG measures of cortical dynamics to investigate associations between brain structure and function within auditory and language systems in ASD. Based on previous findings, abnormal structure-function relationships in auditory and language systems in ASD were hypothesized. Methods: Evaluable neuroimaging data was obtained from 44 typically developing (TD children (mean age 10.4±2.4years and 95 children with ASD (mean age 10.2±2.6years. Diffusion MR tractography was used to delineate and quantitatively assess the auditory radiation and arcuate fasciculus segments of the auditory and language systems. MEG was used to measure (1 superior temporal gyrus auditory evoked M100 latency in response to pure-tone stimuli as an indicator of auditory system conduction velocity, and (2 auditory vowel-contrast mismatch field (MMF latency as a passive probe of early linguistic processes. Results: Atypical development of white matter and cortical function, along with atypical lateralization, were present in ASD. In both auditory and language systems, white matter integrity and cortical electrophysiology were found to be coupled in typically developing children, with white matter microstructural features contributing significantly to electrophysiological response latencies. However, in ASD, we observed uncoupled structure-function relationships in both auditory and language systems. Regression analyses in ASD indicated that factors other than white-matter microstructure additionally contribute to the latency of neural evoked responses and ultimately behavior. Results also indicated that whereas delayed M100 is a marker for ASD severity, MMF delay is more associated with language impairment. Conclusion: Present findings suggest atypical

  16. Auditory Verbal Experience and Agency in Waking, Sleep Onset, REM, and Non-REM Sleep.

    Science.gov (United States)

    Speth, Jana; Harley, Trevor A; Speth, Clemens

    2017-04-01

    We present one of the first quantitative studies on auditory verbal experiences ("hearing voices") and auditory verbal agency (inner speech, and specifically "talking to (imaginary) voices or characters") in healthy participants across states of consciousness. Tools of quantitative linguistic analysis were used to measure participants' implicit knowledge of auditory verbal experiences (VE) and auditory verbal agencies (VA), displayed in mentation reports from four different states. Analysis was conducted on a total of 569 mentation reports from rapid eye movement (REM) sleep, non-REM sleep, sleep onset, and waking. Physiology was controlled with the nightcap sleep-wake mentation monitoring system. Sleep-onset hallucinations, traditionally at the focus of scientific attention on auditory verbal hallucinations, showed the lowest degree of VE and VA, whereas REM sleep showed the highest degrees. Degrees of different linguistic-pragmatic aspects of VE and VA likewise depend on the physiological states. The quantity and pragmatics of VE and VA are a function of the physiologically distinct state of consciousness in which they are conceived. Copyright © 2016 Cognitive Science Society, Inc.

  17. The Role of Transforming Growth Factor Beta-1 in the Progression of HIV/AIDS and Development of Non-AIDS-Defining Fibrotic Disorders

    Directory of Open Access Journals (Sweden)

    Annette J. Theron

    2017-11-01

    Full Text Available Even after attainment of sustained viral suppression following implementation of highly active antiretroviral therapy, HIV-infected persons continue to experience persistent, low-grade, systemic inflammation. Among other mechanisms, this appears to result from ongoing microbial translocation from a damaged gastrointestinal tract. This HIV-related chronic inflammatory response is paralleled by counteracting, but only partially effective, biological anti-inflammatory processes. Paradoxically, however, this anti-inflammatory response not only exacerbates immunosuppression but also predisposes for development of non-AIDS-related, non-communicable disorders. With respect to the pathogenesis of both sustained immunosuppression and the increased frequency of non-AIDS-related disorders, the anti-inflammatory/profibrotic cytokine, transforming growth factor-β1 (TGF-β1, which remains persistently elevated in both untreated and virally suppressed HIV-infected persons, may provide a common link. In this context, the current review is focused on two different, albeit related, harmful activities of TGF-β1 in HIV infection. First, on the spectrum of anti-inflammatory/immunosuppressive activities of TGF-β1 and the involvement of this cytokine, derived predominantly from T regulatory cells, in driving disease progression in HIV-infected persons via both non-fibrotic and profibrotic mechanisms. Second, the possible involvement of sustained elevations in circulating and tissue TGF-β1 in the pathogenesis of non-AIDS-defining cardiovascular, hepatic, pulmonary and renal disorders, together with a brief comment on potential TGF-β1-targeted therapeutic strategies.

  18. A European Perspective on Auditory Processing Disorder-Current Knowledge and Future Research Focus

    DEFF Research Database (Denmark)

    IIiadou, Vasiliki; Ptok, Martin; Grech, Helen

    2017-01-01

    Current notions of "hearing impairment," as reflected in clinical audiological practice, do not acknowledge the needs of individuals who have normal hearing pure tone sensitivity but who experience auditory processing difficulties in everyday life that are indexed by reduced performance in other...... of diseases as H93.25 and in the forthcoming beta eleventh version. APDs may have detrimental effects on the affected individual, with low esteem, anxiety, and depression, and symptoms may remain into adulthood. These disorders may interfere with learning per se and with communication, social, emotional......, and academic-work aspects of life. The objective of the present paper is to define a baseline European APD consensus formulated by experienced clinicians and researchers in this specific field of human auditory science. A secondary aim is to identify issues that future research needs to address in order...

  19. Silent music reading: auditory imagery and visuotonal modality transfer in singers and non-singers.

    Science.gov (United States)

    Hoppe, Christian; Splittstößer, Christoph; Fliessbach, Klaus; Trautner, Peter; Elger, Christian E; Weber, Bernd

    2014-11-01

    In daily life, responses are often facilitated by anticipatory imagery of expected targets which are announced by associated stimuli from different sensory modalities. Silent music reading represents an intriguing case of visuotonal modality transfer in working memory as it induces highly defined auditory imagery on the basis of presented visuospatial information (i.e. musical notes). Using functional MRI and a delayed sequence matching-to-sample paradigm, we compared brain activations during retention intervals (10s) of visual (VV) or tonal (TT) unimodal maintenance versus visuospatial-to-tonal modality transfer (VT) tasks. Visual or tonal sequences were comprised of six elements, white squares or tones, which were low, middle, or high regarding vertical screen position or pitch, respectively (presentation duration: 1.5s). For the cross-modal condition (VT, session 3), the visuospatial elements from condition VV (session 1) were re-defined as low, middle or high "notes" indicating low, middle or high tones from condition TT (session 2), respectively, and subjects had to match tonal sequences (probe) to previously presented note sequences. Tasks alternately had low or high cognitive load. To evaluate possible effects of music reading expertise, 15 singers and 15 non-musicians were included. Scanner task performance was excellent in both groups. Despite identity of applied visuospatial stimuli, visuotonal modality transfer versus visual maintenance (VT>VV) induced "inhibition" of visual brain areas and activation of primary and higher auditory brain areas which exceeded auditory activation elicited by tonal stimulation (VT>TT). This transfer-related visual-to-auditory activation shift occurred in both groups but was more pronounced in experts. Frontoparietal areas were activated by higher cognitive load but not by modality transfer. The auditory brain showed a potential to anticipate expected auditory target stimuli on the basis of non-auditory information and

  20. Acquired retinal pigmentary degeneration in a child with 13q deletion syndrome.

    Science.gov (United States)

    Aguilera, Zenia P; Belin, Peter J; Cavuoto, Kara M; Jayakar, Parul; McKeown, Craig A

    2015-10-01

    Orbeli syndrome, or 13q deletion syndrome, is a rare condition caused by a distal deletion in the long arm of chromosome 13. The syndrome is characterized by severe physical malformations and developmental delays and has been associated with numerous ocular manifestations. We report the case of a 10-year-old boy with 13q deletion syndrome, who was evaluated for impaired vision and found to have bilateral retinal pigmentary changes resembling those seen in retinitis pigmentosa. There has only been one other case of retinal pigment variation in association with 13q deletion syndrome; however, this represents the first case of bilateral symmetric retinal pigmentary changes with corresponding rod and cone dysfunction on electroretinography. Copyright © 2015 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  1. Auditory agnosia.

    Science.gov (United States)

    Slevc, L Robert; Shell, Alison R

    2015-01-01

    Auditory agnosia refers to impairments in sound perception and identification despite intact hearing, cognitive functioning, and language abilities (reading, writing, and speaking). Auditory agnosia can be general, affecting all types of sound perception, or can be (relatively) specific to a particular domain. Verbal auditory agnosia (also known as (pure) word deafness) refers to deficits specific to speech processing, environmental sound agnosia refers to difficulties confined to non-speech environmental sounds, and amusia refers to deficits confined to music. These deficits can be apperceptive, affecting basic perceptual processes, or associative, affecting the relation of a perceived auditory object to its meaning. This chapter discusses what is known about the behavioral symptoms and lesion correlates of these different types of auditory agnosia (focusing especially on verbal auditory agnosia), evidence for the role of a rapid temporal processing deficit in some aspects of auditory agnosia, and the few attempts to treat the perceptual deficits associated with auditory agnosia. A clear picture of auditory agnosia has been slow to emerge, hampered by the considerable heterogeneity in behavioral deficits, associated brain damage, and variable assessments across cases. Despite this lack of clarity, these striking deficits in complex sound processing continue to inform our understanding of auditory perception and cognition. © 2015 Elsevier B.V. All rights reserved.

  2. Characterization of a Case of Pigmentary Retinopathy in Sanfilippo Syndrome Type IIIA Associated with Compound Heterozygous Mutations in the SGSH Gene.

    Science.gov (United States)

    Wilkin, Justin; Kerr, Natalie C; Byrd, Kathryn W; Ward, Jewell C; Iannaccone, Alessandro

    2016-06-01

    To report longitudinal phenotypic findings in a patient with Sanfilippo syndrome type IIIA, harboring SGSH mutations, one of which is novel. Heparan-N-sulfatidase enzyme function testing in skin fibroblasts and white blood cells and SGSH gene sequencing were obtained. Clinical office examinations, examinations under anesthesia, electroretinogram, spectral domain optical coherence tomography (SD-OCT), and fundus photography were performed over a 5-year period. Fundus examination revealed a progressive breadcrumb-like pigmentary retinopathy with perifoveal pigmentary involvement. SD-OCT showed loss of normal neuroretinal lamination and cystic macular changes responsive to treatment with carbonic anhydrase inhibitors. Electroretinography exhibited complex characteristics indicative of a generalized retinal rod > cone dysfunction with significant ON > OFF postreceptoral response compromise. Sequencing revealed compound heterozygous mutations in the SGSH gene, the novel c.88G > C (p.A30P) change and a second, previously reported one (c.734G > A, p.R245H). We have identified ocular features of a patient with Sanfilippo syndrome type IIIA harboring a novel SGHS mutation that were not previously known to occur in this disease - namely, a progressive retinopathy with distinctive features, cystic macular changes responsive to carbonic anhydrase inhibitors, and complex electroretinographic abnormalities consistent with postreceptoral dysfunction. SD-OCT imaging revealed retinal lamination changes consistent with previously reported histologic studies. Both the SD-OCT and the electroretinogram changes appear attributable to intraretinal deposition of heparan sulfate.

  3. Estimating the attributable fraction for melanoma: a meta-analysis of pigmentary characteristics and freckling.

    Science.gov (United States)

    Olsen, Catherine M; Carroll, Heidi J; Whiteman, David C

    2010-11-15

    Epidemiologic research has demonstrated convincingly that certain pigmentary characteristics are associated with increased relative risks of melanoma; however there has been no comprehensive review to rank these characteristics in order of their importance on a population level. We conducted a systematic review of the literature and meta-analysis to quantify the contribution of pigmentary characteristics to melanoma, estimated by the population-attributable fraction (PAF). Eligible studies were those that permitted quantitative assessment of the association between histologically confirmed melanoma and hair colour, eye colour, skin phototype and presence of freckling; we identified 66 such studies using citation databases, followed by manual review of retrieved references. We calculated summary relative risks using weighted averages of the log RR, taking into account random effects, and used these to estimate the PAF. The pooled RRs for pigmentary characteristics were: 2.64 for red/red-blond, 2.0 for blond and 1.46 for light brown hair colour (vs. dark); 1.57 for blue/blue-grey and 1.51 for green/grey/hazel eye colour (vs. dark); 2.27, 1.99 and 1.35 for skin phototypes I, II and III respectively (vs. IV); and 1.99 for presence of freckling. The highest PAFs were observed for skin phototypes 1/II (0.27), presence of freckling (0.23), and blond hair colour (0.23). For eye colour, the PAF for blue/blue-grey eye colour was higher than for green/grey/hazel eye colour (0.18 vs. 0.13). The PAF of melanoma associated with red hair colour was 0.10. These estimates of melanoma burden attributable to pigmentary characteristics provide a basis for designing prevention strategies for melanoma.

  4. Sensory Symptoms and Processing of Nonverbal Auditory and Visual Stimuli in Children with Autism Spectrum Disorder

    Science.gov (United States)

    Stewart, Claire R.; Sanchez, Sandra S.; Grenesko, Emily L.; Brown, Christine M.; Chen, Colleen P.; Keehn, Brandon; Velasquez, Francisco; Lincoln, Alan J.; Müller, Ralph-Axel

    2016-01-01

    Atypical sensory responses are common in autism spectrum disorder (ASD). While evidence suggests impaired auditory-visual integration for verbal information, findings for nonverbal stimuli are inconsistent. We tested for sensory symptoms in children with ASD (using the Adolescent/Adult Sensory Profile) and examined unisensory and bisensory…

  5. Interaction of language, auditory and memory brain networks in auditory verbal hallucinations.

    Science.gov (United States)

    Ćurčić-Blake, Branislava; Ford, Judith M; Hubl, Daniela; Orlov, Natasza D; Sommer, Iris E; Waters, Flavie; Allen, Paul; Jardri, Renaud; Woodruff, Peter W; David, Olivier; Mulert, Christoph; Woodward, Todd S; Aleman, André

    2017-01-01

    Auditory verbal hallucinations (AVH) occur in psychotic disorders, but also as a symptom of other conditions and even in healthy people. Several current theories on the origin of AVH converge, with neuroimaging studies suggesting that the language, auditory and memory/limbic networks are of particular relevance. However, reconciliation of these theories with experimental evidence is missing. We review 50 studies investigating functional (EEG and fMRI) and anatomic (diffusion tensor imaging) connectivity in these networks, and explore the evidence supporting abnormal connectivity in these networks associated with AVH. We distinguish between functional connectivity during an actual hallucination experience (symptom capture) and functional connectivity during either the resting state or a task comparing individuals who hallucinate with those who do not (symptom association studies). Symptom capture studies clearly reveal a pattern of increased coupling among the auditory, language and striatal regions. Anatomical and symptom association functional studies suggest that the interhemispheric connectivity between posterior auditory regions may depend on the phase of illness, with increases in non-psychotic individuals and first episode patients and decreases in chronic patients. Leading hypotheses involving concepts as unstable memories, source monitoring, top-down attention, and hybrid models of hallucinations are supported in part by the published connectivity data, although several caveats and inconsistencies remain. Specifically, possible changes in fronto-temporal connectivity are still under debate. Precise hypotheses concerning the directionality of connections deduced from current theoretical approaches should be tested using experimental approaches that allow for discrimination of competing hypotheses. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Non-human Primate Models for Brain Disorders - Towards Genetic Manipulations via Innovative Technology.

    Science.gov (United States)

    Qiu, Zilong; Li, Xiao

    2017-04-01

    Modeling brain disorders has always been one of the key tasks in neurobiological studies. A wide range of organisms including worms, fruit flies, zebrafish, and rodents have been used for modeling brain disorders. However, whether complicated neurological and psychiatric symptoms can be faithfully mimicked in animals is still debatable. In this review, we discuss key findings using non-human primates to address the neural mechanisms underlying stress and anxiety behaviors, as well as technical advances for establishing genetically-engineered non-human primate models of autism spectrum disorders and other disorders. Considering the close evolutionary connections and similarity of brain structures between non-human primates and humans, together with the rapid progress in genome-editing technology, non-human primates will be indispensable for pathophysiological studies and exploring potential therapeutic methods for treating brain disorders.

  7. It Is Time to Rethink Central Auditory Processing Disorder Protocols for School-Aged Children.

    Science.gov (United States)

    DeBonis, David A

    2015-06-01

    The purpose of this article is to review the literature that pertains to ongoing concerns regarding the central auditory processing construct among school-aged children and to assess whether the degree of uncertainty surrounding central auditory processing disorder (CAPD) warrants a change in current protocols. Methodology on this topic included a review of relevant and recent literature through electronic search tools (e.g., ComDisDome, PsycINFO, Medline, and Cochrane databases); published texts; as well as published articles from the Journal of the American Academy of Audiology; the American Journal of Audiology; the Journal of Speech, Language, and Hearing Research; and Language, Speech, and Hearing Services in Schools. This review revealed strong support for the following: (a) Current testing of CAPD is highly influenced by nonauditory factors, including memory, attention, language, and executive function; (b) the lack of agreement regarding the performance criteria for diagnosis is concerning; (c) the contribution of auditory processing abilities to language, reading, and academic and listening abilities, as assessed by current measures, is not significant; and (d) the effectiveness of auditory interventions for improving communication abilities has not been established. Routine use of CAPD test protocols cannot be supported, and strong consideration should be given to redirecting focus on assessing overall listening abilities. Also, intervention needs to be contextualized and functional. A suggested protocol is provided for consideration. All of these issues warrant ongoing research.

  8. [Design of standard voice sample text for subjective auditory perceptual evaluation of voice disorders].

    Science.gov (United States)

    Li, Jin-rang; Sun, Yan-yan; Xu, Wen

    2010-09-01

    To design a speech voice sample text with all phonemes in Mandarin for subjective auditory perceptual evaluation of voice disorders. The principles for design of a speech voice sample text are: The short text should include the 21 initials and 39 finals, this may cover all the phonemes in Mandarin. Also, the short text should have some meanings. A short text was made out. It had 155 Chinese words, and included 21 initials and 38 finals (the final, ê, was not included because it was rarely used in Mandarin). Also, the text covered 17 light tones and one "Erhua". The constituent ratios of the initials and finals presented in this short text were statistically similar as those in Mandarin according to the method of similarity of the sample and population (r = 0.742, P text were statistically not similar as those in Mandarin (r = 0.731, P > 0.05). A speech voice sample text with all phonemes in Mandarin was made out. The constituent ratios of the initials and finals presented in this short text are similar as those in Mandarin. Its value for subjective auditory perceptual evaluation of voice disorders need further study.

  9. Potential use of MEG to understand abnormalities in auditory function in clinical populations

    Directory of Open Access Journals (Sweden)

    Eric eLarson

    2014-03-01

    Full Text Available Magnetoencephalography (MEG provides a direct, non-invasive view of neural activity with millisecond temporal precision. Recent developments in MEG analysis allow for improved source localization and mapping of connectivity between brain regions, expanding the possibilities for using MEG as a diagnostic tool. In this paper, we first describe inverse imaging methods (e.g., minimum-norm estimation and functional connectivity measures, and how they can provide insights into cortical processing. We then offer a perspective on how these techniques could be used to understand and evaluate auditory pathologies that often manifest during development. Here we focus specifically on how MEG inverse imaging, by providing anatomically-based interpretation of neural activity, may allow us to test which aspects of cortical processing play a role in (central auditory processing disorder ([C]APD. Appropriately combining auditory paradigms with MEG analysis could eventually prove useful for a hypothesis-driven understanding and diagnosis of (CAPD or other disorders, as well as the evaluation of the effectiveness of intervention strategies.

  10. Clinicopathologic analysis of progressive non-fluent aphasia and corticobasal degeneration:Case report and review

    Directory of Open Access Journals (Sweden)

    Paulo Roberto de Brito-Marques

    Full Text Available Abstract Objective: To investigate progressive non-fluent aphasia and histopathologically-proven corticobasal degeneration. Methods: We evaluated symptoms, signs, neuropsychological deficits, and radiology data longitudinally, in a patient with autopsy-proven corticobasal degeneration and correlated these observations directly to the neuroanatomic distribution of the disease. Results: At presentation, a specific pattern of cognitive impairment was evident with an extreme extrapyramidal motor abnormality. Follow-up examination revealed persistent impairment of praxis and executive functioning, progressive worsening of language performance, and moderately preserved memory. The motor disorder manifested and worsened as the condition progressed. Many of the residual nerve cells were ballooned and achromatic with eccentric nuclei. Tau-immunoreactive pathology was significantly more prominent in neurons in the frontal and parietal cortices and dentate nuclei than in temporal neocortex, hippocampi and brainstem. Conclusion: The clinical diagnosis of progressive non-fluent aphasia secondary to corticobasal degeneration hinged on a specific pattern of impaired cognition as well as an extrapyramidal motor disorder, reflecting the neuroanatomic distribution of the disease in frontal and anterior temporal cortices and the dentate nuclei.

  11. Clinicopathologic analysis of progressive non-fluent aphasia and corticobasal degeneration: Case report and review.

    Science.gov (United States)

    de Brito-Marques, Paulo Roberto; Vieira-Mello, Roberto José; Montenegro, Luciano; Aragão, Maria de Fátima Vasco

    2011-01-01

    To investigate progressive non-fluent aphasia and histopathologically-proven corticobasal degeneration. We evaluated symptoms, signs, neuropsychological deficits, and radiology data longitudinally, in a patient with autopsy-proven corticobasal degeneration and correlated these observations directly to the neuroanatomic distribution of the disease. At presentation, a specific pattern of cognitive impairment was evident with an extreme extrapyramidal motor abnormality. Follow-up examination revealed persistent impairment of praxis and executive functioning, progressive worsening of language performance, and moderately preserved memory. The motor disorder manifested and worsened as the condition progressed. Many of the residual nerve cells were ballooned and achromatic with eccentric nuclei. Tau-immunoreactive pathology was significantly more prominent in neurons in the frontal and parietal cortices and dentate nuclei than in temporal neocortex, hippocampi and brainstem. The clinical diagnosis of progressive non-fluent aphasia secondary to corticobasal degeneration hinged on a specific pattern of impaired cognition as well as an extrapyramidal motor disorder, reflecting the neuroanatomic distribution of the disease in frontal and anterior temporal cortices and the dentate nuclei.

  12. Reduced object related negativity response indicates impaired auditory scene analysis in adults with autistic spectrum disorder

    Directory of Open Access Journals (Sweden)

    Veema Lodhia

    2014-02-01

    Full Text Available Auditory Scene Analysis provides a useful framework for understanding atypical auditory perception in autism. Specifically, a failure to segregate the incoming acoustic energy into distinct auditory objects might explain the aversive reaction autistic individuals have to certain auditory stimuli or environments. Previous research with non-autistic participants has demonstrated the presence of an Object Related Negativity (ORN in the auditory event related potential that indexes pre-attentive processes associated with auditory scene analysis. Also evident is a later P400 component that is attention dependent and thought to be related to decision-making about auditory objects. We sought to determine whether there are differences between individuals with and without autism in the levels of processing indexed by these components. Electroencephalography (EEG was used to measure brain responses from a group of 16 autistic adults, and 16 age- and verbal-IQ-matched typically-developing adults. Auditory responses were elicited using lateralized dichotic pitch stimuli in which inter-aural timing differences create the illusory perception of a pitch that is spatially separated from a carrier noise stimulus. As in previous studies, control participants produced an ORN in response to the pitch stimuli. However, this component was significantly reduced in the participants with autism. In contrast, processing differences were not observed between the groups at the attention-dependent level (P400. These findings suggest that autistic individuals have difficulty segregating auditory stimuli into distinct auditory objects, and that this difficulty arises at an early pre-attentive level of processing.

  13. White matter microstructure is associated with auditory and tactile processing in children with and without sensory processing disorder

    Directory of Open Access Journals (Sweden)

    Yi Shin Chang

    2016-01-01

    Full Text Available Sensory processing disorders (SPD affect up to 16% of school-aged children, and contribute to cognitive and behavioral deficits impacting affected individuals and their families. While sensory processing differences are now widely recognized in children with autism, children with sensory-based dysfunction who do not meet autism criteria based on social communication deficits remain virtually unstudied. In a previous pilot diffusion tensor imaging (DTI study, we demonstrated that boys with SPD have altered white matter microstructure primarily affecting the posterior cerebral tracts, which subserve sensory processing and integration. This disrupted microstructural integrity, measured as reduced white matter fractional anisotropy (FA, correlated with parent report measures of atypical sensory behavior. In this present study, we investigate white matter microstructure as it relates to tactile and auditory function in depth with a larger, mixed-gender cohort of children 8 to 12 years of age. We continue to find robust alterations of posterior white matter microstructure in children with SPD relative to typically developing children, along with more spatially distributed alterations. We find strong correlations of FA with both parent report and direct measures of tactile and auditory processing across children, with the direct assessment measures of tactile and auditory processing showing a stronger and more continuous mapping to the underlying white matter integrity than the corresponding parent report measures. Based on these findings of microstructure as a neural correlate of sensory processing ability, diffusion MRI merits further investigation as a tool to find biomarkers for diagnosis, prognosis and treatment response in children with SPD. To our knowledge, this work is the first to demonstrate associations of directly measured tactile and non-linguistic auditory function with white matter microstructural integrity -- not just in children with

  14. Classification of passive auditory event-related potentials using discriminant analysis and self-organizing feature maps.

    Science.gov (United States)

    Schönweiler, R; Wübbelt, P; Tolloczko, R; Rose, C; Ptok, M

    2000-01-01

    Discriminant analysis (DA) and self-organizing feature maps (SOFM) were used to classify passively evoked auditory event-related potentials (ERP) P(1), N(1), P(2) and N(2). Responses from 16 children with severe behavioral auditory perception deficits, 16 children with marked behavioral auditory perception deficits, and 14 controls were examined. Eighteen ERP amplitude parameters were selected for examination of statistical differences between the groups. Different DA methods and SOFM configurations were trained to the values. SOFM had better classification results than DA methods. Subsequently, measures on another 37 subjects that were unknown for the trained SOFM were used to test the reliability of the system. With 10-dimensional vectors, reliable classifications were obtained that matched behavioral auditory perception deficits in 96%, implying central auditory processing disorder (CAPD). The results also support the assumption that CAPD includes a 'non-peripheral' auditory processing deficit. Copyright 2000 S. Karger AG, Basel.

  15. Non-Verbal Psychotherapy of Deaf Children with Disorders in Personality Development.

    Science.gov (United States)

    Zalewska, Marina

    1989-01-01

    Discussed are principles of nonverbal therapy for deaf children with disorders in the development of self, and the possible existence of a relationship between lack of auditory experiences in deaf children and disorders in mother-child bonding. A case study presents a three-year-old deaf boy successfully treated through a nonverbal…

  16. Visual speech alters the discrimination and identification of non-intact auditory speech in children with hearing loss.

    Science.gov (United States)

    Jerger, Susan; Damian, Markus F; McAlpine, Rachel P; Abdi, Hervé

    2017-03-01

    Understanding spoken language is an audiovisual event that depends critically on the ability to discriminate and identify phonemes yet we have little evidence about the role of early auditory experience and visual speech on the development of these fundamental perceptual skills. Objectives of this research were to determine 1) how visual speech influences phoneme discrimination and identification; 2) whether visual speech influences these two processes in a like manner, such that discrimination predicts identification; and 3) how the degree of hearing loss affects this relationship. Such evidence is crucial for developing effective intervention strategies to mitigate the effects of hearing loss on language development. Participants were 58 children with early-onset sensorineural hearing loss (CHL, 53% girls, M = 9;4 yrs) and 58 children with normal hearing (CNH, 53% girls, M = 9;4 yrs). Test items were consonant-vowel (CV) syllables and nonwords with intact visual speech coupled to non-intact auditory speech (excised onsets) as, for example, an intact consonant/rhyme in the visual track (Baa or Baz) coupled to non-intact onset/rhyme in the auditory track (/-B/aa or/-B/az). The items started with an easy-to-speechread/B/or difficult-to-speechread/G/onset and were presented in the auditory (static face) vs. audiovisual (dynamic face) modes. We assessed discrimination for intact vs. non-intact different pairs (e.g., Baa:/-B/aa). We predicted that visual speech would cause the non-intact onset to be perceived as intact and would therefore generate more same-as opposed to different-responses in the audiovisual than auditory mode. We assessed identification by repetition of nonwords with non-intact onsets (e.g.,/-B/az). We predicted that visual speech would cause the non-intact onset to be perceived as intact and would therefore generate more Baz-as opposed to az- responses in the audiovisual than auditory mode. Performance in the audiovisual mode showed more same

  17. Visual Speech Alters the Discrimination and Identification of Non-Intact Auditory Speech in Children with Hearing Loss

    Science.gov (United States)

    Jerger, Susan; Damian, Markus F.; McAlpine, Rachel P.; Abdi, Hervé

    2017-01-01

    Objectives Understanding spoken language is an audiovisual event that depends critically on the ability to discriminate and identify phonemes yet we have little evidence about the role of early auditory experience and visual speech on the development of these fundamental perceptual skills. Objectives of this research were to determine 1) how visual speech influences phoneme discrimination and identification; 2) whether visual speech influences these two processes in a like manner, such that discrimination predicts identification; and 3) how the degree of hearing loss affects this relationship. Such evidence is crucial for developing effective intervention strategies to mitigate the effects of hearing loss on language development. Methods Participants were 58 children with early-onset sensorineural hearing loss (CHL, 53% girls, M = 9;4 yrs) and 58 children with normal hearing (CNH, 53% girls, M = 9;4 yrs). Test items were consonant-vowel (CV) syllables and nonwords with intact visual speech coupled to non-intact auditory speech (excised onsets) as, for example, an intact consonant/rhyme in the visual track (Baa or Baz) coupled to non-intact onset/rhyme in the auditory track (/–B/aa or /–B/az). The items started with an easy-to-speechread /B/ or difficult-to-speechread /G/ onset and were presented in the auditory (static face) vs. audiovisual (dynamic face) modes. We assessed discrimination for intact vs. non-intact different pairs (e.g., Baa:/–B/aa). We predicted that visual speech would cause the non-intact onset to be perceived as intact and would therefore generate more same—as opposed to different—responses in the audiovisual than auditory mode. We assessed identification by repetition of nonwords with non-intact onsets (e.g., /–B/az). We predicted that visual speech would cause the non-intact onset to be perceived as intact and would therefore generate more Baz—as opposed to az— responses in the audiovisual than auditory mode. Results

  18. Comparative Evaluation of Auditory Attention in 7 to 9 Year Old Learning Disabled Students

    Directory of Open Access Journals (Sweden)

    Fereshteh Amiriani

    2011-06-01

    Full Text Available Background and Aim: Learning disability is a term referes to a group of disorders manifesting listening, reading, writing, or mathematical problems. These children mostly have attention difficulties in classroom that leads to many learning problems. In this study we aimed to compare the auditory attention of 7 to 9 year old children with learning disability to non- learning disability age matched normal group.Methods: Twenty seven male 7 to 9 year old students with learning disability and 27 age and sex matched normal conrols were selected with unprobable simple sampling. 27 In order to evaluate auditory selective and divided attention, Farsi versions of speech in noise and dichotic digit test were used respectively.Results: Comparison of mean scores of Farsi versions of speech in noise in both ears of 7 and 8 year-old students in two groups indicated no significant difference (p>0.05 Mean scores of 9 year old controls was significant more than those of the cases only in the right ear (p=0.033. However, no significant difference was observed between mean scores of dichotic digit test assessing the right ear of 9 year-old learning disability and non learning disability students (p>0.05. Moreover, mean scores of 7 and 8 year- old students with learning disability was less than those of their normal peers in the left ear (p>0.05.Conclusion: Selective auditory attention is not affected in the optimal signal to noise ratio, while divided attention seems to be affected by maturity delay of auditory system or central auditory system disorders.

  19. Genome-wide association study of pigmentary traits (skin and iris color in individuals of East Asian ancestry

    Directory of Open Access Journals (Sweden)

    Lida Rawofi

    2017-11-01

    Full Text Available Background Currently, there is limited knowledge about the genetics underlying pigmentary traits in East Asian populations. Here, we report the results of the first genome-wide association study of pigmentary traits (skin and iris color in individuals of East Asian ancestry. Methods We obtained quantitative skin pigmentation measures (M-index in the inner upper arm of the participants using a portable reflectometer (N = 305. Quantitative measures of iris color (expressed as L*, a* and b* CIELab coordinates were extracted from high-resolution iris pictures (N = 342. We also measured the color differences between the pupillary and ciliary regions of the iris (e.g., iris heterochromia. DNA samples were genotyped with Illumina’s Infinium Multi-Ethnic Global Array (MEGA and imputed using the 1000 Genomes Phase 3 samples as reference haplotypes. Results For skin pigmentation, we did not observe any genome-wide significant signal. We followed-up in three independent Chinese samples the lead SNPs of five regions showing multiple common markers (minor allele frequency ≥ 5% with good imputation scores and suggestive evidence of association (p-values < 10−5. One of these markers, rs2373391, which is located in an intron of the ZNF804B gene on chromosome 7, was replicated in one of the Chinese samples (p = 0.003. For iris color, we observed genome-wide signals in the OCA2 region on chromosome 15. This signal is driven by the non-synonymous rs1800414 variant, which explains 11.9%, 10.4% and 6% of the variation observed in the b*, a* and L* coordinates in our sample, respectively. However, the OCA2 region was not associated with iris heterochromia. Discussion Additional genome-wide association studies in East Asian samples will be necessary to further disentangle the genetic architecture of pigmentary traits in East Asian populations.

  20. Relação entre desvios fonológicos e processamento auditivo Relationship between phonological disorders and auditory processing

    Directory of Open Access Journals (Sweden)

    Débora Tomazi Moreira Caumo

    2009-01-01

    Full Text Available OBJETIVOS: Pesquisar a relação entre desvio fonológico e processamento auditivo. MÉTODOS: Os dados foram coletados por meio da verificação de prontuários. Foram incluídos no estudo pacientes com diagnóstico de desvio fonológico que realizaram testes de processamento auditivo e que tinham idade mínima de sete anos. Considerou-se a avaliação do processamento auditivo, a avaliação da fala, o gênero, a idade e a série escolar. RESULTADOS: Todas as crianças (100% apresentaram pelo menos um subperfil do processamento auditivo alterado. Ao comparar os processos de substituição e de estruturação silábica aos resultados dos testes de processamento auditivo verificou-se correlação estatisticamente significante para a etapa de integração binaural para a orelha direita do teste dicótico de dígitos (p=0,018 e para a condição nomeando do teste PPS (p=0,041. Na comparação dos testes de processamento auditivo com a idade encontrou-se diferença estatisticamente significante para o teste PSI na orelha direita (p=0,011 para a faixa de 10 a 12 anos. O mesmo ocorreu na comparação com a série escolar, em que o teste SSW na condição direita competitiva (p=0,039 e a atenção direcionada à direita do teste dicótico de dígitos (p=0,037 foram estatisticamente significantes para as séries mais avançadas. CONCLUSÃO: A pesquisa sugere a existência de uma estreita relação entre processamento auditivo e desvio fonológico principalmente em relação ao desempenho da orelha direita, evidenciando a importância de determinar a existência do comprometimento das habilidades auditivas em crianças com desvio fonológico.PURPOSE: To study the relationship between phonological disorder and auditory processing. METHODS: Data were gathered from patients' records, and included individuals with diagnosis of phonological disorder, with seven years old or more, who had carried out auditory processing tests. The study considered auditory

  1. Neural correlates of strategy use during auditory working memory in musicians and non-musicians.

    Science.gov (United States)

    Schulze, K; Mueller, K; Koelsch, S

    2011-01-01

    Working memory (WM) performance in humans can be improved by structuring and organizing the material to be remembered. For visual and verbal information, this process of structuring has been associated with the involvement of a prefrontal-parietal network, but for non-verbal auditory material, the brain areas that facilitate WM for structured information have remained elusive. Using functional magnetic resonance imaging, this study compared neural correlates underlying encoding and rehearsal of auditory WM for structured and unstructured material. Musicians and non-musicians performed a WM task on five-tone sequences that were either tonally structured (with all tones belonging to one tonal key) or tonally unstructured (atonal) sequences. Functional differences were observed for musicians (who are experts in the music domain), but not for non-musicians - The right pars orbitalis was activated more strongly in musicians during the encoding of unstructured (atonal) vs. structured (tonal) sequences. In addition, data for musicians showed that a lateral (pre)frontal-parietal network (including the right premotor cortex, right inferior precentral sulcus and left intraparietal sulcus) was activated during WM rehearsal of structured, as compared with unstructured, sequences. Our findings indicate that this network plays a role in strategy-based WM for non-verbal auditory information, corroborating previous results showing a similar network for strategy-based WM for visual and verbal information. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  2. Auditory vocal analysis and factors associated with voice disorders among teachers.

    Science.gov (United States)

    de Ceballos, Albanita Gomes da Costa; Carvalho, Fernando Martins; de Araújo, Tânia Maria; Dos Reis, Eduardo José Farias Borges

    2011-06-01

    Teachers are professionals who demand much of their voices and, consequently, present a high risk of developing vocal disorders during the course of employment. To identify factors associated with vocal disorders among teachers. An exploratory cross-sectional study, which investigated 476 teachers in primary and secondary schools in the city of Salvador, Bahia. Teachers answered a questionnaire and were submitted to auditory vocal analysis. The GRBAS was used for the diagnosis of vocal disorders. The study population comprised 82.8% women, teachers with an average age of 40.7 years, teachers with higher education (88.4%), with an average workday of 38 hours per week, average 11.5 years of professional practice and average monthly income of R$1.817.18. The prevalence of voice disorders was 53.6%. (255 teachers). The bivariate analysis showed statistically significant associations between vocal disorders and age above 40 years (PR = 1.83; 95% CI; 1.27-2.64), family history of dysphonia (PR = 1.72; 95% CI; 1.06-2.80), over 20 hours of weekly working hours (PR = 1.66; 95% CI; 1.09-2.52) and presence of chalk dust in the classroom (PR = 1.70; 95% CI; 1.14-2.53). The study concluded that teachers, 40 years old and over, with a family history of dysphonia, working over 20 hours weekly, and teaching in classrooms with chalk dust are more likely to develop voice disorders than others.

  3. Waardenburg syndrome: A report of three cases

    Directory of Open Access Journals (Sweden)

    Ghosh Sudip

    2010-01-01

    Full Text Available Waardenburg syndrome (WS is a rare autosomally inherited and genetically heterogeneous disorder of neural crest cell development with distinct cutaneous manifestations. Based on the clinical presentations, four subtypes of the disease are recognized. A careful clinical evaluation is required to differentiate various types of WS and other associated auditory-pigmentary syndromes. We describe a case series of WS to highlight the wide spectrum of manifestations of the syndrome including a rare association.

  4. Assessment of auditory processing in children with dyslalia

    Directory of Open Access Journals (Sweden)

    Wlodarczyk £.

    2011-09-01

    Full Text Available The objective of the work was to assess occurrence of central auditory processing disorders in children with dyslalia. Material and method. The material included 30 children at the age 798 years old being under long-term speech therapy care due to articulation disorders. All the children were subjected to the phoniatric and speech examination, including tonal and impedance audiometry, speech therapist's consultation and psychologist's consultation. Electrophysi-ological (N2, P2, N2, P2, P300 record and following psychoacoustic test of central auditory functions were performed (Frequency Pattern Test. Results. Analysis of the results revealed disorders in the process of sound analysis within frequency and P300 wave latency prolongation in children with dyslalia. Conclusions. Auditory processing disorders may be significant in development of correct articulation in children, they also may explain unsatisfactory results of long-term speech therapy

  5. Recent Advancements in the Regeneration of Auditory Hair Cells and Hearing Restoration

    Directory of Open Access Journals (Sweden)

    Rahul Mittal

    2017-07-01

    Full Text Available Neurosensory responses of hearing and balance are mediated by receptors in specialized neuroepithelial sensory cells. Any disruption of the biochemical and molecular pathways that facilitate these responses can result in severe deficits, including hearing loss and vestibular dysfunction. Hearing is affected by both environmental and genetic factors, with impairment of auditory function being the most common neurosensory disorder affecting 1 in 500 newborns, as well as having an impact on the majority of elderly population. Damage to auditory sensory cells is not reversible, and if sufficient damage and cell death have taken place, the resultant deficit may lead to permanent deafness. Cochlear implants are considered to be one of the most successful and consistent treatments for deaf patients, but only offer limited recovery at the expense of loss of residual hearing. Recently there has been an increased interest in the auditory research community to explore the regeneration of mammalian auditory hair cells and restoration of their function. In this review article, we examine a variety of recent therapies, including genetic, stem cell and molecular therapies as well as discussing progress being made in genome editing strategies as applied to the restoration of hearing function.

  6. A Patient with Keratoconus, Nanophthalmos, Lipodermoids, and Pigmentary Retinopathy.

    Science.gov (United States)

    Sammouh, Fady K; Baban, Tania A; Warrak, Elias L

    2016-06-01

    A 44-year-old male with no pertinent history other than poor vision for more than 25 years was examined. Best corrected visual acuity was 20/80 OD [MR: +14.25 +1.00 × 15°] and 20/200 OS [MR: +15.00 +1.50 × 175°]. Significant limitation in ocular movements and the presence of an orbital lipodermoid in the infero-temporal aspect of each eye were noted. Forced duction test was positive for the same directions of limitation indicating possible extraocular muscle fibrosis. Ophthalmoscopy was remarkable for the presence of peripheral bony spicules. Corneal topography was compatible with keratoconus (Kmax = 55.04D OD and 52.87D OS). A-scan revealed axial lengths of 16.96 mm OD and 16.32 mm OS, compatible with a diagnosis of nanophthalmos. OCT revealed diffuse macular thickening for both eyes with foveal thickness of 350 µm OD and 353 µm OS. Over the next 12 years the patient had stable visual acuity, manifest refractions and anterior segment examination. Ophthalmoscopy revealed only minimal progression of pigmentary changes. We report the first case of these simultaneous multiple findings which may refer to a possible syndromic association of congenital or early childhood onset.

  7. Auditory and audio-visual processing in patients with cochlear, auditory brainstem, and auditory midbrain implants: An EEG study.

    Science.gov (United States)

    Schierholz, Irina; Finke, Mareike; Kral, Andrej; Büchner, Andreas; Rach, Stefan; Lenarz, Thomas; Dengler, Reinhard; Sandmann, Pascale

    2017-04-01

    There is substantial variability in speech recognition ability across patients with cochlear implants (CIs), auditory brainstem implants (ABIs), and auditory midbrain implants (AMIs). To better understand how this variability is related to central processing differences, the current electroencephalography (EEG) study compared hearing abilities and auditory-cortex activation in patients with electrical stimulation at different sites of the auditory pathway. Three different groups of patients with auditory implants (Hannover Medical School; ABI: n = 6, CI: n = 6; AMI: n = 2) performed a speeded response task and a speech recognition test with auditory, visual, and audio-visual stimuli. Behavioral performance and cortical processing of auditory and audio-visual stimuli were compared between groups. ABI and AMI patients showed prolonged response times on auditory and audio-visual stimuli compared with NH listeners and CI patients. This was confirmed by prolonged N1 latencies and reduced N1 amplitudes in ABI and AMI patients. However, patients with central auditory implants showed a remarkable gain in performance when visual and auditory input was combined, in both speech and non-speech conditions, which was reflected by a strong visual modulation of auditory-cortex activation in these individuals. In sum, the results suggest that the behavioral improvement for audio-visual conditions in central auditory implant patients is based on enhanced audio-visual interactions in the auditory cortex. Their findings may provide important implications for the optimization of electrical stimulation and rehabilitation strategies in patients with central auditory prostheses. Hum Brain Mapp 38:2206-2225, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Pigmentary glaucoma accompanied by Usher syndrome.

    Science.gov (United States)

    Koucheki, Behrooz; Jalali, Kamran Hodjat

    2012-08-01

    To report a case of pigmentary glaucoma (PG) accompanied by Usher syndrome. Case report. The results were presented after standard ocular examination, visual field test, anterior segment and fundus photography, electroretinography, and otolaryngology consultation were conducted. Typical retinitis pigmentosa, flat electroretinography, congenital sensorineural hearing loss, high intraocular pressure, Krukenberg spindle, iris concavity, radial iris transillumination defect, severe pigment deposition on the trabecular meshwork, and glaucomatous optic nerve damage were indicative of PG accompanied by Usher syndrome. In some rare cases, PG may coexist with Usher syndrome. Common findings of Usher syndrome, including night blindness, impaired vision, visual field defects, and retinal changes may distract the clinician from considering the diagnosis of glaucoma. Such association should be borne in mind to make a timely diagnosis and treatment possible.

  9. Abnormal Resting-State Quantitative Electroencephalogram in Children With Central Auditory Processing Disorder: A Pilot Study.

    Science.gov (United States)

    Milner, Rafał; Lewandowska, Monika; Ganc, Małgorzata; Włodarczyk, Elżbieta; Grudzień, Diana; Skarżyński, Henryk

    2018-01-01

    In this study, we showed an abnormal resting-state quantitative electroencephalogram (QEEG) pattern in children with central auditory processing disorder (CAPD). Twenty-seven children (16 male, 11 female; mean age = 10.7 years) with CAPD and no symptoms of other developmental disorders, as well as 23 age- and sex-matched, typically developing children (TDC, 11 male, 13 female; mean age = 11.8 years) underwent examination of central auditory processes (CAPs) and QEEG evaluation consisting of two randomly presented blocks of "Eyes Open" (EO) or "Eyes Closed" (EC) recordings. Significant correlations between individual frequency band powers and CAP tests performance were found. The QEEG studies revealed that in CAPD relative to TDC there was no effect of decreased delta absolute power (1.5-4 Hz) in EO compared to the EC condition. Furthermore, children with CAPD showed increased theta power (4-8 Hz) in the frontal area, a tendency toward elevated theta power in EO block, and reduced low-frequency beta power (12-15 Hz) in the bilateral occipital and the left temporo-occipital regions for both EO and EC conditions. Decreased middle-frequency beta power (15-18 Hz) in children with CAPD was observed only in the EC block. The findings of the present study suggest that QEEG could be an adequate tool to discriminate children with CAPD from normally developing children. Correlation analysis shows relationship between the individual EEG resting frequency bands and the CAPs. Increased power of slow waves and decreased power of fast rhythms could indicate abnormal functioning (hypoarousal of the cortex and/or an immaturity) of brain areas not specialized in auditory information processing.

  10. Abnormal Resting-State Quantitative Electroencephalogram in Children With Central Auditory Processing Disorder: A Pilot Study

    Science.gov (United States)

    Milner, Rafał; Lewandowska, Monika; Ganc, Małgorzata; Włodarczyk, Elżbieta; Grudzień, Diana; Skarżyński, Henryk

    2018-01-01

    In this study, we showed an abnormal resting-state quantitative electroencephalogram (QEEG) pattern in children with central auditory processing disorder (CAPD). Twenty-seven children (16 male, 11 female; mean age = 10.7 years) with CAPD and no symptoms of other developmental disorders, as well as 23 age- and sex-matched, typically developing children (TDC, 11 male, 13 female; mean age = 11.8 years) underwent examination of central auditory processes (CAPs) and QEEG evaluation consisting of two randomly presented blocks of “Eyes Open” (EO) or “Eyes Closed” (EC) recordings. Significant correlations between individual frequency band powers and CAP tests performance were found. The QEEG studies revealed that in CAPD relative to TDC there was no effect of decreased delta absolute power (1.5–4 Hz) in EO compared to the EC condition. Furthermore, children with CAPD showed increased theta power (4–8 Hz) in the frontal area, a tendency toward elevated theta power in EO block, and reduced low-frequency beta power (12–15 Hz) in the bilateral occipital and the left temporo-occipital regions for both EO and EC conditions. Decreased middle-frequency beta power (15–18 Hz) in children with CAPD was observed only in the EC block. The findings of the present study suggest that QEEG could be an adequate tool to discriminate children with CAPD from normally developing children. Correlation analysis shows relationship between the individual EEG resting frequency bands and the CAPs. Increased power of slow waves and decreased power of fast rhythms could indicate abnormal functioning (hypoarousal of the cortex and/or an immaturity) of brain areas not specialized in auditory information processing.

  11. Auditory processing disorders: an update for speech-language pathologists.

    Science.gov (United States)

    DeBonis, David A; Moncrieff, Deborah

    2008-02-01

    Unanswered questions regarding the nature of auditory processing disorders (APDs), how best to identify at-risk students, how best to diagnose and differentiate APDs from other disorders, and concerns about the lack of valid treatments have resulted in ongoing confusion and skepticism about the diagnostic validity of this label. This poses challenges for speech-language pathologists (SLPs) who are working with school-age children and whose scope of practice includes APD screening and intervention. The purpose of this article is to address some of the questions commonly asked by SLPs regarding APDs in school-age children. This article is also intended to serve as a resource for SLPs to be used in deciding what role they will or will not play with respect to APDs in school-age children. The methodology used in this article included a computerized database review of the latest published information on APD, with an emphasis on the work of established researchers and expert panels, including articles from the American Speech-Language-Hearing Association and the American Academy of Audiology. The article concludes with the authors' recommendations for continued research and their views on the appropriate role of the SLP in performing careful screening, making referrals, and supporting intervention.

  12. Auditory hallucinations.

    Science.gov (United States)

    Blom, Jan Dirk

    2015-01-01

    Auditory hallucinations constitute a phenomenologically rich group of endogenously mediated percepts which are associated with psychiatric, neurologic, otologic, and other medical conditions, but which are also experienced by 10-15% of all healthy individuals in the general population. The group of phenomena is probably best known for its verbal auditory subtype, but it also includes musical hallucinations, echo of reading, exploding-head syndrome, and many other types. The subgroup of verbal auditory hallucinations has been studied extensively with the aid of neuroimaging techniques, and from those studies emerges an outline of a functional as well as a structural network of widely distributed brain areas involved in their mediation. The present chapter provides an overview of the various types of auditory hallucination described in the literature, summarizes our current knowledge of the auditory networks involved in their mediation, and draws on ideas from the philosophy of science and network science to reconceptualize the auditory hallucinatory experience, and point out directions for future research into its neurobiologic substrates. In addition, it provides an overview of known associations with various clinical conditions and of the existing evidence for pharmacologic and non-pharmacologic treatments. © 2015 Elsevier B.V. All rights reserved.

  13. Neural biomarkers for dyslexia, ADHD and ADD in the auditory cortex of children

    Directory of Open Access Journals (Sweden)

    Bettina Serrallach

    2016-07-01

    Full Text Available Dyslexia, attention deficit hyperactivity disorder (ADHD, and attention deficit disorder (ADD show distinct clinical profiles that may include auditory and language-related impairments. Currently, an objective brain-based diagnosis of these developmental disorders is still unavailable. We investigated the neuro-auditory systems of dyslexic, ADHD, ADD, and age-matched control children (N=147 using neuroimaging, magnet-encephalography and psychoacoustics. All disorder subgroups exhibited an oversized left planum temporale and an abnormal interhemispheric asynchrony (10-40 ms of the primary auditory evoked P1-response. Considering right auditory cortex morphology, bilateral P1 source waveform shapes, and auditory performance, the three disorder subgroups could be reliably differentiated with outstanding accuracies of 89-98%. We therefore for the first time provide differential biomarkers for a brain-based diagnosis of dyslexia, ADHD, and ADD. The method allowed not only a clear discrimination between two subtypes of attentional disorders (ADHD and ADD, a topic controversially discussed for decades in the scientific community, but also revealed the potential for objectively identifying comorbid cases. Noteworthy, in children playing a musical instrument, after three and a half years of training the observed interhemispheric asynchronies were reduced by about 2/3, thus suggesting a strong beneficial influence of music experience on brain development. These findings might have far-reaching implications for both research and practice and enable a profound understanding of the brain-related etiology, diagnosis, and musically based therapy of common auditory-related developmental disorders and learning disabilities.

  14. Cross-modal Association between Auditory and Visuospatial Information in Mandarin Tone Perception in Noise by Native and Non-native Perceivers

    Directory of Open Access Journals (Sweden)

    Beverly Hannah

    2017-12-01

    Full Text Available Speech perception involves multiple input modalities. Research has indicated that perceivers establish cross-modal associations between auditory and visuospatial events to aid perception. Such intermodal relations can be particularly beneficial for speech development and learning, where infants and non-native perceivers need additional resources to acquire and process new sounds. This study examines how facial articulatory cues and co-speech hand gestures mimicking pitch contours in space affect non-native Mandarin tone perception. Native English as well as Mandarin perceivers identified tones embedded in noise with either congruent or incongruent Auditory-Facial (AF and Auditory-FacialGestural (AFG inputs. Native Mandarin results showed the expected ceiling-level performance in the congruent AF and AFG conditions. In the incongruent conditions, while AF identification was primarily auditory-based, AFG identification was partially based on gestures, demonstrating the use of gestures as valid cues in tone identification. The English perceivers’ performance was poor in the congruent AF condition, but improved significantly in AFG. While the incongruent AF identification showed some reliance on facial information, incongruent AFG identification relied more on gestural than auditory-facial information. These results indicate positive effects of facial and especially gestural input on non-native tone perception, suggesting that cross-modal (visuospatial resources can be recruited to aid auditory perception when phonetic demands are high. The current findings may inform patterns of tone acquisition and development, suggesting how multi-modal speech enhancement principles may be applied to facilitate speech learning.

  15. [Usher syndrome: about a case].

    Science.gov (United States)

    Daoudi, Chama; Boutimzine, Noureddine; Haouzi, Samia El; Lezrek, Omar; Tachfouti, Samira; Lezrek, Mounir; Laghmari, Mina; Daoudi, Rajae

    2017-01-01

    Usher syndrome is a genetic disease resulting in double sensory deprivation (auditory and visual) called deafblindness. We report the case of a 50-year old patient, born to consanguineous parents, presenting with congenital deafness associated with normal vestibular function and pigmentary retinopathy responsible for decreased bilateral visual acuity occurred at the age of 16 years. This association composes Usher syndrome type 2, a rare autosomal recessive disorder. Cataract surgery allowed visual acuity improvement in this patient.

  16. Primary Auditory Cortex Regulates Threat Memory Specificity

    Science.gov (United States)

    Wigestrand, Mattis B.; Schiff, Hillary C.; Fyhn, Marianne; LeDoux, Joseph E.; Sears, Robert M.

