WorldWideScience

Sample records for non-planar index-guided quantum

  1. Constrained Quantum Mechanics: Chaos in Non-Planar Billiards

    Science.gov (United States)

    Salazar, R.; Tellez, G.

    2012-01-01

    We illustrate some of the techniques to identify chaos signatures at the quantum level using as guiding examples some systems where a particle is constrained to move on a radial symmetric, but non-planar, surface. In particular, two systems are studied: the case of a cone with an arbitrary contour or "dunce hat billiard" and the rectangular…

  2. Planar and non-planar nucleus-acoustic shock structures in self-gravitating degenerate quantum plasma systems

    Science.gov (United States)

    Zaman, D. M. S.; Amina, M.; Dip, P. R.; Mamun, A. A.

    2017-11-01

    The basic properties of planar and non-planar (spherical and cylindrical) nucleus-acoustic (NA) shock structures (SSs) in a strongly coupled self-gravitating degenerate quantum plasma system (containing strongly coupled non-relativistically degenerate heavy nuclear species, weakly coupled non-relativistically degenerate light nuclear species, and inertialess non-/ultra-relativistically degenerate electrons) have been investigated. The generalized quantum hydrodynamic model and the reductive perturbation method have been used to derive the modified Burgers equation. It is shown that the strong correlation among heavy nuclear species acts as the source of dissipation and is responsible for the formation of the NA SSs with positive (negative) electrostatic (self-gravitational) potential. It is also observed that the effects of non-/ultra-relativistically degenerate electron pressure, dynamics of non-relativistically degenerate light nuclear species, spherical geometry, etc., significantly modify the basic features of the NA SSs. The applications of our results in astrophysical compact objects like white dwarfs and neutron stars are briefly discussed.

  3. A fabrication guide for planar silicon quantum dot heterostructures

    Science.gov (United States)

    Spruijtenburg, Paul C.; Amitonov, Sergey V.; van der Wiel, Wilfred G.; Zwanenburg, Floris A.

    2018-04-01

    We describe important considerations to create top-down fabricated planar quantum dots in silicon, often not discussed in detail in literature. The subtle interplay between intrinsic material properties, interfaces and fabrication processes plays a crucial role in the formation of electrostatically defined quantum dots. Processes such as oxidation, physical vapor deposition and atomic-layer deposition must be tailored in order to prevent unwanted side effects such as defects, disorder and dewetting. In two directly related manuscripts written in parallel we use techniques described in this work to create depletion-mode quantum dots in intrinsic silicon, and low-disorder silicon quantum dots defined with palladium gates. While we discuss three different planar gate structures, the general principles also apply to 0D and 1D systems, such as self-assembled islands and nanowires.

  4. Planar Quantum Mechanics: an Intriguing Supersymmetric Example

    CERN Document Server

    Veneziano, Gabriele

    2006-01-01

    After setting up a Hamiltonian formulation of planar (matrix) quantum mechanics, we illustrate its effectiveness in a non-trivial supersymmetric example. The numerical and analytical study of two sectors of the model, as a function of 't Hooft's coupling $\\lambda$, reveals both a phase transition at $\\lambda=1$ (disappearence of the mass gap and discontinuous jump in Witten's index) and a new form of strong-weak duality for $\\lambda \\to 1/\\lambda$.

  5. Analytical solution for a linearly graded-index-profile planar waveguide.

    Science.gov (United States)

    Touam, T; Yergeau, F

    1993-01-20

    An analytical solution is presented for the TE modes of a planar waveguide structure comprising a high-index guiding layer and a buried layer with a profile such that the square of the index varies linearly and matches the substrate and high-index guiding layer. The electric-field profiles and the dispersion relation are obtained and discussed, and a solution by the WKB method is compared.

  6. Spinor-electron wave guided modes in coupled quantum wells structures by solving the Dirac equation

    International Nuclear Information System (INIS)

    Linares, Jesus; Nistal, Maria C.

    2009-01-01

    A quantum analysis based on the Dirac equation of the propagation of spinor-electron waves in coupled quantum wells, or equivalently coupled electron waveguides, is presented. The complete optical wave equations for Spin-Up (SU) and Spin-Down (SD) spinor-electron waves in these electron guides couplers are derived from the Dirac equation. The relativistic amplitudes and dispersion equations of the spinor-electron wave-guided modes in a planar quantum coupler formed by two coupled quantum wells, or equivalently by two coupled slab electron waveguides, are exactly derived. The main outcomes related to the spinor modal structure, such as the breaking of the non-relativistic degenerate spin states, the appearance of phase shifts associated with the spin polarization and so on, are shown.

  7. Planar quantum squeezing and atom interferometry

    Energy Technology Data Exchange (ETDEWEB)

    He, Q. Y.; Drummond, P. D.; Reid, M. D. [ARC Centre of Excellence for Quantum-Atom Optics, Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne 3122 (Australia); Peng Shiguo [Department of Physics, Tsinghua University, Beijing 100084 (China)

    2011-08-15

    We obtain a lower bound on the sum of two orthogonal spin component variances in a plane. This gives a planar uncertainty relation which holds even when the Heisenberg relation is not useful. We investigate the asymptotic, large-J limit and derive the properties of the planar quantum squeezed states that saturate this uncertainty relation. These states extend the concept of spin squeezing to any two conjugate spin directions. We show that planar quantum squeezing can be achieved experimentally as the ground state of a Bose-Einstein condensate in two coupled potential wells with a critical attractive interaction. These states reduce interferometric phase noise at all phase angles simultaneously. This is useful for one-shot interferometric phase measurements where the measured phase is completely unknown. Our results can also be used to derive entanglement criteria for multiple spins J at separated sites, with applications in quantum information.

  8. Dynamical Mass Generation and Confinement in Maxwell-Chern-Simons Planar Quantum Electrodynamics

    International Nuclear Information System (INIS)

    Sanchez Madrigal, S; Raya, A; Hofmann, C P

    2011-01-01

    We study the non-perturbative phenomena of Dynamical Mass Generation and Confinement by truncating at the non-perturbative level the Schwinger-Dyson equations in Maxwell-Chern-Simons planar quantum electrodynamics. We obtain numerical solutions for the fermion propagator in Landau gauge within the so-called rainbow approximation. A comparison with the ordinary theory without the Chern-Simons term is presented.

  9. Anions, quantum particles in planar systems

    International Nuclear Information System (INIS)

    Monerat, Germano Amaral

    2000-03-01

    Our purpose here is to present a general review of the non-relativistic quantum-mechanical description of excitations that do not obey neither the Fermi-Dirac nor the Bose-Einstein statistics; they rather fulfill an intermediate statistics, the we called 'any-statistics'. As we shall see, this is a peculiarity of (1+1) and (1+2) dimensions, due to the fact that, in two space dimensions, the spin is not quantised, once the rotation group is Abelian. The relevance of studying theories in (1+2) dimensions is justified by the evidence that, in condensed matter physics, there are examples of planar systems, for which everything goes as if the third spatial dimension is frozen. (author)

  10. Anions, quantum particles in planar systems; Anions, particulas quanticas em sistemas planares

    Energy Technology Data Exchange (ETDEWEB)

    Monerat, Germano Amaral [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Fisica]. E-mail: monerat@if.uff.br

    2000-03-01

    Our purpose here is to present a general review of the non-relativistic quantum-mechanical description of excitations that do not obey neither the Fermi-Dirac nor the Bose-Einstein statistics; they rather fulfill an intermediate statistics, the we called 'any-statistics'. As we shall see, this is a peculiarity of (1+1) and (1+2) dimensions, due to the fact that, in two space dimensions, the spin is not quantised, once the rotation group is Abelian. The relevance of studying theories in (1+2) dimensions is justified by the evidence that, in condensed matter physics, there are examples of planar systems, for which everything goes as if the third spatial dimension is frozen. (author)

  11. Non-planar ABJ theory and parity

    International Nuclear Information System (INIS)

    Caputa, Pawel; Kristjansen, Charlotte; Zoubos, Konstantinos

    2009-01-01

    While the ABJ Chern-Simons-matter theory and its string theory dual manifestly lack parity invariance, no sign of parity violation has so far been observed on the weak coupling spin chain side. In particular, the planar two-loop dilatation generator of ABJ theory is parity invariant. In this Letter we derive the non-planar part of the two-loop dilatation generator of ABJ theory in its SU(2)xSU(2) sub-sector. Applying the dilatation generator to short operators, we explicitly demonstrate that, for operators carrying excitations on both spin chains, the non-planar part breaks parity invariance. For operators with only one type of excitation, however, parity remains conserved at the non-planar level. We furthermore observe that, as for ABJM theory, the degeneracy between planar parity pairs is lifted when non-planar corrections are taken into account.

  12. Non-planar ABJ Theory and Parity

    DEFF Research Database (Denmark)

    Caputa, Pawel; Kristjansen, Charlotte; Zoubos, Konstantinos

    2009-01-01

    we derive the non-planar part of the two-loop dilatation generator of ABJ theory in its SU(2)xSU(2) sub-sector. Applying the dilatation generator to short operators, we explicitly demonstrate that, for operators carrying excitations on both spin chains, the non-planar part breaks parity invariance......While the ABJ Chern-Simons-matter theory and its string theory dual manifestly lack parity invariance, no sign of parity violation has so far been observed on the weak coupling spin chain side. In particular, the planar two-loop dilatation generator of ABJ theory is parity invariant. In this letter....... For operators with only one type of excitation, however, parity remains conserved at the non-planar level. We furthermore observe that, as for ABJM theory, the degeneracy between planar parity pairs is lifted when non-planar corrections are taken into account....

  13. Electromagnetically induced transparency in planar metamaterials based on guided mode resonance

    Science.gov (United States)

    Sun, Yaru; Chen, Hang; Li, Xiangjun; Hong, Zhi

    2017-06-01

    We present and numerically demonstrate a novel, electromagnetically induced transparency (EIT) in planar metamaterials (MMs) based on guided mode resonance (GMR). The unit cell of the MM consists of two metallic ring resonators. The GMR with high quality factor (Q) is achieved by changing the distance between the two rings of the MM. Narrow EIT-like spectral response is realized by coupling between a high Q GMR and a low Q dipolar resonance of the MM. Our work could provide another efficient way towards the realization of EIT with large group index using very simple structures.

  14. Computer Aided Analysis of TM-Multimode Planar Graded-index Optical Waveguides

    International Nuclear Information System (INIS)

    Ashry, M.; Nasr, A.S.; Abou El-Fadl, A.A.

    2000-01-01

    An algorithm is developed for analysis TM-Multimode Planar graded-index optical waveguides. A Modified Impedance Boundary Method of Moments (MIBMOM) for the analysis of planar graded-index optical waveguide structures is presented. The algorithm is used to calculate the dispersion characteristics and the field distribution of TM-multimode planar graded-index optical waveguides. The technique is based on Galerkin s procedure and the exact boundary condition at the interfaces between the graded index region and the step index cladding. Legendre polynomials are used as basis functions. The efficiency of this algorithm is examined with waveguides having various index profiles such as exponential, Gaussian and complementary error functions. The advantage of the MIBMOM is the complete solution of TM-multimode as presented which is very difficult by the other methods. With this algorithm a minimum number of basis functions to give accurate results is used. The obtained results show good agreement with the experimental results

  15. Index-antiguided planar waveguide lasers with large mode area

    Science.gov (United States)

    Liu, Yuanye

    The on-going research and application interests with high power large-mode-area (LMA) waveguide lasers, especially in fiber geometry, at the beginning of this century drive the development of many novel waveguide designs. Index antiguiding, proposed by Siegman in 2003, is among one of them. The goal for index antiguiding is to introduce transversal modal loss with the relative simple waveguide design while maintain single transverse mode operation for good beam quality. The idea which is selectively support of fundamental mode is facilitated by involving certain level of signal regeneration inside the waveguide core. Since the modal loss is closed associated with waveguide design parameters such as core size and refractive index, the amount of gain inside the core provides active control of transverse modes inside index-antiguiding waveguide. For example, fundamental transverse mode inside such waveguide can be excited and propagate lossless when sufficient optical gain is provided. This often requires doped waveguide core and optical pumping at corresponding absorption band. However, the involvement of optical pumping also has its consequences. Phenomena such as thermal-optic effect and gain spatial hole-burning which are commonly found in bulk lasers request attention when scaling up output power with LMA index-antiguided waveguide amplifiers and resonators. In response, three key challenges of index-antiguided planar waveguide lasers, namely, guiding mechanism, power efficiency and transverse mode discrimination, are analyzed theoretically and experimentally in this dissertation. Experiments are based on two index-antiguided planar waveguide chips, whose core thickness are 220 microm and 400 microm respectively. The material of waveguide core is 1% Neodymium-doped Yttrium Aluminium garnet, or Nd:YAG while the cladding is made from Terbium Gallium garnet, or TGG. Due to the face pumping and limited pump power, it is found, with 220 microm-thick-core chip, that

  16. Proposal of limit moment equation applicable to planar/non-planar flaw in wall thinned pipes under bending

    International Nuclear Information System (INIS)

    Tsuji, Masataka; Meshii, Toshiyuki

    2011-01-01

    Highlights: → A limit moment equation applicable to planar/non-planar flaw of 0 ≤ θ ≤ π found in wall thinned straight pipes was proposed. → An idea to rationally classify planar/non-planar flaw in wall thinned pipes was proposed. → The equation based on the experimental observation focused on the fracture mode. - Abstract: In this paper, a limit bending moment equation applicable to all types of planar and non-planar flaws in wall-thinned straight pipes under bending was proposed. A system to rationally classify the planar/non-planar flaws in wall-thinned pipes was suggested based on experimental observations focused on the fracture mode. The results demonstrate the importance of distinguishing between axial and circumferential long flaws in wall-thinned pipes.

  17. A planar calculus for infinite index subfactors

    OpenAIRE

    Penneys, David

    2011-01-01

    We develop an analog of Jones' planar calculus for II_1-factor bimodules with arbitrary left and right von Neumann dimension. We generalize to bimodules Burns' results on rotations and extremality for infinite index subfactors. These results are obtained without Jones' basic construction and the resulting Jones projections.

  18. A Planar Calculus for Infinite Index Subfactors

    Science.gov (United States)

    Penneys, David

    2013-05-01

    We develop an analog of Jones' planar calculus for II 1-factor bimodules with arbitrary left and right von Neumann dimension. We generalize to bimodules Burns' results on rotations and extremality for infinite index subfactors. These results are obtained without Jones' basic construction and the resulting Jones projections.

  19. Yangian-type symmetries of non-planar leading singularities

    Energy Technology Data Exchange (ETDEWEB)

    Frassek, Rouven [Department of Mathematical Sciences, Durham University,South Road, Durham DH1 3LE (United Kingdom); Meidinger, David [Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin,Zum Großen Windkanal 6, 12489 Berlin (Germany)

    2016-05-18

    We take up the study of integrable structures behind non-planar contributions to scattering amplitudes in N = 4 super Yang-Mills theory. Focusing on leading singularities, we derive the action of the Yangian generators on color-ordered subsets of the external states. Each subset corresponds to a single boundary of the non-planar on-shell diagram. While Yangian invariance is broken, we find that higher-level Yangian generators still annihilate the non-planar on-shell diagram. For a given diagram, the number of these generators is governed by the degree of non-planarity. Furthermore, we present additional identities involving integrable transfer matrices. In particular, for diagrams on a cylinder we obtain a conservation rule similar to the Yangian invariance condition of planar on-shell diagrams. To exemplify our results, we consider a five-point MHV on-shell function on a cylinder.

  20. Fixed point structure of quenched, planar quantum electrodynamics

    International Nuclear Information System (INIS)

    Love, S.T.

    1986-07-01

    Gauge theories exhibiting a hierarchy of fermion mass scales may contain a pseudo-Nambu-Boldstone boson of spontaneously broken scale invariance. The relation between scale and chiral symmetry breaking is studied analytically in quenched, planar quantum electrodynamics in four dimensions. The model possesses a novel nonperturbative ultraviolet fixed point governing its strong coupling phase which requires the mixing of four fermion operators. 12 refs

  1. Wiener index and Diameter of a Planar Graph in Subquadratic Time

    DEFF Research Database (Denmark)

    Wulff-Nilsen, Christian

    2009-01-01

    Consider the problem of computing the sum of distances between each pair of vertices of an unweighted graph. This sum is also known as the Wiener index of the graph, a generalization of a definition given by H. Wiener in 1947. A molecular topological index is a value obtained from the graph...... structure of a molecule such that this value (hopefully) correlates with physical and/or chemical properties of the molecule. The Wiener index is perhaps the most studied molecular topological index with more than a thousand publications. It is open whether the Wiener index of a planar graph can be obtained...... in subquadratic time. In my talk, I will solve this open problem by exhibiting an O(n2 log log n / log n) time algorithm, where n is the size of the graph. A simple modification yields an algorithm with the same time bound that computes the diameter (maximum distance between any vertex pair) of a planar graph. I...

  2. Isometric deformations of planar quadrilaterals with constant index

    International Nuclear Information System (INIS)

    Zaputryaeva, E S

    2014-01-01

    We consider isometric deformations (motions) of polygons (so-called carpenter's rule problem) in the case of self-intersecting polygons with the additional condition that the index of the polygon is preserved by the motion. We provide general information about isometric deformations of planar polygons and give a complete solution of the carpenter's problem for quadrilaterals. Bibliography: 17 titles

  3. Some remarks on non-planar Feynman diagrams

    International Nuclear Information System (INIS)

    Bielas, Krzysztof; Dubovyk, Ievgen; Gluza, Janusz

    2013-12-01

    Two criteria for planarity of a Feynman diagram upon its propagators (momentum ows) are presented. Instructive Mathematica programs that solve the problem and examples are provided. A simple geometric argument is used to show that while one can planarize non-planar graphs by embedding them on higher-genus surfaces (in the example it is a torus), there is still a problem with defining appropriate dual variables since the corresponding faces of the graph are absorbed by torus generators.

  4. Some remarks on non-planar Feynman diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Bielas, Krzysztof; Dubovyk, Ievgen; Gluza, Janusz [Silesia Univ., Katowice (Poland). Inst. of Physics; Riemann, Tord [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2013-12-15

    Two criteria for planarity of a Feynman diagram upon its propagators (momentum ows) are presented. Instructive Mathematica programs that solve the problem and examples are provided. A simple geometric argument is used to show that while one can planarize non-planar graphs by embedding them on higher-genus surfaces (in the example it is a torus), there is still a problem with defining appropriate dual variables since the corresponding faces of the graph are absorbed by torus generators.

  5. Wiener Index, Diameter, and Stretch Factor of a Weighted Planar Graph in Subquadratic Time

    DEFF Research Database (Denmark)

    Wulff-Nilsen, Christian

    over all pairs of distinct vertices of the ratio between the graph distance and the Euclidean distance between the two vertices). More specifically, we show that the Wiener index and diameter can be found in O(n^2*(log log n)^4/log n) worst-case time and that the stretch factor can be found in O(n^2......We solve three open problems: the existence of subquadratic time algorithms for computing the Wiener index (sum of APSP distances) and the diameter (maximum distance between any vertex pair) of a planar graph with non-negative edge weights and the stretch factor of a plane geometric graph (maximum...

  6. Direct optical measurement of light coupling into planar waveguide by plasmonic nanoparticles.

    Science.gov (United States)

    Pennanen, Antti M; Toppari, J Jussi

    2013-01-14

    Coupling of light into a thin layer of high refractive index material by plasmonic nanoparticles has been widely studied for application in photovoltaic devices, such as thin-film solar cells. In numerous studies this coupling has been investigated through measurement of e.g. quantum efficiency or photocurrent enhancement. Here we present a direct optical measurement of light coupling into a waveguide by plasmonic nanoparticles. We investigate the coupling efficiency into the guided modes within the waveguide by illuminating the surface of a sample, consisting of a glass slide coated with a high refractive index planar waveguide and plasmonic nanoparticles, while directly measuring the intensity of the light emitted out of the waveguide edge. These experiments were complemented by transmittance and reflectance measurements. We show that the light coupling is strongly affected by thin-film interference, localized surface plasmon resonances of the nanoparticles and the illumination direction (front or rear).

  7. Covalent functionalization of octagraphene with magnetic octahedral B6- and non-planar C6- clusters

    Science.gov (United States)

    Chigo-Anota, E.; Cárdenas-Jirón, G.; Salazar Villanueva, M.; Bautista Hernández, A.; Castro, M.

    2017-10-01

    The interaction between the magnetic boron octahedral (B6-) and non-planar (C6-) carbon clusters with semimetal nano-sheet of octa-graphene (C64H24) in the gas phase is studied by means of DFT calculations. These results reveal that non-planar-1 (anion) carbon cluster exhibits structural stability, low chemical reactivity, magnetic (1.0 magneton bohr) and semiconductor behavior. On the other hand, there is chemisorption phenomena when the stable B6- and C6- clusters are absorbed on octa-graphene nanosheets. Such absorption generates high polarity and the low-reactivity remains as on the individual pristine cases. Electronic charge transference occurs from the clusters toward the nanosheets, producing a reduction of the work function for the complexes and also induces a magnetic behavior on the functionalized sheets. The quantum descriptors obtained for these systems reveal that they are feasible candidates for the design of molecular circuits, magnetic devices, and nano-vehicles for drug delivery.

  8. Complex dynamics in planar two-electron quantum dots

    International Nuclear Information System (INIS)

    Schroeter, Sebastian Josef Arthur

    2013-01-01

    Quantum dots play an important role in a wide range of recent experimental and technological developments. In particular they are promising candidates for realisations of quantum bits and further applications in quantum information theory. The harmonically confined Hooke's atom model is experimentally verified and separates in centre-of-mass and relative coordinates. Findings that are contradictory to this separability call for an extension of the model, in particular changing the confinement potential. In order to study effects of an anharmonic confinement potential on spectral properties of planar two-electron quantum dots a sophisticated numerical approach is developed. Comparison between the Helium atom, Hooke's atom and an anharmonic potential model are undertaken in order to improve the description of quantum dots. Classical and quantum features of complexity and chaos are investigated and used to characterise the dynamics of the system to be mixed regular-chaotic. Influence of decoherence can be described by quantum fidelity, which measures the effect of a perturbation on the time evolution. The quantum fidelity of eigenstates of the system depends strongly on the properties of the perturbation. Several methods for solving the time-dependent Schrödinger equation are implemented and a high level of accuracy for long time evolutions is achieved. The concept of offset entanglement, the entanglement of harmonic models in the noninteracting limit, is introduced. This concept explains different questions raised in the literature for harmonic quantum dot models, recently. It shows that only in the groundstate the electrons are not entangled in the fermionic sense. The applicability, validity, and origin of Hund's first rule in general quantum dot models is further addressed. In fact Hund's first rule is only applicable, and in this case also valid, for one pair of singlet and triplet states in Hooke's atom. For more realistic models of two-electron quantum dots an

  9. Chaotic non-planar vibrations of the thin elastica. Part I: Experimental observation of planar instability

    Science.gov (United States)

    Cusumano, J. P.; Moon, F. C.

    1995-01-01

    In this two-part paper, the results of an investigation into the non-linear dynamics of a flexible cantilevered rod (the elastica) with a thin rectangular cross-section are presented. An experimental examination of the dynamics of the elastica over a broad parameter range forms the core of Part I. In Part II, the experimental work is related to a theoretical study of the mechanics of the elastica, and the study of a two-degree-of-freedom model obtained by modal projection. The experimental system used in this investigation is a rod with clamped-free boundary conditions, forced by sinusoidally displacing the clamped end. Planar periodic motions of the driven elastica are shown to lose stability at distinct resonant wedges, and the resulting motions are shown in general to be non-planar, chaotic, bending-torsion oscillations. Non-planar motions in all resonances exhibit energy cascading and dynamic two-well phenomena, and a family of asymmetric, bending-torsion non-linear modes is discovered. Correlation dimension calculations are used to estimate the number of active degrees of freedom in the system.

  10. Complex dynamics in planar two-electron quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Schroeter, Sebastian Josef Arthur

    2013-06-25

    Quantum dots play an important role in a wide range of recent experimental and technological developments. In particular they are promising candidates for realisations of quantum bits and further applications in quantum information theory. The harmonically confined Hooke's atom model is experimentally verified and separates in centre-of-mass and relative coordinates. Findings that are contradictory to this separability call for an extension of the model, in particular changing the confinement potential. In order to study effects of an anharmonic confinement potential on spectral properties of planar two-electron quantum dots a sophisticated numerical approach is developed. Comparison between the Helium atom, Hooke's atom and an anharmonic potential model are undertaken in order to improve the description of quantum dots. Classical and quantum features of complexity and chaos are investigated and used to characterise the dynamics of the system to be mixed regular-chaotic. Influence of decoherence can be described by quantum fidelity, which measures the effect of a perturbation on the time evolution. The quantum fidelity of eigenstates of the system depends strongly on the properties of the perturbation. Several methods for solving the time-dependent Schrödinger equation are implemented and a high level of accuracy for long time evolutions is achieved. The concept of offset entanglement, the entanglement of harmonic models in the noninteracting limit, is introduced. This concept explains different questions raised in the literature for harmonic quantum dot models, recently. It shows that only in the groundstate the electrons are not entangled in the fermionic sense. The applicability, validity, and origin of Hund's first rule in general quantum dot models is further addressed. In fact Hund's first rule is only applicable, and in this case also valid, for one pair of singlet and triplet states in Hooke's atom. For more realistic models of two

  11. InGaAsP/InP quantum well buried heterostructure waveguides produced by ion implantation

    International Nuclear Information System (INIS)

    Zucker, J.E.; Jones, K.L.; Tell, B.; Brown-Goebeler, K.; Joyner, C.H.; Miller, B.I.; Young, M.G.

    1992-01-01

    Formation of buried InGaAsP/InP quantum well wave-guides by means of phosphorus ion implantation and thermal annealing during regrowth is demonstrated. Absorption spectra of implanted and unimplanted regions are used to estimate the induced index difference, which is of the order of 1% at 1.55μm. Calculated mode intensities are in good agreement with the observed near field intensity patterns. With this etchless implant technique, we achieve a significant reduction in propagation loss for singlemode pin waveguides relative to etched semi-insulating planar buried heterostructure waveguides fabricated from the same quantum well structure. In addition to reduced scattering loss, buried quantum well waveguides produced by ion implantation are more manufacturable because fewer and less-critical processing steps are involved. (author)

  12. Growth of strained InGaAs/GaAs quantum wells and index guided injection lasers over nonplanar substrates by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Arent, D.J.; Galeuchet, Y.D.; Nilsson, S.; Meier, H.P.

    1990-01-01

    Strained InGaAs/GaAs quantum wells were grown on nonplanar substrates by molecular beam epitaxy and studied by scanning electron microscopy and low temperature spatially and spectrally resolved cathodoluminescence spectroscopy. For (100) ridges and grooves formed with (311)A sidewalls, almost complete removal of In from the strained quantum wells on the (311)A facet is observed. Corresponding increases of In content in the quantum wells grown on the (100) facets indicate that most if not all of the In is displaced from the (311)A facet via interplanar adatom migration. Ga adatom migration is also observed under our growth conditions such that quantum wells grown nominally near the critical layer thickness on structures less than ≅2.5 μm wide are no longer pseudomorphically strained, as detected by luminescence linewidth analysis. We present the first results of strained InGaAs/GaAs index guided injection lasers grown by single-step molecular beam epitaxy over nonplanar substrates and show that differences greater than 50 meV in the effective band gap of a 70 A quantum well can be achieved between the gain region and the nonabsorbing waveguide without relaxing the strain. Room temperature threshold currents as low as 6 mA for 4 μmx750 μm uncoated devices lasing continuously at a wavelength of 1.01 μm have been achieved

  13. On planar quantum dynamics of a magnetic dipole moment in the presence of electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Edilberto O. [Universidade Federal do Maranhao, Departamento de Fisica, Sao Luis, MA (Brazil)

    2014-10-15

    The planar quantum dynamics of a neutral particle with a magnetic dipole moment in the presence of electric and magnetic fields is considered. The criteria to establish the planar dynamics reveal that the resulting nonrelativistic Hamiltonian has a simplified expression without making approximations, and some terms have crucial importance for the system dynamics. (orig.)

  14. Nonlinear elasticity in wurtzite GaN/AlN planar superlattices and quantum dots

    International Nuclear Information System (INIS)

    Lepkowski, S.P.; Majewski, J.A.; Jurczak, G.

    2005-01-01

    The elastic stiffness tensor for wurtzite GaN and AlN show a significant hydrostatic pressure dependence, which id the evidence of nonlinear elasticity of these compounds. We have examined how the pressure dependence of elastic constants for wurtzite nitrides influences elastic and piezoelectric properties of GaN/AlN planar superlattices and quantum dots. Particularly we show that built-in hydrostatic pressure, present in both quantum wells of the GaN/AlN superlattices and GaN/AlN quantum dots, increases significantly by 0.3-0.7 GPa when nonlinear elasticity is used. Consequently, the compressive volumetric strain in quantum wells and quantum dots decreases in comparison to the case of the linear elastic theory, However, the-component of the built-in electric field in the quantum wells and quantum dots increases considerably when nonlinear elasticity is taken into account. Both effects, i.e., a decrease in the compressive volumetric strain as well as an increase in the built-in electric field, decrease the band-to-band transition energies in the quantum wells and quantum dots. (author)

  15. Fabrication of planar waveguide in KNSBN crystal by swift heavy ion beam irradiation

    International Nuclear Information System (INIS)

    Guan, Jing; Wang, Lei; Qin, Xifeng

    2013-01-01

    We report on the fabrication of the planar waveguides in the KNSBN crystal by using 17 MeV C 5+ ions at a fluence of 2 × 10 14 ions/cm 2 . After implantation, near surface regions of the crystal, there has a positive extraordinary refractive index (n e ) change and the light inside the waveguides can propagate in a non-leaky manner. The two-dimensional modal profiles of the planar waveguides, measured by using the end-coupling arrangement, are in good agreement with the reconstructed modal distributions. The propagation loss for C 5+ irradiated waveguide is ∼0.8 dB/cm at 633 nm and ∼0.72 dB/cm at 1064 nm. The waveguide gives good confinement of waveguide modes, which exhibits acceptable guiding qualities for potential applications in integrated optics

  16. Fabrication of planar waveguide in KNSBN crystal by swift heavy ion beam irradiation

    Science.gov (United States)

    Guan, Jing; Wang, Lei; Qin, Xifeng

    2013-11-01

    We report on the fabrication of the planar waveguides in the KNSBN crystal by using 17 MeV C5+ ions at a fluence of 2 × 1014 ions/cm2. After implantation, near surface regions of the crystal, there has a positive extraordinary refractive index (ne) change and the light inside the waveguides can propagate in a non-leaky manner. The two-dimensional modal profiles of the planar waveguides, measured by using the end-coupling arrangement, are in good agreement with the reconstructed modal distributions. The propagation loss for C5+ irradiated waveguide is ∼0.8 dB/cm at 633 nm and ∼0.72 dB/cm at 1064 nm. The waveguide gives good confinement of waveguide modes, which exhibits acceptable guiding qualities for potential applications in integrated optics.

  17. Transition of W7-X non-planar coils from manufacturing to assembly

    Energy Technology Data Exchange (ETDEWEB)

    Ehrke, G. [Max-Planck-Institut fuer Plasmaphysik (IPP), EURATOM Association, Wendelsteinstrasse 1, D-17491 Greifswald (Germany)], E-mail: gunnar.ehrke@ipp.mpg.de

    2009-06-15

    The main magnetic field of Wendelstein 7-X fusion experiment (W7-X) at Max-Planck-Institut fuer Plasmaphysik Greifswald, Germany will be provided by 50 non-planar coils and supported by 20 planar coils. The non-planar coils were delivered by a consortium (CON) consisting of Babcock Noell GmbH Germany (BNG) and ASG Superconductors S.p.A. Italy (ASG). The coil production ended with the delivery of the last non-planar coil in March 2008 at the manufacturing branch of BNG in Zeitz, Germany. The construction of the coils was characterised by design changes, many rework actions and resulting time delays. Due to these numerous adjustments and changes a continuous improvement process was needed. This paper will give an overview about the transition of the non-planar coils from the acceptance tests at the manufacturer site to the beginning of the assembly at IPP. Furthermore this report will highlight technical interfaces in the period of transition.

  18. A short walk in quantum probability

    Science.gov (United States)

    Hudson, Robin

    2018-04-01

    This is a personal survey of aspects of quantum probability related to the Heisenberg commutation relation for canonical pairs. Using the failure, in general, of non-negativity of the Wigner distribution for canonical pairs to motivate a more satisfactory quantum notion of joint distribution, we visit a central limit theorem for such pairs and a resulting family of quantum planar Brownian motions which deform the classical planar Brownian motion, together with a corresponding family of quantum stochastic areas. This article is part of the themed issue `Hilbert's sixth problem'.

  19. A short walk in quantum probability.

    Science.gov (United States)

    Hudson, Robin

    2018-04-28

    This is a personal survey of aspects of quantum probability related to the Heisenberg commutation relation for canonical pairs. Using the failure, in general, of non-negativity of the Wigner distribution for canonical pairs to motivate a more satisfactory quantum notion of joint distribution, we visit a central limit theorem for such pairs and a resulting family of quantum planar Brownian motions which deform the classical planar Brownian motion, together with a corresponding family of quantum stochastic areas.This article is part of the themed issue 'Hilbert's sixth problem'. © 2018 The Author(s).

  20. Low- and high-index sol-gel films for planar and channel-doped waveguides

    Science.gov (United States)

    Canva, Michael; Chaput, Frederic; Lahlil, Khalid; Rachet, Vincent; Goudket, Helene; Boilot, Jean-Pierre; Levy, Yves

    2001-11-01

    In view of realizing integrated optic components based on effects such as electro-optic, chi(2):chi(2) cascading, stimulated emission,... one has to first synthesize materials with the proper functionality; this may be achieved by doping solid state matrices by the appropriate organic chromophores. Second, and as important, these materials have to be properly structured into the final optical guiding structures. We shall report on issues related to the realization of chromophore-doped planar waveguides as well as channel waveguides. These structures were realized by either photo-transformation such as photo- chromism and photo-bleaching or reactive ion etching technique, starting with chromophore doped sol-gel materials at high loading contents for which optical index may be controlled via the local dopant concentration. With these materials and techniques, waveguides and components characterized by propagation losses of the order of a cm-1, measured off the edge of the absorption band of the doping species, were fabricated. In order to be also able to study and use waveguide functionalized with low concentration of chromophore species, we developed new sol-gel materials of high optical index, yet low temperature processed. These new films are under study to evaluate their potential as host for organic doped waveguides devices.

  1. Multi-projector auto-calibration and placement optimization for non-planar surfaces

    Science.gov (United States)

    Li, Dong; Xie, Jinghui; Zhao, Lu; Zhou, Lijing; Weng, Dongdong

    2015-10-01

    Non-planar projection has been widely applied in virtual reality and digital entertainment and exhibitions because of its flexible layout and immersive display effects. Compared with planar projection, a non-planar projection is more difficult to achieve because projector calibration and image distortion correction are difficult processes. This paper uses a cylindrical screen as an example to present a new method for automatically calibrating a multi-projector system in a non-planar environment without using 3D reconstruction. This method corrects the geometric calibration error caused by the screen's manufactured imperfections, such as an undulating surface or a slant in the vertical plane. In addition, based on actual projection demand, this paper presents the overall performance evaluation criteria for the multi-projector system. According to these criteria, we determined the optimal placement for the projectors. This method also extends to surfaces that can be parameterized, such as spheres, ellipsoids, and paraboloids, and demonstrates a broad applicability.

  2. Bonds with index-linked stochastic coupons in quantum finance

    Science.gov (United States)

    Baaquie, Belal Ehsan

    2018-06-01

    An index-linked coupon bond is defined that pays coupons whose values are stochastic, depending on a market defined index. This is an asset class distinct from the existing coupon bonds. The index-linked coupon bond is an example of a sukuk, which is an instrument that implements one of the cornerstones of Islamic finance (Askari et al., 2012): that an investor must share in the risk of the issuer in order to earn profits from the investment. The index-linked coupon bond is defined using the mathematical framework of quantum finance (Baaquie, 2004, 2010). The coupons are stochastic, with the quantum of coupon payments depending on a publicly traded index that is chosen to reflect the primary drivers of the revenues of the issuer of the bond. The index ensures there is information symmetry - regarding the quantum of coupon being paid - between issuer and investor. The dependence of the coupon on the index is designed so that the variation of the index mirrors the changing fortunes of the issuer, with the coupon's quantum increasing for increasing values of the index and conversely, decreasing with a fall of the index.

  3. KAPPEL Propeller. Development of a Marine Propeller with Non-planar Lifting Surfaces

    DEFF Research Database (Denmark)

    Kappel, J.; Andersen, Poul

    2002-01-01

    The principle of non-planar lifting surfaces is applied to the design of modern aircraft wings to obtain better lift to drag ratios. Whereas a pronounced fin or "winglet" at the wingtip has been developed for aircraft, the application of the non-planar principle to marine propellers, dealt...... with in this paper, has led to the KAPPEL propeller with blades curved towards the suction side integrating the fin or winglet into the propeller blade. The combined theoretical, experimental and practical approach to develop and design marine propellers with non-planar lifting surfaces has resulted in propellers...

  4. A surface-electrode quadrupole guide for electrons

    Energy Technology Data Exchange (ETDEWEB)

    Hoffrogge, Johannes Philipp

    2012-12-19

    This thesis reports on the design and first experimental realization of a surface-electrode quadrupole guide for free electrons. The guide is based on a miniaturized, planar electrode layout and is driven at microwave frequencies. It confines electrons in the near-field of the microwave excitation, where strong electric field gradients can be generated without resorting to resonating structures or exceptionally high drive powers. The use of chip-based electrode geometries allows the realization of versatile, microstructured potentials with the perspective of novel quantum experiments with guided electrons. I present the design, construction and operation of an experiment that demonstrates electron confinement in a planar quadrupole guide for the first time. To this end, electrons with kinetic energies from one to ten electron-volts are guided along a curved electrode geometry. The stability of electron guiding as a function of drive parameters and electron energy has been studied. A comparison with numerical particle tracking simulations yields good qualitative agreement and provides a deeper understanding of the electron dynamics in the guiding potential. Furthermore, this thesis gives a detailed description of the design of the surface-electrode layout. This includes the development of an optimized coupling structure to inject electrons into the guide with minimum transverse excitation. I also discuss the extension of the current setup to longitudinal guide dimensions that are comparable to or larger than the wavelength of the drive signal. This is possible with a modified electrode layout featuring elevated signal conductors. Electron guiding in the field of a planar, microfabricated electrode layout allows the generation of versatile and finely structured guiding potentials. One example would be the realization of junctions that split and recombine a guided electron beam. Furthermore, it should be possible to prepare electrons in low-lying quantum mechanical

  5. A surface-electrode quadrupole guide for electrons

    International Nuclear Information System (INIS)

    Hoffrogge, Johannes Philipp

    2012-01-01

    This thesis reports on the design and first experimental realization of a surface-electrode quadrupole guide for free electrons. The guide is based on a miniaturized, planar electrode layout and is driven at microwave frequencies. It confines electrons in the near-field of the microwave excitation, where strong electric field gradients can be generated without resorting to resonating structures or exceptionally high drive powers. The use of chip-based electrode geometries allows the realization of versatile, microstructured potentials with the perspective of novel quantum experiments with guided electrons. I present the design, construction and operation of an experiment that demonstrates electron confinement in a planar quadrupole guide for the first time. To this end, electrons with kinetic energies from one to ten electron-volts are guided along a curved electrode geometry. The stability of electron guiding as a function of drive parameters and electron energy has been studied. A comparison with numerical particle tracking simulations yields good qualitative agreement and provides a deeper understanding of the electron dynamics in the guiding potential. Furthermore, this thesis gives a detailed description of the design of the surface-electrode layout. This includes the development of an optimized coupling structure to inject electrons into the guide with minimum transverse excitation. I also discuss the extension of the current setup to longitudinal guide dimensions that are comparable to or larger than the wavelength of the drive signal. This is possible with a modified electrode layout featuring elevated signal conductors. Electron guiding in the field of a planar, microfabricated electrode layout allows the generation of versatile and finely structured guiding potentials. One example would be the realization of junctions that split and recombine a guided electron beam. Furthermore, it should be possible to prepare electrons in low-lying quantum mechanical

  6. Field-induced quantum criticality of a spin-1/2 planar ferromagnet

    International Nuclear Information System (INIS)

    Mercaldo, M T; Rabuffo, I; Cesare, L De; D'Auria, A Caramico

    2009-01-01

    The low-temperature critical properties and crossovers of a spin- 1/2 planar ferromagnet in a longitudinal magnetic field are explored in terms of an anisotropic bosonic action, suitable to describe the spin model in the low-temperature regime. This is performed adopting a procedure which combines an averaging over dynamic degrees of freedom and the classical Wilson renormalization group transformation. Within this framework we get the phase boundary, ending in a quantum critical point, and general expressions for the correlation length and susceptibility as functions of the temperature and the applied magnetic field within the disordered phase. In particular, two crossovers occur decreasing the temperature with the magnetic field fixed at its quantum critical point value, which might be actually observable in complex magnetic compounds, as suggested by recent experiments.

  7. Quantum physics a beginner's guide

    CERN Document Server

    Rae, Alastair I M

    2005-01-01

    As Alastair Rae points out in his introduction, ""quantum physics is not rocket science"". It may have gained a reputation as the theory that no one really understands, but its practical applications are all around us in everyday life. If it were not for quantum physics, computers would not function, metals would not conduct electricity, and the power stations that heat our homes would not produce energy. Assuming no prior scientific or mathematical knowledge, this clear and concise introduction provides a step-by-step guide to quantum theory, right from the very basic principles to the most c

  8. Raising and lowering operators for quantum billiards

    Indian Academy of Sciences (India)

    AYUSH KUMAR MANDWAL

    2017-08-16

    Aug 16, 2017 ... Abstract. For planar integrable billiards, the eigenstates can be classified with respect to a quantity determined by the quantum numbers. Given the quantum numbers as m, n, the index which represents a class is c = m mod kn for a natural number, k. We show here that the entire tower of states can be ...

  9. Raising and lowering operators for quantum billiards

    Indian Academy of Sciences (India)

    For planar integrable billiards, the eigenstates can be classified with respect to a quantity determined by the quantum numbers. Given the quantum numbers as m , n , the index which represents a class is c = m mod k n for a natural number, k . We show here that the entire tower of states can be generated from an initially ...

  10. Prism coupling technique for characterization of the high refractive index planar waveguides

    Czech Academy of Sciences Publication Activity Database

    Prajzler, V.; Nekvindová, P.; Varga, Marián; Bruncko, J.; Remeš, Zdeněk; Kromka, Alexander

    2016-01-01

    Roč. 18, 11-12 (2016), s. 915-921 ISSN 1454-4164 R&D Projects: GA ČR(CZ) GA14-05053S Institutional support: RVO:68378271 Keywords : high index contrast * optical planar waveguides * zinc oxide * nanocrystalline diamond * gallium nitride Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.449, year: 2016

  11. Ambient mass spectrometry: From the planar to the non-planar surface analysis

    Czech Academy of Sciences Publication Activity Database

    Rejšek, Jan; Vrkoslav, Vladimír; Cvačka, Josef

    2017-01-01

    Roč. 15, č. 1 (2017), s. 31 ISSN 2336-7202. [Mezioborové setkání mladých biologů, biochemiků a chemiků /17./. 30.05.2017-01.06.2017, Milovy] Institutional support: RVO:61388963 Keywords : ambient mass spectrometry * thin layer chromatography * non-planar surface analysis Subject RIV: CB - Analytical Chemistry, Separation

  12. A Novel Non-Planar Transverse Stretching Process for Micro-Porous PTFE Membranes and Resulting Characteristics

    KAUST Repository

    Chang, Y.-H.

    2018-02-26

    Polytetrafluoroethylene (PTFE) micro-porous membranes were prepared from PTFE fine powder through extruding, rolling, and uniaxial longitudinally stretching. In contrast to conventional planar transverse stretching, a novel 3D mold design of non-planar transverse stretching process was employed in this study to produce micro-porous structure. The morphology, membrane thickness, mean pore size, and porosity of the PTFE membrane were investigated. The results show that the non-planar transverse stretched membranes exhibit more uniform average pore diameter with thinner membrane thickness. Morphological changes induced by planar and non-planar transverse stretching for pore characteristics were investigated. The stretching conditions, stretching temperature and rate, affect the stretched membrane. Increasing temperature facilitated the uniformity of pore size and uniformity of membrane thickness. Moreover, increase in stretching rate resulted in finer pore size and thinner membrane.

  13. Strong photonic crystal behavior in regular arrays of core-shell and quantum disc InGaN/GaN nanorod light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lewins, C. J., E-mail: c.j.lewins@bath.ac.uk; Le Boulbar, E. D.; Lis, S. M.; Shields, P. A.; Allsopp, D. W. E., E-mail: d.allsopp@bath.ac.uk [Department of Electronic and Electrical Engineering, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Edwards, P. R.; Martin, R. W. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2014-07-28

    We show that arrays of emissive nanorod structures can exhibit strong photonic crystal behavior, via observations of the far-field luminescence from core-shell and quantum disc InGaN/GaN nanorods. The conditions needed for the formation of directional Bloch modes characteristic of strong photonic behavior are found to depend critically upon the vertical shape of the nanorod sidewalls. Index guiding by a region of lower volume-averaged refractive index near the base of the nanorods creates a quasi-suspended photonic crystal slab at the top of the nanorods which supports Bloch modes. Only diffractive behavior could be observed without this region. Slab waveguide modelling of the vertical structure shows that the behavioral regime of the emissive nanorod arrays depends strongly upon the optical coupling between the nanorod region and the planar layers below. The controlled crossover between the two regimes of photonic crystal operation enables the design of photonic nanorod structures formed on planar substrates that exploit either behavior depending on device requirements.

  14. Optical sensor in planar configuration based on multimode interference

    Science.gov (United States)

    Blahut, Marek

    2017-08-01

    In the paper a numerical analysis of optical sensors based on multimode interference in planar one-dimensional step-index configuration is presented. The structure consists in single-mode input and output waveguides and multimode waveguide which guide only few modes. Material parameters discussed refer to a SU8 polymer waveguide on SiO2 substrate. The optical system described will be designed to the analysis of biological substances.

  15. Non-existence of limit cycles for planar vector fields

    Directory of Open Access Journals (Sweden)

    Jaume Gine

    2014-03-01

    Full Text Available This article presents sufficient conditions for the non-existence of limit cycles for planar vector fields. Classical methods for the nonexistence of limit cycles are connected with the theory developed here.

  16. Guided wave photonics fundamentals and applications with Matlab

    CERN Document Server

    Binh, Le Nguyen

    2012-01-01

    IntroductionHistorical Overview of Integrated Optics and PhotonicsWhy Analysis of Optical Guided-wave Devices?Principal ObjectivesChapters OverviewSingle Mode Planar Optical WaveguidesFormation of Planar Single Mode Waveguide ProblemsApproximate Analytical Methods of SolutionAPPENDIX A: Maxwell Equations in Dielectric MediaAPPENDIX B: Exact Analysis of Clad-linear Optical WaveguidesAPPENDIX C: Wentzel-Kramers-Brilluoin Method, Turning Points and Connection FormulaeAPPENDIX D: Design and Simulation of Planar Optical Waveguides3D Integrated Optical WaveguidesMarcatili's Method| Effective Index M

  17. Conformal, planarizing and bridging AZ5214-E layers deposited by a 'draping' technique on non-planar III V substrates

    Science.gov (United States)

    Eliás, P.; Strichovanec, P.; Kostic, I.; Novák, J.

    2006-12-01

    A draping technique was tested for the deposition of positive-tone AZ5214-E photo-resist layers on non-planar (1 0 0)-oriented III-V substrates, which had a variety of three-dimensional (3D) topographies micromachined in them that consisted, e.g., of mesa ridges confined to side facets with variable tilt, inverted pyramidal holes and stubs confined to perpendicular side facets. All objects were sharp-edged. In each draping experiment, an AZ5214-E sheet was (1) formed floating on the water surface, (2) lowered onto a non-planar substrate and (3) draped over it during drying to form either self-sustained, or conformal, or planarizing layers over the non-planar substrates. The draping process is based on the depression of the glass transition temperature Tg of AZ5214-E material induced by penetrant water molecules that interact with AZ5214-E. During the process, the molecules are initially trapped under an AZ5214-E sheet and then transported out through the sheet via permeation. The water-AZ5214-E interaction modifies the stiffness κ of the sheet. The magnitude of the effect depends on temperature T and on partial water vapour pressure difference p(T, P, κ): the net effect is that Tg = f(C(T, P), p(T, P, κ)) is lowered as the concentration C of water increases with T and p, where P is the permeability of the sheet. The interaction depressed the Tg of the sheets as low as or lower than 53 °C for 6 µm thick sheets. At room temperature T Tg, the sheet becomes rubbery and mouldable by adhesion and capillary forces. As a result, it can either contour or planarize the topography depending on its geometry and thickness of the sheet.

  18. Quantum non-objectivity from performativity of quantum phenomena

    International Nuclear Information System (INIS)

    Khrennikov, Andrei; Schumann, Andrew

    2014-01-01

    We analyze the logical foundations of quantum mechanics (QM) by stressing non-objectivity of quantum observables, which is a consequence of the absence of logical atoms in QM. We argue that the matter of quantum non-objectivity is that, on the one hand, the formalism of QM constructed as a mathematical theory is self-consistent, but, on the other hand, quantum phenomena as results of experimenters’ performances are not self-consistent. This self-inconsistency is an effect of the language of QM differing greatly from the language of human performances. The former is the language of a mathematical theory that uses some Aristotelian and Russellian assumptions (e.g., the assumption that there are logical atoms). The latter language consists of performative propositions that are self-inconsistent only from the viewpoint of conventional mathematical theory, but they satisfy another logic that is non-Aristotelian. Hence, the representation of quantum reality in linguistic terms may be different: the difference between a mathematical theory and a logic of performative propositions. To solve quantum self-inconsistency, we apply the formalism of non-classical self-referent logics. (paper)

  19. Belief propagation and loop series on planar graphs

    International Nuclear Information System (INIS)

    Chertkov, Michael; Teodorescu, Razvan; Chernyak, Vladimir Y

    2008-01-01

    We discuss a generic model of Bayesian inference with binary variables defined on edges of a planar graph. The Loop Calculus approach of Chertkov and Chernyak (2006 Phys. Rev. E 73 065102(R) [cond-mat/0601487]; 2006 J. Stat. Mech. P06009 [cond-mat/0603189]) is used to evaluate the resulting series expansion for the partition function. We show that, for planar graphs, truncating the series at single-connected loops reduces, via a map reminiscent of the Fisher transformation (Fisher 1961 Phys. Rev. 124 1664), to evaluating the partition function of the dimer-matching model on an auxiliary planar graph. Thus, the truncated series can be easily re-summed, using the Pfaffian formula of Kasteleyn (1961 Physics 27 1209). This allows us to identify a big class of computationally tractable planar models reducible to a dimer model via the Belief Propagation (gauge) transformation. The Pfaffian representation can also be extended to the full Loop Series, in which case the expansion becomes a sum of Pfaffian contributions, each associated with dimer matchings on an extension to a subgraph of the original graph. Algorithmic consequences of the Pfaffian representation, as well as relations to quantum and non-planar models, are discussed

  20. Torsional rigidity, isospectrality and quantum graphs

    International Nuclear Information System (INIS)

    Colladay, Don; McDonald, Patrick; Kaganovskiy, Leon

    2017-01-01

    We study torsional rigidity for graph and quantum graph analogs of well-known pairs of isospectral non-isometric planar domains. We prove that such isospectral pairs are distinguished by torsional rigidity. (paper)

  1. An Automatic Multi-Target Independent Analysis Framework for Non-Planar Infrared-Visible Registration.

    Science.gov (United States)

    Sun, Xinglong; Xu, Tingfa; Zhang, Jizhou; Zhao, Zishu; Li, Yuankun

    2017-07-26

    In this paper, we propose a novel automatic multi-target registration framework for non-planar infrared-visible videos. Previous approaches usually analyzed multiple targets together and then estimated a global homography for the whole scene, however, these cannot achieve precise multi-target registration when the scenes are non-planar. Our framework is devoted to solving the problem using feature matching and multi-target tracking. The key idea is to analyze and register each target independently. We present a fast and robust feature matching strategy, where only the features on the corresponding foreground pairs are matched. Besides, new reservoirs based on the Gaussian criterion are created for all targets, and a multi-target tracking method is adopted to determine the relationships between the reservoirs and foreground blobs. With the matches in the corresponding reservoir, the homography of each target is computed according to its moving state. We tested our framework on both public near-planar and non-planar datasets. The results demonstrate that the proposed framework outperforms the state-of-the-art global registration method and the manual global registration matrix in all tested datasets.

  2. Non-Markovian decoherent quantum walks

    International Nuclear Information System (INIS)

    Xue Peng; Zhang Yong-Sheng

    2013-01-01

    Quantum walks act in obviously different ways from their classical counterparts, but decoherence will lessen and close this gap between them. To understand this process, it is necessary to investigate the evolution of quantum walks under different decoherence situations. In this article, we study a non-Markovian decoherent quantum walk on a line. In a short time regime, the behavior of the walk deviates from both ideal quantum walks and classical random walks. The position variance as a measure of the quantum walk collapses and revives for a short time, and tends to have a linear relation with time. That is, the walker's behavior shows a diffusive spread over a long time limit, which is caused by non-Markovian dephasing affecting the quantum correlations between the quantum walker and his coin. We also study both quantum discord and measurement-induced disturbance as measures of the quantum correlations, and observe both collapse and revival in the short time regime, and the tendency to be zero in the long time limit. Therefore, quantum walks with non-Markovian decoherence tend to have diffusive spreading behavior over long time limits, while in the short time regime they oscillate between ballistic and diffusive spreading behavior, and the quantum correlation collapses and revives due to the memory effect

  3. Macroscopic and non-linear quantum games

    International Nuclear Information System (INIS)

    Aerts, D.; D'Hooghe, A.; Posiewnik, A.; Pykacz, J.

    2005-01-01

    Full text: We consider two models of quantum games. The first one is Marinatto and Weber's 'restricted' quantum game in which only the identity and the spin-flip operators are used. We show that this quantum game allows macroscopic mechanistic realization with the use of a version of the 'macroscopic quantum machine' described by Aerts already in 1980s. In the second model we use non-linear quantum state transformations which operate on points of spin-1/2 on the Bloch sphere and which can be used to distinguish optimally between two non-orthogonal states. We show that efficiency of these non-linear strategies out-perform any linear ones. Some hints on the possible theory of non-linear quantum games are given. (author)

  4. EDITORIAL: CAMOP: Quantum Non-Stationary Systems CAMOP: Quantum Non-Stationary Systems

    Science.gov (United States)

    Dodonov, Victor V.; Man'ko, Margarita A.

    2010-09-01

    Although time-dependent quantum systems have been studied since the very beginning of quantum mechanics, they continue to attract the attention of many researchers, and almost every decade new important discoveries or new fields of application are made. Among the impressive results or by-products of these studies, one should note the discovery of the path integral method in the 1940s, coherent and squeezed states in the 1960-70s, quantum tunneling in Josephson contacts and SQUIDs in the 1960s, the theory of time-dependent quantum invariants in the 1960-70s, different forms of quantum master equations in the 1960-70s, the Zeno effect in the 1970s, the concept of geometric phase in the 1980s, decoherence of macroscopic superpositions in the 1980s, quantum non-demolition measurements in the 1980s, dynamics of particles in quantum traps and cavity QED in the 1980-90s, and time-dependent processes in mesoscopic quantum devices in the 1990s. All these topics continue to be the subject of many publications. Now we are witnessing a new wave of interest in quantum non-stationary systems in different areas, from cosmology (the very first moments of the Universe) and quantum field theory (particle pair creation in ultra-strong fields) to elementary particle physics (neutrino oscillations). A rapid increase in the number of theoretical and experimental works on time-dependent phenomena is also observed in quantum optics, quantum information theory and condensed matter physics. Time-dependent tunneling and time-dependent transport in nano-structures are examples of such phenomena. Another emerging direction of study, stimulated by impressive progress in experimental techniques, is related to attempts to observe the quantum behavior of macroscopic objects, such as mirrors interacting with quantum fields in nano-resonators. Quantum effects manifest themselves in the dynamics of nano-electromechanical systems; they are dominant in the quite new and very promising field of circuit

  5. Probabilistic Prognosis of Non-Planar Fatigue Crack Growth

    Science.gov (United States)

    Leser, Patrick E.; Newman, John A.; Warner, James E.; Leser, William P.; Hochhalter, Jacob D.; Yuan, Fuh-Gwo

    2016-01-01

    Quantifying the uncertainty in model parameters for the purpose of damage prognosis can be accomplished utilizing Bayesian inference and damage diagnosis data from sources such as non-destructive evaluation or structural health monitoring. The number of samples required to solve the Bayesian inverse problem through common sampling techniques (e.g., Markov chain Monte Carlo) renders high-fidelity finite element-based damage growth models unusable due to prohibitive computation times. However, these types of models are often the only option when attempting to model complex damage growth in real-world structures. Here, a recently developed high-fidelity crack growth model is used which, when compared to finite element-based modeling, has demonstrated reductions in computation times of three orders of magnitude through the use of surrogate models and machine learning. The model is flexible in that only the expensive computation of the crack driving forces is replaced by the surrogate models, leaving the remaining parameters accessible for uncertainty quantification. A probabilistic prognosis framework incorporating this model is developed and demonstrated for non-planar crack growth in a modified, edge-notched, aluminum tensile specimen. Predictions of remaining useful life are made over time for five updates of the damage diagnosis data, and prognostic metrics are utilized to evaluate the performance of the prognostic framework. Challenges specific to the probabilistic prognosis of non-planar fatigue crack growth are highlighted and discussed in the context of the experimental results.

