WorldWideScience

Sample records for non-photosynthetic eukaryote acquired

  1. Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists.

    Science.gov (United States)

    Hadariová, Lucia; Vesteg, Matej; Hampl, Vladimír; Krajčovič, Juraj

    2018-04-01

    Chloroplasts are generally known as eukaryotic organelles whose main function is photosynthesis. They perform other functions, however, such as synthesizing isoprenoids, fatty acids, heme, iron sulphur clusters and other essential compounds. In non-photosynthetic lineages that possess plastids, the chloroplast genomes have been reduced and most (or all) photosynthetic genes have been lost. Consequently, non-photosynthetic plastids have also been reduced structurally. Some of these non-photosynthetic or "cryptic" plastids were overlooked or unrecognized for decades. The number of complete plastid genome sequences and/or transcriptomes from non-photosynthetic taxa possessing plastids is rapidly increasing, thus allowing prediction of the functions of non-photosynthetic plastids in various eukaryotic lineages. In some non-photosynthetic eukaryotes with photosynthetic ancestors, no traces of plastid genomes or of plastids have been found, suggesting that they have lost the genomes or plastids completely. This review summarizes current knowledge of non-photosynthetic plastids, their genomes, structures and potential functions in free-living and parasitic plants, algae and protists. We introduce a model for the order of plastid gene losses which combines models proposed earlier for land plants with the patterns of gene retention and loss observed in protists. The rare cases of plastid genome loss and complete plastid loss are also discussed.

  2. Enzymes involved in organellar DNA replication in photosynthetic eukaryotes.

    Science.gov (United States)

    Moriyama, Takashi; Sato, Naoki

    2014-01-01

    Plastids and mitochondria possess their own genomes. Although the replication mechanisms of these organellar genomes remain unclear in photosynthetic eukaryotes, several organelle-localized enzymes related to genome replication, including DNA polymerase, DNA primase, DNA helicase, DNA topoisomerase, single-stranded DNA maintenance protein, DNA ligase, primer removal enzyme, and several DNA recombination-related enzymes, have been identified. In the reference Eudicot plant Arabidopsis thaliana, the replication-related enzymes of plastids and mitochondria are similar because many of them are dual targeted to both organelles, whereas in the red alga Cyanidioschyzon merolae, plastids and mitochondria contain different replication machinery components. The enzymes involved in organellar genome replication in green plants and red algae were derived from different origins, including proteobacterial, cyanobacterial, and eukaryotic lineages. In the present review, we summarize the available data for enzymes related to organellar genome replication in green plants and red algae. In addition, based on the type and distribution of replication enzymes in photosynthetic eukaryotes, we discuss the transitional history of replication enzymes in the organelles of plants.

  3. Anaerobic energy metabolism in unicellular photosynthetic eukaryotes.

    Science.gov (United States)

    Atteia, Ariane; van Lis, Robert; Tielens, Aloysius G M; Martin, William F

    2013-02-01

    Anaerobic metabolic pathways allow unicellular organisms to tolerate or colonize anoxic environments. Over the past ten years, genome sequencing projects have brought a new light on the extent of anaerobic metabolism in eukaryotes. A surprising development has been that free-living unicellular algae capable of photoautotrophic lifestyle are, in terms of their enzymatic repertoire, among the best equipped eukaryotes known when it comes to anaerobic energy metabolism. Some of these algae are marine organisms, common in the oceans, others are more typically soil inhabitants. All these species are important from the ecological (O(2)/CO(2) budget), biotechnological, and evolutionary perspectives. In the unicellular algae surveyed here, mixed-acid type fermentations are widespread while anaerobic respiration, which is more typical of eukaryotic heterotrophs, appears to be rare. The presence of a core anaerobic metabolism among the algae provides insights into its evolutionary origin, which traces to the eukaryote common ancestor. The predicted fermentative enzymes often exhibit an amino acid extension at the N-terminus, suggesting that these proteins might be compartmentalized in the cell, likely in the chloroplast or the mitochondrion. The green algae Chlamydomonas reinhardtii and Chlorella NC64 have the most extended set of fermentative enzymes reported so far. Among the eukaryotes with secondary plastids, the diatom Thalassiosira pseudonana has the most pronounced anaerobic capabilities as yet. From the standpoints of genomic, transcriptomic, and biochemical studies, anaerobic energy metabolism in C. reinhardtii remains the best characterized among photosynthetic protists. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. PhytoREF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy.

    Science.gov (United States)

    Decelle, Johan; Romac, Sarah; Stern, Rowena F; Bendif, El Mahdi; Zingone, Adriana; Audic, Stéphane; Guiry, Michael D; Guillou, Laure; Tessier, Désiré; Le Gall, Florence; Gourvil, Priscillia; Dos Santos, Adriana L; Probert, Ian; Vaulot, Daniel; de Vargas, Colomban; Christen, Richard

    2015-11-01

    Photosynthetic eukaryotes have a critical role as the main producers in most ecosystems of the biosphere. The ongoing environmental metabarcoding revolution opens the perspective for holistic ecosystems biological studies of these organisms, in particular the unicellular microalgae that often lack distinctive morphological characters and have complex life cycles. To interpret environmental sequences, metabarcoding necessarily relies on taxonomically curated databases containing reference sequences of the targeted gene (or barcode) from identified organisms. To date, no such reference framework exists for photosynthetic eukaryotes. In this study, we built the PhytoREF database that contains 6490 plastidial 16S rDNA reference sequences that originate from a large diversity of eukaryotes representing all known major photosynthetic lineages. We compiled 3333 amplicon sequences available from public databases and 879 sequences extracted from plastidial genomes, and generated 411 novel sequences from cultured marine microalgal strains belonging to different eukaryotic lineages. A total of 1867 environmental Sanger 16S rDNA sequences were also included in the database. Stringent quality filtering and a phylogeny-based taxonomic classification were applied for each 16S rDNA sequence. The database mainly focuses on marine microalgae, but sequences from land plants (representing half of the PhytoREF sequences) and freshwater taxa were also included to broaden the applicability of PhytoREF to different aquatic and terrestrial habitats. PhytoREF, accessible via a web interface (http://phytoref.fr), is a new resource in molecular ecology to foster the discovery, assessment and monitoring of the diversity of photosynthetic eukaryotes using high-throughput sequencing. © 2015 John Wiley & Sons Ltd.

  5. Evolving a photosynthetic organelle

    Directory of Open Access Journals (Sweden)

    Nakayama Takuro

    2012-04-01

    Full Text Available Abstract The evolution of plastids from cyanobacteria is believed to represent a singularity in the history of life. The enigmatic amoeba Paulinella and its 'recently' acquired photosynthetic inclusions provide a fascinating system through which to gain fresh insight into how endosymbionts become organelles. The plastids, or chloroplasts, of algae and plants evolved from cyanobacteria by endosymbiosis. This landmark event conferred on eukaryotes the benefits of photosynthesis - the conversion of solar energy into chemical energy - and in so doing had a huge impact on the course of evolution and the climate of Earth 1. From the present state of plastids, however, it is difficult to trace the evolutionary steps involved in this momentous development, because all modern-day plastids have fully integrated into their hosts. Paulinella chromatophora is a unicellular eukaryote that bears photosynthetic entities called chromatophores that are derived from cyanobacteria and has thus received much attention as a possible example of an organism in the early stages of organellogenesis. Recent studies have unlocked the genomic secrets of its chromatophore 23 and provided concrete evidence that the Paulinella chromatophore is a bona fide photosynthetic organelle 4. The question is how Paulinella can help us to understand the process by which an endosymbiont is converted into an organelle.

  6. Evolving a photosynthetic organelle.

    Science.gov (United States)

    Nakayama, Takuro; Archibald, John M

    2012-04-24

    The evolution of plastids from cyanobacteria is believed to represent a singularity in the history of life. The enigmatic amoeba Paulinella and its 'recently' acquired photosynthetic inclusions provide a fascinating system through which to gain fresh insight into how endosymbionts become organelles.The plastids, or chloroplasts, of algae and plants evolved from cyanobacteria by endosymbiosis. This landmark event conferred on eukaryotes the benefits of photosynthesis--the conversion of solar energy into chemical energy--and in so doing had a huge impact on the course of evolution and the climate of Earth 1. From the present state of plastids, however, it is difficult to trace the evolutionary steps involved in this momentous development, because all modern-day plastids have fully integrated into their hosts. Paulinella chromatophora is a unicellular eukaryote that bears photosynthetic entities called chromatophores that are derived from cyanobacteria and has thus received much attention as a possible example of an organism in the early stages of organellogenesis. Recent studies have unlocked the genomic secrets of its chromatophore 23 and provided concrete evidence that the Paulinella chromatophore is a bona fide photosynthetic organelle 4. The question is how Paulinella can help us to understand the process by which an endosymbiont is converted into an organelle.

  7. Horizontal transfer of a eukaryotic plastid-targeted protein gene to cyanobacteria

    Directory of Open Access Journals (Sweden)

    Keeling Patrick J

    2007-06-01

    Full Text Available Abstract Background Horizontal or lateral transfer of genetic material between distantly related prokaryotes has been shown to play a major role in the evolution of bacterial and archaeal genomes, but exchange of genes between prokaryotes and eukaryotes is not as well understood. In particular, gene flow from eukaryotes to prokaryotes is rarely documented with strong support, which is unusual since prokaryotic genomes appear to readily accept foreign genes. Results Here, we show that abundant marine cyanobacteria in the related genera Synechococcus and Prochlorococcus acquired a key Calvin cycle/glycolytic enzyme from a eukaryote. Two non-homologous forms of fructose bisphosphate aldolase (FBA are characteristic of eukaryotes and prokaryotes respectively. However, a eukaryotic gene has been inserted immediately upstream of the ancestral prokaryotic gene in several strains (ecotypes of Synechococcus and Prochlorococcus. In one lineage this new gene has replaced the ancestral gene altogether. The eukaryotic gene is most closely related to the plastid-targeted FBA from red algae. This eukaryotic-type FBA once replaced the plastid/cyanobacterial type in photosynthetic eukaryotes, hinting at a possible functional advantage in Calvin cycle reactions. The strains that now possess this eukaryotic FBA are scattered across the tree of Synechococcus and Prochlorococcus, perhaps because the gene has been transferred multiple times among cyanobacteria, or more likely because it has been selectively retained only in certain lineages. Conclusion A gene for plastid-targeted FBA has been transferred from red algae to cyanobacteria, where it has inserted itself beside its non-homologous, functional analogue. Its current distribution in Prochlorococcus and Synechococcus is punctate, suggesting a complex history since its introduction to this group.

  8. Elucidating the composition and conservation of the autophagy pathway in photosynthetic eukaryotes

    Science.gov (United States)

    Shemi, Adva; Ben-Dor, Shifra; Vardi, Assaf

    2015-01-01

    Aquatic photosynthetic eukaryotes represent highly diverse groups (green, red, and chromalveolate algae) derived from multiple endosymbiosis events, covering a wide spectrum of the tree of life. They are responsible for about 50% of the global photosynthesis and serve as the foundation for oceanic and fresh water food webs. Although the ecophysiology and molecular ecology of some algal species are extensively studied, some basic aspects of algal cell biology are still underexplored. The recent wealth of genomic resources from algae has opened new frontiers to decipher the role of cell signaling pathways and their function in an ecological and biotechnological context. Here, we took a bioinformatic approach to explore the distribution and conservation of TOR and autophagy-related (ATG) proteins (Atg in yeast) in diverse algal groups. Our genomic analysis demonstrates conservation of TOR and ATG proteins in green algae. In contrast, in all 5 available red algal genomes, we could not detect the sequences that encode for any of the 17 core ATG proteins examined, albeit TOR and its interacting proteins are conserved. This intriguing data suggests that the autophagy pathway is not conserved in red algae as it is in the entire eukaryote domain. In contrast, chromalveolates, despite being derived from the red-plastid lineage, retain and express ATG genes, which raises a fundamental question regarding the acquisition of ATG genes during algal evolution. Among chromalveolates, Emiliania huxleyi (Haptophyta), a bloom-forming coccolithophore, possesses the most complete set of ATG genes, and may serve as a model organism to study autophagy in marine protists with great ecological significance. PMID:25915714

  9. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae

    Science.gov (United States)

    2013-01-01

    Background Xanthophylls, oxygenated derivatives of carotenes, play critical roles in photosynthetic apparatus of cyanobacteria, algae, and higher plants. Although the xanthophylls biosynthetic pathway of algae is largely unknown, it is of particular interest because they have a very complicated evolutionary history. Carotenoid hydroxylase (CHY) is an important protein that plays essential roles in xanthophylls biosynthesis. With the availability of 18 sequenced algal genomes, we performed a comprehensive comparative analysis of chy genes and explored their distribution, structure, evolution, origins, and expression. Results Overall 60 putative chy genes were identified and classified into two major subfamilies (bch and cyp97) according to their domain structures. Genes in the bch subfamily were found in 10 green algae and 1 red alga, but absent in other algae. In the phylogenetic tree, bch genes of green algae and higher plants share a common ancestor and are of non-cyanobacterial origin, whereas that of red algae is of cyanobacteria. The homologs of cyp97a/c genes were widespread only in green algae, while cyp97b paralogs were seen in most of algae. Phylogenetic analysis on cyp97 genes supported the hypothesis that cyp97b is an ancient gene originated before the formation of extant algal groups. The cyp97a gene is more closely related to cyp97c in evolution than to cyp97b. The two cyp97 genes were isolated from the green alga Haematococcus pluvialis, and transcriptional expression profiles of chy genes were observed under high light stress of different wavelength. Conclusions Green algae received a β-xanthophylls biosynthetic pathway from host organisms. Although red algae inherited the pathway from cyanobacteria during primary endosymbiosis, it remains unclear in Chromalveolates. The α-xanthophylls biosynthetic pathway is a common feature in green algae and higher plants. The origination of cyp97a/c is most likely due to gene duplication before divergence of

  10. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae.

    Science.gov (United States)

    Cui, Hongli; Yu, Xiaona; Wang, Yan; Cui, Yulin; Li, Xueqin; Liu, Zhaopu; Qin, Song

    2013-07-08

    Xanthophylls, oxygenated derivatives of carotenes, play critical roles in photosynthetic apparatus of cyanobacteria, algae, and higher plants. Although the xanthophylls biosynthetic pathway of algae is largely unknown, it is of particular interest because they have a very complicated evolutionary history. Carotenoid hydroxylase (CHY) is an important protein that plays essential roles in xanthophylls biosynthesis. With the availability of 18 sequenced algal genomes, we performed a comprehensive comparative analysis of chy genes and explored their distribution, structure, evolution, origins, and expression. Overall 60 putative chy genes were identified and classified into two major subfamilies (bch and cyp97) according to their domain structures. Genes in the bch subfamily were found in 10 green algae and 1 red alga, but absent in other algae. In the phylogenetic tree, bch genes of green algae and higher plants share a common ancestor and are of non-cyanobacterial origin, whereas that of red algae is of cyanobacteria. The homologs of cyp97a/c genes were widespread only in green algae, while cyp97b paralogs were seen in most of algae. Phylogenetic analysis on cyp97 genes supported the hypothesis that cyp97b is an ancient gene originated before the formation of extant algal groups. The cyp97a gene is more closely related to cyp97c in evolution than to cyp97b. The two cyp97 genes were isolated from the green alga Haematococcus pluvialis, and transcriptional expression profiles of chy genes were observed under high light stress of different wavelength. Green algae received a β-xanthophylls biosynthetic pathway from host organisms. Although red algae inherited the pathway from cyanobacteria during primary endosymbiosis, it remains unclear in Chromalveolates. The α-xanthophylls biosynthetic pathway is a common feature in green algae and higher plants. The origination of cyp97a/c is most likely due to gene duplication before divergence of green algae and higher plants

  11. Distinct gene number-genome size relationships for eukaryotes and non-eukaryotes: gene content estimation for dinoflagellate genomes.

    Directory of Open Access Journals (Sweden)

    Yubo Hou

    Full Text Available The ability to predict gene content is highly desirable for characterization of not-yet sequenced genomes like those of dinoflagellates. Using data from completely sequenced and annotated genomes from phylogenetically diverse lineages, we investigated the relationship between gene content and genome size using regression analyses. Distinct relationships between log(10-transformed protein-coding gene number (Y' versus log(10-transformed genome size (X', genome size in kbp were found for eukaryotes and non-eukaryotes. Eukaryotes best fit a logarithmic model, Y' = ln(-46.200+22.678X', whereas non-eukaryotes a linear model, Y' = 0.045+0.977X', both with high significance (p0.91. Total gene number shows similar trends in both groups to their respective protein coding regressions. The distinct correlations reflect lower and decreasing gene-coding percentages as genome size increases in eukaryotes (82%-1% compared to higher and relatively stable percentages in prokaryotes and viruses (97%-47%. The eukaryotic regression models project that the smallest dinoflagellate genome (3x10(6 kbp contains 38,188 protein-coding (40,086 total genes and the largest (245x10(6 kbp 87,688 protein-coding (92,013 total genes, corresponding to 1.8% and 0.05% gene-coding percentages. These estimates do not likely represent extraordinarily high functional diversity of the encoded proteome but rather highly redundant genomes as evidenced by high gene copy numbers documented for various dinoflagellate species.

  12. Non-photosynthetic plastids as hosts for metabolic engineering.

    Science.gov (United States)

    Mellor, Silas Busck; Behrendorff, James B Y H; Nielsen, Agnieszka Zygadlo; Jensen, Poul Erik; Pribil, Mathias

    2018-04-13

    Using plants as hosts for production of complex, high-value compounds and therapeutic proteins has gained increasing momentum over the past decade. Recent advances in metabolic engineering techniques using synthetic biology have set the stage for production yields to become economically attractive, but more refined design strategies are required to increase product yields without compromising development and growth of the host system. The ability of plant cells to differentiate into various tissues in combination with a high level of cellular compartmentalization represents so far the most unexploited plant-specific resource. Plant cells contain organelles called plastids that retain their own genome, harbour unique biosynthetic pathways and differentiate into distinct plastid types upon environmental and developmental cues. Chloroplasts, the plastid type hosting the photosynthetic processes in green tissues, have proven to be suitable for high yield protein and bio-compound production. Unfortunately, chloroplast manipulation often affects photosynthetic efficiency and therefore plant fitness. In this respect, plastids of non-photosynthetic tissues, which have focused metabolisms for synthesis and storage of particular classes of compounds, might prove more suitable for engineering the production and storage of non-native metabolites without affecting plant fitness. This review provides the current state of knowledge on the molecular mechanisms involved in plastid differentiation and focuses on non-photosynthetic plastids as alternative biotechnological platforms for metabolic engineering. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  13. Arabinogalactan proteins have deep roots in eukaryotes

    DEFF Research Database (Denmark)

    Hervé, Cécile; Siméon, Amandine; Jam, Murielle

    2016-01-01

    Arabinogalactan proteins (AGPs) are highly glycosylated, hydroxyproline-rich proteins found at the cell surface of plants, where they play key roles in developmental processes. Brown algae are marine, multicellular, photosynthetic eukaryotes. They belong to the phylum Stramenopiles, which...

  14. Respiratory processes in non-photosynthetic plastids

    Science.gov (United States)

    Renato, Marta; Boronat, Albert; Azcón-Bieto, Joaquín

    2015-01-01

    Chlororespiration is a respiratory process located in chloroplast thylakoids which consists in an electron transport chain from NAD(P)H to oxygen. This respiratory chain involves the NAD(P)H dehydrogenase complex, the plastoquinone pool and the plastid terminal oxidase (PTOX), and it probably acts as a safety valve to prevent the over-reduction of the photosynthetic machinery in stress conditions. The existence of a similar respiratory activity in non-photosynthetic plastids has been less studied. Recently, it has been reported that tomato fruit chromoplasts present an oxygen consumption activity linked to ATP synthesis. Etioplasts and amyloplasts contain several electron carriers and some subunits of the ATP synthase, so they could harbor a similar respiratory process. This review provides an update on the study about respiratory processes in chromoplasts, identifying the major gaps that need to be addressed in future research. It also reviews the proteomic data of etioplasts and amyloplasts, which suggest the presence of a respiratory electron transport chain in these plastids. PMID:26236317

  15. Respiratory processes in non-photosynthetic plastids

    Directory of Open Access Journals (Sweden)

    Marta eRenato

    2015-07-01

    Full Text Available Chlororespiration is a respiratory process located in chloroplast thylakoids which consists in an electron transport chain from NAD(PH to oxygen. This respiratory chain involves the NAD(PH dehydrogenase complex, the plastoquinone pool and the plastid terminal oxidase (PTOX, and it probably acts as a safety valve to prevent the over-reduction of the photosynthetic machinery in stress conditions. The existence of a similar respiratory activity in non-photosynthetic plastids has been less studied. Recently, it has been reported that tomato fruit chromoplasts present an oxygen consumption activity linked to ATP synthesis. Etioplasts and amyloplasts contain several electron carriers and some subunits of the ATP synthase, so they could harbor a similar respiratory process. This review provides an update on the study about respiratory processes in chromoplasts, identifying the major gaps that need to be addressed in future research. It also reviews the proteomic data of etioplasts and amyloplasts, which suggest the presence of a respiratory electron transport chain in these plastids.

  16. Horizontal gene transfer of a plastid gene in the non-photosynthetic flowering plants Orobanche and Phelipanche (Orobanchaceae).

    Science.gov (United States)

    Park, Jeong-Mi; Manen, Jean-François; Schneeweiss, Gerald M

    2007-06-01

    Plastid sequences are among the most widely used in phylogenetic and phylogeographic studies in flowering plants, where they are usually assumed to evolve like non-recombining, uniparentally transmitted, single-copy genes. Among others, this assumption can be violated by intracellular gene transfer (IGT) within cells or by the exchange of genes across mating barriers (horizontal gene transfer, HGT). We report on HGT of a plastid region including rps2, trnL-F, and rbcL in a group of non-photosynthetic flowering plants. Species of the parasitic broomrape genus Phelipanche harbor two copies of rps2, a plastid ribosomal gene, one corresponding to the phylogenetic position of the respective species, the other being horizontally acquired from the related broomrape genus Orobanche. While the vertically transmitted copies probably reside within the plastid genome, the localization of the horizontally acquired copies is not known. With both donor and recipient being parasitic plants, a possible pathway for the exchange of genetic material is via a commonly attacked host.

  17. Dynamics of photosynthetic activity of cyanobacteria after gut ...

    African Journals Online (AJOL)

    African Journal of Biotechnology ... carp and goldfish, whereas there was a significant stimulation of photosynthetic activity of diatom and green algae following the depressed cyanobacteria during cultivation. The mainly stimulated eukaryotic algae species were Fragilariaceae and Scenedesmus obliquus by microscopy.

  18. Non-photosynthetic plastids as hosts for metabolic engineering

    DEFF Research Database (Denmark)

    Mellor, Silas Busck; Behrendorff, James Bruce Yarnton H; Nielsen, Agnieszka Janina Zygadlo

    2018-01-01

    Using plants as hosts for production of complex, high-value compounds and therapeutic proteins has gained increasing momentum over the past decade. Recent advances in metabolic engineering techniques using synthetic biology have set the stage for production yields to become economically attractive......, but more refined design strategies are required to increase product yields without compromising development and growth of the host system. The ability of plant cells to differentiate into various tissues in combination with a high level of cellular compartmentalization represents so far the most...... in green tissues, have proven to be suitable for high yield protein and bio-compound production. Unfortunately, chloroplast manipulation often affects photosynthetic efficiency and therefore plant fitness. In this respect, plastids of non-photosynthetic tissues, which have focused metabolisms for synthesis...

  19. A screening method for the isolation of polyhydroxyalkanoate-producing purple non-sulfur photosynthetic bacteria from natural seawater

    Directory of Open Access Journals (Sweden)

    Mieko Higuchi-Takeuchi

    2016-09-01

    Full Text Available Polyhydroxyalkanoates (PHAs are a family of biopolyesters accumulated by a variety of microorganisms as carbon and energy storage under starvation conditions. We focused on marine purple non-sulfur photosynthetic bacteria as host microorganisms for PHA production and developed a method for their isolation from natural seawater. To identify novel PHA-producing marine purple non-sulfur photosynthetic bacteria, natural seawaters were cultured in nutrient-rich medium for purple non-sulfur photosynthetic bacteria, and twelve pink- or red-pigmented colonies were picked up. Gas chromatography mass spectrometry analysis revealed that four isolates synthesized PHA at levels ranging from 0.5 to 24.4 wt% of cell dry weight. The 16S ribosomal RNA sequence analysis revealed that one isolate (HM2 showed 100% identity to marine purple non-sulfur photosynthetic bacteria. In conclusion, we have demonstrated in this study that PHA-producing marine purple non-sulfur photosynthetic bacteria can be isolated from natural seawater under nutrient-rich conditions.

  20. The independent prokaryotic origins of eukaryotic fructose-1, 6-bisphosphatase and sedoheptulose-1, 7-bisphosphatase and the implications of their origins for the evolution of eukaryotic Calvin cycle

    Directory of Open Access Journals (Sweden)

    Jiang Yong-Hai

    2012-10-01

    : SBPase share a common ancestor with the gluconeogenesis-specific Class I FBPase of epsilon-proteobacteria (or probably originated from that of the ancestor of epsilon-proteobacteria, while FBPase arise from Class I FBPase of an unknown kind of eubacteria. During the evolution of SBPase from eubacterial Class I FBPase, the SBP-dephosphorylation activity was acquired through the transition “from specialist to generalist”. The evolutionary substitution of the endosymbiotic-origin cyanobacterial bifunctional F/SBPase by the two light-regulated substrate-specific enzymes made the regulation of the Calvin cycle more delicate, which contributed to the evolution of eukaryotic photosynthesis and even the entire photosynthetic eukaryotes.

  1. Evidence that the intra-amoebal Legionella drancourtii acquired a sterol reductase gene from eukaryotes

    Directory of Open Access Journals (Sweden)

    Fournier Pierre-Edouard

    2009-03-01

    Full Text Available Abstract Background Free-living amoebae serve as a natural reservoir for some bacteria that have evolved into «amoeba-resistant» bacteria. Among these, some are strictly intra-amoebal, such as Candidatus "Protochlamydia amoebophila" (Candidatus "P. amoebophila", whose genomic sequence is available. We sequenced the genome of Legionella drancourtii (L. drancourtii, another recently described intra-amoebal bacterium. By comparing these two genomes with those of their closely related species, we were able to study the genetic characteristics specific to their amoebal lifestyle. Findings We identified a sterol delta-7 reductase-encoding gene common to these two bacteria and absent in their relatives. This gene encodes an enzyme which catalyses the last step of cholesterol biosynthesis in eukaryotes, and is probably functional within L. drancourtii since it is transcribed. The phylogenetic analysis of this protein suggests that it was acquired horizontally by a few bacteria from viridiplantae. This gene was also found in the Acanthamoeba polyphaga Mimivirus genome, a virus that grows in amoebae and possesses the largest viral genome known to date. Conclusion L. drancourtii acquired a sterol delta-7 reductase-encoding gene of viridiplantae origin. The most parsimonious hypothesis is that this gene was initially acquired by a Chlamydiales ancestor parasite of plants. Subsequently, its descendents transmitted this gene in amoebae to other intra-amoebal microorganisms, including L. drancourtii and Coxiella burnetii. The role of the sterol delta-7 reductase in prokaryotes is as yet unknown but we speculate that it is involved in host cholesterol parasitism.

  2. A single origin of the photosynthetic organelle in different Paulinella lineages

    Directory of Open Access Journals (Sweden)

    Ishida Ken-ichiro

    2009-05-01

    Full Text Available Abstract Background Gaining the ability to photosynthesize was a key event in eukaryotic evolution because algae and plants form the base of the food chain on our planet. The eukaryotic machines of photosynthesis are plastids (e.g., chloroplast in plants that evolved from cyanobacteria through primary endosymbiosis. Our knowledge of plastid evolution, however, remains limited because the primary endosymbiosis occurred more than a billion years ago. In this context, the thecate "green amoeba" Paulinella chromatophora is remarkable because it very recently (i.e., minimum age of ≈ 60 million years ago acquired a photosynthetic organelle (termed a "chromatophore"; i.e., plastid via an independent primary endosymbiosis involving a Prochlorococcus or Synechococcus-like cyanobacterium. All data regarding P. chromatophora stem from a single isolate from Germany (strain M0880/a. Here we brought into culture a novel photosynthetic Paulinella strain (FK01 and generated molecular sequence data from these cells and from four different cell samples, all isolated from freshwater habitats in Japan. Our study had two aims. The first was to compare and contrast cell ultrastructure of the M0880/a and FK01 strains using scanning electron microscopy. The second was to assess the phylogenetic diversity of photosynthetic Paulinella to test the hypothesis they share a vertically inherited plastid that originated in their common ancestor. Results Comparative morphological analyses show that Paulinella FK01 cells are smaller than M0880/a and differ with respect to the number of scales per column. There are more distinctive, multiple fine pores on the external surface of FK01 than in M0880/a. Molecular phylogenetic analyses using multiple gene markers demonstrate these strains are genetically distinct and likely comprise separate species. The well-supported monophyly of the Paulinella chromatophora strains analyzed here using plastid-encoded 16S rRNA suggests strongly

  3. Genetic exchange in eukaryotes through horizontal transfer: connected by the mobilome.

    Science.gov (United States)

    Wallau, Gabriel Luz; Vieira, Cristina; Loreto, Élgion Lúcio Silva

    2018-01-01

    All living species contain genetic information that was once shared by their common ancestor. DNA is being inherited through generations by vertical transmission (VT) from parents to offspring and from ancestor to descendant species. This process was considered the sole pathway by which biological entities exchange inheritable information. However, Horizontal Transfer (HT), the exchange of genetic information by other means than parents to offspring, was discovered in prokaryotes along with strong evidence showing that it is a very important process by which prokaryotes acquire new genes. For some time now, it has been a scientific consensus that HT events were rare and non-relevant for evolution of eukaryotic species, but there is growing evidence supporting that HT is an important and frequent phenomenon in eukaryotes as well. Here, we will discuss the latest findings regarding HT among eukaryotes, mainly HT of transposons (HTT), establishing HTT once and for all as an important phenomenon that should be taken into consideration to fully understand eukaryotes genome evolution. In addition, we will discuss the latest development methods to detect such events in a broader scale and highlight the new approaches which should be pursued by researchers to fill the knowledge gaps regarding HTT among eukaryotes.

  4. Biological Influence of Deuterium on Procariotic and Eukaryotic Cells

    OpenAIRE

    Oleg Mosin; Ignat Ignatov

    2014-01-01

    Biologic influence of deuterium (D) on cells of various taxonomic groups of prokaryotic and eukaryotic microorganisms realizing methylotrophic, chemoheterotrophic, photo-organotrophic, and photosynthetic ways of assimilation of carbon substrates are investigated at growth on media with heavy water (D2О). The method of step by step adaptation technique of cells to D2О was developed, consisting in plating of cells on 2 % agarose nutrient media containing increasing gradient of concentration of ...

  5. Comparison of Methods for Estimating Fractional Cover of Photosynthetic and Non-Photosynthetic Vegetation in the Otindag Sandy Land Using GF-1 Wide-Field View Data

    OpenAIRE

    Xiaosong Li; Guoxiong Zheng; Jinying Wang; Cuicui Ji; Bin Sun; Zhihai Gao

    2016-01-01

    Photosynthetic vegetation (PV) and non-photosynthetic vegetation (NPV) are important ground cover types for desertification monitoring and land management. Hyperspectral remote sensing has been proven effective for separating NPV from bare soil, but few studies determined fractional cover of PV (fpv) and NPV (fnpv) using multispectral information. The purpose of this study is to evaluate several spectral unmixing approaches for retrieval of fpv and fnpv in the Otindag Sandy Land using GF-1 wi...

  6. Non-AUG translation: a new start for protein synthesis in eukaryotes.

    Science.gov (United States)

    Kearse, Michael G; Wilusz, Jeremy E

    2017-09-01

    Although it was long thought that eukaryotic translation almost always initiates at an AUG start codon, recent advancements in ribosome footprint mapping have revealed that non-AUG start codons are used at an astonishing frequency. These non-AUG initiation events are not simply errors but instead are used to generate or regulate proteins with key cellular functions; for example, during development or stress. Misregulation of non-AUG initiation events contributes to multiple human diseases, including cancer and neurodegeneration, and modulation of non-AUG usage may represent a novel therapeutic strategy. It is thus becoming increasingly clear that start codon selection is regulated by many trans -acting initiation factors as well as sequence/structural elements within messenger RNAs and that non-AUG translation has a profound impact on cellular states. © 2017 Kearse and Wilusz; Published by Cold Spring Harbor Laboratory Press.

  7. The genome of the diatom Thalassiosira pseudonana: Ecology,evolution, and metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Ambrust, E.V.; Berges, J.; Bowler, C.; Green, B.; Martinez, D.; Putnam, N.; Zhou, S.; Allen, A.; Apt, K.; Bechner, M.; Brzezinski, M.; Chaal, B.; Chiovitti, A.; Davis, A.; Goodstein, D.; Hadi, M.; Hellsten,U.; Hildebrand, M.; Jenkins, B.; Jurka, J.; Kapitonov, V.; Kroger, N.; Lau, W.; Lane, T.; Larimer, F.; Lippmeier, J.; Lucas, S.; Medina, M.; Montsant, A.; Obornik, M.; Parker, M. Schnitzler; Palenik, B.; Pazour,G.; Richardson, P.; Rynearson, T.; Saito, M.; Schwartz, D.; Thamatrakoln,K.; Valentin, K.; Vardi, A.; Wilkerson, F.; Rokhsar, D.; Vardi, A.; Wilkerson, F.P.; Rokhsar, D.S.

    2004-09-01

    different evolutionary history from the higher plants that dominate photosynthesis on land. Higher plants and green, red and glaucophyte algae are derived from a primary endosymbiotic event in which a non-photosynthetic eukaryote acquired a chloroplast by engulfing (or being invaded by) a prokaryotic cyanobacterium. In contrast, dominant bloom-forming eukaryotic phytoplankton in the ocean, such as diatoms and haptophytes, were derived by secondary endosymbiosis whereby a non-photosynthetic eukaryote acquired a chloroplast by engulfing a photosynthetic eukaryote, probably a red algal endosymbiont (Fig. 1). Each endosymbiotic event led to new combinations of genes derived from the hosts and endosymbionts (7). Prior to this project, relatively few diatom genes had been sequenced, few chromosome numbers were known, and genetic maps did not exist (8). The ecological and evolutionary importance of diatoms motivated our sequencing and analysis of the nuclear, plastid, and mitochondrial genomes of the marine centric diatom Thalassiosira pseudonana.

  8. Non-linear direct effects of acid rain on leaf photosynthetic rate of terrestrial plants.

    Science.gov (United States)

    Dong, Dan; Du, Enzai; Sun, Zhengzhong; Zeng, Xuetong; de Vries, Wim

    2017-12-01

    Anthropogenic emissions of acid precursors have enhanced global occurrence of acid rain, especially in East Asia. Acid rain directly suppresses leaf function by eroding surface waxes and cuticle and leaching base cations from mesophyll cells, while the simultaneous foliar uptake of nitrates in rainwater may directly benefit leaf photosynthesis and plant growth, suggesting a non-linear direct effect of acid rain. By synthesizing data from literature on acid rain exposure experiments, we assessed the direct effects of acid rain on leaf photosynthesis across 49 terrestrial plants in China. Our results show a non-linear direct effect of acid rain on leaf photosynthetic rate, including a neutral to positive effect above pH 5.0 and a negative effect below that pH level. The acid rain sensitivity of leaf photosynthesis showed no significant difference between herbs and woody species below pH 5.0, but the impacts above that pH level were strongly different, resulting in a significant increase in leaf photosynthetic rate of woody species and an insignificant effect on herbs. Our analysis also indicates a positive effect of the molar ratio of nitric versus sulfuric acid in the acid solution on leaf photosynthetic rate. These findings imply that rainwater acidity and the composition of acids both affect the response of leaf photosynthesis and therefore result in a non-linear direct effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Ancient photosynthetic eukaryote biofilms in an Atacama Desert coastal cave

    Science.gov (United States)

    Azua-Bustos, A.; Gonzalez-Silva, C.; Mancilla, R.A.; Salas, L.; Palma, R.E.; Wynne, J.J.; McKay, C.P.; Vicuna, R.

    2009-01-01

    Caves offer a stable and protected environment from harsh and changing outside prevailing conditions. Hence, they represent an interesting habitat for studying life in extreme environments. Here, we report the presence of a member of the ancient eukaryote red algae Cyanidium group in a coastal cave of the hyperarid Atacama Desert. This microorganism was found to form a seemingly monospecific biofilm growing under extremely low photon flux levels. Our work suggests that this species, Cyanidium sp. Atacama, is a new member of a recently proposed novel monophyletic lineage of mesophilic "cave" Cyanidium sp., distinct from the remaining three other lineages which are all thermo-acidophilic. The cave described in this work may represent an evolutionary island for life in the midst of the Atacama Desert. ?? Springer Science + Business Media, LLC 2009.

  10. Non-destructive determination of photosynthetic rates of eight varieties of cassava (Manihot esculenta Crantz)

    International Nuclear Information System (INIS)

    Amadu, A. A.

    2015-07-01

    Cassava is an important food security crop in Ghana and in the wake of climate change there is the need for plant breeders to develop varieties with high water use efficiency as well as high photosynthetic rate in order to adapt to the changing climate. Thus, the photosynthetic rates of eight cassava (Manihot esculenta Crantz) varieties were non-destructively evaluated using photosynthesis meter miniPPM300, from June 2014 to May 2015, with the aim of selecting varieties with high photosynthetic rate for future breeding programmes. The mean photosynthetic rate varied depending on the varieties ranging from 40.5 μmol/m 2 s in Bosom nsia to 45.2 μmol/m 2 s in Gbenze. However, the presence of African cassava mosaic disease (ACMD) marginally reduced the photosynthetic rate to below 40 μmol/m 2 s in all the varieties. Similarly, the chlorophyll content index (CCI) as measured by chlorophyll meter and spectrophotometer also varied from one variety to another; it was low in Nandom (17.9 CCI) and high in Gbenze (39.93 CCI) using the chlorophyll meter and was also reduced by the presence of the virus. Although, the stomatal density varied between the varieties it was not influenced by virus infection. Furthermore, ACMD significantly decreased the leaf surface area from 5705.8mm 2 in uninfected plants to 1251.6mm 2 in infected plants, consequently reducing the number and weight of tubers produced 11 month after planting (MAP). Molecular Testing of the viruses using virus specific primers JSP001/JSP002, EAB555F/EAB555R, EACMV1e/EACMV2e at 6 MAP and 11MAP, showed that the mosaic symptoms were caused by African Cassava Mosaic virus disease. Cassava varieties with high photosynthetic efficiency and low virus infection can be used in cassava improvement programmes in Ghana. (au)

  11. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites

    KAUST Repository

    Woo, Yong

    2015-07-15

    The eukaryotic phylum Apicomplexa encompasses thousands of obligate intracellular parasites of humans and animals with immense socio-economic and health impacts. We sequenced nuclear genomes of Chromera velia and Vitrella brassicaformis, free-living non-parasitic photosynthetic algae closely related to apicomplexans. Proteins from key metabolic pathways and from the endomembrane trafficking systems associated with a free-living lifestyle have been progressively and non-randomly lost during adaptation to parasitism. The free-living ancestor contained a broad repertoire of genes many of which were repurposed for parasitic processes, such as extracellular proteins, components of a motility apparatus, and DNA- and RNA-binding protein families. Based on transcriptome analyses across 36 environmental conditions, Chromera orthologs of apicomplexan invasion-related motility genes were co-regulated with genes encoding the flagellar apparatus, supporting the functional contribution of flagella to the evolution of invasion machinery. This study provides insights into how obligate parasites with diverse life strategies arose from a once free-living phototrophic marine alga. © Woo et al.

  12. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites

    KAUST Repository

    Woo, Yong; Ansari, Hifzur Rahman; Otto, Thomas D.; Linger, Christen M K; Olisko, Martin K.; Michá lek, Jan; Saxena, Alka; Shanmugam, Dhanasekaran; Tayyrov, Annageldi; Veluchamy, Alaguraj; Ali, Shahjahan; Bernal, Axel; Del Campo, Javier; Cihlá ř, Jaromí r; Flegontov, Pavel; Gornik, Sebastian G.; Hajdušková , Eva; Horá k, Aleš; Janouškovec, Jan; Katris, Nicholas J.; Mast, Fred D.; Miranda-Saavedra, Diego; Mourier, Tobias; Naeem, Raeece; Nair, Mridul; Panigrahi, Aswini Kumar; Rawlings, Neil D.; Padron Regalado, Eriko; Ramaprasad, Abhinay; Samad, Nadira; Tomčala, Aleš; Wilkes, Jon; Neafsey, Daniel E.; Doerig, Christian; Bowler, Chris; Keeling, Patrick J.; Roos, David S.; Dacks, Joel B.; Templeton, Thomas J.; Waller, Ross F.; Lukeš, Julius; Oborní k, Miroslav; Pain, Arnab

    2015-01-01

    The eukaryotic phylum Apicomplexa encompasses thousands of obligate intracellular parasites of humans and animals with immense socio-economic and health impacts. We sequenced nuclear genomes of Chromera velia and Vitrella brassicaformis, free-living non-parasitic photosynthetic algae closely related to apicomplexans. Proteins from key metabolic pathways and from the endomembrane trafficking systems associated with a free-living lifestyle have been progressively and non-randomly lost during adaptation to parasitism. The free-living ancestor contained a broad repertoire of genes many of which were repurposed for parasitic processes, such as extracellular proteins, components of a motility apparatus, and DNA- and RNA-binding protein families. Based on transcriptome analyses across 36 environmental conditions, Chromera orthologs of apicomplexan invasion-related motility genes were co-regulated with genes encoding the flagellar apparatus, supporting the functional contribution of flagella to the evolution of invasion machinery. This study provides insights into how obligate parasites with diverse life strategies arose from a once free-living phototrophic marine alga. © Woo et al.

  13. Production of isotopically labeled heterologous proteins in non-E. coli prokaryotic and eukaryotic cells

    International Nuclear Information System (INIS)

    Takahashi, Hideo; Shimada, Ichio

    2010-01-01

    The preparation of stable isotope-labeled proteins is necessary for the application of a wide variety of NMR methods, to study the structures and dynamics of proteins and protein complexes. The E. coli expression system is generally used for the production of isotope-labeled proteins, because of the advantages of ease of handling, rapid growth, high-level protein production, and low cost for isotope-labeling. However, many eukaryotic proteins are not functionally expressed in E. coli, due to problems related to disulfide bond formation, post-translational modifications, and folding. In such cases, other expression systems are required for producing proteins for biomolecular NMR analyses. In this paper, we review the recent advances in expression systems for isotopically labeled heterologous proteins, utilizing non-E. coli prokaryotic and eukaryotic cells.

  14. Communities of microbial eukaryotes in the mammalian gut within the context of environmental eukaryotic diversity

    Energy Technology Data Exchange (ETDEWEB)

    Parfrey, Laura Wegener; Walters, William A.; Lauber, Christian L.; Clemente, Jose C.; Berg-Lyons, Donna; Teiling, Clotilde; Kodira, Chinnappa; Mohiuddin, Mohammed; Brunelle, Julie; Driscoll, Mark; Fierer, Noah; Gilbert, Jack A.; Knight, Rob

    2014-06-19

    Eukaryotic microbes (protists) residing in the vertebrate gut influence host health and disease, but their diversity and distribution in healthy hosts is poorly understood. Protists found in the gut are typically considered parasites, but many are commensal and some are beneficial. Further, the hygiene hypothesis predicts that association with our co-evolved microbial symbionts may be important to overall health. It is therefore imperative that we understand the normal diversity of our eukaryotic gut microbiota to test for such effects and avoid eliminating commensal organisms. We assembled a dataset of healthy individuals from two populations, one with traditional, agrarian lifestyles and a second with modern, westernized lifestyles, and characterized the human eukaryotic microbiota via high-throughput sequencing. To place the human gut microbiota within a broader context our dataset also includes gut samples from diverse mammals and samples from other aquatic and terrestrial environments. We curated the SILVA ribosomal database to reflect current knowledge of eukaryotic taxonomy and employ it as a phylogenetic framework to compare eukaryotic diversity across environment. We show that adults from the non-western population harbor a diverse community of protists, and diversity in the human gut is comparable to that in other mammals. However, the eukaryotic microbiota of the western population appears depauperate. The distribution of symbionts found in mammals reflects both host phylogeny and diet. Eukaryotic microbiota in the gut are less diverse and more patchily distributed than bacteria. More broadly, we show that eukaryotic communities in the gut are less diverse than in aquatic and terrestrial habitats, and few taxa are shared across habitat types, and diversity patterns of eukaryotes are correlated with those observed for bacteria. These results outline the distribution and diversity of microbial eukaryotic communities in the mammalian gut and across

  15. Photosynthetic fuel for heterologous enzymes

    DEFF Research Database (Denmark)

    Mellor, Silas Busck; Vavitsas, Konstantinos; Nielsen, Agnieszka Janina Zygadlo

    2017-01-01

    of reducing power. Recent work on the metabolic engineering of photosynthetic organisms has shown that the electron carriers such as ferredoxin and flavodoxin can be used to couple heterologous enzymes to photosynthetic reducing power. Because these proteins have a plethora of interaction partners and rely...... on electrostatically steered complex formation, they form productive electron transfer complexes with non-native enzymes. A handful of examples demonstrate channeling of photosynthetic electrons to drive the activity of heterologous enzymes, and these focus mainly on hydrogenases and cytochrome P450s. However......, competition from native pathways and inefficient electron transfer rates present major obstacles, which limit the productivity of heterologous reactions coupled to photosynthesis. We discuss specific approaches to address these bottlenecks and ensure high productivity of such enzymes in a photosynthetic...

  16. Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux

    Directory of Open Access Journals (Sweden)

    Xia Chen

    2018-01-01

    Full Text Available An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with (Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora, and Eucalyptus grandis × urophylla and without (Castanopsis fissa, Schima superba, and Acacia auriculiformis photosynthetic stems, and the sap flux (Js and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the Fv/Fm (Maximum photochemical quantum yield of PSII and ΦPSII (effective photochemical quantum yield of PSII values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that Js,d (daytime sap flux and Js,n (nighttime sap flux of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (SlopeSMA = 2.680 than in non-photosynthetic stems species (SlopeSMA = 1.943. These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis.

  17. Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux

    Science.gov (United States)

    Chen, Xia; Gao, Jianguo; Zhao, Ping; McCarthy, Heather R.; Zhu, Liwei; Ni, Guangyan; Ouyang, Lei

    2018-01-01

    An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with (Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora, and Eucalyptus grandis × urophylla) and without (Castanopsis fissa, Schima superba, and Acacia auriculiformis) photosynthetic stems, and the sap flux (Js) and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the Fv/Fm (Maximum photochemical quantum yield of PSII) and ΦPSII (effective photochemical quantum yield of PSII) values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that Js,d (daytime sap flux) and Js,n (nighttime sap flux) of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (SlopeSMA = 2.680) than in non-photosynthetic stems species (SlopeSMA = 1.943). These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis. PMID:29416547

  18. Red and green algal origin of diatom membrane transporters: insights into environmental adaptation and cell evolution.

    Directory of Open Access Journals (Sweden)

    Cheong Xin Chan

    Full Text Available Membrane transporters (MTs facilitate the movement of molecules between cellular compartments. The evolutionary history of these key components of eukaryote genomes remains unclear. Many photosynthetic microbial eukaryotes (e.g., diatoms, haptophytes, and dinoflagellates appear to have undergone serial endosymbiosis and thereby recruited foreign genes through endosymbiotic/horizontal gene transfer (E/HGT. Here we used the diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum as models to examine the evolutionary origin of MTs in this important group of marine primary producers. Using phylogenomics, we used 1,014 diatom MTs as query against a broadly sampled protein sequence database that includes novel genome data from the mesophilic red algae Porphyridium cruentum and Calliarthron tuberculosum, and the stramenopile Ectocarpus siliculosus. Our conservative approach resulted in 879 maximum likelihood trees of which 399 genes show a non-lineal history between diatoms and other eukaryotes and prokaryotes (at the bootstrap value ≥70%. Of the eukaryote-derived MTs, 172 (ca. 25% of 697 examined phylogenies have members of both red/green algae as sister groups, with 103 putatively arising from green algae, 19 from red algae, and 50 have an unresolved affiliation to red and/or green algae. We used topology tests to analyze the most convincing cases of non-lineal gene history in which red and/or green algae were nested within stramenopiles. This analysis showed that ca. 6% of all trees (our most conservative estimate support an algal origin of MTs in stramenopiles with the majority derived from green algae. Our findings demonstrate the complex evolutionary history of photosynthetic eukaryotes and indicate a reticulate origin of MT genes in diatoms. We postulate that the algal-derived MTs acquired via E/HGT provided diatoms and other related microbial eukaryotes the ability to persist under conditions of fluctuating ocean chemistry, likely

  19. Re-evaluating the green versus red signal in eukaryotes with secondary plastid of red algal origin

    KAUST Repository

    Burki, Fabien

    2012-05-16

    The transition from endosymbiont to organelle in eukaryotic cells involves the transfer of significant numbers of genes to the host genomes, a process known as endosymbiotic gene transfer (EGT). In the case of plastid organelles, EGTs have been shown to leave a footprint in the nuclear genome that can be indicative of ancient photosynthetic activity in present-day plastid-lacking organisms, or even hint at the existence of cryptic plastids. Here,we evaluated the impact of EGTon eukaryote genomes by reanalyzing the recently published EST dataset for Chromera velia, an interesting test case of a photosynthetic alga closely related to apicomplexan parasites. Previously, 513 genes were reported to originate from red and green algae in a 1:1 ratio. In contrast, by manually inspecting newly generated trees indicating putative algal ancestry, we recovered only 51 genes congruent with EGT, of which 23 and 9 were of red and green algal origin, respectively,whereas 19 were ambiguous regarding the algal provenance.Our approach also uncovered 109 genes that branched within a monocot angiosperm clade, most likely representing a contamination. We emphasize the lack of congruence and the subjectivity resulting from independent phylogenomic screens for EGT, which appear to call for extreme caution when drawing conclusions for major evolutionary events. 2012 The Author(s).

  20. Still acting green: continued expression of photosynthetic genes in the heterotrophic Dinoflagellate Pfiesteria piscicida (Peridiniales, Alveolata.

    Directory of Open Access Journals (Sweden)

    Gwang Hoon Kim

    Full Text Available The loss of photosynthetic function should lead to the cessation of expression and finally loss of photosynthetic genes in the new heterotroph. Dinoflagellates are known to have lost their photosynthetic ability several times. Dinoflagellates have also acquired photosynthesis from other organisms, either on a long-term basis or as "kleptoplastids" multiple times. The fate of photosynthetic gene expression in heterotrophs can be informative into evolution of gene expression patterns after functional loss, and the dinoflagellates ability to acquire new photosynthetic function through additional endosymbiosis. To explore this we analyzed a large-scale EST database consisting of 151,091 unique sequences (29,170 contigs, 120,921 singletons obtained from 454 pyrosequencing of the heterotrophic dinoflagellate Pfiesteria piscicida. About 597 contigs from P. piscicida showed significant homology (E-value photosynthetic function. Most of the genes involved in the Calvin-Benson cycle were found, genes of the light-dependent reaction were also identified. Also genes of associated pathways including the chorismate pathway and genes involved in starch metabolism were discovered. BLAST searches and phylogenetic analysis suggest that these plastid-associated genes originated from several different photosynthetic ancestors. The Calvin-Benson cycle genes are mostly associated with genes derived from the secondary plastids of peridinin-containing dinoflagellates, while the light-harvesting genes are derived from diatoms, or diatoms that are tertiary plastids in other dinoflagellates. The continued expression of many genes involved in photosynthetic pathways indicates that the loss of transcriptional regulation may occur well after plastid loss and could explain the organism's ability to "capture" new plastids (i.e. different secondary endosymbiosis or tertiary symbioses to renew photosynthetic function.

  1. Still acting green: continued expression of photosynthetic genes in the heterotrophic Dinoflagellate Pfiesteria piscicida (Peridiniales, Alveolata).

    Science.gov (United States)

    Kim, Gwang Hoon; Jeong, Hae Jin; Yoo, Yeong Du; Kim, Sunju; Han, Ji Hee; Han, Jong Won; Zuccarello, Giuseppe C

    2013-01-01

    The loss of photosynthetic function should lead to the cessation of expression and finally loss of photosynthetic genes in the new heterotroph. Dinoflagellates are known to have lost their photosynthetic ability several times. Dinoflagellates have also acquired photosynthesis from other organisms, either on a long-term basis or as "kleptoplastids" multiple times. The fate of photosynthetic gene expression in heterotrophs can be informative into evolution of gene expression patterns after functional loss, and the dinoflagellates ability to acquire new photosynthetic function through additional endosymbiosis. To explore this we analyzed a large-scale EST database consisting of 151,091 unique sequences (29,170 contigs, 120,921 singletons) obtained from 454 pyrosequencing of the heterotrophic dinoflagellate Pfiesteria piscicida. About 597 contigs from P. piscicida showed significant homology (E-value photosynthetic function. Most of the genes involved in the Calvin-Benson cycle were found, genes of the light-dependent reaction were also identified. Also genes of associated pathways including the chorismate pathway and genes involved in starch metabolism were discovered. BLAST searches and phylogenetic analysis suggest that these plastid-associated genes originated from several different photosynthetic ancestors. The Calvin-Benson cycle genes are mostly associated with genes derived from the secondary plastids of peridinin-containing dinoflagellates, while the light-harvesting genes are derived from diatoms, or diatoms that are tertiary plastids in other dinoflagellates. The continued expression of many genes involved in photosynthetic pathways indicates that the loss of transcriptional regulation may occur well after plastid loss and could explain the organism's ability to "capture" new plastids (i.e. different secondary endosymbiosis or tertiary symbioses) to renew photosynthetic function.

  2. Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux.

    Science.gov (United States)

    Chen, Xia; Gao, Jianguo; Zhao, Ping; McCarthy, Heather R; Zhu, Liwei; Ni, Guangyan; Ouyang, Lei

    2018-01-01

    An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with ( Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora , and Eucalyptus grandis × urophylla ) and without ( Castanopsis fissa, Schima superba , and Acacia auriculiformis ) photosynthetic stems, and the sap flux ( J s ) and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the F v / F m (Maximum photochemical quantum yield of PSII) and Φ PSII (effective photochemical quantum yield of PSII) values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that J s,d (daytime sap flux) and J s,n (nighttime sap flux) of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (Slope SMA = 2.680) than in non-photosynthetic stems species (Slope SMA = 1.943). These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis.

  3. Oceanic protists with different forms of acquired phototrophy display contrasting biogeographies and abundance.

    Science.gov (United States)

    Leles, S G; Mitra, A; Flynn, K J; Stoecker, D K; Hansen, P J; Calbet, A; McManus, G B; Sanders, R W; Caron, D A; Not, F; Hallegraeff, G M; Pitta, P; Raven, J A; Johnson, M D; Glibert, P M; Våge, S

    2017-08-16

    This first comprehensive analysis of the global biogeography of marine protistan plankton with acquired phototrophy shows these mixotrophic organisms to be ubiquitous and abundant; however, their biogeography differs markedly between different functional groups. These mixotrophs, lacking a constitutive capacity for photosynthesis (i.e. non-constitutive mixotrophs, NCMs), acquire their phototrophic potential through either integration of prey-plastids or through endosymbiotic associations with photosynthetic microbes. Analysis of field data reveals that 40-60% of plankton traditionally labelled as (non-phototrophic) microzooplankton are actually NCMs, employing acquired phototrophy in addition to phagotrophy. Specialist NCMs acquire chloroplasts or endosymbionts from specific prey, while generalist NCMs obtain chloroplasts from a variety of prey. These contrasting functional types of NCMs exhibit distinct seasonal and spatial global distribution patterns. Mixotrophs reliant on 'stolen' chloroplasts, controlled by prey diversity and abundance, dominate in high-biomass areas. Mixotrophs harbouring intact symbionts are present in all waters and dominate particularly in oligotrophic open ocean systems. The contrasting temporal and spatial patterns of distribution of different mixotroph functional types across the oceanic provinces, as revealed in this study, challenges traditional interpretations of marine food web structures. Mixotrophs with acquired phototrophy (NCMs) warrant greater recognition in marine research. © 2017 The Author(s).

  4. Superradiance Transition and Nonphotochemical Quenching in Photosynthetic Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Gennady Petrovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nesterov, Alexander [Universidad de Guadalajara, Departamento de Fısica, Jalisco (Mexico); Lopez, Gustavo [Universidad de Guadalajara, Departamento de Fısica, Jalisco (Mexico); Sayre, Richard Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-23

    Photosynthetic organisms have evolved protective strategies to allow them to survive in cases of intense sunlight fluctuation with the development of nonphotochemical quenching (NPQ). This process allows light harvesting complexes to transfer the excess sunlight energy to non-damaging quenching channels. This report compares the NPQ process with the superradiance transition (ST). We demonstrated that the maximum of the NPQ efficiency is caused by the ST to the sink associated with the CTS. However, experimental verifications are required in order to determine whether or not the NPQ regime is associated with the ST transition for real photosynthetic complexes. Indeed, it can happen that, in the photosynthetic apparatus, the NPQ regime occurs in the “non-optimal” region of parameters, and it could be independent of the ST.