    2017-01-01

    Distinguishing threatening from nonthreatening stimuli is essential for survival and stimulus generalization is a hallmark of anxiety disorders. While auditory threat learning produces long-lasting plasticity in primary auditory cortex (Au1), it is not clear whether such Au1 plasticity regulates memory specificity or generalization. We used…

  17. Validation of the Emotiv EPOC® EEG gaming system for measuring research quality auditory ERPs

    Science.gov (United States)

    Mousikou, Petroula; Mahajan, Yatin; de Lissa, Peter; Thie, Johnson; McArthur, Genevieve

    2013-01-01

    Background. Auditory event-related potentials (ERPs) have proved useful in investigating the role of auditory processing in cognitive disorders such as developmental dyslexia, specific language impairment (SLI), attention deficit hyperactivity disorder (ADHD), schizophrenia, and autism. However, laboratory recordings of auditory ERPs can be lengthy, uncomfortable, or threatening for some participants – particularly children. Recently, a commercial gaming electroencephalography (EEG) system has been developed that is portable, inexpensive, and easy to set up. In this study we tested if auditory ERPs measured using a gaming EEG system (Emotiv EPOC®, www.emotiv.com) were equivalent to those measured by a widely-used, laboratory-based, research EEG system (Neuroscan). Methods. We simultaneously recorded EEGs with the research and gaming EEG systems, whilst presenting 21 adults with 566 standard (1000 Hz) and 100 deviant (1200 Hz) tones under passive (non-attended) and active (attended) conditions. The onset of each tone was marked in the EEGs using a parallel port pulse (Neuroscan) or a stimulus-generated electrical pulse injected into the O1 and O2 channels (Emotiv EPOC®). These markers were used to calculate research and gaming EEG system late auditory ERPs (P1, N1, P2, N2, and P3 peaks) and the mismatch negativity (MMN) in active and passive listening conditions for each participant. Results. Analyses were restricted to frontal sites as these are most commonly reported in auditory ERP research. Intra-class correlations (ICCs) indicated that the morphology of the research and gaming EEG system late auditory ERP waveforms were similar across all participants, but that the research and gaming EEG system MMN waveforms were only similar for participants with non-noisy MMN waveforms (N = 11 out of 21). Peak amplitude and latency measures revealed no significant differences between the size or the timing of the auditory P1, N1, P2, N2, P3, and MMN peaks. Conclusions

  18. Validation of the Emotiv EPOC® EEG gaming system for measuring research quality auditory ERPs

    Directory of Open Access Journals (Sweden)

    Nicholas A. Badcock

    2013-02-01

    Full Text Available Background. Auditory event-related potentials (ERPs have proved useful in investigating the role of auditory processing in cognitive disorders such as developmental dyslexia, specific language impairment (SLI, attention deficit hyperactivity disorder (ADHD, schizophrenia, and autism. However, laboratory recordings of auditory ERPs can be lengthy, uncomfortable, or threatening for some participants – particularly children. Recently, a commercial gaming electroencephalography (EEG system has been developed that is portable, inexpensive, and easy to set up. In this study we tested if auditory ERPs measured using a gaming EEG system (Emotiv EPOC®, www.emotiv.com were equivalent to those measured by a widely-used, laboratory-based, research EEG system (Neuroscan.Methods. We simultaneously recorded EEGs with the research and gaming EEG systems, whilst presenting 21 adults with 566 standard (1000 Hz and 100 deviant (1200 Hz tones under passive (non-attended and active (attended conditions. The onset of each tone was marked in the EEGs using a parallel port pulse (Neuroscan or a stimulus-generated electrical pulse injected into the O1 and O2 channels (Emotiv EPOC®. These markers were used to calculate research and gaming EEG system late auditory ERPs (P1, N1, P2, N2, and P3 peaks and the mismatch negativity (MMN in active and passive listening conditions for each participant.Results. Analyses were restricted to frontal sites as these are most commonly reported in auditory ERP research. Intra-class correlations (ICCs indicated that the morphology of the research and gaming EEG system late auditory ERP waveforms were similar across all participants, but that the research and gaming EEG system MMN waveforms were only similar for participants with non-noisy MMN waveforms (N = 11 out of 21. Peak amplitude and latency measures revealed no significant differences between the size or the timing of the auditory P1, N1, P2, N2, P3, and MMN peaks

  19. Maturation of auditory neural processes in autism spectrum disorder - A longitudinal MEG study.

    Science.gov (United States)

    Port, Russell G; Edgar, J Christopher; Ku, Matthew; Bloy, Luke; Murray, Rebecca; Blaskey, Lisa; Levy, Susan E; Roberts, Timothy P L

    2016-01-01

    Individuals with autism spectrum disorder (ASD) show atypical brain activity, perhaps due to delayed maturation. Previous studies examining the maturation of auditory electrophysiological activity have been limited due to their use of cross-sectional designs. The present study took a first step in examining magnetoencephalography (MEG) evidence of abnormal auditory response maturation in ASD via the use of a longitudinal design. Initially recruited for a previous study, 27 children with ASD and nine typically developing (TD) children, aged 6- to 11-years-old, were re-recruited two to five years later. At both timepoints, MEG data were obtained while participants passively listened to sinusoidal pure-tones. Bilateral primary/secondary auditory cortex time domain (100 ms evoked response latency (M100)) and spectrotemporal measures (gamma-band power and inter-trial coherence (ITC)) were examined. MEG measures were also qualitatively examined for five children who exhibited "optimal outcome", participants who were initially on spectrum, but no longer met diagnostic criteria at follow-up. M100 latencies were delayed in ASD versus TD at the initial exam (~ 19 ms) and at follow-up (~ 18 ms). At both exams, M100 latencies were associated with clinical ASD severity. In addition, gamma-band evoked power and ITC were reduced in ASD versus TD. M100 latency and gamma-band maturation rates did not differ between ASD and TD. Of note, the cohort of five children that demonstrated "optimal outcome" additionally exhibited M100 latency and gamma-band activity mean values in-between TD and ASD at both timepoints. Though justifying only qualitative interpretation, these "optimal outcome" related data are presented here to motivate future studies. Children with ASD showed perturbed auditory cortex neural activity, as evidenced by M100 latency delays as well as reduced transient gamma-band activity. Despite evidence for maturation of these responses in ASD, the neural abnormalities

  20. Correlation of auditory brain stem response and the MRI measurements in neuro-degenerative disorders

    International Nuclear Information System (INIS)

    Kamei, Hidekazu

    1989-01-01

    The purpose of this study is to elucidate correlations of several MRI measurements of the cranium and brain, functioning as a volume conductor, to the auditory brain stem response (ABR) in neuro-degenerative disorders. The subjects included forty-seven patients with spinocerebellar degeneration (SCD) and sixteen of amyotrophic lateral sclerosis (ALS). Statistically significant positive correlations were found between I-V and III-V interpeak latencies (IPLs) and the area of cranium and brain in the longitudinal section of SCD patients, and between I-III and III-V IPLs and the area in the longitudinal section of those with ALS. And, also there were statistically significant correlations between the amplitude of the V wave and the area of brain stem as well as that of the cranium in the longitudinal section of SCD patients, and between the amplitude of the V wave and the area of the cerebrum in the longitudinal section of ALS. In conclusion, in the ABR, the IPLs were prolonged and the amplitude of the V wave was decreased while the MRI size of the cranium and brain increased. When the ABR is applied to neuro-degenerative disorders, it might be important to consider not only the conduction of the auditory tracts in the brain stem, but also the correlations of the size of the cranium and brain which act as a volume conductor. (author)

  1. Correlation of auditory brain stem response and the MRI measurements in neuro-degenerative disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, Hidekazu (Tokyo Women' s Medical Coll. (Japan))

    1989-06-01

    The purpose of this study is to elucidate correlations of several MRI measurements of the cranium and brain, functioning as a volume conductor, to the auditory brain stem response (ABR) in neuro-degenerative disorders. The subjects included forty-seven patients with spinocerebellar degeneration (SCD) and sixteen of amyotrophic lateral sclerosis (ALS). Statistically significant positive correlations were found between I-V and III-V interpeak latencies (IPLs) and the area of cranium and brain in the longitudinal section of SCD patients, and between I-III and III-V IPLs and the area in the longitudinal section of those with ALS. And, also there were statistically significant correlations between the amplitude of the V wave and the area of brain stem as well as that of the cranium in the longitudinal section of SCD patients, and between the amplitude of the V wave and the area of the cerebrum in the longitudinal section of ALS. In conclusion, in the ABR, the IPLs were prolonged and the amplitude of the V wave was decreased while the MRI size of the cranium and brain increased. When the ABR is applied to neuro-degenerative disorders, it might be important to consider not only the conduction of the auditory tracts in the brain stem, but also the correlations of the size of the cranium and brain which act as a volume conductor. (author).

  2. Waardenburg syndrome in four Mexican patients.

    Science.gov (United States)

    Aguilar Caso, Sandra I; Ortiz Nieva, Gabriela

    2009-01-01

    Waardenburg syndrome is a hereditary auditory-pigmentary syndrome. The major features include pigmentary disturbances and congenital deafness. Clinical findings are extremely variable, not only at the authors' institution but also in the literature. The authors describe four patients who presented with various clinical features and different genetic pedigree penetration.

  3. Gene mapping of the Usher syndromes.

    Science.gov (United States)

    Kimberling, W; Smith, R J

    1992-10-01

    USH is an autosomal recessive group of diseases characterized by auditory impairment and visual loss owing to RP. Two common types of USH are known, types I and II. USH type I is characterized by a congenital severe to profound hearing impairment, absent vestibular function, and a progressive pigmentary retinopathy. Persons with type I do not find hearing aids useful, have delayed motor development, and experience progressive night blindness and peripheral visual loss, which usually begins in their second decade. USH type II is characterized by a congenital moderate to severe hearing loss with a down-sloping audiogram, normal vestibular function, and a progressive pigmentary retinopathy. Persons with USH2 find hearing aids beneficial, have normal psychomotor development, and experience progressive night blindness and peripheral visual loss, which usually begins in their third decade. Vestibular dysfunction is the best distinguishing hallmark to differentiate USH type I from type II. One USH type II gene (called USH2) has been assigned to chromosome 1q. One USH type I gene has been tentatively assigned to chromosome 14q. There are other USH genes that have not yet been localized.

  4. Comparison between visual field defect in pigmentary glaucoma and primary open-angle glaucoma.

    Science.gov (United States)

    Nilforushan, Naveed; Yadgari, Maryam; Jazayeri, Anisalsadat

    2016-10-01

    To compare visual field defect patterns between pigmentary glaucoma and primary open-angle glaucoma. Retrospective, comparative study. Patients with diagnosis of primary open-angle glaucoma (POAG) and pigmentary glaucoma (PG) in mild to moderate stages were enrolled in this study. Each of the 52 point locations in total and pattern deviation plot (excluding 2 points adjacent to blind spot) of 24-2 Humphrey visual field as well as six predetermined sectors were compared using SPSS software version 20. Comparisons between 2 groups were performed with the Student t test for continuous variables and the Chi-square test for categorical variables. Thirty-eight eyes of 24 patients with a mean age of 66.26 ± 11 years (range 48-81 years) in the POAG group and 36 eyes of 22 patients with a mean age of 50.52 ± 11 years (range 36-69 years) in the PG group were studied. (P = 0.00). More deviation was detected in points 1, 3, 4, and 32 in total deviation (P = 0.03, P = 0.015, P = 0.018, P = 0.023) and in points 3, 4, and 32 in pattern deviation (P = 0.015, P = 0.049, P = 0.030) in the POAG group, which are the temporal parts of the field. It seems that the temporal area of the visual field in primary open-angle glaucoma is more susceptible to damage in comparison with pigmentary glaucoma.

  5. Presumed atypical HDR syndrome associated with Band Keratopathy and pigmentary retinopathy.

    Science.gov (United States)

    Kim, Cinoo; Cheong, Hae Il; Kim, Jeong Hun; Yu, Young Suk; Kwon, Ji Won

    2011-01-01

    This report describes presumed atypical hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome associated with unexpected ocular findings. The patient had exotropia, bilateral band keratopathy, and pigmentary retinopathy, including attenuated retinal vessels and atrophy of the retinal pigment epithelium. Even though the calcific plaques were successfully removed, visual acuity in both eyes gradually decreased and electroretinography was extinguished. Copyright 2009, SLACK Incorporated.

  6. Selective verbal recognition memory impairments are associated with atrophy of the language network in non-semantic variants of primary progressive aphasia.

    Science.gov (United States)

    Nilakantan, Aneesha S; Voss, Joel L; Weintraub, Sandra; Mesulam, M-Marsel; Rogalski, Emily J

    2017-06-01

    Primary progressive aphasia (PPA) is clinically defined by an initial loss of language function and preservation of other cognitive abilities, including episodic memory. While PPA primarily affects the left-lateralized perisylvian language network, some clinical neuropsychological tests suggest concurrent initial memory loss. The goal of this study was to test recognition memory of objects and words in the visual and auditory modality to separate language-processing impairments from retentive memory in PPA. Individuals with non-semantic PPA had longer reaction times and higher false alarms for auditory word stimuli compared to visual object stimuli. Moreover, false alarms for auditory word recognition memory were related to cortical thickness within the left inferior frontal gyrus and left temporal pole, while false alarms for visual object recognition memory was related to cortical thickness within the right-temporal pole. This pattern of results suggests that specific vulnerability in processing verbal stimuli can hinder episodic memory in PPA, and provides evidence for differential contributions of the left and right temporal poles in word and object recognition memory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Pigment deposition on the central aspect of the posterior lens capsule in pigmentary dispersion.

    Science.gov (United States)

    Nagarajaiah, Shubha; Shun-Shin, Georges Adrien

    2011-01-01

    We describe a case of an increasing pigmentary plaque on the posterior surface of the lens during follow-up of a case of pigment dispersion syndrome and suggest that this is a new sign of pigment dispersion.

  8. Pigment deposition on the central aspect of the posterior lens capsule in pigmentary dispersion

    OpenAIRE

    Nagarajaiah, Shubha; Shun-Shin, Georges Adrien

    2011-01-01

    We describe a case of an increasing pigmentary plaque on the posterior surface of the lens during follow-up of a case of pigment dispersion syndrome and suggest that this is a new sign of pigment dispersion.

  9. Negative electroretinograms in pericentral pigmentary retinal degeneration.

    Science.gov (United States)

    Hotta, Kazuki; Kondo, Mineo; Nakamura, Makoto; Hotta, Junko; Terasaki, Hiroko; Miyake, Yozo; Hida, Tetsuo

    2006-01-01

    The clinical presentation and electrophysiological findings are described of three consecutive cases with pericentral pigmentary retinal degeneration. The responses to bright flashes after dark adaptation showed negative waveform shape in all cases. Rod responses were strongly reduced compared with cone responses. Cone electroretinograms elicited by long-duration stimuli showed greater loss of the on-response than the off-response. The ratio of the on-response amplitude to off-response amplitude of these patients (0.52 +/- 0.12; mean +/- SD, n = 6) was significantly smaller than that of normal subject (0.83 +/- 0.21; mean +/- SD, n = 8) (Mann-Whitney U-test, P retinal function, especially in transmission between photoreceptors and depolarizing bipolar cells.

  10. Radiological and clinical characterization of the lysosomal storage disorders: non-lipid disorders.

    Science.gov (United States)

    Parker, E I; Xing, M; Moreno-De-Luca, A; Harmouche, E; Terk, M R

    2014-01-01

    Lysosomal storage diseases (LSDs) are a large group of genetic metabolic disorders that result in the accumulation of abnormal material, such as mucopolysaccharides, glycoproteins, amino acids and lipids, within cells. Since many LSDs manifest during infancy or early childhood, with potentially devastating consequences if left untreated, timely identification is imperative to prevent irreversible damage and early death. In this review, the key imaging features of the non-lipid or extralipid LSDs are examined and correlated with salient clinical manifestations and genetic information. Disorders are stratified based on the type of excess material causing tissue or organ dysfunction, with descriptions of the mucopolysaccharidoses, mucolipidoses, alpha-mannosidosis, glycogen storage disorder II and cystinosis. In addition, similarities and differences in radiological findings between each of these LSDs are highlighted to facilitate further recognition. Given the rare and extensive nature of the LSDs, mastery of their multiple clinical and radiological traits may seem challenging. However, an understanding of the distinguishing imaging characteristics of LSDs and their clinical correlates may allow radiologists to play a key role in the early diagnosis of these progressive and potentially fatal disorders.

  11. Validation of the Emotiv EPOC(®) EEG gaming system for measuring research quality auditory ERPs.

    Science.gov (United States)

    Badcock, Nicholas A; Mousikou, Petroula; Mahajan, Yatin; de Lissa, Peter; Thie, Johnson; McArthur, Genevieve

    2013-01-01

    Background. Auditory event-related potentials (ERPs) have proved useful in investigating the role of auditory processing in cognitive disorders such as developmental dyslexia, specific language impairment (SLI), attention deficit hyperactivity disorder (ADHD), schizophrenia, and autism. However, laboratory recordings of auditory ERPs can be lengthy, uncomfortable, or threatening for some participants - particularly children. Recently, a commercial gaming electroencephalography (EEG) system has been developed that is portable, inexpensive, and easy to set up. In this study we tested if auditory ERPs measured using a gaming EEG system (Emotiv EPOC(®), www.emotiv.com) were equivalent to those measured by a widely-used, laboratory-based, research EEG system (Neuroscan). Methods. We simultaneously recorded EEGs with the research and gaming EEG systems, whilst presenting 21 adults with 566 standard (1000 Hz) and 100 deviant (1200 Hz) tones under passive (non-attended) and active (attended) conditions. The onset of each tone was marked in the EEGs using a parallel port pulse (Neuroscan) or a stimulus-generated electrical pulse injected into the O1 and O2 channels (Emotiv EPOC(®)). These markers were used to calculate research and gaming EEG system late auditory ERPs (P1, N1, P2, N2, and P3 peaks) and the mismatch negativity (MMN) in active and passive listening conditions for each participant. Results. Analyses were restricted to frontal sites as these are most commonly reported in auditory ERP research. Intra-class correlations (ICCs) indicated that the morphology of the research and gaming EEG system late auditory ERP waveforms were similar across all participants, but that the research and gaming EEG system MMN waveforms were only similar for participants with non-noisy MMN waveforms (N = 11 out of 21). Peak amplitude and latency measures revealed no significant differences between the size or the timing of the auditory P1, N1, P2, N2, P3, and MMN peaks

  12. Auditory Dysfunction in Patients with Cerebrovascular Disease

    Directory of Open Access Journals (Sweden)

    Sadaharu Tabuchi

    2014-01-01

    Full Text Available Auditory dysfunction is a common clinical symptom that can induce profound effects on the quality of life of those affected. Cerebrovascular disease (CVD is the most prevalent neurological disorder today, but it has generally been considered a rare cause of auditory dysfunction. However, a substantial proportion of patients with stroke might have auditory dysfunction that has been underestimated due to difficulties with evaluation. The present study reviews relationships between auditory dysfunction and types of CVD including cerebral infarction, intracerebral hemorrhage, subarachnoid hemorrhage, cerebrovascular malformation, moyamoya disease, and superficial siderosis. Recent advances in the etiology, anatomy, and strategies to diagnose and treat these conditions are described. The numbers of patients with CVD accompanied by auditory dysfunction will increase as the population ages. Cerebrovascular diseases often include the auditory system, resulting in various types of auditory dysfunctions, such as unilateral or bilateral deafness, cortical deafness, pure word deafness, auditory agnosia, and auditory hallucinations, some of which are subtle and can only be detected by precise psychoacoustic and electrophysiological testing. The contribution of CVD to auditory dysfunction needs to be understood because CVD can be fatal if overlooked.

  13. Neural biomarkers for dyslexia, ADHD and ADD in the auditory cortex of children

    OpenAIRE

    Bettina Serrallach; Christine Gross; Valdis Bernhofs; Dorte Engelmann; Jan Benner; Jan Benner; Nadine Gündert; Maria Blatow; Martina Wengenroth; Angelika Seitz; Monika Brunner; Stefan Seither; Stefan Seither; Richard Parncutt; Peter Schneider

    2016-01-01

    Dyslexia, attention deficit hyperactivity disorder (ADHD), and attention deficit disorder (ADD) show distinct clinical profiles that may include auditory and language-related impairments. Currently, an objective brain-based diagnosis of these developmental disorders is still unavailable. We investigated the neuro-auditory systems of dyslexic, ADHD, ADD, and age-matched control children (N=147) using neuroimaging, magnet-encephalography and psychoacoustics. All disorder subgroups exhibited an ...

  14. The Use of Music and Other Forms of Organized Sound as a Therapeutic Intervention for Students with Auditory Processing Disorder: Providing the Best Auditory Experience for Children with Learning Differences

    Science.gov (United States)

    Faronii-Butler, Kishasha O.

    2013-01-01

    This auto-ethnographical inquiry used vignettes and interviews to examine the therapeutic use of music and other forms of organized sound in the learning environment of individuals with Central Auditory Processing Disorders. It is an investigation of the traditions of healing with sound vibrations, from its earliest cultural roots in shamanism and…

  15. The effects of distraction and a brief intervention on auditory and visual-spatial working memory in college students with attention deficit hyperactivity disorder.

    Science.gov (United States)

    Lineweaver, Tara T; Kercood, Suneeta; O'Keeffe, Nicole B; O'Brien, Kathleen M; Massey, Eric J; Campbell, Samantha J; Pierce, Jenna N

    2012-01-01

    Two studies addressed how young adult college students with attention deficit hyperactivity disorder (ADHD) (n = 44) compare to their nonaffected peers (n = 42) on tests of auditory and visual-spatial working memory (WM), are vulnerable to auditory and visual distractions, and are affected by a simple intervention. Students with ADHD demonstrated worse auditory WM than did controls. A near significant trend indicated that auditory distractions interfered with the visual WM of both groups and that, whereas controls were also vulnerable to visual distractions, visual distractions improved visual WM in the ADHD group. The intervention was ineffective. Limited correlations emerged between self-reported ADHD symptoms and objective test performances; students with ADHD who perceived themselves as more symptomatic often had better WM and were less vulnerable to distractions than their ADHD peers.

  16. Musical Expectations Enhance Auditory Cortical Processing in Musicians: A Magnetoencephalography Study.

    Science.gov (United States)

    Park, Jeong Mi; Chung, Chun Kee; Kim, June Sic; Lee, Kyung Myun; Seol, Jaeho; Yi, Suk Won

    2018-01-15

    The present study investigated the influence of musical expectations on auditory representations in musicians and non-musicians using magnetoencephalography (MEG). Neuroscientific studies have demonstrated that musical syntax is processed in the inferior frontal gyri, eliciting an early right anterior negativity (ERAN), and anatomical evidence has shown that interconnections occur between the frontal cortex and the belt and parabelt regions in the auditory cortex (AC). Therefore, we anticipated that musical expectations would mediate neural activities in the AC via an efferent pathway. To test this hypothesis, we measured the auditory-evoked fields (AEFs) of seven musicians and seven non-musicians while they were listening to a five-chord progression in which the expectancy of the third chord was manipulated (highly expected, less expected, and unexpected). The results revealed that highly expected chords elicited shorter N1m (negative AEF at approximately 100 ms) and P2m (positive AEF at approximately 200 ms) latencies and larger P2m amplitudes in the AC than less-expected and unexpected chords. The relations between P2m amplitudes/latencies and harmonic expectations were similar between the groups; however, musicians' results were more remarkable than those of non-musicians. These findings suggest that auditory cortical processing is enhanced by musical knowledge and long-term training in a top-down manner, which is reflected in shortened N1m and P2m latencies and enhanced P2m amplitudes in the AC. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. The efficacy of formal auditory training in children with (central auditory processing disorder: behavioral and electrophysiological evaluation A eficácia do treinamento auditivo formal em crianças com transtorno de processamento auditivo (central: avaliação comportamental e eletrofisiológica

    Directory of Open Access Journals (Sweden)

    Renata Alonso

    2009-10-01

    Full Text Available Long Latency Auditory Evoked Potentials can be used to monitor changes in the Central Auditory Nervous System after Auditory Training. AIM: The aim of this study was to investigate the efficacy of Auditory Training in children with (Central Auditory Processing Disorder, comparing behavioral and electrophysiological findings before and after training. MATERIAL AND METHODS: twenty nine individuals between eight and 16 years of age with (Central Auditory Processing Disorder - diagnosed by behavioral tests - were involved in this research. After evaluation with the P300, the subjects were submitted to an Auditory Training program in acoustic booth and, at the end, a new evaluation of (central auditory processing and a new recording of P300. RESULTS: The comparison between the evaluations made before and after the Auditory Training showed that there was a statistically significant difference among P300 latency values and also among behavioral test mean values in evaluation of (central auditory processing. CONCLUSION: P300 appears to be a useful tool to monitor Central Auditory Nervous System changes after Auditory Training, and this program was effective in the rehabilitation of the auditory skills in children with (Central Auditory Processing Disorder.Os Potenciais Evocados Auditivos de Longa Latência podem ser uma ferramenta útil no monitoramento das mudanças ocorridas no Sistema Nervoso Auditivo Central após Treinamento Auditivo. OBJETIVO: O objetivo deste estudo foi verificar a eficácia do Treinamento Auditivo em crianças com Transtorno de Processamento Auditivo (Central, comparando as medidas comportamentais e eletrofisiológicas antes e após o treinamento. MATERIAL E MÉTODO: Participaram do estudo 29 indivíduos com idades entre oito e 16 anos diagnosticados, por meio de testes comportamentais, com Transtorno de Processamento Auditivo (Central. Após serem submetidos à avaliação do P300, foi realizado com os sujeitos um programa de

  18. Pigmentary Markers in Danes--Associations with Quantitative Skin Colour, Nevi Count, Familial Atypical Multiple-Mole, and Melanoma Syndrome.

    Directory of Open Access Journals (Sweden)

    Peter Johansen

    Full Text Available To investigate whether pigmentation genes involved in the melanogenic pathway (melanogenesis contributed to melanoma predisposition, we compared pigmentary genetics with quantitative skin pigmentation measurements, the number of atypical nevi, the total nevus count, and the familial atypical multiple mole and melanoma (FAMMM syndrome. We typed 32 pigmentary SNP markers and sequenced MC1R in 246 healthy individuals and 116 individuals attending periodic control for malignant melanoma development, 50 of which were diagnosed with FAMMM. It was observed that individuals with any two grouped MC1R variants (missense, NM_002386:c. 456C > A (p.TYR152*, or NM_002386:c.83_84insA (p.Asn29Glnfs*14 had significantly (p<0.001 lighter skin pigmentation of the upper-inner arm than those with none or one MC1R variant. We did not observe any significant association of the MC1R variants with constitutive pigmentation measured on the buttock area. We hypothesize that the effect of MC1R variants on arm pigmentation is primarily reflecting the inability to tan when subjected to UVR. A gender specific effect on skin pigmentation was also observed, and it was found that the skin pigmentation of females on average were darker than that of males (p<0.01. We conclude that MC1R variants are associated with quantitative skin colour in a lightly pigmented Danish population. We did not observe any association between any pigmentary marker and the FAMMM syndrome. We suggest that the genetics of FAMMM is not related to the genetics of the pigmentary pathway.

  19. Healthy brain connectivity predicts atrophy progression in non-fluent variant of primary progressive aphasia.

    Science.gov (United States)

    Mandelli, Maria Luisa; Vilaplana, Eduard; Brown, Jesse A; Hubbard, H Isabel; Binney, Richard J; Attygalle, Suneth; Santos-Santos, Miguel A; Miller, Zachary A; Pakvasa, Mikhail; Henry, Maya L; Rosen, Howard J; Henry, Roland G; Rabinovici, Gil D; Miller, Bruce L; Seeley, William W; Gorno-Tempini, Maria Luisa

    2016-10-01

    Neurodegeneration has been hypothesized to follow predetermined large-scale networks through the trans-synaptic spread of toxic proteins from a syndrome-specific epicentre. To date, no longitudinal neuroimaging study has tested this hypothesis in vivo in frontotemporal dementia spectrum disorders. The aim of this study was to demonstrate that longitudinal progression of atrophy in non-fluent/agrammatic variant primary progressive aphasia spreads over time from a syndrome-specific epicentre to additional regions, based on their connectivity to the epicentre in healthy control subjects. The syndrome-specific epicentre of the non-fluent/agrammatic variant of primary progressive aphasia was derived in a group of 10 mildly affected patients (clinical dementia rating equal to 0) using voxel-based morphometry. From this region, the inferior frontal gyrus (pars opercularis), we derived functional and structural connectivity maps in healthy controls (n = 30) using functional magnetic resonance imaging at rest and diffusion-weighted imaging tractography. Graph theory analysis was applied to derive functional network features. Atrophy progression was calculated using voxel-based morphometry longitudinal analysis on 34 non-fluent/agrammatic patients. Correlation analyses were performed to compare volume changes in patients with connectivity measures of the healthy functional and structural speech/language network. The default mode network was used as a control network. From the epicentre, the healthy functional connectivity network included the left supplementary motor area and the prefrontal, inferior parietal and temporal regions, which were connected through the aslant, superior longitudinal and arcuate fasciculi. Longitudinal grey and white matter changes were found in the left language-related regions and in the right inferior frontal gyrus. Functional connectivity strength in the healthy speech/language network, but not in the default network, correlated with

  20. Auditory Perceptual Abilities Are Associated with Specific Auditory Experience

    Directory of Open Access Journals (Sweden)

    Yael Zaltz

    2017-11-01

    Full Text Available The extent to which auditory experience can shape general auditory perceptual abilities is still under constant debate. Some studies show that specific auditory expertise may have a general effect on auditory perceptual abilities, while others show a more limited influence, exhibited only in a relatively narrow range associated with the area of expertise. The current study addresses this issue by examining experience-dependent enhancement in perceptual abilities in the auditory domain. Three experiments were performed. In the first experiment, 12 pop and rock musicians and 15 non-musicians were tested in frequency discrimination (DLF, intensity discrimination, spectrum discrimination (DLS, and time discrimination (DLT. Results showed significant superiority of the musician group only for the DLF and DLT tasks, illuminating enhanced perceptual skills in the key features of pop music, in which miniscule changes in amplitude and spectrum are not critical to performance. The next two experiments attempted to differentiate between generalization and specificity in the influence of auditory experience, by comparing subgroups of specialists. First, seven guitar players and eight percussionists were tested in the DLF and DLT tasks that were found superior for musicians. Results showed superior abilities on the DLF task for guitar players, though no difference between the groups in DLT, demonstrating some dependency of auditory learning on the specific area of expertise. Subsequently, a third experiment was conducted, testing a possible influence of vowel density in native language on auditory perceptual abilities. Ten native speakers of German (a language characterized by a dense vowel system of 14 vowels, and 10 native speakers of Hebrew (characterized by a sparse vowel system of five vowels, were tested in a formant discrimination task. This is the linguistic equivalent of a DLS task. Results showed that German speakers had superior formant

  1. Auditory agnosia associated with bilateral putaminal hemorrhage: A case report of clinical course of recovery.

    Science.gov (United States)

    Tokida, Haruki; Kanaya, Yuhei; Shimoe, Yutaka; Imagawa, Madoka; Fukunaga, Shinya; Kuriyama, Masaru

    2017-08-31

    A 45-year-old right-handed man with a past history (10 years) of putaminal hemorrage presented with auditory agnosia associated with left putaminal hemorrhage. It was suspected that the auditory agnosia was due to bilateral damage in the acoustic radiations. Generalized auditory agnosia, verbal and non-verbal (music and environmental), was diagnosed by neuropsychological examinations. It improved 4 months after the onset. However, the clinical assessment of attention remained poor. The cognition for speech sounds improved slowly, but once it started to improve, the progress of improvement was rapid. Subsequently, the cognition for music sounds also improved, while the recovery of the cognition for environmental sounds remained delayed. There was a dissociation in recovery between these cognitions. He was able to return to work a year after the onset. We also reviewed the literature for cases with auditory agnosia and discuss their course of recovery in this report.

  2. Non-auditory effects of noise in industry. VI. A final field study in industry

    NARCIS (Netherlands)

    van Dijk, F. J.; Souman, A. M.; de Vries, F. F.

    1987-01-01

    Non-auditory effects of noise were studied among 539 male workers from seven industries. The LAeq, assessed by personal noise dosimetry, has been used to study acute effects. Various indices of total noise exposure, involving level and duration, were developed for long-term effect studies. In the

  3. Plasticity in the Primary Auditory Cortex, Not What You Think it is: Implications for Basic and Clinical Auditory Neuroscience

    Science.gov (United States)

    Weinberger, Norman M.

    2013-01-01

    Standard beliefs that the function of the primary auditory cortex (A1) is the analysis of sound have proven to be incorrect. Its involvement in learning, memory and other complex processes in both animals and humans is now well-established, although often not appreciated. Auditory coding is strongly modifed by associative learning, evident as associative representational plasticity (ARP) in which the representation of an acoustic dimension, like frequency, is re-organized to emphasize a sound that has become behaviorally important. For example, the frequency tuning of a cortical neuron can be shifted to match that of a significant sound and the representational area of sounds that acquire behavioral importance can be increased. ARP depends on the learning strategy used to solve an auditory problem and the increased cortical area confers greater strength of auditory memory. Thus, primary auditory cortex is involved in cognitive processes, transcending its assumed function of auditory stimulus analysis. The implications for basic neuroscience and clinical auditory neuroscience are presented and suggestions for remediation of auditory processing disorders are introduced. PMID:25356375

  4. Mitochondrial disorders in progressive muscular dystrophies

    Directory of Open Access Journals (Sweden)

    D. A. Kharlamov

    2014-01-01

    Full Text Available The literature review gives data on the role of mitochondrial disorders in the pathogenesis of different progressive muscular dystrophies. It describes changes in Duchenne, limb-girdle, facial scapulohumeral (Landuzi—Degerina muscular dystrophies. The review is based on both clinical and experimental animal studies. Along with the implication of mitochondria in the pathogenesis of the diseases, it describes muscular dystrophy treatment options compensating for energy disorders and overcoming oxidative stress and mitochondrial dysfunction. Mitochondrial studies in different muscle diseases hand physicians treatment modalities that fail to lead to recovery, but compensate for disorders caused by mutations in the genetic apparatus. 

  5. Auditory memory function in expert chess players.

    Science.gov (United States)

    Fattahi, Fariba; Geshani, Ahmad; Jafari, Zahra; Jalaie, Shohreh; Salman Mahini, Mona

    2015-01-01

    Chess is a game that involves many aspects of high level cognition such as memory, attention, focus and problem solving. Long term practice of chess can improve cognition performances and behavioral skills. Auditory memory, as a kind of memory, can be influenced by strengthening processes following long term chess playing like other behavioral skills because of common processing pathways in the brain. The purpose of this study was to evaluate the auditory memory function of expert chess players using the Persian version of dichotic auditory-verbal memory test. The Persian version of dichotic auditory-verbal memory test was performed for 30 expert chess players aged 20-35 years and 30 non chess players who were matched by different conditions; the participants in both groups were randomly selected. The performance of the two groups was compared by independent samples t-test using SPSS version 21. The mean score of dichotic auditory-verbal memory test between the two groups, expert chess players and non-chess players, revealed a significant difference (p≤ 0.001). The difference between the ears scores for expert chess players (p= 0.023) and non-chess players (p= 0.013) was significant. Gender had no effect on the test results. Auditory memory function in expert chess players was significantly better compared to non-chess players. It seems that increased auditory memory function is related to strengthening cognitive performances due to playing chess for a long time.

  6. Perceptual consequences of disrupted auditory nerve activity.

    Science.gov (United States)

    Zeng, Fan-Gang; Kong, Ying-Yee; Michalewski, Henry J; Starr, Arnold

    2005-06-01

    Perceptual consequences of disrupted auditory nerve activity were systematically studied in 21 subjects who had been clinically diagnosed with auditory neuropathy (AN), a recently defined disorder characterized by normal outer hair cell function but disrupted auditory nerve function. Neurological and electrophysical evidence suggests that disrupted auditory nerve activity is due to desynchronized or reduced neural activity or both. Psychophysical measures showed that the disrupted neural activity has minimal effects on intensity-related perception, such as loudness discrimination, pitch discrimination at high frequencies, and sound localization using interaural level differences. In contrast, the disrupted neural activity significantly impairs timing related perception, such as pitch discrimination at low frequencies, temporal integration, gap detection, temporal modulation detection, backward and forward masking, signal detection in noise, binaural beats, and sound localization using interaural time differences. These perceptual consequences are the opposite of what is typically observed in cochlear-impaired subjects who have impaired intensity perception but relatively normal temporal processing after taking their impaired intensity perception into account. These differences in perceptual consequences between auditory neuropathy and cochlear damage suggest the use of different neural codes in auditory perception: a suboptimal spike count code for intensity processing, a synchronized spike code for temporal processing, and a duplex code for frequency processing. We also proposed two underlying physiological models based on desynchronized and reduced discharge in the auditory nerve to successfully account for the observed neurological and behavioral data. These methods and measures cannot differentiate between these two AN models, but future studies using electric stimulation of the auditory nerve via a cochlear implant might. These results not only show the unique

  7. Non-neoplastic disorders of the esophagus

    International Nuclear Information System (INIS)

    Hong, Min Ji; Kim, Young Tong

    2013-01-01

    Non-neoplastic disorders of the esophagus include esophagitis, esophageal diverticulum, esophageal injury, foreign body, fistulous formation between the esophagus and the surrounding structures and mucocele. Since these disorders have variable symptoms and radiologic findings, it needs to differentiated from other disorders other than esophageal diseases. Being knowledgeable of CT findings suggest that these disorders can help diagnose non-neoplastic disorders of the esophagus. The purpose of this pictorial essay is to review the CT appearance of non-neoplastic disorders of the esophagus.

  8. Assessment and Mitigation of the Effects of Noise on Habitability in Deep Space Environments: Report on Non-Auditory Effects of Noise

    Science.gov (United States)

    Begault, Durand R.

    2018-01-01

    This document reviews non-auditory effects of noise relevant to habitable volume requirements in cislunar space. The non-auditory effects of noise in future long-term space habitats are likely to be impactful on team and individual performance, sleep, and cognitive well-being. This report has provided several recommendations for future standards and procedures for long-term space flight habitats, along with recommendations for NASA's Human Research Program in support of DST mission success.

  9. Ventilatory response to induced auditory arousals during NREM sleep.

    Science.gov (United States)

    Badr, M S; Morgan, B J; Finn, L; Toiber, F S; Crabtree, D C; Puleo, D S; Skatrud, J B

    1997-09-01

    Sleep state instability is a potential mechanism of central apnea/hypopnea during non-rapid eye movement (NREM) sleep. To investigate this postulate, we induced brief arousals by delivering transient (0.5 second) auditory stimuli during stable NREM sleep in eight normal subjects. Arousal was determined according to American Sleep Disorders Association (ASDA) criteria. A total of 96 trials were conducted; 59 resulted in cortical arousal and 37 did not result in arousal. In trials associated with arousal, minute ventilation (VE) increased from 5.1 +/- 1.24 minutes to 7.5 +/- 2.24 minutes on the first posttone breath (p = 0.001). However, no subsequent hypopnea or apnea occurred as VE decreased gradually to 4.8 +/- 1.5 l/minute (p > 0.05) on the fifth posttone breath. Trials without arousal did not result in hyperpnea on the first breath nor subsequent hypopnea. We conclude that 1) auditory stimulation resulted in transient hyperpnea only if associated with cortical arousal; 2) hypopnea or apnea did not occur following arousal-induced hyperpnea in normal subjects; 3) interaction with fluctuating chemical stimuli or upper airway resistance may be required for arousals to cause sleep-disordered breathing.

  10. Increased psychophysiological parameters of attention in non-psychotic individuals with auditory verbal hallucinations

    DEFF Research Database (Denmark)

    van Lutterveld, Remko; Oranje, Bob; Abramovic, Lucija

    2010-01-01

    with an auditory oddball paradigm in 18 non-psychotic individuals with AVH and 18 controls. RESULTS: P300 amplitude was increased in the AVH group as compared to controls, reflecting superior effortful attention. A trend in the same direction was found for processing negativity. No significant differences were...... found for mismatch negativity. CONCLUSION: Contrary to our expectations, non-psychotic individuals with AVH show increased rather than decreased psychophysiological measures of effortful attention compared to healthy controls, refuting a pivotal role of decreased effortful attention...

  11. 48XXYY Syndrome in an Adult with Type 2 Diabetes Mellitus, Unilateral Renal Aplasia, and Pigmentary Retinitis.

    Science.gov (United States)

    Zantour, Baha; Sfar, Mohamed Habib; Younes, Samia; Alaya, Wafa; Kamoun, Mahdi; Mkaouar, Emna; Jerbi, Saida

    2010-01-01

    A 45-year-old male was referred for diabetes mellitus. Clinical examination found a family history of multiple precocious deaths, strong consanguinity, personal history of seizures during childhood, small testicles, small penis, sparse body hair, long arms and legs, dysmorphic features, mental retardation, dysarthria, tremor, and mild gait ataxia. Investigations found pigmentary retinitis, metabolic syndrome, unilateral renal aplasia, and hypergonadotropic hypogonadism, and ruled out mitochondrial cytopathy and leucodystrophy. Karyotype study showed a 48XXYY chromosomal type. Renal aplasia and pigmentary retinitis have not been described in 48XXYY patients. They may be related to the chromosomal sex aneuploidy, or caused by other genetic aberrations in light of the high consanguinity rate in the patient's family.

  12. 48XXYY Syndrome in an Adult with Type 2 Diabetes Mellitus, Unilateral Renal Aplasia, and Pigmentary Retinitis

    Directory of Open Access Journals (Sweden)

    Baha Zantour

    2010-01-01

    Full Text Available A 45-year-old male was referred for diabetes mellitus. Clinical examination found a family history of multiple precocious deaths, strong consanguinity, personal history of seizures during childhood, small testicles, small penis, sparse body hair, long arms and legs, dysmorphic features, mental retardation, dysarthria, tremor, and mild gait ataxia. Investigations found pigmentary retinitis, metabolic syndrome, unilateral renal aplasia, and hypergonadotropic hypogonadism, and ruled out mitochondrial cytopathy and leucodystrophy. Karyotype study showed a 48XXYY chromosomal type. Renal aplasia and pigmentary retinitis have not been described in 48XXYY patients. They may be related to the chromosomal sex aneuploidy, or caused by other genetic aberrations in light of the high consanguinity rate in the patient's family.

  13. Phonological working memory and auditory processing speed in children with specific language impairment

    Directory of Open Access Journals (Sweden)

    Fatemeh Haresabadi

    2015-02-01

    Full Text Available Background and Aim: Specific language impairment (SLI, one variety of developmental language disorder, has attracted much interest in recent decades. Much research has been conducted to discover why some children have a specific language impairment. So far, research has failed to identify a reason for this linguistic deficiency. Some researchers believe language disorder causes defects in phonological working memory and affects auditory processing speed. Therefore, this study reviews the results of research investigating these two factors in children with specific language impairment.Recent Findings: Studies have shown that children with specific language impairment face constraints in phonological working memory capacity. Memory deficit is one possible cause of linguistic disorder in children with specific language impairment. However, in these children, disorder in information processing speed is observed, especially regarding the auditory aspect.Conclusion: Much more research is required to adequately explain the relationship between phonological working memory and auditory processing speed with language. However, given the role of phonological working memory and auditory processing speed in language acquisition, a focus should be placed on phonological working memory capacity and auditory processing speed in the assessment and treatment of children with a specific language impairment.

  14. Follicular red dots: a normal trichoscopy feature in patients with pigmentary disorders? Pontos vermelhos foliculares: um achado tricoscópico normal em pacientes com distúrbios da pigmentação?

    Directory of Open Access Journals (Sweden)

    Rodrigo Pirmez

    2013-06-01

    Full Text Available Follicular red dots have been described as a trichoscopic feature of active discoid lupus erythematosus of the scalp and its presence associated with a better prognosis. We report five patients with pigmentary disorders in whom follicular red dots were detected during scalp examination. We suggest that this pattern is probably related to the rich vasculature that naturally envelops the normal hair follicle. The possible implications of such proposition in cases of discoid lupus erythematosus and other scalp disorders are also discussed.Pontos vermelhos foliculares foram descritos como achado tricoscópico de lupus eritematoso discóide do couro cabeludo em atividade e a presença destes associado a melhor prognóstico. Relatamos cinco pacientes com distúrbios da pigmentação nos quais pontos vermelhos foliculares foram detectados ao exame do couro cabeludo. Sugerimos que este padrão está provavelmente relacionado à rica vascularização que naturalmente envolve o folículo piloso normal. As possíveis implicações desta suposição nos casos de lupus eritematoso discóide e outras doenças do couro cabeludo também são discutidas.

  15. Acquired word deafness, and the temporal grain of sound representation in the primary auditory cortex.

    Science.gov (United States)

    Phillips, D P; Farmer, M E

    1990-11-15

    This paper explores the nature of the processing disorder which underlies the speech discrimination deficit in the syndrome of acquired word deafness following from pathology to the primary auditory cortex. A critical examination of the evidence on this disorder revealed the following. First, the most profound forms of the condition are expressed not only in an isolation of the cerebral linguistic processor from auditory input, but in a failure of even the perceptual elaboration of the relevant sounds. Second, in agreement with earlier studies, we conclude that the perceptual dimension disturbed in word deafness is a temporal one. We argue, however, that it is not a generalized disorder of auditory temporal processing, but one which is largely restricted to the processing of sounds with temporal content in the milliseconds to tens-of-milliseconds time frame. The perceptual elaboration of sounds with temporal content outside that range, in either direction, may survive the disorder. Third, we present neurophysiological evidence that the primary auditory cortex has a special role in the representation of auditory events in that time frame, but not in the representation of auditory events with temporal grains outside that range.

  16. Motor-auditory-visual integration: The role of the human mirror neuron system in communication and communication disorders.

    Science.gov (United States)

    Le Bel, Ronald M; Pineda, Jaime A; Sharma, Anu

    2009-01-01

    The mirror neuron system (MNS) is a trimodal system composed of neuronal populations that respond to motor, visual, and auditory stimulation, such as when an action is performed, observed, heard or read about. In humans, the MNS has been identified using neuroimaging techniques (such as fMRI and mu suppression in the EEG). It reflects an integration of motor-auditory-visual information processing related to aspects of language learning including action understanding and recognition. Such integration may also form the basis for language-related constructs such as theory of mind. In this article, we review the MNS system as it relates to the cognitive development of language in typically developing children and in children at-risk for communication disorders, such as children with autism spectrum disorder (ASD) or hearing impairment. Studying MNS development in these children may help illuminate an important role of the MNS in children with communication disorders. Studies with deaf children are especially important because they offer potential insights into how the MNS is reorganized when one modality, such as audition, is deprived during early cognitive development, and this may have long-term consequences on language maturation and theory of mind abilities. Readers will be able to (1) understand the concept of mirror neurons, (2) identify cortical areas associated with the MNS in animal and human studies, (3) discuss the use of mu suppression in the EEG for measuring the MNS in humans, and (4) discuss MNS dysfunction in children with (ASD).

  17. Host cell reactivation by fibroblasts from patients with pigmentary degeneration of the retina

    International Nuclear Information System (INIS)

    Lytle, C.D.; Tarone, R.E.; Barrett, S.F.; Robbins, J.H.; Wirtschafter, J.D.; Dupuy, J.-M.

    1983-01-01

    Cockayne syndrome (CS) is an autosomal recessive disease characterized by numerous clinical abnormalities including acute sun sensitivity and primary pigmentary degeneration of the retina. Cultured fibroblasts from CS patients are hypersensitive to ultraviolet radiation. Host cell reactivation of irradiated virus was studied in CS and in other diseases with retinal degeneration to evaluate repair. The survival of UV-irradiated Herpes simplex virus type 1 was determined in fibroblast lines from four normal donors, two patients with CS, one with both xeroderma pigmentosum (XP) and CS, and from several other patients with (Usher syndrome, olivopontocerebellar atrophy, retinitis pigmentosa) and without (XP, ataxia telangiectasia) primary pigmentary degeneration of the retina. The viral survival curves in all cell lines showed two components: a very sensitive initial component followed by an exponential, less sensitive component. The exponential component had greater sensitivity than normal in the case of the CS patients, the patient with both XP and CS, and the XP patient. It was proposed that patients with CS have defective repair of DNA which may be the cause of their retinal degeneration. (author)

  18. Host cell reactivation by fibroblasts from patients with pigmentary degeneration of the retina

    Energy Technology Data Exchange (ETDEWEB)

    Lytle, C.D. (Food and Drug Administration, Rockville, MD (USA)); Tarone, R.E.; Barrett, S.F.; Robbins, J.H. (National Cancer Inst., Bethesda, MD (USA)); Wirtschafter, J.D. (Minnesota Univ., Minneapolis (USA). Hospitals); Dupuy, J.M. (Quebec Univ., Laval-des-Rapides (Canada). Inst. Armand-Frappier)

    1983-05-01

    Cockayne syndrome (CS) is an autosomal recessive disease characterized by numerous clinical abnormalities including acute sun sensitivity and primary pigmentary degeneration of the retina. Cultured fibroblasts from CS patients are hypersensitive to ultraviolet radiation. Host cell reactivation of irradiated virus was studied in CS and in other diseases with retinal degeneration to evaluate repair. The survival of UV-irradiated Herpes simplex virus type 1 was determined in fibroblast lines from four normal donors, two patients with CS, one with both xeroderma pigmentosum (XP) and CS, and from several other patients with (Usher syndrome, olivopontocerebellar atrophy, retinitis pigmentosa) and without (XP, ataxia telangiectasia) primary pigmentary degeneration of the retina. The viral survival curves in all cell lines showed two components: a very sensitive initial component followed by an exponential, less sensitive component. The exponential component had greater sensitivity than normal in the case of the CS patients, the patient with both XP and CS, and the XP patient. It was proposed that patients with CS have defective repair of DNA which may be the cause of their retinal degeneration.

  19. Auditory Deprivation and Early Conductive Hearing Loss from Otitis Media.

    Science.gov (United States)

    Gunnarson, Adele D.; And Others

    1990-01-01

    This article reviews auditory deprivation effects on anatomy, physiology, and behavior in animals and discusses the sequelae of otitis media with effusion (OME) in children. Focused on are central auditory processing disorders associated with early fluctuating hearing loss from OME. (DB)

  20. Auditory pathways and processes: implications for neuropsychological assessment and diagnosis of children and adolescents.

    Science.gov (United States)

    Bailey, Teresa

    2010-01-01

    Neuroscience research on auditory processing pathways and their behavioral and electrophysiological correlates has taken place largely outside the field of clinical neuropsychology. Deviations and disruptions in auditory pathways in children and adolescents result in a well-documented range of developmental and learning impairments frequently referred for neuropsychological evaluation. This review is an introduction to research from the last decade. It describes auditory cortical and subcortical pathways and processes and relates recent research to specific conditions and questions neuropsychologists commonly encounter. Auditory processing disorders' comorbidity with ADHD and language-based disorders and research addressing the challenges of assessment and differential diagnosis are discussed.

  1. Development of the auditory system

    Science.gov (United States)

    Litovsky, Ruth

    2015-01-01

    Auditory development involves changes in the peripheral and central nervous system along the auditory pathways, and these occur naturally, and in response to stimulation. Human development occurs along a trajectory that can last decades, and is studied using behavioral psychophysics, as well as physiologic measurements with neural imaging. The auditory system constructs a perceptual space that takes information from objects and groups, segregates sounds, and provides meaning and access to communication tools such as language. Auditory signals are processed in a series of analysis stages, from peripheral to central. Coding of information has been studied for features of sound, including frequency, intensity, loudness, and location, in quiet and in the presence of maskers. In the latter case, the ability of the auditory system to perform an analysis of the scene becomes highly relevant. While some basic abilities are well developed at birth, there is a clear prolonged maturation of auditory development well into the teenage years. Maturation involves auditory pathways. However, non-auditory changes (attention, memory, cognition) play an important role in auditory development. The ability of the auditory system to adapt in response to novel stimuli is a key feature of development throughout the nervous system, known as neural plasticity. PMID:25726262

  2. Effect of epithalon on age-specific changes in the retina in rats with hereditary pigmentary dystrophy.

    Science.gov (United States)

    Khavinson, V Kh; Razumovskii, M I; Trofimova, S V; Grigor'yan, R A; Chaban, T V; Oleinik, T L; Razumovskaya, A M

    2002-01-01

    The effect of peptide bioregulator Epithalon on the course of hereditary pigmentary retinal degeneration was studied in Campbell rats. Administration of epithalon starting from birth protected morphological structure, increased its bioelectrical activity, and improved its function.

  3. Gray matter density of auditory association cortex relates to knowledge of sound concepts in primary progressive aphasia.

    Science.gov (United States)

    Bonner, Michael F; Grossman, Murray

    2012-06-06

    Long-term memory integrates the multimodal information acquired through perception into unified concepts, supporting object recognition, thought, and language. While some theories of human cognition have considered concepts to be abstract symbols, recent functional neuroimaging evidence has supported an alternative theory: that concepts are multimodal representations associated with the sensory and motor systems through which they are acquired. However, few studies have examined the effects of cortical lesions on the sensory and motor associations of concepts. We tested the hypothesis that individuals with disease in auditory association cortex would have difficulty processing concepts with strong sound associations (e.g., thunder). Human participants with the logopenic variant of primary progressive aphasia (lvPPA) performed a recognition task on words with strong associations in three modalities: Sound, Sight, and Manipulation. LvPPA participants had selective difficulty on Sound words relative to other modalities. Structural MRI analysis in lvPPA revealed gray matter atrophy in auditory association cortex, as defined functionally in a separate BOLD fMRI study of healthy adults. Moreover, lvPPA showed reduced gray matter density in the region of auditory association cortex that healthy participants activated when processing the same Sound words in a separate BOLD fMRI experiment. Finally, reduced gray matter density in this region in lvPPA directly correlated with impaired performance on Sound words. These findings support the hypothesis that conceptual memories are represented in the sensory and motor association cortices through which they are acquired.

  4. Stuttering adults' lack of pre-speech auditory modulation normalizes when speaking with delayed auditory feedback.

    Science.gov (United States)

    Daliri, Ayoub; Max, Ludo

    2018-02-01

    Auditory modulation during speech movement planning is limited in adults who stutter (AWS), but the functional relevance of the phenomenon itself remains unknown. We investigated for AWS and adults who do not stutter (AWNS) (a) a potential relationship between pre-speech auditory modulation and auditory feedback contributions to speech motor learning and (b) the effect on pre-speech auditory modulation of real-time versus delayed auditory feedback. Experiment I used a sensorimotor adaptation paradigm to estimate auditory-motor speech learning. Using acoustic speech recordings, we quantified subjects' formant frequency adjustments across trials when continually exposed to formant-shifted auditory feedback. In Experiment II, we used electroencephalography to determine the same subjects' extent of pre-speech auditory modulation (reductions in auditory evoked potential N1 amplitude) when probe tones were delivered prior to speaking versus not speaking. To manipulate subjects' ability to monitor real-time feedback, we included speaking conditions with non-altered auditory feedback (NAF) and delayed auditory feedback (DAF). Experiment I showed that auditory-motor learning was limited for AWS versus AWNS, and the extent of learning was negatively correlated with stuttering frequency. Experiment II yielded several key findings: (a) our prior finding of limited pre-speech auditory modulation in AWS was replicated; (b) DAF caused a decrease in auditory modulation for most AWNS but an increase for most AWS; and (c) for AWS, the amount of auditory modulation when speaking with DAF was positively correlated with stuttering frequency. Lastly, AWNS showed no correlation between pre-speech auditory modulation (Experiment II) and extent of auditory-motor learning (Experiment I) whereas AWS showed a negative correlation between these measures. Thus, findings suggest that AWS show deficits in both pre-speech auditory modulation and auditory-motor learning; however, limited pre

  5. Progression along the Bipolar Spectrum: A Longitudinal Study of Predictors of Conversion from Bipolar Spectrum Conditions to Bipolar I and II Disorders

    Science.gov (United States)

    Alloy, Lauren B.; Urošević, Snežana; Abramson, Lyn Y.; Jager-Hyman, Shari; Nusslock, Robin; Whitehouse, Wayne G.; Hogan, Michael

    2011-01-01

    Little longitudinal research has examined progression to more severe bipolar disorders in individuals with “soft” bipolar spectrum conditions. We examine rates and predictors of progression to bipolar I and II diagnoses in a non-patient sample of college-age participants (n = 201) with high General Behavior Inventory scores and childhood or adolescent onset of “soft” bipolar spectrum disorders followed longitudinally for 4.5 years from the Longitudinal Investigation of Bipolar Spectrum (LIBS) project. Of 57 individuals with initial cyclothymia or bipolar disorder not otherwise specified (BiNOS) diagnoses, 42.1% progressed to a bipolar II diagnosis and 10.5% progressed to a bipolar I diagnosis. Of 144 individuals with initial bipolar II diagnoses, 17.4% progressed to a bipolar I diagnosis. Consistent with hypotheses derived from the clinical literature and the Behavioral Approach System (BAS) model of bipolar disorder, and controlling for relevant variables (length of follow-up, initial depressive and hypomanic symptoms, treatment-seeking, and family history), high BAS sensitivity (especially BAS Fun Seeking) predicted a greater likelihood of progression to bipolar II disorder, whereas early age of onset and high impulsivity predicted a greater likelihood of progression to bipolar I (high BAS sensitivity and Fun-Seeking also predicted progression to bipolar I when family history was not controlled). The interaction of high BAS and high Behavioral Inhibition System (BIS) sensitivities also predicted greater likelihood of progression to bipolar I. We discuss implications of the findings for the bipolar spectrum concept, the BAS model of bipolar disorder, and early intervention efforts. PMID:21668080

  6. Visual Speech Fills in Both Discrimination and Identification of Non-Intact Auditory Speech in Children

    Science.gov (United States)

    Jerger, Susan; Damian, Markus F.; McAlpine, Rachel P.; Abdi, Herve

    2018-01-01

    To communicate, children must discriminate and identify speech sounds. Because visual speech plays an important role in this process, we explored how visual speech influences phoneme discrimination and identification by children. Critical items had intact visual speech (e.g. baez) coupled to non-intact (excised onsets) auditory speech (signified…

  7. Auditory Connections and Functions of Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Bethany ePlakke

    2014-07-01

    Full Text Available The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC. In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition.