  6. A simple model for fibre optics: planar dielectric waveguides in rotation

    International Nuclear Information System (INIS)

    Perez-Ocon, F; Pena, A; Jimenez, J R; Diaz, J A

    2006-01-01

    In planar dielectric waveguides, there is only one type of propagated ray: the one that crosses the waveguide axis after each total internal reflection. According to the model of geometrical optics, there are two types of guided ray in fibre optics: meridional and skew. Each one is formulated by a suitable mathematical treatment. In this work, we demonstrate that the complex mathematical treatment for the skew rays can be avoided by considering a planar waveguide (with the same refractive index profile as the fibre and thickness equal to its diameter) that rotates around the direction of the axis with angular velocity ω. A section of this fibre is inscribed in the hypothetical slab. This model has been successfully introduced to students of engineering and physics

  7. Misfit-guided self-organization of anticorrelated Ge quantum dot arrays on Si nanowires.

    Science.gov (United States)

    Kwon, Soonshin; Chen, Zack C Y; Kim, Ji-Hun; Xiang, Jie

    2012-09-12

    Misfit-strain guided growth of periodic quantum dot (QD) arrays in planar thin film epitaxy has been a popular nanostructure fabrication method. Engineering misfit-guided QD growth on a nanoscale substrate such as the small curvature surface of a nanowire represents a new approach to self-organized nanostructure preparation. Perhaps more profoundly, the periodic stress underlying each QD and the resulting modulation of electro-optical properties inside the nanowire backbone promise to provide a new platform for novel mechano-electronic, thermoelectronic, and optoelectronic devices. Herein, we report a first experimental demonstration of self-organized and self-limited growth of coherent, periodic Ge QDs on a one-dimensional Si nanowire substrate. Systematic characterizations reveal several distinctively different modes of Ge QD ordering on the Si nanowire substrate depending on the core diameter. In particular, Ge QD arrays on Si nanowires of around 20 nm diameter predominantly exhibit an anticorrelated pattern whose wavelength agrees with theoretical predictions. The correlated pattern can be attributed to propagation and correlation of misfit strain across the diameter of the thin nanowire substrate. The QD array growth is self-limited as the wavelength of the QDs remains unchanged even after prolonged Ge deposition. Furthermore, we demonstrate a direct kinetic transformation from a uniform Ge shell layer to discrete QD arrays by a postgrowth annealing process.

  8. Non-equilibrium effects upon the non-Markovian Caldeira-Leggett quantum master equation

    International Nuclear Information System (INIS)

    Bolivar, A.O.

    2011-01-01

    Highlights: → Classical Brownian motion described by a non-Markovian Fokker-Planck equation. → Quantization process. → Quantum Brownian motion described by a non-Markovian Caldeira-Leggett equation. → A non-equilibrium quantum thermal force is predicted. - Abstract: We obtain a non-Markovian quantum master equation directly from the quantization of a non-Markovian Fokker-Planck equation describing the Brownian motion of a particle immersed in a generic environment (e.g. a non-thermal fluid). As far as the especial case of a heat bath comprising of quantum harmonic oscillators is concerned, we derive a non-Markovian Caldeira-Leggett master equation on the basis of which we work out the concept of non-equilibrium quantum thermal force exerted by the harmonic heat bath upon the Brownian motion of a free particle. The classical limit (or dequantization process) of this sort of non-equilibrium quantum effect is scrutinized, as well.

  9. A new technique for determining orientation and motion of a 2-D, non-planar magnetopause

    Directory of Open Access Journals (Sweden)

    A. Blagau

    2010-03-01

    Full Text Available For a four-point mission like Cluster, the differences in position and time when the satellites detect the magnetopause or any other discontinuity, can be used to infer the discontinuity local orientation, thickness and motion. This timing technique, commonly assuming a planar geometry, offers an independent check for various single-spacecraft techniques. In the present paper we propose an extension of the timing method, capable of determining in a self-consistent way the macroscopic parameters of a two-dimensional, non-planar discontinuity. Such a configuration can be produced by a local bulge or indentation in the magnetopause, or by a large amplitude wave traveling on this surface, and is recognized in Cluster data when the single spacecraft techniques provide different individual normals contained roughly in the same plane. The model we adopted for the magnetopause assumes a layer of constant thickness of either cylindrical or parabolic shape, which has one or two degrees of freedom for the motion in the plane of the individual normals. The method was further improved by incorporating in a self-consistent way the requirement of minimum magnetic field variance along the magnetopause normal. An additional assumption, required in a previously proposed non-planar technique, i.e. that the non-planarity has negligible effects on the minimum variance analysis, is thus avoided. We applied the method to a magnetopause transition for which the various planar techniques provided inconsistent results. By contrast, the solutions obtained from the different implementations of the new 2-D method were consistent and stable, indicating a convex shape for the magnetopause. These solutions perform better than the planar solutions from the normal magnetic field variance perspective. The magnetopause dynamics and the presence of a non-zero normal magnetic field component in the analyzed event are discussed.

  10. Optical magnetism in planar metamaterial heterostructures.

    Science.gov (United States)

    Papadakis, Georgia T; Fleischman, Dagny; Davoyan, Artur; Yeh, Pochi; Atwater, Harry A

    2018-01-18

    Harnessing artificial optical magnetism has previously required complex two- and three-dimensional structures, such as nanoparticle arrays and split-ring metamaterials. By contrast, planar structures, and in particular dielectric/metal multilayer metamaterials, have been generally considered non-magnetic. Although the hyperbolic and plasmonic properties of these systems have been extensively investigated, their assumed non-magnetic response limits their performance to transverse magnetic (TM) polarization. We propose and experimentally validate a mechanism for artificial magnetism in planar multilayer metamaterials. We also demonstrate that the magnetic properties of high-index dielectric/metal hyperbolic metamaterials can be anisotropic, leading to magnetic hyperbolic dispersion in certain frequency regimes. We show that such systems can support transverse electric polarized interface-bound waves, analogous to their TM counterparts, surface plasmon polaritons. Our results open a route for tailoring optical artificial magnetism in lithography-free layered systems and enable us to generalize the plasmonic and hyperbolic properties to encompass both linear polarizations.

  11. Investigating non-Markovian dynamics of quantum open systems

    Science.gov (United States)

    Chen, Yusui

    Quantum open system coupled to a non-Markovian environment has recently attracted widespread interest for its important applications in quantum information processing and quantum dissipative systems. New phenomena induced by the non-Markovian environment have been discovered in variety of research areas ranging from quantum optics, quantum decoherence to condensed matter physics. However, the study of the non-Markovian quantum open system is known a difficult problem due to its technical complexity in deriving the fundamental equation of motion and elusive conceptual issues involving non-equilibrium dynamics for a strong coupled environment. The main purpose of this thesis is to introduce several new techniques of solving the quantum open systems including a systematic approach to dealing with non-Markovian master equations from a generic quantum-state diffusion (QSD) equation. In the first part of this thesis, we briefly introduce the non-Markovian quantum-state diffusion approach, and illustrate some pronounced non-Markovian quantum effects through numerical investigation on a cavity-QED model. Then we extend the non-Markovian QSD theory to an interesting model where the environment has a hierarchical structure, and find out the exact non-Markovian QSD equation of this model system. We observe the generation of quantum entanglement due to the interplay between the non-Markovian environment and the cavity. In the second part, we show an innovative method to obtain the exact non-Markovian master equations for a set of generic quantum open systems based on the corresponding non-Markovian QSD equations. Multiple-qubit systems and multilevel systems are discussed in details as two typical examples. Particularly, we derive the exact master equation for a model consisting of a three-level atom coupled to an optical cavity and controlled by an external laser field. Additionally, we discuss in more general context the mathematical similarity between the multiple

  12. Noisy non-transitive quantum games

    International Nuclear Information System (INIS)

    Ramzan, M; Khan, Salman; Khan, M Khalid

    2010-01-01

    We study the effect of quantum noise in 3 x 3 entangled quantum games. By taking into account different noisy quantum channels, we analyze how a two-player, three-strategy Rock-Scissor-Paper game is influenced by the quantum noise. We consider the winning non-transitive strategies R, S and P such that R beats S, S beats P and P beats R. The game behaves as a noiseless game for the maximum value of the quantum noise. It is seen that Alice's payoff is heavily influenced by the depolarizing noise as compared to the amplitude damping noise. A depolarizing channel causes a monotonic decrease in players' payoffs as we increase the amount of quantum noise. In the case of the amplitude damping channel, Alice's payoff function reaches its minimum for α = 0.5 and is symmetrical. This means that larger values of quantum noise influence the game weakly. On the other hand, the phase damping channel does not influence the game. Furthermore, the Nash equilibrium and non-transitive character of the game are not affected under the influence of quantum noise.

  13. Planar integrated metasurfaces for highly-collimated terahertz quantum cascade lasers

    Science.gov (United States)

    Liang, Guozhen; Dupont, Emmanuel; Fathololoumi, Saeed; Wasilewski, Zbigniew R.; Ban, Dayan; Liang, Hou Kun; Zhang, Ying; Yu, Siu Fung; Li, Lianhe H.; Davies, Alexander Giles; Linfield, Edmund H.; Liu, Hui Chun; Wang, Qi Jie

    2014-01-01

    We report planar integration of tapered terahertz (THz) frequency quantum cascade lasers (QCLs) with metasurface waveguides that are designed to be spoof surface plasmon (SSP) out-couplers by introducing periodically arranged SSP scatterers. The resulting surface-emitting THz beam profile is highly collimated with a divergence as narrow as ~4° × 10°, which indicates a good waveguiding property of the metasurface waveguide. In addition, the low background THz power implies a high coupling efficiency for the THz radiation from the laser cavity to the metasurface structure. Furthermore, since all the structures are in-plane, this scheme provides a promising platform where well-established surface plasmon/metasurface techniques can be employed to engineer the emitted beam of THz QCLs controllably and flexibly. More importantly, an integrated active THz photonic circuit for sensing and communication applications could be constructed by incorporating other optoelectronic devices such as Schottky diode THz mixers, and graphene modulators and photodetectors. PMID:25403796

  14. Massive planar and non-planar double box integrals for light N f contributions to

    Science.gov (United States)

    von Manteuffel, Andreas; Studerus, Cedric

    2013-10-01

    We present the master integrals needed for the light fermionic two-loop corrections to top quark pair production in the gluon fusion channel. Via the method of differential equations we compute the results in terms of multiple polylogarithms in a Laurent series about d = 4, where d is the space-time dimension. The most involved topology is a non-planar double box with one internal mass. We employ the coproduct-augmented symbol calculus and show that significant simplifications are possible for selected results using an optimised set of multiple polylogarithms.

  15. Non-Standard Hierarchies of the Runnings of the Spectral Index in Inflation

    Directory of Open Access Journals (Sweden)

    Chris Longden

    2017-03-01

    Full Text Available Recent analyses of cosmic microwave background surveys have revealed hints that there may be a non-trivial running of the running of the spectral index. If future experiments were to confirm these hints, it would prove a powerful discriminator of inflationary models, ruling out simple single field models. We discuss how isocurvature perturbations in multi-field models can be invoked to generate large runnings in a non-standard hierarchy, and find that a minimal model capable of practically realising this would be a two-field model with a non-canonical kinetic structure. We also consider alternative scenarios such as variable speed-of-light models and canonical quantum gravity effects and their implications for runnings of the spectral index.

  16. Misfit-guided self-organization of anti-correlated Ge quantum dot arrays on Si nanowires

    Science.gov (United States)

    Kwon, Soonshin; Chen, Zack C.Y.; Kim, Ji-Hun; Xiang, Jie

    2012-01-01

    Misfit-strain guided growth of periodic quantum dot (QD) arrays in planar thin film epitaxy has been a popular nanostructure fabrication method. Engineering misfit-guided QD growth on a nanoscale substrate such as the small curvature surface of a nanowire represents a new approach to self-organized nanostructure preparation. Perhaps more profoundly, the periodic stress underlying each QD and the resulting modulation of electro-optical properties inside the nanowire backbone promise to provide a new platform for novel mechano-electronic, thermoelectronic, and optoelectronic devices. Herein, we report a first experimental demonstration of self-organized and self-limited growth of coherent, periodic Ge QDs on a one dimensional Si nanowire substrate. Systematic characterizations reveal several distinctively different modes of Ge QD ordering on the Si nanowire substrate depending on the core diameter. In particular, Ge QD arrays on Si nanowires of around 20 nm diameter predominantly exhibit an anti-correlated pattern whose wavelength agrees with theoretical predictions. The correlated pattern can be attributed to propagation and correlation of misfit strain across the diameter of the thin nanowire substrate. The QD array growth is self-limited as the wavelength of the QDs remains unchanged even after prolonged Ge deposition. Furthermore, we demonstrate a direct kinetic transformation from a uniform Ge shell layer to discrete QD arrays by a post-growth annealing process. PMID:22889063

  17. Noisy non-transitive quantum games

    Energy Technology Data Exchange (ETDEWEB)

    Ramzan, M; Khan, Salman; Khan, M Khalid, E-mail: mramzan@phys.qau.edu.p [Department of Physics Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2010-07-02

    We study the effect of quantum noise in 3 x 3 entangled quantum games. By taking into account different noisy quantum channels, we analyze how a two-player, three-strategy Rock-Scissor-Paper game is influenced by the quantum noise. We consider the winning non-transitive strategies R, S and P such that R beats S, S beats P and P beats R. The game behaves as a noiseless game for the maximum value of the quantum noise. It is seen that Alice's payoff is heavily influenced by the depolarizing noise as compared to the amplitude damping noise. A depolarizing channel causes a monotonic decrease in players' payoffs as we increase the amount of quantum noise. In the case of the amplitude damping channel, Alice's payoff function reaches its minimum for {alpha} = 0.5 and is symmetrical. This means that larger values of quantum noise influence the game weakly. On the other hand, the phase damping channel does not influence the game. Furthermore, the Nash equilibrium and non-transitive character of the game are not affected under the influence of quantum noise.

  18. Non-signaling boxes and quantum logics

    International Nuclear Information System (INIS)

    Tylec, T I; Kuś, M

    2015-01-01

    Using a quantum logic approach we analyze the structure of the so-called non-signaling theories respecting relativistic causality, but allowing correlations violating bounds imposed by quantum mechanics such as CHSH inequality. We discuss the relations among such theories, quantum mechanics, and classical physics. Our main result is the construction of a probability theory adequate for the simplest instance of a non-signaling theory—the two non-signaling boxes world—in which we exhibit its differences in comparison with classical and quantum probabilities. We show that the question of whether such a theory can be treated as a kind of ‘generalization’ of the quantum theory of the two-qubit system cannot be answered positively. Some of its features put it closer to the quantum world—on the one hand, for example, the measurements are destructive, though on the other hand the Heisenberg uncertainty relations are not satisfied. Another interesting property contrasting it from quantum mechanics is that the subset of ‘classically correlated states’, i.e. the states with only classical correlations, does not reproduce the classical world of the two two-state systems. Our results establish a new link between quantum information theory and the well-developed theory of quantum logics. (paper)

  19. On-Chip Single-Plasmon Nanocircuit Driven by a Self-Assembled Quantum Dot.

    Science.gov (United States)

    Wu, Xiaofei; Jiang, Ping; Razinskas, Gary; Huo, Yongheng; Zhang, Hongyi; Kamp, Martin; Rastelli, Armando; Schmidt, Oliver G; Hecht, Bert; Lindfors, Klas; Lippitz, Markus

    2017-07-12

    Quantum photonics holds great promise for future technologies such as secure communication, quantum computation, quantum simulation, and quantum metrology. An outstanding challenge for quantum photonics is to develop scalable miniature circuits that integrate single-photon sources, linear optical components, and detectors on a chip. Plasmonic nanocircuits will play essential roles in such developments. However, for quantum plasmonic circuits, integration of stable, bright, and narrow-band single photon sources in the structure has so far not been reported. Here we present a plasmonic nanocircuit driven by a self-assembled GaAs quantum dot. Through a planar dielectric-plasmonic hybrid waveguide, the quantum dot efficiently excites narrow-band single plasmons that are guided in a two-wire transmission line until they are converted into single photons by an optical antenna. Our work demonstrates the feasibility of fully on-chip plasmonic nanocircuits for quantum optical applications.

  20. Rational design and characterization of high-efficiency planar A–π–D–π–A type electron donors in small molecule organic solar cells: A quantum chemical approach

    International Nuclear Information System (INIS)

    Wang, Dongmei; Ding, Weilu; Geng, Zhiyuan; Wang, Li; Geng, Yun; Su, Zhongmin; Yu, Hailing

    2014-01-01

    Taking the reported donor DR3TBDT as reference, a series of A–π–D–π–A type donor molecules involving different planar donor cores were designed and investigated by using density functional theory (DFT)/time-dependent DFT methods. Preliminary calculations on geometries, energy levels and spectrum properties show that four of the designed molecules (4, 5, 12 and 13) could become potential donor replacements of DR3TBDT due to their good planarity, larger light harvesting efficiencies and similar exciton migration capability. Additionally, several factors influencing on short-circuit current density (J sc ) were analyzed by in-depth quantum chemical investigations on the transition density matrix, charge transfer indexes, exciton binding energy and Gibbs free energy loss in charge dissociation process. Comparative analyses demonstrate that 4 with indaceno[1,2-b:5,6-b′]dithiophene donor core has more significant electron transfer character and favorable exciton dissociation capability for enhancing the J sc , and would be potentially promising donor material in organic solar cells. - Graphical abstract: Display Omitted - Highlights: • A series of A–π–D–π–A type donors with different donor core for OSC were designed. • The relationship between donor properties and device performance is explored by DFT. • An In-depth quantum chemical investigation on the affecting factors on J sc . • The efficiency of new donor 4 may surpass the reported donor DR3TBDT

  1. Non-unitary probabilistic quantum computing

    Science.gov (United States)

    Gingrich, Robert M.; Williams, Colin P.

    2004-01-01

    We present a method for designing quantum circuits that perform non-unitary quantum computations on n-qubit states probabilistically, and give analytic expressions for the success probability and fidelity.

  2. The classical limit of non-integrable quantum systems, a route to quantum chaos

    International Nuclear Information System (INIS)

    Castagnino, Mario; Lombardi, Olimpia

    2006-01-01

    The classical limit of non-integrable quantum systems is studied. We define non-integrable quantum systems as those, which have, as their classical limit, a non-integrable classical system. This quantum systems will be the candidates to be the models of quantum chaos. In order to obtain this limit, the self-induced decoherence approach and the corresponding classical limit are generalized from integrable to non-integrable systems. In this approach, the lost of information, usually conceived as the result of a coarse-graining or the trace of an environment, is produced by a particular choice of the algebra of observables and the systematic use of mean values, that project the unitary evolution onto an effective non-unitary one. By means of our method, we can obtain the classical limit of the quantum state of a non-integrable system, which turns out to be a set of unstable, potentially chaotic classical trajectories contained in the Wigner transformation of the quantum state

  3. The classical limit of non-integrable quantum systems, a route to quantum chaos

    Energy Technology Data Exchange (ETDEWEB)

    Castagnino, Mario [CONICET-UNR-UBA, Institutos de Fisica de Rosario y de Astronomia y Fisica del Espacio, Casilla de Correos 67, Sucursal 28, 1428, Buenos Aires (Argentina)]. E-mail: mariocastagnino@citynet.net.ar; Lombardi, Olimpia [CONICET-Universidad de Buenos Aires-Universidad de Quilmes Rivadavia 2358, 6to. Derecha, Buenos Aires (Argentina)

    2006-05-15

    The classical limit of non-integrable quantum systems is studied. We define non-integrable quantum systems as those, which have, as their classical limit, a non-integrable classical system. This quantum systems will be the candidates to be the models of quantum chaos. In order to obtain this limit, the self-induced decoherence approach and the corresponding classical limit are generalized from integrable to non-integrable systems. In this approach, the lost of information, usually conceived as the result of a coarse-graining or the trace of an environment, is produced by a particular choice of the algebra of observables and the systematic use of mean values, that project the unitary evolution onto an effective non-unitary one. By means of our method, we can obtain the classical limit of the quantum state of a non-integrable system, which turns out to be a set of unstable, potentially chaotic classical trajectories contained in the Wigner transformation of the quantum state.

  4. Non-Perturbative Quantum Geometry III

    CERN Document Server

    Krefl, Daniel

    2016-08-02

    The Nekrasov-Shatashvili limit of the refined topological string on toric Calabi-Yau manifolds and the resulting quantum geometry is studied from a non-perturbative perspective. The quantum differential and thus the quantum periods exhibit Stockes phenomena over the combined string coupling and quantized Kaehler moduli space. We outline that the underlying formalism of exact quantization is generally applicable to points in moduli space featuring massless hypermultiplets, leading to non-perturbative band splitting. Our prime example is local P1xP1 near a conifold point in moduli space. In particular, we will present numerical evidence that in a Stockes chamber of interest the string based quantum geometry reproduces the non-perturbative corrections for the Nekrasov-Shatashvili limit of 4d supersymmetric SU(2) gauge theory at strong coupling found in the previous part of this series. A preliminary discussion of local P2 near the conifold point in moduli space is also provided.

  5. Non-zero total correlation means non-zero quantum correlation

    International Nuclear Information System (INIS)

    Li, Bo; Chen, Lin; Fan, Heng

    2014-01-01

    We investigated the super quantum discord based on weak measurements. The super quantum discord is an extension of the standard quantum discord defined by projective measurements and also describes the quantumness of correlations. We provide some equivalent conditions for zero super quantum discord by using quantum discord, classical correlation and mutual information. In particular, we find that the super quantum discord is zero only for product states, which have zero mutual information. This result suggests that non-zero correlations can always be detected using the quantum correlation with weak measurements. As an example, we present the assisted state-discrimination method.

  6. Planar waveguide structure formed on Nd:YVO{sub 4} by Kr{sup 8+} ion irradiation at ultralow fluences

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lian; Liu, Peng; Liu, Tao; Zhou, Yu-Fan [School of Physics, State Key Laboratory of Crystal Materials and Key Laboratory of Particle and Particle Irradiation (MOE), Shandong University, Jinan 250100 (China); Sun, Jian-Rong; Wang, Zhi-Guang [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang, Xue-Lin, E-mail: xuelinwang@sdu.edu.cn [School of Physics, State Key Laboratory of Crystal Materials and Key Laboratory of Particle and Particle Irradiation (MOE), Shandong University, Jinan 250100 (China)

    2013-11-15

    We report on the fabrication of a planar waveguide structure on Nd:YVO{sub 4} laser crystal. The waveguide structure was formed by Kr{sup 8+} ion irradiation with energy of 30 MeV at fluences of 2 × 10{sup 12} cm{sup −2}. The guiding modes of the planar waveguide were measured by the prism-coupling method at wavelengths of 633 nm and 1539 nm. The reflectivity calculation method (RCM) was used to reconstruct the refractive index profiles. Relatively large positive changes in the ordinary refractive index occur in the waveguide region. The refractive index profile of the planar waveguide was a typical “well” + “barrier” distribution, and we used the finite-difference beam propagation method (FD-BPM) to simulate light propagation in the waveguide. Using the Stopping and Range of Ions in Matter (SRIM 2008) software, the energy loss during ion irradiation was simulated to obtain a better understanding of the formation of the waveguide structure. The investigation of the absorption bands demonstrated that the transmission properties of the bulk Nd:YVO{sub 4} crystal have been preserved after ion irradiation.

  7. Effect of electron temperature on small-amplitude electron acoustic solitary waves in non-planar geometry

    Science.gov (United States)

    Bansal, Sona; Aggarwal, Munish; Gill, Tarsem Singh

    2018-04-01

    Effects of electron temperature on the propagation of electron acoustic solitary waves in plasma with stationary ions, cold and superthermal hot electrons is investigated in non-planar geometry employing reductive perturbation method. Modified Korteweg-de Vries equation is derived in the small amplitude approximation limit. The analytical and numerical calculations of the KdV equation reveal that the phase velocity of the electron acoustic waves increases as one goes from planar to non planar geometry. It is shown that the electron temperature ratio changes the width and amplitude of the solitary waves and when electron temperature is not taken into account,our results completely agree with the results of Javidan & Pakzad (2012). It is found that at small values of τ , solitary wave structures behave differently in cylindrical ( {m} = 1), spherical ( {m} = 2) and planar geometry ( {m} = 0) but looks similar at large values of τ . These results may be useful to understand the solitary wave characteristics in laboratory and space environments where the plasma have multiple temperature electrons.

  8. Two-Loop Master Integrals for $\\gamma^{*} \\to 3$ Jets the Non-Planar Topologies

    CERN Document Server

    Gehrmann, T

    2001-01-01

    The calculation of the two-loop corrections to the three-jet production rate and to event shapes in electron--positron annihilation requires the computation of a number of two-loop four-point master integrals with one off-shell and three on-shell legs. Up to now, only those master integrals corresponding to planar topologies were known. In this paper, we compute the yet outstanding non-planar master integrals by solving differential equations in the external invariants which are fulfilled by these master integrals. We obtain the master integrals as expansions in $\\e=(4-d)/2$, where $d$ is the space-time dimension. The fully analytic results are expressed in terms of the two-dimensional harmonic polylogarithms already introduced in the evaluation of the planar topologies.

  9. Non-standard quantum groups and superization

    Energy Technology Data Exchange (ETDEWEB)

    Majid, S. [Cambridge Univ. (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics (DAMTP); Rodriguez-Plaza, M.J. [Nationaal Inst. voor Kernfysica en Hoge-Energiefysica (NIKHEF), Amsterdam (Netherlands). Sectie H

    1995-12-31

    We obtain the universal R-matrix of the non-standard quantum group associated to the Alexander-Conway knot polynomial. We show further that this nonstandard quantum group is related to the super-quantum group U{sub q}gl(1 vertical stroke 1) by a general process of superization, which we describe. We also study a twisted variant of this non-standard quantum group and obtain, as a result, a twisted version uf U{sub q}gl(1 vertical stroke 1) as a q-supersymmetry of the exterior differential calculus of any quantum plane of Hecke type, acting by mixing the bosonic x{sub i} co-ordinates and the forms dx{sub i}. (orig.).

  10. White emission from non-planar InGaN/GaN MQW LEDs grown on GaN template with truncated hexagonal pyramids.

    Science.gov (United States)

    Lee, Ming-Lun; Yeh, Yu-Hsiang; Tu, Shang-Ju; Chen, P C; Lai, Wei-Chih; Sheu, Jinn-Kong

    2015-04-06

    Non-planar InGaN/GaN multiple quantum well (MQW) structures are grown on a GaN template with truncated hexagonal pyramids (THPs) featuring c-plane and r-plane surfaces. The THP array is formed by the regrowth of the GaN layer on a selective-area Si-implanted GaN template. Transmission electron microscopy shows that the InGaN/GaN epitaxial layers regrown on the THPs exhibit different growth rates and indium compositions of the InGaN layer between the c-plane and r-plane surfaces. Consequently, InGaN/GaN MQW light-emitting diodes grown on the GaN THP array emit multiple wavelengths approaching near white light.

  11. Development of shearography for surface strain measurement of non planar objects

    International Nuclear Information System (INIS)

    Groves, Roger Michael

    2001-01-01

    The subject of this thesis is the development of optical instrumentation for surface strain measurement of non-planar objects. The speckle interferometry technique of shearography is used to perform quantitative measurements of surface strain on non-planar objects and to compensate these measurements for the errors that are due to the shape and slope of the object. Shearography is an optical technique that is usually used for defect location and for qualitative strain characterisation. In this thesis a multi-component shearography system is described that can measure the six components of displacement gradient. From these measurements the surface strain can be fully characterised. For non-planar objects an error is introduced into the displacement gradient measurement due to the variation of the sensitivity vector across the field of view and the variation in the magnitude of applied shear due to the curvature of the object surface. To correct for these errors requires a knowledge of the slope and shape of the object. Shearography may also be used to measure object slope and shape by a source displacement technique. Therefore slope, shape and surface strain may be measured using the same optical system. The thesis describes a method of multiplexing the shear direction using polarisation switching, a method of measuring the source position using shadow Moire and the shearography source displacement technique for measuring the surface slope and shape of objects. The multi-component shearography system is used to perform measurements of the six components of surface strain, on an industrial component, with a correction applied for errors due to the shape and slope of the object. (author)

  12. Non-commutative geometry on quantum phase-space

    International Nuclear Information System (INIS)

    Reuter, M.

    1995-06-01

    A non-commutative analogue of the classical differential forms is constructed on the phase-space of an arbitrary quantum system. The non-commutative forms are universal and are related to the quantum mechanical dynamics in the same way as the classical forms are related to classical dynamics. They are constructed by applying the Weyl-Wigner symbol map to the differential envelope of the linear operators on the quantum mechanical Hilbert space. This leads to a representation of the non-commutative forms considered by A. Connes in terms of multiscalar functions on the classical phase-space. In an appropriate coincidence limit they define a quantum deformation of the classical tensor fields and both commutative and non-commutative forms can be studied in a unified framework. We interprete the quantum differential forms in physical terms and comment on possible applications. (orig.)

  13. Daple Coordinates Planar Polarized Microtubule Dynamics in Ependymal Cells and Contributes to Hydrocephalus

    Directory of Open Access Journals (Sweden)

    Maki Takagishi

    2017-07-01

    Full Text Available Motile cilia in ependymal cells, which line the cerebral ventricles, exhibit a coordinated beating motion that drives directional cerebrospinal fluid (CSF flow and guides neuroblast migration. At the apical cortex of these multi-ciliated cells, asymmetric localization of planar cell polarity (PCP proteins is required for the planar polarization of microtubule dynamics, which coordinates cilia orientation. Daple is a disheveled-associating protein that controls the non-canonical Wnt signaling pathway and cell motility. Here, we show that Daple-deficient mice present hydrocephalus and their ependymal cilia lack coordinated orientation. Daple regulates microtubule dynamics at the anterior side of ependymal cells, which in turn orients the cilial basal bodies required for the directional cerebrospinal fluid flow. These results demonstrate an important role for Daple in planar polarity in motile cilia and provide a framework for understanding the mechanisms and functions of planar polarization in the ependymal cells.

  14. Quantum non-malleability and authentication

    DEFF Research Database (Denmark)

    Alagic, Gorjan; Majenz, Christian

    2017-01-01

    is too weak, as it allows adversaries to “inject” plaintexts of their choice into the ciphertext. We give a new definition of quantum non-malleability which resolves this problem. Our definition is expressed in terms of entropic quantities, considers stronger adversaries, and does not assume secrecy....... Rather, we prove that quantum non-malleability implies secrecy; this is in stark contrast to the classical setting, where the two properties are completely independent. For unitary schemes, our notion of non-malleability is equivalent to encryption with a two-design and hence also to the. Our techniques...... also yield new results regarding the closely-related task of quantum authentication. We show that “total authentication” (a notion recently proposed by Garg et al. [6],) can be satisfied with two-designs, a significant improvement over the eight-design construction of [18],. We also show that, under...

  15. Lost-in-Space Star Identification Using Planar Triangle Principal Component Analysis Algorithm

    Directory of Open Access Journals (Sweden)

    Fuqiang Zhou

    2015-01-01

    Full Text Available It is a challenging task for a star sensor to implement star identification and determine the attitude of a spacecraft in the lost-in-space mode. Several algorithms based on triangle method are proposed for star identification in this mode. However, these methods hold great time consumption and large guide star catalog memory size. The star identification performance of these methods requires improvements. To address these problems, a star identification algorithm using planar triangle principal component analysis is presented here. A star pattern is generated based on the planar triangle created by stars within the field of view of a star sensor and the projection of the triangle. Since a projection can determine an index for a unique triangle in the catalog, the adoption of the k-vector range search technique makes this algorithm very fast. In addition, a sharing star validation method is constructed to verify the identification results. Simulation results show that the proposed algorithm is more robust than the planar triangle and P-vector algorithms under the same conditions.

  16. Smoothing and instability with magnetic field in a non-uniformly laser-irradiated planar target

    International Nuclear Information System (INIS)

    Bell, A.R.; Epperlein, E.M.

    1986-01-01

    Calculations are presented of the magneto-hydrodynamic response of a planar target to non-uniformities in energy deposition by a laser. The amplitude of the non-uniformities are assumed small and the equations are linearised in small perturbations about the solution for steady planar ablation driven by uniform laser energy deposition. The grad(n)xgrad(T) magnetic field source is included, along with Nernst convection and the Righi-Leduc heat flow. The magnetic field is shown to give a small increase in smoothing. A source term for magnetic field is included to simulate the effects of the Weibel instability. The instability is not strong enough to overcome the smoothing processes under the present assumptions. (author)

  17. Quantum non-Markovianity: characterization, quantification and detection

    International Nuclear Information System (INIS)

    Rivas, Ángel; Huelga, Susana F; Plenio, Martin B

    2014-01-01

    We present a comprehensive and up-to-date review of the concept of quantum non-Markovianity, a central theme in the theory of open quantum systems. We introduce the concept of a quantum Markovian process as a generalization of the classical definition of Markovianity via the so-called divisibility property and relate this notion to the intuitive idea that links non-Markovianity with the persistence of memory effects. A detailed comparison with other definitions presented in the literature is provided. We then discuss several existing proposals to quantify the degree of non-Markovianity of quantum dynamics and to witness non-Markovian behavior, the latter providing sufficient conditions to detect deviations from strict Markovianity. Finally, we conclude by enumerating some timely open problems in the field and provide an outlook on possible research directions. (review article)

  18. Quantum non-Markovianity: characterization, quantification and detection

    Science.gov (United States)

    Rivas, Ángel; Huelga, Susana F.; Plenio, Martin B.

    2014-09-01

    We present a comprehensive and up-to-date review of the concept of quantum non-Markovianity, a central theme in the theory of open quantum systems. We introduce the concept of a quantum Markovian process as a generalization of the classical definition of Markovianity via the so-called divisibility property and relate this notion to the intuitive idea that links non-Markovianity with the persistence of memory effects. A detailed comparison with other definitions presented in the literature is provided. We then discuss several existing proposals to quantify the degree of non-Markovianity of quantum dynamics and to witness non-Markovian behavior, the latter providing sufficient conditions to detect deviations from strict Markovianity. Finally, we conclude by enumerating some timely open problems in the field and provide an outlook on possible research directions.

  19. A planar conducting microstructure to guide and confine magnetic beads to a sensing zone

    KAUST Repository

    Gooneratne, Chinthaka Pasan

    2011-08-01

    A novel planar conducting microstructure is proposed to transport and confine magnetic micro/nano beads to a sensing zone. Manipulation and concentration of magnetic beads are achieved by employing square-shaped conducting micro-loops, with a few hundred nano-meters in thickness, arranged in a unique fashion. These microstructures are designed to produce high magnetic field gradients which are directly proportional to the force applied to manipulate the magnetic beads. Furthermore, the size of the microstructures allows greater maneuverability and control of magnetic beads than what could be achieved by permanent magnets. The aim of the microstructures is to guide magnetic beads from a large area and confine them to a smaller area where for example quantification would take place. Experiments were performed with different concentrations of 2 μm diameter magnetic beads. Experimental results showed that magnetic beads could be successfully guided and confined to the sensing zone. © 2011 Elsevier B.V. All rights reserved.

  20. Film formation of non-planar phthalocyanines on copper(i) iodide

    OpenAIRE

    Ramadan, A. J.; Fearn, S.; Jones, T. S. (Tim S.); Heutz, S.; Rochford, L. A. (Luke A.)

    2016-01-01

    Structural templating is frequently used in organic photovoltaic devices to control the properties of the functional layers and therefore improve efficiencies. Modification of the substrate temperatures has also been shown to impact the structure and morphology of phthalocyanine thin films. Here we combine templating by copper iodide and high substrate temperature growth and study its effect on the structure and morphology of two different non-planar phthalocyanines, chloroaluminium (ClAlPc) ...

  1. Markovianity and non-Markovianity in quantum and classical systems

    International Nuclear Information System (INIS)

    Vacchini, Bassano; Smirne, Andrea; Laine, Elsi-Mari; Piilo, Jyrki; Breuer, Heinz-Peter

    2011-01-01

    We discuss the conceptually different definitions used for the non-Markovianity of classical and quantum processes. The well-established definition of non-Markovianity of a classical stochastic process represents a condition on the Kolmogorov hierarchy of the n-point joint probability distributions. Since this definition cannot be transferred to the quantum regime, quantum non-Markovianity has recently been defined and quantified in terms of the underlying quantum dynamical map, using either its divisibility properties or the behavior of the trace distance between pairs of initial states. Here, we investigate and compare these definitions and their relations to the classical notion of non-Markovianity by employing a large class of non-Markovian processes, known as semi-Markov processes, which admit a natural extension to the quantum case. A number of specific physical examples are constructed that allow us to study the basic features of the classical and the quantum definitions and to evaluate explicitly the measures of quantum non-Markovianity. Our results clearly demonstrate several fundamental differences between the classical and the quantum notion of non-Markovianity, as well as between the various quantum measures of non-Markovianity. In particular, we show that the divisibility property in the classical case does not coincide with Markovianity and that the non-Markovianity measure based on divisibility assigns equal infinite values to different dynamics, which can be distinguished by exploiting the trace distance measure. A simple exact expression for the latter is also obtained in a special case.

  2. Study of optical non-linear properties of a constant total effective length multiple quantum wells system

    International Nuclear Information System (INIS)

    Solaimani, M.; Morteza, Izadifard; Arabshahi, H.; Reza, Sarkardehi Mohammad

    2013-01-01

    In this work, we have studied the effect of the number of the wells, in a multiple quantum wells structure with constant total effective length, on the optical properties of multiple quantum wells like the absorption coefficient and the refractive index by means of compact density matrix approach. GaAs/Al x Ga (1−x) As multiple quantum wells systems was selected as an example. Besides, the effect of varying number of wells on the subband energies, wave functions, number of bound states, and the Fermi energy have been also investigated. Our calculation revealed that the number of wells in a multiple quantum well is a criterion with which we can control the amount of nonlinearity. This study showed that for the third order refractive index change there is two regimes of variations and the critical well number was six. In our calculations, we have used the same wells and barrier thicknesses to construct the multiple quantum wells system. - Highlights: ► OptiOptical Non-Linear. ► Total Effective Length. ► Multiple Quantum Wells System - genetic algorithm ► Schrödinger equation solution. ► Nanostructure.

  3. Quantum gravitational collapse: non-singularity and non-locality

    International Nuclear Information System (INIS)

    Greenwood, Eric; Stojkovic, Dejan

    2008-01-01

    We investigate gravitational collapse in the context of quantum mechanics. We take primary interest in the behavior of the collapse near the horizon and near the origin (classical singularity) from the point of view of an infalling observer. In the absence of radiation, quantum effects near the horizon do not change the classical conclusions for an infalling observer, meaning the horizon is not an obstacle for him. However, quantum effects are able to remove the classical singularity at the origin, since the wave function is non-singular at the origin. Also, near the classical singularity, some non-local effects become important. In the Schrodinger equation describing behavior near the origin, derivatives of the wave function at one point are related to the value of the wave function at some other distant point.

  4. Light-trapping for room temperature Bose-Einstein condensation in InGaAs quantum wells.

    Science.gov (United States)

    Vasudev, Pranai; Jiang, Jian-Hua; John, Sajeev

    2016-06-27

    We demonstrate the possibility of room-temperature, thermal equilibrium Bose-Einstein condensation (BEC) of exciton-polaritons in a multiple quantum well (QW) system composed of InGaAs quantum wells surrounded by InP barriers, allowing for the emission of light near telecommunication wavelengths. The QWs are embedded in a cavity consisting of double slanted pore (SP2) photonic crystals composed of InP. We consider exciton-polaritons that result from the strong coupling between the multiple quantum well excitons and photons in the lowest planar guided mode within the photonic band gap (PBG) of the photonic crystal cavity. The collective coupling of three QWs results in a vacuum Rabi splitting of 3% of the bare exciton recombination energy. Due to the full three-dimensional PBG exhibited by the SP2 photonic crystal (16% gap to mid-gap frequency ratio), the radiative decay of polaritons is eliminated in all directions. Due to the short exciton-phonon scattering time in InGaAs quantum wells of 0.5 ps and the exciton non-radiative decay time of 200 ps at room temperature, polaritons can achieve thermal equilibrium with the host lattice to form an equilibrium BEC. Using a SP2 photonic crystal with a lattice constant of a = 516 nm, a unit cell height of 2a=730nm and a pore radius of 0.305a = 157 nm, light in the lowest planar guided mode is strongly localized in the central slab layer. The central slab layer consists of 3 nm InGaAs quantum wells with 7 nm InP barriers, in which excitons have a recombination energy of 0.944 eV, a binding energy of 7 meV and a Bohr radius of aB = 10 nm. We take the exciton recombination energy to be detuned 35 meV above the lowest guided photonic mode so that an exciton-polariton has a photonic fraction of approximately 97% per QW. This increases the energy range of small-effective-mass photonlike states and increases the critical temperature for the onset of a Bose-Einstein condensate. With three quantum wells in the central slab layer

  5. Foundations and measures of quantum non-Markovianity

    International Nuclear Information System (INIS)

    Breuer, Heinz-Peter

    2012-01-01

    The basic features of the dynamics of open quantum systems, such as the dissipation of energy, the decay of coherences, the relaxation to an equilibrium or non-equilibrium stationary state, and the transport of excitations in complex structures are of central importance in many applications of quantum mechanics. The theoretical description, analysis and control of non-Markovian quantum processes play an important role in this context. While in a Markovian process an open system irretrievably loses information to its surroundings, non-Markovian processes feature a flow of information from the environment back to the open system, which implies the presence of memory effects and represents the key property of non-Markovian quantum behaviour. Here, we review recent ideas developing a general mathematical definition for non-Markovianity in the quantum regime and a measure for the degree of memory effects in the dynamics of open systems, which are based on the exchange of information between system and environment. We further study the dynamical effects induced by the presence of system–environment correlations in the total initial state and design suitable methods to detect such correlations through local measurements on the open system. (topical review)

  6. Quantum objects. Non-local correlation, causality and objective indefiniteness in the quantum world

    International Nuclear Information System (INIS)

    Jaeger, Gregg

    2014-01-01

    Presents interpretation of quantum mechanics, advances in quantum foundations and philosophy of quantum mechanics. Explains non-locality and its relationship to causality and probability in quantum theory. Displays foundational characteristics of quantum physic to understand conceptual origins of the unusual nature of quantum phenomena. Describes relationship of subsystems and space-time. Gives a careful review of existing views. Confronts the old approaches with recent results and approaches from quantum information theory. Delivers a clear and thorough analysis of the quantum events in the context of relativistic space-time, which impacts the problem of creating a theory of quantum gravity. Supplies a detailed discussion of non-local correlation within and beyond the bounds set by standard quantum mechanics, which impacts the foundations of information theory. Gives a detailed discussion of probabilistic causation (central to contemporary accounts of causation) in quantum mechanics and relativity. Leads a thorough discussion of the nature of ''quantum potentiality,'' the novel form of existence arising for the first time in quantum mechanics. This monograph identifies the essential characteristics of the objects described by current quantum theory and considers their relationship to space-time. In the process, it explicates the senses in which quantum objects may be consistently considered to have parts of which they may be composed or into which they may be decomposed. The book also demonstrates the degree to which reduction is possible in quantum mechanics, showing it to be related to the objective indefiniteness of quantum properties and the strong non-local correlations that can occur between the physical quantities of quantum subsystems. Careful attention is paid to the relationships among such property correlations, physical causation, probability, and symmetry in quantum theory. In this way, the text identifies and clarifies the conceptual grounds

  7. Quantum objects. Non-local correlation, causality and objective indefiniteness in the quantum world

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Gregg [Boston Univ., MA (United States). Natural Sciences and Mathematics

    2014-07-01

    Presents interpretation of quantum mechanics, advances in quantum foundations and philosophy of quantum mechanics. Explains non-locality and its relationship to causality and probability in quantum theory. Displays foundational characteristics of quantum physic to understand conceptual origins of the unusual nature of quantum phenomena. Describes relationship of subsystems and space-time. Gives a careful review of existing views. Confronts the old approaches with recent results and approaches from quantum information theory. Delivers a clear and thorough analysis of the quantum events in the context of relativistic space-time, which impacts the problem of creating a theory of quantum gravity. Supplies a detailed discussion of non-local correlation within and beyond the bounds set by standard quantum mechanics, which impacts the foundations of information theory. Gives a detailed discussion of probabilistic causation (central to contemporary accounts of causation) in quantum mechanics and relativity. Leads a thorough discussion of the nature of ''quantum potentiality,'' the novel form of existence arising for the first time in quantum mechanics. This monograph identifies the essential characteristics of the objects described by current quantum theory and considers their relationship to space-time. In the process, it explicates the senses in which quantum objects may be consistently considered to have parts of which they may be composed or into which they may be decomposed. The book also demonstrates the degree to which reduction is possible in quantum mechanics, showing it to be related to the objective indefiniteness of quantum properties and the strong non-local correlations that can occur between the physical quantities of quantum subsystems. Careful attention is paid to the relationships among such property correlations, physical causation, probability, and symmetry in quantum theory. In this way, the text identifies and clarifies the

  8. Guided mode resonance in planar metamaterials consisting of two ring resonators with different sizes

    International Nuclear Information System (INIS)

    Yu Zhen; Che Hang; Liu Jianjun; Jing Xufeng; Li Xiangjun; Hong Zhi

    2017-01-01

    We proposed and experimentally investigated a two-ring-resonator composed planar hybrid metamaterial (MM), in which the spectra of guided mode resonance (GMR) and Fano resonance or EIT-like response induced by coherent interaction between MM resonance and GMR can be easily controlled by the size of the two rings in the terahertz regime. Furthermore, a four-ring-resonator composed MM for polarization-insensitive GMRs was demonstrated, where GMRs of both TE and TM modes are physically attributed to the diffraction coupling by two ±45° tilting gratings. Such kind of device has great potential in ultra-sensitive label-free sensors, filters, or slow light based devices. (paper)

  9. How to draw a planarization

    NARCIS (Netherlands)

    Bläsius, T.; Radermacher, M.; Rutter, I.; Steffen, B.; Baier, C.; van den Brand, M.; Eder, J.; Hinchey, M.; Margaria, T.

    2017-01-01

    We study the problem of computing straight-line drawings of non-planar graphs with few crossings. We assume that a crossing-minimization algorithm is applied first, yielding a planarization, i.e., a planar graph with a dummy vertex for each crossing, that fixes the topology of the resulting drawing.

  10. New Hamiltonian constraint operator for loop quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jinsong, E-mail: yangksong@gmail.com [Department of Physics, Guizhou university, Guiyang 550025 (China); Institute of Physics, Academia Sinica, Taiwan (China); Ma, Yongge, E-mail: mayg@bnu.edu.cn [Department of Physics, Beijing Normal University, Beijing 100875 (China)

    2015-12-17

    A new symmetric Hamiltonian constraint operator is proposed for loop quantum gravity, which is well defined in the Hilbert space of diffeomorphism invariant states up to non-planar vertices with valence higher than three. It inherits the advantage of the original regularization method to create new vertices to the spin networks. The quantum algebra of this Hamiltonian is anomaly-free on shell, and there is less ambiguity in its construction in comparison with the original method. The regularization procedure for this Hamiltonian constraint operator can also be applied to the symmetric model of loop quantum cosmology, which leads to a new quantum dynamics of the cosmological model.

  11. New Hamiltonian constraint operator for loop quantum gravity

    Directory of Open Access Journals (Sweden)

    Jinsong Yang

    2015-12-01

    Full Text Available A new symmetric Hamiltonian constraint operator is proposed for loop quantum gravity, which is well defined in the Hilbert space of diffeomorphism invariant states up to non-planar vertices with valence higher than three. It inherits the advantage of the original regularization method to create new vertices to the spin networks. The quantum algebra of this Hamiltonian is anomaly-free on shell, and there is less ambiguity in its construction in comparison with the original method. The regularization procedure for this Hamiltonian constraint operator can also be applied to the symmetric model of loop quantum cosmology, which leads to a new quantum dynamics of the cosmological model.

  12. Confinement in Maxwell-Chern-Simons planar quantum electrodynamics and the 1/N approximation

    International Nuclear Information System (INIS)

    Hofmann, Christoph P.; Raya, Alfredo; Madrigal, Saul Sanchez

    2010-01-01

    We study the analytical structure of the fermion propagator in planar quantum electrodynamics coupled to a Chern-Simons term within a four-component spinor formalism. The dynamical generation of parity-preserving and parity-violating fermion mass terms is considered, through the solution of the corresponding Schwinger-Dyson equation for the fermion propagator at leading order of the 1/N approximation in Landau gauge. The theory undergoes a first-order phase transition toward chiral symmetry restoration when the Chern-Simons coefficient θ reaches a critical value which depends upon the number of fermion families considered. Parity-violating masses, however, are generated for arbitrarily large values of the said coefficient. On the confinement scenario, complete charge screening - characteristic of the 1/N approximation - is observed in the entire (N,θ)-plane through the local and global properties of the vector part of the fermion propagator.

  13. Self-planarized quantum-disks nanowires ultraviolet-B emitter utilizing pendeo-epitaxy

    KAUST Repository

    Janjua, Bilal

    2017-03-03

    The growth of self-assembled, vertically oriented and uniform nanowires (NWs) has remained a challenge for efficient light-emitting devices. Here, we demonstrate dislocation-free AlGaN NWs with spontaneous coalescence, which are grown by plasma-assisted molecular beam epitaxy on an n-type doped silicon (100) substrate. A high density of NWs (filling factor > 95%) was achieved under optimized growth conditions, enabling device fabrication without planarization using ultraviolet (UV)-absorbing polymer materials. UV-B (280-320 nm) light-emitting diodes (LEDs), which emit at ~303 nm with a narrow full width at half maximum (FWHM) (~20 nm) of the emission spectrum, are demonstrated using a large active region (“active region/NW length-ratio” ~ 50%) embedded with 15 stacks of AlxGa1-xN/AlyGa1-yN quantum-disks (Qdisks). To improve the carrier injection, a graded layer is introduced at the AlGaN/GaN interfaces on both p- and n-type regions. This work demonstrates a viable approach to easily fabricate ultra-thin, efficient UV optoelectronic devices on low-cost and scalable silicon substrates.

  14. Tunable quantum interference in a 3D integrated circuit.

    Science.gov (United States)

    Chaboyer, Zachary; Meany, Thomas; Helt, L G; Withford, Michael J; Steel, M J

    2015-04-27

    Integrated photonics promises solutions to questions of stability, complexity, and size in quantum optics. Advances in tunable and non-planar integrated platforms, such as laser-inscribed photonics, continue to bring the realisation of quantum advantages in computation and metrology ever closer, perhaps most easily seen in multi-path interferometry. Here we demonstrate control of two-photon interference in a chip-scale 3D multi-path interferometer, showing a reduced periodicity and enhanced visibility compared to single photon measurements. Observed non-classical visibilities are widely tunable, and explained well by theoretical predictions based on classical measurements. With these predictions we extract Fisher information approaching a theoretical maximum. Our results open a path to quantum enhanced phase measurements.

  15. Current in heavy-current planar diode with discrete emission surface

    International Nuclear Information System (INIS)

    Belomyttsev, S.Ya.; Korovin, S.D.; Pegel', I.V

    1999-01-01

    Dependence of current in a high-current planar diode on the size of emission centres was studied. Essential effect of emission surface microstructure on the current value in the planar diode was demonstrated. It was determined that if the distance between the emitter essentially exceeded their size then current dependence on the ratio of size to the value of the diode gap was an exponential function with 3/2 index. Current dependence on voltage obeyed the exponential law with 3/2 index up to higher voltage values in the planar diode with discrete emission surface in contrast to the case of a planar diode with homogeneous emission surface [ru

  16. Non-classical state engineering for quantum networks

    International Nuclear Information System (INIS)

    Vollmer, Christina E.

    2014-01-01

    The wide field of quantum information processing and quantum networks has developed very fast in the last two decades. Besides the regime of discrete variables, which was developed first, the regime of continuous variables represents an alternative approach to realize many quantum applications. Non-classical states of light, like squeezed or entangled states, are a fundamental resource for quantum applications like quantum repeaters, quantum memories, quantum key distribution, quantum spectroscopy, and quantum metrology. These states can be generated successfully in the infrared wavelength regime. However, for some tasks other wavelengths, especially in the visible wavelength regime, are desirable. To generate non-classical states of light in this wavelength regime frequency up-conversion can be used, since all quantum properties are maintained in this process. The first part of this thesis deals with the experimental frequency up-conversion of quantum states. Squeezed vacuum states of light at 1550 nm were up-converted to 532 nm and a noise reduction of -1.5 dB at 532 nm was achieved. These states can be used for increasing the sensitivity of gravitational wave detectors or spectroscopic measurements. Furthermore, one part of an entangled state at 1550 nm was up-converted to 532 nm and, thus, entanglement between these two wavelengths was generated and characterized to -1.4 dB following Duan et al. With such a quantum link it is possible to establish a quantum network, which takes advantage of the low optical loss at 1550 nm for information transmission and of atomic transitions around 532 nm for a quantum memory in a quantum repeater. For quantum networks the distribution of entanglement and especially of a quantum key is essential. In the second part of this thesis the experimental distribution of entanglement by separable states is demonstrated. The underlying protocol requires a special three-mode state, which is separable in two of the three splittings. With

  17. Non-classical state engineering for quantum networks

    Energy Technology Data Exchange (ETDEWEB)

    Vollmer, Christina E.

    2014-01-24

    The wide field of quantum information processing and quantum networks has developed very fast in the last two decades. Besides the regime of discrete variables, which was developed first, the regime of continuous variables represents an alternative approach to realize many quantum applications. Non-classical states of light, like squeezed or entangled states, are a fundamental resource for quantum applications like quantum repeaters, quantum memories, quantum key distribution, quantum spectroscopy, and quantum metrology. These states can be generated successfully in the infrared wavelength regime. However, for some tasks other wavelengths, especially in the visible wavelength regime, are desirable. To generate non-classical states of light in this wavelength regime frequency up-conversion can be used, since all quantum properties are maintained in this process. The first part of this thesis deals with the experimental frequency up-conversion of quantum states. Squeezed vacuum states of light at 1550 nm were up-converted to 532 nm and a noise reduction of -1.5 dB at 532 nm was achieved. These states can be used for increasing the sensitivity of gravitational wave detectors or spectroscopic measurements. Furthermore, one part of an entangled state at 1550 nm was up-converted to 532 nm and, thus, entanglement between these two wavelengths was generated and characterized to -1.4 dB following Duan et al. With such a quantum link it is possible to establish a quantum network, which takes advantage of the low optical loss at 1550 nm for information transmission and of atomic transitions around 532 nm for a quantum memory in a quantum repeater. For quantum networks the distribution of entanglement and especially of a quantum key is essential. In the second part of this thesis the experimental distribution of entanglement by separable states is demonstrated. The underlying protocol requires a special three-mode state, which is separable in two of the three splittings. With

  18. Jones index, secret sharing and total quantum dimension

    Science.gov (United States)

    Fiedler, Leander; Naaijkens, Pieter; Osborne, Tobias J.

    2017-02-01

    We study the total quantum dimension in the thermodynamic limit of topologically ordered systems. In particular, using the anyons (or superselection sectors) of such models, we define a secret sharing scheme, storing information invisible to a malicious party, and argue that the total quantum dimension quantifies how well we can perform this task. We then argue that this can be made mathematically rigorous using the index theory of subfactors, originally due to Jones and later extended by Kosaki and Longo. This theory provides us with a ‘relative entropy’ of two von Neumann algebras and a quantum channel, and we argue how these can be used to quantify how much classical information two parties can hide form an adversary. We also review the total quantum dimension in finite systems, in particular how it relates to topological entanglement entropy. It is known that the latter also has an interpretation in terms of secret sharing schemes, although this is shown by completely different methods from ours. Our work provides a different and independent take on this, which at the same time is completely mathematically rigorous. This complementary point of view might be beneficial, for example, when studying the stability of the total quantum dimension when the system is perturbed.

  19. Non-stoquastic Hamiltonians in quantum annealing via geometric phases

    Science.gov (United States)

    Vinci, Walter; Lidar, Daniel A.

    2017-09-01

    We argue that a complete description of quantum annealing implemented with continuous variables must take into account the non-adiabatic Aharonov-Anandan geometric phase that arises when the system Hamiltonian changes during the anneal. We show that this geometric effect leads to the appearance of non-stoquasticity in the effective quantum Ising Hamiltonians that are typically used to describe quantum annealing with flux qubits. We explicitly demonstrate the effect of this geometric non-stoquasticity when quantum annealing is performed with a system of one and two coupled flux qubits. The realization of non-stoquastic Hamiltonians has important implications from a computational complexity perspective, since it is believed that in many cases quantum annealing with stoquastic Hamiltonians can be efficiently simulated via classical algorithms such as Quantum Monte Carlo. It is well known that the direct implementation of non-stoquastic Hamiltonians with flux qubits is particularly challenging. Our results suggest an alternative path for the implementation of non-stoquasticity via geometric phases that can be exploited for computational purposes.

  20. Non-binary Entanglement-assisted Stabilizer Quantum Codes

    OpenAIRE

    Riguang, Leng; Zhi, Ma

    2011-01-01

    In this paper, we show how to construct non-binary entanglement-assisted stabilizer quantum codes by using pre-shared entanglement between the sender and receiver. We also give an algorithm to determine the circuit for non-binary entanglement-assisted stabilizer quantum codes and some illustrated examples. The codes we constructed do not require the dual-containing constraint, and many non-binary classical codes, like non-binary LDPC codes, which do not satisfy the condition, can be used to c...

  1. Proof of ultraviolet finiteness for a planar non-supersymmetric Yang-Mills theory

    International Nuclear Information System (INIS)

    Ananth, Sudarshan; Kovacs, Stefano; Shimada, Hidehiko

    2007-01-01

    This paper focuses on a three-parameter deformation of N=4 Yang-Mills that breaks all the supersymmetry in the theory. We show that the resulting non-supersymmetric gauge theory is scale invariant, in the planar approximation, by proving that its Green functions are ultraviolet finite to all orders in light-cone perturbation theory

  2. Non-Markovianity hinders Quantum Darwinism

    Science.gov (United States)

    Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina

    2016-01-01

    We investigate Quantum Darwinism and the emergence of a classical world from the quantum one in connection with the spectral properties of the environment. We use a microscopic model of quantum environment in which, by changing a simple system parameter, we can modify the information back flow from environment into the system, and therefore its non-Markovian character. We show that the presence of memory effects hinders the emergence of classical objective reality, linking these two apparently unrelated concepts via a unique dynamical feature related to decoherence factors.

  3. Non-planar Feynman diagrams and Mellin-Barnes representations with AMBRE 3.0

    International Nuclear Information System (INIS)

    Dubovyk, Ievgen; Gluza, Janusz; Riemann, Tord

    2016-04-01

    We introduce the Mellin-Barnes representation of general Feynman integrals and discuss their evaluation. The Mathematica package AMBRE has been recently extended in order to cover consistently non-planar Feynman integrals with two loops. Prospects for the near future are outlined. This write-up is an introduction to new results which have also been presented elsewhere.

  4. Planar waveguide laser in Er/Al-doped germanosilicate

    DEFF Research Database (Denmark)

    Guldberg-Kjær, Søren Andreas; Hübner, Jörg; Kristensen, Martin

    1999-01-01

    A singlemode DBR laser is demonstrated in an Er/Al-doped germanosilicate planar waveguide. 0.4 mW of output power has been obtained at 1.553 mu m using internal Bragg reflectors produced by UV-induced index modulations.......A singlemode DBR laser is demonstrated in an Er/Al-doped germanosilicate planar waveguide. 0.4 mW of output power has been obtained at 1.553 mu m using internal Bragg reflectors produced by UV-induced index modulations....