  5. Production of bioplastics and hydrogen gas by photosynthetic microorganisms

    Science.gov (United States)

    Yasuo, Asada; Masato, Miyake; Jun, Miyake

    1998-03-01

    Our efforts have been aimed at the technological basis of photosynthetic-microbial production of materials and an energy carrier. We report here accumulation of poly-(3-hydroxybutyrate) (PHB), a raw material of biodegradable plastics and for production of hydrogen gas, and a renewable energy carrier by photosynthetic microorganisms (tentatively defined as cyanobacteria plus photosynthetic bateria, in this report). A thermophilic cyanobacterium, Synechococcus sp. MA19 that accumulates PHB at more than 20% of cell dry wt under nitrogen-starved conditions was isolated and microbiologically identified. The mechanism of PHB accumulation was studied. A mesophilic Synechococcus PCC7942 was transformed with the genes encoding PHB-synthesizing enzymes from Alcaligenes eutrophus. The transformant accumulated PHB under nitrogen-starved conditions. The optimal conditions for PHB accumulation by a photosynthetic bacterium grown on acetate were studied. Hydrogen production by photosynthetic microorganisms was studied. Cyanobacteria can produce hydrogen gas by nitrogenase or hydrogenase. Hydrogen production mediated by native hydrogenase in cyanobacteria was revealed to be in the dark anaerobic degradation of intracellular glycogen. A new system for light-dependent hydrogen production was targeted. In vitro and in vivo coupling of cyanobacterial ferredoxin with a heterologous hydrogenase was shown to produce hydrogen under light conditions. A trial for genetic trasformation of Synechococcus PCC7942 with the hydrogenase gene from Clostridium pasteurianum is going on. The strong hydrogen producers among photosynthetic bacteria were isolated and characterized. Co-culture of Rhodobacter and Clostriumdium was applied to produce hydrogen from glucose. Conversely in the case of cyanobacteria, genetic regulation of photosynthetic proteins was intended to improve conversion efficiency in hydrogen production by the photosynthetic bacterium, Rhodobacter sphaeroides RV. A mutant acquired by

  6. Photosynthetic and nitrogen fixation capability in several soybean mutant lines

    International Nuclear Information System (INIS)

    Gandanegara, S.; Hendratno, K.

    1987-01-01

    Photosynthetic and nitrogen fixation capability in several soybean mutant lines. A greenhouse experiment has been carried out to study photosynthetic and nitrogen fixation capability of five mutant lines and two soybean varieties. An amount of 330 uCi of 14 CO 2 was fed to the plants including of the non-fixing reference crop (Chippewa non-nodulating isoline). Nitrogen fixation measurements was carried out using 15 N isotope dilution technique according to A-value concept. Results showed that beside variety/mutant lines, plant growth also has important role in photosynthetic and N fixing capability. Better growth and a higher photosynthetic capability in Orba, mutant lines nos. 63 and 65 resulted in a greater amount of N 2 fixed (mg N/plant) than other mutant lines. (author). 12 refs.; 5 figs

  7. Bacteriophytochrome controls carotenoid-independent response to photodynamic stress in a non-photosynthetic rhizobacterium, Azospirillum brasilense Sp7.

    Science.gov (United States)

    Kumar, Santosh; Kateriya, Suneel; Singh, Vijay Shankar; Tanwar, Meenakshi; Agarwal, Shweta; Singh, Hina; Khurana, Jitendra Paul; Amla, Devinder Vijay; Tripathi, Anil Kumar

    2012-01-01

    Ever since the discovery of the role of bacteriophytochrome (BphP) in inducing carotenoid synthesis in Deinococcus radiodurans in response to light the role of BphPs in other non-photosynthetic bacteria is not clear yet. Azospirillum brasilense, a non-photosynthetic rhizobacterium, harbours a pair of BphPs out of which AbBphP1 is a homolog of AtBphP1 of Agrobacterium tumefaciens. By overexpression, purification, biochemical and spectral characterization we have shown that AbBphP1 is a photochromic bacteriophytochrome. Phenotypic study of the ΔAbBphP1 mutant showed that it is required for the survival of A. brasilense on minimal medium under red light. The mutant also showed reduced chemotaxis towards dicarboxylates and increased sensitivity to the photooxidative stress. Unlike D. radiodurans, AbBphP1 was not involved in controlling carotenoid synthesis. Proteome analysis of the ΔAbBphP1 indicated that AbBphP1 is involved in inducing a cellular response that enables A. brasilense in regenerating proteins that might be damaged due to photodynamic stress.

  8. Improving Delivery of Photosynthetic Reducing Power to Cytochrome P450s

    DEFF Research Database (Denmark)

    Mellor, Silas Busck

    at sustainable production of high-value and commodity products. Cytochrome P450 enzymes play key roles in the biosynthesis of important natural products. The electron carrier ferredoxin can couple P450s non-natively to photosynthetic electron supply, providing ample reducing power for catalysis. However......, photosynthetic reducing power feeds into both central and specialized metabolism, which leads to a fiercely competitive system from which to siphon reductant. This thesis explores the optimization of light-driven P450 activity, and proposes strategies to overcome the limitations imposed by competition...... for photosynthetic reducing power. Photosynthetic electron carrier proteins interact with widely different partners because they use relatively non-specific interactions. The mechanistic basis of these interactions and its impact on natural electron transfer complexes is discussed. This particular type...

  9. Calculation of the radiative properties of photosynthetic microorganisms

    International Nuclear Information System (INIS)

    Dauchet, Jérémi; Blanco, Stéphane; Cornet, Jean-François; Fournier, Richard

    2015-01-01

    photosynthetic bacteria, cyanobacteria and eukaryotic microalgae. The obtained results are in very good agreement with the experimental measurements when the shape of the microorganisms is well described (in comparison to the standard volume-equivalent sphere approximation). As a main perspective, the consideration of the helical shape of Arthrospira platensis appears to be a key to an accurate estimation of its radiative properties. On the whole, the presented methodological chain also appears of great interest for other scientific communities such as atmospheric science, oceanography, astrophysics and engineering

  10. Calculation of the radiative properties of photosynthetic microorganisms

    Science.gov (United States)

    Dauchet, Jérémi; Blanco, Stéphane; Cornet, Jean-François; Fournier, Richard

    2015-08-01

    photosynthetic bacteria, cyanobacteria and eukaryotic microalgae. The obtained results are in very good agreement with the experimental measurements when the shape of the microorganisms is well described (in comparison to the standard volume-equivalent sphere approximation). As a main perspective, the consideration of the helical shape of Arthrospira platensis appears to be a key to an accurate estimation of its radiative properties. On the whole, the presented methodological chain also appears of great interest for other scientific communities such as atmospheric science, oceanography, astrophysics and engineering.

  11. Comparison of Six DNA Extraction Procedures and the Application of Plastid DNA Enrichment Methods in Selected Non-photosynthetic Plants

    Directory of Open Access Journals (Sweden)

    Shin-Yi Shyu

    2013-12-01

    Full Text Available Genomic DNA was isolated using three DNA extraction commercial kits and three CTAB-based methods for two non-photosynthetic plants, Balanophora japonica and Mitrastemon kanehirai. The quality of the isolated DNA was evaluated and subjected to following restriction enzyme digestions. All six procedures yielded DNA of sufficient quality for PCR, and the method described by Barnwell et al. (1998 performed well in isolating DNA from both species for restriction enzyme digestion. In addition, we succeeded to enrich plastid DNA content by using the methods depending on a high salt buffer to deplete nuclear material. The ‘high salt’ methods based on protocol presented by Milligan (1989 were able to increase plastid DNA effectively and significantly reduce nuclear DNA from M. kanehirai. The plastid DNA enrichment protocols are inexpensive and not time-consuming, and may be applicable to other non-photosynthetic plants.

  12. Characterization of Anti-Citrinin Specific ScFvs Selected from Non-Immunized Mouse Splenocytes by Eukaryotic Ribosome Display.

    Directory of Open Access Journals (Sweden)

    Haiwei Cheng

    Full Text Available Single chain variable fragments (scFvs against citrinin (CIT were selected from a scFv library constructed from the splenocytes of non-immunized mice by an improved eukaryotic ribosome display technology in this study. Bovine serum albumin (BSA/ CIT-BSA and ovalbumin (OVA/ CIT-OVA were used as the antigens to select specific anti-CIT scFvs. Eukaryotic in situ RT-PCR method was used to recover the selected mRNA after every affinity selection. After six rounds of ribosome display, expression vector pTIG-TRX carrying specific scFv DNAs were constructed and transformed into Escherichia coli BL21 (DE3 for protein expression. Thirteen positive clones were selected out of which three (designated 23, 68 and 109 showed high binding activity and specificity to CIT by indirect ELISA, while no clone showed binding activity with carrier proteins. The three scFvs showed high specificity to CIT and the cross reactivity with other mycotoxins was below 0.01% as determined by indirect competitive ELISA. These specific scFvs offer a potential novel immunoassay method for CIT residues. This study confirmed the effectiveness of the improved eukaryotic ribosome display system and could be used as a reference for the selection of scFvs specific to other small molecules using ribosome display.

  13. Quantum transport in the FMO photosynthetic light-harvesting complex.

    Science.gov (United States)

    Karafyllidis, Ioannis G

    2017-06-01

    The very high light-harvesting efficiency of natural photosynthetic systems in conjunction with recent experiments, which showed quantum-coherent energy transfer in photosynthetic complexes, raised questions regarding the presence of non-trivial quantum effects in photosynthesis. Grover quantum search, quantum walks, and entanglement have been investigated as possible effects that lead to this efficiency. Here we explain the near-unit photosynthetic efficiency without invoking non-trivial quantum effects. Instead, we use non-equilibrium Green's functions, a mesoscopic method used to study transport in nano-conductors to compute the transmission function of the Fenna-Matthews-Olson (FMO) complex using an experimentally derived exciton Hamiltonian. The chlorosome antenna and the reaction center play the role of input and output contacts, connected to the FMO complex. We show that there are two channels for which the transmission is almost unity. Our analysis also revealed a dephasing-driven regulation mechanism that maintains the efficiency in the presence of varying dephasing potentials.

  14. HIV-1 Replication and the Cellular Eukaryotic Translation Apparatus

    Directory of Open Access Journals (Sweden)

    Santiago Guerrero

    2015-01-01

    Full Text Available Eukaryotic translation is a complex process composed of three main steps: initiation, elongation, and termination. During infections by RNA- and DNA-viruses, the eukaryotic translation machinery is used to assure optimal viral protein synthesis. Human immunodeficiency virus type I (HIV-1 uses several non-canonical pathways to translate its own proteins, such as leaky scanning, frameshifting, shunt, and cap-independent mechanisms. Moreover, HIV-1 modulates the host translation machinery by targeting key translation factors and overcomes different cellular obstacles that affect protein translation. In this review, we describe how HIV-1 proteins target several components of the eukaryotic translation machinery, which consequently improves viral translation and replication.

  15. Rescuing ethanol photosynthetic production of cyanobacteria in non-sterilized outdoor cultivations with a bicarbonate-based pH-rising strategy.

    Science.gov (United States)

    Zhu, Zhi; Luan, Guodong; Tan, Xiaoming; Zhang, Haocui; Lu, Xuefeng

    2017-01-01

    Ethanol photosynthetic production based on cyanobacteria cell factories utilizing CO 2 and solar energy provides an attractive solution for sustainable production of green fuels. However, the scaling up processes of cyanobacteria cell factories were usually threatened or even devastated by biocontaminations, which restricted biomass or products accumulations of cyanobacteria cells. Thus it is of great significance to develop reliable biocontamination-controlling strategies for promoting ethanol photosynthetic production in large scales. The scaling up process of a previously developed Synechocystis strain Syn-HZ24 for ethanol synthesis was severely inhibited and devastated by a specific contaminant, Pannonibacter phragmitetus , which overcame the growths of cyanobacteria cells and completely consumed the ethanol accumulation in the cultivation systems. Physiological analysis revealed that growths and ethanol-consuming activities of the contaminant were sensitive to alkaline conditions, while ethanol-synthesizing cyanobacteria strain Syn-HZ24 could tolerate alkaline pH conditions as high as 11.0, indicating that pH-increasing strategy might be a feasible approach for rescuing ethanol photosynthetic production in outdoor cultivation systems. Thus, we designed and evaluated a Bicarbonate-based Integrated Carbon Capture System (BICCS) derived pH-rising strategy to rescue the ethanol photosynthetic production in non-sterilized conditions. In lab scale artificially simulated systems, pH values of BG11 culture medium were maintained around 11.0 by 180 mM NaHCO 3 and air steam, under which the infection of Pannonibacter phragmitetus was significantly restricted, recovering ethanol production of Syn-HZ24 by about 80%. As for outdoor cultivations, ethanol photosynthetic production of Syn-HZ24 was also successfully rescued by the BICCS-derived pH-rising strategy, obtaining a final ethanol concentration of 0.9 g/L after 10 days cultivation. In this work, a novel product

  16. Eukaryotic ribonucleases P/MRP: the crystal structure of the P3 domain.

    Science.gov (United States)

    Perederina, Anna; Esakova, Olga; Quan, Chao; Khanova, Elena; Krasilnikov, Andrey S

    2010-02-17

    Ribonuclease (RNase) P is a site-specific endoribonuclease found in all kingdoms of life. Typical RNase P consists of a catalytic RNA component and a protein moiety. In the eukaryotes, the RNase P lineage has split into two, giving rise to a closely related enzyme, RNase MRP, which has similar components but has evolved to have different specificities. The eukaryotic RNases P/MRP have acquired an essential helix-loop-helix protein-binding RNA domain P3 that has an important function in eukaryotic enzymes and distinguishes them from bacterial and archaeal RNases P. Here, we present a crystal structure of the P3 RNA domain from Saccharomyces cerevisiae RNase MRP in a complex with RNase P/MRP proteins Pop6 and Pop7 solved to 2.7 A. The structure suggests similar structural organization of the P3 RNA domains in RNases P/MRP and possible functions of the P3 domains and proteins bound to them in the stabilization of the holoenzymes' structures as well as in interactions with substrates. It provides the first insight into the structural organization of the eukaryotic enzymes of the RNase P/MRP family.

  17. Microbial eukaryotic diversity and distribution in a river plume and cyclonic eddy-influenced ecosystem in the South China Sea.

    Science.gov (United States)

    Wu, Wenxue; Wang, Lei; Liao, Yu; Huang, Bangqin

    2015-10-01

    To evaluate microbial eukaryotic diversity and distribution in mesoscale processes, we investigated 18S rDNA diversity in a river plume and cyclonic eddy-influenced ecosystem in the southwestern South China Sea (SCS). Restriction fragment length polymorphism analysis was carried out using multiple primer sets. Relative to a wide range of previous similar studies, we observed a significantly higher proportion of sequences of pigmented taxa. Among the photosynthetic groups, Haptophyta accounted for 27.7% of the sequenced clones, which belonged primarily to Prymnesiophyceae. Unexpectedly, five operational taxonomic units of Cryptophyta were closely related to freshwater species. The Chlorophyta mostly fell within the Prasinophyceae, which was comprised of six clades, including Clade III, which is detected in the SCS for the first time in this study. Among the photosynthetic stramenopiles, Chrysophyceae was the most diverse taxon, which included seven clades. The majority of 18S rDNA sequences affiliated with the Dictyochophyceae, Eustigmatophyceae, and Pelagophyceae were closely related to those of pure cultures. The results of redundancy analysis and the permutation Mantel test based on unweighted UniFrac distances, conducted for spatial analyses of the Haptophyta subclades suggested that the Mekong River plume and cyclonic eddy play important roles in regulating microbial eukaryotic diversity and distribution in the southwestern SCS. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  18. Enzymes from Higher Eukaryotes for Industrial Biocatalysis

    Directory of Open Access Journals (Sweden)

    Zhibin Liu

    2004-01-01

    Full Text Available The industrial production of fine chemicals, feed and food ingredients, pharmaceuticals, agrochemicals and their respective intermediates relies on an increasing application of biocatalysis, i.e. on enzyme or whole-cell catalyzed conversions of molecules. Simple procedures for discovery, cloning and over-expression as well as fast growth favour fungi, yeasts and especially bacteria as sources of biocatalysts. Higher eukaryotes also harbour an almost unlimited number of potential biocatalysts, although to date the limited supply of enzymes, the high heterogeneity of enzyme preparations and the hazard of infectious contaminants keep some interesting candidates out of reach for industrial bioprocesses. In the past only a few animal and plant enzymes from agricultural waste materials were employed in food processing. The use of bacterial expression strains or non-conventional yeasts for the heterologous production of efficient eukaryotic enzymes can overcome the bottleneck in enzyme supply and provide sufficient amounts of homogenous enzyme preparations for reliable and economically feasible applications at large scale. Ideal enzymatic processes represent an environmentally friendly, »near-to-completion« conversion of (mostly non-natural substrates to pure products. Recent developments demonstrate the commercial feasibility of large-scale biocatalytic processes employing enzymes from higher eukaryotes (e.g. plants, animals and also their usefulness in some small-scale industrial applications.

  19. An Evolutionary Framework for Understanding the Origin of Eukaryotes

    Directory of Open Access Journals (Sweden)

    Neil W. Blackstone

    2016-04-01

    Full Text Available Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real—the endosymbiosis that led to the mitochondrion is often described as “non-Darwinian” because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious—all of the major features of eukaryotes were likely present in the last eukaryotic common ancestor thus rendering comparative methods ineffective. In addition to a multi-level theory, the development of rigorous, sequence-based phylogenetic and comparative methods represents the greatest achievement of modern evolutionary theory. Nevertheless, the rapid evolution of major features in the eukaryotic stem group requires the consideration of an alternative framework. Such a framework, based on the contingent nature of these evolutionary events, is developed and illustrated with three examples: the putative intron proliferation leading to the nucleus and the cell cycle; conflict and cooperation in the origin of eukaryotic bioenergetics; and the inter-relationship between aerobic metabolism, sterol synthesis, membranes, and sex. The modern synthesis thus provides sufficient scope to develop an evolutionary framework to understand the origin of eukaryotes.

  20. Non-coding RNA regulation in pathogenic bacteria located inside eukaryotic cells

    NARCIS (Netherlands)

    Ortega, Alvaro D.; Quereda, Juan J; Pucciarelli, M Graciela; García-del Portillo, Francisco

    2014-01-01

    Intracellular bacterial pathogens have evolved distinct lifestyles inside eukaryotic cells. Some pathogens coexist with the infected cell in an obligate intracellular state, whereas others transit between the extracellular and intracellular environment. Adaptation to these intracellular lifestyles

  1. Imaging of acquired non-traumatic cochlear lesions: iconographic essay

    International Nuclear Information System (INIS)

    Garcia, Marcelo de Mattos; Gonzaga, Juliana Gontijo

    2006-01-01

    Different non-traumatic acquired cochlear lesions are shown in this article with imaging methods. They may be responsible for neuro sensorial hearing loss or vertigo. The method of choice is computed tomography when evaluating the osseous labyrinth whereas magnetic resonance imaging has superior resolution in the studies of the membranaceous labyrinth. (author)

  2. Progress of CRISPR-Cas Based Genome Editing in Photosynthetic Microbes.

    Science.gov (United States)

    Naduthodi, Mihris Ibnu Saleem; Barbosa, Maria J; van der Oost, John

    2018-02-03

    The carbon footprint caused by unsustainable development and its environmental and economic impact has become a major concern in the past few decades. Photosynthetic microbes such as microalgae and cyanobacteria are capable of accumulating value-added compounds from carbon dioxide, and have been regarded as environmentally friendly alternatives to reduce the usage of fossil fuels, thereby contributing to reducing the carbon footprint. This light-driven generation of green chemicals and biofuels has triggered the research for metabolic engineering of these photosynthetic microbes. CRISPR-Cas systems are successfully implemented across a wide range of prokaryotic and eukaryotic species for efficient genome editing. However, the inception of this genome editing tool in microalgal and cyanobacterial species took off rather slowly due to various complications. In this review, we elaborate on the established CRISPR-Cas based genome editing in various microalgal and cyanobacterial species. The complications associated with CRISPR-Cas based genome editing in these species are addressed along with possible strategies to overcome these issues. It is anticipated that in the near future this will result in improving and expanding the microalgal and cyanobacterial genome engineering toolbox. © 2018 The Authors. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  3. Intermediary metabolism in protists: a sequence-based view of facultative anaerobic metabolism in evolutionarily diverse eukaryotes.

    Science.gov (United States)

    Ginger, Michael L; Fritz-Laylin, Lillian K; Fulton, Chandler; Cande, W Zacheus; Dawson, Scott C

    2010-12-01

    Protists account for the bulk of eukaryotic diversity. Through studies of gene and especially genome sequences the molecular basis for this diversity can be determined. Evident from genome sequencing are examples of versatile metabolism that go far beyond the canonical pathways described for eukaryotes in textbooks. In the last 2-3 years, genome sequencing and transcript profiling has unveiled several examples of heterotrophic and phototrophic protists that are unexpectedly well-equipped for ATP production using a facultative anaerobic metabolism, including some protists that can (Chlamydomonas reinhardtii) or are predicted (Naegleria gruberi, Acanthamoeba castellanii, Amoebidium parasiticum) to produce H(2) in their metabolism. It is possible that some enzymes of anaerobic metabolism were acquired and distributed among eukaryotes by lateral transfer, but it is also likely that the common ancestor of eukaryotes already had far more metabolic versatility than was widely thought a few years ago. The discussion of core energy metabolism in unicellular eukaryotes is the subject of this review. Since genomic sequencing has so far only touched the surface of protist diversity, it is anticipated that sequences of additional protists may reveal an even wider range of metabolic capabilities, while simultaneously enriching our understanding of the early evolution of eukaryotes. Copyright © 2010 Elsevier GmbH. All rights reserved.

  4. Mitochondrial uncoupling proteins in unicellular eukaryotes.

    Science.gov (United States)

    Jarmuszkiewicz, Wieslawa; Woyda-Ploszczyca, Andrzej; Antos-Krzeminska, Nina; Sluse, Francis E

    2010-01-01

    Uncoupling proteins (UCPs) are members of the mitochondrial anion carrier protein family that are present in the mitochondrial inner membrane and mediate free fatty acid (FFA)-activated, purine nucleotide (PN)-inhibited proton conductance. Since 1999, the presence of UCPs has been demonstrated in some non-photosynthesising unicellular eukaryotes, including amoeboid and parasite protists, as well as in non-fermentative yeast and filamentous fungi. In the mitochondria of these organisms, UCP activity is revealed upon FFA-induced, PN-inhibited stimulation of resting respiration and a decrease in membrane potential, which are accompanied by a decrease in membranous ubiquinone (Q) reduction level. UCPs in unicellular eukaryotes are able to divert energy from oxidative phosphorylation and thus compete for a proton electrochemical gradient with ATP synthase. Our recent work indicates that membranous Q is a metabolic sensor that might utilise its redox state to release the PN inhibition of UCP-mediated mitochondrial uncoupling under conditions of phosphorylation and resting respiration. The action of reduced Q (QH2) could allow higher or complete activation of UCP. As this regulatory feature was demonstrated for microorganism UCPs (A. castellanii UCP), plant and mammalian UCP1 analogues, and UCP1 in brown adipose tissue, the process could involve all UCPs. Here, we discuss the functional connection and physiological role of UCP and alternative oxidase, two main energy-dissipating systems in the plant-type mitochondrial respiratory chain of unicellular eukaryotes, including the control of cellular energy balance as well as preventive action against the production of reactive oxygen species. Copyright © 2009 Elsevier B.V. All rights reserved.

  5. On the photosynthetic and devlopmental responses of leaves to the spectral composition of light

    NARCIS (Netherlands)

    Hogewoning, S.W.

    2010-01-01

    Key words: action spectrum, artificial solar spectrum, blue light, Cucumis sativus, gas-exchange, light-emitting diodes (LEDs), light interception, light quality, non-photosynthetic pigments, photo-synthetic capacity, photomorphogenesis, photosystem excitation balance, quantum yield, red light.

  6. Rice Photosynthetic Productivity and PSII Photochemistry under Nonflooded Irrigation

    Directory of Open Access Journals (Sweden)

    Haibing He

    2014-01-01

    Full Text Available Nonflooded irrigation is an important water-saving rice cultivation technology, but little is known on its photosynthetic mechanism. The aims of this work were to investigate photosynthetic characteristics of rice during grain filling stage under three nonflooded irrigation treatments: furrow irrigation with plastic mulching (FIM, furrow irrigation with nonmulching (FIN, and drip irrigation with plastic mulching (DI. Compared with the conventional flooding (CF treatment, those grown in the nonflooded irrigation treatments showed lower net photosynthetic rate (PN, lower maximum quantum yield (Fv/Fm, and lower effective quantum yield of PSII photochemistry (ΦPSII. And the poor photosynthetic characteristics in the nonflooded irrigation treatments were mainly attributed to the low total nitrogen content (TNC. Under non-flooded irrigation, the PN, Fv/Fm, and ΦPSII significantly decreased with a reduction in the soil water potential, but these parameters were rapidly recovered in the DI and FIM treatments when supplementary irrigation was applied. Moreover, The DI treatment always had higher photosynthetic productivity than the FIM and FIN treatments. Grain yield, matter translocation, and dry matter post-anthesis (DMPA were the highest in the CF treatment, followed by the DI, FIM, and FIN treatments in turn. In conclusion, increasing nitrogen content in leaf of rice plants could be a key factor to improve photosynthetic capacity in nonflooded irrigation.

  7. Gene Transfer in Eukaryotic Cells Using Activated Dendrimers

    Science.gov (United States)

    Dennig, Jörg

    Gene transfer into eukaryotic cells plays an important role in cell biology. Over the last 30 years a number of transfection methods have been developed to mediate gene transfer into eukaryotic cells. Classical methods include co-precipitation of DNA with calcium phosphate, charge-dependent precipitation of DNA with DEAE-dextran, electroporation of nucleic acids, and formation of transfection complexes between DNA and cationic liposomes. Gene transfer technologies based on activated PAMAM-dendrimers provide another class of transfection reagents. PAMAM-dendrimers are highly branched, spherical molecules. Activation of newly synthesized dendrimers involves hydrolytic removal of some of the branches, and results in a molecule with a higher degree of flexibility. Activated dendrimers assemble DNA into compact structures via charge interactions. Activated dendrimer - DNA complexes bind to the cell membrane of eukaryotic cells, and are transported into the cell by non-specific endocytosis. A structural model of the activated dendrimer - DNA complex and a potential mechanism for its uptake into cells will be discussed.

  8. Diversity and abundance of photosynthetic sponges in temperate Western Australia

    Directory of Open Access Journals (Sweden)

    Brümmer Franz

    2009-02-01

    Full Text Available Abstract Background Photosynthetic sponges are important components of reef ecosystems around the world, but are poorly understood. It is often assumed that temperate regions have low diversity and abundance of photosynthetic sponges, but to date no studies have investigated this question. The aim of this study was to compare the percentages of photosynthetic sponges in temperate Western Australia (WA with previously published data on tropical regions, and to determine the abundance and diversity of these associations in a range of temperate environments. Results We sampled sponges on 5 m belt transects to determine the percentage of photosynthetic sponges and identified at least one representative of each group of symbionts using 16S rDNA sequencing together with microscopy techniques. Our results demonstrate that photosynthetic sponges are abundant in temperate WA, with an average of 63% of sponge individuals hosting high levels of photosynthetic symbionts and 11% with low to medium levels. These percentages of photosynthetic sponges are comparable to those found on tropical reefs and may have important implications for ecosystem function on temperate reefs in other areas of the world. A diverse range of symbionts sometimes occurred within a small geographic area, including the three "big" cyanobacterial clades, Oscillatoria spongeliae, "Candidatus Synechococcus spongiarum" and Synechocystis species, and it appears that these clades all occur in a wide range of sponges. Additionally, spongin-permeating red algae occurred in at least 7 sponge species. This study provides the first investigation of the molecular phylogeny of rhodophyte symbionts in sponges. Conclusion Photosynthetic sponges are abundant and diverse in temperate WA, with comparable percentages of photosynthetic to non-photosynthetic sponges to tropical zones. It appears that there are three common generalist clades of cyanobacterial symbionts of sponges which occur in a wide

  9. An Excel tool for deriving key photosynthetic parameters from combined gas exchange and chlorophyll fluorescence: theory and practice.

    Science.gov (United States)

    Bellasio, Chandra; Beerling, David J; Griffiths, Howard

    2016-06-01

    Combined photosynthetic gas exchange and modulated fluorometres are widely used to evaluate physiological characteristics associated with phenotypic and genotypic variation, whether in response to genetic manipulation or resource limitation in natural vegetation or crops. After describing relatively simple experimental procedures, we present the theoretical background to the derivation of photosynthetic parameters, and provide a freely available Excel-based fitting tool (EFT) that will be of use to specialists and non-specialists alike. We use data acquired in concurrent variable fluorescence-gas exchange experiments, where A/Ci and light-response curves have been measured under ambient and low oxygen. From these data, the EFT derives light respiration, initial PSII (photosystem II) photochemical yield, initial quantum yield for CO2 fixation, fraction of incident light harvested by PSII, initial quantum yield for electron transport, electron transport rate, rate of photorespiration, stomatal limitation, Rubisco (ribulose 1·5-bisphosphate carboxylase/oxygenase) rate of carboxylation and oxygenation, Rubisco specificity factor, mesophyll conductance to CO2 diffusion, light and CO2 compensation point, Rubisco apparent Michaelis-Menten constant, and Rubisco CO2 -saturated carboxylation rate. As an example, a complete analysis of gas exchange data on tobacco plants is provided. We also discuss potential measurement problems and pitfalls, and suggest how such empirical data could subsequently be used to parameterize predictive photosynthetic models. © 2015 John Wiley & Sons Ltd.

  10. Variations in morphology and PSII photosynthetic capabilities during the early development of tetraspores of Gracilaria vermiculophylla (Ohmi) Papenfuss (Gracilariales, Rhodophyta).

    Science.gov (United States)

    Xie, Xiujun; Wang, Guangce; Pan, Guanghua; Gao, Shan; Xu, Pu; Zhu, Jianyi

    2010-04-28

    Red algae are primitive photosynthetic eukaryotes, whose spores are ideal subjects for studies of photosynthesis and development. Although the development of red alga spores has received considerable research attention, few studies have focused on the detailed morphological and photosynthetic changes that occur during the early development of tetraspores of Gracilaria vermiculophylla (Ohmi) Papenfuss (Gracilariales, Rhodophyta). Herein, we documented these changes in this species of red algae. In the tetraspores, we observed two types of division, cruciate and zonate, and both could develop into multicellular bodies (disks). During the first 84 hours, tetraspores divided several times, but the diameter of the disks changed very little; thereafter, the diameter increased significantly. Scanning electron microscopy observations and analysis of histological sections revealed that the natural shape of the disk remains tapered over time, and the erect frond grows from the central protrusion of the disk. Cultivation of tissue from excised disks demonstrated that the central protrusion of the disk is essential for initiation of the erect frond. Photosynthetic (i.e., PSII) activities were measured using chlorophyll fluorescence analysis. The results indicated that freshly released tetraspores retained limited PSII photosynthetic capabilities; when the tetraspores attached to a substrate, those capabilities increased significantly. In the disk, the PSII activity of both marginal and central cells was similar, although some degree of morphological polarity was present; the PSII photosynthetic capabilities in young germling exhibited an apico-basal gradient. Attachment of tetraspores to a substrate significantly enhanced their PSII photosynthetic capabilities, and triggered further development. The central protrusion of the disk is the growth point, may have transfer of nutritive material with the marginal cells. Within the young germling, the hetero-distribution of PSII

  11. Variations in morphology and PSII photosynthetic capabilities during the early development of tetraspores of Gracilaria vermiculophylla (Ohmi Papenfuss (Gracilariales, Rhodophyta

    Directory of Open Access Journals (Sweden)

    Gao Shan

    2010-04-01

    Full Text Available Abstract Background Red algae are primitive photosynthetic eukaryotes, whose spores are ideal subjects for studies of photosynthesis and development. Although the development of red alga spores has received considerable research attention, few studies have focused on the detailed morphological and photosynthetic changes that occur during the early development of tetraspores of Gracilaria vermiculophylla (Ohmi Papenfuss (Gracilariales, Rhodophyta. Herein, we documented these changes in this species of red algae. Results In the tetraspores, we observed two types of division, cruciate and zonate, and both could develop into multicellular bodies (disks. During the first 84 hours, tetraspores divided several times, but the diameter of the disks changed very little; thereafter, the diameter increased significantly. Scanning electron microscopy observations and analysis of histological sections revealed that the natural shape of the disk remains tapered over time, and the erect frond grows from the central protrusion of the disk. Cultivation of tissue from excised disks demonstrated that the central protrusion of the disk is essential for initiation of the erect frond. Photosynthetic (i.e., PSII activities were measured using chlorophyll fluorescence analysis. The results indicated that freshly released tetraspores retained limited PSII photosynthetic capabilities; when the tetraspores attached to a substrate, those capabilities increased significantly. In the disk, the PSII activity of both marginal and central cells was similar, although some degree of morphological polarity was present; the PSII photosynthetic capabilities in young germling exhibited an apico-basal gradient. Conclusions Attachment of tetraspores to a substrate significantly enhanced their PSII photosynthetic capabilities, and triggered further development. The central protrusion of the disk is the growth point, may have transfer of nutritive material with the marginal cells. Within

  12. Non-cooperative immobilization of residual water bound in lyophilized photosynthetic lamellae.

    Science.gov (United States)

    Harańczyk, Hubert; Baran, Ewelina; Nowak, Piotr; Florek-Wojciechowska, Małgorzata; Leja, Anna; Zalitacz, Dorota; Strzałka, Kazimierz

    2015-12-01

    This study applied 1H-NMR in time and in frequency domain measurements to monitor the changes that occur in bound water dynamics at decreased temperature and with increased hydration level in lyophilizates of native wheat photosynthetic lamellae and in photosynthetic lamellae reconstituted from lyophilizate. Proton relaxometry (measured as free induction decay = FID) distinguishes a Gaussian component S within the NMR signal (o). This comes from protons of the solid matrix of the lamellae and consists of (i) an exponentially decaying contribution L1 from mobile membrane protons, presumably from lipids, and from water that is tightly bound to the membrane surface and thus restricted in mobility; and (ii) an exponentially decaying component L2 from more mobile, loosely bound water pool. Both proton relaxometry data and proton spectroscopy show that dry lyophilizate incubated in dry air, i.e., at a relative humidity (p/p0) of 0% reveals a relatively high hydration level. The observed liquid signal most likely originates from mobile membrane protons and a tightly bound water fraction that is sealed in pores of dry lyophilizate and thus restricted in mobility. The estimations suggest that the amount of sealed water does not exceed the value characteristic for the main hydration shell of a phospholipid. Proton spectra collected for dry lyophilizate of photosynthetic lamellae show a continuous decrease in the liquid signal component without a distinct freezing transition when it is cooled down to -60ºC, which is significantly lower than the homogeneous ice nucleation temperature [Bronshteyn, V.L. et al. Biophys. J. 65 (1993) 1853].

  13. Biochemistry, proteomics and phosphoproteomics of plant mitochondria from non-photosynthetic cells

    Directory of Open Access Journals (Sweden)

    Jesper Foged Havelund

    2013-03-01

    Full Text Available Mitochondria fulfill some basic roles in all plant cells. They supply the cell with energy in the form of ATP and reducing equivalents (NAD(PH and they provide the cell with intermediates for a range of biosynthetic pathways. In addition to this, mitochondria contribute to a number of specialized functions depending on the tissue and cell type, as well as environmental conditions. We will here review the biochemistry and proteomics of mitochondria from non-green cells and organs, which differ from those of photosynthetic organs in a number of respects. We will briefly cover purification of mitochondria and general biochemical properties such as oxidative phosphorylation. We will then mention a few adaptive properties in response to water stress, seed maturation and germination and the ability to function under hypoxic conditions. The discussion will mainly focus on Arabidopsis cell cultures, etiolated germinating rice seedlings and potato tubers as model plants. It will cover the general proteome as well as the posttranslational modification protein phosphorylation. To date 64 phosphorylated mitochondrial proteins with a total of 103 phosphorylation sites have been identified.

  14. A plastid gene phylogeny of the non-photosynthetic parasitic Orobanche (Orobanchaceae) and related genera.

    Science.gov (United States)

    Park, Jeong-Mi; Manen, Jean-François; Colwell, Alison E; Schneeweiss, Gerald M

    2008-07-01

    The phylogenetic relationships of the non-photosynthetic Orobanche sensu lato (Orobanchaceae), which includes some of the economically most important parasitic weeds, remain insufficiently understood and controversial. This concerns both the phylogenetic relationships within the genus, in particular its monophyly or lack thereof, and the relationships to other holoparasitic genera such as Cistanche or Conopholis. Here we present the first comprehensive phylogenetic study of this group based on a region from the plastid genome (rps2 gene). Although substitution rates appear to be elevated compared to the photosynthetic members of Orobanchaceae, relationships among the major lineages Cistanche, Conopholis plus Epifagus, Boschniakia rossica (Cham. & Schltdl.) B. Fedtsch., B. himalaica Hook. f. & Thomson, B. hookeri Walp. plus B. strobilacea A. Gray, and Orobanche s. l. remain unresolved. Resolution within Orobanche, however, is much better. In agreement with morphological, cytological and other molecular phylogenetic evidence, five lineages, corresponding to the four traditionally recognised sections (Gymnocaulis, Myzorrhiza, Orobanche, Trionychon) and O. latisquama Reut. ex Boiss. (of sect. Orobanche), can be distinguished. A combined analysis of plastid rps2 and nuclear ITS sequences of the holoparasitic genera results in more resolved and better supported trees, although the relationships among Orobanche s. l., Cistanche, and the clade including the remaining genera is unresolved. Therefore, rps2 is a marker from the plastid genome that is well-suited to be used in combination with other already established nuclear markers for resolving generic relationships of Orobanche and related genera.

  15. Identification and growth conditions of purple non-sulfur photosynthetic bacteria isolated from palm oil mill effluent

    International Nuclear Information System (INIS)

    Radziah Ariffin

    2004-01-01

    An indigenous strain of the purple non-sulphur photosynthetic bacterium, isolated from palm oil mill effluent was presumably identified as species of Rhodopseudomonas palustris. Cultivation in synthetic medium under different conditions indicated that it gave maximum carotenoid and bacteriophyll synthesis under anaerobic conditions in the light with values of 12.6 and 108.1 mg/g dry cell weight respectively. These values were significantly higher than the pigment content obtained from aerobic cultivation. The specific growth rates in anaerobic was twice those in aerobic conditions in the light. Growth was not occurred in anaerobic or aerobic conditions in the dark. (Author)

  16. Isolation of non-sulphur photosynthetic bacterial strains efficient in hydrogen production at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.P.; Srivastava, S.C. (Banaras Hindu Univ., Varanasi (IN). Centre of Advanced Study in Botany)

    1991-01-01

    Four strains of non-sulphur photosynthetic bacteria were isolated from root zone associations of aquatic plants like Azolla, Salvinia and Eichhornia, as well as the deep-water rice. Based on the gross cell morphology and pigmentation, the isolates resembled Rhodopseudomonas sp. and have been designated as BHU strains 1 to 4, respectively. When subjected to elevated temperature (from 33-45{sup o}C), substantial growth/hydrogen production could be observed only in strains 1 and 4. Strains 2 and 3 on the other hand, showed diminished growth and negligible hydrogen photoproduction. The BHU strains 1 and 4 have been selected as the most active (thermostable) hydrogen producing strains of local origin as far as the Indian tropical climate is concerned. (author).

  17. Structural studies demonstrating a bacteriophage-like replication cycle of the eukaryote-infecting Paramecium bursaria chlorella virus-1.

    Directory of Open Access Journals (Sweden)

    Elad Milrot

    2017-08-01

    Full Text Available A fundamental stage in viral infection is the internalization of viral genomes in host cells. Although extensively studied, the mechanisms and factors responsible for the genome internalization process remain poorly understood. Here we report our observations, derived from diverse imaging methods on genome internalization of the large dsDNA Paramecium bursaria chlorella virus-1 (PBCV-1. Our studies reveal that early infection stages of this eukaryotic-infecting virus occurs by a bacteriophage-like pathway, whereby PBCV-1 generates a hole in the host cell wall and ejects its dsDNA genome in a linear, base-pair-by-base-pair process, through a membrane tunnel generated by the fusion of the virus internal membrane with the host membrane. Furthermore, our results imply that PBCV-1 DNA condensation that occurs shortly after infection probably plays a role in genome internalization, as hypothesized for the infection of some bacteriophages. The subsequent perforation of the host photosynthetic membranes presumably enables trafficking of viral genomes towards host nuclei. Previous studies established that at late infection stages PBCV-1 generates cytoplasmic organelles, termed viral factories, where viral assembly takes place, a feature characteristic of many large dsDNA viruses that infect eukaryotic organisms. PBCV-1 thus appears to combine a bacteriophage-like mechanism during early infection stages with a eukaryotic-like infection pathway in its late replication cycle.

  18. Photosynthetic water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, E.

    1981-01-01

    The photosynthetic unit of hydrogen evolution, the turnover time of photosynthetic hydrogen production, and hydrogenic photosynthesis are discussed in the section on previous work. Recent results are given on simultaneous photoproduction of hydrogen and oxygen, kinetic studies, microscopic marine algae-seaweeds, and oxygen profiles.

  19. FEATURES OF PHYSIOLOGICAL AND PHOTOSYNTHETIC ACTIVITY OF MAIZE PLANTS AT USING NON-TRADITIONAL ORGANIC FERTILIZERS

    Directory of Open Access Journals (Sweden)

    A. Kojuhov

    2012-07-01

    Full Text Available The use of fertilizers in cultivation of crops is an objective necessity. However, their use has a negative impact on environment and especially on the soil polluting it with heavy metals. Organic fertilizers can significantly improve physical and chemical soil properties and increase its fertility. In connection with deficiency of manure particular interest represents using of waste as non-conventional fertilizers, in particular waste of alcohol production. Using of high-dose alcohol stillage stronger growth processes and number of leaves, which leads to an increase of maize photosynthetic activity and productivity. Maximum formation of green mass was observed in variant with a dose of making alcohol stillage 40 m3/ha during vegetation.

  20. A plastid gene phylogeny of the non-photosynthetic parasitic Orobanche (Orobanchaceae) and related genera

    Science.gov (United States)

    Park, J.-M.; Manen, J.-F.; Colwell, A.E.; Schneeweiss, G.M.

    2008-01-01

    The phylogenetic relationships of the non-photosynthetic Orobanche sensu lato (Orobanchaceae), which includes some of the economically most important parasitic weeds, remain insufficiently understood and controversial. This concerns both the phylogenetic relationships within the genus, in particular its monophyly or lack thereof, and the relationships to other holoparasitic genera such as Cistanche or Conopholis. Here we present the first comprehensive phylogenetic study of this group based on a region from the plastid genome (rps2 gene). Although substitution rates appear to be elevated compared to the photosynthetic members of Orobanchaceae, relationships among the major lineages Cistanche, Conopholis plus Epifagus, Boschniakia rossica (Cham. & Schltdl.) B. Fedtsch., B. himalaica Hook. f. & Thomson, B. hookeri Walp. plus B. strobilacea A. Gray, and Orobanche s. l. remain unresolved. Resolution within Orobanche, however, is much better. In agreement with morphological, cytological and other molecular phylogenetic evidence, five lineages, corresponding to the four traditionally recognised sections (Gymnocaulis, Myzorrhiza, Orobanche, Trionychon) and O. latisquama Reut. ex Boiss. (of sect. Orobanche), can be distinguished. A combined analysis of plastid rps2 and nuclear ITS sequences of the holoparasitic genera results in more resolved and better supported trees, although the relationships among Orobanche s. l., Cistanche, and the clade including the remaining genera is unresolved. Therefore, rps2 is a marker from the plastid genome that is well-suited to be used in combination with other already established nuclear markers for resolving generic relationships of Orobanche and related genera. ?? 2008 The Botanical Society of Japan and Springer.

  1. A Non-invasive and Real-time Monitoring of the Regulation of Photosynthetic Metabolism Biosensor Based on Measurement of Delayed Fluorescence in Vivo

    Directory of Open Access Journals (Sweden)

    Junsheng Wang

    2007-01-01

    Full Text Available In this paper, a new principle biosensor for non-invasive monitoring of theregulation of photosynthetic metabolism based on quantitative measurement of delayedfluorescence (DF is developed. The biosensor, which uses light-emitting diode lattice asexcitation light source and a compact Single Photon Counting Module to collect DF signal,is portable and can evaluate plant photosynthesis capacity in vivo. Compared with itsprimary version in our previous report, the biosensor can better control environmentalfactors. Moreover, the improved biosensor can automatically complete the measurements oflight and CO2 response curves of DF intensity. In the experimental study, the testing of theimproved biosensor has been made in soybean (Glycine max Zaoshu No. 18 seedlingstreated with NaHSO3 to induce changes in seedlings growth and photosynthetic metabolism.Contrast evaluations of seedlings photosynthesis were made from measurements of netphotosynthesis rate (Pn based on consumption of CO2 in tested plants. Current testingresults have demonstrated that the improved biosensor can accurately determine theregulatory effects of NaHSO3 on photosynthetic metabolism. Therefore, the biosensorpresented here could be potential useful for real-time monitoring the regulatory effects ofplant growth regulators (PGRs and other exogenous chemical factors on plant growth andphotosynthetic metabolism.

  2. Comparison of Methods for Estimating Fractional Cover of Photosynthetic and Non-Photosynthetic Vegetation in the Otindag Sandy Land Using GF-1 Wide-Field View Data

    Directory of Open Access Journals (Sweden)

    Xiaosong Li

    2016-09-01

    Full Text Available Photosynthetic vegetation (PV and non-photosynthetic vegetation (NPV are important ground cover types for desertification monitoring and land management. Hyperspectral remote sensing has been proven effective for separating NPV from bare soil, but few studies determined fractional cover of PV (fpv and NPV (fnpv using multispectral information. The purpose of this study is to evaluate several spectral unmixing approaches for retrieval of fpv and fnpv in the Otindag Sandy Land using GF-1 wide-field view (WFV data. To deal with endmember variability, pixel-invariant (Spectral Mixture Analysis, SMA and pixel-variable (Multi-Endmember Spectral Mixture Analysis, MESMA, and Automated Monte Carlo Unmixing Analysis, AutoMCU endmember selection approaches were applied. Observed fractional cover data from 104 field sites were used for comparison. For fpv, all methods show statistically significant correlations with observed data, among which AutoMCU had the highest performance (R2 = 0.49, RMSE = 0.17, followed by MESMA (R2 = 0.48, RMSE = 0.21, and SMA (R2 = 0.47, RMSE = 0.27. For fnpv, MESMA had the lowest performance (R2 = 0.11, RMSE = 0.24 because of coupling effects of the NPV and bare soil endmembers, SMA overestimates fnpv (R2 = 0.41, RMSE = 0.20, but is significantly correlated with observed data, and AutoMCU provides the most accurate predictions of fnpv (R2 = 0.49, RMSE = 0.09. Thus, the AutoMCU approach is proven to be more effective than SMA and MESMA, and GF-1 WFV data are capable of distinguishing NPV from bare soil in the Otindag Sandy Land.

  3. Counterintuitive effect of fall mixed layer deepening on eukaryotic new production in the Sargasso Sea

    Science.gov (United States)

    Fawcett, S. E.; Lomas, M. W.; Ward, B. B.; Sigman, D. M.

    2012-12-01

    The Sargasso Sea is characterized by a short period of deep vertical mixing in the late winter and early spring, followed by strong thermal stratification during the summer. Stratification persists into the fall, impeding the upward flux of nitrate from depth so that recycled forms of nitrogen (N) such as ammonium are thought to support most primary production. We collected particles from surface waters during March, July, October, and December, used flow cytometry to separate the prokaryotic and eukaryotic phytoplankton, and analyzed their respective 15N/14N. In all months, the 15N/14N of the prokaryotic genera, Prochlorococcus and Synechococcus, was low, indicative of reliance on recycled N throughout the year. In July, the 15N/14N of eukaryotic phytoplankton was variable but consistently higher than that of the prokaryotes, reflecting eukaryotic consumption of subsurface nitrate. Two eukaryotic profiles from October and December were similar to those from July. In three other fall profiles, the eukaryotes had a 15N/14N similar to that of the prokaryotes, suggesting a switch toward greater reliance on recycled N. This change in the dominant N source supporting eukaryotic production appears to be driven by the density structure of the upper water column. The very shallow low-density surface "mixed layer" (≤20 m) that develops in early-to-mid summer does not contribute to stratification at the base of the euphotic zone, and subsurface nitrate can mix up into the lower euphotic zone, facilitating continued production. The deepening of the mixed layer into the fall, typically taken as an indication of weaker overall stratification, actually strengthens the isolation of the euphotic zone as a whole, reducing the upward supply of nitrate to the photosynthetically active layer. The same counterintuitive dynamic explains the latitudinal patterns in a set of three October depth profiles. Two northern stations (32°N and 27°N) were characterized by a thick, low

  4. Photosynthetic behaviour of Arabidopsis thaliana (Pa-1 accession ...

    African Journals Online (AJOL)

    The growth reduction observed in many plants caused by salinity is often associated with a decrease in their photosynthetic capacity. This effect could be associated with the partial stomatal closure and/or the non-stomatal limitation which involves the decrease in ribulose-1,5-bisphosphate carboxylase oxygenase ...

  5. Relationship between current level of immunodeficiency and non-acquired immunodeficiency syndrome-defining malignancies

    DEFF Research Database (Denmark)

    Reekie, Joanne; Kosa, Csaba; Engsig, Frederik

    2010-01-01

    In the combined antiretroviral therapy (cART) era, non-acquired immunodeficiency syndrome (AIDS)-defining malignancies account for more morbidity and mortality in human immunodeficiency virus-infected patients than AIDS-defining malignancies. However, conflicting data have been reported...

  6. Wholly Rickettsia! Reconstructed Metabolic Profile of the Quintessential Bacterial Parasite of Eukaryotic Cells.

    Science.gov (United States)

    Driscoll, Timothy P; Verhoeve, Victoria I; Guillotte, Mark L; Lehman, Stephanie S; Rennoll, Sherri A; Beier-Sexton, Magda; Rahman, M Sayeedur; Azad, Abdu F; Gillespie, Joseph J

    2017-09-26

    Reductive genome evolution has purged many metabolic pathways from obligate intracellular Rickettsia ( Alphaproteobacteria ; Rickettsiaceae ). While some aspects of host-dependent rickettsial metabolism have been characterized, the array of host-acquired metabolites and their cognate transporters remains unknown. This dearth of information has thwarted efforts to obtain an axenic Rickettsia culture, a major impediment to conventional genetic approaches. Using phylogenomics and computational pathway analysis, we reconstructed the Rickettsia metabolic and transport network, identifying 51 host-acquired metabolites (only 21 previously characterized) needed to compensate for degraded biosynthesis pathways. In the absence of glycolysis and the pentose phosphate pathway, cell envelope glycoconjugates are synthesized from three imported host sugars, with a range of additional host-acquired metabolites fueling the tricarboxylic acid cycle. Fatty acid and glycerophospholipid pathways also initiate from host precursors, and import of both isoprenes and terpenoids is required for the synthesis of ubiquinone and the lipid carrier of lipid I and O-antigen. Unlike metabolite-provisioning bacterial symbionts of arthropods, rickettsiae cannot synthesize B vitamins or most other cofactors, accentuating their parasitic nature. Six biosynthesis pathways contain holes (missing enzymes); similar patterns in taxonomically diverse bacteria suggest alternative enzymes that await discovery. A paucity of characterized and predicted transporters emphasizes the knowledge gap concerning how rickettsiae import host metabolites, some of which are large and not known to be transported by bacteria. Collectively, our reconstructed metabolic network offers clues to how rickettsiae hijack host metabolic pathways. This blueprint for growth determinants is an important step toward the design of axenic media to rescue rickettsiae from the eukaryotic cell. IMPORTANCE A hallmark of obligate intracellular

  7. On the photosynthetic and devlopmental responses of leaves to the spectral composition of light

    OpenAIRE

    Hogewoning, S.W.

    2010-01-01

    Key words: action spectrum, artificial solar spectrum, blue light, Cucumis sativus, gas-exchange, light-emitting diodes (LEDs), light interception, light quality, non-photosynthetic pigments, photo-synthetic capacity, photomorphogenesis, photosystem excitation balance, quantum yield, red light. A wide range of plant properties respond to the spectral composition of irradiance, such as photosynthesis, photomorphogenesis, phototropism and photonastic movements. These responses affect plant pr...

  8. Dynamic reorganization of photosynthetic supercomplexes during environmental acclimation

    Directory of Open Access Journals (Sweden)

    Jun eMinagawa

    2013-12-01

    Full Text Available Plants and algae have acquired the ability to acclimate to ever-changing environments in order to survive. During photosynthesis, light energy is converted by several membrane protein supercomplexes into electrochemical energy, which is eventually used to assimilate CO2. The efficiency of photosynthesis is modulated by many environmental factors such as quality and quantity of light, temperature, drought, and CO2 concentration, among others. Accumulating evidence indicates that photosynthetic supercomplexes undergo supramolecular reorganization within a short timeframe during acclimation to an environmental change. This reorganization includes state transitions that balance the excitation of photosystem I and II by shuttling peripheral antenna proteins between the two, thermal energy dissipation that occurs at energy-quenching sites within the light-harvesting antenna generated for negative feedback when excess light is absorbed, and cyclic electron flow that is facilitated between photosystem I and the cytochrome bf complex when cells demand more ATP and/or need to activate energy dissipation. This review will highlight the recent findings regarding these environmental acclimation events in model organisms with particular attention to the unicellular green alga C. reinhardtii and with reference to the vascular plant A. thaliana, which offers a glimpse into the dynamic behavior of photosynthetic machineries in nature.

  9. The COG database: an updated version includes eukaryotes

    Directory of Open Access Journals (Sweden)

    Sverdlov Alexander V

    2003-09-01

    Full Text Available Abstract Background The availability of multiple, essentially complete genome sequences of prokaryotes and eukaryotes spurred both the demand and the opportunity for the construction of an evolutionary classification of genes from these genomes. Such a classification system based on orthologous relationships between genes appears to be a natural framework for comparative genomics and should facilitate both functional annotation of genomes and large-scale evolutionary studies. Results We describe here a major update of the previously developed system for delineation of Clusters of Orthologous Groups of proteins (COGs from the sequenced genomes of prokaryotes and unicellular eukaryotes and the construction of clusters of predicted orthologs for 7 eukaryotic genomes, which we named KOGs after eukaryotic orthologous groups. The COG collection currently consists of 138,458 proteins, which form 4873 COGs and comprise 75% of the 185,505 (predicted proteins encoded in 66 genomes of unicellular organisms. The eukaryotic orthologous groups (KOGs include proteins from 7 eukaryotic genomes: three animals (the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster and Homo sapiens, one plant, Arabidopsis thaliana, two fungi (Saccharomyces cerevisiae and Schizosaccharomyces pombe, and the intracellular microsporidian parasite Encephalitozoon cuniculi. The current KOG set consists of 4852 clusters of orthologs, which include 59,838 proteins, or ~54% of the analyzed eukaryotic 110,655 gene products. Compared to the coverage of the prokaryotic genomes with COGs, a considerably smaller fraction of eukaryotic genes could be included into the KOGs; addition of new eukaryotic genomes is expected to result in substantial increase in the coverage of eukaryotic genomes with KOGs. Examination of the phyletic patterns of KOGs reveals a conserved core represented in all analyzed species and consisting of ~20% of the KOG set. This conserved portion of the

  10. Reversible membrane reorganizations during photosynthesis in vivo: revealed by small-angle neutron scattering

    DEFF Research Database (Denmark)

    Nagy, Gergely; Posselt, Dorthe; Kovacs, Laszlo

    2011-01-01

    In the present study, we determined characteristic repeat distances of the photosynthetic membranes in living cyanobacterial and eukaryotic algal cells, and in intact thylakoid membranes isolated from higher plants with time-resolved small-angle neutron scattering. This non-invasive technique...

  11. The role of energy losses in photosynthetic light harvesting

    Science.gov (United States)

    Krüger, T. P. J.; van Grondelle, R.

    2017-07-01

    Photosynthesis operates at the bottom of the food chain to convert the energy of light into carbohydrates at a remarkable global rate of about 130 TW. Nonetheless, the overall photosynthetic process has a conversion efficiency of a few percent at best, significantly less than bottom-up photovoltaic cells. The primary photosynthetic steps, consisting of light harvesting and charge separation, are often presented as having near-unity quantum efficiency but this holds only true under ideal conditions. In this review, we discuss the importance of energy loss mechanisms to establish robustness in photosynthetic light harvesting. Thermal energy dissipation of light-harvesting complexes (LHCs) in different environments is investigated and the relationships and contrasts between concentration quenching of high pigment concentrations, photoprotection (non-photochemical quenching), quenching due to protein aggregation, and fluorescence blinking are discussed. The role of charge-transfer states in light harvesting and energy dissipation is highlighted and the importance of controlled protein structural disorder to switch the light-harvesting antennae between effective light harvesters and efficient energy quenchers is underscored. The main LHC of plants, LHCII, is used as a prime example.

  12. Metaxa: a software tool for automated detection and discrimination among ribosomal small subunit (12S/16S/18S) sequences of archaea, bacteria, eukaryotes, mitochondria, and chloroplasts in metagenomes and environmental sequencing datasets.