  8. Auditory connections and functions of prefrontal cortex

    Science.gov (United States)

    Plakke, Bethany; Romanski, Lizabeth M.

    2014-01-01

    The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC). In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG) most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition. PMID:25100931

  9. The processing of visual and auditory information for reaching movements.

    Science.gov (United States)

    Glazebrook, Cheryl M; Welsh, Timothy N; Tremblay, Luc

    2016-09-01

    Presenting target and non-target information in different modalities influences target localization if the non-target is within the spatiotemporal limits of perceptual integration. When using auditory and visual stimuli, the influence of a visual non-target on auditory target localization is greater than the reverse. It is not known, however, whether or how such perceptual effects extend to goal-directed behaviours. To gain insight into how audio-visual stimuli are integrated for motor tasks, the kinematics of reaching movements towards visual or auditory targets with or without a non-target in the other modality were examined. When present, the simultaneously presented non-target could be spatially coincident, to the left, or to the right of the target. Results revealed that auditory non-targets did not influence reaching trajectories towards a visual target, whereas visual non-targets influenced trajectories towards an auditory target. Interestingly, the biases induced by visual non-targets were present early in the trajectory and persisted until movement end. Subsequent experimentation indicated that the magnitude of the biases was equivalent whether participants performed a perceptual or motor task, whereas variability was greater for the motor versus the perceptual tasks. We propose that visually induced trajectory biases were driven by the perceived mislocation of the auditory target, which in turn affected both the movement plan and subsequent control of the movement. Such findings provide further evidence of the dominant role visual information processing plays in encoding spatial locations as well as planning and executing reaching action, even when reaching towards auditory targets.

  10. Non-Monotonic Relation Between Noise Exposure Severity and Neuronal Hyperactivity in the Auditory Midbrain

    Directory of Open Access Journals (Sweden)

    Lara Li Hesse

    2016-08-01

    Full Text Available The occurrence of tinnitus can be linked to hearing loss in the majority of cases, but there is nevertheless a large degree of unexplained heterogeneity in the relation between hearing loss and tinnitus. Part of the problem might be that hearing loss is usually quantified in terms of increased hearing thresholds, which only provides limited information about the underlying cochlear damage. Moreover, noise exposure that does not cause hearing threshold loss can still lead to hidden hearing loss (HHL, i.e. functional deafferentation of auditory nerve fibres (ANFs through loss of synaptic ribbons in inner hair cells. Whilst it is known that increased hearing thresholds can trigger increases in spontaneous neural activity in the central auditory system, i.e. a putative neural correlate of tinnitus, the central effects of HHL have not yet been investigated. Here, we exposed mice to octave-band noise at 100 and 105 dB SPL, to generate HHL and permanent increases of hearing thresholds, respectively. Deafferentation of ANFs was confirmed through measurement of auditory brainstem responses and cochlear immunohistochemistry. Acute extracellular recordings from the auditory midbrain (inferior colliculus demonstrated increases in spontaneous neuronal activity (a putative neural correlate of tinnitus in both groups. Surprisingly the increase in spontaneous activity was most pronounced in the mice with HHL, suggesting that the relation between hearing loss and neuronal hyperactivity might be more complex than currently understood. Our computational model indicated that these differences in neuronal hyperactivity could arise from different degrees of deafferentation of low-threshold ANFs in the two exposure groups.Our results demonstrate that HHL is sufficient to induce changes in central auditory processing, and they also indicate a non-monotonic relationship between cochlear damage and neuronal hyperactivity, suggesting an explanation for why tinnitus might

  11. The genetics of pigment dispersion syndrome and pigmentary glaucoma.

    Science.gov (United States)

    Lascaratos, Gerassimos; Shah, Ameet; Garway-Heath, David F

    2013-01-01

    We review the inheritance patterns and recent genetic advances in the study of pigment dispersion syndrome (PDS) and pigmentary glaucoma (PG). Both conditions may result from combinations of mutations in more than one gene or from common variants in many genes, each contributing small effects. We discuss the currently known genetic loci that may be related with PDS/PG in humans, the role of animal models in expanding our understanding of the genetic basis of PDS, the genetic factors underlying the risk for conversion from PDS to PG and the relationship between genetic and environmental--as well as anatomical--risk factors. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. The practices, challenges and recommendations of South African audiologists regarding managing children with auditory processing disorders

    Directory of Open Access Journals (Sweden)

    Claire Fouché-Copley

    2016-06-01

    Full Text Available Audiologists managing children with auditory processing disorders (APD encounter challenges that include conflicting definitions, several classification profiles, problems with differential diagnosis and a lack of standardised guidelines. The heterogeneity of the disorder and its concomitant childhood disorders makes diagnosis difficult. Linguistic and cultural issues are additional challenges faced by South African audiologists. The study aimed to describe the practices, challenges and recommendations of South African audiologists managing children with APD. A quantitative, non-experimental descriptive survey was used to obtain data from 156 audiologists registered with the Health Professions of South Africa. Findings revealed that 67% screened for APD, 42% assessed while 43% provided intervention. A variety of screening and assessment procedures were being administered, with no standard test battery identified. A range of intervention strategies being used are discussed. When the relationship between the number of years of experience and the audiologists’ level of preparedness to practice in the field of APD was compared, a statistically significant difference (p = 0.049 was seen in that participants with more than 10 years of experience were more prepared to practice in this area. Those participants having qualified as speech-language therapists and audiologists were significantly more prepared (p = 0.03 to practice than the audiologists who comprised the sample. Challenges experienced by the participants included the lack of linguistically and culturally appropriate screening and assessment tools and limited normative data. Recommendations included reviewing the undergraduate audiology training programmes, reinstituting the South African APD Taskforce, developing linguistically and culturally appropriate normative data, creating awareness among educators and involving them in the multidisciplinary team. Keywords: Screening; assessment

  13. Expressive vocabulary and auditory processing in children with deviant speech acquisition.

    Science.gov (United States)

    Quintas, Victor Gandra; Mezzomo, Carolina Lisbôa; Keske-Soares, Márcia; Dias, Roberta Freitas

    2010-01-01

    expressive vocabulary and auditory processing in children with phonological disorder. to compare the performance of children with phonological disorder in a vocabulary test with the parameters indicated by the same test and to verify a possible relationship between this performance and auditory processing deficits. participants were 12 children diagnosed with phonological disorders, with ages ranging from 5 to 7 years, of both genders. Vocabulary was assessed using the ABFW language test and the simplified auditory processing evaluation (sorting), Alternate Dichotic Dissyllable - Staggered Spondaic Word (SSW), Pitch Pattern Sequence (PPS) and the Binaural Fusion Test (BF). considering performance in the vocabulary test, all children obtained results with no significant statistical. As for the auditory processing assessment, all children presented better results than expected; the only exception was on the sorting process testing, where the mean accuracy score was of 8.25. Regarding the performance in the other auditory processing tests, the mean accuracy averages were 6.50 in the SSW, 10.74 in the PPS and 7.10 in the BF. When correlating the performance obtained in both assessments, considering p>0.05, the results indicated that, despite the normality, the lower the value obtained in the auditory processing assessment, the lower the accuracy presented in the vocabulary test. A trend was observed for the semantic fields of "means of transportation and professions". Considering the classification categories of the vocabulary test, the SP (substitution processes) were the categories that presented the higher significant increase in all semantic fields. there is a correlation between the auditory processing and the lexicon, where vocabulary can be influenced in children with deviant speech acquisition.

  14. Facilitated auditory detection for speech sounds

    Directory of Open Access Journals (Sweden)

    Carine eSignoret

    2011-07-01

    Full Text Available If it is well known that knowledge facilitates higher cognitive functions, such as visual and auditory word recognition, little is known about the influence of knowledge on detection, particularly in the auditory modality. Our study tested the influence of phonological and lexical knowledge on auditory detection. Words, pseudo words and complex non phonological sounds, energetically matched as closely as possible, were presented at a range of presentation levels from sub threshold to clearly audible. The participants performed a detection task (Experiments 1 and 2 that was followed by a two alternative forced choice recognition task in Experiment 2. The results of this second task in Experiment 2 suggest a correct recognition of words in the absence of detection with a subjective threshold approach. In the detection task of both experiments, phonological stimuli (words and pseudo words were better detected than non phonological stimuli (complex sounds, presented close to the auditory threshold. This finding suggests an advantage of speech for signal detection. An additional advantage of words over pseudo words was observed in Experiment 2, suggesting that lexical knowledge could also improve auditory detection when listeners had to recognize the stimulus in a subsequent task. Two simulations of detection performance performed on the sound signals confirmed that the advantage of speech over non speech processing could not be attributed to energetic differences in the stimuli.

  15. Rapid Auditory System Adaptation Using a Virtual Auditory Environment

    Directory of Open Access Journals (Sweden)

    Gaëtan Parseihian

    2011-10-01

    Full Text Available Various studies have highlighted plasticity of the auditory system from visual stimuli, limiting the trained field of perception. The aim of the present study is to investigate auditory system adaptation using an audio-kinesthetic platform. Participants were placed in a Virtual Auditory Environment allowing the association of the physical position of a virtual sound source with an alternate set of acoustic spectral cues or Head-Related Transfer Function (HRTF through the use of a tracked ball manipulated by the subject. This set-up has the advantage to be not being limited to the visual field while also offering a natural perception-action coupling through the constant awareness of one's hand position. Adaptation process to non-individualized HRTF was realized through a spatial search game application. A total of 25 subjects participated, consisting of subjects presented with modified cues using non-individualized HRTF and a control group using individual measured HRTFs to account for any learning effect due to the game itself. The training game lasted 12 minutes and was repeated over 3 consecutive days. Adaptation effects were measured with repeated localization tests. Results showed a significant performance improvement for vertical localization and a significant reduction in the front/back confusion rate after 3 sessions.

  16. Integration of Visual Information in Auditory Cortex Promotes Auditory Scene Analysis through Multisensory Binding.

    Science.gov (United States)

    Atilgan, Huriye; Town, Stephen M; Wood, Katherine C; Jones, Gareth P; Maddox, Ross K; Lee, Adrian K C; Bizley, Jennifer K

    2018-02-07

    How and where in the brain audio-visual signals are bound to create multimodal objects remains unknown. One hypothesis is that temporal coherence between dynamic multisensory signals provides a mechanism for binding stimulus features across sensory modalities. Here, we report that when the luminance of a visual stimulus is temporally coherent with the amplitude fluctuations of one sound in a mixture, the representation of that sound is enhanced in auditory cortex. Critically, this enhancement extends to include both binding and non-binding features of the sound. We demonstrate that visual information conveyed from visual cortex via the phase of the local field potential is combined with auditory information within auditory cortex. These data provide evidence that early cross-sensory binding provides a bottom-up mechanism for the formation of cross-sensory objects and that one role for multisensory binding in auditory cortex is to support auditory scene analysis. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Speech Evoked Auditory Brainstem Response in Stuttering

    Directory of Open Access Journals (Sweden)

    Ali Akbar Tahaei

    2014-01-01

    Full Text Available Auditory processing deficits have been hypothesized as an underlying mechanism for stuttering. Previous studies have demonstrated abnormal responses in subjects with persistent developmental stuttering (PDS at the higher level of the central auditory system using speech stimuli. Recently, the potential usefulness of speech evoked auditory brainstem responses in central auditory processing disorders has been emphasized. The current study used the speech evoked ABR to investigate the hypothesis that subjects with PDS have specific auditory perceptual dysfunction. Objectives. To determine whether brainstem responses to speech stimuli differ between PDS subjects and normal fluent speakers. Methods. Twenty-five subjects with PDS participated in this study. The speech-ABRs were elicited by the 5-formant synthesized syllable/da/, with duration of 40 ms. Results. There were significant group differences for the onset and offset transient peaks. Subjects with PDS had longer latencies for the onset and offset peaks relative to the control group. Conclusions. Subjects with PDS showed a deficient neural timing in the early stages of the auditory pathway consistent with temporal processing deficits and their abnormal timing may underlie to their disfluency.

  18. Fundamental deficits of auditory perception in Wernicke's aphasia.

    Science.gov (United States)

    Robson, Holly; Grube, Manon; Lambon Ralph, Matthew A; Griffiths, Timothy D; Sage, Karen

    2013-01-01

    This work investigates the nature of the comprehension impairment in Wernicke's aphasia (WA), by examining the relationship between deficits in auditory processing of fundamental, non-verbal acoustic stimuli and auditory comprehension. WA, a condition resulting in severely disrupted auditory comprehension, primarily occurs following a cerebrovascular accident (CVA) to the left temporo-parietal cortex. Whilst damage to posterior superior temporal areas is associated with auditory linguistic comprehension impairments, functional-imaging indicates that these areas may not be specific to speech processing but part of a network for generic auditory analysis. We examined analysis of basic acoustic stimuli in WA participants (n = 10) using auditory stimuli reflective of theories of cortical auditory processing and of speech cues. Auditory spectral, temporal and spectro-temporal analysis was assessed using pure-tone frequency discrimination, frequency modulation (FM) detection and the detection of dynamic modulation (DM) in "moving ripple" stimuli. All tasks used criterion-free, adaptive measures of threshold to ensure reliable results at the individual level. Participants with WA showed normal frequency discrimination but significant impairments in FM and DM detection, relative to age- and hearing-matched controls at the group level (n = 10). At the individual level, there was considerable variation in performance, and thresholds for both FM and DM detection correlated significantly with auditory comprehension abilities in the WA participants. These results demonstrate the co-occurrence of a deficit in fundamental auditory processing of temporal and spectro-temporal non-verbal stimuli in WA, which may have a causal contribution to the auditory language comprehension impairment. Results are discussed in the context of traditional neuropsychology and current models of cortical auditory processing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Do auditory verbal hallucinations have always aclinical significance?

    Directory of Open Access Journals (Sweden)

    Jolanta Rabe-Jabłońska

    2013-06-01

    Full Text Available This article presents the prevalence of auditory verbal hallucinations (AVHs across the life span in various clinical and nonclinical groups in childhood, adolescence, and adult populations. Data on the occurrence of this phenomenon in the general population vary and usually are in the range of 5–28%. The prevalence of non-clinical AVHs is similar in childhood, ado‑ lescence and adulthood. It seems possible that the mechanisms which cause AVHs in non-clinical populations are different from those which are behind AVHs presentations in psychotic illness. In this paper the characteristics of differentiating clini‑ cal forms of hallucinations from the non-clinical ones are discussed. These are: the location of sensations, their content, inhibition control disorders, metacognitive disorders, emotional dysregulation, stress level, and their influence on functioning dis‑ orders. Considered as  etiological factors are abnormal activities of  some areas of  the brain and abnormal pruning. The triggering factors of both types of perception disorders are traumatic events and psychoactive substances use. Long-term studies have shown that the factors which lead to the transformation of non-clinical hallucinations into their clinical forms are: genetic predisposition, schizotypy, at-risk mental state, and stress. The future research needs to focus on the comparison of underlying factors and mechanisms that lead to the onset of AVHs in both patients and non-clinical populations.

  20. Reduced auditory efferent activity in childhood selective mutism.

    Science.gov (United States)

    Bar-Haim, Yair; Henkin, Yael; Ari-Even-Roth, Daphne; Tetin-Schneider, Simona; Hildesheimer, Minka; Muchnik, Chava

    2004-06-01

    Selective mutism is a psychiatric disorder of childhood characterized by consistent inability to speak in specific situations despite the ability to speak normally in others. The objective of this study was to test whether reduced auditory efferent activity, which may have direct bearings on speaking behavior, is compromised in selectively mute children. Participants were 16 children with selective mutism and 16 normally developing control children matched for age and gender. All children were tested for pure-tone audiometry, speech reception thresholds, speech discrimination, middle-ear acoustic reflex thresholds and decay function, transient evoked otoacoustic emission, suppression of transient evoked otoacoustic emission, and auditory brainstem response. Compared with control children, selectively mute children displayed specific deficiencies in auditory efferent activity. These aberrations in efferent activity appear along with normal pure-tone and speech audiometry and normal brainstem transmission as indicated by auditory brainstem response latencies. The diminished auditory efferent activity detected in some children with SM may result in desensitization of their auditory pathways by self-vocalization and in reduced control of masking and distortion of incoming speech sounds. These children may gradually learn to restrict vocalization to the minimal amount possible in contexts that require complex auditory processing.

  1. Changes in the Adult Vertebrate Auditory Sensory Epithelium After Trauma

    Science.gov (United States)

    Oesterle, Elizabeth C.

    2012-01-01

    Auditory hair cells transduce sound vibrations into membrane potential changes, ultimately leading to changes in neuronal firing and sound perception. This review provides an overview of the characteristics and repair capabilities of traumatized auditory sensory epithelium in the adult vertebrate ear. Injured mammalian auditory epithelium repairs itself by forming permanent scars but is unable to regenerate replacement hair cells. In contrast, injured non-mammalian vertebrate ear generates replacement hair cells to restore hearing functions. Non-sensory support cells within the auditory epithelium play key roles in the repair processes. PMID:23178236

  2. CT of the external auditory canal: Correlation with clinical otoscopy

    International Nuclear Information System (INIS)

    Shankar, L.; Hawke, M.; Leekam, R.N.

    1987-01-01

    CT is the modality of choice in the assessment of external auditory canal abnormalities. Disorders of the complex structures within the ear that may be difficult to define clinically are well visualized on high-resolution CT. This exhibit illustrates various external auditory canal abnormalities and correlates these with color illustrations from clinical otoscopy. Congenital lesions of the external auditory canal - microtia, temporo-bandibular joint herniation, and fistulas - and various acquired lesions - traumatic, inflammatory, and neoplastic - are reviewed in this exhibit

  3. Procedures for central auditory processing screening in schoolchildren.

    Science.gov (United States)

    Carvalho, Nádia Giulian de; Ubiali, Thalita; Amaral, Maria Isabel Ramos do; Santos, Maria Francisca Colella

    2018-03-22

    Central auditory processing screening in schoolchildren has led to debates in literature, both regarding the protocol to be used and the importance of actions aimed at prevention and promotion of auditory health. Defining effective screening procedures for central auditory processing is a challenge in Audiology. This study aimed to analyze the scientific research on central auditory processing screening and discuss the effectiveness of the procedures utilized. A search was performed in the SciELO and PUBMed databases by two researchers. The descriptors used in Portuguese and English were: auditory processing, screening, hearing, auditory perception, children, auditory tests and their respective terms in Portuguese. original articles involving schoolchildren, auditory screening of central auditory skills and articles in Portuguese or English. studies with adult and/or neonatal populations, peripheral auditory screening only, and duplicate articles. After applying the described criteria, 11 articles were included. At the international level, central auditory processing screening methods used were: screening test for auditory processing disorder and its revised version, screening test for auditory processing, scale of auditory behaviors, children's auditory performance scale and Feather Squadron. In the Brazilian scenario, the procedures used were the simplified auditory processing assessment and Zaidan's battery of tests. At the international level, the screening test for auditory processing and Feather Squadron batteries stand out as the most comprehensive evaluation of hearing skills. At the national level, there is a paucity of studies that use methods evaluating more than four skills, and are normalized by age group. The use of simplified auditory processing assessment and questionnaires can be complementary in the search for an easy access and low-cost alternative in the auditory screening of Brazilian schoolchildren. Interactive tools should be proposed, that

  4. Auditory-motor learning influences auditory memory for music.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features.

  5. Unbound Bilirubin and Auditory Neuropathy Spectrum Disorder in Late Preterm and Term Infants with Severe Jaundice.

    Science.gov (United States)

    Amin, Sanjiv B; Wang, Hongyue; Laroia, Nirupama; Orlando, Mark

    2016-06-01

    This study evaluates whether unbound bilirubin is a better predictor of auditory neuropathy spectrum disorder (ANSD) than total serum bilirubin (TSB) or the bilirubin:albumin molar ratio (BAMR) in late preterm and term neonates with severe jaundice (TSB ≥20 mg/dL or TSB that met exchange transfusion criteria). Infants ≥34 weeks' gestation with severe jaundice during the first 2 weeks of life were eligible for the prospective observational study. A comprehensive auditory evaluation was performed within 72 hours of peak TSB. ANSD was defined as absent or abnormal auditory brainstem evoked response waveform morphology at 80-decibel click intensity in the presence of normal outer hair cell function. TSB, serum albumin, and unbound bilirubin were measured using the colorimetric, bromocresol green, and modified peroxidase method, respectively. Five of 44 infants developed ANSD. By logistic regression, peak unbound bilirubin but not peak TSB or peak BAMR was associated with ANSD (OR, 4.6; 95% CI, 1.6-13.5; P = .002). On comparing receiver operating characteristic curves, the area under the curve for unbound bilirubin (0.92) was significantly greater (P = .04) compared with the area under the curve for TSB (0.50) or BAMR (0.62). Unbound bilirubin is a more sensitive and specific predictor of ANSD than TSB or BAMR in late preterm and term infants with severe jaundice. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. An Overlap Syndrome of Pigment Dispersion and Pigmentary Glaucoma accompanied by Marfan Syndrome: Case Report with Literature Review.

    Science.gov (United States)

    Chakravarti, Tutul; Spaeth, George

    2013-01-01

    'Overlap syndrome' describes the situation in which two or more 'independent' conditions are present, either one of which could cause a particular finding. This current presentation reports a case with bilateral pigment dispersion syndrome (PDS), advanced pigmentary glaucoma (PG), and the Marfan syndrome, with bilateral subluxation of the lenses, and large short-term and long-term fluctuations of intraocular pressure. It is interesting to consider whether the associated advanced glaucomatous nerve damage could be a manifestation of just the PDS, just the Marfan syndrome, or rather a combination of these two overlapping independent conditions. How to cite this article: Chakravarti T, George S. An Overlap Syndrome of Pigment Dispersion and Pigmentary Glaucoma accompanied by Marfan Syndrome: Case Report with Literature Review. J Current Glau Prac 2013;7(2):91-95.

  7. In Patients Undergoing Cochlear Implantation, Psychological Burden Affects Tinnitus and the Overall Outcome of Auditory Rehabilitation

    Directory of Open Access Journals (Sweden)

    Petra Brüggemann

    2017-05-01

    Full Text Available Cochlear implantation (CI is increasingly being used in the auditory rehabilitation of deaf patients. Here, we investigated whether the auditory rehabilitation can be influenced by the psychological burden caused by mental conditions. Our sample included 47 patients who underwent implantation. All patients were monitored before and 6 months after CI. Auditory performance was assessed using the Oldenburg Inventory (OI and Freiburg monosyllable (FB MS speech discrimination test. The health-related quality of life was measured with Nijmegen Cochlear implantation Questionnaire (NCIQ whereas tinnitus-related distress was measured with the German version of Tinnitus Questionnaire (TQ. We additionally assessed the general perceived quality of life, the perceived stress, coping abilities, anxiety levels and the depressive symptoms. Finally, a structured interview to detect mental conditions (CIDI was performed before and after surgery. We found that CI led to an overall improvement in auditory performance as well as the anxiety and depression, quality of life, tinnitus distress and coping strategies. CIDI revealed that 81% of patients in our sample had affective, anxiety, and/or somatoform disorders before or after CI. The affective disorders included dysthymia and depression, while anxiety disorders included agoraphobias and unspecified phobias. We also diagnosed cases of somatoform pain disorders and unrecognizable figure somatoform disorders. We found a positive correlation between the auditory performance and the decrease of anxiety and depression, tinnitus-related distress and perceived stress. There was no association between the presence of a mental condition itself and the outcome of auditory rehabilitation. We conclude that the CI candidates exhibit high rates of psychological disorders, and there is a particularly strong association between somatoform disorders and tinnitus. The presence of mental disorders remained unaffected by CI but the

  8. Visual perceptual load reduces auditory detection in typically developing individuals but not in individuals with autism spectrum disorders.

    Science.gov (United States)

    Tillmann, Julian; Swettenham, John

    2017-02-01

    Previous studies examining selective attention in individuals with autism spectrum disorder (ASD) have yielded conflicting results, some suggesting superior focused attention (e.g., on visual search tasks), others demonstrating greater distractibility. This pattern could be accounted for by the proposal (derived by applying the Load theory of attention, e.g., Lavie, 2005) that ASD is characterized by an increased perceptual capacity (Remington, Swettenham, Campbell, & Coleman, 2009). Recent studies in the visual domain support this proposal. Here we hypothesize that ASD involves an enhanced perceptual capacity that also operates across sensory modalities, and test this prediction, for the first time using a signal detection paradigm. Seventeen neurotypical (NT) and 15 ASD adolescents performed a visual search task under varying levels of visual perceptual load while simultaneously detecting presence/absence of an auditory tone embedded in noise. Detection sensitivity (d') for the auditory stimulus was similarly high for both groups in the low visual perceptual load condition (e.g., 2 items: p = .391, d = 0.31, 95% confidence interval [CI] [-0.39, 1.00]). However, at a higher level of visual load, auditory d' reduced for the NT group but not the ASD group, leading to a group difference (p = .002, d = 1.2, 95% CI [0.44, 1.96]). As predicted, when visual perceptual load was highest, both groups then showed a similarly low auditory d' (p = .9, d = 0.05, 95% CI [-0.65, 0.74]). These findings demonstrate that increased perceptual capacity in ASD operates across modalities. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. A habilidade de atenção auditiva sustentada em crianças com fissura labiopalatina e transtorno fonológico Sustained auditory attention ability in children with cleft lip and palate and phonological disorders

    Directory of Open Access Journals (Sweden)

    Tâmyne Ferreira Duarte de Moraes

    2011-12-01

    Full Text Available OBJETIVO: Verificar a habilidade de atenção auditiva sustentada em crianças com fissura labiopalatina e transtorno fonológico, comparando o desempenho com crianças com fissura labiopalatina e ausência de transtorno fonológico. MÉTODOS: Dezessete crianças com idade entre 6 e 11 anos, com fissura labiopalatina transforame unilateral operada e ausência de queixa e/ou alteração auditiva, separadas em dois grupos: GI (com transtorno fonológico e GII (com auŝencia de transtorno fonológico. Para detecção de alteração auditiva foram realizadas audiometria e timpanometria. Para avaliação fonológica foram utilizados os seguintes instrumentos: Teste de Linguagem Infantil e Consciência Fonológica: Instrumento de Avaliação Sequencial. Para avaliar a habilidade de atenção auditiva foi aplicado o Teste da Habilidade de Atenção Auditiva Sustentada. RESULTADOS: Das sete crianças com transtorno fonológico (41%, duas (29% apresentaram alteração nos resultados do Teste da Habilidade de Atenção Auditiva Sustentada. Não houve diferença entre as crianças com fissura labiopalatina e transtorno fonológico e as crianças com fissura labiopalatina e ausência de transtorno fonológico quanto aos resultados do Teste de Habilidade de Atenção Auditiva Sustentada. CONCLUSÃO: A habilidade de atenção auditiva sustentada nas crianças com fissura labiopalatina e transtorno fonológico não difere da habilidade de atenção auditiva sustentada de crianças com fissura labiopalatina sem transtorno fonológico.PURPOSE: To verify the ability of sustained auditory attention in children with cleft lip and palate and phonological disorder, in comparison with the performance of children with cleft lip and palate and absence of phonological disorder. METHODS: Seventeen children with ages between 6 and 11 years, with repaired unilateral complete cleft lip and palate and absence of auditory complaints or hearing problems, were divided into two

  10. Missing and delayed auditory responses in young and older children with autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    J. Christopher eEdgar

    2014-06-01

    Full Text Available Background: The development of left and right superior temporal gyrus (STG 50ms (M50 and 100ms (M100 auditory responses in typically developing children (TD and in children with autism spectrum disorder (ASD was examined. It was hypothesized that (1 M50 responses would be observed equally often in younger and older children, (2 M100 responses would be observed more often in older than younger children indicating later development of secondary auditory areas, and (3 M100 but not M50 would be observed less often in ASD than TD in both age groups, reflecting slower maturation of later developing auditory areas in ASD. Methods: 35 typically developing controls, 63 ASD without language impairment (ASD-LI, and 38 ASD with language impairment (ASD+LI were recruited.The presence or absence of a STG M50 and M100 was scored. Subjects were grouped into younger (6 to 10-years-old and older groups (11 to 15-years-old. Results: Although M50 responses were observed equally often in older and younger subjects and equally often in TD and ASD, left and right M50 responses were delayed in ASD-LI and ASD+LI. Group comparisons showed that in younger subjects M100 responses were observed more often in TD than ASD+LI (90% vs 66%, p=0.04, with no differences between TD and ASD-LI (90% vs 76% p=0.14 or between ASD-LI and ASD+LI (76% vs 66%, p=0.53. In older subjects, whereas no differences were observed between TD and ASD+LI, responses were observed more often in ASD-LI than ASD+LI. Conclusions: Although present in all groups, M50 responses were delayed in ASD, suggesting delayed development of earlier developing auditory areas. Examining the TD data, findings indicated that by 11 years a right M100 should be observed in 100% of subjects and a left M100 in 80% of subjects. Thus, by 11years, lack of a left and especially right M100 offers neurobiological insight into sensory processing that may underlie language or cognitive impairment.

  11. Non-auditory factors affecting urban soundscape evaluation.

    Science.gov (United States)

    Jeon, Jin Yong; Lee, Pyoung Jik; Hong, Joo Young; Cabrera, Densil

    2011-12-01

    The aim of this study is to characterize urban spaces, which combine landscape, acoustics, and lighting, and to investigate people's perceptions of urban soundscapes through quantitative and qualitative analyses. A general questionnaire survey and soundwalk were performed to investigate soundscape perception in urban spaces. Non-auditory factors (visual image, day lighting, and olfactory perceptions), as well as acoustic comfort, were selected as the main contexts that affect soundscape perception, and context preferences and overall impressions were evaluated using an 11-point numerical scale. For qualitative analysis, a semantic differential test was performed in the form of a social survey, and subjects were also asked to describe their impressions during a soundwalk. The results showed that urban soundscapes can be characterized by soundmarks, and soundscape perceptions are dominated by acoustic comfort, visual images, and day lighting, whereas reverberance in urban spaces does not yield consistent preference judgments. It is posited that the subjective evaluation of reverberance can be replaced by physical measurements. The categories extracted from the qualitative analysis revealed that spatial impressions such as openness and density emerged as some of the contexts of soundscape perception. © 2011 Acoustical Society of America

  12. Comparing Auditory Noise Treatment with Stimulant Medication on Cognitive Task Performance in Children with Attention Deficit Hyperactivity Disorder: Results from a Pilot Study.

    Science.gov (United States)

    Söderlund, Göran B W; Björk, Christer; Gustafsson, Peik

    2016-01-01

    Recent research has shown that acoustic white noise (80 dB) can improve task performance in people with attention deficits and/or Attention Deficit Hyperactivity Disorder (ADHD). This is attributed to the phenomenon of stochastic resonance in which a certain amount of noise can improve performance in a brain that is not working at its optimum. We compare here the effect of noise exposure with the effect of stimulant medication on cognitive task performance in ADHD. The aim of the present study was to compare the effects of auditory noise exposure with stimulant medication for ADHD children on a cognitive test battery. A group of typically developed children (TDC) took the same tests as a comparison. Twenty children with ADHD of combined or inattentive subtypes and twenty TDC matched for age and gender performed three different tests (word recall, spanboard and n-back task) during exposure to white noise (80 dB) and in a silent condition. The ADHD children were tested with and without central stimulant medication. In the spanboard- and the word recall tasks, but not in the 2-back task, white noise exposure led to significant improvements for both non-medicated and medicated ADHD children. No significant effects of medication were found on any of the three tasks. This pilot study shows that exposure to white noise resulted in a task improvement that was larger than the one with stimulant medication thus opening up the possibility of using auditory noise as an alternative, non-pharmacological treatment of cognitive ADHD symptoms.

  13. Comparing Auditory Noise Treatment with Stimulant Medication on Cognitive Task Performance in Children with Attention Deficit Hyperactivity Disorder: Results from a Pilot Study

    Directory of Open Access Journals (Sweden)

    Göran B W Söderlund

    2016-09-01

    Full Text Available Background: Recent research has shown that acoustic white noise (80 dB can improve task performance in people with attention deficits and/or Attention Deficit Hyperactivity Disorder (ADHD. This is attributed to the phenomenon of stochastic resonance in which a certain amount of noise can improve performance in a brain that is not working at its optimum. We compare here the effect of noise exposure with the effect of stimulant medication on cognitive task performance in ADHD. The aim of the present study was to compare the effects of auditory noise exposure with stimulant medication for ADHD children on a cognitive test battery. A group of typically developed children (TDC took the same tests as a comparison.Methods: Twenty children with ADHD of combined or inattentive subtypes and twenty typically developed children matched for age and gender performed three different tests (word recall, spanboard and n-back task during exposure to white noise (80 dB and in a silent condition. The ADHD children were tested with and without central stimulant medication.Results: In the spanboard- and the word recall tasks, but not in the 2-back task, white noise exposure led to significant improvements for both non-medicated and medicated ADHD children. No significant effects of medication were found on any of the three tasks.Conclusion: This pilot study shows that exposure to white noise resulted in a task improvement that was larger than the one with stimulant medication thus opening up the possibility of using auditory noise as an alternative, non-pharmacological treatment of cognitive ADHD symptoms.

  14. Musical experience shapes top-down auditory mechanisms: evidence from masking and auditory attention performance.

    Science.gov (United States)

    Strait, Dana L; Kraus, Nina; Parbery-Clark, Alexandra; Ashley, Richard

    2010-03-01

    A growing body of research suggests that cognitive functions, such as attention and memory, drive perception by tuning sensory mechanisms to relevant acoustic features. Long-term musical experience also modulates lower-level auditory function, although the mechanisms by which this occurs remain uncertain. In order to tease apart the mechanisms that drive perceptual enhancements in musicians, we posed the question: do well-developed cognitive abilities fine-tune auditory perception in a top-down fashion? We administered a standardized battery of perceptual and cognitive tests to adult musicians and non-musicians, including tasks either more or less susceptible to cognitive control (e.g., backward versus simultaneous masking) and more or less dependent on auditory or visual processing (e.g., auditory versus visual attention). Outcomes indicate lower perceptual thresholds in musicians specifically for auditory tasks that relate with cognitive abilities, such as backward masking and auditory attention. These enhancements were observed in the absence of group differences for the simultaneous masking and visual attention tasks. Our results suggest that long-term musical practice strengthens cognitive functions and that these functions benefit auditory skills. Musical training bolsters higher-level mechanisms that, when impaired, relate to language and literacy deficits. Thus, musical training may serve to lessen the impact of these deficits by strengthening the corticofugal system for hearing. 2009 Elsevier B.V. All rights reserved.

  15. Correlation of the Dysphonia Severity Index (DSI), Consensus Auditory-Perceptual Evaluation of Voice (CAPE-V), and Gender in Brazilians With and Without Voice Disorders.

    Science.gov (United States)

    Nemr, Katia; Simões-Zenari, Marcia; de Souza, Glaucia S; Hachiya, Adriana; Tsuji, Domingos H

    2016-11-01

    This study aims to analyze the Dysphonia Severity Index (DSI) in Brazilians with or without voice disorders and investigate DSI's correlation with gender and auditory-perceptual evaluation data obtained via the Consensus Auditory-Perceptual Evaluation of Voice (CAPE-V) protocol. A total of 66 Brazilian adults from both genders participated in the study, including 24 patients with dysphonia confirmed on laryngeal examination (dysphonic group [DG]) and 42 volunteers without voice or hearing complaints and without auditory-perceptual voice disorders (nondysphonic group [NDG]). The vocal tasks included in CAPE-V and DSI were performed and recorded. Data were analyzed by means of the independent t test, the Mann-Whitney U test, and Pearson correlation at the 5% significance level. Differences were found in the mean DSI values between the DG and the NDG. Differences were also found in all DSI items between the groups, except for the highest frequency parameter. In the DG, a moderate negative correlation was detected between overall dysphonia severity (CAPE-V) and DSI value, and between breathiness and DSI value, and a weak negative correlation was detected between DSI value and roughness. In the NDG, the maximum phonation time was higher among males. In both groups, the highest frequency parameter was higher among females. The DSI discriminated among Brazilians with or without voice disorders. A correlation was found between some aspects of the DSI and the CAPE-V but not between DSI and gender. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  16. Progress in Understanding and Treating SCN2A-Mediated Disorders

    DEFF Research Database (Denmark)

    Sanders, Stephan J.; Campbell, Arthur J.; Cottrell, Jeffrey R.

    2018-01-01

    Advances in gene discovery for neurodevelopmental disorders have identified SCN2A dysfunction as a leading cause of infantile seizures, autism spectrum disorder, and intellectual disability. SCN2A encodes the neuronal sodium channel NaV1.2. Functional assays demonstrate strong correlation between...... of neurodevelopmental disorders more generally. Here, we discuss the progress made, through the concerted efforts of a diverse group of academic and industry scientists as well as policy advocates, in understanding and treating SCN2A-related disorders....

  17. SLUG (SNAI2) deletions in patients with Waardenburg disease.

    Science.gov (United States)

    Sánchez-Martín, Manuel; Rodríguez-García, Arancha; Pérez-Losada, Jesús; Sagrera, Ana; Read, Andrew P; Sánchez-García, Isidro

    2002-12-01

    Waardenburg syndrome (WS; deafness with pigmentary abnormalities) is a congenital disorder caused by defective function of the embryonic neural crest. Depending on additional symptoms, WS is classified into four types: WS1, WS2, WS3 and WS4. WS1 and WS3 are caused by mutations in PAX3, whereas WS2 is heterogenous, being caused by mutations in the microphthalmia (MITF) gene in some but not all affected families. The identification of Slugh, a zinc-finger transcription factor expressed in migratory neural crest cells, as the gene responsible for pigmentary disturbances in mice prompted us to analyse the role of its human homologue SLUG in neural crest defects. Here we show that two unrelated patients with WS2 have homozygous deletions in SLUG which result in absence of the SLUG product. We further show that Mitf is present in Slug-deficient cells and transactivates the SLUG promoter, and that Slugh and Kit genetically interact in vivo. Our findings further define the locus heterogeneity of WS2 and point to an essential role of SLUG in the development of neural crest-derived human cell lineages: its absence causes the auditory-pigmentary symptoms in at least some individuals with WS2.

  18. Vitiligo and Autoimmune Thyroid Disorders

    Directory of Open Access Journals (Sweden)

    Enke Baldini

    2017-10-01

    Full Text Available Vitiligo represents the most common cause of acquired skin, hair, and oral depigmentation, affecting 0.5–1% of the population worldwide. It is clinically characterized by the appearance of disfiguring circumscribed skin macules following melanocyte destruction by autoreactive cytotoxic T lymphocytes. Patients affected by vitiligo usually show a poorer quality of life and are more likely to suffer from depressive symptoms, particularly evident in dark-skinned individuals. Although vitiligo is a non-fatal disease, exposure of affected skin to UV light increases the chance of skin irritation and predisposes to skin cancer. In addition, vitiligo has been associated with other rare systemic disorders due to the presence of melanocytes in other body districts, such as in eyes, auditory, nervous, and cardiac tissues, where melanocytes are thought to have roles different from that played in the skin. Several pathogenetic models have been proposed to explain vitiligo onset and progression, but clinical and experimental findings point mainly to the autoimmune hypothesis as the most qualified one. In this context, it is of relevance the strong association of vitiligo with other autoimmune diseases, in particular with autoimmune thyroid disorders, such as Hashimoto thyroiditis and Graves’ disease. In this review, after a brief overview of vitiligo and its pathogenesis, we will describe the clinical association between vitiligo and autoimmune thyroid disorders and discuss the possible underlying molecular mechanism(s.

  19. The role of temporal coherence in auditory stream segregation

    DEFF Research Database (Denmark)

    Christiansen, Simon Krogholt

    The ability to perceptually segregate concurrent sound sources and focus one’s attention on a single source at a time is essential for the ability to use acoustic information. While perceptual experiments have determined a range of acoustic cues that help facilitate auditory stream segregation......, it is not clear how the auditory system realizes the task. This thesis presents a study of the mechanisms involved in auditory stream segregation. Through a combination of psychoacoustic experiments, designed to characterize the influence of acoustic cues on auditory stream formation, and computational models...... of auditory processing, the role of auditory preprocessing and temporal coherence in auditory stream formation was evaluated. The computational model presented in this study assumes that auditory stream segregation occurs when sounds stimulate non-overlapping neural populations in a temporally incoherent...

  20. A utilização de um software infantil na terapia fonoaudiológica de Distúrbio do Processamento Auditivo Central The use of a children software in the treatment of Central Auditory Processing Disorder

    Directory of Open Access Journals (Sweden)

    Juliana Schwambach Martins

    2008-01-01

    Full Text Available O objetivo deste estudo foi verificar a efetividade do uso de recursos de informática na terapia fonoaudiológica do Distúrbio do Processamento Auditivo Central para a adequação das habilidades auditivas alteradas. Participaram desta pesquisa dois indivíduos, com diagnóstico do Distúrbio do Processamento Auditivo Central, sendo um do sexo masculino e outro do sexo feminino, ambos com nove anos. Os pacientes foram submetidos a oito sessões de terapia fonoaudiológica com a utilização do software e, posteriormente, realizou-se uma re-avaliação do processamento auditivo central para verificar o desenvolvimento das habilidades auditivas e a efetividade do treinamento auditivo. Verificou-se que, após o treinamento auditivo informal, houve adequação das habilidades auditivas de resolução temporal, figura-fundo para sons não verbais e verbais, ordenação temporal para sons verbais e não-verbais para ambos os pacientes. Conclui-se que o computador como instrumento terapêutico é um recurso estimulador e que possibilita o desenvolvimento de habilidades auditivas alteradas em pacientes com Distúrbio do Processamento Auditivo Central.The aim of this study was to verify the effectiveness of the use of computer science resources in the treatment of Central Auditory Processing Disorder, in order to adequate the altered auditory abilities. Two individuals with diagnosis of Central Auditory Processing Disorder, a boy and a girl, both with nine years old, participated on this study. The subjects were submitted to eight sessions of speech therapy using the software and, after this period, a reassessment of the central auditory processing abilities was carried out, in order to verify the development of the auditory abilities and the effectiveness of the auditory training. It was verified that, after this informal auditory training, the auditory abilities of temporal resolution, figure-ground for both verbal and nonverbal sounds, and temporal

  1. Absence of auditory 'global interference' in autism.

    Science.gov (United States)

    Foxton, Jessica M; Stewart, Mary E; Barnard, Louise; Rodgers, Jacqui; Young, Allan H; O'Brien, Gregory; Griffiths, Timothy D

    2003-12-01

    There has been considerable recent interest in the cognitive style of individuals with Autism Spectrum Disorder (ASD). One theory, that of weak central coherence, concerns an inability to combine stimulus details into a coherent whole. Here we test this theory in the case of sound patterns, using a new definition of the details (local structure) and the coherent whole (global structure). Thirteen individuals with a diagnosis of autism or Asperger's syndrome and 15 control participants were administered auditory tests, where they were required to match local pitch direction changes between two auditory sequences. When the other local features of the sequence pairs were altered (the actual pitches and relative time points of pitch direction change), the control participants obtained lower scores compared with when these details were left unchanged. This can be attributed to interference from the global structure, defined as the combination of the local auditory details. In contrast, the participants with ASD did not obtain lower scores in the presence of such mismatches. This was attributed to the absence of interference from an auditory coherent whole. The results are consistent with the presence of abnormal interactions between local and global auditory perception in ASD.

  2. Pure word deafness with auditory object agnosia after bilateral lesion of the superior temporal sulcus.

    Science.gov (United States)

    Gutschalk, Alexander; Uppenkamp, Stefan; Riedel, Bernhard; Bartsch, Andreas; Brandt, Tobias; Vogt-Schaden, Marlies

    2015-12-01

    Based on results from functional imaging, cortex along the superior temporal sulcus (STS) has been suggested to subserve phoneme and pre-lexical speech perception. For vowel classification, both superior temporal plane (STP) and STS areas have been suggested relevant. Lesion of bilateral STS may conversely be expected to cause pure word deafness and possibly also impaired vowel classification. Here we studied a patient with bilateral STS lesions caused by ischemic strokes and relatively intact medial STPs to characterize the behavioral consequences of STS loss. The patient showed severe deficits in auditory speech perception, whereas his speech production was fluent and communication by written speech was grossly intact. Auditory-evoked fields in the STP were within normal limits on both sides, suggesting that major parts of the auditory cortex were functionally intact. Further studies showed that the patient had normal hearing thresholds and only mild disability in tests for telencephalic hearing disorder. Prominent deficits were discovered in an auditory-object classification task, where the patient performed four standard deviations below the control group. In marked contrast, performance in a vowel-classification task was intact. Auditory evoked fields showed enhanced responses for vowels compared to matched non-vowels within normal limits. Our results are consistent with the notion that cortex along STS is important for auditory speech perception, although it does not appear to be entirely speech specific. Formant analysis and single vowel classification, however, appear to be already implemented in auditory cortex on the STP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Consonant Differentiation Mediates the Discrepancy between Non-verbal and Verbal Abilities in Children with ASD

    Science.gov (United States)

    Key, A. P.; Yoder, P. J.; Stone, W. L.

    2016-01-01

    Background: Many children with autism spectrum disorder (ASD) demonstrate verbal communication disorders reflected in lower verbal than non-verbal abilities. The present study examined the extent to which this discrepancy is associated with atypical speech sound differentiation. Methods: Differences in the amplitude of auditory event-related…

  4. Artificial grammar learning in vascular and progressive non-fluent aphasias.

    Science.gov (United States)

    Cope, Thomas E; Wilson, Benjamin; Robson, Holly; Drinkall, Rebecca; Dean, Lauren; Grube, Manon; Jones, P Simon; Patterson, Karalyn; Griffiths, Timothy D; Rowe, James B; Petkov, Christopher I

    2017-09-01

    Patients with non-fluent aphasias display impairments of expressive and receptive grammar. This has been attributed to deficits in processing configurational and hierarchical sequencing relationships. This hypothesis had not been formally tested. It was also controversial whether impairments are specific to language, or reflect domain general deficits in processing structured auditory sequences. Here we used an artificial grammar learning paradigm to compare the abilities of controls to participants with agrammatic aphasia of two different aetiologies: stroke and frontotemporal dementia. Ten patients with non-fluent variant primary progressive aphasia (nfvPPA), 12 with non-fluent aphasia due to stroke, and 11 controls implicitly learned a novel mixed-complexity artificial grammar designed to assess processing of increasingly complex sequencing relationships. We compared response profiles for otherwise identical sequences of speech tokens (nonsense words) and tone sweeps. In all three groups the ability to detect grammatical violations varied with sequence complexity, with performance improving over time and being better for adjacent than non-adjacent relationships. Patients performed less well than controls overall, and this was related more strongly to aphasia severity than to aetiology. All groups improved with practice and performed well at a control task of detecting oddball nonwords. Crucially, group differences did not interact with sequence complexity, demonstrating that aphasic patients were not disproportionately impaired on complex structures. Hierarchical cluster analysis revealed that response patterns were very similar across all three groups, but very different between the nonsense word and tone tasks, despite identical artificial grammar structures. Overall, we demonstrate that agrammatic aphasics of two different aetiologies are not disproportionately impaired on complex sequencing relationships, and that the learning of phonological and non

  5. Neuronal activity in primate auditory cortex during the performance of audiovisual tasks.

    Science.gov (United States)

    Brosch, Michael; Selezneva, Elena; Scheich, Henning

    2015-03-01

    This study aimed at a deeper understanding of which cognitive and motivational aspects of tasks affect auditory cortical activity. To this end we trained two macaque monkeys to perform two different tasks on the same audiovisual stimulus and to do this with two different sizes of water rewards. The monkeys had to touch a bar after a tone had been turned on together with an LED, and to hold the bar until either the tone (auditory task) or the LED (visual task) was turned off. In 399 multiunits recorded from core fields of auditory cortex we confirmed that during task engagement neurons responded to auditory and non-auditory stimuli that were task-relevant, such as light and water. We also confirmed that firing rates slowly increased or decreased for several seconds during various phases of the tasks. Responses to non-auditory stimuli and slow firing changes were observed during both the auditory and the visual task, with some differences between them. There was also a weak task-dependent modulation of the responses to auditory stimuli. In contrast to these cognitive aspects, motivational aspects of the tasks were not reflected in the firing, except during delivery of the water reward. In conclusion, the present study supports our previous proposal that there are two response types in the auditory cortex that represent the timing and the type of auditory and non-auditory elements of a auditory tasks as well the association between elements. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Daily Stress, Hearing-Specific Stress and Coping: Self-Reports from Deaf or Hard of Hearing Children and Children with Auditory Processing Disorder

    Science.gov (United States)

    Eschenbeck, Heike; Gillé, Vera; Heim-Dreger, Uwe; Schock, Alexandra; Schott, Andrea

    2017-01-01

    This study evaluated stressors and coping strategies in 70 children who are deaf or hard of hearing (D/HH) or with auditory processing disorder (APD) attending Grades 5 and 6 of a school for deaf and hard-of-hearing children. Everyday general stressors and more hearing-specific stressors were examined in a hearing-specific modified stress and…

  7. Comparing the experience of voices in borderline personality disorder with the experience of voices in a psychotic disorder: A systematic review.

    Science.gov (United States)

    Merrett, Zalie; Rossell, Susan L; Castle, David J

    2016-07-01

    In clinical settings, there is substantial evidence both clinically and empirically to suggest that approximately 50% of individuals with borderline personality disorder experience auditory verbal hallucinations. However, there is limited research investigating the phenomenology of these voices. The aim of this study was to review and compare our current understanding of auditory verbal hallucinations in borderline personality disorder with auditory verbal hallucinations in patients with a psychotic disorder, to critically analyse existing studies investigating auditory verbal hallucinations in borderline personality disorder and to identify gaps in current knowledge, which will help direct future research. The literature was searched using the electronic database Scopus, PubMed and MEDLINE. Relevant studies were included if they were written in English, were empirical studies specifically addressing auditory verbal hallucinations and borderline personality disorder, were peer reviewed, used only adult humans and sample comprising borderline personality disorder as the primary diagnosis, and included a comparison group with a primary psychotic disorder such as schizophrenia. Our search strategy revealed a total of 16 articles investigating the phenomenology of auditory verbal hallucinations in borderline personality disorder. Some studies provided evidence to suggest that the voice experiences in borderline personality disorder are similar to those experienced by people with schizophrenia, for example, occur inside the head, and often involved persecutory voices. Other studies revealed some differences between schizophrenia and borderline personality disorder voice experiences, with the borderline personality disorder voices sounding more derogatory and self-critical in nature and the voice-hearers' response to the voices were more emotionally resistive. Furthermore, in one study, the schizophrenia group's voices resulted in more disruption in daily functioning

  8. Widespread auditory deficits in tune deafness.

    Science.gov (United States)

    Jones, Jennifer L; Zalewski, Christopher; Brewer, Carmen; Lucker, Jay; Drayna, Dennis

    2009-02-01

    The goal of this study was to investigate auditory function in individuals with deficits in musical pitch perception. We hypothesized that such individuals have deficits in nonspeech areas of auditory processing. We screened 865 randomly selected individuals to identify those who scored poorly on the Distorted Tunes test (DTT), a measure of musical pitch recognition ability. Those who scored poorly were given a comprehensive audiologic examination, and those with hearing loss or other confounding audiologic factors were excluded from further testing. Thirty-five individuals with tune deafness constituted the experimental group. Thirty-four individuals with normal hearing and normal DTT scores, matched for age, gender, handedness, and education, and without overt or reported psychiatric disorders made up the normal control group. Individual and group performance for pure-tone frequency discrimination at 1000 Hz was determined by measuring the difference limen for frequency (DLF). Auditory processing abilities were assessed using tests of pitch pattern recognition, duration pattern recognition, and auditory gap detection. In addition, we evaluated both attention and short- and long-term memory as variables that might influence performance on our experimental measures. Differences between groups were evaluated statistically using Wilcoxon nonparametric tests and t-tests as appropriate. The DLF at 1000 Hz in the group with tune deafness was significantly larger than that of the normal control group. However, approximately one-third of participants with tune deafness had DLFs within the range of performance observed in the control group. Many individuals with tune deafness also displayed a high degree of variability in their intertrial frequency discrimination performance that could not be explained by deficits in memory or attention. Pitch and duration pattern discrimination and auditory gap-detection ability were significantly poorer in the group with tune deafness

  9. Investigating the role of visual and auditory search in reading and developmental dyslexia

    Directory of Open Access Journals (Sweden)

    Marie eLallier

    2013-09-01

    Full Text Available It has been suggested that auditory and visual sequential processing deficits contribute to phonological disorders in developmental dyslexia. As an alternative explanation to a phonological deficit as the proximal cause for reading disorders, the visual attention span hypothesis (VA Span suggests that difficulties in processing visual elements simultaneously lead to dyslexia, regardless of the presence of a phonological disorder. In this study, we assessed whether deficits in processing simultaneously displayed visual or auditory elements is linked to dyslexia associated with a VA Span impairment. Sixteen children with developmental dyslexia and 16 age-matched skilled readers were assessed on visual and auditory search tasks. Participants were asked to detect a target presented simultaneously with 3, 9 or 15 distracters. In the visual modality, target detection was slower in the dyslexic children than in the control group on a serial search condition only: the intercepts (but not the slopes of the search functions were higher in the dyslexic group than in the control group. In the auditory modality, although no group difference was observed, search performance was influenced by the number of distracters in the control group only. Within the dyslexic group, not only poor visual search (high reaction times and intercepts but also low auditory search performance (d´ strongly correlated with poor irregular word reading accuracy. Moreover, both visual and auditory search performance was associated with the VA Span abilities of dyslexic participants but not with their phonological skills. The present data suggests that some visual mechanisms engaged in serial search contribute to reading and orthographic knowledge via VA Span skills regardless of phonological skills. The present results further open the question of the role of auditory simultaneous processing in reading as well as its link with VA Span skills.

  10. Investigating the role of visual and auditory search in reading and developmental dyslexia.

    Science.gov (United States)

    Lallier, Marie; Donnadieu, Sophie; Valdois, Sylviane

    2013-01-01

    It has been suggested that auditory and visual sequential processing deficits contribute to phonological disorders in developmental dyslexia. As an alternative explanation to a phonological deficit as the proximal cause for reading disorders, the visual attention span hypothesis (VA Span) suggests that difficulties in processing visual elements simultaneously lead to dyslexia, regardless of the presence of a phonological disorder. In this study, we assessed whether deficits in processing simultaneously displayed visual or auditory elements is linked to dyslexia associated with a VA Span impairment. Sixteen children with developmental dyslexia and 16 age-matched skilled readers were assessed on visual and auditory search tasks. Participants were asked to detect a target presented simultaneously with 3, 9, or 15 distracters. In the visual modality, target detection was slower in the dyslexic children than in the control group on a "serial" search condition only: the intercepts (but not the slopes) of the search functions were higher in the dyslexic group than in the control group. In the auditory modality, although no group difference was observed, search performance was influenced by the number of distracters in the control group only. Within the dyslexic group, not only poor visual search (high reaction times and intercepts) but also low auditory search performance (d') strongly correlated with poor irregular word reading accuracy. Moreover, both visual and auditory search performance was associated with the VA Span abilities of dyslexic participants but not with their phonological skills. The present data suggests that some visual mechanisms engaged in "serial" search contribute to reading and orthographic knowledge via VA Span skills regardless of phonological skills. The present results further open the question of the role of auditory simultaneous processing in reading as well as its link with VA Span skills.