  5. Probabilistic Teleportation of Arbitrary Two-Qubit Quantum State via Non-Symmetric Quantum Channel

    Directory of Open Access Journals (Sweden)

    Kan Wang

    2018-03-01

    Full Text Available Quantum teleportation has significant meaning in quantum information. In particular, entangled states can also be used for perfectly teleporting the quantum state with some probability. This is more practical and efficient in practice. In this paper, we propose schemes to use non-symmetric quantum channel combinations for probabilistic teleportation of an arbitrary two-qubit quantum state from sender to receiver. The non-symmetric quantum channel is composed of a two-qubit partially entangled state and a three-qubit partially entangled state, where partially entangled Greenberger–Horne–Zeilinger (GHZ state and W state are considered, respectively. All schemes are presented in detail and the unitary operations required are given in concise formulas. Methods are provided for reducing classical communication cost and combining operations to simplify the manipulation. Moreover, our schemes are flexible and applicable in different situations.

  6. Sufficient condition for a quantum state to be genuinely quantum non-Gaussian

    Science.gov (United States)

    Happ, L.; Efremov, M. A.; Nha, H.; Schleich, W. P.

    2018-02-01

    We show that the expectation value of the operator \\hat{{ \\mathcal O }}\\equiv \\exp (-c{\\hat{x}}2)+\\exp (-c{\\hat{p}}2) defined by the position and momentum operators \\hat{x} and \\hat{p} with a positive parameter c can serve as a tool to identify quantum non-Gaussian states, that is states that cannot be represented as a mixture of Gaussian states. Our condition can be readily tested employing a highly efficient homodyne detection which unlike quantum-state tomography requires the measurements of only two orthogonal quadratures. We demonstrate that our method is even able to detect quantum non-Gaussian states with positive–definite Wigner functions. This situation cannot be addressed in terms of the negativity of the phase-space distribution. Moreover, we demonstrate that our condition can characterize quantum non-Gaussianity for the class of superposition states consisting of a vacuum and integer multiples of four photons under more than 50 % signal attenuation.

  7. Colloquium: Non-Markovian dynamics in open quantum systems

    Science.gov (United States)

    Breuer, Heinz-Peter; Laine, Elsi-Mari; Piilo, Jyrki; Vacchini, Bassano

    2016-04-01

    The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry, and quantum information. In close analogy to a classical Markovian stochastic process, the interaction of an open quantum system with a noisy environment is often modeled phenomenologically by means of a dynamical semigroup with a corresponding time-independent generator in Lindblad form, which describes a memoryless dynamics of the open system typically leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence, correlations, and entanglement. Here recent theoretical results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of quantum memory effects. The general theory is illustrated by a series of physical examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely, to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This Colloquium further explores the various physical sources of non-Markovian quantum dynamics, such as structured environmental spectral densities, nonlocal correlations between environmental degrees of freedom, and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments addressing the detection, quantification, and control of

  8. A Mathematica package for calculation of planar channeling radiation spectra of relativistic electrons channeled in a diamond-structure single crystal (quantum approach)

    Science.gov (United States)

    Azadegan, B.

    2013-03-01

    The presented Mathematica code is an efficient tool for simulation of planar channeling radiation spectra of relativistic electrons channeled along major crystallographic planes of a diamond-structure single crystal. The program is based on the quantum theory of channeling radiation which has been successfully applied to study planar channeling at electron energies between 10 and 100 MeV. Continuum potentials for different planes of diamond, silicon and germanium single crystals are calculated using the Doyle-Turner approximation to the atomic scattering factor and taking thermal vibrations of the crystal atoms into account. Numerical methods are applied to solve the one-dimensional Schrödinger equation. The code is designed to calculate the electron wave functions, transverse electron states in the planar continuum potential, transition energies, line widths of channeling radiation and depth dependencies of the population of quantum states. Finally the spectral distribution of spontaneously emitted channeling radiation is obtained. The simulation of radiation spectra considerably facilitates the interpretation of experimental data. Catalog identifier: AEOH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 446 No. of bytes in distributed program, including test data, etc.: 209805 Distribution format: tar.gz Programming language: Mathematica. Computer: Platforms on which Mathematica is available. Operating system: Operating systems on which Mathematica is available. RAM: 1 MB Classification: 7.10. Nature of problem: Planar channeling radiation is emitted by relativistic charged particles during traversing a single crystal in direction parallel to a crystallographic plane. Channeling is modeled as the motion

  9. Sol-gel coatings: An alternative route for producing planar optical waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Rey-Garcia, F.; Gomez-Reino, C. [Unidad Asociada de Optica and Microoptica GRIN (CSIC-ICMA), Departamento de Fisica Aplicada, Escola Universitaria de Optica e Optometria, Universidade de Santiago de Compostela, Campus Sur s/n, E-15782 Santiago de Compostela (Spain); Flores-Arias, M.T., E-mail: maite.flores@usc.es [Unidad Asociada de Optica and Microoptica GRIN (CSIC-ICMA), Departamento de Fisica Aplicada, Escola Universitaria de Optica e Optometria, Universidade de Santiago de Compostela, Campus Sur s/n, E-15782 Santiago de Compostela (Spain); De La Fuente, G.F., E-mail: xerman@unizar.es [Instituto de Ciencia de Materiales de Aragon (CSIC-Universidad de Zaragoza), Maria de Luna 3, E-50018 Zaragoza (Spain); Duran, A. [Instituto de Ceramica y Vidrio (CSIC), Kelsen 5, E-28049, Madrid (Spain); Castro, Y., E-mail: castro@icv.csic.es [Instituto de Ceramica y Vidrio (CSIC), Kelsen 5, E-28049, Madrid (Spain)

    2011-09-01

    Inorganic and hybrid planar waveguides with different compositions (silica-titania, methacrylate-silica-cerium oxide, zirconia-cerium oxide and silica-zirconia) have been obtained by sol-gel synthesis followed by dip-coating. Soda-lime glass slides and conventional commercial window glass were used as substrates. The thickness and refractive index of the coatings were determined by profilometry and Spectroscopic Ellipsometry. Waveguide efficiency was measured at ca. 70.8% with a He-Ne laser beam, coupled with an optical microscope objective into and out of the waveguiding layer via a double prism configuration. Thicknesses between 150 and 2000 nm, along with refractive index values ranging between 1.45 and {approx} 1.99 ({lambda} = 633 nm) were obtained depending on the sol composition and the dip-coating conditions. This wide range of values allows designing multilayered guides that can be used in a variety of applications.

  10. Sol-gel coatings: An alternative route for producing planar optical waveguides

    International Nuclear Information System (INIS)

    Rey-Garcia, F.; Gomez-Reino, C.; Flores-Arias, M.T.; De La Fuente, G.F.; Duran, A.; Castro, Y.

    2011-01-01

    Inorganic and hybrid planar waveguides with different compositions (silica-titania, methacrylate-silica-cerium oxide, zirconia-cerium oxide and silica-zirconia) have been obtained by sol-gel synthesis followed by dip-coating. Soda-lime glass slides and conventional commercial window glass were used as substrates. The thickness and refractive index of the coatings were determined by profilometry and Spectroscopic Ellipsometry. Waveguide efficiency was measured at ca. 70.8% with a He-Ne laser beam, coupled with an optical microscope objective into and out of the waveguiding layer via a double prism configuration. Thicknesses between 150 and 2000 nm, along with refractive index values ranging between 1.45 and ∼ 1.99 (λ = 633 nm) were obtained depending on the sol composition and the dip-coating conditions. This wide range of values allows designing multilayered guides that can be used in a variety of applications.

  11. Non-planar corrections to the Pomeron and reggeons in the dual unitarity scheme

    International Nuclear Information System (INIS)

    Uschersohn, J.

    1976-03-01

    A special class of non-planar diagrams is studied, those in which the produced clusters are crossed. Insertion of these diagrams in the reggeon propagators accounts for exchange degeneracy breaking. The even signature reggeons get their intercept promoted to a larger value, while the odd signature ones are left unchanged. (author)

  12. The non-planar single-frequency ring laser with variable output coupling

    Science.gov (United States)

    Wu, Ke-ying; Yang, Su-hui; Wei, Guang-hui

    2002-03-01

    We put forward a novel non-planar single-frequency ring laser, which consists of a corner cube prism and a specially cut Porro prism made by Nd:YAG crystal. The relative angle between the corner cube and the Porro prism could be adjusted to control the output coupling of the laser resonator and the polarization-state of the output laser. A 1.06 μm single-frequency laser with 1 W output has been obtained.

  13. A Novel Non-Planar Transverse Stretching Process for Micro-Porous PTFE Membranes and Resulting Characteristics

    KAUST Repository

    Chang, Y.-H.; Chen, S.-C.; Wang, T.-J.; Guo, J.

    2018-01-01

    Polytetrafluoroethylene (PTFE) micro-porous membranes were prepared from PTFE fine powder through extruding, rolling, and uniaxial longitudinally stretching. In contrast to conventional planar transverse stretching, a novel 3D mold design of non

  14. Instantaneous Non-Local Computation of Low T-Depth Quantum Circuits

    DEFF Research Database (Denmark)

    Speelman, Florian

    2016-01-01

    -depth of a quantum circuit, able to perform non-local computation of quantum circuits with a (poly-)logarithmic number of layers of T gates with quasi-polynomial entanglement. Our proofs combine ideas from blind and delegated quantum computation with the garden-hose model, a combinatorial model of communication......Instantaneous non-local quantum computation requires multiple parties to jointly perform a quantum operation, using pre-shared entanglement and a single round of simultaneous communication. We study this task for its close connection to position-based quantum cryptography, but it also has natural...... applications in the context of foundations of quantum physics and in distributed computing. The best known general construction for instantaneous non-local quantum computation requires a pre-shared state which is exponentially large in the number of qubits involved in the operation, while efficient...

  15. Constructing quantum games from symmetric non-factorizable joint probabilities

    International Nuclear Information System (INIS)

    Chappell, James M.; Iqbal, Azhar; Abbott, Derek

    2010-01-01

    We construct quantum games from a table of non-factorizable joint probabilities, coupled with a symmetry constraint, requiring symmetrical payoffs between the players. We give the general result for a Nash equilibrium and payoff relations for a game based on non-factorizable joint probabilities, which embeds the classical game. We study a quantum version of Prisoners' Dilemma, Stag Hunt, and the Chicken game constructed from a given table of non-factorizable joint probabilities to find new outcomes in these games. We show that this approach provides a general framework for both classical and quantum games without recourse to the formalism of quantum mechanics.

  16. Non-reversible evolution of quantum chaotic system. Kinetic description

    International Nuclear Information System (INIS)

    Chotorlishvili, L.; Skrinnikov, V.

    2008-01-01

    It is well known that the appearance of non-reversibility in classical chaotic systems is connected with a local instability of phase trajectories relatively to a small change of initial conditions and parameters of the system. Classical chaotic systems reveal an exponential sensitivity to these changes. This leads to an exponential growth of initial error with time, and as the result after the statistical averaging over this error, the dynamics of the system becomes non-reversible. In spite of this, the question about the origin of non-reversibility in quantum case remains actual. The point is that the classical notion of instability of phase trajectories loses its sense during quantum consideration. The current work is dedicated to the clarification of the origin of non-reversibility in quantum chaotic systems. For this purpose we study a non-stationary dynamics of the chaotic quantum system. By analogy with classical chaos, we consider an influence of a small unavoidable error of the parameter of the system on the non-reversibility of the dynamics. It is shown in the Letter that due to the peculiarity of chaotic quantum systems, the statistical averaging over the small unavoidable error leads to the non-reversible transition from the pure state into the mixed one. The second part of the Letter is dedicated to the kinematic description of the chaotic quantum-mechanical system. Using the formalism of superoperators, a muster kinematic equation for chaotic quantum system was obtained from Liouville equation under a strict mathematical consideration

  17. Motion video analysis using planar parallax

    Science.gov (United States)

    Sawhney, Harpreet S.

    1994-04-01

    Motion and structure analysis in video sequences can lead to efficient descriptions of objects and their motions. Interesting events in videos can be detected using such an analysis--for instance independent object motion when the camera itself is moving, figure-ground segregation based on the saliency of a structure compared to its surroundings. In this paper we present a method for 3D motion and structure analysis that uses a planar surface in the environment as a reference coordinate system to describe a video sequence. The motion in the video sequence is described as the motion of the reference plane, and the parallax motion of all the non-planar components of the scene. It is shown how this method simplifies the otherwise hard general 3D motion analysis problem. In addition, a natural coordinate system in the environment is used to describe the scene which can simplify motion based segmentation. This work is a part of an ongoing effort in our group towards video annotation and analysis for indexing and retrieval. Results from a demonstration system being developed are presented.

  18. A classical appraisal of quantum definitions of non-Markovian dynamics

    International Nuclear Information System (INIS)

    Vacchini, Bassano

    2012-01-01

    We consider the issue of non-Markovianity of a quantum dynamics starting from a comparison with the classical definition of Markovian processes. We point to the fact that two sufficient but not necessary signatures of non-Markovianity of a classical process find their natural quantum counterpart in recently introduced measures of quantum non-Markovianity. This behaviour is analysed in detail for quantum dynamics which can be built taking as input a class of classical processes. (paper)

  19. Pseudospectra in non-Hermitian quantum mechanics

    Science.gov (United States)

    Krejčiřík, D.; Siegl, P.; Tater, M.; Viola, J.

    2015-10-01

    We propose giving the mathematical concept of the pseudospectrum a central role in quantum mechanics with non-Hermitian operators. We relate pseudospectral properties to quasi-Hermiticity, similarity to self-adjoint operators, and basis properties of eigenfunctions. The abstract results are illustrated by unexpected wild properties of operators familiar from PT -symmetric quantum mechanics.

  20. Constructing quantum games from symmetric non-factorizable joint probabilities

    Energy Technology Data Exchange (ETDEWEB)

    Chappell, James M., E-mail: james.m.chappell@adelaide.edu.a [School of Chemistry and Physics, University of Adelaide, South Australia 5005 (Australia); School of Electrical and Electronic Engineering, University of Adelaide, South Australia 5005 (Australia); Iqbal, Azhar [School of Electrical and Electronic Engineering, University of Adelaide, South Australia 5005 (Australia); Centre for Advanced Mathematics and Physics, National University of Sciences and Technology, Peshawar Road, Rawalpindi (Pakistan); Abbott, Derek [School of Electrical and Electronic Engineering, University of Adelaide, South Australia 5005 (Australia)

    2010-09-06

    We construct quantum games from a table of non-factorizable joint probabilities, coupled with a symmetry constraint, requiring symmetrical payoffs between the players. We give the general result for a Nash equilibrium and payoff relations for a game based on non-factorizable joint probabilities, which embeds the classical game. We study a quantum version of Prisoners' Dilemma, Stag Hunt, and the Chicken game constructed from a given table of non-factorizable joint probabilities to find new outcomes in these games. We show that this approach provides a general framework for both classical and quantum games without recourse to the formalism of quantum mechanics.

  1. A Quantum Non-Demolition Parity measurement in a mixed-species trapped-ion quantum processor

    Science.gov (United States)

    Marinelli, Matteo; Negnevitsky, Vlad; Lo, Hsiang-Yu; Flühmann, Christa; Mehta, Karan; Home, Jonathan

    2017-04-01

    Quantum non-demolition measurements of multi-qubit systems are an important tool in quantum information processing, in particular for syndrome extraction in quantum error correction. We have recently demonstrated a protocol for quantum non-demolition measurement of the parity of two beryllium ions by detection of a co-trapped calcium ion. The measurement requires a sequence of quantum gates between the three ions, using mixed-species gates between beryllium hyperfine qubits and a calcium optical qubit. Our work takes place in a multi-zone segmented trap setup in which we have demonstrated high fidelity control of both species and multi-well ion shuttling. The advantage of using two species of ion is that we can individually manipulate and read out the state of each ion species without disturbing the internal state of the other. The methods demonstrated here can be used for quantum error correcting codes as well as quantum metrology and are key ingredients for realizing a hybrid universal quantum computer based on trapped ions. Mixed-species control may also enable the investigation of new avenues in quantum simulation and quantum state control. left the group and working in a company now.

  2. Fundamental losses in planar Bragg waveguides

    NARCIS (Netherlands)

    Vinogradov, A. V.; Mitrofanov, A. N.; Popov, A. V.; Fedin, M. A.

    2007-01-01

    This paper considers a planar Bragg waveguide. The guided modes and their dissipation due to the fundamental absorption are described. In the interacting-wave approximation, an analytical relation between the characteristics of the modes and parameters of the Bragg-waveguide geometry was

  3. Dynamic of charged planar geometry in tilted and non-tilted frames

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M., E-mail: msharif.math@pu.edu.pk; Zaeem Ul Haq Bhatti, M., E-mail: mzaeem.math@pu.edu.pk [University of the Punjab, Department of Mathematics (Pakistan)

    2015-05-15

    We investigate the dynamics of charged planar symmetry with an anisotropic matter field subject to a radially moving observer called a tilted observer. The Einstein-Maxwell field equations are used to obtain a relation between non-tilted and tilted frames and between kinematical and dynamical quantities. Using the Taub mass formalism and conservation laws, two evolution equations are developed to analyze the inhomogeneities in the tilted congruence. It is found that the radial velocity (due to the tilted observer) and the electric charge have a crucial effect on the inhomogeneity factor. Finally, we discuss the stability in the non-tilted frame in the pure diffusion case and examine the effects of the electromagnetic field.

  4. An edge index for the quantum spin-Hall effect

    International Nuclear Information System (INIS)

    Prodan, Emil

    2009-01-01

    Quantum spin-Hall systems are topological insulators displaying dissipationless spin currents flowing at the edges of the samples. In contradistinction to the quantum Hall systems where the charge conductance of the edge modes is quantized, the spin conductance is not and it remained an open problem to find the observable whose edge current is quantized. In this paper, we define a particular observable and the edge current corresponding to this observable. We show that this current is quantized and that the quantization is given by the index of a certain Fredholm operator. This provides a new topological invariant that is shown to take the generic values 0 and 2, in line with the Z 2 topological classification of time-reversal invariant systems. The result gives an effective tool for the investigation of the edge structure in quantum spin-Hall systems. Based on a reasonable assumption, we also show that the edge conducting channels are not destroyed by a random edge. (fast track communication)

  5. The quantum physics bible the definitive guide to 200 years of subatomic science

    CERN Document Server

    Clegg, Brian

    2017-01-01

    An easy-to-understand guide to the complex subject of quantum physics. Quantum physics is how scientists describe the world of the very small. For other people, however, the rules of quantum physics seem to violate all logic: How can a particle be in more than one place at the same time? How can it tunnel through an impenetrable barrier? How can a cat in a box be both alive and dead? This book explains the complexities of quantum physics in bite-sized "lessons" that make it clear and accessible to all readers. The sections and chapters are: 1. Atoms -- quantum; quantum physics in everyday life; the periodic table; atoms and nuclei; isotopes; hydrogen atom (energy levels and spectra) 2. Photons -- photoelectric effect; thermal emission and the Planck distribution; wave particle duality (Young's slit experiment) 3. Quantum devices -- superconductors; transistor, diode; light-emitting diode; laser 4. Spin -- spin; fermions; exclusion principle; Fermi Dirac distribution; Bose-Einstein statistics 5. Wave Mechan...

  6. Gain and index measurements in GaAlAs quantum well lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, M.P.; Harder, C. (IBM Research Division, Zurich Research Lab., 8803 Ruschlikon (CH))

    1990-07-01

    Measurements of the modal gain and group index in GaAlAs single quantum well (SQW) lasers are presented. The elimination of substrate emission has allowed accurate results to be obtained even in the near bandgap and below spectral regions. Substantial lifetime broadening is observed, and the gain smoothly goes to zero as the bandgap is approached. The group velocity index measurements indicate a dispersion of {minus} 3.44 {mu}m{sup {minus}}.

  7. Coherent versus incoherent dynamics in InAs quantum-dot active wave guides

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, W.; Hvam, Jørn Märcher

    2001-01-01

    Coherent dynamics measured by time-resolved four-wave mixing is compared to incoherent population dynamics measured by differential transmission spectroscopy on the ground-state transition at room temperature of two types of InAs-based quantum dots with different confinement energies. The measure....... The measurements are performed with heterodyne detection on quantum-dot active wave guides to enhance the light-matter interaction length. An elastic nature of the measured dephasing is revealed which is independent of the dot energy level scheme....

  8. Non-perturbative aspects of quantum field theory. From the quark-gluon plasma to quantum gravity

    International Nuclear Information System (INIS)

    Christiansen, Nicolai

    2015-01-01

    In this dissertation we investigate several aspects of non-perturbative quantum field theory. Two main parts of the thesis are concerned with non-perturbative renormalization of quantum gravity within the asymptotic safety scenario. This framework is based on a non-Gaussian ultraviolet fixed point and provides a well-defined theory of quantized gravity. We employ functional renormalization group (FRG) techniques that allow for the study of quantum fields even in strongly coupled regimes. We construct a setup for the computation of graviton correlation functions and analyze the ultraviolet completion of quantum gravity in terms of the properties of the two- and three point function of the graviton. Moreover, the coupling of gravity to Yang-Mills theories is discussed. In particular, we study the effects of graviton induced interactions on asymptotic freedom on the one hand, and the role of gluonic fluctuations in the gravity sector on the other hand. The last subject of this thesis is the physics of the quark-gluon plasma. We set-up a general non-perturbative strategy for the computation of transport coefficients in non-Abelian gauge theories. We determine the viscosity over entropy ratio η/s in SU(3) Yang-Mills theory as a function of temperature and estimate its behavior in full quantum chromodynamics (QCD).

  9. Teaching the Common Aspects in Mechanical, Electromagnetic and Quantum Waves at Interfaces and Waveguides

    Science.gov (United States)

    Rojas, R.; Robles, P.

    2011-01-01

    We discuss common features in mechanical, electromagnetic and quantum systems, supporting identical results for the transmission and reflection coefficients of waves arriving perpendicularly at a plane interface. Also, we briefly discuss the origin of special notions such as refractive index in quantum mechanics, massive photons in wave guides and…

  10. Casimir stress inside planar materials

    Science.gov (United States)

    Griniasty, Itay; Leonhardt, Ulf

    2017-09-01

    The Casimir force between macroscopic bodies is well understood, but not the Casimir force inside bodies. Guided by a physically intuitive picture, we develop the macroscopic theory of the renormalized Casimir stress inside planar materials (where the electromagnetic properties vary in one direction). Our theory may be applied in predicting how inhomogeneous fluids respond to Casimir forces.

  11. Exact non-Markovian master equations for multiple qubit systems: Quantum-trajectory approach

    Science.gov (United States)

    Chen, Yusui; You, J. Q.; Yu, Ting

    2014-11-01

    A wide class of exact master equations for a multiple qubit system can be explicitly constructed by using the corresponding exact non-Markovian quantum-state diffusion equations. These exact master equations arise naturally from the quantum decoherence dynamics of qubit system as a quantum memory coupled to a collective colored noisy source. The exact master equations are also important in optimal quantum control, quantum dissipation, and quantum thermodynamics. In this paper, we show that the exact non-Markovian master equation for a dissipative N -qubit system can be derived explicitly from the statistical average of the corresponding non-Markovian quantum trajectories. We illustrated our general formulation by an explicit construction of a three-qubit system coupled to a non-Markovian bosonic environment. This multiple qubit master equation offers an accurate time evolution of quantum systems in various domains, and paves the way to investigate the memory effect of an open system in a non-Markovian regime without any approximation.

  12. Quantum objects non-local correlation, causality and objective indefiniteness in the quantum world

    CERN Document Server

    Jaeger, Gregg

    2013-01-01

    This monograph identifies the essential characteristics of the objects described by current quantum theory and considers their relationship to space-time. In the process, it explicates the senses in which quantum objects may be consistently considered to have parts of which they may be composed or into which they may be decomposed. The book also demonstrates the degree to which reduction is possible in quantum mechanics, showing it to be related to the objective indefiniteness of quantum properties and the strong non-local correlations that can occur between the physical quantities of quantum

  13. Planar optical waveguides for civil and military applications

    International Nuclear Information System (INIS)

    Lavers, C R

    2009-01-01

    There is significant military and civil interest in being able to detect chemical species adsorbed from air or present in aqueous solutions. Planar optical waveguide transmission properties are sensitive to changes in parameters such as refractive index or absorption and to light-emitting processes such as fluorescence. These changes modulate light travelling in optical waveguides, and so may be used as sensors for detecting biological and chemical agents, non-ionizing and ionizing electromagnetic radiation. Several waveguide systems have been studied theoretically and experimentally, and their responses to basic influences such as alcohol and UV radiation, and gamma rays determined.

  14. Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics

    International Nuclear Information System (INIS)

    Vuckovic, Jelena; Pelton, Matthew; Scherer, Axel; Yamamoto, Yoshihisa

    2002-01-01

    This paper presents a detailed analysis, based on the first-principles finite-difference time-domain method, of the resonant frequency, quality factor (Q), mode volume (V), and radiation pattern of the fundamental (HE 11 ) mode in a three-dimensional distributed-Bragg-reflector (DBR) micropost microcavity. By treating this structure as a one-dimensional cylindrical photonic crystal containing a single defect, we are able to push the limits of Q/V beyond those achievable by standard micropost designs, based on the simple rules established for planar DBR microcavities. We show that some of the rules that work well for designing large-diameter microposts (e.g., high-refractive-index contrast) fail to provide high-quality cavities with small diameters. By tuning the thicknesses of mirror layers and the spacer, the number of mirror pairs, the refractive indices of high- and low-refractive index regions, and the cavity diameter, we are able to achieve Q as high as 10 4 , together with a mode volume of 1.6 cubic wavelengths of light in the high-refractive-index material. The combination of high Q and small V makes these structures promising candidates for the observation of such cavity-quantum-electrodynamics phenomena as strong coupling between a quantum dot and the cavity field, and single-quantum-dot lasing

  15. Non-perturbative description of quantum systems

    CERN Document Server

    Feranchuk, Ilya; Le, Van-Hoang; Ulyanenkov, Alexander

    2015-01-01

    This book introduces systematically the operator method for the solution of the Schrödinger equation. This method permits to describe the states of quantum systems in the entire range of parameters of Hamiltonian with a predefined accuracy. The operator method is unique compared with other non-perturbative methods due to its ability to deliver in zeroth approximation the uniformly suitable estimate for both ground and excited states of quantum system. The method has been generalized for the application to quantum statistics and quantum field theory.  In this book, the numerous applications of operator method for various physical systems are demonstrated. Simple models are used to illustrate the basic principles of the method which are further used for the solution of complex problems of quantum theory for many-particle systems. The results obtained are supplemented by numerical calculations, presented as tables and figures.

  16. Unification of Quantum and Gravity by Non Classical Information Entropy Space

    Directory of Open Access Journals (Sweden)

    Davide Fiscaletti

    2013-09-01

    Full Text Available A quantum entropy space is suggested as the fundamental arena describing the quantum effects. In the quantum regime the entropy is expressed as the superposition of many different Boltzmann entropies that span the space of the entropies before any measure. When a measure is performed the quantum entropy collapses to one component. A suggestive reading of the relational interpretation of quantum mechanics and of Bohm’s quantum potential in terms of the quantum entropy are provided. The space associated with the quantum entropy determines a distortion in the classical space of position, which appears as a Weyl-like gauge potential connected with Fisher information. This Weyl-like gauge potential produces a deformation of the moments which changes the classical action in such a way that Bohm’s quantum potential emerges as consequence of the non classical definition of entropy, in a non-Euclidean information space under the constraint of a minimum condition of Fisher information (Fisher Bohm- entropy. Finally, the possible quantum relativistic extensions of the theory and the connections with the problem of quantum gravity are investigated. The non classical thermodynamic approach to quantum phenomena changes the geometry of the particle phase space. In the light of the representation of gravity in ordinary phase space by torsion in the flat space (Teleparallel gravity, the change of geometry in the phase space introduces quantum phenomena in a natural way. This gives a new force to F. Shojai’s and A. Shojai’s theory where the geometry of space-time is highly coupled with a quantum potential whose origin is not the Schrödinger equation but the non classical entropy of a system of many particles that together change the geometry of the phase space of the positions (entanglement. In this way the non classical thermodynamic changes the classical geodetic as a consequence of the quantum phenomena and quantum and gravity are unified. Quantum

  17. Solitonic guides in photopolymerizable materials for optical devices

    Science.gov (United States)

    Dorkenoo, Kokou D.; Cregut, Olivier; Fort, Alain

    2003-11-01

    These last twenty years, advanced studies in integrated optics have demonstrated the capacity to elaborate optical circuits in planar substrates. Most of the optical integrated devices are realized on glass substrate and the guide areas are usually obtained by photolithography techniques. We present here a new approach based on the use of compounds photopolymerizable in the visible range. The conditions of self written channel creation by solitonic propagation inside the bulk of the photopolymerizable formulation are analyzed. Waveguides can be self-written in photopolymerizable materials1,2 due to the dependence of their refractive index on intensity and duration of the active light. This process results from the competition between the diffraction of the incident Gaussian beam and the photopolymerization which tends to increase the refractive index where light intensity is the highest. By controlling the difference between the refractive index values of the polymerized and non polymerized zones, the beam can be self-trapped along the propagation axis giving rise to a waveguide over distances as large as 10 cm without any broadening. Such permanent waveguides can be structured by inscription of gratings and doped with a dye in a plastic cell leading to the elaboration of a completely plastic laser.

  18. Non-unitary probabilistic quantum computing circuit and method

    Science.gov (United States)

    Williams, Colin P. (Inventor); Gingrich, Robert M. (Inventor)

    2009-01-01

    A quantum circuit performing quantum computation in a quantum computer. A chosen transformation of an initial n-qubit state is probabilistically obtained. The circuit comprises a unitary quantum operator obtained from a non-unitary quantum operator, operating on an n-qubit state and an ancilla state. When operation on the ancilla state provides a success condition, computation is stopped. When operation on the ancilla state provides a failure condition, computation is performed again on the ancilla state and the n-qubit state obtained in the previous computation, until a success condition is obtained.

  19. Non-commutative flux representation for loop quantum gravity

    Science.gov (United States)

    Baratin, A.; Dittrich, B.; Oriti, D.; Tambornino, J.

    2011-09-01

    The Hilbert space of loop quantum gravity is usually described in terms of cylindrical functionals of the gauge connection, the electric fluxes acting as non-commuting derivation operators. It has long been believed that this non-commutativity prevents a dual flux (or triad) representation of loop quantum gravity to exist. We show here, instead, that such a representation can be explicitly defined, by means of a non-commutative Fourier transform defined on the loop gravity state space. In this dual representation, flux operators act by sstarf-multiplication and holonomy operators act by translation. We describe the gauge invariant dual states and discuss their geometrical meaning. Finally, we apply the construction to the simpler case of a U(1) gauge group and compare the resulting flux representation with the triad representation used in loop quantum cosmology.

  20. Primordial non-Gaussianity and power asymmetry with quantum gravitational effects in loop quantum cosmology

    Science.gov (United States)

    Zhu, Tao; Wang, Anzhong; Kirsten, Klaus; Cleaver, Gerald; Sheng, Qin

    2018-02-01

    Loop quantum cosmology provides a resolution of the classical big bang singularity in the deep Planck era. The evolution, prior to the usual slow-roll inflation, naturally generates excited states at the onset of the slow-roll inflation. It is expected that these quantum gravitational effects could leave its fingerprints on the primordial perturbation spectrum and non-Gaussianity, and lead to some observational evidences in the cosmic microwave background. While the impact of the quantum effects on the primordial perturbation spectrum has been already studied and constrained by current data, in this paper we continue to study such effects but now on the non-Gaussianity of the primordial curvature perturbations. We present detailed and analytical calculations of the non-Gaussianity and show explicitly that the corrections due to the quantum effects are at the same magnitude of the slow-roll parameters in the observable scales and thus are well within current observational constraints. Despite this, we show that the non-Gaussianity in the squeezed limit can be enhanced at superhorizon scales and it is these effects that can yield a large statistical anisotropy on the power spectrum through the Erickcek-Kamionkowski-Carroll mechanism.

  1. 15th International Conference on Non-Hermitian Hamiltonians in Quantum Physics

    CERN Document Server

    Passante, Roberto; Trapani, Camillo

    2016-01-01

    This book presents the Proceedings of the 15th International Conference on Non-Hermitian Hamiltonians in Quantum Physics, held in Palermo, Italy, from 18 to 23 May 2015. Non-Hermitian operators, and non-Hermitian Hamiltonians in particular, have recently received considerable attention from both the mathematics and physics communities. There has been a growing interest in non-Hermitian Hamiltonians in quantum physics since the discovery that PT-symmetric Hamiltonians can have a real spectrum and thus a physical relevance. The main subjects considered in this book include: PT-symmetry in quantum physics, PT-optics, Spectral singularities and spectral techniques, Indefinite-metric theories, Open quantum systems, Krein space methods, and Biorthogonal systems and applications. The book also provides a summary of recent advances in pseudo-Hermitian Hamiltonians and PT-symmetric Hamiltonians, as well as their applications in quantum physics and in the theory of open quantum systems.

  2. Non-commutative representation for quantum systems on Lie groups

    Energy Technology Data Exchange (ETDEWEB)

    Raasakka, Matti Tapio

    2014-01-27

    The topic of this thesis is a new representation for quantum systems on weakly exponential Lie groups in terms of a non-commutative algebra of functions, the associated non-commutative harmonic analysis, and some of its applications to specific physical systems. In the first part of the thesis, after a review of the necessary mathematical background, we introduce a {sup *}-algebra that is interpreted as the quantization of the canonical Poisson structure of the cotangent bundle over a Lie group. From the physics point of view, this represents the algebra of quantum observables of a physical system, whose configuration space is a Lie group. We then show that this quantum algebra can be represented either as operators acting on functions on the group, the usual group representation, or (under suitable conditions) as elements of a completion of the universal enveloping algebra of the Lie group, the algebra representation. We further apply the methods of deformation quantization to obtain a representation of the same algebra in terms of a non-commutative algebra of functions on a Euclidean space, which we call the non-commutative representation of the original quantum algebra. The non-commutative space that arises from the construction may be interpreted as the quantum momentum space of the physical system. We derive the transform between the group representation and the non-commutative representation that generalizes in a natural way the usual Fourier transform, and discuss key properties of this new non-commutative harmonic analysis. Finally, we exhibit the explicit forms of the non-commutative Fourier transform for three elementary Lie groups: R{sup d}, U(1) and SU(2). In the second part of the thesis, we consider application of the non-commutative representation and harmonic analysis to physics. First, we apply the formalism to quantum mechanics of a point particle on a Lie group. We define the dual non-commutative momentum representation, and derive the phase

  3. Non-commutative representation for quantum systems on Lie groups

    International Nuclear Information System (INIS)

    Raasakka, Matti Tapio

    2014-01-01

    The topic of this thesis is a new representation for quantum systems on weakly exponential Lie groups in terms of a non-commutative algebra of functions, the associated non-commutative harmonic analysis, and some of its applications to specific physical systems. In the first part of the thesis, after a review of the necessary mathematical background, we introduce a * -algebra that is interpreted as the quantization of the canonical Poisson structure of the cotangent bundle over a Lie group. From the physics point of view, this represents the algebra of quantum observables of a physical system, whose configuration space is a Lie group. We then show that this quantum algebra can be represented either as operators acting on functions on the group, the usual group representation, or (under suitable conditions) as elements of a completion of the universal enveloping algebra of the Lie group, the algebra representation. We further apply the methods of deformation quantization to obtain a representation of the same algebra in terms of a non-commutative algebra of functions on a Euclidean space, which we call the non-commutative representation of the original quantum algebra. The non-commutative space that arises from the construction may be interpreted as the quantum momentum space of the physical system. We derive the transform between the group representation and the non-commutative representation that generalizes in a natural way the usual Fourier transform, and discuss key properties of this new non-commutative harmonic analysis. Finally, we exhibit the explicit forms of the non-commutative Fourier transform for three elementary Lie groups: R d , U(1) and SU(2). In the second part of the thesis, we consider application of the non-commutative representation and harmonic analysis to physics. First, we apply the formalism to quantum mechanics of a point particle on a Lie group. We define the dual non-commutative momentum representation, and derive the phase space path

  4. Report of AAPM Task Group 162: Software for planar image quality metrology.

    Science.gov (United States)

    Samei, Ehsan; Ikejimba, Lynda C; Harrawood, Brian P; Rong, John; Cunningham, Ian A; Flynn, Michael J

    2018-02-01

    The AAPM Task Group 162 aimed to provide a standardized approach for the assessment of image quality in planar imaging systems. This report offers a description of the approach as well as the details of the resultant software bundle to measure detective quantum efficiency (DQE) as well as its basis components and derivatives. The methodology and the associated software include the characterization of the noise power spectrum (NPS) from planar images acquired under specific acquisition conditions, modulation transfer function (MTF) using an edge test object, the DQE, and effective DQE (eDQE). First, a methodological framework is provided to highlight the theoretical basis of the work. Then, a step-by-step guide is included to assist in proper execution of each component of the code. Lastly, an evaluation of the method is included to validate its accuracy against model-based and experimental data. The code was built using a Macintosh OSX operating system. The software package contains all the source codes to permit an experienced user to build the suite on a Linux or other *nix type system. The package further includes manuals and sample images and scripts to demonstrate use of the software for new users. The results of the code are in close alignment with theoretical expectations and published results of experimental data. The methodology and the software package offered in AAPM TG162 can be used as baseline for characterization of inherent image quality attributes of planar imaging systems. © 2017 American Association of Physicists in Medicine.

  5. Diffusion-weighted imaging-guided MR spectroscopy in breast lesions using readout-segmented echo-planar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Kun; Chai, Weimin; Zhan, Ying; Luo, Xianfu; Yan, Fuhua [Shanghai Jiao Tong University School of Medicine, Department of Radiology, Ruijin Hospital, Shanghai (China); Fu, Caixia [Siemens MRI Center, Siemens Shenzhen Magnetic Resonance Ltd, Shenzhen (China); Shen, Kunwei [Shanghai Jiao Tong University School of Medicine, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai (China)

    2016-06-15

    To investigate the feasibility and effectiveness of diffusion-weighted imaging (DWI)-guided magnetic resonance spectroscopy (MRS) using readout-segmented echo-planar imaging (RS-EPI) to characterise breast lesions. A total of 258 patients with 258 suspicious breast lesions larger than 1 cm in diameter were examined using DWI-guided, single-voxel MRS with RS-EPI. The mean total choline-containing compound (tCho) signal-to-noise ratio (SNR) and concentration were used for the interpretation of MRS data. T-tests, χ{sup 2}-tests, receiver operating characteristic (ROC) curve analyses and Pearson correlations were conducted for statistical analysis. Histologically, 183 lesions were malignant, and 75 lesions were benign. Both the mean tCho SNR and concentration of malignant lesions were higher than those of benign lesions (6.23 ± 3.30 AU/mL vs. 1.26 ± 1.75 AU/mL and 3.17 ± 2.03 mmol/kg vs. 0.86 ± 0.83 mmol/kg, respectively; P < 0.0001). For a tCho SNR of 2.0 AU/mL and a concentration of 1.76 mmol/kg, the corresponding areas under the ROC curves were 0.93 and 0.90, respectively. The mean tCho SNR and concentration negatively correlated with apparent diffusion coefficients calculated from RS-EPI, with correlation coefficients of -0.54 and -0.48, respectively. DWI-guided MRS using RS-EPI is feasible and accurate for characterising breast lesions. (orig.)

  6. Color-suppression of non-planar diagrams in bosonic bound states

    Science.gov (United States)

    Alvarenga Nogueira, J. H.; Ji, Chueng-Ryong; Ydrefors, E.; Frederico, T.

    2018-02-01

    We study the suppression of non-planar diagrams in a scalar QCD model of a meson system in 3 + 1 space-time dimensions due to the inclusion of the color degrees of freedom. As a prototype of the color-singlet meson, we consider a flavor-nonsinglet system consisting of a scalar-quark and a scalar-antiquark with equal masses exchanging a scalar-gluon of a different mass, which is investigated within the framework of the homogeneous Bethe-Salpeter equation. The equation is solved by using the Nakanishi representation for the manifestly covariant bound-state amplitude and its light-front projection. The resulting non-singular integral equation is solved numerically. The damping of the impact of the cross-ladder kernel on the binding energies are studied in detail. The color-suppression of the cross-ladder effects on the light-front wave function and the elastic electromagnetic form factor are also discussed. As our results show, the suppression appears significantly large for Nc = 3, which supports the use of rainbow-ladder truncations in practical non-perturbative calculations within QCD.

  7. Exploiting Non-Markovianity for Quantum Control.

    Science.gov (United States)

    Reich, Daniel M; Katz, Nadav; Koch, Christiane P

    2015-07-22

    Quantum technology, exploiting entanglement and the wave nature of matter, relies on the ability to accurately control quantum systems. Quantum control is often compromised by the interaction of the system with its environment since this causes loss of amplitude and phase. However, when the dynamics of the open quantum system is non-Markovian, amplitude and phase flow not only from the system into the environment but also back. Interaction with the environment is then not necessarily detrimental. We show that the back-flow of amplitude and phase can be exploited to carry out quantum control tasks that could not be realized if the system was isolated. The control is facilitated by a few strongly coupled, sufficiently isolated environmental modes. Our paradigmatic example considers a weakly anharmonic ladder with resonant amplitude control only, restricting realizable operations to SO(N). The coupling to the environment, when harnessed with optimization techniques, allows for full SU(N) controllability.

  8. Orientifold Planar Equivalence: The Chiral Condensate

    DEFF Research Database (Denmark)

    Armoni, Adi; Lucini, Biagio; Patella, Agostino

    2008-01-01

    The recently introduced orientifold planar equivalence is a promising tool for solving non-perturbative problems in QCD. One of the predictions of orientifold planar equivalence is that the chiral condensates of a theory with $N_f$ flavours of Dirac fermions in the symmetric (or antisymmetric...

  9. Mixing-induced quantum non-Markovianity and information flow

    Science.gov (United States)

    Breuer, Heinz-Peter; Amato, Giulio; Vacchini, Bassano

    2018-04-01

    Mixing dynamical maps describing open quantum systems can lead from Markovian to non-Markovian processes. Being surprising and counter-intuitive, this result has been used as argument against characterization of non-Markovianity in terms of information exchange. Here, we demonstrate that, quite the contrary, mixing can be understood in a natural way which is fully consistent with existing theories of memory effects. In particular, we show how mixing-induced non-Markovianity can be interpreted in terms of the distinguishability of quantum states, system-environment correlations and the information flow between system and environment.

  10. Non-planar dislocations: 3D models and thermally-activated glide processes

    International Nuclear Information System (INIS)

    Ngan, A.H.W.

    2005-01-01

    In recent years, there has been a renewed interest in studying the cross-slip of screw dislocations in the simple face-centred cubic (FCC) structure. This paper serves to address parallel developments in modelling the cross-slip of screw dislocations in the body-centred cubic (BCC) structure and the ordered L1 2 structure. In the latter two cases, the dislocation cores have non-planar spreading offering high intrinsic Peierls stresses. The flow behaviours of these materials, such as the non-Schmid behaviour and temperature-dependence of flow stress, are largely due to the behaviours of single dislocations. 3D atomistic modelling of the minimum-energy path for the glide processes in these cases is performed with an aim to reconcile with experimentally determined activation energies for slip

  11. Quantum entropy of systems described by non-Hermitian Hamiltonians

    International Nuclear Information System (INIS)

    Sergi, Alessandro; Zloshchastiev, Konstantin G

    2016-01-01

    We study the quantum entropy of systems that are described by general non-Hermitian Hamiltonians, including those which can model the effects of sinks or sources. We generalize the von Neumann entropy to the non-Hermitian case and find that one needs both the normalized and non-normalized density operators in order to properly describe irreversible processes. It turns out that such a generalization monitors the onset of disorder in quantum dissipative systems. We give arguments for why one can consider the generalized entropy as the informational entropy describing the flow of information between the system and the bath. We illustrate the theory by explicitly studying few simple models, including tunneling systems with two energy levels and non-Hermitian detuning. (paper: quantum statistical physics, condensed matter, integrable systems)

  12. Measurements of gain and index dynamics in quantum dash semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Poel, Mike van der; Berg, Tommy Winther; Mørk, Jesper

    2004-01-01

    Ultrafast gain and index recovery of a 1.5um quantum dash amplifier after short pulse amplification is measured using pump-probe spectroscopy. The major part of the gain reduction is found to recover within a few picoseconds....

  13. Non-equilibrium turbulence scalings in turbulent planar jets

    Science.gov (United States)

    Cafiero, Gioacchino; Vassilicos, John Christos; Turbulence, Mixing; Flow Control Group Team

    2017-11-01

    A revised version of the Townsend George theory, as proposed by Dairay et al. 2015, is applied to the study of turbulent planar jets (Cafiero and Vassilicos 2017). Requiring the self-similarity of only few quantities along with the non-equilibrium dissipation scaling law (Vassilicos 2015), it implies new mean flow and jet width scalings. In particular, the ratio of characteristic cross-stream to centreline streamwise velocities decays as the -1/3 power of streamwise distance in the region where the non-equilibrium dissipation scaling holds. In the definition of Cɛ both in Dairay et al. 2015 and in Cafiero and Vassilicos 2017 the local Reynolds number is based on the local flow width rather than on the integral lengthscale. We verify that the ratio of the integral lengthscale to the flow width is constant, thus enabling the use of the integral flow width in place of the integral lengthscale for defining Cɛ. The importance of this result is twofold: firstly it further strengthens the scalings obtained in the works of Dairay et al. 2015 and Cafiero and Vassilicos 2017; secondly the flow width is immediately accessible by any mean flow measurement, whereas the estimation of the integral lengthscale often requires an additional hypothesis. ERC Advanced Grant 320560.

  14. Exact synthesis of three-qubit quantum circuits from non-binary quantum gates

    Science.gov (United States)

    Yang, Guowu; Hung, William N. N.; Song, Xiaoyu; Perkowski, Marek A.

    2010-04-01

    Because of recent nano-technological advances, nano-structured systems have become highly ordered, making it quantum computing schemas possible. We propose an approach to optimally synthesise quantum circuits from non-permutative quantum gates such as controlled-square-root-of-not (i.e., controlled-V). Our approach reduces the synthesis problem to multiple-valued optimisation and uses group theory. We devise a novel technique that transforms the quantum logic synthesis problem from a multi-valued constrained optimisation problem to a permutable representation. The transformation enables us to use group theory to exploit the symmetric properties of the synthesis problem. Assuming a cost of one for each two-qubit gate, we found all reversible circuits with quantum costs of 4, 5, 6, etc., and give another algorithm to realise these reversible circuits with quantum gates. The approach can be used for both binary permutative deterministic circuits and probabilistic circuits such as controlled random-number generators and hidden Markov models.

  15. Quantum groups, non-commutative differential geometry and applications

    International Nuclear Information System (INIS)

    Schupp, P.; California Univ., Berkeley, CA

    1993-01-01

    The topic of this thesis is the development of a versatile and geometrically motivated differential calculus on non-commutative or quantum spaces, providing powerful but easy-to-use mathematical tools for applications in physics and related sciences. A generalization of unitary time evolution is proposed and studied for a simple 2-level system, leading to non-conservation of microscopic entropy, a phenomenon new to quantum mechanics. A Cartan calculus that combines functions, forms, Lie derivatives and inner derivations along general vector fields into one big algebra is constructed for quantum groups and then extended to quantum planes. The construction of a tangent bundle on a quantum group manifold and an BRST type approach to quantum group gauge theory are given as further examples of applications. The material is organized in two parts: Part I studies vector fields on quantum groups, emphasizing Hopf algebraic structures, but also introducing a ''quantum geometric'' construction. Using a generalized semi-direct product construction we combine the dual Hopf algebras A of functions and U of left-invariant vector fields into one fully bicovariant algebra of differential operators. The pure braid group is introduced as the commutant of Δ(U). It provides invariant maps A → U and thereby bicovariant vector fields, casimirs and metrics. This construction allows the translation of undeformed matrix expressions into their less obvious quantum algebraic counter parts. We study this in detail for quasitriangular Hopf algebras, giving the determinant and orthogonality relation for the ''reflection'' matrix. Part II considers the additional structures of differential forms and finitely generated quantum Lie algebras -- it is devoted to the construction of the Cartan calculus, based on an undeformed Cartan identity

  16. Quantum interference between two phonon paths and reduced heat transport in diamond lattice with atomic-scale planar defects

    Science.gov (United States)

    Kosevich, Yu. A.; Strelnikov, I. A.

    2018-02-01

    Destructive quantum interference between the waves propagating through laterally inhomogeneous layer can result in their total reflection, which in turn reduces energy flux carried by these waves. We consider the systems of Ge atoms, which fully or partly, in the chequer-wise order, fill a crystal plane in diamond-like Si lattice. We have revealed that a single type of the atomic defects, which are placed in identical positions in different unit cells in the defect crystal plane, can result in double transmission antiresonances of phonon wave packets. This new effect we relate with the complex structure of the diamond-like unit cell, which comprises two atoms in different positions and results in two distinct vibration resonances in two interfering phonon paths. We also consider the propagation of phonon wave packets in the superlatticies made of the defect planes, half-filled in the chequer-wise order with Ge atoms. We have revealed relatively broad phonon stop bands with center frequencies at the transmission antiresonances. We elaborate the equivalent analytical quasi-1D lattice model of the two phonon paths through the complex planar defect in the diamond-like lattice and describe the reduction of phonon heat transfer through the atomic-scale planar defects.

  17. Experimental non-classicality of an indivisible quantum system.

    Science.gov (United States)

    Lapkiewicz, Radek; Li, Peizhe; Schaeff, Christoph; Langford, Nathan K; Ramelow, Sven; Wieśniak, Marcin; Zeilinger, Anton

    2011-06-22

    In contrast to classical physics, quantum theory demands that not all properties can be simultaneously well defined; the Heisenberg uncertainty principle is a manifestation of this fact. Alternatives have been explored--notably theories relying on joint probability distributions or non-contextual hidden-variable models, in which the properties of a system are defined independently of their own measurement and any other measurements that are made. Various deep theoretical results imply that such theories are in conflict with quantum mechanics. Simpler cases demonstrating this conflict have been found and tested experimentally with pairs of quantum bits (qubits). Recently, an inequality satisfied by non-contextual hidden-variable models and violated by quantum mechanics for all states of two qubits was introduced and tested experimentally. A single three-state system (a qutrit) is the simplest system in which such a contradiction is possible; moreover, the contradiction cannot result from entanglement between subsystems, because such a three-state system is indivisible. Here we report an experiment with single photonic qutrits which provides evidence that no joint probability distribution describing the outcomes of all possible measurements--and, therefore, no non-contextual theory--can exist. Specifically, we observe a violation of the Bell-type inequality found by Klyachko, Can, Binicioğlu and Shumovsky. Our results illustrate a deep incompatibility between quantum mechanics and classical physics that cannot in any way result from entanglement.

  18. Non-Markovian dynamics, decoherence and entanglement in dissipative quantum systems with applications to quantum information theory of continuous variable systems

    International Nuclear Information System (INIS)

    Hoerhammer, C.

    2007-01-01

    In this thesis, non-Markovian dynamics, decoherence and entanglement in dissipative quantum systems are studied. In particular, applications to quantum information theory of continuous variable systems are considered. The non-Markovian dynamics are described by the Hu-Paz-Zhang master equation of quantum Brownian motion. In this context the focus is on non-Markovian effects on decoherence and separability time scales of various single- mode and two-mode continuous variable states. It is verified that moderate non-Markovian influences slow down the decay of interference fringes and quantum correlations, while strong non-Markovian effects resulting from an out-of-resonance bath can even accelerate the loss of coherence, compared to predictions of Markovian approximations. Qualitatively different scenarios including exponential, Gaussian or algebraic decay of the decoherence function are analyzed. It is shown that partial recurrence of coherence can occur in case of non-Lindblad-type dynamics. The time evolution of quantum correlations of entangled two-mode continuous variable states is examined in single-reservoir and two-reservoir models, representing noisy correlated or uncorrelated non-Markovian quantum channels. For this purpose the model of quantum Brownian motion is extended. Various separability criteria for Gaussian and non-Gaussian continuous variable systems are applied. In both types of reservoir models moderate non-Markovian effects prolong the separability time scales. However, in these models the properties of the stationary state may differ. In the two-reservoir model the initial entanglement is completely lost and both modes are finally uncorrelated. In a common reservoir both modes interact indirectly via the coupling to the same bath variables. Therefore, new quantum correlations may emerge between the two modes. Below a critical bath temperature entanglement is preserved even in the steady state. A separability criterion is derived, which depends

  19. Non-Markovian quantum processes: Complete framework and efficient characterization

    Science.gov (United States)

    Pollock, Felix A.; Rodríguez-Rosario, César; Frauenheim, Thomas; Paternostro, Mauro; Modi, Kavan

    2018-01-01

    Currently, there is no systematic way to describe a quantum process with memory solely in terms of experimentally accessible quantities. However, recent technological advances mean we have control over systems at scales where memory effects are non-negligible. The lack of such an operational description has hindered advances in understanding physical, chemical, and biological processes, where often unjustified theoretical assumptions are made to render a dynamical description tractable. This has led to theories plagued with unphysical results and no consensus on what a quantum Markov (memoryless) process is. Here, we develop a universal framework to characterize arbitrary non-Markovian quantum processes. We show how a multitime non-Markovian process can be reconstructed experimentally, and that it has a natural representation as a many-body quantum state, where temporal correlations are mapped to spatial ones. Moreover, this state is expected to have an efficient matrix-product-operator form in many cases. Our framework constitutes a systematic tool for the effective description of memory-bearing open-system evolutions.

  20. Non-Mechanism in Quantum Oracle Computing

    OpenAIRE

    Castagnoli, Giuseppe

    1999-01-01

    A typical oracle problem is finding which software program is installed on a computer, by running the computer and testing its input-output behaviour. The program is randomly chosen from a set of programs known to the problem solver. As well known, some oracle problems are solved more efficiently by using quantum algorithms; this naturally implies changing the computer to quantum, while the choice of the software program remains sharp. In order to highlight the non-mechanistic origin of this ...

  1. Black Phosphorus Quantum Dots for Hole Extraction of Typical Planar Hybrid Perovskite Solar Cells.

    Science.gov (United States)

    Chen, Wei; Li, Kaiwen; Wang, Yao; Feng, Xiyuan; Liao, Zhenwu; Su, Qicong; Lin, Xinnan; He, Zhubing

    2017-02-02

    Black phosphorus, famous as two-dimensional (2D) materials, shows such excellent properties for optoelectronic devices such as tunable direct band gap, extremely high hole mobility (300-1000 cm 2 /(V s)), and so forth. In this Letter, facile processed black phosphorus quantum dots (BPQDs) were successfully applied to enhance hole extraction at the anode side of the typical p-i-n planar hybrid perovskite solar cells, which remarkably improved the performance of devices with photon conversion efficiency ramping up from 14.10 to 16.69%. Moreover, more detailed investigations by c-AFM, SKPM, SEM, hole-only devices, and photon physics measurements discover further the hole extraction effect and work mechanism of the BPQDs, such as nucleation assistance for the growth of large grain size perovskite crystals, fast hole extraction, more efficient hole transfer, and suppression of energy-loss recombination at the anode interface. This work definitely paves the way for discovering more and more 2D materials with high electronic properties to be used in photovoltaics and optoelectronics.

  2. Dow's chemical exposure index guide

    International Nuclear Information System (INIS)

    Marshall, J.T.; Mundt, A.

    1995-01-01

    A number of events in the 1970's and 1980's impacted the course of process safety. Incidents such as Flixborough, Seveso, Three-Mile Island, and Bhopal are well known throughout industry and are recognized as examples of major disasters. Even though events leading up to these disasters were completely different they had one common element between them: a substance was released from a manufacturing unit, became airborne and presented a hazard of such magnitude as to place the safety of both employees and the surrounding public in jeopardy. As a result, industry became increasingly concerned regarding potential loss, in human and economic terms, as plants and equipment grew in size. The Flixborough incident raised the level of concern for process safety, particularly in terms of the hazards presented by fire and explosion. Seveso and Three-Mile Island emphasized the need to consider far-field exposure. The Bhopal incident created an urgent need to recognize and understand the expected downwind impact of potential releases of acutely toxic substances to the air. In order to meet this need, the Dow Chemical Company, a recognized leader in the area of safety and loss prevention, presented a Chemical Exposure Index in 1986. AIChE has recently published an updated version entitled Dow's Chemical Exposure Index Guide. 7 refs., 5 figs

  3. From primitive identity to the non-individuality of quantum objects

    Science.gov (United States)

    Arenhart, Jonas Becker; Krause, Décio

    2014-05-01

    We consider the claim by Dorato and Morganti (Grades of individuality. A pluralistic view of identity in quantum mechanics and in the sciences. Philosophical Studies, 163 (2013) 591-610) that primitive individuality should be attributed to the entities dealt with by non-relativistic quantum mechanics. There are two central ingredients in the proposal: (i) in the case of non-relativistic quantum mechanics, individuality should be taken as a primitive notion and (ii) primitive individuality is naturalistically acceptable. We argue that, strictly understood, naturalism faces difficulties in helping to provide a theory with a unique principle of individuation. We also hold that even when taken in a loose sense, naturalism does not provide any sense in which one could hold that quantum mechanics endorses primitive individuality over non-individuality. Rather, we argue that non-individuality should be preferred based on the grounds that such a view fits better the claims of the theory.

  4. Enhanced and tunable electric dipole-dipole interactions near a planar metal film

    Science.gov (United States)

    Zhou, Lei-Ming; Yao, Pei-Jun; Zhao, Nan; Sun, Fang-Wen

    2017-08-01

    We investigate the enhanced electric dipole-dipole interaction of surface plasmon polaritons (SPPs) supported by a planar metal film waveguide. By taking two nitrogen-vacancy (NV) center electric dipoles in diamond as an example, both the coupling strength and collective relaxation of two dipoles are studied with the numerical Green Function method. Compared to two-dipole coupling on a planar surface, metal film provides stronger and tunable coupling coefficients. Enhancement of the interaction between coupled NV center dipoles could have applications in both quantum information and energy transfer investigation. Our investigation provides systematic results for experimental applications based on a dipole-dipole interaction mediated with SPPs on a planar metal film.

  5. Quantum theory of novel parametric devices

    International Nuclear Information System (INIS)

    Drummond, P.D.; Reid, M.D.; Dechoum, K.; Chaturvedi, S.; Olsen, M.; Kheruntsyan, K.; Bradley, A.

    2005-01-01

    While the parametric amplifier is a widely used and important source of entangled and squeezed photons, there are many possible ways to investigate the physics of intracavity parametric devices. Novel quantum theory of parametric devices in this talk will cover several new types of unconventional devices, including the following topics:- Critical intracavity paramp - We calculate intrinsic limits to entanglement of a quantum paramp, caused by nonlinear effects originating in phase noise of the pump. - Degenerate planar paramp - We obtain universal quantum critical fluctuations in a planar paramp device by mapping to the equations of magnetic Lifshitz points Nondegenerate planar paramp - The Mermin-Wagner theorem is used to demonstrate that there is no phase transition in the case of a nondegenerate planar device - Coupled channel paramp - A robust and novel integrated entanglement source can be generated using type I waveguides coupled inside a cavity to generate spatial entanglement - Cascade paramps - This possible 'GHZ-type' source is obtained by cascading successive down conversion crystals inside the same cavity, giving two thresholds Parallel paramps - Tripartite entanglement can be generated if three intracavity paramp crystals are operated in parallel, each idler mode acting as a signal for the next. Finally, we briefly treat the relevant experimental developments. (author)

  6. Quantum Field Theory at non zero temperature

    International Nuclear Information System (INIS)

    Alvarez-Estrada, R.