    Science.gov (United States)

    Bengtsson, Johan; Eriksson, K Martin; Hartmann, Martin; Wang, Zheng; Shenoy, Belle Damodara; Grelet, Gwen-Aëlle; Abarenkov, Kessy; Petri, Anna; Rosenblad, Magnus Alm; Nilsson, R Henrik

    2011-10-01

    The ribosomal small subunit (SSU) rRNA gene has emerged as an important genetic marker for taxonomic identification in environmental sequencing datasets. In addition to being present in the nucleus of eukaryotes and the core genome of prokaryotes, the gene is also found in the mitochondria of eukaryotes and in the chloroplasts of photosynthetic eukaryotes. These three sets of genes are conceptually paralogous and should in most situations not be aligned and analyzed jointly. To identify the origin of SSU sequences in complex sequence datasets has hitherto been a time-consuming and largely manual undertaking. However, the present study introduces Metaxa ( http://microbiology.se/software/metaxa/ ), an automated software tool to extract full-length and partial SSU sequences from larger sequence datasets and assign them to an archaeal, bacterial, nuclear eukaryote, mitochondrial, or chloroplast origin. Using data from reference databases and from full-length organelle and organism genomes, we show that Metaxa detects and scores SSU sequences for origin with very low proportions of false positives and negatives. We believe that this tool will be useful in microbial and evolutionary ecology as well as in metagenomics.

  13. Patterns of intron gain and conservation in eukaryotic genes

    Directory of Open Access Journals (Sweden)

    Wolf Yuri I

    2007-10-01

    Full Text Available Abstract Background: The presence of introns in protein-coding genes is a universal feature of eukaryotic genome organization, and the genes of multicellular eukaryotes, typically, contain multiple introns, a substantial fraction of which share position in distant taxa, such as plants and animals. Depending on the methods and data sets used, researchers have reached opposite conclusions on the causes of the high fraction of shared introns in orthologous genes from distant eukaryotes. Some studies conclude that shared intron positions reflect, almost entirely, a remarkable evolutionary conservation, whereas others attribute it to parallel gain of introns. To resolve these contradictions, it is crucial to analyze the evolution of introns by using a model that minimally relies on arbitrary assumptions. Results: We developed a probabilistic model of evolution that allows for variability of intron gain and loss rates over branches of the phylogenetic tree, individual genes, and individual sites. Applying this model to an extended set of conserved eukaryotic genes, we find that parallel gain, on average, accounts for only ~8% of the shared intron positions. However, the distribution of parallel gains over the phylogenetic tree of eukaryotes is highly non-uniform. There are, practically, no parallel gains in closely related lineages, whereas for distant lineages, such as animals and plants, parallel gains appear to contribute up to 20% of the shared intron positions. In accord with these findings, we estimated that ancestral introns have a high probability to be retained in extant genomes, and conversely, that a substantial fraction of extant introns have retained their positions since the early stages of eukaryotic evolution. In addition, the density of sites that are available for intron insertion is estimated to be, approximately, one in seven basepairs. Conclusion: We obtained robust estimates of the contribution of parallel gain to the observed

  14. The effect of interspecific variation in photosynthetic plasticity on 4-year growth rate and 8-year survival of understorey tree seedlings in response to gap formations in a cool-temperate deciduous forest.

    Science.gov (United States)

    Oguchi, Riichi; Hiura, Tsutom; Hikosaka, Kouki

    2017-08-01

    Gap formation increases the light intensity in the forest understorey. The growth responses of seedlings to the increase in light availability show interspecific variation, which is considered to promote biodiversity in forests. At the leaf level, some species increase their photosynthetic capacity in response to gap formation, whereas others do not. Here we address the question of whether the interspecific difference in the photosynthetic response results in the interspecific variation in the growth response. If so, the interspecific difference in photosynthetic response would also contribute to species coexistence in forests. We also address the further relevant question of why some species do not increase their photosynthetic capacity. We assumed that some cost of photosynthetic plasticity may constrain acquisition of the plasticity in some species, and hypothesized that species with larger photosynthetic plasticity exhibit better growth after gap formation and lower survivorship in the shade understorey of a cool-temperate deciduous forest. We created gaps by felling canopy trees and studied the relationship between the photosynthetic response and the subsequent growth rate of seedlings. Naturally growing seedlings of six deciduous woody species were used and their mortality was examined for 8 years. The light-saturated rate of photosynthesis (Pmax) and the relative growth rate (RGR) of the seedlings of all study species increased at gap plots. The extent of these increases varied among the species. The stimulation of RGR over 4 years after gap formation was strongly correlated with change in photosynthetic capacity of newly expanded leaves. The increase in RGR and Pmax correlated with the 8-year mortality at control plots. These results suggest a trade-off between photosynthetic plasticity and the understorey shade tolerance. Gap-demanding species may acquire photosynthetic plasticity, sacrificing shade tolerances, whereas gap-independent species may acquire

  15. Primary photosynthetic processes: from supercomplex to leaf

    NARCIS (Netherlands)

    Broess, K.

    2009-01-01

    This thesis describes fluorescence spectroscopy experiments on photosynthetic complexes that cover the primary photosynthetic processes, from the absorption of light by photosynthetic pigments to a charge separation (CS) in the reaction center (RC). Fluorescence spectroscopy is a useful tool in

  16. Progress in Remote Sensing of Photosynthetic Activity over the Amazon Basin

    Science.gov (United States)

    Resende de Sousa, Celio Helder; Hilker, Thomas; Waring, Richard; Mendes De Moura, Yhasmin; Lyapustin, Alexei

    2017-01-01

    Although quantifying the massive exchange of carbon that takes place over the Amazon Basin remains a challenge, progress is being made as the remote sensing community moves from using traditional, reflectance-based vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), to the more functional Photochemical Reflectance Index (PRI). This new index, together with satellite-derived estimates of canopy light interception and Sun-Induced Fluorescence (SIF), provide improved estimates of Gross Primary Production (GPP). This paper traces the development of these new approaches, compares the results of their analyses from multiple years of data acquired across the Amazon Basin and suggests further improvements in instrument design, data acquisition and processing. We demonstrated that our estimates of PRI are in generally good agreement with eddy-flux tower measurements of photosynthetic light use efficiency (epsilon) at four sites in the Amazon Basin: r(exp 2) values ranged from 0.37 to 0.51 for northern flux sites and to 0.78for southern flux sites. This is a significant advance over previous approaches seeking to establish a link between global-scale photosynthetic activity and remotely-sensed data. When combined with measurements of Sun-Induced Fluorescence (SIF), PRI provides realistic estimates of seasonal variation in photosynthesis over the Amazon that relate well to the wet and dry seasons. We anticipate that our findings will steer the development of improved approaches to estimate photosynthetic activity over the tropics.

  17. Transfer of DNA from Bacteria to Eukaryotes

    Directory of Open Access Journals (Sweden)

    Benoît Lacroix

    2016-07-01

    Full Text Available Historically, the members of the Agrobacterium genus have been considered the only bacterial species naturally able to transfer and integrate DNA into the genomes of their eukaryotic hosts. Yet, increasing evidence suggests that this ability to genetically transform eukaryotic host cells might be more widespread in the bacterial world. Indeed, analyses of accumulating genomic data reveal cases of horizontal gene transfer from bacteria to eukaryotes and suggest that it represents a significant force in adaptive evolution of eukaryotic species. Specifically, recent reports indicate that bacteria other than Agrobacterium, such as Bartonella henselae (a zoonotic pathogen, Rhizobium etli (a plant-symbiotic bacterium related to Agrobacterium, or even Escherichia coli, have the ability to genetically transform their host cells under laboratory conditions. This DNA transfer relies on type IV secretion systems (T4SSs, the molecular machines that transport macromolecules during conjugative plasmid transfer and also during transport of proteins and/or DNA to the eukaryotic recipient cells. In this review article, we explore the extent of possible transfer of genetic information from bacteria to eukaryotic cells as well as the evolutionary implications and potential applications of this transfer.

  18. Metagenome-based diversity analyses suggest a significant contribution of non-cyanobacterial lineages to carbonate precipitation in modern microbialites

    Directory of Open Access Journals (Sweden)

    Purificacion eLopez-Garcia

    2015-08-01

    Full Text Available Cyanobacteria are thought to play a key role in carbonate formation due to their metabolic activity, but other organisms carrying out oxygenic photosynthesis (photosynthetic eukaryotes or other metabolisms (e.g. anoxygenic photosynthesis, sulfate reduction, may also contribute to carbonate formation. To obtain more quantitative information than that provided by more classical PCR-dependent methods, we studied the microbial diversity of microbialites from the Alchichica crater lake (Mexico by mining for 16S/18S rRNA genes in metagenomes obtained by direct sequencing of environmental DNA. We studied samples collected at the Western (AL-W and Northern (AL-N shores of the lake and, at the latter site, along a depth gradient (1, 5, 10 and 15 m depth. The associated microbial communities were mainly composed of bacteria, most of which seemed heterotrophic, whereas archaea were negligible. Eukaryotes composed a relatively minor fraction dominated by photosynthetic lineages, diatoms in AL-W, influenced by Si-rich seepage waters, and green algae in AL-N samples. Members of the Gammaproteobacteria and Alphaproteobacteria classes of Proteobacteria, Cyanobacteria and Bacteroidetes were the most abundant bacterial taxa, followed by Planctomycetes, Deltaproteobacteria (Proteobacteria, Verrucomicrobia, Actinobacteria, Firmicutes and Chloroflexi. Community composition varied among sites and with depth. Although cyanobacteria were the most important bacterial group contributing to the carbonate precipitation potential, photosynthetic eukaryotes, anoxygenic photosynthesizers and sulfate reducers were also very abundant. Cyanobacteria affiliated to Pleurocapsales largely increased with depth. Scanning electron microscopy (SEM observations showed considerable areas of aragonite-encrusted Pleurocapsa-like cyanobacteria at microscale. Multivariate statistical analyses showed a strong positive correlation of Pleurocapsales and Chroococcales with aragonite formation at

  19. Photosynthetic characteristics of Lycoris aurea and monthly ...

    African Journals Online (AJOL)

    The leaf photosynthetic characteristics of Lycoris aurea, the monthly dynamics in lycorine and galantamine contents in its bulb and the correlation among the photosynthetic characteristics and the lycorine and galantamine during the annual growth period were studied by using LI-6400 portable photosynthetic measurement ...

  20. How well do growing season dynamics of photosynthetic capacity correlate with leaf biochemistry and climate fluctuations?

    Science.gov (United States)

    Way, Danielle A; Stinziano, Joseph R; Berghoff, Henry; Oren, Ram

    2017-07-01

    Accurate values of photosynthetic capacity are needed in Earth System Models to predict gross primary productivity. Seasonal changes in photosynthetic capacity in these models are primarily driven by temperature, but recent work has suggested that photoperiod may be a better predictor of seasonal photosynthetic capacity. Using field-grown kudzu (Pueraria lobata (Willd.) Ohwi), a nitrogen-fixing vine species, we took weekly measurements of photosynthetic capacity, leaf nitrogen, and pigment and photosynthetic protein concentrations and correlated these with temperature, irradiance and photoperiod over the growing season. Photosynthetic capacity was more strongly correlated with photoperiod than with temperature or daily irradiance, while the growing season pattern in photosynthetic capacity was uncoupled from changes in leaf nitrogen, chlorophyll and Rubisco. Daily estimates of the maximum carboxylation rate of Rubisco (Vcmax) based on either photoperiod or temperature were correlated in a non-linear manner, but Vcmax estimates from both approaches that also accounted for diurnal temperature fluctuations were similar, indicating that differences between these models depend on the relevant time step. We advocate for considering photoperiod, and not just temperature, when estimating photosynthetic capacity across the year, particularly as climate change alters temperatures but not photoperiod. We also caution that the use of leaf biochemical traits as proxies for estimating photosynthetic capacity may be unreliable when the underlying relationships between proxy leaf traits and photosynthetic capacity are established outside of a seasonal framework. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Phylogenetic analysis of the core histone doublet and DNA topo II genes of Marseilleviridae: evidence of proto-eukaryotic provenance.

    Science.gov (United States)

    Erives, Albert J

    2017-11-28

    the four core histone clades. We thus suggest MV histone doublet genes and their DNA topo II gene possibly were acquired from an organism with a chromatinized replisome that diverged prior to the origin of eukaryotic core histone variants for H2/H2A.Z and H3/cenH3. These results also imply that core histones were utilized ancestrally in viral DNA compaction and/or protection from host endonucleases.

  2. Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms.

    Directory of Open Access Journals (Sweden)

    Sacha Coesel

    components of the carotenoid biosynthesis pathway in photosynthetic eukaryotes and provide information about how they have diversified and acquired new functions in the diatoms.

  3. Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms.

    Science.gov (United States)

    Coesel, Sacha; Oborník, Miroslav; Varela, Joao; Falciatore, Angela; Bowler, Chris

    2008-08-06

    carotenoid biosynthesis pathway in photosynthetic eukaryotes and provide information about how they have diversified and acquired new functions in the diatoms.

  4. The role of energy losses in photosynthetic light harvesting

    International Nuclear Information System (INIS)

    Krüger, T P J; Van Grondelle, R

    2017-01-01

    Photosynthesis operates at the bottom of the food chain to convert the energy of light into carbohydrates at a remarkable global rate of about 130 TW. Nonetheless, the overall photosynthetic process has a conversion efficiency of a few percent at best, significantly less than bottom-up photovoltaic cells. The primary photosynthetic steps, consisting of light harvesting and charge separation, are often presented as having near-unity quantum efficiency but this holds only true under ideal conditions. In this review, we discuss the importance of energy loss mechanisms to establish robustness in photosynthetic light harvesting. Thermal energy dissipation of light-harvesting complexes (LHCs) in different environments is investigated and the relationships and contrasts between concentration quenching of high pigment concentrations, photoprotection (non-photochemical quenching), quenching due to protein aggregation, and fluorescence blinking are discussed. The role of charge-transfer states in light harvesting and energy dissipation is highlighted and the importance of controlled protein structural disorder to switch the light-harvesting antennae between effective light harvesters and efficient energy quenchers is underscored. The main LHC of plants, LHCII, is used as a prime example. (topical review)

  5. Diel tuning of photosynthetic systems in ice algae at Saroma-ko Lagoon, Hokkaido, Japan

    Science.gov (United States)

    Aikawa, Shimpei; Hattori, Hiroshi; Gomi, Yasushi; Watanabe, Kentaro; Kudoh, Sakae; Kashino, Yasuhiro; Satoh, Kazuhiko

    Ice algae are the major primary producers in seasonally ice-covered oceans during the cold season. Diurnal change in solar radiation is inevitable for ice algae, even beneath seasonal sea ice in lower-latitude regions. In this work, we focused on the photosynthetic response of ice algae under diurnally changing irradiance in Saroma-ko Lagoon, Japan. Photosynthetic properties were assessed by pulse-amplitude modulation (PAM) fluorometry. The species composition remained almost the same throughout the investigation. The maximum electron transport rate ( rETRmax), which indicates the capacity of photosynthetic electron transport, increased from sunrise until around noon and decreased toward sunset, with no sign of the afternoon depression commonly observed in other photosynthetic organisms. The level of non-photochemical quenching, which indicates photoprotection activity by dissipating excess light energy via thermal processes, changed with diurnal variations in irradiance. The pigment composition appeared constant, except for xanthophyll cycle pigments, which changed irrespective of irradiance. These results indicate that ice algae tune their photosynthetic system harmonically to achieve efficient photosynthesis under diurnally changing irradiance, while avoiding damage to photosystems. This regulation system may be essential for productive photosynthesis in ice algae.

  6. Effects of gibberellic acid on growth and photosynthetic pigments of ...

    African Journals Online (AJOL)

    The aim of this study was to improve growth performance by enhancing the photosynthetic pigments and enzyme carbonic anhydrase (CA) activity of Hibiscus sabdariffa L. (cv. Sabahia 17) under NaCl stress. Under non-saline condition, application of GA3 enhanced growth parameters (shoot length, shoot fresh weight (FW) ...

  7. Communication: Coherences observed in vivo in photosynthetic bacteria using two-dimensional electronic spectroscopy

    International Nuclear Information System (INIS)

    Dahlberg, Peter D.; Norris, Graham J.; Wang, Cheng; Viswanathan, Subha; Singh, Ved P.; Engel, Gregory S.

    2015-01-01

    Energy transfer through large disordered antenna networks in photosynthetic organisms can occur with a quantum efficiency of nearly 100%. This energy transfer is facilitated by the electronic structure of the photosynthetic antennae as well as interactions between electronic states and the surrounding environment. Coherences in time-domain spectroscopy provide a fine probe of how a system interacts with its surroundings. In two-dimensional electronic spectroscopy, coherences can appear on both the ground and excited state surfaces revealing detailed information regarding electronic structure, system-bath coupling, energy transfer, and energetic coupling in complex chemical systems. Numerous studies have revealed coherences in isolated photosynthetic pigment-protein complexes, but these coherences have not been observed in vivo due to the small amplitude of these signals and the intense scatter from whole cells. Here, we present data acquired using ultrafast video-acquisition gradient-assisted photon echo spectroscopy to observe quantum beating signals from coherences in vivo. Experiments were conducted on isolated light harvesting complex II (LH2) from Rhodobacter sphaeroides, whole cells of R. sphaeroides, and whole cells of R. sphaeroides grown in 30% deuterated media. A vibronic coherence was observed following laser excitation at ambient temperature between the B850 and the B850 ∗ states of LH2 in each of the 3 samples with a lifetime of ∼40-60 fs

  8. Communication: Coherences observed in vivo in photosynthetic bacteria using two-dimensional electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, Peter D. [Graduate Program in the Biophysical Sciences, Institute for Biophysical Dynamics, and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States); Norris, Graham J.; Wang, Cheng; Viswanathan, Subha; Singh, Ved P.; Engel, Gregory S., E-mail: gsengel@uchicago.edu [Department of Chemistry, Institute for Biophysical Dynamics, and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637 (United States)

    2015-09-14

    Energy transfer through large disordered antenna networks in photosynthetic organisms can occur with a quantum efficiency of nearly 100%. This energy transfer is facilitated by the electronic structure of the photosynthetic antennae as well as interactions between electronic states and the surrounding environment. Coherences in time-domain spectroscopy provide a fine probe of how a system interacts with its surroundings. In two-dimensional electronic spectroscopy, coherences can appear on both the ground and excited state surfaces revealing detailed information regarding electronic structure, system-bath coupling, energy transfer, and energetic coupling in complex chemical systems. Numerous studies have revealed coherences in isolated photosynthetic pigment-protein complexes, but these coherences have not been observed in vivo due to the small amplitude of these signals and the intense scatter from whole cells. Here, we present data acquired using ultrafast video-acquisition gradient-assisted photon echo spectroscopy to observe quantum beating signals from coherences in vivo. Experiments were conducted on isolated light harvesting complex II (LH2) from Rhodobacter sphaeroides, whole cells of R. sphaeroides, and whole cells of R. sphaeroides grown in 30% deuterated media. A vibronic coherence was observed following laser excitation at ambient temperature between the B850 and the B850{sup ∗} states of LH2 in each of the 3 samples with a lifetime of ∼40-60 fs.

  9. Effect of sodium chloride on photosynthetic 14CO2 assimilation in Portulaca oleracea Linn

    International Nuclear Information System (INIS)

    Joshi, G.V.; Karadge, B.A.

    1979-01-01

    Effect of NaCl on ion uptake, photosynthetic rate and photosynthetic products in a C 4 non-CAM succulent, P. oleracea has been investigated. NaCl causes accumulation of Na as well as Cl ions with decrease in K and Ca contents. Chlorophylls and photosynthetic 14 CO 2 fixation rates are adversely affected due to sodium chloride salinity. Plants grown in the presence of NaCl show increase in C 4 acid percentage with increase in labelling of organic acids in light. Labelling of amino acids (particularly alanine) and sugars (sucrose) is affected by NaCl. Enzyme studies reveal that PEP-carboxylase is stimulated at all concentrations of NaCl but higher concentrations affected the activity of RuBP-Carboxylase. (author)

  10. How natural a kind is "eukaryote?".

    Science.gov (United States)

    Doolittle, W Ford

    2014-06-02

    Systematics balances uneasily between realism and nominalism, uncommitted as to whether biological taxa are discoveries or inventions. If the former, they might be taken as natural kinds. I briefly review some philosophers' concepts of natural kinds and then argue that several of these apply well enough to "eukaryote." Although there are some sticky issues around genomic chimerism and when eukaryotes first appeared, if we allow for degrees in the naturalness of kinds, existing eukaryotes rank highly, higher than prokaryotes. Most biologists feel this intuitively: All I attempt to do here is provide some conceptual justification. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  11. Comparative genomics and evolution of eukaryotic phospholipidbiosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Lykidis, Athanasios

    2006-12-01

    Phospholipid biosynthetic enzymes produce diverse molecular structures and are often present in multiple forms encoded by different genes. This work utilizes comparative genomics and phylogenetics for exploring the distribution, structure and evolution of phospholipid biosynthetic genes and pathways in 26 eukaryotic genomes. Although the basic structure of the pathways was formed early in eukaryotic evolution, the emerging picture indicates that individual enzyme families followed unique evolutionary courses. For example, choline and ethanolamine kinases and cytidylyltransferases emerged in ancestral eukaryotes, whereas, multiple forms of the corresponding phosphatidyltransferases evolved mainly in a lineage specific manner. Furthermore, several unicellular eukaryotes maintain bacterial-type enzymes and reactions for the synthesis of phosphatidylglycerol and cardiolipin. Also, base-exchange phosphatidylserine synthases are widespread and ancestral enzymes. The multiplicity of phospholipid biosynthetic enzymes has been largely generated by gene expansion in a lineage specific manner. Thus, these observations suggest that phospholipid biosynthesis has been an actively evolving system. Finally, comparative genomic analysis indicates the existence of novel phosphatidyltransferases and provides a candidate for the uncharacterized eukaryotic phosphatidylglycerol phosphate phosphatase.

  12. Species-specific roles of sulfolipid metabolism in acclimation of photosynthetic microbes to sulfur-starvation stress.

    Directory of Open Access Journals (Sweden)

    Norihiro Sato

    Full Text Available Photosynthetic organisms utilize sulfate for the synthesis of sulfur-compounds including proteins and a sulfolipid, sulfoquinovosyl diacylglycerol. Upon ambient deficiency in sulfate, cells of a green alga, Chlamydomonas reinhardtii, degrade the chloroplast membrane sulfolipid to ensure an intracellular-sulfur source for necessary protein synthesis. Here, the effects of sulfate-starvation on the sulfolipid stability were investigated in another green alga, Chlorella kessleri, and two cyanobacteria, Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942. The results showed that sulfolipid degradation was induced only in C. kessleri, raising the possibility that this degradation ability was obtained not by cyanobacteria, but by eukaryotic algae during the evolution of photosynthetic organisms. Meanwhile, Synechococcus disruptants concerning sqdB and sqdX genes, which are involved in successive reactions in the sulfolipid synthesis pathway, were respectively characterized in cellular response to sulfate-starvation. Phycobilisome degradation intrinsic to Synechococcus, but not to Synechocystis, and cell growth under sulfate-starved conditions were repressed in the sqdB and sqdX disruptants, respectively, relative to in the wild type. Their distinct phenotypes, despite the common loss of the sulfolipid, inferred specific roles of sqdB and sqdX. This study demonstrated that sulfolipid metabolism might have been developed to enable species- or cyanobacterial-strain dependent processes for acclimation to sulfate-starvation.

  13. Photosynthetic recovery and acclimation to excess light intensity in the rehydrated lichen soil crusts.

    Directory of Open Access Journals (Sweden)

    Li Wu

    Full Text Available As an important successional stage and main type of biological soil crusts (BSCs in Shapotou region of China (southeastern edge of Tengger Desert, lichen soil crusts (LSCs often suffer from many stresses, such as desiccation and excess light intensity. In this study, the chlorophyll fluorescence and CO2 exchange in the rehydrated LSCs were detected under a series of photosynthetically active radiation (PAR gradients to study the photosynthetic acclimation of LSCs. The results showed that although desiccation leaded to the loss of photosynthetic activity in LSCs, the fluorescence parameters including Fo, Fv and Fv/Fm of LSCs could be well recovered after rehydration. After the recovery of photosynthetic activity, the effective photosynthetic efficiency ΦPSII detected by Imaging PAM had declined to nearly 0 within both the lichen thallus upper and lower layers when the PAR increased to 200 μE m-2 s-1, however the net photosynthesis detected by the CO2 gas analyzer in the LSCs still appeared when the PAR increased to 1000 μE m-2 s-1. Our results indicate that LSCs acclimating to high PAR, on the one hand is ascribed to the special structure in crust lichens, making the incident light into the lichen thallus be weakened; on the other hand the massive accumulation of photosynthetic pigments in LSCs also provides a protective barrier for the photosynthetic organisms against radiation damage. Furthermore, the excessive light energy absorbed by crust lichens is also possibly dissipated by the increasing non-photochemical quenching, therefore to some extent providing some protection for LSCs.

  14. Patterns of prokaryotic lateral gene transfers affecting parasitic microbial eukaryotes

    DEFF Research Database (Denmark)

    Alsmark, Cecilia; Foster, Peter G; Sicheritz-Pontén, Thomas

    2013-01-01

    BACKGROUND: The influence of lateral gene transfer on gene origins and biology in eukaryotes is poorly understood compared with those of prokaryotes. A number of independent investigations focusing on specific genes, individual genomes, or specific functional categories from various eukaryotes have...... approach to systematically investigate lateral gene transfer affecting the proteomes of thirteen, mainly parasitic, microbial eukaryotes, representing four of the six eukaryotic super-groups. All of the genomes investigated have been significantly affected by prokaryote-to-eukaryote lateral gene transfers...... indicated that lateral gene transfer does indeed affect eukaryotic genomes. However, the lack of common methodology and criteria in these studies makes it difficult to assess the general importance and influence of lateral gene transfer on eukaryotic genome evolution. RESULTS: We used a phylogenomic...

  15. pico-PLAZA, a genome database of microbial photosynthetic eukaryotes.

    Science.gov (United States)

    Vandepoele, Klaas; Van Bel, Michiel; Richard, Guilhem; Van Landeghem, Sofie; Verhelst, Bram; Moreau, Hervé; Van de Peer, Yves; Grimsley, Nigel; Piganeau, Gwenael

    2013-08-01

    With the advent of next generation genome sequencing, the number of sequenced algal genomes and transcriptomes is rapidly growing. Although a few genome portals exist to browse individual genome sequences, exploring complete genome information from multiple species for the analysis of user-defined sequences or gene lists remains a major challenge. pico-PLAZA is a web-based resource (http://bioinformatics.psb.ugent.be/pico-plaza/) for algal genomics that combines different data types with intuitive tools to explore genomic diversity, perform integrative evolutionary sequence analysis and study gene functions. Apart from homologous gene families, multiple sequence alignments, phylogenetic trees, Gene Ontology, InterPro and text-mining functional annotations, different interactive viewers are available to study genome organization using gene collinearity and synteny information. Different search functions, documentation pages, export functions and an extensive glossary are available to guide non-expert scientists. To illustrate the versatility of the platform, different case studies are presented demonstrating how pico-PLAZA can be used to functionally characterize large-scale EST/RNA-Seq data sets and to perform environmental genomics. Functional enrichments analysis of 16 Phaeodactylum tricornutum transcriptome libraries offers a molecular view on diatom adaptation to different environments of ecological relevance. Furthermore, we show how complementary genomic data sources can easily be combined to identify marker genes to study the diversity and distribution of algal species, for example in metagenomes, or to quantify intraspecific diversity from environmental strains. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  16. Morphological and ecological complexity in early eukaryotic ecosystems.

    Science.gov (United States)

    Javaux, E J; Knoll, A H; Walter, M R

    2001-07-05

    Molecular phylogeny and biogeochemistry indicate that eukaryotes differentiated early in Earth history. Sequence comparisons of small-subunit ribosomal RNA genes suggest a deep evolutionary divergence of Eukarya and Archaea; C27-C29 steranes (derived from sterols synthesized by eukaryotes) and strong depletion of 13C (a biogeochemical signature of methanogenic Archaea) in 2,700 Myr old kerogens independently place a minimum age on this split. Steranes, large spheroidal microfossils, and rare macrofossils of possible eukaryotic origin occur in Palaeoproterozoic rocks. Until now, however, evidence for morphological and taxonomic diversification within the domain has generally been restricted to very late Mesoproterozoic and Neoproterozoic successions. Here we show that the cytoskeletal and ecological prerequisites for eukaryotic diversification were already established in eukaryotic microorganisms fossilized nearly 1,500 Myr ago in shales of the early Mesoproterozoic Roper Group in northern Australia.

  17. RpoH2 sigma factor controls the photooxidative stress response in a non-photosynthetic rhizobacterium, Azospirillum brasilense Sp7.

    Science.gov (United States)

    Kumar, Santosh; Rai, Ashutosh Kumar; Mishra, Mukti Nath; Shukla, Mansi; Singh, Pradhyumna Kumar; Tripathi, Anil Kumar

    2012-12-01

    Bacteria belonging to the Alphaproteobacteria normally harbour multiple copies of the heat shock sigma factor (known as σ(32), σ(H) or RpoH). Azospirillum brasilense, a non-photosynthetic rhizobacterium, harbours five copies of rpoH genes, one of which is an rpoH2 homologue. The genes around the rpoH2 locus in A. brasilense show synteny with that found in rhizobia. The rpoH2 of A. brasilense was able to complement the temperature-sensitive phenotype of the Escherichia coli rpoH mutant. Inactivation of rpoH2 in A. brasilense results in increased sensitivity to methylene blue and to triphenyl tetrazolium chloride (TTC). Exposure of A. brasilense to TTC and the singlet oxygen-generating agent methylene blue induced several-fold higher expression of rpoH2. Comparison of the proteome of A. brasilense with its rpoH2 deletion mutant and with an A. brasilense strain overexpressing rpoH2 revealed chaperone GroEL, elongation factors (Ef-Tu and EF-G), peptidyl prolyl isomerase, and peptide methionine sulfoxide reductase as the major proteins whose expression was controlled by RpoH2. Here, we show that the RpoH2 sigma factor-controlled photooxidative stress response in A. brasilense is similar to that in the photosynthetic bacterium Rhodobacter sphaeroides, but that RpoH2 is not involved in the detoxification of methylglyoxal in A. brasilense.

  18. Participation of intracellular and extracellular pH changes in photosynthetic response development induced by variation potential in pumpkin seedlings.

    Science.gov (United States)

    Sherstneva, O N; Vodeneev, V A; Katicheva, L A; Surova, L M; Sukhov, V S

    2015-06-01

    Electrical signals presented in plants by action potential and by variation potential (VP) can induce a reversible inactivation of photosynthesis. Changes in the intracellular and extracellular pH during VP generation are a potential mechanism of photosynthetic response induction; however, this hypothesis requires additional experimental investigation. The purpose of the present work was to analyze the influence of pH changes on induction of the photosynthetic response in pumpkin. It was shown that a burning of the cotyledon induced VP propagation into true leaves of pumpkin seedlings inducing a decrease in the photosynthetic CO2 assimilation and an increase in non-photochemical quenching of fluorescence, whereas respiration was activated insignificantly. The photosynthetic response magnitude depended linearly on the VP amplitude. The intracellular and extracellular concentrations of protons were analyzed using pH-sensitive fluorescent probes, and the VP generation was shown to be accompanied by apoplast alkalization (0.4 pH unit) and cytoplasm acidification (0.3 pH unit). The influence of changes in the incubation medium pH on the non-photochemical quenching of fluorescence of isolated chloroplasts was also investigated. It was found that acidification of the medium stimulated the non-photochemical quenching, and the magnitude of this increase depended on the decrease in pH. Our results confirm the contribution of changes in intracellular and extracellular pH to induction of the photosynthetic response caused by VP. Possible mechanisms of the influence of pH changes on photosynthesis are discussed.

  19. Eukaryotic tRNAs fingerprint invertebrates vis-à-vis vertebrates.

    Science.gov (United States)

    Mitra, Sanga; Das, Pijush; Samadder, Arpa; Das, Smarajit; Betai, Rupal; Chakrabarti, Jayprokas

    2015-01-01

    During translation, aminoacyl-tRNA synthetases recognize the identities of the tRNAs to charge them with their respective amino acids. The conserved identities of 58,244 eukaryotic tRNAs of 24 invertebrates and 45 vertebrates in genomic tRNA database were analyzed and their novel features extracted. The internal promoter sequences, namely, A-Box and B-Box, were investigated and evidence gathered that the intervention of optional nucleotides at 17a and 17b correlated with the optimal length of the A-Box. The presence of canonical transcription terminator sequences at the immediate vicinity of tRNA genes was ventured. Even though non-canonical introns had been reported in red alga, green alga, and nucleomorph so far, fairly motivating evidence of their existence emerged in tRNA genes of other eukaryotes. Non-canonical introns were seen to interfere with the internal promoters in two cases, questioning their transcription fidelity. In a first of its kind, phylogenetic constructs based on tRNA molecules delineated and built the trees of the vast and diverse invertebrates and vertebrates. Finally, two tRNA models representing the invertebrates and the vertebrates were drawn, by isolating the dominant consensus in the positional fluctuations of nucleotide compositions.

  20. Pyrosequencing assessment of prokaryotic and eukaryotic diversity in biofilm communities from a French river.

    Science.gov (United States)

    Bricheux, Geneviève; Morin, Loïc; Le Moal, Gwenaël; Coffe, Gérard; Balestrino, Damien; Charbonnel, Nicolas; Bohatier, Jacques; Forestier, Christiane

    2013-06-01

    Despite the recent and significant increase in the study of aquatic microbial communities, little is known about the microbial diversity of complex ecosystems such as running waters. This study investigated the biodiversity of biofilm communities formed in a river with 454 Sequencing™. This river has the particularity of integrating both organic and microbiological pollution, as receiver of agricultural pollution in its upstream catchment area and urban pollution through discharges of the wastewater treatment plant of the town of Billom. Different regions of the small subunit (SSU) ribosomal RNA gene were targeted using nine pairs of primers, either universal or specific for bacteria, eukarya, or archaea. Our aim was to characterize the widest range of rDNA sequences using different sets of polymerase chain reaction (PCR) primers. A first look at reads abundance revealed that a large majority (47-48%) were rare sequences (<5 copies). Prokaryotic phyla represented the species richness, and eukaryotic phyla accounted for a small part. Among the prokaryotic phyla, Proteobacteria (beta and alpha) predominated, followed by Bacteroidetes together with a large number of nonaffiliated bacterial sequences. Bacillariophyta plastids were abundant. The remaining bacterial phyla, Verrucomicrobia and Cyanobacteria, made up the rest of the bulk biodiversity. The most abundant eukaryotic phyla were annelid worms, followed by Diatoms, and Chlorophytes. These latter phyla attest to the abundance of plastids and the importance of photosynthetic activity for the biofilm. These findings highlight the existence and plasticity of multiple trophic levels within these complex biological systems. © 2013 The Authors. Microbiology Open published by John Wiley & Sons Ltd.

  1. Plastid 16S rRNA gene diversity among eukaryotic picophytoplankton sorted by flow cytometry from the South Pacific Ocean.

    Directory of Open Access Journals (Sweden)

    Xiao Li Shi

    Full Text Available The genetic diversity of photosynthetic picoeukaryotes was investigated in the South East Pacific Ocean. Genetic libraries of the plastid 16S rRNA gene were constructed on picoeukaryote populations sorted by flow cytometry, using two different primer sets, OXY107F/OXY1313R commonly used to amplify oxygenic organisms, and PLA491F/OXY1313R, biased towards plastids of marine algae. Surprisingly, the two sets revealed quite different photosynthetic picoeukaryote diversity patterns, which were moreover different from what we previously reported using the 18S rRNA nuclear gene as a marker. The first 16S primer set revealed many sequences related to Pelagophyceae and Dictyochophyceae, the second 16S primer set was heavily biased toward Prymnesiophyceae, while 18S sequences were dominated by Prasinophyceae, Chrysophyceae and Haptophyta. Primer mismatches with major algal lineages is probably one reason behind this discrepancy. However, other reasons, such as DNA accessibility or gene copy numbers, may be also critical. Based on plastid 16S rRNA gene sequences, the structure of photosynthetic picoeukaryotes varied along the BIOSOPE transect vertically and horizontally. In oligotrophic regions, Pelagophyceae, Chrysophyceae, and Prymnesiophyceae dominated. Pelagophyceae were prevalent at the DCM depth and Chrysophyceae at the surface. In mesotrophic regions Pelagophyceae were still important but Chlorophyta contribution increased. Phylogenetic analysis revealed a new clade of Prasinophyceae (clade 16S-IX, which seems to be restricted to hyper-oligotrophic stations. Our data suggest that a single gene marker, even as widely used as 18S rRNA, provides a biased view of eukaryotic communities and that the use of several markers is necessary to obtain a complete image.

  2. Eukaryotic snoRNAs: a paradigm for gene expression flexibility.

    Science.gov (United States)

    Dieci, Giorgio; Preti, Milena; Montanini, Barbara

    2009-08-01

    Small nucleolar RNAs (snoRNAs) are one of the most ancient and numerous families of non-protein-coding RNAs (ncRNAs). The main function of snoRNAs - to guide site-specific rRNA modification - is the same in Archaea and all eukaryotic lineages. In contrast, as revealed by recent genomic and RNomic studies, their genomic organization and expression strategies are the most varied. Seemingly snoRNA coding units have adopted, in the course of evolution, all the possible ways of being transcribed, thus providing a unique paradigm of gene expression flexibility. By focusing on representative fungal, plant and animal genomes, we review here all the documented types of snoRNA gene organization and expression, and we provide a comprehensive account of snoRNA expressional freedom by precisely estimating the frequency, in each genome, of each type of genomic organization. We finally discuss the relevance of snoRNA genomic studies for our general understanding of ncRNA family evolution and expression in eukaryotes.

  3. Atypical mitochondrial inheritance patterns in eukaryotes.

    Science.gov (United States)

    Breton, Sophie; Stewart, Donald T

    2015-10-01

    Mitochondrial DNA (mtDNA) is predominantly maternally inherited in eukaryotes. Diverse molecular mechanisms underlying the phenomenon of strict maternal inheritance (SMI) of mtDNA have been described, but the evolutionary forces responsible for its predominance in eukaryotes remain to be elucidated. Exceptions to SMI have been reported in diverse eukaryotic taxa, leading to the prediction that several distinct molecular mechanisms controlling mtDNA transmission are present among the eukaryotes. We propose that these mechanisms will be better understood by studying the deviations from the predominating pattern of SMI. This minireview summarizes studies on eukaryote species with unusual or rare mitochondrial inheritance patterns, i.e., other than the predominant SMI pattern, such as maternal inheritance of stable heteroplasmy, paternal leakage of mtDNA, biparental and strictly paternal inheritance, and doubly uniparental inheritance of mtDNA. The potential genes and mechanisms involved in controlling mitochondrial inheritance in these organisms are discussed. The linkage between mitochondrial inheritance and sex determination is also discussed, given that the atypical systems of mtDNA inheritance examined in this minireview are frequently found in organisms with uncommon sexual systems such as gynodioecy, monoecy, or andromonoecy. The potential of deviations from SMI for facilitating a better understanding of a number of fundamental questions in biology, such as the evolution of mtDNA inheritance, the coevolution of nuclear and mitochondrial genomes, and, perhaps, the role of mitochondria in sex determination, is considerable.

  4. An Evolutionary Framework for Understanding the Origin of Eukaryotes

    OpenAIRE

    Neil W. Blackstone

    2016-01-01

    Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real?the endosymbiosis that led to the mitochondrion is often described as ?non-Darwinian? because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious?all of the major fea...

  5. The Challenging Diagnosis of Non-Community-Acquired Pneumonia in Non-Mechanically Ventilated Subjects: Value of Microbiological Investigation.

    Science.gov (United States)

    Messika, Jonathan; Stoclin, Annabelle; Bouvard, Eric; Fulgencio, Jean-Pierre; Ridel, Christophe; Muresan, Ioan-Paul; Boffa, Jean-Jacques; Bachmeyer, Claude; Denis, Michel; Gounant, Valérie; Esteso, Adoracion; Loi, Valeria; Verdet, Charlotte; Prigent, Hélène; Parrot, Antoine; Fartoukh, Muriel

    2016-02-01

    Early recognition and an attempt at obtaining microbiological documentation are recommended in patients with non-community-acquired pneumonia (NCAP), whether hospital-acquired (HAP) or health care-associated (HCAP). We aimed to characterize the clinical features and microbial etiologies of NCAP to assess the impact of microbiological investigation on their management. This was a prospective 1-y study in a university hospital with 141 non-mechanically ventilated subjects suspected of having HAP (n = 110) or HCAP (n = 31). Clinical criteria alone poorly identified pneumonia (misdiagnosis in 50% of cases). Microbiological confirmation was achievable in 80 subjects (57%). Among 79 microorganisms isolated, 28 were multidrug-resistant aerobic Gram-negative bacilli and group III Enterobacteriaceae and 6 were methicillin-resistant Staphylococcus aureus. Multidrug-resistant aerobic Gram-negative bacilli accounted for one third of the microorganisms in early-onset HAP and for 50% in late-onset HAP. Methicillin-resistant S. aureus was most often recovered from subjects with HCAP. Inappropriate empirical antibiotics were administered to 36% of subjects with confirmed pneumonia. Forty subjects were admitted to the ICU, 13 (33%) of whom died. Overall, 39 subjects (28%) died in the hospital. Integrating the microbiological investigation in the complex clinical diagnostic workup of patients suspected of having NCAP is mandatory. Respiratory tract specimens should be obtained whenever possible for appropriate management. Copyright © 2016 by Daedalus Enterprises.

  6. Eukaryotes first: how could that be?

    Science.gov (United States)

    Mariscal, Carlos; Doolittle, W Ford

    2015-09-26

    In the half century since the formulation of the prokaryote : eukaryote dichotomy, many authors have proposed that the former evolved from something resembling the latter, in defiance of common (and possibly common sense) views. In such 'eukaryotes first' (EF) scenarios, the last universal common ancestor is imagined to have possessed significantly many of the complex characteristics of contemporary eukaryotes, as relics of an earlier 'progenotic' period or RNA world. Bacteria and Archaea thus must have lost these complex features secondarily, through 'streamlining'. If the canonical three-domain tree in which Archaea and Eukarya are sisters is accepted, EF entails that Bacteria and Archaea are convergently prokaryotic. We ask what this means and how it might be tested. © 2015 The Author(s).

  7. The Genome of Naegleria gruberi Illuminates Early Eukaryotic Versatility

    Energy Technology Data Exchange (ETDEWEB)

    Fritz-Laylin, Lillian K.; Prochnik, Simon E.; Ginger, Michael L.; Dacks, Joel; Carpenter, Meredith L.; Field, Mark C.; Kuo, Alan; Paredez, Alex; Chapman, Jarrod; Pham, Jonathan; Shu, Shengqiang; Neupane, Rochak; Cipriano, Michael; Mancuso, Joel; Tu, Hank; Salamov, Asaf; Lindquist, Erika; Shapiro, Harris; Lucas, Susan; Grigoriev, Igor V.; Cande, W. Zacheus; Fulton, Chandler; Rokhsar, Daniel S.; Dawson, Scott C.

    2010-03-01

    Genome sequences of diverse free-living protists are essential for understanding eukaryotic evolution and molecular and cell biology. The free-living amoeboflagellate Naegleria gruberi belongs to a varied and ubiquitous protist clade (Heterolobosea) that diverged from other eukaryotic lineages over a billion years ago. Analysis of the 15,727 protein-coding genes encoded by Naegleria's 41 Mb nuclear genome indicates a capacity for both aerobic respiration and anaerobic metabolism with concomitant hydrogen production, with fundamental implications for the evolution of organelle metabolism. The Naegleria genome facilitates substantially broader phylogenomic comparisons of free-living eukaryotes than previously possible, allowing us to identify thousands of genes likely present in the pan-eukaryotic ancestor, with 40% likely eukaryotic inventions. Moreover, we construct a comprehensive catalog of amoeboid-motility genes. The Naegleria genome, analyzed in the context of other protists, reveals a remarkably complex ancestral eukaryote with a rich repertoire of cytoskeletal, sexual, signaling, and metabolic modules.

  8. Genome-wide mapping reveals single-origin chromosome replication in Leishmania, a eukaryotic microbe.

    Science.gov (United States)

    Marques, Catarina A; Dickens, Nicholas J; Paape, Daniel; Campbell, Samantha J; McCulloch, Richard

    2015-10-19

    DNA replication initiates on defined genome sites, termed origins. Origin usage appears to follow common rules in the eukaryotic organisms examined to date: all chromosomes are replicated from multiple origins, which display variations in firing efficiency and are selected from a larger pool of potential origins. To ask if these features of DNA replication are true of all eukaryotes, we describe genome-wide origin mapping in the parasite Leishmania. Origin mapping in Leishmania suggests a striking divergence in origin usage relative to characterized eukaryotes, since each chromosome appears to be replicated from a single origin. By comparing two species of Leishmania, we find evidence that such origin singularity is maintained in the face of chromosome fusion or fission events during evolution. Mapping Leishmania origins suggests that all origins fire with equal efficiency, and that the genomic sites occupied by origins differ from related non-origins sites. Finally, we provide evidence that origin location in Leishmania displays striking conservation with Trypanosoma brucei, despite the latter parasite replicating its chromosomes from multiple, variable strength origins. The demonstration of chromosome replication for a single origin in Leishmania, a microbial eukaryote, has implications for the evolution of origin multiplicity and associated controls, and may explain the pervasive aneuploidy that characterizes Leishmania chromosome architecture.

  9. The origin of the eukaryotic cell

    Science.gov (United States)

    Hartman, H.

    1984-01-01

    The endosymbiotic hypothesis for the origin of the eukaryotic cell has been applied to the origin of the mitochondria and chloroplasts. However as has been pointed out by Mereschowsky in 1905, it should also be applied to the nucleus as well. If the nucleus, mitochondria and chloroplasts are endosymbionts, then it is likely that the organism that did the engulfing was not a DNA-based organism. In fact, it is useful to postulate that this organism was a primitive RNA-based organism. This hypothesis would explain the preponderance of RNA viruses found in eukaryotic cells. The centriole and basal body do not have a double membrane or DNA. Like all MTOCs (microtubule organising centres), they have a structural or morphic RNA implicated in their formation. This would argue for their origin in the early RNA-based organism rather than in an endosymbiotic event involving bacteria. Finally, the eukaryotic cell uses RNA in ways quite unlike bacteria, thus pointing to a greater emphasis of RNA in both control and structure in the cell. The origin of the eukaryotic cell may tell us why it rather than its prokaryotic relative evolved into the metazoans who are reading this paper.

  10. Single Cell Genomics and Transcriptomics for Unicellular Eukaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Ciobanu, Doina; Clum, Alicia; Singh, Vasanth; Salamov, Asaf; Han, James; Copeland, Alex; Grigoriev, Igor; James, Timothy; Singer, Steven; Woyke, Tanja; Malmstrom, Rex; Cheng, Jan-Fang

    2014-03-14

    Despite their small size, unicellular eukaryotes have complex genomes with a high degree of plasticity that allow them to adapt quickly to environmental changes. Unicellular eukaryotes live with prokaryotes and higher eukaryotes, frequently in symbiotic or parasitic niches. To this day their contribution to the dynamics of the environmental communities remains to be understood. Unfortunately, the vast majority of eukaryotic microorganisms are either uncultured or unculturable, making genome sequencing impossible using traditional approaches. We have developed an approach to isolate unicellular eukaryotes of interest from environmental samples, and to sequence and analyze their genomes and transcriptomes. We have tested our methods with six species: an uncharacterized protist from cellulose-enriched compost identified as Platyophrya, a close relative of P. vorax; the fungus Metschnikowia bicuspidate, a parasite of water flea Daphnia; the mycoparasitic fungi Piptocephalis cylindrospora, a parasite of Cokeromyces and Mucor; Caulochytrium protosteloides, a parasite of Sordaria; Rozella allomycis, a parasite of the water mold Allomyces; and the microalgae Chlamydomonas reinhardtii. Here, we present the four components of our approach: pre-sequencing methods, sequence analysis for single cell genome assembly, sequence analysis of single cell transcriptomes, and genome annotation. This technology has the potential to uncover the complexity of single cell eukaryotes and their role in the environmental samples.

  11. Heat degradation of eukaryotic and bacterial DNA: an experimental model for paleomicrobiology

    Directory of Open Access Journals (Sweden)

    Nguyen-Hieu Tung

    2012-09-01

    Full Text Available Abstract Background Theoretical models suggest that DNA degradation would sharply limit the PCR-based detection of both eukaryotic and prokaryotic DNA within ancient specimens. However, the relative extent of decay of eukaryote and prokaryote DNA over time is a matter of debate. In this study, the murine macrophage cell line J774, alone or infected with Mycobacterium smegmatis bacteria, were killed after exposure to 90°C dry heat for intervals ranging from 1 to 48 h in order to compare eukaryotic cells, extracellular bacteria and intracellular bacteria. The sizes of the resulting mycobacterial rpoB and murine rpb2 homologous gene fragments were then determined by real-time PCR and fluorescent probing. Findings The cycle threshold (Ct values of PCR-amplified DNA fragments from J774 cells and the M. smegmatis negative controls (without heat exposure varied from 26–33 for the J774 rpb2 gene fragments and from 24–29 for M. smegmatis rpoB fragments. After 90°C dry heat incubation for up to 48 h, the Ct values of test samples increased relative to those of the controls for each amplicon size. For each dry heat exposure time, the Ct values of the 146-149-bp fragments were lower than those of 746-747-bp fragments. During the 4- to 24-h dry heat incubation, the non-infected J774 cell DNA was degraded into 597-bp rpb2 fragments. After 48 h, however, only 450-bp rpb2 fragments of both non-infected and infected J774 cells could be amplified. In contrast, the 746-bp rpoB fragments of M. smegmatis DNA could be amplified after the 48-h dry heat exposure in all experiments. Infected and non-infected J774 cell DNA was degraded more rapidly than M. smegmatis DNA after dry heat exposure (ANOVA test, p  Conclusion In this study, mycobacterial DNA was more resistant to dry-heat stress than eukaryotic DNA. Therefore, the detection of large, experimental, ancient mycobacterial DNA fragments is a suitable approach for paleomicrobiological studies.

  12. Causes of non-adherence to therapeutic guidelines in severe community-acquired pneumonia

    Science.gov (United States)

    Gattarello, Simone; Ramírez, Sergio; Almarales, José Rafael; Borgatta, Bárbara; Lagunes, Leonel; Encina, Belén; Rello, Jordi

    2015-01-01

    Objective To assess the adherence to Infectious Disease Society of America/American Thoracic Society guidelines and the causes of lack of adherence during empirical antibiotic prescription in severe pneumonia in Latin America. Methods A clinical questionnaire was submitted to 36 physicians from Latin America; they were asked to indicate the empirical treatment in two fictitious cases of severe respiratory infection: community-acquired pneumonia and nosocomial pneumonia. Results In the case of communityacquired pneumonia, 11 prescriptions of 36 (30.6%) were compliant with international guidelines. The causes for non-compliant treatment were monotherapy (16.0%), the unnecessary prescription of broad-spectrum antibiotics (40.0%) and the use of non-recommended antibiotics (44.0%). In the case of nosocomial pneumonia, the rate of adherence to the Infectious Disease Society of America/American Thoracic Society guidelines was 2.8% (1 patient of 36). The reasons for lack of compliance were monotherapy (14.3%) and a lack of dual antibiotic coverage against Pseudomonas aeruginosa (85.7%). If monotherapy with an antipseudomonal antibiotic was considered adequate, the antibiotic treatment would be adequate in 100% of the total prescriptions. Conclusion The compliance rate with the Infectious Disease Society of America/American Thoracic Society guidelines in the community-acquired pneumonia scenario was 30.6%; the most frequent cause of lack of compliance was the indication of monotherapy. In the case of nosocomial pneumonia, the compliance rate with the guidelines was 2.8%, and the most important cause of non-adherence was lack of combined antipseudomonal therapy. If the use of monotherapy with an antipseudomonal antibiotic was considered the correct option, the treatment would be adequate in 100% of the prescriptions. PMID:25909312

  13. Conference Eighth International Symposium on Blood Substitutes

    Science.gov (United States)

    2001-04-01

    larger & one smaller than the cut - off diameter. By varying flow conditions the cut -off diameter can be varied so that narrow size cuts are generated... Petunia hybrida cv. Comanche were used as a model, non-photosynthetic, eukaryotic system to study changes in (i) the rate of oxygen consumption as

  14. Hybrid system of semiconductor and photosynthetic protein

    International Nuclear Information System (INIS)

    Kim, Younghye; Shin, Seon Ae; Lee, Jaehun; Yang, Ki Dong; Nam, Ki Tae

    2014-01-01

    Photosynthetic protein has the potential to be a new attractive material for solar energy absorption and conversion. The development of semiconductor/photosynthetic protein hybrids is an example of recent progress toward efficient, clean and nanostructured photoelectric systems. In the review, two biohybrid systems interacting through different communicating methods are addressed: (1) a photosynthetic protein immobilized semiconductor electrode operating via electron transfer and (2) a hybrid of semiconductor quantum dots and photosynthetic protein operating via energy transfer. The proper selection of materials and functional and structural modification of the components and optimal conjugation between them are the main issues discussed in the review. In conclusion, we propose the direction of future biohybrid systems for solar energy conversion systems, optical biosensors and photoelectric devices. (topical reviews)

  15. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae.

    Science.gov (United States)

    Wijffels, René H; Kruse, Olaf; Hellingwerf, Klaas J

    2013-06-01

    Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments. Cyanobacteria are promising host organisms for the production of small molecules that can be secreted such as ethanol, butanol, fatty acids and other organic acids. Eukaryotic microalgae are interesting for products for which cellular storage is important such as proteins, lipids, starch and alkanes. For the development of new and promising lines of production, strains of both cyanobacteria and eukaryotic microalgae have to be improved. Transformation systems have been much better developed in cyanobacteria. However, several products would be preferably produced with eukaryotic microalgae. In the case of cyanobacteria a synthetic-systems biology approach has a great potential to exploit cyanobacteria as cell factories. For eukaryotic microalgae transformation systems need to be further developed. A promising strategy is transformation of heterologous (prokaryotic and eukaryotic) genes in established eukaryotic hosts such as Chlamydomonas reinhardtii. Experimental outdoor pilots under containment for the production of genetically modified cyanobacteria and microalgae are in progress. For full scale production risks of release of genetically modified organisms need to be assessed. Copyright © 2013. Published by Elsevier Ltd.

  16. Origins and evolution of viruses of eukaryotes: The ultimate modularity

    International Nuclear Information System (INIS)

    Koonin, Eugene V.; Dolja, Valerian V.; Krupovic, Mart

    2015-01-01

    Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangible clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order “Megavirales” that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources

  17. Origins and evolution of viruses of eukaryotes: The ultimate modularity

    Energy Technology Data Exchange (ETDEWEB)

    Koonin, Eugene V., E-mail: koonin@ncbi.nlm.nih.gov [National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 (United States); Dolja, Valerian V., E-mail: doljav@science.oregonstate.edu [Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331 (United States); Krupovic, Mart, E-mail: krupovic@pasteur.fr [Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Paris 75015 (France)

    2015-05-15

    Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangible clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order “Megavirales” that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources

  18. Redox regulation of photosynthetic gene expression.

    Science.gov (United States)

    Queval, Guillaume; Foyer, Christine H

    2012-12-19

    Redox chemistry and redox regulation are central to the operation of photosynthesis and respiration. However, the roles of different oxidants and antioxidants in the regulation of photosynthetic or respiratory gene expression remain poorly understood. Leaf transcriptome profiles of a range of Arabidopsis thaliana genotypes that are deficient in either hydrogen peroxide processing enzymes or in low molecular weight antioxidant were therefore compared to determine how different antioxidant systems that process hydrogen peroxide influence transcripts encoding proteins targeted to the chloroplasts or mitochondria. Less than 10 per cent overlap was observed in the transcriptome patterns of leaves that are deficient in either photorespiratory (catalase (cat)2) or chloroplastic (thylakoid ascorbate peroxidase (tapx)) hydrogen peroxide processing. Transcripts encoding photosystem II (PSII) repair cycle components were lower in glutathione-deficient leaves, as were the thylakoid NAD(P)H (nicotinamide adenine dinucleotide (phosphate)) dehydrogenases (NDH) mRNAs. Some thylakoid NDH mRNAs were also less abundant in tAPX-deficient and ascorbate-deficient leaves. Transcripts encoding the external and internal respiratory NDHs were increased by low glutathione and low ascorbate. Regulation of transcripts encoding specific components of the photosynthetic and respiratory electron transport chains by hydrogen peroxide, ascorbate and glutathione may serve to balance non-cyclic and cyclic electron flow pathways in relation to oxidant production and reductant availability.

  19. Endosymbiotic associations within protists

    Science.gov (United States)

    Nowack, Eva C. M.; Melkonian, Michael

    2010-01-01

    The establishment of an endosymbiotic relationship typically seems to be driven through complementation of the host's limited metabolic capabilities by the biochemical versatility of the endosymbiont. The most significant examples of endosymbiosis are represented by the endosymbiotic acquisition of plastids and mitochondria, introducing photosynthesis and respiration to eukaryotes. However, there are numerous other endosymbioses that evolved more recently and repeatedly across the tree of life. Recent advances in genome sequencing technology have led to a better understanding of the physiological basis of many endosymbiotic associations. This review focuses on endosymbionts in protists (unicellular eukaryotes). Selected examples illustrate the incorporation of various new biochemical functions, such as photosynthesis, nitrogen fixation and recycling, and methanogenesis, into protist hosts by prokaryotic endosymbionts. Furthermore, photosynthetic eukaryotic endosymbionts display a great diversity of modes of integration into different protist hosts. In conclusion, endosymbiosis seems to represent a general evolutionary strategy of protists to acquire novel biochemical functions and is thus an important source of genetic innovation. PMID:20124339

  20. Compositional patterns in the genomes of unicellular eukaryotes.

    Science.gov (United States)

    Costantini, Maria; Alvarez-Valin, Fernando; Costantini, Susan; Cammarano, Rosalia; Bernardi, Giorgio

    2013-11-05

    The genomes of multicellular eukaryotes are compartmentalized in mosaics of isochores, large and fairly homogeneous stretches of DNA that belong to a small number of families characterized by different average GC levels, by different gene concentration (that increase with GC), different chromatin structures, different replication timing in the cell cycle, and other different properties. A question raised by these basic results concerns how far back in evolution the compartmentalized organization of the eukaryotic genomes arose. In the present work we approached this problem by studying the compositional organization of the genomes from the unicellular eukaryotes for which full sequences are available, the sample used being representative. The average GC levels of the genomes from unicellular eukaryotes cover an extremely wide range (19%-60% GC) and the compositional patterns of individual genomes are extremely different but all genomes tested show a compositional compartmentalization. The average GC range of the genomes of unicellular eukaryotes is very broad (as broad as that of prokaryotes) and individual compositional patterns cover a very broad range from very narrow to very complex. Both features are not surprising for organisms that are very far from each other both in terms of phylogenetic distances and of environmental life conditions. Most importantly, all genomes tested, a representative sample of all supergroups of unicellular eukaryotes, are compositionally compartmentalized, a major difference with prokaryotes.