  11. Personality disorders in adopted versus non-adopted adults.

    Science.gov (United States)

    Westermeyer, Joseph; Yoon, Gihyun; Amundson, Carla; Warwick, Marion; Kuskowski, Michael A

    2015-04-30

    The goal of this epidemiological study was to investigate lifetime history and odds ratios of personality disorders in adopted and non-adopted adults using a nationally representative sample. Data, drawn from the National Epidemiological Survey on Alcohol and Related Conditions (NESARC), were compared in adopted (n=378) versus non-adopted (n=42,503) adults to estimate the odds of seven personality disorders using logistic regression analyses. The seven personality disorders were histrionic, antisocial, avoidant, paranoid, schizoid, obsessive-compulsive, and dependent personality disorder. Adoptees had a 1.81-fold increase in the odds of any personality disorder compared with non-adoptees. Adoptees had increased odds of histrionic, antisocial, avoidant, paranoid, schizoid, and obsessive-compulsive personality disorder compared with non-adoptees. Two risk factors associated with lifetime history of a personality disorder in adoptees compared to non-adoptees were (1) being in the age cohort 18-29 years (but no difference in the age 30-44 cohort), using the age 45 or older cohort as the reference and (2) having 12 years of education (but no difference in higher education groups), using the 0-11 years of education as the reference. These findings support the higher rates of personality disorders among adoptees compared to non-adoptees. Published by Elsevier Ireland Ltd.

  12. Superior pre-attentive auditory processing in musicians.

    Science.gov (United States)

    Koelsch, S; Schröger, E; Tervaniemi, M

    1999-04-26

    The present study focuses on influences of long-term experience on auditory processing, providing the first evidence for pre-attentively superior auditory processing in musicians. This was revealed by the brain's automatic change-detection response, which is reflected electrically as the mismatch negativity (MMN) and generated by the operation of sensoric (echoic) memory, the earliest cognitive memory system. Major chords and single tones were presented to both professional violinists and non-musicians under ignore and attend conditions. Slightly impure chords, presented among perfect major chords elicited a distinct MMN in professional musicians, but not in non-musicians. This demonstrates that compared to non-musicians, musicians are superior in pre-attentively extracting more information out of musically relevant stimuli. Since effects of long-term experience on pre-attentive auditory processing have so far been reported for language-specific phonemes only, results indicate that sensory memory mechanisms can be modulated by training on a more general level.

  13. [Considerations on photoprotection and skin disorders].

    Science.gov (United States)

    Cestari, T Ferreira; de Oliveira, F Bazanella; Boza, J Catucci

    2012-11-01

    Excessive exposure to solar or artificial sources of UV radiation is deleterious to the skin and can cause or worsen several diseases. Detrimental effects of UV radiation exert an important role in the development of skin cancers, cause alterations on the immune response, and act as a trigger or aggravating factor for pigmentary disorders. A group of measures, including education, change of habits, use of physical barriers and sunscreens constitutes a significant part of the treatment of many skin disorders and are valuable preventive tools. This article summarizes the relevant studies addressing these issues, emphasizing the many aspects of photoprotection. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  14. Considerations on photoprotection and skin disorders.

    Science.gov (United States)

    Cestari, T Ferreira; Oliveira, F Bazanella de; Boza, J Catucci

    2012-12-01

    Excessive exposure to solar or artificial sources of UV radiation is deleterious to the skin and can cause or worsen several diseases. Detrimental effects of UV radiation exert an important role in the development of skin cancers, cause alterations on the immune response, and act as a trigger or aggravating factor for pigmentary disorders. A group of measures, including education, change of habits, use of physical barriers and sunscreens constitutes a significant part of the treatment of many skin disorders and are valuable preventive tools. This article summarizes the relevant studies addressing these issues, emphasizing the many aspects of photoprotection. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  15. [Short-term sentence memory in children with auditory processing disorders].

    Science.gov (United States)

    Kiese-Himmel, C

    2010-05-01

    To compare sentence repetition performance of different groups of children with Auditory Processing Disorders (APD) and to examine the relationship between age or respectively nonverbal intelligence and sentence recall. Nonverbal intelligence was measured with the COLOURED MATRICES, in addition the children completed a standardized test of SENTENCE REPETITION (SR) which requires to repeat spoken sentences (subtest of the HEIDELBERGER SPRACHENTWICKLUNGSTEST). Three clinical groups (n=49 with monosymptomatic APD; n=29 with APD+developmental language impairment; n=14 with APD+developmental dyslexia); two control groups (n=13 typically developing peers without any clinical developmental disorder; n=10 children with slight reduced nonverbal intelligence). The analysis showed a significant group effect (p=0.0007). The best performance was achieved by the normal controls (T-score 52.9; SD 6.4; Min 42; Max 59) followed by children with monosymptomatic APD (43.2; SD 9.2), children with the co-morbid-conditions APD+developmental dyslexia (43.1; SD 10.3), and APD+developmental language impairment (39.4; SD 9.4). The clinical control group presented the lowest performance, on average (38.6; SD 9.6). Accordingly, language-impaired children and children with slight reductions in intelligence could poorly use their grammatical knowledge for SR. A statistically significant improvement in SR was verified with the increase of age with the exception of children belonging to the small group with lowered intelligence. This group comprised the oldest children. Nonverbal intelligence correlated positively with SR only in children with below average-range intelligence (0.62; p=0.054). The absence of APD, SLI as well as the presence of normal intelligence facilitated the use of phonological information for SR.

  16. Peripheral Auditory Mechanisms

    CERN Document Server

    Hall, J; Hubbard, A; Neely, S; Tubis, A

    1986-01-01

    How weIl can we model experimental observations of the peripheral auditory system'? What theoretical predictions can we make that might be tested'? It was with these questions in mind that we organized the 1985 Mechanics of Hearing Workshop, to bring together auditory researchers to compare models with experimental observations. Tbe workshop forum was inspired by the very successful 1983 Mechanics of Hearing Workshop in Delft [1]. Boston University was chosen as the site of our meeting because of the Boston area's role as a center for hearing research in this country. We made a special effort at this meeting to attract students from around the world, because without students this field will not progress. Financial support for the workshop was provided in part by grant BNS- 8412878 from the National Science Foundation. Modeling is a traditional strategy in science and plays an important role in the scientific method. Models are the bridge between theory and experiment. Tbey test the assumptions made in experim...

  17. Acquired Auditory Verbal Agnosia and Seizures in Childhood

    Science.gov (United States)

    Cooper, Judith A.; Ferry, Peggy C.

    1978-01-01

    The paper presents a review of cases of children with acquired aphasia with convulsive disorder and discusses clinical features of three additional children in whom the specific syndrome of auditory verbal agnosia was identified. (Author/CL)

  18. Using auditory-visual speech to probe the basis of noise-impaired consonant-vowel perception in dyslexia and auditory neuropathy

    Science.gov (United States)

    Ramirez, Joshua; Mann, Virginia

    2005-08-01

    Both dyslexics and auditory neuropathy (AN) subjects show inferior consonant-vowel (CV) perception in noise, relative to controls. To better understand these impairments, natural acoustic speech stimuli that were masked in speech-shaped noise at various intensities were presented to dyslexic, AN, and control subjects either in isolation or accompanied by visual articulatory cues. AN subjects were expected to benefit from the pairing of visual articulatory cues and auditory CV stimuli, provided that their speech perception impairment reflects a relatively peripheral auditory disorder. Assuming that dyslexia reflects a general impairment of speech processing rather than a disorder of audition, dyslexics were not expected to similarly benefit from an introduction of visual articulatory cues. The results revealed an increased effect of noise masking on the perception of isolated acoustic stimuli by both dyslexic and AN subjects. More importantly, dyslexics showed less effective use of visual articulatory cues in identifying masked speech stimuli and lower visual baseline performance relative to AN subjects and controls. Last, a significant positive correlation was found between reading ability and the ameliorating effect of visual articulatory cues on speech perception in noise. These results suggest that some reading impairments may stem from a central deficit of speech processing.

  19. Auditory Processing Disorders

    Science.gov (United States)

    ... many processes and problems contribute to APD in children. In adults, neurological disorders such as stroke, tumors, degenerative disease (such as multiple sclerosis), and head trauma can contribute to APD. APD in children and adults often is best managed by a ...

  20. Gait disorder rehabilitation using vision and non-vision based sensors: A systematic review

    Directory of Open Access Journals (Sweden)

    Asraf Ali

    2012-08-01

    Full Text Available Even though the amount of rehabilitation guidelines has never been greater, uncertainty continues to arise regarding the efficiency and effectiveness of the rehabilitation of gait disorders. This question has been hindered by the lack of information on accurate measurements of gait disorders. Thus, this article reviews the rehabilitation systems for gait disorder using vision and non-vision sensor technologies, as well as the combination of these. All papers published in the English language between 1990 and June, 2012 that had the phrases “gait disorder” “rehabilitation”, “vision sensor”, or “non vision sensor” in the title, abstract, or keywords were identified from the SpringerLink, ELSEVIER, PubMed, and IEEE databases. Some synonyms of these phrases and the logical words “and” “or” and “not” were also used in the article searching procedure. Out of the 91 published articles found, this review identified 84 articles that described the rehabilitation of gait disorders using different types of sensor technologies. This literature set presented strong evidence for the development of rehabilitation systems using a markerless vision-based sensor technology. We therefore believe that the information contained in this review paper will assist the progress of the development of rehabilitation systems for human gait disorders.

  1. Auditory Temporal-Organization Abilities in School-Age Children with Peripheral Hearing Loss

    Science.gov (United States)

    Koravand, Amineh; Jutras, Benoit

    2013-01-01

    Purpose: The objective was to assess auditory sequential organization (ASO) ability in children with and without hearing loss. Method: Forty children 9 to 12 years old participated in the study: 12 with sensory hearing loss (HL), 12 with central auditory processing disorder (CAPD), and 16 with normal hearing. They performed an ASO task in which…

  2. Size and synchronization of auditory cortex promotes musical, literacy, and attentional skills in children.

    Science.gov (United States)

    Seither-Preisler, Annemarie; Parncutt, Richard; Schneider, Peter

    2014-08-13

    Playing a musical instrument is associated with numerous neural processes that continuously modify the human brain and may facilitate characteristic auditory skills. In a longitudinal study, we investigated the auditory and neural plasticity of musical learning in 111 young children (aged 7-9 y) as a function of the intensity of instrumental practice and musical aptitude. Because of the frequent co-occurrence of central auditory processing disorders and attentional deficits, we also tested 21 children with attention deficit (hyperactivity) disorder [AD(H)D]. Magnetic resonance imaging and magnetoencephalography revealed enlarged Heschl's gyri and enhanced right-left hemispheric synchronization of the primary evoked response (P1) to harmonic complex sounds in children who spent more time practicing a musical instrument. The anatomical characteristics were positively correlated with frequency discrimination, reading, and spelling skills. Conversely, AD(H)D children showed reduced volumes of Heschl's gyri and enhanced volumes of the plana temporalia that were associated with a distinct bilateral P1 asynchrony. This may indicate a risk for central auditory processing disorders that are often associated with attentional and literacy problems. The longitudinal comparisons revealed a very high stability of auditory cortex morphology and gray matter volumes, suggesting that the combined anatomical and functional parameters are neural markers of musicality and attention deficits. Educational and clinical implications are considered. Copyright © 2014 the authors 0270-6474/14/3410937-13$15.00/0.

  3. Progressive outer retinal necrosis presenting as cherry red spot.

    Science.gov (United States)

    Yiu, Glenn; Young, Lucy H

    2012-10-01

    To report a case of progressive outer retinal necrosis (PORN) presenting as a cherry red spot. Case report. A 53-year-old woman with recently diagnosed HIV and varicella-zoster virus (VZV) aseptic meningitis developed rapid sequential vision loss in both eyes over 2 months. Her exam showed a "cherry red spot" in both maculae with peripheral atrophy and pigmentary changes, consistent with PORN. Due to her late presentation and the rapid progression of her condition, she quickly developed end-stage vision loss in both eyes. PORN should be considered within the differential diagnosis of a "cherry red spot." Immune-deficient patients with a history of herpetic infection who present with visual loss warrant prompt ophthalmological evaluation.

  4. The multi-level impact of chronic intermittent hypoxia on central auditory processing.

    Science.gov (United States)

    Wong, Eddie; Yang, Bin; Du, Lida; Ho, Wai Hong; Lau, Condon; Ke, Ya; Chan, Ying Shing; Yung, Wing Ho; Wu, Ed X

    2017-08-01

    During hypoxia, the tissues do not obtain adequate oxygen. Chronic hypoxia can lead to many health problems. A relatively common cause of chronic hypoxia is sleep apnea. Sleep apnea is a sleep breathing disorder that affects 3-7% of the population. During sleep, the patient's breathing starts and stops. This can lead to hypertension, attention deficits, and hearing disorders. In this study, we apply an established chronic intermittent hypoxemia (CIH) model of sleep apnea to study its impact on auditory processing. Adult rats were reared for seven days during sleeping hours in a gas chamber with oxygen level cycled between 10% and 21% (normal atmosphere) every 90s. During awake hours, the subjects were housed in standard conditions with normal atmosphere. CIH treatment significantly reduces arterial oxygen partial pressure and oxygen saturation during sleeping hours (relative to controls). After treatment, subjects underwent functional magnetic resonance imaging (fMRI) with broadband sound stimulation. Responses are observed in major auditory centers in all subjects, including the auditory cortex (AC) and auditory midbrain. fMRI signals from the AC are statistically significantly increased after CIH by 0.13% in the contralateral hemisphere and 0.10% in the ipsilateral hemisphere. In contrast, signals from the lateral lemniscus of the midbrain are significantly reduced by 0.39%. Signals from the neighboring inferior colliculus of the midbrain are relatively unaffected. Chronic hypoxia affects multiple levels of the auditory system and these changes are likely related to hearing disorders associated with sleep apnea. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Pilot feasibility study of binaural auditory beats for reducing symptoms of inattention in children and adolescents with attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Kennel, Susan; Taylor, Ann Gill; Lyon, Debra; Bourguignon, Cheryl

    2010-02-01

    The purpose of this pilot study was to explore the potential for the use of binaural auditory beat stimulation to reduce the symptom of inattention in children and adolescents with attention-deficit/hyperactivity disorder. This pilot study had a randomized, double-blind, placebo-controlled design. Twenty participants were randomly assigned to listen to either an audio program on compact disk that contained binaural auditory beats or a sham audio program that did not have binaural beats for 20 minutes, three times a week for 3 weeks. The Children's Color Trails Test, the Color Trails Test, the Test of Variables of Attention (TOVA), and the Homework Problem Checklist were used to measure changes in inattention pre- and postintervention. Repeated measures analysis of variance was used to analyze pre- and postintervention scores on the Color Trails Tests, Homework Problem Checklist, and the TOVA. The effect of time was significant on the Color Trails Test. However, there were no significant group differences on the Color Trails Test or the TOVA scores postintervention. Parents reported that the study participants had fewer homework problems postintervention. The results from this study indicate that binaural auditory beat stimulation did not significantly reduce the symptom of inattention in the experimental group. However, parents and adolescents stated that homework problems due to inattention improved during the 3-week study. Parents and participants stated that the modality was easy to use and helpful. Therefore, this modality should be studied over a longer time frame in a larger sample to further its effectiveness to reduce the symptom of inattention in those diagnosed with attention-deficit/hyperactivity disorder. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Seasonal affective disorder and non-seasonal affective disorders : Results from the NESDA study

    NARCIS (Netherlands)

    Winthorst, Wim H; Roest, Annelieke M; Bos, Elisabeth H; Meesters, Ybe; Penninx, Brenda W J H; Nolen, Willem A; de Jonge, Peter

    BACKGROUND: Seasonal affective disorder (SAD) is considered to be a subtype of depression. AIMS: To compare the clinical picture of SAD to non-seasonal affective disorders (non-SADs). METHOD: Diagnoses according to the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) were established

  7. Decreased somatosensory activity to non-threatening touch in combat veterans with posttraumatic stress disorder.

    Science.gov (United States)

    Badura-Brack, Amy S; Becker, Katherine M; McDermott, Timothy J; Ryan, Tara J; Becker, Madelyn M; Hearley, Allison R; Heinrichs-Graham, Elizabeth; Wilson, Tony W

    2015-08-30

    Posttraumatic stress disorder (PTSD) is a severe psychiatric disorder prevalent in combat veterans. Previous neuroimaging studies have demonstrated that patients with PTSD exhibit abnormal responses to non-threatening visual and auditory stimuli, but have not examined somatosensory processing. Thirty male combat veterans, 16 with PTSD and 14 without, completed a tactile stimulation task during a 306-sensor magnetoencephalography (MEG) recording. Significant oscillatory neural responses were imaged using a beamforming approach. Participants also completed clinical assessments of PTSD, combat exposure, and depression. We found that veterans with PTSD exhibited significantly reduced activity during early (0-125 ms) tactile processing compared with combat controls. Specifically, veterans with PTSD had weaker activity in the left postcentral gyrus, left superior parietal area, and right prefrontal cortex in response to nonthreatening tactile stimulation relative to veterans without PTSD. The magnitude of activity in these brain regions was inversely correlated with symptom severity, indicating that those with the most severe PTSD had the most abnormal neural responses. Our findings are consistent with a resource allocation view of perceptual processing in PTSD, which directs attention away from nonthreatening sensory information. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Uncovering beat deafness: detecting rhythm disorders with synchronized finger tapping and perceptual timing tasks.

    Science.gov (United States)

    Dalla Bella, Simone; Sowiński, Jakub

    2015-03-16

    A set of behavioral tasks for assessing perceptual and sensorimotor timing abilities in the general population (i.e., non-musicians) is presented here with the goal of uncovering rhythm disorders, such as beat deafness. Beat deafness is characterized by poor performance in perceiving durations in auditory rhythmic patterns or poor synchronization of movement with auditory rhythms (e.g., with musical beats). These tasks include the synchronization of finger tapping to the beat of simple and complex auditory stimuli and the detection of rhythmic irregularities (anisochrony detection task) embedded in the same stimuli. These tests, which are easy to administer, include an assessment of both perceptual and sensorimotor timing abilities under different conditions (e.g., beat rates and types of auditory material) and are based on the same auditory stimuli, ranging from a simple metronome to a complex musical excerpt. The analysis of synchronized tapping data is performed with circular statistics, which provide reliable measures of synchronization accuracy (e.g., the difference between the timing of the taps and the timing of the pacing stimuli) and consistency. Circular statistics on tapping data are particularly well-suited for detecting individual differences in the general population. Synchronized tapping and anisochrony detection are sensitive measures for identifying profiles of rhythm disorders and have been used with success to uncover cases of poor synchronization with spared perceptual timing. This systematic assessment of perceptual and sensorimotor timing can be extended to populations of patients with brain damage, neurodegenerative diseases (e.g., Parkinson's disease), and developmental disorders (e.g., Attention Deficit Hyperactivity Disorder).

  9. Audiological findings in Usher syndrome types IIa and II (non-IIa).

    Science.gov (United States)

    Sadeghi, Mehdi; Cohn, Edward S; Kelly, William J; Kimberling, William J; Tranebjoerg, Lisbeth; Möller, Claes

    2004-03-01

    The aim was to define the natural history of hearing loss in Usher syndrome type IIa compared to non-IIa. People with Usher syndrome type II show moderate-to-severe hearing loss, normal balance and retinitis pigmentosa. Several genes cause Usher syndrome type II. Our subjects formed two genetic groups: (1) subjects with Usher syndrome type IIa with a mutation and/or linkage to the Usher IIa gene; (2) subjects with the Usher II phenotype with no mutation and/or linkage to the Usher IIa gene. Four hundred and two audiograms of 80 Usher IIa subjects were compared with 435 audiograms of 87 non-IIa subjects. Serial audiograms with intervals of > or = 5 years were examined for progression in 109 individuals Those with Usher syndrome type IIa had significantly worse hearing thresholds than those with non-IIa Usher syndrome after the second decade. The hearing loss in Usher syndrome type IIa was found to be more progressive, and the progression started earlier than in non-IIa Usher syndrome. This suggests an auditory phenotype for Usher syndrome type IIa that is different from that of other types of Usher syndrome II. Thus, this is to our knowledge one of the first studies showing a genotype-phenotype auditory correlation.

  10. The singular nature of auditory and visual scene analysis in autism

    OpenAIRE

    Lin, I.-Fan; Shirama, Aya; Kato, Nobumasa; Kashino, Makio

    2017-01-01

    Individuals with autism spectrum disorder often have difficulty acquiring relevant auditory and visual information in daily environments, despite not being diagnosed as hearing impaired or having low vision. Resent psychophysical and neurophysiological studies have shown that autistic individuals have highly specific individual differences at various levels of information processing, including feature extraction, automatic grouping and top-down modulation in auditory and visual scene analysis...

  11. Case report

    African Journals Online (AJOL)

    ebutamanya

    15 mars 2016 ... Le syndrome de Usher est défini par l'association d'une surdité de perception congénitale de ... of a progressive or non-progressive congenital sensorineural hearing loss with variable severity and a gradually blinding pigmentary retinopathy. .... Usher C. On the inheritance of retinis pigmentosa, with notes.

  12. Temporal Resolution and Active Auditory Discrimination Skill in Vocal Musicians

    Directory of Open Access Journals (Sweden)

    Kumar, Prawin

    2015-12-01

    Full Text Available Introduction Enhanced auditory perception in musicians is likely to result from auditory perceptual learning during several years of training and practice. Many studies have focused on biological processing of auditory stimuli among musicians. However, there is a lack of literature on temporal resolution and active auditory discrimination skills in vocal musicians. Objective The aim of the present study is to assess temporal resolution and active auditory discrimination skill in vocal musicians. Method The study participants included 15 vocal musicians with a minimum professional experience of 5 years of music exposure, within the age range of 20 to 30 years old, as the experimental group, while 15 age-matched non-musicians served as the control group. We used duration discrimination using pure-tones, pulse-train duration discrimination, and gap detection threshold tasks to assess temporal processing skills in both groups. Similarly, we assessed active auditory discrimination skill in both groups using Differential Limen of Frequency (DLF. All tasks were done using MATLab software installed in a personal computer at 40dBSL with maximum likelihood procedure. The collected data were analyzed using SPSS (version 17.0. Result Descriptive statistics showed better threshold for vocal musicians compared with non-musicians for all tasks. Further, independent t-test showed that vocal musicians performed significantly better compared with non-musicians on duration discrimination using pure tone, pulse train duration discrimination, gap detection threshold, and differential limen of frequency. Conclusion The present study showed enhanced temporal resolution ability and better (lower active discrimination threshold in vocal musicians in comparison to non-musicians.

  13. Effect of fMRI acoustic noise on non-auditory working memory task: comparison between continuous and pulsed sound emitting EPI.

    Science.gov (United States)

    Haller, Sven; Bartsch, Andreas J; Radue, Ernst W; Klarhöfer, Markus; Seifritz, Erich; Scheffler, Klaus

    2005-11-01

    Conventional blood oxygenation level-dependent (BOLD) based functional magnetic resonance imaging (fMRI) is accompanied by substantial acoustic gradient noise. This noise can influence the performance as well as neuronal activations. Conventional fMRI typically has a pulsed noise component, which is a particularly efficient auditory stimulus. We investigated whether the elimination of this pulsed noise component in a recent modification of continuous-sound fMRI modifies neuronal activations in a cognitively demanding non-auditory working memory task. Sixteen normal subjects performed a letter variant n-back task. Brain activity and psychomotor performance was examined during fMRI with continuous-sound fMRI and conventional fMRI. We found greater BOLD responses in bilateral medial frontal gyrus, left middle frontal gyrus, left middle temporal gyrus, left hippocampus, right superior frontal gyrus, right precuneus and right cingulate gyrus with continuous-sound compared to conventional fMRI. Conversely, BOLD responses were greater in bilateral cingulate gyrus, left middle and superior frontal gyrus and right lingual gyrus with conventional compared to continuous-sound fMRI. There were no differences in psychomotor performance between both scanning protocols. Although behavioral performance was not affected, acoustic gradient noise interferes with neuronal activations in non-auditory cognitive tasks and represents a putative systematic confound.

  14. Auditory brainstem response as a diagnostic tool for patients suffering from schizophrenia, attention deficit hyperactivity disorder, and bipolar disorder: protocol.

    Science.gov (United States)

    Wahlström, Viktor; Åhlander, Fredrik; Wynn, Rolf

    2015-02-12

    Psychiatric disorders, such as schizophrenia, attention deficit hyperactivity disorder (ADHD), and bipolar disorder, may sometimes be difficult to diagnose. There is a great need for a valid and reliable diagnostic tool to aid clinicians in arriving at the diagnoses in a timely and accurate manner. Prior studies have suggested that patients suffering from schizophrenia and ADHD may process certain sound stimuli in the brainstem in an unusual manner. When these patient groups have been examined with the electrophysiological method of brainstem audiometry, some studies have found illness-specific aberrations. Such aberrations may also exist for patients suffering from bipolar disorder. In this study, we will examine whether the method of brainstem audiometry can be used as a diagnostic tool for patients suffering from schizophrenia, ADHD, and bipolar disorder. The method includes three steps: (1) auditory stimulation with specific sound stimuli, (2) simultaneous measurement of brainstem activity, and (3) automated interpretation of the resulting brain stem audiograms with data-based signal analysis. We will compare three groups of 12 individuals with confirmed diagnoses of schizophrenia, ADHD, or bipolar disorder with 12 healthy subjects under blinded conditions for a total of 48 participants. The extent to which the method can be used to reach the correct diagnosis will be investigated. The project is now in a recruiting phase. When all patients and controls have been recruited and the measurements have been performed, the data will be analyzed according to a previously arranged algorithm. We expect the recruiting phase and measurements to be completed in early 2015, the analyses to be performed in mid-2015, and the results of the study to be published in early 2016. If the results support previous findings, this will lend strength to the idea that brainstem audiometry can offer objective diagnostic support for patients suffering from schizophrenia, ADHD, and

  15. Cortical Representations of Speech in a Multitalker Auditory Scene.

    Science.gov (United States)

    Puvvada, Krishna C; Simon, Jonathan Z

    2017-09-20

    The ability to parse a complex auditory scene into perceptual objects is facilitated by a hierarchical auditory system. Successive stages in the hierarchy transform an auditory scene of multiple overlapping sources, from peripheral tonotopically based representations in the auditory nerve, into perceptually distinct auditory-object-based representations in the auditory cortex. Here, using magnetoencephalography recordings from men and women, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in distinct hierarchical stages of the auditory cortex. Using systems-theoretic methods of stimulus reconstruction, we show that the primary-like areas in the auditory cortex contain dominantly spectrotemporal-based representations of the entire auditory scene. Here, both attended and ignored speech streams are represented with almost equal fidelity, and a global representation of the full auditory scene with all its streams is a better candidate neural representation than that of individual streams being represented separately. We also show that higher-order auditory cortical areas, by contrast, represent the attended stream separately and with significantly higher fidelity than unattended streams. Furthermore, the unattended background streams are more faithfully represented as a single unsegregated background object rather than as separated objects. Together, these findings demonstrate the progression of the representations and processing of a complex acoustic scene up through the hierarchy of the human auditory cortex. SIGNIFICANCE STATEMENT Using magnetoencephalography recordings from human listeners in a simulated cocktail party environment, we investigate how a complex acoustic scene consisting of multiple speech sources is represented in separate hierarchical stages of the auditory cortex. We show that the primary-like areas in the auditory cortex use a dominantly spectrotemporal-based representation of the entire auditory

  16. Listening to another sense: somatosensory integration in the auditory system.

    Science.gov (United States)

    Wu, Calvin; Stefanescu, Roxana A; Martel, David T; Shore, Susan E

    2015-07-01

    Conventionally, sensory systems are viewed as separate entities, each with its own physiological process serving a different purpose. However, many functions require integrative inputs from multiple sensory systems and sensory intersection and convergence occur throughout the central nervous system. The neural processes for hearing perception undergo significant modulation by the two other major sensory systems, vision and somatosensation. This synthesis occurs at every level of the ascending auditory pathway: the cochlear nucleus, inferior colliculus, medial geniculate body and the auditory cortex. In this review, we explore the process of multisensory integration from (1) anatomical (inputs and connections), (2) physiological (cellular responses), (3) functional and (4) pathological aspects. We focus on the convergence between auditory and somatosensory inputs in each ascending auditory station. This review highlights the intricacy of sensory processing and offers a multisensory perspective regarding the understanding of sensory disorders.

  17. Salicylate-Induced Auditory Perceptual Disorders and Plastic Changes in Nonclassical Auditory Centers in Rats

    Directory of Open Access Journals (Sweden)

    Guang-Di Chen

    2014-01-01

    Full Text Available Previous studies have shown that sodium salicylate (SS activates not only central auditory structures, but also nonauditory regions associated with emotion and memory. To identify electrophysiological changes in the nonauditory regions, we recorded sound-evoked local field potentials and multiunit discharges from the striatum, amygdala, hippocampus, and cingulate cortex after SS-treatment. The SS-treatment produced behavioral evidence of tinnitus and hyperacusis. Physiologically, the treatment significantly enhanced sound-evoked neural activity in the striatum, amygdala, and hippocampus, but not in the cingulate. The enhanced sound evoked response could be linked to the hyperacusis-like behavior. Further analysis showed that the enhancement of sound-evoked activity occurred predominantly at the midfrequencies, likely reflecting shifts of neurons towards the midfrequency range after SS-treatment as observed in our previous studies in the auditory cortex and amygdala. The increased number of midfrequency neurons would lead to a relative higher number of total spontaneous discharges in the midfrequency region, even though the mean discharge rate of each neuron may not increase. The tonotopical overactivity in the midfrequency region in quiet may potentially lead to tonal sensation of midfrequency (the tinnitus. The neural changes in the amygdala and hippocampus may also contribute to the negative effect that patients associate with their tinnitus.

  18. Dynamics of auditory working memory

    Directory of Open Access Journals (Sweden)

    Jochen eKaiser

    2015-05-01

    Full Text Available Working memory denotes the ability to retain stimuli in mind that are no longer physically present and to perform mental operations on them. Electro- and magnetoencephalography allow investigating the short-term maintenance of acoustic stimuli at a high temporal resolution. Studies investigating working memory for non-spatial and spatial auditory information have suggested differential roles of regions along the putative auditory ventral and dorsal streams, respectively, in the processing of the different sound properties. Analyses of event-related potentials have shown sustained, memory load-dependent deflections over the retention periods. The topography of these waves suggested an involvement of modality-specific sensory storage regions. Spectral analysis has yielded information about the temporal dynamics of auditory working memory processing of individual stimuli, showing activation peaks during the delay phase whose timing was related to task performance. Coherence at different frequencies was enhanced between frontal and sensory cortex. In summary, auditory working memory seems to rely on the dynamic interplay between frontal executive systems and sensory representation regions.

  19. The influence of aging on the number of neurons and levels of non-phosporylated neurofilament proteins in the central auditory system of rats

    Directory of Open Access Journals (Sweden)

    Jana eBurianová

    2015-03-01

    Full Text Available In the present study, an unbiased stereological method was used to determine the number of all neurons in Nissl stained sections of the inferior colliculus (IC, medial geniculate body (MGB and auditory cortex (AC in rats (strains Long Evans and Fischer 344 and their changes with aging. In addition, using the optical fractionator and western blot technique, we also evaluated the number of SMI-32-immunoreactive(-ir neurons and levels of non-phosphorylated neurofilament proteins in the IC, MGB, AC, and visual cortex (VC of young and old rats of the two strains. The SMI-32 positive neuronal population comprises about 10% of all neurons in the rat IC, MGB and AC and represents a prevalent population of large neurons with highly myelinated and projecting processes. In both Long Evans and Fischer 344 rats, the total number of neurons in the IC was roughly similar to that in the AC. With aging, we found a rather mild and statistically non-significant decline in the total number of neurons in all three analyzed auditory regions in both rat strains. In contrast to this, the absolute number of SMI-32-ir neurons in both Long Evans and Fischer 344 rats significantly decreased with aging in all the examined structures. The western blot technique also revealed a significant age-related decline in the levels of non-phosphorylated neurofilaments in the auditory brain structures, 30-35%. Our results demonstrate that presbycusis in rats is not likely to be primarily associated with changes in the total number of neurons. On the other hand, the pronounced age-related decline in the number of neurons containing non-phosphorylated neurofilaments as well as their protein levels in the central auditory system may contribute to age-related deterioration of hearing function.

  20. Post training REMs coincident auditory stimulation enhances memory in humans.

    Science.gov (United States)

    Smith, C; Weeden, K

    1990-06-01

    Sleep activity was monitored in 20 freshman college students for two consecutive nights. Subjects were assigned to 4 equal groups and all were asked to learn a complex logic task before bed on the second night. Two groups of subjects learned the task with a constant clicking noise in the background (cued groups), while two groups simply learned the task (non cued). During the night, one cued and one non cued group were presented with auditory clicks during REM sleep such as to coincide with all REMs of at least 100 microvolts. The second cued group was given auditory clicks during REM sleep, but only during the REMs "quiet" times. The second non-cued control group was never given any nighttime auditory stimulations. The cued REMs coincident group showed a significant 23% improvement in task performance when tested one week later. The non cued REMs coincident group showed only an 8.8% improvement which was not significant. The cued REMs quiet and non-stimulated control groups showed no change in task performance when retested. The results were interpreted as support for the idea that the cued auditory stimulation induced a "recall" of the learned material during the REM sleep state in order for further memory processing to take place.

  1. CKD Progression and Mortality among Hispanics and Non-Hispanics.

    Science.gov (United States)

    Fischer, Michael J; Hsu, Jesse Y; Lora, Claudia M; Ricardo, Ana C; Anderson, Amanda H; Bazzano, Lydia; Cuevas, Magdalena M; Hsu, Chi-Yuan; Kusek, John W; Renteria, Amada; Ojo, Akinlolu O; Raj, Dominic S; Rosas, Sylvia E; Pan, Qiang; Yaffe, Kristine; Go, Alan S; Lash, James P

    2016-11-01

    Although recommended approaches to CKD management are achieved less often in Hispanics than in non-Hispanics, whether long-term outcomes differ between these groups is unclear. In a prospective longitudinal analysis of participants enrolled into the Chronic Renal Insufficiency Cohort (CRIC) and Hispanic-CRIC Studies, we used Cox proportional hazards models to determine the association between race/ethnicity, CKD progression (50% eGFR loss or incident ESRD), incident ESRD, and all-cause mortality, and linear mixed-effects models to assess differences in eGFR slope. Among 3785 participants, 13% were Hispanic, 43% were non-Hispanic white (NHW), and 44% were non-Hispanic black (NHB). Over a median follow-up of 5.1 years for Hispanics and 6.8 years for non-Hispanics, 27.6% of all participants had CKD progression, 21.3% reached incident ESRD, and 18.3% died. Hispanics had significantly higher rates of CKD progression, incident ESRD, and mean annual decline in eGFR than did NHW (P<0.05) but not NHB. Hispanics had a mortality rate similar to that of NHW but lower than that of NHB (P<0.05). In adjusted analyses, the risk of CKD progression did not differ between Hispanics and NHW or NHB. However, among nondiabetic participants, compared with NHB, Hispanics had a lower risk of CKD progression (hazard ratio, 0.61; 95% confidence interval, 0.39 to 0.95) and incident ESRD (hazard ratio, 0.50; 95% confidence interval, 0.30 to 0.84). At higher levels of urine protein, Hispanics had a significantly lower risk of mortality than did non-Hispanics (P<0.05). Thus, important differences in CKD progression and mortality exist between Hispanics and non-Hispanics and may be affected by proteinuria and diabetes. Copyright © 2016 by the American Society of Nephrology.

  2. Clinical variability of Waardenburg-Shah syndrome in patients with proximal 13q deletion syndrome including the endothelin-B receptor locus.

    Science.gov (United States)

    Tüysüz, Beyhan; Collin, Anna; Arapoğlu, Müjde; Suyugül, Nezir

    2009-10-01

    Waardenburg-Shah syndrome (Waardenburg syndrome type IV-WS4) is an auditory-pigmentary disorder that combines clinical features of pigmentary abnormalities of the skin, hair and irides, sensorineural hearing loss, and Hirschsprung disease (HSCR). Mutations in the endothelin-B receptor (EDNRB) gene on 13q22 have been found to cause this syndrome. Mutations in both alleles cause the full phenotype, while heterozygous mutations cause isolated HSCR or HSCR with minor pigmentary anomalies and/or sensorineural deafness. We investigated the status of the EDNRB gene, by FISH analysis, in three patients with de novo proximal 13q deletions detected at cytogenetic analysis and examined the clinical variability of WS4 among these patients. Chromosome 13q was screened with locus specific FISH probes and breakpoints were determined at 13q22.1q31.3 in Patients 1 and 3, and at 13q21.1q31.3 in Patient 2. An EDNRB specific FISH probe was deleted in all three patients. All patients had common facial features seen in proximal 13q deletion syndrome and mild mental retardation. However, findings related to WS4 were variable; Patient 1 had hypopigmentation of the irides and HSCR, Patient 2 had prominent bicolored irides and mild bilateral hearing loss, and Patient 3 had only mild unilateral hearing loss. These data contribute new insights into the pathogenesis of WS4.

  3. Semantic elaboration in auditory and visual spatial memory.

    Science.gov (United States)

    Taevs, Meghan; Dahmani, Louisa; Zatorre, Robert J; Bohbot, Véronique D

    2010-01-01

    The aim of this study was to investigate the hypothesis that semantic information facilitates auditory and visual spatial learning and memory. An auditory spatial task was administered, whereby healthy participants were placed in the center of a semi-circle that contained an array of speakers where the locations of nameable and non-nameable sounds were learned. In the visual spatial task, locations of pictures of abstract art intermixed with nameable objects were learned by presenting these items in specific locations on a computer screen. Participants took part in both the auditory and visual spatial tasks, which were counterbalanced for order and were learned at the same rate. Results showed that learning and memory for the spatial locations of nameable sounds and pictures was significantly better than for non-nameable stimuli. Interestingly, there was a cross-modal learning effect such that the auditory task facilitated learning of the visual task and vice versa. In conclusion, our results support the hypotheses that the semantic representation of items, as well as the presentation of items in different modalities, facilitate spatial learning and memory.

  4. Rapid measurement of auditory filter shape in mice using the auditory brainstem response and notched noise.

    Science.gov (United States)

    Lina, Ioan A; Lauer, Amanda M

    2013-04-01

    The notched noise method is an effective procedure for measuring frequency resolution and auditory filter shapes in both human and animal models of hearing. Briefly, auditory filter shape and bandwidth estimates are derived from masked thresholds for tones presented in noise containing widening spectral notches. As the spectral notch widens, increasingly less of the noise falls within the auditory filter and the tone becomes more detectible until the notch width exceeds the filter bandwidth. Behavioral procedures have been used for the derivation of notched noise auditory filter shapes in mice; however, the time and effort needed to train and test animals on these tasks renders a constraint on the widespread application of this testing method. As an alternative procedure, we combined relatively non-invasive auditory brainstem response (ABR) measurements and the notched noise method to estimate auditory filters in normal-hearing mice at center frequencies of 8, 11.2, and 16 kHz. A complete set of simultaneous masked thresholds for a particular tone frequency were obtained in about an hour. ABR-derived filter bandwidths broadened with increasing frequency, consistent with previous studies. The ABR notched noise procedure provides a fast alternative to estimating frequency selectivity in mice that is well-suited to high through-put or time-sensitive screening. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Twenty year multi-follow-up of different types of hallucinations in schizophrenia, schizoaffective disorder, bipolar disorder, and depression.

    Science.gov (United States)

    Goghari, Vina M; Harrow, Martin

    2016-10-01

    Hallucinations are a salient feature of both psychotic and mood disorders. Currently there is a call for more research on the phenomenology of different forms of hallucinations, in a broader array of disorders, to further both theoretical knowledge and clinical utility. We investigated auditory, visual, and olfactory hallucinations at index hospitalization and auditory and visual hallucinations prospectively for 20years in 150 young patients, namely 51 schizophrenia, 25 schizoaffective, 28 bipolar, and 79 unipolar depression. For the index hospitalization, the data showed schizophrenia and schizoaffective patients had a greater rate of auditory and visual hallucinations than bipolar and depression patients. However, over the longitudinal trajectory of their illness, a greater percentage of schizophrenia patients had auditory and visual hallucinations than schizoaffective patients, as well as bipolar and depression patients. Also, in contrast to the initial period, schizoaffective patients did not differentiate themselves over the follow-up period from bipolar patients. Bipolar and depression patients did not significantly differ at index hospitalization or at follow-up. We found visual hallucinations differentiated the groups to a greater degree over the 20year course than did auditory hallucinations. These findings suggest the longitudinal course is more important for differentiating schizophrenia and schizoaffective disorder, whereas the initial years may be more useful to differentiate schizoaffective disorder from bipolar disorder. Furthermore, we found that the early presence of auditory hallucinations was associated with a reduced likelihood for a future period of recovery. No olfactory hallucinations were present at the index hospitalization in any patients. Over the course of 20years, a minority of schizophrenia patients presented with olfactory hallucinations, and very few schizoaffective and bipolar patients presented with olfactory hallucinations. This

  6. Estimating individual listeners’ auditory-filter bandwidth in simultaneous and non-simultaneous masking

    DEFF Research Database (Denmark)

    Buchholz, Jörg; Caminade, Sabine; Strelcyk, Olaf

    2010-01-01

    Frequency selectivity in the human auditory system is often measured using simultaneous masking of tones presented in notched noise. Based on such masking data, the equivalent rectangular bandwidth (ERB) of the auditory filters can be derived by applying the power spectrum model of masking....... Considering bandwidth estimates from previous studies based on forward masking, only average data across a number of subjects have been considered. The present study is concerned with bandwidth estimates in simultaneous and forward masking in individual normal-hearing subjects. In order to investigate...... the reliability of the individual estimates, a statistical resampling method is applied. It is demonstrated that a rather large set of experimental data is required to reliably estimate auditory filter bandwidth, particularly in the case of simultaneous masking. The poor overall reliability of the filter...

  7. Relação entre potenciais evocados auditivos de média latência e distúrbio de processamento auditivo: estudo de casos Relationship between auditory evoked potentials and middle latency auditory processing disorder: cases study

    Directory of Open Access Journals (Sweden)

    Ana Carla Leite Romero

    2013-04-01

    . This study aimed to analyze the auditory evoked middle latency response in two patients with auditory processing disorder and relate objective and behavioral measures. This case study was conducted in 2 patients (P1 = 12 years, female, P2 = 17 years old, male, both with the absence of sensory abnormalities, neurological and neuropsychiatric disorders. Both were submitted to anamnesis, inspection of the external ear canal, hearing test and evaluation of Auditory Evoked Middle latency Response. There was a significant association between behavioral test and objectives results. In the interview, there were complaints about the difficulty in listening in a noisy environment, sound localization, inattention, and phonological changes in writing and speaking, as confirmed by evaluation of auditory processing and Auditory Evoked Middle Latency Response. Changes were observed in the right decoding process hearing in both cases on the behavioral assessment of auditory processing; auditory evoked potential test middle latency shows that the right contralateral via response was deficient, confirming the difficulties of the patients in the assignment of meaning in acoustic information in a competitive sound condition at right, in both cases. In these cases it was shown the association between the results, but there is a need for further studies with larger sample population to confirm the data.

  8. Relação entre potenciais evocados auditivos de média latência e distúrbio de processamento auditivo: estudo de casos Relationship between auditory evoked potentials and middle latency auditory processing disorder: cases study

    Directory of Open Access Journals (Sweden)

    Ana Carla Leite Romero

    2013-01-01

    . This study aimed to analyze the auditory evoked middle latency response in two patients with auditory processing disorder and relate objective and behavioral measures. This case study was conducted in 2 patients (P1 = 12 years, female, P2 = 17 years old, male, both with the absence of sensory abnormalities, neurological and neuropsychiatric disorders. Both were submitted to anamnesis, inspection of the external ear canal, hearing test and evaluation of Auditory Evoked Middle latency Response. There was a significant association between behavioral test and objectives results. In the interview, there were complaints about the difficulty in listening in a noisy environment, sound localization, inattention, and phonological changes in writing and speaking, as confirmed by evaluation of auditory processing and Auditory Evoked Middle Latency Response. Changes were observed in the right decoding process hearing in both cases on the behavioral assessment of auditory processing; auditory evoked potential test middle latency shows that the right contralateral via response was deficient, confirming the difficulties of the patients in the assignment of meaning in acoustic information in a competitive sound condition at right, in both cases. In these cases it was shown the association between the results, but there is a need for further studies with larger sample population to confirm the data.

  9. Hair cell regeneration in the avian auditory epithelium.

    Science.gov (United States)

    Stone, Jennifer S; Cotanche, Douglas A

    2007-01-01

    Regeneration of sensory hair cells in the mature avian inner ear was first described just over 20 years ago. Since then, it has been shown that many other non-mammalian species either continually produce new hair cells or regenerate them in response to trauma. However, mammals exhibit limited hair cell regeneration, particularly in the auditory epithelium. In birds and other non-mammals, regenerated hair cells arise from adjacent non-sensory (supporting) cells. Hair cell regeneration was initially described as a proliferative response whereby supporting cells re-enter the mitotic cycle, forming daughter cells that differentiate into either hair cells or supporting cells and thereby restore cytoarchitecture and function in the sensory epithelium. However, further analyses of the avian auditory epithelium (and amphibian vestibular epithelium) revealed a second regenerative mechanism, direct transdifferentiation, during which supporting cells change their gene expression and convert into hair cells without dividing. In the chicken auditory epithelium, these two distinct mechanisms show unique spatial and temporal patterns, suggesting they are differentially regulated. Current efforts are aimed at identifying signals that maintain supporting cells in a quiescent state or direct them to undergo direct transdifferentiation or cell division. Here, we review current knowledge about supporting cell properties and discuss candidate signaling molecules for regulating supporting cell behavior, in quiescence and after damage. While significant advances have been made in understanding regeneration in non-mammals over the last 20 years, we have yet to determine why the mammalian auditory epithelium lacks the ability to regenerate hair cells spontaneously and whether it is even capable of significant regeneration under additional circumstances. The continued study of mechanisms controlling regeneration in the avian auditory epithelium may lead to strategies for inducing

  10. NON-INFECTIOUS DISORDERS OF WARMWATER FISHES

    Science.gov (United States)

    Compared with infectious diseases and disorders, few non-infectious diseases and disorders in cultured fish have severe biologic or economic impact. Culture practices, however, often establish environments that promote infectious disease by weakening the immune response or by pro...

  11. Double heterozygous mutations of MITF and PAX3 result in Waardenburg syndrome with increased penetrance in pigmentary defects.

    Science.gov (United States)

    Yang, T; Li, X; Huang, Q; Li, L; Chai, Y; Sun, L; Wang, X; Zhu, Y; Wang, Z; Huang, Z; Li, Y; Wu, H

    2013-01-01

    Waardenburg syndrome (WS) is characterized by sensorineural hearing loss and pigmentary defects of the hair, skin, and iris. Heterozygous mutations of MITF and its transactivator gene PAX3 are associated with Waardenburg syndrome type II (WS2) and type I (WS1), respectively. Most patients with MITF or PAX3 mutations, however, show variable penetrance of WS-associated phenotypes even within families segregating the same mutation, possibly mediated by genetic background or specific modifiers. In this study, we reported a rare Waardenburg syndrome simplex family in which a pair of WS parents gave birth to a child with double heterozygous mutations of MITF and PAX3. Compared to his parents who carried a single mutation in either MITF or PAX3, this child showed increased penetrance of pigmentary defects including white forelock, white eyebrows and eyelashes, and patchy facial depigmentation. This observation suggested that the expression level of MITF is closely correlated to the penetrance of WS, and variants in transcription regulator genes of MITF may modify the relevant clinical phenotypes. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  12. Neurogenetics and auditory processing in developmental dyslexia.

    Science.gov (United States)

    Giraud, Anne-Lise; Ramus, Franck

    2013-02-01

    Dyslexia is a polygenic developmental reading disorder characterized by an auditory/phonological deficit. Based on the latest genetic and neurophysiological studies, we propose a tentative model in which phonological deficits could arise from genetic anomalies of the cortical micro-architecture in the temporal lobe. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Primate auditory recognition memory performance varies with sound type.

    Science.gov (United States)

    Ng, Chi-Wing; Plakke, Bethany; Poremba, Amy

    2009-10-01

    Neural correlates of auditory processing, including for species-specific vocalizations that convey biological and ethological significance (e.g., social status, kinship, environment), have been identified in a wide variety of areas including the temporal and frontal cortices. However, few studies elucidate how non-human primates interact with these vocalization signals when they are challenged by tasks requiring auditory discrimination, recognition and/or memory. The present study employs a delayed matching-to-sample task with auditory stimuli to examine auditory memory performance of rhesus macaques (Macaca mulatta), wherein two sounds are determined to be the same or different. Rhesus macaques seem to have relatively poor short-term memory with auditory stimuli, and we examine if particular sound types are more favorable for memory performance. Experiment 1 suggests memory performance with vocalization sound types (particularly monkey), are significantly better than when using non-vocalization sound types, and male monkeys outperform female monkeys overall. Experiment 2, controlling for number of sound exemplars and presentation pairings across types, replicates Experiment 1, demonstrating better performance or decreased response latencies, depending on trial type, to species-specific monkey vocalizations. The findings cannot be explained by acoustic differences between monkey vocalizations and the other sound types, suggesting the biological, and/or ethological meaning of these sounds are more effective for auditory memory. 2009 Elsevier B.V.

  14. Stroke caused auditory attention deficits in children

    Directory of Open Access Journals (Sweden)

    Karla Maria Ibraim da Freiria Elias

    2013-01-01

    Full Text Available OBJECTIVE: To verify the auditory selective attention in children with stroke. METHODS: Dichotic tests of binaural separation (non-verbal and consonant-vowel and binaural integration - digits and Staggered Spondaic Words Test (SSW - were applied in 13 children (7 boys, from 7 to 16 years, with unilateral stroke confirmed by neurological examination and neuroimaging. RESULTS: The attention performance showed significant differences in comparison to the control group in both kinds of tests. In the non-verbal test, identifications the ear opposite the lesion in the free recall stage was diminished and, in the following stages, a difficulty in directing attention was detected. In the consonant- vowel test, a modification in perceptual asymmetry and difficulty in focusing in the attended stages was found. In the digits and SSW tests, ipsilateral, contralateral and bilateral deficits were detected, depending on the characteristics of the lesions and demand of the task. CONCLUSION: Stroke caused auditory attention deficits when dealing with simultaneous sources of auditory information.

  15. Low-level neural auditory discrimination dysfunctions in specific language impairment—A review on mismatch negativity findings

    Directory of Open Access Journals (Sweden)

    Teija Kujala

    2017-12-01

    Full Text Available In specific language impairment (SLI, there is a delay in the child’s oral language skills when compared with nonverbal cognitive abilities. The problems typically relate to phonological and morphological processing and word learning. This article reviews studies which have used mismatch negativity (MMN in investigating low-level neural auditory dysfunctions in this disorder. With MMN, it is possible to tap the accuracy of neural sound discrimination and sensory memory functions. These studies have found smaller response amplitudes and longer latencies for speech and non-speech sound changes in children with SLI than in typically developing children, suggesting impaired and slow auditory discrimination in SLI. Furthermore, they suggest shortened sensory memory duration and vulnerability of the sensory memory to masking effects. Importantly, some studies reported associations between MMN parameters and language test measures. In addition, it was found that language intervention can influence the abnormal MMN in children with SLI, enhancing its amplitude. These results suggest that the MMN can shed light on the neural basis of various auditory and memory impairments in SLI, which are likely to influence speech perception. Keywords: Specific language impairment, Auditory processing, Mismatch negativity (MMN

  16. Tourette Syndrome and Tic Disorders: A Decade of Progress

    Science.gov (United States)

    Swain, James E.; Scahill, Lawrence; Lombroso, Paul J.; King, Robert A.; Leckman, James F.

    2007-01-01

    Objective: This is a review of progress made in the understanding of Tourette syndrome (TS) during the past decade including models of pathogenesis, state-of-the-art assessment techniques, and treatment. Method: Computerized literature searches were conducted under the key words "Tourette syndrome," "Tourette disorder," and "tics." Only references…

  17. Auditory temporal processing skills in musicians with dyslexia.

    Science.gov (United States)

    Bishop-Liebler, Paula; Welch, Graham; Huss, Martina; Thomson, Jennifer M; Goswami, Usha

    2014-08-01

    The core cognitive difficulty in developmental dyslexia involves phonological processing, but adults and children with dyslexia also have sensory impairments. Impairments in basic auditory processing show particular links with phonological impairments, and recent studies with dyslexic children across languages reveal a relationship between auditory temporal processing and sensitivity to rhythmic timing and speech rhythm. As rhythm is explicit in music, musical training might have a beneficial effect on the auditory perception of acoustic cues to rhythm in dyslexia. Here we took advantage of the presence of musicians with and without dyslexia in musical conservatoires, comparing their auditory temporal processing abilities with those of dyslexic non-musicians matched for cognitive ability. Musicians with dyslexia showed equivalent auditory sensitivity to musicians without dyslexia and also showed equivalent rhythm perception. The data support the view that extensive rhythmic experience initiated during childhood (here in the form of music training) can affect basic auditory processing skills which are found to be deficient in individuals with dyslexia. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Gender effect on pre-attentive change detection in major depressive disorder patients revealed by auditory MMN.

    Science.gov (United States)

    Qiao, Zhengxue; Yang, Aiying; Qiu, Xiaohui; Yang, Xiuxian; Zhang, Congpei; Zhu, Xiongzhao; He, Jincai; Wang, Lin; Bai, Bing; Sun, Hailian; Zhao, Lun; Yang, Yanjie

    2015-10-30

    Gender differences in rates of major depressive disorder (MDD) are well established, but gender differences in cognitive function have been little studied. Auditory mismatch negativity (MMN) was used to investigate gender differences in pre-attentive information processing in first episode MDD. In the deviant-standard reverse oddball paradigm, duration auditory MMN was obtained in 30 patients (15 males) and 30 age-/education-matched controls. Over frontal-central areas, mean amplitude of increment MMN (to a 150-ms deviant tone) was smaller in female than male patients; there was no sex difference in decrement MMN (to a 50-ms deviant tone). Neither increment nor decrement MMN differed between female and male patients over temporal areas. Frontal-central MMN and temporal MMN did not differ between male and female controls in any condition. Over frontal-central areas, mean amplitude of increment MMN was smaller in female patients than female controls; there was no difference in decrement MMN. Neither increment nor decrement MMN differed between female patients and female controls over temporal areas. Frontal-central MMN and temporal MMN did not differ between male patients and male controls. Mean amplitude of increment MMN in female patients did not correlate with symptoms, suggesting this sex-specific deficit is a trait- not a state-dependent phenomenon. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. A mitochondrial tRNA(His) gene mutation causing pigmentary retinopathy and neurosensorial deafness.

    Science.gov (United States)

    Crimi, M; Galbiati, S; Perini, M P; Bordoni, A; Malferrari, G; Sciacco, M; Biunno, I; Strazzer, S; Moggio, M; Bresolin, N; Comi, G P

    2003-04-08

    We have identified a heteroplasmic G to A mutation at position 12,183 of the mitochondrial transfer RNA Histidine (tRNA(His)) gene in three related patients. These phenotypes varied according to mutation heteroplasmy: one had severe pigmentary retinopathy, neurosensorial deafness, testicular dysfunction, muscle hypotrophy, and ataxia; the other two had only retinal and inner ear involvement. The mutation is in a highly conserved region of the T(psi)C stem of the tRNA(His) gene and may alter secondary structure formation. This is the first described pathogenic, maternally inherited mutation of the mitochondrial tRNA(His) gene.