    1989-01-01

    The formulations of the Φ 4 Quantum Field Theory and of Quantum Electrodynamics in I+d dimensions (d spatial dimensions) at non-zero temperature are reviewed. The behaviours of all those theories in the regime of large distances and high temperatures are surveyed. Only results are reported, all technicalities being omitted. The leading high-temperature contributions to correlation functions, to all perturbative orders, in those theories turn out to be also given by simpler theories, having much milder (superrenormalizable) ultraviolet behaviour and special mass renormalizations. In particular, the triviality/non-triviality issue for the Φ 4 theory in 1+3 dimensions is discussed briefly. (Author)

  7. Transfer of non-Gaussian quantum states of mechanical oscillator to light

    Science.gov (United States)

    Filip, Radim; Rakhubovsky, Andrey A.

    2015-11-01

    Non-Gaussian quantum states are key resources for quantum optics with continuous-variable oscillators. The non-Gaussian states can be deterministically prepared by a continuous evolution of the mechanical oscillator isolated in a nonlinear potential. We propose feasible and deterministic transfer of non-Gaussian quantum states of mechanical oscillators to a traveling light beam, using purely all-optical methods. The method relies on only basic feasible and high-quality elements of quantum optics: squeezed states of light, linear optics, homodyne detection, and electro-optical feedforward control of light. By this method, a wide range of novel non-Gaussian states of light can be produced in the future from the mechanical states of levitating particles in optical tweezers, including states necessary for the implementation of an important cubic phase gate.

  8. Quantum Noether identities for non-local transformations in higher-order derivatives theories

    International Nuclear Information System (INIS)

    Li, Z.P.; Long, Z.W.

    2003-01-01

    Based on the phase-space generating functional of the Green function for a system with a regular/singular higher-order Lagrangian, the quantum canonical Noether identities (NIs) under a local and non-local transformation in phase space have been deduced, respectively. For a singular higher-order Lagrangian, one must use an effective canonical action I eff P in quantum canonical NIs instead of the classical I P in classical canonical NIs. The quantum NIs under a local and non-local transformation in configuration space for a gauge-invariant system with a higher-order Lagrangian have also been derived. The above results hold true whether or not the Jacobian of the transformation is equal to unity or not. It has been pointed out that in certain cases the quantum NIs may be converted to conservation laws at the quantum level. This algorithm to derive the quantum conservation laws is significantly different from the quantum first Noether theorem. The applications of our formulation to the Yang-Mills fields and non-Abelian Chern-Simons (CS) theories with higher-order derivatives are given, and the conserved quantities at the quantum level for local and non-local transformations are found, respectively. (orig.)

  9. Tomographic apparatus and method for reconstructing planar slices from non-absorbed radiation

    International Nuclear Information System (INIS)

    1976-01-01

    In a tomographic apparatus and method for reconstructing two-dimensional planar slices from linear projections of non-absorbed radiation useful in the fields of medical radiology, microscopy, and non-destructive testing, a beam of radiation in the shape of a fan is passed through an object lying in the same quasi-plane as the object slice and non-absorbtion thereof is recorded on oppositely-situated detectors aligned with the source of radiation. There is relative rotation between the source-detector configuration and the object within the quasi-plane. Periodic values of the detected radiation are taken, convolved with certain functions, and back-projected to produce a two-dimensional output picture on a visual display illustrating a facsimile of the object slice. A series of two-dimensional pictures obtained simultaneously or serially can be combined to produce a three dimensional portrayal of the entire object

  10. Non-cyclic phases for neutrino oscillations in quantum field theory

    International Nuclear Information System (INIS)

    Blasone, Massimo; Capolupo, Antonio; Celeghini, Enrico; Vitiello, Giuseppe

    2009-01-01

    We show the presence of non-cyclic phases for oscillating neutrinos in the context of quantum field theory. Such phases carry information about the non-perturbative vacuum structure associated with the field mixing. By subtracting the condensate contribution of the flavor vacuum, the previously studied quantum mechanics geometric phase is recovered.

  11. Giant Planar Hall Effect in the Dirac Semimetal ZrTe5

    KAUST Repository

    Li, Peng; Zhang, Chenhui; Zhang, Junwei; Wen, Yan; Zhang, Xixiang

    2018-01-01

    Exploration and understanding of exotic topics in quantum physics such as Dirac and Weyl semimetals have become highly popular in the area of condensed matter. It has recently been predicted that a theoretical giant planar Hall effect can be induced

  12. Improvement of kurtosis-guided-grams via Gini index for bearing fault feature identification

    Science.gov (United States)

    Miao, Yonghao; Zhao, Ming; Lin, Jing

    2017-12-01

    A group of kurtosis-guided-grams, such as Kurtogram, Protrugram and SKRgram, is designed to detect the resonance band excited by faults based on the sparsity index. However, a common issue associated with these methods is that they tend to choose the frequency band with individual impulses rather than the desired fault impulses. This may be attributed to the selection of the sparsity index, kurtosis, which is vulnerable to impulsive noise. In this paper, to solve the problem, a sparsity index, called the Gini index, is introduced as an alternative estimator for the selection of the resonance band. It has been found that the sparsity index is still able to provide guidelines for the selection of the fault band without prior information of the fault period. More importantly, the Gini index has unique performance in random-impulse resistance, which renders the improved methods using the index free from the random impulse caused by external knocks on the bearing housing, or electromagnetic interference. By virtue of these advantages, the improved methods using the Gini index not only overcome the shortcomings but are more effective under harsh working conditions, even in the complex structure. Finally, the comparison between the kurtosis-guided-grams and the improved methods using the Gini index is made using the simulated and experimental data. The results verify the effectiveness of the improvement by both the fixed-axis bearing and planetary bearing fault signals.

  13. Planar and channel waveguides in fused silica fabricated by multi-energy C ion in the visible and near-infrared band

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tao; Huang, Qing; Liu, Peng; Guo, Sha-Sha; Zhang, Lian; Zhou, Yu-Fan [School of Physics, State Key Laboratory of Crystal Materials and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Jinan 250100 (China); Wang, Xue-Lin, E-mail: xuelinwang@sdu.edu.cn [School of Physics, State Key Laboratory of Crystal Materials and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Jinan 250100 (China)

    2013-07-15

    Fused quartz is a key material in fabrication of integrated devices, which transmits extends from ultraviolet to infrared. We report the fabrication of planar and channel waveguides in fused quartz using multi-energy C ion at energies of (5 + 5.5 + 6) MeV and fluences of (1 + 1 + 1.5) × 10{sup 15} ions/cm{sup 2}. The guiding modes at the wavelength of 633 nm (He–Ne laser) and 1539 nm (diode laser) were detected using the prism-coupling method, and the modes were stable after annealing in air. The refractive index profiles of planar and channel waveguides at the wavelength of 633 nm and 1539 nm were typical “well + barrier” distributions, which were reconstructed using the reflectivity calculation method (RCM) software and intensity calculation method (ICM), respectively. For comparison to the experimental results, the finite difference beam propagation method (FD-BPM) was used to simulate the guiding modes of the waveguides. We measured the near-field intensity distributions for the visible (633 nm) and near-infrared (1300 nm, 1539 nm and 1620 nm) wavelength regions, suggesting that the modes can be effective transmission in the wavelength range for optical fiber communications.

  14. Non-Markovian spontaneous emission from a single quantum dot

    DEFF Research Database (Denmark)

    Madsen, Kristian Høeg; Ates, Serkan; Lund-Hansen, Toke

    2011-01-01

    We observe non-Markovian dynamics of a single quantum dot when tuned into resonance with a cavity mode. Excellent agreement between experiment and theory is observed providing the first quantitative description of such a system.......We observe non-Markovian dynamics of a single quantum dot when tuned into resonance with a cavity mode. Excellent agreement between experiment and theory is observed providing the first quantitative description of such a system....

  15. Quantum gases finite temperature and non-equilibrium dynamics

    CERN Document Server

    Szymanska, Marzena; Davis, Matthew; Gardiner, Simon

    2013-01-01

    The 1995 observation of Bose-Einstein condensation in dilute atomic vapours spawned the field of ultracold, degenerate quantum gases. Unprecedented developments in experimental design and precision control have led to quantum gases becoming the preferred playground for designer quantum many-body systems. This self-contained volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics. Thematically organised chapters on different methodologies, contributed by key researchers using a unified notation, provide the first integrated view of the relative merits of individual approaches, aided by pertinent introductory chapters and the guidance of ed...

  16. Non-classical Correlations and Quantum Coherence in Mixed Environments

    Science.gov (United States)

    Hu, Zheng-Da; Wei, Mei-Song; Wang, Jicheng; Zhang, Yixin; He, Qi-Liang

    2018-05-01

    We investigate non-classical correlations (entanglement and quantum discord) and quantum coherence for an open two-qubit system each independently coupled to a bosonic environment and a spin environment, respectively. The modulating effects of spin environment and bosonic environment are respectively explored. A relation among the quantum coherence, quantum discord and classical correlation is found during the sudden transition phenomenon. We also compare the case of mixed environments with that of the same environments, showing that the dynamics is dramatically changed.

  17. A non-critical string approach to black holes, time and quantum dynamics

    CERN Document Server

    Ellis, John R.; Nanopoulos, Dimitri V.

    1994-01-01

    We review our approach to time and quantum dynamics based on non-critical string theory, developing its relationship to previous work on non-equilibrium quantum statistical mechanics and the microscopic arrow of time. We exhibit specific non-factorizing contributions to the {\

  18. Evanescent field refractometry in planar optical fiber.

    Science.gov (United States)

    Holmes, Christopher; Jantzen, Alexander; Gray, Alan C; Gow, Paul C; Carpenter, Lewis G; Bannerman, Rex H S; Gates, James C; Smith, Peter G R

    2018-02-15

    This Letter demonstrates a refractometer in integrated optical fiber, a new optical platform that planarizes fiber using flame hydrolysis deposition (FHD). The unique advantage of the technology is survivability in harsh environments. The platform is mechanically robust, and can survive elevated temperatures approaching 1000°C and exposure to common solvents, including acetone, gasoline, and methanol. For the demonstrated refractometer, fabrication was achieved through wet etching an SMF-28 fiber to a diameter of 8 μm before FHD planarization. An external refractive index was monitored using fiber Bragg gratings (FBGs), written into the core of the planarized fiber. A direct comparison to alternative FBG refractometers is made, for which the developed platform is shown to have comparable sensitivity, with the added advantage of survivability in harsh environments.

  19. Non-Abelian strategies in quantum penny flip game

    Science.gov (United States)

    Mishima, Hiroaki

    2018-01-01

    In this paper, we formulate and analyze generalizations of the quantum penny flip game. In the penny flip game, one coin has two states, heads or tails, and two players apply alternating operations on the coin. In the original Meyer game, the first player is allowed to use quantum (i.e., non-commutative) operations, but the second player is still only allowed to use classical (i.e., commutative) operations. In our generalized games, both players are allowed to use non-commutative operations, with the second player being partially restricted in what operators they use. We show that even if the second player is allowed to use "phase-variable" operations, which are non-Abelian in general, the first player still has winning strategies. Furthermore, we show that even when the second player is allowed to choose one from two or more elements of the group U(2), the second player has winning strategies under certain conditions. These results suggest that there is often a method for restoring the quantum state disturbed by another agent.

  20. Design and use of guided mode resonance filters for refractive index sensing

    DEFF Research Database (Denmark)

    Hermannsson, Pétur Gordon

    This Ph.D. thesis is concerned with the design and use of guided mode resonance filters (GMRF) for applications in refractive index sensing. GMRFs are optical nanostructures capable of efficiently and resonantly reflecting a narrow wavelength interval of incident broad band light. They combine...... to changes in refractive index that occur within the region overlapped by the quasi guided mode, and GMRFs are thus well suited for optical sensing and tunable filter applications. They produce a polarization dependent response and can be optically characterized in both reflection and transmission......, a lift-off process, and reactive ion etching. After an introduction to the history and principles of GMRFs, the thesis describes the state-of-the-art of relevant research in the field, covers the necessary theoretical background required to understand their operation, and discusses the fabrication...

  1. Graphene Q-switched Yb:KYW planar waveguide laser

    NARCIS (Netherlands)

    Kim, Jun Wan; Choi, Sun Young; Aravazhi, S.; Pollnau, Markus; Griebner, Uwe; Petrov, Valentin; Bae, Sukang; Ahn, Kwang Jun; Yeom, Dong-Il; Rotermund, Fabian

    A diode-pumped Yb:KYW planar waveguide laser, single-mode Q-switched by evanescent-field interaction with graphene, is demonstrated for the first time. Few-layer graphene grown by chemical vapor deposition is transferred onto the top of a guiding layer, which initiates stable Q-switched operation in

  2. Multifold Seebeck increase in RuO2 films by quantum-guided lanthanide dilute alloying

    International Nuclear Information System (INIS)

    Music, Denis; Basse, Felix H.-U.; Schneider, Jochen M.; Han, Liang; Borca-Tasciuc, Theo; Devender; Gengler, Jamie J.; Voevodin, Andrey A.; Ramanath, Ganpati

    2014-01-01

    Ab initio predictions indicating that alloying RuO 2 with La, Eu, or Lu can increase the Seebeck coefficient α manifold due to quantum confinement effects are validated in sputter-deposited La-alloyed RuO 2 films showing fourfold α increase. Combinatorial screening reveals that α enhancement correlates with La-induced lattice distortion, which also decreases the thermal conductivity twentyfold, conducive for high thermoelectric figures of merit. These insights should facilitate the rational design of high efficiency oxide-based thermoelectrics through quantum-guided alloying

  3. Ultraviolet-ozone surface modification for non-wetting hole transport materials based inverted planar perovskite solar cells with efficiency exceeding 18%

    Science.gov (United States)

    Xu, Xiuwen; Ma, Chunqing; Cheng, Yuanhang; Xie, Yue-Min; Yi, Xueping; Gautam, Bhoj; Chen, Shengmei; Li, Ho-Wa; Lee, Chun-Sing; So, Franky; Tsang, Sai-Wing

    2017-08-01

    Non-wetting hole transport materials (HTMs) have great potential in facilitating large-sized perovskite crystal growth and enhancing device stability by opposing moisture ingress, However, the severe non-wetting issue limits the wide application of these materials in low-temperature solution-processed inverted planar perovskite solar cells (PVSCs), and corresponding devices are rarely reported. Here, a facile ultraviolet-ozone (UVO) modification method is demonstrated to overcome this issue. By carefully controlling the UVO modification time, the surface wettability of poly-TPD can be tuned without affecting the bulk properties of the film, hence perovskite films with desired grain size and excellent coverage can be deposited via a one-step spin-coating method. Benefiting from the high-quality perovskite, well-matched energy level alignment and hydrophobic property of poly-TPD, the resulting PVSCs show a champion power conversion efficiency of 18.19% with significantly enhanced stability as compared to the PEDOT:PSS counterparts. Moreover, the UVO modification approach also demonstrates its validity when being extended to other hydrophobic HTMs. This work not only provides a general strategy to broaden the selection pool of HTMs for solution-processed inverted planar PVSCs, but also may triggers the exploration of more advanced strategies to make non-wetting HTMs applicable in solution-processed inverted planar PVSCs.

  4. Jump probabilities in the non-Markovian quantum jump method

    International Nuclear Information System (INIS)

    Haerkoenen, Kari

    2010-01-01

    The dynamics of a non-Markovian open quantum system described by a general time-local master equation is studied. The propagation of the density operator is constructed in terms of two processes: (i) deterministic evolution and (ii) evolution of a probability density functional in the projective Hilbert space. The analysis provides a derivation for the jump probabilities used in the recently developed non-Markovian quantum jump (NMQJ) method (Piilo et al 2008 Phys. Rev. Lett. 100 180402).

  5. TE modes of UV-laser generated waveguides in a planar polymer chip of parabolic refractive index profile

    Science.gov (United States)

    Shams El-Din, M. A.

    2018-04-01

    The UV-laser lithographic method is used for the preparation of Polymeric integrated-optical waveguides in a planar polymer chip. The waveguide samples are irradiated by an excimer laser of wavelength 248 nm with different doses and with the same fluencies. The refractive index depth profile for the waveguides, in the first zone is found to have a parabolic shape and Gaussian shape in the second one that can be determined by Mach-Zehnder interferometer. Both the mode field distribution and the effective mode indices for the first zone only are determined by making use of the theoretical mode and the experimental data. It is found that the model field distribution is strongly dependent on the refractive indices for each zone.

  6. Refractive index modulation based on excitonic effects in GaInAs-InP coupled asymmetric quantum wells

    DEFF Research Database (Denmark)

    Thirstrup, Carsten

    1995-01-01

    The effect of excitons in GaInAs-InP coupled asymmetric quantum wells on the refractive index modulation, is analyzed numerically using a model based on the effective mass approximation. It is shown that two coupled quantum wells brought in resonance by an applied electric field will, due...

  7. Quantum mechanics and quantum information a guide through the quantum world

    CERN Document Server

    Fayngold, Moses

    2013-01-01

    Alongside a thorough definition of the basic concepts and their interrelations, backed by numerous examples, this textbook features a rare discussion of the quantum information theory. It also deals with other important topics hardly found in the literature, including the Robertson-Schrodinger-relation, angle and angular momentum uncertainties, interaction-free measurements, and the limitations of the no-cloning theorem With its interpretations of quantum mechanics and its discussions of quantum computing, this book is poised to become the standard textbook for advanced undergraduate and beginning graduate quantum mechanics courses and as an essential reference for physics students and physics professionals.

  8. Self-gravito-acoustic shock structures in a self-gravitating, strongly coupled, multi-component, degenerate quantum plasma system

    Science.gov (United States)

    Mamun, A. A.

    2017-10-01

    The existence of self-gravito-acoustic (SGA) shock structures (SSs) associated with negative self-gravitational potential in a self-gravitating, strongly coupled, multi-component, degenerate quantum plasma (SGSCMCDQP) system is predicted for the first time. The modified Burgers (MB) equation, which is valid for both planar and non-planar (spherical) geometries, is derived analytically, and solved numerically. It is shown that the longitudinal viscous force acting on inertial plasma species of the plasma system is the source of dissipation and is responsible for the formation of these SGA SSs in the plasma system. The time evolution of these SGA SSs is also shown for different values (viz., 0.5, 1, and 2) of Γ, where Γ is the ratio of the nonlinear coefficient to the dissipative coefficient in the MB equation. The SGSCMCDQP model and the numerical analysis of the MB equation presented here are so general that they can be applied in any type of SGSCMCDQP systems like astrophysical compact objects having planar or non-planar (spherical) shape.

  9. Non-local correlation and quantum discord in two atoms in the non-degenerate model

    International Nuclear Information System (INIS)

    Mohamed, A.-B.A.

    2012-01-01

    By using geometric quantum discord (GQD) and measurement-induced nonlocality (MIN), quantum correlation is investigated for two atoms in the non-degenerate two-photon Tavis–Cummings model. It is shown that there is no asymptotic decay for MIN while asymptotic decay exists for GQD. Quantum correlations can be strengthened by introducing the dipole–dipole interaction. The evolvement period of quantum correlation gets shorter with the increase in the dipole–dipole parameter. It is found that there exists not only quantum nonlocality without entanglement but also quantum nonlocality without quantum discord. Also, the MIN and GQD are raised rather than entanglement, and also with weak initial entanglement, there are MIN and entanglement in a interval of death quantum discord. - Highlights: ► Geometric quantum discord (GQD) and measurement induced nonlocality (MIN) are used to investigate the correlations of two two-level atoms. ► There is no asymptotic decay for MIN while asymptotic decay exists for GQD. ► Quantum correlations can be strengthened by introducing the dipole–dipole interaction. ► There exists not only quantum nonlocality without entanglement but also without discord. ► Weak initial entanglement leads to MIN and entanglement in intervals of death discord.

  10. Nanopatterning of tools for replication of non-planar polymer surfaces

    DEFF Research Database (Denmark)

    Cech, Jiri

    in the order of expected lifetime in descending order: aluminum, titanium, and nickel. The second problem addressed is the forming of a nanostructured surface on a non-planar substrate. We used the hydrostatic nanoimprinting technique, with the HSQ films deposited by spin-coating and spray-coating methods...... with nanostructured surfaces, we need to fabricate molds facing the same problem. In this work, we address this problem. At first, we need to verify if the previously reported monolayer adhesion-reducing coating (FDTS) can be used under different conditions during actual injection molding. Such coatings are critical...... to facilitate de-molding of the nanopatterned parts. We analyzed the coated surfaces of aluminum, titanium, and nickel molds before and after 500 molding cycles, using X-ray photoelectron spectroscopy, AFM and contact angle measurements. We show that the contact angle and that the fluorine concentration...

  11. Unidirectional reflectionless phenomena in a non-Hermitian quantum system of quantum dots coupled to a plasmonic waveguide.

    Science.gov (United States)

    Wu, Nan; Zhang, Cong; Jin, Xing Ri; Zhang, Ying Qiao; Lee, YoungPak

    2018-02-19

    Unidirectional reflectionless phenomena are investigated theoretically in a non-Hermitian quantum system composed of several quantum dots and a plasmonic waveguide. By adjusting the phase shifts between quantum dots, single- and dual-band unidirectional reflectionlessnesses are realized at exceptional points based on two and three quantum dots coupled to a plasmonic waveguide, respectively. In addition, single- and dual-band unidirectional perfect absorptions with high quality factors are obtained at the vicinity of exceptional points.

  12. Comparison of Radial Access, Guided Femoral Access, and Non-Guided Femoral Access Among Women Undergoing Percutaneous Coronary Intervention.

    Science.gov (United States)

    Koshy, Linda M; Aberle, Laura H; Krucoff, Mitchell W; Hess, Connie N; Mazzaferri, Ernest; Jolly, Sanjit S; Jacobs, Alice; Gibson, C Michael; Mehran, Roxana; Gilchrist, Ian C; Rao, Sunil V

    2018-01-01

    This study was conducted to determine the association between radial access, guided femoral access, and non-guided femoral access on postprocedural bleeding and vascular complications after percutaneous coronary intervention (PCI). Bleeding events and major vascular complications after PCI are associated with increased morbidity, mortality, and cost. While the radial approach has been shown to be superior to the femoral approach in reducing bleeding and vascular complications, whether the use of micropuncture, fluoroscopy, or ultrasound mitigates these differences is unknown. We conducted a post hoc analysis of women in the SAFE-PCI for Women trial who underwent PCI and had the access method identified (n = 643). The primary endpoint of postprocedure bleeding or vascular complications occurring within 72 hours or at discharge was adjudicated by an independent clinical events committee and was compared based on three categories of access technique: radial, guided femoral (fluoroscopy, micropuncture, ultrasound), or non-guided femoral (none of the aforementioned). Differences between the groups were determined using multivariate logistic regression using radial access as the reference. Of the PCI population, 330 underwent radial access, 228 underwent guided femoral access, and 85 underwent non-guided femoral access. There was a statistically significant lower incidence of the primary endpoint with radial access vs non-guided femoral access; however, there was no significant difference between radial approach and femoral access guided by fluoroscopy, micropuncture, or ultrasound. This post hoc analysis demonstrates that while radial access is safer than non-guided femoral access, guided femoral access appears to be associated with similar bleeding events or vascular complications as radial access.

  13. Non-Markovian Investigation of an Autonomous Quantum Heat Engine

    Science.gov (United States)

    Goyal, Ketan

    A systematic study of a quantum heat engine is presented in this thesis. In particular, we study heat conduction through a two-two level composite system, which is then connected to a photon cavity to extract work, forming an autonomous quantum heat engine. The question as to what extent quantum effects such as quantum coherence and correlations impact thermodynamic properties of such a system is addressed. The investigated heat engine has been previously studied using the popular Born-Markovian quantum master equation under weak internal coupling approximation. However, we show that the used approach is quite limited in addressing such problems as it is incapable of correctly accounting for the quantum effects. By using a non-Markovian approach involving hierarchical equations of motion, we show that quantum coherence and correlations between system and environments play a significant role in energy transfer processes of heat conduction and work.

  14. Non-Lipschitz Approach to Quantum Mechnics

    Science.gov (United States)

    Zak, Michail

    1997-01-01

    An attempt to reconcile quantum mechanics with Newton's laws represented by the non-Lipschitz formalism has been made. As a Proof-of-concept, a line of equally spaced atoms was studied. It appeared that enforcement of atom incompressibility required relaxation of the lipschitz condition at the points of contact.

  15. Quantum optics

    National Research Council Canada - National Science Library

    Agarwal, G. S

    2013-01-01

    ..., quantum metrology, spin squeezing, control of decoherence and many other key topics. Readers are guided through the principles of quantum optics and their uses in a wide variety of areas including quantum information science and quantum mechanics...

  16. Connecting two jumplike unravelings for non-Markovian open quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Luoma, Kimmo; Suominen, Kalle-Antti; Piilo, Jyrki [Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turun Yliopisto (Finland)

    2011-09-15

    The development and use of Monte Carlo algorithms plays a visible role in the study of non-Markovian quantum dynamics due to the provided insight and powerful numerical methods for solving the system dynamics. In the Markovian case, the connections between the various types of methods are fairly well understood while, for the non-Markovian case, there has so far been only a few studies. We focus here on two jumplike unravelings of non-Markovian dynamics: the non-Markovian quantum jump (NMQJ) method and the property state method by Gambetta, Askerud, and Wiseman (GAW). The results for simple quantum optical systems illustrate the connections between the realizations of the two methods and also highlight how the probability currents between the system and environment, or between the property states of the total system, are associated with the decay rates of time-local master equations and, consequently, with the jump rates of the NMQJ method.

  17. Connecting two jumplike unravelings for non-Markovian open quantum systems

    International Nuclear Information System (INIS)

    Luoma, Kimmo; Suominen, Kalle-Antti; Piilo, Jyrki

    2011-01-01

    The development and use of Monte Carlo algorithms plays a visible role in the study of non-Markovian quantum dynamics due to the provided insight and powerful numerical methods for solving the system dynamics. In the Markovian case, the connections between the various types of methods are fairly well understood while, for the non-Markovian case, there has so far been only a few studies. We focus here on two jumplike unravelings of non-Markovian dynamics: the non-Markovian quantum jump (NMQJ) method and the property state method by Gambetta, Askerud, and Wiseman (GAW). The results for simple quantum optical systems illustrate the connections between the realizations of the two methods and also highlight how the probability currents between the system and environment, or between the property states of the total system, are associated with the decay rates of time-local master equations and, consequently, with the jump rates of the NMQJ method.

  18. Stokes phenomena and quantum integrability in non-critical string/M theory

    International Nuclear Information System (INIS)

    Chan, Chuan-Tsung; Irie, Hirotaka; Yeh, Chi-Hsien

    2012-01-01

    We study Stokes phenomena of the k×k isomonodromy systems with an arbitrary Poincaré index r, especially which correspond to the fractional-superstring (or parafermionic-string) multi-critical points (p-hat,q-hat)=(1,r-1) in the k-cut two-matrix models. Investigation of this system is important for the purpose of figuring out the non-critical version of M theory which was proposed to be the strong-coupling dual of fractional superstring theory as a two-matrix model with an infinite number of cuts. Surprisingly the multi-cut boundary-condition recursion equations have a universal form among the various multi-cut critical points, and this enables us to show explicit solutions of Stokes multipliers in quite wide classes of (k,r). Although these critical points almost break the intrinsic Z k symmetry of the multi-cut two-matrix models, this feature makes manifest a connection between the multi-cut boundary-condition recursion equations and the structures of quantum integrable systems. In particular, it is uncovered that the Stokes multipliers satisfy multiple Hirota equations (i.e. multiple T-systems). Therefore our result provides a large extension of the ODE/IM correspondence to the general isomonodromy ODE systems endowed with the multi-cut boundary conditions. We also comment about a possibility that N=2 QFT of Cecotti-Vafa would be “topological series” in non-critical M theory equipped with a single quantum integrability.

  19. Supersymmetric quantum mechanics and the index theorem for arbitrary Lorentz irreps

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, P.D.; Twisk, S.

    1987-05-01

    A new formalism is presented for the derivation of index theorems from the supersymmetric quantum mechanics of the Dirac operator, based on a discrete approximation to the path integral. Operator ordering in H (i..gamma..sup(..mu..)Dsub(..mu..))/sup 2/ dictates the form of the action, and the N ..-->.. infinity limit yields the correct form of the index theorem for the U(1) anomaly. It is established that internal degrees of freedom may be represented by fermions and/or bosons. In the purely gravitational case, the bosonic formulation yields a generating function for the contribution to the anomaly for spinor fields carrying arbitrary irreps (1/2A,1/2B) of the local SO(4) group.

  20. Supersymmetric quantum mechanics and the index theorem for arbitrary Lorentz irreps

    International Nuclear Information System (INIS)

    Jarvis, P.D.; Twisk, S.

    1987-01-01

    A new formalism is presented for the derivation of index theorems from the supersymmetric quantum mechanics of the Dirac operator, based on a discrete approximation to the path integral. Operator ordering in H (iγsup(μ)Dsub(μ)) 2 dictates the form of the action, and the N → infinity limit yields the correct form of the index theorem for the U(1) anomaly. It is established that internal degrees of freedom may be represented by fermions and/or bosons. In the purely gravitational case, the bosonic formulation yields a generating function for the contribution to the anomaly for spinor fields carrying arbitrary irreps (1/2A,1/2B) of the local SO(4) group. (author)

  1. Macroscopic quantum waves in non local theories

    International Nuclear Information System (INIS)

    Ventura, I.

    1979-01-01

    By means of an expansion in the density, it is shown that Macroscopic Quantum Waves also appear in non local theories. This result reinforces the conjecture that these waves should exist in liquid 4 He [pt

  2. Quantum ratchet effect in a time non-uniform double-kicked model

    Science.gov (United States)

    Chen, Lei; Wang, Zhen-Yu; Hui, Wu; Chu, Cheng-Yu; Chai, Ji-Min; Xiao, Jin; Zhao, Yu; Ma, Jin-Xiang

    2017-07-01

    The quantum ratchet effect means that the directed transport emerges in a quantum system without a net force. The delta-kicked model is a quantum Hamiltonian model for the quantum ratchet effect. This paper investigates the quantum ratchet effect based on a time non-uniform double-kicked model, in which two flashing potentials alternately act on a particle with a homogeneous initial state of zero momentum, while the intervals between adjacent actions are not equal. The evolution equation of the state of the particle is derived from its Schrödinger equation, and the numerical method to solve the evolution equation is pointed out. The results show that quantum resonances can induce the ratchet effect in this time non-uniform double-kicked model under certain conditions; some quantum resonances, which cannot induce the ratchet effect in previous models, can induce the ratchet effect in this model, and the strengths of the ratchet effect in this model are stronger than those in previous models under certain conditions. These results enrich people’s understanding of the delta-kicked model, and provides a new optional scheme to control the quantum transport of cold atoms in experiment.

  3. Multifold Seebeck increase in RuO{sub 2} films by quantum-guided lanthanide dilute alloying

    Energy Technology Data Exchange (ETDEWEB)

    Music, Denis, E-mail: music@mch.rwth-aachen.de; Basse, Felix H.-U.; Schneider, Jochen M. [Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, D-52074 Aachen (Germany); Han, Liang; Borca-Tasciuc, Theo [Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, New York 12180 (United States); Devender [Materials Science and Engineering Department, Rensselaer Polytechnic Institute, 110 8th St., Troy, New York 12180 (United States); Gengler, Jamie J. [Air Force Research Laboratory, Materials and Manufacturing Directorate, WPAFB, Ohio 45433 (United States); Spectral Energies, LLC, Dayton, Ohio 45431 (United States); Voevodin, Andrey A. [Air Force Research Laboratory, Materials and Manufacturing Directorate, WPAFB, Ohio 45433 (United States); Ramanath, Ganpati [Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, D-52074 Aachen (Germany); Materials Science and Engineering Department, Rensselaer Polytechnic Institute, 110 8th St., Troy, New York 12180 (United States)

    2014-02-03

    Ab initio predictions indicating that alloying RuO{sub 2} with La, Eu, or Lu can increase the Seebeck coefficient α manifold due to quantum confinement effects are validated in sputter-deposited La-alloyed RuO{sub 2} films showing fourfold α increase. Combinatorial screening reveals that α enhancement correlates with La-induced lattice distortion, which also decreases the thermal conductivity twentyfold, conducive for high thermoelectric figures of merit. These insights should facilitate the rational design of high efficiency oxide-based thermoelectrics through quantum-guided alloying.

  4. Quantum Brownian motion model for the stock market

    Science.gov (United States)

    Meng, Xiangyi; Zhang, Jian-Wei; Guo, Hong

    2016-06-01

    It is believed by the majority today that the efficient market hypothesis is imperfect because of market irrationality. Using the physical concepts and mathematical structures of quantum mechanics, we construct an econophysical framework for the stock market, based on which we analogously map massive numbers of single stocks into a reservoir consisting of many quantum harmonic oscillators and their stock index into a typical quantum open system-a quantum Brownian particle. In particular, the irrationality of stock transactions is quantitatively considered as the Planck constant within Heisenberg's uncertainty relationship of quantum mechanics in an analogous manner. We analyze real stock data of Shanghai Stock Exchange of China and investigate fat-tail phenomena and non-Markovian behaviors of the stock index with the assistance of the quantum Brownian motion model, thereby interpreting and studying the limitations of the classical Brownian motion model for the efficient market hypothesis from a new perspective of quantum open system dynamics.

  5. Scattering matrix approach to non-stationary quantum transport

    CERN Document Server

    Moskalets, Michael V

    2012-01-01

    The aim of this book is to introduce the basic elements of the scattering matrix approach to transport phenomena in dynamical quantum systems of non-interacting electrons. This approach admits a physically clear and transparent description of transport processes in dynamical mesoscopic systems promising basic elements of solid-state devices for quantum information processing. One of the key effects, the quantum pump effect, is considered in detail. In addition, the theory for a recently implemented new dynamical source - injecting electrons with time delay much larger than the electron coherence time - is offered. This theory provides a simple description of quantum circuits with such a single-particle source and shows in an unambiguous way that the tunability inherent to the dynamical systems leads to a number of unexpected but fundamental effects.

  6. Non recurrent behaviour in quantum dynamics

    International Nuclear Information System (INIS)

    Casati, G.; Guarneri, I.

    1984-01-01

    We study the motion of a quantum rotator under an external periodic perturbation. For the resonant case, i.e. when the frequency of driving pulses is rationally connected with the frequencies of the free rotator, the quasi-energy spectrum is known to be continuous. We prove that for a generic choice of the potential there is a non-empty set of non-resonant values of the external frequency such that the quasi-energy spectrum still has a continuous component. (orig.)

  7. Macroscopic quantum waves in non local theories

    International Nuclear Information System (INIS)

    Ventura, I.

    1979-01-01

    By means of an expansion in the density, it is shown that Macroscopic Quantum Waves also apear in non local theories. This result reinforces the conjecture that these waves should exist in liquid 4 He. (Author) [pt

  8. Use of thin films obtained by electron beam evaporation as optical wave guide

    International Nuclear Information System (INIS)

    Nobre, S.A.A.; Oliveira, C.A.S. de; Freire, G.F.de O.

    1986-01-01

    Thin films evaporated by electron beam for the fabrication of planar optical waveguides were used. The tested materials were aluminium oxide (Al 2 O 3 ) and tantalum pentoxide (Ta 2 O 5 ). The effect of annealing conditions on the film absorption was investigated for Ta 2 O 5 . The Al 2 O 3 films were characterized by the method of guided modes, in terms of refractive index measurements and film thickness. Atenuation measurements were also carried out. (M.C.K.) [pt

  9. Liouville quantum gravity on complex tori

    Energy Technology Data Exchange (ETDEWEB)

    David, François [Institut de Physique Théorique, CNRS, URA 2306, CEA, IPhT, Gif-sur-Yvette (France); Rhodes, Rémi [Université Paris-Est Marne la Vallée, LAMA, Champs sur Marne (France); Vargas, Vincent [ENS Paris, DMA, 45 rue d’Ulm, 75005 Paris (France)

    2016-02-15

    In this paper, we construct Liouville Quantum Field Theory (LQFT) on the toroidal topology in the spirit of the 1981 seminal work by Polyakov [Phys. Lett. B 103, 207 (1981)]. Our approach follows the construction carried out by the authors together with Kupiainen in the case of the Riemann sphere [“Liouville quantum gravity on the Riemann sphere,” e-print arXiv:1410.7318]. The difference is here that the moduli space for complex tori is non-trivial. Modular properties of LQFT are thus investigated. This allows us to integrate the LQFT on complex tori over the moduli space, to compute the law of the random Liouville modulus, therefore recovering (and extending) formulae obtained by physicists, and make conjectures about the relationship with random planar maps of genus one, eventually weighted by a conformal field theory and conformally embedded onto the torus.

  10. Quantum-Like Representation of Non-Bayesian Inference

    Science.gov (United States)

    Asano, M.; Basieva, I.; Khrennikov, A.; Ohya, M.; Tanaka, Y.

    2013-01-01

    This research is related to the problem of "irrational decision making or inference" that have been discussed in cognitive psychology. There are some experimental studies, and these statistical data cannot be described by classical probability theory. The process of decision making generating these data cannot be reduced to the classical Bayesian inference. For this problem, a number of quantum-like coginitive models of decision making was proposed. Our previous work represented in a natural way the classical Bayesian inference in the frame work of quantum mechanics. By using this representation, in this paper, we try to discuss the non-Bayesian (irrational) inference that is biased by effects like the quantum interference. Further, we describe "psychological factor" disturbing "rationality" as an "environment" correlating with the "main system" of usual Bayesian inference.

  11. Quantum triangulations moduli space, quantum computing, non-linear sigma models and Ricci flow

    CERN Document Server

    Carfora, Mauro

    2017-01-01

    This book discusses key conceptual aspects and explores the connection between triangulated manifolds and quantum physics, using a set of case studies ranging from moduli space theory to quantum computing to provide an accessible introduction to this topic. Research on polyhedral manifolds often reveals unexpected connections between very distinct aspects of mathematics and physics. In particular, triangulated manifolds play an important role in settings such as Riemann moduli space theory, strings and quantum gravity, topological quantum field theory, condensed matter physics, critical phenomena and complex systems. Not only do they provide a natural discrete analogue to the smooth manifolds on which physical theories are typically formulated, but their appearance is also often a consequence of an underlying structure that naturally calls into play non-trivial aspects of representation theory, complex analysis and topology in a way that makes the basic geometric structures of the physical interactions involv...

  12. Quantum resource theory of non-stabilizer states in the one-shot regime

    Science.gov (United States)

    Ahmadi, Mehdi; Dang, Hoan; Gour, Gilad; Sanders, Barry

    Universal quantum computing is known to be impossible using only stabilizer states and stabilizer operations. However, addition of non-stabilizer states (also known as magic states) to quantum circuits enables us to achieve universality. The resource theory of non-stablizer states aims at quantifying the usefulness of non-stabilizer states. Here, we focus on a fundamental question in this resource theory in the so called single-shot regime: Given two resource states, is there a free quantum channel that will (approximately or exactly) convert one to the other?. To provide an answer, we phrase the question as a semidefinite program with constraints on the Choi matrix of the corresponding channel. Then, we use the semidefinite version of the Farkas lemma to derive the necessary and sufficient conditions for the conversion between two arbitrary resource states via a free quantum channel. BCS appreciates financial support from Alberta Innovates, NSERC, China's 1000 Talent Plan and the Institute for Quantum Information and Matter.

  13. Microwave-signal generation in a planar Gunn diode with radiation exposure taken into account

    Energy Technology Data Exchange (ETDEWEB)

    Obolenskaya, E. S., E-mail: bess009@mail.ru, E-mail: obolensk@rf.unn.ru; Tarasova, E. A.; Churin, A. Yu.; Obolensky, S. V. [Lobachevsky State University of Nizhny Novgorod (NNSU) (Russian Federation); Kozlov, V. A. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2016-12-15

    Microwave-signal generation in planar Gunn diodes with a two-dimensional electron gas, in which we previously studied steady-state electron transport, is theoretically studied. The applicability of a control electrode similar to a field-effect transistor gate to control the parameters of the output diode microwave signal is considered. The results of physical-topological modeling of semiconductor structures with different diode active-region structures, i.e., without a quantum well, with one and two quantum wells separated by a potential barrier, are compared. The calculated results are compared with our previous experimental data on recording Gunn generation in a Schottky-gate field-effect transistor. It is theoretically and experimentally shown that the power of the signal generated by the planar Gunn diode with a quantum well and a control electrode is sufficient to implement monolithic integrated circuits of different functionalities. It is theoretically and experimentally shown that the use of a control electrode on account of the introduction of corrective feedback allows a significant increase in the radiation resistance of a microwave generator with Schottky-gate field-effect transistors.

  14. Microwave-signal generation in a planar Gunn diode with radiation exposure taken into account

    International Nuclear Information System (INIS)

    Obolenskaya, E. S.; Tarasova, E. A.; Churin, A. Yu.; Obolensky, S. V.; Kozlov, V. A.

    2016-01-01

    Microwave-signal generation in planar Gunn diodes with a two-dimensional electron gas, in which we previously studied steady-state electron transport, is theoretically studied. The applicability of a control electrode similar to a field-effect transistor gate to control the parameters of the output diode microwave signal is considered. The results of physical-topological modeling of semiconductor structures with different diode active-region structures, i.e., without a quantum well, with one and two quantum wells separated by a potential barrier, are compared. The calculated results are compared with our previous experimental data on recording Gunn generation in a Schottky-gate field-effect transistor. It is theoretically and experimentally shown that the power of the signal generated by the planar Gunn diode with a quantum well and a control electrode is sufficient to implement monolithic integrated circuits of different functionalities. It is theoretically and experimentally shown that the use of a control electrode on account of the introduction of corrective feedback allows a significant increase in the radiation resistance of a microwave generator with Schottky-gate field-effect transistors.

  15. Non-relativistic Limit of a Dirac Polaron in Relativistic Quantum Electrodynamics

    CERN Document Server

    Arai, A

    2006-01-01

    A quantum system of a Dirac particle interacting with the quantum radiation field is considered in the case where no external potentials exist. Then the total momentum of the system is conserved and the total Hamiltonian is unitarily equivalent to the direct integral $\\int_{{\\bf R}^3}^\\oplus\\overline{H({\\bf p})}d{\\bf p}$ of a family of self-adjoint operators $\\overline{H({\\bf p})}$ acting in the Hilbert space $\\oplus^4{\\cal F}_{\\rm rad}$, where ${\\cal F}_{\\rm rad}$ is the Hilbert space of the quantum radiation field. The fibre operator $\\overline{H({\\bf p})}$ is called the Hamiltonian of the Dirac polaron with total momentum ${\\bf p} \\in {\\bf R}^3$. The main result of this paper is concerned with the non-relativistic (scaling) limit of $\\overline{H({\\bf p})}$. It is proven that the non-relativistic limit of $\\overline{H({\\bf p})}$ yields a self-adjoint extension of a Hamiltonian of a polaron with spin $1/2$ in non-relativistic quantum electrodynamics.

  16. Pseudothermalization in driven-dissipative non-Markovian open quantum systems

    Science.gov (United States)

    Lebreuilly, José; Chiocchetta, Alessio; Carusotto, Iacopo

    2018-03-01

    We investigate a pseudothermalization effect, where an open quantum system coupled to a nonequilibrated environment consisting of several non-Markovian reservoirs presents an emergent thermal behavior. This thermal behavior is visible at both static and dynamical levels and the system satisfies the fluctuation-dissipation theorem. Our analysis is focused on the exactly solvable model of a weakly interacting driven-dissipative Bose gas in presence of frequency-dependent particle pumping and losses, and is based on a quantum Langevin theory, which we derive starting from a microscopical quantum optics model. For generic non-Markovian reservoirs, we demonstrate that the emergence of thermal properties occurs in the range of frequencies corresponding to low-energy excitations. For the specific case of non-Markovian baths verifying the Kennard-Stepanov relation, we show that pseudothermalization can instead occur at all energy scales. The possible implications regarding the interpretation of thermal laws in low-temperature exciton-polariton experiments are discussed. We finally show that the presence of either a saturable pumping or a dispersive environment leads to a breakdown of the pseudothermalization effect.

  17. Non-singular bounce scenarios in loop quantum cosmology and the effective field description

    International Nuclear Information System (INIS)

    Cai, Yi-Fu; Wilson-Ewing, Edward

    2014-01-01

    A non-singular bouncing cosmology is generically obtained in loop quantum cosmology due to non-perturbative quantum gravity effects. A similar picture can be achieved in standard general relativity in the presence of a scalar field with a non-standard kinetic term such that at high energy densities the field evolves into a ghost condensate and causes a non-singular bounce. During the bouncing phase, the perturbations can be stabilized by introducing a Horndeski operator. Taking the matter content to be a dust field and an ekpyrotic scalar field, we compare the dynamics in loop quantum cosmology and in a non-singular bouncing effective field model with a non-standard kinetic term at both the background and perturbative levels. We find that these two settings share many important properties, including the result that they both generate scale-invariant scalar perturbations. This shows that some quantum gravity effects of the very early universe may be mimicked by effective field models

  18. Laser printed glass planar lightwave circuits with integrated fiber alignment structures

    Science.gov (United States)

    Desmet, A.; Radosavljevic, A.; Missinne, J.; Van Thourhout, D.; Van Steenberge, G.

    2018-02-01

    Femtosecond laser inscription allows straightforward manufacturing of glass planar lightwave circuits such as waveguides, interferometers, directional couplers, resonators and more complex structures. Fiber alignment structures are needed to facilitate communication with the glass planar lightwave circuit. In this study, a technique is described to create optical waveguides and alignment structures in the same laser exposure step. Using an industrial ytterbium-doped 1030 nm fiber laser pulses of 400 fs were focused into glass with a 0.4 NA objective causing permanent alteration of the material. Depending on laser parameters this modification allows direct writing of waveguides or the creation of channels after exposing the irradiated volumes to an etchant such as KOH. Writing of channels and waveguides with different laser powers, frequencies, polarisations, stage translation speeds and scan densities were investigated in fused silica and borosilicate glass. Waveguides with controlled dimensions were created, as well as etched U-grooves with a diameter of 126 μm and a sidewall roughness Ra of 255 nm. Cut back measurements were performed giving a waveguide propagation loss of 1.1 dB/cm in borosilicate glass. A coupling loss of 0.7 dB was measured for a transition between the waveguide and standard single mode fiber at 1550 nm, using index matching liquid. The described technique eliminates active alignment requirements and is useful for many applications such as microfluidic sensing, PLCs, fan-out connectors for multicore fibers and quantum optical networks.

  19. Quantum Communication Scheme Using Non-symmetric Quantum Channel

    International Nuclear Information System (INIS)

    Cao Haijing; Chen Zhonghua; Song Heshan

    2008-01-01

    A theoretical quantum communication scheme based on entanglement swapping and superdense coding is proposed with a 3-dimensional Bell state and 2-dimensional Bell state function as quantum channel. quantum key distribution and quantum secure direct communication can be simultaneously accomplished in the scheme. The scheme is secure and has high source capacity. At last, we generalize the quantum communication scheme to d-dimensional quantum channel

  20. Heat control in opto-mechanical system using quantum non-classicality

    International Nuclear Information System (INIS)

    Sharma, Sushamana; Senwar, Subash

    2016-01-01

    Cooling of matter to the quantum ground state is a primary directive of quantum control. In other words, to extract entropy from a quantum system, efficient indirect quantum measurements may be implemented. The main objective is the cooling of the oscillator either to its motional ground state or to non-classical states, such as low-number Fock states, squeezed states or entangled states. It is shown that the use of quantum control procedure is better choice for even experimental realizations because it leads to a squeezed steady state with less than one phonon on average. The steady state of system corresponds to cooling of the system.

  1. Non-Markovian dynamics of quantum systems: formalism, transport coefficients

    International Nuclear Information System (INIS)

    Kanokov, Z.; Palchikov, Yu.V.; Antonenko, N.V.; Adamian, G.G.; Kanokov, Z.; Adamian, G.G.; Scheid, W.

    2004-01-01

    Full text: The generalized Linbland equations with non-stationary transport coefficients are derived from the Langevin equations for the case of nonlinear non-Markovian noise [1]. The equations of motion for the collective coordinates are consistent with the generalized quantum fluctuation dissipation relations. The microscopic justification of the Linbland axiomatic approach is performed. Explicit expressions for the time-dependent transport coefficients are presented for the case of FC- and RWA-oscillators and a general linear coupling in coordinate and in momentum between the collective subsystem and heat bath. The explicit equations for the correlation functions show that the Onsanger's regression hypothesis does not hold exactly for the non-Markovian equations of motion. However, under some conditions the regression of fluctuations goes to zero in the same manner as the average values. In the low and high temperature regimes we found that the dissipation leads to long-time tails in correlation functions in the RWA-oscillator. In the case of the FC-oscillator a non-exponential power-like decay of the correlation function in coordinate is only obtained only at the low temperature limit. The calculated results depend rather weakly on the memory time in many applications. The found transient times for diffusion coefficients D pp (t), D qp (t) and D qq (t) are quite short. The value of classical diffusion coefficients in momentum underestimates the asymptotic value of quantum one D pp (t), but the asymptotic values of classical σ qq c and quantum σ qq second moments are close due to the negativity of quantum mixed diffusion coefficient D qp (t)

  2. Controlling quantum memory-assisted entropic uncertainty in non-Markovian environments

    Science.gov (United States)

    Zhang, Yanliang; Fang, Maofa; Kang, Guodong; Zhou, Qingping

    2018-03-01

    Quantum memory-assisted entropic uncertainty relation (QMA EUR) addresses that the lower bound of Maassen and Uffink's entropic uncertainty relation (without quantum memory) can be broken. In this paper, we investigated the dynamical features of QMA EUR in the Markovian and non-Markovian dissipative environments. It is found that dynamical process of QMA EUR is oscillation in non-Markovian environment, and the strong interaction is favorable for suppressing the amount of entropic uncertainty. Furthermore, we presented two schemes by means of prior weak measurement and posterior weak measurement reversal to control the amount of entropic uncertainty of Pauli observables in dissipative environments. The numerical results show that the prior weak measurement can effectively reduce the wave peak values of the QMA-EUA dynamic process in non-Markovian environment for long periods of time, but it is ineffectual on the wave minima of dynamic process. However, the posterior weak measurement reversal has an opposite effects on the dynamic process. Moreover, the success probability entirely depends on the quantum measurement strength. We hope that our proposal could be verified experimentally and might possibly have future applications in quantum information processing.

  3. Time in quantum mechanics

    CERN Document Server

    Mayato, R; Egusquiza, I

    2002-01-01

    The treatment of time in quantum mechanics is still an important and challenging open question in the foundation of the theory. This book describes the problems, and the attempts and achievements in defining, formalizing and measuring different time quantities in quantum theory, such as the parametric (clock) time, tunneling times, decay times, dwell times, delay times, arrival times or jump times. This multiauthored book, written as an introductory guide for the non-initiated as well as a useful source of information for the expert, covers many of the open questions. A brief historical overview is to be found in the introduction. It is followed by 12 chapters devoted to conceptual and theoretical investigations as well as experimental issues in quantum-mechanical time measurements. This unique monograph should attract physicists as well as philosophers of science working in the foundations of quantum physics.

  4. An introduction to quantum groups and non-commutative differential calculus

    International Nuclear Information System (INIS)

    Azcarraga, J.A. de; Rodenas, F.

    1995-01-01

    An introduction to quantum groups and quantum spaces is presented, and the non-commutative calculus on them is discussed. The case of q-Minkowski space is presented as an illustrative example. A set of useful expressions and formulae are collected in an appendix. 45 refs

  5. Planar Submillimeter-Wave Mixer Technology with Integrated Antenna

    Science.gov (United States)

    Chattopadhyay, Gautam; Mehdi, Imran; Gill, John J.; Lee, Choonsup; lombart, Muria L.; Thomas, Betrand

    2010-01-01

    High-performance mixers at terahertz frequencies require good matching between the coupling circuits such as antennas and local oscillators and the diode embedding impedance. With the availability of amplifiers at submillimeter wavelengths and the need to have multi-pixel imagers and cameras, planar mixer architecture is required to have an integrated system. An integrated mixer with planar antenna provides a compact and optimized design at terahertz frequencies. Moreover, it leads to a planar architecture that enables efficient interconnect with submillimeter-wave amplifiers. In this architecture, a planar slot antenna is designed on a thin gallium arsenide (GaAs) membrane in such a way that the beam on either side of the membrane is symmetric and has good beam profile with high coupling efficiency. A coplanar waveguide (CPW) coupled Schottky diode mixer is designed and integrated with the antenna. In this architecture, the local oscillator (LO) is coupled through one side of the antenna and the RF from the other side, without requiring any beam sp litters or diplexers. The intermediate frequency (IF) comes out on a 50-ohm CPW line at the edge of the mixer chip, which can be wire-bonded to external circuits. This unique terahertz mixer has an integrated single planar antenna for coupling both the radio frequency (RF) input and LO injection without any diplexer or beamsplitters. The design utilizes novel planar slot antenna architecture on a 3- mthick GaAs membrane. This work is required to enable future multi-pixel terahertz receivers for astrophysics missions, and lightweight and compact receivers for planetary missions to the outer planets in our solar system. Also, this technology can be used in tera hertz radar imaging applications as well as for testing of quantum cascade lasers (QCLs).

  6. Effect of refraction index and thickness of the light guide in the position-sensitive gamma-ray detector using compact PS-PMTs

    International Nuclear Information System (INIS)

    Inoue, K.; Saito, H.; Nagashima, Y.; Hyodo, T.; Nagai, Y.; Muramatsu, S.; Nagai, S.

    2000-01-01

    We constructed a position-sensitive gamma-ray detector consisting of an array of BGO scintillators, a light guide and compact PS-PMTs. The effects of refractive index and thickness of the light guide of a glass plate on the detector performance were investigated. A light guide with higher refractive index and smaller thickness is found better for a good spatial resolution.

  7. Non standard analysis, polymer models, quantum fields

    International Nuclear Information System (INIS)

    Albeverio, S.

    1984-01-01

    We give an elementary introduction to non standard analysis and its applications to the theory of stochastic processes. This is based on a joint book with J.E. Fenstad, R. Hoeegh-Krohn and T. Lindstroeem. In particular we give a discussion of an hyperfinite theory of Dirichlet forms with applications to the study of the Hamiltonian for a quantum mechanical particle in the potential created by a polymer. We also discuss new results on the existence of attractive polymer measures in dimension d 1 2 phi 2 2 )sub(d)-model of interacting quantum fields. (orig.)

  8. Dielectric response of planar relativistic quantum plasmas

    International Nuclear Information System (INIS)

    Bardos, D.C.; Frankel, N.E.

    1991-01-01

    The dielectric response of planar relativistic charged particle-antiparticle plasmas is investigated, treating Fermi and Bose plasmas. The conductivity tensor in each case is derived in the self-consistent Random Phase Approximation. The tensors are then evaluated at zero temperature for the case of no external fields, leading to explicit dispersion relations for the electrodynamic modes of the plasma. The longitudinal and transverse modes are in general coupled for plasma layers. This coupling vanishes, however, in the zero field case, allowing 'effective' longitudinal and transverse dielectric functions to be defined in terms of components of the conductivity tensor. Solutions to the longitudinal mode equations (i.e. plasmon modes) are exhibited, while purely transverse modes are found not to exist. In the case of the Bose plasma the screening of a test charge is investigated in detail. 41 refs., 1 fig

  9. Quantum field theory in a gravitational shock wave background

    International Nuclear Information System (INIS)

    Klimcik, C.

    1988-01-01

    A scalar massless non-interacting quantum field theory on an arbitrary gravitational shock wave background is exactly solved. S-matrix and expectation values of the energy-momentum tensor are computed for an arbitrarily polarized sourceless gravitational shock wave and for a homogeneous infinite planar shell shock wave, all performed in any number of space-time dimensions. Expectation values of the energy density in scattering states exhibit a singularity which lies exactly at the location of the curvature singularity found in the infinite shell collision. (orig.)

  10. Atomic Quantum Simulations of Abelian and non-Abelian Gauge Theories

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    Using a Fermi-Bose mixture of ultra-cold atoms in an optical lattice, in a collaboration of atomic and particle physicists, we have constructed a quantum simulator for a U(1) gauge theory coupled to fermionic matter. The construction is based on quantum link models which realize continuous gauge symmetry with discrete quantum variables. At low energies, quantum link models with staggered fermions emerge from a Hubbard-type model which can be quantum simulated. This allows investigations of string breaking as well as the real-time evolution after a quench in gauge theories, which are inaccessible to classical simulation methods. Similarly, using ultracold alkaline-earth atoms in optical lattices, we have constructed a quantum simulator for U(N) and SU(N) lattice gauge theories with fermionic matter based on quantum link models. These systems share qualitative features with QCD, including chiral symmetry breaking and restoration at non-zero temperature or baryon density. Unlike classical simulations, a quantum ...

  11. Non-square quantum well growth for reduced threshold current in ...

    African Journals Online (AJOL)

    This paper presents calculations demonstrating that non-square quantum well growth (well shaping) can result in reduced threshold current for tensilely strained quantum well bipolar diode lasers operating at 1.52ìm m. Calculations of subband structure, optical matrix elements and laser gain are performed for arbitrarily ...

  12. Non-Weyl asymptotics for quantum graphs with general coupling conditions

    International Nuclear Information System (INIS)

    Davies, E Brian; Exner, Pavel; Lipovsky, JirI

    2010-01-01

    Inspired by a recent result of Davies and Pushnitski, we study resonance asymptotics of quantum graphs with general coupling conditions at the vertices. We derive a criterion for the asymptotics to be of a non-Weyl character. We show that for balanced vertices with permutation-invariant couplings the asymptotics is non-Weyl only in the case of Kirchhoff or anti-Kirchhoff conditions. While for graphs without permutation symmetry numerous examples of non-Weyl behaviour can be constructed. Furthermore, we present an insight into what makes the Kirchhoff/anti-Kirchhoff coupling particular from the resonance point of view. Finally, we demonstrate a generalization to quantum graphs with unequal edge weights.