  1. Therapeutic effects of diaphragmatic plication for acquired unilateral non-malignant diaphragm paralysis in twenty patients

    Directory of Open Access Journals (Sweden)

    Reza Bagheri

    2013-12-01

    Full Text Available Background: Acquired paralysis of the diaphragm is a condition caused by trauma, surgical injuries, (lung cancer surgery, esophageal surgery, cardiac surgery, thoracic surgery, and is sometimes of an unknown etiology. It can lead to dyspnea and can affect ventilatory function and patients activity. Diaphragmatic plication is a treatment method which decreases inconsistent function of diaphragm. The aim of this study is to evaluate the outcome of diaphragmatic plication in patients with acquired unilateral non-malignant diaphragmatic paralysis. Methods: From 1991 to 2011, 20 patients with acquired unilateral diaphragmatic paralysis who underwent surgery enrolled in our study in Ghaem Hospital Mashhad University of Medical Science. Patients were evaluated in terms of age, sex, BMI, clinical symptoms, dyspnea score (DS, etiology of paralysis, diagnostic methods, respiratory function tests and complication of surgery. Some tests including dyspnea score were carried out again six months after surgery. We evaluated patients with SPSS version 11.5 and Paired t-test or nonparametric equivalent. Results: Twenty patients enrolled in our study. 14 were male and 6 were female. The mean age was 58 years and the average time interval between diagnosis to surgical treatment was 38.3 months. Acquired diaphragmatic paralysis was mostly caused by trauma (in 11 patients and almost occurred on the left side (in 15 patients. Diagnostic methods included chest x-ray, CT scan, ultrasonography and sniff. Test prior to surgery the average FVC was 41.4±7 percent and the average FEV1 was 52.4±6 percent and after surgery they were 80.1±8.6 percent and 74.4±1 percent respectively. The average increase in FEV1 and FVC 63.4±4, 61.1±7.8. Performing surgery also leads to a noticeable improvement in dyspnea score in our study. Conclusion: In patients with acquired unilateral non-malignant diaphragm paralysis diaphragmatic plication is highly recommended due to the

  2. Conservation and Variability of Meiosis Across the Eukaryotes.

    Science.gov (United States)

    Loidl, Josef

    2016-11-23

    Comparisons among a variety of eukaryotes have revealed considerable variability in the structures and processes involved in their meiosis. Nevertheless, conventional forms of meiosis occur in all major groups of eukaryotes, including early-branching protists. This finding confirms that meiosis originated in the common ancestor of all eukaryotes and suggests that primordial meiosis may have had many characteristics in common with conventional extant meiosis. However, it is possible that the synaptonemal complex and the delicate crossover control related to its presence were later acquisitions. Later still, modifications to meiotic processes occurred within different groups of eukaryotes. Better knowledge on the spectrum of derived and uncommon forms of meiosis will improve our understanding of many still mysterious aspects of the meiotic process and help to explain the evolutionary basis of functional adaptations to the meiotic program.

  3. Photoperiodic controls on ecosystem-level photosynthetic capacity

    Science.gov (United States)

    Stoy, P. C.; Trowbridge, A. M.; Bauerle, W.

    2012-12-01

    Most models of photosynthesis at the leaf or canopy level assume that temperature is the dominant control on the variability of photosynthetic parameters. Recent studies, however, have found that photoperiod is a better descriptor of the seasonal variability of photosynthetic function at the leaf and plant scale, and that spectral indices of leaf functionality are poor descriptors of this seasonality. We explored the variability of photosynthesic parameters at the ecosystem scale using over 100 site-years of air temperature and gross primary productivity (GPP) data from non-tropical forested sites in the Free/Fair Use LaThuille FLUXNET database (www.fluxdata.org), excluding sites that were classified as dry and/or with savanna vegetation, where we expected GPP to be driven by moisture availability. Both GPP and GPP normalized by daily photosynthetic photon flux density (GPPn) were considered, and photoperiod was calculated from eddy covariance tower coordinates. We performed a Granger causality analysis, a method based on the understanding that causes precede effects, on both the GPP and GPPn. Photoperiod Granger-caused GPP (GPPn) in 95% (87%) of all site-years. While temperature Granger-caused GPP in a mere 23% of site years, it Granger-caused GPPn 73% of the time. Both temperature values are significantly less than the percent of cases in which day length Granger-caused GPP (p<0.05, Student's t-test). An inverse analysis was performed for completeness, and it was found that GPP Granger-caused photoperiod (temperature) in 39% (78%) of all site years. Results demonstrate that incorporating simple photoperiod controls may be a logical step in improving ecosystem and global model output.

  4. Prevention of hospital-acquired pneumonia in non-ventilated adult patients: a narrative review

    Directory of Open Access Journals (Sweden)

    Leonor Pássaro

    2016-11-01

    Full Text Available Abstract Background Pneumonia is one of the leading hospital-acquired infections worldwide and has an important impact. Although preventive measures for ventilator-associated pneumonia (VAP are well known, less is known about appropriate measures for prevention of hospital-acquired pneumonia (HAP. Aim The purpose of this narrative review is to provide an overview of the current standards for preventing HAP in non-ventilated adult patients. Methods A search of the literature up to May 2015 was conducted using Medline for guidelines published by national professional societies or professional medical associations. In addition, a comprehensive search for the following preventive measures was performed: hand hygiene, oral care, bed position, mobilization, diagnosis and treatment of dysphagia, aspiration prevention, viral infections and stress bleeding prophylaxis. Findings Regarding international guidelines, several measures were recommended for VAP, whilst no specific recommendations for HAP prevention in non-ventilated patients are available. There is reasonable evidence available that oral care is associated with a reduction in HAP. Early mobilization interventions, swift diagnosis and treatment of dysphagia, and multimodal programmes for the prevention of nosocomial influenza cross-infection, have a positive impact on HAP reduction. The impact of bed position and stress bleeding prophylaxis remains uncertain. Systematic antibiotic prophylaxis for HAP prevention should be avoided. Conclusion Scant literature and little guidance is available for the prevention of HAP among non-ventilated adult patients. In addition, the criteria used for the diagnosis of HAP and the populations targeted in the studies selected are heterogeneous. Oral care was the most studied measure and was commonly associated with a decrease in HAP rate, although a broad range of interventions are proposed. No robust evidence is available for other measures. Further high

  5. Prevention of hospital-acquired pneumonia in non-ventilated adult patients: a narrative review.

    Science.gov (United States)

    Pássaro, Leonor; Harbarth, Stephan; Landelle, Caroline

    2016-01-01

    Pneumonia is one of the leading hospital-acquired infections worldwide and has an important impact. Although preventive measures for ventilator-associated pneumonia (VAP) are well known, less is known about appropriate measures for prevention of hospital-acquired pneumonia (HAP). The purpose of this narrative review is to provide an overview of the current standards for preventing HAP in non-ventilated adult patients. A search of the literature up to May 2015 was conducted using Medline for guidelines published by national professional societies or professional medical associations. In addition, a comprehensive search for the following preventive measures was performed: hand hygiene, oral care, bed position, mobilization, diagnosis and treatment of dysphagia, aspiration prevention, viral infections and stress bleeding prophylaxis. Regarding international guidelines, several measures were recommended for VAP, whilst no specific recommendations for HAP prevention in non-ventilated patients are available. There is reasonable evidence available that oral care is associated with a reduction in HAP. Early mobilization interventions, swift diagnosis and treatment of dysphagia, and multimodal programmes for the prevention of nosocomial influenza cross-infection, have a positive impact on HAP reduction. The impact of bed position and stress bleeding prophylaxis remains uncertain. Systematic antibiotic prophylaxis for HAP prevention should be avoided. Scant literature and little guidance is available for the prevention of HAP among non-ventilated adult patients. In addition, the criteria used for the diagnosis of HAP and the populations targeted in the studies selected are heterogeneous. Oral care was the most studied measure and was commonly associated with a decrease in HAP rate, although a broad range of interventions are proposed. No robust evidence is available for other measures. Further high-quality studies are required to evaluate the impact of specific measures on

  6. Porphyrin and fullerene-based artificial photosynthetic materials for photovoltaics

    International Nuclear Information System (INIS)

    Imahori, Hiroshi; Kashiwagi, Yukiyasu; Hasobe, Taku; Kimura, Makoto; Hanada, Takeshi; Nishimura, Yoshinobu; Yamazaki, Iwao; Araki, Yasuyuki; Ito, Osamu; Fukuzumi, Shunichi

    2004-01-01

    We have developed artificial photosynthetic systems in which porphyrins and fullerenes are self-assembled as building blocks into nanostructured molecular light-harvesting materials and photovoltaic devices. Multistep electron transfer strategy has been combined with our finding that porphyrin and fullerene systems have small reorganization energies, which are suitable for the construction of light energy conversion systems as well as artificial photosynthetic models. Highly efficient photosynthetic electron transfer reactions have been realized at ITO electrodes modified with self-assembled monolayers of porphyrin oligomers as well as porphyrin-fullerene linked systems. Porphyrin-modified gold nanoclusters have been found to have potential as artificial photosynthetic materials. These results provide basic information for the development of nanostructured artificial photosynthetic systems

  7. 24 CFR 1000.160 - Are non-dwelling structures developed, acquired or assisted under the IHBG program subject to...

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Are non-dwelling structures...-dwelling structures developed, acquired or assisted under the IHBG program subject to limitations on cost or design standards? Yes. Non-dwelling structures must be of a design, size and with features or...

  8. Eukaryotic Cell Panorama

    Science.gov (United States)

    Goodsell, David S.

    2011-01-01

    Diverse biological data may be used to create illustrations of molecules in their cellular context. This report describes the scientific results that support an illustration of a eukaryotic cell, enlarged by one million times to show the distribution and arrangement of macromolecules. The panoramic cross section includes eight panels that extend…

  9. Interaction of tRNA with Eukaryotic Ribosome

    Directory of Open Access Journals (Sweden)

    Dmitri Graifer

    2015-03-01

    Full Text Available This paper is a review of currently available data concerning interactions of tRNAs with the eukaryotic ribosome at various stages of translation. These data include the results obtained by means of cryo-electron microscopy and X-ray crystallography applied to various model ribosomal complexes, site-directed cross-linking with the use of tRNA derivatives bearing chemically or photochemically reactive groups in the CCA-terminal fragment and chemical probing of 28S rRNA in the region of the peptidyl transferase center. Similarities and differences in the interactions of tRNAs with prokaryotic and eukaryotic ribosomes are discussed with concomitant consideration of the extent of resemblance between molecular mechanisms of translation in eukaryotes and bacteria.

  10. Effect of carbon limitation on photosynthetic electron transport in Nannochloropsis oculata.

    Science.gov (United States)

    Zavřel, Tomáš; Szabó, Milán; Tamburic, Bojan; Evenhuis, Christian; Kuzhiumparambil, Unnikrishnan; Literáková, Petra; Larkum, Anthony W D; Raven, John A; Červený, Jan; Ralph, Peter J

    2018-04-01

    This study describes the impacts of inorganic carbon limitation on the photosynthetic efficiency and operation of photosynthetic electron transport pathways in the biofuel-candidate microalga Nannochloropsis oculata. Using a combination of highly-controlled cultivation setup (photobioreactor), variable chlorophyll a fluorescence and transient spectroscopy methods (electrochromic shift (ECS) and P 700 redox kinetics), we showed that net photosynthesis and effective quantum yield of Photosystem II (PSII) decreased in N. oculata under carbon limitation. This was accompanied by a transient increase in total proton motive force and energy-dependent non-photochemical quenching as well as slightly elevated respiration. On the other hand, under carbon limitation the rapid increase in proton motive force (PMF, estimated from the total ECS signal) was also accompanied by reduced conductivity of ATP synthase to protons (estimated from the rate of ECS decay in dark after actinic illumination). This indicates that the slow operation of ATP synthase results in the transient build-up of PMF, which leads to the activation of fast energy dissipation mechanisms such as energy-dependent non-photochemical quenching. N. oculata also increased content of lipids under carbon limitation, which compensated for reduced NAPDH consumption during decreased CO 2 fixation. The integrated knowledge of the underlying energetic regulation of photosynthetic processes attained with a combination of biophysical methods may be used to identify photo-physiological signatures of the onset of carbon limitation in microalgal cultivation systems, as well as to potentially identify microalgal strains that can better acclimate to carbon limitation. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Morning reduction of photosynthetic capacity before midday depression.

    Science.gov (United States)

    Koyama, Kohei; Takemoto, Shuhei

    2014-03-17

    Midday depression of photosynthesis has important consequences for ecosystem carbon exchange. Recent studies of forest trees have demonstrated that latent reduction of photosynthetic capacity can begin in the early morning, preceding the midday depression. We investigated whether such early morning reduction also occurs in an herbaceous species, Oenothera biennis. Diurnal changes of the photosynthetic light response curve (measured using a light-emitting diode) and incident sunlight intensity were measured under field conditions. The following results were obtained: (1) the light-saturated photosynthetic rate decreased beginning at sunrise; (2) the incident sunlight intensity on the leaves increased from sunrise; and (3) combining (1) and (2), the net photosynthetic rate under natural sunlight intensity increased from sunrise, reached a maximum at mid-morning, and then showed midday depression. Our results demonstrate that the latent morning reduction of photosynthetic capacity begins at sunrise, preceding the apparent midday depression, in agreement with previous studies of forest trees.

  12. Biological optimization systems for enhancing photosynthetic efficiency and methods of use

    Science.gov (United States)

    Hunt, Ryan W.; Chinnasamy, Senthil; Das, Keshav C.; de Mattos, Erico Rolim

    2012-11-06

    Biological optimization systems for enhancing photosynthetic efficiency and methods of use. Specifically, methods for enhancing photosynthetic efficiency including applying pulsed light to a photosynthetic organism, using a chlorophyll fluorescence feedback control system to determine one or more photosynthetic efficiency parameters, and adjusting one or more of the photosynthetic efficiency parameters to drive the photosynthesis by the delivery of an amount of light to optimize light absorption of the photosynthetic organism while providing enough dark time between light pulses to prevent oversaturation of the chlorophyll reaction centers are disclosed.

  13. Effects of ultraviolet radiation (UVA+UVB) on young gametophytes of Gelidium floridanum: growth rate, photosynthetic pigments, carotenoids, photosynthetic performance, and ultrastructure.

    Science.gov (United States)

    Simioni, Carmen; Schmidt, Eder C; Felix, Marthiellen R de L; Polo, Luz Karime; Rover, Ticiane; Kreusch, Marianne; Pereira, Debora T; Chow, Fungyi; Ramlov, Fernanda; Maraschin, Marcelo; Bouzon, Zenilda L

    2014-01-01

    This study investigated the effects of radiation (PAR+UVA+UVB) on the development and growth rates (GRs) of young gametophytes of Gelidium floridanum. In addition, photosynthetic pigments were quantified, carotenoids identified, and photosynthetic performance assessed. Over a period of 3 days, young gametophytes were cultivated under laboratory conditions and exposed to photosynthetically active radiation (PAR) at 80 μmol photons m(-2) s(-1) and PAR+UVA (0.70 W m(-2))+UVB (0.35 W m(-2)) for 3 h per day. The samples were processed for light and electron microscopy to analyze the ultrastructure features, as well as carry out metabolic studies of GRs, quantify the content of photosynthetic pigments, identify carotenoids and assess photosynthetic performance. PAR+UVA+UVB promoted increase in cell wall thickness, accumulation of floridean starch grains in the cytoplasm and disruption of chloroplast internal organization. Algae exposed to PAR+UVA+UVB also showed a reduction in GR of 97%. Photosynthetic pigments, in particular, phycoerythrin and allophycocyanin contents, decreased significantly from UV radiation exposure. This result agrees with the decrease in photosynthetic performance observed after exposure to ultraviolet radiation, as measured by a decrease in the electron transport rate (ETR), where values of ETRmax declined approximately 44.71%. It can be concluded that radiation is a factor that affects the young gametophytes of G. floridanum at this stage of development. © 2014 The American Society of Photobiology.

  14. Genome-reconstruction for eukaryotes from complex natural microbial communities.

    Science.gov (United States)

    West, Patrick T; Probst, Alexander J; Grigoriev, Igor V; Thomas, Brian C; Banfield, Jillian F

    2018-04-01

    Microbial eukaryotes are integral components of natural microbial communities, and their inclusion is critical for many ecosystem studies, yet the majority of published metagenome analyses ignore eukaryotes. In order to include eukaryotes in environmental studies, we propose a method to recover eukaryotic genomes from complex metagenomic samples. A key step for genome recovery is separation of eukaryotic and prokaryotic fragments. We developed a k -mer-based strategy, EukRep, for eukaryotic sequence identification and applied it to environmental samples to show that it enables genome recovery, genome completeness evaluation, and prediction of metabolic potential. We used this approach to test the effect of addition of organic carbon on a geyser-associated microbial community and detected a substantial change of the community metabolism, with selection against almost all candidate phyla bacteria and archaea and for eukaryotes. Near complete genomes were reconstructed for three fungi placed within the Eurotiomycetes and an arthropod. While carbon fixation and sulfur oxidation were important functions in the geyser community prior to carbon addition, the organic carbon-impacted community showed enrichment for secreted proteases, secreted lipases, cellulose targeting CAZymes, and methanol oxidation. We demonstrate the broader utility of EukRep by reconstructing and evaluating relatively high-quality fungal, protist, and rotifer genomes from complex environmental samples. This approach opens the way for cultivation-independent analyses of whole microbial communities. © 2018 West et al.; Published by Cold Spring Harbor Laboratory Press.

  15. Jatropha curcasand Ricinus communisdisplay contrasting photosynthetic mechanisms in response to environmental conditions

    Directory of Open Access Journals (Sweden)

    Milton Costa Lima Neto

    2015-06-01

    Full Text Available Higher plants display different adaptive strategies in photosynthesis to cope with abiotic stress. In this study, photosynthetic mechanisms and water relationships displayed byJatropha curcasL. (physic nuts andRicinus communisL. (castor bean, in response to variations in environmental conditions, were assessed.R. communis showed higher CO2 assimilation, stomatal and mesophyll conductance thanJ. curcas as light intensity and intercellular CO2 pressure increased. On the other hand,R. communis was less effective in stomatal control in response to adverse environmental factors such as high temperature, water deficit and vapor pressure deficit, indicating lower water use efficiency. Conversely,J. curcas exhibited higher photosynthetic efficiency (gas exchange and photochemistry and water use efficiency under these adverse environmental conditions.R. communisdisplayed higher potential photosynthesis, but exhibited a lowerin vivo Rubisco carboxylation rate (Vcmax and maximum electron transport rate (Jmax. During the course of a typical day, in a semiarid environment, with high irradiation, high temperature and high vapor pressure deficit, but exposed to well-watered conditions, the two studied species presented similar photosynthesis. Losing potential photosynthesis, but maintaining favorable water status and increasing non-photochemical quenching to avoid photoinhibition, are important acclimation mechanisms developed byJ. curcas to cope with dry and hot conditions. We suggest thatJ. curcas is more tolerant to hot and dry environments thanR. communis but the latter species displays higher photosynthetic efficiency under well-watered and non-stressful conditions.

  16. Research on spatial distribution of photosynthetic characteristics of Winter Wheat

    Science.gov (United States)

    Yan, Q. Q.; Zhou, Q. Y.; Zhang, B. Z.; Han, X.; Han, N. N.; Li, S. M.

    2018-03-01

    In order to explore the spatial distribution of photosynthetic characteristics of winter wheat leaf, the photosynthetic rate on different parts of leaf (leaf base-leaf middle-leaf apex) and that on each canopy (top layer-middle layer-bottom layer) leaf during the whole growth period of winter wheat were measured. The variation of photosynthetic rate with PAR and the spatial distribution of winter wheat leaf during the whole growth periods were analysed. The results showed that the photosynthetic rate of different parts of winter wheat increased with the increase of PAR, which was showed as leaf base>leaf middle>leaf apex. In the same growth period, photosynthetic rate in different parts of the tablet was showed as leaf middle>leaf base>leaf apex. For the different canopy layer of winter wheat, the photosynthetic rate of the top layer leaf was significantly greater than that of the middle layer and lower layer leaf. The photosynthetic rate of the top layer leaf was the largest in the leaf base position. The photosynthetic rate of leaf of the same canopy layer at different growth stages were showed as tasseling stage >grain filling stage > maturation stage.

  17. A Study on Photosynthetic Physiological Characteristics of Six Rare and Endangered Species

    Institute of Scientific and Technical Information of China (English)

    Tailin ZHONG; Guangwu ZHAO; Jiamiao CHU; Xiaomin GUO; Genyou LI

    2014-01-01

    The parameters of gas exchange and chlorophyl fluorescence in leaves of six rare and endangered species Neolitsea sericea, Cinnamomum japonicum var. cheni , Sinojackia microcarpa, Discocleidion glabrum var. trichocarpum, Parrotia sub-aequalis, Cercidiphyl um japonicum were measured in fields. The results showed that there were significant differences in photosynthetic capacity, intrinsic water use effi-ciency (WUEi ), the efficiency of primary conversion of light energy of PSⅡ and its potential activity, the quantum yield of PSⅡ electron transport, and the potential ca-pacity of heat dissipation among the six species. However, there was no significant difference in WUE. The highest values of net photosynthetic rate (Pn), transpiration rate (Tr) and stomatal conductance (gs) occurred in D. glabrum var. trichocarpum and the lowest in S. microcarpa. On the contrary, D. glabrum var. trichocarpum had the lowest WUE, intrinsic water use efficiency (WUEi ) and S. microcarpa had the highest. The results indicated that D. glabrum var. trichocarpum had higher photo-synthetic capacity and poorer WUE, while S. microcarpa had lower photosynthetic capacity and greater WUE. Furthermore, the mean values of maximal fluorescence (Fm), potential efficiency of primary conversion of light energy of PSⅡ (Fv/Fm),ΦPSⅡ, actual efficiency of primary conversion of light energy of PSⅡ (F′v/F′m) and non-photochemical quenching coefficient (NPQ) were the highest in S. micro-carpa, indicating that its PSⅡ had higher capacity of heat dissipation and could prevent photosynthetic apparatus from damage by excessive light energy. Correlation analysis showed that there were significant correlations among photosynthetic physi-ological parameters. However, the initial fluorescence (Fo) was not significantly cor-related with any other parameters. This study also revealed the extremely significant positive correlations between Pn and Tr, gs, apparent quantum yield (AQY), be-tween Tr and

  18. Seasonal evolution of diffusional limitations and photosynthetic capacity in olive under drought.

    Science.gov (United States)

    Diaz-Espejo, Antonio; Nicolás, Emilio; Fernández, José Enrique

    2007-08-01

    This study tests the hypothesis that diffusional limitation of photosynthesis, rather than light, determines the distribution of photosynthetic capacity in olive leaves under drought conditions. The crowns of four olive trees growing in an orchard were divided into two sectors: one sector absorbed most of the radiation early in the morning (MS) while the other absorbed most in the afternoon (AS). When the peak of radiation absorption was higher in MS, air vapour pressure deficit (VPD) was not high enough to provoke stomatal closure. In contrast, peak radiation absorption in AS coincided with the daily peak in VPD. In addition, two soil water treatments were evaluated: irrigated trees (I) and non-irrigated trees (nI). The seasonal evolution of leaf water potential, leaf gas exchange and photosynthetic capacity were measured throughout the tree crowns in spring and summer. Results showed that stomatal conductance was reduced in nI trees in summer as a consequence of soil water stress, which limited their net assimilation rate. Olive leaves displayed isohydric behaviour and no important differences in the diurnal course of leaf water potentials among treatments and sectors were found. Seasonal diffusional limitation of photosynthesis was mainly increased in nI trees, especially as a result of stomatal limitation, although mesophyll conductance (g(m)) was found to decrease in summer in both treatments and sectors. A positive relationship between leaf nitrogen content with both leaf photosynthetic capacity and the daily integrated quantum flux density was found in spring, but not in summer. The relationship between photosynthetic capacity and g(m) was curvilinear. Leaf temperature also affected to g(m) with an optimum temperature at 29 degrees C. AS showed larger biochemical limitation than MS in August in both treatments. All these suggest that both diffusional limitation and the effect of leaf temperature could be involved in the seasonal reduction of photosynthetic

  19. Beyond Agrobacterium-Mediated Transformation: Horizontal Gene Transfer from Bacteria to Eukaryotes.

    Science.gov (United States)

    Lacroix, Benoît; Citovsky, Vitaly

    2018-03-03

    Besides the massive gene transfer from organelles to the nuclear genomes, which occurred during the early evolution of eukaryote lineages, the importance of horizontal gene transfer (HGT) in eukaryotes remains controversial. Yet, increasing amounts of genomic data reveal many cases of bacterium-to-eukaryote HGT that likely represent a significant force in adaptive evolution of eukaryotic species. However, DNA transfer involved in genetic transformation of plants by Agrobacterium species has traditionally been considered as the unique example of natural DNA transfer and integration into eukaryotic genomes. Recent discoveries indicate that the repertoire of donor bacterial species and of recipient eukaryotic hosts potentially are much wider than previously thought, including donor bacterial species, such as plant symbiotic nitrogen-fixing bacteria (e.g., Rhizobium etli) and animal bacterial pathogens (e.g., Bartonella henselae, Helicobacter pylori), and recipient species from virtually all eukaryotic clades. Here, we review the molecular pathways and potential mechanisms of these trans-kingdom HGT events and discuss their utilization in biotechnology and research.

  20. Photosynthetic performance of restored and natural mangroves under different environmental constraints

    International Nuclear Information System (INIS)

    Rovai, André Scarlate; Barufi, José Bonomi; Pagliosa, Paulo Roberto; Scherner, Fernando; Torres, Moacir Aluísio; Horta, Paulo Antunes

    2013-01-01

    We hypothesized that the photosynthetic performance of mangrove stands restored by the single planting of mangroves species would be lowered due to residual stressors. The photosynthetic parameters of the vegetation of three planted mangrove stands, each with a different disturbance history, were compared to reference sites and correlated with edaphic environmental variables. A permutational analysis of variance showed significant interaction when the factors were compared, indicating that the photosynthetic parameters of the restoration areas differed from the reference sites. A univariate analysis of variance showed that all the photosynthetic parameters differed between sites and treatments, except for photosynthetic efficiency (α ETR ). The combination of environmental variables that best explained the variations observed in the photosynthetic performance indicators were Cu, Pb and elevation disruptions. Fluorescence techniques proved efficient in revealing important physiological differences, representing a powerful tool for rapid analysis of the effectiveness of initiatives aimed at restoring coastal environments. -- Highlights: •Photosynthetic efficiency of natural and restored mangroves are compared. •Natural stands present higher photosynthetic performance. •Photosynthetic performance of mangroves is reduced due to Cu and Pb contamination. •Chlorophyll a fluorescence is a useful indicator to assess short-term restoration. -- Photosynthetic performance of mangroves is reduced due to Cu and Pb contamination

  1. Photosynthetic performance of restored and natural mangroves under different environmental constraints

    Energy Technology Data Exchange (ETDEWEB)

    Rovai, André Scarlate, E-mail: rovaias@hotmail.com [Universidade Federal de Santa Catarina, Departamento de Ecologia e Zoologia, Campus Universitário, Trindade, 88040-900 Florianópolis, SC (Brazil); Barufi, José Bonomi, E-mail: jose.bonomi@gmail.com [Universidade Federal de Santa Catarina, Departamento de Botânica, Campus Universitário, Trindade, 88040-900 Florianópolis, SC (Brazil); Pagliosa, Paulo Roberto, E-mail: paulo.pagliosa@ufsc.br [Universidade Federal de Santa Catarina, Departamento de Geociências, Campus Universitário, Trindade, 88040-900 Florianópolis, SC (Brazil); Scherner, Fernando [Universidade Federal Rural de Pernambuco, Laboratório de Ficologia, Campus Universitário, Dois Irmãos, 52171-900 Recife, PE (Brazil); Torres, Moacir Aluísio, E-mail: moatorres@cav.udesc.br [Universidade do Estado de Santa Catarina, Departamento de Engenharia Ambiental, Centro de Ciências Agroveterinárias, Av Luiz de Camões 2090, Conta Dinheiro, 88520-000 Lages, SC (Brazil); Horta, Paulo Antunes, E-mail: pahorta@ccb.ufsc.br [Universidade Federal de Santa Catarina, Departamento de Botânica, Campus Universitário, Trindade, 88040-900 Florianópolis, SC (Brazil); others, and

    2013-10-15

    We hypothesized that the photosynthetic performance of mangrove stands restored by the single planting of mangroves species would be lowered due to residual stressors. The photosynthetic parameters of the vegetation of three planted mangrove stands, each with a different disturbance history, were compared to reference sites and correlated with edaphic environmental variables. A permutational analysis of variance showed significant interaction when the factors were compared, indicating that the photosynthetic parameters of the restoration areas differed from the reference sites. A univariate analysis of variance showed that all the photosynthetic parameters differed between sites and treatments, except for photosynthetic efficiency (α{sub ETR}). The combination of environmental variables that best explained the variations observed in the photosynthetic performance indicators were Cu, Pb and elevation disruptions. Fluorescence techniques proved efficient in revealing important physiological differences, representing a powerful tool for rapid analysis of the effectiveness of initiatives aimed at restoring coastal environments. -- Highlights: •Photosynthetic efficiency of natural and restored mangroves are compared. •Natural stands present higher photosynthetic performance. •Photosynthetic performance of mangroves is reduced due to Cu and Pb contamination. •Chlorophyll a fluorescence is a useful indicator to assess short-term restoration. -- Photosynthetic performance of mangroves is reduced due to Cu and Pb contamination.

  2. On the Diversification of the Translation Apparatus across Eukaryotes

    Directory of Open Access Journals (Sweden)

    Greco Hernández

    2012-01-01

    Full Text Available Diversity is one of the most remarkable features of living organisms. Current assessments of eukaryote biodiversity reaches 1.5 million species, but the true figure could be several times that number. Diversity is ingrained in all stages and echelons of life, namely, the occupancy of ecological niches, behavioral patterns, body plans and organismal complexity, as well as metabolic needs and genetics. In this review, we will discuss that diversity also exists in a key biochemical process, translation, across eukaryotes. Translation is a fundamental process for all forms of life, and the basic components and mechanisms of translation in eukaryotes have been largely established upon the study of traditional, so-called model organisms. By using modern genome-wide, high-throughput technologies, recent studies of many nonmodel eukaryotes have unveiled a surprising diversity in the configuration of the translation apparatus across eukaryotes, showing that this apparatus is far from being evolutionarily static. For some of the components of this machinery, functional differences between different species have also been found. The recent research reviewed in this article highlights the molecular and functional diversification the translational machinery has undergone during eukaryotic evolution. A better understanding of all aspects of organismal diversity is key to a more profound knowledge of life.

  3. [MiRNA system in unicellular eukaryotes and its evolutionary implications].

    Science.gov (United States)

    Zhang, Yan-Qiong; Wen, Jian-Fan

    2010-02-01

    microRNAs (miRNAs) in higher multicellular eukaryotes have been extensively studied in recent years. Great progresses have also been achieved for miRNAs in unicellular eukaryotes. All these studies not only enrich our knowledge about the complex expression regulation system in diverse organisms, but also have evolutionary significance for understanding the origin of this system. In this review, Authors summarize the recent advance in the studies of miRNA in unicellular eukaryotes, including that on the most primitive unicellular eukaryote--Giardia. The origin and evolution of miRNA system is also discussed.

  4. RNase MRP and the RNA processing cascade in the eukaryotic ancestor.

    Science.gov (United States)

    Woodhams, Michael D; Stadler, Peter F; Penny, David; Collins, Lesley J

    2007-02-08

    Within eukaryotes there is a complex cascade of RNA-based macromolecules that process other RNA molecules, especially mRNA, tRNA and rRNA. An example is RNase MRP processing ribosomal RNA (rRNA) in ribosome biogenesis. One hypothesis is that this complexity was present early in eukaryotic evolution; an alternative is that an initial simpler network later gained complexity by gene duplication in lineages that led to animals, fungi and plants. Recently there has been a rapid increase in support for the complexity-early theory because the vast majority of these RNA-processing reactions are found throughout eukaryotes, and thus were likely to be present in the last common ancestor of living eukaryotes, herein called the Eukaryotic Ancestor. We present an overview of the RNA processing cascade in the Eukaryotic Ancestor and investigate in particular, RNase MRP which was previously thought to have evolved later in eukaryotes due to its apparent limited distribution in fungi and animals and plants. Recent publications, as well as our own genomic searches, find previously unknown RNase MRP RNAs, indicating that RNase MRP has a wide distribution in eukaryotes. Combining secondary structure and promoter region analysis of RNAs for RNase MRP, along with analysis of the target substrate (rRNA), allows us to discuss this distribution in the light of eukaryotic evolution. We conclude that RNase MRP can now be placed in the RNA-processing cascade of the Eukaryotic Ancestor, highlighting the complexity of RNA-processing in early eukaryotes. Promoter analyses of MRP-RNA suggest that regulation of the critical processes of rRNA cleavage can vary, showing that even these key cellular processes (for which we expect high conservation) show some species-specific variability. We present our consensus MRP-RNA secondary structure as a useful model for further searches.

  5. Photosynthetic light reactions at the gold interface

    NARCIS (Netherlands)

    Kamran, Muhammad

    2014-01-01

    In the project described in this thesis we studied a simple bio-electronic device for solar energy conversion by surface-assembly of photosynthetic pigment-protein complexes on a bare gold-electrode. Optical excitation of the photosynthetic pigments gives rise to charge separation in the so-called

  6. Impact of a cyclonic eddy on phytoplankton community structure and photosynthetic competency in the subtropical North Pacific Ocean

    Science.gov (United States)

    Vaillancourt, Robert D.; Marra, John; Seki, Michael P.; Parsons, Michael L.; Bidigare, Robert R.

    2003-07-01

    A synoptic spatial examination of the eddy Haulani (17-20 November 2000) revealed a structure typical of Hawaiian cyclonic eddies with divergent surface flow forcing the upward displacement of deep waters. Hydrographic surveys revealed that surface water in the eddy center was ca. 3.5°C cooler, 0.5 saltier, and 1.4 kg m -3 denser than surface waters outside the eddy. Vertically integrated concentrations of nitrate+nitrite, phosphate and silicate were enhanced over out-eddy values by about 2-fold, and nitrate+nitrite concentrations were ca. 8× greater within the euphotic zone inside the eddy than outside. Si:N ratios were lower within the upper mixed layer of the eddy, indicating an enhanced Si uptake relative to nitrate+nitrite. Chlorophyll a concentrations were higher within the eddy compared to control stations outside, when integrated over the upper 150 m, but were not significantly different when integrated over the depth of the euphotic zone. Photosynthetic competency, assessed using fast repetition-rate fluorometry, varied with the doming of the isopycnals and the supply of macro-nutrients to the euphotic zone. The physical and chemical environment of the eddy selected for the accumulation of larger phytoplankton species. Photosynthetic bacteria ( Prochlorococcus and Synechococcus) and small (3 μm diameter) were more abundant inside the eddy than outside. Diatoms of the genera Rhizosolenia and Hemiaulus outside the eddy contained diazotrophic endosymbiontic cyanobacteria, but these endosymbionts were absent from the cells of these species inside the eddy. The increase in cell numbers of large photosynthetic eukaryotes with hard silica or calcite cell walls is likely to have a profound impact on the proportion of the organic carbon production that is exported to deep water by sinking of senescent cells and cells grazed by herbivorous zooplankton and repackaged as large fecal pellets.

  7. Eukaryotic cell flattening

    Science.gov (United States)

    Bae, Albert; Westendorf, Christian; Erlenkamper, Christoph; Galland, Edouard; Franck, Carl; Bodenschatz, Eberhard; Beta, Carsten

    2010-03-01

    Eukaryotic cell flattening is valuable for improving microscopic observations, ranging from bright field to total internal reflection fluorescence microscopy. In this talk, we will discuss traditional overlay techniques, and more modern, microfluidic based flattening, which provides a greater level of control. We demonstrate these techniques on the social amoebae Dictyostelium discoideum, comparing the advantages and disadvantages of each method.

  8. Autophagy in unicellular eukaryotes

    NARCIS (Netherlands)

    Kiel, J.A.K.W.

    2010-01-01

    Cells need a constant supply of precursors to enable the production of macromolecules to sustain growth and survival. Unlike metazoans, unicellular eukaryotes depend exclusively on the extracellular medium for this supply. When environmental nutrients become depleted, existing cytoplasmic components

  9. Nitrate storage and dissimilatory nitrate reduction by eukaryotic microbes

    DEFF Research Database (Denmark)

    Kamp, Anja; Høgslund, Signe; Risgaard-Petersen, Nils

    2015-01-01

    The microbial nitrogen cycle is one of the most complex and environmentally important element cycles on Earth and has long been thought to be mediated exclusively by prokaryotic microbes. Rather recently, it was discovered that certain eukaryotic microbes are able to store nitrate intracellularly......, suggesting that eukaryotes may rival prokaryotes in terms of dissimilatory nitrate reduction. Finally, this review article sketches some evolutionary perspectives of eukaryotic nitrate metabolism and identifies open questions that need to be addressed in future investigations....... and use it for dissimilatory nitrate reduction in the absence of oxygen. The paradigm shift that this entailed is ecologically significant because the eukaryotes in question comprise global players like diatoms, foraminifers, and fungi. This review article provides an unprecedented overview of nitrate...

  10. Comparative Genomics of Eukaryotes.

    NARCIS (Netherlands)

    Noort, V. van

    2007-01-01

    This thesis focuses on developing comparative genomics methods in eukaryotes, with an emphasis on applications for gene function prediction and regulatory element detection. In the past, methods have been developed to predict functional associations between gene pairs in prokaryotes. The challenge

  11. Effects of gold nanoparticles on the photophysical and photosynthetic parameters of leaves and chloroplasts.

    Science.gov (United States)

    Torres, Rocio; Diz, Virginia E; Lagorio, M Gabriela

    2018-04-18

    Effects of gold nanoparticles (average diameter: 10-14 nm) on leaves and chloroplasts have been studied. Gold nanoparticles (AuNPs) quenched significantly chlorophyll fluorescence when introduced both in intact leaves and isolated chloroplasts. Additionally, the fluorescence spectra corrected for light re-absorption processes showed a net decrease in the fluorescence ratio calculated as the quotient between the maximum fluorescence at 680 and 735 nm. This fact gave evidence for a reduction in the fluorescence emission of the PSII relative to that of the PSI. Strikingly, the photosynthetic parameters derived from the analysis of the slow phase of Kautsky's kinetics, the rate of oxygen evolution and the rate of photo-reduction of 2,6-dichlorophenolindophenol were increased in the presence of AuNPs indicating an apparent greater photosynthetic capacity. The observed results were consistent with an electron transfer process from the excited PSII, which was thermodynamically possible, and which competed with both the electron transport process that initiated photosynthesis and the deactivation of the excited PSII by fluorescence emission. Additionally, it is here explained, in terms of a completely rational kinetic scheme and their corresponding algebraic expressions, why the photosynthetic parameters and the variable and non-variable fluorescence of chlorophyll are modified in a photosynthetic tissue containing gold nanoparticles.

  12. EUPAN enables pan-genome studies of a large number of eukaryotic genomes.

    Science.gov (United States)

    Hu, Zhiqiang; Sun, Chen; Lu, Kuang-Chen; Chu, Xixia; Zhao, Yue; Lu, Jinyuan; Shi, Jianxin; Wei, Chaochun

    2017-08-01

    Pan-genome analyses are routinely carried out for bacteria to interpret the within-species gene presence/absence variations (PAVs). However, pan-genome analyses are rare for eukaryotes due to the large sizes and higher complexities of their genomes. Here we proposed EUPAN, a eukaryotic pan-genome analysis toolkit, enabling automatic large-scale eukaryotic pan-genome analyses and detection of gene PAVs at a relatively low sequencing depth. In the previous studies, we demonstrated the effectiveness and high accuracy of EUPAN in the pan-genome analysis of 453 rice genomes, in which we also revealed widespread gene PAVs among individual rice genomes. Moreover, EUPAN can be directly applied to the current re-sequencing projects primarily focusing on single nucleotide polymorphisms. EUPAN is implemented in Perl, R and C ++. It is supported under Linux and preferred for a computer cluster with LSF and SLURM job scheduling system. EUPAN together with its standard operating procedure (SOP) is freely available for non-commercial use (CC BY-NC 4.0) at http://cgm.sjtu.edu.cn/eupan/index.html . ccwei@sjtu.edu.cn or jianxin.shi@sjtu.edu.cn. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  13. AUG is the only initiation codon in eukaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, F; McKnight, G; Stewart, J W

    1980-01-01

    An analysis of mutants of the yeast Saccharomyces cerevisiae indicates that AUG is the sole codon capable of initiating translation of iso-1-cytochrome c. This result with yeast and the sequence results of numerous eukaryotic genes indicate that AUG is the only initiation codon in eukaryotes; in contrast, results with Escherichia colia and bacteriophages indicate that both AUG and GUG are initiation codons in prokaryotes. The difference can be explained by the lack of the t/sup 6/ A hypermodified nucleoside (N-(9-(..beta..-D-ribofuranosyl)purin-6-ylcarbamoyl)threonine) in prokaryotic initiator tRNA and its presence in eukaryotic initiator tRNA.

  14. Photosynthetic carbon metabolism in freshwater phytoplankton

    International Nuclear Information System (INIS)

    Groeger, A.W.

    1986-01-01

    Photosynthetic carbon metabolism of natural assemblages of freshwater phytoplankton was measured by following the flow of inorganic 14 C into the photosynthetic end products polysaccharide protein, lipid, and soluble metabolites. Data were collected from a wide range of physical, chemical, and trophic conditions in six southern United States reservoirs, with the primary environmental variables of interest being light intensity and nutrient supply. Polysaccharide and protein were consistently the primary products of photosynthetic carbon metabolism, comprising an average of 70% of the total carbon fixation over a wide range of light intensities. Polysaccharide was quantitatively more important at higher light intensities, and protein at lower light intensities, as light intensity varied both with depth within the water column and over diurnal cycles. Polysaccharide synthesis was more variable over the diurnal period than was protein synthesis. Phytoplankton in the downlake epilimnion of Normandy Lake, a central Tennessee reservoir, responded to summer nitrogen (N) deficiency by increasing relative rates of lipid synthesis from 10-15% to 20-25% of the total photosynthetic carbon fixation. Phytoplankton in more nitrogen-sufficient areas of the reservoir maintained lower rates of lipid synthesis throughout the summer. These results document the occurrence in nature of a relationship between N-deficiency and increased lipid synthesis previously observed only in laboratory algal culture studies

  15. Towards a synthetic chloroplast.

    Directory of Open Access Journals (Sweden)

    Christina M Agapakis

    2011-04-01

    Full Text Available The evolution of eukaryotic cells is widely agreed to have proceeded through a series of endosymbiotic events between larger cells and proteobacteria or cyanobacteria, leading to the formation of mitochondria or chloroplasts, respectively. Engineered endosymbiotic relationships between different species of cells are a valuable tool for synthetic biology, where engineered pathways based on two species could take advantage of the unique abilities of each mutualistic partner.We explored the possibility of using the photosynthetic bacterium Synechococcus elongatus PCC 7942 as a platform for studying evolutionary dynamics and for designing two-species synthetic biological systems. We observed that the cyanobacteria were relatively harmless to eukaryotic host cells compared to Escherichia coli when injected into the embryos of zebrafish, Danio rerio, or taken up by mammalian macrophages. In addition, when engineered with invasin from Yersinia pestis and listeriolysin O from Listeria monocytogenes, S. elongatus was able to invade cultured mammalian cells and divide inside macrophages.Our results show that it is possible to engineer photosynthetic bacteria to invade the cytoplasm of mammalian cells for further engineering and applications in synthetic biology. Engineered invasive but non-pathogenic or immunogenic photosynthetic bacteria have great potential as synthetic biological devices.

  16. David and Goliath: chemical perturbation of eukaryotes by bacteria.

    Science.gov (United States)

    Ho, Louis K; Nodwell, Justin R

    2016-03-01

    Environmental microbes produce biologically active small molecules that have been mined extensively as antibiotics and a smaller number of drugs that act on eukaryotic cells. It is known that there are additional bioactives to be discovered from this source. While the discovery of new antibiotics is challenged by the frequent discovery of known compounds, we contend that the eukaryote-active compounds may be less saturated. Indeed, despite there being far fewer eukaryotic-active natural products these molecules interact with a far richer diversity of molecular and cellular targets.

  17. The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria

    Science.gov (United States)

    Di Rienzi, Sara C; Sharon, Itai; Wrighton, Kelly C; Koren, Omry; Hug, Laura A; Thomas, Brian C; Goodrich, Julia K; Bell, Jordana T; Spector, Timothy D; Banfield, Jillian F; Ley, Ruth E

    2013-01-01

    Cyanobacteria were responsible for the oxygenation of the ancient atmosphere; however, the evolution of this phylum is enigmatic, as relatives have not been characterized. Here we use whole genome reconstruction of human fecal and subsurface aquifer metagenomic samples to obtain complete genomes for members of a new candidate phylum sibling to Cyanobacteria, for which we propose the designation ‘Melainabacteria’. Metabolic analysis suggests that the ancestors to both lineages were non-photosynthetic, anaerobic, motile, and obligately fermentative. Cyanobacterial light sensing may have been facilitated by regulators present in the ancestor of these lineages. The subsurface organism has the capacity for nitrogen fixation using a nitrogenase distinct from that in Cyanobacteria, suggesting nitrogen fixation evolved separately in the two lineages. We hypothesize that Cyanobacteria split from Melainabacteria prior or due to the acquisition of oxygenic photosynthesis. Melainabacteria remained in anoxic zones and differentiated by niche adaptation, including for symbiosis in the mammalian gut. DOI: http://dx.doi.org/10.7554/eLife.01102.001 PMID:24137540

  18. Oxygen concentration inside a functioning photosynthetic cell.

    Science.gov (United States)

    Kihara, Shigeharu; Hartzler, Daniel A; Savikhin, Sergei

    2014-05-06

    The excess oxygen concentration in the photosynthetic membranes of functioning oxygenic photosynthetic cells was estimated using classical diffusion theory combined with experimental data on oxygen production rates of cyanobacterial cells. The excess oxygen concentration within the plesiomorphic cyanobacterium Gloeobactor violaceus is only 0.025 μM, or four orders of magnitude lower than the oxygen concentration in air-saturated water. Such a low concentration suggests that the first oxygenic photosynthetic bacteria in solitary form could have evolved ∼2.8 billion years ago without special mechanisms to protect them against reactive oxygen species. These mechanisms instead could have been developed during the following ∼500 million years while the oxygen level in the Earth's atmosphere was slowly rising. Excess oxygen concentrations within individual cells of the apomorphic cyanobacteria Synechocystis and Synechococcus are 0.064 and 0.25 μM, respectively. These numbers suggest that intramembrane and intracellular proteins in isolated oxygenic photosynthetic cells are not subjected to excessively high oxygen levels. The situation is different for closely packed colonies of photosynthetic cells. Calculations show that the excess concentration within colonies that are ∼40 μm or larger in diameter can be comparable to the oxygen concentration in air-saturated water, suggesting that species forming colonies require protection against reactive oxygen species even in the absence of oxygen in the surrounding atmosphere. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Reproduction, symbiosis, and the eukaryotic cell

    Science.gov (United States)

    Godfrey-Smith, Peter

    2015-01-01

    This paper develops a conceptual framework for addressing questions about reproduction, individuality, and the units of selection in symbiotic associations, with special attention to the origin of the eukaryotic cell. Three kinds of reproduction are distinguished, and a possible evolutionary sequence giving rise to a mitochondrion-containing eukaryotic cell from an endosymbiotic partnership is analyzed as a series of transitions between each of the three forms of reproduction. The sequence of changes seen in this “egalitarian” evolutionary transition is compared with those that apply in “fraternal” transitions, such as the evolution of multicellularity in animals. PMID:26286983

  20. Massive expansion of the calpain gene family in unicellular eukaryotes

    Directory of Open Access Journals (Sweden)

    Zhao Sen

    2012-09-01

    Full Text Available Abstract Background Calpains are Ca2+-dependent cysteine proteases that participate in a range of crucial cellular processes. Dysfunction of these enzymes may cause, for instance, life-threatening diseases in humans, the loss of sex determination in nematodes and embryo lethality in plants. Although the calpain family is well characterized in animal and plant model organisms, there is a great lack of knowledge about these genes in unicellular eukaryote species (i.e. protists. Here, we study the distribution and evolution of calpain genes in a wide range of eukaryote genomes from major branches in the tree of life. Results Our investigations reveal 24 types of protein domains that are combined with the calpain-specific catalytic domain CysPc. In total we identify 41 different calpain domain architectures, 28 of these domain combinations have not been previously described. Based on our phylogenetic inferences, we propose that at least four calpain variants were established in the early evolution of eukaryotes, most likely before the radiation of all the major supergroups of eukaryotes. Many domains associated with eukaryotic calpain genes can be found among eubacteria or archaebacteria but never in combination with the CysPc domain. Conclusions The analyses presented here show that ancient modules present in prokaryotes, and a few de novo eukaryote domains, have been assembled into many novel domain combinations along the evolutionary history of eukaryotes. Some of the new calpain genes show a narrow distribution in a few branches in the tree of life, likely representing lineage-specific innovations. Hence, the functionally important classical calpain genes found among humans and vertebrates make up only a tiny fraction of the calpain family. In fact, a massive expansion of the calpain family occurred by domain shuffling among unicellular eukaryotes and contributed to a wealth of functionally different genes.

  1. Massive expansion of the calpain gene family in unicellular eukaryotes.

    Science.gov (United States)

    Zhao, Sen; Liang, Zhe; Demko, Viktor; Wilson, Robert; Johansen, Wenche; Olsen, Odd-Arne; Shalchian-Tabrizi, Kamran

    2012-09-29

    Calpains are Ca2+-dependent cysteine proteases that participate in a range of crucial cellular processes. Dysfunction of these enzymes may cause, for instance, life-threatening diseases in humans, the loss of sex determination in nematodes and embryo lethality in plants. Although the calpain family is well characterized in animal and plant model organisms, there is a great lack of knowledge about these genes in unicellular eukaryote species (i.e. protists). Here, we study the distribution and evolution of calpain genes in a wide range of eukaryote genomes from major branches in the tree of life. Our investigations reveal 24 types of protein domains that are combined with the calpain-specific catalytic domain CysPc. In total we identify 41 different calpain domain architectures, 28 of these domain combinations have not been previously described. Based on our phylogenetic inferences, we propose that at least four calpain variants were established in the early evolution of eukaryotes, most likely before the radiation of all the major supergroups of eukaryotes. Many domains associated with eukaryotic calpain genes can be found among eubacteria or archaebacteria but never in combination with the CysPc domain. The analyses presented here show that ancient modules present in prokaryotes, and a few de novo eukaryote domains, have been assembled into many novel domain combinations along the evolutionary history of eukaryotes. Some of the new calpain genes show a narrow distribution in a few branches in the tree of life, likely representing lineage-specific innovations. Hence, the functionally important classical calpain genes found among humans and vertebrates make up only a tiny fraction of the calpain family. In fact, a massive expansion of the calpain family occurred by domain shuffling among unicellular eukaryotes and contributed to a wealth of functionally different genes.

  2. Acquired versus Non-Acquired Subsidiaries - Which Entry Mode do Parent Firms Prefer

    OpenAIRE

    Esther Kalkbrenner

    2010-01-01

    Despite the economic importance of international foreign direct investment (FDI) flows, investment decisions of multinational firms are not well understood. A multinational firm can establish a subsidiary in a foreign country through greenfield investment or through acquiring an existing firm in the target country. The goal of this paper is to shed some light on the determinants of foreign market entry modes. In particular to analyze the systematic variation in the mode choice of FDI, namely ...

  3. Tufted hairgrass (Deschampsia caespitosa) exhibits a lower photosynthetic plasticity than Antarctic hairgrass (D. antarctica).

    Science.gov (United States)

    Bystrzejewska-Piotrowska, Grazyna; Urban, Pawel L

    2009-06-01

    The aim of our work was to assess photosynthetic plasticity of two hairgrass species with different ecological origins (a temperate zone species, Deschampsia caespitosa (L.) Beauv. and an Antarctic species, D. antarctica) and to consider how the anticipated climate change may affect vitality of these plants. Measurements of chlorophyll fluorescence showed that the photosystem II (PSII) quantum efficiency of D. caespitosa decreased during 4 d of incubation at 4 degrees C but it remained stable in D. antarctica. The fluorescence half-rise times were almost always lower in D. caespitosa than in D. antarctica, irrespective of the incubation temperature. These results indicate that the photosynthetic apparatus of D. caespitosa has poorer performance in these conditions. D. caespitosa reached the maximum photosynthesis rate at a higher temperature than D. antarctica although the values obtained at 8 degrees C were similar in both species. The photosynthetic water-use efficiency (photosynthesis-to-transpiration ratio, P/E) emerges as an important factor demonstrating presence of mechanisms which facilitate functioning of a plant in non-optimal conditions. Comparison of the P/E values, which were higher in D. antarctica than in D. caespitosa at low and medium temperatures, confirms a high degree of adjustability of the photosynthetic apparatus in D. antarctica and unveils the lack of such a feature in D. caespitosa.

  4. topIb, a phylogenetic hallmark gene of Thaumarchaeota encodes a functional eukaryote-like topoisomerase IB.

    Science.gov (United States)

    Dahmane, Narimane; Gadelle, Danièle; Delmas, Stéphane; Criscuolo, Alexis; Eberhard, Stephan; Desnoues, Nicole; Collin, Sylvie; Zhang, Hongliang; Pommier, Yves; Forterre, Patrick; Sezonov, Guennadi

    2016-04-07

    Type IB DNA topoisomerases can eliminate torsional stresses produced during replication and transcription. These enzymes are found in all eukaryotes and a short version is present in some bacteria and viruses. Among prokaryotes, the long eukaryotic version is only observed in archaea of the phylum Thaumarchaeota. However, the activities and the roles of these topoisomerases have remained an open question. Here, we demonstrate that all available thaumarchaeal genomes contain a topoisomerase IB gene that defines a monophyletic group closely related to the eukaryotic enzymes. We show that the topIB gene is expressed in the model thaumarchaeon Nitrososphaera viennensis and we purified the recombinant enzyme from the uncultivated thaumarchaeon Candidatus Caldiarchaeum subterraneum. This enzyme is active in vitro at high temperature, making it the first thermophilic topoisomerase IB characterized so far. We have compared this archaeal type IB enzyme to its human mitochondrial and nuclear counterparts. The archaeal enzyme relaxes both negatively and positively supercoiled DNA like the eukaryotic enzymes. However, its pattern of DNA cleavage specificity is different and it is resistant to camptothecins (CPTs) and non-CPT Top1 inhibitors, LMP744 and lamellarin D. This newly described thermostable topoisomerases IB should be a promising new model for evolutionary, mechanistic and structural studies. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Non-linear mixed-effects modeling for photosynthetic response of Rosa hybrida L. under elevated CO2 in greenhouses - Short communication

    DEFF Research Database (Denmark)

    Öztürk, I.; Ottosen, C.O.; Ritz, C.

    2011-01-01

    Photosynthetic response to light was measured on the leaves of two cultivars of Rosa hybrida L. (Escimo and Mercedes) in the greenhouse to obtain light-response curves and their parameters. Th e aim was to use a model to simulate leaf photosynthetic carbon gain with respect to environmental condi...

  6. Excitons in intact cells of photosynthetic bacteria.

    Science.gov (United States)

    Freiberg, Arvi; Pajusalu, Mihkel; Rätsep, Margus

    2013-09-26

    Live cells and regular crystals seem fundamentally incompatible. Still, effects characteristic to ideal crystals, such as coherent sharing of excitation, have been recently used in many studies to explain the behavior of several photosynthetic complexes, especially the inner workings of the light-harvesting apparatus of the oldest known photosynthetic organisms, the purple bacteria. To this date, there has been no concrete evidence that the same effects are instrumental in real living cells, leaving a possibility that this is an artifact of unnatural study conditions, not a real effect relevant to the biological operation of bacteria. Hereby, we demonstrate survival of collective coherent excitations (excitons) in intact cells of photosynthetic purple bacteria. This is done by using excitation anisotropy spectroscopy for tracking the temperature-dependent evolution of exciton bands in light-harvesting systems of increasing structural complexity. The temperature was gradually raised from 4.5 K to ambient temperature, and the complexity of the systems ranged from detergent-isolated complexes to complete bacterial cells. The results provide conclusive evidence that excitons are indeed one of the key elements contributing to the energetic and dynamic properties of photosynthetic organisms.