  20. A clinical study of auditory hallucination by single photon emission computed tomography (SPECT) using N-isopropyl-p-[123I] iodoamphetamine (IMP)

    International Nuclear Information System (INIS)

    Gyobu, Tsuyoshi; Inao, Gyoshun; Ii, Masayasu; Matsuda, Hiroshi; Hisada, Kinichi.

    1988-01-01

    SPECT images with N-isopropyl-p-I-123 iodoamphetamine (IMP) were reviewed in 24 right-handed patients with hallucination (H Group), comprising schizophrenic disorder (20), alcohol hallucinosis (2), epileptic hallucinosis (one), and organic mental disorder (one), and 50 subjects without hallucination (non-H Group), consisting of 39 patients with mental or organic central nervous system disorder and 11 healthy volunteers. Early SPECT images showed an increased uptake of IMP in the auditory area and angular gyrus in 23 patients of H Group and 3 persons of non-H Group. A similar uptake of IMP was seen on delayed SPECT images in 12 patients of H Group and 4 patients with a history of hallucination of non-H Group. There were no SPECT findings specific to diseases. For schizophrenic patients, increased and decreased uptakes of IMP were seen in the striatolimbic region and in the bilateral frontal lobes, respectively, irrespective of hallucination. Factors contributing to increased uptake of IMP are discussed. (Namekawa, K.) 84 refs

  1. An anatomical and functional topography of human auditory cortical areas

    Directory of Open Access Journals (Sweden)

    Michelle eMoerel

    2014-07-01

    Full Text Available While advances in magnetic resonance imaging (MRI throughout the last decades have enabled the detailed anatomical and functional inspection of the human brain non-invasively, to date there is no consensus regarding the precise subdivision and topography of the areas forming the human auditory cortex. Here, we propose a topography of the human auditory areas based on insights on the anatomical and functional properties of human auditory areas as revealed by studies of cyto- and myelo-architecture and fMRI investigations at ultra-high magnetic field (7 Tesla. Importantly, we illustrate that - whereas a group-based approach to analyze functional (tonotopic maps is appropriate to highlight the main tonotopic axis - the examination of tonotopic maps at single subject level is required to detail the topography of primary and non-primary areas that may be more variable across subjects. Furthermore, we show that considering multiple maps indicative of anatomical (i.e. myelination as well as of functional properties (e.g. broadness of frequency tuning is helpful in identifying auditory cortical areas in individual human brains. We propose and discuss a topography of areas that is consistent with old and recent anatomical post mortem characterizations of the human auditory cortex and that may serve as a working model for neuroscience studies of auditory functions.

  2. Characteristics of, prevalence of, and risk factors for corneal pigmentation (pigmentary keratopathy) in Pugs.

    Science.gov (United States)

    Labelle, Amber L; Dresser, Christine B; Hamor, Ralph E; Allender, Matthew C; Disney, Julia L

    2013-09-01

    To determine the characteristics of, prevalence of, and risk factors for corneal pigmentation (CP) in Pugs. Prospective cross-sectional study. 295 Pugs > 16 weeks old. Ophthalmic examination of the anterior segment of each eye was performed, including determination of tear film characteristics (Schirmer tear test and tear film breakup time) and corneal sensitivity. Digital photographs of the head and each eye were obtained. Corneal pigmentation of eyes was graded as absent, very mild, mild, moderate, or severe. Signalment and medical history information and American Kennel Club registration status were recorded. Results-CP was detected in at least 1 eye of 243 of the 295 (82.4%) Pugs; CP was typically very mild or mild. Detection of CP was not significantly associated with coat color, age, eyelid conformation, or tear film characteristics but was significantly associated with sex of dogs. The severity of CP was not significantly associated with American Kennel Club registration status or age, but was significantly associated with sex, tear film characteristics, and coat color. Iris hypoplasia was detected in 72.1% of the Pugs. Iris-to-iris persistent pupillary membranes were detected in 85.3% of the Pugs. Prevalence of CP in Pugs in this study was high. Unexpectedly high prevalences of iris hypoplasia and persistent pupillary membranes were also identified. The condition identified in these Pugs was a pigmentary keratopathy, rather than pigmentary keratitis or corneal melanosis. This condition may have a genetic basis, and further studies are warranted to determine etiology.

  3. Auditory Reserve and the Legacy of Auditory Experience

    Directory of Open Access Journals (Sweden)

    Erika Skoe

    2014-11-01

    Full Text Available Musical training during childhood has been linked to more robust encoding of sound later in life. We take this as evidence for an auditory reserve: a mechanism by which individuals capitalize on earlier life experiences to promote auditory processing. We assert that early auditory experiences guide how the reserve develops and is maintained over the lifetime. Experiences that occur after childhood, or which are limited in nature, are theorized to affect the reserve, although their influence on sensory processing may be less long-lasting and may potentially fade over time if not repeated. This auditory reserve may help to explain individual differences in how individuals cope with auditory impoverishment or loss of sensorineural function.

  4. Stimulator with arbitrary waveform for auditory evoked potentials

    International Nuclear Information System (INIS)

    Martins, H R; Romao, M; Placido, D; Provenzano, F; Tierra-Criollo, C J

    2007-01-01

    The technological improvement helps many medical areas. The audiometric exams involving the auditory evoked potentials can make better diagnoses of auditory disorders. This paper proposes the development of a stimulator based on Digital Signal Processor. This stimulator is the first step of an auditory evoked potential system based on the ADSP-BF533 EZ KIT LITE (Analog Devices Company - USA). The stimulator can generate arbitrary waveform like Sine Waves, Modulated Amplitude, Pulses, Bursts and Pips. The waveforms are generated through a graphical interface programmed in C++ in which the user can define the parameters of the waveform. Furthermore, the user can set the exam parameters as number of stimuli, time with stimulation (Time ON) and time without stimulus (Time OFF). In future works will be implemented another parts of the system that includes the acquirement of electroencephalogram and signal processing to estimate and analyze the evoked potential

  5. Stimulator with arbitrary waveform for auditory evoked potentials

    Energy Technology Data Exchange (ETDEWEB)

    Martins, H R; Romao, M; Placido, D; Provenzano, F; Tierra-Criollo, C J [Universidade Federal de Minas Gerais (UFMG), Departamento de Engenharia Eletrica (DEE), Nucleo de Estudos e Pesquisa em Engenharia Biomedica NEPEB, Av. Ant. Carlos, 6627, sala 2206, Pampulha, Belo Horizonte, MG, 31.270-901 (Brazil)

    2007-11-15

    The technological improvement helps many medical areas. The audiometric exams involving the auditory evoked potentials can make better diagnoses of auditory disorders. This paper proposes the development of a stimulator based on Digital Signal Processor. This stimulator is the first step of an auditory evoked potential system based on the ADSP-BF533 EZ KIT LITE (Analog Devices Company - USA). The stimulator can generate arbitrary waveform like Sine Waves, Modulated Amplitude, Pulses, Bursts and Pips. The waveforms are generated through a graphical interface programmed in C++ in which the user can define the parameters of the waveform. Furthermore, the user can set the exam parameters as number of stimuli, time with stimulation (Time ON) and time without stimulus (Time OFF). In future works will be implemented another parts of the system that includes the acquirement of electroencephalogram and signal processing to estimate and analyze the evoked potential.

  6. Behavioral semantics of learning and crossmodal processing in auditory cortex: the semantic processor concept.

    Science.gov (United States)

    Scheich, Henning; Brechmann, André; Brosch, Michael; Budinger, Eike; Ohl, Frank W; Selezneva, Elena; Stark, Holger; Tischmeyer, Wolfgang; Wetzel, Wolfram

    2011-01-01

    Two phenomena of auditory cortex activity have recently attracted attention, namely that the primary field can show different types of learning-related changes of sound representation and that during learning even this early auditory cortex is under strong multimodal influence. Based on neuronal recordings in animal auditory cortex during instrumental tasks, in this review we put forward the hypothesis that these two phenomena serve to derive the task-specific meaning of sounds by associative learning. To understand the implications of this tenet, it is helpful to realize how a behavioral meaning is usually derived for novel environmental sounds. For this purpose, associations with other sensory, e.g. visual, information are mandatory to develop a connection between a sound and its behaviorally relevant cause and/or the context of sound occurrence. This makes it plausible that in instrumental tasks various non-auditory sensory and procedural contingencies of sound generation become co-represented by neuronal firing in auditory cortex. Information related to reward or to avoidance of discomfort during task learning, that is essentially non-auditory, is also co-represented. The reinforcement influence points to the dopaminergic internal reward system, the local role of which for memory consolidation in auditory cortex is well-established. Thus, during a trial of task performance, the neuronal responses to the sounds are embedded in a sequence of representations of such non-auditory information. The embedded auditory responses show task-related modulations of auditory responses falling into types that correspond to three basic logical classifications that may be performed with a perceptual item, i.e. from simple detection to discrimination, and categorization. This hierarchy of classifications determine the semantic "same-different" relationships among sounds. Different cognitive classifications appear to be a consequence of learning task and lead to a recruitment of

  7. Towards Clinical Application of Neurotrophic Factors to the Auditory Nerve; Assessment of Safety and Efficacy by a Systematic Review of Neurotrophic Treatments in Humans

    Directory of Open Access Journals (Sweden)

    Aren Bezdjian

    2016-11-01

    Full Text Available Animal studies have evidenced protection of the auditory nerve by exogenous neurotrophic factors. In order to assess clinical applicability of neurotrophic treatment of the auditory nerve, the safety and efficacy of neurotrophic therapies in various human disorders were systematically reviewed. Outcomes of our literature search included disorder, neurotrophic factor, administration route, therapeutic outcome, and adverse event. From 2103 articles retrieved, 20 randomized controlled trials including 3974 patients were selected. Amyotrophic lateral sclerosis (53% was the most frequently reported indication for neurotrophic therapy followed by diabetic polyneuropathy (28%. Ciliary neurotrophic factor (50%, nerve growth factor (24% and insulin-like growth factor (21% were most often used. Injection site reaction was a frequently occurring adverse event (61% followed by asthenia (24% and gastrointestinal disturbances (20%. Eighteen out of 20 trials deemed neurotrophic therapy to be safe, and six out of 17 studies concluded the neurotrophic therapy to be effective. Positive outcomes were generally small or contradicted by other studies. Most non-neurodegenerative diseases treated by targeted deliveries of neurotrophic factors were considered safe and effective. Hence, since local delivery to the cochlea is feasible, translation from animal studies to human trials in treating auditory nerve degeneration seems promising.

  8. Verbal and musical short-term memory: Variety of auditory disorders after stroke.

    Science.gov (United States)

    Hirel, Catherine; Nighoghossian, Norbert; Lévêque, Yohana; Hannoun, Salem; Fornoni, Lesly; Daligault, Sébastien; Bouchet, Patrick; Jung, Julien; Tillmann, Barbara; Caclin, Anne

    2017-04-01

    Auditory cognitive deficits after stroke may concern language and/or music processing, resulting in aphasia and/or amusia. The aim of the present study was to assess the potential deficits of auditory short-term memory for verbal and musical material after stroke and their underlying cerebral correlates with a Voxel-based Lesion Symptom Mapping approach (VLSM). Patients with an ischemic stroke in the right (N=10) or left (N=10) middle cerebral artery territory and matched control participants (N=14) were tested with a detailed neuropsychological assessment including global cognitive functions, music perception and language tasks. All participants then performed verbal and musical auditory short-term memory (STM) tasks that were implemented in the same way for both materials. Participants had to indicate whether series of four words or four tones presented in pairs, were the same or different. To detect domain-general STM deficits, they also had to perform a visual STM task. Behavioral results showed that patients had lower performance for the STM tasks in comparison with control participants, regardless of the material (words, tones, visual) and the lesion side. The individual patient data showed a double dissociation between some patients exhibiting verbal deficits without musical deficits or the reverse. Exploratory VLSM analyses suggested that dorsal pathways are involved in verbal (phonetic), musical (melodic), and visual STM, while the ventral auditory pathway is involved in musical STM. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Pigment dispersion syndrome and pigmentary glaucoma after secondary sulcus transscleral fixation of single-piece foldable posterior chamber intraocular lenses in Chinese aphakic patients.

    Science.gov (United States)

    Tong, Nianting; Liu, Fuling; Zhang, Ting; Wang, Liangyu; Zhou, Zhanyu; Gong, Huimin; Yuan, Fuxiang

    2017-05-01

    To describe secondary pigment dispersion syndrome (PDS) and pigmentary glaucoma after secondary sulcus transscleral fixation of 1-piece hydrophobic acrylic foldable posterior chamber intraocular lenses (PC IOLs) in aphakic patients in a Chinese population. Department of Ophthalmology, Qingdao Municipal Hospital, Qingdao, China. Retrospective case series. This chart review included eyes that had secondary sulcus transscleral fixation of a 1-piece hydrophobic acrylic foldable PC IOL (Tecnis ZCB00) between March 2011 and March 2014. The patients' demographic data, clinical data, postoperative complications, intervals between initial surgery and the onset of PDS, pigmentary glaucoma occurrences, and findings on slitlamp biomicroscopy, gonioscopy, and ultrasound biomicroscopy (UBM) were recorded. The study comprised 23 consecutive eyes of 21 patients. Seventeen eyes of 16 patients were diagnosed with PDS, and 7 eyes of 6 patients were diagnosed with pigmentary glaucoma. The slitlamp examination and UBM showed that the location between the IOL optic and the posterior surface of the iris was very close. Slitlamp examination of the anterior chamber angle using a gonioscope showed dense pigment deposition on the IOL surfaces. A reverse pupillary block was found in 10 eyes of 9 patients. Other postoperative complications included intraocular hemorrhage, pupillary capture of the IOL optic, IOL tilt, IOL decentration, IOL dislocation, and suture erosion. The 1-piece hydrophobic acrylic foldable PC IOL was not suitable for sulcus transscleral fixation because of a high incidence of PDS and pigmentary glaucoma after surgery in a Chinese population. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  10. Acoustic Trauma Changes the Parvalbumin-Positive Neurons in Rat Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Congli Liu

    2018-01-01

    Full Text Available Acoustic trauma is being reported to damage the auditory periphery and central system, and the compromised cortical inhibition is involved in auditory disorders, such as hyperacusis and tinnitus. Parvalbumin-containing neurons (PV neurons, a subset of GABAergic neurons, greatly shape and synchronize neural network activities. However, the change of PV neurons following acoustic trauma remains to be elucidated. The present study investigated how auditory cortical PV neurons change following unilateral 1 hour noise exposure (left ear, one octave band noise centered at 16 kHz, 116 dB SPL. Noise exposure elevated the auditory brainstem response threshold of the exposed ear when examined 7 days later. More detectable PV neurons were observed in both sides of the auditory cortex of noise-exposed rats when compared to control. The detectable PV neurons of the left auditory cortex (ipsilateral to the exposed ear to noise exposure outnumbered those of the right auditory cortex (contralateral to the exposed ear. Quantification of Western blotted bands revealed higher expression level of PV protein in the left cortex. These findings of more active PV neurons in noise-exposed rats suggested that a compensatory mechanism might be initiated to maintain a stable state of the brain.

  11. Processamento auditivo em idosos: implicações e soluções Auditory processing in elderly: implications and solutions

    Directory of Open Access Journals (Sweden)

    Leonardo Henrique Buss

    2010-02-01

    Full Text Available TEMA: processamento auditivo em idosos. OBJETIVO: estudar, através de uma revisão teórica, o processamento auditivo em idosos, as desordens que o envelhecimento auditivo causam, bem como os recursos para reduzir as defasagens nas habilidades auditivas envolvidas no processamento auditivo. CONCLUSÃO: vários são os desajustes ocasionados pela desordem do processamento auditivo em idosos. É necessária a continuidade de estudos científicos nessa área para aplicar adequadas medidas intervencionistas, a fim de garantir a reabilitação do indivíduo a tempo de minimizar os efeitos da desordem auditiva sobre o mesmo.BACKGROUND: auditory processing in elderly. PURPOSE: to promote a theoretical approach on auditory processing in elderly people, the disorders caused by hearing aging, as well as the resources to minimize the auditory aging impairment of the hearing abilities involved in the auditory processing. CONCLUSION: the alterations caused by auditory processing disorder in elderly people are many. It is necessary to continue researching in this field in order to apply adequate interventionist measures, in order to assure the rehabilitation of the individual in time to minimize the effects of the hearing disorder.

  12. 48XXYY Syndrome in an Adult with Type 2 Diabetes Mellitus, Unilateral Renal Aplasia, and Pigmentary Retinitis

    OpenAIRE

    Zantour, Baha; Sfar, Mohamed Habib; Younes, Samia; Alaya, Wafa; Kamoun, Mahdi; Mkaouar, Emna; Jerbi, Saida

    2010-01-01

    A 45-year-old male was referred for diabetes mellitus. Clinical examination found a family history of multiple precocious deaths, strong consanguinity, personal history of seizures during childhood, small testicles, small penis, sparse body hair, long arms and legs, dysmorphic features, mental retardation, dysarthria, tremor, and mild gait ataxia. Investigations found pigmentary retinitis, metabolic syndrome, unilateral renal aplasia, and hypergonadotropic hypogonadism, and ruled out mitochon...

  13. Auditory white noise reduces postural fluctuations even in the absence of vision.

    Science.gov (United States)

    Ross, Jessica Marie; Balasubramaniam, Ramesh

    2015-08-01

    The contributions of somatosensory, vestibular, and visual feedback to balance control are well documented, but the influence of auditory information, especially acoustic noise, on balance is less clear. Because somatosensory noise has been shown to reduce postural sway, we hypothesized that noise from the auditory modality might have a similar effect. Given that the nervous system uses noise to optimize signal transfer, adding mechanical or auditory noise should lead to increased feedback about sensory frames of reference used in balance control. In the present experiment, postural sway was analyzed in healthy young adults where they were presented with continuous white noise, in the presence and absence of visual information. Our results show reduced postural sway variability (as indexed by the body's center of pressure) in the presence of auditory noise, even when visual information was not present. Nonlinear time series analysis revealed that auditory noise has an additive effect, independent of vision, on postural stability. Further analysis revealed that auditory noise reduced postural sway variability in both low- and high-frequency regimes (> or noise. Our results support the idea that auditory white noise reduces postural sway, suggesting that auditory noise might be used for therapeutic and rehabilitation purposes in older individuals and those with balance disorders.

  14. Progressive neurostructural changes in adolescent and adult patients with bipolar disorder.

    Science.gov (United States)

    Lisy, Megan E; Jarvis, Kelly B; DelBello, Melissa P; Mills, Neil P; Weber, Wade A; Fleck, David; Strakowski, Stephen M; Adler, Caleb M

    2011-06-01

    Several lines of evidence suggest that bipolar disorder is associated with progressive changes in gray matter volume (GMV), particularly in brain structures involved in emotional regulation and expression. The majority of these studies however, have been cross-sectional in nature. In this study we compared baseline and follow-up scans in groups of bipolar disorder and healthy subjects. We hypothesized bipolar disorder subjects would demonstrate significant GMV changes over time. A total of 58 bipolar disorder and 48 healthy subjects participated in structural magnetic resonance imaging (MRI). Subjects were rescanned 3-34 months after their baseline MRI. MRI images were segmented, normalized to standard stereotactic space, and compared voxel-by-voxel using statistical parametrical mapping software (SPM2). A model was developed to investigate differences in GMV at baseline, and associated with time and episodes, as well as in comparison to healthy subjects. We observed increases in GMV in bipolar disorder subjects across several brain regions at baseline and over time, including portions of the prefrontal cortex as well as limbic and subcortical structures. Time-related changes differed to some degree between adolescent and adult bipolar disorder subjects. The interval between scans positively correlated with GMV increases in bipolar disorder subjects in portions of the prefrontal cortex, and both illness duration and number of depressive episodes were associated with increased GMV in subcortical and limbic structures. Our findings support suggestions that widely observed progressive neurofunctional changes in bipolar disorder patients may be related to structural brain abnormalities in anterior limbic structures. Abnormalities largely involve regions previously noted to be integral to emotional expression and regulation, and appear to vary by age. © 2011 John Wiley and Sons A/S.

  15. Sleep-Related Eating Disorder: A Case Report of a Progressed Night Eating Syndrome

    Directory of Open Access Journals (Sweden)

    Sayed Shahabuddin Hoseini

    2012-07-01

    Full Text Available Night eating syndrome is a common disorder in eating behaviors that occurs in close relation to the night time sleep cycle. Although eating disorders are common in society, night eating syndrome has been left neglected by health care professionals. In this report we present a case of eating disorder that exhibits some novel features of night eating syndrome. Our case was a progressed type of eating disorder which may increase awareness among physicians about sleep-related eating disorders.

  16. Tinnitus intensity dependent gamma oscillations of the contralateral auditory cortex.

    Directory of Open Access Journals (Sweden)

    Elsa van der Loo

    Full Text Available BACKGROUND: Non-pulsatile tinnitus is considered a subjective auditory phantom phenomenon present in 10 to 15% of the population. Tinnitus as a phantom phenomenon is related to hyperactivity and reorganization of the auditory cortex. Magnetoencephalography studies demonstrate a correlation between gamma band activity in the contralateral auditory cortex and the presence of tinnitus. The present study aims to investigate the relation between objective gamma-band activity in the contralateral auditory cortex and subjective tinnitus loudness scores. METHODS AND FINDINGS: In unilateral tinnitus patients (N = 15; 10 right, 5 left source analysis of resting state electroencephalographic gamma band oscillations shows a strong positive correlation with Visual Analogue Scale loudness scores in the contralateral auditory cortex (max r = 0.73, p<0.05. CONCLUSION: Auditory phantom percepts thus show similar sound level dependent activation of the contralateral auditory cortex as observed in normal audition. In view of recent consciousness models and tinnitus network models these results suggest tinnitus loudness is coded by gamma band activity in the contralateral auditory cortex but might not, by itself, be responsible for tinnitus perception.

  17. Atypical brain lateralisation in the auditory cortex and language performance in 3- to 7-year-old children with high-functioning autism spectrum disorder: a child-customised magnetoencephalography (MEG) study.

    Science.gov (United States)

    Yoshimura, Yuko; Kikuchi, Mitsuru; Shitamichi, Kiyomi; Ueno, Sanae; Munesue, Toshio; Ono, Yasuki; Tsubokawa, Tsunehisa; Haruta, Yasuhiro; Oi, Manabu; Niida, Yo; Remijn, Gerard B; Takahashi, Tsutomu; Suzuki, Michio; Higashida, Haruhiro; Minabe, Yoshio

    2013-10-08

    Magnetoencephalography (MEG) is used to measure the auditory evoked magnetic field (AEF), which reflects language-related performance. In young children, however, the simultaneous quantification of the bilateral auditory-evoked response during binaural hearing is difficult using conventional adult-sized MEG systems. Recently, a child-customised MEG device has facilitated the acquisition of bi-hemispheric recordings, even in young children. Using the child-customised MEG device, we previously reported that language-related performance was reflected in the strength of the early component (P50m) of the auditory evoked magnetic field (AEF) in typically developing (TD) young children (2 to 5 years old) [Eur J Neurosci 2012, 35:644-650]. The aim of this study was to investigate how this neurophysiological index in each hemisphere is correlated with language performance in autism spectrum disorder (ASD) and TD children. We used magnetoencephalography (MEG) to measure the auditory evoked magnetic field (AEF), which reflects language-related performance. We investigated the P50m that is evoked by voice stimuli (/ne/) bilaterally in 33 young children (3 to 7 years old) with ASD and in 30 young children who were typically developing (TD). The children were matched according to their age (in months) and gender. Most of the children with ASD were high-functioning subjects. The results showed that the children with ASD exhibited significantly less leftward lateralisation in their P50m intensity compared with the TD children. Furthermore, the results of a multiple regression analysis indicated that a shorter P50m latency in both hemispheres was specifically correlated with higher language-related performance in the TD children, whereas this latency was not correlated with non-verbal cognitive performance or chronological age. The children with ASD did not show any correlation between P50m latency and language-related performance; instead, increasing chronological age was a

  18. The E3 ligase Ubr3 regulates Usher syndrome and MYH9 disorder proteins in the auditory organs of Drosophila and mammals.

    Science.gov (United States)

    Li, Tongchao; Giagtzoglou, Nikolaos; Eberl, Daniel F; Jaiswal, Sonal Nagarkar; Cai, Tiantian; Godt, Dorothea; Groves, Andrew K; Bellen, Hugo J

    2016-06-22

    Myosins play essential roles in the development and function of auditory organs and multiple myosin genes are associated with hereditary forms of deafness. Using a forward genetic screen in Drosophila, we identified an E3 ligase, Ubr3, as an essential gene for auditory organ development. Ubr3 negatively regulates the mono-ubiquitination of non-muscle Myosin II, a protein associated with hearing loss in humans. The mono-ubiquitination of Myosin II promotes its physical interaction with Myosin VIIa, a protein responsible for Usher syndrome type IB. We show that ubr3 mutants phenocopy pathogenic variants of Myosin II and that Ubr3 interacts genetically and physically with three Usher syndrome proteins. The interactions between Myosin VIIa and Myosin IIa are conserved in the mammalian cochlea and in human retinal pigment epithelium cells. Our work reveals a novel mechanism that regulates protein complexes affected in two forms of syndromic deafness and suggests a molecular function for Myosin IIa in auditory organs.

  19. Cognitive Behavioral Therapy Compared with Non-specialized Therapy for Alleviating the Effect of Auditory Hallucinations in People with Reoccurring Schizophrenia: A Systematic Review and Meta-analysis.

    Science.gov (United States)

    Kennedy, Laura; Xyrichis, Andreas

    2017-02-01

    Cognitive behavioral therapy (CBT) is recommended as a psychological intervention for those diagnosed with schizophrenia. The prevalence of auditory hallucinations is high among this group, many of whom are cared for by community mental health teams that may not have easy access to qualified CBT practitioners. This systematic review examined the evidence for the superiority of CBT compared to non-specialized therapy in alleviating auditory hallucinations in community patients with schizophrenia. Two RCTs met the inclusion criteria totaling 105 participants. The Positive and Negative Syndrome Scale (PANSS)-Positive Scale was the outcome measure examined. A meta-analysis revealed a pooled mean difference of -0.86 [95 % CI -2.38, 0.65] in favor of CBT, although this did not reach statistical significance. This systematic review concluded there is no clinically significant difference in the reduction of positive symptoms of schizophrenia when treated by CBT compared to a non-specialized therapy for adults experiencing auditory hallucinations.

  20. Adapting the Theory of Visual Attention (TVA) to model auditory attention

    DEFF Research Database (Denmark)

    Roberts, Katherine L.; Andersen, Tobias; Kyllingsbæk, Søren

    Mathematical and computational models have provided useful insights into normal and impaired visual attention, but less progress has been made in modelling auditory attention. We are developing a Theory of Auditory Attention (TAA), based on an influential visual model, the Theory of Visual...... Attention (TVA). We report that TVA provides a good fit to auditory data when the stimuli are closely matched to those used in visual studies. In the basic visual TVA task, participants view a brief display of letters and are asked to report either all of the letters (whole report) or a subset of letters (e...... the auditory data, producing good estimates of the rate at which information is encoded (C), the minimum exposure duration required for processing to begin (t0), and the relative attentional weight to targets versus distractors (α). Future work will address the issue of target-distractor confusion, and extend...

  1. Ozonoterapia y electroestimulación en retinosis pigmentaria Ozone therapy and electrical stimulation in pigmentary retinitis

    Directory of Open Access Journals (Sweden)

    Lázaro Joaquín Pérez Aguiar

    2010-06-01

    Full Text Available OBJETIVO: Profundizar en los efectos de la ozonoterapia y electroestimulación sobre la función visual de los pacientes que padecen retinosis pigmentaria. MÉTODOS: Se estudiaron 186 pacientes portadores de retinosis pigmentaria. Fueron agrupados atendiendo a los estadios clínicos de la clasificación cubana (4 grupos. Se aplicó ozonoterapia y electroestimulación, una sesión diaria de cada una durante 14 días. Se realizó un examen oftalmológico antes y después del tratamiento, para la agudeza visual se empleó cartilla de Snellen y para el campo visual cinético tipo Goldman. Los datos estadísticos se analizaron y compararon usando la prueba t de Student. Se consideró p OBJECTIVE: To analyze in depth the effects of ozone therapy and electrical stimulation on the visual function of patients suffering pigmentary retinitis. METHODS: One hundred and eighty six patients carrying pigmentary retinitis were studied. They were grouped according to the clinical staging of the Cuban classification (4 groups. Ozone therapy and electrical stimulations were applied daily for 14 days. An ophthalmologic test before and after the treatment was performed; Snellen´s charter for visual acuity and Goldman-type kinetic visual field. Statistical data were analyzed and compared using Student´s t test. The statistical significance was set at p<0,05. RESULTS: The corrected visual acuity remained the same in the 57 patients grouped in staging 1. Significant changes were observed in the visual field of 16 patients. Regarding the 66 patients in staging 2, corrected visual acuity remained the same in 48 whereas 29 patients experienced significant changes in their visual field. Forty nine patients were included in the staging 3 where corrected visual acuity kept the same value in 38 patients, but very significant changes in the visual field of 27 patients were observed. CONCLUSION: In the Cuban multitherapeutical strategy for the treatment of pigmentary retinitis

  2. How do auditory cortex neurons represent communication sounds?

    Science.gov (United States)

    Gaucher, Quentin; Huetz, Chloé; Gourévitch, Boris; Laudanski, Jonathan; Occelli, Florian; Edeline, Jean-Marc

    2013-11-01

    A major goal in auditory neuroscience is to characterize how communication sounds are represented at the cortical level. The present review aims at investigating the role of auditory cortex in the processing of speech, bird songs and other vocalizations, which all are spectrally and temporally highly structured sounds. Whereas earlier studies have simply looked for neurons exhibiting higher firing rates to particular conspecific vocalizations over their modified, artificially synthesized versions, more recent studies determined the coding capacity of temporal spike patterns, which are prominent in primary and non-primary areas (and also in non-auditory cortical areas). In several cases, this information seems to be correlated with the behavioral performance of human or animal subjects, suggesting that spike-timing based coding strategies might set the foundations of our perceptive abilities. Also, it is now clear that the responses of auditory cortex neurons are highly nonlinear and that their responses to natural stimuli cannot be predicted from their responses to artificial stimuli such as moving ripples and broadband noises. Since auditory cortex neurons cannot follow rapid fluctuations of the vocalizations envelope, they only respond at specific time points during communication sounds, which can serve as temporal markers for integrating the temporal and spectral processing taking place at subcortical relays. Thus, the temporal sparse code of auditory cortex neurons can be considered as a first step for generating high level representations of communication sounds independent of the acoustic characteristic of these sounds. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives". Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Is the auditory sensory memory sensitive to visual information?

    Science.gov (United States)

    Besle, Julien; Fort, Alexandra; Giard, Marie-Hélène

    2005-10-01

    The mismatch negativity (MMN) component of auditory event-related brain potentials can be used as a probe to study the representation of sounds in auditory sensory memory (ASM). Yet it has been shown that an auditory MMN can also be elicited by an illusory auditory deviance induced by visual changes. This suggests that some visual information may be encoded in ASM and is accessible to the auditory MMN process. It is not known, however, whether visual information affects ASM representation for any audiovisual event or whether this phenomenon is limited to specific domains in which strong audiovisual illusions occur. To highlight this issue, we have compared the topographies of MMNs elicited by non-speech audiovisual stimuli deviating from audiovisual standards on the visual, the auditory, or both dimensions. Contrary to what occurs with audiovisual illusions, each unimodal deviant elicited sensory-specific MMNs, and the MMN to audiovisual deviants included both sensory components. The visual MMN was, however, different from a genuine visual MMN obtained in a visual-only control oddball paradigm, suggesting that auditory and visual information interacts before the MMN process occurs. Furthermore, the MMN to audiovisual deviants was significantly different from the sum of the two sensory-specific MMNs, showing that the processes of visual and auditory change detection are not completely independent.

  4. Changes in Properties of Auditory Nerve Synapses following Conductive Hearing Loss.

    Science.gov (United States)

    Zhuang, Xiaowen; Sun, Wei; Xu-Friedman, Matthew A

    2017-01-11

    Auditory activity plays an important role in the development of the auditory system. Decreased activity can result from conductive hearing loss (CHL) associated with otitis media, which may lead to long-term perceptual deficits. The effects of CHL have been mainly studied at later stages of the auditory pathway, but early stages remain less examined. However, changes in early stages could be important because they would affect how information about sounds is conveyed to higher-order areas for further processing and localization. We examined the effects of CHL at auditory nerve synapses onto bushy cells in the mouse anteroventral cochlear nucleus following occlusion of the ear canal. These synapses, called endbulbs of Held, normally show strong depression in voltage-clamp recordings in brain slices. After 1 week of CHL, endbulbs showed even greater depression, reflecting higher release probability. We observed no differences in quantal size between control and occluded mice. We confirmed these observations using mean-variance analysis and the integration method, which also revealed that the number of release sites decreased after occlusion. Consistent with this, synaptic puncta immunopositive for VGLUT1 decreased in area after occlusion. The level of depression and number of release sites both showed recovery after returning to normal conditions. Finally, bushy cells fired fewer action potentials in response to evoked synaptic activity after occlusion, likely because of increased depression and decreased input resistance. These effects appear to reflect a homeostatic, adaptive response of auditory nerve synapses to reduced activity. These effects may have important implications for perceptual changes following CHL. Normal hearing is important to everyday life, but abnormal auditory experience during development can lead to processing disorders. For example, otitis media reduces sound to the ear, which can cause long-lasting deficits in language skills and verbal

  5. Increased Auditory Startle Reflex in Children with Functional Abdominal Pain

    NARCIS (Netherlands)

    Bakker, Mirte J.; Boer, Frits; Benninga, Marc A.; Koelman, Johannes H. T. M.; Tijssen, Marina A. J.

    2010-01-01

    Objective To test the hypothesis that children with abdominal pain-related functional gastrointestinal disorders have a general hypersensitivity for sensory stimuli. Study design Auditory startle reflexes were assessed in 20 children classified according to Rome III classifications of abdominal

  6. Increased Auditory Startle Reflex in Children with Functional Abdominal Pain

    NARCIS (Netherlands)

    Bakker, Mirte J.; Boer, Frits; Benninga, Marc A.; Koelman, Johannes H. T. M.; Tijssen, Marina A. J.

    Objective To test the hypothesis that children with abdominal pain-related functional gastrointestinal disorders have a general hypersensitivity for sensory stimuli. Study design Auditory startle reflexes were assessed in 20 children classified according to Rome III classifications of abdominal

  7. Auditory midbrain processing is differentially modulated by auditory and visual cortices: An auditory fMRI study.

    Science.gov (United States)

    Gao, Patrick P; Zhang, Jevin W; Fan, Shu-Juan; Sanes, Dan H; Wu, Ed X

    2015-12-01

    The cortex contains extensive descending projections, yet the impact of cortical input on brainstem processing remains poorly understood. In the central auditory system, the auditory cortex contains direct and indirect pathways (via brainstem cholinergic cells) to nuclei of the auditory midbrain, called the inferior colliculus (IC). While these projections modulate auditory processing throughout the IC, single neuron recordings have samples from only a small fraction of cells during stimulation of the corticofugal pathway. Furthermore, assessments of cortical feedback have not been extended to sensory modalities other than audition. To address these issues, we devised blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) paradigms to measure the sound-evoked responses throughout the rat IC and investigated the effects of bilateral ablation of either auditory or visual cortices. Auditory cortex ablation increased the gain of IC responses to noise stimuli (primarily in the central nucleus of the IC) and decreased response selectivity to forward species-specific vocalizations (versus temporally reversed ones, most prominently in the external cortex of the IC). In contrast, visual cortex ablation decreased the gain and induced a much smaller effect on response selectivity. The results suggest that auditory cortical projections normally exert a large-scale and net suppressive influence on specific IC subnuclei, while visual cortical projections provide a facilitatory influence. Meanwhile, auditory cortical projections enhance the midbrain response selectivity to species-specific vocalizations. We also probed the role of the indirect cholinergic projections in the auditory system in the descending modulation process by pharmacologically blocking muscarinic cholinergic receptors. This manipulation did not affect the gain of IC responses but significantly reduced the response selectivity to vocalizations. The results imply that auditory cortical

  8. Cortical oscillations in auditory perception and speech: evidence for two temporal windows in human auditory cortex

    Directory of Open Access Journals (Sweden)

    Huan eLuo

    2012-05-01

    Full Text Available Natural sounds, including vocal communication sounds, contain critical information at multiple time scales. Two essential temporal modulation rates in speech have been argued to be in the low gamma band (~20-80 ms duration information and the theta band (~150-300 ms, corresponding to segmental and syllabic modulation rates, respectively. On one hypothesis, auditory cortex implements temporal integration using time constants closely related to these values. The neural correlates of a proposed dual temporal window mechanism in human auditory cortex remain poorly understood. We recorded MEG responses from participants listening to non-speech auditory stimuli with different temporal structures, created by concatenating frequency-modulated segments of varied segment durations. We show that these non-speech stimuli with temporal structure matching speech-relevant scales (~25 ms and ~200 ms elicit reliable phase tracking in the corresponding associated oscillatory frequencies (low gamma and theta bands. In contrast, stimuli with non-matching temporal structure do not. Furthermore, the topography of theta band phase tracking shows rightward lateralization while gamma band phase tracking occurs bilaterally. The results support the hypothesis that there exists multi-time resolution processing in cortex on discontinuous scales and provide evidence for an asymmetric organization of temporal analysis (asymmetrical sampling in time, AST. The data argue for a macroscopic-level neural mechanism underlying multi-time resolution processing: the sliding and resetting of intrinsic temporal windows on privileged time scales.

  9. Plasticity of peripheral auditory frequency sensitivity in Emei music frog.

    Science.gov (United States)

    Zhang, Dian; Cui, Jianguo; Tang, Yezhong

    2012-01-01

    In anurans reproductive behavior is strongly seasonal. During the spring, frogs emerge from hibernation and males vocalize for mating or advertising territories. Female frogs have the ability to evaluate the quality of the males' resources on the basis of these vocalizations. Although studies revealed that central single torus semicircularis neurons in frogs exhibit season plasticity, the plasticity of peripheral auditory sensitivity in frog is unknown. In this study the seasonally plasticity of peripheral auditory sensitivity was test in the Emei music frog Babina daunchina, by comparing thresholds and latencies of auditory brainstem responses (ABRs) evoked by tone pips and clicks in the reproductive and non-reproductive seasons. The results show that both ABR thresholds and latency differ significantly between the reproductive and non-reproductive seasons. The thresholds of tone pip evoked ABRs in the non-reproductive season increased significantly about 10 dB than those in the reproductive season for frequencies from 1 KHz to 6 KHz. ABR latencies to waveform valley values for tone pips for the same frequencies using appropriate threshold stimulus levels are longer than those in the reproductive season for frequencies from 1.5 to 6 KHz range, although from 0.2 to 1.5 KHz range it is shorter in the non-reproductive season. These results demonstrated that peripheral auditory frequency sensitivity exhibits seasonal plasticity changes which may be adaptive to seasonal reproductive behavior in frogs.

  10. Intelligibility of degraded speech and the relationship between symptoms of inattention, hyperactivity/impulsivity and language impairment in children with suspected auditory processing disorder.

    Science.gov (United States)

    Ahmmed, Ansar Uddin

    2017-10-01

    To compare the sensitivity and specificity of Auditory Figure Ground sub-tests of the SCAN-3 battery, using signal to noise ratio (SNR) of +8 dB (AFG+8) and 0 dB (AFG0), in identifying auditory processing disorder (APD). A secondary objective was to evaluate any difference in auditory processing (AP) between children with symptoms of inattention versus combined sub-types of Attention Deficit Hyperactivity Disorder (ADHD). Data from 201 children, aged 6 to 16 years (mean: 10 years 6 months, SD: 2 years 8 months), who were assessed for suspected APD were reviewed retrospectively. The outcomes of the SCAN-3 APD test battery, Swanson Nolan and Pelham-IV parental rating (SNAP-IV) and Children's Communication Checklist-2 (CCC-2) were analysed. AFG0 had a sensitivity of 56.3% and specificity of 100% in identifying children performing poorly in at least two of six SCAN-3 sub-tests or one of the two questionnaires, in contrast to 42.1% and 80% respectively for AFG+8. Impaired AP was mostly associated with symptoms of ADHD and /or language impairment (LI). LI was present in 92.9% of children with ADHD symptoms. Children with symptoms of combined ADHD plus LI performed significantly poorly (p Speech in noise tests using SNR of 0 dB is better than +8 dB in assessing APD. The better FW performance of the inattention ADHD plus LI group can be speculated to be related to known difference in activity in a neural network between different sub-types of ADHD. The findings of the study and existing literature suggest that neural networks connecting the cerebral hemispheres, basal ganglia and cerebellum are involved in APD, ADHD and LI. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Using neuroplasticity-based auditory training to improve verbal memory in schizophrenia.

    Science.gov (United States)

    Fisher, Melissa; Holland, Christine; Merzenich, Michael M; Vinogradov, Sophia

    2009-07-01

    Impaired verbal memory in schizophrenia is a key rate-limiting factor for functional outcome, does not respond to currently available medications, and shows only modest improvement after conventional behavioral remediation. The authors investigated an innovative approach to the remediation of verbal memory in schizophrenia, based on principles derived from the basic neuroscience of learning-induced neuroplasticity. The authors report interim findings in this ongoing study. Fifty-five clinically stable schizophrenia subjects were randomly assigned to either 50 hours of computerized auditory training or a control condition using computer games. Those receiving auditory training engaged in daily computerized exercises that placed implicit, increasing demands on auditory perception through progressively more difficult auditory-verbal working memory and verbal learning tasks. Relative to the control group, subjects who received active training showed significant gains in global cognition, verbal working memory, and verbal learning and memory. They also showed reliable and significant improvement in auditory psychophysical performance; this improvement was significantly correlated with gains in verbal working memory and global cognition. Intensive training in early auditory processes and auditory-verbal learning results in substantial gains in verbal cognitive processes relevant to psychosocial functioning in schizophrenia. These gains may be due to a training method that addresses the early perceptual impairments in the illness, that exploits intact mechanisms of repetitive practice in schizophrenia, and that uses an intensive, adaptive training approach.

  12. Chronic fluoxetine dissociates contextual from auditory fear memory.

    Science.gov (United States)

    Sanders, Jeff; Mayford, Mark

    2016-10-06

    Fluoxetine is a medication used to treat Major Depressive Disorder and other psychiatric conditions. These experiments studied the effects of chronic fluoxetine treatment on the contextual versus auditory fear memory of mice. We found that chronic fluoxetine treatment of adult mice impaired their contextual fear memory, but spared auditory fear memory. Hippocampal perineuronal nets, which are involved in contextual fear memory plasticity, were unaltered by fluoxetine treatment. These data point to a selective inability to form contextual fear memory as a result of fluoxetine treatment, and they suggest that a blunting of hippocampal-mediated aversive memory may be a therapeutic action for this medication. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Reality of auditory verbal hallucinations.

    Science.gov (United States)

    Raij, Tuukka T; Valkonen-Korhonen, Minna; Holi, Matti; Therman, Sebastian; Lehtonen, Johannes; Hari, Riitta

    2009-11-01

    Distortion of the sense of reality, actualized in delusions and hallucinations, is the key feature of psychosis but the underlying neuronal correlates remain largely unknown. We studied 11 highly functioning subjects with schizophrenia or schizoaffective disorder while they rated the reality of auditory verbal hallucinations (AVH) during functional magnetic resonance imaging (fMRI). The subjective reality of AVH correlated strongly and specifically with the hallucination-related activation strength of the inferior frontal gyri (IFG), including the Broca's language region. Furthermore, how real the hallucination that subjects experienced was depended on the hallucination-related coupling between the IFG, the ventral striatum, the auditory cortex, the right posterior temporal lobe, and the cingulate cortex. Our findings suggest that the subjective reality of AVH is related to motor mechanisms of speech comprehension, with contributions from sensory and salience-detection-related brain regions as well as circuitries related to self-monitoring and the experience of agency.

  14. Minimal effects of visual memory training on the auditory performance of adult cochlear implant users

    Science.gov (United States)

    Oba, Sandra I.; Galvin, John J.; Fu, Qian-Jie

    2014-01-01

    Auditory training has been shown to significantly improve cochlear implant (CI) users’ speech and music perception. However, it is unclear whether post-training gains in performance were due to improved auditory perception or to generally improved attention, memory and/or cognitive processing. In this study, speech and music perception, as well as auditory and visual memory were assessed in ten CI users before, during, and after training with a non-auditory task. A visual digit span (VDS) task was used for training, in which subjects recalled sequences of digits presented visually. After the VDS training, VDS performance significantly improved. However, there were no significant improvements for most auditory outcome measures (auditory digit span, phoneme recognition, sentence recognition in noise, digit recognition in noise), except for small (but significant) improvements in vocal emotion recognition and melodic contour identification. Post-training gains were much smaller with the non-auditory VDS training than observed in previous auditory training studies with CI users. The results suggest that post-training gains observed in previous studies were not solely attributable to improved attention or memory, and were more likely due to improved auditory perception. The results also suggest that CI users may require targeted auditory training to improve speech and music perception. PMID:23516087

  15. The assessment of auditory function in CSWS: lessons from long-term outcome.

    Science.gov (United States)

    Metz-Lutz, Marie-Noëlle

    2009-08-01

    In Landau-Kleffner syndrome (LKS), the prominent and often first symptom is auditory verbal agnosia, which may affect nonverbal sounds. It was early suggested that the subsequent decline of speech expression might result from defective auditory analysis of the patient's own speech. Indeed, despite normal hearing levels, the children behave as if they were deaf, and very rapidly speech expression deteriorates and leads to the receptive aphasia typical of LKS. The association of auditory agnosia more or less restricted to speech with severe language decay prompted numerous studies aimed at specifying the defect in auditory processing and its pathophysiology. Long-term follow-up studies have addressed the issue of the outcome of verbal auditory processing and the development of verbal working memory capacities following the deprivation of phonologic input during the critical period of language development. Based on a review of neurophysiologic and neuropsychological studies of auditory and phonologic disorders published these last 20 years, we discuss the association of verbal agnosia and speech production decay, and try to explain the phonologic working memory deficit in the late outcome of LKS within the Hickok and Poeppel dual-stream model of speech processing.

  16. Left hemispheric dominance during auditory processing in a noisy environment

    Directory of Open Access Journals (Sweden)

    Ross Bernhard

    2007-11-01

    Full Text Available Abstract Background In daily life, we are exposed to different sound inputs simultaneously. During neural encoding in the auditory pathway, neural activities elicited by these different sounds interact with each other. In the present study, we investigated neural interactions elicited by masker and amplitude-modulated test stimulus in primary and non-primary human auditory cortex during ipsi-lateral and contra-lateral masking by means of magnetoencephalography (MEG. Results We observed significant decrements of auditory evoked responses and a significant inter-hemispheric difference for the N1m response during both ipsi- and contra-lateral masking. Conclusion The decrements of auditory evoked neural activities during simultaneous masking can be explained by neural interactions evoked by masker and test stimulus in peripheral and central auditory systems. The inter-hemispheric differences of N1m decrements during ipsi- and contra-lateral masking reflect a basic hemispheric specialization contributing to the processing of complex auditory stimuli such as speech signals in noisy environments.

  17. (A)musicality in Williams syndrome: examining relationships among auditory perception, musical skill, and emotional responsiveness to music.

    Science.gov (United States)

    Lense, Miriam D; Shivers, Carolyn M; Dykens, Elisabeth M

    2013-01-01

    Williams syndrome (WS), a genetic, neurodevelopmental disorder, is of keen interest to music cognition researchers because of its characteristic auditory sensitivities and emotional responsiveness to music. However, actual musical perception and production abilities are more variable. We examined musicality in WS through the lens of amusia and explored how their musical perception abilities related to their auditory sensitivities, musical production skills, and emotional responsiveness to music. In our sample of 73 adolescents and adults with WS, 11% met criteria for amusia, which is higher than the 4% prevalence rate reported in the typically developing (TD) population. Amusia was not related to auditory sensitivities but was related to musical training. Performance on the amusia measure strongly predicted musical skill but not emotional responsiveness to music, which was better predicted by general auditory sensitivities. This study represents the first time amusia has been examined in a population with a known neurodevelopmental genetic disorder with a range of cognitive abilities. Results have implications for the relationships across different levels of auditory processing, musical skill development, and emotional responsiveness to music, as well as the understanding of gene-brain-behavior relationships in individuals with WS and TD individuals with and without amusia.

  18. Development of auditory sensory memory from 2 to 6 years: an MMN study.

    Science.gov (United States)

    Glass, Elisabeth; Sachse, Steffi; von Suchodoletz, Waldemar

    2008-08-01

    Short-term storage of auditory information is thought to be a precondition for cognitive development, and deficits in short-term memory are believed to underlie learning disabilities and specific language disorders. We examined the development of the duration of auditory sensory memory in normally developing children between the ages of 2 and 6 years. To probe the lifetime of auditory sensory memory we elicited the mismatch negativity (MMN), a component of the late auditory evoked potential, with tone stimuli of two different frequencies presented with various interstimulus intervals between 500 and 5,000 ms. Our findings suggest that memory traces for tone characteristics have a duration of 1-2 s in 2- and 3-year-old children, more than 2 s in 4-year-olds and 3-5 s in 6-year-olds. The results provide insights into the maturational processes involved in auditory sensory memory during the sensitive period of cognitive development.

  19. Further delineation of FKBP14-related Ehlers-Danlos syndrome: A patient with early vascular complications and non-progressive kyphoscoliosis, and literature review.

    Science.gov (United States)

    Dordoni, Chiara; Ciaccio, Claudia; Venturini, Marina; Calzavara-Pinton, Piergiacomo; Ritelli, Marco; Colombi, Marina

    2016-08-01

    FKBP14-related Ehlers-Danlos syndrome (EDS) is an extremely rare recessive connective tissue disorder described for the first time in 2012 by Baumann and coworkers. The causal gene, FKBP14, encodes a member of the F506-binding family of peptidyl-prolyl cis-trans isomerases. The paucity of patients described so far makes this disorder poorly defined at clinical level. Here, we report an additional pediatric patient, who is compound heterozygous for a recurrent and a novel FKBP14 mutation, and compare his phenotype with those available in literature. This evaluation confirms that kyphoscoliosis (either progressive or non-progressive), myopathy, joint hypermobility, and congenital hearing loss (sensorineural, conductive, or mixed) are the typical features of the syndrome. Since the patient showed a severe cardiovascular event in childhood and atlantoaxial instability, this report expands the phenotype of the disorder and the allelic repertoire of FKBP14. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Transcranial direct current stimulation as a treatment for auditory hallucinations

    NARCIS (Netherlands)

    Koops, Sanne; van den Brink, Hilde; Sommer, Iris E C

    2015-01-01

    Auditory hallucinations (AH) are a symptom of several psychiatric disorders, such as schizophrenia. In a significant minority of patients, AH are resistant to antipsychotic medication. Alternative treatment options for this medication resistant group are scarce and most of them focus on coping with

  1. Non-Gaussian diffusion in static disordered media

    Science.gov (United States)

    Luo, Liang; Yi, Ming

    2018-04-01

    Non-Gaussian diffusion is commonly considered as a result of fluctuating diffusivity, which is correlated in time or in space or both. In this work, we investigate the non-Gaussian diffusion in static disordered media via a quenched trap model, where the diffusivity is spatially correlated. Several unique effects due to quenched disorder are reported. We analytically estimate the diffusion coefficient Ddis and its fluctuation over samples of finite size. We show a mechanism of population splitting in the non-Gaussian diffusion. It results in a sharp peak in the distribution of displacement P (x ,t ) around x =0 , that has frequently been observed in experiments. We examine the fidelity of the coarse-grained diffusion map, which is reconstructed from particle trajectories. Finally, we propose a procedure to estimate the correlation length in static disordered environments, where the information stored in the sample-to-sample fluctuation has been utilized.

  2. Auditory reafferences: the influence of real-time feedback on movement control.

    Science.gov (United States)

    Kennel, Christian; Streese, Lukas; Pizzera, Alexandra; Justen, Christoph; Hohmann, Tanja; Raab, Markus

    2015-01-01

    Auditory reafferences are real-time auditory products created by a person's own movements. Whereas the interdependency of action and perception is generally well studied, the auditory feedback channel and the influence of perceptual processes during movement execution remain largely unconsidered. We argue that movements have a rhythmic character that is closely connected to sound, making it possible to manipulate auditory reafferences online to understand their role in motor control. We examined if step sounds, occurring as a by-product of running, have an influence on the performance of a complex movement task. Twenty participants completed a hurdling task in three auditory feedback conditions: a control condition with normal auditory feedback, a white noise condition in which sound was masked, and a delayed auditory feedback condition. Overall time and kinematic data were collected. Results show that delayed auditory feedback led to a significantly slower overall time and changed kinematic parameters. Our findings complement previous investigations in a natural movement situation with non-artificial auditory cues. Our results support the existing theoretical understanding of action-perception coupling and hold potential for applied work, where naturally occurring movement sounds can be implemented in the motor learning processes.

  3. Effect of Auditory Constraints on Motor Learning Depends on Stage of Recovery Post Stroke

    Directory of Open Access Journals (Sweden)

    Viswanath eAluru

    2014-06-01

    Full Text Available In order to develop evidence-based rehabilitation protocols post stroke, one must first reconcile the vast heterogeneity in the post-stroke population and develop protocols to facilitate motor learning in the various subgroups. The main purpose of this study is to show that auditory constraints interact with the stage of recovery post stroke to influence motor learning. We characterized the stages of upper limb recovery using task-based kinematic measures in twenty subjects with chronic hemiparesis, and used a bimanual wrist extension task using a custom-made wrist trainer to facilitate learning of wrist extension in the paretic hand under four auditory conditions: 1 without auditory cueing; 2 to non-musical happy sounds; 3 to self-selected music; and 4 to a metronome beat set at a comfortable tempo. Two bimanual trials (15 s each were followed by one unimanual trial with the paretic hand over six cycles under each condition. Clinical metrics, wrist and arm kinematics and electromyographic activity were recorded. Hierarchical cluster analysis with the Mahalanobis metric based on baseline speed and extent of wrist movement stratified subjects into three distinct groups which reflected their stage of recovery: spastic paresis, spastic co-contraction, and minimal paresis. In spastic paresis, the metronome beat increased wrist extension, but also increased muscle co-activation across the wrist. In contrast, in spastic co-contraction, no auditory stimulation increased wrist extension and reduced co-activation. In minimal paresis, wrist extension did not improve under any condition. The results suggest that auditory task constraints interact with stage of recovery during motor learning after stroke, perhaps due to recruitment of distinct neural substrates over the course of recovery. The findings advance our understanding of the mechanisms of progression of motor recovery and lay the foundation for personalized treatment algorithms post stroke.

  4. Brain bases for auditory stimulus-driven figure-ground segregation.

    Science.gov (United States)

    Teki, Sundeep; Chait, Maria; Kumar, Sukhbinder; von Kriegstein, Katharina; Griffiths, Timothy D

    2011-01-05

    Auditory figure-ground segregation, listeners' ability to selectively hear out a sound of interest from a background of competing sounds, is a fundamental aspect of scene analysis. In contrast to the disordered acoustic environment we experience during everyday listening, most studies of auditory segregation have used relatively simple, temporally regular signals. We developed a new figure-ground stimulus that incorporates stochastic variation of the figure and background that captures the rich spectrotemporal complexity of natural acoustic scenes. Figure and background signals overlap in spectrotemporal space, but vary in the statistics of fluctuation, such that the only way to extract the figure is by integrating the patterns over time and frequency. Our behavioral results demonstrate that human listeners are remarkably sensitive to the appearance of such figures. In a functional magnetic resonance imaging experiment, aimed at investigating preattentive, stimulus-driven, auditory segregation mechanisms, naive subjects listened to these stimuli while performing an irrelevant task. Results demonstrate significant activations in the intraparietal sulcus (IPS) and the superior temporal sulcus related to bottom-up, stimulus-driven figure-ground decomposition. We did not observe any significant activation in the primary auditory cortex. Our results support a role for automatic, bottom-up mechanisms in the IPS in mediating stimulus-driven, auditory figure-ground segregation, which is consistent with accumulating evidence implicating the IPS in structuring sensory input and perceptual organization.