  13. Slices: A shape-proxy based on planar sections

    KAUST Repository

    McCrae, James

    2011-12-01

    Minimalist object representations or shape-proxies that spark and inspire human perception of shape remain an incompletely understood, yet powerful aspect of visual communication. We explore the use of planar sections, i.e., the contours of intersection of planes with a 3D object, for creating shape abstractions, motivated by their popularity in art and engineering. We first perform a user study to show that humans do define consistent and similar planar section proxies for common objects. Interestingly, we observe a strong correlation between user-defined planes and geometric features of objects. Further we show that the problem of finding the minimum set of planes that capture a set of 3D geometric shape features is both NP-hard and not always the proxy a user would pick. Guided by the principles inferred from our user study, we present an algorithm that progressively selects planes to maximize feature coverage, which in turn influence the selection of subsequent planes. The algorithmic framework easily incorporates various shape features, while their relative importance values are computed and validated from the user study data. We use our algorithm to compute planar slices for various objects, validate their utility towards object abstraction using a second user study, and conclude showing the potential applications of the extracted planar slice shape proxies.

  14. Transverse and polarization effects in index-guided vertical-cavity surface-emitting lasers

    International Nuclear Information System (INIS)

    Torre, M. S.; Masoller, C.; Mandel, Paul

    2006-01-01

    We study numerically the polarization dynamics of vertical-cavity surface-emitting lasers (VCSEL's) operating in the fundamental transverse mode. We use an extension of the spin-flip model that not only accounts for the vector nature of the laser field, but also considers spatial transverse effects. The model assumes two orthogonal, linearly polarized fields, which are coupled to two carrier populations, associated with different spin sublevels of the conduction and valence bands in the quantum-well active region. Spatial effects are taken into account by considering transverse profiles for the two polarizations, for the two carrier populations, and for the carrier diffusion. The optical profile is the LP 01 mode, suitable for describing index-guided VCSEL's with cylindrical symmetry emitting on the fundamental transverse mode for both polarizations. We find that in small-active-region VCSEL's, fast carrier diffusion induces self-sustained oscillations of the total laser output, which are not present in larger-area devices or with slow carrier diffusion. These self-pulsations appear close to threshold, and, as the injection current increases, they grow in amplitude; however, there is saturation and the self-pulsations disappear at higher injection levels. The dependence of the oscillation amplitude on various laser parameters is investigated, and the results are found to be in good qualitative agreement with those reported by Van der Sande et al. [Opt. Lett. 29, 53 (2004)], based on a rate-equation model that takes into account transverse inhomogeneities through an intensity-dependent confinement factor

  15. Non-linear quantum critical dynamics and fluctuation-dissipation ratios far from equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, Farzaneh [Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden (Germany); Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden (Germany); Ribeiro, Pedro [CeFEMA, Instituto Superior Tcnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Russian Quantum Center, Novaya Street 100 A, Skolkovo, Moscow Area, 143025 (Russian Federation); Kirchner, Stefan, E-mail: stefan.kirchner@correlated-matter.com [Center for Correlated Matter, Zhejiang University, Hangzhou, Zhejiang 310058 (China)

    2016-02-15

    Non-thermal correlations of strongly correlated electron systems and the far-from-equilibrium properties of phases of condensed matter have become a topical research area. Here, an overview of the non-linear dynamics found near continuous zero-temperature phase transitions within the context of effective temperatures is presented. In particular, we focus on models of critical Kondo destruction. Such a quantum critical state, where Kondo screening is destroyed in a critical fashion, is realized in a number of rare earth intermetallics. This raises the possibility of experimentally testing for the existence of fluctuation-dissipation relations far from equilibrium in terms of effective temperatures. Finally, we present an analysis of a non-interacting, critical reference system, the pseudogap resonant level model, in terms of effective temperatures and contrast these results with those obtained near interacting quantum critical points. - Highlights: • Critical Kondo destruction explains the unusual properties of quantum critical heavy fermion compounds. • We review the concept of effective temperatures in models of critical Kondo destruction. • We compare effective temperatures found near non-interacting and fully interacting fixed points. • A comparison with non-interacting quantum impurity models is presented.

  16. Quantum deformed magnon kinematics

    OpenAIRE

    Gómez, César; Hernández Redondo, Rafael

    2007-01-01

    The dispersion relation for planar N=4 supersymmetric Yang-Mills is identified with the Casimir of a quantum deformed two-dimensional kinematical symmetry, E_q(1,1). The quantum deformed symmetry algebra is generated by the momentum, energy and boost, with deformation parameter q=e^{2\\pi i/\\lambda}. Representing the boost as the infinitesimal generator for translations on the rapidity space leads to an elliptic uniformization with crossing transformations implemented through translations by t...

  17. Pemanfaatan Polimer Hybrid Tmspma Dan Phosphor Organik Sebagai Bahan Luminesensi Untuk Solid State Lighting Planar

    Directory of Open Access Journals (Sweden)

    Fitrilawati Fitrilawati

    2015-04-01

    Full Text Available Lampu Solid State Lighting (SSL planar, diharapkan dapat menghasilkan distribusi cahaya yang lebih baik, dibandingkan dengan lampu fluoresensi biasa. Berbeda dengan lampu SSL biasa, pada SSL panel lebar (planar digunakan pendekatan kopling cahaya (Light Wave Coupling-L WC sehingga memerlukan sistem light guiding, yaitu cahaya pengeksitasi dikopling ke dalam substrat sebagai media pandu gelombang. Untuk aplikasi lampu SSL planar dengan pendekatan LWC diperlukan lapisan pengkonversi warna emisi yang berukuran lebar dengan karakteristik yang sesuai dengan perangkat preparasi dan media pandu gelombang. Media pandu gelombang yang akan digunakan adalah Light Guide Plate (LGP, dari PMMA (polymethyl methacrylate. Pada penelitian ini dikembangkan bahan luminesensi berbasis polimer hybrid trimethoxysilylpropyl methacrylate (TMSPMA, yang dimodifikasi dengan teknik kopolimerisasi dan phosphor organik. Khusus pada bahan prekursor poli(TMSPMA dilakukan uji kelarutan yang menunjukkan bahan prekursor polimer hybrid poli(TMSPMA beserta kromofor organiknya dapat larut dengan baik pada pelarut polar. Dari hasil tersebut dipilih pelarut yang tepat sehingga pembuatan lapisan tipis dari bahan luminesensi organik dapat dilakukan secara sederhana dengan teknik screen printing. Lapisan tipis yang dihasilkan dengan teknik tersebut dapat mengemisikan cahaya ke seluruh permukaan secara merata sehingga memiliki potensi untuk pengembangan model lampu SSL planar

  18. Instantons and large N an introduction to non-perturbative methods in quantum field theory

    CERN Document Server

    Marino, Marcos

    2015-01-01

    This highly pedagogical textbook for graduate students in particle, theoretical and mathematical physics, explores advanced topics of quantum field theory. Clearly divided into two parts; the first focuses on instantons with a detailed exposition of instantons in quantum mechanics, supersymmetric quantum mechanics, the large order behavior of perturbation theory, and Yang-Mills theories, before moving on to examine the large N expansion in quantum field theory. The organised presentation style, in addition to detailed mathematical derivations, worked examples and applications throughout, enables students to gain practical experience with the tools necessary to start research. The author includes recent developments on the large order behaviour of perturbation theory and on large N instantons, and updates existing treatments of classic topics, to ensure that this is a practical and contemporary guide for students developing their understanding of the intricacies of quantum field theory.

  19. Classical particle limit of non-relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Zucchini, R.

    1984-01-01

    We study the classical particle limit of non-relativistic quantum mechanics. We show that the unitary group describing the evolution of the quantum fluctuation around any classical phase orbit has a classical limit as h → 0 in the strong operator topology for a very large class of time independent scalar and vector potentials, which in practice covers all physically interesting cases. We also show that the mean values of the quantum mechanical position and velocity operators on suitable states, obtained by time evolution of the product of a Weyl operator centred around the large coordinates and momenta and a fixed n-independent wave function, converge to the solution of the classical equations with initial data as h → 0 for a broad class of repulsive interactions

  20. Numerical simulation of experimental data from planar SIS mixers with integrated tuning elements

    International Nuclear Information System (INIS)

    Mears, C.A.; Hu, Qing; Richards, P.L.

    1988-08-01

    We have used the full Tucker theory including the quantum susceptance to fit data from planar lithographed mm-wave mixers with bow tie antennas and integrated RF coupling elements. Essentially perfect fits to pumped IV curves have been obtained. The deduced imbedding admittances agree well with those independently calculated from the geometry of the antenna and matching structures. We find that the quantum susceptance is essential to the fit and thus to predictions of the mixer performance. For junctions with moderately sharp gap structures, the quantum susceptance is especially important in the production of steps with low and/or negative dynamic conductance. 15 refs., 4 figs

  1. Surfaces foliated by planar geodesics: a model forcurved wood design

    DEFF Research Database (Denmark)

    Brander, David; Gravesen, Jens

    2017-01-01

    Surfaces foliated by planar geodesics are a natural model for surfaces made from wood strips. We outline how to construct all solutions, and produce non-trivial examples, such as a wood-strip Klein bottle......Surfaces foliated by planar geodesics are a natural model for surfaces made from wood strips. We outline how to construct all solutions, and produce non-trivial examples, such as a wood-strip Klein bottle...

  2. Dipolar Antiferromagnetism and Quantum Criticality in LiErF4

    International Nuclear Information System (INIS)

    Kraemer, Conradin; Nikseresht, Neda; Piatek, Julian; Tsyrulin, Nikolay; Piazza, Bastien; Kiefer, Klaus; Klemke, Bastian; Rosenbaum, Thomas; Aeppli, Gabriel; Gannarelli, Che; Prokes, Karel; Straessle, Thierry; Keller, Lukas; Zaharko, Oksana; Kraemer, Karl; Ronnow, Henrik

    2012-01-01

    Magnetism has been predicted to occur in systems in which dipolar interactions dominate exchange. We present neutron scattering, specific heat, and magnetic susceptibility data for LiErF 4 , establishing it as a model dipolar-coupled antiferromagnet with planar spin-anisotropy and a quantum phase transition in applied field H c# parallel# = 4.0 ± 0.1 kilo-oersteds. We discovered non-mean-field critical scaling for the classical phase transition at the antiferromagnetic transition temperature that is consistent with the two-dimensional XY/h 4 universality class; in accord with this, the quantum phase transition at H c exhibits three-dimensional classical behavior. The effective dimensional reduction may be a consequence of the intrinsic frustrated nature of the dipolar interaction, which strengthens the role of fluctuations.

  3. Giant Planar Hall Effect in the Dirac Semimetal ZrTe5

    KAUST Repository

    Li, Peng

    2018-03-03

    Exploration and understanding of exotic topics in quantum physics such as Dirac and Weyl semimetals have become highly popular in the area of condensed matter. It has recently been predicted that a theoretical giant planar Hall effect can be induced by a chiral anomaly in Dirac and Weyl semimetals. ZrTe5 is considered an intriguing Dirac semimetal at the boundary of weak and strong topological insulators, though this claim is still controversial. In this study, we report the observation in ZrTe5 of giant planar Hall resistivity. We have also noted three different dependences of this resistivity on the magnetic field, as predicted by theory, maximum planar Hall resistivity occurs at the Lifshitz transition temperature. In addition, we have discovered a nontrivial Berry phase, as well as a chiral-anomaly-induced negative longitudinal and a giant in-plane anisotropic magnetoresistance. All these experimental observations coherently demonstrate that ZrTe5 is a Dirac semimetal.

  4. Use of the AlGaAs native oxide in AlGaAs-GaAs quantum well heterostructure laser devices

    International Nuclear Information System (INIS)

    Ries, M.J.; Chen, E.I.; Holonyak, Chen N. Jr.

    1995-01-01

    At atmospheric conditions high Al Composition Al x Ga 1-x As (x ≥0.7) in Al x Ga 1-x As-GaAs heterostructures is subject to failure via hydrolyzation. In contrast, open-quotes wetclose quotes oxidation at higher temperatures (≥400 degrees C) produces stable AlGaAs native oxides that prove to be useful in quantum well heterostructure devices. The open-quotes wetclose quotes oxidation process results in the conversion of high Al composition heterostructure material into a stable low refractive index, current-blocking native oxide, which can be used to define cavities and current paths. The oxidation can be used to passivate exposed Al-bearing surfaces. Its selective, anisotropic nature is also useful for the fabrication of both planar and non-planar devices, including buried-oxide heterostructures. The III-V native oxide has been used in the fabrication of single-stripe and stripe array lasers, ring lasers, coupled-cavity lasers, buried-oxide verticle cavity lasers, deep-oxide waveguides, deep-oxide lasers, and high reliability LED's. Also, the native oxide of A1As has been demonstrated in field effect transistor operation. The use of the III-V native oxide in various device applications is described

  5. Problem of quantifying quantum correlations with non-commutative discord

    Science.gov (United States)

    Majtey, A. P.; Bussandri, D. G.; Osán, T. M.; Lamberti, P. W.; Valdés-Hernández, A.

    2017-09-01

    In this work we analyze a non-commutativity measure of quantum correlations recently proposed by Guo (Sci Rep 6:25241, 2016). By resorting to a systematic survey of a two-qubit system, we detected an undesirable behavior of such a measure related to its representation-dependence. In the case of pure states, this dependence manifests as a non-satisfactory entanglement measure whenever a representation other than the Schmidt's is used. In order to avoid this basis-dependence feature, we argue that a minimization procedure over the set of all possible representations of the quantum state is required. In the case of pure states, this minimization can be analytically performed and the optimal basis turns out to be that of Schmidt's. In addition, the resulting measure inherits the main properties of Guo's measure and, unlike the latter, it reduces to a legitimate entanglement measure in the case of pure states. Some examples involving general mixed states are also analyzed considering such an optimization. The results show that, in most cases of interest, the use of Guo's measure can result in an overestimation of quantum correlations. However, since Guo's measure has the advantage of being easily computable, it might be used as a qualitative estimator of the presence of quantum correlations.

  6. Quantum Non-Markovian Langevin Equations and Transport Coefficients

    International Nuclear Information System (INIS)

    Sargsyan, V.V.; Antonenko, N.V.; Kanokov, Z.; Adamian, G.G.

    2005-01-01

    Quantum diffusion equations featuring explicitly time-dependent transport coefficients are derived from generalized non-Markovian Langevin equations. Generalized fluctuation-dissipation relations and analytic expressions for calculating the friction and diffusion coefficients in nuclear processes are obtained. The asymptotic behavior of the transport coefficients and correlation functions for a damped harmonic oscillator that is linearly coupled in momentum to a heat bath is studied. The coupling to a heat bath in momentum is responsible for the appearance of the diffusion coefficient in coordinate. The problem of regression of correlations in quantum dissipative systems is analyzed

  7. Constrained-path quantum Monte Carlo approach for non-yrast states within the shell model

    Energy Technology Data Exchange (ETDEWEB)

    Bonnard, J. [INFN, Sezione di Padova, Padova (Italy); LPC Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3, Caen (France); Juillet, O. [LPC Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3, Caen (France)

    2016-04-15

    The present paper intends to present an extension of the constrained-path quantum Monte Carlo approach allowing to reconstruct non-yrast states in order to reach the complete spectroscopy of nuclei within the interacting shell model. As in the yrast case studied in a previous work, the formalism involves a variational symmetry-restored wave function assuming two central roles. First, it guides the underlying Brownian motion to improve the efficiency of the sampling. Second, it constrains the stochastic paths according to the phaseless approximation to control sign or phase problems that usually plague fermionic QMC simulations. Proof-of-principle results in the sd valence space are reported. They prove the ability of the scheme to offer remarkably accurate binding energies for both even- and odd-mass nuclei irrespective of the considered interaction. (orig.)

  8. An analogue of Morse theory for planar linear networks and the generalized Steiner problem

    International Nuclear Information System (INIS)

    Karpunin, G A

    2000-01-01

    A study is made of the generalized Steiner problem: the problem of finding all the locally minimal networks spanning a given boundary set (terminal set). It is proposed to solve this problem by using an analogue of Morse theory developed here for planar linear networks. The space K of all planar linear networks spanning a given boundary set is constructed. The concept of a critical point and its index is defined for the length function l of a planar linear network. It is shown that locally minimal networks are local minima of l on K and are critical points of index 1. The theorem is proved that the sum of the indices of all the critical points is equal to χ(K)=1. This theorem is used to find estimates for the number of locally minimal networks spanning a given boundary set

  9. Optically amplifying planar glass waveguides: Laser on a chip

    DEFF Research Database (Denmark)

    Guldberg-Kjær, Søren Andreas

    with UV-light and that permanent Bragg-gratings can be induced. Planar waveguide lasers with integrated Bragg-gratings are manufactured and characterised. It is shown that linewidths below 125 kHz and output powers around 0.5 mW can be obtained, and that the manufactured lasers are resistant to mechanical...... lightwave circuits, as well as provide the gain medium for integrated planar waveguide lasers. The work and the obtained results are presented in this thesis: The manufacturing of silica thin films is described and it is shown that the refractive index of the films can be controlled by germanium co...... as well as thermal influence. A simple method for producing an array of planar waveguide lasers is presented and it is shown that the difference in output wavelength of the individual lasers can be controlled with great accuracy....

  10. Planar waveguide amplifiers and laser in erbium doped silica

    DEFF Research Database (Denmark)

    Guldberg-Kjær, Søren Andreas; Kristensen, Martin

    1999-01-01

    with UV-light and that permanent Bragg-gratings can be induced. Planar waveguide lasers with integrated Bragg-gratings are manufactured and characterised. It is shown that linewidths below 125 kHz and output powers around 0.5 mW can be obtained, and that the manufactured lasers are resistant to mechanical...... lightwave circuits, as well as provide the gain medium for integrated planar waveguide lasers. The work and the obtained results are presented in this thesis: The manufacturing of silica thin films is described and it is shown that the refractive index o fthe films can be controlled by germanium co...... as well as thermal influence. A simple method for producing an array of planar waveguide lasers is presented and it is shown that the difference in output wavelength of the individual lasers can be controlled with great accuracy....

  11. Supersymmetric quantum mechanics and higher excited states of a non-polynomial potential

    International Nuclear Information System (INIS)

    Drigo Filho, E.; Ricotta, R.M.

    1989-03-01

    Supersymmetric quantum mechanics is used to evaluate new excited states of a non-polynomial potential. This illustrates a method of evaluating higher excited states of quantum mechanical potentials. (A.C.A.S.) [pt

  12. Multigraph approach to quantum non-locality

    International Nuclear Information System (INIS)

    Rabelo, Rafael; Duarte, Cristhiano; Cunha, Marcelo Terra; López-Tarrida, Antonio J; Cabello, Adán

    2014-01-01

    Non-contextuality (NC) and Bell inequalities can be expressed as bounds Ω for positive linear combinations S of probabilities of events, S⩽Ω. Exclusive events in S can be represented as adjacent vertices of a graph called the exclusivity graph of S. In the case that events correspond to the outcomes of quantum projective measurements, quantum probabilities are intimately related to the Grötschel–Lovász–Schrijver theta body of the exclusivity graph. Then, one can easily compute an upper bound to the maximum quantum violation of any NC or Bell inequality by optimizing S over the theta body and calculating the Lovász number of the corresponding exclusivity graph. In some cases, this upper bound is tight and gives the exact maximum quantum violation. However, in general, this is not the case. The reason is that the exclusivity graph does not distinguish among the different ways exclusivity can occur in Bell-inequality (and similar) scenarios. An interesting question is whether there is a graph-theoretical concept which accounts for this problem. Here we show that, for any given N-partite Bell inequality, an edge-coloured multigraph composed of N single-colour graphs can be used to encode the relationships of exclusivity between each party's parts of the events. Then, the maximum quantum violation of the Bell inequality is exactly given by a refinement of the Lovász number that applies to these edge-coloured multigraphs. We show how to calculate upper bounds for this number using a hierarchy of semi-definite programs and calculate upper bounds for I 3 , I 3322 and the three bipartite Bell inequalities whose exclusivity graph is a pentagon. The multigraph-theoretical approach introduced here may remove some obstacles in the program of explaining quantum correlations from first principles. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘50 years of Bell’s theorem’. (paper)

  13. Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage

    Institute of Scientific and Technical Information of China (English)

    Zhong-Shuai Wu; Xinliang Feng; Hui-Ming Cheng

    2014-01-01

    The current development trend towards miniaturized portable electronic devices has signiicantly increased the demand for ultrathin, lexible and sustainable on-chip micro-supercapacitors that have enormous potential to complement, or even to replace, micro-bateries and electrolytic capacitors. In this regard,graphene-based micro-supercapacitors with a planar geometry are promising micro-electrochemical energy-storage devices that can take full advantage of planar coniguration and unique features of graphene.his review summarizes the latest advances in on-chip graphene-based planar interdigital micro-supercapacitors, from the history of their development, representative graphene-based materials(graphene sheets, graphene quantum dots and graphene hybrids) for their manufacture, typical microfabrication strategies(photolithography techniques, electrochemical methods, laser writing, etc.),electrolyte(aqueous, organic, ionic and gel), to device coniguration(symmetric and asymmetric). Finally,the perspectives and possible development directions of future graphene-based micro-supercapacitors are briely discussed.

  14. Investigation for connecting waveguide in off-planar integrated circuits.

    Science.gov (United States)

    Lin, Jie; Feng, Zhifang

    2017-09-01

    The transmission properties of a vertical waveguide connected by different devices in off-planar integrated circuits are designed, investigated, and analyzed in detail by the finite-difference time-domain method. The results show that both guide bandwidth and transmission efficiency can be adjusted effectively by shifting the vertical waveguide continuously. Surprisingly, the wide guide band (0.385[c/a]∼0.407[c/a]) and well transmission (-6  dB) are observed simultaneously in several directions when the vertical waveguide is located at a specific location. The results are very important for all-optical integrated circuits, especially in compact integration.

  15. Self-guided method to search maximal Bell violations for unknown quantum states

    Science.gov (United States)

    Yang, Li-Kai; Chen, Geng; Zhang, Wen-Hao; Peng, Xing-Xiang; Yu, Shang; Ye, Xiang-Jun; Li, Chuan-Feng; Guo, Guang-Can

    2017-11-01

    In recent decades, a great variety of research and applications concerning Bell nonlocality have been developed with the advent of quantum information science. Providing that Bell nonlocality can be revealed by the violation of a family of Bell inequalities, finding maximal Bell violation (MBV) for unknown quantum states becomes an important and inevitable task during Bell experiments. In this paper we introduce a self-guided method to find MBVs for unknown states using a stochastic gradient ascent algorithm (SGA), by parametrizing the corresponding Bell operators. For three investigated systems (two qubit, three qubit, and two qutrit), this method can ascertain the MBV of general two-setting inequalities within 100 iterations. Furthermore, we prove SGA is also feasible when facing more complex Bell scenarios, e.g., d -setting d -outcome Bell inequality. Moreover, compared to other possible methods, SGA exhibits significant superiority in efficiency, robustness, and versatility.

  16. Design and construction of non-imaging planar concentrator for concentrator photovoltaic system

    Energy Technology Data Exchange (ETDEWEB)

    Chong, K.K.; Siaw, F.L.; Wong, C.W.; Wong, G.S. [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Off Jalan Genting Kelang, Setapak, 53300 Kuala Lumpur, Wilayah Persekutuan (Malaysia)

    2009-05-15

    A novel configuration of solar concentrator, which is the non-imaging planar concentrator, capable of producing much more uniform sunlight and reasonably high concentration ratio, is designed and constructed. This design is envisioned to be incorporated in concentrator photovoltaic (CPV) systems. The work presented here reports on the design, optical alignment and application of the prototype, which is installed at Universiti Tunku Abdul Rahman (UTAR), Malaysia. In the architecture of the prototype, 360 flat mirrors, each with a dimension of 4.0 cm x 4.0 cm, are arranged into 24 rows and 15 columns with a total reflection area of about 5760 cm{sup 2}. In addition to that, illumination distribution for the prototype is simulated and its results are then compared with the experiment result. (author)

  17. Design and investigation of properties of nanocrystalline diamond optical planar waveguides.

    Science.gov (United States)

    Prajzler, Vaclav; Varga, Marian; Nekvindova, Pavla; Remes, Zdenek; Kromka, Alexander

    2013-04-08

    Diamond thin films have remarkable properties comparable with natural diamond. Because of these properties it is a very promising material for many various applications (sensors, heat sink, optical mirrors, chemical and radiation wear, cold cathodes, tissue engineering, etc.) In this paper we report about design, deposition and measurement of properties of optical planar waveguides fabricated from nanocrystalline diamond thin films. The nanocrystalline diamond planar waveguide was deposited by microwave plasma enhanced chemical vapor deposition and the structure of the deposited film was studied by scanning electron microscopy and Raman spectroscopy. The design of the presented planar waveguides was realized on the bases of modified dispersion equation and was schemed for 632.8 nm, 964 nm, 1 310 nm and 1 550 nm wavelengths. Waveguiding properties were examined by prism coupling technique and it was found that the diamond based planar optical element guided one fundamental mode for all measured wavelengths. Values of the refractive indices of our NCD thin film measured at various wavelengths were almost the same as those of natural diamond.

  18. Guide to mathematical concepts of quantum theory

    International Nuclear Information System (INIS)

    Heinosaari, T.; Ziman, M.

    2008-01-01

    Quantum Theory is one of the pillars of modern science developed over the last hundred years. In this review we introduce, step by step, the quantum theory understood as a mathematical model describing quantum experiments. We start with splitting the experiment into two parts: a preparation process and a measurement process leading to a registration of a particular outcome. These two ingredients of the experiment are represented by states and effects, respectively. Further, the whole picture of quantum measurement will be developed and concepts of observables, instruments and measurement models representing the three different descriptions on experiments will be introduced. In the second stage, we enrich the model of the experiment by introducing the concept of quantum channel describing the system changes between preparations and measurements. At the very end we review the elementary properties of quantum entanglement. The text contains many examples and exercise covering also many topics from quantum information theory and quantum measurement theory. The goal is to give a mathematically clear and self-containing explanation of the main concepts of the modern language of quantum theory (Authors)

  19. Guide to mathematical concepts of quantum theory

    International Nuclear Information System (INIS)

    Heinosaari, T.; Ziman, M.

    2008-01-01

    Quantum Theory is one of the pillars of modern science developed over the last hundred years. In this review paper we introduce, step by step, the quantum theory understood as a mathematical model describing quantum experiments. We start with splitting the experiment into two parts: a preparation process and a measurement process leading to a registration of a particular outcome. These two ingredients of the experiment are represented by states and effects, respectively. Further, the whole picture of quantum measurement will be developed and concepts of observables, instruments and measurement models representing the three different descriptions on experiments will be introduced. In the second stage, we enrich the model of the experiment by introducing the concept of quantum channel describing the system changes between preparations and measurements. At the very end we review the elementary properties of quantum entanglement. The text contains many examples and exercise covering also many topics from quantum information theory and quantum measurement theory. The goal is to give a mathematically clear and self-containing explanation of the main concepts of the modern language of quantum theory. (author)

  20. InGaAs Quantum Well Grown on High-Index Surfaces for Superluminescent Diode Applications

    Directory of Open Access Journals (Sweden)

    Wu Jiang

    2010-01-01

    Full Text Available Abstract The morphological and optical properties of In0.2Ga0.8As/GaAs quantum wells grown on various substrates are investigated for possible application to superluminescent diodes. The In0.2Ga0.8As/GaAs quantum wells are grown by molecular beam epitaxy on GaAs (100, (210, (311, and (731 substrates. A broad photoluminescence emission peak (~950 nm with a full width at half maximum (FWHM of 48 nm is obtained from the sample grown on (210 substrate at room temperature, which is over four times wider than the quantum well simultaneously grown on (100 substrate. On the other hand, a very narrow photoluminescence spectrum is observed from the sample grown on (311 with FWHM = 7.8 nm. The results presented in this article demonstrate the potential of high-index GaAs substrates for superluminescent diode applications.

  1. GE NANOCLUSTERS IN PLANAR GLASS WAVEGUIDES DEPOSITED BY PECVD

    DEFF Research Database (Denmark)

    Haiyan, Ou; Olsen, Johnny H.; Rottwitt, Karsten

    2004-01-01

    Germanium (Ge) has been widely used as the dopant in the core layer of planar glass waveguides to increase the refractive index because it gives a small propagation loss. Plasma enhanced chemical vapour deposition (PECVD) and flame hydrolysis deposition (FHD) are two main material deposition meth...

  2. Quantum osp-invariant non-linear Schroedinger equation

    International Nuclear Information System (INIS)

    Kulish, P.P.

    1985-04-01

    The generalizations of the non-linear Schroedinger equation (NS) associated with the orthosymplectic superalgebras are formulated. The simplest osp(1/2)-NS model is solved by the quantum inverse scattering method on a finite interval under periodic boundary conditions as well as on the wholeline in the case of a finite number of excitations. (author)

  3. Ultrafast gain and index dynamics of quantum dash structures emitting at 1.55 mu m

    DEFF Research Database (Denmark)

    Poel, Mike van der; Mørk, Jesper; Somers, A.

    2006-01-01

    The authors systematically characterize the ultrafast gain and index recovery of a quantum dash semiconductor optical amplifier after it has amplified a strong femtosecond pulse. The results show a recovery dominated by a fast time constant of 1.4 ps with an ultimate recovery taking place on a 150...

  4. Quantifying non-classical and beyond-quantum correlations in the unified operator formalism

    International Nuclear Information System (INIS)

    Geller, Joshua; Piani, Marco

    2014-01-01

    Acin et al (2010 Phys. Rev. Lett. 104 140404) introduced a unified framework for the study of no-signalling correlations. Such a framework is based on the notion of local quantum measurements, but, in order to account for beyond-quantum correlations, global pseudo-states that are not positive semidefinite are allowed. After a short review of the formalism, we consider its use in the quantification of both general non-local and beyond-quantum correlations. We argue that the unified framework for correlations provides a simple approach to such a quantification, in particular when the quantification is meant to be operational and meaningful in a resource-theory scenario, i.e., when considering the processing of resources by means of non-resources. We relate different notions of robustness of correlations, both at the level of (pseudo-)states and abstract probability distributions, with particular focus on the beyond-quantum robustness of correlations and pseudo-states. We revisit known results and argue that, within the unified framework, the relation between the two levels—that of operators and that of probability distributions—is very strict. We point out how the consideration of robustness at the two levels leads to a natural framework for the quantification of entanglement in a device-independent way. Finally, we show that the beyond-quantum robustness of the non-positive operators needed to achieve beyond-quantum correlations coincides with their negativity and their distance from the set of quantum states. As an example, we calculate the beyond-quantum robustness for the case of a noisy Popescu–Rohrlich box. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘50 years of Bell’s theorem’. (paper)

  5. Closed-shell and open-shell square-planar iridium nitrido complexes

    Science.gov (United States)

    Scheibel, Markus G.; Askevold, Bjorn; Heinemann, Frank W.; Reijerse, Edward J.; de Bruin, Bas; Schneider, Sven

    2012-07-01

    Coupling reactions of nitrogen atoms represent elementary steps to many important heterogeneously catalysed reactions, such as the Haber-Bosch process or the selective catalytic reduction of NOx to give N2. For molecular nitrido (and related oxo) complexes, it is well established that the intrinsic reactivity, for example nucleophilicity or electrophilicity of the nitrido (or oxo) ligand, can be attributed to M-N (M-O) ground-state bonding. In recent years, nitrogen (oxygen)-centred radical reactivity was ascribed to the possible redox non-innocence of nitrido (oxo) ligands. However, unequivocal spectroscopic characterization of such transient nitridyl {M=N•} (or oxyl {M-O•}) complexes remained elusive. Here we describe the synthesis and characterization of the novel, closed-shell and open-shell square-planar iridium nitrido complexes [IrN(Lt-Bu)]+ and [IrN(Lt-Bu)] (Lt-Bu=N(CHCHP-t-Bu2)2). Spectroscopic characterization and quantum chemical calculations for [IrN(Lt-Bu)] indicate a considerable nitridyl, {Ir=N•}, radical character. The clean formation of IrI-N2 complexes via binuclear coupling is rationalized in terms of nitrido redox non-innocence in [IrN(Lt-Bu)].

  6. The status and prospects of quantum non-local field theory

    International Nuclear Information System (INIS)

    Cornish, N.J.; Melbourne Univ., Parkville

    1991-01-01

    A critical review of the physical constraints on the form the non-locality can take is presented. The conclusion of this review is that non-locality must be restricted to interactions with the vacuum sea of virtual particles. A successful formulation of such a theory, Quantum Nonlocal Field Theory (QNFT), is applied to scalar electrodynamics and serves to illustrate how gauge invariance and manifest finiteness can be achieved. The importance of the infinite dimensional symmetry groups that occur in QNFT are discussed as an alternative to supersymmetry, the ability to generate masses by breaking the non-local symmetry with a non-invariant functional measure is given a critical assessment. To demonstrate some of the many novel applications QNFT may make possible, three disparate examples are mooted, the existence of electroweak monopoles, an mechanism for CP violation and the formulation of a finite perturbative theory of Quantum Gravity. 21 refs., ills

  7. Multiple defects in GaInN multiple quantum wells grown on ELO GaN layers and on GaN substrates

    International Nuclear Information System (INIS)

    Tomiya, S.; Goto, O.; Hoshina, Y.; Tanaka, T.; Ikeda, M.

    2006-01-01

    A new type of structural defects was observed in GaInN multiple quantum well structures with higher In concentrations that were grown on low-threading-dislocation-density templates. The defects were investigated by using various kinds of transmission electron microscopy techniques, and were found to consist of planar defects and associated dislocations. The planar defects nucleate at the interfaces between the quantum well layers and barrier layers. The dislocations are created at the edge boundary of the planar defects and run almost along the c-axis towards the epi-surface. The planar defects are revealed to be inversion domains which are thought to be caused by the segregation of excess In-In bonds at the interface between the quantum well layer and the barrier layer. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Multiple defects in GaInN multiple quantum wells grown on ELO GaN layers and on GaN substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tomiya, S. [Materials Analysis Laboratory, Sony Corporation, Kanagawa (Japan); Goto, O.; Hoshina, Y.; Tanaka, T.; Ikeda, M. [Shiroishi Laser Center, Semiconductor Laser Division, MSNC, Sony Corporation, Miyagi (Japan)

    2006-06-15

    A new type of structural defects was observed in GaInN multiple quantum well structures with higher In concentrations that were grown on low-threading-dislocation-density templates. The defects were investigated by using various kinds of transmission electron microscopy techniques, and were found to consist of planar defects and associated dislocations. The planar defects nucleate at the interfaces between the quantum well layers and barrier layers. The dislocations are created at the edge boundary of the planar defects and run almost along the c-axis towards the epi-surface. The planar defects are revealed to be inversion domains which are thought to be caused by the segregation of excess In-In bonds at the interface between the quantum well layer and the barrier layer. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Development of planar waveguides in zinc telluride

    International Nuclear Information System (INIS)

    Valette, Serge

    1977-02-01

    Zinc telluride (ZnTe) is one of the most attractive semi-conductors for monolithic integrated optics. In this study, the general characteristics of the planar optical waveguides achieved by implantation of light ions in ZnTe are investigated. Different aspects of prism-coupling and coherent light guiding have been taken up theoretically and experimentally. Some assumptions about the physical origin of these structures are discussed in order to explain all these results and the weak losses which have been measured. [fr

  10. Non-local currents in 2D QFT: an alternative To - the quantum inverse scattering method

    International Nuclear Information System (INIS)

    Bernard, D.; Leclair, A.; Cornell Univ., Ithaca, NY

    1990-01-01

    The formalism based on non-local charges that we propose provides an alternative to the quantum inverse scattering method for solving integrable quantum field theories in 2D. The content of the paper is: 1. Introduction: historical background. 2. The NLC approach to 2D QFT: a summary. 3 Exchange algebras and on-shell conservation laws: why non-local charges are useful. 4. The lattice construction: the geometrical origin of non-local conserved currents. 5. The continuum construction: how to deal with non-local conserved currents. 6. Examples: Yangian and quantum group currents. 7 Conclusions: open problems. 22 refs., 4 figs

  11. The influence of microscopic and macroscopic non-stoichiometry on interfacial planarity during the solid-phase epitaxial growth of amorphized GaAs

    International Nuclear Information System (INIS)

    Belay, K.B.; Ridgway, M.C.; Llewellyn, D.J.

    1996-01-01

    The influence of microscopic and macroscopic non-stoichiometry on the Solid-Phase Epitaxial Growth of GaAs has been studied. Ion implantation has been employed to produce microscopic non-stoichiometry via Ga and As implants and macroscopic non-stoichiometry via Ga or As implants. In-situ Time Resolved Reflectivity and Transmission Electron Microscopy and ex-situ Rutherford Backscattering Spectroscopy and Channeling have been used to investigate the regrowth of amorphized GaAs layers. As non-stoichiometry shifts from microscopic to macroscopic the interface loses its planar nature and subsequently gets rougher. 7 refs., 3 figs

  12. The influence of microscopic and macroscopic non-stoichiometry on interfacial planarity during the solid-phase epitaxial growth of amorphized GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Belay, K.B.; Ridgway, M.C.; Llewellyn, D.J. [Australian National Univ., Canberra, ACT (Australia). Dept. of Physics

    1996-12-31

    The influence of microscopic and macroscopic non-stoichiometry on the Solid-Phase Epitaxial Growth of GaAs has been studied. Ion implantation has been employed to produce microscopic non-stoichiometry via Ga and As implants and macroscopic non-stoichiometry via Ga or As implants. In-situ Time Resolved Reflectivity and Transmission Electron Microscopy and ex-situ Rutherford Backscattering Spectroscopy and Channeling have been used to investigate the regrowth of amorphized GaAs layers. As non-stoichiometry shifts from microscopic to macroscopic the interface loses its planar nature and subsequently gets rougher. 7 refs., 3 figs.

  13. The influence of microscopic and macroscopic non-stoichiometry on interfacial planarity during the solid-phase epitaxial growth of amorphized GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Belay, K B; Ridgway, M C; Llewellyn, D J [Australian National Univ., Canberra, ACT (Australia). Dept. of Physics

    1997-12-31

    The influence of microscopic and macroscopic non-stoichiometry on the Solid-Phase Epitaxial Growth of GaAs has been studied. Ion implantation has been employed to produce microscopic non-stoichiometry via Ga and As implants and macroscopic non-stoichiometry via Ga or As implants. In-situ Time Resolved Reflectivity and Transmission Electron Microscopy and ex-situ Rutherford Backscattering Spectroscopy and Channeling have been used to investigate the regrowth of amorphized GaAs layers. As non-stoichiometry shifts from microscopic to macroscopic the interface loses its planar nature and subsequently gets rougher. 7 refs., 3 figs.

  14. Borehole guided waves in a non-Newtonian (Maxwell) fluid-saturated porous medium

    International Nuclear Information System (INIS)

    Zhi-Wen, Cui; Jin-Xia, Liu; Ke-Xie, Wang; Gui-Jin, Yao

    2010-01-01

    The property of acoustic guided waves generated in a fluid-filled borehole surrounded by a non-Newtonian (Maxwell) fluid-saturated porous formation with a permeable wall is investigated. The influence of non-Newtonian effects on acoustic guided waves such as Stoneley waves, pseudo-Rayleigh waves, flexural waves, and screw waves propagations in a fluid-filled borehole is demonstrated based on the generalized Biot–Tsiklauri model by calculating their velocity dispersion and attenuation coefficients. The corresponding acoustic waveforms illustrate their properties in time domain. The results are also compared with those based on generalized Biot's theory. The results show that the influence of non-Newtonian effect on acoustic guided wave, especially on the attenuation coefficient of guided wave propagation in borehole is noticeable. (classical areas of phenomenology)

  15. Comparison of rectangular and dual-planar positron emission mammography scanners

    International Nuclear Information System (INIS)

    Qi, Jinyi; Kuo, Chaincy; Huesman, Ronald H.; Klein, Gregory J.; Moses, William W.; Reutter, Bryan W.

    2002-01-01

    Breast imaging using dedicated positron emission tomography (PEM) has gained much interest in the medical imaging field. In this paper, we compare the performance between a rectangular geometry and a parallel dual-planar geometry. Both geometries are studied with depth of interaction (DOI) detectors and non- DOI detectors. We compare the Fisher-information matrix, lesion detection, and quantitation of the four systems. The lesion detectability is measured by the signal-to-noise ratio (SNR) of a prewhitening numerical observer for detecting a known hot spot on a uniform background. Results show that the rectangular system with DOI has the highest SNR for the detection task and the lowest bias at any given noise level for the quantitation task. They also show that for small simulated lesions the parallel dual-planar system with DOI detectors outperforms the rectangular system with non-DOI detectors, while the rectangular system with non-DOI detectors can outperform the parallel dual-planar system with DOI detectors for large simulated lesions

  16. Quantum dialogue using non-maximally entangled states based on entanglement swapping

    International Nuclear Information System (INIS)

    Xia Yan; Song Jie; Song Heshan

    2007-01-01

    We present a secure quantum dialogue protocol using non-maximally entangled two-particle states via entanglement swapping at first, and then discuss the requirements for a real quantum dialogue. Within the present version two authorized users can exchange their faithful secret messages securely and simultaneously based on the method of entanglement purification

  17. Selected Aspects of Markovian and Non-Markovian Quantum Master Equations

    Science.gov (United States)

    Lendi, K.

    A few particular marked properties of quantum dynamical equations accounting for general relaxation and dissipation are selected and summarized in brief. Most results derive from the universal concept of complete positivity. The considerations mainly regard genuinely irreversible processes as characterized by a unique asymptotically stationary final state for arbitrary initial conditions. From ordinary Markovian master equations and associated quantum dynamical semigroup time-evolution, derivations of higher order Onsager coefficients and related entropy production are discussed. For general processes including non-faithful states a regularized version of quantum relative entropy is introduced. Further considerations extend to time-dependent infinitesimal generators of time-evolution and to a possible description of propagation of initial states entangled between open system and environment. In the coherence-vector representation of the full non-Markovian equations including entangled initial states, first results are outlined towards identifying mathematical properties of a restricted class of trial integral-kernel functions suited to phenomenological applications.

  18. Optical bistability induced by quantum coherence in a negative index atomic medium

    International Nuclear Information System (INIS)

    Zhang Hong-Jun; Sun Hui; Li Jin-Ping; Yin Bao-Yin; Guo Hong-Ju

    2013-01-01

    Bistability behaviors in an optical ring cavity filled with a dense V-type four-level atomic medium are theoretically investigated. It is found that the optical bistability can appear in the negative refraction frequency band, while both the bistability and multi-stability can occur in the positive refraction frequency bands. Therefore, optical bistability can be realized from conventional material to negative index material due to quantum coherence in our scheme. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  19. Fractionalizing Majorana Fermions: Non-Abelian Statistics on the Edges of Abelian Quantum Hall States

    Directory of Open Access Journals (Sweden)

    Netanel H. Lindner

    2012-10-01

    Full Text Available We study the non-Abelian statistics characterizing systems where counterpropagating gapless modes on the edges of fractional quantum Hall states are gapped by proximity coupling to superconductors and ferromagnets. The most transparent example is that of a fractional quantum spin Hall state, in which electrons of one spin direction occupy a fractional quantum Hall state of ν=1/m, while electrons of the opposite spin occupy a similar state with ν=-1/m. However, we also propose other examples of such systems, which are easier to realize experimentally. We find that each interface between a region on the edge coupled to a superconductor and a region coupled to a ferromagnet corresponds to a non-Abelian anyon of quantum dimension sqrt[2m]. We calculate the unitary transformations that are associated with the braiding of these anyons, and we show that they are able to realize a richer set of non-Abelian representations of the braid group than the set realized by non-Abelian anyons based on Majorana fermions. We carry out this calculation both explicitly and by applying general considerations. Finally, we show that topological manipulations with these anyons cannot realize universal quantum computation.

  20. Non-Planar Nano-Scale Fin Field Effect Transistors on Textile, Paper, Wood, Stone, and Vinyl via Soft Material-Enabled Double-Transfer Printing

    KAUST Repository

    Rojas, Jhonathan Prieto; Sevilla, Galo T.; Alfaraj, Nasir; Ghoneim, Mohamed T.; Kutbee, Arwa T.; Sridharan, Ashvitha; Hussain, Muhammad Mustafa

    2015-01-01

    The ability to incorporate rigid but high-performance nano-scale non-planar complementary metal-oxide semiconductor (CMOS) electronics with curvilinear, irregular, or asymmetric shapes and surfaces is an arduous but timely challenge in enabling the production of wearable electronics with an in-situ information-processing ability in the digital world. Therefore, we are demonstrating a soft-material enabled double-transfer-based process to integrate flexible, silicon-based, nano-scale, non-planar, fin-shaped field effect transistors (FinFETs) and planar metal-oxide-semiconductor field effect transistors (MOSFETs) on various asymmetric surfaces to study their compatibility and enhanced applicability in various emerging fields. FinFET devices feature sub-20 nm dimensions and state-of-the-art, high-κ/metal gate stack, showing no performance alteration after the transfer process. A further analysis of the transferred MOSFET devices, featuring 1 μm gate length exhibits ION ~70 μA/μm (VDS = 2 V, VGS = 2 V) and a low sub-threshold swing of around 90 mV/dec, proving that a soft interfacial material can act both as a strong adhesion/interposing layer between devices and final substrate as well as a means to reduce strain, which ultimately helps maintain the device’s performance with insignificant deterioration even at a high bending state.

  1. Non-Planar Nano-Scale Fin Field Effect Transistors on Textile, Paper, Wood, Stone, and Vinyl via Soft Material-Enabled Double-Transfer Printing

    KAUST Repository

    Rojas, Jhonathan Prieto

    2015-05-01

    The ability to incorporate rigid but high-performance nano-scale non-planar complementary metal-oxide semiconductor (CMOS) electronics with curvilinear, irregular, or asymmetric shapes and surfaces is an arduous but timely challenge in enabling the production of wearable electronics with an in-situ information-processing ability in the digital world. Therefore, we are demonstrating a soft-material enabled double-transfer-based process to integrate flexible, silicon-based, nano-scale, non-planar, fin-shaped field effect transistors (FinFETs) and planar metal-oxide-semiconductor field effect transistors (MOSFETs) on various asymmetric surfaces to study their compatibility and enhanced applicability in various emerging fields. FinFET devices feature sub-20 nm dimensions and state-of-the-art, high-κ/metal gate stack, showing no performance alteration after the transfer process. A further analysis of the transferred MOSFET devices, featuring 1 μm gate length exhibits ION ~70 μA/μm (VDS = 2 V, VGS = 2 V) and a low sub-threshold swing of around 90 mV/dec, proving that a soft interfacial material can act both as a strong adhesion/interposing layer between devices and final substrate as well as a means to reduce strain, which ultimately helps maintain the device’s performance with insignificant deterioration even at a high bending state.

  2. Quaternionic non abelian relativistic quantum fields in four dimensions

    International Nuclear Information System (INIS)

    Albeverio, S.; Hoeegh-Krohn, R.

    1986-01-01

    We give a simple construction of certain Lie-group valued Euclidean Markov random fields and quantum fields in four dimensions. These fields can be looked upon as non abelian extensions of electromagnetic fields. (orig.)

  3. School Health Index: A Self-Assessment and Planning Guide. Middle School/High School.

    Science.gov (United States)

    Barrios, Lisa C.; Burgeson, Charlene R.; Crossett, Linda; Harrykissoon, Samantha D.; Pritzl, Jane; Wechsler, Howell; Kuester, Sarah A.; Pederson, Linda; Graffunder, Corinne; Rainford, Neil; Sleet, David

    2004-01-01

    The "School Health Index" is a self-assessment and planning guide that will enable schools to: (1) identify the strengths and weaknesses of school policies and programs for promoting health and safety; (2) develop an action plan for improving student health and safety, and (3) involve teachers, parents, students, and the community in improving…

  4. Quantum non-local charges and absence of particle production in the two-dimensional non-linear sigma-model

    International Nuclear Information System (INIS)

    Luescher, M.

    1977-12-01

    Conserved non-local charges are shown to exist in the quantum non-linear sigma-model by a non-perturbative method. They imply the absence of particle production and the 'factorization equations' for the two particle S-matrix, which can then be calculated explicitly. (Auth.)

  5. Quantum non-barking dogs

    International Nuclear Information System (INIS)

    Imari Walker, Sara; Davies, Paul C W; Samantray, Prasant; Aharonov, Yakir

    2014-01-01

    Quantum weak measurements with states both pre- and post-selected offer a window into a hitherto neglected sector of quantum mechanics. A class of such systems involves time dependent evolution with transitions possible. In this paper we explore two very simple systems in this class. The first is a toy model representing the decay of an excited atom. The second is the tunneling of a particle through a barrier. The post-selection criteria are chosen as follows: at the final time, the atom remains in its initial excited state for the first example and the particle remains behind the barrier for the second. We then ask what weak values are predicted in the physical environment of the atom (to which no net energy has been transferred) and in the region beyond the barrier (to which the particle has not tunneled). Thus, just as the dog that didn't bark in Arthur Conan Doyle's story Silver Blaze gave Sherlock Holmes meaningful information about the dog's non-canine environment, here we probe whether the particle that has not decayed or has not tunneled can provide measurable information about physical changes in the environment. Previous work suggests that very large weak values might arise in these regions for long durations between pre- and post-selection times. Our calculations reveal some distinct differences between the two model systems. (paper)

  6. Counting statistics of non-markovian quantum stochastic processes

    DEFF Research Database (Denmark)

    Flindt, Christian; Novotny, T.; Braggio, A.

    2008-01-01

    We derive a general expression for the cumulant generating function (CGF) of non-Markovian quantum stochastic transport processes. The long-time limit of the CGF is determined by a single dominating pole of the resolvent of the memory kernel from which we extract the zero-frequency cumulants...

  7. Quantum physics for dummies

    CERN Document Server

    Holzner, Steve

    2013-01-01

    Quantum Physics For Dummies, Revised Edition helps make quantum physics understandable and accessible. From what quantum physics can do for the world to understanding hydrogen atoms, readers will get complete coverage of the subject, along with numerous examples to help them tackle the tough equations. Compatible with classroom text books and courses, Quantum Physics For Dummies, Revised Edition lets students study at their own paces and helps them prepare for graduate or professional exams. Coverage includes: The Schrodinger Equation and its Applications The Foundations of Quantum Physics Vector Notation Spin Scattering Theory, Angular Momentum, and more From the Back Cover Your plain-English guide to understanding and working with the micro world Quantum physics -- also called quantum mechanics or quantum field theory -- can be daunting for even the most dedicated student or enthusiast of science, math, or physics. This friendly, concise guide makes this challenging subject understandable and accessible, fr...

  8. Noninvasive Quantum Measurement of Arbitrary Operator Order by Engineered Non-Markovian Detectors

    Science.gov (United States)

    Bülte, Johannes; Bednorz, Adam; Bruder, Christoph; Belzig, Wolfgang

    2018-04-01

    The development of solid-state quantum technologies requires the understanding of quantum measurements in interacting, nonisolated quantum systems. In general, a permanent coupling of detectors to a quantum system leads to memory effects that have to be taken into account in interpreting the measurement results. We analyze a generic setup of two detectors coupled to a quantum system and derive a compact formula in the weak-measurement limit that interpolates between an instantaneous (text-book type) and almost continuous—detector dynamics-dependent—measurement. A quantum memory effect that we term "system-mediated detector-detector interaction" is crucial to observe noncommuting observables simultaneously. Finally, we propose a mesoscopic double-dot detector setup in which the memory effect is tunable and that can be used to explore the transition to non-Markovian quantum measurements experimentally.

  9. Quantum effects due to coordinate non-inertial systems

    International Nuclear Information System (INIS)

    Mueller, Daniel

    1996-01-01

    In chapter 1 we make an introduction to quantum fields in curved spaces, mentioning something about fermions. Chapter 2 begins a brief introduction to General Relativity, and the calculation of the linearized limit to obtain Thirring's metric, which is a first approximation to the Kerr metric. In Chapter 3 we calculate Dirac's equation in Thirring's space-time and work out the non relativistic limit obtaining the modifications in Schroedinger's equation resulting from the geometry. Particularly, we observe the interference of a particle beam. And in Chapter 4, we present a revision of classical and quantum detectors and discuss the response of detectors in non-inertial motion, in particular, for uniform acceleration and uniform circular motion. The latter is known to yield and integral for the response function which has been so far carried out only numerically. We propose a semi-analytical solution for the spectrum of a circular moving detector. We consider c=1. (author)

  10. Classical and quantum mechanics of non-abelian gauge fields

    International Nuclear Information System (INIS)

    Savvidy, G.K.

    1984-01-01

    Classical and quantum mechanics of non-abelian gauge fields are investigated both with and without spontaneous symmetry breaking. The fundamental subsystem (FS) of Yang-Mills classical mechanics (YMCM) is considered. It is shown to be a Kolmogorov K-system, and hence to have strong statistical properties. Integrable systems are also found, to which in terms of KAM theory Yang-Mills-Higgs classical mechanics (YMHCM) is close. Quantum-mechanical properties of the YM system and their relation to the problem of confinement are discussed. (orig.)

  11. A signed particle formulation of non-relativistic quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Sellier, Jean Michel, E-mail: jeanmichel.sellier@parallel.bas.bg

    2015-09-15

    A formulation of non-relativistic quantum mechanics in terms of Newtonian particles is presented in the shape of a set of three postulates. In this new theory, quantum systems are described by ensembles of signed particles which behave as field-less classical objects which carry a negative or positive sign and interact with an external potential by means of creation and annihilation events only. This approach is shown to be a generalization of the signed particle Wigner Monte Carlo method which reconstructs the time-dependent Wigner quasi-distribution function of a system and, therefore, the corresponding Schrödinger time-dependent wave-function. Its classical limit is discussed and a physical interpretation, based on experimental evidences coming from quantum tomography, is suggested. Moreover, in order to show the advantages brought by this novel formulation, a straightforward extension to relativistic effects is discussed. To conclude, quantum tunnelling numerical experiments are performed to show the validity of the suggested approach.

  12. Quantum mechanics with non-negative quantum distribution function

    International Nuclear Information System (INIS)

    Zorin, A.V.; Sevastianov, L.A.

    2010-01-01

    Full text: (author)Among numerous approaches to probabilistic interpretation of the conventional quantum mechanics the most close to the N. Bohr idea of the correspondence principle is the D.I. Blokhintzev - Ya.P. Terletsky approach using the quantum distribution function on the coordinate- momentum space. The detailed investigation of this approach has lead to the correspondence rule of V.V. Kuryshkin. Quantum mechanics of Kuryshkin (QMK) embody the program proposed by Yu.M. Shirokov for unifying classical and quantum mechanics in similar mathematical models. QMK develops and enhances Wigner's proposal concerning the calculation of quantum corrections to classical thermodynamic parameters using a phase distribution function. The main result of QMK is the possibility of description by mean of a positively-valued distribution function. This represents an important step towards a completely statistical model of quantum phenomena, compared with the quasi-probabilistic nature of Wigner distribution. Wigner's model does not permit to perform correctly the classical limit in quantum mechanics as well. On the other hand, QMK has a much more complex structure of operators of observables. One of the unsolved problems of QMK is the absence of a priori rules for establishing of auxiliary functions. Nevertheless, while it is impossible to overcome the complex form of operators, we find it quite possible to derive some methods of filing sets of auxiliary functions

  13. Non-additive dissipation in open quantum networks out of equilibrium

    Science.gov (United States)

    Mitchison, Mark T.; Plenio, Martin B.

    2018-03-01

    We theoretically study a simple non-equilibrium quantum network whose dynamics can be expressed and exactly solved in terms of a time-local master equation. Specifically, we consider a pair of coupled fermionic modes, each one locally exchanging energy and particles with an independent, macroscopic thermal reservoir. We show that the generator of the asymptotic master equation is not additive, i.e. it cannot be expressed as a sum of contributions describing the action of each reservoir alone. Instead, we identify an additional interference term that generates coherences in the energy eigenbasis, associated with the current of conserved particles flowing in the steady state. Notably, non-additivity arises even for wide-band reservoirs coupled arbitrarily weakly to the system. Our results shed light on the non-trivial interplay between multiple thermal noise sources in modular open quantum systems.

  14. Non-relativistic quantum mechanics

    CERN Document Server

    Puri, Ravinder R

    2017-01-01

    This book develops and simplifies the concept of quantum mechanics based on the postulates of quantum mechanics. The text discusses the technique of disentangling the exponential of a sum of operators, closed under the operation of commutation, as the product of exponentials to simplify calculations of harmonic oscillator and angular momentum. Based on its singularity structure, the Schrödinger equation for various continuous potentials is solved in terms of the hypergeometric or the confluent hypergeometric functions. The forms of the potentials for which the one-dimensional Schrödinger equation is exactly solvable are derived in detail. The problem of identifying the states of two-level systems which have no classical analogy is addressed by going beyond Bell-like inequalities and separability. The measures of quantumness of mutual information in two two-level systems is also covered in detail. Offers a new approach to learning quantum mechanics based on the history of quantum mechanics and its postu...

  15. Loop Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Rovelli Carlo

    1998-01-01

    Full Text Available The problem of finding the quantum theory of the gravitational field, and thus understanding what is quantum spacetime, is still open. One of the most active of the current approaches is loop quantum gravity. Loop quantum gravity is a mathematically well-defined, non-perturbative and background independent quantization of general relativity, with its conventional matter couplings. Research in loop quantum gravity today forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained are: (i The computation of the physical spectra of geometrical quantities such as area and volume, which yields quantitative predictions on Planck-scale physics. (ii A derivation of the Bekenstein-Hawking black hole entropy formula. (iii An intriguing physical picture of the microstructure of quantum physical space, characterized by a polymer-like Planck scale discreteness. This discreteness emerges naturally from the quantum theory and provides a mathematically well-defined realization of Wheeler's intuition of a spacetime ``foam''. Long standing open problems within the approach (lack of a scalar product, over-completeness of the loop basis, implementation of reality conditions have been fully solved. The weak part of the approach is the treatment of the dynamics: at present there exist several proposals, which are intensely debated. Here, I provide a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  16. Lattice gauge theory approach to quantum chromodynamics

    International Nuclear Information System (INIS)

    Kogut, J.B.