  7. Neural Network Prediction of Translation Initiation Sites in Eukaryotes: Perspectives for EST and Genome analysis

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Nielsen, Henrik

    1997-01-01

    Translation in eukaryotes does not always start at the first AUG in an mRNA, implying that context information also plays a role.This makes prediction of translation initiation sites a non-trivial task, especially when analysing EST and genome data where the entire mature mRNA sequence is not known...

  8. Arsenic and Antimony Transporters in Eukaryotes

    Directory of Open Access Journals (Sweden)

    Ewa Maciaszczyk-Dziubinska

    2012-03-01

    Full Text Available Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters.

  9. Arsenic and Antimony Transporters in Eukaryotes

    Science.gov (United States)

    Maciaszczyk-Dziubinska, Ewa; Wawrzycka, Donata; Wysocki, Robert

    2012-01-01

    Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters. PMID:22489166

  10. Complex multicellular functions at a unicellular eukaryote level: Learning, memory, and immunity.

    Science.gov (United States)

    Csaba, György

    2017-06-01

    According to experimental data, eukaryote unicellulars are able to learn, have immunity and memory. Learning is carried out in a very primitive form, and the memory is not neural but an epigenetic one. However, this epigenetic memory, which is well justified by the presence and manifestation of hormonal imprinting, is strong and permanent in the life of cell and also in its progenies. This memory is epigenetically executed by the alteration and fixation of methylation pattern of genes without changes in base sequences. The immunity of unicellulars is based on self/non-self discrimination, which leads to the destruction of non-self invaders and utilization of them as nourishment (by phagocytosis). The tools of learning, memory, and immunity of unicellulars are uniformly found in plasma membrane receptors, which formed under the effect of dynamic receptor pattern generation, suggested by Koch et al., and this is the basis of hormonal imprinting, by which the encounter between a chemical substance and the cell is specifically memorized. The receptors and imprinting are also used in the later steps of evolution up to mammals (including man) in each mentioned functions. This means that learning, memory, and immunity can be deduced to a unicellular eukaryote level.

  11. Seasonal photosynthetic activity in evergreen conifer leaves monitored with spectral reflectance

    Science.gov (United States)

    Wong, C. Y.; Gamon, J. A.

    2013-12-01

    Boreal evergreen conifers must maintain photosynthetic systems in environments where temperatures vary greatly across seasons from high temperatures in the summer to freezing levels in the winter. This involves seasonal downregulation and photoprotection during periods of extreme temperatures. To better understand this downregulation, seasonal dynamics of photosynthesis of lodgepole (Pinus contorta D.) and ponderosa pine (Pinus ponderosa D.) were monitored in Edmonton, Canada over two years. Spectral reflectance at the leaf and stand scales was measured weekly and the Photochemical Reflectance Index (PRI), often used as a proxy for chlorophyll and carotenoid pigment levels and photosynthetic light-use efficiency (LUE), was used to track the seasonal dynamics of photosynthetic activity. Additional physiological measurements included leaf pigment content, chlorophyll fluorescence, and gas exchange. All the metrics indicate large seasonal changes in photosynthetic activity, with a sharp transition from winter downregulation to active photosynthesis in the spring and a more gradual fall transition into winter. The PRI was a good indicator of several other variables including seasonally changing photosynthetic activity, chlorophyll fluorescence, photosynthetic LUE, and pigment pool sizes. Over the two-year cycle, PRI was primarily driven by changes in constitutive (chlorophyll:carotenoid) pigment levels correlated with seasonal photosynthetic activity, with a much smaller variation caused by diurnal changes in xanthophyll cycle activity (conversion between violaxanthin & zeaxanthin). Leaf and canopy scale PRI measurements exhibited parallel responses during the winter-spring transition. Together, our findings indicate that evergreen conifers photosynthetic system possesses a remarkable degree of resilience in response to large temperature changes across seasons, and that optical remote sensing can be used to observe the seasonal effects on photosynthesis and

  12. Photoprotection by carotenoids of Plantago media photosynthetic apparatus in natural conditions.

    Science.gov (United States)

    Golovko, Tamara; Dymova, Olga; Zakhozhiy, Ilya; Dalke, Igor; Tabalenkova, Galina

    2012-01-01

    The study of daily changes in photosynthetic rate, of energy used in photochemical and non-photochemical processes, and of carotenoid composition aimed at evaluating the role of xanthophyll cycle (XC) in protection of hoary plantain plants (Plantago media) in nature. The leaves of sun plants differed from shade plants in terms of CO(2) exchange rate and photosynthetic pigments content. The total pool XC pigments and the conversion state increased from morning to midday in sun plants. An increase in zeaxanthin content occurred concomitantly with the violaxanthin decrease. About 80% violaxanthin was involved in conversion. The maximum of zeaxanthin in XC pigments pool was 60%. The conversion state of XC was twice as lower in shade plants than that in sun plants. The photosynthesis of sun leaves was depressed strongly at midday, but changes of maximum quantum yield of PS2 (F(v)/F(m)) were not apparent at that time. The coefficient qN (non-photochemical quenching) in the sun leaves changed strongly, from 0.3 to 0.9 as irradiance increased. The direct relation between heat dissipation and the conversion state of XC in plantain leaves was revealed. Thus, plantain leaves were found to be resistant to excess solar radiation due to activation of qN mechanisms associated with the XC de-epoxidation.

  13. A Synthetic Biology Framework for Programming Eukaryotic Transcription Functions

    Science.gov (United States)

    Khalil, Ahmad S.; Lu, Timothy K.; Bashor, Caleb J.; Ramirez, Cherie L.; Pyenson, Nora C.; Joung, J. Keith; Collins, James J.

    2013-01-01

    SUMMARY Eukaryotic transcription factors (TFs) perform complex and combinatorial functions within transcriptional networks. Here, we present a synthetic framework for systematically constructing eukaryotic transcription functions using artificial zinc fingers, modular DNA-binding domains found within many eukaryotic TFs. Utilizing this platform, we construct a library of orthogonal synthetic transcription factors (sTFs) and use these to wire synthetic transcriptional circuits in yeast. We engineer complex functions, such as tunable output strength and transcriptional cooperativity, by rationally adjusting a decomposed set of key component properties, e.g., DNA specificity, affinity, promoter design, protein-protein interactions. We show that subtle perturbations to these properties can transform an individual sTF between distinct roles (activator, cooperative factor, inhibitory factor) within a transcriptional complex, thus drastically altering the signal processing behavior of multi-input systems. This platform provides new genetic components for synthetic biology and enables bottom-up approaches to understanding the design principles of eukaryotic transcriptional complexes and networks. PMID:22863014

  14. Apparatus and method for measuring single cell and sub-cellular photosynthetic efficiency

    Science.gov (United States)

    Davis, Ryan Wesley; Singh, Seema; Wu, Huawen

    2013-07-09

    Devices for measuring single cell changes in photosynthetic efficiency in algal aquaculture are disclosed that include a combination of modulated LED trans-illumination of different intensities with synchronized through objective laser illumination and confocal detection. Synchronization and intensity modulation of a dual illumination scheme were provided using a custom microcontroller for a laser beam block and constant current LED driver. Therefore, single whole cell photosynthetic efficiency, and subcellular (diffraction limited) photosynthetic efficiency measurement modes are permitted. Wide field rapid light scanning actinic illumination is provided for both by an intensity modulated 470 nm LED. For the whole cell photosynthetic efficiency measurement, the same LED provides saturating pulses for generating photosynthetic induction curves. For the subcellular photosynthetic efficiency measurement, a switched through objective 488 nm laser provides saturating pulses for generating photosynthetic induction curves. A second near IR LED is employed to generate dark adapted states in the system under study.

  15. Structure and Mechanism of a Eukaryotic FMN Adenylyltransferase

    OpenAIRE

    Huerta, Carlos; Borek, Dominika; Machius, Mischa; Grishin, Nick V.; Zhang, Hong

    2009-01-01

    Flavin mononucleotide adenylyltransferase (FMNAT) catalyzes the formation of the essential flavocoenzyme FAD and plays an important role in flavocoenzyme homeostasis regulation. By sequence comparison, bacterial and eukaryotic FMNAT enzymes belong to two different protein superfamilies and apparently utilize different set of active site residues to accomplish the same chemistry. Here we report the first structural characterization of a eukaryotic FMNAT from a pathogenic yeast Candida glabrata...

  16. Sustained photosynthetic performance of Coffea spp. under long-term enhanced [CO2].

    Directory of Open Access Journals (Sweden)

    José C Ramalho

    Full Text Available Coffee is one of the world's most traded agricultural products. Modeling studies have predicted that climate change will have a strong impact on the suitability of current cultivation areas, but these studies have not anticipated possible mitigating effects of the elevated atmospheric [CO2] because no information exists for the coffee plant. Potted plants from two genotypes of Coffea arabica and one of C. canephora were grown under controlled conditions of irradiance (800 μmol m(-2 s(-1, RH (75% and 380 or 700 μL CO2 L(-1 for 1 year, without water, nutrient or root development restrictions. In all genotypes, the high [CO2] treatment promoted opposite trends for stomatal density and size, which decreased and increased, respectively. Regardless of the genotype or the growth [CO2], the net rate of CO2 assimilation increased (34-49% when measured at 700 than at 380 μL CO2 L(-1. This result, together with the almost unchanged stomatal conductance, led to an instantaneous water use efficiency increase. The results also showed a reinforcement of photosynthetic (and respiratory components, namely thylakoid electron transport and the activities of RuBisCo, ribulose 5-phosphate kinase, malate dehydrogenase and pyruvate kinase, what may have contributed to the enhancements in the maximum rates of electron transport, carboxylation and photosynthetic capacity under elevated [CO2], although these responses were genotype dependent. The photosystem II efficiency, energy driven to photochemical events, non-structural carbohydrates, photosynthetic pigment and membrane permeability did not respond to [CO2] supply. Some alterations in total fatty acid content and the unsaturation level of the chloroplast membranes were noted but, apparently, did not affect photosynthetic functioning. Despite some differences among the genotypes, no clear species-dependent responses to elevated [CO2] were observed. Overall, as no apparent sign of photosynthetic down

  17. Sustained Photosynthetic Performance of Coffea spp. under Long-Term Enhanced [CO2

    Science.gov (United States)

    Ramalho, José C.; Rodrigues, Ana P.; Semedo, José N.; Pais, Isabel P.; Martins, Lima D.; Simões-Costa, Maria C.; Leitão, António E.; Fortunato, Ana S.; Batista-Santos, Paula; Palos, Isabel M.; Tomaz, Marcelo A.; Scotti-Campos, Paula; Lidon, Fernando C.; DaMatta, Fábio M.

    2013-01-01

    Coffee is one of the world’s most traded agricultural products. Modeling studies have predicted that climate change will have a strong impact on the suitability of current cultivation areas, but these studies have not anticipated possible mitigating effects of the elevated atmospheric [CO2] because no information exists for the coffee plant. Potted plants from two genotypes of Coffea arabica and one of C. canephora were grown under controlled conditions of irradiance (800 μmol m-2 s-1), RH (75%) and 380 or 700 μL CO2 L-1 for 1 year, without water, nutrient or root development restrictions. In all genotypes, the high [CO2] treatment promoted opposite trends for stomatal density and size, which decreased and increased, respectively. Regardless of the genotype or the growth [CO2], the net rate of CO2 assimilation increased (34-49%) when measured at 700 than at 380 μL CO2 L-1. This result, together with the almost unchanged stomatal conductance, led to an instantaneous water use efficiency increase. The results also showed a reinforcement of photosynthetic (and respiratory) components, namely thylakoid electron transport and the activities of RuBisCo, ribulose 5-phosphate kinase, malate dehydrogenase and pyruvate kinase, what may have contributed to the enhancements in the maximum rates of electron transport, carboxylation and photosynthetic capacity under elevated [CO2], although these responses were genotype dependent. The photosystem II efficiency, energy driven to photochemical events, non-structural carbohydrates, photosynthetic pigment and membrane permeability did not respond to [CO2] supply. Some alterations in total fatty acid content and the unsaturation level of the chloroplast membranes were noted but, apparently, did not affect photosynthetic functioning. Despite some differences among the genotypes, no clear species-dependent responses to elevated [CO2] were observed. Overall, as no apparent sign of photosynthetic down-regulation was found, our data

  18. Endosulfan induced changes in growth rate, pigment composition and photosynthetic activity of mosquito fern Azolla microphylla

    Directory of Open Access Journals (Sweden)

    Raja W.

    2012-11-01

    Full Text Available This paper is the first in a series reporting a study on the effects of different concentrations of insecticide, Endosulfan (0-600ppm was premeditated on 5th day after insecticide exposure with respect to growth rate, pigment composition and photosynthetic activity of Azolla microphylla under laboratory conditions which become non-target organism in the rice fields. Endosulfan inhibited the relative growth rate, pigment content and photosynthetic O2 evolution. Phycocyanin was main target followed by carotenoid and total chlorophyll. Significant increase in pigment, flavonoid and Anthocyanin was noticed after six days of treatment. In contrast to the photosynthetic activity, the rate of respiration in Azolla microphylla was increased significantly. Our results show that Endosulfan at normally recommended field rates and intervals are seldom deleterious to the beneficial and Eco friendly Azolla microphylla and their activities and thus in turn suppress plant growth and development. Phytotoxity of Azolla microphylla can be minimized by restrictions on application, timing, method and rate of application.

  19. Acute toxicity of excess mercury on the photosynthetic performance of cyanobacterium, S. platensis--assessment by chlorophyll fluorescence analysis.

    Science.gov (United States)

    Lu, C M; Chau, C W; Zhang, J H

    2000-07-01

    Measurement of chlorophyll fluorescence has been shown to be a rapid, non-invasive, and reliable method to assess photosynthetic performance in a changing environment. In this study, acute toxicity of excess Hg on the photosynthetic performance of the cyanobacterium S. platensis, was investigated by use of chlorophyll fluorescence analysis after cells were exposed to excess Hg (up to 20 microM) for 2 h. The results determined from the fast fluorescence kinetics showed that Hg induced a significant increase in the proportion of the Q(B)-non-reducing PSII reaction centers. The fluorescence parameters measured under the steady state of photosynthesis demonstrated that the increase of Hg concentration led to a decrease in the maximal efficiency of PSII photochemistry, the efficiency of excitation energy capture by the open PSII reaction centers, and the quantum yield of PSII electron transport. Mercury also resulted in a decrease in the coefficients of photochemical and non-photochemical quenching. Mercury may have an acute toxicity on cyanobacteria by inhibiting the quantum yield of photosynthesis sensitively and rapidly. Such changes occurred before any other visible damages that may be evaluated by other conventional measurements. Our results also demonstrated that chlorophyll fluorescence analysis can be used as a useful physiological tool to assess early stages of change in photosynthetic performance of algae in response to heavy metal pollution.

  20. Photosynthetic performance of restored and natural mangroves under different environmental constraints.

    Science.gov (United States)

    Rovai, André Scarlate; Barufi, José Bonomi; Pagliosa, Paulo Roberto; Scherner, Fernando; Torres, Moacir Aluísio; Horta, Paulo Antunes; Simonassi, José Carlos; Quadros, Daiane Paula Cunha; Borges, Daniel Lázaro Gallindo; Soriano-Sierra, Eduardo Juan

    2013-10-01

    We hypothesized that the photosynthetic performance of mangrove stands restored by the single planting of mangroves species would be lowered due to residual stressors. The photosynthetic parameters of the vegetation of three planted mangrove stands, each with a different disturbance history, were compared to reference sites and correlated with edaphic environmental variables. A permutational analysis of variance showed significant interaction when the factors were compared, indicating that the photosynthetic parameters of the restoration areas differed from the reference sites. A univariate analysis of variance showed that all the photosynthetic parameters differed between sites and treatments, except for photosynthetic efficiency (αETR). The combination of environmental variables that best explained the variations observed in the photosynthetic performance indicators were Cu, Pb and elevation disruptions. Fluorescence techniques proved efficient in revealing important physiological differences, representing a powerful tool for rapid analysis of the effectiveness of initiatives aimed at restoring coastal environments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses.

    Science.gov (United States)

    Rasala, Beth A; Mayfield, Stephen P

    2015-03-01

    Recombinant proteins are widely used for industrial, nutritional, and medical applications. Green microalgae have attracted considerable attention recently as a biomanufacturing platform for the production of recombinant proteins for a number of reasons. These photosynthetic eukaryotic microorganisms are safe, scalable, easy to genetically modify through transformation, mutagenesis, or breeding, and inexpensive to grow. Many microalgae species are genetically transformable, but the green alga Chlamydomonas reinhardtii is the most widely used host for recombinant protein expression. An extensive suite of molecular genetic tools has been developed for C. reinhardtii over the last 25 years, including a fully sequenced genome, well-established methods for transformation, mutagenesis and breeding, and transformation vectors for high levels of recombinant protein accumulation and secretion. Here, we review recent successes in the development of C. reinhardtii as a biomanufacturing host for recombinant proteins, including antibodies and immunotoxins, hormones, industrial enzymes, an orally-active colostral protein for gastrointestinal health, and subunit vaccines. In addition, we review the biomanufacturing potential of other green algae from the genera Dunaliella and Chlorella.

  2. Defensins: antifungal lessons from eukaryotes

    Directory of Open Access Journals (Sweden)

    Patrícia M. Silva

    2014-03-01

    Full Text Available Over the last years, antimicrobial peptides (AMPs have been the focus of intense research towards the finding of a viable alternative to current antifungal drugs. Defensins are one of the major families of AMPs and the most represented among all eukaryotic groups, providing an important first line of host defense against pathogenic microorganisms. Several of these cysteine-stabilized peptides present a relevant effect against fungi. Defensins are the AMPs with the broader distribution across all eukaryotic kingdoms, namely, Fungi, Plantæ and Animalia, and were recently shown to have an ancestor in a bacterial organism. As a part of the host defense, defensins act as an important vehicle of information between innate and adaptive immune system and have a role in immunomodulation. This multidimensionality represents a powerful host shield, hard for microorganisms to overcome using single approach resistance strategies. Pathogenic fungi resistance to conventional antimycotic drugs is becoming a major problem. Defensins, as other AMPs, have shown to be an effective alternative to the current antimycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. In this review, we summarize the current knowledge on some eukaryotic defensins with antifungal action. An overview of the main targets in the fungal cell and the mechanism of action of these AMPs (namely, the selectivity for some fungal membrane components are presented. Additionally, recent works on antifungal defensins structure, activity and citotoxicity are also reviewed.

  3. Oxygen Concentration Inside a Functioning Photosynthetic Cell

    OpenAIRE

    Kihara, Shigeharu; Hartzler, Daniel A.; Savikhin, Sergei

    2014-01-01

    The excess oxygen concentration in the photosynthetic membranes of functioning oxygenic photosynthetic cells was estimated using classical diffusion theory combined with experimental data on oxygen production rates of cyanobacterial cells. The excess oxygen concentration within the plesiomorphic cyanobacterium Gloeobactor violaceus is only 0.025 μM, or four orders of magnitude lower than the oxygen concentration in air-saturated water. Such a low concentration suggests that the first oxygenic...

  4. Ultrafast fluorescence of photosynthetic crystals and light-harvesting complexes

    NARCIS (Netherlands)

    Oort, van B.F.

    2008-01-01

    This thesis focuses on the study of photosynthetic pigment protein complexes using time resolved fluorescence techniques. Fluorescence spectroscopy often requires attaching fluorescent labels to the proteins under investigation. With photosynthetic proteins this is not necessary, because these

  5. Archaeal “Dark Matter” and the Origin of Eukaryotes

    Science.gov (United States)

    Williams, Tom A.; Embley, T. Martin

    2014-01-01

    Current hypotheses about the history of cellular life are mainly based on analyses of cultivated organisms, but these represent only a small fraction of extant biodiversity. The sequencing of new environmental lineages therefore provides an opportunity to test, revise, or reject existing ideas about the tree of life and the origin of eukaryotes. According to the textbook three domains hypothesis, the eukaryotes emerge as the sister group to a monophyletic Archaea. However, recent analyses incorporating better phylogenetic models and an improved sampling of the archaeal domain have generally supported the competing eocyte hypothesis, in which core genes of eukaryotic cells originated from within the Archaea, with important implications for eukaryogenesis. Given this trend, it was surprising that a recent analysis incorporating new genomes from uncultivated Archaea recovered a strongly supported three domains tree. Here, we show that this result was due in part to the use of a poorly fitting phylogenetic model and also to the inclusion by an automated pipeline of genes of putative bacterial origin rather than nucleocytosolic versions for some of the eukaryotes analyzed. When these issues were resolved, analyses including the new archaeal lineages placed core eukaryotic genes within the Archaea. These results are consistent with a number of recent studies in which improved archaeal sampling and better phylogenetic models agree in supporting the eocyte tree over the three domains hypothesis. PMID:24532674

  6. A Helicobacter pylori Homolog of Eukaryotic Flotillin Is Involved in Cholesterol Accumulation, Epithelial Cell Responses and Host Colonization

    Directory of Open Access Journals (Sweden)

    Melanie L. Hutton

    2017-06-01

    Full Text Available The human pathogen Helicobacter pylori acquires cholesterol from membrane raft domains in eukaryotic cells, commonly known as “lipid rafts.” Incorporation of this cholesterol into the H. pylori cell membrane allows the bacterium to avoid clearance by the host immune system and to resist the effects of antibiotics and antimicrobial peptides. The presence of cholesterol in H. pylori bacteria suggested that this pathogen may have cholesterol-enriched domains within its membrane. Consistent with this suggestion, we identified a hypothetical H. pylori protein (HP0248 with homology to the flotillin proteins normally found in the cholesterol-enriched domains of eukaryotic cells. As shown for eukaryotic flotillin proteins, HP0248 was detected in detergent-resistant membrane fractions of H. pylori. Importantly, H. pylori HP0248 mutants contained lower levels of cholesterol than wild-type bacteria (P < 0.01. HP0248 mutant bacteria also exhibited defects in type IV secretion functions, as indicated by reduced IL-8 responses and CagA translocation in epithelial cells (P < 0.05, and were less able to establish a chronic infection in mice than wild-type bacteria (P < 0.05. Thus, we have identified an H. pylori flotillin protein and shown its importance for bacterial virulence. Taken together, the data demonstrate important roles for H. pylori flotillin in host-pathogen interactions. We propose that H. pylori flotillin may be required for the organization of virulence proteins into membrane raft-like structures in this pathogen.

  7. Seasonal changes in the communities of photosynthetic picoeukaryotes in Ofunato Bay as revealed by shotgun metagenomic sequencing

    KAUST Repository

    Rashid, Jonaira; Kobiyama, Atsushi; Reza, Md. Shaheed; Yamada, Yuichiro; Ikeda, Yuri; Ikeda, Daisuke; Mizusawa, Nanami; Ikeo, Kazuho; Sato, Shigeru; Ogata, Takehiko; Kudo, Toshiaki; Kaga, Shinnosuke; Watanabe, Shiho; Naiki, Kimiaki; Kaga, Yoshimasa; Mineta, Katsuhiko; Bajic, Vladimir B.; Gojobori, Takashi; Watabe, Shugo

    2018-01-01

    Small photosynthetic eukaryotes play important roles in oceanic food webs in coastal regions. We investigated seasonal changes in the communities of photosynthetic picoeukaryotes (PPEs) of the class Mamiellophyceae, including the genera Bathycoccus, Micromonas and Ostreococcus, in Ofunato Bay, which is located in northeastern Japan and faces the Pacific Ocean. The abundances of PPEs were assessed over a period of one year in 2015 at three sampling stations, KSt. 1 (innermost bay area), KSt. 2 (middle bay area) and KSt. 3 (bay entrance area) at depths of 1 m (KSt. 1, KSt. 2 and KSt. 3), 8 m (KSt. 1) or 10 m (KSt. 2 and KSt. 3) by employing MiSeq shotgun metagenomic sequencing. The total abundances of Bathycoccus, Ostreococcus and Micromonas were in the ranges of 42–49%, 35–49% and 13–17%, respectively. Considering all assayed sampling stations and depths, seasonal changes revealed high abundances of PPEs during the winter and summer and low abundances during late winter to early spring and late summer to early autumn. Bathycoccus was most abundant in the winter, and Ostreococcus showed a high abundance during the summer. Another genus, Micromonas, was relatively low in abundance throughout the study period. Taken together with previously suggested blooming periods of phytoplankton, as revealed by chlorophyll a concentrations in Ofunato Bay during spring and late autumn, these results for PPEs suggest that greater phytoplankton blooming has a negative influence on the seasonal occurrences of PPEs in the bay.

  8. Seasonal changes in the communities of photosynthetic picoeukaryotes in Ofunato Bay as revealed by shotgun metagenomic sequencing

    KAUST Repository

    Rashid, Jonaira

    2018-04-30

    Small photosynthetic eukaryotes play important roles in oceanic food webs in coastal regions. We investigated seasonal changes in the communities of photosynthetic picoeukaryotes (PPEs) of the class Mamiellophyceae, including the genera Bathycoccus, Micromonas and Ostreococcus, in Ofunato Bay, which is located in northeastern Japan and faces the Pacific Ocean. The abundances of PPEs were assessed over a period of one year in 2015 at three sampling stations, KSt. 1 (innermost bay area), KSt. 2 (middle bay area) and KSt. 3 (bay entrance area) at depths of 1 m (KSt. 1, KSt. 2 and KSt. 3), 8 m (KSt. 1) or 10 m (KSt. 2 and KSt. 3) by employing MiSeq shotgun metagenomic sequencing. The total abundances of Bathycoccus, Ostreococcus and Micromonas were in the ranges of 42–49%, 35–49% and 13–17%, respectively. Considering all assayed sampling stations and depths, seasonal changes revealed high abundances of PPEs during the winter and summer and low abundances during late winter to early spring and late summer to early autumn. Bathycoccus was most abundant in the winter, and Ostreococcus showed a high abundance during the summer. Another genus, Micromonas, was relatively low in abundance throughout the study period. Taken together with previously suggested blooming periods of phytoplankton, as revealed by chlorophyll a concentrations in Ofunato Bay during spring and late autumn, these results for PPEs suggest that greater phytoplankton blooming has a negative influence on the seasonal occurrences of PPEs in the bay.

  9. Isolation and characterization of a cDNA encoding phytochrome A in the non-photosynthetic parasitic plant, Orobanche minor Sm.

    Science.gov (United States)

    Trakulnaleamsai, Chitra; Okazawa, Atsushi; An, Chung-Il; Kajiyama, Shin'ichiro; Fukusaki, Ei'ichiro; Yoneyama, Koichi; Takeuchi, Yasutomo; Kobayashi, Akio

    2005-01-01

    In this study, the isolation and characterization of a phytochrome A (PHYA) homologous cDNA (OmPHYA) in the non-photosynthetic holoparasitic plant Orobanche minor are described. The present findings provide the first report of the presence of a PHYA homolog in the holoparasite. This study found that OmPHYA is of similar size to the other PHYAs of green plants and shows 72, 77, and 77% amino acid sequence identity with PHYA in Arabidopsis, potato, and tobacco respectively. The OmPHYA contains a conserved chromophore attachment cysteine at position 323. Although OmPHYA shows high sequence identity with other PHYAs in green plants, 13 amino acid substitutions located in both the N and C-terminal domains are observed (a total of 26 amino acids). OmPHYA is encoded by a single gene within the O. minor genome. The abundance of the OmPHYA transcript as well as nuclear translocation of OmphyA occurs in a light-dependent manner.

  10. An SVD-based comparison of nine whole eukaryotic genomes supports a coelomate rather than ecdysozoan lineage

    Directory of Open Access Journals (Sweden)

    Stuart Gary W

    2004-12-01

    Full Text Available Abstract Background Eukaryotic whole genome sequences are accumulating at an impressive rate. Effective methods for comparing multiple whole eukaryotic genomes on a large scale are needed. Most attempted solutions involve the production of large scale alignments, and many of these require a high stringency pre-screen for putative orthologs in order to reduce the effective size of the dataset and provide a reasonably high but unknown fraction of correctly aligned homologous sites for comparison. As an alternative, highly efficient methods that do not require the pre-alignment of operationally defined orthologs are also being explored. Results A non-alignment method based on the Singular Value Decomposition (SVD was used to compare the predicted protein complement of nine whole eukaryotic genomes ranging from yeast to man. This analysis resulted in the simultaneous identification and definition of a large number of well conserved motifs and gene families, and produced a species tree supporting one of two conflicting hypotheses of metazoan relationships. Conclusions Our SVD-based analysis of the entire protein complement of nine whole eukaryotic genomes suggests that highly conserved motifs and gene families can be identified and effectively compared in a single coherent definition space for the easy extraction of gene and species trees. While this occurs without the explicit definition of orthologs or homologous sites, the analysis can provide a basis for these definitions.

  11. DNA mismatch repair and its many roles in eukaryotic cells

    DEFF Research Database (Denmark)

    Liu, Dekang; Keijzers, Guido; Rasmussen, Lene Juel

    2017-01-01

    in the clinic, and as a biomarker of cancer susceptibility in animal model systems. Prokaryotic MMR is well-characterized at the molecular and mechanistic level; however, MMR is considerably more complex in eukaryotic cells than in prokaryotic cells, and in recent years, it has become evident that MMR plays...... novel roles in eukaryotic cells, several of which are not yet well-defined or understood. Many MMR-deficient human cancer cells lack mutations in known human MMR genes, which strongly suggests that essential eukaryotic MMR components/cofactors remain unidentified and uncharacterized. Furthermore......, the mechanism by which the eukaryotic MMR machinery discriminates between the parental (template) and the daughter (nascent) DNA strand is incompletely understood and how cells choose between the EXO1-dependent and the EXO1–independent subpathways of MMR is not known. This review summarizes recent literature...

  12. Diurnal changes of net photosynthetic rate (NPR) in leaves of Lonicera japonica Thunb. and the responding mathematical model of NPR to photosynthetic valid radiation

    International Nuclear Information System (INIS)

    Wu Dafu; Zhang Shengli; Li Dongfang

    2009-01-01

    [Objective] The study provided theoretical basis for production practice . [Method] With Lonicera japonica Thunb .as material, diurnal changes of net photosynthetic rate (NPR) in leaves of the plant and the responding mathematical model of NPR to photosynthetic valid radiation were studied using portable photosynthetic determinator system. [Result] Like most of C3 plants, the diurnal changes curve of NPR of Lonicera japonica Thunb .showed double peaks, but there were time difference in reaching the peak value between the study and previous ones . The responding mathematical model of NPR to photosynthetic valid radiation could be described by three mathematic functions, such as logarithm, linearity and binomial, but binomial function was more precise than the others. Light saturation point of Lonicera japonica Thunb. was figured out by binomial equation deduced in the study , and light saturation point was 1 086 .3 μmol/ (m2•s) . [Conclusion] The diurnal changes curve of NPR of Lonicera japonica Thunb .showed double peaks, and the responding mathematical model of NPR to photosynthetic valid radiation could be described by binomial functions

  13. How MCM loading and spreading specify eukaryotic DNA replication initiation sites.

    Science.gov (United States)

    Hyrien, Olivier

    2016-01-01

    DNA replication origins strikingly differ between eukaryotic species and cell types. Origins are localized and can be highly efficient in budding yeast, are randomly located in early fly and frog embryos, which do not transcribe their genomes, and are clustered in broad (10-100 kb) non-transcribed zones, frequently abutting transcribed genes, in mammalian cells. Nonetheless, in all cases, origins are established during the G1-phase of the cell cycle by the loading of double hexamers of the Mcm 2-7 proteins (MCM DHs), the core of the replicative helicase. MCM DH activation in S-phase leads to origin unwinding, polymerase recruitment, and initiation of bidirectional DNA synthesis. Although MCM DHs are initially loaded at sites defined by the binding of the origin recognition complex (ORC), they ultimately bind chromatin in much greater numbers than ORC and only a fraction are activated in any one S-phase. Data suggest that the multiplicity and functional redundancy of MCM DHs provide robustness to the replication process and affect replication time and that MCM DHs can slide along the DNA and spread over large distances around the ORC. Recent studies further show that MCM DHs are displaced along the DNA by collision with transcription complexes but remain functional for initiation after displacement. Therefore, eukaryotic DNA replication relies on intrinsically mobile and flexible origins, a strategy fundamentally different from bacteria but conserved from yeast to human. These properties of MCM DHs likely contribute to the establishment of broad, intergenic replication initiation zones in higher eukaryotes.

  14. In silico analysis of the regulation of the photosynthetic electron transport chain in C3 plants

    NARCIS (Netherlands)

    Morales Sierra, A.; Yin, Xinyou; Harbinson, Jeremy; Driever, Steven Michiel; Molenaar, Jaap; Kramer, David M.; Struik, Paul

    2018-01-01

    We present a new simulation model of the reactions in the photosynthetic electron transport chain of C3 species. We show that including recent insights about the regulation of the thylakoid proton motive force, ATP/NADPH balancing mechanisms (cyclic and non-cyclic alternative electron transport),

  15. Genome-wide Purification of Extrachromosomal Circular DNA from Eukaryotic Cells

    DEFF Research Database (Denmark)

    Møller, Henrik D.; Bojsen, Rasmus Kenneth; Tachibana, Chris

    2016-01-01

    Extrachromosomal circular DNAs (eccDNAs) are common genetic elements in Saccharomyces cerevisiae and are reported in other eukaryotes as well. EccDNAs contribute to genetic variation among somatic cells in multicellular organisms and to evolution of unicellular eukaryotes. Sensitive methods...

  16. Coral bleaching independent of photosynthetic activity.

    Science.gov (United States)

    Tolleter, Dimitri; Seneca, François O; DeNofrio, Jan C; Krediet, Cory J; Palumbi, Stephen R; Pringle, John R; Grossman, Arthur R

    2013-09-23

    The global decline of reef-building corals is due in part to the loss of algal symbionts, or "bleaching," during the increasingly frequent periods of high seawater temperatures. During bleaching, endosymbiotic dinoflagellate algae (Symbiodinium spp.) either are lost from the animal tissue or lose their photosynthetic pigments, resulting in host mortality if the Symbiodinium populations fail to recover. The >1,000 studies of the causes of heat-induced bleaching have focused overwhelmingly on the consequences of damage to algal photosynthetic processes, and the prevailing model for bleaching invokes a light-dependent generation of toxic reactive oxygen species (ROS) by heat-damaged chloroplasts as the primary trigger. However, the precise mechanisms of bleaching remain unknown, and there is evidence for involvement of multiple cellular processes. In this study, we asked the simple question of whether bleaching can be triggered by heat in the dark, in the absence of photosynthetically derived ROS. We used both the sea anemone model system Aiptasia and several species of reef-building corals to demonstrate that symbiont loss can occur rapidly during heat stress in complete darkness. Furthermore, we observed damage to the photosynthetic apparatus under these conditions in both Aiptasia endosymbionts and cultured Symbiodinium. These results do not directly contradict the view that light-stimulated ROS production is important in bleaching, but they do show that there must be another pathway leading to bleaching. Elucidation of this pathway should help to clarify bleaching mechanisms under the more usual conditions of heat stress in the light. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Nitrogen control of photosynthetic protein synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, G.W.

    1986-09-01

    Plant growth is severely affected by impaired photosynthesis resulting from nitrogen deficiency. The molecular aspects of this effect are being studied in the green alga Chlamydomonas grown in continuous culture systems. Photosynthetic membranes of nitrogen-limited cells are dramatically depleted in chlorophylls, xanthophylls and proteins of the light-harvesting complexes. In contrast, enzymes of the reductive pentose phosphate cycle and electron transport chain complexes are reduced only 40 to 65% on a per cell basis comparison with nitrogen-sufficient cultures. From analyses of mRNA levels by in vitro translation and hybridization analyses with cloned DNA sequences for photosynthetic proteins, we have found there are rather minor effects of nitrogen deficiency on nuclear or chloroplast gene transcription. Maturation of a transcript of the nuclear-encoded small subunit of ribulose 1,5-bisphosphate carboxylase is inhibited in nitrogen-deficient cells and causes accumulation of large amounts of mRNA precursors. Most of the effects of nitrogen deficiency on photosynthetic proteins appear to result from posttranscriptional regulatory processes: light-harvesting protein synthesis may be sustained but their import into chloroplasts or translocation to photosynthetic membranes is impaired. Nitrogen-deficient cells lack violaxanthin, a pigment that is essential for the structure, function and biogenesis of the major antenna complexes. The absence of this pigment may be a causative factor for the deficiency of light harvesting complexes. Finally, the accumulation of massive amounts of starch and triglycerides in nitrogen-limited cells indicate there are some genes whose maximal expression is dependent upon nitrogen-limiting conditions. 10 refs.

  18. DNA to DNA transcription might exist in eukaryotic cells

    OpenAIRE

    Li, Gao-De

    2016-01-01

    Till now, in biological sciences, the term, transcription, mainly refers to DNA to RNA transcription. But our recently published experimental findings obtained from Plasmodium falciparum strongly suggest the existence of DNA to DNA transcription in the genome of eukaryotic cells, which could shed some light on the functions of certain noncoding DNA in the human and other eukaryotic genomes.

  19. Genome-wide Purification of Extrachromosomal Circular DNA from Eukaryotic Cells

    DEFF Research Database (Denmark)

    Møller, Henrik D.; Bojsen, Rasmus Kenneth; Tachibana, Chris

    2016-01-01

    Extrachromosomal circular DNAs (eccDNAs) are common genetic elements in Saccharomyces cerevisiae and are reported in other eukaryotes as well. EccDNAs contribute to genetic variation among somatic cells in multicellular organisms and to evolution of unicellular eukaryotes. Sensitive methods for d...

  20. Effect of space mutation on photosynthetic characteristics of soybean varieties

    International Nuclear Information System (INIS)

    Liu Xinlei; Ma Yansong; Luan Xiaoyan; Man Weiqun; Xu Dechun; Meng Lifen; Fu Lixin; Zhao Xiaonan; Liu Qi

    2011-01-01

    In order to elucidate the response of the photosynthetic traits of soybean to space mutation, three soybean varieties (lines) of Heinong 48, Heinong 44 and Ha 2291-Y were carried by artificial satellite in 2006 and the net photosynthetic rate (Pn), stomatal conductance (Cond), intercellular CO 2 concentration (Ci) and stomatal resistance (Rs) from SP 1 to SP 4 generation were determined. The results showed that space mutation affected photosynthesis traits of soybean. The photosynthetic rate of soybean varieties by space mutation occurred different levels of genetic variation and the positive mutation rate were higher. Coefficient of variation among generations were SP 2 > SP 3 > SP 4 > CK. Results suggest that space mutation can effectively create soybean materials with higher photosynthetic rate. (authors)

  1. Climate controls photosynthetic capacity more than leaf nitrogen contents

    Science.gov (United States)

    Ali, A. A.; Xu, C.; McDowell, N. G.

    2013-12-01

    Global vegetation models continue to lack the ability to make reliable predictions because the photosynthetic capacity varies a lot with growth conditions, season and among species. It is likely that vegetation models link photosynthetic capacity to concurrent changes in leaf nitrogen content only. To improve the predictions of the vegetation models, there is an urgent need to review species growth conditions and their seasonal response to changing climate. We sampled the global distribution of the Vcmax (maximum carboxylation rates) data of various species across different environmental gradients from the literature and standardized its value to 25 degree Celcius. We found that species explained the largest variation in (1) the photosynthetic capacity and (2) the proportion of nitrogen allocated for rubisco (PNcb). Surprisingly, climate variables explained more variations in photosynthetic capacity as well as PNcb than leaf nitrogen content and/or specific leaf area. The chief climate variables that explain variation in photosynthesis and PNcb were radiation, temperature and daylength. Our analysis suggests that species have the greatest control over photosynthesis and PNcb. Further, compared to leaf nitrogen content and/or specific leaf area, climate variables have more control over photosynthesis and PNcb. Therefore, climate variables should be incorporated in the global vegetation models when making predictions about the photosynthetic capacity.

  2. Cyanobacteria as photosynthetic biocatalysts: a systems biology perspective.

    Science.gov (United States)

    Gudmundsson, Steinn; Nogales, Juan

    2015-01-01

    The increasing need to replace oil-based products and to address global climate change concerns has triggered considerable interest in photosynthetic microorganisms. Cyanobacteria, in particular, have great potential as biocatalysts for fuels and fine-chemicals. During the last few years the biotechnological applications of cyanobacteria have experienced an unprecedented increase and the use of these photosynthetic organisms for chemical production is becoming a tangible reality. However, the field is still immature and many concerns about the economic feasibility of the biotechnological potential of cyanobacteria remain. In this review we describe recent successes in biofuel and fine-chemical production using cyanobacteria. We discuss the role of the photosynthetic metabolism and highlight the need for systems-level metabolic optimization in order to achieve the true potential of cyanobacterial biocatalysts.

  3. Ultrastructural diversity between centrioles of eukaryotes.

    Science.gov (United States)

    Gupta, Akshari; Kitagawa, Daiju

    2018-02-16

    Several decades of centriole research have revealed the beautiful symmetry present in these microtubule-based organelles, which are required to form centrosomes, cilia, and flagella in many eukaryotes. Centriole architecture is largely conserved across most organisms, however, individual centriolar features such as the central cartwheel or microtubule walls exhibit considerable variability when examined with finer resolution. Here, we review the ultrastructural characteristics of centrioles in commonly studied organisms, highlighting the subtle and not-so-subtle differences between specific structural components of these centrioles. Additionally, we survey some non-canonical centriole structures that have been discovered in various species, from the coaxial bicentrioles of protists and lower land plants to the giant irregular centrioles of the fungus gnat Sciara. Finally, we speculate on the functional significance of these differences between centrioles, and the contribution of individual structural elements such as the cartwheel or microtubules towards the stability of centrioles.Centriole structure, cartwheel, triplet microtubules, SAS-6, centrosome.

  4. Eukaryotic systematics: a user's guide for cell biologists and parasitologists.

    Science.gov (United States)

    Walker, Giselle; Dorrell, Richard G; Schlacht, Alexander; Dacks, Joel B

    2011-11-01

    Single-celled parasites like Entamoeba, Trypanosoma, Phytophthora and Plasmodium wreak untold havoc on human habitat and health. Understanding the position of the various protistan pathogens in the larger context of eukaryotic diversity informs our study of how these parasites operate on a cellular level, as well as how they have evolved. Here, we review the literature that has brought our understanding of eukaryotic relationships from an idea of parasites as primitive cells to a crystallized view of diversity that encompasses 6 major divisions, or supergroups, of eukaryotes. We provide an updated taxonomic scheme (for 2011), based on extensive genomic, ultrastructural and phylogenetic evidence, with three differing levels of taxonomic detail for ease of referencing and accessibility (see supplementary material at Cambridge Journals On-line). Two of the most pressing issues in cellular evolution, the root of the eukaryotic tree and the evolution of photosynthesis in complex algae, are also discussed along with ideas about what the new generation of genome sequencing technologies may contribute to the field of eukaryotic systematics. We hope that, armed with this user's guide, cell biologists and parasitologists will be encouraged about taking an increasingly evolutionary point of view in the battle against parasites representing real dangers to our livelihoods and lives.

  5. Protein splicing and its evolution in eukaryotes

    Directory of Open Access Journals (Sweden)

    Starokadomskyy P. L.

    2010-02-01

    Full Text Available Inteins, or protein introns, are parts of protein sequences that are post-translationally excised, their flanking regions (exteins being spliced together. This process was called protein splicing. Originally inteins were found in prokaryotic or unicellular eukaryotic organisms. But the general principles of post-translation protein rearrangement are evolving yielding different post-translation modification of proteins in multicellular organisms. For clarity, these non-intein mediated events call either protein rearrangements or protein editing. The most intriguing example of protein editing is proteasome-mediated splicing of antigens in vertebrates that may play important role in antigen presentation. Other examples of protein rearrangements are maturation of Hg-proteins (critical receptors in embryogenesis as well as maturation of several metabolic enzymes. Despite a lack of experimental data we try to analyze some intriguing examples of protein splicing evolution.

  6. A eukaryotic-acquired gene by a biotrophic phytopathogen allows prolonged survival on the host by counteracting the shut-down of plant photosynthesis.

    Science.gov (United States)

    Garavaglia, Betiana S; Thomas, Ludivine; Gottig, Natalia; Dunger, Germán; Garofalo, Cecilia G; Daurelio, Lucas D; Ndimba, Bongani; Orellano, Elena G; Gehring, Chris; Ottado, Jorgelina

    2010-01-28

    Xanthomonas citri pv. citri, the bacteria responsible for citrus canker posses a biological active plant natriuretic peptide (PNP)-like protein, not present in any other bacteria. PNPs are a class of extracellular, systemically mobile peptides that elicit a number of plant responses important in homeostasis and growth. Previously, we showed that a Xanthomonas citri pv. citri mutant lacking the PNP-like protein XacPNP produced more necrotic lesions in citrus leaves than wild type infections and suggested a role for XacPNP in the regulation of host homeostasis. Here we have analyzed the proteome modifications observed in citrus leaves infected with the wild type and XacPNP deletion mutant bacteria. While both of them cause down-regulation of enzymes related to photosynthesis as well as chloroplastic ribosomal proteins, proteins related to defense responses are up-regulated. However, leaves infiltrated with the XacPNP deletion mutant show a more pronounced decrease in photosynthetic proteins while no reduction in defense related proteins as compared to the wild-type pathogen. This suggests that XacPNP serves the pathogen to maintain host photosynthetic efficiency during pathogenesis. The results from the proteomics analyses are consistent with our chlorophyll fluorescence data and transcript analyses of defense genes that show a more marked reduction in photosynthesis in the mutant but no difference in the induction of genes diagnostic for biotic-stress responses. We therefore conclude that XacPNP counteracts the shut-down of host photosynthesis during infection and in that way maintains the tissue in better conditions, suggesting that the pathogen has adapted a host gene to modify its natural host and render it a better reservoir for prolonged bacterial survival and thus for further colonization.

  7. Localization of Haemophilus ducreyi in naturally acquired chancroidal ulcers.

    Science.gov (United States)

    Bauer, Margaret E; Townsend, Carisa A; Ronald, Allan R; Spinola, Stanley M

    2006-08-01

    Haemophilus ducreyi causes the sexually transmitted genital ulcer disease chancroid. In human inoculation experiments, bacteria colocalize with neutrophils and macrophages but remain extracellular. The organism also colocalizes with collagen and fibrin but not with keratinocytes, fibroblasts, laminin, or fibronectin. These relationships are established by 48 h postinoculation and persist through the pustular stage of disease. To extend these observations to the ulcerative stage of disease, and to compare results in the human model with those of natural disease, we obtained biopsies from patients with naturally acquired chancroid. All ulcers were culture positive for H. ducreyi and histologically very similar to pustules from the human model. Staining with H. ducreyi-specific monoclonal antibodies demonstrated H. ducreyi within 5 biopsies. The organism was chiefly found within the granulocytic infiltrate of the ulcer. Dual staining for H. ducreyi and eukaryotic tissue components showed that H. ducreyi colocalized with neutrophils and fibrin at the ulcerative stage of disease. No bacteria were associated with keratinocytes, fibroblasts, or collagen. Overall, these findings are consistent with results from the human model. This is the first reported study to localize bacteria specifically identified as H. ducreyi within naturally acquired chancroid.

  8. Community-acquired respiratory infections are common in patients with non-Hodgkin lymphoma and multiple myeloma.

    Science.gov (United States)

    Lavi, Noa; Avivi, Irit; Kra-Oz, Zipora; Oren, Ilana; Hardak, Emilia

    2018-07-01

    Available data suggest that respiratory infections are associated with increased morbidity and mortality in patients hospitalized due to acute leukemia and allogeneic stem cell transplantation (allo-SCT). However, the precise incidence, risk factors, and severity of respiratory infection, mainly community-acquired, in patients with lymphoma and multiple myeloma (MM) are not fully determined. The current study aimed to investigate risk factors for respiratory infections and their clinical significance in patients with B cell non-Hodgkin lymphoma (NHL) and multiple myeloma (MM) in the first year of diagnosis. Data of consecutive patients diagnosed with NHL or MM and treated at the Rambam Hematology Inpatient and Outpatient Units between 01/2011 and 03/2012 were evaluated. Information regarding anticancer treatment, incidence and course of respiratory infections, and infection-related outcomes was analyzed. One hundred and sixty episodes of respiratory infections were recorded in 103 (49%) of 211 (73-MM, 138-NHL) patients; 126 (79%) episodes were community-acquired, 47 (29%) of them required hospitalization. In univariate analysis, age respiratory infection risk (P = 0.058, 0.038, and 0.001, respectively). Ninety episodes (56% of all respiratory episodes) were examined for viral pathogens. Viral infections were documented in 25/90 (28%) episodes, 21 (84%) of them were community-acquired, requiring hospitalization in 5 (24%) cases. Anti-flu vaccination was performed in 119 (56%) patients. Two of the six patients diagnosed with influenza were vaccinated. Respiratory infections, including viral ones, are common in NHL and MM. Most infections are community-acquired and have a favorable outcome. Rapid identification of viral pathogens allows avoiding antibiotic overuse in this patient population.

  9. Distribution of Sulfate-Reducing Bacteria, O2, and H2s in Photosynthetic Biofilms Determined by Oligonucleotide Probes and Microelectrodes Rid A-1977-2009

    DEFF Research Database (Denmark)

    RAMSING, NB; KUHL, M.; JØRGENSEN, BB

    1993-01-01

    The vertical distribution of sulfate-reducing bacteria (SRB) in photosynthetic biofilms from the trickling filter of a sewage treatment plant was investigated with oligonucleotide probes binding to 16S rRNA. To demonstrate the effect of daylight and photosynthesis and thereby of increased oxygen....... Fluorescent-dye-conjugated oligonucleotides were used as ''phylogenetic'' probes to identify single cells in the slices. Oligonucleotide sequences were selected which were complementary to short sequence elements (16 to 20 nucleotides) within the 16S rRNA of sulfate-reducing bacteria. The probes were labeled...... with fluorescein or rhodamine derivatives for subsequent visualization by epifluorescence microscopy. Five probes were synthesized for eukaryotes, eubacteria, SRB (including most species of the delta group of purple bacteria), Desulfobacter spp., and a nonhybridizing control. The SRB were unevenly distributed...

  10. Origin and evolution of the self-organizing cytoskeleton in the network of eukaryotic organelles.

    Science.gov (United States)

    Jékely, Gáspár

    2014-09-02

    The eukaryotic cytoskeleton evolved from prokaryotic cytomotive filaments. Prokaryotic filament systems show bewildering structural and dynamic complexity and, in many aspects, prefigure the self-organizing properties of the eukaryotic cytoskeleton. Here, the dynamic properties of the prokaryotic and eukaryotic cytoskeleton are compared, and how these relate to function and evolution of organellar networks is discussed. The evolution of new aspects of filament dynamics in eukaryotes, including severing and branching, and the advent of molecular motors converted the eukaryotic cytoskeleton into a self-organizing "active gel," the dynamics of which can only be described with computational models. Advances in modeling and comparative genomics hold promise of a better understanding of the evolution of the self-organizing cytoskeleton in early eukaryotes, and its role in the evolution of novel eukaryotic functions, such as amoeboid motility, mitosis, and ciliary swimming. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  11. Gonococcal attachment to eukaryotic cells

    International Nuclear Information System (INIS)

    James, J.F.; Lammel, C.J.; Draper, D.L.; Brown, D.A.; Sweet, R.L.; Brooks, G.F.

    1983-01-01

    The attachment of Neisseria gonorrhoeae to eukaryotic cells grown in tissue culture was analyzed by use of light and electron microscopy and by labeling of the bacteria with [ 3 H]- and [ 14 C]adenine. Isogenic piliated and nonpiliated N. gonorrhoeae from opaque and transparent colonies were studied. The results of light microscopy studies showed that the gonococci attached to cells of human origin, including Flow 2000, HeLa 229, and HEp 2. Studies using radiolabeled gonococci gave comparable results. Piliated N. gonorrhoeae usually attached in larger numbers than nonpiliated organisms, and those from opaque colonies attached more often than isogenic variants from transparent colonies. Day-to-day variation in rate of attachment was observed. Scanning electron microscopy studies showed the gonococcal attachment to be specific for microvilli of the host cells. It is concluded that more N. gonorrhoeae from opaque colonies, as compared with isogenic variants from transparent colonies, attach to eukaryotic cells grown in tissue culture

  12. Interactions between heavy metals and photosynthetic materials studied by optical techniques.

    Science.gov (United States)

    Ventrella, Andrea; Catucci, Lucia; Piletska, Elena; Piletsky, Sergey; Agostiano, Angela

    2009-11-01

    In this work studies on rapid inhibitory interactions between heavy metals and photosynthetic materials at different organization levels were carried out by optical assay techniques, investigating the possibility of applications in the heavy metal detection field. Spinach chloroplasts, thylakoids and Photosystem II proteins were employed as biotools in combination with colorimetric assays based on dichlorophenol indophenole (DCIP) photoreduction and on fluorescence emission techniques. It was found that copper and mercury demonstrated a strong and rapid photosynthetic activity inhibition, that varied from proteins to membranes, while other metals like nickel, cobalt and manganese produced only slight inhibition effects on all tested photosynthetic materials. By emission measurements, only copper was found to rapidly influence the photosynthetic material signals. These findings give interesting information about the rapid effects of heavy metals on isolated photosynthetic samples, and are in addition to the literature data concerning the effects of growth in heavy metal enriched media.

  13. Chlorophyll Fluorescence Imaging Uncovers Photosynthetic Fingerprint of Citrus Huanglongbing

    Directory of Open Access Journals (Sweden)

    Haiyan Cen

    2017-08-01

    Full Text Available Huanglongbing (HLB is one of the most destructive diseases of citrus, which has posed a serious threat to the global citrus production. This research was aimed to explore the use of chlorophyll fluorescence imaging combined with feature selection to characterize and detect the HLB disease. Chlorophyll fluorescence images of citrus leaf samples were measured by an in-house chlorophyll fluorescence imaging system. The commonly used chlorophyll fluorescence parameters provided the first screening of HLB disease. To further explore the photosynthetic fingerprint of HLB infected leaves, three feature selection methods combined with the supervised classifiers were employed to identify the unique fluorescence signature of HLB and perform the three-class classification (i.e., healthy, HLB infected, and nutrient deficient leaves. Unlike the commonly used fluorescence parameters, this novel data-driven approach by using the combination of the mean fluorescence parameters and image features gave the best classification performance with the accuracy of 97%, and presented a better interpretation for the spatial heterogeneity of photochemical and non-photochemical components in HLB infected citrus leaves. These results imply the potential of the proposed approach for the citrus HLB disease diagnosis, and also provide a valuable insight for the photosynthetic response to the HLB disease.

  14. Metatranscriptomics reveals the diversity of genes expressed by eukaryotes in forest soils.

    Directory of Open Access Journals (Sweden)

    Coralie Damon

    suggesting a potentially significant contribution of non-fungal eukaryotes in the actual hydrolysis of soil organic matter.

  15. Non-negative factor analysis supporting the interpretation of elemental distribution images acquired by XRF

    International Nuclear Information System (INIS)

    Alfeld, Matthias; Falkenberg, Gerald; Wahabzada, Mirwaes; Bauckhage, Christian; Kersting, Kristian; Wellenreuther, Gerd

    2014-01-01

    Stacks of elemental distribution images acquired by XRF can be difficult to interpret, if they contain high degrees of redundancy and components differing in their quantitative but not qualitative elemental composition. Factor analysis, mainly in the form of Principal Component Analysis (PCA), has been used to reduce the level of redundancy and highlight correlations. PCA, however, does not yield physically meaningful representations as they often contain negative values. This limitation can be overcome, by employing factor analysis that is restricted to non-negativity. In this paper we present the first application of the Python Matrix Factorization Module (pymf) on XRF data. This is done in a case study on the painting Saul and David from the studio of Rembrandt van Rijn. We show how the discrimination between two different Co containing compounds with minimum user intervention and a priori knowledge is supported by Non-Negative Matrix Factorization (NMF).

  16. Deciphering DNA replication dynamics in eukaryotic cell populations in relation with their averaged chromatin conformations

    Science.gov (United States)

    Goldar, A.; Arneodo, A.; Audit, B.; Argoul, F.; Rappailles, A.; Guilbaud, G.; Petryk, N.; Kahli, M.; Hyrien, O.

    2016-03-01

    We propose a non-local model of DNA replication that takes into account the observed uncertainty on the position and time of replication initiation in eukaryote cell populations. By picturing replication initiation as a two-state system and considering all possible transition configurations, and by taking into account the chromatin’s fractal dimension, we derive an analytical expression for the rate of replication initiation. This model predicts with no free parameter the temporal profiles of initiation rate, replication fork density and fraction of replicated DNA, in quantitative agreement with corresponding experimental data from both S. cerevisiae and human cells and provides a quantitative estimate of initiation site redundancy. This study shows that, to a large extent, the program that regulates the dynamics of eukaryotic DNA replication is a collective phenomenon that emerges from the stochastic nature of replication origins initiation.