  5. (Amusicality in Williams syndrome: Examining relationships among auditory perception, musical skill, and emotional responsiveness to music

    Directory of Open Access Journals (Sweden)

    Miriam eLense

    2013-08-01

    Full Text Available Williams syndrome (WS, a genetic, neurodevelopmental disorder, is of keen interest to music cognition researchers because of its characteristic auditory sensitivities and emotional responsiveness to music. However, actual musical perception and production abilities are more variable. We examined musicality in WS through the lens of amusia and explored how their musical perception abilities related to their auditory sensitivities, musical production skills, and emotional responsiveness to music. In our sample of 73 adolescents and adults with WS, 11% met criteria for amusia, which is higher than the 4% prevalence rate reported in the typically developing population. Amusia was not related to auditory sensitivities but was related to musical training. Performance on the amusia measure strongly predicted musical skill but not emotional responsiveness to music, which was better predicted by general auditory sensitivities. This study represents the first time amusia has been examined in a population with a known neurodevelopmental genetic disorder with a range of cognitive abilities. Results have implications for the relationships across different levels of auditory processing, musical skill development, and emotional responsiveness to music, as well as the understanding of gene-brain-behavior relationships in individuals with WS and typically developing individuals with and without amusia.

  6. Transient and steady-state auditory gamma-band responses in first-degree relatives of people with autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Rojas Donald C

    2011-07-01

    Full Text Available Abstract Background Stimulus-related γ-band oscillations, which may be related to perceptual binding, are reduced in people with autism spectrum disorders (ASD. The purpose of this study was to examine auditory transient and steady-state γ-band findings in first-degree relatives of people with ASD to assess the potential familiality of these findings in ASD. Methods Magnetoencephalography (MEG recordings in 21 parents who had a child with an autism spectrum disorder (pASD and 20 healthy adult control subjects (HC were obtained. Gamma-band phase locking factor (PLF, and evoked and induced power to 32, 40 and 48 Hz amplitude-modulated sounds were measured for transient and steady-state responses. Participants were also tested on a number of behavioral and cognitive assessments related to the broad autism phenotype (BAP. Results Reliable group differences were seen primarily for steady-state responses. In the left hemisphere, pASD subjects exhibited lower phase-locked steady-state power in all three conditions. Total γ-band power, including the non-phase-locked component, was also reduced in the pASD group. In addition, pASD subjects had significantly lower PLF than the HC group. Correlations were seen between MEG measures and BAP measures. Conclusions The reduction in steady-state γ-band responses in the pASD group is consistent with previous results for children with ASD. Steady-state responses may be more sensitive than transient responses to phase-locking errors in ASD. Together with the lower PLF and phase-locked power in first-degree relatives, correlations between γ-band measures and behavioral measures relevant to the BAP highlight the potential of γ-band deficits as a potential new autism endophenotype.

  7. Hierarchical auditory processing directed rostrally along the monkey's supratemporal plane.

    Science.gov (United States)

    Kikuchi, Yukiko; Horwitz, Barry; Mishkin, Mortimer

    2010-09-29

    Connectional anatomical evidence suggests that the auditory core, containing the tonotopic areas A1, R, and RT, constitutes the first stage of auditory cortical processing, with feedforward projections from core outward, first to the surrounding auditory belt and then to the parabelt. Connectional evidence also raises the possibility that the core itself is serially organized, with feedforward projections from A1 to R and with additional projections, although of unknown feed direction, from R to RT. We hypothesized that area RT together with more rostral parts of the supratemporal plane (rSTP) form the anterior extension of a rostrally directed stimulus quality processing stream originating in the auditory core area A1. Here, we analyzed auditory responses of single neurons in three different sectors distributed caudorostrally along the supratemporal plane (STP): sector I, mainly area A1; sector II, mainly area RT; and sector III, principally RTp (the rostrotemporal polar area), including cortex located 3 mm from the temporal tip. Mean onset latency of excitation responses and stimulus selectivity to monkey calls and other sounds, both simple and complex, increased progressively from sector I to III. Also, whereas cells in sector I responded with significantly higher firing rates to the "other" sounds than to monkey calls, those in sectors II and III responded at the same rate to both stimulus types. The pattern of results supports the proposal that the STP contains a rostrally directed, hierarchically organized auditory processing stream, with gradually increasing stimulus selectivity, and that this stream extends from the primary auditory area to the temporal pole.

  8. [Communication and auditory behavior obtained by auditory evoked potentials in mammals, birds, amphibians, and reptiles].

    Science.gov (United States)

    Arch-Tirado, Emilio; Collado-Corona, Miguel Angel; Morales-Martínez, José de Jesús

    2004-01-01

    amphibians, Frog catesbiana (frog bull, 30 animals); reptiles, Sceloporus torcuatus (common small lizard, 22 animals); birds: Columba livia (common dove, 20 animals), and mammals, Cavia porcellus, (guinea pig, 20 animals). With regard to lodging, all animals were maintained at the Institute of Human Communication Disorders, were fed with special food for each species, and had water available ad libitum. Regarding procedure, for carrying out analysis of auditory evoked potentials of brain stem SPL amphibians, birds, and mammals were anesthetized with ketamine 20, 25, and 50 mg/kg, by injection. Reptiles were anesthetized by freezing (6 degrees C). Study subjects had needle electrodes placed in an imaginary line on the half sagittal line between both ears and eyes, behind right ear, and behind left ear. Stimulation was carried out inside a no noise site by means of a horn in free field. The sign was filtered at between 100 and 3,000 Hz and analyzed in a computer for provoked potentials (Racia APE 78). In data shown by amphibians, wave-evoked responses showed greater latency than those of the other species. In reptiles, latency was observed as reduced in comparison with amphibians. In the case of birds, lesser latency values were observed, while in the case of guinea pigs latencies were greater than those of doves but they were stimulated by 10 dB, which demonstrated best auditory threshold in the four studied species. Last, it was corroborated that as the auditory threshold of each species it descends conforms to it advances in the phylogenetic scale. Beginning with these registrations, we care able to say that response for evoked brain stem potential showed to be more complex and lesser values of absolute latency as we advance along the phylogenetic scale; thus, the opposing auditory threshold is better agreement with regard to the phylogenetic scale among studied species. These data indicated to us that seeking of auditory information is more complex in more

  9. [Selective retina therapy in central serous chorioretinopathy with detachment of the pigmentary epithelium].

    Science.gov (United States)

    Klatt, C; Elsner, H; Pörksen, E; Brinkmann, R; Bunse, A; Birngruber, R; Roider, J

    2006-10-01

    Selective Retina Therapy (SRT) is a new and innovative laser treatment modality that selectively treats the retinal pigmentary epithelium while sparing the photoreceptors. This therapeutic concept appears to be particularly suitable for treating patients with acute or chronic central serous chorioretinopathy (CSC). We present preliminary results obtained in five patients who had CSC associated with pigmentary epithelium detachment (PED) and serous subretinal fluid (SRF) and who were treated with SRT. This case series was made up of five male patients (mean age 47 years) with chronic CSC and SRF resulting from PED. Examinations performed before and at 1 month and 3 months after the treatment were: BCVA, FLA, OCT (Zeiss OCT III). For SRT, confluent treatment of the PED (area of leakage) was carried out using a pulsed frequency-doubled, Q-switched Nd-YLF prototype laser (lambda=527 nm, t= 1.7 s, 100 Hz, energy = 150-250 J). Best corrected visual acuity at baseline was 0.53, while after 4 weeks it was 0.56 and after 12 weeks, 0.5. At baseline leakage was seen at the PED on fluorescein angiography in all patients. After 4 weeks leakage activity was no longer noted on angiography in 4 of 5 patients. OCT at baseline showed SRF at the edge of the PED in all patients, but in 4 of the 5 patients this was no longer detectable after 4 weeks. SRT is a safe and effective treatment for patients with CSC in which PED has caused SRF. Not a single case of rip syndrome was observed in this study, even though the PED was treated confluently. Since SRT spares the photoreceptors it is particularly suitable for the treatment of CSC, especially when the origin of leakage is located close to the fovea. The results indicate that SRT leads to reconstruction of the outer blood-retina barrier.

  10. Intelligence and P3 Components of the Event-Related Potential Elicited during an Auditory Discrimination Task with Masking

    Science.gov (United States)

    De Pascalis, V.; Varriale, V.; Matteoli, A.

    2008-01-01

    The relationship between fluid intelligence (indexed by scores on Raven Progressive Matrices) and auditory discrimination ability was examined by recording event-related potentials from 48 women during the performance of an auditory oddball task with backward masking. High ability (HA) subjects exhibited shorter response times, greater response…

  11. Dichotic auditory-verbal memory in adults with cerebro-vascular accident

    Directory of Open Access Journals (Sweden)

    Samaneh Yekta

    2014-01-01

    Full Text Available Background and Aim: Cerebrovascular accident is a neurological disorder involves central nervous system. Studies have shown that it affects the outputs of behavioral auditory tests such as dichotic auditory verbal memory test. The purpose of this study was to compare this memory test results between patients with cerebrovascular accident and normal subjects.Methods: This cross-sectional study was conducted on 20 patients with cerebrovascular accident aged 50-70 years and 20 controls matched for age and gender in Emam Khomeini Hospital, Tehran, Iran. Dichotic auditory verbal memory test was performed on each subject.Results: The mean score in the two groups was significantly different (p<0.0001. The results indicated that the right-ear score was significantly greater than the left-ear score in normal subjects (p<0.0001 and in patients with right hemisphere lesion (p<0.0001. The right-ear and left-ear scores were not significantly different in patients with left hemisphere lesion (p=0.0860.Conclusion: Among other methods, Dichotic auditory verbal memory test is a beneficial test in assessing the central auditory nervous system of patients with cerebrovascular accident. It seems that it is sensitive to the damages occur following temporal lobe strokes.

  12. The E3 ligase Ubr3 regulates Usher syndrome and MYH9 disorder proteins in the auditory organs of Drosophila and mammals

    Science.gov (United States)

    Li, Tongchao; Giagtzoglou, Nikolaos; Eberl, Daniel F; Jaiswal, Sonal Nagarkar; Cai, Tiantian; Godt, Dorothea; Groves, Andrew K; Bellen, Hugo J

    2016-01-01

    Myosins play essential roles in the development and function of auditory organs and multiple myosin genes are associated with hereditary forms of deafness. Using a forward genetic screen in Drosophila, we identified an E3 ligase, Ubr3, as an essential gene for auditory organ development. Ubr3 negatively regulates the mono-ubiquitination of non-muscle Myosin II, a protein associated with hearing loss in humans. The mono-ubiquitination of Myosin II promotes its physical interaction with Myosin VIIa, a protein responsible for Usher syndrome type IB. We show that ubr3 mutants phenocopy pathogenic variants of Myosin II and that Ubr3 interacts genetically and physically with three Usher syndrome proteins. The interactions between Myosin VIIa and Myosin IIa are conserved in the mammalian cochlea and in human retinal pigment epithelium cells. Our work reveals a novel mechanism that regulates protein complexes affected in two forms of syndromic deafness and suggests a molecular function for Myosin IIa in auditory organs. DOI: http://dx.doi.org/10.7554/eLife.15258.001 PMID:27331610

  13. Plasticity of peripheral auditory frequency sensitivity in Emei music frog.

    Directory of Open Access Journals (Sweden)

    Dian Zhang

    Full Text Available In anurans reproductive behavior is strongly seasonal. During the spring, frogs emerge from hibernation and males vocalize for mating or advertising territories. Female frogs have the ability to evaluate the quality of the males' resources on the basis of these vocalizations. Although studies revealed that central single torus semicircularis neurons in frogs exhibit season plasticity, the plasticity of peripheral auditory sensitivity in frog is unknown. In this study the seasonally plasticity of peripheral auditory sensitivity was test in the Emei music frog Babina daunchina, by comparing thresholds and latencies of auditory brainstem responses (ABRs evoked by tone pips and clicks in the reproductive and non-reproductive seasons. The results show that both ABR thresholds and latency differ significantly between the reproductive and non-reproductive seasons. The thresholds of tone pip evoked ABRs in the non-reproductive season increased significantly about 10 dB than those in the reproductive season for frequencies from 1 KHz to 6 KHz. ABR latencies to waveform valley values for tone pips for the same frequencies using appropriate threshold stimulus levels are longer than those in the reproductive season for frequencies from 1.5 to 6 KHz range, although from 0.2 to 1.5 KHz range it is shorter in the non-reproductive season. These results demonstrated that peripheral auditory frequency sensitivity exhibits seasonal plasticity changes which may be adaptive to seasonal reproductive behavior in frogs.

  14. Leftward lateralization of auditory cortex underlies holistic sound perception in Williams syndrome.

    Science.gov (United States)

    Wengenroth, Martina; Blatow, Maria; Bendszus, Martin; Schneider, Peter

    2010-08-23

    Individuals with the rare genetic disorder Williams-Beuren syndrome (WS) are known for their characteristic auditory phenotype including strong affinity to music and sounds. In this work we attempted to pinpoint a neural substrate for the characteristic musicality in WS individuals by studying the structure-function relationship of their auditory cortex. Since WS subjects had only minor musical training due to psychomotor constraints we hypothesized that any changes compared to the control group would reflect the contribution of genetic factors to auditory processing and musicality. Using psychoacoustics, magnetoencephalography and magnetic resonance imaging, we show that WS individuals exhibit extreme and almost exclusive holistic sound perception, which stands in marked contrast to the even distribution of this trait in the general population. Functionally, this was reflected by increased amplitudes of left auditory evoked fields. On the structural level, volume of the left auditory cortex was 2.2-fold increased in WS subjects as compared to control subjects. Equivalent volumes of the auditory cortex have been previously reported for professional musicians. There has been an ongoing debate in the neuroscience community as to whether increased gray matter of the auditory cortex in musicians is attributable to the amount of training or innate disposition. In this study musical education of WS subjects was negligible and control subjects were carefully matched for this parameter. Therefore our results not only unravel the neural substrate for this particular auditory phenotype, but in addition propose WS as a unique genetic model for training-independent auditory system properties.

  15. Leftward lateralization of auditory cortex underlies holistic sound perception in Williams syndrome.

    Directory of Open Access Journals (Sweden)

    Martina Wengenroth

    Full Text Available BACKGROUND: Individuals with the rare genetic disorder Williams-Beuren syndrome (WS are known for their characteristic auditory phenotype including strong affinity to music and sounds. In this work we attempted to pinpoint a neural substrate for the characteristic musicality in WS individuals by studying the structure-function relationship of their auditory cortex. Since WS subjects had only minor musical training due to psychomotor constraints we hypothesized that any changes compared to the control group would reflect the contribution of genetic factors to auditory processing and musicality. METHODOLOGY/PRINCIPAL FINDINGS: Using psychoacoustics, magnetoencephalography and magnetic resonance imaging, we show that WS individuals exhibit extreme and almost exclusive holistic sound perception, which stands in marked contrast to the even distribution of this trait in the general population. Functionally, this was reflected by increased amplitudes of left auditory evoked fields. On the structural level, volume of the left auditory cortex was 2.2-fold increased in WS subjects as compared to control subjects. Equivalent volumes of the auditory cortex have been previously reported for professional musicians. CONCLUSIONS/SIGNIFICANCE: There has been an ongoing debate in the neuroscience community as to whether increased gray matter of the auditory cortex in musicians is attributable to the amount of training or innate disposition. In this study musical education of WS subjects was negligible and control subjects were carefully matched for this parameter. Therefore our results not only unravel the neural substrate for this particular auditory phenotype, but in addition propose WS as a unique genetic model for training-independent auditory system properties.

  16. Auditory Association Cortex Lesions Impair Auditory Short-Term Memory in Monkeys

    Science.gov (United States)

    Colombo, Michael; D'Amato, Michael R.; Rodman, Hillary R.; Gross, Charles G.

    1990-01-01

    Monkeys that were trained to perform auditory and visual short-term memory tasks (delayed matching-to-sample) received lesions of the auditory association cortex in the superior temporal gyrus. Although visual memory was completely unaffected by the lesions, auditory memory was severely impaired. Despite this impairment, all monkeys could discriminate sounds closer in frequency than those used in the auditory memory task. This result suggests that the superior temporal cortex plays a role in auditory processing and retention similar to the role the inferior temporal cortex plays in visual processing and retention.

  17. Auditory memory for temporal characteristics of sound.

    Science.gov (United States)

    Zokoll, Melanie A; Klump, Georg M; Langemann, Ulrike

    2008-05-01

    This study evaluates auditory memory for variations in the rate of sinusoidal amplitude modulation (SAM) of noise bursts in the European starling (Sturnus vulgaris). To estimate the extent of the starling's auditory short-term memory store, a delayed non-matching-to-sample paradigm was applied. The birds were trained to discriminate between a series of identical "sample stimuli" and a single "test stimulus". The birds classified SAM rates of sample and test stimuli as being either the same or different. Memory performance of the birds was measured as the percentage of correct classifications. Auditory memory persistence time was estimated as a function of the delay between sample and test stimuli. Memory performance was significantly affected by the delay between sample and test and by the number of sample stimuli presented before the test stimulus, but was not affected by the difference in SAM rate between sample and test stimuli. The individuals' auditory memory persistence times varied between 2 and 13 s. The starlings' auditory memory persistence in the present study for signals varying in the temporal domain was significantly shorter compared to that of a previous study (Zokoll et al. in J Acoust Soc Am 121:2842, 2007) applying tonal stimuli varying in the spectral domain.

  18. Maturation of auditory neural processes in autism spectrum disorder — A longitudinal MEG study

    Directory of Open Access Journals (Sweden)

    Russell G. Port

    2016-01-01

    Conclusions: Children with ASD showed perturbed auditory cortex neural activity, as evidenced by M100 latency delays as well as reduced transient gamma-band activity. Despite evidence for maturation of these responses in ASD, the neural abnormalities in ASD persisted across time. Of note, data from the five children whom demonstrated “optimal outcome” qualitatively suggest that such clinical improvements may be associated with auditory brain responses intermediate between TD and ASD. These “optimal outcome” related results are not statistically significant though, likely due to the low sample size of this cohort, and to be expected as a result of the relatively low proportion of “optimal outcome” in the ASD population. Thus, further investigations with larger cohorts are needed to determine if the above auditory response phenotypes have prognostic utility, predictive of clinical outcome.

  19. Auditory and Visual Memories in PTSD Patients Targeted with Eye Movements and Counting: The Effect of Modality-Specific Loading of Working Memory

    Directory of Open Access Journals (Sweden)

    Suzy J. M. A. Matthijssen

    2017-11-01

    Full Text Available Introduction: Eye movement desensitization and reprocessing (EMDR therapy is an evidence-based treatment for post-traumatic stress disorder (PTSD. A key element of this therapy is simultaneously recalling an emotionally disturbing memory and performing a dual task that loads working memory. Memories targeted with this therapy are mainly visual, though there is some evidence that auditory memories can also be targeted.Objective: The present study tested whether auditory memories can be targeted with EMDR in PTSD patients. A second objective was to test whether taxing the patient (performing a dual task while recalling a memory in a modality specific way (auditory demanding for auditory memories and visually demanding for visual memories was more effective in reducing the emotionality experienced than taxing in cross-modality.Methods: Thirty-six patients diagnosed with PTSD were asked to recall two disturbing memories, one mainly visual, the other one mainly auditory. They rated the emotionality of the memories before being exposed to any condition. Both memories were then recalled under three alternating conditions [visual taxation, auditory taxation, and a control condition (CC, which comprised staring a non-moving dot] – counterbalanced in order – and patients rerated emotionality after each condition.Results: All three conditions were equally effective in reducing the emotionality of the auditory memory. Auditory loading was more effective in reducing the emotionality in the visual intrusion than the CC, but did not differ from the visual load.Conclusion: Auditory and visual aversive memories were less emotional after working memory taxation (WMT. This has some clinical implications for EMDR therapy, where mainly visual intrusions are targeted. In this study, there was no benefit of modality specificity. Further fundamental research should be conducted to specify the best protocol for WMT.

  20. Auditory and Visual Memories in PTSD Patients Targeted with Eye Movements and Counting: The Effect of Modality-Specific Loading of Working Memory.

    Science.gov (United States)

    Matthijssen, Suzy J M A; Verhoeven, Liselotte C M; van den Hout, Marcel A; Heitland, Ivo

    2017-01-01

    Introduction: Eye movement desensitization and reprocessing (EMDR) therapy is an evidence-based treatment for post-traumatic stress disorder (PTSD). A key element of this therapy is simultaneously recalling an emotionally disturbing memory and performing a dual task that loads working memory. Memories targeted with this therapy are mainly visual, though there is some evidence that auditory memories can also be targeted. Objective: The present study tested whether auditory memories can be targeted with EMDR in PTSD patients. A second objective was to test whether taxing the patient (performing a dual task while recalling a memory) in a modality specific way (auditory demanding for auditory memories and visually demanding for visual memories) was more effective in reducing the emotionality experienced than taxing in cross-modality. Methods: Thirty-six patients diagnosed with PTSD were asked to recall two disturbing memories, one mainly visual, the other one mainly auditory. They rated the emotionality of the memories before being exposed to any condition. Both memories were then recalled under three alternating conditions [visual taxation, auditory taxation, and a control condition (CC), which comprised staring a non-moving dot] - counterbalanced in order - and patients rerated emotionality after each condition. Results: All three conditions were equally effective in reducing the emotionality of the auditory memory. Auditory loading was more effective in reducing the emotionality in the visual intrusion than the CC, but did not differ from the visual load. Conclusion: Auditory and visual aversive memories were less emotional after working memory taxation (WMT). This has some clinical implications for EMDR therapy, where mainly visual intrusions are targeted. In this study, there was no benefit of modality specificity. Further fundamental research should be conducted to specify the best protocol for WMT.

  1. Musical metaphors: evidence for a spatial grounding of non-literal sentences describing auditory events.

    Science.gov (United States)

    Wolter, Sibylla; Dudschig, Carolin; de la Vega, Irmgard; Kaup, Barbara

    2015-03-01

    This study investigated whether the spatial terms high and low, when used in sentence contexts implying a non-literal interpretation, trigger similar spatial associations as would have been expected from the literal meaning of the words. In three experiments, participants read sentences describing either a high or a low auditory event (e.g., The soprano sings a high aria vs. The pianist plays a low note). In all Experiments, participants were asked to judge (yes/no) whether the sentences were meaningful by means of up/down (Experiments 1 and 2) or left/right (Experiment 3) key press responses. Contrary to previous studies reporting that metaphorical language understanding differs from literal language understanding with regard to simulation effects, the results show compatibility effects between sentence implied pitch height and response location. The results are in line with grounded models of language comprehension proposing that sensory motor experiences are being elicited when processing literal as well as non-literal sentences. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Synchronized Progression of Prestin Expression and Auditory Brainstem Response during Postnatal Development in Rats

    Directory of Open Access Journals (Sweden)

    Jianfeng Hang

    2016-01-01

    Full Text Available Prestin is the motor protein expressed in the cochlear outer hair cells (OHCs of mammalian inner ear. The electromotility of OHCs driven by prestin is responsible for the cochlear amplification which is required for normal hearing in adult animals. Postnatal expression of prestin and activity of OHCs may contribute to the maturation of hearing in rodents. However, the temporal and spatial expression of prestin in cochlea during the development is not well characterized. In the present study, we examined the expression and function of prestin from the OHCs in apical, middle, and basal turns of the cochleae of postnatal rats. Prestin first appeared at postnatal day 6 (P6 for basal turn, P7 in middle turn, and P9 for apical turn of cochlea. The expression level increased progressively over the next few days and by P14 reached the mature level for all three segments. By comparison with the time course of the development of auditory brainstem response for different frequencies, our data reveal that prestin expression synchronized with the hearing development. The present study suggests that the onset time of hearing may require the expression of prestin and is determined by the mature function of OHCs.

  3. Auditory short-term memory in the primate auditory cortex.

    Science.gov (United States)

    Scott, Brian H; Mishkin, Mortimer

    2016-06-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ׳working memory' bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ׳match' stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. This article is part of a Special Issue entitled SI: Auditory working memory. Published by Elsevier B.V.

  4. Usher syndrome in four siblings from a consanguineous family of Pakistani origin.

    Science.gov (United States)

    Trop, I; Schloss, M D; Polomeno, R; Der Kaloustian, V

    1995-04-01

    Usher syndrome is a heterogeneous group of disorders of autosomal recessive inheritance characterized by retinitis pigmentosa and congenital sensorineural hearing loss. Two types are accepted clinically: type I is associated with profound congenital deafness with progressive pigmentary retinopathy and total loss of vestibular function. Type II is a milder form, with moderate-to-profound hearing loss and a milder form of retinitis pigmentosa. Vestibular function is preserved. A total of five loci have been identified as accounting for the two distinct phenotypic presentations. We describe a consanguineous family of Pakistani origin whose four children all are affected with Usher syndrome type I. DNA analysis showed non-linkage to any of the loci already identified as tightly linked to the Usher syndrome type I.

  5. Primate Auditory Recognition Memory Performance Varies With Sound Type

    OpenAIRE

    Chi-Wing, Ng; Bethany, Plakke; Amy, Poremba

    2009-01-01

    Neural correlates of auditory processing, including for species-specific vocalizations that convey biological and ethological significance (e.g. social status, kinship, environment),have been identified in a wide variety of areas including the temporal and frontal cortices. However, few studies elucidate how non-human primates interact with these vocalization signals when they are challenged by tasks requiring auditory discrimination, recognition, and/or memory. The present study employs a de...

  6. The usefulness of three-dimensional helical CT for the detection of abnormalities of the auditory ossicles

    International Nuclear Information System (INIS)

    Gong, Honghan; Hiraishi, Kumiko; Uesugi, Yasuo; Shimizu, Tadafumi; Narabayashi, Isamu

    1996-01-01

    To evaluate the usefulness of three-dimensional (3D) helical CT for the detection of abnormalities of the auditory ossicles, 3D helical CT of the middle ear was performed in seven patients with hearing disorder. It revealed that 4 patients had congenital deficiency of the auditory ossicles, 2 patients with chronic otitis media had shortening of the incus and one patient with head injury had doubtful fracture of the incus. This study indicated that 3D helical CT of the middle ear can represent the auditory ossicles objectively and can offer detailed diagnosis. (author)

  7. Sex-related differences in auditory processing in adolescents with fetal alcohol spectrum disorder: A magnetoencephalographic study

    Directory of Open Access Journals (Sweden)

    Claudia D. Tesche

    2015-01-01

    Full Text Available Children exposed to substantial amounts of alcohol in utero display a broad range of morphological and behavioral outcomes, which are collectively referred to as fetal alcohol spectrum disorders (FASDs. Common to all children on the spectrum are cognitive and behavioral problems that reflect central nervous system dysfunction. Little is known, however, about the potential effects of variables such as sex on alcohol-induced brain damage. The goal of the current research was to utilize magnetoencephalography (MEG to examine the effect of sex on brain dynamics in adolescents and young adults with FASD during the performance of an auditory oddball task. The stimuli were short trains of 1 kHz “standard” tone bursts (80% randomly interleaved with 1.5 kHz “target” tone bursts (10% and “novel” digital sounds (10%. Participants made motor responses to the target tones. Results are reported for 44 individuals (18 males and 26 females ages 12 through 22 years. Nine males and 13 females had a diagnosis of FASD and the remainder were typically-developing age- and sex-matched controls. The main finding was widespread sex-specific differential activation of the frontal, medial and temporal cortex in adolescents with FASD compared to typically developing controls. Significant differences in evoked-response and time–frequency measures of brain dynamics were observed for all stimulus types in the auditory cortex, inferior frontal sulcus and hippocampus. These results underscore the importance of considering the influence of sex when analyzing neurophysiological data in children with FASD.

  8. Mapping the after-effects of theta burst stimulation on the human auditory cortex with functional imaging.

    Science.gov (United States)

    Andoh, Jamila; Zatorre, Robert J

    2012-09-12

    Auditory cortex pertains to the processing of sound, which is at the basis of speech or music-related processing. However, despite considerable recent progress, the functional properties and lateralization of the human auditory cortex are far from being fully understood. Transcranial Magnetic Stimulation (TMS) is a non-invasive technique that can transiently or lastingly modulate cortical excitability via the application of localized magnetic field pulses, and represents a unique method of exploring plasticity and connectivity. It has only recently begun to be applied to understand auditory cortical function. An important issue in using TMS is that the physiological consequences of the stimulation are difficult to establish. Although many TMS studies make the implicit assumption that the area targeted by the coil is the area affected, this need not be the case, particularly for complex cognitive functions which depend on interactions across many brain regions. One solution to this problem is to combine TMS with functional Magnetic resonance imaging (fMRI). The idea here is that fMRI will provide an index of changes in brain activity associated with TMS. Thus, fMRI would give an independent means of assessing which areas are affected by TMS and how they are modulated. In addition, fMRI allows the assessment of functional connectivity, which represents a measure of the temporal coupling between distant regions. It can thus be useful not only to measure the net activity modulation induced by TMS in given locations, but also the degree to which the network properties are affected by TMS, via any observed changes in functional connectivity. Different approaches exist to combine TMS and functional imaging according to the temporal order of the methods. Functional MRI can be applied before, during, after, or both before and after TMS. Recently, some studies interleaved TMS and fMRI in order to provide online mapping of the functional changes induced by TMS. However, this

  9. Insult-induced adaptive plasticity of the auditory system

    Directory of Open Access Journals (Sweden)

    Joshua R Gold

    2014-05-01

    Full Text Available The brain displays a remarkable capacity for both widespread and region-specific modifications in response to environmental challenges, with adaptive processes bringing about the reweighting of connections in neural networks putatively required for optimising performance and behaviour. As an avenue for investigation, studies centred around changes in the mammalian auditory system, extending from the brainstem to the cortex, have revealed a plethora of mechanisms that operate in the context of sensory disruption after insult, be it lesion-, noise trauma, drug-, or age-related. Of particular interest in recent work are those aspects of auditory processing which, after sensory disruption, change at multiple – if not all – levels of the auditory hierarchy. These include changes in excitatory, inhibitory and neuromodulatory networks, consistent with theories of homeostatic plasticity; functional alterations in gene expression and in protein levels; as well as broader network processing effects with cognitive and behavioural implications. Nevertheless, there abounds substantial debate regarding which of these processes may only be sequelae of the original insult, and which may, in fact, be maladaptively compelling further degradation of the organism’s competence to cope with its disrupted sensory context. In this review, we aim to examine how the mammalian auditory system responds in the wake of particular insults, and to disambiguate how the changes that develop might underlie a correlated class of phantom disorders, including tinnitus and hyperacusis, which putatively are brought about through maladaptive neuroplastic disruptions to auditory networks governing the spatial and temporal processing of acoustic sensory information.

  10. Altered intrinsic connectivity of the auditory cortex in congenital amusia.

    Science.gov (United States)

    Leveque, Yohana; Fauvel, Baptiste; Groussard, Mathilde; Caclin, Anne; Albouy, Philippe; Platel, Hervé; Tillmann, Barbara

    2016-07-01

    Congenital amusia, a neurodevelopmental disorder of music perception and production, has been associated with abnormal anatomical and functional connectivity in a right frontotemporal pathway. To investigate whether spontaneous connectivity in brain networks involving the auditory cortex is altered in the amusic brain, we ran a seed-based connectivity analysis, contrasting at-rest functional MRI data of amusic and matched control participants. Our results reveal reduced frontotemporal connectivity in amusia during resting state, as well as an overconnectivity between the auditory cortex and the default mode network (DMN). The findings suggest that the auditory cortex is intrinsically more engaged toward internal processes and less available to external stimuli in amusics compared with controls. Beyond amusia, our findings provide new evidence for the link between cognitive deficits in pathology and abnormalities in the connectivity between sensory areas and the DMN at rest. Copyright © 2016 the American Physiological Society.

  11. Auditory evoked potentials in patients with major depressive disorder measured by Emotiv system.

    Science.gov (United States)

    Wang, Dongcui; Mo, Fongming; Zhang, Yangde; Yang, Chao; Liu, Jun; Chen, Zhencheng; Zhao, Jinfeng

    2015-01-01

    In a previous study (unpublished), Emotiv headset was validated for capturing event-related potentials (ERPs) from normal subjects. In the present follow-up study, the signal quality of Emotiv headset was tested by the accuracy rate of discriminating Major Depressive Disorder (MDD) patients from the normal subjects. ERPs of 22 MDD patients and 15 normal subjects were induced by an auditory oddball task and the amplitude of N1, N2 and P3 of ERP components were specifically analyzed. The features of ERPs were statistically investigated. It is found that Emotiv headset is capable of discriminating the abnormal N1, N2 and P3 components in MDD patients. Relief-F algorithm was applied to all features for feature selection. The selected features were then input to a linear discriminant analysis (LDA) classifier with leave-one-out cross-validation to characterize the ERP features of MDD. 127 possible combinations out of the selected 7 ERP features were classified using LDA. The best classification accuracy was achieved to be 89.66%. These results suggest that MDD patients are identifiable from normal subjects by ERPs measured by Emotiv headset.

  12. Auditory system dysfunction in Alzheimer disease and its prodromal states: A review.

    Science.gov (United States)

    Swords, Gabriel M; Nguyen, Lydia T; Mudar, Raksha A; Llano, Daniel A

    2018-04-06

    Recent findings suggest that both peripheral and central auditory system dysfunction occur in the prodromal stages of Alzheimer Disease (AD), and therefore may represent early indicators of the disease. In addition, loss of auditory function itself leads to communication difficulties, social isolation and poor quality of life for both patients with AD and their caregivers. Developing a greater understanding of auditory dysfunction in early AD may shed light on the mechanisms of disease progression and carry diagnostic and therapeutic importance. Herein, we review the literature on hearing abilities in AD and its prodromal stages investigated through methods such as pure-tone audiometry, dichotic listening tasks, and evoked response potentials. We propose that screening for peripheral and central auditory dysfunction in at-risk populations is a low-cost and effective means to identify early AD pathology and provides an entry point for therapeutic interventions that enhance the quality of life of AD patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. (A)musicality in Williams syndrome: examining relationships among auditory perception, musical skill, and emotional responsiveness to music

    Science.gov (United States)

    Lense, Miriam D.; Shivers, Carolyn M.; Dykens, Elisabeth M.

    2013-01-01

    Williams syndrome (WS), a genetic, neurodevelopmental disorder, is of keen interest to music cognition researchers because of its characteristic auditory sensitivities and emotional responsiveness to music. However, actual musical perception and production abilities are more variable. We examined musicality in WS through the lens of amusia and explored how their musical perception abilities related to their auditory sensitivities, musical production skills, and emotional responsiveness to music. In our sample of 73 adolescents and adults with WS, 11% met criteria for amusia, which is higher than the 4% prevalence rate reported in the typically developing (TD) population. Amusia was not related to auditory sensitivities but was related to musical training. Performance on the amusia measure strongly predicted musical skill but not emotional responsiveness to music, which was better predicted by general auditory sensitivities. This study represents the first time amusia has been examined in a population with a known neurodevelopmental genetic disorder with a range of cognitive abilities. Results have implications for the relationships across different levels of auditory processing, musical skill development, and emotional responsiveness to music, as well as the understanding of gene-brain-behavior relationships in individuals with WS and TD individuals with and without amusia. PMID:23966965

  14. Central Auditory Processing through the Looking Glass: A Critical Look at Diagnosis and Management.

    Science.gov (United States)

    Young, Maxine L.

    1985-01-01

    The article examines the contributions of both audiologists and speech-language pathologists to the diagnosis and management of students with central auditory processing disorders and language impairments. (CL)

  15. Internal versus External Auditory Hallucinations in Schizophrenia: Symptom and Course Correlates

    Science.gov (United States)

    Docherty, Nancy M.; Dinzeo, Thomas J.; McCleery, Amanda; Bell, Emily K.; Shakeel, Mohammed K.; Moe, Aubrey

    2015-01-01

    Introduction The auditory hallucinations associated with schizophrenia are phenomenologically diverse. “External” hallucinations classically have been considered to reflect more severe psychopathology than “internal” hallucinations, but empirical support has been equivocal. Methods We examined associations of “internal” v. “external” hallucinations with (a) other characteristics of the hallucinations, (b) severity of other symptoms, and (c) course of illness variables, in a sample of 97 stable outpatients with schizophrenia or schizoaffective disorder who experienced auditory hallucinations. Results Patients with internal hallucinations did not differ from those with external hallucinations on severity of other symptoms. However, they reported their hallucinations to be more emotionally negative, distressing, and long-lasting, less controllable, and less likely to remit over time. They also were more likely to experience voices commenting, conversing, or commanding. However, they also were more likely to have insight into the self-generated nature of their voices. Patients with internal hallucinations were not older, but had a later age of illness onset. Conclusions Differences in characteristics of auditory hallucinations are associated with differences in other characteristics of the disorder, and hence may be relevant to identifying subgroups of patients that are more homogeneous with respect to their underlying disease processes. PMID:25530157

  16. Abnormal Auditory Gain in Hyperacusis: Investigation with a Computational Model

    Directory of Open Access Journals (Sweden)

    Peter U. Diehl

    2015-07-01

    Full Text Available Hyperacusis is a frequent auditory disorder that is characterized by abnormal loudness perception where sounds of relatively normal volume are perceived as too loud or even painfully loud. As Hyperacusis patients show decreased loudness discomfort levels (LDLs and steeper loudness growth functions, it has been hypothesized that hyperacusis might be caused by an increase in neuronal response gain in the auditory system. Moreover, since about 85% of hyperacusis patients also experience tinnitus, the conditions might be caused by a common mechanism. However, the mechanisms that give rise to hyperacusis have remained unclear.Here we have used a computational model of the auditory system to investigate candidate mechanisms for hyperacusis. Assuming that perceived loudness is proportional to the summed activity of all auditory nerve fibers, the model was tuned to reproduce normal loudness perception. We then evaluated a variety of potential hyperacusis gain mechanisms by determining their effects on model equal-loudness contours and comparing the results to the LDLs of hyperacusis patients with normal hearing thresholds. Hyperacusis was best accounted for by an increase in nonlinear gain in the central auditory system. Good fits to the average patient LDLs were obtained for a general increase in gain that affected all frequency channels to the same degree, and also for a frequency-specific gain increase in the high-frequency range. Moreover, the gain needed to be applied after subtraction of spontaneous activity of the auditory nerve, which is in contrast to current theories of tinnitus generation based on amplification of spontaneous activity. Hyperacusis and tinnitus might therefore be caused by different changes in neuronal processing in the central auditory system.

  17. The Relationship between Central Auditory Processing, Language, and Cognition in Children Being Evaluated for Central Auditory Processing Disorder.

    Science.gov (United States)

    Brenneman, Lauren; Cash, Elizabeth; Chermak, Gail D; Guenette, Linda; Masters, Gay; Musiek, Frank E; Brown, Mallory; Ceruti, Julianne; Fitzegerald, Krista; Geissler, Kristin; Gonzalez, Jennifer; Weihing, Jeffrey

    2017-09-01

    Pediatric central auditory processing disorder (CAPD) is frequently comorbid with other childhood disorders. However, few studies have examined the relationship between commonly used CAPD, language, and cognition tests within the same sample. The present study examined the relationship between diagnostic CAPD tests and "gold standard" measures of language and cognitive ability, the Clinical Evaluation of Language Fundamentals (CELF) and the Wechsler Intelligence Scale for Children (WISC). A retrospective study. Twenty-seven patients referred for CAPD testing who scored average or better on the CELF and low average or better on the WISC were initially included. Seven children who scored below the CELF and/or WISC inclusion criteria were then added to the dataset for a second analysis, yielding a sample size of 34. Participants were administered a CAPD battery that included at least the following three CAPD tests: Frequency Patterns (FP), Dichotic Digits (DD), and Competing Sentences (CS). In addition, they were administered the CELF and WISC. Relationships between scores on CAPD, language (CELF), and cognition (WISC) tests were examined using correlation analysis. DD and FP showed significant correlations with Full Scale Intelligence Quotient, and the DD left ear and the DD interaural difference measures both showed significant correlations with working memory. However, ∼80% or more of the variance in these CAPD tests was unexplained by language and cognition measures. Language and cognition measures were more strongly correlated with each other than were the CAPD tests with any CELF or WISC scale. Additional correlations with the CAPD tests were revealed when patients who scored in the mild-moderate deficit range on the CELF and/or in the borderline low intellectual functioning range on the WISC were included in the analysis. While both the DD and FP tests showed significant correlations with one or more cognition measures, the majority of the variance in these

  18. Role of laser peripheral iridotomy in pigmentary glaucoma and pigment dispersion syndrome: A review of the literature.

    Science.gov (United States)

    Buffault, J; Leray, B; Bouillot, A; Baudouin, C; Labbé, A

    2017-11-01

    Pigment dispersion syndrome (PDS) is characterized by a structural abnormality of the posterior surface of the iris causing contact with the zonular fibers. It can lead to an open-angle glaucoma secondary to pigment dispersion into the trabecular meshwork. Laser peripheral iridotomy (PI) has been proposed as a treatment for pigmentary glaucoma (PG) and pigment dispersion syndrome (PDS) by reducing the dispersion of pigment. The goal of this review was to assess the effects of PI for PDS and PG. We included six randomized controlled trials and two cohort studies (286 eyes of 218 participants). Four trials included participants with PG, and 4 trials enrolled participants with PDS with or without elevated intraocular pressure (IOP). Among patients with PG, at an average of 9 months of follow-up, the mean difference in IOP between groups was 2.69mm Hg less in the PI group (95% CI: -6.05 to 0.67; 14 eyes). In patients with PDS, the average IOP was statistically lower after PI as compared to baseline (Student test t=11.49, P<0.01, 38 eyes). With regard to visual field progression in participants with PG, after an average follow-up of 28 months, the risk of progression was not influenced by PI (RR 1.00 95% CI: 0.16 to 6.25; 32 eyes). No trials that enrolled patients with PDS showed a diminution of the risk of glaucoma conversion at mid- and long-terms. PI decreases the biomechanical factor causing contact between the iris and zonular fibers and may lower IOP over the long-term. Nevertheless, the effects of PI on visual field changes or progression have not been established in PG and PDS. There is no scientific evidence as of yet to advocate PI as a treatment for PDS or PG. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Molecular diagnostic in two families affected with Autosomic Recessive Pigmentary Retinitis

    International Nuclear Information System (INIS)

    Leal Esquivel, A.

    1996-01-01

    This study included two Costa Rican families with members affected by Recessive Pigmentary Autosomic Retinitis (RPAR). The first family (C1) from the province of San Jose, has 10 alive affected members, and 14 obligatory carriers. They present an Early Appearance Degeneration, RPAR tipe1 (cane-cone). The author used polymorphic markers (STRPs) to discard some related regions, with the RP in the literature. He also used the Linkage program, for the analysis of ligaments. The second family (P1), proceeding from Acosta (situated in the province of Alajuela), has 13 alive affected members and 23 obligatory carriers and they present numerous consanguineous unions. This case is a RPAR with Early Appearance (Night Blindness, fat ERG), but with a shower degeneration. The author concludes that, with studies such as this one, there will be a capacity to offer RP molecular diagnostic, and also advance in its knowledge and treatment. (S. Grainger)

  20. Auditory processing efficiency deficits in children with developmental language impairments

    Science.gov (United States)

    Hartley, Douglas E. H.; Moore, David R.

    2002-12-01

    The ``temporal processing hypothesis'' suggests that individuals with specific language impairments (SLIs) and dyslexia have severe deficits in processing rapidly presented or brief sensory information, both within the auditory and visual domains. This hypothesis has been supported through evidence that language-impaired individuals have excess auditory backward masking. This paper presents an analysis of masking results from several studies in terms of a model of temporal resolution. Results from this modeling suggest that the masking results can be better explained by an ``auditory efficiency'' hypothesis. If impaired or immature listeners have a normal temporal window, but require a higher signal-to-noise level (poor processing efficiency), this hypothesis predicts the observed small deficits in the simultaneous masking task, and the much larger deficits in backward and forward masking tasks amongst those listeners. The difference in performance on these masking tasks is predictable from the compressive nonlinearity of the basilar membrane. The model also correctly predicts that backward masking (i) is more prone to training effects, (ii) has greater inter- and intrasubject variability, and (iii) increases less with masker level than do other masking tasks. These findings provide a new perspective on the mechanisms underlying communication disorders and auditory masking.

  1. Recent advances in research on non-auditory effects of community noise

    Directory of Open Access Journals (Sweden)

    Belojević Goran

    2016-01-01

    Full Text Available Non-auditory effects of noise on humans have been intensively studied in the last four decades. The International Commission on Biological Effects of Noise has been following scientific advances in this field by organizing international congresses from the first one in 1968 in Washington, DC, to the 11th congress in Nara, Japan, in 2014. There is already a large scientific body of evidence on the effects of noise on annoyance, communication, performance and behavior, mental health, sleep, and cardiovascular functions including relationship with hypertension and ischemic heart disease. In the last five years new issues in this field have been tackled. Large epidemiological studies on community noise have reported its relationship with breast cancer, stroke, type 2 diabetes, and obesity. It seems that noise-induced sleep disturbance may be one of the mediating factors in these effects. Given a large public health importance of the above-mentioned diseases, future studies should more thoroughly address the mechanisms underlying the reported association with community noise exposure. [Projekat Ministarstva nauke Republike Srbije, br. 175078

  2. Non-self-averaging nucleation rate due to quenched disorder

    International Nuclear Information System (INIS)

    Sear, Richard P

    2012-01-01

    We study the nucleation of a new thermodynamic phase in the presence of quenched disorder. The quenched disorder is a generic model of both impurities and disordered porous media; both are known to have large effects on nucleation. We find that the nucleation rate is non-self-averaging. This is in a simple Ising model with clusters of quenched spins. We also show that non-self-averaging behaviour is straightforward to detect in experiments, and may be rather common. (fast track communication)

  3. Auditory, visual and auditory-visual memory and sequencing performance in typically developing children.

    Science.gov (United States)

    Pillai, Roshni; Yathiraj, Asha

    2017-09-01

    The study evaluated whether there exists a difference/relation in the way four different memory skills (memory score, sequencing score, memory span, & sequencing span) are processed through the auditory modality, visual modality and combined modalities. Four memory skills were evaluated on 30 typically developing children aged 7 years and 8 years across three modality conditions (auditory, visual, & auditory-visual). Analogous auditory and visual stimuli were presented to evaluate the three modality conditions across the two age groups. The children obtained significantly higher memory scores through the auditory modality compared to the visual modality. Likewise, their memory scores were significantly higher through the auditory-visual modality condition than through the visual modality. However, no effect of modality was observed on the sequencing scores as well as for the memory and the sequencing span. A good agreement was seen between the different modality conditions that were studied (auditory, visual, & auditory-visual) for the different memory skills measures (memory scores, sequencing scores, memory span, & sequencing span). A relatively lower agreement was noted only between the auditory and visual modalities as well as between the visual and auditory-visual modality conditions for the memory scores, measured using Bland-Altman plots. The study highlights the efficacy of using analogous stimuli to assess the auditory, visual as well as combined modalities. The study supports the view that the performance of children on different memory skills was better through the auditory modality compared to the visual modality. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Activation of auditory white matter tracts as revealed by functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tae, Woo Suk [Kangwon National University, Neuroscience Research Institute, School of Medicine, Chuncheon (Korea, Republic of); Yakunina, Natalia; Nam, Eui-Cheol [Kangwon National University, Neuroscience Research Institute, School of Medicine, Chuncheon (Korea, Republic of); Kangwon National University, Department of Otolaryngology, School of Medicine, Chuncheon, Kangwon-do (Korea, Republic of); Kim, Tae Su [Kangwon National University Hospital, Department of Otolaryngology, Chuncheon (Korea, Republic of); Kim, Sam Soo [Kangwon National University, Neuroscience Research Institute, School of Medicine, Chuncheon (Korea, Republic of); Kangwon National University, Department of Radiology, School of Medicine, Chuncheon (Korea, Republic of)

    2014-07-15

    The ability of functional magnetic resonance imaging (fMRI) to detect activation in brain white matter (WM) is controversial. In particular, studies on the functional activation of WM tracts in the central auditory system are scarce. We utilized fMRI to assess and characterize the entire auditory WM pathway under robust experimental conditions involving the acquisition of a large number of functional volumes, the application of broadband auditory stimuli of high intensity, and the use of sparse temporal sampling to avoid scanner noise effects and increase signal-to-noise ratio. Nineteen healthy volunteers were subjected to broadband white noise in a block paradigm; each run had four sound-on/off alternations and was repeated nine times for each subject. Sparse sampling (TR = 8 s) was used. In addition to traditional gray matter (GM) auditory center activation, WM activation was detected in the isthmus and midbody of the corpus callosum (CC), tapetum, auditory radiation, lateral lemniscus, and decussation of the superior cerebellar peduncles. At the individual level, 13 of 19 subjects (68 %) had CC activation. Callosal WM exhibited a temporal delay of approximately 8 s in response to the stimulation compared with GM. These findings suggest that direct evaluation of the entire functional network of the central auditory system may be possible using fMRI, which may aid in understanding the neurophysiological basis of the central auditory system and in developing treatment strategies for various central auditory disorders. (orig.)

  5. Activation of auditory white matter tracts as revealed by functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Tae, Woo Suk; Yakunina, Natalia; Nam, Eui-Cheol; Kim, Tae Su; Kim, Sam Soo

    2014-01-01

    The ability of functional magnetic resonance imaging (fMRI) to detect activation in brain white matter (WM) is controversial. In particular, studies on the functional activation of WM tracts in the central auditory system are scarce. We utilized fMRI to assess and characterize the entire auditory WM pathway under robust experimental conditions involving the acquisition of a large number of functional volumes, the application of broadband auditory stimuli of high intensity, and the use of sparse temporal sampling to avoid scanner noise effects and increase signal-to-noise ratio. Nineteen healthy volunteers were subjected to broadband white noise in a block paradigm; each run had four sound-on/off alternations and was repeated nine times for each subject. Sparse sampling (TR = 8 s) was used. In addition to traditional gray matter (GM) auditory center activation, WM activation was detected in the isthmus and midbody of the corpus callosum (CC), tapetum, auditory radiation, lateral lemniscus, and decussation of the superior cerebellar peduncles. At the individual level, 13 of 19 subjects (68 %) had CC activation. Callosal WM exhibited a temporal delay of approximately 8 s in response to the stimulation compared with GM. These findings suggest that direct evaluation of the entire functional network of the central auditory system may be possible using fMRI, which may aid in understanding the neurophysiological basis of the central auditory system and in developing treatment strategies for various central auditory disorders. (orig.)

  6. Assessment of noise pollution in and around a sensitive zone in North India and its non-auditory impacts.

    Science.gov (United States)

    Khaiwal, Ravindra; Singh, Tanbir; Tripathy, Jaya Prasad; Mor, Suman; Munjal, Sanjay; Patro, Binod; Panda, Naresh

    2016-10-01

    Noise pollution in hospitals is recognized as a serious health hazard. Considering this, the current study aimed to map the noise pollution levels and to explore the self reported non-auditory effects of noise in a tertiary medical institute. The study was conducted in an 1800-bedded tertiary hospital where 27 sites (outdoor, indoor, road side and residential areas) were monitored for exposure to noise using Sound Level Meter for 24h. A detailed noise survey was also conducted around the sampling sites using a structured questionnaire to understand the opinion of the public regarding the impact of noise on their daily lives. The equivalent sound pressure level (Leq) was found higher than the permissible limits at all the sites both during daytime and night. The maximum equivalent sound pressure level (Lmax) during the day was observed higher (>80dB) at the emergency and around the main entrance of the hospital campus. Almost all the respondents (97%) regarded traffic as the major source of noise. About three-fourths (74%) reported irritation with loud noise whereas 40% of respondents reported headache due to noise. Less than one-third of respondents (29%) reported loss of sleep due to noise and 8% reported hypertension, which could be related to the disturbance caused due to noise. Noise levels in and around the hospital was well above the permissible standards. The recent Global Burden of Disease highlights the increasing risk of non communicable diseases. The non-auditory effects studied in the current work add to the risk factors associated with non communicable diseases. Hence, there is need to address the issue of noise pollution and associated health risks specially for vulnerable population. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Effects of Auditory Rhythm and Music on Gait Disturbances in Parkinson's Disease.

    Science.gov (United States)

    Ashoori, Aidin; Eagleman, David M; Jankovic, Joseph

    2015-01-01

    Gait abnormalities, such as shuffling steps, start hesitation, and freezing, are common and often incapacitating symptoms of Parkinson's disease (PD) and other parkinsonian disorders. Pharmacological and surgical approaches have only limited efficacy in treating these gait disorders. Rhythmic auditory stimulation (RAS), such as playing marching music and dance therapy, has been shown to be a safe, inexpensive, and an effective method in improving gait in PD patients. However, RAS that adapts to patients' movements may be more effective than rigid, fixed-tempo RAS used in most studies. In addition to auditory cueing, immersive virtual reality technologies that utilize interactive computer-generated systems through wearable devices are increasingly used for improving brain-body interaction and sensory-motor integration. Using multisensory cues, these therapies may be particularly suitable for the treatment of parkinsonian freezing and other gait disorders. In this review, we examine the affected neurological circuits underlying gait and temporal processing in PD patients and summarize the current studies demonstrating the effects of RAS on improving these gait deficits.

  8. Contextual modulation of primary visual cortex by auditory signals.

    Science.gov (United States)

    Petro, L S; Paton, A T; Muckli, L

    2017-02-19

    Early visual cortex receives non-feedforward input from lateral and top-down connections (Muckli & Petro 2013 Curr. Opin. Neurobiol. 23, 195-201. (doi:10.1016/j.conb.2013.01.020)), including long-range projections from auditory areas. Early visual cortex can code for high-level auditory information, with neural patterns representing natural sound stimulation (Vetter et al. 2014 Curr. Biol. 24, 1256-1262. (doi:10.1016/j.cub.2014.04.020)). We discuss a number of questions arising from these findings. What is the adaptive function of bimodal representations in visual cortex? What type of information projects from auditory to visual cortex? What are the anatomical constraints of auditory information in V1, for example, periphery versus fovea, superficial versus deep cortical layers? Is there a putative neural mechanism we can infer from human neuroimaging data and recent theoretical accounts of cortex? We also present data showing we can read out high-level auditory information from the activation patterns of early visual cortex even when visual cortex receives simple visual stimulation, suggesting independent channels for visual and auditory signals in V1. We speculate which cellular mechanisms allow V1 to be contextually modulated by auditory input to facilitate perception, cognition and behaviour. Beyond cortical feedback that facilitates perception, we argue that there is also feedback serving counterfactual processing during imagery, dreaming and mind wandering, which is not relevant for immediate perception but for behaviour and cognition over a longer time frame.This article is part of the themed issue 'Auditory and visual scene analysis'. © 2017 The Authors.

  9. Compensating Level-Dependent Frequency Representation in Auditory Cortex by Synaptic Integration of Corticocortical Input.

    Directory of Open Access Journals (Sweden)

    Max F K Happel

    Full Text Available Robust perception of auditory objects over a large range of sound intensities is a fundamental feature of the auditory system. However, firing characteristics of single neurons across the entire auditory system, like the frequency tuning, can change significantly with stimulus intensity. Physiological correlates of level-constancy of auditory representations hence should be manifested on the level of larger neuronal assemblies or population patterns. In this study we have investigated how information of frequency and sound level is integrated on the circuit-level in the primary auditory cortex (AI of the Mongolian gerbil. We used a combination of pharmacological silencing of corticocortically relayed activity and laminar current source density (CSD analysis. Our data demonstrate that with increasing stimulus intensities progressively lower frequencies lead to the maximal impulse response within cortical input layers at a given cortical site inherited from thalamocortical synaptic inputs. We further identified a temporally precise intercolumnar synaptic convergence of early thalamocortical and horizontal corticocortical inputs. Later tone-evoked activity in upper layers showed a preservation of broad tonotopic tuning across sound levels without shifts towards lower frequencies. Synaptic integration within corticocortical circuits may hence contribute to a level-robust representation of auditory information on a neuronal population level in the auditory cortex.