    1983-01-01

    The author reviews in a pedagogical fashion some of the recent developments in lattice quantum chromodynamics. This review emphasizes explicit examples and illustrations rather than general proofs and analyses. It begins with a discussion of the heavy-quark potential in continuum quantum chromodynamics. Asymptotic freedom and renormalization-group improved perturbation theory are discussed. A simple dielectric model of confinement is considered as an intuitive guide to the vacuum of non-Abelian gauge theories. Next, the Euclidean form of lattice gauge theory is introduced, and an assortment of calculational methods are reviewed. These include high-temperature expansions, duality, Monte Carlo computer simulations, and weak coupling expansions. A #betta#-parameter calculation for asymptotically free-spin models is presented. The Hamiltonian formulation of lattice gauge theory is presented and is illustrated in the context of flux tube dynamics. Roughening transitions, Casimir forces, and the restoration of rotational symmetry are discussed. Mechanisms of confinement in lattice theories are illustrated in the two-dimensional electrodynamics of the planar model and the U(1) gauge theory in four dimensions. Generalized actions for SU(2) gauge theories and the relevance of monopoles and strings to crossover phenomena are considered. A brief discussion of the continuity of fields and topologial charge in asymptotically free lattice models is presented. The final major topic of this review concerns lattice fermions. The species doubling problem and its relation to chiral symmetry are illustrated. Staggered Euclidean fermion methods are discussed in detail, with an emphasis on species counting, remnants of chiral symmetry, Block spin variables, and the axial anomaly. Numerical methods for including fermions in computer simulations are considered. Jacobi and Gauss-Siedel inversion methods to obtain the fermion propagator in a background gauge field are reviewed

  17. Enhancement of Quantum Correlations in Qubit-Qutrit Systems under the non-Markovian Environment

    Institute of Scientific and Technical Information of China (English)

    Abdul Basit; Hamad Ali; Fazal Badshah; Guo-Qin Ge

    2017-01-01

    We investigate the time evolution of quantum correlations of a hybrid qubit-qutrit system under the classical Ornstein-Uhlenbeck (OU) noise.Here we consider two different one-parameter families of qubit-qutrit states which independently interact with the non-Markovian reservoirs.A comparison with the Markovian dynamics reveals that for the same set of initial condition parameters,the non-Markovian behavior of the environment plays an important role in the enhancement of the survival time of quantum correlations.In addition,it is observed that the non-Markovian strength (γ/F) has a positive impact on the correlations time.For the initial separable states it is found that there is a finite time interval in which the geometric quantum discord is frozen despite the presence of a noisy environment and that interval can be further prolonged by using the non-Markovian property.Moreover,its decay can be significantly delayed.

  18. Quantum optics with semiconductor nanostructures

    CERN Document Server

    Jahnke, Frank

    2012-01-01

    A guide to the theory, application and potential of semiconductor nanostructures in the exploration of quantum optics. It offers an overview of resonance fluorescence emission.$bAn understanding of the interaction between light and matter on a quantum level is of fundamental interest and has many applications in optical technologies. The quantum nature of the interaction has recently attracted great attention for applications of semiconductor nanostructures in quantum information processing. Quantum optics with semiconductor nanostructures is a key guide to the theory, experimental realisation, and future potential of semiconductor nanostructures in the exploration of quantum optics. Part one provides a comprehensive overview of single quantum dot systems, beginning with a look at resonance fluorescence emission. Quantum optics with single quantum dots in photonic crystal and micro cavities are explored in detail, before part two goes on to review nanolasers with quantum dot emitters. Light-matter interaction...

  19. Some Mathematical Structures Including Simplified Non-Relativistic Quantum Teleportation Equations and Special Relativity

    International Nuclear Information System (INIS)

    Woesler, Richard

    2007-01-01

    The computations of the present text with non-relativistic quantum teleportation equations and special relativity are totally speculative, physically correct computations can be done using quantum field theory, which remain to be done in future. Proposals for what might be called statistical time loop experiments with, e.g., photon polarization states are described when assuming the simplified non-relativistic quantum teleportation equations and special relativity. However, a closed time loop would usually not occur due to phase incompatibilities of the quantum states. Histories with such phase incompatibilities are called inconsistent ones in the present text, and it is assumed that only consistent histories would occur. This is called an exclusion principle for inconsistent histories, and it would yield that probabilities for certain measurement results change. Extended multiple parallel experiments are proposed to use this statistically for transmission of classical information over distances, and regarding time. Experiments might be testable in near future. However, first a deeper analysis, including quantum field theory, remains to be done in future

  20. KWOC [Key-Word-Out-of-Context] Index of US Nuclear Regulatory Commission Regulatory Guide Series

    International Nuclear Information System (INIS)

    Jennings, S.D.

    1990-04-01

    To meet the objectives of the program funded by the Department of Energy (DOE)-Nuclear Energy (NE) Technology Support Programs, the Performance Assurance Project Office (PAPO) administers a Performance Assurance Information Program that collects, compiles, and distributes program-related information, reports, and publications for the benefit of the DOE-NE program participants. THE ''KWOC Index of US Nuclear Regulatory Commission Regulatory Guide Series'' is prepared as an aid in searching for specific topics in the US Nuclear Regulatory Commission, Regulatory Guide Series

  1. Planar Silicon Optical Waveguide Light Modulators

    DEFF Research Database (Denmark)

    Leistiko, Otto; Bak, H.

    1994-01-01

    that values in the nanosecond region should be possible, however, the measured values are high, 20 microseconds, due to the large area of the injector junctions, 1× 10¿2 cm2, and the limitations imposed by the detection circuit. The modulating properties of these devices are impressive, measurements......The results of an experimental investigation of a new type of optical waveguide based on planar technology in which the liglht guiding and modulation are achieved by exploiting free carrier effects in silicon are presented. Light is guided between the n+ substrate and two p+ regions, which also...... serve as carrier injectors for controling absorption. Light confinement of single mode devices is good, giving spot sizes of 9 ¿m FWHM. Insertion loss measurements indicate that the absorption losses for these waveguides are extremely low, less 1 dB/cm. Estimates of the switching speed indicate...

  2. Non-storm irregular variation of the Dst index

    Directory of Open Access Journals (Sweden)

    S. Nakano

    2012-01-01

    Full Text Available The Dst index has a long-term variation that is not associated with magnetic storms. We estimated the long-term non-storm component of the Dst variation by removing the short-term variation related to magnetic storms. The results indicate that the variation of the non-storm component includes not only a seasonal variation but also an irregular variation. The irregular long-term variation is likely to be due to an anti-correlation with the long-term variation of solar-wind activity. In particular, a clear anti-correlation is observed between the non-storm component of Dst and the long-term variation of the solar-wind dynamic pressure. This means that in the long term, the Dst index tends to increase when the solar-wind dynamic pressure decreases. We interpret this anti-correlation as an indication that the long-term non-storm variation of Dst is influenced by the tail current variation. The long-term variation of the solar-wind dynamic pressure controls the plasma sheet thermal pressure, and the change of the plasma sheet thermal pressure would cause the non-storm tail current variation, resulting in the non-storm variation of Dst.

  3. Non-Markovianity Measure Based on Brukner–Zeilinger Invariant Information for Unital Quantum Dynamical Maps

    International Nuclear Information System (INIS)

    He Zhi; Zhu Lie-Qiang; Li Li

    2017-01-01

    A non-Markovianity measure based on Brukner–Zeilinger invariant information to characterize non-Markovian effect of open systems undergoing unital dynamical maps is proposed. The method takes advantage of non-increasing property of the Brukner–Zeilinger invariant information under completely positive and trace-preserving unital maps. The simplicity of computing the Brukner–Zeilinger invariant information is the advantage of the proposed measure because of mainly depending on the purity of quantum state. The measure effectively captures the characteristics of non-Markovianity of unital dynamical maps. As some concrete application, we consider two typical non-Markovian noise channels, i.e., the phase damping channel and the random unitary channel to show the sensitivity of the proposed measure. By investigation, we find that the conditions of detecting the non-Markovianity for the phase damping channel are consistent with the results of existing measures for non-Markovianity, i.e., information flow, divisibility and quantum mutual information. However, for the random unitary channel non-Markovian conditions are same to that of the information flow, but is different from that of the divisibility and quantum mutual information. (paper)

  4. Duality between the Deconfined Quantum-Critical Point and the Bosonic Topological Transition

    Directory of Open Access Journals (Sweden)

    Yan Qi Qin

    2017-09-01

    Full Text Available Recently, significant progress has been made in (2+1-dimensional conformal field theories without supersymmetry. In particular, it was realized that different Lagrangians may be related by hidden dualities; i.e., seemingly different field theories may actually be identical in the infrared limit. Among all the proposed dualities, one has attracted particular interest in the field of strongly correlated quantum-matter systems: the one relating the easy-plane noncompact CP^{1} model (NCCP^{1} and noncompact quantum electrodynamics (QED with two flavors (N=2 of massless two-component Dirac fermions. The easy-plane NCCP^{1} model is the field theory of the putative deconfined quantum-critical point separating a planar (XY antiferromagnet and a dimerized (valence-bond solid ground state, while N=2 noncompact QED is the theory for the transition between a bosonic symmetry-protected topological phase and a trivial Mott insulator. In this work, we present strong numerical support for the proposed duality. We realize the N=2 noncompact QED at a critical point of an interacting fermion model on the bilayer honeycomb lattice and study it using determinant quantum Monte Carlo (QMC simulations. Using stochastic series expansion QMC simulations, we study a planar version of the S=1/2 J-Q spin Hamiltonian (a quantum XY model with additional multispin couplings and show that it hosts a continuous transition between the XY magnet and the valence-bond solid. The duality between the two systems, following from a mapping of their phase diagrams extending from their respective critical points, is supported by the good agreement between the critical exponents according to the proposed duality relationships. In the J-Q model, we find both continuous and first-order transitions, depending on the degree of planar anisotropy, with deconfined quantum criticality surviving only up to moderate strengths of the anisotropy. This explains previous claims of no deconfined

  5. A non-genetic approach to labelling acute myeloid leukemia and bone marrow cells with quantum dots.

    Science.gov (United States)

    Zheng, Yanwen; Tan, Dongming; Chen, Zheng; Hu, Chenxi; Mao, Zhengwei J; Singleton, Timothy P; Zeng, Yan; Shao, Xuejun; Yin, Bin

    2014-06-01

    The difficulty in manipulation of leukemia cells has long hindered the dissection of leukemia pathogenesis. We have introduced a non-genetic approach of marking blood cells, using quantum dots. We compared quantum dots complexed with different vehicles, including a peptide Tat, cationic polymer Turbofect and liposome. Quantum dots-Tat showed the highest efficiency of marking hematopoietic cells among the three vehicles. Quantum dots-Tat could also label a panel of leukemia cell lines at varied efficiencies. More uniform intracellular distributions of quantum dots in mouse bone marrow and leukemia cells were obtained with quantum dots-Tat, compared with the granule-like formation obtained with quantum dots-liposome. Our results suggest that quantum dots have provided a photostable and non-genetic approach that labels normal and malignant hematopoietic cells, in a cell type-, vehicle-, and quantum dot concentration-dependent manner. We expect for potential applications of quantum dots as an easy and fast marking tool assisting investigations of various types of blood cells in the future.

  6. Conal representation of quantum states and non-trace-preserving quantum operations

    International Nuclear Information System (INIS)

    Arrighi, Pablo; Patricot, Christophe

    2003-01-01

    We represent generalized density matrices of a d-complex dimensional quantum system as a subcone of a real pointed cone of revolution in R d 2 , or indeed a Minkowskian cone in E 1,d 2 -1 . Generalized pure states correspond to certain future-directed lightlike vectors of E 1,d 2 -1 . This extension of the generalized Bloch sphere enables us to cater for non-trace-preserving quantum operations, and in particular to view the per-outcome effects of generalized measurements. We show that these consist of the product of an orthogonal transform about the axis of the cone of revolution and a positive real linear transform. We give detailed formulas for the one-qubit case and express the post-measurement states in terms of the initial-state vectors and measurement vectors. We apply these results in order to find the information gain versus disturbance trade-off in the case of two equiprobable pure states. Thus we recover Fuchs and Peres's formula in an elegant manner

  7. Photon induced non-linear quantized double layer charging in quaternary semiconducting quantum dots.

    Science.gov (United States)

    Nair, Vishnu; Ananthoju, Balakrishna; Mohapatra, Jeotikanta; Aslam, M

    2018-03-15

    Room temperature quantized double layer charging was observed in 2 nm Cu 2 ZnSnS 4 (CZTS) quantum dots. In addition to this we observed a distinct non-linearity in the quantized double layer charging arising from UV light modulation of double layer. UV light irradiation resulted in a 26% increase in the integral capacitance at the semiconductor-dielectric (CZTS-oleylamine) interface of the quantum dot without any change in its core size suggesting that the cause be photocapacitive. The increasing charge separation at the semiconductor-dielectric interface due to highly stable and mobile photogenerated carriers cause larger electrostatic forces between the quantum dot and electrolyte leading to an enhanced double layer. This idea was supported by a decrease in the differential capacitance possible due to an enhanced double layer. Furthermore the UV illumination enhanced double layer gives us an AC excitation dependent differential double layer capacitance which confirms that the charging process is non-linear. This ultimately illustrates the utility of a colloidal quantum dot-electrolyte interface as a non-linear photocapacitor. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Optimal guidance law in quantum mechanics

    International Nuclear Information System (INIS)

    Yang, Ciann-Dong; Cheng, Lieh-Lieh

    2013-01-01

    Following de Broglie’s idea of a pilot wave, this paper treats quantum mechanics as a problem of stochastic optimal guidance law design. The guidance scenario considered in the quantum world is that an electron is the flight vehicle to be guided and its accompanying pilot wave is the guidance law to be designed so as to guide the electron to a random target driven by the Wiener process, while minimizing a cost-to-go function. After solving the stochastic optimal guidance problem by differential dynamic programming, we point out that the optimal pilot wave guiding the particle’s motion is just the wavefunction Ψ(t,x), a solution to the Schrödinger equation; meanwhile, the closed-loop guidance system forms a complex state–space dynamics for Ψ(t,x), from which quantum operators emerge naturally. Quantum trajectories under the action of the optimal guidance law are solved and their statistical distribution is shown to coincide with the prediction of the probability density function Ψ ∗ Ψ. -- Highlights: •Treating quantum mechanics as a pursuit-evasion game. •Reveal an interesting analogy between guided flight motion and guided quantum motion. •Solve optimal quantum guidance problem by dynamic programming. •Gives a formal proof of de Broglie–Bohm’s idea of a pilot wave. •The optimal pilot wave is shown to be a wavefunction solved from Schrödinger equation

  9. Optimal guidance law in quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ciann-Dong, E-mail: cdyang@mail.ncku.edu.tw; Cheng, Lieh-Lieh, E-mail: leo8101@hotmail.com

    2013-11-15

    Following de Broglie’s idea of a pilot wave, this paper treats quantum mechanics as a problem of stochastic optimal guidance law design. The guidance scenario considered in the quantum world is that an electron is the flight vehicle to be guided and its accompanying pilot wave is the guidance law to be designed so as to guide the electron to a random target driven by the Wiener process, while minimizing a cost-to-go function. After solving the stochastic optimal guidance problem by differential dynamic programming, we point out that the optimal pilot wave guiding the particle’s motion is just the wavefunction Ψ(t,x), a solution to the Schrödinger equation; meanwhile, the closed-loop guidance system forms a complex state–space dynamics for Ψ(t,x), from which quantum operators emerge naturally. Quantum trajectories under the action of the optimal guidance law are solved and their statistical distribution is shown to coincide with the prediction of the probability density function Ψ{sup ∗}Ψ. -- Highlights: •Treating quantum mechanics as a pursuit-evasion game. •Reveal an interesting analogy between guided flight motion and guided quantum motion. •Solve optimal quantum guidance problem by dynamic programming. •Gives a formal proof of de Broglie–Bohm’s idea of a pilot wave. •The optimal pilot wave is shown to be a wavefunction solved from Schrödinger equation.

  10. Frontiers in Planar Lightwave Circuit Technology Design, Simulation, and Fabrication

    CERN Document Server

    Janz, Siegfried; Tanev, Stoyan

    2005-01-01

    This book is the result of the NATO Advanced Research Workshop on Frontiers in Planar Lightwave Circuit Technology, which took place in Ottawa, Canada from September 21-25, 2004. Many of the world’s leading experts in integrated photonic design, theory and experiment were invited to give lectures in their fields of expertise, and participate in discussions on current research and applications, as well as the new directions planar lightwave circuit technology is evolving towards. The sum of their contributions to this book constitutes an excellent record of many key issues and scientific problems in planar lightwave circuit research at the time of writing. In this volume the reader will find detailed overviews of experimental and theoretical work in high index contrast waveguide systems, micro-optical resonators, nonlinear optics, and advanced optical simulation methods, as well as articles describing emerging applications of integrated optics for medical and biological applications.

  11. Quantum non-demolition phonon counter with a hybrid optomechnical system

    Science.gov (United States)

    Song, Qiao; Zhang, KeYe; Dong, Ying; Zhang, WeiPing

    2018-05-01

    A phonon counting scheme based on the control of polaritons in an optomechanical system is proposed. This approach permits us to measure the number of phonons in a quantum non-demolition (QND) manner for arbitrary modes not limited by the frequency matching condition as in usual photon-phonon scattering detections. The performance on phonon number transfer and quantum state transfer of the counter are analyzed and simulated numerically by taking into account all relevant sources of noise.

  12. Classical and quantum non-linear optical applications using the Mach-Zehnder interferometer

    Science.gov (United States)

    Prescod, Andru

    Mach Zehnder (MZ) modulators are widely employed in a variety of applications, such as optical communications, optical imaging, metrology and encryption. In this dissertation, we explore two non-linear MZ applications; one classified as classical and one as quantum, in which the Mach Zehnder interferometer is used. In the first application, a classical non-linear application, we introduce and study a new electro-optic highly linear (e.g., >130 dB) modulator configuration. This modulator makes use of a phase modulator (PM) in one arm of the MZ interferometer (MZI) and a ring resonator (RR) located on the other arm. The modulator performance is obtained through the control of a combination of internal and external parameters. These parameters include the RR-coupling ratio (internal parameter); the RF power split ratio and the RF phase bias (external parameters). Results show the unique and superior features, such as high linearity (SFDR˜133 dB), modulation bandwidth extension (as much as 70%) over the previously proposed and demonstrated Resonator-Assisted Mach Zehnder (RAMZ) design. Furthermore the proposed electro-optic modulator of this dissertation also provides an inherent SFDR compensation capability, even in cases where a significant waveguide optical loss exists. This design also shows potential for increased flexibility, practicality and ease of use. In the second application, a quantum non-linear application, we experimentally demonstrate quantum optical coherence tomography (QOCT) using a type II non-linear crystal (periodically-poled potassium titanyl phosphate (KTiOPO4) or PPKTP). There have been several publications discussing the merits and disadvantages of QOCT compared to OCT and other imaging techniques. First, we discuss the issues and solutions for increasing the efficiency of the quantum entangled photons. Second, we use a free space QOCT experiment to generate a high flux of these quantum entangled photons in two orthogonal polarizations, by

  13. Guided-Mode-Leaky-Mode-Guided-Mode Fiber Interferometer and Its High Sensitivity Refractive Index Sensing Technology

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2016-06-01

    Full Text Available A cascaded symmetrical dual-taper Mach-Zehnder interferometer structure based on guided-mode and leaky-mode interference is proposed in this paper. Firstly, the interference spectrum characteristics of interferometer has been analyzed by the Finite Difference-Beam Propagation Method (FD-BPM. When the diameter of taper waist is 20 μm–30 μm, dual-taper length is 1 mm and taper distance is 4 cm–6 cm, the spectral contrast is higher, which is suitable for sensing. Secondly, experimental research on refractive index sensitivity is carried out. A refractive index sensitivity of 62.78 nm/RIU (refractive index unit can achieved in the RI range of 1.3333–1.3792 (0%~25% NaCl solution, when the sensor structure parameters meet the following conditions: diameter of taper waist is 24 μm, dual-taper length is 837 μm and taper distance is 5.5 cm. The spectrum contrast is 0.8 and measurement resolution is 1.6 × 10−5 RIU. The simulation analysis is highly consistent with experimental results. Research shows that the sensor has promising application in low RI fields where high-precision measurement is required due to its high sensitivity and stability.

  14. Quantum Nonlocality and Reality

    Science.gov (United States)

    Bell, Mary; Gao, Shan

    2016-09-01

    physics of Bell non-locality: palatial twistor theory Roger Penrose; 26. Measurement and macroscopicity: overcoming conceptual imprecision in quantum measurement theory Gregg Jaeger; Index.

  15. Some applicationS of non-Hermitian operators in quantum mechanics and quantum field theory

    International Nuclear Information System (INIS)

    Recami, E.; Rodrigues, W.A. Jr.; Smrz, P.

    1983-01-01

    Due to the possibility of rephrasing it in terms of Lie-admissible algebras, some work done in the past in collaboration with A., Agodi, M., Baldo and V.S., Olkhovsky is here reported. Such work led to the introduction of non-Hermitian operators in (classical and relativistic) quantum theory. In particular: (i) the association of unstable states (decaying 'Resonances') with the eigenvectors of non-Hermitian hamiltonians; (ii) the problem of the four position operators for relativistic spin-zero particles are dealth with

  16. Planar and nonplanar ion acoustic shock waves in relativistic degenerate astrophysical electron-positron-ion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ata-ur-Rahman,; Qamar, A. [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan); National Centre for Physics, QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); Ali, S. [National Centre for Physics, QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); Mirza, Arshad M. [Theoretical Plasma Physics Group, Physics Department, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2013-04-15

    We have studied the propagation of ion acoustic shock waves involving planar and non-planar geometries in an unmagnetized plasma, whose constituents are non-degenerate ultra-cold ions, relativistically degenerate electrons, and positrons. By using the reductive perturbation technique, Korteweg-deVries Burger and modified Korteweg-deVries Burger equations are derived. It is shown that only compressive shock waves can propagate in such a plasma system. The effects of geometry, the ion kinematic viscosity, and the positron concentration are examined on the ion acoustic shock potential and electric field profiles. It is found that the properties of ion acoustic shock waves in a non-planar geometry significantly differ from those in planar geometry. The present study has relevance to the dense plasmas, produced in laboratory (e.g., super-intense laser-dense matter experiments) and in dense astrophysical objects.

  17. The pushing gate in a planar Coulomb crystal using a flat-top laser beam

    International Nuclear Information System (INIS)

    Kitaoka, M.; Buluta, I.M.; Hasegawa, S.

    2009-01-01

    We propose a pushing gate for entangling two ions in a planar Coulomb crystal in the view of realizing large-scale quantum simulations. A tightly focused laser is irradiated from the direction perpendicular to the crystal plane and its spatial intensity profile generates a state-dependent force. We analyze the error sources in this scheme and obtain low infidelity.

  18. Uhrig dynamical control of a three-level system via non-Markovian quantum state diffusion

    International Nuclear Information System (INIS)

    Shu, Wenchong; Zhao, Xinyu; Jing, Jun; Yu, Ting; Wu, Lian-Ao

    2013-01-01

    In this paper, we use the quantum state diffusion (QSD) equation to implement the Uhrig dynamical decoupling to a three-level quantum system coupled to a non-Markovian reservoir comprising of infinite numbers of degrees of freedom. For this purpose, we first reformulate the non-Markovian QSD to incorporate the effect of the external control fields. With this stochastic QSD approach, we demonstrate that an unknown state of the three-level quantum system can be universally protected against both coloured phase and amplitude noises when the control-pulse sequences and control operators are properly designed. The advantage of using non-Markovian QSD equations is that the control dynamics of open quantum systems can be treated exactly without using Trotter product formula and be efficiently simulated even when the environment is comprised of infinite numbers of degrees of freedom. We also show how the control efficacy depends on the environment memory time and the designed time points of applied control pulses. (paper)

  19. Non-stationary and relaxation phenomena in cavity-assisted quantum memories

    Science.gov (United States)

    Veselkova, N. G.; Sokolov, I. V.

    2017-12-01

    We investigate the non-stationary and relaxation phenomena in cavity-assisted quantum memories for light. As a storage medium we consider an ensemble of cold atoms with standard Lambda-scheme of working levels. Some theoretical aspects of the problem were treated previously by many authors, and recent experiments stimulate more deep insight into the ultimate ability and limitations of the device. Since quantum memories can be used not only for the storage of quantum information, but also for a substantial manipulation of ensembles of quantum states, the speed of such manipulation and hence the ability to write and retrieve the signals of relatively short duration becomes important. In our research we do not apply the so-called bad cavity limit, and consider the memory operation of the signals whose duration is not much larger than the cavity field lifetime, accounting also for the finite lifetime of atomic coherence. In our paper we present an effective approach that makes it possible to find the non-stationary amplitude and phase behavior of strong classical control field, that matches the desirable time profile of both the envelope and the phase of the retrieved quantized signal. The phase properties of the retrieved quantized signals are of importance for the detection and manipulation of squeezing, entanglement, etc by means of optical mixing and homodyning.

  20. Thermodynamic description of non-Markovian information flux of nonequilibrium open quantum systems

    Science.gov (United States)

    Chen, Hong-Bin; Chen, Guang-Yin; Chen, Yueh-Nan

    2017-12-01

    One of the fundamental issues in the field of open quantum systems is the classification and quantification of non-Markovianity. In the contest of quantity-based measures of non-Markovianity, the intuition of non-Markovianity in terms of information backflow is widely discussed. However, it is not easy to characterize the information flux for a given system state and show its connection to non-Markovianity. Here, by using the concepts from thermodynamics and information theory, we discuss a potential definition of information flux of an open quantum system, valid for static environments. We present a simple protocol to show how a system attempts to share information with its environment and how it builds up system-environment correlations. We also show that the information returned from the correlations characterizes the non-Markovianity and a hierarchy of indivisibility of the system dynamics.

  1. Study on the security of discrete-variable quantum key distribution over non-Markovian channels

    International Nuclear Information System (INIS)

    Huang Peng; Zhu Jun; He Guangqiang; Zeng Guihua

    2012-01-01

    The dynamic of the secret key rate of the discrete-variable quantum key distribution (QKD) protocol over the non-Markovian quantum channel is investigated. In particular, we calculate the secret key rate for the six-state protocol over non-Markovian depolarizing channels with coloured noise and Markovian depolarizing channels with Gaussian white noise, respectively. We find that the secure secret key rate for the non-Markovian depolarizing channel will be larger than the Markovian one under the same conditions even when their upper bounds of tolerable quantum bit error rate are equal. This indicates that this coloured noise in the non-Markovian depolarizing channel can enhance the security of communication. Moreover, we show that the secret key rate fluctuates near the secure point when the coupling strength of the system with the environment is high. The results demonstrate that the non-Markovian effects of the transmission channel can have a positive impact on the security of discrete-variable QKD. (paper)

  2. Toward quantum FinFET

    CERN Document Server

    Wang, Zhiming

    2013-01-01

    This book reviews a range of quantum phenomena in novel nanoscale transistors called FinFETs, including quantized conductance of 1D transport, single electron effect, tunneling transport, etc. The goal is to create a fundamental bridge between quantum FinFET and nanotechnology to stimulate readers' interest in developing new types of semiconductor technology. Although the rapid development of micro-nano fabrication is driving the MOSFET downscaling trend that is evolving from planar channel to nonplanar FinFET, silicon-based CMOS technology is expected to face fundamental limits in the near future. Therefore, new types of nanoscale devices are being investigated aggressively to take advantage of the quantum effect in carrier transport. The quantum confinement effect of FinFET at room temperatures was reported following the breakthrough to sub-10nm scale technology in silicon nanowires. With chapters written by leading scientists throughout the world, Toward Quantum FinFET provides a comprehensive introductio...

  3. Coupling Ideality of Integrated Planar High-Q Microresonators

    Science.gov (United States)

    Pfeiffer, Martin H. P.; Liu, Junqiu; Geiselmann, Michael; Kippenberg, Tobias J.

    2017-02-01

    Chip-scale optical microresonators with integrated planar optical waveguides are useful building blocks for linear, nonlinear, and quantum-optical photonic devices alike. Loss reduction through improving fabrication processes results in several integrated microresonator platforms attaining quality (Q ) factors of several millions. Beyond the improvement of the quality factor, the ability to operate the microresonator with high coupling ideality in the overcoupled regime is of central importance. In this regime, the dominant source of loss constitutes the coupling to a single desired output channel, which is particularly important not only for quantum-optical applications such as the generation of squeezed light and correlated photon pairs but also for linear and nonlinear photonics. However, to date, the coupling ideality in integrated photonic microresonators is not well understood, in particular, design-dependent losses and their impact on the regime of high ideality. Here we investigate design-dependent parasitic losses described by the coupling ideality of the commonly employed microresonator design consisting of a microring-resonator waveguide side coupled to a straight bus waveguide, a system which is not properly described by the conventional input-output theory of open systems due to the presence of higher-order modes. By systematic characterization of multimode high-Q silicon nitride microresonator devices, we show that this design can suffer from low coupling ideality. By performing 3D simulations, we identify the coupling to higher-order bus waveguide modes as the dominant origin of parasitic losses which lead to the low coupling ideality. Using suitably designed bus waveguides, parasitic losses are mitigated with a nearly unity ideality and strong overcoupling (i.e., a ratio of external coupling to internal resonator loss rate >9 ) are demonstrated. Moreover, we find that different resonator modes can exchange power through the coupler, which, therefore

  4. Non-Gaussian Stochastic Radiation Transfer in Finite Planar Media with Quadratic Scattering

    International Nuclear Information System (INIS)

    Sallah, M.

    2016-01-01

    The stochastic radiation transfer is considered in a participating planar finite continuously fluctuating medium characterized by non-Gaussian variability. The problem is considered for diffuse-reflecting boundaries with quadratic Rayleigh scattering. Random variable transformation (RVT) technique is used to get the complete average for the solution functions that are represented by the probability-density function (PDF) of the solution process. RVT algorithm applies a simple integral transformation to the input stochastic process (the extinction function of the medium). This linear transformation enables us to rewrite the stochastic transport equations in terms of the optical random variable (x) and the optical random thickness (L). Then the radiation transfer equation is solved deterministically to get a closed form for the solution as a function of x and L. So, the solution is used to obtain the PDF of the solution functions applying the RVT technique among the input random variable (L) and the output process (the solution functions). The obtained averages of the solution functions are used to get the complete analytical averages for some interesting physical quantities, namely, reflectivity, transmissivity and partial heat fluxes at the medium boundaries. Numerical results are represented graphically for different non-Gaussian probability distribution functions that compared with the corresponding Gaussian PDF.

  5. Hierarchical structures consisting of SiO2 nanorods and p-GaN microdomes for efficiently harvesting solar energy for InGaN quantum well photovoltaic cells.

    Science.gov (United States)

    Ho, Cheng-Han; Lien, Der-Hsien; Chang, Hung-Chih; Lin, Chin-An; Kang, Chen-Fang; Hsing, Meng-Kai; Lai, Kun-Yu; He, Jr-Hau

    2012-12-07

    We experimentally and theoretically demonstrated the hierarchical structure of SiO(2) nanorod arrays/p-GaN microdomes as a light harvesting scheme for InGaN-based multiple quantum well solar cells. The combination of nano- and micro-structures leads to increased internal multiple reflection and provides an intermediate refractive index between air and GaN. Cells with the hierarchical structure exhibit improved short-circuit current densities and fill factors, rendering a 1.47 fold efficiency enhancement as compared to planar cells.

  6. Two solvable problems of planar geometrical optics.

    Science.gov (United States)

    Borghero, Francesco; Bozis, George

    2006-12-01

    In the framework of geometrical optics we consider a two-dimensional transparent inhomogeneous isotropic medium (dispersive or not). We show that (i) for any family belonging to a certain class of planar monoparametric families of monochromatic light rays given in the form f(x,y)=c of any definite color and satisfying a differential condition, all the refractive index profiles n=n(x,y) allowing for the creation of the given family can be found analytically (inverse problem) and that (ii) for any member of a class of two-dimensional refractive index profiles n=n(x,y) satisfying a differential condition, all the compatible families of light rays can be found analytically (direct problem). We present appropriate examples.

  7. Quantum fields in the non-perturbative regime. Yang-Mills theory and gravity

    International Nuclear Information System (INIS)

    Eichhorn, Astrid

    2011-01-01

    In this thesis we study candidates for fundamental quantum field theories, namely non-Abelian gauge theories and asymptotically safe quantum gravity. Whereas the first ones have a stronglyinteracting low-energy limit, the second one enters a non-perturbative regime at high energies. Thus, we apply a tool suited to the study of quantum field theories beyond the perturbative regime, namely the Functional Renormalisation Group. In a first part, we concentrate on the physical properties of non-Abelian gauge theories at low energies. Focussing on the vacuum properties of the theory, we present an evaluation of the full effective potential for the field strength invariant F μν F μν from non-perturbative gauge correlation functions and find a non-trivial minimum corresponding to the existence of a dimension four gluon condensate in the vacuum. We also relate the infrared asymptotic form of the β function of the running background-gauge coupling to the asymptotic behavior of Landau-gauge gluon and ghost propagators and derive an upper bound on their scaling exponents. We then consider the theory at finite temperature and study the nature of the confinement phase transition in d = 3+1 dimensions in various non-Abelian gauge theories. For SU(N) with N= 3,..,12 and Sp(2) we find a first-order phase transition in agreement with general expectations. Moreover our study suggests that the phase transition in E(7) Yang-Mills theory also is of first order. Our studies shed light on the question which property of a gauge group determines the order of the phase transition. In a second part we consider asymptotically safe quantum gravity. Here, we focus on the Faddeev-Popov ghost sector of the theory, to study its properties in the context of an interacting UV regime. We investigate several truncations, which all lend support to the conjecture that gravity may be asymptotically safe. In a first truncation, we study the ghost anomalous dimension which we find to be negative at the

  8. The Design, Development and Evaluation of the Vegetarian Lifestyle Index on Dietary Patterns among Vegetarians and Non-Vegetarians.

    Science.gov (United States)

    Le, Lap T; Sabaté, Joan; Singh, Pramil N; Jaceldo-Siegl, Karen

    2018-04-26

    Traditionally, healthful diets and lifestyles have been examined only in relation to single nutrients, foods, or food groups in terms of dietary exposure. An alternative approach is to conceptualize an index based on vegetarian food pyramid guidelines as a measure of overall diet and lifestyle quality. Our objectives were to: (1) develop the Vegetarian Lifestyle Index (VLI); and (2) evaluate adherence to the Vegetarian Food Guide Pyramid (VFGP) among a low-risk population of Adventists. The index was based on the operationalization of 14 dietary and lifestyle components. All components were equally weighted. Higher score reflected greater adherence to the VFGP. The analytic sample ( n = 90,057) comprised 47.7% non-vegetarians, 5.6% semi-, 10.1% pesco-, and 29.0% lacto-ovo-vegetarians, and 7.7% vegans, of which 1.1% were current smokers and 9.9% were alcohol consumers. Population mean VLI score was 7.43 (SD = 1.75) ranging from 1 to 12.5. Non-vegetarians (6.14; 95% confidence interval (CI), 6.06⁻6.21) had a significantly lower mean compared to semi- (7.31; 95% CI, 7.22⁻7.40), pesco- (7.41; 95% CI, 7.32⁻7.49), and lacto-ovo-vegetarians (8.16; 95% CI, 8.08⁻8.24), as well as vegans (8.88; 95% CI, 8.78⁻8.96). Vegetarians scored on average 1.18 to 2.73 more points than their non-vegetarian counterparts. Results demonstrate that the index has strong discriminant ability across distinct dietary patterns. Additionally, the VLI provides a useful measure of diet and lifestyle adherence to further refine vegetarian food pyramid guidelines.

  9. Influence of Non-Uniform Magnetic Field on Quantum Teleportation in Heisenberg XY Model

    Institute of Scientific and Technical Information of China (English)

    SHAO Bin; YANG Tie-jian; ZHAO Yue-hong; ZOU Jian

    2007-01-01

    By considering the intrinsic decoherence, the validity of quantum teleportation of a two-qubit 1D Heisenberg XY chain in a non-uniform external magnetic field is studied. The fidelity as the measurement of a possible quantum teleportation is calculated and the effects of the non-uniform magnetic field and the intrinsic decoherence are discussed. It is found that anti-parallel magnetic field is more favorable for teleportation and the fidelity is suppressed by the intrinsic decoherence.

  10. Modular Theory, Non-Commutative Geometry and Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Wicharn Lewkeeratiyutkul

    2010-08-01

    Full Text Available This paper contains the first written exposition of some ideas (announced in a previous survey on an approach to quantum gravity based on Tomita-Takesaki modular theory and A. Connes non-commutative geometry aiming at the reconstruction of spectral geometries from an operational formalism of states and categories of observables in a covariant theory. Care has been taken to provide a coverage of the relevant background on modular theory, its applications in non-commutative geometry and physics and to the detailed discussion of the main foundational issues raised by the proposal.

  11. A Generic Simulation Framework for Non-Entangled based Experimental Quantum Cryptography and Communication: Quantum Cryptography and Communication Simulator (QuCCs)

    Science.gov (United States)

    Buhari, Abudhahir; Zukarnain, Zuriati Ahmad; Khalid, Roszelinda; Zakir Dato', Wira Jaafar Ahmad

    2016-11-01

    The applications of quantum information science move towards bigger and better heights for the next generation technology. Especially, in the field of quantum cryptography and quantum computation, the world already witnessed various ground-breaking tangible product and promising results. Quantum cryptography is one of the mature field from quantum mechanics and already available in the markets. The current state of quantum cryptography is still under various researches in order to reach the heights of digital cryptography. The complexity of quantum cryptography is higher due to combination of hardware and software. The lack of effective simulation tool to design and analyze the quantum cryptography experiments delays the reaching distance of the success. In this paper, we propose a framework to achieve an effective non-entanglement based quantum cryptography simulation tool. We applied hybrid simulation technique i.e. discrete event, continuous event and system dynamics. We also highlight the limitations of a commercial photonic simulation tool based experiments. Finally, we discuss ideas for achieving one-stop simulation package for quantum based secure key distribution experiments. All the modules of simulation framework are viewed from the computer science perspective.

  12. Modal analysis of spontaneous emission in a planar microcavity

    International Nuclear Information System (INIS)

    Rigneault, H.; Monneret, S.

    1996-01-01

    A complete set of cavity modes in planar dielectric microcavities is presented which naturally includes guided modes. We show that most of these orthonormal fields can be derived from a coherent superposition of plane waves incoming on the stack from the air and from the substrate. Spontaneous emission of a dipole located inside the microcavity is analyzed, in terms of cavity modes. Derivation of the radiation pattern in the air and in the substrate is presented. The power emitted into the guided modes is also determined. Finally, a numerical analysis of the radiative properties of an erbium atom located in a Fabry-Pacute erot multilayer dielectric microcavity is investigated. We show that a large amount of light is emitted into the guided modes of the structure, in spite of the Fabry-Pacute erot resonance, which increases the spontaneous emission rate in a normal direction. copyright 1996 The American Physical Society

  13. Quantum paradoxes quantum theory for the perplexed

    CERN Document Server

    Aharonov, Yakir

    2005-01-01

    A Guide through the Mysteries of Quantum Physics!Yakir Aharonov is one of the pioneers in measuring theory, the nature of quantum correlations, superselection rules, and geometric phases and has been awarded numerous scientific honors. The author has contributed monumental concepts to theoretical physics, especially the Aharonov-Bohm effect and the Aharonov-Casher effect. Together with Daniel Rohrlich of the Weizmann Institute, Israel, he has written a pioneering work on the remaining mysteries of quantum mechanics. From the perspective of a preeminent researcher in the fundamental aspects of quantum mechanics, the text combines mathematical rigor with penetrating and concise language

  14. Quantum memory for Rindler supertranslations

    Science.gov (United States)

    Kolekar, Sanved; Louko, Jorma

    2018-04-01

    The Rindler horizon in Minkowski spacetime can be implanted with supertranslation hair by a matter shock wave without planar symmetry, and the hair is observable as a supertranslation memory on the Rindler family of uniformly linearly accelerated observers. We show that this classical memory is accompanied by a supertranslation quantum memory that modulates the entanglement between the opposing Rindler wedges in quantum field theory. A corresponding phenomenon across a black hole horizon may play a role in Hawking, Perry, and Strominger's proposal for supertranslations to provide a solution to the black hole information paradox.

  15. Few-photon Non-linearities in Nanophotonic Devices for Quantum Information Technology

    DEFF Research Database (Denmark)

    Nysteen, Anders

    In this thesis we investigate few-photon non-linearities in all-optical, on-chip circuits, and we discuss their possible applications in devices of interest for quantum information technology, such as conditional two-photon gates and single-photon sources. In order to propose efficient devices...... the scattered photons. Even though the non-linearity also alters the pulse spectrum due to a four-wave mixing process, we demonstrate that input pulses with a Gaussian spectrum can be mapped to the output with up to 80 % fidelity. Using two identical two-level emitters, we propose a setup for a deterministic...... by the capturing process. Semiconductor quantum dots (QDs) are promising for realizing few-photon non-linearities in solid-state implementations, although coupling to phonon modes in the surrounding lattice have significant influence on the dynamics. By accounting for the commonly neglected asymmetry between...

  16. Planar microlens with front-face angle: design, fabrication, and characterization

    KAUST Repository

    Hafiz, Md Abdullah Al

    2016-07-08

    This paper studies the effect of microlens front-face angle on the performance of an optical system consisting of a planar-graded refractive index (GRIN) lens pair facing each other separated by a free-space region. The planar silica microlens pairs are designed to facilitate low-loss optical signal propagation in the free-space region between the opposing optical waveguides. The planar lens is fabricated from a 38-μm-thick fluorine-doped silica layer on a silicon substrate. It has a parabolic refractive index profile in the vertical direction, which is achieved by controlled fluorine incorporation in the silica film to collimate the optical beam in the vertical direction. Horizontal beam collimation is achieved by incorporating a horizontal curvature at the front face of the lens defined by deep oxide etch. A generalized 3×3ABCDGH transformation matrix method has been derived to compute the coupling efficiency of such microlens pairs to take front-face angles that may be present due to fabrication variations or limitations and possible input/output optical fiber offset/tilt into considerations. Pairs of such planar GRIN lens with various free-space propagation distances between them ranging from 75 to 2500  μm and with front-face angles of 1.5 deg, 2 deg, and 4 deg have been fabricated and characterized. Beam propagation method simulations have been carried out to substantiate the theoretical and experimental results. The results indicate that the optical loss is reasonably low up to 1.5 deg of front-face angles and increases significantly with further increase in the front-face angle. Analysis shows that for a given system with specific microlens front-face angle, the optical loss can be significantly reduced by properly compensating the vertical position of the input and output fibers.

  17. Planar microlens with front-face angle: design, fabrication, and characterization

    Science.gov (United States)

    Al Hafiz, Md. Abdullah; Michael, Aron; Kwok, Chee-Yee

    2016-07-01

    This paper studies the effect of microlens front-face angle on the performance of an optical system consisting of a planar-graded refractive index (GRIN) lens pair facing each other separated by a free-space region. The planar silica microlens pairs are designed to facilitate low-loss optical signal propagation in the free-space region between the opposing optical waveguides. The planar lens is fabricated from a 38-μm-thick fluorine-doped silica layer on a silicon substrate. It has a parabolic refractive index profile in the vertical direction, which is achieved by controlled fluorine incorporation in the silica film to collimate the optical beam in the vertical direction. Horizontal beam collimation is achieved by incorporating a horizontal curvature at the front face of the lens defined by deep oxide etch. A generalized 3×3 ABCDGH transformation matrix method has been derived to compute the coupling efficiency of such microlens pairs to take front-face angles that may be present due to fabrication variations or limitations and possible input/output optical fiber offset/tilt into considerations. Pairs of such planar GRIN lens with various free-space propagation distances between them ranging from 75 to 2500 μm and with front-face angles of 1.5 deg, 2 deg, and 4 deg have been fabricated and characterized. Beam propagation method simulations have been carried out to substantiate the theoretical and experimental results. The results indicate that the optical loss is reasonably low up to 1.5 deg of front-face angles and increases significantly with further increase in the front-face angle. Analysis shows that for a given system with specific microlens front-face angle, the optical loss can be significantly reduced by properly compensating the vertical position of the input and output fibers.

  18. Planar microlens with front-face angle: design, fabrication, and characterization

    KAUST Repository

    Hafiz, Md Abdullah Al; Michael, Aron; Kwok, Chee-Yee

    2016-01-01

    This paper studies the effect of microlens front-face angle on the performance of an optical system consisting of a planar-graded refractive index (GRIN) lens pair facing each other separated by a free-space region. The planar silica microlens pairs are designed to facilitate low-loss optical signal propagation in the free-space region between the opposing optical waveguides. The planar lens is fabricated from a 38-μm-thick fluorine-doped silica layer on a silicon substrate. It has a parabolic refractive index profile in the vertical direction, which is achieved by controlled fluorine incorporation in the silica film to collimate the optical beam in the vertical direction. Horizontal beam collimation is achieved by incorporating a horizontal curvature at the front face of the lens defined by deep oxide etch. A generalized 3×3ABCDGH transformation matrix method has been derived to compute the coupling efficiency of such microlens pairs to take front-face angles that may be present due to fabrication variations or limitations and possible input/output optical fiber offset/tilt into considerations. Pairs of such planar GRIN lens with various free-space propagation distances between them ranging from 75 to 2500  μm and with front-face angles of 1.5 deg, 2 deg, and 4 deg have been fabricated and characterized. Beam propagation method simulations have been carried out to substantiate the theoretical and experimental results. The results indicate that the optical loss is reasonably low up to 1.5 deg of front-face angles and increases significantly with further increase in the front-face angle. Analysis shows that for a given system with specific microlens front-face angle, the optical loss can be significantly reduced by properly compensating the vertical position of the input and output fibers.

  19. Non-adaptive measurement-based quantum computation and multi-party Bell inequalities

    International Nuclear Information System (INIS)

    Hoban, Matty J; Campbell, Earl T; Browne, Dan E; Loukopoulos, Klearchos

    2011-01-01

    Quantum correlations exhibit behaviour that cannot be resolved with a local hidden variable picture of the world. In quantum information, they are also used as resources for information processing tasks, such as measurement-based quantum computation (MQC). In MQC, universal quantum computation can be achieved via adaptive measurements on a suitable entangled resource state. In this paper, we look at a version of MQC in which we remove the adaptivity of measurements and aim to understand what computational abilities remain in the resource. We show that there are explicit connections between this model of computation and the question of non-classicality in quantum correlations. We demonstrate this by focusing on deterministic computation of Boolean functions, in which natural generalizations of the Greenberger-Horne-Zeilinger paradox emerge; we then explore probabilistic computation via, which multipartite Bell inequalities can be defined. We use this correspondence to define families of multi-party Bell inequalities, which we show to have a number of interesting contrasting properties.

  20. Non-adaptive measurement-based quantum computation and multi-party Bell inequalities

    Energy Technology Data Exchange (ETDEWEB)

    Hoban, Matty J; Campbell, Earl T; Browne, Dan E [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Loukopoulos, Klearchos, E-mail: m.hoban@ucl.ac.uk [Department of Materials, Oxford University, Parks Road, Oxford OX1 4PH (United Kingdom)

    2011-02-15

    Quantum correlations exhibit behaviour that cannot be resolved with a local hidden variable picture of the world. In quantum information, they are also used as resources for information processing tasks, such as measurement-based quantum computation (MQC). In MQC, universal quantum computation can be achieved via adaptive measurements on a suitable entangled resource state. In this paper, we look at a version of MQC in which we remove the adaptivity of measurements and aim to understand what computational abilities remain in the resource. We show that there are explicit connections between this model of computation and the question of non-classicality in quantum correlations. We demonstrate this by focusing on deterministic computation of Boolean functions, in which natural generalizations of the Greenberger-Horne-Zeilinger paradox emerge; we then explore probabilistic computation via, which multipartite Bell inequalities can be defined. We use this correspondence to define families of multi-party Bell inequalities, which we show to have a number of interesting contrasting properties.

  1. Sum of All-Pairs Shortest Path Distances in a Planar Graph in Subquadratic Time

    DEFF Research Database (Denmark)

    Wulff-Nilsen, Christian

    2008-01-01

    We consider the problem of computing the Wiener index of a graph, defined as the sum of distances between all pairs of its vertices. It is an open problem whether the Wiener index of a planar graph can be found in subquadratic time. We solve this problem by presenting an algorithm with O(n^2*log...

  2. Non-Markovian quantum Brownian motion in one dimension in electric fields

    Science.gov (United States)

    Shen, H. Z.; Su, S. L.; Zhou, Y. H.; Yi, X. X.

    2018-04-01

    Quantum Brownian motion is the random motion of quantum particles suspended in a field (or an effective field) resulting from their collision with fast-moving modes in the field. It provides us with a fundamental model to understand various physical features concerning open systems in chemistry, condensed-matter physics, biophysics, and optomechanics. In this paper, without either the Born-Markovian or rotating-wave approximation, we derive a master equation for a charged-Brownian particle in one dimension coupled with a thermal reservoir in electric fields. The effect of the reservoir and the electric fields is manifested as time-dependent coefficients and coherent terms, respectively, in the master equation. The two-photon correlation between the Brownian particle and the reservoir can induce nontrivial squeezing dynamics to the particle. We derive a current equation including the source from the driving fields, transient current from the system flowing into the environment, and the two-photon current caused by the non-rotating-wave term. The presented results then are compared with that given by the rotating-wave approximation in the weak-coupling limit, and these results are extended to a more general quantum network involving an arbitrary number of coupled-Brownian particles. The presented formalism might open a way to better understand exactly the non-Markovian quantum network.

  3. Fast quantum modular exponentiation

    International Nuclear Information System (INIS)

    Meter, Rodney van; Itoh, Kohei M.

    2005-01-01

    We present a detailed analysis of the impact on quantum modular exponentiation of architectural features and possible concurrent gate execution. Various arithmetic algorithms are evaluated for execution time, potential concurrency, and space trade-offs. We find that to exponentiate an n-bit number, for storage space 100n (20 times the minimum 5n), we can execute modular exponentiation 200-700 times faster than optimized versions of the basic algorithms, depending on architecture, for n=128. Addition on a neighbor-only architecture is limited to O(n) time, whereas non-neighbor architectures can reach O(log n), demonstrating that physical characteristics of a computing device have an important impact on both real-world running time and asymptotic behavior. Our results will help guide experimental implementations of quantum algorithms and devices

  4. Path-integral isomorphic Hamiltonian for including nuclear quantum effects in non-adiabatic dynamics

    Science.gov (United States)

    Tao, Xuecheng; Shushkov, Philip; Miller, Thomas F.

    2018-03-01

    We describe a path-integral approach for including nuclear quantum effects in non-adiabatic chemical dynamics simulations. For a general physical system with multiple electronic energy levels, a corresponding isomorphic Hamiltonian is introduced such that Boltzmann sampling of the isomorphic Hamiltonian with classical nuclear degrees of freedom yields the exact quantum Boltzmann distribution for the original physical system. In the limit of a single electronic energy level, the isomorphic Hamiltonian reduces to the familiar cases of either ring polymer molecular dynamics (RPMD) or centroid molecular dynamics Hamiltonians, depending on the implementation. An advantage of the isomorphic Hamiltonian is that it can easily be combined with existing mixed quantum-classical dynamics methods, such as surface hopping or Ehrenfest dynamics, to enable the simulation of electronically non-adiabatic processes with nuclear quantum effects. We present numerical applications of the isomorphic Hamiltonian to model two- and three-level systems, with encouraging results that include improvement upon a previously reported combination of RPMD with surface hopping in the deep-tunneling regime.

  5. Experimental proof of quantum non-separability based on the transition of the atom in beta-decay

    International Nuclear Information System (INIS)

    Vatai, E.

    1988-01-01

    The basic non-local character of the quantum processes is a continuously discussed and doubted problem of quantum theory. Recent experimental proofs of the Bell inequalities are questioned in the literature, using local theories of hidden variables. Present paper shows a simple and direct proof of non-locality of quantum processes, analyzing the case of the beta decay. The hypothetical energy transfer between shell electrons and beta electron-neutrino system is proved to be superluminal but necessary for the energy balance of the process. This argumentation proves the nonseparability and nonlocality of quantum processes. (D.G.) 8 refs

  6. Non-local charges in local quantum field theory

    International Nuclear Information System (INIS)

    Buchholz, D.; Lopuszanski, J.T.; Rabsztyn, S.

    1985-05-01

    Non-local charges are studied in the general setting of local quantum field theory. It is shown, that these charges can be represented as polynomials in the incoming respectively outgoing fields with coefficients (kernels) which are subject to specific constraints. For the restricted class of models of a scalar, massive, self interacting particle in four dimensions, a more detailed analysis shows that all non-local charges of the generic type (genus 2) are products of generators of the Poincare group. This analysis, which is based on the macroscopic causality properties of the S-matrix, seems to indicate that less trivial examples of non-local charges can only exist in two dimensions. (orig.)

  7. Transport Studies of Quantum Magnetism: Physics and Methods

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Minhyea [Univ. of Colorado, Boulder, CO (United States)

    2017-03-30

    The main goal of this project was to understand novel ground states of spin systems probed by thermal and electrical transport measurements. They are well-suited to characterize the nature of low-energy excitations as unique property of the ground state. More specifically, it was aimed to study the transverse electrical conductivity in the presence of non-collinear and non-coplanar spin ordering and the effects of gauge field as well as novel spin excitations as a coherent heat transport channel in insulating quantum magnets. Most of works done during the grant period focused on these topics. As a natural extension of the project's initial goals, the scope was broadened to include transport studies on the spin systems with strong spin-orbit coupling. One particular focus was an exploration of systems with strong magnetic anisotropy combined with non-trivial spin configuration. Magnetic anisotropy is directly related to implement the non-collinear spin ordering to the existing common geometry of planar devices and thus poses a significant potential. Work in this direction includes the comparison of the topological Hall signal under hydrostatic pressure and chemical doping, as well as the angular dependence dependence of the non-collinear spin ordered phase and their evolution up on temperature and field strength. Another focus was centered around the experimental identification of spin-originated heat carrying excitation in quasi two dimensional honeycomb lattice, where Kitaev type of quantum spin liquid phase is expected to emerge. In fact, when its long range magnetic order is destroyed by the applied field, we discovered anomalously large enhancement of thermal conductivity, for which proximate Kitaev excitations in field-induced spin liquid state are responsible for. This work, combined with further investigations in materials in the similar class may help establish the experimental characterization of new quantum spin liquid and their unique low energy

  8. Non-adiabatic quantum state preparation and quantum state transport in chains of Rydberg atoms

    Science.gov (United States)

    Ostmann, Maike; Minář, Jiří; Marcuzzi, Matteo; Levi, Emanuele; Lesanovsky, Igor

    2017-12-01

    Motivated by recent progress in the experimental manipulation of cold atoms in optical lattices, we study three different protocols for non-adiabatic quantum state preparation and state transport in chains of Rydberg atoms. The protocols we discuss are based on the blockade mechanism between atoms which, when excited to a Rydberg state, interact through a van der Waals potential, and rely on single-site addressing. Specifically, we discuss protocols for efficient creation of an antiferromagnetic GHZ state, a class of matrix product states including a so-called Rydberg crystal and for the state transport of a single-qubit quantum state between two ends of a chain of atoms. We identify system parameters allowing for the operation of the protocols on timescales shorter than the lifetime of the Rydberg states while yielding high fidelity output states. We discuss the effect of positional disorder on the resulting states and comment on limitations due to other sources of noise such as radiative decay of the Rydberg states. The proposed protocols provide a testbed for benchmarking the performance of quantum information processing platforms based on Rydberg atoms.

  9. Quantum operation for a one-qubit system under a non-Markovian environment

    International Nuclear Information System (INIS)

    Xue Shibei; Zhang Jing; Wu Rebing; Li Chunwen; Tarn, Tzyh-Jong

    2011-01-01

    This paper introduces a simple alternating-current (AC) control strategy to perform quantum state manipulations under non-Markovian noise. A genetic algorithm is adopted to optimize the parameters of the AC control, which can be further used to fulfil one-qubit quantum operations at a given final time. Theoretical analysis and simulations show that our method works almost equally well for 1/f noise, ohmic, sub-ohmic and super-ohmic noise, which demonstrates the robustness of our strategy for noise with various spectra. In comparison with the Markovian cases, our method is more suitable to be used to suppress non-Markovian noise.

  10. Direct Electrospray Printing of Gradient Refractive Index Chalcogenide Glass Films.

    Science.gov (United States)

    Novak, Spencer; Lin, Pao Tai; Li, Cheng; Lumdee, Chatdanai; Hu, Juejun; Agarwal, Anuradha; Kik, Pieter G; Deng, Weiwei; Richardson, Kathleen

    2017-08-16

    A spatially varying effective refractive index gradient using chalcogenide glass layers is printed on a silicon wafer using an optimized electrospray (ES) deposition process. Using solution-derived glass precursors, IR-transparent Ge 23 Sb 7 S 70 and As 40 S 60 glass films of programmed thickness are fabricated to yield a bilayer structure, resulting in an effective gradient refractive index (GRIN) film. Optical and compositional analysis tools confirm the optical and physical nature of the gradient in the resulting high-optical-quality films, demonstrating the power of direct printing of multimaterial structures compatible with planar photonic fabrication protocols. The potential application of such tailorable materials and structures as they relate to the enhancement of sensitivity in chalcogenide glass based planar chemical sensor device design is presented. This method, applicable to a broad cross section of glass compositions, shows promise in directly depositing GRIN films with tunable refractive index profiles for bulk and planar optical components and devices.

  11. Quantum neurophysics: From non-living matter to quantum neurobiology and psychopathology.

    Science.gov (United States)

    Tarlacı, Sultan; Pregnolato, Massimo

    2016-05-01

    The concepts of quantum brain, quantum mind and quantum consciousness have been increasingly gaining currency in recent years, both in scientific papers and in the popular press. In fact, the concept of the quantum brain is a general framework. Included in it are basically four main sub-headings. These are often incorrectly used interchangeably. The first of these and the one which started the quantum mind/consciousness debate was the place of consciousness in the problem of measurement in quantum mechanics. Debate on the problem of quantum measurement and about the place of the conscious observer has lasted almost a century. One solution to this problem is that the participation of a conscious observer in the experiment will radically change our understanding of the universe and our relationship with the outside world. The second topic is that of quantum biology. This topic has become a popular field of research, especially in the last decade. It concerns whether or not the rules of quantum physics operate in biological structures. It has been shown in the latest research on photosynthesis, the sense of smell and magnetic direction finding in animals that the laws of quantum physics may operate in warm-wet-noisy biological structures. The third sub-heading is quantum neurobiology. This topic has not yet gained wide acceptance and is still in its early stages. Its primary purpose is directed to understand whether the laws of quantum physics are effective in the biology of the nervous system or not. A further step in brain neurobiology, toward the understanding of consciousness formation, is the research of quantum laws effects upon neural network functions. The fourth and final topic is quantum psychopathology. This topic takes its basis and its support from quantum neurobiology. It comes from the idea that if quantum physics is involved in the normal working of the brain, diseased conditions of the brain such as depression, anxiety, dementia, schizophrenia and

  12. Minimally Invasive Cochlear Implantation Assisted by Bi-planar Device: An Exploratory Feasibility Study in vitro

    Directory of Open Access Journals (Sweden)

    Jia Ke

    2016-01-01

    Conclusions: This exploratory study demonstrated the safety of the newly developed image-guided minimally invasive cochlear implantation assisted by the bi-planar device and established the operational procedures. Further, more in vitro experiments are needed to improve the system operation and its safety.