  17. Validation of photosynthetic-fluorescence parameters as biomarkers for isoproturon toxic effect on alga Scenedesmus obliquus

    International Nuclear Information System (INIS)

    Dewez, David; Didur, Olivier; Vincent-Heroux, Jonathan; Popovic, Radovan

    2008-01-01

    Photosynthetic-fluorescence parameters were investigated to be used as valid biomarkers of toxicity when alga Scenedesmus obliquus was exposed to isoproturon [3-(4-isopropylphenyl)-1,1-dimethylurea] effect. Chlorophyll fluorescence induction of algal cells treated with isoproturon showed inactivation of photosystem II (PSII) reaction centers and strong inhibition of PSII electron transport. A linear correlation was found (R 2 ≥ 0.861) between the change of cells density affected by isoproturon and the change of effective PSII quantum yield (Φ M' ), photochemical quenching (q P ) and relative photochemical quenching (q P(rel) ) values. The cells density was also linearly dependent (R 2 = 0.838) on the relative unquenched fluorescence parameter (UQF (rel) ). Non-linear correlation was found (R 2 = 0.937) only between cells density and the energy transfer efficiency from absorbed light to PSII reaction center (ABS/RC). The order of sensitivity determined by the EC-50% was: UQF (rel) > Φ M' > q P > q P(rel) > ABS/RC. Correlations between cells density and those photosynthetic-fluorescence parameters provide supporting evidence to use them as biomarkers of toxicity for environmental pollutants. - Photosynthetic-fluorescence parameters are reliable biomarkers of isoproturon toxicity

  18. Eelgrass Leaf Surface Microbiomes Are Locally Variable and Highly Correlated with Epibiotic Eukaryotes

    Directory of Open Access Journals (Sweden)

    Mia M. Bengtsson

    2017-07-01

    Full Text Available Eelgrass (Zostera marina is a marine foundation species essential for coastal ecosystem services around the northern hemisphere. Like all macroscopic organisms, it possesses a microbiome (here defined as an associated prokaryotic community which may play critical roles in modulating the interaction of eelgrass with its environment. For example, its leaf surface microbiome could inhibit or attract eukaryotic epibionts which may overgrow the eelgrass leading to reduced primary productivity and subsequent eelgrass meadow decline. We used amplicon sequencing of the 16S and 18S rRNA genes of prokaryotes and eukaryotes to assess the leaf surface microbiome (prokaryotes as well as eukaryotic epibionts in- and outside lagoons on the German Baltic Sea coast. Prokaryote microbiomes varied substantially both between sites inside lagoons and between open coastal and lagoon sites. Water depth, leaf area and biofilm chlorophyll a concentration explained a large amount of variation in both prokaryotic and eukaryotic community composition. The prokaryotic microbiome and eukaryotic epibiont communities were highly correlated, and network analysis revealed disproportionate co-occurrence between a limited number of eukaryotic taxa and several bacterial taxa. This suggests that eelgrass leaf surfaces are home to a mosaic of microbiomes of several epibiotic eukaryotes, in addition to the microbiome of the eelgrass itself. Our findings thereby underline that eukaryotic diversity should be taken into account in order to explain prokaryotic microbiome assembly and dynamics in aquatic environments.

  19. Cytoplasmic Flow Enhances Organelle Dispersion in Eukaryotic Cells

    Science.gov (United States)

    Koslover, Elena; Mogre, Saurabh; Chan, Caleb; Theriot, Julie

    The cytoplasm of a living cell is an active environment through which intracellular components move and mix. We explore, using theoretical modeling coupled with microrheological measurements, the efficiency of particle dispersion via different modes of transport within this active environment. In particular, we focus on the role of cytoplasmic flow over different scales in contributing to organelle transport within two different cell types. In motile neutrophil cells, we show that bulk fluid flow associated with rapid cell deformation enhances particle transport to and from the cell periphery. In narrow fungal hyphae, localized flows due to hydrodynamic entrainment are shown to contribute to optimally efficient organelle dispersion. Our results highlight the importance of non-traditional modes of transport associated with flow of the cytoplasmic fluid in the distribution of organelles throughout eukaryotic cells.

  20. A case study for effects of operational taxonomic units from intracellular endoparasites and ciliates on the eukaryotic phylogeny: phylogenetic position of the haptophyta in analyses of multiple slowly evolving genes.

    Directory of Open Access Journals (Sweden)

    Hisayoshi Nozaki

    Full Text Available Recent multigene phylogenetic analyses have contributed much to our understanding of eukaryotic phylogeny. However, the phylogenetic positions of various lineages within the eukaryotes have remained unresolved or in conflict between different phylogenetic studies. These phylogenetic ambiguities might have resulted from mixtures or integration from various factors including limited taxon sampling, missing data in the alignment, saturations of rapidly evolving genes, mixed analyses of short- and long-branched operational taxonomic units (OTUs, intracellular endoparasite and ciliate OTUs with unusual substitution etc. In order to evaluate the effects from intracellular endoparasite and ciliate OTUs co-analyzed on the eukaryotic phylogeny and simplify the results, we here used two different sets of data matrices of multiple slowly evolving genes with small amounts of missing data and examined the phylogenetic position of the secondary photosynthetic chromalveolates Haptophyta, one of the most abundant groups of oceanic phytoplankton and significant primary producers. In both sets, a robust sister relationship between Haptophyta and SAR (stramenopiles, alveolates, rhizarians, or SA [stramenopiles and alveolates] was resolved when intracellular endoparasite/ciliate OTUs were excluded, but not in their presence. Based on comparisons of character optimizations on a fixed tree (with a clade composed of haptophytes and SAR or SA, disruption of the monophyly between haptophytes and SAR (or SA in the presence of intracellular endoparasite/ciliate OTUs can be considered to be a result of multiple evolutionary reversals of character positions that supported the synapomorphy of the haptophyte and SAR (or SA clade in the absence of intracellular endoparasite/ciliate OTUs.

  1. A eukaryotic-acquired gene by a biotrophic phytopathogen allows prolonged survival on the host by counteracting the shut-down of plant photosynthesis

    KAUST Repository

    Garavaglia, Betiana S.

    2010-01-28

    Xanthomonas citri pv. citri, the bacteria responsible for citrus canker posses a biological active plant natriuretic peptide (PNP)-like protein, not present in any other bacteria. PNPs are a class of extracellular, systemically mobile peptides that elicit a number of plant responses important in homeostasis and growth. Previously, we showed that a Xanthomonas citri pv. citri mutant lacking the PNP-like protein XacPNP produced more necrotic lesions in citrus leaves than wild type infections and suggested a role for XacPNP in the regulation of host homeostasis. Here we have analyzed the proteome modifications observed in citrus leaves infected with the wild type and XacPNP deletion mutant bacteria. While both of them cause downregulation of enzymes related to photosynthesis as well as chloroplastic ribosomal proteins, proteins related to defense responses are up-regulated. However, leaves infiltrated with the XacPNP deletion mutant show a more pronounced decrease in photosynthetic proteins while no reduction in defense related proteins as compared to the wild-type pathogen. This suggests that XacPNP serves the pathogen to maintain host photosynthetic efficiency during pathogenesis. The results from the proteomics analyses are consistent with our chlorophyll fluorescence data and transcript analyses of defense genes that show a more marked reduction in photosynthesis in the mutant but no difference in the induction of genes diagnostic for biotic-stress responses. We therefore conclude that XacPNP counteracts the shut-down of host photosynthesis during infection and in that way maintains the tissue in better conditions, suggesting that the pathogen has adapted a host gene to modify its natural host and render it a better reservoir for prolonged bacterial survival and thus for further colonization. 2010 Garavaglia et al.

  2. A eukaryotic-acquired gene by a biotrophic phytopathogen allows prolonged survival on the host by counteracting the shut-down of plant photosynthesis.

    Directory of Open Access Journals (Sweden)

    Betiana S Garavaglia

    Full Text Available Xanthomonas citri pv. citri, the bacteria responsible for citrus canker posses a biological active plant natriuretic peptide (PNP-like protein, not present in any other bacteria. PNPs are a class of extracellular, systemically mobile peptides that elicit a number of plant responses important in homeostasis and growth. Previously, we showed that a Xanthomonas citri pv. citri mutant lacking the PNP-like protein XacPNP produced more necrotic lesions in citrus leaves than wild type infections and suggested a role for XacPNP in the regulation of host homeostasis. Here we have analyzed the proteome modifications observed in citrus leaves infected with the wild type and XacPNP deletion mutant bacteria. While both of them cause down-regulation of enzymes related to photosynthesis as well as chloroplastic ribosomal proteins, proteins related to defense responses are up-regulated. However, leaves infiltrated with the XacPNP deletion mutant show a more pronounced decrease in photosynthetic proteins while no reduction in defense related proteins as compared to the wild-type pathogen. This suggests that XacPNP serves the pathogen to maintain host photosynthetic efficiency during pathogenesis. The results from the proteomics analyses are consistent with our chlorophyll fluorescence data and transcript analyses of defense genes that show a more marked reduction in photosynthesis in the mutant but no difference in the induction of genes diagnostic for biotic-stress responses. We therefore conclude that XacPNP counteracts the shut-down of host photosynthesis during infection and in that way maintains the tissue in better conditions, suggesting that the pathogen has adapted a host gene to modify its natural host and render it a better reservoir for prolonged bacterial survival and thus for further colonization.

  3. A eukaryotic-acquired gene by a biotrophic phytopathogen allows prolonged survival on the host by counteracting the shut-down of plant photosynthesis

    KAUST Repository

    Garavaglia, Betiana S.; Thomas, Ludivine; Gottig, Natalia; Dunger, Germá n; Garofalo, Cecilia G.; Daurelio, Lucas D.; Ndimba, Bongani; Orellano, Elena G.; Gehring, Christoph A; Ottado, Jorgelina

    2010-01-01

    Xanthomonas citri pv. citri, the bacteria responsible for citrus canker posses a biological active plant natriuretic peptide (PNP)-like protein, not present in any other bacteria. PNPs are a class of extracellular, systemically mobile peptides that elicit a number of plant responses important in homeostasis and growth. Previously, we showed that a Xanthomonas citri pv. citri mutant lacking the PNP-like protein XacPNP produced more necrotic lesions in citrus leaves than wild type infections and suggested a role for XacPNP in the regulation of host homeostasis. Here we have analyzed the proteome modifications observed in citrus leaves infected with the wild type and XacPNP deletion mutant bacteria. While both of them cause downregulation of enzymes related to photosynthesis as well as chloroplastic ribosomal proteins, proteins related to defense responses are up-regulated. However, leaves infiltrated with the XacPNP deletion mutant show a more pronounced decrease in photosynthetic proteins while no reduction in defense related proteins as compared to the wild-type pathogen. This suggests that XacPNP serves the pathogen to maintain host photosynthetic efficiency during pathogenesis. The results from the proteomics analyses are consistent with our chlorophyll fluorescence data and transcript analyses of defense genes that show a more marked reduction in photosynthesis in the mutant but no difference in the induction of genes diagnostic for biotic-stress responses. We therefore conclude that XacPNP counteracts the shut-down of host photosynthesis during infection and in that way maintains the tissue in better conditions, suggesting that the pathogen has adapted a host gene to modify its natural host and render it a better reservoir for prolonged bacterial survival and thus for further colonization. 2010 Garavaglia et al.

  4. Evaluation of Aegilops tauschii and Aegilops speltoides for acquired thermotolerance: Implications in wheat breeding programmes.

    Science.gov (United States)

    Hairat, Suboot; Khurana, Paramjit

    2015-10-01

    Severe and frequent heat waves are predicted in the near future having dramatic and far-reaching ecological and social impact. The aim of this study was to examine acquired thermotolerance of two Aegilops species: Aegilops tauschii and Aegilops speltoides and study their potential adaptive mechanisms. The effect of two episodes of high heat stress (45 °C/12 h) with a day of recovery period was investigated on their physiology. As compared to A. speltoides, A. tauschii suffered less inhibition of photosystem II efficiency and net photosynthetic rate (Pn). Although A. tauschii showed nearly complete recovery of PSII, the adverse effect was more pronounced in A. speltoides. Measurement of the minimum fluorescence (Fo) versus temperature curves revealed a higher inflection temperature of Fo for A. tauschii than A. speltoides, reflecting greater thermo stability of the photosynthetic apparatus. Absorbed light energy distribution revealed that A. speltoides showed increased steady state fluorescence and a lower absorbed light allocated to photosynthetic chemistry (ɸPSII) relative to A. tauschii. However, A. tauschii showed higher ability to scavenge free radicals as compared to A. speltoides. This was further validated by higher expression of ascorbate peroxidase gene. These results suggest that A. tauschii showed faster recovery and a better thermostability of its photosynthetic apparatus under severe stress conditions along with a better regulation of energy channeling of PSII complexes to minimize oxidative damage and thus retains greater capability of carbon assimilation. These factors aid in imparting a greater heat tolerance to A. tauschii as compared to A. speltoides and thus make it a better candidate for alien species introgression in wheat breeding programs for thermotolerance in wheat. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  5. Revealing Linear Aggregates of Light Harvesting Antenna Proteins in Photosynthetic Membranes

    OpenAIRE

    He, Yufan; Zeng, Xiaohua; Mukherjee, Saptarshi; Rajapaksha, Suneth; Kaplan, Samuel; Lu, H. Peter

    2010-01-01

    How light energy is harvested in a natural photosynthetic membrane through energy transfer is closely related to the stoichiometry and arrangement of light harvesting antenna proteins in the membrane. The specific photosynthetic architecture facilitates a rapid and efficient energy transfer among the light harvesting proteins (LH2 and LH1) and to the reaction center. Here we report the identification of linear aggregates of light harvesting proteins, LH2, in the photosynthetic membranes under...

  6. Use of prokaryotic transcriptional activators as metabolite biosensors in eukaryotic cells

    DEFF Research Database (Denmark)

    2018-01-01

    The present invention relates to the use of transcriptional activators from prokaryotic organisms for use in eukaryotic cells, such as yeast as sensors of intracellular and extracellular accumulation of a ligand or metabolite specifically activating this transcriptional activator in a eukaryot...

  7. Proteomic amino-termini profiling reveals targeting information for protein import into complex plastids.

    Directory of Open Access Journals (Sweden)

    Pitter F Huesgen

    Full Text Available In organisms with complex plastids acquired by secondary endosymbiosis from a photosynthetic eukaryote, the majority of plastid proteins are nuclear-encoded, translated on cytoplasmic ribosomes, and guided across four membranes by a bipartite targeting sequence. In-depth understanding of this vital import process has been impeded by a lack of information about the transit peptide part of this sequence, which mediates transport across the inner three membranes. We determined the mature N-termini of hundreds of proteins from the model diatom Thalassiosira pseudonana, revealing extensive N-terminal modification by acetylation and proteolytic processing in both cytosol and plastid. We identified 63 mature N-termini of nucleus-encoded plastid proteins, deduced their complete transit peptide sequences, determined a consensus motif for their cleavage by the stromal processing peptidase, and found evidence for subsequent processing by a plastid methionine aminopeptidase. The cleavage motif differs from that of higher plants, but is shared with other eukaryotes with complex plastids.

  8. Inorganic phosphate uptake in unicellular eukaryotes.

    Science.gov (United States)

    Dick, Claudia F; Dos-Santos, André L A; Meyer-Fernandes, José R

    2014-07-01

    Inorganic phosphate (Pi) is an essential nutrient for all organisms. The route of Pi utilization begins with Pi transport across the plasma membrane. Here, we analyzed the gene sequences and compared the biochemical profiles, including kinetic and modulator parameters, of Pi transporters in unicellular eukaryotes. The objective of this review is to evaluate the recent findings regarding Pi uptake mechanisms in microorganisms, such as the fungi Neurospora crassa and Saccharomyces cerevisiae and the parasite protozoans Trypanosoma cruzi, Trypanosoma rangeli, Leishmania infantum and Plasmodium falciparum. Pi uptake is the key step of Pi homeostasis and in the subsequent signaling event in eukaryotic microorganisms. Biochemical and structural studies are important for clarifying mechanisms of Pi homeostasis, as well as Pi sensor and downstream pathways, and raise possibilities for future studies in this field. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Cyclical thrombocytosis, acquired von Willebrand syndrome and aggressive non-melanoma skin cancers are common in patients with Philadelphia-negative myeloproliferative neoplasms treated with hydroxyurea.

    Science.gov (United States)

    Verner, Emma; Forsyth, Cecily; Grigg, Andrew

    2014-05-01

    Abstract Cyclical thrombocytosis, acquired von Willebrand syndrome, aggressive non-melanoma skin cancers and other hydroxyurea complications have been reported in Philadelphia-negative myeloproliferative neoplasms (MPNs), but their incidence and clinical consequences have not been defined in a large cohort of patients. We conducted a retrospective analysis of 188 consecutive patients with MPNs specifically addressing the incidence of these complications. Cyclical thrombocytosis was documented in 29 patients (15%), the majority of whom were receiving hydroxyurea. Acquired von Willebrand syndrome was identified in 17 of the 84 screened patients (20%), but was not associated with any major bleeding complications. Non-melanoma skin cancers were reported in 51 patients (27%). Hydroxyurea-related fever occurred in nine of 149 patients (6%) who received hydroxyurea. Seventy-three patients (39%) experienced a total of 98 major thrombotic events, with the majority of these occurring prior to or within 3 months of the diagnosis. Cyclical thrombocytosis, acquired von Willebrand syndrome, aggressive non-melanoma skin cancers and other hydroxyurea-related complications are not infrequent in MPNs and have important clinical consequences for management.

  10. Uniting sex and eukaryote origins in an emerging oxygenic world.

    Science.gov (United States)

    Gross, Jeferson; Bhattacharya, Debashish

    2010-08-23

    Theories about eukaryote origins (eukaryogenesis) need to provide unified explanations for the emergence of diverse complex features that define this lineage. Models that propose a prokaryote-to-eukaryote transition are gridlocked between the opposing "phagocytosis first" and "mitochondria as seed" paradigms, neither of which fully explain the origins of eukaryote cell complexity. Sex (outcrossing with meiosis) is an example of an elaborate trait not yet satisfactorily addressed in theories about eukaryogenesis. The ancestral nature of meiosis and its dependence on eukaryote cell biology suggest that the emergence of sex and eukaryogenesis were simultaneous and synergic and may be explained by a common selective pressure. We propose that a local rise in oxygen levels, due to cyanobacterial photosynthesis in ancient Archean microenvironments, was highly toxic to the surrounding biota. This selective pressure drove the transformation of an archaeal (archaebacterial) lineage into the first eukaryotes. Key is that oxygen might have acted in synergy with environmental stresses such as ultraviolet (UV) radiation and/or desiccation that resulted in the accumulation of reactive oxygen species (ROS). The emergence of eukaryote features such as the endomembrane system and acquisition of the mitochondrion are posited as strategies to cope with a metabolic crisis in the cell plasma membrane and the accumulation of ROS, respectively. Selective pressure for efficient repair of ROS/UV-damaged DNA drove the evolution of sex, which required cell-cell fusions, cytoskeleton-mediated chromosome movement, and emergence of the nuclear envelope. Our model implies that evolution of sex and eukaryogenesis were inseparable processes. Several types of data can be used to test our hypothesis. These include paleontological predictions, simulation of ancient oxygenic microenvironments, and cell biological experiments with Archaea exposed to ROS and UV stresses. Studies of archaeal conjugation

  11. Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life

    NARCIS (Netherlands)

    Speijer, Dave; Lukeš, Julius; Eliáš, Marek

    2015-01-01

    Sexual reproduction and clonality in eukaryotes are mostly seen as exclusive, the latter being rather exceptional. This view might be biased by focusing almost exclusively on metazoans. We analyze and discuss reproduction in the context of extant eukaryotic diversity, paying special attention to

  12. Evolution of DNA replication protein complexes in eukaryotes and Archaea.

    Directory of Open Access Journals (Sweden)

    Nicholas Chia

    Full Text Available BACKGROUND: The replication of DNA in Archaea and eukaryotes requires several ancillary complexes, including proliferating cell nuclear antigen (PCNA, replication factor C (RFC, and the minichromosome maintenance (MCM complex. Bacterial DNA replication utilizes comparable proteins, but these are distantly related phylogenetically to their archaeal and eukaryotic counterparts at best. METHODOLOGY/PRINCIPAL FINDINGS: While the structures of each of the complexes do not differ significantly between the archaeal and eukaryotic versions thereof, the evolutionary dynamic in the two cases does. The number of subunits in each complex is constant across all taxa. However, they vary subtly with regard to composition. In some taxa the subunits are all identical in sequence, while in others some are homologous rather than identical. In the case of eukaryotes, there is no phylogenetic variation in the makeup of each complex-all appear to derive from a common eukaryotic ancestor. This is not the case in Archaea, where the relationship between the subunits within each complex varies taxon-to-taxon. We have performed a detailed phylogenetic analysis of these relationships in order to better understand the gene duplications and divergences that gave rise to the homologous subunits in Archaea. CONCLUSION/SIGNIFICANCE: This domain level difference in evolution suggests that different forces have driven the evolution of DNA replication proteins in each of these two domains. In addition, the phylogenies of all three gene families support the distinctiveness of the proposed archaeal phylum Thaumarchaeota.

  13. Initiation of translation in bacteria by a structured eukaryotic IRES RNA.

    Science.gov (United States)

    Colussi, Timothy M; Costantino, David A; Zhu, Jianyu; Donohue, John Paul; Korostelev, Andrei A; Jaafar, Zane A; Plank, Terra-Dawn M; Noller, Harry F; Kieft, Jeffrey S

    2015-03-05

    The central dogma of gene expression (DNA to RNA to protein) is universal, but in different domains of life there are fundamental mechanistic differences within this pathway. For example, the canonical molecular signals used to initiate protein synthesis in bacteria and eukaryotes are mutually exclusive. However, the core structures and conformational dynamics of ribosomes that are responsible for the translation steps that take place after initiation are ancient and conserved across the domains of life. We wanted to explore whether an undiscovered RNA-based signal might be able to use these conserved features, bypassing mechanisms specific to each domain of life, and initiate protein synthesis in both bacteria and eukaryotes. Although structured internal ribosome entry site (IRES) RNAs can manipulate ribosomes to initiate translation in eukaryotic cells, an analogous RNA structure-based mechanism has not been observed in bacteria. Here we report our discovery that a eukaryotic viral IRES can initiate translation in live bacteria. We solved the crystal structure of this IRES bound to a bacterial ribosome to 3.8 Å resolution, revealing that despite differences between bacterial and eukaryotic ribosomes this IRES binds directly to both and occupies the space normally used by transfer RNAs. Initiation in both bacteria and eukaryotes depends on the structure of the IRES RNA, but in bacteria this RNA uses a different mechanism that includes a form of ribosome repositioning after initial recruitment. This IRES RNA bridges billions of years of evolutionary divergence and provides an example of an RNA structure-based translation initiation signal capable of operating in two domains of life.

  14. Metabarcoding analysis of eukaryotic microbiota in the gut of HIV-infected patients.

    Directory of Open Access Journals (Sweden)

    Ibrahim Hamad

    Full Text Available Research on the relationship between changes in the gut microbiota and human disease, including AIDS, is a growing field. However, studies on the eukaryotic component of the intestinal microbiota have just begun and have not yet been conducted in HIV-infected patients. Moreover, eukaryotic community profiling is influenced by the use of different methodologies at each step of culture-independent techniques. Herein, initially, four DNA extraction protocols were compared to test the efficiency of each method in recovering eukaryotic DNA from fecal samples. Our results revealed that recovering eukaryotic components from fecal samples differs significantly among DNA extraction methods. Subsequently, the composition of the intestinal eukaryotic microbiota was evaluated in HIV-infected patients and healthy volunteers through clone sequencing, high-throughput sequencing of nuclear ribosomal internal transcribed spacers 1 (ITS1 and 2 (ITS2 amplicons and real-time PCRs. Our results revealed that not only richness (Chao-1 index and alpha diversity (Shannon diversity differ between HIV-infected patients and healthy volunteers, depending on the molecular strategy used, but also the global eukaryotic community composition, with little overlapping taxa found between techniques. Moreover, our results based on cloning libraries and ITS1/ITS2 metabarcoding sequencing showed significant differences in fungal composition between HIV-infected patients and healthy volunteers, but without distinct clusters separating the two groups. Malassezia restricta was significantly more prevalent in fecal samples of HIV-infected patients, according to cloning libraries, whereas operational taxonomic units (OTUs belonging to Candida albicans and Candida tropicalis were significantly more abundant in fecal samples of HIV-infected patients compared to healthy subjects in both ITS subregions. Finally, real-time PCR showed the presence of Microsporidia, Giardia lamblia, Blastocystis

  15. Investigation of the non-photochemical processes in photosynthetic bacteria and higher plants using interference of coherent radiation - a new approach

    Czech Academy of Sciences Publication Activity Database

    Roháček, Karel; Kloz, M.; Bína, David; Batysta, F.; Vácha, František

    2007-01-01

    Roč. 91, 2-3 (2007), s. 301 ISSN 0166-8595. [International Congress of Photosynthesis/14./. 22.07.2007-27.07.2007, Glasgow] Institutional research plan: CEZ:AV0Z50510513 Keywords : photosynthetic bacteria Subject RIV: CE - Biochemistry

  16. The effect of nitrogen on the development and photosynthetic activity ...

    African Journals Online (AJOL)

    Whole plant net photosynthetic rates appeared to vary according to the units in which the activity is expressed. The optimum levels of photosynthetic activity differed with the stage of development, depending on the basis of expression. The form and concentration of nitrogen applied influenced morphological development ...

  17. Evaluation of Protocols for Measuring Leaf Photosynthetic Properties of Field-Grown Rice

    Directory of Open Access Journals (Sweden)

    Chang Tian-gen

    2017-01-01

    Full Text Available Largely due to the heterogeneity of environmental parameters and the logistical difficulty of moving photosynthetic equipment in the paddy fields, effective measurement of lowland rice photosynthesis is still a challenge. In this study, we showed that measuring detached rice leaves in the laboratory can not effectively represent the parameters measured in situ. We further described a new indoor facility, high-efficiency all-weather photosynthetic measurement system (HAPS, and the associated measurement protocol to enable whole-weather measurement of photosynthetic parameters of rice grown in the paddy fields. Using HAPS, we can conduct photosynthetic measurements with a time span much longer than that appropriate for the outdoor measurements. Comparative study shows that photosynthetic parameters obtained with the new protocol can effectively represent the parameters in the fields. There was much less standard deviation for measurements using HAPS compared to the outdoor measurements, no matter for technical replications of each recording or for biological replications of each leaf position. This new facility and protocol enables rice photosynthetic physiology studies to be less tough but more efficient, and provides a potential option for large scale studies of rice leaf photosynthesis.

  18. Confocal laser scanning microscopy detection of chlorophylls and carotenoids in chloroplasts and chromoplasts of tomato fruit.

    Science.gov (United States)

    D'Andrea, Lucio; Amenós, Montse; Rodríguez-Concepción, Manuel

    2014-01-01

    Plant cells are unique among eukaryotic cells because of the presence of plastids, including chloroplasts and chromoplasts. Chloroplasts are found in green tissues and harbor the photosynthetic machinery (including chlorophyll molecules), while chromoplasts are present in non-photosynthetic tissues and accumulate large amounts of carotenoids. During tomato fruit development, chloroplasts are converted into chromoplasts that accumulate high levels of lycopene, a linear carotenoid responsible for the characteristic red color of ripe fruit. Here, we describe a simple and fast method to detect both types of fully differentiated plastids (chloroplasts and chromoplasts), as well as intermediate stages, in fresh tomato fruits. The method is based on the differential autofluorescence of chlorophylls and carotenoids (lycopene) detected by Confocal Laser Scanning Microscopy.

  19. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases

    Science.gov (United States)

    Buey, Rubén M.; Ledesma-Amaro, Rodrigo; Velázquez-Campoy, Adrián; Balsera, Mónica; Chagoyen, Mónica; de Pereda, José M.; Revuelta, José L.

    2015-11-01

    Inosine-5'-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches.

  20. Eukaryotic ribosome display with in situ DNA recovery.

    Science.gov (United States)

    He, Mingyue; Edwards, Bryan M; Kastelic, Damjana; Taussig, Michael J

    2012-01-01

    Ribosome display is a cell-free display technology for in vitro selection and optimisation of proteins from large diversified libraries. It operates through the formation of stable protein-ribosome-mRNA (PRM) complexes and selection of ligand-binding proteins, followed by DNA recovery from the selected genetic information. Both prokaryotic and eukaryotic ribosome display systems have been developed. In this chapter, we describe the eukaryotic rabbit reticulocyte method in which a distinct in situ single-primer RT-PCR procedure is used to recover DNA from the selected PRM complexes without the need for prior disruption of the ribosome.

  1. Photosynthetic electron transport in thylakoid preparations from two marine red algae (Rhodophyta).

    Science.gov (United States)

    Stewart, A C; Larkum, A W

    1983-01-01

    Thylakoid membrane preparations active in photosynthetic electron transport have been obtained from two marine red algae, Griffithsia monilis and Anotrichium tenue. High concentrations (0.5-1.0 M) of salts such as phosphate, citrate, succinate and tartrate stabilized functional binding of phycobilisomes to the membrane and also stabilized Photosystem II-catalysed electron-transport activity. High concentrations (1.0 M) of chloride and nitrate, or 30 mM-Tricine/NaOH buffer (pH 7.2) in the absence of salts, detached phycobilisomes and inhibited electron transport through Photosystem II. The O2-evolving system was identified as the electron-transport chain component that was inhibited under these conditions. Washing membranes with buffers containing 1.0-1.5 M-sorbitol and 5-50 mM concentrations of various salts removed the outer part of the phycobilisome but retained 30-70% of the allophycocyanin 'core' of the phycobilisome. These preparations were 30-70% active in O2 evolution compared with unwashed membranes. In the sensitivity of their O2-evolving apparatus to the composition of the medium in vitro, the red algae resembled blue-green algae and differed from other eukaryotic algae and higher plants. It is suggested that an environment of structured water may be essential for the functional integrity of Photosystem II in biliprotein-containing algae. PMID:6860312

  2. Towards New Antifolates Targeting Eukaryotic Opportunistic Infections

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.; Bolstad, D; Bolstad, E; Wright, D; Anderson, A

    2009-01-01

    Trimethoprim, an antifolate commonly prescribed in combination with sulfamethoxazole, potently inhibits several prokaryotic species of dihydrofolate reductase (DHFR). However, several eukaryotic pathogenic organisms are resistant to trimethoprim, preventing its effective use as a therapeutic for those infections. We have been building a program to reengineer trimethoprim to more potently and selectively inhibit eukaryotic species of DHFR as a viable strategy for new drug discovery targeting several opportunistic pathogens. We have developed a series of compounds that exhibit potent and selective inhibition of DHFR from the parasitic protozoa Cryptosporidium and Toxoplasma as well as the fungus Candida glabrata. A comparison of the structures of DHFR from the fungal species Candida glabrata and Pneumocystis suggests that the compounds may also potently inhibit Pneumocystis DHFR.

  3. Special issue of photosynthetic research

    NARCIS (Netherlands)

    Okamura, M.; Wraight, C.A.; van Grondelle, R.

    2014-01-01

    This Special Issue of Photosynthesis Research honors Louis M. N. Duysens, Roderick K. Clayton, and George Feher, three pioneering researchers whose work on bacterial photosynthesis laid much of the groundwork for our understanding of the role of the reaction center in photosynthetic light energy

  4. Discovery of Baeyer-Villiger monooxygenases from photosynthetic eukaryotes

    NARCIS (Netherlands)

    Beneventi, Elisa; Niero, Mattia; Motterle, Riccardo; Fraaije, Marco; Bergantino, Elisabetta

    2013-01-01

    Baeyer-Villiger monooxygenases are attractive "green" catalysts able to produce chiral esters or lactones starting from ketones. They can act as natural equivalents of peroxyacids that are the catalysts classically used in the organic synthesis reactions, consisting in the cleavage of C-C bonds with

  5. Ultrafast fluorescence of photosynthetic crystals and light-harvesting complexes

    OpenAIRE

    Oort, van, B.F.

    2008-01-01

    This thesis focuses on the study of photosynthetic pigment protein complexes using time resolved fluorescence techniques. Fluorescence spectroscopy often requires attaching fluorescent labels to the proteins under investigation. With photosynthetic proteins this is not necessary, because these proteins contain fluorescent pigments. Each pigment’s fluorescence is influenced by its environment, and thereby may provide information on structure and dynamics of pigment protein complexes in vitro a...

  6. Regulation of eukaryotic elongation factor 1 alpha (eEF1A) by dynamic lysine methylation

    DEFF Research Database (Denmark)

    Jakobsson, Magnus E; Małecki, Jędrzej; Falnes, Pål Ø

    2018-01-01

    Lysine methylation is a frequent post-translational protein modification, which has been intensively studied in the case of histone proteins. Lysine methylations are also found on many non-histone proteins, and one prominent example is eukaryotic elongation factor 1 alpha (eEF1A). Besides its...... essential role in the protein synthesis machinery, a number of non-canonical functions have also been described for eEF1A, such as regulation of the actin cytoskeleton and the promotion of viral replication. The functional significance of the extensive lysine methylations on eEF1A, as well as the identity...

  7. Photosynthetic rate, dry matter accumulation and yield inter-relationships jn genotypes of rice

    International Nuclear Information System (INIS)

    Devendra, R.; Udaya Kumar, M.; Krishna Sastry, K.S.

    1980-01-01

    The relationship between photosynthetic efficiency, dry matter accumulation and yield in five genotypes of paddy derived from a single cross between Jaya X Halubbalu was studied. Photosynthetic efficiency of younger leaves, on the main tiller was higher than in the older leaves. A significant positive correlation between RuDPcase activity and photosynthetic efficiency was observed in these genotypes. Also a similar positive correlation between dry matter production and photosynthetic efficiency during vegetative period but not during post-anthesis period was observed. Genotypes with high photosynthetic efficiency and also the genotypes with high LAD produced higher dry matter. A reduction in LAD or in photosynthetic efficiency during the post-anthesis period and thus a reduction in source capacity which occurred specially in late types resulted in a lesser ratio between productive and total tillers and also higher percent sterility. Differences in yield amongst the genotypes were not significant, since in the late types MR. 333 and MR. 335, the post-anthesis dry matter production was low due to lesser source capacity. But in the early types, though the total dry matter was less, the post-anthesis source capacity was high. The importance of post-anthesis leaf area of photo-synthetic efficiency in productivity in genotypes of rice is highlighted. (author)

  8. Eukaryotic acquisition of a bacterial operon

    Science.gov (United States)

    The yeast Saccharomyces cerevisiae is one of the champions of basic biomedical research due to its compact eukaryotic genome and ease of experimental manipulation. Despite these immense strengths, its impact on understanding the genetic basis of natural phenotypic variation has been limited by strai...

  9. Quantitative prediction of shrimp disease incidence via the profiles of gut eukaryotic microbiota.

    Science.gov (United States)

    Xiong, Jinbo; Yu, Weina; Dai, Wenfang; Zhang, Jinjie; Qiu, Qiongfen; Ou, Changrong

    2018-04-01

    One common notion is emerging that gut eukaryotes are commensal or beneficial, rather than detrimental. To date, however, surprisingly few studies have been taken to discern the factors that govern the assembly of gut eukaryotes, despite growing interest in the dysbiosis of gut microbiota-disease relationship. Herein, we firstly explored how the gut eukaryotic microbiotas were assembled over shrimp postlarval to adult stages and a disease progression. The gut eukaryotic communities changed markedly as healthy shrimp aged, and converged toward an adult-microbiota configuration. However, the adult-like stability was distorted by disease exacerbation. A null model untangled that the deterministic processes that governed the gut eukaryotic assembly tended to be more important over healthy shrimp development, whereas this trend was inverted as the disease progressed. After ruling out the baseline of gut eukaryotes over shrimp ages, we identified disease-discriminatory taxa (species level afforded the highest accuracy of prediction) that characteristic of shrimp health status. The profiles of these taxa contributed an overall 92.4% accuracy in predicting shrimp health status. Notably, this model can accurately diagnose the onset of shrimp disease. Interspecies interaction analysis depicted how the disease-discriminatory taxa interacted with one another in sustaining shrimp health. Taken together, our findings offer novel insights into the underlying ecological processes that govern the assembly of gut eukaryotes over shrimp postlarval to adult stages and a disease progression. Intriguingly, the established model can quantitatively and accurately predict the incidences of shrimp disease.

  10. Validation of photosynthetic-fluorescence parameters as biomarkers for isoproturon toxic effect on alga Scenedesmus obliquus

    Energy Technology Data Exchange (ETDEWEB)

    Dewez, David; Didur, Olivier; Vincent-Heroux, Jonathan [University of Quebec in Montreal, Department of Chemistry, Environmental Toxicology Research Center - TOXEN, 2101, Jeanne-Mance, Montreal, Quebec H2X 2J6 (Canada); Popovic, Radovan [University of Quebec in Montreal, Department of Chemistry, Environmental Toxicology Research Center - TOXEN, 2101, Jeanne-Mance, Montreal, Quebec H2X 2J6 (Canada)], E-mail: popovic.radovan@uqam.ca

    2008-01-15

    Photosynthetic-fluorescence parameters were investigated to be used as valid biomarkers of toxicity when alga Scenedesmus obliquus was exposed to isoproturon [3-(4-isopropylphenyl)-1,1-dimethylurea] effect. Chlorophyll fluorescence induction of algal cells treated with isoproturon showed inactivation of photosystem II (PSII) reaction centers and strong inhibition of PSII electron transport. A linear correlation was found (R{sup 2} {>=} 0.861) between the change of cells density affected by isoproturon and the change of effective PSII quantum yield ({phi}{sub M'}), photochemical quenching (q{sub P}) and relative photochemical quenching (q{sub P(rel)}) values. The cells density was also linearly dependent (R{sup 2} = 0.838) on the relative unquenched fluorescence parameter (UQF{sub (rel)}). Non-linear correlation was found (R{sup 2} = 0.937) only between cells density and the energy transfer efficiency from absorbed light to PSII reaction center (ABS/RC). The order of sensitivity determined by the EC-50% was: UQF{sub (rel)} > {phi}{sub M'} > q{sub P} > q{sub P(rel)} > ABS/RC. Correlations between cells density and those photosynthetic-fluorescence parameters provide supporting evidence to use them as biomarkers of toxicity for environmental pollutants. - Photosynthetic-fluorescence parameters are reliable biomarkers of isoproturon toxicity.

  11. Mechanisms and regulation of DNA replication initiation in eukaryotes.

    Science.gov (United States)

    Parker, Matthew W; Botchan, Michael R; Berger, James M

    2017-04-01

    Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.

  12. Photosynthetic limitation and mechanisms of photoprotection under drought and recovery of Calotropis procera, an evergreen C3 from arid regions.

    Science.gov (United States)

    Rivas, Rebeca; Frosi, Gabriella; Ramos, Diego G; Pereira, Silvia; Benko-Iseppon, Ana M; Santos, Mauro G

    2017-09-01

    Calotropis procera is a C 3 plant native from arid environmental zones. It is an evergreen, shrubby, non-woody plant with intense photosynthetic metabolism during the dry season. We measured photosynthetic parameters and leaf biochemical traits, such as gas exchange, photochemical parameters, A/C i analysis, organic solutes, and antioxidant enzymes under controlled conditions in potted plants during drought stress, and following recovery conditions to obtain a better insight in the drought stress responses of C. procera. Indeed, different processes contribute to the drought stress resilience of C. procera and to the fast recovery after rehydration. The parameters analyzed showed that C. procera has a high efficiency for energy dissipation. The photosynthetic machinery is protected by a robust antioxidant system and photoprotective mechanisms such as alternative pathways for electrons (photorespiration and day respiration). Under severe drought stress, increased stomatal limitation and decreased biochemical limitation permitted C. procera to maintain maximum rate of Rubisco carboxylation (V c,max ) and photosynthetic rate (A max ). On the other hand, limitation of stomatal or mesophyll CO 2 diffusion did not impair fast recovery, maintaining V c,max , chloroplast CO 2 concentration (C c ) and mesophyll conductance (g m ) unchanged while electron flow used for RuBP carboxylation (J c ) and A max increased. The ability to tolerate drought stress and the fast recovery of this evergreen C 3 species was also due to leaf anti-oxidative stress enzyme activity, and photosynthetic pigments. Thus, these different drought tolerance mechanisms allowed high performance of photosynthetic metabolism by drought stressed plants during the re-watering period. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Large-scale analysis of phosphorylation site occupancy in eukaryotic proteins

    DEFF Research Database (Denmark)

    Rao, R Shyama Prasad; Møller, Ian Max

    2012-01-01

    in proteins is currently lacking. We have therefore analyzed the occurrence and occupancy of phosphorylated sites (~ 100,281) in a large set of eukaryotic proteins (~ 22,995). Phosphorylation probability was found to be much higher in both the  termini of protein sequences and this is much pronounced...... maximum randomness. An analysis of phosphorylation motifs indicated that just 40 motifs and a much lower number of associated kinases might account for nearly 50% of the known phosphorylations in eukaryotic proteins. Our results provide a broad picture of the phosphorylation sites in eukaryotic proteins.......Many recent high throughput technologies have enabled large-scale discoveries of new phosphorylation sites and phosphoproteins. Although they have provided a number of insights into protein phosphorylation and the related processes, an inclusive analysis on the nature of phosphorylated sites...

  14. Phytochromes in photosynthetically competent plants

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, L.H.

    1990-07-01

    Plants utilize light as a source of information in photomorphogenesis and of free energy in photosynthesis, two processes that are interrelated in that the former serves to increase the efficiency with which plants can perform the latter. Only one pigment involved in photomorphogenesis has been identified unequivocally, namely phytochrome. The thrust of this proposal is to investigate this pigment and its mode(s) of action in photosynthetically competent plants. Our long term objective is to characterize phytochrome and its functions in photosynthetically competent plants from molecular, biochemical and cellular perspectives. It is anticipated that others will continue to contribute indirectly to these efforts at the physiological level. The ultimate goal will be to develop this information from a comparative perspective in order to learn whether the different phytochromes have significantly different physicochemical properties, whether they fulfill independent functions and if so what these different functions are, and how each of the different phytochromes acts at primary molecular and cellular levels.

  15. On the Archaeal Origins of Eukaryotes and the Challenges of Inferring Phenotype from Genotype.

    Science.gov (United States)

    Dey, Gautam; Thattai, Mukund; Baum, Buzz

    2016-07-01

    If eukaryotes arose through a merger between archaea and bacteria, what did the first true eukaryotic cell look like? A major step toward an answer came with the discovery of Lokiarchaeum, an archaeon whose genome encodes small GTPases related to those used by eukaryotes to regulate membrane traffic. Although 'Loki' cells have yet to be seen, their existence has prompted the suggestion that the archaeal ancestor of eukaryotes engulfed the future mitochondrion by phagocytosis. We propose instead that the archaeal ancestor was a relatively simple cell, and that eukaryotic cellular organization arose as the result of a gradual transfer of bacterial genes and membranes driven by an ever-closer symbiotic partnership between a bacterium and an archaeon. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Influence of intra-pigment vibrations on dynamics of photosynthetic exciton.

    Science.gov (United States)

    Sato, Yoshihiro; Doolittle, Brian

    2014-11-14

    We have numerically investigated the effect of an underdamped intra-pigment vibrational mode on an exciton's quantum coherence and energy transfer efficiency. Our model describes a bacteriochlorophyll a pigment-protein dimer under the conditions at which photosynthetic energy transfer occurs. The dimer is modeled using a theoretical treatment of a vibronic exciton, and its dynamics are numerically analyzed using a non-Markovian and non-perturbative method. We examined the system's response to various values of the Huang-Rhys factor, site energy difference, reorganization energy, and reorganization energy difference. We found that the inclusion of the intra-pigment vibronic mode allows for long-lived oscillatory quantum coherences to occur. This excitonic coherence is robust against static site-energy disorder. The vibrational mode also promotes exciton transfer along the site-energy landscape thus improving the overall energy transfer efficiency.

  17. Influence of intra-pigment vibrations on dynamics of photosynthetic exciton

    International Nuclear Information System (INIS)

    Sato, Yoshihiro; Doolittle, Brian

    2014-01-01

    We have numerically investigated the effect of an underdamped intra-pigment vibrational mode on an exciton's quantum coherence and energy transfer efficiency. Our model describes a bacteriochlorophyll a pigment-protein dimer under the conditions at which photosynthetic energy transfer occurs. The dimer is modeled using a theoretical treatment of a vibronic exciton, and its dynamics are numerically analyzed using a non-Markovian and non-perturbative method. We examined the system's response to various values of the Huang-Rhys factor, site energy difference, reorganization energy, and reorganization energy difference. We found that the inclusion of the intra-pigment vibronic mode allows for long-lived oscillatory quantum coherences to occur. This excitonic coherence is robust against static site-energy disorder. The vibrational mode also promotes exciton transfer along the site-energy landscape thus improving the overall energy transfer efficiency

  18. Influence of intra-pigment vibrations on dynamics of photosynthetic exciton

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Yoshihiro, E-mail: sato.yoshihiro77@nihon-u.ac.jp, E-mail: ysato.colby@gmail.com; Doolittle, Brian [Department of Physics and Astronomy, Colby College, Waterville, Maine 04901 (United States)

    2014-11-14

    We have numerically investigated the effect of an underdamped intra-pigment vibrational mode on an exciton's quantum coherence and energy transfer efficiency. Our model describes a bacteriochlorophyll a pigment-protein dimer under the conditions at which photosynthetic energy transfer occurs. The dimer is modeled using a theoretical treatment of a vibronic exciton, and its dynamics are numerically analyzed using a non-Markovian and non-perturbative method. We examined the system's response to various values of the Huang-Rhys factor, site energy difference, reorganization energy, and reorganization energy difference. We found that the inclusion of the intra-pigment vibronic mode allows for long-lived oscillatory quantum coherences to occur. This excitonic coherence is robust against static site-energy disorder. The vibrational mode also promotes exciton transfer along the site-energy landscape thus improving the overall energy transfer efficiency.

  19. Photosynthetic properties of erect leaf maize inbred lines as the efficient photo-model in breeding and seed production

    Directory of Open Access Journals (Sweden)

    Radenović Čedomir N.

    2003-01-01

    Full Text Available The initial idea of this study was a hypothesis that erect leaf maize inbred lines were characterized by properties of an efficient photo-model and that as such were very desirable in increasing the number of plants per area unit (plant density in the process of contemporary selection and seed production. The application of a non-invasive bioluminescence-photosynthetic method, suitable for the efficiency estimation of the photo-model, verified the hypothesis. Obtained photosynthetic properties of observed erect leaf maize inbred lines were based on the effects and characteristics of thermal processes of delayed chlorophyll fluorescence occurring in their thylakoid membranes. The temperature dependence of the delayed chlorophyll fluorescence intensity phase transitions (critical temperatures in the thylakoid membranes and activation energy are the principal parameters of the thermal processes. Based on obtained photosynthetic properties it is possible to select erect leaf maize inbred lines that are resistant and tolerant to high and very high temperatures, as well as, to drought. They could be good and efficient photo-models wherewith.

  20. Photosynthetic Pigments in Diatoms.

    Science.gov (United States)

    Kuczynska, Paulina; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2015-09-16

    Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications. In this review, we summarize current knowledge on diatom photosynthetic pigments complemented by some new insights regarding their physico-chemical properties, biological role, and biosynthetic pathways, as well as the regulation of pigment level in the cell, methods of purification, and significance in industries.

  1. Photosynthetic Pigments in Diatoms

    Directory of Open Access Journals (Sweden)

    Paulina Kuczynska

    2015-09-01

    Full Text Available Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications. In this review, we summarize current knowledge on diatom photosynthetic pigments complemented by some new insights regarding their physico-chemical properties, biological role, and biosynthetic pathways, as well as the regulation of pigment level in the cell, methods of purification, and significance in industries.

  2. Phylogenetic analysis of the thylakoid ATP/ADP carrier reveals new insights into its function restricted to green plants

    Directory of Open Access Journals (Sweden)

    Cornelia eSpetea

    2012-01-01

    Full Text Available ATP is the common energy currency of cellular metabolism in all living organisms. Most of them synthesize ATP in the cytosol or on the mitochondrial inner membrane, whereas land plants, algae and cyanobacteria also produce it on the thylakoid membrane during the light-dependent reactions of photosynthesis. From the site of synthesis, ATP is transported to the site of utilization via intracellular membranes transporters. One major type of ATP transporter is represented by the mitochondrial ADP/ATP carrier family. Here we review a recently characterized member, namely the thylakoid ATP/ADP carrier from Arabidopsis thaliana (AtTAAC. Thus far, no orthologues of this carrier have been characterized in other organisms, although similar sequences can be recognized in many sequenced genomes. Protein Sequence database searches and phylogenetic analyses indicate the absence of TAAC in cyanobacteria and its appearance early in the evolution of photosynthetic eukaryotes. The TAAC clade is composed of carriers found in land plants and some green algae, but no proteins from other photosynthetic taxa, such as red algae, brown algae and diatoms. This implies that TAAC-like sequences arose only once before the divergence of green algae and land plants. Based on these findings, it is proposed that TAAC may have evolved in response to the need of a new activity in higher photosynthetic eukaryotes. This activity may provide the energy to drive reactions during biogenesis and turnover of photosynthetic complexes, which are heterogenously distributed in a thylakoid membrane system composed of appressed and non-appressed regions.

  3. Novel adaptive photosynthetic characteristics of mesophotic symbiotic microalgae within the reef-building coral, Stylophora pistillata

    Directory of Open Access Journals (Sweden)

    Shai Einbinder

    2016-10-01

    Full Text Available Photosynthetic coral reef structures extend from the shallow sundrenched waters to the dimly lit, twilight mesophotic depths. For their resident endosymbiotic dinoflagellates, primarily from the genus Symbiodinium spp., this represents a photic environment that varies ~15 fold in intensity and also differs in spectral composition. We examined photosynthesis in the scleractinian coral Stylophora pistillata in shallow (3 m and mesophotic settings (65m in the northern Red Sea. Symbiodinium spp. in corals originating from the mesophotic environment consistently performed below their photosynthetic compensation point and also exhibited distinct light harvesting antenna organization. In addition, the non-photochemical quenching activity of Symbiodinium spp. from mesophotic corals was shown to be considerably lower than those found in shallow corals, showing they have fewer defenses to high-light settings. Over a period of almost four years, we extensively utilized closed circuit Trimix rebreather diving to perform the study. Phylogenetic analysis showed that shallow corals (3m transplanted to a deep reef environment (65 m maintained their initial Symbiodinium spp. community (clade A, rather than taking on deep low-light clades (clade C, demonstrating that shallow S. pistillata acclimate to low-light mesophotic environments while maintaining their shallow photosynthetic traits. Mesophotic corals exhibited static depth-related chlorophyll content per cell, a decrease in PSI activity and enhanced sigmoidal fluorescence rise kinetics. The sigmoidal fluorescence rise kinetics we observed in mesophotic corals is an indication of energy transfer between photosynthetic units. We postulate that at mesophotic depths, a community of adapted Symbiodinium spp. utilize a unique adaptation to lower light conditions by shifting their light harvesting to a PSII based system, where PSII is structured near PSI, with additional PCP soluble antenna also trapping light

  4. [Engineering photosynthetic cyanobacterial chassis: a review].

    Science.gov (United States)

    Wu, Qin; Chen, Lei; Wang, Jiangxin; Zhang, Weiwen

    2013-08-01

    Photosynthetic cyanobacteria possess a series of good properties, such as their abilities to capture solar energy for CO2 fixation, low nutritional requirements for growth, high growth rate, and relatively simple genetic background. Due to the high oil price and increased concern of the global warming in recent years, cyanobacteria have attracted widespread attention because they can serve as an 'autotrophic microbial factory' for producing renewable biofuels and fine chemicals directly from CO2. Particularly, significant progress has been made in applying synthetic biology techniques and strategies to construct and optimize cyanobacteria chassis. In this article, we critically summarized recent advances in developing new methods to optimize cyanobacteria chassis, improving cyanobacteria photosynthetic efficiency, and in constructing cyanobacteria chassis tolerant to products or environmental stresses. In addition, various industrial applications of cyanobacteria chassis are also discussed.

  5. Assets of the non-pathogenic microorganism Dictyostelium discoideum as a model for the study of eukaryotic extracellular vesicles [v1; ref status: indexed, http://f1000r.es/pa

    Directory of Open Access Journals (Sweden)

    Irène Tatischeff

    2013-03-01

    Full Text Available Dictyostelium discoideum microvesicles have recently been presented as a valuable model for eukaryotic extracellular vesicles. Here, the advantages of D. discoideum for unraveling important biological functions of extracellular vesicles in general are detailed. D. discoideum, a non-pathogenic eukaryotic microorganism, belongs to a billion-year-old Amoeboza lineage, which diverged from the animal-fungal lineage after the plant animal-split. During growth and early starvation-induced development, it presents analogies with lymphocytes and macrophages with regard to motility and phagocytosis capability, respectively. Its 6-chromosome genome codes for about 12,500 genes, some showing analogies with human genes. The presence of extracellular vesicles during cell growth has been evidenced as a detoxification mechanism of various structurally unrelated drugs. Controls led to the discovery of constitutive extracellular vesicle secretion in this microorganism, which was an important point. It means that the secretion of extracellular vesicles occurs, in the absence of any drug, during both cell growth and early development. This constitutive secretion of D. discoideum cells is very likely to play a role in intercellular communication. The detoxifying secreted vesicles, which can transport drugs outside the cells, can also act as "Trojan horses", capable of transferring these drugs not only into naïve D. discoideum cells, but into human cells as well. Therefore, these extracellular vesicles were proposed as a new biological drug delivery tool. Moreover, Dictyostelium, chosen by the NIH (USA as a new model organism for biomedical research, has already been used for studying some human diseases. These cells, which are much easier to manipulate than human cells, can be easily designed in simple conditioned medium experiments. Owing to the increasing consensus that extracellular vesicles are probably important mediators of intercellular communication, D

  6. Effect of Photosynthetic Photon Flux Density on Carboxylation Efficiency 1

    Science.gov (United States)

    Weber, James A.; Tenhunen, John D.; Gates, David M.; Lange, Otto L.

    1987-01-01

    The effect of photosynthetic photon flux density (PPFD) on photosynthetic response (A) to CO2 partial pressures between 35 pascals and CO2 compensation point (Γ) was investigated, especially below PPFD saturation. Spinacia oleracea cv `Atlanta,' Glycine max cv `Clark,' and Arbutus unedo were studied in detail. The initial slope of the photosynthetic response to CO2 (∂A/∂C[Γ]) was constant above a PPFD of about 500 to 600 micromoles per square meter per second for all three species; but declined rapidly with PPFD below this critical level. For Γ there was also a critical PPFD (approximately 200 micromoles per square meter per second for S. oleracea and G. max; 100 for A. unedo) above which Γ was essentially constant, but below which Γ increased with decreasing PPFD. All three species showed a dependence of ∂A/∂C(Γ) on PPFD at low PPFD. Simulated photosynthetic responses obtained with a biochemically based model of whole-leaf photosynthesis were similar to measured responses. PMID:16665640

  7. Seasonal Changes in Photosynthetic Energy Utilization in a Desert Shrub (Artemisia ordosica Krasch. during Its Different Phenophases

    Directory of Open Access Journals (Sweden)

    Cai Ren

    2018-03-01

    Full Text Available Our understanding of the mechanisms of plant response to environment fluctuations during plants’ phenological phases (phenophases remains incomplete. Continuous chlorophyll fluorescence (ChlF measurements were acquired from the field to quantify the responses in a desert shrub species (i.e., Artemesia ordosica Krasch. (A. ordosica to environmental factors by assessing variation in several ChlF-linked parameters and to understand plant acclimation to environmental stresses. Maximal quantum yield of PSII photochemistry (Fv/Fm was shown to be reduced by environmental stressors and to be positively correlated to air temperature (Ta during the early and late plant-growing stages, indicating a low temperature-induced inhibition during the leaf expansion and coloration phases. Effective quantum yield of PSII photochemistry (ΦPSII was negatively correlated to incident photosynthetically active radiation (PAR irrespective of phenophase, suggesting excessive radiation-induced inhibition at all phenophases. The main mechanism for acclimating to environmental stress was the regulatory thermal dissipation (ΦNPQ and the long-term regulation of relative changes in Chl a to Chl b. The relative changes in photosynthetic energy utilization and dissipation in energy partitioning meant A. ordosica could acclimatize dynamically to environmental changes. This mechanism may enable plants in arid and semi-arid environments to acclimatize to increasingly extreme environmental conditions under future projected climate change.

  8. Symbiosis and the origin of eukaryotic motility

    Science.gov (United States)

    Margulis, L.; Hinkle, G.

    1991-01-01

    Ongoing work to test the hypothesis of the origin of eukaryotic cell organelles by microbial symbioses is discussed. Because of the widespread acceptance of the serial endosymbiotic theory (SET) of the origin of plastids and mitochondria, the idea of the symbiotic origin of the centrioles and axonemes for spirochete bacteria motility symbiosis was tested. Intracellular microtubular systems are purported to derive from symbiotic associations between ancestral eukaryotic cells and motile bacteria. Four lines of approach to this problem are being pursued: (1) cloning the gene of a tubulin-like protein discovered in Spirocheata bajacaliforniesis; (2) seeking axoneme proteins in spirochets by antibody cross-reaction; (3) attempting to cultivate larger, free-living spirochetes; and (4) studying in detail spirochetes (e.g., Cristispira) symbiotic with marine animals. Other aspects of the investigation are presented.

  9. Non-Protein Coding RNAs

    CERN Document Server

    Walter, Nils G; Batey, Robert T

    2009-01-01

    This book assembles chapters from experts in the Biophysics of RNA to provide a broadly accessible snapshot of the current status of this rapidly expanding field. The 2006 Nobel Prize in Physiology or Medicine was awarded to the discoverers of RNA interference, highlighting just one example of a large number of non-protein coding RNAs. Because non-protein coding RNAs outnumber protein coding genes in mammals and other higher eukaryotes, it is now thought that the complexity of organisms is correlated with the fraction of their genome that encodes non-protein coding RNAs. Essential biological processes as diverse as cell differentiation, suppression of infecting viruses and parasitic transposons, higher-level organization of eukaryotic chromosomes, and gene expression itself are found to largely be directed by non-protein coding RNAs. The biophysical study of these RNAs employs X-ray crystallography, NMR, ensemble and single molecule fluorescence spectroscopy, optical tweezers, cryo-electron microscopy, and ot...