  10. The non-lemniscal auditory cortex in ferrets: convergence of corticotectal inputs in the superior colliculus

    Directory of Open Access Journals (Sweden)

    Victoria M Bajo

    2010-05-01

    Full Text Available Descending cortical inputs to the superior colliculus (SC contribute to the unisensory response properties of the neurons found there and are critical for multisensory integration. However, little is known about the relative contribution of different auditory cortical areas to this projection or the distribution of their terminals in the SC. We characterized this projection in the ferret by injecting tracers in the SC and auditory cortex. Large pyramidal neurons were labeled in layer V of different parts of the ectosylvian gyrus after tracer injections in the SC. Those cells were most numerous in the anterior ectosylvian gyrus (AEG, and particularly in the anterior ventral field, which receives both auditory and visual inputs. Labeling was also found in the posterior ectosylvian gyrus (PEG, predominantly in the tonotopically-organized posterior suprasylvian field. Profuse anterograde labeling was present in the SC following tracer injections at the site of acoustically-responsive neurons in the AEG or PEG, with terminal fields being both more prominent and clustered for inputs originating from the AEG. Terminals from both cortical areas were located throughout the intermediate and deep layers, but were most concentrated in the posterior half of the SC, where peripheral stimulus locations are represented. No inputs were identified from primary auditory cortical areas, although some labeling was found in the surrounding sulci. Our findings suggest that higher level auditory cortical areas, including those involved in multisensory processing, may modulate SC function via their projections into its deeper layers.

  11. Switching auditory attention using spatial and non-spatial features recruits different cortical networks.

    Science.gov (United States)

    Larson, Eric; Lee, Adrian K C

    2014-01-01

    Switching attention between different stimuli of interest based on particular task demands is important in many everyday settings. In audition in particular, switching attention between different speakers of interest that are talking concurrently is often necessary for effective communication. Recently, it has been shown by multiple studies that auditory selective attention suppresses the representation of unwanted streams in auditory cortical areas in favor of the target stream of interest. However, the neural processing that guides this selective attention process is not well understood. Here we investigated the cortical mechanisms involved in switching attention based on two different types of auditory features. By combining magneto- and electro-encephalography (M-EEG) with an anatomical MRI constraint, we examined the cortical dynamics involved in switching auditory attention based on either spatial or pitch features. We designed a paradigm where listeners were cued in the beginning of each trial to switch or maintain attention halfway through the presentation of concurrent target and masker streams. By allowing listeners time to switch during a gap in the continuous target and masker stimuli, we were able to isolate the mechanisms involved in endogenous, top-down attention switching. Our results show a double dissociation between the involvement of right temporoparietal junction (RTPJ) and the left inferior parietal supramarginal part (LIPSP) in tasks requiring listeners to switch attention based on space and pitch features, respectively, suggesting that switching attention based on these features involves at least partially separate processes or behavioral strategies. © 2013 Elsevier Inc. All rights reserved.

  12. Auditory and cognitive deficits associated with acquired amusia after stroke: a magnetoencephalography and neuropsychological follow-up study.

    Directory of Open Access Journals (Sweden)

    Teppo Särkämö

    2010-12-01

    Full Text Available Acquired amusia is a common disorder after damage to the middle cerebral artery (MCA territory. However, its neurocognitive mechanisms, especially the relative contribution of perceptual and cognitive factors, are still unclear. We studied cognitive and auditory processing in the amusic brain by performing neuropsychological testing as well as magnetoencephalography (MEG measurements of frequency and duration discrimination using magnetic mismatch negativity (MMNm recordings. Fifty-three patients with a left (n = 24 or right (n = 29 hemisphere MCA stroke (MRI verified were investigated 1 week, 3 months, and 6 months after the stroke. Amusia was evaluated using the Montreal Battery of Evaluation of Amusia (MBEA. We found that amusia caused by right hemisphere damage (RHD, especially to temporal and frontal areas, was more severe than amusia caused by left hemisphere damage (LHD. Furthermore, the severity of amusia was found to correlate with weaker frequency MMNm responses only in amusic RHD patients. Additionally, within the RHD subgroup, the amusic patients who had damage to the auditory cortex (AC showed worse recovery on the MBEA as well as weaker MMNm responses throughout the 6-month follow-up than the non-amusic patients or the amusic patients without AC damage. Furthermore, the amusic patients both with and without AC damage performed worse than the non-amusic patients on tests of working memory, attention, and cognitive flexibility. These findings suggest domain-general cognitive deficits to be the primary mechanism underlying amusia without AC damage whereas amusia with AC damage is associated with both auditory and cognitive deficits.

  13. Auditory and cognitive deficits associated with acquired amusia after stroke: a magnetoencephalography and neuropsychological follow-up study.

    Science.gov (United States)

    Särkämö, Teppo; Tervaniemi, Mari; Soinila, Seppo; Autti, Taina; Silvennoinen, Heli M; Laine, Matti; Hietanen, Marja; Pihko, Elina

    2010-12-02

    Acquired amusia is a common disorder after damage to the middle cerebral artery (MCA) territory. However, its neurocognitive mechanisms, especially the relative contribution of perceptual and cognitive factors, are still unclear. We studied cognitive and auditory processing in the amusic brain by performing neuropsychological testing as well as magnetoencephalography (MEG) measurements of frequency and duration discrimination using magnetic mismatch negativity (MMNm) recordings. Fifty-three patients with a left (n = 24) or right (n = 29) hemisphere MCA stroke (MRI verified) were investigated 1 week, 3 months, and 6 months after the stroke. Amusia was evaluated using the Montreal Battery of Evaluation of Amusia (MBEA). We found that amusia caused by right hemisphere damage (RHD), especially to temporal and frontal areas, was more severe than amusia caused by left hemisphere damage (LHD). Furthermore, the severity of amusia was found to correlate with weaker frequency MMNm responses only in amusic RHD patients. Additionally, within the RHD subgroup, the amusic patients who had damage to the auditory cortex (AC) showed worse recovery on the MBEA as well as weaker MMNm responses throughout the 6-month follow-up than the non-amusic patients or the amusic patients without AC damage. Furthermore, the amusic patients both with and without AC damage performed worse than the non-amusic patients on tests of working memory, attention, and cognitive flexibility. These findings suggest domain-general cognitive deficits to be the primary mechanism underlying amusia without AC damage whereas amusia with AC damage is associated with both auditory and cognitive deficits.

  14. Abnormalities in auditory efferent activities in children with selective mutism.

    Science.gov (United States)

    Muchnik, Chava; Ari-Even Roth, Daphne; Hildesheimer, Minka; Arie, Miri; Bar-Haim, Yair; Henkin, Yael

    2013-01-01

    Two efferent feedback pathways to the auditory periphery may play a role in monitoring self-vocalization: the middle-ear acoustic reflex (MEAR) and the medial olivocochlear bundle (MOCB) reflex. Since most studies regarding the role of auditory efferent activity during self-vocalization were conducted in animals, human data are scarce. The working premise of the current study was that selective mutism (SM), a rare psychiatric disorder characterized by consistent failure to speak in specific social situations despite the ability to speak normally in other situations, may serve as a human model for studying the potential involvement of auditory efferent activity during self-vocalization. For this purpose, auditory efferent function was assessed in a group of 31 children with SM and compared to that of a group of 31 normally developing control children (mean age 8.9 and 8.8 years, respectively). All children exhibited normal hearing thresholds and type A tympanograms. MEAR and MOCB functions were evaluated by means of acoustic reflex thresholds and decay functions and the suppression of transient-evoked otoacoustic emissions, respectively. Auditory afferent function was tested by means of auditory brainstem responses (ABR). Results indicated a significantly higher proportion of children with abnormal MEAR and MOCB function in the SM group (58.6 and 38%, respectively) compared to controls (9.7 and 8%, respectively). The prevalence of abnormal MEAR and/or MOCB function was significantly higher in the SM group (71%) compared to controls (16%). Intact afferent function manifested in normal absolute and interpeak latencies of ABR components in all children. The finding of aberrant efferent auditory function in a large proportion of children with SM provides further support for the notion that MEAR and MOCB may play a significant role in the process of self-vocalization. © 2013 S. Karger AG, Basel.

  15. Treatment of flat and elevated pigmented disorders with a 755-nm alexandrite picosecond laser: clinical and histological evaluation.

    Science.gov (United States)

    Alegre-Sanchez, Adrian; Jiménez-Gómez, Natalia; Moreno-Arrones, Óscar M; Fonda-Pascual, Pablo; Pérez-García, Bibiana; Jaén-Olasolo, Pedro; Boixeda, Pablo

    2018-02-09

    The novel picosecond lasers, initially developed for faster tattoo removal, have also shown great efficacy in endogenous pigmentary disorders. To describe the efficacy and safety profile of an alexandrite (755-nm) picosecond laser in a wide range of pigmented flat and elevated cutaneous lesions. A retrospective study was performed in which we collected all the clinical images of patients treated with the 755-nm alexandrite picosecond laser for 12 months (November 2016-November 2017). Clinical features were obtained from their medical charts. Patients treated for tattoo removal were excluded. All the images were analyzed by three blind physicians attending to a visual analogue scale (VAS) from 0 to 5 (0, no change; 1, 1-24% clearance; 2, 25-49% clearance; 3, 50-74% clearance; 4, 75-99% clearance; 5, complete clearance). Patient satisfaction was obtained from a subjective survey including four items: very satisfied, satisfied, non-satisfied, and totally dissatisfied. Thirty-seven patients were included (12 males; 25 females). The mean age of the study was 42.35 years. Twenty-five patients (68%) were treated for different pigmented flat disorders such as solar and mucosal lentigines (5), stasis dermatitis (4), or nevus of Ota (4), among other diagnoses. Twelve patients (32%) were treated for epidermal elevated lesions such as warts (5), epidermal nevi (2), and seborrheic keratosis (3), among other elevated lesions. Mean number of laser treatment was 3.02 sessions while mean follow-up after last laser treatment was 4.02 months. Mean VAS score of the three observers was 3.44 (61% of clearance) for pigmentary flat disorders and 3.60 (67%) for elevated lesions. Adverse effects reported were mild blistering in the first 2-5 days following laser treatment in some of the patients. Overall satisfaction among the patients included was high. The novel 755-nm picosecond alexandrite laser is effective not only for the resolution of pigmented flat lesions of different nature

  16. Auditory Spatial Layout

    Science.gov (United States)

    Wightman, Frederic L.; Jenison, Rick

    1995-01-01

    All auditory sensory information is packaged in a pair of acoustical pressure waveforms, one at each ear. While there is obvious structure in these waveforms, that structure (temporal and spectral patterns) bears no simple relationship to the structure of the environmental objects that produced them. The properties of auditory objects and their layout in space must be derived completely from higher level processing of the peripheral input. This chapter begins with a discussion of the peculiarities of acoustical stimuli and how they are received by the human auditory system. A distinction is made between the ambient sound field and the effective stimulus to differentiate the perceptual distinctions among various simple classes of sound sources (ambient field) from the known perceptual consequences of the linear transformations of the sound wave from source to receiver (effective stimulus). Next, the definition of an auditory object is dealt with, specifically the question of how the various components of a sound stream become segregated into distinct auditory objects. The remainder of the chapter focuses on issues related to the spatial layout of auditory objects, both stationary and moving.

  17. Modeling auditory processing and speech perception in hearing-impaired listeners

    DEFF Research Database (Denmark)

    Jepsen, Morten Løve

    in a diagnostic rhyme test. The framework was constructed such that discrimination errors originating from the front-end and the back-end were separated. The front-end was fitted to individual listeners with cochlear hearing loss according to non-speech data, and speech data were obtained in the same listeners......A better understanding of how the human auditory system represents and analyzes sounds and how hearing impairment affects such processing is of great interest for researchers in the fields of auditory neuroscience, audiology, and speech communication as well as for applications in hearing......-instrument and speech technology. In this thesis, the primary focus was on the development and evaluation of a computational model of human auditory signal-processing and perception. The model was initially designed to simulate the normal-hearing auditory system with particular focus on the nonlinear processing...

  18. Speech Errors in Progressive Non-Fluent Aphasia

    Science.gov (United States)

    Ash, Sharon; McMillan, Corey; Gunawardena, Delani; Avants, Brian; Morgan, Brianna; Khan, Alea; Moore, Peachie; Gee, James; Grossman, Murray

    2010-01-01

    The nature and frequency of speech production errors in neurodegenerative disease have not previously been precisely quantified. In the present study, 16 patients with a progressive form of non-fluent aphasia (PNFA) were asked to tell a story from a wordless children's picture book. Errors in production were classified as either phonemic,…

  19. Writing Tasks and Immediate Auditory Memory in Peruvian Schoolchildren

    Directory of Open Access Journals (Sweden)

    José Luis Ventura-León

    2017-04-01

    Full Text Available The purpose of the study is determine the relationship between a group of writing tasks and the immediate auditory memory, as well as to establish differences according to sex and level of study. Two hundred and three schoolchildren of fifth and sixth of elementary education from Lima (Peru participated, they were selected by a non-probabilistic sample. The Immediate Auditory Memory Test and the Battery for Evaluation of Writing Processes (known in Spanish as PROESC were used. Central tendency measures were used for descriptive analysis. We employed the Mann-Whitney U test, Spearman Rho test and probability of superiority as effect size measurement for the inferential analysis. The results indicated a moderate direct and significant correlation between writing tasks and immediate auditory memory in general way and low correlations between dimensions. Finally, it showed that the differences in immediate auditory memory and writing tasks according to sex and level of study does not have practical significance.

  20. Motor Training: Comparison of Visual and Auditory Coded Proprioceptive Cues

    Directory of Open Access Journals (Sweden)

    Philip Jepson

    2012-05-01

    Full Text Available Self-perception of body posture and movement is achieved through multi-sensory integration, particularly the utilisation of vision, and proprioceptive information derived from muscles and joints. Disruption to these processes can occur following a neurological accident, such as stroke, leading to sensory and physical impairment. Rehabilitation can be helped through use of augmented visual and auditory biofeedback to stimulate neuro-plasticity, but the effective design and application of feedback, particularly in the auditory domain, is non-trivial. Simple auditory feedback was tested by comparing the stepping accuracy of normal subjects when given a visual spatial target (step length and an auditory temporal target (step duration. A baseline measurement of step length and duration was taken using optical motion capture. Subjects (n=20 took 20 ‘training’ steps (baseline ±25% using either an auditory target (950 Hz tone, bell-shaped gain envelope or visual target (spot marked on the floor and were then asked to replicate the target step (length or duration corresponding to training with all feedback removed. Visual cues (mean percentage error=11.5%; SD ± 7.0%; auditory cues (mean percentage error = 12.9%; SD ± 11.8%. Visual cues elicit a high degree of accuracy both in training and follow-up un-cued tasks; despite the novelty of the auditory cues present for subjects, the mean accuracy of subjects approached that for visual cues, and initial results suggest a limited amount of practice using auditory cues can improve performance.

  1. Multichannel auditory search: toward understanding control processes in polychotic auditory listening.

    Science.gov (United States)

    Lee, M D

    2001-01-01

    Two experiments are presented that serve as a framework for exploring auditory information processing. The framework is referred to as polychotic listening or auditory search, and it requires a listener to scan multiple simultaneous auditory streams for the appearance of a target word (the name of a letter such as A or M). Participants' ability to scan between two and six simultaneous auditory streams of letter and digit names for the name of a target letter was examined using six loudspeakers. The main independent variable was auditory load, or the number of active audio streams on a given trial. The primary dependent variables were target localization accuracy and reaction time. Results showed that as load increased, performance decreased. The performance decrease was evident in reaction time, accuracy, and sensitivity measures. The second study required participants to practice the same task for 10 sessions, for a total of 1800 trials. Results indicated that even with extensive practice, performance was still affected by auditory load. The present results are compared with findings in the visual search literature. The implications for the use of multiple auditory displays are discussed. Potential applications include cockpit and automobile warning displays, virtual reality systems, and training systems.

  2. Leopard spot retinal pigmentation in infancy indicating a peroxisomal disorder.

    Science.gov (United States)

    Lyons, C J; Castano, G; McCormick, A Q; Applegarth, D

    2004-02-01

    Neonatal adrenoleucodystrophy (NALD) is a rare disorder resulting from abnormal peroxisomal biogenesis. Affected patients present in infancy with developmental delay, hypotonia, and seizures. Blindness and nystagmus are prominent features. The authors suggest a characteristic leopard spot pigmentary pattern in the peripheral retina to be diagnostic. Three patients are reported with this presentation; the characteristic retinal appearance resulted in early diagnosis for one of these. Leopard spot retinopathy in an infant with hypotonia, seizures, developmental delay, with or without dysmorphic features and hearing impairment, is a clue to the diagnosis of NALD.

  3. CNTN6 mutations are risk factors for abnormal auditory sensory perception in autism spectrum disorders.

    Science.gov (United States)

    Mercati, O; Huguet, G; Danckaert, A; André-Leroux, G; Maruani, A; Bellinzoni, M; Rolland, T; Gouder, L; Mathieu, A; Buratti, J; Amsellem, F; Benabou, M; Van-Gils, J; Beggiato, A; Konyukh, M; Bourgeois, J-P; Gazzellone, M J; Yuen, R K C; Walker, S; Delépine, M; Boland, A; Régnault, B; Francois, M; Van Den Abbeele, T; Mosca-Boidron, A L; Faivre, L; Shimoda, Y; Watanabe, K; Bonneau, D; Rastam, M; Leboyer, M; Scherer, S W; Gillberg, C; Delorme, R; Cloëz-Tayarani, I; Bourgeron, T

    2017-04-01

    Contactin genes CNTN5 and CNTN6 code for neuronal cell adhesion molecules that promote neurite outgrowth in sensory-motor neuronal pathways. Mutations of CNTN5 and CNTN6 have previously been reported in individuals with autism spectrum disorders (ASDs), but very little is known on their prevalence and clinical impact. In this study, we identified CNTN5 and CNTN6 deleterious variants in individuals with ASD. Among the carriers, a girl with ASD and attention-deficit/hyperactivity disorder was carrying five copies of CNTN5. For CNTN6, both deletions (6/1534 ASD vs 1/8936 controls; P=0.00006) and private coding sequence variants (18/501 ASD vs 535/33480 controls; P=0.0005) were enriched in individuals with ASD. Among the rare CNTN6 variants, two deletions were transmitted by fathers diagnosed with ASD, one stop mutation CNTN6 W923X was transmitted by a mother to her two sons with ASD and one variant CNTN6 P770L was found de novo in a boy with ASD. Clinical investigations of the patients carrying CNTN5 or CNTN6 variants showed that they were hypersensitive to sounds (a condition called hyperacusis) and displayed changes in wave latency within the auditory pathway. These results reinforce the hypothesis of abnormal neuronal connectivity in the pathophysiology of ASD and shed new light on the genes that increase risk for abnormal sensory perception in ASD.

  4. Gene therapy restores auditory and vestibular function in a mouse model of Usher syndrome type 1c.

    Science.gov (United States)

    Pan, Bifeng; Askew, Charles; Galvin, Alice; Heman-Ackah, Selena; Asai, Yukako; Indzhykulian, Artur A; Jodelka, Francine M; Hastings, Michelle L; Lentz, Jennifer J; Vandenberghe, Luk H; Holt, Jeffrey R; Géléoc, Gwenaëlle S

    2017-03-01

    Because there are currently no biological treatments for hearing loss, we sought to advance gene therapy approaches to treat genetic deafness. We focused on Usher syndrome, a devastating genetic disorder that causes blindness, balance disorders and profound deafness, and studied a knock-in mouse model, Ush1c c.216G>A, for Usher syndrome type IC (USH1C). As restoration of complex auditory and balance function is likely to require gene delivery systems that target auditory and vestibular sensory cells with high efficiency, we delivered wild-type Ush1c into the inner ear of Ush1c c.216G>A mice using a synthetic adeno-associated viral vector, Anc80L65, shown to transduce 80-90% of sensory hair cells. We demonstrate recovery of gene and protein expression, restoration of sensory cell function, rescue of complex auditory function and recovery of hearing and balance behavior to near wild-type levels. The data represent unprecedented recovery of inner ear function and suggest that biological therapies to treat deafness may be suitable for translation to humans with genetic inner ear disorders.

  5. Lymphoproliferative disorders in non-AIDS associated Kaposi's ...

    African Journals Online (AJOL)

    The association of the non-AIDS-related, classic fonn of Kaposi's sarcoma (KS) with secondary malignancies, especially Iymphoproliferative disorders, has frequently been noted. However, in endemic: African-type KS, such an association has been reported only rarely. A review of 62 non-AIDS-related cases of KS treated ...

  6. Pip and pop : Non-spatial auditory signals improve spatial visual search

    NARCIS (Netherlands)

    Burg, E. van der; Olivers, C.N.L.; Bronkhorst, A.W.; Theeuwes, J.

    2008-01-01

    Searching for an object within a cluttered, continuously changing environment can be a very time-consuming process. The authors show that a simple auditory pip drastically decreases search times for a synchronized visual object that is normally very difficult to find. This effect occurs even though

  7. Diminished auditory sensory gating during active auditory verbal hallucinations.

    Science.gov (United States)

    Thoma, Robert J; Meier, Andrew; Houck, Jon; Clark, Vincent P; Lewine, Jeffrey D; Turner, Jessica; Calhoun, Vince; Stephen, Julia

    2017-10-01

    Auditory sensory gating, assessed in a paired-click paradigm, indicates the extent to which incoming stimuli are filtered, or "gated", in auditory cortex. Gating is typically computed as the ratio of the peak amplitude of the event related potential (ERP) to a second click (S2) divided by the peak amplitude of the ERP to a first click (S1). Higher gating ratios are purportedly indicative of incomplete suppression of S2 and considered to represent sensory processing dysfunction. In schizophrenia, hallucination severity is positively correlated with gating ratios, and it was hypothesized that a failure of sensory control processes early in auditory sensation (gating) may represent a larger system failure within the auditory data stream; resulting in auditory verbal hallucinations (AVH). EEG data were collected while patients (N=12) with treatment-resistant AVH pressed a button to indicate the beginning (AVH-on) and end (AVH-off) of each AVH during a paired click protocol. For each participant, separate gating ratios were computed for the P50, N100, and P200 components for each of the AVH-off and AVH-on states. AVH trait severity was assessed using the Psychotic Symptoms Rating Scales AVH Total score (PSYRATS). The results of a mixed model ANOVA revealed an overall effect for AVH state, such that gating ratios were significantly higher during the AVH-on state than during AVH-off for all three components. PSYRATS score was significantly and negatively correlated with N100 gating ratio only in the AVH-off state. These findings link onset of AVH with a failure of an empirically-defined auditory inhibition system, auditory sensory gating, and pave the way for a sensory gating model of AVH. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Effectiveness of auditory and tactile crossmodal cues in a dual-task visual and auditory scenario.

    Science.gov (United States)

    Hopkins, Kevin; Kass, Steven J; Blalock, Lisa Durrance; Brill, J Christopher

    2017-05-01

    In this study, we examined how spatially informative auditory and tactile cues affected participants' performance on a visual search task while they simultaneously performed a secondary auditory task. Visual search task performance was assessed via reaction time and accuracy. Tactile and auditory cues provided the approximate location of the visual target within the search display. The inclusion of tactile and auditory cues improved performance in comparison to the no-cue baseline conditions. In comparison to the no-cue conditions, both tactile and auditory cues resulted in faster response times in the visual search only (single task) and visual-auditory (dual-task) conditions. However, the effectiveness of auditory and tactile cueing for visual task accuracy was shown to be dependent on task-type condition. Crossmodal cueing remains a viable strategy for improving task performance without increasing attentional load within a singular sensory modality. Practitioner Summary: Crossmodal cueing with dual-task performance has not been widely explored, yet has practical applications. We examined the effects of auditory and tactile crossmodal cues on visual search performance, with and without a secondary auditory task. Tactile cues aided visual search accuracy when also engaged in a secondary auditory task, whereas auditory cues did not.

  9. [Speech and language disorders in children from public schools in Belo Horizonte].

    Science.gov (United States)

    Rabelo, Alessandra Terra Vasconcelos; Campos, Fernanda Rodrigues; Friche, Clarice Passos; da Silva, Bárbara Suelen Vasconcelos; de Lima Friche, Amélia Augusta; Alves, Claudia Regina Lindgren; de Figueiredo Goulart, Lúcia Maria Horta

    2015-12-01

    To investigate the prevalence of oral language, orofacial motor skill and auditory processing disorders in children aged 4-10 years old and verify their association with age and gender. Cross-sectional study with stratified, random sample consisting of 539 students. The evaluation consisted of three protocols: orofacial motor skill protocol, adapted from the Myofunctional Evaluation Guidelines; the Child Language Test ABFW--Phonology, and a simplified auditory processing evaluation. Descriptive and associative statistical analyses were performed using Epi Info software, release 6.04. Chi-square test was applied to compare proportion of events and analysis of variance was used to compare mean values. Significance was set at p≤0.05. Of the studied subjects, 50.1% had at least one of the assessed disorders; of those, 33.6% had oral language disorder, 17.1%, had orofacial motor skill impairment, and 27.3% had auditory processing disorder. There were significant associations between auditory processing skills' impairment, oral language impairment and age, suggesting a decrease in the number of disorders with increasing age. Similarly, the variable "one or more speech, language and hearing disorders" was also associated with age. The prevalence of speech, language and hearing disorders in children was high, indicating the need for research and public health efforts to cope with this problem. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  10. Psychotherapy for Borderline Personality Disorder: Progress and Remaining Challenges.

    Science.gov (United States)

    Links, Paul S; Shah, Ravi; Eynan, Rahel

    2017-03-01

    The main purpose of this review was to critically evaluate the literature on psychotherapies for borderline personality disorder (BPD) published over the past 5 years to identify the progress with remaining challenges and to determine priority areas for future research. A systematic review of the literature over the last 5 years was undertaken. The review yielded 184 relevant abstracts, and after applying inclusion criteria, 16 articles were fully reviewed based on the articles' implications for future research and/or clinical practice. Our review indicated that patients with various severities benefited from psychotherapy; more intensive therapies were not significantly superior to less intensive therapies; enhancing emotion regulation processes and fostering more coherent self-identity were important mechanisms of change; therapies had been extended to patients with BPD and posttraumatic stress disorder; and more research was needed to be directed at functional outcomes.

  11. Active auditory experience in infancy promotes brain plasticity in Theta and Gamma oscillations

    Directory of Open Access Journals (Sweden)

    Gabriella Musacchia

    2017-08-01

    Full Text Available Language acquisition in infants is driven by on-going neural plasticity that is acutely sensitive to environmental acoustic cues. Recent studies showed that attention-based experience with non-linguistic, temporally-modulated auditory stimuli sharpens cortical responses. A previous ERP study from this laboratory showed that interactive auditory experience via behavior-based feedback (AEx, over a 6-week period from 4- to 7-months-of-age, confers a processing advantage, compared to passive auditory exposure (PEx or maturation alone (Naïve Control, NC. Here, we provide a follow-up investigation of the underlying neural oscillatory patterns in these three groups. In AEx infants, Standard stimuli with invariant frequency (STD elicited greater Theta-band (4–6 Hz activity in Right Auditory Cortex (RAC, as compared to NC infants, and Deviant stimuli with rapid frequency change (DEV elicited larger responses in Left Auditory Cortex (LAC. PEx and NC counterparts showed less-mature bilateral patterns. AEx infants also displayed stronger Gamma (33–37 Hz activity in the LAC during DEV discrimination, compared to NCs, while NC and PEx groups demonstrated bilateral activity in this band, if at all. This suggests that interactive acoustic experience with non-linguistic stimuli can promote a distinct, robust and precise cortical pattern during rapid auditory processing, perhaps reflecting mechanisms that support fine-tuning of early acoustic mapping.

  12. Agnosia for accents in primary progressive aphasia☆

    Science.gov (United States)

    Fletcher, Phillip D.; Downey, Laura E.; Agustus, Jennifer L.; Hailstone, Julia C.; Tyndall, Marina H.; Cifelli, Alberto; Schott, Jonathan M.; Warrington, Elizabeth K.; Warren, Jason D.

    2013-01-01

    As an example of complex auditory signal processing, the analysis of accented speech is potentially vulnerable in the progressive aphasias. However, the brain basis of accent processing and the effects of neurodegenerative disease on this processing are not well understood. Here we undertook a detailed neuropsychological study of a patient, AA with progressive nonfluent aphasia, in whom agnosia for accents was a prominent clinical feature. We designed a battery to assess AA's ability to process accents in relation to other complex auditory signals. AA's performance was compared with a cohort of 12 healthy age and gender matched control participants and with a second patient, PA, who had semantic dementia with phonagnosia and prosopagnosia but no reported difficulties with accent processing. Relative to healthy controls, the patients showed distinct profiles of accent agnosia. AA showed markedly impaired ability to distinguish change in an individual's accent despite being able to discriminate phonemes and voices (apperceptive accent agnosia); and in addition, a severe deficit of accent identification. In contrast, PA was able to perceive changes in accents, phonemes and voices normally, but showed a relatively mild deficit of accent identification (associative accent agnosia). Both patients showed deficits of voice and environmental sound identification, however PA showed an additional deficit of face identification whereas AA was able to identify (though not name) faces normally. These profiles suggest that AA has conjoint (or interacting) deficits involving both apperceptive and semantic processing of accents, while PA has a primary semantic (associative) deficit affecting accents along with other kinds of auditory objects and extending beyond the auditory modality. Brain MRI revealed left peri-Sylvian atrophy in case AA and relatively focal asymmetric (predominantly right sided) temporal lobe atrophy in case PA. These cases provide further evidence for the

  13. Agnosia for accents in primary progressive aphasia.

    Science.gov (United States)

    Fletcher, Phillip D; Downey, Laura E; Agustus, Jennifer L; Hailstone, Julia C; Tyndall, Marina H; Cifelli, Alberto; Schott, Jonathan M; Warrington, Elizabeth K; Warren, Jason D

    2013-08-01

    As an example of complex auditory signal processing, the analysis of accented speech is potentially vulnerable in the progressive aphasias. However, the brain basis of accent processing and the effects of neurodegenerative disease on this processing are not well understood. Here we undertook a detailed neuropsychological study of a patient, AA with progressive nonfluent aphasia, in whom agnosia for accents was a prominent clinical feature. We designed a battery to assess AA's ability to process accents in relation to other complex auditory signals. AA's performance was compared with a cohort of 12 healthy age and gender matched control participants and with a second patient, PA, who had semantic dementia with phonagnosia and prosopagnosia but no reported difficulties with accent processing. Relative to healthy controls, the patients showed distinct profiles of accent agnosia. AA showed markedly impaired ability to distinguish change in an individual's accent despite being able to discriminate phonemes and voices (apperceptive accent agnosia); and in addition, a severe deficit of accent identification. In contrast, PA was able to perceive changes in accents, phonemes and voices normally, but showed a relatively mild deficit of accent identification (associative accent agnosia). Both patients showed deficits of voice and environmental sound identification, however PA showed an additional deficit of face identification whereas AA was able to identify (though not name) faces normally. These profiles suggest that AA has conjoint (or interacting) deficits involving both apperceptive and semantic processing of accents, while PA has a primary semantic (associative) deficit affecting accents along with other kinds of auditory objects and extending beyond the auditory modality. Brain MRI revealed left peri-Sylvian atrophy in case AA and relatively focal asymmetric (predominantly right sided) temporal lobe atrophy in case PA. These cases provide further evidence for the

  14. Systems-level organization of non-alcoholic fatty liver disease progression network

    Directory of Open Access Journals (Sweden)

    K. Shubham

    2017-10-01

    Full Text Available Non-Alcoholic Fatty Liver Disease (NAFLD is a hepatic metabolic disorder that is commonly associated with sedentary lifestyle and high fat diets. NAFLD is prevalent in individuals with obesity, insulin resistance and Type 2 Diabetes (T2D. The clinical spectrum of NAFLD ranges from simple steatosis to Non-Alcoholic Steatohepatitis (NASH with fibrosis, which can progress to cirrhosis and hepatocellular carcinoma.The pathogenesis of NAFLD is complex, involving crosstalk between multiple organs, cell-types, and environmental and genetic factors. Dysfunction of White Adipose Tissue (WAT plays a central role in the development of NAFLD and other metabolic disorders. WAT is an active endocrine organ that regulates whole-body energy homeostasis, lipid metabolism, insulin sensitivity and food intake by secreting biologically active molecules (lipokines, adipokines and cytokines. WAT dynamically reacts to nutrient excess or deprivation by remodelling the number (called hyperplasia and/or size (called hypertrophy of adipocytes to store fat or supply nutrients to other tissues by lipolysis, respectively. Adipose tissue remodelling is also accompanied by changes in the composition or function of stromal vascular cells and ECM. The major objective of our study was to identify and characterize the metabolic and signaling modules associated with the progression of NAFLD in the VAT. We performed Weighted Gene Co-expression Network Analysis (WGCNA to organize microarray data obtained from the VAT of patients at different stages of NAFLD into functional modules. In order to obtain insights into the metabolism and its regulation at the genome scale, a co-expression network of metabolic genes in the Human Metabolic Network (HMR2 was constructed and compared with the co-expression network constructed based on all the varying genes. We also used the prior network information on adipocyte metabolism (GEM to verify and extract reporter metabolites. Our analysis revealed

  15. Effects of auditory rhythm and music on gait disturbances in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Aidin eAshoori

    2015-11-01

    Full Text Available Gait abnormalities such as shuffling steps, start hesitation, and freezing are common and often incapacitating symptoms of Parkinson’s disease (PD and other parkinsonian disorders. Pharmacological and surgical approaches have only limited efficacy in treating these gait disorders. Rhythmic auditory stimulation (RAS, such as playing marching music or dance therapy, has been shown to be a safe, inexpensive, and an effective method in improving gait in PD patients. However, RAS that adapts to patients’ movements may be more effective than rigid, fixed-tempo RAS used in most studies. In addition to auditory cueing, immersive virtual reality technologies that utilize interactive computer-generated systems through wearable devices are increasingly used for improving brain-body interaction and sensory-motor integration. Using multisensory cues, these therapies may be particularly suitable for the treatment of parkinsonian freezing and other gait disorders. In this review, we examine the affected neurological circuits underlying gait and temporal processing in PD patients and summarize the current studies demonstrating the effects of RAS on improving these gait deficits.

  16. Effects of Age on the Auditory System and Process of Presbycusis in the Audiology Centers of Tehran

    Directory of Open Access Journals (Sweden)

    Zahra Jafari

    2007-10-01

    Full Text Available Objectives: Hearing loss is a major public health problem and has higher prevalence in elderly persons. Present study was conducted with the aim of characterizing age-related changes on audiometric thresholds and word discrimination ability of people with age range of 30 to 100 years. Methods & Materials: Hundred ninty persons (male 53.68% and female 46.32% in seven aged decades were studied from May 2005 to Oct 2007 in Tehran. Individuals who referred for auditory evaluation had concern regarding presence of a kind of hearing problem. Pure tone audiometry, word discrimination score and immittance audiometry were performed for those people who has no previous history of auditory impairment and/or experiencing hearing hazardous agents. Results: There was a significant reverse correlation between recording of acoustic reflexes with both age and hearing loss average. Loss of hearing sensitivity among seven aged decades was significant statistically. Hearing loss showed more decrement in men than women in all audiometric frequencies, and the difference between them was significant in higher frequencies. Decrease of word discrimination score with age growth was significant, and with 12.63% permanent tinnitus, 6.84% vertigo/dizziness and 4.21% history of hearing aid usage were reported in all individuals. Conclusion: Hearing sensitivity declines gradually and progressively with aging. Effects of hearing loss and some of it's associated disorders specially tinnitus and vertigo/ dizziness on degree of communication and quality of life in such individuals and higher prevalence in aged people reveals the necessity of scientific and executive programming for identification and treatment of auditory problems in such population.

  17. Neural Substrates of Auditory Emotion Recognition Deficits in Schizophrenia.

    Science.gov (United States)

    Kantrowitz, Joshua T; Hoptman, Matthew J; Leitman, David I; Moreno-Ortega, Marta; Lehrfeld, Jonathan M; Dias, Elisa; Sehatpour, Pejman; Laukka, Petri; Silipo, Gail; Javitt, Daniel C

    2015-11-04

    Deficits in auditory emotion recognition (AER) are a core feature of schizophrenia and a key component of social cognitive impairment. AER deficits are tied behaviorally to impaired ability to interpret tonal ("prosodic") features of speech that normally convey emotion, such as modulations in base pitch (F0M) and pitch variability (F0SD). These modulations can be recreated using synthetic frequency modulated (FM) tones that mimic the prosodic contours of specific emotional stimuli. The present study investigates neural mechanisms underlying impaired AER using a combined event-related potential/resting-state functional connectivity (rsfMRI) approach in 84 schizophrenia/schizoaffective disorder patients and 66 healthy comparison subjects. Mismatch negativity (MMN) to FM tones was assessed in 43 patients/36 controls. rsfMRI between auditory cortex and medial temporal (insula) regions was assessed in 55 patients/51 controls. The relationship between AER, MMN to FM tones, and rsfMRI was assessed in the subset who performed all assessments (14 patients, 21 controls). As predicted, patients showed robust reductions in MMN across FM stimulus type (p = 0.005), particularly to modulations in F0M, along with impairments in AER and FM tone discrimination. MMN source analysis indicated dipoles in both auditory cortex and anterior insula, whereas rsfMRI analyses showed reduced auditory-insula connectivity. MMN to FM tones and functional connectivity together accounted for ∼50% of the variance in AER performance across individuals. These findings demonstrate that impaired preattentive processing of tonal information and reduced auditory-insula connectivity are critical determinants of social cognitive dysfunction in schizophrenia, and thus represent key targets for future research and clinical intervention. Schizophrenia patients show deficits in the ability to infer emotion based upon tone of voice [auditory emotion recognition (AER)] that drive impairments in social cognition

  18. Attending to auditory memory.

    Science.gov (United States)

    Zimmermann, Jacqueline F; Moscovitch, Morris; Alain, Claude

    2016-06-01

    Attention to memory describes the process of attending to memory traces when the object is no longer present. It has been studied primarily for representations of visual stimuli with only few studies examining attention to sound object representations in short-term memory. Here, we review the interplay of attention and auditory memory with an emphasis on 1) attending to auditory memory in the absence of related external stimuli (i.e., reflective attention) and 2) effects of existing memory on guiding attention. Attention to auditory memory is discussed in the context of change deafness, and we argue that failures to detect changes in our auditory environments are most likely the result of a faulty comparison system of incoming and stored information. Also, objects are the primary building blocks of auditory attention, but attention can also be directed to individual features (e.g., pitch). We review short-term and long-term memory guided modulation of attention based on characteristic features, location, and/or semantic properties of auditory objects, and propose that auditory attention to memory pathways emerge after sensory memory. A neural model for auditory attention to memory is developed, which comprises two separate pathways in the parietal cortex, one involved in attention to higher-order features and the other involved in attention to sensory information. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Resource allocation models of auditory working memory.

    Science.gov (United States)

    Joseph, Sabine; Teki, Sundeep; Kumar, Sukhbinder; Husain, Masud; Griffiths, Timothy D

    2016-06-01

    Auditory working memory (WM) is the cognitive faculty that allows us to actively hold and manipulate sounds in mind over short periods of time. We develop here a particular perspective on WM for non-verbal, auditory objects as well as for time based on the consideration of possible parallels to visual WM. In vision, there has been a vigorous debate on whether WM capacity is limited to a fixed number of items or whether it represents a limited resource that can be allocated flexibly across items. Resource allocation models predict that the precision with which an item is represented decreases as a function of total number of items maintained in WM because a limited resource is shared among stored objects. We consider here auditory work on sequentially presented objects of different pitch as well as time intervals from the perspective of dynamic resource allocation. We consider whether the working memory resource might be determined by perceptual features such as pitch or timbre, or bound objects comprising multiple features, and we speculate on brain substrates for these behavioural models. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Effects of perceptual load and socially meaningful stimuli on crossmodal selective attention in Autism Spectrum Disorder and neurotypical samples.

    Science.gov (United States)

    Tyndall, Ian; Ragless, Liam; O'Hora, Denis

    2018-04-01

    The present study examined whether increasing visual perceptual load differentially affected both Socially Meaningful and Non-socially Meaningful auditory stimulus awareness in neurotypical (NT, n = 59) adults and Autism Spectrum Disorder (ASD, n = 57) adults. On a target trial, an unexpected critical auditory stimulus (CAS), either a Non-socially Meaningful ('beep' sound) or Socially Meaningful ('hi') stimulus, was played concurrently with the presentation of the visual task. Under conditions of low visual perceptual load both NT and ASD samples reliably noticed the CAS at similar rates (77-81%), whether the CAS was Socially Meaningful or Non-socially Meaningful. However, during high visual perceptual load NT and ASD participants reliably noticed the meaningful CAS (NT = 71%, ASD = 67%), but NT participants were unlikely to notice the Non-meaningful CAS (20%), whereas ASD participants reliably noticed it (80%), suggesting an inability to engage selective attention to ignore non-salient irrelevant distractor stimuli in ASD. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Predictive coding of visual-auditory and motor-auditory events: An electrophysiological study.

    Science.gov (United States)

    Stekelenburg, Jeroen J; Vroomen, Jean

    2015-11-11

    The amplitude of auditory components of the event-related potential (ERP) is attenuated when sounds are self-generated compared to externally generated sounds. This effect has been ascribed to internal forward modals predicting the sensory consequences of one's own motor actions. Auditory potentials are also attenuated when a sound is accompanied by a video of anticipatory visual motion that reliably predicts the sound. Here, we investigated whether the neural underpinnings of prediction of upcoming auditory stimuli are similar for motor-auditory (MA) and visual-auditory (VA) events using a stimulus omission paradigm. In the MA condition, a finger tap triggered the sound of a handclap whereas in the VA condition the same sound was accompanied by a video showing the handclap. In both conditions, the auditory stimulus was omitted in either 50% or 12% of the trials. These auditory omissions induced early and mid-latency ERP components (oN1 and oN2, presumably reflecting prediction and prediction error), and subsequent higher-order error evaluation processes. The oN1 and oN2 of MA and VA were alike in amplitude, topography, and neural sources despite that the origin of the prediction stems from different brain areas (motor versus visual cortex). This suggests that MA and VA predictions activate a sensory template of the sound in auditory cortex. This article is part of a Special Issue entitled SI: Prediction and Attention. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Influence of memory, attention, IQ and age on auditory temporal processing tests: preliminary study.

    Science.gov (United States)

    Murphy, Cristina Ferraz Borges; Zachi, Elaine Cristina; Roque, Daniela Tsubota; Ventura, Dora Selma Fix; Schochat, Eliane

    2014-01-01

    To investigate the existence of correlations between the performance of children in auditory temporal tests (Frequency Pattern and Gaps in Noise--GIN) and IQ, attention, memory and age measurements. Fifteen typically developing individuals between the ages of 7 to 12 years and normal hearing participated in the study. Auditory temporal processing tests (GIN and Frequency Pattern), as well as a Memory test (Digit Span), Attention tests (auditory and visual modality) and intelligence tests (RAVEN test of Progressive Matrices) were applied. Significant and positive correlation between the Frequency Pattern test and age variable were found, which was considered good (p<0.01, 75.6%). There were no significant correlations between the GIN test and the variables tested. Auditory temporal skills seem to be influenced by different factors: while the performance in temporal ordering skill seems to be influenced by maturational processes, the performance in temporal resolution was not influenced by any of the aspects investigated.

  3. Management of non-progressive dysarthria: practice patterns of speech and language therapists in the Republic of Ireland.

    Science.gov (United States)

    Conway, Aifric; Walshe, Margaret

    2015-01-01

    Dysarthria is a commonly acquired speech disorder. Rising numbers of people surviving stroke and traumatic brain injury (TBI) mean the numbers of people with non-progressive dysarthria are likely to increase, with increased challenges for speech and language therapists (SLTs), service providers and key stakeholders. The evidence base for assessment and intervention approaches with this population remains limited with clinical guidelines relying largely on clinical experience, expert opinion and limited research. Furthermore, there is currently little evidence on the practice behaviours of SLTs available. To investigate whether SLTs in the Republic of Ireland (ROI) vary in how they assess and manage adults with non-progressive dysarthria; to explore SLTs' use of the theoretical principles that influence therapeutic approaches; to identify challenges perceived by SLTs when working with adults with non-progressive dysarthria; and to determine SLTs' perceptions of further training needs. A 33-item survey questionnaire was devised and disseminated electronically via SurveyMonkey to SLTs working with non-progressive dysarthria in the ROI. SLTs were identified through e-mail lists for special-interest groups, SLT manager groups and general SLT mailing lists. A reminder e-mail was sent to all SLTs 3 weeks later following the initial e-mail containing the survey link. The survey remained open for 6 weeks. Questionnaire responses were analysed using descriptive statistics. Qualitative comments to open-ended questions were analysed through thematic analysis. Eighty SLTs responded to the survey. Sixty-seven of these completed the survey in full. SLTs provided both quantitative and qualitative data regarding their assessment and management practices in this area. Practice varied depending on the context of the SLT service, experience of SLTs and the resources available to them. Not all SLTs used principles such as motor programming or neural plasticity to direct clinical work

  4. Towards Clinical Application of Neurotrophic Factors to the Auditory Nerve; Assessment of Safety and Efficacy by a Systematic Review of Neurotrophic Treatments in Humans

    NARCIS (Netherlands)

    Bezdjian, Aren; Kraaijenga, Véronique J C; Ramekers, Dyan; Versnel, Huib; Thomeer, Hans G X M; Klis, Sjaak F L; Grolman, Wilko

    2016-01-01

    Animal studies have evidenced protection of the auditory nerve by exogenous neurotrophic factors. In order to assess clinical applicability of neurotrophic treatment of the auditory nerve, the safety and efficacy of neurotrophic therapies in various human disorders were systematically reviewed.

  5. Animal models for auditory streaming

    Science.gov (United States)

    Itatani, Naoya

    2017-01-01

    Sounds in the natural environment need to be assigned to acoustic sources to evaluate complex auditory scenes. Separating sources will affect the analysis of auditory features of sounds. As the benefits of assigning sounds to specific sources accrue to all species communicating acoustically, the ability for auditory scene analysis is widespread among different animals. Animal studies allow for a deeper insight into the neuronal mechanisms underlying auditory scene analysis. Here, we will review the paradigms applied in the study of auditory scene analysis and streaming of sequential sounds in animal models. We will compare the psychophysical results from the animal studies to the evidence obtained in human psychophysics of auditory streaming, i.e. in a task commonly used for measuring the capability for auditory scene analysis. Furthermore, the neuronal correlates of auditory streaming will be reviewed in different animal models and the observations of the neurons’ response measures will be related to perception. The across-species comparison will reveal whether similar demands in the analysis of acoustic scenes have resulted in similar perceptual and neuronal processing mechanisms in the wide range of species being capable of auditory scene analysis. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044022

  6. Abnormal auditory forward masking pattern in the brainstem response of individuals with Asperger syndrome

    Directory of Open Access Journals (Sweden)

    Johan Källstrand

    2010-05-01

    Full Text Available Johan Källstrand1, Olle Olsson2, Sara Fristedt Nehlstedt1, Mia Ling Sköld1, Sören Nielzén21SensoDetect AB, Lund, Sweden; 2Department of Clinical Neuroscience, Section of Psychiatry, Lund University, Lund, SwedenAbstract: Abnormal auditory information processing has been reported in individuals with autism spectrum disorders (ASD. In the present study auditory processing was investigated by recording auditory brainstem responses (ABRs elicited by forward masking in adults diagnosed with Asperger syndrome (AS. Sixteen AS subjects were included in the forward masking experiment and compared to three control groups consisting of healthy individuals (n = 16, schizophrenic patients (n = 16 and attention deficit hyperactivity disorder patients (n = 16, respectively, of matching age and gender. The results showed that the AS subjects exhibited abnormally low activity in the early part of their ABRs that distinctly separated them from the three control groups. Specifically, wave III amplitudes were significantly lower in the AS group than for all the control groups in the forward masking condition (P < 0.005, which was not the case in the baseline condition. Thus, electrophysiological measurements of ABRs to complex sound stimuli (eg, forward masking may lead to a better understanding of the underlying neurophysiology of AS. Future studies may further point to specific ABR characteristics in AS individuals that separate them from individuals diagnosed with other neurodevelopmental diseases.Keywords: asperger syndrome, auditory brainstem response, forward masking, psychoacoustics

  7. [Negative symptoms in patients with non schizophrenic psychiatric disorders].

    Science.gov (United States)

    Donnoli, Vicente F; Moroni, María V; Cohen, Diego; Chisari Rocha, Liliana; Marleta, María; Sepich Dalmeida, Tomás; Bonani, Matías; D'Alessio, Luciana

    2011-01-01

    The presence of negative symptoms (NS) in different clinical entities other than schizophrenia, with a dimensional approach of negative symptoms, was considered in this work. Determine the presence and distribution of NS, in a population of patients with non schizophrenic psychiatric disorders attending ambulatory treatment at public hospitals. Patients with define DSM IV diagnosis criteria for different disorders; affective, alimentary, substance abuse, anxiety, personality disorders and patients with ILAE diagnoses criteria for temporal lobe epilepsy were included. All patients underwent the subscale PANNS for negative symptoms of schizophrenia. Student T test was calculated to determine the differences of frequency for NS among psychiatric disorders. 106 patients were included; 60 women, 46 men, 38 years +/- 12.1. The 90% of patients have a low score of NS. Media 11.6, Max/min 9.38 -14.29. Emotional withdrawal and passive social withdrawal were more frequent in alimentary disorders than in affective disorder and than in epilepsy. Emotional withdrawal was more frequent in substance disorders than epilepsy. According this study, negative symptoms are present in a low to moderate intensity in non schizophrenic psychiatry entities and in the temporal lobe epilepsy.

  8. Category-specific responses to faces and objects in primate auditory cortex

    Directory of Open Access Journals (Sweden)

    Kari L Hoffman

    2008-03-01

    Full Text Available Auditory and visual signals often occur together, and the two sensory channels are known to infl uence each other to facilitate perception. The neural basis of this integration is not well understood, although other forms of multisensory infl uences have been shown to occur at surprisingly early stages of processing in cortex. Primary visual cortex neurons can show frequency-tuning to auditory stimuli, and auditory cortex responds selectively to certain somatosensory stimuli, supporting the possibility that complex visual signals may modulate early stages of auditory processing. To elucidate which auditory regions, if any, are responsive to complex visual stimuli, we recorded from auditory cortex and the superior temporal sulcus while presenting visual stimuli consisting of various objects, neutral faces, and facial expressions generated during vocalization. Both objects and conspecifi c faces elicited robust fi eld potential responses in auditory cortex sites, but the responses varied by category: both neutral and vocalizing faces had a highly consistent negative component (N100 followed by a broader positive component (P180 whereas object responses were more variable in time and shape, but could be discriminated consistently from the responses to faces. The face response did not vary within the face category, i.e., for expressive vs. neutral face stimuli. The presence of responses for both objects and neutral faces suggests that auditory cortex receives highly informative visual input that is not restricted to those stimuli associated with auditory components. These results reveal selectivity for complex visual stimuli in a brain region conventionally described as non-visual unisensory cortex.

  9. Auditory Temporal Processing and Working Memory: Two Independent Deficits for Dyslexia

    Science.gov (United States)

    Fostick, Leah; Bar-El, Sharona; Ram-Tsur, Ronit

    2012-01-01

    Dyslexia is a neuro-cognitive disorder with a strong genetic basis, characterized by a difficulty in acquiring reading skills. Several hypotheses have been suggested in an attempt to explain the origin of dyslexia, among which some have suggested that dyslexic readers might have a deficit in auditory temporal processing, while others hypothesized…

  10. Effects of Canon chord progression on brain activity and motivation are dependent on subjective feelings, not the chord progression per se

    Directory of Open Access Journals (Sweden)

    Kayashima Y

    2017-06-01

    Full Text Available Yoshinori Kayashima,1,2,* Kazuhiko Yamamuro,1,* Manabu Makinodan,1 Yoko Nakanishi,1 Akio Wanaka,2 Toshifumi Kishimoto1 1Department of Psychiatry, 2Department of Anatomy and Neuroscience, Nara Medical University School of Medicine, Kashihara, Japan *These authors contributed equally to this work Abstract: A number of studies have indicated that relaxing and pleasant melodies are useful for the treatment of patients with psychiatric disorders, including schizophrenia, depression, and dementia. However, few studies have investigated what constitutive elements of the music had an effect on brain activity. As Canon chord progression is one of critical elements for pleasant melodies, we sought to examine the effects of Canon chord progression and pitch-shifted Canon chord progression on brain activity using performance on the auditory oddball task during event-related potentials (ERPs in 30 healthy subjects. Unexpectedly, we found no differences in ERP components between subjects listening to Canon chord progression (n=15 or pitch-shifted Canon chord progression (n=15. Next, we divided participants into two groups: those who found the melody pleasant (n=17 and those who did not (n=13, for both Canon chord progression and pitch-shifted Canon chord progression. The average of P300 amplitude was higher at Fz in subjects found the music pleasant versus those finding it unpleasant. Moreover, subjects who found it pleasant exhibited higher motivation scores than those who felt it was unpleasant, whereas listening to Canon chord progression did not matter. These findings suggest that the effects of Canon chord progression on brain activity and motivation depend on subjective feelings, not the chord progression per se. Keywords: music, Canon chord progression, motivation, event-related potential, subjective feelings 

  11. How musical expertise shapes speech perception: evidence from auditory classification images.

    Science.gov (United States)

    Varnet, Léo; Wang, Tianyun; Peter, Chloe; Meunier, Fanny; Hoen, Michel

    2015-09-24

    It is now well established that extensive musical training percolates to higher levels of cognition, such as speech processing. However, the lack of a precise technique to investigate the specific listening strategy involved in speech comprehension has made it difficult to determine how musicians' higher performance in non-speech tasks contributes to their enhanced speech comprehension. The recently developed Auditory Classification Image approach reveals the precise time-frequency regions used by participants when performing phonemic categorizations in noise. Here we used this technique on 19 non-musicians and 19 professional musicians. We found that both groups used very similar listening strategies, but the musicians relied more heavily on the two main acoustic cues, at the first formant onset and at the onsets of the second and third formants onsets. Additionally, they responded more consistently to stimuli. These observations provide a direct visualization of auditory plasticity resulting from extensive musical training and shed light on the level of functional transfer between auditory processing and speech perception.

  12. Pigmentary retinopathy due to Bardet-Biedl syndrome: case report and literature review Retinopatia pigmentar devido a síndrome de Bardet-Biedl: relato de caso e revisão da literatura

    Directory of Open Access Journals (Sweden)

    Luis Jesuino de Oliveira Andrade

    2009-10-01

    Full Text Available Bardet-Biedl syndrome (BBS is a rare autosomal recessive disorder with clinical and genetic heterogeneity. This syndrome was first described by Laurence and Moon in 1866 and additional cases were described by Bardet and Biedl between 1920 and 1922. The main features are obesity, polydactyly, pigmentary retinopathy, learning disabilities, various degrees of intellectual impairment, hypogonadism, and renal abnormalities. Bardet-Biedl syndrome is both phenotypically and genetically heterogeneous. Clinical diagnosis is based on the presence of 4 of the 5 cardinal features. The authors present a typical case of pigmentary retinopathy due to Bardet-Biedl syndrome and made a brief commentary about the disease's cardinal manifestations.A síndrome de Bardet-Biedl (BBS é uma desordem autossômica recessiva rara, com heterogeneidade clínica e genética. Esta síndrome foi descrita pela primeira vez por Laurence e Moon em 1866 e outros casos foram descritos por Bardet e Biedl entre 1920 e 1922. As principais características são obesidade, polidactilia, retinopatia pigmentar, dificuldades de aprendizagem, graus de deficiência intelectual diversos, hipogonadismo e anomalias renais. Síndrome de Bardet-Biedl é fenotipicamente e geneticamente heterogêneos. O diagnóstico clínico baseia-se na presença de quatro dos cinco sinais principais da síndrome. Os autores apresentam um caso típico de retinopatia pigmentar devido à síndrome de Bardet-Biedl e fazem uma breve revisão sobre as manifestações da síndrome com especial atenção à retinopatia pigmentar.