  13. Characterizing a four-qubit planar lattice for arbitrary error detection

    Science.gov (United States)

    Chow, Jerry M.; Srinivasan, Srikanth J.; Magesan, Easwar; Córcoles, A. D.; Abraham, David W.; Gambetta, Jay M.; Steffen, Matthias

    2015-05-01

    Quantum error correction will be a necessary component towards realizing scalable quantum computers with physical qubits. Theoretically, it is possible to perform arbitrarily long computations if the error rate is below a threshold value. The two-dimensional surface code permits relatively high fault-tolerant thresholds at the ~1% level, and only requires a latticed network of qubits with nearest-neighbor interactions. Superconducting qubits have continued to steadily improve in coherence, gate, and readout fidelities, to become a leading candidate for implementation into larger quantum networks. Here we describe characterization experiments and calibration of a system of four superconducting qubits arranged in a planar lattice, amenable to the surface code. Insights into the particular qubit design and comparison between simulated parameters and experimentally determined parameters are given. Single- and two-qubit gate tune-up procedures are described and results for simultaneously benchmarking pairs of two-qubit gates are given. All controls are eventually used for an arbitrary error detection protocol described in separate work [Corcoles et al., Nature Communications, 6, 2015].

  14. Quantum machine learning what quantum computing means to data mining

    CERN Document Server

    Wittek, Peter

    2014-01-01

    Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it focuses on providing a synthesis that explains the most important machine learning algorithms in a quantum framework. Theoretical advances in quantum computing are hard to follow for computer scientists, and sometimes even for researchers involved in the field. The lack of a step-by-step guide hampers the broader understanding of this emergent interdisciplinary body of research. Quantum Machine L

  15. Universal quantum computation by scattering in the Fermi–Hubbard model

    International Nuclear Information System (INIS)

    Bao, Ning; Hayden, Patrick; Salton, Grant; Thomas, Nathaniel

    2015-01-01

    The Hubbard model may be the simplest model of particles interacting on a lattice, but simulation of its dynamics remains beyond the reach of current numerical methods. In this article, we show that general quantum computations can be encoded into the physics of wave packets propagating through a planar graph, with scattering interactions governed by the fermionic Hubbard model. Therefore, simulating the model on planar graphs is as hard as simulating quantum computation. We give two different arguments, demonstrating that the simulation is difficult both for wave packets prepared as excitations of the fermionic vacuum, and for hole wave packets at filling fraction one-half in the limit of strong coupling. In the latter case, which is described by the t-J model, there is only reflection and no transmission in the scattering events, as would be the case for classical hard spheres. In that sense, the construction provides a quantum mechanical analog of the Fredkin–Toffoli billiard ball computer. (paper)

  16. Quantum non-locality and relativity metaphysical intimations of modern physics

    CERN Document Server

    Maudlin, Tim

    2011-01-01

    The third edition of Quantum Non-Locality and Relativity has been carefully updated to reflect significant developments, including a new chapter covering important recent work in the foundations of physics. A new edition of the premier philosophical study of Bell's Theorem and its implication for the relativistic account of space and timeDiscusses Roderich Tumiulka's explicit, relativistic theory that can reproduce the quantum mechanical violation of Bell's inequality. Discusses the "Free Will Theorem" of John Conway and Simon KochenIntroduces philosophers to the relevant physics and demonstra

  17. Depletion of superfluidity in a disordered non-equilibrium quantum condensate

    Energy Technology Data Exchange (ETDEWEB)

    Janot, Alexander; Rosenow, Bernd [Institut fuer Theoretische Physik, Universitaet Leipzig, 04009 Leipzig (Germany); Hyart, Timo [Institute of Physics, Leiden University, Niels Bohrweg 2, 2333 CA Leiden (Netherlands); Eastham, Paul [School of Physics, Trinity College, Dublin 2 (Ireland)

    2013-07-01

    Observations of quantum coherence in driven systems, e.g. polariton condensates, have strongly stimulated experimental as well as theoretical efforts during the last decade. We analyze the superfluid stiffness of a non-equilibrium quantum-condensate in a disordered environment taking gain and loss of particles into account. To this end a modified effective Gross-Pitaevskii equation is employed. We find that the disorder-driven depletion of superfluidity is strongly enhanced due to the gain-loss mechanism. It turns out that the condensate remains stiff at finite length scales only.

  18. Guided SAR image despeckling with probabilistic non local weights

    Science.gov (United States)

    Gokul, Jithin; Nair, Madhu S.; Rajan, Jeny

    2017-12-01

    SAR images are generally corrupted by granular disturbances called speckle, which makes visual analysis and detail extraction a difficult task. Non Local despeckling techniques with probabilistic similarity has been a recent trend in SAR despeckling. To achieve effective speckle suppression without compromising detail preservation, we propose an improvement for the existing Generalized Guided Filter with Bayesian Non-Local Means (GGF-BNLM) method. The proposed method (Guided SAR Image Despeckling with Probabilistic Non Local Weights) replaces parametric constants based on heuristics in GGF-BNLM method with dynamically derived values based on the image statistics for weight computation. Proposed changes make GGF-BNLM method adaptive and as a result, significant improvement is achieved in terms of performance. Experimental analysis on SAR images shows excellent speckle reduction without compromising feature preservation when compared to GGF-BNLM method. Results are also compared with other state-of-the-art and classic SAR depseckling techniques to demonstrate the effectiveness of the proposed method.

  19. Deterministic self-organization: Ordered positioning of InAs quantum dots by self-organized anisotropic strain engineering on patterned GaAs(311)B

    International Nuclear Information System (INIS)

    Selcuk, E.; Hamhuis, G.J.; Noetzel, R.

    2009-01-01

    Laterally ordered InGaAs quantum dot (QD) arrays, InAs QD molecules, and single InAs QDs in a spot-like periodic arrangement are created by self-organized anisotropic strain engineering of InGaAs/GaAs superlattice (SL) templates on planar GaAs (311)B substrates in molecular beam epitaxy. On shallow- and deep-patterned substrates the respectively generated steps and facets guide the self-organization process during SL template formation to create more complex ordering such as periodic stripes, depending on pattern design. Here we demonstrate for patterns such as shallow- and deepetched round holes and deep-etched zigzag mesas that the self-organized periodic arrangement of QD molecules and single QDs is spatially locked to the pattern sidewalls and corners. This extends the concept of guided self-organization to deterministic self-organization. Absolute position control of the QDs is achieved without one-to-one pattern definition. This guarantees the excellent arrangement control of the ordered QD molecules and single QDs with strong photoluminescence emission up to room temperature, which is required for future quantum functional devices. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Quantum theory of space charge limited current in solids

    Energy Technology Data Exchange (ETDEWEB)

    González, Gabriel, E-mail: gabriel.gonzalez@uaslp.mx [Cátedras Conacyt, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78000, Mexico and Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78000 (Mexico)

    2015-02-28

    We present a quantum model of space charge limited current transport inside trap-free solids with planar geometry in the mean field approximation. We use a simple transformation which allows us to find the exact analytical solution for the steady state current case. We use our approach to find a Mott-Gurney like behavior and the mobility for single charge carriers in the quantum regime in solids.

  1. Renormalisation in Quantum Mechanics, Quantum Instantons and Quantum Chaos

    OpenAIRE

    Jirari, H.; Kröger, H.; Luo, X. Q.; Moriarty, K. J. M.

    2001-01-01

    We suggest how to construct non-perturbatively a renormalized action in quantum mechanics. We discuss similarties and differences with the standard effective action. We propose that the new quantum action is suitable to define and compute quantum instantons and quantum chaos.

  2. The quantum entropic uncertainty relation and entanglement witness in the two-atom system coupling with the non-Markovian environments

    International Nuclear Information System (INIS)

    Zou, Hong-Mei; Fang, Mao-Fa; Yang, Bai-Yuan; Guo, You-Neng; He, Wei; Zhang, Shi-Yang

    2014-01-01

    The quantum entropic uncertainty relation and entanglement witness in the two-atom system coupling with the non-Markovian environments are studied using the time-convolutionless master-equation approach. The influence of the non-Markovian effect and detuning on the lower bound of the quantum entropic uncertainty relation and entanglement witness is discussed in detail. The results show that, only if the two non-Markovian reservoirs are identical, increasing detuning and non-Markovian effect can reduce the lower bound of the entropic uncertainty relation, lengthen the time region during which the entanglement can be witnessed, and effectively protect the entanglement region witnessed by the lower bound of the entropic uncertainty relation. The results can be applied in quantum measurement, quantum cryptography tasks and quantum information processing. (paper)

  3. Quantum Corrected Non-Thermal Radiation Spectrum from the Tunnelling Mechanism

    Directory of Open Access Journals (Sweden)

    Subenoy Chakraborty

    2015-06-01

    Full Text Available The tunnelling mechanism is today considered a popular and widely used method in describing Hawking radiation. However, in relation to black hole (BH emission, this mechanism is mostly used to obtain the Hawking temperature by comparing the probability of emission of an outgoing particle with the Boltzmann factor. On the other hand, Banerjee and Majhi reformulated the tunnelling framework deriving a black body spectrum through the density matrix for the outgoing modes for both the Bose-Einstein distribution and the Fermi-Dirac distribution. In contrast, Parikh and Wilczek introduced a correction term performing an exact calculation of the action for a tunnelling spherically symmetric particle and, as a result, the probability of emission of an outgoing particle corresponds to a non-strictly thermal radiation spectrum. Recently, one of us (C. Corda introduced a BH effective state and was able to obtain a non-strictly black body spectrum from the tunnelling mechanism corresponding to the probability of emission of an outgoing particle found by Parikh and Wilczek. The present work introduces the quantum corrected effective temperature and the corresponding quantum corrected effective metric is written using Hawking’s periodicity arguments. Thus, we obtain further corrections to the non-strictly thermal BH radiation spectrum as the final distributions take into account both the BH dynamical geometry during the emission of the particle and the quantum corrections to the semiclassical Hawking temperature.

  4. Error Correction for Non-Abelian Topological Quantum Computation

    Directory of Open Access Journals (Sweden)

    James R. Wootton

    2014-03-01

    Full Text Available The possibility of quantum computation using non-Abelian anyons has been considered for over a decade. However, the question of how to obtain and process information about what errors have occurred in order to negate their effects has not yet been considered. This is in stark contrast with quantum computation proposals for Abelian anyons, for which decoding algorithms have been tailor-made for many topological error-correcting codes and error models. Here, we address this issue by considering the properties of non-Abelian error correction, in general. We also choose a specific anyon model and error model to probe the problem in more detail. The anyon model is the charge submodel of D(S_{3}. This shares many properties with important models such as the Fibonacci anyons, making our method more generally applicable. The error model is a straightforward generalization of those used in the case of Abelian anyons for initial benchmarking of error correction methods. It is found that error correction is possible under a threshold value of 7% for the total probability of an error on each physical spin. This is remarkably comparable with the thresholds for Abelian models.

  5. Fragmentation of Care after Surgical Discharge: Non-Index Readmission after Major Cancer Surgery

    Science.gov (United States)

    Zheng, Chaoyi; Habermann, Elizabeth B; Shara, Nawar M; Langan, Russell C; Hong, Young; Johnson, Lynt B; Al-Refaie, Waddah B

    2017-01-01

    BACKGROUND Despite national emphasis on care coordination, little is known about how fragmentation affects cancer surgery outcomes. Our study examines a specific form of fragmentation in post-discharge care—readmission to a hospital different from the location of the operation—and evaluates its causes and consequences among patients readmitted after major cancer surgery. STUDY DESIGN We used the State Inpatient Database of California (2004 to 2011) to identify patients who had major cancer surgery and their subsequent readmissions. Logistic models were used to examine correlates of non-index readmissions and to assess associations between location of readmission and outcomes, measured by in-hospital mortality and repeated readmission. RESULTS Of 9,233 readmissions within 30 days of discharge after major cancer surgery, 20.0% occurred in non-index hospitals. Non-index readmissions were associated with emergency readmission (odds ratio [OR] = 2.63; 95% CI, 2.26–3.06), rural residence (OR = 1.81; 95% CI, 1.61–2.04), and extensive procedures (eg hepatectomy vs proctectomy; OR = 2.77; CI, 2.08–3.70). Mortality was higher during non-index readmissions than index readmissions independent of patient, procedure, and hospital factors (OR = 1.31; 95% CI, 1.03–1.66), but was mitigated by adjusting for conditions present at readmission (OR = 1.24; 95% CI, 0.98–1.58). Non-index readmission predicted higher odds of repeated readmission within 60 days of discharge from the first readmission (OR = 1.16; 95% CI, 1.02–1.32), independent of all covariates. CONCLUSIONS Non-index readmissions constitute a substantial proportion of all readmissions after major cancer surgery. They are associated with more repeated readmissions and can be caused by severe surgical complications and increased travel burden. Overcoming disadvantages of non-index readmissions represents an opportunity to improve outcomes for patients having major cancer surgery. PMID:27016905

  6. Non-Euclidean Geometry, Nontrivial Topology and Quantum Vacuum Effects

    Directory of Open Access Journals (Sweden)

    Yurii A. Sitenko

    2018-01-01

    Full Text Available Space out of a topological defect of the Abrikosov–Nielsen–Olesen (ANO vortex type is locally flat but non-Euclidean. If a spinor field is quantized in such a space, then a variety of quantum effects are induced in the vacuum. On the basis of the continuum model for long-wavelength electronic excitations originating in the tight-binding approximation for the nearest-neighbor interaction of atoms in the crystal lattice, we consider quantum ground-state effects in Dirac materials with two-dimensional monolayer structures warped into nanocones by a disclination; the nonzero size of the disclination is taken into account, and a boundary condition at the edge of the disclination is chosen to ensure self-adjointness of the Dirac–Weyl Hamiltonian operator. We show that the quantum ground-state effects are independent of the disclination size, and we find circumstances in which they are independent of parameters of the boundary condition.

  7. Non-equilibrium dynamics near a quantum multicritical point

    International Nuclear Information System (INIS)

    Patra, Ayoti; Mukherjee, Victor; Dutta, Amit

    2011-01-01

    We study the non-equilibrium dynamics of a quantum system close to a quantum multi-critical point (MCP) using the example of a one-dimensional spin-1/2 transverse XY spin chain. We summarize earlier results of defect generenation and fidelity susceptibility for quenching through MCP and close to the MCP, respectively. For a quenching scheme which enables the system to hit the MCP along different paths, we emphasize the role of path on exponents associated with quasicritical points which appear in the scaling relations. Finally, we explicitly derive the scaling of concurrence and negativity for two spin entanglement generated following a slow quenching across the MCP and enlist the results for different quenching schemes. We explicity show the dependence of the scaling on the quenching path and dicuss the limiting situations.

  8. Non-perturbative treatment of relativistic quantum corrections in large Z atoms

    International Nuclear Information System (INIS)

    Dietz, K.; Weymans, G.

    1983-09-01

    Renormalised g-Hartree-Dirac equations incorporating Dirac sea contributions are derived. Their implications for the non-perturbative, selfconsistent calculation of quantum corrections in large Z atoms are discussed. (orig.)

  9. Quantum Dialogue by Using Non-Symmetric Quantum Channel

    International Nuclear Information System (INIS)

    Zhan Youbang; Zhang Lingling; Zhang Qunyong; Wang Yuwu

    2010-01-01

    A protocol for quantum dialogue is proposed to exchange directly the communicator's secret messages by using a three-dimensional Bell state and a two-dimensional Bell state as quantum channel with quantum superdence coding, local collective unitary operations, and entanglement swapping. In this protocol, during the process of transmission of particles, the transmitted particles do not carry any secret messages and are transmitted only one time. The protocol has higher source capacity than protocols using symmetric two-dimensional states. The security is ensured by the unitary operations randomly performed on all checking groups before the particle sequence is transmitted and the application of entanglement swapping. (general)

  10. Excitonic effects in gain and index in GaAlAs quantum well lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, M.P.; Harder, C. (IBM Research Division, Zurich Research Laboratory, 8803 Rueschlikon (Switzerland))

    1990-07-09

    Spontaneous emission and gain measurements in GaAlAs single quantum well lasers are presented. The gain is derived from the spontaneous emission detected through an opening in the top metallic contact of the lasers. Excitonic effects are seen in the gain (absorption) spectra for low carrier densities, and the step-like nature of the two-dimensional density of states is evident. From the gain spectra, refractive index changes are derived via a Kramers--Kronig transformation, and this is used to evaluate the linewidth enhancement factor as a function of photon energy.

  11. Quantum characteristics of occurrence scattering time in two-component non-ideal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Woo-Pyo [Department of Electronics Engineering, Catholic University of Daegu, Hayang, 712-702 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180-3590 (United States)

    2015-10-30

    The quantum diffraction and plasma screening effects on the occurrence time for the collision process are investigated in two-component non-ideal plasmas. The micropotential model taking into account the quantum diffraction and screening with the eikonal analysis is employed to derive the occurrence time as functions of the collision energy, density parameter, Debye length, de Broglie wavelength, and scattering angle. It is shown that the occurrence time for forward scattering directions decreases the tendency of time-advance with increasing scattering angle and de Broglie wavelength. However, it is found that the occurrence time shows the oscillatory time-advance and time-retarded behaviors with increasing scattering angle. It is found that the plasma screening effect enhances the tendency of time-advance on the occurrence time for forward scattering regions. It is also shown the quantum diffraction effect suppresses the occurrence time advance for forward scattering angles. In addition, it is shown that the occurrence time advance decreases with an increase of the collision energy. - Highlights: • The quantum diffraction and screening effects on the occurrence scattering time are investigated in non-ideal plasmas. • It is shown the quantum diffraction effect suppresses the occurrence time advance for forward scattering angles. • It is found that the plasma screening effect enhances the tendency of time-advance on the occurrence time.

  12. Quantum measurements in spin-boson model under non-Markovian environment

    Science.gov (United States)

    Berrada, K.; Aldaghri, O.

    2017-07-01

    We propose a control approach of the parameter estimation for a two-level quantum system interacting with a bosonic reservoir considering non-Markovian open, dissipative quantum system. We show that the precision of the estimation significantly affected and behaves differently within the framework of the markovian and non-Markovian regimes. The influence of memory effects for an Ohmic reservoir with Lorentz-Drude regularization on the estimation-parameter precision are numerically demonstrated under the following three conditions: ω0 ≪ωc , ω0 ≈ωc or ω0 ≫ωc , where ω0 is the characteristic frequency of the two-level system, and ωc is the cut-off frequency of Ohmic reservoir. We investigate the precision rate in high temperature, intermediate temperature, and low temperature reservoirs for various values of the ratio r =ωc /ω0 considering manifold external fields. We reveal that the enhancement and preservation of the measurement precision, highly depend on the combination of the external control field, reservoir parameters, and non-Markovian effects.

  13. Novel use of non-echo-planar diffusion weighted MRI in monitoring disease activity and treatment response in active Grave's orbitopathy: An initial observational cohort study.

    Science.gov (United States)

    Lingam, Ravi Kumar; Mundada, Pravin; Lee, Vickie

    2018-01-10

    To examine the novel use of non-echo-planar diffusion weighted MRI (DWI) in depicting activity and treatment response in active Grave's orbitopathy (GO) by assessing, with inter-observer agreement, for a correlation between its apparent diffusion coefficients (ADCs) and conventional Short tau Inversion Recovery (STIR) MRI signal-intensity ratios (SIRs). A total of 23 actively inflamed muscles and 30 muscle response episodes were analysed in patients with active GO who underwent medical treatment. The MRI orbit scans included STIR sequences and non-echo-planar DWI were evaluated. Two observers independently assessed the images qualitatively for the presence of activity in the extraocular muscles (EOMs) and recorded the STIR signal-intensity (SI), SIR (SI ratio of EOM/temporalis muscle), and ADC values of any actively inflamed muscle on the pre-treatment scans and their corresponding values on the subsequent post-treatment scans. Inter-observer agreement was examined. There was a significant positive correlation (0.57, p < 0.001) between ADC and both SIR and STIR SI of the actively inflamed EOM. There was also a significant positive correlation (0.75, p < 0.001) between SIR and ADC values depicting change in muscle activity associated with treatment response. There was good inter-observer agreement. Our preliminary results indicate that quantitative evaluation with non-echo-planar DWI ADC values correlates well with conventional STIR SIR in detecting active GO and monitoring its treatment response, with good inter-observer agreement.

  14. Quantum cosmology in Ashtekar variables with non-minimally ...

    Indian Academy of Sciences (India)

    tum effects or the conditions for the classical limit. In this paper we try to address these .... 8. +12e2x. =nH. (17). Since n is a Lagrange multiplier, we have the constraint H. 0. Hence in Dirac quan- ..... pected as in this case the quantum potential term has non-zero effect and consequently gives rise to a deviation from classical ...

  15. Manufactoring the non-planar coils for the Wendelstein 7-X experiment

    International Nuclear Information System (INIS)

    Scheller, H.; Theisen, E.; Heyn, K.

    2005-01-01

    Because of the conditions associated with is use, nuclear fusion is a highly promising future energy supply option. The current objective of research worldwide is to demonstrate the feasibility of fusion power plants. The Wendelstein 7-X experiment at present under construction in Greifswald by the Max Planck Institute for Plasma Physics (IPP) is to demonstrate this feasibility for the stellarator concept. Babcock Noell Nuclear (BNN) in a consortium with Ansaldo Superconduttori, Genoa (ASG) has been commissioned by IPP to build the fifty superconducting non-planar coils constituting the magnet cage of the Wendelstein 7-X experiment. The coils will be assembled at the Zeitz manufacturing plant of BNM, a subsidiary of BNN. Manufacturing such a complex system is possible with the proper europeanwide network of subcontractors contributing special components. Thus, the superconductors were made by the German-Italian consortium, EAS, Hanau, and OCSI, Fornaci di Barga, Italy; the stainless steel housings are cast be Oesterby Gjutery AB in Sweden, the winding packs for BNN are produced by ABB, Neusaess, and mechanical finishing and final 3D measurement is performed by C-CON in Germany. (orig.)

  16. Narrow, highly P-doped, planar wires in silicon created by scanning probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ruess, F J [Australian Research Council Centre of Excellence for Quantum Computer Technology, University of New South Wales, Sydney, NSW 2052 (Australia); Goh, K E J [Australian Research Council Centre of Excellence for Quantum Computer Technology, University of New South Wales, Sydney, NSW 2052 (Australia); Butcher, M J [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Reusch, T C G [Australian Research Council Centre of Excellence for Quantum Computer Technology, University of New South Wales, Sydney, NSW 2052 (Australia); Oberbeck, L [Australian Research Council Centre of Excellence for Quantum Computer Technology, University of New South Wales, Sydney, NSW 2052 (Australia); Weber, B [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Hamilton, A R [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Simmons, M Y [Australian Research Council Centre of Excellence for Quantum Computer Technology, University of New South Wales, Sydney, NSW 2052 (Australia)

    2007-01-31

    We demonstrate the use of a scanning tunnelling microscope (STM) to pattern buried, highly planar phosphorus-doped silicon wires with widths down to the sub-10 nm level. We confirm the structural integrity of these wires using both buried dopant imaging techniques and ex situ electrical characterization. Four terminal I-V characteristics at 4 K show ohmic behaviour for all wires with resistivities between 1 and 24 x 10{sup -8} {omega} cm. Magnetotransport measurements reveal that conduction is dominated by disordered scattering with quantum corrections consistent with 2D weak localization theory. Our results show that these quantum corrections become more pronounced as the electron phase coherence length approaches the width of the wire.

  17. Quantum Computer Science

    Science.gov (United States)

    Mermin, N. David

    2007-08-01

    Preface; 1. Cbits and Qbits; 2. General features and some simple examples; 3. Breaking RSA encryption with a quantum computer; 4. Searching with a quantum computer; 5. Quantum error correction; 6. Protocols that use just a few Qbits; Appendices; Index.

  18. Quantum fields in the non-perturbative regime. Yang-Mills theory and gravity

    Energy Technology Data Exchange (ETDEWEB)

    Eichhorn, Astrid

    2011-09-06

    In this thesis we study candidates for fundamental quantum field theories, namely non-Abelian gauge theories and asymptotically safe quantum gravity. Whereas the first ones have a stronglyinteracting low-energy limit, the second one enters a non-perturbative regime at high energies. Thus, we apply a tool suited to the study of quantum field theories beyond the perturbative regime, namely the Functional Renormalisation Group. In a first part, we concentrate on the physical properties of non-Abelian gauge theories at low energies. Focussing on the vacuum properties of the theory, we present an evaluation of the full effective potential for the field strength invariant F{sub {mu}}{sub {nu}}F{sup {mu}}{sup {nu}} from non-perturbative gauge correlation functions and find a non-trivial minimum corresponding to the existence of a dimension four gluon condensate in the vacuum. We also relate the infrared asymptotic form of the {beta} function of the running background-gauge coupling to the asymptotic behavior of Landau-gauge gluon and ghost propagators and derive an upper bound on their scaling exponents. We then consider the theory at finite temperature and study the nature of the confinement phase transition in d = 3+1 dimensions in various non-Abelian gauge theories. For SU(N) with N= 3,..,12 and Sp(2) we find a first-order phase transition in agreement with general expectations. Moreover our study suggests that the phase transition in E(7) Yang-Mills theory also is of first order. Our studies shed light on the question which property of a gauge group determines the order of the phase transition. In a second part we consider asymptotically safe quantum gravity. Here, we focus on the Faddeev-Popov ghost sector of the theory, to study its properties in the context of an interacting UV regime. We investigate several truncations, which all lend support to the conjecture that gravity may be asymptotically safe. In a first truncation, we study the ghost anomalous dimension

  19. Higher (odd dimensional quantum Hall effect and extended dimensional hierarchy

    Directory of Open Access Journals (Sweden)

    Kazuki Hasebe

    2017-07-01

    Full Text Available We demonstrate dimensional ladder of higher dimensional quantum Hall effects by exploiting quantum Hall effects on arbitrary odd dimensional spheres. Non-relativistic and relativistic Landau models are analyzed on S2k−1 in the SO(2k−1 monopole background. The total sub-band degeneracy of the odd dimensional lowest Landau level is shown to be equal to the winding number from the base-manifold S2k−1 to the one-dimension higher SO(2k gauge group. Based on the chiral Hopf maps, we clarify the underlying quantum Nambu geometry for odd dimensional quantum Hall effect and the resulting quantum geometry is naturally embedded also in one-dimension higher quantum geometry. An origin of such dimensional ladder connecting even and odd dimensional quantum Hall effects is illuminated from a viewpoint of the spectral flow of Atiyah–Patodi–Singer index theorem in differential topology. We also present a BF topological field theory as an effective field theory in which membranes with different dimensions undergo non-trivial linking in odd dimensional space. Finally, an extended version of the dimensional hierarchy for higher dimensional quantum Hall liquids is proposed, and its relationship to quantum anomaly and D-brane physics is discussed.

  20. Quantum computer games: quantum minesweeper

    Science.gov (United States)

    Gordon, Michal; Gordon, Goren

    2010-07-01

    The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical minesweeper the goal of the game is to discover all the mines laid out on a board without triggering them, in the quantum version there are several classical boards in superposition. The goal is to know the exact quantum state, i.e. the precise layout of all the mines in all the superposed classical boards. The player can perform three types of measurement: a classical measurement that probabilistically collapses the superposition; a quantum interaction-free measurement that can detect a mine without triggering it; and an entanglement measurement that provides non-local information. The application of the concepts taught by quantum minesweeper to one-way quantum computing are also presented.

  1. IFR channel-guiding of spinning beams

    International Nuclear Information System (INIS)

    O'Brien, K.J.

    1986-06-01

    A simple model is adopted to study the Ion Focussed Regime (IFR) laser channel-guiding of a spinning relativistic electron beam. It is discovered that spinning beams precess about the IFR axis as they damp; whereas, nonspinning beams remain planarly polarized

  2. Pseudo random number generator based on quantum chaotic map

    Science.gov (United States)

    Akhshani, A.; Akhavan, A.; Mobaraki, A.; Lim, S.-C.; Hassan, Z.

    2014-01-01

    For many years dissipative quantum maps were widely used as informative models of quantum chaos. In this paper, a new scheme for generating good pseudo-random numbers (PRNG), based on quantum logistic map is proposed. Note that the PRNG merely relies on the equations used in the quantum chaotic map. The algorithm is not complex, which does not impose high requirement on computer hardware and thus computation speed is fast. In order to face the challenge of using the proposed PRNG in quantum cryptography and other practical applications, the proposed PRNG is subjected to statistical tests using well-known test suites such as NIST, DIEHARD, ENT and TestU01. The results of the statistical tests were promising, as the proposed PRNG successfully passed all these tests. Moreover, the degree of non-periodicity of the chaotic sequences of the quantum map is investigated through the Scale index technique. The obtained result shows that, the sequence is more non-periodic. From these results it can be concluded that, the new scheme can generate a high percentage of usable pseudo-random numbers for simulation and other applications in scientific computing.

  3. Bound states in curved quantum waveguides

    International Nuclear Information System (INIS)

    Exner, P.; Seba, P.

    1987-01-01

    We study free quantum particle living on a curved planar strip Ω of a fixed width d with Dirichlet boundary conditions. It can serve as a model for electrons in thin films on a cylindrical-type substrate, or in a curved quantum wire. Assuming that the boundary of Ω is infinitely smooth and its curvature decays fast enough at infinity, we prove that a bound state with energy below the first transversal mode exists for all sufficiently small d. A lower bound on the critical width is obtained using the Birman-Schwinger technique. (orig.)

  4. On the predictivity of the non-renormalizable quantum field theories

    Energy Technology Data Exchange (ETDEWEB)

    Pittau, Roberto [CERN, PH-TH, Geneva (Switzerland)

    2015-02-01

    Following a Four Dimensional Renormalization approach to ultraviolet divergences (FDR), we extend the concept of predictivity to non-renormalizable quantum field theories at arbitrarily large perturbative orders. The idea of topological renormalization is introduced, which keeps a finite value for the parameters of the theory by trading the usual order-by-order renormalization procedure for an order-by-order redefinition of the perturbative vacuum. One additional measurement is then sufficient to systematically compute quantum corrections at any loop order, with no need of absorbing ultraviolet infinities in the Lagrangian. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Design of coated standing nanowire array solar cell performing beyond the planar efficiency limits

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yang; Ye, Qinghao; Shen, Wenzhong, E-mail: wzshen@sjtu.edu.cn [Institute of Solar Energy, and Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2016-05-28

    The single standing nanowire (SNW) solar cells have been proven to perform beyond the planar efficiency limits in both open-circuit voltage and internal quantum efficiency due to the built-in concentration and the shifting of the absorption front. However, the expandability of these nano-scale units to a macro-scale photovoltaic device remains unsolved. The main difficulty lies in the simultaneous preservation of an effective built-in concentration in each unit cell and a broadband high absorption capability of their array. Here, we have provided a detailed theoretical guideline for realizing a macro-scale solar cell that performs furthest beyond the planar limits. The key lies in a complementary design between the light-trapping of the single SNWs and that of the photonic crystal slab formed by the array. By tuning the hybrid HE modes of the SNWs through the thickness of a coaxial dielectric coating, the optimized coated SNW array can sustain an absorption rate over 97.5% for a period as large as 425 nm, which, together with the inherited carrier extraction advantage, leads to a cell efficiency increment of 30% over the planar limit. This work has demonstrated the viability of a large-size solar cell that performs beyond the planar limits.

  6. Non-compliance with agrochemical safety guides and associated ...

    African Journals Online (AJOL)

    Although several occupational health hazards are associated with farming, cocoa farmers could be exposed to more health hazards through use of agrochemicals. The objective of this study was to analyze the effect of non-compliance with agrochemical safety guides on health risks of farmers. The data were collected from ...

  7. Quantum symmetry in quantum theory

    International Nuclear Information System (INIS)

    Schomerus, V.

    1993-02-01

    Symmetry concepts have always been of great importance for physical problems like explicit calculations, classification or model building. More recently, new 'quantum symmetries' ((quasi) quantum groups) attracted much interest in quantum theory. It is shown that all these quantum symmetries permit a conventional formulation as symmetry in quantum mechanics. Symmetry transformations can act on the Hilbert space H of physical states such that the ground state is invariant and field operators transform covariantly. Models show that one must allow for 'truncation' in the tensor product of representations of a quantum symmetry. This means that the dimension of the tensor product of two representations of dimension σ 1 and σ 2 may be strictly smaller than σ 1 σ 2 . Consistency of the transformation law of field operators local braid relations leads us to expect, that (weak) quasi quantum groups are the most general symmetries in local quantum theory. The elements of the R-matrix which appears in these local braid relations turn out to be operators on H in general. It will be explained in detail how examples of field algebras with weak quasi quantum group symmetry can be obtained. Given a set of observable field with a finite number of superselection sectors, a quantum symmetry together with a complete set of covariant field operators which obey local braid relations are constructed. A covariant transformation law for adjoint fields is not automatic but will follow when the existence of an appropriate antipode is assumed. At the example of the chiral critical Ising model, non-uniqueness of the quantum symmetry will be demonstrated. Generalized quantum symmetries yield examples of gauge symmetries in non-commutative geometry. Quasi-quantum planes are introduced as the simplest examples of quasi-associative differential geometry. (Weak) quasi quantum groups can act on them by generalized derivations much as quantum groups do in non-commutative (differential-) geometry

  8. Quantum Darwinism and non-Markovian dissipative dynamics from quantum phases of the spin-1/2 X X model

    Science.gov (United States)

    Giorgi, Gian Luca; Galve, Fernando; Zambrini, Roberta

    2015-08-01

    Quantum Darwinism explains the emergence of a classical description of objects in terms of the creation of many redundant registers in an environment containing their classical information. This amplification phenomenon, where only classical information reaches the macroscopic observer and through which different observers can agree on the objective existence of such object, has been revived lately for several types of situations, successfully explaining classicality. We explore quantum Darwinism in the setting of an environment made of two level systems which are initially prepared in the ground state of the XX model, which exhibits different phases; we find that the different phases have different abilities to redundantly acquire classical information about the system, the "ferromagnetic phase" being the only one able to complete quantum Darwinism. At the same time we relate this ability to how non-Markovian the system dynamics is, based on the interpretation that non-Markovian dynamics is associated with backflow of information from environment to system, thus spoiling the information transfer needed for Darwinism. Finally, we explore mixing of bath registers by allowing a small interaction among them, finding that this spoils the stored information as previously found in the literature.

  9. Magnetoconductance in InN/GaN quantum wells in topological insulator phase

    Science.gov (United States)

    Bardyszewski, W.; Rodak, D.; Łepkowski, S. P.

    2017-04-01

    We present a theoretical study of the magnetic-field effect on the electronic properties of the two-dimensional, hypothetical topological insulator based on the InN/GaN quantum well system. Using the effective two-dimensional Hamiltonian, we have modelled magneto-transport in mesoscopic, symmetric samples of such materials. It turns out that, as in the case of the other two-dimensional topological insulators, the magnetoconductance in such samples is quantized due to the presence of helical edge states for magnetic fields below a certain critical value and for fairly small disorder strength. However, in our case the helical edge transport is much more prone to the disorder than, for example, in the case of topological insulators based on the HgTe/CdTe quantum wells. At low enough level of disorder and for the Fermi energy located in the energy gap of an infinite planar quantum well, we may expect an interesting phenomenon of non-monotonic dependence of the conductance on the magnetic field caused by the complicated interplay of couplings between the heavy hole, light hole and conduction subbands.

  10. Renormalization of QED with planar binary trees

    International Nuclear Information System (INIS)

    Brouder, C.

    2001-01-01

    The Dyson relations between renormalized and bare photon and electron propagators Z 3 anti D(q)=D(q) and Z 2 anti S(q)=S(q) are expanded over planar binary trees. This yields explicit recursive relations for the terms of the expansions. When all the trees corresponding to a given power of the electron charge are summed, recursive relations are obtained for the finite coefficients of the renormalized photon and electron propagators. These relations significantly decrease the number of integrals to carry out, as compared to the standard Feynman diagram technique. In the case of massless quantum electrodynamics (QED), the relation between renormalized and bare coefficients of the perturbative expansion is given in terms of a Hopf algebra structure. (orig.)

  11. Predator in the Pool? A Quantitative Evaluation of Non-indexed Open Access Journals in Aquaculture Research

    Directory of Open Access Journals (Sweden)

    Jeff C. Clements

    2018-03-01

    Full Text Available Predatory open access (OA journals can be defined as non-indexed journals that exploit the gold OA model for profit, often spamming academics with questionable e-mails promising rapid OA publication for a fee. In aquaculture—a rapidly growing and highly scrutinized field—the issue of such journals remains undocumented. We employed a quantitative approach to determine whether attributes of scientific quality and rigor differed between OA aquaculture journals not indexed in reputable databases and well-established, indexed journals. Using a Google search, we identified several non-indexed OA journals, gathered data on attributes of these journals and articles therein, and compared these data to well-established aquaculture journals indexed in quality-controlled bibliometric databases. We then used these data to determine if non-indexed journals were likely predatory OA journals and if they pose a potential threat to aquaculture research. On average, non-indexed OA journals published significantly fewer papers per year, had cheaper fees, and were more recently established than indexed journals. Articles in non-indexed journals were, on average, shorter, had fewer authors and references, and spent significantly less time in peer review than their indexed counterparts; the proportion of articles employing rigorous statistical analyses was also lower for non-indexed journals. Additionally, articles in non-indexed journals were more likely to be published by scientists from developing nations. Worryingly, non-indexed journals were more likely to be found using a Google search, and their articles superficially resembled those in indexed journals. These results suggest that the non-indexed aquaculture journals identified herein are likely predatory OA journals and pose a threat to aquaculture research and the public education and perception of aquaculture. Several points of reference from this study, in combination, may help scientists and the public

  12. Topics in string theory and quantum gravity

    CERN Document Server

    Alvarez-Gaume, Luis

    1992-01-01

    These are the lecture notes for the Les Houches Summer School on Quantum Gravity held in July 1992. The notes present some general critical assessment of other (non-string) approaches to quantum gravity, and a selected set of topics concerning what we have learned so far about the subject from string theory. Since these lectures are long (133 A4 pages), we include in this abstract the table of contents, which should help the user of the bulletin board in deciding whether to latex and print the full file. 1-FIELD THEORETICAL APPROACH TO QUANTUM GRAVITY: Linearized gravity; Supergravity; Kaluza-Klein theories; Quantum field theory and classical gravity; Euclidean approach to Quantum Gravity; Canonical quantization of gravity; Gravitational Instantons. 2-CONSISTENCY CONDITIONS: ANOMALIES: Generalities about anomalies; Spinors in 2n dimensions; When can we expect to find anomalies?; The Atiyah-Singer Index Theorem and the computation of anomalies; Examples: Green-Schwarz cancellation mechanism and Witten's SU(2) ...

  13. Contextual analysis of human non-verbal guide behaviors to inform the development of FROG, the Fun Robotic Outdoor Guide

    NARCIS (Netherlands)

    Karreman, Daphne Eleonora; van Dijk, Elisabeth M.A.G.; Evers, Vanessa

    2012-01-01

    This paper reports the first step in a series of studies to design the interaction behaviors of an outdoor robotic guide. We describe and report the use case development carried out to identify effective human tour guide behaviors. In this paper we focus on non-verbal communication cues in gaze,

  14. Hydrogen-enriched non-premixed jet flames : analysis of the flame surface, flame normal, flame index and Wobbe index

    NARCIS (Netherlands)

    Ranga Dinesh, K.K.J.; Jiang, X.; Oijen, van J.A.

    2014-01-01

    A non-premixed impinging jet flame is studied using three-dimensional direct numerical simulation with detailed chemical kinetics in order to investigate the influence of fuel variability on flame surface, flame normal, flame index and Wobbe index for hydrogen-enriched combustion. Analyses indicate

  15. Non-critical string theory formulation of microtubule dynamics and quantum aspects of brain function

    CERN Document Server

    Mavromatos, Nikolaos E

    1995-01-01

    Microtubule (MT) networks, subneural paracrystalline cytosceletal structures, seem to play a fundamental role in the neurons. We cast here the complicated MT dynamics in the form of a 1+1-dimensional non-critical string theory, thus enabling us to provide a consistent quantum treatment of MTs, including enviromental {\\em friction} effects. We suggest, thus, that the MTs are the microsites, in the brain, for the emergence of stable, macroscopic quantum coherent states, identifiable with the {\\em preconscious states}. Quantum space-time effects, as described by non-critical string theory, trigger then an {\\em organized collapse} of the coherent states down to a specific or {\\em conscious state}. The whole process we estimate to take {\\cal O}(1\\,{\\rm sec}), in excellent agreement with a plethora of experimental/observational findings. The {\\em microscopic arrow of time}, endemic in non-critical string theory, and apparent here in the self-collapse process, provides a satisfactory and simple resolution to the age...

  16. Non-Planar Nanotube and Wavy Architecture Based Ultra-High Performance Field Effect Transistors

    KAUST Repository

    Hanna, Amir

    2016-11-01

    This dissertation presents a unique concept for a device architecture named the nanotube (NT) architecture, which is capable of higher drive current compared to the Gate-All-Around Nanowire architecture when applied to heterostructure Tunnel Field Effect Transistors. Through the use of inner/outer core-shell gates, heterostructure NT TFET leverages physically larger tunneling area thus achieving higher driver current (ION) and saving real estates by eliminating arraying requirement. We discuss the physics of p-type (Silicon/Indium Arsenide) and n-type (Silicon/Germanium hetero-structure) based TFETs. Numerical TCAD simulations have shown that NT TFETs have 5x and 1.6 x higher normalized ION when compared to GAA NW TFET for p and n-type TFETs, respectively. This is due to the availability of larger tunneling junction cross sectional area, and lower Shockley-Reed-Hall recombination, while achieving sub 60 mV/dec performance for more than 5 orders of magnitude of drain current, thus enabling scaling down of Vdd to 0.5 V. This dissertation also introduces a novel thin-film-transistors architecture that is named the Wavy Channel (WC) architecture, which allows for extending device width by integrating vertical fin-like substrate corrugations giving rise to up to 50% larger device width, without occupying extra chip area. The novel architecture shows 2x higher output drive current per unit chip area when compared to conventional planar architecture. The current increase is attributed to both the extra device width and 50% enhancement in field effect mobility due to electrostatic gating effects. Digital circuits are fabricated to demonstrate the potential of integrating WC TFT based circuits. WC inverters have shown 2× the peak-to-peak output voltage for the same input, and ~2× the operation frequency of the planar inverters for the same peak-to-peak output voltage. WC NAND circuits have shown 2× higher peak-to-peak output voltage, and 3× lower high-to-low propagation

  17. The molecular structure of 4-methylpyridine-N-oxide: Gas-phase electron diffraction and quantum chemical calculations

    Science.gov (United States)

    Belova, Natalya V.; Girichev, Georgiy V.; Kotova, Vitaliya E.; Korolkova, Kseniya A.; Trang, Nguyen Hoang

    2018-03-01

    The molecular structure of 4-methylpiridine-N-oxide, 4-MePyO, has been studied by gas-phase electron diffraction monitored by mass spectrometry (GED/MS) and quantum chemical (DFT) calculations. Both, quantum chemistry and GED analyses resulted in CS molecular symmetry with the planar pyridine ring. Obtained molecular parameters confirm the hyperconjugation in the pyridine ring and the sp2 hybridization concept of the nitrogen and carbon atoms in the ring. The experimental geometric parameters are in a good agreement with the parameters for non-substituted N-oxide and reproduced very closely by DFT calculations. The presence of the electron-donating CH3 substituent in 4-MePyO leads to a decrease of the ipso-angle and to an increase of r(N→O) in comparison with the non-substituted PyO. Electron density distribution analysis has been performed in terms of natural bond orbitals (NBO) scheme. The nature of the semipolar N→O bond is discussed.

  18. Planar Bragg Grating Sensors—Fabrication and Applications: A Review

    Directory of Open Access Journals (Sweden)

    I. J. G. Sparrow

    2009-01-01

    Full Text Available We discuss the background and technology of planar Bragg grating sensors, reviewing their development and describing the latest developments. The physical operating principles are discussed, relating device operation to user requirements. Recent performance of such devices includes a planar Bragg grating sensor design which allows refractive index resolution of 1.9×10−6 RIU and temperature resolution of 0.03∘C. This sensor design is incorporated into industrialised applications allowing the sensor to be used for real time sensing in intrinsically safe, high-pressure pipelines, or for insertion probe applications such as fermentation. Initial data demonstrating the ability to identify solvents and monitor long term industrial processes is presented. A brief review of the technology used to fabricate the sensors is given along with examples of the flexibility afforded by the technique.

  19. Canonical Drude Weight for Non-integrable Quantum Spin Chains

    Science.gov (United States)

    Mastropietro, Vieri; Porta, Marcello

    2018-03-01

    The Drude weight is a central quantity for the transport properties of quantum spin chains. The canonical definition of Drude weight is directly related to Kubo formula of conductivity. However, the difficulty in the evaluation of such expression has led to several alternative formulations, accessible to different methods. In particular, the Euclidean, or imaginary-time, Drude weight can be studied via rigorous renormalization group. As a result, in the past years several universality results have been proven for such quantity at zero temperature; remarkably, the proofs work for both integrable and non-integrable quantum spin chains. Here we establish the equivalence of Euclidean and canonical Drude weights at zero temperature. Our proof is based on rigorous renormalization group methods, Ward identities, and complex analytic ideas.

  20. Duality and the Knizhnik-Polyakov-Zamolodchikov relation in Liouville quantum gravity.

    Science.gov (United States)

    Duplantier, Bertrand; Sheffield, Scott

    2009-04-17

    We present a (mathematically rigorous) probabilistic and geometrical proof of the Knizhnik-Polyakov-Zamolodchikov relation between scaling exponents in a Euclidean planar domain D and in Liouville quantum gravity. It uses the properly regularized quantum area measure dmicro_{gamma}=epsilon;{gamma;{2}/2}e;{gammah_{epsilon}(z)}dz, where dz is the Lebesgue measure on D, gamma is a real parameter, 02 is shown to be related to the quantum measure dmu_{gamma;{'}}, gamma;{'}<2, by the fundamental duality gammagamma;{'}=4.

  1. Description of quantum-mechanical motion by using the formalism of non-Markov stochastic process

    International Nuclear Information System (INIS)

    Skorobogatov, G.A.; Svertilov, S.I.

    1999-01-01

    The principle possibilities of mathematical modeling of quantum mechanical motion by the theory of a real stochastic processes is considered. The set of equations corresponding to the simplest case of a two-level system undergoing transitions under the influence of electromagnetic field are obtained. It is shown that quantum-mechanical processes are purely discrete processes of non-Markovian type. They are continuous processes in the space of probability amplitudes and posses the properties of quantum Markovity. The formulation of quantum mechanics in terms of the theory of stochastic processes is necessary for its generalization on small space-time intervals [ru

  2. The Planar Sandwich and Other 1D Planar Heat Flow Test Problems in ExactPack

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, Jr., Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-24

    This report documents the implementation of several related 1D heat flow problems in the verification package ExactPack [1]. In particular, the planar sandwich class defined in Ref. [2], as well as the classes PlanarSandwichHot, PlanarSandwichHalf, and other generalizations of the planar sandwich problem, are defined and documented here. A rather general treatment of 1D heat flow is presented, whose main results have been implemented in the class Rod1D. All planar sandwich classes are derived from the parent class Rod1D.

  3. Non-Markovianity Measure Based on Brukner-Zeilinger Invariant Information for Unital Quantum Dynamical Maps

    Science.gov (United States)

    He, Zhi; Zhu, Lie-Qiang; Li, Li

    2017-03-01

    A non-Markovianity measure based on Brukner-Zeilinger invariant information to characterize non-Markovian effect of open systems undergoing unital dynamical maps is proposed. The method takes advantage of non-increasing property of the Brukner-Zeilinger invariant information under completely positive and trace-preserving unital maps. The simplicity of computing the Brukner-Zeilinger invariant information is the advantage of the proposed measure because of mainly depending on the purity of quantum state. The measure effectively captures the characteristics of non-Markovianity of unital dynamical maps. As some concrete application, we consider two typical non-Markovian noise channels, i.e., the phase damping channel and the random unitary channel to show the sensitivity of the proposed measure. By investigation, we find that the conditions of detecting the non-Markovianity for the phase damping channel are consistent with the results of existing measures for non-Markovianity, i.e., information flow, divisibility and quantum mutual information. However, for the random unitary channel non-Markovian conditions are same to that of the information flow, but is different from that of the divisibility and quantum mutual information. Supported by the National Natural Science Foundation of China under Grant No. 61505053, the Natural Science Foundation of Hunan Province under Grant No. 2015JJ3092, the Research Foundation of Education Bureau of Hunan Province, China under Grant No. 16B177, the School Foundation from the Hunan University of Arts and Science under Grant No. 14ZD01

  4. Non-Hermitian interaction representation and its use in relativistic quantum mechanics

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2017-01-01

    Roč. 385, č. 10 (2017), s. 162-179 ISSN 0003-4916 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : unitary quantum systems * non-Hermitian version of Dirac's interaction picture * complete set of time-evolution equations * application in relativistic quantum mechanics * Klein-Gordon example with space-time-dependent mass Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics ( physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 2.465, year: 2016

  5. Quantum Computer Games: Quantum Minesweeper

    Science.gov (United States)

    Gordon, Michal; Gordon, Goren

    2010-01-01

    The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…

  6. Non-Poissonian quantum jumps of a fluxonium qubit due to quasiparticle excitations.

    Science.gov (United States)

    Vool, U; Pop, I M; Sliwa, K; Abdo, B; Wang, C; Brecht, T; Gao, Y Y; Shankar, S; Hatridge, M; Catelani, G; Mirrahimi, M; Frunzio, L; Schoelkopf, R J; Glazman, L I; Devoret, M H

    2014-12-12

    As the energy relaxation time of superconducting qubits steadily improves, nonequilibrium quasiparticle excitations above the superconducting gap emerge as an increasingly relevant limit for qubit coherence. We measure fluctuations in the number of quasiparticle excitations by continuously monitoring the spontaneous quantum jumps between the states of a fluxonium qubit, in conditions where relaxation is dominated by quasiparticle loss. Resolution on the scale of a single quasiparticle is obtained by performing quantum nondemolition projective measurements within a time interval much shorter than T₁, using a quantum-limited amplifier (Josephson parametric converter). The quantum jump statistics switches between the expected Poisson distribution and a non-Poissonian one, indicating large relative fluctuations in the quasiparticle population, on time scales varying from seconds to hours. This dynamics can be modified controllably by injecting quasiparticles or by seeding quasiparticle-trapping vortices by cooling down in a magnetic field.

  7. Fault-tolerant quantum computation for local non-Markovian noise

    International Nuclear Information System (INIS)

    Terhal, Barbara M.; Burkard, Guido

    2005-01-01

    We derive a threshold result for fault-tolerant quantum computation for local non-Markovian noise models. The role of error amplitude in our analysis is played by the product of the elementary gate time t 0 and the spectral width of the interaction Hamiltonian between system and bath. We discuss extensions of our model and the applicability of our analysis

  8. Controlling the quantum rotational dynamics of a driven planar rotor ...

    Indian Academy of Sciences (India)

    Archana Shukla

    †Dedicated to the memory of late Professor Charusita Chakravarty. To a large extent the ..... study the long time quantum dynamics using only the one cycle propagator. .... distributions, including the short time rotational rain- bow features and ...

  9. Resistive switching effect in the planar structure of all-printed, flexible and rewritable memory device based on advanced 2D nanocomposite of graphene quantum dots and white graphene flakes

    International Nuclear Information System (INIS)

    Rehman, Muhammad Muqeet; Siddiqui, Ghayas Uddin; Kim, Sowon; Choi, Kyung Hyun

    2017-01-01

    Pursuit of the most appropriate materials and fabrication methods is essential for developing a reliable, rewritable and flexible memory device. In this study, we have proposed an advanced 2D nanocomposite of white graphene (hBN) flakes embedded with graphene quantum dots (GQDs) as the functional layer of a flexible memory device owing to their unique electrical, chemical and mechanical properties. Unlike the typical sandwich type structure of a memory device, we developed a cost effective planar structure, to simplify device fabrication and prevent sneak current. The entire device fabrication was carried out using printing technology followed by encapsulation in an atomically thin layer of aluminum oxide (Al 2 O 3 ) for protection against environmental humidity. The proposed memory device exhibited attractive bipolar switching characteristics of high switching ratio, large electrical endurance and enhanced lifetime, without any crosstalk between adjacent memory cells. The as-fabricated device showed excellent durability for several bending cycles at various bending diameters without any degradation in bistable resistive states. The memory mechanism was deduced to be conductive filamentary; this was validated by illustrating the temperature dependence of bistable resistive states. Our obtained results pave the way for the execution of promising 2D material based next generation flexible and non-volatile memory (NVM) applications. (paper)

  10. Some aspects of quantum field theory in non-Minkowskian space-times

    International Nuclear Information System (INIS)

    Toms, D.J.

    1980-01-01

    Several aspects of quantum field theory in space-times which are different from Minkowski space-time, either because of the presence of a non-zero curvature or as a consequence of the topology of the manifold, are discussed. The Casimir effect is a quantum field theory in a space-time which has a different topology. A short review of some of its popular derivations is presented with comments. Renormalization of interacting scalar field theories in a flat space-time with a non-Minkowskian topology is considered. The presence of a non-trivial topology can lead to additional non-local divergent terms in the Schwinger-Dyson equations for a general scalar field theory; however, the theory may be renormalized with the same choice of counterterms as in Minkowski space-time. Propagators can develop poles corresponding to the generation of a topological mass. Zeta-function regularization is shown to fit naturally into the functional approach to the effective potential. This formalism is used to calculate the effective potential for some scalar field theories in non-Minkowskian space-times. Topological mass generation is discussed, and it is shown how radiative corrections can lead to spontaneous symmetry breaking. One- and two-loop contributions to the vacuum energy density are obtained for both massless and massive fields. In the massive case the role of renormalization in removing non-local divergences is discussed

  11. Cavity Exciton-Polariton mediated, Single-Shot Quantum Non-Demolition measurement of a Quantum Dot Electron Spin

    Science.gov (United States)

    Puri, Shruti; McMahon, Peter; Yamamoto, Yoshihisa

    2014-03-01

    The quantum non-demolition (QND) measurement of a single electron spin is of great importance in measurement-based quantum computing schemes. The current single-shot readout demonstrations exhibit substantial spin-flip backaction. We propose a QND readout scheme for quantum dot (QD) electron spins in Faraday geometry, which differs from previous proposals and implementations in that it relies on a novel physical mechanism: the spin-dependent Coulomb exchange interaction between a QD spin and optically-excited quantum well (QW) microcavity exciton-polaritons. The Coulomb exchange interaction causes a spin-dependent shift in the resonance energy of the polarized polaritons, thus causing the phase and intensity response of left circularly polarized light to be different to that of the right circularly polarized light. As a result the QD electron's spin can be inferred from the response to a linearly polarized probe. We show that by a careful design of the system, any spin-flip backaction can be eliminated and a QND measurement of the QD electron spin can be performed within a few 10's of nanoseconds with fidelity 99:95%. This improves upon current optical QD spin readout techniques across multiple metrics, including fidelity, speed and scalability. National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan.

  12. Programming Non-Trivial Algorithms in the Measurement Based Quantum Computation Model

    Energy Technology Data Exchange (ETDEWEB)

    Alsing, Paul [United States Air Force Research Laboratory, Wright-Patterson Air Force Base; Fanto, Michael [United States Air Force Research Laboratory, Wright-Patterson Air Force Base; Lott, Capt. Gordon [United States Air Force Research Laboratory, Wright-Patterson Air Force Base; Tison, Christoper C. [United States Air Force Research Laboratory, Wright-Patterson Air Force Base

    2014-01-01

    We provide a set of prescriptions for implementing a quantum circuit model algorithm as measurement based quantum computing (MBQC) algorithm1, 2 via a large cluster state. As means of illustration we draw upon our numerical modeling experience to describe a large graph state capable of searching a logical 8 element list (a non-trivial version of Grover's algorithm3 with feedforward). We develop several prescriptions based on analytic evaluation of cluster states and graph state equations which can be generalized into any circuit model operations. Such a resulting cluster state will be able to carry out the desired operation with appropriate measurements and feed forward error correction. We also discuss the physical implementation and the analysis of the principal 3-qubit entangling gate (Toffoli) required for a non-trivial feedforward realization of an 8-element Grover search algorithm.

  13. Transmutation of planar media singularities in a conformal cloak.

    Science.gov (United States)

    Liu, Yichao; Mukhtar, Musawwadah; Ma, Yungui; Ong, C K

    2013-11-01

    Invisibility cloaking based on optical transformation involves materials singularity at the branch cut points. Many interesting optical devices, such as the Eaton lens, also require planar media index singularities in their implementation. We show a method to transmute two singularities simultaneously into harmless topological defects formed by anisotropic permittivity and permeability tensors. Numerical simulation is performed to verify the functionality of the transmuted conformal cloak consisting of two kissing Maxwell fish eyes.

  14. How to recover Newtonian mechanics from non-relative quantum mechanics in limit ℎ→0

    International Nuclear Information System (INIS)

    Mei Shizhong

    2001-01-01

    It is assumed that when ℎ→0, correct non-relative quantum mechanics should be equivalent to Newtonian mechanics. Starting from this point, the authors slightly revised the widely accepted non-relative quantum mechanics such that the mechanics after modification is strictly equivalent to that before the modification when ℎ≠0, and equivalent to Newtonian mechanics in the limit ℎ→0. The significance lies in the possibility that if authors further postulate that corrected relative quantum mechanics is equivalent to Einstein's theory of relativity in the case ℎ→0, then authors may obtain different predictions from what produced by the former that will help to verify or improve it

  15. Experimental and theoretical investigations of photocurrents in non-centrosymmetric semiconductor quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Duc, Huynh Thanh; Foerstner, Jens; Meier, Torsten [Department of Physics and CeOPP, University Paderborn (Germany); Priyadarshi, Shekar; Racu, Ana Maria; Pierz, Klaus; Siegner, Uwe; Bieler, Mark [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    2010-07-01

    We compute photocurrents generated by femtosecond single-color laser pulses in non-centrosymmetric semiconductor quantum wells by combining a 14 x 14 k.p band structure theory with multi-band semiconductor Bloch equations. The transient photocurrents are investigated experimentally by measuring the associated Terahertz emission. The dependencies of the photocurrent and the Terahertz emission on the excitation conditions are discussed for (110)-oriented GaAs quantum wells. The comparison between theory and experiment shows a good agreement.