  10. Energy transfer in real and artificial photosynthetic systems

    Energy Technology Data Exchange (ETDEWEB)

    Hindman, J.C.; Hunt, J.E.; Katz, J.J.

    1995-02-01

    Fluorescence emission from the photosynthetic organisms Tribonema aequale, Anacystis nidulau, and Chlorelia vulgais and from some chlorophyll model systems have been recorded as a function of excitation wavelength and temperature. Considerable similarity was observed in the effects of excitation wavelength and temperature on the fluorescence from intact photosynthetic organisms and the model systems. The parallelism in behavior suggest that self-assembly processes may occur in both the in vivo and in vitro systems that give rise to chlorophyll species at low temperature that may differ significantly from those present at ambient temperatures.

  11. Separation, identification and quantification of photosynthetic ...

    African Journals Online (AJOL)

    Thirty one photosynthetic pigments (chlorophylls, carotenoids and degradation products) from the seaweeds, Codium dwarkense, (Chlorophyta), , Laurencia obtusa , (Rhodophyta) and , Lobophora variegata, (Phaeophyta), were separated in a single-step procedure by reversed phase high-performance liquid ...

  12. Characterization of prokaryotic and eukaryotic promoters usinghidden Markov models

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, Pierre; Brunak, Søren

    1996-01-01

    In this paper we utilize hidden Markov models (HMMs) and information theory to analyze prokaryotic and eukaryotic promoters. We perform this analysis with special emphasis on the fact that promoters are divided into a number of different classes, depending on which polymerase-associated factors...... that bind to them. We find that HMMs trained on such subclasses of Escherichia coli promoters (specifically, the so-called sigma-70 and sigma-54 classes) give an excellent classification of unknown promoters with respect to sigma-class. HMMs trained on eukaryotic sequences from human genes also model nicely...

  13. Sun and Shade leaves, SIF, and Photosynthetic Capacity

    Science.gov (United States)

    Berry, J. A.; Badgley, G.

    2016-12-01

    Recent advances in retrieval of solar induced chlorophyll fluorescence (SIF) have opened up new possibilities for remote sensing of canopy physiology and structure. To date most of the emphasis has been placed on SIF as an indicator of stress and photosynthetic capacity. However, it is clear that canopy structure can also have an influence. To this point, simulations of SIF in land surface models tend to under predict observed variation in SIF. Also, large, systematic differences in SIF from different canopy types seem to correlate well with the photosynthetic capacity of these canopies. SIF emissions from pampered crops can be several-fold that from evergreen, needle-leaf forests. Yet, these may have similar vegetation indices and absorb a similar fraction of incident PAR. SIF photons produced in a conifer canopy do have a lower probability of escaping its dense, clumped foliage. However, this does not explain the correlated differences in photosynthetic rate and SIF. It is useful, in this regard, to consider the separate contributions of sun and shade leaves to the SIF emitted by a canopy. Sun leaves tend to be displayed to intercept the direct solar beam, and these highly illuminated leaves are often visible from above the canopy. Sun leaves produce more SIF and a large fraction of it escapes. Therefore, the intensity of SIF may be a sensitive indicator of the partitioning of absorbed PAR to sun and shade leaves. Many models account tor the different photosynthetic capacity of sun and shade leaves in calculating canopy responses. However, the fraction of leaves in each category is usually parameterized by an assumed leaf angle distribution (e.g. spherical). In reality, the sun/shade fraction can vary over a wide range, and it has been difficult to measure. SIF and possibly near-IR reflectance of canopies can be used to specify this key parameter with obvious importance to understanding photosynthetic rate.

  14. Seagrass canopy photosynthetic response is a function of canopy density and light environment: a model for Amphibolis griffithii.

    Science.gov (United States)

    Hedley, John D; McMahon, Kathryn; Fearns, Peter

    2014-01-01

    A three-dimensional computer model of canopies of the seagrass Amphibolis griffithii was used to investigate the consequences of variations in canopy structure and benthic light environment on leaf-level photosynthetic saturation state. The model was constructed using empirical data of plant morphometrics from a previously conducted shading experiment and validated well to in-situ data on light attenuation in canopies of different densities. Using published values of the leaf-level saturating irradiance for photosynthesis, results show that the interaction of canopy density and canopy-scale photosynthetic response is complex and non-linear, due to the combination of self-shading and the non-linearity of photosynthesis versus irradiance (P-I) curves near saturating irradiance. Therefore studies of light limitation in seagrasses should consider variation in canopy structure and density. Based on empirical work, we propose a number of possible measures for canopy scale photosynthetic response that can be plotted to yield isoclines in the space of canopy density and light environment. These plots can be used to interpret the significance of canopy changes induced as a response to decreases in the benthic light environment: in some cases canopy thinning can lead to an equivalent leaf level light environment, in others physiological changes may also be required but these alone may be inadequate for canopy survival. By providing insight to these processes the methods developed here could be a valuable management tool for seagrass conservation during dredging or other coastal developments.

  15. Seagrass canopy photosynthetic response is a function of canopy density and light environment: a model for Amphibolis griffithii.

    Directory of Open Access Journals (Sweden)

    John D Hedley

    Full Text Available A three-dimensional computer model of canopies of the seagrass Amphibolis griffithii was used to investigate the consequences of variations in canopy structure and benthic light environment on leaf-level photosynthetic saturation state. The model was constructed using empirical data of plant morphometrics from a previously conducted shading experiment and validated well to in-situ data on light attenuation in canopies of different densities. Using published values of the leaf-level saturating irradiance for photosynthesis, results show that the interaction of canopy density and canopy-scale photosynthetic response is complex and non-linear, due to the combination of self-shading and the non-linearity of photosynthesis versus irradiance (P-I curves near saturating irradiance. Therefore studies of light limitation in seagrasses should consider variation in canopy structure and density. Based on empirical work, we propose a number of possible measures for canopy scale photosynthetic response that can be plotted to yield isoclines in the space of canopy density and light environment. These plots can be used to interpret the significance of canopy changes induced as a response to decreases in the benthic light environment: in some cases canopy thinning can lead to an equivalent leaf level light environment, in others physiological changes may also be required but these alone may be inadequate for canopy survival. By providing insight to these processes the methods developed here could be a valuable management tool for seagrass conservation during dredging or other coastal developments.

  16. Acquiring a 2D rolled equivalent fingerprint image from a non-contact 3D finger scan

    Science.gov (United States)

    Fatehpuria, Abhishika; Lau, Daniel L.; Hassebrook, Laurence G.

    2006-04-01

    The use of fingerprints as a biometric is both the oldest mode of computer aided personal identification and the most relied-upon technology in use today. But current fingerprint scanning systems have some challenging and peculiar difficulties. Often skin conditions and imperfect acquisition circumstances cause the captured fingerprint image to be far from ideal. Also some of the acquisition techniques can be slow and cumbersome to use and may not provide the complete information required for reliable feature extraction and fingerprint matching. Most of the difficulties arise due to the contact of the fingerprint surface with the sensor platen. To attain a fast-capture, non-contact, fingerprint scanning technology, we are developing a scanning system that employs structured light illumination as a means for acquiring a 3-D scan of the finger with sufficiently high resolution to record ridge-level details. In this paper, we describe the postprocessing steps used for converting the acquired 3-D scan of the subject's finger into a 2-D rolled equivalent image.

  17. Enhancing Medicares Hospital Acquired Conditions Policy

    Data.gov (United States)

    U.S. Department of Health & Human Services — The current Medicare policy of non-payment to hospitals for Hospital Acquired Conditions (HAC) seeks to avoid payment for preventable complications identified within...

  18. Long-term drought modifies the fundamental relationships between light exposure, leaf nitrogen content and photosynthetic capacity in leaves of the lychee tree (Litchi chinensis).

    Science.gov (United States)

    Damour, Gaëlle; Vandame, Marc; Urban, Laurent

    2008-09-08

    Drought has dramatic negative effects on plants' growth and crop productivity. Although some of the responses and underlying mechanisms are still poorly understood, there is increasing evidence that drought may have a negative effect on photosynthetic capacity. Biochemical models of leaf photosynthesis coupled with models of radiation transfer have been widely used in ecophysiological studies, and, more recently, in global change modeling. They are based on two fundamental relationships at the scale of the leaf: (i) nitrogen content-light exposure and (ii) photosynthetic capacity-nitrogen content. Although drought is expected to increase in many places across the world, such models are not adapted to drought conditions. More specifically, the effects of drought on the two fundamental relationships are not well documented. The objective of our study was to investigate the effects of a long-term drought imposed slowly on the nitrogen content and photosynthetic capacity of leaves similarly exposed to light, from 3-year-old lychee trees cv. Kwaï Mi. Leaf nitrogen and non-structural carbohydrate concentrations were measured along with gas exchanges and the light-saturated rate of photosynthetic electron transport (J(max)) after a 5.5-month-long period of drought. Leaf nitrogen content on a mass basis remained stable, while the leaf mass-to-area ratio (LMA) increased with increasing water stress. Consequently, the leaf nitrogen content on an area basis (N(a)) increased in a non-linear fashion. The starch content decreased, while the soluble sugar content increased. Stomata closed and net assimilation decreased to zero, while J(max) and the ratio J(max)/N(a) decreased with increasing water stress. The drought-associated decrease in photosynthetic capacity can be attributed to downregulation of photosynthetic electron transport and to reallocation of leaf nitrogen content. It is concluded that modeling photosynthesis in drought conditions will require, first, the modeling

  19. Photosynthetic control of electron transport and the regulation of gene expression

    NARCIS (Netherlands)

    Foyer, C.H.; Neukermans, J.; Queval, G.; Noctor, G.; Harbinson, J.

    2012-01-01

    The term ‘photosynthetic control’ describes the short- and long-term mechanisms that regulate reactions in the photosynthetic electron transport (PET) chain so that the rate of production of ATP and NADPH is coordinated with the rate of their utilization in metabolism. At low irradiances these

  20. A recently transferred cluster of bacterial genes in Trichomonas vaginalis - lateral gene transfer and the fate of acquired genes

    Science.gov (United States)

    2014-01-01

    Background Lateral Gene Transfer (LGT) has recently gained recognition as an important contributor to some eukaryote proteomes, but the mechanisms of acquisition and fixation in eukaryotic genomes are still uncertain. A previously defined norm for LGTs in microbial eukaryotes states that the majority are genes involved in metabolism, the LGTs are typically localized one by one, surrounded by vertically inherited genes on the chromosome, and phylogenetics shows that a broad collection of bacterial lineages have contributed to the transferome. Results A unique 34 kbp long fragment with 27 clustered genes (TvLF) of prokaryote origin was identified in the sequenced genome of the protozoan parasite Trichomonas vaginalis. Using a PCR based approach we confirmed the presence of the orthologous fragment in four additional T. vaginalis strains. Detailed sequence analyses unambiguously suggest that TvLF is the result of one single, recent LGT event. The proposed donor is a close relative to the firmicute bacterium Peptoniphilus harei. High nucleotide sequence similarity between T. vaginalis strains, as well as to P. harei, and the absence of homologs in other Trichomonas species, suggests that the transfer event took place after the radiation of the genus Trichomonas. Some genes have undergone pseudogenization and degradation, indicating that they may not be retained in the future. Functional annotations reveal that genes involved in informational processes are particularly prone to degradation. Conclusions We conclude that, although the majority of eukaryote LGTs are single gene occurrences, they may be acquired in clusters of several genes that are subsequently cleansed of evolutionarily less advantageous genes. PMID:24898731

  1. Imaging of acquired non-traumatic cochlear lesions: iconographic essay; Avaliacao por imagem das lesoes cocleares adquiridas (nao-traumaticas): ensaio iconografico

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Marcelo de Mattos; Gonzaga, Juliana Gontijo [Clinica Axial - Centro de Imagem, Belo Horizonte, MG (Brazil)]. E-mail: cidbh@cidbh.com.br; marcelogarcia@superig.com.br

    2006-04-15

    Different non-traumatic acquired cochlear lesions are shown in this article with imaging methods. They may be responsible for neuro sensorial hearing loss or vertigo. The method of choice is computed tomography when evaluating the osseous labyrinth whereas magnetic resonance imaging has superior resolution in the studies of the membranaceous labyrinth. (author)

  2. Flow of light energy in benthic photosynthetic microbial mats

    Energy Technology Data Exchange (ETDEWEB)

    Al-Najjar, Mohammad Ahmad A.

    2010-12-15

    The work in this thesis demonstrates the assessment of the energy budget inside microbial mat ecosystems, and the factors affecting light utilization efficiency. It presents the first balanced light energy budget for benthic microbial mat ecosystems, and shows how the budget and the spatial distribution of the local photosynthetic efficiencies within the euphotic zone depend on the absorbed irradiance (Jabs). The energy budget was dominated by heat dissipation on the expense of photosynthesis. The maximum efficiency of photosynthesis was at light limiting conditions When comparing three different marine benthic photosynthetic ecosystems (originated from Abu-Dhabi, Arctic, and Exmouth Gulf in Western Australia), differences in the efficiencies were calculated. The results demonstrated that the maximum efficiency depended on mat characteristics affecting light absorption and scattering; such as, photopigments ratio and distribution, and the structural organization of the photosynthetic organisms relative to other absorbing components of the ecosystem (i.e., EPS, mineral particles, detritus, etc.). The maximum efficiency decreased with increasing light penetration depth, and increased with increasing the accessory pigments (phycocyanin and fucoxanthin)/chlorophyll ratio. Spatial heterogeneity in photosynthetic efficiency, pigment distribution, as well as light acclimation in microbial mats originating from different geographical locations was investigated. We used a combined pigment imaging approach (variable chlorophyll fluorescence and hyperspectral imaging), and fingerprinting approach. For each mat, the photosynthetic activity was proportional to the local pigment concentration in the photic zone, but not for the deeper layers and between different mats. In each mat, yield of PSII and E1/2 (light acclimation) generally decreased in parallel with depth, but the gradients in both parameters varied greatly between samples. This mismatch between pigments concentration

  3. Photosynthetic Pigments in Diatoms

    OpenAIRE

    Kuczynska, Paulina; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2015-01-01

    Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvestin...

  4. Effect of space mutation of photosynthetic characteristics of soybean varieties

    International Nuclear Information System (INIS)

    Liu Xinlei; Ma Yansong; Luan Xiaoyan; Man Weiqun; Xu Dechun; Meng Lifen; Fu Lixin; Zhao Xiao'nan; Liu Qi

    2012-01-01

    In order to elucidate the response of the photosynthetic traits of soybean to space mutation, three soybean varieties (lines) of Heinong 48, Heinong 44 and Ha 2291-Y were carried by artificial satellite in 2006 and the net photo synthetic rate (Pn), stomatal conductance (Cond), intercellular CO 2 concentration (Ci) and stomatal resistance (Rs) from SP 1 to SP 4 generation were determined. The results showed that space mutation affected photosynthesis traits of soy bean. The photosynthetic rate of soybean varieties by space mutation occurred different levels of genetic variation and the positive mutation rate were higher. Coefficient of variation among generations were SP 2 >SP 3 >SP 4 >CK. Results suggest that space mutation can effectively create soybean materials with higher photosynthetic rate. (authors)

  5. Ubiquitination dynamics in the early-branching eukaryote Giardia intestinalis

    Science.gov (United States)

    Niño, Carlos A; Chaparro, Jenny; Soffientini, Paolo; Polo, Simona; Wasserman, Moises

    2013-01-01

    Ubiquitination is a highly dynamic and versatile posttranslational modification that regulates protein function, stability, and interactions. To investigate the roles of ubiquitination in a primitive eukaryotic lineage, we utilized the early-branching eukaryote Giardia intestinalis. Using a combination of biochemical, immunofluorescence-based, and proteomics approaches, we assessed the ubiquitination status during the process of differentiation in Giardia. We observed that different types of ubiquitin modifications present specific cellular and temporal distribution throughout the Giardia life cycle from trophozoites to cyst maturation. Ubiquitin signal was detected in the wall of mature cysts, and enzymes implicated in cyst wall biogenesis were identified as substrates for ubiquitination. Interestingly, inhibition of proteasome activity did not affect trophozoite replication and differentiation, while it caused a decrease in cyst viability, arguing for proteasome involvement in cyst wall maturation. Using a proteomics approach, we identified around 200 high-confidence ubiquitinated candidates that vary their ubiquitination status during differentiation. Our results indicate that ubiquitination is critical for several cellular processes in this primitive eukaryote. PMID:23613346

  6. What can we infer about the origin of sex in early eukaryotes?

    NARCIS (Netherlands)

    Speijer, Dave

    2016-01-01

    Current analysis shows that the last eukaryotic common ancestor (LECA) was capable of full meiotic sex. The original eukaryotic life cycle can probably be described as clonal, interrupted by episodic sex triggered by external or internal stressors. The cycle could have started in a highly flexible

  7. Metabolism in anoxic permeable sediments is dominated by eukaryotic dark fermentation

    DEFF Research Database (Denmark)

    Bourke, Michael F.; Marriott, Philip J.; Glud, Ronnie N.

    2017-01-01

    Permeable sediments are common across continental shelves and are critical contributors to marine biogeochemical cycling. Organic matter in permeable sediments is dominated by microalgae, which as eukaryotes have different anaerobic metabolic pathways to prokaryotes such as bacteria and archaea....... Here we present analyses of flow-through reactor experiments showing that dissolved inorganic carbon is produced predominantly as a result of anaerobic eukaryotic metabolic activity. In our experiments, anaerobic production of dissolved inorganic carbon was consistently accompanied by large dissolved H....../hydrogenase pathway of fermentative eukaryotic H2 production, suggesting that pathway as the source of H2 and dissolved inorganic carbon production. Metabolomic analysis showed large increases in lipid production at the onset of anoxia, consistent with documented pathways of anoxic dark fermentation in microalgae...

  8. Differentiation of bacterial and non-bacterial community-acquired pneumonia by thin-section computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Isao [Department of Respiratory Medicine, Kurashiki Central Hospital, 1-1-1 Miwa, Kurashiki 710-8602 (Japan); Department of Respiratory Medicine, Kyoto University, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan)], E-mail: isaoito@kuhp.kyoto-u.ac.jp; Ishida, Tadashi [Department of Respiratory Medicine, Kurashiki Central Hospital, 1-1-1 Miwa, Kurashiki 710-8602 (Japan)], E-mail: ishidat@kchnet.or.jp; Togashi, Kaori [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan)], E-mail: ktogashi@kuhp.kyoto-u.ac.jp; Niimi, Akio [Department of Respiratory Medicine, Kyoto University, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan)], E-mail: niimi@kuhp.kyoto-u.ac.jp; Koyama, Hiroshi [General Internal Medicine, National Hospital Organization Kyoto Medical Center, 1-1 Fukakusa-Mukohatacho, Fushimi-ku, Kyoto 612-8555 (Japan)], E-mail: hkoyama-kyt@umin.ac.jp; Ishimori, Takayoshi [Department of Radiology, Kurashiki Central Hospital, 1-1-1 Miwa, Kurashiki 710-8602 (Japan)], E-mail: ti10794@kchnet.or.jp; Kobayashi, Hisataka [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan); Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room 1B40, MSC1088, 10 Center Drive, Bethesda, MD 20892-1088 (United States)], E-mail: kobayash@mail.nih.gov; Mishima, Michiaki [Department of Respiratory Medicine, Kyoto University, 54 Shogoin-kawaharacho, Sakyo-ku, Kyoto 606-8507 (Japan)], E-mail: mishima@kuhp.kyoto-u.ac.jp

    2009-12-15

    Background and objective: The management of community-acquired pneumonia (CAP) depends, in part, on the identification of the causative agents. The objective of this study was to determine the potential of thin-section computed tomography (CT) in differentiating bacterial and non-bacterial pneumonia. Patients and methods: Thin-section CT studies were prospectively examined in hospitalized CAP patients within 2 days of admission, followed by retrospective assessment by two pulmonary radiologists. Thin-section CT findings on the pneumonias caused by each pathogen were examined, and two types of pneumonias were compared. Using multivariate logistic regression analyses, receiver operating characteristic (ROC) curves were produced. Results: Among 183 CAP episodes (181 patients, 125 men and 56 women, mean age {+-} S.D.: 61.1 {+-} 19.7) examined by thin-section CT, the etiologies of 125 were confirmed (94 bacterial pneumonia and 31 non-bacterial pneumonia). Centrilobular nodules were specific for non-bacterial pneumonia and airspace nodules were specific for bacterial pneumonia (specificities of 89% and 94%, respectively) when located in the outer lung areas. When centrilobular nodules were the principal finding, they were specific but lacked sensitivity for non-bacterial pneumonia (specificity 98% and sensitivity 23%). To distinguish the two types of pneumonias, centrilobular nodules, airspace nodules and lobular shadows were found to be important by multivariate analyses. ROC curve analysis discriminated bacterial pneumonia from non-bacterial pneumonia among patients without underlying lung diseases, yielding an optimal point with sensitivity and specificity of 86% and 79%, respectively, but was less effective when all patients were analyzed together (70% and 84%, respectively). Conclusion: Thin-section CT examination was applied for the differentiation of bacterial and non-bacterial pneumonias. Though showing some potential, this examination at the present time would

  9. Differentiation of bacterial and non-bacterial community-acquired pneumonia by thin-section computed tomography

    International Nuclear Information System (INIS)

    Ito, Isao; Ishida, Tadashi; Togashi, Kaori; Niimi, Akio; Koyama, Hiroshi; Ishimori, Takayoshi; Kobayashi, Hisataka; Mishima, Michiaki

    2009-01-01

    Background and objective: The management of community-acquired pneumonia (CAP) depends, in part, on the identification of the causative agents. The objective of this study was to determine the potential of thin-section computed tomography (CT) in differentiating bacterial and non-bacterial pneumonia. Patients and methods: Thin-section CT studies were prospectively examined in hospitalized CAP patients within 2 days of admission, followed by retrospective assessment by two pulmonary radiologists. Thin-section CT findings on the pneumonias caused by each pathogen were examined, and two types of pneumonias were compared. Using multivariate logistic regression analyses, receiver operating characteristic (ROC) curves were produced. Results: Among 183 CAP episodes (181 patients, 125 men and 56 women, mean age ± S.D.: 61.1 ± 19.7) examined by thin-section CT, the etiologies of 125 were confirmed (94 bacterial pneumonia and 31 non-bacterial pneumonia). Centrilobular nodules were specific for non-bacterial pneumonia and airspace nodules were specific for bacterial pneumonia (specificities of 89% and 94%, respectively) when located in the outer lung areas. When centrilobular nodules were the principal finding, they were specific but lacked sensitivity for non-bacterial pneumonia (specificity 98% and sensitivity 23%). To distinguish the two types of pneumonias, centrilobular nodules, airspace nodules and lobular shadows were found to be important by multivariate analyses. ROC curve analysis discriminated bacterial pneumonia from non-bacterial pneumonia among patients without underlying lung diseases, yielding an optimal point with sensitivity and specificity of 86% and 79%, respectively, but was less effective when all patients were analyzed together (70% and 84%, respectively). Conclusion: Thin-section CT examination was applied for the differentiation of bacterial and non-bacterial pneumonias. Though showing some potential, this examination at the present time would not

  10. Photosynthetic control of electron transport and the regulation of gene expression.

    Science.gov (United States)

    Foyer, Christine H; Neukermans, Jenny; Queval, Guillaume; Noctor, Graham; Harbinson, Jeremy

    2012-02-01

    The term 'photosynthetic control' describes the short- and long-term mechanisms that regulate reactions in the photosynthetic electron transport (PET) chain so that the rate of production of ATP and NADPH is coordinated with the rate of their utilization in metabolism. At low irradiances these mechanisms serve to optimize light use efficiency, while at high irradiances they operate to dissipate excess excitation energy as heat. Similarly, the production of ATP and NADPH in ratios tailored to meet demand is finely tuned by a sophisticated series of controls that prevents the accumulation of high NAD(P)H/NAD(P) ratios and ATP/ADP ratios that would lead to potentially harmful over-reduction and inactivation of PET chain components. In recent years, photosynthetic control has also been extrapolated to the regulation of gene expression because mechanisms that are identical or similar to those that serve to regulate electron flow through the PET chain also coordinate the regulated expression of genes encoding photosynthetic proteins. This requires coordinated gene expression in the chloroplasts, mitochondria, and nuclei, involving complex networks of forward and retrograde signalling pathways. Photosynthetic control operates to control photosynthetic gene expression in response to environmental and metabolic changes. Mining literature data on transcriptome profiles of C(3) and C(4) leaves from plants grown under high atmospheric carbon dioxide (CO(2)) levels compared with those grown with ambient CO(2) reveals that the transition to higher photorespiratory conditions in C(3) plants enhances the expression of genes associated with cyclic electron flow pathways in Arabidopsis thaliana, consistent with the higher ATP requirement (relative to NADPH) of photorespiration.

  11. Probing the Energy Transfer Dynamics of Photosynthetic Reaction Center Complexes Through Hole-Burning and Single-Complex Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Kerry Joseph [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Photosynthesis is the process by which light energy is used to drive reactions that generate sugars to supply energy for cellular processes. It is one of the most important fundamental biological reactions and occurs in both prokaryotic (e.g. bacteria) and eukaryotic (e.g. plants and algae) organisms. Photosynthesis is also remarkably intricate, requiring the coordination of many different steps and reactions in order to successfully transform absorbed solar energy into a biochemical usable form of energy. However, the net reaction for all photosynthetic organisms can be reduced to the following, deceptively general, equation developed by Van Niel[1] H2 - D + Aimplieshv A - H2 + D where H2-D is the electron donor, e.g. H2O, H2S. A is the electron acceptor, e.g. CO2, and A-H2 is the synthesized sugar. Amazingly, this simple net equation is responsible for creating the oxidizing atmosphere of Earth and the recycling of CO2, both of which are necessary for the sustainment of the global ecosystem.

  12. Avian leukosis virus is a versatile eukaryotic platform for polypeptide display

    International Nuclear Information System (INIS)

    Khare, Pranay D.; Russell, Stephen J.; Federspiel, Mark J.

    2003-01-01

    Display technology refers to methods of generating libraries of modularly coded biomolecules and screening them for particular properties. Retroviruses are good candidates to be a eukaryotic viral platform for the display of polypeptides synthesized in eukaryotic cells. Here we demonstrate that avian leukosis virus (ALV) provides an ideal platform for display of nonviral polyaeptides expressed in a eukaryotic cell substrate. Different sizes of polypeptides were genetically fused to the extreme N-terminus of the ALV envelope glycoprotein in an ALV infectious clone containing an alkaline phosphatase reporter gene. The chimeric envelope glycoproteins were efficiently incorporated into virions and were stably displayed on the surface of the virions through multiple virus replication cycles. The foreign polypeptides did not interfere with the attachment and entry functions of the underlying ALV envelope glycoproteins. The displayed polypeptides were fully functional and could efficiently mediate attachment of the recombinant viruses to their respective cognate receptors. This study demonstrates that ALV is an ideal display platform for the generation and selection of libraries of polypeptides where there is a need for expression, folding, and posttranslational modification in the endoplasmic reticulum of eukaryotic cells

  13. Influence of stomatic aperture on photosynthetic activity of bean-seedlings leaves

    International Nuclear Information System (INIS)

    Suarez Moya, J.; Fernandez Gonzalez, J.

    1984-01-01

    The present paper contains the data of photosynthetic activity and stomatic aperture of bean-seedlings Ieaves, and the relations obtained with both results. It has been observed that the product of photosynthetic activity by the resistance; to transpiration measured by a promoter ia a constant, between some limits. (Author) 45 refs

  14. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.

    Science.gov (United States)

    Riechmann, J L; Heard, J; Martin, G; Reuber, L; Jiang, C; Keddie, J; Adam, L; Pineda, O; Ratcliffe, O J; Samaha, R R; Creelman, R; Pilgrim, M; Broun, P; Zhang, J Z; Ghandehari, D; Sherman, B K; Yu, G

    2000-12-15

    The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.

  15. On the photosynthetic potential in the very Early Archean oceans.

    Science.gov (United States)

    Avila, Daile; Cardenas, Rolando; Martin, Osmel

    2013-02-01

    In this work we apply a mathematical model of photosynthesis to quantify the potential for photosynthetic life in the very Early Archean oceans. We assume the presence of oceanic blockers of ultraviolet radiation, specifically ferrous ions. For this scenario, our results suggest a potential for photosynthetic life greater than or similar to that in later eras/eons, such as the Late Archean and the current Phanerozoic eon.

  16. Constrained parameterisation of photosynthetic capacity causes significant increase of modelled tropical vegetation surface temperature

    Science.gov (United States)

    Kattge, J.; Knorr, W.; Raddatz, T.; Wirth, C.

    2009-04-01

    Photosynthetic capacity is one of the most sensitive parameters of terrestrial biosphere models whose representation in global scale simulations has been severely hampered by a lack of systematic analyses using a sufficiently broad database. Due to its coupling to stomatal conductance changes in the parameterisation of photosynthetic capacity may potentially influence transpiration rates and vegetation surface temperature. Here, we provide a constrained parameterisation of photosynthetic capacity for different plant functional types in the context of the photosynthesis model proposed by Farquhar et al. (1980), based on a comprehensive compilation of leaf photosynthesis rates and leaf nitrogen content. Mean values of photosynthetic capacity were implemented into the coupled climate-vegetation model ECHAM5/JSBACH and modelled gross primary production (GPP) is compared to a compilation of independent observations on stand scale. Compared to the current standard parameterisation the root-mean-squared difference between modelled and observed GPP is substantially reduced for almost all PFTs by the new parameterisation of photosynthetic capacity. We find a systematic depression of NUE (photosynthetic capacity divided by leaf nitrogen content) on certain tropical soils that are known to be deficient in phosphorus. Photosynthetic capacity of tropical trees derived by this study is substantially lower than standard estimates currently used in terrestrial biosphere models. This causes a decrease of modelled GPP while it significantly increases modelled tropical vegetation surface temperatures, up to 0.8°C. These results emphasise the importance of a constrained parameterisation of photosynthetic capacity not only for the carbon cycle, but also for the climate system.

  17. Three distinct modes of intron dynamics in the evolution of eukaryotes.

    Science.gov (United States)

    Carmel, Liran; Wolf, Yuri I; Rogozin, Igor B; Koonin, Eugene V

    2007-07-01

    Several contrasting scenarios have been proposed for the origin and evolution of spliceosomal introns, a hallmark of eukaryotic genes. A comprehensive probabilistic model to obtain a definitive reconstruction of intron evolution was developed and applied to 391 sets of conserved genes from 19 eukaryotic species. It is inferred that a relatively high intron density was reached early, i.e., the last common ancestor of eukaryotes contained >2.15 introns/kilobase, and the last common ancestor of multicellular life forms harbored approximately 3.4 introns/kilobase, a greater intron density than in most of the extant fungi and in some animals. The rates of intron gain and intron loss appear to have been dropping during the last approximately 1.3 billion years, with the decline in the gain rate being much steeper. Eukaryotic lineages exhibit three distinct modes of evolution of the intron-exon structure. The primary, balanced mode, apparently, operates in all lineages. In this mode, intron gain and loss are strongly and positively correlated, in contrast to previous reports on inverse correlation between these processes. The second mode involves an elevated rate of intron loss and is prevalent in several lineages, such as fungi and insects. The third mode, characterized by elevated rate of intron gain, is seen only in deep branches of the tree, indicating that bursts of intron invasion occurred at key points in eukaryotic evolution, such as the origin of animals. Intron dynamics could depend on multiple mechanisms, and in the balanced mode, gain and loss of introns might share common mechanistic features.

  18. Arginine deiminase pathway enzymes: evolutionary history in metamonads and other eukaryotes.

    Science.gov (United States)

    Novák, Lukáš; Zubáčová, Zuzana; Karnkowska, Anna; Kolisko, Martin; Hroudová, Miluše; Stairs, Courtney W; Simpson, Alastair G B; Keeling, Patrick J; Roger, Andrew J; Čepička, Ivan; Hampl, Vladimír

    2016-10-06

    Multiple prokaryotic lineages use the arginine deiminase (ADI) pathway for anaerobic energy production by arginine degradation. The distribution of this pathway among eukaryotes has been thought to be very limited, with only two specialized groups living in low oxygen environments (Parabasalia and Diplomonadida) known to possess the complete set of all three enzymes. We have performed an extensive survey of available sequence data in order to map the distribution of these enzymes among eukaryotes and to reconstruct their phylogenies. We have found genes for the complete pathway in almost all examined representatives of Metamonada, the anaerobic protist group that includes parabasalids and diplomonads. Phylogenetic analyses indicate the presence of the complete pathway in the last common ancestor of metamonads and heterologous transformation experiments suggest its cytosolic localization in the metamonad ancestor. Outside Metamonada, the complete pathway occurs rarely, nevertheless, it was found in representatives of most major eukaryotic clades. Phylogenetic relationships of complete pathways are consistent with the presence of the Archaea-derived ADI pathway in the last common ancestor of all eukaryotes, although other evolutionary scenarios remain possible. The presence of the incomplete set of enzymes is relatively common among eukaryotes and it may be related to the fact that these enzymes are involved in other cellular processes, such as the ornithine-urea cycle. Single protein phylogenies suggest that the evolutionary history of all three enzymes has been shaped by frequent gene losses and horizontal transfers, which may sometimes be connected with their diverse roles in cellular metabolism.

  19. Diversity of Eukaryotic Translational Initiation Factor eIF4E in Protists.

    Science.gov (United States)

    Jagus, Rosemary; Bachvaroff, Tsvetan R; Joshi, Bhavesh; Place, Allen R

    2012-01-01

    The greatest diversity of eukaryotic species is within the microbial eukaryotes, the protists, with plants and fungi/metazoa representing just two of the estimated seventy five lineages of eukaryotes. Protists are a diverse group characterized by unusual genome features and a wide range of genome sizes from 8.2 Mb in the apicomplexan parasite Babesia bovis to 112,000-220,050 Mb in the dinoflagellate Prorocentrum micans. Protists possess numerous cellular, molecular and biochemical traits not observed in "text-book" model organisms. These features challenge some of the concepts and assumptions about the regulation of gene expression in eukaryotes. Like multicellular eukaryotes, many protists encode multiple eIF4Es, but few functional studies have been undertaken except in parasitic species. An earlier phylogenetic analysis of protist eIF4Es indicated that they cannot be grouped within the three classes that describe eIF4E family members from multicellular organisms. Many more protist sequences are now available from which three clades can be recognized that are distinct from the plant/fungi/metazoan classes. Understanding of the protist eIF4Es will be facilitated as more sequences become available particularly for the under-represented opisthokonts and amoebozoa. Similarly, a better understanding of eIF4Es within each clade will develop as more functional studies of protist eIF4Es are completed.

  20. Photovoltaic concepts inspired by coherence effects in photosynthetic systems

    KAUST Repository

    Bredas, Jean-Luc

    2016-12-20

    The past decade has seen rapid advances in our understanding of how coherent and vibronic phenomena in biological photosynthetic systems aid in the efficient transport of energy from light-harvesting antennas to photosynthetic reaction centres. Such coherence effects suggest strategies to increase transport lengths even in the presence of structural disorder. Here we explore how these principles could be exploited in making improved solar cells. We investigate in depth the case of organic materials, systems in which energy and charge transport stand to be improved by overcoming challenges that arise from the effects of static and dynamic disorder-structural and energetic-and from inherently strong electron-vibration couplings. We discuss how solar-cell device architectures can evolve to use coherence-exploiting materials, and we speculate as to the prospects for a coherent energy conversion system. We conclude with a survey of the impacts of coherence and bioinspiration on diverse solar-energy harvesting solutions, including artificial photosynthetic systems.

  1. Nasal carriers are more likely to acquire exogenous Staphylococcus aureus strains than non-carriers.

    Science.gov (United States)

    Ghasemzadeh-Moghaddam, H; Neela, V; van Wamel, W; Hamat, R A; Shamsudin, M Nor; Hussin, N Suhaila Che; Aziz, M N; Haspani, M S Mohammad; Johar, A; Thevarajah, S; Vos, M; van Belkum, A

    2015-11-01

    We performed a prospective observational study in a clinical setting to test the hypothesis that prior colonization by a Staphylococcus aureus strain would protect, by colonization interference or other processes, against de novo colonization and, hence, possible endo-infections by newly acquired S. aureus strains. Three hundred and six patients hospitalized for >7 days were enrolled. For every patient, four nasal swabs (days 1, 3, 5, and 7) were taken, and patients were identified as carriers when a positive nasal culture for S. aureus was obtained on day 1 of hospitalization. For all patients who acquired methicillin-resistant S. aureus (MRSA) or methicillin-susceptible S. aureus via colonization and/or infection during hospitalization, strains were collected. We note that our study may suffer from false-negative cultures, local problems with infection control and hospital hygiene, or staphylococcal carriage at alternative anatomical sites. Among all patients, 22% were prior carriers of S. aureus, including 1.9% whom carried MRSA upon admission. The overall nasal staphylococcal carriage rate among dermatology patients was significantly higher than that among neurosurgery patients (n = 25 (55.5%) vs. n = 42 (16.1%), p 0.005). This conclusion held when the carriage definition included individuals who were nasal culture positive on day 1 and day 3 of hospitalization (p 0.0001). All MRSA carriers were dermatology patients. There was significantly less S. aureus acquisition among non-carriers than among carriers during hospitalization (p 0.005). The mean number of days spent in the hospital before experiencing MRSA acquisition in nasal carriers was 5.1, which was significantly lower than the score among non-carriers (22 days, p 0.012). In conclusion, we found that nasal carriage of S. aureus predisposes to rather than protects against staphylococcal acquisition in the nose, thereby refuting our null hypothesis. Copyright © 2015 European Society of Clinical

  2. Non-HIV Pneumocystis pneumonia: do conventional community-acquired pneumonia guidelines under estimate its severity?

    Science.gov (United States)

    Asai, Nobuhiro; Motojima, Shinji; Ohkuni, Yoshihiro; Matsunuma, Ryo; Nakasima, Kei; Iwasaki, Takuya; Nakashita, Tamao; Otsuka, Yoshihito; Kaneko, Norihiro

    2012-06-11

    Non-HIV Pneumocystis pneumonia (PCP) can occur in immunosuppressed patients having malignancy or on immunosuppressive agents. To classify severity, the A-DROP scale proposed by the Japanese Respiratory Society (JRS), the CURB-65 score of the British Respiratory Society (BTS) and the Pneumonia Severity Index (PSI) of the Infectious Diseases Society of America (IDSA) are widely used in patients with community-acquired pneumonia (CAP) in Japan. To evaluate how correctly these conventional prognostic guidelines for CAP reflect the severity of non-HIV PCP, we retrospectively analyzed 21 patients with non-HIV PCP. A total of 21 patients were diagnosed by conventional staining and polymerase chain reaction (PCR) for respiratory samples with chest x-ray and computed tomography (CT) findings. We compared the severity of 21 patients with PCP classified by A-DROP, CURB-65, and PSI. Also, patients' characteristics, clinical pictures, laboratory results at first visit or admission and intervals from diagnosis to start of specific-PCP therapy were evaluated in both survivor and non-survivor groups. Based on A-DROP, 18 patients were classified as mild or moderate; respiratory failure developed in 15 of these 18 (83.3%), and 7/15 (46.7%) died. Based on CURB-65, 19 patients were classified as mild or moderate; respiratory failure developed in 16/19 (84.2%), and 8 of the 16 (50%) died. In contrast, PSI classified 14 as severe or extremely severe; all of the 14 (100%) developed respiratory failure and 8/14 (57.1%) died. There were no significant differences in laboratory results in these groups. The time between the initial visit and diagnosis, and the time between the initial visit and starting of specific-PCP therapy were statistically shorter in the survivor group than in the non-survivor group. Conventional prognostic guidelines for CAP could underestimate the severity of non-HIV PCP, resulting in a therapeutic delay resulting in high mortality. The most important factor to

  3. Origin of phagotrophic eukaryotes as social cheaters in microbial biofilms

    Directory of Open Access Journals (Sweden)

    Jékely Gáspár

    2007-01-01

    Full Text Available Abstract Background The origin of eukaryotic cells was one of the most dramatic evolutionary transitions in the history of life. It is generally assumed that eukaryotes evolved later then prokaryotes by the transformation or fusion of prokaryotic lineages. However, as yet there is no consensus regarding the nature of the prokaryotic group(s ancestral to eukaryotes. Regardless of this, a hardly debatable fundamental novel characteristic of the last eukaryotic common ancestor was the ability to exploit prokaryotic biomass by the ingestion of entire cells, i.e. phagocytosis. The recent advances in our understanding of the social life of prokaryotes may help to explain the origin of this form of total exploitation. Presentation of the hypothesis Here I propose that eukaryotic cells originated in a social environment, a differentiated microbial mat or biofilm that was maintained by the cooperative action of its members. Cooperation was costly (e.g. the production of developmental signals or an extracellular matrix but yielded benefits that increased the overall fitness of the social group. I propose that eukaryotes originated as selfish cheaters that enjoyed the benefits of social aggregation but did not contribute to it themselves. The cheaters later evolved into predators that lysed other cells and eventually became professional phagotrophs. During several cycles of social aggregation and dispersal the number of cheaters was contained by a chicken game situation, i.e. reproductive success of cheaters was high when they were in low abundance but was reduced when they were over-represented. Radical changes in cell structure, including the loss of the rigid prokaryotic cell wall and the development of endomembranes, allowed the protoeukaryotes to avoid cheater control and to exploit nutrients more efficiently. Cellular changes were buffered by both the social benefits and the protective physico-chemical milieu of the interior of biofilms. Symbiosis

  4. Convergent use of RhoGAP toxins by eukaryotic parasites and bacterial pathogens.

    Directory of Open Access Journals (Sweden)

    Dominique Colinet

    2007-12-01

    Full Text Available Inactivation of host Rho GTPases is a widespread strategy employed by bacterial pathogens to manipulate mammalian cellular functions and avoid immune defenses. Some bacterial toxins mimic eukaryotic Rho GTPase-activating proteins (GAPs to inactivate mammalian GTPases, probably as a result of evolutionary convergence. An intriguing question remains whether eukaryotic pathogens or parasites may use endogenous GAPs as immune-suppressive toxins to target the same key genes as bacterial pathogens. Interestingly, a RhoGAP domain-containing protein, LbGAP, was recently characterized from the parasitoid wasp Leptopilina boulardi, and shown to protect parasitoid eggs from the immune response of Drosophila host larvae. We demonstrate here that LbGAP has structural characteristics of eukaryotic RhoGAPs but that it acts similarly to bacterial RhoGAP toxins in mammals. First, we show by immunocytochemistry that LbGAP enters Drosophila immune cells, plasmatocytes and lamellocytes, and that morphological changes in lamellocytes are correlated with the quantity of LbGAP they contain. Demonstration that LbGAP displays a GAP activity and specifically interacts with the active, GTP-bound form of the two Drosophila Rho GTPases Rac1 and Rac2, both required for successful encapsulation of Leptopilina eggs, was then achieved using biochemical tests, yeast two-hybrid analysis, and GST pull-down assays. In addition, we show that the overall structure of LbGAP is similar to that of eukaryotic RhoGAP domains, and we identify distinct residues involved in its interaction with Rac GTPases. Altogether, these results show that eukaryotic parasites can use endogenous RhoGAPs as virulence factors and that despite their differences in sequence and structure, eukaryotic and bacterial RhoGAP toxins are similarly used to target the same immune pathways in insects and mammals.

  5. Metabolomic Profiles of Dinophysis acuminata and Dinophysis acuta Using Non-Targeted High-Resolution Mass Spectrometry

    DEFF Research Database (Denmark)

    García-Portela, María; Reguera, Beatriz; Sibat, Manoella

    2018-01-01

    Photosynthetic species of the genus Dinophysis are obligate mixotrophs with temporary plastids (kleptoplastids) that are acquired from the ciliate Mesodinium rubrum, which feeds on cryptophytes of the Teleaulax-Plagioselmis-Geminigera clade. A metabolomic study of the three-species food chain Din...

  6. Microsatellites in the Eukaryotic DNA Mismatch Repair Genes as Modulators of Evolutionary Mutation Rate

    Science.gov (United States)

    Chang, Dong Kyung; Metzgar, David; Wills, Christopher; Boland, C. Richard

    2003-01-01

    All "minor" components of the human DNA mismatch repair (MMR) system-MSH3, MSH6, PMS2, and the recently discovered MLH3-contain mononucleotide microsatellites in their coding sequences. This intriguing finding contrasts with the situation found in the major components of the DNA MMR system-MSH2 and MLH1-and, in fact, most human genes. Although eukaryotic genomes are rich in microsatellites, non-triplet microsatellites are rare in coding regions. The recurring presence of exonal mononucleotide repeat sequences within a single family of human genes would therefore be considered exceptional.

  7. Photosynthetic carbon metabolism in the submerged aquatic angiosperm Scirpus subterminalis

    Energy Technology Data Exchange (ETDEWEB)

    Beer, S; Wetzel, R G

    1981-01-01

    Scirpus subterminalis Torr., a submerged angiosperm abundant in many hardwater lakes of the Great Lakes region, was investigated for various photosynthetic carbon fixation properties in relation to available inorganic carbon and levels of carbon fixing enzymes. Photosynthetic experiments were CO/sub 2/ and HCO/sub 3//sup -/ were supplied at various concentrations showed that Scirpus was able to utilize HCO/sub 3//sup -/ at those concentrations close to natural conditions. However, when CO/sub 2/ concentrations were increased above ambient, photosynthetic rates increased markedly. It was concluded that the photosynthetic potential of this plant in many natural situations may be limited by inorganic carbon uptake in the light. Phosphoenolpyruvate carboxylase (PEPcase)/ribulose-1,5-bisphosphate carboxylase (ruBPcase) ratios of the leaves varied between 0.5 and 0.9 depending on substrate concentration during assay. The significance of PEP-mediated carbon fixation of Scirpus (basically a C/sub 3/ plant) in the dark was investigated. Malate accumulated in the leaves during the dark period of a 24-h cycle and malate levels decreased significantly during the following light period. The accumulation was not due to transport of malate from the roots. Carbon uptake rates in the dark by the leaves of Scirpus were lower than malate accumulation rates. Therefore, part of the malate was likely derived from respired CO/sub 2/. Carbon uptake rates in the light were much higher than malate turnover rates. It was estimated that carbon fixation via malate could contribute up to 12% to net photosynthetic rates. The ecological significance of this type of metabolism in submerged aquatics is discussed.

  8. Effect of temperature and light intensity on growth and photosynthetic activity of Chlamydomonas Reinhardtii

    International Nuclear Information System (INIS)

    Alfonsel, M.; Fernandez Gonzalez, J.

    1986-01-01

    The effect of five temperatures (15, 20, 25, 30 and 35 0 C) and two levels of illumination on growth and photosynthetic activity of Chlamydomonas reinhardtii has been studied. The growth of the cultures was evaluated by optical density. Photosynthetic activity has been carried out studying either the assimilation rate of CO 2 labelled with C 14 or the oxygen evolution by means of polarographic measurements. The maximum photosynthetic rate has been obtained at 25 0 C for the lower lavel of illumination (2400 lux) and at 35 0 C for the higher one (13200 lux). These results suggest an interacton of temperature and illumination on photosynthetic activity. (author)

  9. [Correlation research of photosynthetic characteristics and medicinal materials production with 4 Uncariae Cum Uncis].

    Science.gov (United States)

    Luo, Min; Song, Zhi-Qin; Yang, Ping-Fei; Liu, Hai; Yang, Zai-Gang; Wu, Ming-Kai

    2017-01-01

    Using four Uncariae Cum Uncis materials including Uncaria sinensis (HGT), U. hirsutea (MGT), Jianhe U. rhynchophylla (JHGT) and U. rhynchophylla(GT) as the research objects, the correlations between medicinal materials' yield and photosynthetic ecophysiology-factors in the plant exuberant growth period were studied. Results showed that the Uncaria plants net photosynthetic rate (Pn) changed by unimodal curve. There was not "midday depression" phenomenon. There was a different relationship among the photosynthetic ecophysiology-factors and between photosynthetic ecophysiology-factors and medicinal materials' yield. Pn,Tl,Gs had a significant correlation with medicinal materials' yield(M)and were the most important factors of growth. Copyright© by the Chinese Pharmaceutical Association.

  10. Geographic variation in the photosynthetic responses and life history of Mastocarpus papillatus

    International Nuclear Information System (INIS)

    Zupan, J.R.

    1985-01-01

    Population differentiation in Mastocarpus papillatus, a red alga occurring from Baja California to Alaska, was assessed by (1) characterizing the geographic pattern of variation in reproductive behavior and (2) determining the range of variation in photosynthesis and respiration. Examining these two aspects of the biology of M. papillatus yielded different estimates of population differentiation. Carpospores of females collected from 8 locations between Baja California and northern California were grown in laboratory culture and their subsequent development followed. The 8 locations could be divided into 3 groups based on life history patterns. Photosynthetic responses to temperature and photon flux density were measured foliose gametophytes and crustose tetrasporophytes from 4 locations. Gametophytes had maximal net photosynthetic rates 4-5 times higher than tetrasporophytes. Tetrasporophyte populations were uniform in photosynthetic responses to temperature. Maximal rates occurred at 15 0 C Gametophyte populations appeared to be slightly differentiated. The photosynthetic temperature optima were between 20 0 C and 25 0 C for 3 populations and between 15 0 C and 20 0 C for 1 population. A preliminary study of carbon metabolism in M. papillatus gametophytes was conducted using 14 C. Partitioning of early products of photosynthetic carbon fixation between low molecular weight and polymeric, high molecular weight compounds appeared to differ under emerged and submerged conditions

  11. Gram-Negative Bacterial Sensors for Eukaryotic Signal Molecules

    Directory of Open Access Journals (Sweden)

    Olivier Lesouhaitier

    2009-09-01

    Full Text Available Ample evidence exists showing that eukaryotic signal molecules synthesized and released by the host can activate the virulence of opportunistic pathogens. The sensitivity of prokaryotes to host signal molecules requires the presence of bacterial sensors. These prokaryotic sensors, or receptors, have a double function: stereospecific recognition in a complex environment and transduction of the message in order to initiate bacterial physiological modifications. As messengers are generally unable to freely cross the bacterial membrane, they require either the presence of sensors anchored in the membrane or transporters allowing direct recognition inside the bacterial cytoplasm. Since the discovery of quorum sensing, it was established that the production of virulence factors by bacteria is tightly growth-phase regulated. It is now obvious that expression of bacterial virulence is also controlled by detection of the eukaryotic messengers released in the micro-environment as endocrine or neuro-endocrine modulators. In the presence of host physiological stress many eukaryotic factors are released and detected by Gram-negative bacteria which in return rapidly adapt their physiology. For instance, Pseudomonas aeruginosa can bind elements of the host immune system such as interferon-γ and dynorphin and then through quorum sensing circuitry enhance its virulence. Escherichia coli sensitivity to the neurohormones of the catecholamines family appears relayed by a recently identified bacterial adrenergic receptor. In the present review, we will describe the mechanisms by which various eukaryotic signal molecules produced by host may activate Gram-negative bacteria virulence. Particular attention will be paid to Pseudomonas, a genus whose representative species, P. aeruginosa, is a common opportunistic pathogen. The discussion will be particularly focused on the pivotal role played by these new types of pathogen sensors from the sensing to the transduction

  12. Diversity patterns of microbial eukaryotes mirror those of bacteria in Antarctic cryoconite holes.

    Science.gov (United States)

    Sommers, Pacifica; Darcy, John L; Gendron, Eli M S; Stanish, Lee F; Bagshaw, Elizabeth A; Porazinska, Dorota L; Schmidt, Steven K

    2018-01-01

    Ice-lidded cryoconite holes on glaciers in the Taylor Valley, Antarctica, provide a unique system of natural mesocosms for studying community structure and assembly. We used high-throughput DNA sequencing to characterize both microbial eukaryotic communities and bacterial communities within cryoconite holes across three glaciers to study similarities in their spatial patterns. We expected that the alpha (phylogenetic diversity) and beta (pairwise community dissimilarity) diversity patterns of eukaryotes in cryoconite holes would be related to those of bacteria, and that they would be related to the biogeochemical gradient within the Taylor Valley. We found that eukaryotic alpha and beta diversity were strongly related to those of bacteria across scales ranging from 140 m to 41 km apart. Alpha diversity of both was significantly related to position in the valley and surface area of the cryoconite hole, with pH also significantly correlated with the eukaryotic diversity. Beta diversity for both bacteria and eukaryotes was significantly related to position in the valley, with bacterial beta diversity also related to nitrate. These results are consistent with transport of sediments onto glaciers occurring primarily at local scales relative to the size of the valley, thus creating feedbacks in local chemistry and diversity. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Specific Interaction between Redox Phospholipid Polymers and Plastoquinone in Photosynthetic Electron Transport Chain.

    Science.gov (United States)

    Tanaka, Kenya; Kaneko, Masahiro; Ishikawa, Masahito; Kato, Souichiro; Ito, Hidehiro; Kamachi, Toshiaki; Kamiya, Kazuhide; Nakanishi, Shuji

    2017-04-19

    Redox phospholipid polymers added in culture media are known to be capable of extracting electrons from living photosynthetic cells across bacterial cell membranes with high cytocompatibility. In the present study, we identify the intracellular redox species that transfers electrons to the polymers. The open-circuit electrochemical potential of an electrolyte containing the redox polymer and extracted thylakoid membranes shift to positive (or negative) under light irradiation, when an electron transport inhibitor specific to plastoquinone is added upstream (or downstream) in the photosynthetic electron transport chain. The same trend is also observed for a medium containing living photosynthetic cells of Synechococcus elongatus PCC7942. These results clearly indicate that the phospholipid redox polymers extract photosynthetic electrons mainly from plastoquinone. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Characterization of prokaryotic and eukaryotic promoters using hidden Markov models

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, P.; Chauvin, Y.

    1996-01-01

    In this paper we utilize hidden Markov models (HMMs) and information theory to analyze prokaryotic and eukaryotic promoters. We perform this analysis with special emphasis on the fact that promoters are divided into a number of different classes, depending on which polymerase-associated factors...... that bind to them. We find that HMMs trained on such subclasses of Escherichia coli promoters (specifically, the so-called sigma 70 and sigma 54 classes) give an excellent classification of unknown promoters with respect to sigma-class. HMMs trained on eukaryotic sequences from human genes also model nicely...

  15. Natural strategies for photosynthetic light harvesting

    NARCIS (Netherlands)

    Croce, R.; van Amerongen, H.

    2014-01-01

    Photosynthetic organisms are crucial for life on Earth as they provide food and oxygen and are at the basis of most energy resources. They have a large variety of light-harvesting strategies that allow them to live nearly everywhere where sunlight can penetrate. They have adapted their pigmentation

  16. Biomass production efficiency controlled by management in temperate and boreal ecosystems

    NARCIS (Netherlands)

    Campioli, M.; Vicca, S.; Luyssaert, S.; Bilcke, J.; Ceschia, E.; Chapin, F.S. III; Ciais, P.; Fernández-Martínez, M.; Malhi, Y.; Obersteiner, M.; Olefeldt, D.; Papale, D.; Piao, S.L.; Peñuelas, J.; Sullivan, P. F.; Wang, X.; Zenone, T.; Janssens, I.A.

    2015-01-01

    Plants acquire carbon through photosynthesis to sustain biomass production, autotrophic respiration and production of non-structural compounds for multiple purposes. The fraction of photosynthetic production used for biomass production, the biomass production efficiency, is a key determinant of the

  17. Alternative oxidase: a respiratory electron transport chain pathway essential for maintaining photosynthetic performance during drought stress.

    Science.gov (United States)

    Vanlerberghe, Greg C; Martyn, Greg D; Dahal, Keshav

    2016-07-01

    Photosynthesis and respiration are the hubs of energy metabolism in plants. Drought strongly perturbs photosynthesis as a result of both diffusive limitations resulting from stomatal closure, and in some cases biochemical limitations that are associated with a reduced abundance of key photosynthetic components. The effects of drought on respiration, particularly respiration in the light (RL ), are less understood. The plant mitochondrial electron transport chain includes a non-energy conserving terminal oxidase called alternative oxidase (AOX). Several studies have shown that drought increases AOX transcript, protein and maximum capacity. Here we review recent studies comparing wild-type (WT) tobacco to transgenic lines with altered AOX protein amount. Specifically during drought, RL was compromised in AOX knockdown plants and enhanced in AOX overexpression plants, compared with WT. Significantly, these differences in RL were accompanied by dramatic differences in photosynthetic performance. Knockdown of AOX increased the susceptibility of photosynthesis to drought-induced biochemical limitations, while overexpression of AOX delayed the development of such biochemical limitations, compared with WT. Overall, the results indicate that AOX is essential to maintaining RL during drought, and that this non-energy conserving respiration maintains photosynthesis during drought by promoting energy balance in the chloroplast. This review also outlines several areas for future research, including the possibility that enhancement of non-energy conserving respiratory electron sinks may be a useful biotechnological approach to increase plant performance during stress. © 2016 Scandinavian Plant Physiology Society.