  13. Familiar auditory sensory training in chronic traumatic brain injury: a case study.

    Science.gov (United States)

    Sullivan, Emily Galassi; Guernon, Ann; Blabas, Brett; Herrold, Amy A; Pape, Theresa L-B

    2018-04-01

    The evaluation and treatment for patients with prolonged periods of seriously impaired consciousness following traumatic brain injury (TBI), such as a vegetative or minimally conscious state, poses considerable challenges, particularly in the chronic phases of recovery. This blinded crossover study explored the effects of familiar auditory sensory training (FAST) compared with a sham stimulation in a patient seven years post severe TBI. Baseline data were collected over 4 weeks to account for variability in status with neurobehavioral measures, including the Disorders of Consciousness scale (DOCS), Coma Near Coma scale (CNC), and Consciousness Screening Algorithm. Pre-stimulation neurophysiological assessments were completed as well, namely Brainstem Auditory Evoked Potentials (BAEP) and Somatosensory Evoked Potentials (SSEP). Results revealed that a significant improvement in the DOCS neurobehavioral findings after FAST, which was not maintained during the sham. BAEP findings also improved with maintenance of these improvements following sham stimulation as evidenced by repeat testing. The results emphasize the importance for continued evaluation and treatment of individuals in chronic states of seriously impaired consciousness with a variety of tools. Further study of auditory stimulation as a passive treatment paradigm for this population is warranted. Implications for Rehabilitation Clinicians should be equipped with treatment options to enhance neurobehavioral improvements when traditional treatment methods fail to deliver or maintain functional behavioral changes. Routine assessment is crucial to detect subtle changes in neurobehavioral function even in chronic states of disordered consciousness and determine potential preserved cognitive abilities that may not be evident due to unreliable motor responses given motoric impairments. Familiar Auditory Stimulation Training (FAST) is an ideal passive stimulation that can be supplied by families, allied health

  14. Human-Avatar Symbiosis for the Treatment of Auditory Verbal Hallucinations in Schizophrenia through Virtual/Augmented Reality and Brain-Computer Interfaces.

    Science.gov (United States)

    Fernández-Caballero, Antonio; Navarro, Elena; Fernández-Sotos, Patricia; González, Pascual; Ricarte, Jorge J; Latorre, José M; Rodriguez-Jimenez, Roberto

    2017-01-01

    This perspective paper faces the future of alternative treatments that take advantage of a social and cognitive approach with regards to pharmacological therapy of auditory verbal hallucinations (AVH) in patients with schizophrenia. AVH are the perception of voices in the absence of auditory stimulation and represents a severe mental health symptom. Virtual/augmented reality (VR/AR) and brain computer interfaces (BCI) are technologies that are growing more and more in different medical and psychological applications. Our position is that their combined use in computer-based therapies offers still unforeseen possibilities for the treatment of physical and mental disabilities. This is why, the paper expects that researchers and clinicians undergo a pathway toward human-avatar symbiosis for AVH by taking full advantage of new technologies. This outlook supposes to address challenging issues in the understanding of non-pharmacological treatment of schizophrenia-related disorders and the exploitation of VR/AR and BCI to achieve a real human-avatar symbiosis.

  15. Consciousness in Non-Epileptic Attack Disorder

    OpenAIRE

    Reuber, M.; Kurthen, M.

    2011-01-01

    Non-epileptic attack disorder (NEAD) is one of the most important differential diagnoses of epilepsy. Impairment of\\ud consciousness is the key feature of non-epileptic attacks (NEAs). The first half of this review summarises the clinical research\\ud literature featuring observations relating to consciousness in NEAD. The second half places this evidence in the wider context\\ud of the recent discourse on consciousness in neuroscience and the philosophy of mind. We argue that studies of consci...

  16. Chromosomal imbalance in the progression of high-risk non-muscle invasive bladder cancer

    International Nuclear Information System (INIS)

    Zieger, Karsten; Wiuf, Carsten; Jensen, Klaus Møller-Ernst; Ørntoft, Torben Falck; Dyrskjøt, Lars

    2009-01-01

    Non-muscle invasive bladder neoplasms with invasion of the lamina propria (stage T1) or high grade of dysplasia are at 'high risk' of progression to life-threatening cancer. However, the individual course is difficult to predict. Chromosomal instability (CI) is associated with high tumor stage and grade, and possibly with the risk of progression. To investigate the relationship between CI and subsequent disease progression, we performed a case-control-study of 125 patients with 'high-risk' non-muscle invasive bladder neoplasms, 67 with later disease progression, and 58 with no progression. Selection criteria were conservative (non-radical) resections and full prospective clinical follow-up (> 5 years). We investigated primary lesions in 59, and recurrent lesions in 66 cases. We used Affymetrix GeneChip ® Mapping 10 K and 50 K SNP microarrays to evaluate genome wide chromosomal imbalance (loss-of-heterozygosity and DNA copy number changes) in 48 representative tumors. DNA copy number changes of 15 key instability regions were further investigated using QPCR in 101 tumors (including 25 tumors also analysed on 50 K SNP microarrays). Chromosomal instability did not predict any higher risk of subsequent progression. Stage T1 and high-grade tumors had generally more unstable genomes than tumors of lower stage and grade (mostly non-primary tumors following a 'high-risk' tumor). However, about 25% of the 'high-risk' tumors had very few alterations. This was independent of subsequent progression. Recurrent lesions represent underlying field disease. A separate analysis of these lesions did neither reflect any difference in the risk of progression. Of specific chromosomal alterations, a possible association between loss of chromosome 8p11 and the risk of progression was found. However, the predictive value was limited by the heterogeneity of the changes. Chromosomal instability (CI) was associated with 'high risk' tumors

  17. Pigmentary traits, family history of melanoma and the risk of endometriosis: a cohort study of US women.

    Science.gov (United States)

    Kvaskoff, Marina; Han, Jiali; Qureshi, Abrar A; Missmer, Stacey A

    2014-02-01

    Endometriosis has been associated with a higher risk of cutaneous melanoma, but the mechanisms underlying this association are unknown.Some constitutional factors known to influence melanoma risk have been associated with endometriosis in some retrospective studies. However, prospective data are scarce, and more research is needed to confirm this potentially novel endometriosis risk profile. To investigate the relationships between pigmentary traits, family history of melanoma and endometriosis risk, we analysed data from the Nurses’ Health Study II, a cohort of 116 430 female US nurses aged 25–42 years at inclusion in 1989. Data were collected every 2 years with 20 years of follow-up for these analyses. We used Cox proportional hazards regression models to compute relative risks(RRs) and 95% confidence intervals (CIs). During 1 212 499 woman-years of follow-up, 4763 cases of laparoscopically-confirmed endometriosis were reported among premenopausal Caucasian women. Endometriosis risk was increased with presence of naevi on the lower legs (RR=1.08, 95% CI=1.021.14) and higher level of skin’s burning reaction to sun exposure in childhood/adolescence (‘burn with blisters’: RR=1.20,95% CI=1.061.36) compared with ‘practically none’;P(trend)=0.0006) and family history of melanoma (RR=1.13, 95%CI=1.011.26). This assessment reports modest associations between several pigmentary traits, family history of melanoma and endometriosis risk,corroborating the results from previous retrospective studies. Our findings call for further research to better understand the mechanisms under lying these associations.

  18. Central auditory processing and migraine: a controlled study.

    Science.gov (United States)

    Agessi, Larissa Mendonça; Villa, Thaís Rodrigues; Dias, Karin Ziliotto; Carvalho, Deusvenir de Souza; Pereira, Liliane Desgualdo

    2014-11-08

    This study aimed to verify and compare central auditory processing (CAP) performance in migraine with and without aura patients and healthy controls. Forty-one volunteers of both genders, aged between 18 and 40 years, diagnosed with migraine with and without aura by the criteria of "The International Classification of Headache Disorders" (ICDH-3 beta) and a control group of the same age range and with no headache history, were included. Gaps-in-noise (GIN), Duration Pattern test (DPT) and Dichotic Digits Test (DDT) tests were used to assess central auditory processing performance. The volunteers were divided into 3 groups: Migraine with aura (11), migraine without aura (15), and control group (15), matched by age and schooling. Subjects with aura and without aura performed significantly worse in GIN test for right ear (p = .006), for left ear (p = .005) and for DPT test (p UNIFESP.

  19. Improvement of auditory hallucinations and reduction of primary auditory area's activation following TMS

    International Nuclear Information System (INIS)

    Giesel, Frederik L.; Mehndiratta, Amit; Hempel, Albrecht; Hempel, Eckhard; Kress, Kai R.; Essig, Marco; Schröder, Johannes

    2012-01-01

    Background: In the present case study, improvement of auditory hallucinations following transcranial magnetic stimulation (TMS) therapy was investigated with respect to activation changes of the auditory cortices. Methods: Using functional magnetic resonance imaging (fMRI), activation of the auditory cortices was assessed prior to and after a 4-week TMS series of the left superior temporal gyrus in a schizophrenic patient with medication-resistant auditory hallucinations. Results: Hallucinations decreased slightly after the third and profoundly after the fourth week of TMS. Activation in the primary auditory area decreased, whereas activation in the operculum and insula remained stable. Conclusions: Combination of TMS and repetitive fMRI is promising to elucidate the physiological changes induced by TMS.

  20. [Role of laser peripheral iridotomy in pigmentary glaucoma and pigment dispersion syndrome: A review of the literature [French version

    Science.gov (United States)

    Buffault, J; Leray, B; Bouillot, A; Baudouin, C; Labbé, A

    2017-12-01

    Pigment dispersion syndrome (PSD) is characterized by a structural abnormality of the posterior surface of the iris causing contact with the zonular fibers. It can lead to an open-angle glaucoma secondary to pigment dispersion into the trabecular meshwork. Laser peripheral iridotomy (PI) has been proposed as a treatment for pigmentary glaucoma (PG) and pigment dispersion syndrome (PDS) by reducing the dispersion of pigment. The goal of this review was to assess the effects of PI for PSD and PG. We included six randomized controlled trials and two cohort studies (286 eyes of 218 participants). Four trials included participants with PG, and 4 trials enrolled participants with PSD with or without elevated intraocular pressure (IOP). Among patients with PG, at an average of 9 months of follow-up, the mean difference in IOP between groups was 2.69mmHg less in the PI group (95 % CI: -6.05 to 0.67; 14 eyes). In patients with PDS, the average IOP was statistically lower after PI as compared to baseline (Student test, t=11.49, P<0.01). With regard to visual field progression in participants with GP, after an average follow-up of 28 months, the risk of progression was not influenced by PI (RR 1.00 95 %: CI 0.16 to 6.25; 32 eyes). No trials that enrolled patients with PSD showed a diminution of the risk of glaucoma conversion at mid- and long-term. PI decreases the biomechanical factor causing contact between the iris and zonular fibers and may lower IOP over the long-term. Nevertheless, the effects of PI on visual field changes or progression have not been established in PG and PDS. There is no scientific evidence as of yet to advocate PI as a treatment for PDS or PG. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Method for Dissecting the Auditory Epithelium (Basilar Papilla) in Developing Chick Embryos.

    Science.gov (United States)

    Levic, Snezana; Yamoah, Ebenezer N

    2016-01-01

    Chickens are an invaluable model for exploring auditory physiology. Similar to humans, the chicken inner ear is morphologically and functionally close to maturity at the time of hatching. In contrast, chicks can regenerate hearing, an ability lost in all mammals, including humans. The extensive morphological, physiological, behavioral, and pharmacological data available, regarding normal development in the chicken auditory system, has driven the progress of the field. The basilar papilla is an attractive model system to study the developmental mechanisms of hearing. Here, we describe the dissection technique for isolating the basilar papilla in developing chick inner ear. We also provide detailed examples of physiological (patch clamping) experiments using this preparation.

  2. Progress in studies of the reciprocal interaction between sleep disorders and Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    LIU Zhen-yu

    2013-06-01

    Full Text Available Alzheimer's disease (AD is a common neurodegenerative disease in the elderly, and is the most common cause of dementia. Epidemiological studies have discovered that, 44% of patients with AD are associated with sleep disorders and (or circadian rhythm disorders. Now there are growing evidences indicating that interstitial fluid amyloid-β protein (A β levels exhibit circadian rhythm fluctuation, and sleep disorders will accelerate the process of Aβ deposition, which may act as a risk factor of AD, suggesting the possible reciprocal interaction between sleep disorders and AD. The mechanism is not yet completely clear. Sleep disorders may be related with the impairments of both sleep-wake regulating system, circadian rhythm regulating system and the change of zeitgeber in AD. Sleep disorders would affect neuronal activity, neurotransmitter secretion, and as a stressor affecting A β processing and metabolism, thus accelerate the pathological process of AD. This paper reviewed the progress in the studies of reciprocal interaction between sleep disorders and Alzheimer's disease and the possible mechanisms.

  3. Central auditory processing disorder (CAPD tests in a school-age hearing screening programme – analysis of 76,429 children

    Directory of Open Access Journals (Sweden)

    Piotr H. Skarzynski

    2015-02-01

    Full Text Available [b]Introduction and objective[/b]. Hearing disorders among school-age children are a current concern. Continuing studies have been performed in Poland since 2008, and on 2 December 2011 the EU Council adopted Conclusions on the Early Detection and Treatment of Communication Disorders in Children, Including the Use of e-Health Tools and innovative Solutions. The discussion now focuses not only on the efficacy of hearing screening programmes in schoolchildren, but what should be its general aim and what tests it should include? This paper makes the case that it is important to include central auditory processing disorder (CAPD tests. One such test is the dichotic digits test (DDT. The aim of the presented study was to evaluate the usefulness of the DDT in detecting central hearing disorders in school-age children. [b]Materials and methods[/b]. During hearing screening programmes conducted in Poland in 2008–2010, exactly 235,664 children (7–12-years-old were screened in 9,325 schools. Of this number, 7,642 were examined using the DDT test for CAPD. Screening programmes were conducted using the Sense Examination Platform. [b]Results.[/b] With the cut-off criterion set at the 5th percentile, results for the DDT applied in a divided attention mode were 11.4% positive for 7-year-olds and 11.3% for 12-year-olds. In the focused attention mode, the comparable result for 12-year-olds was 9.7%. There was a clear right ear advantage. In children with positive DDT results, a higher incidence of other disorders, such as dyslexia, was observed. [b]Conclusions[/b]. A test for CAPD should be included in the hearing screening of school-age children. The results of this study form the basis for developing Polish standards in this area.

  4. Large-Scale Analysis of Auditory Segregation Behavior Crowdsourced via a Smartphone App.

    Science.gov (United States)

    Teki, Sundeep; Kumar, Sukhbinder; Griffiths, Timothy D

    2016-01-01

    The human auditory system is adept at detecting sound sources of interest from a complex mixture of several other simultaneous sounds. The ability to selectively attend to the speech of one speaker whilst ignoring other speakers and background noise is of vital biological significance-the capacity to make sense of complex 'auditory scenes' is significantly impaired in aging populations as well as those with hearing loss. We investigated this problem by designing a synthetic signal, termed the 'stochastic figure-ground' stimulus that captures essential aspects of complex sounds in the natural environment. Previously, we showed that under controlled laboratory conditions, young listeners sampled from the university subject pool (n = 10) performed very well in detecting targets embedded in the stochastic figure-ground signal. Here, we presented a modified version of this cocktail party paradigm as a 'game' featured in a smartphone app (The Great Brain Experiment) and obtained data from a large population with diverse demographical patterns (n = 5148). Despite differences in paradigms and experimental settings, the observed target-detection performance by users of the app was robust and consistent with our previous results from the psychophysical study. Our results highlight the potential use of smartphone apps in capturing robust large-scale auditory behavioral data from normal healthy volunteers, which can also be extended to study auditory deficits in clinical populations with hearing impairments and central auditory disorders.

  5. Large-Scale Analysis of Auditory Segregation Behavior Crowdsourced via a Smartphone App.

    Directory of Open Access Journals (Sweden)

    Sundeep Teki

    Full Text Available The human auditory system is adept at detecting sound sources of interest from a complex mixture of several other simultaneous sounds. The ability to selectively attend to the speech of one speaker whilst ignoring other speakers and background noise is of vital biological significance-the capacity to make sense of complex 'auditory scenes' is significantly impaired in aging populations as well as those with hearing loss. We investigated this problem by designing a synthetic signal, termed the 'stochastic figure-ground' stimulus that captures essential aspects of complex sounds in the natural environment. Previously, we showed that under controlled laboratory conditions, young listeners sampled from the university subject pool (n = 10 performed very well in detecting targets embedded in the stochastic figure-ground signal. Here, we presented a modified version of this cocktail party paradigm as a 'game' featured in a smartphone app (The Great Brain Experiment and obtained data from a large population with diverse demographical patterns (n = 5148. Despite differences in paradigms and experimental settings, the observed target-detection performance by users of the app was robust and consistent with our previous results from the psychophysical study. Our results highlight the potential use of smartphone apps in capturing robust large-scale auditory behavioral data from normal healthy volunteers, which can also be extended to study auditory deficits in clinical populations with hearing impairments and central auditory disorders.

  6. [Presbycusis: neural degeneration and aging on the auditory receptor of C57/BL6J mice].

    Science.gov (United States)

    Castillo, E; Carricondo, F; Bartolomé, M V; Vicente-Torres, A; Poch Broto, J; Gil-Loyzaga, P

    2006-11-01

    Presbycusis is a progressive hearing impairment associated with aging, characterized by hearing loss and a degeneration of cochlear structures. In this paper we analyze the effects of aging on the auditory system of C57/BL6J mice, with electrophysiological and morphological studies. With this aim the auditory potentials of mice aging 1, 3, 6, 9, 12, 15, 18, 21 and 24 months were recorded, and then the morphology of the cochleal were analyzed. Auditory potentials revealed an increase in wave latencies, as well as a decrease in their amplitudes during aging. Morphological results showed a total Corti's organ degeneration, being replaced by a flat epithelial layer, and a total absence of hair cells.

  7. Identification of a Novel De Novo Variant in the PAX3 Gene in Waardenburg Syndrome by Diagnostic Exome Sequencing: The First Molecular Diagnosis in Korea.

    Science.gov (United States)

    Jang, Mi-Ae; Lee, Taeheon; Lee, Junnam; Cho, Eun-Hae; Ki, Chang-Seok

    2015-05-01

    Waardenburg syndrome (WS) is a clinically and genetically heterogeneous hereditary auditory pigmentary disorder characterized by congenital sensorineural hearing loss and iris discoloration. Many genes have been linked to WS, including PAX3, MITF, SNAI2, EDNRB, EDN3, and SOX10, and many additional genes have been associated with disorders with phenotypic overlap with WS. To screen all possible genes associated with WS and congenital deafness simultaneously, we performed diagnostic exome sequencing (DES) in a male patient with clinical features consistent with WS. Using DES, we identified a novel missense variant (c.220C>G; p.Arg74Gly) in exon 2 of the PAX3 gene in the patient. Further analysis by Sanger sequencing of the patient and his parents revealed a de novo occurrence of the variant. Our findings show that DES can be a useful tool for the identification of pathogenic gene variants in WS patients and for differentiation between WS and similar disorders. To the best of our knowledge, this is the first report of genetically confirmed WS in Korea.

  8. Differential coding of conspecific vocalizations in the ventral auditory cortical stream.

    Science.gov (United States)

    Fukushima, Makoto; Saunders, Richard C; Leopold, David A; Mishkin, Mortimer; Averbeck, Bruno B

    2014-03-26

    The mammalian auditory cortex integrates spectral and temporal acoustic features to support the perception of complex sounds, including conspecific vocalizations. Here we investigate coding of vocal stimuli in different subfields in macaque auditory cortex. We simultaneously measured auditory evoked potentials over a large swath of primary and higher order auditory cortex along the supratemporal plane in three animals chronically using high-density microelectrocorticographic arrays. To evaluate the capacity of neural activity to discriminate individual stimuli in these high-dimensional datasets, we applied a regularized multivariate classifier to evoked potentials to conspecific vocalizations. We found a gradual decrease in the level of overall classification performance along the caudal to rostral axis. Furthermore, the performance in the caudal sectors was similar across individual stimuli, whereas the performance in the rostral sectors significantly differed for different stimuli. Moreover, the information about vocalizations in the caudal sectors was similar to the information about synthetic stimuli that contained only the spectral or temporal features of the original vocalizations. In the rostral sectors, however, the classification for vocalizations was significantly better than that for the synthetic stimuli, suggesting that conjoined spectral and temporal features were necessary to explain differential coding of vocalizations in the rostral areas. We also found that this coding in the rostral sector was carried primarily in the theta frequency band of the response. These findings illustrate a progression in neural coding of conspecific vocalizations along the ventral auditory pathway.

  9. Auditory Perspective Taking

    National Research Council Canada - National Science Library

    Martinson, Eric; Brock, Derek

    2006-01-01

    .... From this knowledge of another's auditory perspective, a conversational partner can then adapt his or her auditory output to overcome a variety of environmental challenges and insure that what is said is intelligible...

  10. Bilateral Alternating Auditory Stimulations Facilitate Fear Extinction and Retrieval

    OpenAIRE

    Boukezzi, Sarah; Silva, Catarina; Nazarian, Bruno; Rousseau, Pierre-François; Guedj, Eric; Valenzuela-Moguillansky, Camila; Khalfa, Stéphanie

    2017-01-01

    Disruption of fear conditioning, its extinction and its retrieval are at the core of posttraumatic stress disorder (PTSD). Such deficits, especially fear extinction delay, disappear after alternating bilateral stimulations (BLS) during eye movement desensitization and reprocessing (EMDR) therapy. An animal model of fear recovery, based on auditory cued fear conditioning and extinction learning, recently showed that BLS facilitate fear extinction and fear extinction retrieval. Our goal was to ...

  11. Impairments in musical abilities reflected in the auditory brainstem: evidence from congenital amusia.

    Science.gov (United States)

    Lehmann, Alexandre; Skoe, Erika; Moreau, Patricia; Peretz, Isabelle; Kraus, Nina

    2015-07-01

    Congenital amusia is a neurogenetic condition, characterized by a deficit in music perception and production, not explained by hearing loss, brain damage or lack of exposure to music. Despite inferior musical performance, amusics exhibit normal auditory cortical responses, with abnormal neural correlates suggested to lie beyond auditory cortices. Here we show, using auditory brainstem responses to complex sounds in humans, that fine-grained automatic processing of sounds is impoverished in amusia. Compared with matched non-musician controls, spectral amplitude was decreased in amusics for higher harmonic components of the auditory brainstem response. We also found a delayed response to the early transient aspects of the auditory stimulus in amusics. Neural measures of spectral amplitude and response timing correlated with participants' behavioral assessments of music processing. We demonstrate, for the first time, that amusia affects how complex acoustic signals are processed in the auditory brainstem. This neural signature of amusia mirrors what is observed in musicians, such that the aspects of the auditory brainstem responses that are enhanced in musicians are degraded in amusics. By showing that gradients of music abilities are reflected in the auditory brainstem, our findings have implications not only for current models of amusia but also for auditory functioning in general. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Mutism and auditory agnosia due to bilateral insular damage--role of the insula in human communication.

    Science.gov (United States)

    Habib, M; Daquin, G; Milandre, L; Royere, M L; Rey, M; Lanteri, A; Salamon, G; Khalil, R

    1995-03-01

    We report a case of transient mutism and persistent auditory agnosia due to two successive ischemic infarcts mainly involving the insular cortex on both hemispheres. During the 'mutic' period, which lasted about 1 month, the patient did not respond to any auditory stimuli and made no effort to communicate. On follow-up examinations, language competences had re-appeared almost intact, but a massive auditory agnosia for non-verbal sounds was observed. From close inspection of lesion site, as determined with brain resonance imaging, and from a study of auditory evoked potentials, it is concluded that bilateral insular damage was crucial to both expressive and receptive components of the syndrome. The role of the insula in verbal and non-verbal communication is discussed in the light of anatomical descriptions of the pattern of connectivity of the insular cortex.

  13. Spectrally tuned structural and pigmentary coloration of birdwing butterfly wing scales.

    Science.gov (United States)

    Wilts, Bodo D; Matsushita, Atsuko; Arikawa, Kentaro; Stavenga, Doekele G

    2015-10-06

    The colourful wing patterns of butterflies play an important role for enhancing fitness; for instance, by providing camouflage, for interspecific mate recognition, or for aposematic display. Closely related butterfly species can have dramatically different wing patterns. The phenomenon is assumed to be caused by ecological processes with changing conditions, e.g. in the environment, and also by sexual selection. Here, we investigate the birdwing butterflies, Ornithoptera, the largest butterflies of the world, together forming a small genus in the butterfly family Papilionidae. The wings of these butterflies are marked by strongly coloured patches. The colours are caused by specially structured wing scales, which act as a chirped multilayer reflector, but the scales also contain papiliochrome pigments, which act as a spectral filter. The combined structural and pigmentary effects tune the coloration of the wing scales. The tuned colours are presumably important for mate recognition and signalling. By applying electron microscopy, (micro-)spectrophotometry and scatterometry we found that the various mechanisms of scale coloration of the different birdwing species strongly correlate with the taxonomical distribution of Ornithoptera species. © 2015 The Author(s).

  14. Profiles of Types of Central Auditory Processing Disorders in Children with Learning Disabilities.

    Science.gov (United States)

    Musiek, Frank E.; And Others

    1985-01-01

    The article profiles five cases of children (8-17 years old) with learning disabilities and auditory processing problems. Possible correlations between the presumed etiology and the unique audiological pattern on the central test battery are analyzed. (Author/CL)

  15. Effects of sleep disorders on the non-motor symptoms of Parkinson disease.

    Science.gov (United States)

    Neikrug, Ariel B; Maglione, Jeanne E; Liu, Lianqi; Natarajan, Loki; Avanzino, Julie A; Corey-Bloom, Jody; Palmer, Barton W; Loredo, Jose S; Ancoli-Israel, Sonia

    2013-11-15

    To evaluate the impact of sleep disorders on non-motor symptoms in patients with Parkinson disease (PD). This was a cross-sectional study. Patients with PD were evaluated for obstructive sleep apnea (OSA), restless legs syndrome (RLS), periodic limb movement syndrome (PLMS), and REM sleep behavior disorder (RBD). Cognition was assessed with the Montreal Cognitive Assessment and patients completed self-reported questionnaires assessing non-motor symptoms including depressive symptoms, fatigue, sleep complaints, daytime sleepiness, and quality of life. Sleep laboratory. 86 patients with PD (mean age = 67.4 ± 8.8 years; range: 47-89; 29 women). N/A. Having sleep disorders was a predictor of overall non-motor symptoms in PD (R(2) = 0.33, p sleep disorder significantly predicted sleep complaints (ΔR(2) = 0.13, p = 0.006), depressive symptoms (ΔR(2) = 0.01, p = 0.03), fatigue (ΔR(2) = 0.12, p = 0.007), poor quality of life (ΔR(2) = 0.13, p = 0.002), and cognitive decline (ΔR(2) = 0.09, p = 0.036). Additionally, increasing number of sleep disorders (0, 1, or ≥ 2 sleep disorders) was a significant contributor to non-motor symptom impairment (R(2) = 0.28, p sleep disorders predicted more non-motor symptoms including increased sleep complaints, more depressive symptoms, lower quality of life, poorer cognition, and more fatigue. RBD and RLS were factors of overall increased non-motor symptoms, but OSA was not.

  16. Adult plasticity in the subcortical auditory pathway of the maternal mouse.

    Directory of Open Access Journals (Sweden)

    Jason A Miranda

    Full Text Available Subcortical auditory nuclei were traditionally viewed as non-plastic in adulthood so that acoustic information could be stably conveyed to higher auditory areas. Studies in a variety of species, including humans, now suggest that prolonged acoustic training can drive long-lasting brainstem plasticity. The neurobiological mechanisms for such changes are not well understood in natural behavioral contexts due to a relative dearth of in vivo animal models in which to study this. Here, we demonstrate in a mouse model that a natural life experience with increased demands on the auditory system - motherhood - is associated with improved temporal processing in the subcortical auditory pathway. We measured the auditory brainstem response to test whether mothers and pup-naïve virgin mice differed in temporal responses to both broadband and tone stimuli, including ultrasonic frequencies found in mouse pup vocalizations. Mothers had shorter latencies for early ABR peaks, indicating plasticity in the auditory nerve and the cochlear nucleus. Shorter interpeak latency between waves IV and V also suggest plasticity in the inferior colliculus. Hormone manipulations revealed that these cannot be explained solely by estrogen levels experienced during pregnancy and parturition in mothers. In contrast, we found that pup-care experience, independent of pregnancy and parturition, contributes to shortening auditory brainstem response latencies. These results suggest that acoustic experience in the maternal context imparts plasticity on early auditory processing that lasts beyond pup weaning. In addition to establishing an animal model for exploring adult auditory brainstem plasticity in a neuroethological context, our results have broader implications for models of perceptual, behavioral and neural changes that arise during maternity, where subcortical sensorineural plasticity has not previously been considered.

  17. Adult plasticity in the subcortical auditory pathway of the maternal mouse.

    Science.gov (United States)

    Miranda, Jason A; Shepard, Kathryn N; McClintock, Shannon K; Liu, Robert C

    2014-01-01

    Subcortical auditory nuclei were traditionally viewed as non-plastic in adulthood so that acoustic information could be stably conveyed to higher auditory areas. Studies in a variety of species, including humans, now suggest that prolonged acoustic training can drive long-lasting brainstem plasticity. The neurobiological mechanisms for such changes are not well understood in natural behavioral contexts due to a relative dearth of in vivo animal models in which to study this. Here, we demonstrate in a mouse model that a natural life experience with increased demands on the auditory system - motherhood - is associated with improved temporal processing in the subcortical auditory pathway. We measured the auditory brainstem response to test whether mothers and pup-naïve virgin mice differed in temporal responses to both broadband and tone stimuli, including ultrasonic frequencies found in mouse pup vocalizations. Mothers had shorter latencies for early ABR peaks, indicating plasticity in the auditory nerve and the cochlear nucleus. Shorter interpeak latency between waves IV and V also suggest plasticity in the inferior colliculus. Hormone manipulations revealed that these cannot be explained solely by estrogen levels experienced during pregnancy and parturition in mothers. In contrast, we found that pup-care experience, independent of pregnancy and parturition, contributes to shortening auditory brainstem response latencies. These results suggest that acoustic experience in the maternal context imparts plasticity on early auditory processing that lasts beyond pup weaning. In addition to establishing an animal model for exploring adult auditory brainstem plasticity in a neuroethological context, our results have broader implications for models of perceptual, behavioral and neural changes that arise during maternity, where subcortical sensorineural plasticity has not previously been considered.

  18. Learning Curve Analyses in Neurodevelopmental Disorders: Are Children with Autism Spectrum Disorder Truly Visual Learners?

    Science.gov (United States)

    Erdodi, Laszlo; Lajiness-O'Neill, Renee; Schmitt, Thomas A.

    2013-01-01

    Visual and auditory verbal learning using a selective reminding format was studied in a mixed clinical sample of children with autism spectrum disorder (ASD) (n = 42), attention-deficit hyperactivity disorder (n = 83), velocardiofacial syndrome (n = 17) and neurotypicals (n = 38) using the Test of Memory and Learning to (1) more thoroughly…

  19. Lymphoproliferative disorders in non-AIDS- associated Kaposi's ...

    African Journals Online (AJOL)

    proliferative disorders are mostly of B-cell origin and include non-Hodgkin's lymphoma, chronic lymphatic leukaemia and multiple .... Bone marrow trephine biopsy revealed ... transplants, patients with auto-immune diseases and patients with ...

  20. Competition and convergence between auditory and cross-modal visual inputs to primary auditory cortical areas

    Science.gov (United States)

    Mao, Yu-Ting; Hua, Tian-Miao

    2011-01-01

    Sensory neocortex is capable of considerable plasticity after sensory deprivation or damage to input pathways, especially early in development. Although plasticity can often be restorative, sometimes novel, ectopic inputs invade the affected cortical area. Invading inputs from other sensory modalities may compromise the original function or even take over, imposing a new function and preventing recovery. Using ferrets whose retinal axons were rerouted into auditory thalamus at birth, we were able to examine the effect of varying the degree of ectopic, cross-modal input on reorganization of developing auditory cortex. In particular, we assayed whether the invading visual inputs and the existing auditory inputs competed for or shared postsynaptic targets and whether the convergence of input modalities would induce multisensory processing. We demonstrate that although the cross-modal inputs create new visual neurons in auditory cortex, some auditory processing remains. The degree of damage to auditory input to the medial geniculate nucleus was directly related to the proportion of visual neurons in auditory cortex, suggesting that the visual and residual auditory inputs compete for cortical territory. Visual neurons were not segregated from auditory neurons but shared target space even on individual target cells, substantially increasing the proportion of multisensory neurons. Thus spatial convergence of visual and auditory input modalities may be sufficient to expand multisensory representations. Together these findings argue that early, patterned visual activity does not drive segregation of visual and auditory afferents and suggest that auditory function might be compromised by converging visual inputs. These results indicate possible ways in which multisensory cortical areas may form during development and evolution. They also suggest that rehabilitative strategies designed to promote recovery of function after sensory deprivation or damage need to take into

  1. Awake craniotomy for assisting placement of auditory brainstem implant in NF2 patients.

    Science.gov (United States)

    Zhou, Qiangyi; Yang, Zhijun; Wang, Zhenmin; Wang, Bo; Wang, Xingchao; Zhao, Chi; Zhang, Shun; Wu, Tao; Li, Peng; Li, Shiwei; Zhao, Fu; Liu, Pinan

    2018-06-01

    Auditory brainstem implants (ABIs) may be the only opportunity for patients with NF2 to regain some sense of hearing sensation. However, only a very small number of individuals achieved open-set speech understanding and high sentence scores. Suboptimal placement of the ABI electrode array over the cochlear nucleus may be one of main factors for poor auditory performance. In the current study, we present a method of awake craniotomy to assist with ABI placement. Awake surgery and hearing test via the retrosigmoid approach were performed for vestibular schwannoma resections and auditory brainstem implantations in four patients with NF2. Auditory outcomes and complications were assessed postoperatively. Three of 4 patients who underwent awake craniotomy during ABI surgery received reproducible auditory sensations intraoperatively. Satisfactory numbers of effective electrodes, threshold levels and distinct pitches were achieved in the wake-up hearing test. In addition, relatively few electrodes produced non-auditory percepts. There was no serious complication attributable to the ABI or awake craniotomy. It is safe and well tolerated for neurofibromatosis type 2 (NF2) patients using awake craniotomy during auditory brainstem implantation. This method can potentially improve the localization accuracy of the cochlear nucleus during surgery.

  2. Differential Recruitment of Auditory Cortices in the Consolidation of Recent Auditory Fearful Memories.

    Science.gov (United States)

    Cambiaghi, Marco; Grosso, Anna; Renna, Annamaria; Sacchetti, Benedetto

    2016-08-17

    Memories of frightening events require a protracted consolidation process. Sensory cortex, such as the auditory cortex, is involved in the formation of fearful memories with a more complex sensory stimulus pattern. It remains controversial, however, whether the auditory cortex is also required for fearful memories related to simple sensory stimuli. In the present study, we found that, 1 d after training, the temporary inactivation of either the most anterior region of the auditory cortex, including the primary (Te1) cortex, or the most posterior region, which included the secondary (Te2) component, did not affect the retention of recent memories, which is consistent with the current literature. However, at this time point, the inactivation of the entire auditory cortices completely prevented the formation of new memories. Amnesia was site specific and was not due to auditory stimuli perception or processing and strictly related to the interference with memory consolidation processes. Strikingly, at a late time interval 4 d after training, blocking the posterior part (encompassing the Te2) alone impaired memory retention, whereas the inactivation of the anterior part (encompassing the Te1) left memory unaffected. Together, these data show that the auditory cortex is necessary for the consolidation of auditory fearful memories related to simple tones in rats. Moreover, these results suggest that, at early time intervals, memory information is processed in a distributed network composed of both the anterior and the posterior auditory cortical regions, whereas, at late time intervals, memory processing is concentrated in the most posterior part containing the Te2 region. Memories of threatening experiences undergo a prolonged process of "consolidation" to be maintained for a long time. The dynamic of fearful memory consolidation is poorly understood. Here, we show that 1 d after learning, memory is processed in a distributed network composed of both primary Te1 and

  3. Auditory and Non-Auditory Contributions for Unaided Speech Recognition in Noise as a Function of Hearing Aid Use

    OpenAIRE

    Gieseler, Anja; Tahden, Maike A. S.; Thiel, Christiane M.; Wagener, Kirsten C.; Meis, Markus; Colonius, Hans

    2017-01-01

    Differences in understanding speech in noise among hearing-impaired individuals cannot be explained entirely by hearing thresholds alone, suggesting the contribution of other factors beyond standard auditory ones as derived from the audiogram. This paper reports two analyses addressing individual differences in the explanation of unaided speech-in-noise performance among n = 438 elderly hearing-impaired listeners (mean = 71.1 ± 5.8 years). The main analysis was designed to identify clinically...

  4. Lipid disorders in patients with renal failure: Role in cardiovascular events and progression of chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Luca Visconti

    2016-12-01

    Full Text Available The spectrum of lipid disorders in chronic kidney disease (CKD is usually characterized by high triglycerides and reduced high dense lipoprotein (HDL, associated with normal or slightly reduced low dense lipoprotein (LDL-cholesterol. This dyslipidemia is associated with an increased risk for atherosclerotic cardiovascular disease. Keys for the cardiovascular risk reduction in these patients are lowering the number and modifying the composition of the cholesterol-carrying atherogenic lipoprotein particles. Statins have an important role in primary prevention of cardiovascular events and mortality in non-hemodialyzed CKD patients. The benefits in terms of progression of renal failure are contradictory. Patient education regarding dietary regimen should be part of the CKD clinical management.

  5. Pigmentary disorders in Western countries

    NARCIS (Netherlands)

    van der Veen, J. P. Wietze

    2007-01-01

    Countries in the so-called "Western" world, especially in Europe, witnessed a dramatic change in ethnic backgrounds of their populations starting in the last decennia of the last century. This had repercussions on various aspects of our society, including medical practice. In dermatology for

  6. A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction

    DEFF Research Database (Denmark)

    Bowl, Michael R.; Simon, Michelle M.; Ingham, Neil J.

    2017-01-01

    The developmental and physiological complexity of the auditory system is likely reflected in the underlying set of genes involved in auditory function. In humans, over 150 non-syndromic loci have been identified, and there are more than 400 human genetic syndromes with a hearing loss component. O...

  7. Auditory Attraction: Activation of Visual Cortex by Music and Sound in Williams Syndrome

    Science.gov (United States)

    Thornton-Wells, Tricia A.; Cannistraci, Christopher J.; Anderson, Adam W.; Kim, Chai-Youn; Eapen, Mariam; Gore, John C.; Blake, Randolph; Dykens, Elisabeth M.

    2010-01-01

    Williams syndrome is a genetic neurodevelopmental disorder with a distinctive phenotype, including cognitive-linguistic features, nonsocial anxiety, and a strong attraction to music. We performed functional MRI studies examining brain responses to musical and other types of auditory stimuli in young adults with Williams syndrome and typically…

  8. A comparison of patterns of disease extension in keratosis obturans and external auditory canal cholesteatoma.

    Science.gov (United States)

    Shinnabe, Akihiro; Hara, Mariko; Hasegawa, Masayo; Matsuzawa, Shingo; Kanazawa, Hiromi; Yoshida, Naohiro; Iino, Yukiko

    2013-01-01

    To investigate the different pathways of progression to the middle ear in keratosis obturans (KO) and external auditory canal cholesteatoma (EACC). Retrospective case review. Referral hospital otolaryngology department. Patients with KO or EACC and middle ear disease who underwent surgical management were included. Four ears of 4 patients (mean age, 41.25 yr) were the KO group, and 5 ears of 4 patients (mean age, 49.5 yr) were the EACC group. Intraoperative findings of the middle ear cavity were investigated in KO and EACC groups. In the KO group, 3 patients had a perforated tympanic membrane and cholesteatoma in the tympanic cavity. The other patient had preoperative right facial palsy. Removal of the keratin plug revealed an adherent tympanic membrane. In intraoperative findings, the tympanic segment of the fallopian canal was found to be eroded because of inflammation. No case initially progressed to the mastoid cavity. Four patients had external auditory canal cholesteatoma with middle ear disease. In EACC group, all patients had initial progression to the mastoid cavity. KO tends to progress initially to the tympanic cavity via a diseased tympanic membrane. EACC tends to progress to the mastoid cavity via destruction of the posterior bony canal. This is the first report to investigate differences in pathway of progression to the middle ear cavity in these 2 diseases.

  9. Repetitive transcranial magnetic stimulation for hallucination in schizophrenia spectrum disorders: A meta-analysis.

    Science.gov (United States)

    Zhang, Yingli; Liang, Wei; Yang, Shichang; Dai, Ping; Shen, Lijuan; Wang, Changhong

    2013-10-05

    This study assessed the efficacy and tolerability of repetitive transcranial magnetic stimulation for treatment of auditory hallucination of patients with schizophrenia spectrum disorders. Online literature retrieval was conducted using PubMed, ISI Web of Science, EMBASE, Medline and Cochrane Central Register of Controlled Trials databases from January 1985 to May 2012. Key words were "transcranial magnetic stimulation", "TMS", "repetitive transcranial magnetic stimulation", and "hallucination". Selected studies were randomized controlled trials assessing therapeutic efficacy of repetitive transcranial magnetic stimulation for hallucination in patients with schizophrenia spectrum disorders. Experimental intervention was low-frequency repetitive transcranial magnetic stimulation in left temporoparietal cortex for treatment of auditory hallucination in schizophrenia spectrum disorders. Control groups received sham stimulation. The primary outcome was total scores of Auditory Hallucinations Rating Scale, Auditory Hallucination Subscale of Psychotic Symptom Rating Scale, Positive and Negative Symptom Scale-Auditory Hallucination item, and Hallucination Change Scale. Secondary outcomes included response rate, global mental state, adverse effects and cognitive function. Seventeen studies addressing repetitive transcranial magnetic stimulation for treatment of schizophrenia spectrum disorders were screened, with controls receiving sham stimulation. All data were completely effective, involving 398 patients. Overall mean weighted effect size for repetitive transcranial magnetic stimulation versus sham stimulation was statistically significant (MD = -0.42, 95%CI: -0.64 to -0.20, P = 0.000 2). Patients receiving repetitive transcranial magnetic stimulation responded more frequently than sham stimulation (OR = 2.94, 95%CI: 1.39 to 6.24, P = 0.005). No significant differences were found between active repetitive transcranial magnetic stimulation and sham stimulation for

  10. Gene expression underlying enhanced, steroid-dependent auditory sensitivity of hair cell epithelium in a vocal fish.

    Science.gov (United States)

    Fergus, Daniel J; Feng, Ni Y; Bass, Andrew H

    2015-10-14

    Successful animal communication depends on a receiver's ability to detect a sender's signal. Exemplars of adaptive sender-receiver coupling include acoustic communication, often important in the context of seasonal reproduction. During the reproductive summer season, both male and female midshipman fish (Porichthys notatus) exhibit similar increases in the steroid-dependent frequency sensitivity of the saccule, the main auditory division of the inner ear. This form of auditory plasticity enhances detection of the higher frequency components of the multi-harmonic, long-duration advertisement calls produced repetitively by males during summer nights of peak vocal and spawning activity. The molecular basis of this seasonal auditory plasticity has not been fully resolved. Here, we utilize an unbiased transcriptomic RNA sequencing approach to identify differentially expressed transcripts within the saccule's hair cell epithelium of reproductive summer and non-reproductive winter fish. We assembled 74,027 unique transcripts from our saccular epithelial sequence reads. Of these, 6.4 % and 3.0 % were upregulated in the reproductive and non-reproductive saccular epithelium, respectively. Gene ontology (GO) term enrichment analyses of the differentially expressed transcripts showed that the reproductive saccular epithelium was transcriptionally, translationally, and metabolically more active than the non-reproductive epithelium. Furthermore, the expression of a specific suite of candidate genes, including ion channels and components of steroid-signaling pathways, was upregulated in the reproductive compared to the non-reproductive saccular epithelium. We found reported auditory functions for 14 candidate genes upregulated in the reproductive midshipman saccular epithelium, 8 of which are enriched in mouse hair cells, validating their hair cell-specific functions across vertebrates. We identified a suite of differentially expressed genes belonging to neurotransmission and

  11. The role of auditory temporal cues in the fluency of stuttering adults

    OpenAIRE

    Furini, Juliana; Picoloto, Luana Altran; Marconato, Eduarda; Bohnen, Anelise Junqueira; Cardoso, Ana Claudia Vieira; Oliveira, Cristiane Moço Canhetti de

    2017-01-01

    ABSTRACT Purpose: to compare the frequency of disfluencies and speech rate in spontaneous speech and reading in adults with and without stuttering in non-altered and delayed auditory feedback (NAF, DAF). Methods: participants were 30 adults: 15 with Stuttering (Research Group - RG), and 15 without stuttering (Control Group - CG). The procedures were: audiological assessment and speech fluency evaluation in two listening conditions, normal and delayed auditory feedback (100 milliseconds dela...

  12. Modality and domain specific components in auditory and visual working memory tasks.

    Science.gov (United States)

    Lehnert, Günther; Zimmer, Hubert D

    2008-03-01

    In the tripartite model of working memory (WM) it is postulated that a unique part system-the visuo-spatial sketchpad (VSSP)-processes non-verbal content. Due to behavioral and neurophysiological findings, the VSSP was later subdivided into visual object and visual spatial processing, the former representing objects' appearance and the latter spatial information. This distinction is well supported. However, a challenge to this model is the question how spatial information from non-visual sensory modalities, for example the auditory one, is processed. Only a few studies so far have directly compared visual and auditory spatial WM. They suggest that the distinction of two processing domains--one for object and one for spatial information--also holds true for auditory WM, but that only a part of the processes is modality specific. We propose that processing in the object domain (the item's appearance) is modality specific, while spatial WM as well as object-location binding relies on modality general processes.

  13. Assessment of auditory skills in 140 cochlear implant children using the EARS protocol.

    Science.gov (United States)

    Sainz, Manuel; Skarzynski, Henryk; Allum, John H J; Helms, Jan; Rivas, Adriana; Martin, Jane; Zorowka, Patrick Georg; Phillips, Lucy; Delauney, Joseph; Brockmeyer, Steffi Johanna; Kompis, Martin; Korolewa, Inna; Albegger, Klaus; Zwirner, Petra; Van De Heyning, Paul; D'Haese, Patrick

    2003-01-01

    Auditory performance of cochlear implant (CI) children was assessed with the Listening Progress Profile (LiP) and the Monosyllabic-Trochee-Polysyllabic-Word Test (MTP) following the EARS protocol. Additionally, the 'initial drop' phenomenon, a recently reported decrease of auditory performance occurring immediately after first fitting, was investigated. Patients were 140 prelingually deafened children from various clinics and centers worldwide implanted with a MEDEL COMBI 40/40+. Analysis of LiP data showed a significant increase after 1 month of CI use compared to preoperative scores (p < 0.01). No initial decrease was observed with this test. Analysis of MTP data revealed a significant improvement of word recognition after 6 months (p < 0.01), with a significant temporary decrease after initial fitting (p < 0.01). With both tests, children's auditory skills improved up to 2 years. Amount of improvement was negatively correlated with age at implantation. Copyright 2003 S. Karger AG, Basel

  14. Auditory temporal preparation induced by rhythmic cues during concurrent auditory working memory tasks.

    Science.gov (United States)

    Cutanda, Diana; Correa, Ángel; Sanabria, Daniel

    2015-06-01

    The present study investigated whether participants can develop temporal preparation driven by auditory isochronous rhythms when concurrently performing an auditory working memory (WM) task. In Experiment 1, participants had to respond to an auditory target presented after a regular or an irregular sequence of auditory stimuli while concurrently performing a Sternberg-type WM task. Results showed that participants responded faster after regular compared with irregular rhythms and that this effect was not affected by WM load; however, the lack of a significant main effect of WM load made it difficult to draw any conclusion regarding the influence of the dual-task manipulation in Experiment 1. In order to enhance dual-task interference, Experiment 2 combined the auditory rhythm procedure with an auditory N-Back task, which required WM updating (monitoring and coding of the information) and was presumably more demanding than the mere rehearsal of the WM task used in Experiment 1. Results now clearly showed dual-task interference effects (slower reaction times [RTs] in the high- vs. the low-load condition). However, such interference did not affect temporal preparation induced by rhythms, with faster RTs after regular than after irregular sequences in the high-load and low-load conditions. These results revealed that secondary tasks demanding memory updating, relative to tasks just demanding rehearsal, produced larger interference effects on overall RTs in the auditory rhythm task. Nevertheless, rhythm regularity exerted a strong temporal preparation effect that survived the interference of the WM task even when both tasks competed for processing resources within the auditory modality. (c) 2015 APA, all rights reserved).

  15. Transcranial direct current stimulation as a treatment for auditory hallucinations.

    Directory of Open Access Journals (Sweden)

    Sanne eKoops

    2015-03-01

    Full Text Available Auditory hallucinations (AH are a symptom of several psychiatric disorders, such as schizophrenia. In a significant minority of patients, AH are resistant to antipsychotic medication. Alternative treatment options for this medication-resistant group are scarce and most of them focus on coping with the hallucinations. Finding an alternative treatment that can diminish AH is of great importance.Transcranial direct current stimulation (tDCS is a safe and non-invasive technique that is able to directly influence cortical excitability through the application of very low electric currents. A 1-2 mA direct current is applied between two surface electrodes, one serving as the anode and the other as the cathode. Cortical excitability is increased in the vicinity of the anode and reduced near the cathode. The technique, which has only a few transient side effects and is cheap and portable, is increasingly explored as a treatment for neurological and psychiatric symptoms. It has shown efficacy on symptoms of depression, bipolar disorder, schizophrenia, Alzheimer’s disease, Parkinson’s disease, epilepsy and stroke. However, the application of tDCS as a treatment for AH is relatively new. This article provides an overview of the current knowledge in this field and provides guidelines for future research.

  16. Social and emotional values of sounds influence human (Homo sapiens and non-human primate (Cercopithecus campbelli auditory laterality.

    Directory of Open Access Journals (Sweden)

    Muriel Basile

    Full Text Available The last decades evidenced auditory laterality in vertebrates, offering new important insights for the understanding of the origin of human language. Factors such as the social (e.g. specificity, familiarity and emotional value of sounds have been proved to influence hemispheric specialization. However, little is known about the crossed effect of these two factors in animals. In addition, human-animal comparative studies, using the same methodology, are rare. In our study, we adapted the head turn paradigm, a widely used non invasive method, on 8-9-year-old schoolgirls and on adult female Campbell's monkeys, by focusing on head and/or eye orientations in response to sound playbacks. We broadcast communicative signals (monkeys: calls, humans: speech emitted by familiar individuals presenting distinct degrees of social value (female monkeys: conspecific group members vs heterospecific neighbours, human girls: from the same vs different classroom and emotional value (monkeys: contact vs threat calls; humans: friendly vs aggressive intonation. We evidenced a crossed-categorical effect of social and emotional values in both species since only "negative" voices from same class/group members elicited a significant auditory laterality (Wilcoxon tests: monkeys, T = 0 p = 0.03; girls: T = 4.5 p = 0.03. Moreover, we found differences between species as a left and right hemisphere preference was found respectively in humans and monkeys. Furthermore while monkeys almost exclusively responded by turning their head, girls sometimes also just moved their eyes. This study supports theories defending differential roles played by the two hemispheres in primates' auditory laterality and evidenced that more systematic species comparisons are needed before raising evolutionary scenario. Moreover, the choice of sound stimuli and behavioural measures in such studies should be the focus of careful attention.

  17. Short-term plasticity in auditory cognition.

    Science.gov (United States)

    Jääskeläinen, Iiro P; Ahveninen, Jyrki; Belliveau, John W; Raij, Tommi; Sams, Mikko

    2007-12-01

    Converging lines of evidence suggest that auditory system short-term plasticity can enable several perceptual and cognitive functions that have been previously considered as relatively distinct phenomena. Here we review recent findings suggesting that auditory stimulation, auditory selective attention and cross-modal effects of visual stimulation each cause transient excitatory and (surround) inhibitory modulations in the auditory cortex. These modulations might adaptively tune hierarchically organized sound feature maps of the auditory cortex (e.g. tonotopy), thus filtering relevant sounds during rapidly changing environmental and task demands. This could support auditory sensory memory, pre-attentive detection of sound novelty, enhanced perception during selective attention, influence of visual processing on auditory perception and longer-term plastic changes associated with perceptual learning.

  18. Auditory-visual aversive stimuli modulate the conscious experience of fear.

    Science.gov (United States)

    Taffou, Marine; Guerchouche, Rachid; Drettakis, George; Viaud-Delmon, Isabelle

    2013-01-01

    In a natural environment, affective information is perceived via multiple senses, mostly audition and vision. However, the impact of multisensory information on affect remains relatively undiscovered. In this study, we investigated whether the auditory-visual presentation of aversive stimuli influences the experience of fear. We used the advantages of virtual reality to manipulate multisensory presentation and to display potentially fearful dog stimuli embedded in a natural context. We manipulated the affective reactions evoked by the dog stimuli by recruiting two groups of participants: dog-fearful and non-fearful participants. The sensitivity to dog fear was assessed psychometrically by a questionnaire and also at behavioral and subjective levels using a Behavioral Avoidance Test (BAT). Participants navigated in virtual environments, in which they encountered virtual dog stimuli presented through the auditory channel, the visual channel or both. They were asked to report their fear using Subjective Units of Distress. We compared the fear for unimodal (visual or auditory) and bimodal (auditory-visual) dog stimuli. Dog-fearful participants as well as non-fearful participants reported more fear in response to bimodal audiovisual compared to unimodal presentation of dog stimuli. These results suggest that fear is more intense when the affective information is processed via multiple sensory pathways, which might be due to a cross-modal potentiation. Our findings have implications for the field of virtual reality-based therapy of phobias. Therapies could be refined and improved by implicating and manipulating the multisensory presentation of the feared situations.

  19. Central Auditory Processing Disorders: Is It a Meaningful Construct or a Twentieth Century Unicorn?

    Science.gov (United States)

    Kamhi, Alan G.; Beasley, Daniel S.

    1985-01-01

    The article demonstrates how professional and theoretical perspectives (including psycholinguistics, behaviorist, and information processing perspectives) significantly influence the manner in which central auditory processing is viewed, assessed, and remediated. (Author/CL)

  20. Web-based diagnosis and therapy of auditory prerequisites for reading and spelling

    Directory of Open Access Journals (Sweden)

    Krammer, Sandra

    2006-11-01

    Full Text Available Cognitive deficits in auditory or visual processing or in verbal short-term-memory are amongst others risk factors for the development of dyslexia (reading and spelling disability. By early identification and intervention (optimally before school entry, detrimental effects of these cognitive deficits on reading and spelling might be prevented. The goal of the CASPAR-project is to develop and evaluate web-based tools for diagnosis and therapy of cognitive prerequisites for reading and spelling, which are appropriate for kindergarten children. In the first approach CASPAR addresses auditory processing disorders. This article describes a computerized and web-based approach for screening and testing phoneme discrimination and for promoting phoneme discrimination abilities through interactive games in kindergarteners.