  16. Quantum simulation of superconductors on quantum computers. Toward the first applications of quantum processors

    Energy Technology Data Exchange (ETDEWEB)

    Dallaire-Demers, Pierre-Luc

    2016-10-07

    Quantum computers are the ideal platform for quantum simulations. Given enough coherent operations and qubits, such machines can be leveraged to simulate strongly correlated materials, where intricate quantum effects give rise to counter-intuitive macroscopic phenomena such as high-temperature superconductivity. Many phenomena of strongly correlated materials are encapsulated in the Fermi-Hubbard model. In general, no closed-form solution is known for lattices of more than one spatial dimension, but they can be numerically approximated using cluster methods. To model long-range effects such as order parameters, a powerful method to compute the cluster's Green's function consists in finding its self-energy through a variational principle. As is shown in this thesis, this allows the possibility of studying various phase transitions at finite temperature in the Fermi-Hubbard model. However, a classical cluster solver quickly hits an exponential wall in the memory (or computation time) required to store the computation variables. We show theoretically that the cluster solver can be mapped to a subroutine on a quantum computer whose quantum memory usage scales linearly with the number of orbitals in the simulated cluster and the number of measurements scales quadratically. We also provide a gate decomposition of the cluster Hamiltonian and a simple planar architecture for a quantum simulator that can also be used to simulate more general fermionic systems. We briefly analyze the Trotter-Suzuki errors and estimate the scaling properties of the algorithm for more complex applications. A quantum computer with a few tens of qubits could therefore simulate the thermodynamic properties of complex fermionic lattices inaccessible to classical supercomputers.

  17. Quantum simulation of superconductors on quantum computers. Toward the first applications of quantum processors

    International Nuclear Information System (INIS)

    Dallaire-Demers, Pierre-Luc

    2016-01-01

    Quantum computers are the ideal platform for quantum simulations. Given enough coherent operations and qubits, such machines can be leveraged to simulate strongly correlated materials, where intricate quantum effects give rise to counter-intuitive macroscopic phenomena such as high-temperature superconductivity. Many phenomena of strongly correlated materials are encapsulated in the Fermi-Hubbard model. In general, no closed-form solution is known for lattices of more than one spatial dimension, but they can be numerically approximated using cluster methods. To model long-range effects such as order parameters, a powerful method to compute the cluster's Green's function consists in finding its self-energy through a variational principle. As is shown in this thesis, this allows the possibility of studying various phase transitions at finite temperature in the Fermi-Hubbard model. However, a classical cluster solver quickly hits an exponential wall in the memory (or computation time) required to store the computation variables. We show theoretically that the cluster solver can be mapped to a subroutine on a quantum computer whose quantum memory usage scales linearly with the number of orbitals in the simulated cluster and the number of measurements scales quadratically. We also provide a gate decomposition of the cluster Hamiltonian and a simple planar architecture for a quantum simulator that can also be used to simulate more general fermionic systems. We briefly analyze the Trotter-Suzuki errors and estimate the scaling properties of the algorithm for more complex applications. A quantum computer with a few tens of qubits could therefore simulate the thermodynamic properties of complex fermionic lattices inaccessible to classical supercomputers.

  18. Continuous-variable quantum teleportation with non-Gaussian resources

    International Nuclear Information System (INIS)

    Dell'Anno, F.; De Siena, S.; Albano, L.; Illuminati, F.

    2007-01-01

    We investigate continuous variable quantum teleportation using non-Gaussian states of the radiation field as entangled resources. We compare the performance of different classes of degaussified resources, including two-mode photon-added and two-mode photon-subtracted squeezed states. We then introduce a class of two-mode squeezed Bell-like states with one-parameter dependence for optimization. These states interpolate between and include as subcases different classes of degaussified resources. We show that optimized squeezed Bell-like resources yield a remarkable improvement in the fidelity of teleportation both for coherent and nonclassical input states. The investigation reveals that the optimal non-Gaussian resources for continuous variable teleportation are those that most closely realize the simultaneous maximization of the content of entanglement, the degree of affinity with the two-mode squeezed vacuum, and the, suitably measured, amount of non-Gaussianity

  19. Non-commutative algebra of functions of 4-dimensional quantum Hall droplet

    International Nuclear Information System (INIS)

    Chen Yixin; Hou Boyu; Hou Boyuan

    2002-01-01

    We develop the description of non-commutative geometry of the 4-dimensional quantum Hall fluid's theory proposed recently by Zhang and Hu. The non-commutative structure of fuzzy S 4 , which is the base of the bundle S 7 obtained by the second Hopf fibration, i.e., S 7 /S 3 =S 4 , appears naturally in this theory. The fuzzy monopole harmonics, which are the essential elements in the non-commutative algebra of functions on S 4 , are explicitly constructed and their obeying the matrix algebra is obtained. This matrix algebra is associative. We also propose a fusion scheme of the fuzzy monopole harmonics of the coupling system from those of the subsystems, and determine the fusion rule in such fusion scheme. By products, we provide some essential ingredients of the theory of SO(5) angular momentum. In particular, the explicit expression of the coupling coefficients, in the theory of SO(5) angular momentum, are given. We also discuss some possible applications of our results to the 4-dimensional quantum Hall system and the matrix brane construction in M-theory

  20. Optical signatures of non-Markovian behavior in open quantum systems

    DEFF Research Database (Denmark)

    McCutcheon, Dara

    2016-01-01

    for the correlation functions, making only a second-order expansion in the system-environment coupling strength and invoking the Born approximation at a fixed initial time. The results are used to investigate a driven semiconductor quantum dot coupled to an acoustic phonon bath, where we find the non-Markovian nature...

  1. Is Quantum Gravity a Super-Quantum Theory?

    OpenAIRE

    Chang, Lay Nam; Lewis, Zachary; Minic, Djordje; Takeuchi, Tatsu

    2013-01-01

    We argue that quantum gravity should be a super-quantum theory, that is, a theory whose non-local correlations are stronger than those of canonical quantum theory. As a super-quantum theory, quantum gravity should display distinct experimentally observable super-correlations of entangled stringy states.

  2. Variability in DMSA reporting following urinary tract infection in children: pinhole, planar, and pinhole with planar

    International Nuclear Information System (INIS)

    Rossleigh, M.A.; Christian, C.L.; Craig, J.C.; Howman-Giles, R.B.; Grunewald, S.

    2004-01-01

    Purpose: To determine whether the provision of DMSA images obtained by pinhole collimation reduces inter-observer variability of reporting compared with planar DMSA images alone. Methods: One hundred consecutive DMSA images were independently interpreted three times (pinhole alone, planar alone, pinhole and planar) by four participating nuclear medicine specialists from different departments and in random order. The presence or absence of renal parenchymal abnormality was classified using the modified four level grading system of Goldraich with mean values for the 6 comparisons reported. Results: The proportion of DMSA images interpreted as abnormal was 31% for planar, 34% for pinhole and 33% for planar with pinhole. Agreement was 89% for planar alone, 89% for pinhole alone and 90% for planar with pinhole, with kappa values 0.74, 0.75 and 0.80 respectively for the normal-abnormal scan classification of individual children. These results did not vary appreciably whether interpretation of patients, kidneys or kidney zones was compared. Reasons for disagreement in reporting included different interpretations of 'abnormalities' as normal anatomical variations (splenic impression, fetal lobulation, duplex collecting systems, column of Bertin) or true parenchymal abnormalities, different adjustments in thresholds for reporting abnormality when images were technically suboptimal, different weighting given to pinhole and planar images when both were provided, and error. Conclusion: Four experienced nuclear medicine physicians showed substantial agreement in the interpretation of planar alone, pinhole alone and planar with pinhole DMSA images, but the provision of both sets of images, planar and pinhole, did not reduce variability. (authors)

  3. Manin's quantum spaces and standard quantum mechanics

    International Nuclear Information System (INIS)

    Floratos, E.G.

    1990-01-01

    Manin's non-commutative coordinate algebra of quantum groups is shown to be identical, for unitary coordinates, with the conventional operator algebras of quantum mechanics. The deformation parameter q is a pure phase for unitary coordinates. When q is a root of unity. Manin's algebra becomes the matrix algebra of quantum mechanics for a discretized and finite phase space. Implications for quantum groups and the associated non-commutative differential calculus of Wess and Zumino are discussed. (orig.)

  4. Rank one chaos in a class of planar systems with heteroclinic cycle.

    Science.gov (United States)

    Chen, Fengjuan; Han, Maoan

    2009-12-01

    In this paper, we study rank one chaos in a class of planar systems with heteroclinic cycle. We first find a stable limit cycle inside the heteroclinic cycle. We then add an external periodic forcing to create rank one chaos. We follow a step-by-step procedure guided by the theory of rank one chaos to find experimental evidence of strange attractors with Sinai, Ruelle, and Bowen measures.

  5. More on homological supersymmetric quantum mechanics

    Science.gov (United States)

    Behtash, Alireza

    2018-03-01

    In this work, we first solve complex Morse flow equations for the simplest case of a bosonic harmonic oscillator to discuss localization in the context of Picard-Lefschetz theory. We briefly touch on the exact non-BPS solutions of the bosonized supersymmetric quantum mechanics on algebraic geometric grounds and report that their complex phases can be accessed through the cohomology of WKB 1-form of the underlying singular spectral curve subject to necessary cohomological corrections for nonzero genus. Motivated by Picard-Lefschetz theory, we write down a general formula for the index of N =4 quantum mechanics with background R -symmetry gauge fields. We conjecture that certain symmetries of the refined Witten index and singularities of the moduli space may be used to determine the correct intersection coefficients. A few examples, where this conjecture holds, are shown in both linear and closed quivers with rank-one quiver gauge groups. The R -anomaly removal along the "Morsified" relative homology cycles also called "Lefschetz thimbles" is shown to lead to the appearance of Stokes lines. We show that the Fayet-Iliopoulos parameters appear in the intersection coefficients for the relative homology of the quiver quantum mechanics resulting from dimensional reduction of 2 d N =(2 ,2 ) gauge theory on a circle and explicitly calculate integrals along the Lefschetz thimbles in N =4 C Pk -1 model. The Stokes jumping of coefficients and its relation to wall crossing phenomena is briefly discussed. We also find that the notion of "on-the-wall" index is related to the invariant Lefschetz thimbles under Stokes phenomena. An implication of the Lefschetz thimbles in constructing knots from quiver quantum mechanics is indicated.

  6. The Prohibitive Link between Position-based Routing and Planarity

    Directory of Open Access Journals (Sweden)

    David Cairns

    2013-12-01

    Full Text Available Position-based routing is touted as an ideal routing strategy for resource-constrained wireless networks. One persistent barrier to adoption is due to its recovery phase, where messages are forwarded according to leftor right-hand rule (LHR. This is often referred to as face-routing. In this paper we investigate the limits of LHR with respect to planarity.We show that the gap between non-planarity and successful delivery is a single link within a single configuration. Our work begins with an analysis to enumerate all node configurations that cause intersections in the unit-disc graph. We find that left-hand rule is able to recover from all but a single case, the ‘umbrella’ configuration so named for its appearance. We use this information to propose the Prohibitive Link Detection Protocol (PLDP that can guarantee delivery over non-planar graphs using standard face-routing techniques. As the name implies, the protocol detects and circumvents the ‘bad’ links that hamper LHR. The goal of this work is to maintain routing guarantees while disturbing the network graph as little as possible. In doing so, a new starting point emerges from which to build rich distributed protocols in the spirit of CLDP and GDSTR.

  7. Alliances and Bisection Width for Planar Graphs

    DEFF Research Database (Denmark)

    Olsen, Martin; Revsbæk, Morten

    2013-01-01

    An alliance in a graph is a set of vertices (allies) such that each vertex in the alliance has at least as many allies (counting the vertex itself) as non-allies in its neighborhood of the graph. We show that any planar graph with minimum degree at least 4 can be split into two alliances in polyn...

  8. Entropy Error Model of Planar Geometry Features in GIS

    Institute of Scientific and Technical Information of China (English)

    LI Dajun; GUAN Yunlan; GONG Jianya; DU Daosheng

    2003-01-01

    Positional error of line segments is usually described by using "g-band", however, its band width is in relation to the confidence level choice. In fact, given different confidence levels, a series of concentric bands can be obtained. To overcome the effect of confidence level on the error indicator, by introducing the union entropy theory, we propose an entropy error ellipse index of point, then extend it to line segment and polygon,and establish an entropy error band of line segment and an entropy error donut of polygon. The research shows that the entropy error index can be determined uniquely and is not influenced by confidence level, and that they are suitable for positional uncertainty of planar geometry features.

  9. Optically reconfigurable patterning for control of the propagation characteristics of a planar waveguide

    Science.gov (United States)

    Wang, Y.; Klittnick, A.; Clark, N. A.; Keller, P.

    2008-10-01

    We demonstrate an easily fabricated all-optical and freely reconfigurable method of controlling the propagating characteristics of the optic path within a planar waveguide with low insertion losses by employing the optical patterning of the refractive index of an erasable and rewriteable photosensitive liquid crystal polymer cladding layer.

  10. Quantum Physics Without Quantum Philosophy

    CERN Document Server

    Dürr, Detlef; Zanghì, Nino

    2013-01-01

    It has often been claimed that without drastic conceptual innovations a genuine explanation of quantum interference effects and quantum randomness is impossible. This book concerns Bohmian mechanics, a simple particle theory that is a counterexample to such claims. The gentle introduction and other contributions collected here show how the phenomena of non-relativistic quantum mechanics, from Heisenberg's uncertainty principle to non-commuting observables, emerge from the Bohmian motion of particles, the natural particle motion associated with Schrödinger's equation. This book will be of value to all students and researchers in physics with an interest in the meaning of quantum theory as well as to philosophers of science.

  11. On some solvable models in non-relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Shabani, J.; Shayo, L.K.

    1985-11-01

    The theory of self-adjoint extensions is employed to generalize some previous results in non-relativistic quantum interactions. In particular, the Hamiltonian H=-Δ+V, where Δ is the Laplacian and the potential V consists of a strongly singular interaction, a Coulomb and a delta-shell interaction is studied. The spectral properties are discussed and phase shifts as well as low energy parameters are obtained. (author)

  12. Loop quantum gravity effects on inflation and the CMB

    International Nuclear Information System (INIS)

    Tsujikawa, Shinji; Singh, Parampreet; Maartens, Roy

    2004-01-01

    In loop quantum cosmology, the universe avoids a big bang singularity and undergoes an early and short super-inflation phase. During super-inflation, non-perturbative quantum corrections to the dynamics drive an inflaton field up its potential hill, thus setting the initial conditions for standard inflation. We show that this effect can raise the inflaton high enough to achieve sufficient e-foldings in the standard inflation era. We analyse the cosmological perturbations generated when slow-roll is violated after super-inflation and show that loop quantum effects can in principle leave an indirect signature on the largest scales in the CMB, with some loss of power and running of the spectral index

  13. Lectures on Quantum Mechanics

    Science.gov (United States)

    Weinberg, Steven

    2015-09-01

    Preface; Notation; 1. Historical introduction; 2. Particle states in a central potential; 3. General principles of quantum mechanics; 4. Spin; 5. Approximations for energy eigenstates; 6. Approximations for time-dependent problems; 7. Potential scattering; 8. General scattering theory; 9. The canonical formalism; 10. Charged particles in electromagnetic fields; 11. The quantum theory of radiation; 12. Entanglement; Author index; Subject index.

  14. Index theorem for non-supersymmetric fermions coupled to a non-Abelian string and electric charge quantization

    Science.gov (United States)

    Shifman, M.; Yung, A.

    2018-03-01

    Non-Abelian strings are considered in non-supersymmetric theories with fermions in various appropriate representations of the gauge group U(N). We derive the electric charge quantization conditions and the index theorems counting fermion zero modes in the string background both for the left-handed and right-handed fermions. In both cases we observe a non-trivial N dependence.

  15. Planar strain analysis of liver undergoing microwave thermal ablation using x-ray CT.

    Science.gov (United States)

    Weiss, Noam; Goldberg, S Nahum; Nissenbaum, Yitzhak; Sosna, Jacob; Azhari, Haim

    2015-01-01

    To study the planar strain effects in liver during microwave (MW) thermal ablation as a means for tracking tissue expansion and contraction as a method for improving ablation monitoring. 1.4 mm circular metallic markers were inserted into 16 ex-vivo bovine fresh liver specimens, that were subsequently ablated (with the markers inside the specimen) by 40 W of microwave energy, for 1, 2, 3, 6, and 10 min. The markers were tracked during the ablation using an x-ray CT scanner. Images were acquired every 5-10 s enabling determination of the markers' coordinates over time. The 2D principal strains were calculated for triangles formed by subgroups of three markers, and their planar strain index, Ω, was plotted vs time. In addition, the radial distance of the markers from the antenna was measured at the end of each ablation. Subsequently, the tissue was sliced parallel to the imaged planes and the ablation zone was traced and digitized. The average ablation radius was then computed and compared to the radial distance. The planar strain, Ω(t), profile demonstrated an ascending pattern until reaching a maximum at about 180 s, with a mean peak value (Ω = 1.31 ± 0.04) indicating tissue expansion. Thereafter, Ω progressively declined over the remaining duration of the ablation treatment, indicating tissue contraction. Furthermore, when plotting the ablation size vs time and the markers' mean radial distance vs time, it was found that the two curves intercepted at a time corresponding to the time of peak planar strain. By detecting the point of maximal planar strain in tissues during MW application, it is possible to noninvasively identify the location of the ablation zone front. The fact that the liver tissue proximal to the ablated zone expands during the first part of the treatment and then contracts when the ablation front reaches it, may serve as an index for monitoring the thermal treatment.

  16. Theoretical investigation of confocal microscopy using an elliptically polarized cylindrical vector laser beam: Visualization of quantum emitters near interfaces

    Science.gov (United States)

    Boichenko, Stepan

    2018-04-01

    We theoretically study laser-scanning confocal fluorescence microscopy using elliptically polarized cylindrical vector excitation light as a tool for visualization of arbitrarily oriented single quantum dipole emitters located (1) near planar surfaces enhancing fluorescence, (2) in a thin supported polymer film, (3) in a freestanding polymer film, and (4) in a dielectric planar microcavity. It is shown analytically that by using a tightly focused azimuthally polarized beam, it is possible to exclude completely the orientational dependence of the image intensity maximum of a quantum emitter that absorbs light as a pair of incoherent independent linear dipoles. For linear dipole quantum emitters, the orientational independence degree higher than 0.9 can normally be achieved (this quantity equal to 1 corresponds to completely excluded orientational dependence) if the collection efficiency of the microscope objective and the emitter's total quantum yield are not strongly orientationally dependent. Thus, the visualization of arbitrarily oriented single quantum emitters by means of the studied technique can be performed quite efficiently.

  17. A new disclosure index for Non-Governmental Organizations.

    Science.gov (United States)

    Nazuk, Ayesha; Shabbir, Javid

    2018-01-01

    Website of Non-governmental organization (NGO) is a focal medium of sharing information in response to transparency demands and addressing trust deficits between stakeholders. Many researchers have proposed accountability approaches to measure information sharing trends through websites. This article discusses a new index to measure online disclosure trends along with the theoretical properties of the index and a practical application of data from NGOs working in Pakistan. The websites have been coded in 2016. Results show that NGOs with branch offices have better disclosure scores than single-office NGOs, and international NGOs score better than local NGOs. NGOs that are more often the subject of newspaper reports have better disclosure trends.

  18. Integration of lateral porous silicon membranes into planar microfluidics.

    Science.gov (United States)

    Leïchlé, Thierry; Bourrier, David

    2015-02-07

    In this work, we present a novel fabrication process that enables the monolithic integration of lateral porous silicon membranes into single-layer planar microchannels. This fabrication technique relies on the patterning of local electrodes to guide pore formation horizontally within the membrane and on the use of silicon-on-insulator substrates to spatially localize porous silicon within the channel depth. The feasibility of our approach is studied by current flow analysis using the finite element method and supported by creating 10 μm long mesoporous membranes within 20 μm deep microchannels. The fabricated membranes are demonstrated to be potentially useful for dead-end microfiltration by adequately retaining 300 nm diameter beads while macromolecules such as single-stranded DNA and immunoglobulin G permeate the membrane. The experimentally determined fluidic resistance is in accordance with the theoretical value expected from the estimated pore size and porosity. The work presented here is expected to greatly simplify the integration of membranes capable of size exclusion based separation into fluidic devices and opens doors to the use of porous silicon in planar lab on a chip devices.

  19. A quantum hybrid with a thin antenna at the vertex of a wedge

    Energy Technology Data Exchange (ETDEWEB)

    Carlone, Raffaele, E-mail: raffaele.carlone@unina.it [Università “Federico II” di Napoli, Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, MSA, via Cinthia, I-80126, Napoli (Italy); Posilicano, Andrea, E-mail: andrea.posilicano@uninsubria.it [DiSAT, Università dell' Insubria, via Valleggio 11, I-22100, Como (Italy)

    2017-03-26

    We study the spectrum, resonances and scattering matrix of a quantum Hamiltonian on a “hybrid surface” consisting of a half-line attached by its endpoint to the vertex of a concave planar wedge. At the boundary of the wedge, outside the vertex, homogeneous Dirichlet conditions are imposed. The system is tunable by varying the measure of the angle at the vertex. - Highlights: • Spectral characterization of a quantum Hamiltonian on “hybrid surface” consisting of a halfline attached to the vertex of a concave planar wedge. • The system is tunable by varying the measure of the angle at the vertex. • Relation between the conduction properties inside the hybrid and formation of resonances. • Easy generalization of the results to more complicated structures.

  20. Constructing quantum dynamics from mixed quantum-classical descriptions

    International Nuclear Information System (INIS)

    Barsegov, V.; Rossky, P.J.

    2004-01-01

    The influence of quantum bath effects on the dynamics of a quantum two-level system linearly coupled to a harmonic bath is studied when the coupling is both diagonal and off-diagonal. It is shown that the pure dephasing kernel and the non-adiabatic quantum transition rate between Born-Oppenheimer states of the subsystem can be decomposed into a contribution from thermally excited bath modes plus a zero point energy contribution. This quantum rate can be modewise factorized exactly into a product of a mixed quantum subsystem-classical bath transition rate and a quantum correction factor. This factor determines dynamics of quantum bath correlations. Quantum bath corrections to both the transition rate and the pure dephasing kernel are shown to be readily evaluated via a mixed quantum-classical simulation. Hence, quantum dynamics can be recovered from a mixed quantum-classical counterpart by incorporating the missing quantum bath corrections. Within a mixed quantum-classical framework, a simple approach for evaluating quantum bath corrections in calculation of the non-adiabatic transition rate is presented

  1. Single-Photon Source for Quantum Information Based on Single Dye Molecule Fluorescence in Liquid Crystal Host

    International Nuclear Information System (INIS)

    Lukishova, S.G.; Knox, R.P.; Freivald, P.; McNamara, A.; Boyd, R.W.; Stroud, Jr. C.R.; Schmid, A.W.; Marshall, K.L.

    2006-01-01

    This paper describes a new application for liquid crystals: quantum information technology. A deterministically polarized single-photon source that efficiently produces photons exhibiting antibunching is a pivotal hardware element in absolutely secure quantum communication. Planar-aligned nematic liquid crystal hosts deterministically align the single dye molecules which produce deterministically polarized single (antibunched) photons. In addition, 1-D photonic bandgap cholesteric liquid crystals will increase single-photon source efficiency. The experiments and challenges in the observation of deterministically polarized fluorescence from single dye molecules in planar-aligned glassy nematic-liquid-crystal oligomer as well as photon antibunching in glassy cholesteric oligomer are described for the first time

  2. Non-destructive state detection for quantum logic spectroscopy of molecular ions.

    Science.gov (United States)

    Wolf, Fabian; Wan, Yong; Heip, Jan C; Gebert, Florian; Shi, Chunyan; Schmidt, Piet O

    2016-02-25

    Precision laser spectroscopy of cold and trapped molecular ions is a powerful tool in fundamental physics--used, for example, in determining fundamental constants, testing for their possible variation in the laboratory, and searching for a possible electric dipole moment of the electron. However, the absence of cycling transitions in molecules poses a challenge for direct laser cooling of the ions, and for controlling and detecting their quantum states. Previously used state-detection techniques based on photodissociation or chemical reactions are destructive and therefore inefficient, restricting the achievable resolution in laser spectroscopy. Here, we experimentally demonstrate non-destructive detection of the quantum state of a single trapped molecular ion through its strong Coulomb coupling to a well controlled, co-trapped atomic ion. An algorithm based on a state-dependent optical dipole force changes the internal state of the atom according to the internal state of the molecule. We show that individual quantum states in the molecular ion can be distinguished by the strength of their coupling to the optical dipole force. We also observe quantum jumps (induced by black-body radiation) between rotational states of a single molecular ion. Using the detuning dependence of the state-detection signal, we implement a variant of quantum logic spectroscopy of a molecular resonance. Our state-detection technique is relevant to a wide range of molecular ions, and could be applied to state-controlled quantum chemistry and to spectroscopic investigations of molecules that serve as probes for interstellar clouds.

  3. Dynamics of interacting qubits coupled to a common bath: Non-Markovian quantum-state-diffusion approach

    International Nuclear Information System (INIS)

    Zhao Xinyu; Jing Jun; Corn, Brittany; Yu Ting

    2011-01-01

    Non-Markovian dynamics is studied for two interacting qubits strongly coupled to a dissipative bosonic environment. We derive a non-Markovian quantum-state-diffusion (QSD) equation for the coupled two-qubit system without any approximations, and in particular, without the Markov approximation. As an application and illustration of our derived time-local QSD equation, we investigate the temporal behavior of quantum coherence dynamics. In particular, we find a strongly non-Markovian regime where entanglement generation is significantly modulated by the environmental memory. Additionally, we study residual entanglement in the steady state by analyzing the steady-state solution of the QSD equation. Finally, we discuss an approximate QSD equation.

  4. The Ising model on a random planar lattice: The structure of the phase transition and the exact critical exponents

    International Nuclear Information System (INIS)

    Boulatov, D.V.; Kazakov, V.A.

    1987-01-01

    We investigate the critical properties of a recently proposed exactly soluble Ising model on a planar random dynamical lattice representing a regularization of the zero-dimensional string with internal fermions. The sum over all lattices gives rise to a new quantum degree of freedom - fluctuation of the metric. The whole system of critical exponents is found: α = -1, β = 1/2, γ = 2, δ = 5, v . D = 3. To test the universality we have used the planar graphs with the coordination number equal to 4 (Φ 4 theory graphs) as well as with the equal to 3 (Φ 3 theory graphs or triangulations). The critical exponents coincide for both cases. (orig.)

  5. On the tautomerism, planarity, and vibrations of phospholes

    International Nuclear Information System (INIS)

    Oziminski, Wojciech P.; Dobrowolski, Jan Cz.

    2005-01-01

    The PH and CH tautomers of mono-, di-, tri-, tetra-, and pentaphospholes were calculated at the B3LYP/aug-cc-pVTZ level. Except for 1,2,3-triphosphole and pentaphosphole, the most stable phosphole form is one of the CH tautomers. For 1,2-diphosphole, 1,3-diphosphole, and 1,2,4-triphosphole, the energy difference between the tautomers is large and only one tautomer may be observed. For other phospholes, especially tetraphosphole, two tautomers may coexist. Non-planarity of the five membered ring is present only in the σ 3 λ 3 -P atom containing molecules, i.e., PH type of tautomers, while in the CH type of tautomers the ring is planar. As earlier reported by Nyulaszi, the PH tautomers flatten, and the energy difference between PH phosphole and the planar transition state structure decreases, as the number of P atoms in the phosphole molecule is increased. Bond length changes were discussed in terms of configuration of the atoms attached to the bond, and the molecular frequency variations were examined according to the different surroundings of the appropriate vibrators

  6. Quantum communications

    CERN Document Server

    Cariolaro, Gianfranco

    2015-01-01

    This book demonstrates that a quantum communication system using the coherent light of a laser can achieve performance orders of magnitude superior to classical optical communications Quantum Communications provides the Masters and PhD signals or communications student with a complete basics-to-applications course in using the principles of quantum mechanics to provide cutting-edge telecommunications. Assuming only knowledge of elementary probability, complex analysis and optics, the book guides its reader through the fundamentals of vector and Hilbert spaces and the necessary quantum-mechanical ideas, simply formulated in four postulates. A turn to practical matters begins with and is then developed by: ·         development of the concept of quantum decision, emphasizing the optimization of measurements to extract useful information from a quantum system; ·         general formulation of a transmitter–receiver system ·         particular treatment of the most popular quantum co...

  7. Flexible and transparent silicon-on-polymer based sub-20 nm non-planar 3D FinFET for brain-architecture inspired computation

    KAUST Repository

    Sevilla, Galo T.; Rojas, Jhonathan Prieto; Fahad, Hossain M.; Hussain, Aftab M.; Ghanem, Rawan; Smith, Casey; Hussain, Muhammad Mustafa

    2014-01-01

    An industry standard 8′′ silicon-on-insulator wafer based ultra-thin (1 μm), ultra-light-weight, fully flexible and remarkably transparent state-of-the-art non-planar three dimensional (3D) FinFET is shown. Introduced by Intel Corporation in 2011 as the most advanced transistor architecture, it reveals sub-20 nm features and the highest performance ever reported for a flexible transistor. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Flexible and transparent silicon-on-polymer based sub-20 nm non-planar 3D FinFET for brain-architecture inspired computation

    KAUST Repository

    Sevilla, Galo T.

    2014-02-22

    An industry standard 8′′ silicon-on-insulator wafer based ultra-thin (1 μm), ultra-light-weight, fully flexible and remarkably transparent state-of-the-art non-planar three dimensional (3D) FinFET is shown. Introduced by Intel Corporation in 2011 as the most advanced transistor architecture, it reveals sub-20 nm features and the highest performance ever reported for a flexible transistor. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Design of special planar linkages

    CERN Document Server

    Zhao, Jing-Shan; Ma, Ning; Chu, Fulei

    2013-01-01

    Planar linkages play a very important role in mechanical engineering. As the simplest closed chain mechanisms, planar four-bar linkages are widely used in mechanical engineering, civil engineering and aerospace engineering.Design of Special Planar Linkages proposes a uniform design theory for planar four-bar linkages. The merit of the method proposed in this book is that it allows engineers to directly obtain accurate results when there are such solutions for the specified n precise positions; otherwise, the best approximate solutions will be found. This book discusses the kinematics and reach

  10. Influence of refraction index strength on the light propagation in dielectrics material with periodic refraction index

    International Nuclear Information System (INIS)

    Hidayat, Arif; Latifah, Eny; Kurniati, Diana; Wisodo, Hari

    2016-01-01

    This study investigated the influence of refraction index strength on the light propagation in refraction index-varied dielectric material. This dielectric material served as photonic lattice. The behavior of light propagation influenced by variation of refraction index in photonic lattice was investigated. Modes of the guiding light were determined numerically using squared-operator iteration method. It was found that the greater the strength of refraction index, the smaller the guiding modes.

  11. Discovery of potent, novel, non-toxic anti-malarial compounds via quantum modelling, virtual screening and in vitro experimental validation

    Directory of Open Access Journals (Sweden)

    Kaludov Nikola

    2011-09-01

    Full Text Available Abstract Background Developing resistance towards existing anti-malarial therapies emphasize the urgent need for new therapeutic options. Additionally, many malaria drugs in use today have high toxicity and low therapeutic indices. Gradient Biomodeling, LLC has developed a quantum-model search technology that uses quantum similarity and does not depend explicitly on chemical structure, as molecules are rigorously described in fundamental quantum attributes related to individual pharmacological properties. Therapeutic activity, as well as toxicity and other essential properties can be analysed and optimized simultaneously, independently of one another. Such methodology is suitable for a search of novel, non-toxic, active anti-malarial compounds. Methods A set of innovative algorithms is used for the fast calculation and interpretation of electron-density attributes of molecular structures at the quantum level for rapid discovery of prospective pharmaceuticals. Potency and efficacy, as well as additional physicochemical, metabolic, pharmacokinetic, safety, permeability and other properties were characterized by the procedure. Once quantum models are developed and experimentally validated, the methodology provides a straightforward implementation for lead discovery, compound optimizzation and de novo molecular design. Results Starting with a diverse training set of 26 well-known anti-malarial agents combined with 1730 moderately active and inactive molecules, novel compounds that have strong anti-malarial activity, low cytotoxicity and structural dissimilarity from the training set were discovered and experimentally validated. Twelve compounds were identified in silico and tested in vitro; eight of them showed anti-malarial activity (IC50 ≤ 10 μM, with six being very effective (IC50 ≤ 1 μM, and four exhibiting low nanomolar potency. The most active compounds were also tested for mammalian cytotoxicity and found to be non-toxic, with a

  12. Gaze strategies during visually-guided versus memory-guided grasping.

    Science.gov (United States)

    Prime, Steven L; Marotta, Jonathan J

    2013-03-01

    Vision plays a crucial role in guiding motor actions. But sometimes we cannot use vision and must rely on our memory to guide action-e.g. remembering where we placed our eyeglasses on the bedside table when reaching for them with the lights off. Recent studies show subjects look towards the index finger grasp position during visually-guided precision grasping. But, where do people look during memory-guided grasping? Here, we explored the gaze behaviour of subjects as they grasped a centrally placed symmetrical block under open- and closed-loop conditions. In Experiment 1, subjects performed grasps in either a visually-guided task or memory-guided task. The results show that during visually-guided grasping, gaze was first directed towards the index finger's grasp point on the block, suggesting gaze targets future grasp points during the planning of the grasp. Gaze during memory-guided grasping was aimed closer to the blocks' centre of mass from block presentation to the completion of the grasp. In Experiment 2, subjects performed an 'immediate grasping' task in which vision of the block was removed immediately at the onset of the reach. Similar to the visually-guided results from Experiment 1, gaze was primarily directed towards the index finger location. These results support the 2-stream theory of vision in that motor planning with visual feedback at the onset of the movement is driven primarily by real-time visuomotor computations of the dorsal stream, whereas grasping remembered objects without visual feedback is driven primarily by the perceptual memory representations mediated by the ventral stream.

  13. Quantum optics and fundamentals of quantum theory

    International Nuclear Information System (INIS)

    Dusek, M.

    1997-01-01

    Quantum optics has opened up new opportunities for experimental verification of the basic principles of quantum mechanics, particularly in the field of quantum interference and so-called non-local phenomena. The results of the experiments described provide unambiguous support to quantum mechanics. (Z.J.)

  14. Combined CT- and fluoroscopy-guided nephrostomy in patients with non-obstructive uropathy due to urine leaks in cases of failed ultrasound-guided procedures

    International Nuclear Information System (INIS)

    Sommer, C.M.; Huber, J.; Radeleff, B.A.; Hosch, W.; Stampfl, U.; Loenard, B.M.; Hallscheidt, P.; Haferkamp, A.; Kauczor, H.U.; Richter, G.M.

    2011-01-01

    Aim: To report our experience of combined CT- and fluoroscopy-guided nephrostomy in patients with non-obstructive uropathy due to urine leaks in cases of failed ultrasound-guided procedures. Patients and methods: Eighteen patients (23 kidneys) with non-obstructive uropathy due to urine leaks underwent combined CT- and fluoroscopy-guided nephrostomy. All procedures were indicated as second-line interventions after failed ultrasound-guided nephrostomy. Thirteen males and five females with an age of 62.3 ± 8.7 (40–84) years were treated. Urine leaks developed in majority after open surgery, e.g. postoperative insufficiency of ureteroneocystostomy (5 kidneys). The main reasons for failed ultrasound-guided nephrostomy included anatomic obstacles in the puncture tract (7 kidneys), and inability to identify pelvic structures (7 kidneys). CT-guided guidewire placement into the collecting system was followed by fluoroscopy-guided nephrostomy tube positioning. Procedural success rate, major and minor complication rates, CT-views and needle passes, duration of the procedure and radiation dose were analyzed. Results: Procedural success was 91%. Major and minor complication rates were 9% (one septic shock and one perirenal abscess) and 9% (one perirenal haematoma and one urinoma), respectively. 30-day mortality rate was 6%. Number of CT-views and needle passes were 9.3 ± 6.1 and 3.6 ± 2.6, respectively. Duration of the complete procedure was 87 ± 32 min. Dose-length product and dose-area product were 1.8 ± 1.4 Gy cm and 3.9 ± 4.3 Gy cm 2 , respectively. Conclusions: Combined CT- and fluoroscopy-guided nephrostomy in patients with non-obstructive uropathy due to urine leaks in cases of failed ultrasound-guided procedures was feasible with high technical success and a tolerable complication rate.

  15. A scheme of quantum state discrimination over specified states via weak-value measurement

    Science.gov (United States)

    Chen, Xi; Dai, Hong-Yi; Liu, Bo-Yang; Zhang, Ming

    2018-04-01

    The commonly adopted projective measurements are invalid in the specified task of quantum state discrimination when the discriminated states are superposition of planar-position basis states whose complex-number probability amplitudes have the same magnitude but different phases. Therefore we propose a corresponding scheme via weak-value measurement and examine the feasibility of this scheme. Furthermore, the role of the weak-value measurement in quantum state discrimination is analyzed and compared with one in quantum state tomography in this Letter.

  16. Comparative studies of efficiency droop in polar and non-polar InGaN quantum wells

    International Nuclear Information System (INIS)

    Davies, M. J.; Dawson, P.; Hammersley, S.; Zhu, T.; Kappers, M. J.; Humphreys, C. J.; Oliver, R. A.

    2016-01-01

    We report on a comparative study of efficiency droop in polar and non-polar InGaN quantum well structures at T = 10 K. To ensure that the experiments were carried out with identical carrier densities for any particular excitation power density, we used laser pulses of duration ∼100 fs at a repetition rate of 400 kHz. For both types of structures, efficiency droop was observed to occur for carrier densities of above 7 × 10 11  cm −2  pulse −1 per quantum well; also both structures exhibited similar spectral broadening in the droop regime. These results show that efficiency droop is intrinsic in InGaN quantum wells, whether polar or non-polar, and is a function, specifically, of carrier density.

  17. Visible-Light-Driven Hydrogen Evolution Using Planarized Conjugated Polymer Photocatalysts.

    Science.gov (United States)

    Sprick, Reiner Sebastian; Bonillo, Baltasar; Clowes, Rob; Guiglion, Pierre; Brownbill, Nick J; Slater, Benjamin J; Blanc, Frédéric; Zwijnenburg, Martijn A; Adams, Dave J; Cooper, Andrew I

    2016-01-26

    Linear poly(p-phenylene)s are modestly active UV photocatalysts for hydrogen production in the presence of a sacrificial electron donor. Introduction of planarized fluorene, carbazole, dibenzo[b,d]thiophene or dibenzo[b,d]thiophene sulfone units greatly enhances the H 2 evolution rate. The most active dibenzo[b,d]thiophene sulfone co-polymer has a UV photocatalytic activity that rivals TiO 2 , but is much more active under visible light. The dibenzo[b,d]thiophene sulfone co-polymer has an apparent quantum yield of 2.3 % at 420 nm, as compared to 0.1 % for platinized commercial pristine carbon nitride.

  18. The algebraic curve of 1-loop planar N=4 SYM

    International Nuclear Information System (INIS)

    Schaefer-Nameki, S.

    2004-12-01

    The algebraic curve for the psu(2,2 vertical stroke 4) quantum spin chain is determined from the thermodynamic limit of the algebraic Bethe ansatz. The Hamiltonian of this spin chain has been identified with the planar 1-loop dilatation operator of N=4 SYM. In the dual AdS 5 x S 5 string theory, various properties of the data defining the curve for the gauge theory are compared to the ones obtained from semiclassical spinning-string configurations, in particular for the case of strings on AdS 5 x S 1 and the su(2,2) spin chain agreement of the curves is shown. (orig.)

  19. Surface microstructures on planar substrates and textile fibers guide neurite outgrowth: a scaffold solution to push limits of critical nerve defect regeneration?

    Directory of Open Access Journals (Sweden)

    Stefan Weigel

    Full Text Available The treatment of critical size peripheral nerve defects represents one of the most serious problems in neurosurgery. If the gap size exceeds a certain limit, healing can't be achieved. Connection mismatching may further reduce the clinical success. The present study investigates how far specific surface structures support neurite outgrowth and by that may represent one possibility to push distance limits that can be bridged. For this purpose, growth cone displacement of fluorescent embryonic chicken spinal cord neurons was monitored using time-lapse video. In a first series of experiments, parallel patterns of polyimide ridges of different geometry were created on planar silicon oxide surfaces. These channel-like structures were evaluated with and without amorphous hydrogenated carbon (a-C:H coating. In a next step, structured and unstructured textile fibers were investigated. All planar surface materials (polyimide, silicon oxide and a-C:H proved to be biocompatible, i.e. had no adverse effect on nerve cultures and supported neurite outgrowth. Mean growth cone migration velocity measured on 5 minute base was marginally affected by surface structuring. However, surface structure variability, i.e. ridge height, width and inter-ridge spacing, significantly enhanced the resulting net velocity by guiding the growth cone movement. Ridge height and inter-ridge distance affected the frequency of neurites crossing over ridges. Of the evaluated dimensions ridge height, width, and inter-ridge distance of respectively 3, 10, and 10 µm maximally supported net axon growth. Comparable artificial grooves, fabricated onto the surface of PET fibers by using an excimer laser, showed similar positive effects. Our data may help to further optimize surface characteristics of artificial nerve conduits and bioelectronic interfaces.

  20. Using LEDs and Phosphorescent Materials to Teach High School Students Quantum Mechanics: A Guided-Inquiry Laboratory for Introductory High School Chemistry

    Science.gov (United States)

    Green, William P.; Trotochaud, Alan; Sherman, Julia; Kazerounian, Kazem; Faraclas, Elias W.

    2009-01-01

    The quantization of electronic energy levels in atoms is foundational to a mechanistic explanation of the periodicity of elemental properties and behavior. This paper presents a hands-on, guided inquiry approach to teaching this concept as part of a broader treatment of quantum mechanics, and as a foundation for an understanding of chemical…

  1. A new disclosure index for Non-Governmental Organizations

    Science.gov (United States)

    Shabbir, Javid

    2018-01-01

    Website of Non-governmental organization (NGO) is a focal medium of sharing information in response to transparency demands and addressing trust deficits between stakeholders. Many researchers have proposed accountability approaches to measure information sharing trends through websites. This article discusses a new index to measure online disclosure trends along with the theoretical properties of the index and a practical application of data from NGOs working in Pakistan. The websites have been coded in 2016. Results show that NGOs with branch offices have better disclosure scores than single-office NGOs, and international NGOs score better than local NGOs. NGOs that are more often the subject of newspaper reports have better disclosure trends. PMID:29466397

  2. A simple solvable model of quantum field theory of open strings

    International Nuclear Information System (INIS)

    Kazakov, V.A.; AN SSSR, Moscow

    1990-01-01

    A model of quantum field theory of open strings without any embedding (D=0) is solved. The world sheets of interacting strings are represented by dynamical planar graphs with dynamical holes of arbitrary sizes. The phenomenon of spontaneous tearing of the world sheet is noticed, which gives a singularity at zero coupling constant of string interaction. This phenomenon can be considered as a nonperturbative effect, similar to renormalons in planar field theories and is closely related to the α' → 0 limit of string field theories. (orig.)

  3. The Quantum Mechanics Solver How to Apply Quantum Theory to Modern Physics

    CERN Document Server

    Basdevant, Jean-Louis

    2006-01-01

    The Quantum Mechanics Solver grew from topics which are part of the final examination in quantum theory at the Ecole Polytechnique at Palaiseau near Paris, France. The aim of the text is to guide the student towards applying quantum mechanics to research problems in fields such as atomic and molecular physics, condensed matter physics, and laser physics. Advanced undergraduates and graduate students will find a rich and challenging source for improving their skills in this field.

  4. Quantum group gauge theory on quantum spaces

    International Nuclear Information System (INIS)

    Brzezinski, T.; Majid, S.

    1993-01-01

    We construct quantum group-valued canonical connections on quantum homogeneous spaces, including a q-deformed Dirac monopole on the quantum sphere of Podles quantum differential coming from the 3-D calculus of Woronowicz on SU q (2). The construction is presented within the setting of a general theory of quantum principal bundles with quantum group (Hopf algebra) fiber, associated quantum vector bundles and connection one-forms. Both the base space (spacetime) and the total space are non-commutative algebras (quantum spaces). (orig.)

  5. Probing the quantum correlation and Bell non-locality for Dirac particles with Hawking effect in the background of Schwarzschild black hole

    International Nuclear Information System (INIS)

    Xu, Shuai; Song, Xue-ke; Shi, Jia-dong; Ye, Liu

    2014-01-01

    In this Letter, we analytically explore the effect of the Hawking radiation on the quantum correlation and Bell non-locality for Dirac particles in the background of Schwarzschild black hole. It is shown that when the Hawking effect is almost nonexistent, corresponding to the case of an almost extreme black hole, the quantum properties of physically accessible state are the same for the initial situation. For finite Hawking temperature T, the accessible quantum correlation monotonously decreases along with increasing T owing to the thermal fields generated by the Hawking effect, and the accessible quantum non-locality will be disappeared when the Hawking temperature is more than a fixed value which increases with the parameter r of Werner state growing. Then we analyze the redistribution of quantum correlation, and find that for the case of the Hawking temperature being infinite, corresponding to the case of the black hole evaporating completely, the quantum correlation of physically accessible state is equal to the one of the inaccessible states. Moreover, due to the Pauli exclusion principle and the differences between Fermi–Dirac and Bose–Einstein statistics, for the Dirac fields the accessible classical correlation decreases with increase of the Hawking temperature, which is different for the scalar fields. For Bell non-locality, we also find that the quantum non-locality is always extinct for physically inaccessible states, and the strength of the non-locality decreases with enlarging intensity of Hawking effect when the non-locality is existent in physically accessible state.

  6. Quantum efficiency of InAs/InP nanowire heterostructures grown on silicon substrates

    International Nuclear Information System (INIS)

    Anufriev, Roman; Chauvin, Nicolas; Bru-Chevallier, Catherine; Khmissi, Hammadi; Naji, Khalid; Gendry, Michel; Patriarche, Gilles

    2013-01-01

    Photoluminescence (PL) quantum efficiency (QE) is experimentally investigated, using an integrating sphere, as a function of excitation power on both InAs/InP quantum rod nanowires (QRod-NWs) and radial quantum well nanowires (QWell-NWs) grown on silicon substrates. The measured values of the QE are compared with those of the planar analogues such as quantum dash and quantum well samples, and found to be comparable for the quantum well structures at relatively low power density. Further studies reveal that the values of QE of the QRod-NWs and QWell-NWs are limited by the low quality of the InP NW structure and the quality of radial quantum well, respectively. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Non-extensive statistical mechanics and black hole entropy from quantum geometry

    Directory of Open Access Journals (Sweden)

    Abhishek Majhi

    2017-12-01

    Full Text Available Using non-extensive statistical mechanics, the Bekenstein–Hawking area law is obtained from microstates of black holes in loop quantum gravity, for arbitrary real positive values of the Barbero–Immirzi parameter (γ. The arbitrariness of γ is encoded in the strength of the “bias” created in the horizon microstates through the coupling with the quantum geometric fields exterior to the horizon. An experimental determination of γ will fix this coupling, leaving out the macroscopic area of the black hole to be the only free quantity of the theory.

  8. Non-Abelian fractional quantum Hall states for hard-core bosons in one dimension

    Science.gov (United States)

    Paredes, Belén

    2012-05-01

    I present a family of one-dimensional bosonic liquids analogous to non-Abelian fractional quantum Hall states. A new quantum number is introduced to characterize these liquids, the chiral momentum, which differs from the usual angular or linear momentum in one dimension. As their two-dimensional counterparts, these liquids minimize a k-body hard-core interaction with the minimum total chiral momentum. They exhibit global order, with a hidden organization of the particles in k identical copies of a one-dimensional Laughlin state. For k=2 the state is a p-wave paired phase corresponding to the Pfaffian quantum Hall state. By imposing conservation of the total chiral momentum, an exact parent Hamiltonian is derived which involves long-range tunneling and interaction processes with an amplitude decaying with the chord distance. This family of non-Abelian liquids is shown to be in formal correspondence with a family of spin-(k)/(2) liquids which are total singlets made out of k indistinguishable resonating valence bond states. The corresponding spin Hamiltonians are obtained.

  9. Non-Markovian effects on quantum-communication protocols

    International Nuclear Information System (INIS)

    Yeo, Ye; Oh, C. H.; An, Jun-Hong

    2010-01-01

    We show how, under the influence of non-Markovian environments, two different maximally entangled Bell states give rise to states that have equal classical correlations and the same capacities to violate the Bell-Clauser-Horne-Shimony-Holt inequality, but intriguingly differing usefulness for teleportation and dense coding. We elucidate how different entanglement measures like negativity and concurrence, and two different measures of quantum discord, could account for these behaviors. In particular, we explicitly show how the Ollivier-Zurek measure of discord directly accounts for one state being a better resource for dense coding compared to another. Our study leads to several important issues about these measures of discord.

  10. Device-independent quantum reading and noise-assisted quantum transmitters

    International Nuclear Information System (INIS)

    Roga, W; Buono, D; Illuminati, F

    2015-01-01

    In quantum reading, a quantum state of light (transmitter) is applied to read classical information. In the presence of noise or for sufficiently weak signals, quantum reading can outperform classical reading by reason of enhanced state distinguishability. Here we show that enhanced quantum efficiency depends on the presence in the transmitter of a particular type of quantum correlations, the discord of response. Different encodings and transmitters give rise to different levels of efficiency. Considering noisy quantum probes, we show that squeezed thermal transmitters with non-symmetrically distributed noise among the field modes yield higher quantum efficiency compared with coherent thermal quantum states. The noise-enhanced quantum advantage is a consequence of the discord of response being a non-decreasing function of increasing thermal noise under constant squeezing, a behavior that leads to increased state distinguishability. We finally show that, for non-symmetric squeezed thermal states, the probability of error, as measured by the quantum Chernoff bound, vanishes asymptotically with increasing local thermal noise with finite global squeezing. Therefore, with fixed finite squeezing, noisy but strongly discordant quantum states with a large noise imbalance between the field modes can outperform noisy classical resources as well as pure entangled transmitters with the same finite level of squeezing. (paper)

  11. Investigation of quantum states of fast electrons under planar channeling in silicon crystals

    International Nuclear Information System (INIS)

    Gridnev, V.I.; Kaplin, V.V.; Khlabutin, V.G.; Rozum, E.I.; Vorobiev, S.A.

    1987-01-01

    The angular distributions of (1.87 to 5.7) MeV electrons channeled in 2 μm Si crystals along (100), (110), and (111) atomic planes are measured. The half-width of measured angular distributions is defined by a critical Lindhard angle. A relation is obtained connecting those energies of electrons at which their angular distributions are similar for various atomic planes. The effect of a 'critical energy' under planar channeling of electrons is found and investigated. (author)

  12. Non-adiabatic molecular dynamics with complex quantum trajectories. I. The diabatic representation.

    Science.gov (United States)

    Zamstein, Noa; Tannor, David J

    2012-12-14

    We extend a recently developed quantum trajectory method [Y. Goldfarb, I. Degani, and D. J. Tannor, J. Chem. Phys. 125, 231103 (2006)] to treat non-adiabatic transitions. Each trajectory evolves on a single surface according to Newton's laws with complex positions and momenta. The transfer of amplitude between surfaces stems naturally from the equations of motion, without the need for surface hopping. In this paper we derive the equations of motion and show results in the diabatic representation, which is rarely used in trajectory methods for calculating non-adiabatic dynamics. We apply our method to the first two benchmark models introduced by Tully [J. Chem. Phys. 93, 1061 (1990)]. Besides giving the probability branching ratios between the surfaces, the method also allows the reconstruction of the time-dependent wavepacket. Our results are in quantitative agreement with converged quantum mechanical calculations.

  13. Quantum mechanics of non-Hamiltonian and dissipative systems

    CERN Document Server

    Tarasov, Vasily

    2008-01-01

    Quantum Mechanics of Non-Hamiltonian and Dissipative Systems is self-contained and can be used by students without a previous course in modern mathematics and physics. The book describes the modern structure of the theory, and covers the fundamental results of last 15 years. The book has been recommended by Russian Ministry of Education as the textbook for graduate students and has been used for graduate student lectures from 1998 to 2006. Requires no preliminary knowledge of graduate and advanced mathematics Discusses the fundamental results of last 15 years in this theory Suitable for cours

  14. Quantum field theory a tourist guide for mathematicians

    CERN Document Server

    Folland, Gerald B

    2008-01-01

    Quantum field theory has been a great success for physics, but it is difficult for mathematicians to learn because it is mathematically incomplete. Folland, who is a mathematician, has spent considerable time digesting the physical theory and sorting out the mathematical issues in it. Fortunately for mathematicians, Folland is a gifted expositor. The purpose of this book is to present the elements of quantum field theory, with the goal of understanding the behavior of elementary particles rather than building formal mathematical structures, in a form that will be comprehensible to mathematicians. Rigorous definitions and arguments are presented as far as they are available, but the text proceeds on a more informal level when necessary, with due care in identifying the difficulties. The book begins with a review of classical physics and quantum mechanics, then proceeds through the construction of free quantum fields to the perturbation-theoretic development of interacting field theory and renormalization theor...

  15. Classical and quantum transport through entropic barriers modeled by hardwall hyperboloidal constrictions

    International Nuclear Information System (INIS)

    Hales, R.; Waalkens, H.

    2009-01-01

    We study the quantum transport through entropic barriers induced by hardwall constrictions of hyperboloidal shape in two and three spatial dimensions. Using the separability of the Schroedinger equation and the classical equations of motion for these geometries, we study in detail the quantum transmission probabilities and the associated quantum resonances, and relate them to the classical phase structures which govern the transport through the constrictions. These classical phase structures are compared to the analogous structures which, as has been shown only recently, govern reaction type dynamics in smooth systems. Although the systems studied in this paper are special due their separability they can be taken as a guide to study entropic barriers resulting from constriction geometries that lead to non-separable dynamics.

  16. Quantum Quench Dynamics in the Transverse Field Ising Model at Non-zero Temperatures

    Science.gov (United States)

    Abeling, Nils; Kehrein, Stefan

    The recently discovered Dynamical Phase Transition denotes non-analytic behavior in the real time evolution of quantum systems in the thermodynamic limit and has been shown to occur in different systems at zero temperature [Heyl et al., Phys. Rev. Lett. 110, 135704 (2013)]. In this talk we present the extension of the analysis to non-zero temperature by studying a generalized form of the Loschmidt echo, the work distribution function, of a quantum quench in the transverse field Ising model. Although the quantitative behavior at non-zero temperatures still displays features derived from the zero temperature non-analyticities, it is shown that in this model dynamical phase transitions do not exist if T > 0 . This is a consequence of the system being initialized in a thermal state. Moreover, we elucidate how the Tasaki-Crooks-Jarzynski relation can be exploited as a symmetry relation for a global quench or to obtain the change of the equilibrium free energy density. This work was supported through CRC SFB 1073 (Project B03) of the Deutsche Forschungsgemeinschaft (DFG).

  17. Quantum entanglement dependence on bifurcations and scars in non-autonomous systems. The case of quantum kicked top

    International Nuclear Information System (INIS)

    Stamatiou, George; Ghikas, Demetris P.K.

    2007-01-01

    Properties related to entanglement in quantum systems, are known to be associated with distinct properties of the corresponding classical systems, as for example stability, integrability and chaos. This means that the detailed topology, both local and global, of the classical phase space may reveal, or influence, the entangling power of the quantum system. As it has been shown in the literature, the bifurcation points, in autonomous dynamical systems, play a crucial role for the onset of entanglement. Similarly, the existence of scars among the quantum states seems to be a factor in the dynamics of entanglement. Here we study these issues for a non-autonomous system, the quantum kicked top, as a collective model of a multi-qubit system. Using the bifurcation diagram of the corresponding classical limit (the classical kicked top), we analyzed the pair-wise and the bi-partite entanglement of the qubits and their relation to scars, as a function of the critical parameter of the system. We found that the pair-wise entanglement and pair-wise negativity show a strong maximum precisely at the bifurcation points, while the bi-partite entanglement changes slope at these points. We have also investigated the connection between entanglement and the fixed points on the branch of the bifurcation diagram between the two first bifurcation points and we found that the entanglement measures take their extreme values precisely on these points. We conjecture that our results on this behavior of entanglement is generic for many quantum systems with a nonlinear classical analogue

  18. A Cardy-like formula for rotating black holes with planar horizon

    Energy Technology Data Exchange (ETDEWEB)

    Gaete, Moisés Bravo [Facultad de Ciencias Básicas, Universidad Católica del Maule,Casilla 617, Talca (Chile); Guajardo, Luis; Hassaïne, Mokhtar [Instituto de Matemática y Fisica, Universidad de Talca,Casilla 747, Talca (Chile)

    2017-04-18

    We show that the semiclassical entropy of D−dimensional rotating (an)isotropic black holes with planar horizon can be successfully computed according to a Cardy-like formula. This formula does not refer to any central charges but instead involves the vacuum energy which is identified with a gravitational bulk soliton. The soliton is obtained from the non-rotating black hole solution by means of a double analytic continuation. The robustness of the Cardy-like formula is tested with numerous and varied examples, including AdS, Lifshitz and hyperscaling violation planar black holes.

  19. A 'general boundary' formulation for quantum mechanics and quantum gravity

    International Nuclear Information System (INIS)

    Oeckl, Robert

    2003-01-01

    I propose to formalize quantum theories as topological quantum field theories in a generalized sense, associating state spaces with boundaries of arbitrary (and possibly finite) regions of space-time. I further propose to obtain such 'general boundary' quantum theories through a generalized path integral quantization. I show how both, non-relativistic quantum mechanics and quantum field theory can be given a 'general boundary' formulation. Surprisingly, even in the non-relativistic case, features normally associated with quantum field theory emerge from consistency conditions. This includes states with arbitrary particle number and pair creation. I also note how three-dimensional quantum gravity is an example for a realization of both proposals and suggest to apply them to four-dimensional quantum gravity

  20. Quasistatic antiferromagnetism in the quantum wells of SmTiO3/SrTiO3 heterostructures

    Science.gov (United States)

    Need, Ryan F.; Marshall, Patrick B.; Kenney, Eric; Suter, Andreas; Prokscha, Thomas; Salman, Zaher; Kirby, Brian J.; Stemmer, Susanne; Graf, Michael J.; Wilson, Stephen D.

    2018-03-01

    High carrier density quantum wells embedded within a Mott insulating matrix present a rich arena for exploring unconventional electronic phase behavior ranging from non-Fermi-liquid transport and signatures of quantum criticality to pseudogap formation. Probing the proposed connection between unconventional magnetotransport and incipient electronic order within these quantum wells has however remained an enduring challenge due to the ultra-thin layer thicknesses required. Here we address this challenge by exploring the magnetic properties of high-density SrTiO3 quantum wells embedded within the antiferromagnetic Mott insulator SmTiO3 via muon spin relaxation and polarized neutron reflectometry measurements. The one electron per planar unit cell acquired by the nominal d0 band insulator SrTiO3 when embedded within a d1 Mott SmTiO3 matrix exhibits slow magnetic fluctuations that begin to freeze into a quasistatic spin state below a critical temperature T*. The appearance of this quasistatic well magnetism coincides with the previously reported opening of a pseudogap in the tunneling spectra of high carrier density wells inside this film architecture. Our data suggest a common origin of the pseudogap phase behavior in this quantum critical oxide heterostructure with those observed in bulk Mott materials close to an antiferromagnetic instability.