  18. Responses of photosynthetic parameters to drought in subtropical forest ecosystem of China

    Science.gov (United States)

    Zhou, Lei; Wang, Shaoqiang; Chi, Yonggang; Li, Qingkang; Huang, Kun; Yu, Quanzhou

    2015-12-01

    The mechanism underlying the effect of drought on the photosynthetic traits of leaves in forest ecosystems in subtropical regions is unclear. In this study, three limiting processes (stomatal, mesophyll and biochemical limitations) that control the photosynthetic capacity and three resource use efficiencies (intrinsic water use efficiency (iWUE), nitrogen use efficiency (NUE) and light use efficiency (LUE)), which were characterized as the interactions between photosynthesis and environmental resources, were estimated in two species (Schima superba and Pinus massoniana) under drought conditions. A quantitative limitation analysis demonstrated that the drought-induced limitation of photosynthesis in Schima superba was primarily due to stomatal limitation, whereas for Pinus massoniana, both stomatal and non-stomatal limitations generally exhibited similar magnitudes. Although the mesophyll limitation represented only 1% of the total limitation in Schima superba, it accounted for 24% of the total limitations for Pinus massoniana. Furthermore, a positive relationship between the LUE and NUE and a marginally negative relationship or trade-off between the NUE and iWUE were observed in the control plots. However, drought disrupted the relationships between the resource use efficiencies. Our findings may have important implications for reducing the uncertainties in model simulations and advancing the understanding of the interactions between ecosystem functions and climate change.

  19. The impact of community-acquired pneumonia on the health-related quality-of-life in elderly.

    Science.gov (United States)

    Mangen, Marie-Josée J; Huijts, Susanne M; Bonten, Marc J M; de Wit, G Ardine

    2017-03-14

    The sustained health-related quality-of-life of patients surviving community-acquired pneumonia has not been accurately quantified. The aim of the current study was to quantify differences in health-related quality-of-life of community-dwelling elderly with and without community-acquired pneumonia during a 12-month follow-up period. In a matched cohort study design, nested in a prospective randomized double-blind placebo-controlled trial on the efficacy of the 13-valent pneumococcal vaccine in community-dwelling persons of ≥65 years, health-related quality-of-life was assessed in 562 subjects hospitalized with suspected community-acquired pneumonia (i.e. diseased cohort) and 1145 unaffected persons (i.e. non-diseased cohort) matched to pneumonia cases on age, sex, and health status (EQ-5D-3L-index). Health-related quality-of-life was determined 1-2 weeks after hospital discharge/inclusion and 1, 6 and 12 months thereafter, using Euroqol EQ-5D-3L and Short Form-36 Health survey questionnaires. One-year quality-adjusted life years (QALY) were estimated for both diseased and non-diseased cohorts. Separate analyses were performed for pneumonia cases with and without radiologically confirmed community-acquired pneumonia. The one-year excess QALY loss attributed to community-acquired pneumonia was 0.13. Mortality in the post-discharge follow-up year was 8.4% in community-acquired pneumonia patients and 1.2% in non-diseased persons (p pneumonia patients, compared to non-diseased persons, but differences in health-related quality-of-life between radiologically confirmed and non-confirmed community-acquired pneumonia cases were not statistically significant. Community-acquired pneumonia was associated with a six-fold increased mortality and 16% lower quality-of-life in the post-discharge year among patients surviving hospitalization for community-acquired pneumonia, compared to non-diseased persons. ClinicalTrials.gov, NCT00812084 .

  20. Seasonal changes in photosynthetic capacity of leaves of kiwifruit (Actinidia deliciosa) vines

    International Nuclear Information System (INIS)

    Buwalda, J.G.; Meekings, J.S.; Smith, G.S.

    1991-01-01

    The seasonal trend of photosynthetic capacity of leaves of kiwifruit (Actinidia deliciosa var. deliciosa) vines growing in the field was examined, by measuring the response of net photosynthesis (A) to irradiance (PAR) at monthly intervals for leaves that emerged at different stages of the growing season. A climate controlled minicuvette system was used, to ensure constant environmental conditions, apart from the controlled changes in leaf irradiance. Responses of A to irradiance were described using asymptotic exponential curves, providing estimates of the radiation saturated rate of A (A sat ), and the response of A to increasing incident PAR at low PAR levels (ϕ i ). The change in photosynthetic capacity with leaf age was similar for leaves emerging 1, 2, 3 or 4 months after bud burst. At 1 month after leaf emergence, when leaves were fully expanded, Asat was 9–11 μmol CO 2 m −2 s −1 . Maximum photosynthetic capacity was not attained until 3–5 months after leaf emergence, when Asat was 16–17 μmol CO 2 m −2 s −1 . The increasing photosynthetic capacity during 3–5 months after leaf emergence was closely related to concomitant changes in leaf N and chlorophyll contents. The possibility that N import to the leaf was a significant factor limiting the development of photosynthetic capacity is discussed. (author)

  1. UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii

    Science.gov (United States)

    Allorent, Guillaume; Lefebvre-Legendre, Linnka; Chappuis, Richard; Kuntz, Marcel; Truong, Thuy B.; Niyogi, Krishna K.; Goldschmidt-Clermont, Michel

    2016-01-01

    Life on earth is dependent on the photosynthetic conversion of light energy into chemical energy. However, absorption of excess sunlight can damage the photosynthetic machinery and limit photosynthetic activity, thereby affecting growth and productivity. Photosynthetic light harvesting can be down-regulated by nonphotochemical quenching (NPQ). A major component of NPQ is qE (energy-dependent nonphotochemical quenching), which allows dissipation of light energy as heat. Photodamage peaks in the UV-B part of the spectrum, but whether and how UV-B induces qE are unknown. Plants are responsive to UV-B via the UVR8 photoreceptor. Here, we report in the green alga Chlamydomonas reinhardtii that UVR8 induces accumulation of specific members of the light-harvesting complex (LHC) superfamily that contribute to qE, in particular LHC Stress-Related 1 (LHCSR1) and Photosystem II Subunit S (PSBS). The capacity for qE is strongly induced by UV-B, although the patterns of qE-related proteins accumulating in response to UV-B or to high light are clearly different. The competence for qE induced by acclimation to UV-B markedly contributes to photoprotection upon subsequent exposure to high light. Our study reveals an anterograde link between photoreceptor-mediated signaling in the nucleocytosolic compartment and the photoprotective regulation of photosynthetic activity in the chloroplast. PMID:27930292

  2. UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Allorent, Guillaume; Lefebvre-Legendre, Linnka; Chappuis, Richard; Kuntz, Marcel; Truong, Thuy B; Niyogi, Krishna K; Ulm, Roman; Goldschmidt-Clermont, Michel

    2016-12-20

    Life on earth is dependent on the photosynthetic conversion of light energy into chemical energy. However, absorption of excess sunlight can damage the photosynthetic machinery and limit photosynthetic activity, thereby affecting growth and productivity. Photosynthetic light harvesting can be down-regulated by nonphotochemical quenching (NPQ). A major component of NPQ is qE (energy-dependent nonphotochemical quenching), which allows dissipation of light energy as heat. Photodamage peaks in the UV-B part of the spectrum, but whether and how UV-B induces qE are unknown. Plants are responsive to UV-B via the UVR8 photoreceptor. Here, we report in the green alga Chlamydomonas reinhardtii that UVR8 induces accumulation of specific members of the light-harvesting complex (LHC) superfamily that contribute to qE, in particular LHC Stress-Related 1 (LHCSR1) and Photosystem II Subunit S (PSBS). The capacity for qE is strongly induced by UV-B, although the patterns of qE-related proteins accumulating in response to UV-B or to high light are clearly different. The competence for qE induced by acclimation to UV-B markedly contributes to photoprotection upon subsequent exposure to high light. Our study reveals an anterograde link between photoreceptor-mediated signaling in the nucleocytosolic compartment and the photoprotective regulation of photosynthetic activity in the chloroplast.

  3. Effect of maize seed laser irradiation on plant photosynthetic activity

    International Nuclear Information System (INIS)

    Antonov, M.; Stanev, V.; Velichkov, D.; Tsonev, Ts.

    1986-01-01

    Investigations were made with the two hybrids, H-708 and P x -20. The seeds were irradiated by a helium-neon quantum generator (L'vov-1 Electronica) with output power of 24 MW and 632.8 nm wave length. Once and twice irradiated seeds were sown on the 2nd, 5th and 10th day post irradiation. Changes in leaf area, chlorophyll content in the leaves, photosynthetic rate and its dependence on temperature and light, transpiration, stomatal resistance to CO 2 and total dry matter of the overground plant part were traced. Seed irradiation with laser rays did not affect the chlorophyll content of the leaves. The photosynthetic rate did not depend on the cultivar characteristics of the crop. Single and repeated irradiation of the hybrid H-708 in most case enhanced photosynthetic rate, but a similar effect was not observed in P x -20. Transpiration and CO 2 stomatal resistance were not equally affected by radiation. Laser rays enhanced the ability of the photosynthetic apparatus of the entire plants to use more efficiently high light intensities. The leaf area and the total plant dry matter increased in case of sowing on the 2nd and 5th day and a single irradiation and in case of sowing on the 5th and 10th day and twice repeated irradiations

  4. A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers

    OpenAIRE

    Gamon, John A.

    2016-01-01

    In evergreen conifers, where the foliage amount changes little with season, accurate detection of the underlying “photosynthetic phenology” from satellite remote sensing has been difficult, presenting challenges for global models of ecosystem carbon uptake. Here, we report a close correspondence between seasonally changing foliar pigment levels, expressed as chlorophyll/carotenoid ratios, and evergreen photosynthetic activity, leading to a “chlorophyll/carotenoid index” (CCI) that tracks ever...

  5. Photosynthetic Reaction Centres-from Basic Research to Application

    Directory of Open Access Journals (Sweden)

    László NAGY

    2010-06-01

    Full Text Available There is no doubt that studying the photosynthetic conversion of light into chemical energy is extremely important in many points of view; e.g., 1 technical-in order to improve the utilization of the solar energy; 2 food production-to improve the photosynthetic production of plants in agriculture; 3 ecology-keeping the primer production in ecosystems in the biosphere balanced, etc. In the photosynthetic reaction centre protein, RC, light energy is converted by a quantum yield of almost unity. There is no such a system designed by human which is able to do that. The RC purified from purple bacteria provides an extremely unique system for studying the requirements for high efficiency conversion of light into electrochemical energy. Thanks to the recent structural (e.g. crystallography (Nobel prize to Michel, Deisenhofer, Huber and functional (Nobel prize to Marcus results together with the works of molecular biology, computer- and electro-techniques, a wealth of information made a relatively clear picture about the kinetics, energetics and stabilization of electron transport within this protein that opens possibilities for new generation practical applications. In this paper we provide a short summary of fields in which the reaction centre protein can be important from practical points of view.

  6. Herbicide effects on the growth and photosynthetic efficiency of Cassiopea maremetens.

    Science.gov (United States)

    Rowen, David J; Templeman, Michelle A; Kingsford, Michael J

    2017-09-01

    Herbicides from agricultural run-off have been measured in coastal systems of the Great Barrier Reef over many years. Non-target herbicide exposure, especially photosystem II herbicides has the potential to affect seagrasses and other marine species. The symbiotic benthic jellyfish Cassiopea maremetens is present in tropical/sub-tropical estuarine and marine environments. Jellyfish (n = 8 per treatment) were exposed to four separate concentrations of agricultural formulations of diuron or hexazinone to determine their sensitivity and potential for recovery to pulsed herbicide exposure. Jellyfish growth, symbiont photosynthetic activity and zooxanthellae density were analysed for herbicide-induced changes for 7 days followed by a 7 day recovery period. Both the jellyfish and endosymbiont were more sensitive to diuron than hexazinone. The 7-day EC 50 for jellyfish growth was 0.35 μg L -1 for Diuron and 17.5 μg L -1 for Hexazinone respectively. Diuron exposure caused a significant decrease (p diuron and hexazinone caused significant decreases in photosynthetic efficiency (effective quantum yield) in all treatment concentrations (0.1 μg L -1 and above) and this effect continued in the post-exposure period. As this species is frequently found in near-shore environments, they may be particularly vulnerable to herbicide run-off. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. BOREAS TE-9 NSA Photosynthetic Response Data

    Science.gov (United States)

    Hall, Forrest G.; Curd, Shelaine (Editor); Dang, Qinglai; Margolis, Hank; Coyea, Marie

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-9 (Terrestrial Ecology) team collected several data sets related to chemical and photosynthetic properties of leaves. This data set describes: (1) the response of leaf and shoot-level photosynthesis to ambient and intercellular CO2 concentration, temperature, and incident photosynthetically active radiation (PAR) for black spruce, jack pine, and aspen during the three intensive field campaigns (IFCs) in 1994 in the Northern Study Area (NSA); (2) the response of stomatal conductance to vapor pressure difference throughout the growing season of 1994; and (3) a range of shoot water potentials (controlled in the laboratory) for black spruce and jack pine. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  8. Non-HIV Pneumocystis pneumonia: do conventional community-acquired pneumonia guidelines under estimate its severity?

    Directory of Open Access Journals (Sweden)

    Asai Nobuhiro

    2012-06-01

    Full Text Available Abstract Background Non-HIV Pneumocystis pneumonia (PCP can occur in immunosuppressed patients having malignancy or on immunosuppressive agents. To classify severity, the A-DROP scale proposed by the Japanese Respiratory Society (JRS, the CURB-65 score of the British Respiratory Society (BTS and the Pneumonia Severity Index (PSI of the Infectious Diseases Society of America (IDSA are widely used in patients with community-acquired pneumonia (CAP in Japan. To evaluate how correctly these conventional prognostic guidelines for CAP reflect the severity of non-HIV PCP, we retrospectively analyzed 21 patients with non-HIV PCP. Methods A total of 21 patients were diagnosed by conventional staining and polymerase chain reaction (PCR for respiratory samples with chest x-ray and computed tomography (CT findings. We compared the severity of 21 patients with PCP classified by A-DROP, CURB-65, and PSI. Also, patients’ characteristics, clinical pictures, laboratory results at first visit or admission and intervals from diagnosis to start of specific-PCP therapy were evaluated in both survivor and non-survivor groups. Results Based on A-DROP, 18 patients were classified as mild or moderate; respiratory failure developed in 15 of these 18 (83.3%, and 7/15 (46.7% died. Based on CURB-65, 19 patients were classified as mild or moderate; respiratory failure developed in 16/19 (84.2%, and 8 of the 16 (50% died. In contrast, PSI classified 14 as severe or extremely severe; all of the 14 (100% developed respiratory failure and 8/14 (57.1% died. There were no significant differences in laboratory results in these groups. The time between the initial visit and diagnosis, and the time between the initial visit and starting of specific-PCP therapy were statistically shorter in the survivor group than in the non-survivor group. Conclusions Conventional prognostic guidelines for CAP could underestimate the severity of non-HIV PCP, resulting in a therapeutic delay

  9. Carbon and oxygen isotope analysis of leaf biomass reveals contrasting photosynthetic responses to elevated CO2 near geologic vents in Yellowstone National Park

    Directory of Open Access Journals (Sweden)

    D. G. Williams

    2009-01-01

    Full Text Available In this study we explore the use of natural CO2 emissions in Yellowstone National Park (YNP in Wyoming, USA to study responses of natural vegetation to elevated CO2 levels. Radiocarbon (14C analysis of leaf biomass from a conifer (Pinus contortus; lodgepole pine and an invasive, non-native herb (Linaria dalmatica; Dalmation toadflax was used to trace the inputs of vent CO2 and quantify assimilation-weighted CO2 concentrations experienced by individual plants near vents and in comparable locations with no geologic CO2 exposure. The carbon and oxygen isotopic composition and nitrogen percent of leaf biomass from the same plants was used to investigate photosynthetic responses of these plants to naturally elevated atmospheric CO2 concentrations. The coupled shifts in carbon and oxygen isotope values suggest that dalmation toadflax responded to elevated CO2 exposure by increasing stomatal conductance with no change in photosynthetic capacity and lodgepole pine apparently responded by decreasing stomatal conductance and photosynthetic capacity. Lodgepole pine saplings exposed to elevated levels of CO2 likewise had reduced leaf nitrogen concentrations compared to plants with no enhanced CO2 exposure, further suggesting widespread and dominant conifer down-regulated photosynthetic capacity under elevated CO2 levels near geologic vents.

  10. Visualizing Patterns of Marine Eukaryotic Diversity from Metabarcoding Data Using QIIME.

    Science.gov (United States)

    Leray, Matthieu; Knowlton, Nancy

    2016-01-01

    PCR amplification followed by deep sequencing of homologous gene regions is increasingly used to characterize the diversity and taxonomic composition of marine eukaryotic communities. This approach may generate millions of sequences for hundreds of samples simultaneously. Therefore, tools that researchers can use to visualize complex patterns of diversity for these massive datasets are essential. Efforts by microbiologists to understand the Earth and human microbiomes using high-throughput sequencing of the 16S rRNA gene has led to the development of several user-friendly, open-source software packages that can be similarly used to analyze eukaryotic datasets. Quantitative Insights Into Microbial Ecology (QIIME) offers some of the most helpful data visualization tools. Here, we describe functionalities to import OTU tables generated with any molecular marker (e.g., 18S, COI, ITS) and associated metadata into QIIME. We then present a range of analytical tools implemented within QIIME that can be used to obtain insights about patterns of alpha and beta diversity for marine eukaryotes.

  11. A second pathway to degrade pyrimidine nucleic acid precursors in eukaryotes

    DEFF Research Database (Denmark)

    Andersen, Gorm; Bjornberg, Olof; Polakova, Silvia

    2008-01-01

    Pyrimidine bases are the central precursors for RNA and DNA, and their intracellular pools are determined by de novo, salvage and catabolic pathways. In eukaryotes, degradation of uracil has been believed to proceed only via the reduction to dihydrouracil. Using a yeast model, Saccharomyces kluyv...... of the eukaryotic or prokaryotic genes involved in pyrimidine degradation described to date.......Pyrimidine bases are the central precursors for RNA and DNA, and their intracellular pools are determined by de novo, salvage and catabolic pathways. In eukaryotes, degradation of uracil has been believed to proceed only via the reduction to dihydrouracil. Using a yeast model, Saccharomyces......, respectively. The gene products of URC1 and URC4 are highly conserved proteins with so far unknown functions and they are present in a variety of prokaryotes and fungi. In bacteria and in some fungi, URC1 and URC4 are linked on the genome together with the gene for uracil phosphoribosyltransferase (URC6). Urc1...

  12. Detecting in-field variation in photosynthetic capacity of trangenically modifed plants with hyperspectral imaging.

    Science.gov (United States)

    Meacham, K.; Montes, C.; Pederson, T.; Wu, J.; Guan, K.; Bernacchi, C.

    2017-12-01

    Improved photosynthetic rates have been shown to increase crop biomass, making improved photosynthesis a focus for driving future grain yield increases. Improving the photosynthetic pathway offers opportunity to meet food demand, but requires high throughput measurement techniques to detect photosynthetic variation in natural accessions and transgenically modified plants. Gas exchange measurements are the most widely used method of measuring photosynthesis in field trials but this process is laborious and slow, and requires further modeling to estimate meaningful parameters and to upscale to the plot or canopy level. In field trials of tobacco with modifications made to the photosynthetic pathway, we infer the maximum carboxylation rate of Rubisco (Vcmax) and maximum electron transport rate (Jmax) and detect photosynthetic variation from hyperspectral imaging with a partial least squares regression technique. Ground-truth measurements from photosynthetic gas exchange, a full-range (400-2500nm) handheld spectroadiometer with leaf clip, hyperspectral indices, and extractions of leaf pigments support the model. The results from a range of wild-type cultivars and from genetically modified germplasm suggest that the opportunity for rapid selection of top performing genotypes from among thousands of plots. This research creates the opportunity to extend agroecosystem models from simplified "one-cultivar" generic parameterization to better represent a full suite of current and future crop cultivars for a wider range of environmental conditions.

  13. Assessing the effects of ultraviolet radiation on the photosynthetic potential in Archean marine environments

    Science.gov (United States)

    Avila-Alonso, Dailé; Baetens, Jan M.; Cardenas, Rolando; de Baets, Bernard

    2017-07-01

    In this work, the photosynthesis model presented by Avila et al. in 2013 is extended and more scenarios inhabited by ancient cyanobacteria are investigated to quantify the effects of ultraviolet (UV) radiation on their photosynthetic potential in marine environments of the Archean eon. We consider ferrous ions as blockers of UV during the Early Archean, while the absorption spectrum of chlorophyll a is used to quantify the fraction of photosynthetically active radiation absorbed by photosynthetic organisms. UV could have induced photoinhibition at the water surface, thereby strongly affecting the species with low light use efficiency. A higher photosynthetic potential in early marine environments was shown than in the Late Archean as a consequence of the attenuation of UVC and UVB by iron ions, which probably played an important role in the protection of ancient free-floating bacteria from high-intensity UV radiation. Photosynthetic organisms in Archean coastal and ocean environments were probably abundant in the first 5 and 25 m of the water column, respectively. However, species with a relatively high efficiency in the use of light could have inhabited ocean waters up to a depth of 200 m and show a Deep Chlorophyll Maximum near 60 m depth. We show that the electromagnetic radiation from the Sun, both UV and visible light, could have determined the vertical distribution of Archean marine photosynthetic organisms.

  14. Effects of Arbuscular Mycorrhiza on Osmotic Adjustment and Photosynthetic Physiology of Maize Seedlings in Black Soils Region of Northeast China

    Directory of Open Access Journals (Sweden)

    Hongwen Xu

    Full Text Available ABSTRACT To investigate the effect of arbuscular mycorrhiza fungi on maize growth, osmoregulation substances and photosynthetic physiology, a popular maize variety ZD 958 was measured under potted condition. Arbuscular mycorrhiza (AM symbiosis promoted plant growth, and enhanced plant height, leaf length, mean leaf width and dry weight. Higher soluble sugar and protein, but lower proline concentrations were detected in AM seedlings than corresponding non-AM seedlings. Quantum yield of PSII photochemistry and potential photochemical efficiency increased by arbuscular mycorrhiza fungi, meanwhile, AM plants had lower primary fluorescence but higher maximal fluorescence and variable fluorescence than non-AM plants. AM enhanced apparent quantum efficiency, maximum net photosynthetic rate, dark respiration rate and light saturation point, but reduced light compensation point. The conclusion was that, after the seedling inoculated with Glomus. tortuosum, AM symbioses could protect cell from being hurt through regulating substances related to osmotic adjustment, besides, the efficiency of light utilization, the capacity of using low light and the capacity of fitting and using high light were all increased by AM symbiosis.

  15. Effect of Pot Size on Various Characteristics Related to Photosynthetic Matter Production in Soybean Plants

    Directory of Open Access Journals (Sweden)

    Minobu Kasai

    2012-01-01

    Full Text Available Despite the wide uses of potted plants, information on how pot size affects plant photosynthetic matter production is still considerably limited. This study investigated with soybean plants how transplantation into larger pots affects various characteristics related to photosynthetic matter production. The transplantation was analyzed to increase leaf photosynthetic rate, transpiration rate, and stomatal conductance without affecting significantly leaf intercellular CO2 concentration, implicating that the transplantation induced equal increases in the rate of CO2 diffusion via leaf stomata and the rate of CO2 fixation in leaf photosynthetic cells. Analyses of Rubisco activity and contents of a substrate (ribulose-1,5-bisphosphate (RuBP for Rubisco and total protein in leaf suggested that an increase in leaf Rubisco activity, which is likely to result from an increase in leaf Rubisco content, could contribute to the transplantation-induced increase in leaf photosynthetic rate. Analyses of leaf major photosynthetic carbohydrates and dry weights of source and sink organs revealed that transplantation increased plant sink capacity that uses leaf starch, inducing a decrease in leaf starch content and an increase in whole plant growth, particularly, growth of sink organs. Previously, in the same soybean species, it was demonstrated that negative correlation exists between leaf starch content and photosynthetic rate and that accumulation of starch in leaf decreases the rate of CO2 diffusion within leaf. Thus, it was suggested that the transplantation-induced increase in plant sink capacity decreasing leaf starch content could cause the transplantation-induced increase in leaf photosynthetic rate by inducing an increase in the rate of CO2 diffusion within leaf and thereby substantiating an increase in leaf Rubisco activity in vivo. It was therefore concluded that transplantation of soybean plants into larger pots attempted in this study increased the

  16. Validation of photosynthetic-fluorescence parameters as biomarkers for isoproturon toxic effect on alga Scenedesmus obliquus.

    Science.gov (United States)

    Dewez, David; Didur, Olivier; Vincent-Héroux, Jonathan; Popovic, Radovan

    2008-01-01

    Photosynthetic-fluorescence parameters were investigated to be used as valid biomarkers of toxicity when alga Scenedesmus obliquus was exposed to isoproturon [3-(4-isopropylphenyl)-1,1-dimethylurea] effect. Chlorophyll fluorescence induction of algal cells treated with isoproturon showed inactivation of photosystem II (PSII) reaction centers and strong inhibition of PSII electron transport. A linear correlation was found (R2>or=0.861) between the change of cells density affected by isoproturon and the change of effective PSII quantum yield (PhiM'), photochemical quenching (qP) and relative photochemical quenching (qP(rel)) values. The cells density was also linearly dependent (R2=0.838) on the relative unquenched fluorescence parameter (UQF(rel)). Non-linear correlation was found (R2=0.937) only between cells density and the energy transfer efficiency from absorbed light to PSII reaction center (ABS/RC). The order of sensitivity determined by the EC-50% was: UQF(rel)>PhiM'>qP>qP(rel)>ABS/RC. Correlations between cells density and those photosynthetic-fluorescence parameters provide supporting evidence to use them as biomarkers of toxicity for environmental pollutants.

  17. The temporal and species dynamics of photosynthetic acclimation in flag leaves of rice (Oryza sativa) and wheat (Triticum aestivum) under elevated carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.; Zeng, Q.; Xie, Z.; Tang, H.; Zhu, C. (Chinese Academy of Sciences. State Key Lab. of Soil and Sustainable Agriculture, Institute of Soil Science, Nanjing (China)); Hasegawa, T. (National Institute for Agro-Environmental Sciences. Agro-Meteorology Div., Tsukuba (Japan)); Ziska, L. (Crop Systems and Global Change Lab., Beltsville, MD (United States)); Jia, X. (Chinese Academic of Sciences/Nanjing Botanical Garden Memorial Sun Yat-Sen. Jiangsu Institute of Botany, Nanjing (China))

    2012-07-15

    In this study, we tested for the temporal occurrence of photosynthetic acclimation to elevated [CO{sub 2}] in the flag leaf of two important cereal crops, rice and wheat. In order to characterize the temporal onset of acclimation and the basis for any observed decline in photosynthetic rate, we characterized net photosynthesis, g{sub s}, g{sub m}, C{sub i}/C{sub a}, C{sub i}/C{sub c}, V{sub cmax}, J{sub max}, cell wall thickness, content of Rubisco, cytochrome (Cyt) f, N, chlorophyll and carbohydrate, mRNA expression for rbcL and petA, activity for Rubisco, sucrose phosphate synthase (SPS) and sucrose synthase (SS) at full flag expansion, mid-anthesis and the late grain-filling stage. No acclimation was observed for either crop at full flag leaf expansion. However, at the mid-anthesis stage, photosynthetic acclimation in rice was associated with RuBP carboxylation and regeneration limitations, while wheat only had the carboxylation limitation. By grain maturation, the decline of Rubisco content and activity had contributed to RuBP carboxylation limitation of photosynthesis in both crops at elevated [CO{sub 2}]; however, the sharp decrease of Rubisco enzyme activity played a more important role in wheat. Although an increase in non-structural carbohydrates did occur during these later stages, it was not consistently associated with changes in SPS and SS or photosynthetic acclimation. Rather, over time elevated [CO{sub 2}] appeared to enhance the rate of N degradation and senescence so that by late-grain fill, photosynthetic acclimation to elevated [CO{sub 2}] in the flag leaf of either species was complete. These data suggest that the basis for photosynthetic acclimation with elevated [CO{sub 2}] may be more closely associated with enhanced rates of senescence, and, as a consequence, may be temporally dynamic, with significant species variation. (Author)

  18. Prokaryotes versus Eukaryotes: Who is hosting whom?

    Directory of Open Access Journals (Sweden)

    Guillermo eTellez

    2014-10-01

    Full Text Available Microorganisms represent the largest component of biodiversity in our world. For millions of years, prokaryotic microorganisms have functioned as a major selective force shaping eukaryotic evolution. Microbes that live inside and on animals outnumber the animals’ actual somatic and germ cells by an estimated 10-fold. Collectively, the intestinal microbiome represents a ‘forgotten organ’, functioning as an organ inside another that can execute many physiological responsibilities. The nature of primitive eukaryotes was drastically changed due to the association with symbiotic prokaryotes facilitating mutual coevolution of host and microbe. Phytophagous insects have long been used to test theories of evolutionary diversification; moreover, the diversification of a number of phytophagous insect lineages has been linked to mutualisms with microbes. From termites and honey bees to ruminants and mammals, depending on novel biochemistries provided by the prokaryotic microbiome, the association helps to metabolize several nutrients that the host cannot digest and converting these into useful end products (such as short chain fatty acids, a process which has huge impact on the biology and homeostasis of metazoans. More importantly, in a direct and/or indirect way, the intestinal microbiota influences the assembly of gut-associated lymphoid tissue, helps to educate immune system, affects the integrity of the intestinal mucosal barrier, modulates proliferation and differentiation of its epithelial lineages, regulates angiogenesis, and modifies the activity of enteric as well as the central nervous system,. Despite these important effects, the mechanisms by which the gut microbial community influences the host’s biology remains almost entirely unknown. Our aim here is to encourage empirical inquiry into the relationship between mutualism and evolutionary diversification between prokaryotes and eukaryotes which encourage us to postulate: Who is

  19. Photosynthetic Energy Transfer at the Quantum/Classical Border.

    Science.gov (United States)

    Keren, Nir; Paltiel, Yossi

    2018-06-01

    Quantum mechanics diverges from the classical description of our world when very small scales or very fast processes are involved. Unlike classical mechanics, quantum effects cannot be easily related to our everyday experience and are often counterintuitive to us. Nevertheless, the dimensions and time scales of the photosynthetic energy transfer processes puts them close to the quantum/classical border, bringing them into the range of measurable quantum effects. Here we review recent advances in the field and suggest that photosynthetic processes can take advantage of the sensitivity of quantum effects to the environmental 'noise' as means of tuning exciton energy transfer efficiency. If true, this design principle could be a base for 'nontrivial' coherent wave property nano-devices. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Differentiation of thrombus from pannus as the cause of acquired mechanical prosthetic heart valve obstruction by non-invasive imaging: a review of the literature.

    Science.gov (United States)

    Tanis, Wilco; Habets, Jesse; van den Brink, Renee B A; Symersky, Petr; Budde, Ricardo P J; Chamuleau, Steven A J

    2014-02-01

    For acquired mechanical prosthetic heart valve (PHV) obstruction and suspicion on thrombosis, recently updated European Society of Cardiology guidelines advocate the confirmation of thrombus by transthoracic echocardiography, transesophageal echocardiography (TEE), and fluoroscopy. However, no evidence-based diagnostic algorithm is available for correct thrombus detection, although this is clinically important as fibrinolysis is contraindicated in non-thrombotic obstruction (isolated pannus). Here, we performed a review of the literature in order to propose a diagnostic algorithm. We performed a systematic search in Pubmed and Embase. Included publications were assessed on methodological quality based on the validated Quality Assessment of Diagnostic Accuracy Studies (QUADAS) II checklist. Studies were scarce (n = 15) and the majority were of moderate methodological quality. In total, 238 mechanical PHV's with acquired obstruction and a reliable reference standard were included for the evaluation of the role of fluoroscopy, echocardiography, or multidetector-row computed tomography (MDCT). In acquired PHV obstruction caused by thrombosis, mass detection by TEE and leaflet restriction detected by fluoroscopy were observed in the majority of cases (96 and 100%, respectively). In contrast, in acquired PHV obstruction free of thrombosis (pannus), leaflet restriction detected by fluoroscopy was absent in some cases (17%) and mass detection by TEE was absent in the majority of cases (66%). In case of mass detection by TEE, predictors for obstructive thrombus masses (compared with pannus masses) were leaflet restriction, soft echo density, and increased mass length. In situations of inconclusive echocardiography, MDCT may correctly detect pannus/thrombus based on the morphological aspects and localization. In acquired mechanical PHV obstruction without leaflet restriction and absent mass on TEE, obstructive PHV thrombosis cannot be confirmed and consequently, fibrinolysis

  1. Photosynthetic capacity of 'Niagara Rosada' grapes grown under transparent plastic covering

    Directory of Open Access Journals (Sweden)

    Bruna Corrêa da Silva de Deus

    2016-06-01

    Full Text Available ABSTRACT: New techniques in tropical regions such as use of transparent plastic covering (TPC, have been employed in grapes to avoid the wetting leaves and fruits, which can reduce the occurrence of fungal diseases, reduce the use of sprays, and reduce damage caused by hail and high winds. TPC may significantly affect the photosynthetic rates of grapevines cultivated in tropical regions, and thus have strong effects on plant productivity and improve fruit quality. However, in the North of Rio de Janeiro region there are lacks of studies related to TPC effects on photosynthetic capacity. The objective of this study was to evaluate the photosynthetic capacity in 'Niagara Rosada' vines grown under TPC and without transparent plastic covering (WTPC. The experiment was conducted between April and June 2013, on Tabuinha farm, located in the 3rd district of São Fidélis, Rio de Janeiro State, Brazil. A completely randomized block design was used with two treatments (TPC and WTPC and twelve replications. Evaluations consisted of climatological variables, gas exchange and maximum quantum efficiency of open photosystem II centers-quantum yield (Fv/Fm It was possible to observe that under TPC maximum temperature increase of 2.3°C, relative humidity reduced 1.5%, vapor pressure deficit increase 0.4kPa, and light intensity reduced 47.7%. These changes did not cause photochemical damage to the leaves. The TPC promoted higher net photosynthetic rate at 800h, which was associated with higher stomatal conductance. Thus, the TPC used in the northern region of Rio de Janeiro State did not impair the photosynthetic capacity of 'Niagara Rosada' vines.

  2. Nucleosome mediated crosstalk between transcription factors at eukaryotic enhancers

    International Nuclear Information System (INIS)

    Teif, Vladimir B; Rippe, Karsten

    2011-01-01

    A recent study of transcription regulation in Drosophila embryonic development revealed a complex non-monotonic dependence of gene expression on the distance between binding sites of repressor and activator proteins at the corresponding enhancer cis-regulatory modules (Fakhouri et al 2010 Mol. Syst. Biol. 6 341). The repressor efficiency was high at small separations, low around 30 bp, reached a maximum at 50–60 bp, and decreased at larger distances to the activator binding sites. Here, we propose a straightforward explanation for the distance dependence of repressor activity by considering the effect of the presence of a nucleosome. Using a method that considers partial unwrapping of nucleosomal DNA from the histone octamer core, we calculated the dependence of activator binding on the repressor–activator distance and found a quantitative agreement with the distance dependence reported for the Drosophila enhancer element. In addition, the proposed model offers explanations for other distance-dependent effects at eukaryotic enhancers. (communication)

  3. Uncoupling of Sister Replisomes during Eukaryotic DNA Replication

    NARCIS (Netherlands)

    Yardimci, Hasan; Loveland, Anna B.; Habuchi, Satoshi; van Oijen, Antoine M.; Walter, Johannes C.

    2010-01-01

    The duplication of eukaryotic genomes involves the replication of DNA from multiple origins of replication. In S phase, two sister replisomes assemble at each active origin, and they replicate DNA in opposite directions. Little is known about the functional relationship between sister replisomes.

  4. The effect of temperature on the photosynthesis and 14C-photosynthetic products transportation and distribution in cucumber

    International Nuclear Information System (INIS)

    Shi Yuelin; Sun Yiezhi; Xu Guimin; Cai Qiyun

    1991-01-01

    The optimum temperature of photosynthesis tended to become higher following the growth of cucumber. The optimum temperature was 30 deg C at the early growth stage and 35 deg C at the late growth stage. Stomatal resistance decreased and transpiration rate increased with increasing of the temperature. Most of the 14 C-photosynthetic products in leaves were transported out at 30 deg C during the day. After one night, more photosynthetic products were transported out under higher temperature. From the early to the middle growth stage, most of the 14 C-photosynthetic products were transported to fruits at 30 deg C. But caulis, leaves and apical point obtained most of the photosynthetic products at 35 deg C. At the late growth stage, most of the 14 C-photosynthetic products were transported to fruits at 35 deg c. At 25 deg C, caulis and leaves got more 14 C-photosynthetic products

  5. Distribution of 14C-photosynthetate in the shoot of Vitis vinifera L. cv Cabernet Sauvignon: Pt. I

    International Nuclear Information System (INIS)

    Hunter, J.J.; Visser, J.H.

    1988-01-01

    The distribution of photosynthetates, originating in leaves of different parts of the shoot of Vitis vinifera L. cv Cabernet Sauvignon at berry set, pea size, veraison and ripeness stages, was investigated. Specific photosynthetic activity of the 14 CO 2 -treated leaves gradually decreased during the season. Photosynthetates were hoarded in the leaves at berry set, but were increasingly diverted to the bunches after that. The apical leaves displayed the highest photosynthesis. The leaves opposite and below the bunches accumulated very little photosynthetates, especially from veraison to ripeness. Redistribution of photosynthetates among the basal, middle and apical leaves was generally very restricted at all stages. Multidirectional distribution from the site of application of 14 CO 2 occurred at berry set stage, while from pea size to ripeness photosynthetates were mainly translocated basipetally. Highest accumulation in the bunches occurred at veraison, while the basal leaves were primarily used to nourish the bunch

  6. Molecular detection of eukaryotes in a single human stool sample from Senegal.

    Directory of Open Access Journals (Sweden)

    Ibrahim Hamad

    Full Text Available BACKGROUND: Microbial eukaryotes represent an important component of the human gut microbiome, with different beneficial or harmful roles; some species are commensal or mutualistic, whereas others are opportunistic or parasitic. The diversity of eukaryotes inhabiting humans remains relatively unexplored because of either the low abundance of these organisms in human gut or because they have received limited attention from a whole-community perspective. METHODOLOGY/PRINCIPAL FINDING: In this study, a single fecal sample from a healthy African male was studied using both culture-dependent methods and extended molecular methods targeting the 18S rRNA and ITS sequences. Our results revealed that very few fungi, including Candida spp., Galactomyces spp., and Trichosporon asahii, could be isolated using culture-based methods. In contrast, a relatively a high number of eukaryotic species could be identified in this fecal sample when culture-independent methods based on various primer sets were used. A total of 27 species from one sample were found among the 977 analyzed clones. The clone libraries were dominated by fungi (716 clones/977, 73.3%, corresponding to 16 different species. In addition, 187 sequences out of 977 (19.2% corresponded to 9 different species of plants; 59 sequences (6% belonged to other micro-eukaryotes in the gut, including Entamoeba hartmanni and Blastocystis sp; and only 15 clones/977 (1.5% were related to human 18S rRNA sequences. CONCLUSION: Our results revealed a complex eukaryotic community in the volunteer's gut, with fungi being the most abundant species in the stool sample. Larger investigations are needed to assess the generality of these results and to understand their roles in human health and disease.

  7. Photosynthetic capacity of tropical montane tree species in relation to leaf nutrients, successional strategy and growth temperature.

    Science.gov (United States)

    Dusenge, Mirindi Eric; Wallin, Göran; Gårdesten, Johanna; Niyonzima, Felix; Adolfsson, Lisa; Nsabimana, Donat; Uddling, Johan

    2015-04-01

    Photosynthetic capacity of tree leaves is typically positively related to nutrient content and little affected by changes in growth temperature. These relationships are, however, often poorly supported for tropical trees, for which interspecific differences may be more strongly controlled by within-leaf nutrient allocation than by absolute leaf nutrient content, and little is known regarding photosynthetic acclimation to temperature. To explore the influence of leaf nutrient status, successional strategy and growth temperature on the photosynthetic capacity of tropical trees, we collected data on photosynthetic, chemical and morphological leaf traits of ten tree species in Rwanda. Seven species were studied in a forest plantation at mid-altitude (~1,700 m), whereas six species were studied in a cooler montane rainforest at higher altitude (~2,500 m). Three species were common to both sites, and, in the montane rainforest, three pioneer species and three climax species were investigated. Across species, interspecific variation in photosynthetic capacity was not related to leaf nutrient content. Instead, this variation was related to differences in within-leaf nitrogen allocation, with a tradeoff between investments into compounds related to photosynthetic capacity (higher in pioneer species) versus light-harvesting compounds (higher in climax species). Photosynthetic capacity was significantly lower at the warmer site at 1,700 m altitude. We conclude that (1) within-leaf nutrient allocation is more important than leaf nutrient content per se in controlling interspecific variation in photosynthetic capacity among tree species in tropical Rwanda, and that (2) tropical montane rainforest species exhibit decreased photosynthetic capacity when grown in a warmer environment.

  8. Ozone Effects on Fruit Productivity and Photosynthetic Response of Two Tomato Cultivars in Relation to Stomatal Fluxes

    Directory of Open Access Journals (Sweden)

    Giacomo Gerosa

    Full Text Available An Open-Top Chamber experiment on two tomato cultivars (cv. Oxheart and cv. San Marzano was carried out in Curno (Northern Italy between June and September 2007. Two ozone treatments were applied for a 3.5 months period: Non-Filtered OTC (NF-OTC, 95% of ambient ozone and Charcoal-Filtered OTC (CF-OTC, 50% of ambient ozone. Diurnal cycles of porometry measurements were performed during the season and allowed to draw a stomatal conductance model for each cultivar in order to calculate the ozone stomatal fluxes taken up by plants. Assessments on fruits yield were performed during the season, taking into account the number of fruits, their fresh weight and their marketability. In addition, measurements on the chlorophyll fluorescence of photosystems were carried out to assess possible negative effects on photosynthetic efficiency. Despite the two cultivars absorbed a similar ozone stomatal dose during the season (with an 8% difference, their responses to ozone treatments were totally divergent in relation to both fruits yield and photosynthetic efficiency. Plants of cv. Oxheart grown in NF-OTCs showed significant yield loss in the total weight of fruits (-35.9% which is exclusively related to a decrease in the number of fruits produced (-35.7% of total fruits; -30.6% of marketable fruits, since mean fresh weight of fruits remained unaffected. Moreover the same plants displayed low values (in comparison to CF-OTCs plants of the photosynthetic efficiency index (PIabs during the most intense period of ozone stress (July occurred in the flowering stage of plants and at the beginning of fructification. Plants of the cv. San Marzano had an opposite response behaviour with an increase of the mean fresh weight of fruits in plants grown in NF-OTC (even if not statistically significant and no difference in the number of fruits produced and in the values of photosynthetic efficiency.

  9. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi indicated by metagenomics

    Science.gov (United States)

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-01

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Neamphius huxleyi at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Neamphius huxleyi. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Neamphius huxleyi. PMID:24463735

  10. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Lamellomorpha sp. indicated by metagenomics

    Science.gov (United States)

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-01

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Lamellomorpha sp. at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Lamellomorpha sp.. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Lamellomorpha sp..

  11. Insights into the Initiation of Eukaryotic DNA Replication.

    Science.gov (United States)

    Bruck, Irina; Perez-Arnaiz, Patricia; Colbert, Max K; Kaplan, Daniel L

    2015-01-01

    The initiation of DNA replication is a highly regulated event in eukaryotic cells to ensure that the entire genome is copied once and only once during S phase. The primary target of cellular regulation of eukaryotic DNA replication initiation is the assembly and activation of the replication fork helicase, the 11-subunit assembly that unwinds DNA at a replication fork. The replication fork helicase, called CMG for Cdc45-Mcm2-7, and GINS, assembles in S phase from the constituent Cdc45, Mcm2-7, and GINS proteins. The assembly and activation of the CMG replication fork helicase during S phase is governed by 2 S-phase specific kinases, CDK and DDK. CDK stimulates the interaction between Sld2, Sld3, and Dpb11, 3 initiation factors that are each required for the initiation of DNA replication. DDK, on the other hand, phosphorylates the Mcm2, Mcm4, and Mcm6 subunits of the Mcm2-7 complex. Sld3 recruits Cdc45 to Mcm2-7 in a manner that depends on DDK, and recent work suggests that Sld3 binds directly to Mcm2-7 and also to single-stranded DNA. Furthermore, recent work demonstrates that Sld3 and its human homolog Treslin substantially stimulate DDK phosphorylation of Mcm2. These data suggest that the initiation factor Sld3/Treslin coordinates the assembly and activation of the eukaryotic replication fork helicase by recruiting Cdc45 to Mcm2-7, stimulating DDK phosphorylation of Mcm2, and binding directly to single-stranded DNA as the origin is melted.

  12. How MCM loading and spreading specify eukaryotic DNA replication initiation sites [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Olivier Hyrien

    2016-08-01

    Full Text Available DNA replication origins strikingly differ between eukaryotic species and cell types. Origins are localized and can be highly efficient in budding yeast, are randomly located in early fly and frog embryos, which do not transcribe their genomes, and are clustered in broad (10-100 kb non-transcribed zones, frequently abutting transcribed genes, in mammalian cells. Nonetheless, in all cases, origins are established during the G1-phase of the cell cycle by the loading of double hexamers of the Mcm 2-7 proteins (MCM DHs, the core of the replicative helicase. MCM DH activation in S-phase leads to origin unwinding, polymerase recruitment, and initiation of bidirectional DNA synthesis. Although MCM DHs are initially loaded at sites defined by the binding of the origin recognition complex (ORC, they ultimately bind chromatin in much greater numbers than ORC and only a fraction are activated in any one S-phase. Data suggest that the multiplicity and functional redundancy of MCM DHs provide robustness to the replication process and affect replication time and that MCM DHs can slide along the DNA and spread over large distances around the ORC. Recent studies further show that MCM DHs are displaced along the DNA by collision with transcription complexes but remain functional for initiation after displacement. Therefore, eukaryotic DNA replication relies on intrinsically mobile and flexible origins, a strategy fundamentally different from bacteria but conserved from yeast to human. These properties of MCM DHs likely contribute to the establishment of broad, intergenic replication initiation zones in higher eukaryotes.

  13. Contrasting Responses of Marine and Freshwater Photosynthetic Organisms to UVB Radiation: A Meta-Analysis

    KAUST Repository

    Jin, Peng; Duarte, Carlos M.; Agusti, Susana

    2017-01-01

    artificial lamps. We found that marine photosynthetic organisms tend to be more sensitive than freshwater photosynthetic organisms to UVB radiation; responses to either decreased or increased UVB radiation vary among taxa; the mortality rate is the most

  14. [Effect of magnesium deficiency on photosynthetic physiology and triacylglyceride (TAG) accumulation of Chlorella vulgaris].

    Science.gov (United States)

    Wang, Shan; Zhao, Shu-Xin; Wei, Chang-Long; Yu, Shui-Yan; Shi, Ji-Ping; Zhang, Bao-Guo

    2014-04-01

    As an excellent biological resource, Chlorella has wide applications for production of biofuel, bioactive substances and water environment restoration. Therefore, it is very important to understand the photosynthetic physiology characteristics of Chlorella. Magnesium ions play an important role in the growth of microalgae, not only the central atom of chlorophyll, but also the cofactor of some key enzyme in the metabolic pathway. A laboratory study was conducted to evaluate the effects of magnesium deficiency on several photosynthetic and physiological parameters and the triacylglyceride (TAG) accumulation of the green alga, Chlorella vulgaris, in the photoautotrophic culture process. Chlorella vulgaris biomass, protein, chlorophyll a and chlorophyll b contents decreased by 20%, 43.96%, 27.52% and 28.07% in response to magnesium deficiency, while the total oil content increased by 19.60%. Moreover, magnesium deficiency decreased the maximal photochemical efficiency F(v)/F(m) by 22.54%, but increased the non-photochemical quenching parameters qN. Our results indicated the decline of chlorophyll caused by magnesium, which affected the photosynthesis efficiency, lead to the growth inhibition of Chlorella vulgaris and affected the protein synthesis and increased the triacylglyceride (TAG) accumulation.

  15. diArk – a resource for eukaryotic genome research

    Directory of Open Access Journals (Sweden)

    Kollmar Martin

    2007-04-01

    Full Text Available Abstract Background The number of completed eukaryotic genome sequences and cDNA projects has increased exponentially in the past few years although most of them have not been published yet. In addition, many microarray analyses yielded thousands of sequenced EST and cDNA clones. For the researcher interested in single gene analyses (from a phylogenetic, a structural biology or other perspective it is therefore important to have up-to-date knowledge about the various resources providing primary data. Description The database is built around 3 central tables: species, sequencing projects and publications. The species table contains commonly and alternatively used scientific names, common names and the complete taxonomic information. For projects the sequence type and links to species project web-sites and species homepages are stored. All publications are linked to projects. The web-interface provides comprehensive search modules with detailed options and three different views of the selected data. We have especially focused on developing an elaborate taxonomic tree search tool that allows the user to instantaneously identify e.g. the closest relative to the organism of interest. Conclusion We have developed a database, called diArk, to store, organize, and present the most relevant information about completed genome projects and EST/cDNA data from eukaryotes. Currently, diArk provides information about 415 eukaryotes, 823 sequencing projects, and 248 publications.

  16. Difference in photosynthetic performance among three peach ...

    African Journals Online (AJOL)

    The effects of low photosynthetic photon flux density (PPFD) on greenhouse grown peach trees ('Qingfeng': Prunus persica L. Batsch, 'NJN76': Prunus persica L. Batsch and 'Maixiang': P. persica var. nectarine) were investigated. Difference in photosynthesis rate (Pn) and stoma morphology among cultivars were studied.

  17. Engineering of cyanobacteria for the photosynthetic production of limonene from CO2.

    Science.gov (United States)

    Kiyota, Hiroshi; Okuda, Yukiko; Ito, Michiho; Hirai, Masami Yokota; Ikeuchi, Masahiko

    2014-09-20

    Isoprenoids, major secondary metabolites in many organisms, are utilized in various applications. We constructed a model photosynthetic production system for limonene, a volatile isoprenoid, using a unicellular cyanobacterium that expresses the plant limonene synthase. This system produces limonene photosynthetically at a nearly constant rate and that can be efficiently recovered using a gas-stripping method. This production does not affect the growth of the cyanobacteria and is markedly enhanced by overexpression of three enzymes in the intrinsic pathway to provide the precursor of limonene, geranyl pyrophosphate. The photosynthetic production of limonene in our system is more or less sustained from the linear to stationary phase of cyanobacterial growth for up to 1 month. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Mapping and characterizing N6-methyladenine in eukaryotic genomes using single molecule real-time sequencing.

    Science.gov (United States)

    Zhu, Shijia; Beaulaurier, John; Deikus, Gintaras; Wu, Tao; Strahl, Maya; Hao, Ziyang; Luo, Guanzheng; Gregory, James A; Chess, Andrew; He, Chuan; Xiao, Andrew; Sebra, Robert; Schadt, Eric E; Fang, Gang

    2018-05-15

    N6-methyladenine (m6dA) has been discovered as a novel form of DNA methylation prevalent in eukaryotes, however, methods for high resolution mapping of m6dA events are still lacking. Single-molecule real-time (SMRT) sequencing has enabled the detection of m6dA events at single-nucleotide resolution in prokaryotic genomes, but its application to detecting m6dA in eukaryotic genomes has not been rigorously examined. Herein, we identified unique characteristics of eukaryotic m6dA methylomes that fundamentally differ from those of prokaryotes. Based on these differences, we describe the first approach for mapping m6dA events using SMRT sequencing specifically designed for the study of eukaryotic genomes, and provide appropriate strategies for designing experiments and carrying out sequencing in future studies. We apply the novel approach to study two eukaryotic genomes. For green algae, we construct the first complete genome-wide map of m6dA at single nucleotide and single molecule resolution. For human lymphoblastoid cells (hLCLs), joint analyses of SMRT sequencing and independent sequencing data suggest that putative m6dA events are enriched in the promoters of young, full length LINE-1 elements (L1s). These analyses demonstrate a general method for rigorous mapping and characterization of m6dA events in eukaryotic genomes. Published by Cold Spring Harbor Laboratory Press.

  19. A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers.

    Science.gov (United States)

    Gamon, John A; Huemmrich, K Fred; Wong, Christopher Y S; Ensminger, Ingo; Garrity, Steven; Hollinger, David Y; Noormets, Asko; Peñuelas, Josep

    2016-11-15

    In evergreen conifers, where the foliage amount changes little with season, accurate detection of the underlying "photosynthetic phenology" from satellite remote sensing has been difficult, presenting challenges for global models of ecosystem carbon uptake. Here, we report a close correspondence between seasonally changing foliar pigment levels, expressed as chlorophyll/carotenoid ratios, and evergreen photosynthetic activity, leading to a "chlorophyll/carotenoid index" (CCI) that tracks evergreen photosynthesis at multiple spatial scales. When calculated from NASA's Moderate Resolution Imaging Spectroradiometer satellite sensor, the CCI closely follows the seasonal patterns of daily gross primary productivity of evergreen conifer stands measured by eddy covariance. This discovery provides a way of monitoring evergreen photosynthetic activity from optical remote sensing, and indicates an important regulatory role for carotenoid pigments in evergreen photosynthesis. Improved methods of monitoring photosynthesis from space can improve our understanding of the global carbon budget in a warming world of changing vegetation phenology.

  20. Functional size of photosynthetic electron transport chain determined by radiation inactivation

    International Nuclear Information System (INIS)

    Pan, R.S.; Chen, L.F.; Wang, M.Y.; Tsal, M.Y.; Pan, R.L.; Hsu, B.D.

    1987-01-01

    Radiation inactivation technique was employed to determine the functional size of photosynthetic electron transport chain of spinach chloroplasts. The functional size for photosystem I+II(H 2 O to methylviologen) was 623 +/- 37 kilodaltons; for photosystem II (H 2 O to dimethylquinone/ferricyanide), 174 +/- 11 kilodaltons; and for photosystem I (reduced diaminodurene to methylviologen), 190 +/- 11 kilodaltons. The difference between 364 +/- 22 (the sum of 174 +/- 11 and 190 +/- 11) kilodaltons and 623 +/- 37 kilodaltons is partially explained to be due to the presence of two molecules of cytochrome b 6 /f complex of 280 kilodaltons. The molecular mass for other partial reactions of photosynthetic electron flow, also measured by radiation inactivation, is reported. The molecular mass obtained by this technique is compared with that determined by other conventional biochemical methods. A working hypothesis for the composition, stoichiometry, and organization of polypeptides for photosynthetic electron transport chain is proposed

  1. Oxyfluorfen toxic effect on S. obliquus evaluated by different photosynthetic and enzymatic biomarkers.

    Science.gov (United States)

    Geoffroy, L; Dewez, D; Vernet, G; Popovic, R

    2003-11-01

    The effect of oxyfluorfen was investigated when alga Scenedesmus obliquus has been exposed to different concentrations (7.5, 15, and 22.5 microg x L(-1)) at 12, 24, and 48 hours of exposure. Toxicity test was done by using 13 biomarkers concerning growth rate, chlorophyll content and indicators of photosynthetic and antioxidant enzyme activities. The change of the 13 parameters showed a great variation of sensitivity indicating differences in parameters' suitability to be used as biomarkers when alga culture was exposed to oxyfluorfen toxicity. The order of sensitivity between those biomarkers was: Antenna size (ABS/RC) > Chlorophyll content > Catalase (CAT) > Operational PSII quantum yield (phiS(PSII)) > Glutathione S-transferase (GST) > Functional plastoquinone pool (Q(PQ)) > Glutathione reductase (GR) > Growth rate > Nonphotochemical quenching (QN) > Proton gradient quenching (Q(Emax)) > Ascorbate peroxidase (APX) > Photochemical quenching (Q(p)) > Maximum PSII quantum yield (Phi(PSII)). The effect of oxyfluorfen on the changes of those parameters was interpreted as a result of herbicide mode of action at molecular level of alga cellular system. This study indicated for some photosynthetic and enzymatic biomarkers to be useful indicators of toxicity effect induced in non-target alga species. Determination of biomarkers' sensitivity order may facilitate their selection to be used in environmental risk assessment of polluted water.

  2. Effect of Temperature and light intensity on growth and Photosynthetic Activity of Chlamydomonas reinhard II

    International Nuclear Information System (INIS)

    Alfonsel Jaen, M.; Fernandez Gonzalez, J.

    1985-01-01

    The effect of five temperatures (15,20,25,30 and 35 degree centigree) and two levels of illumination on growth and photosynthetic activity of Chlamydomonas reinhard II has been studied. The growth of the cultures was evaluated by optical density. Photosynthetic activity has been carried out studying either the assimilation rate of C0 2 labelled with C-14 or the oxygen evolution by means of polarographic measurements. The maximum photosynthetic rate has been obtained at 25 degree centigree for the lower level of illumination (2400 lux) and at 35 degree centigree for the higher one (13200 lux) and at 35 degree centigree for the higher ono (13200 lux). These results suggest an interaction of temperature and illumination on photosynthetic activity. (Author) 37 refs

  3. Insights into the diversity of eukaryotes in acid mine drainage biofilm communities.

    Science.gov (United States)

    Baker, Brett J; Tyson, Gene W; Goosherst, Lindsey; Banfield, Jillian F

    2009-04-01

    Microscopic eukaryotes are known to have important ecosystem functions, but their diversity in most environments remains vastly unexplored. Here we analyzed an 18S rRNA gene library from a subsurface iron- and sulfur-oxidizing microbial community growing in highly acidic (pH morphological characterization. Results revealed that the populations vary significantly with the habitat and no group is ubiquitous. Surprisingly, many of the eukaryotic lineages (with the exception of the APC) are closely related to neutrophiles, suggesting that they recently adapted to this extreme environment. Molecular analyses presented here confirm that the number of eukaryotic species associated with the acid mine drainage (AMD) communities is low. This finding is consistent with previous results showing a limited diversity of archaea, bacteria, and viruses in AMD environments and suggests that the environmental pressures and interplay between the members of these communities limit species diversity at all trophic levels.

  4. Variability of photosynthetic pigments in the Colombian Pacific ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Picture series of surface chlorophyll,. SST, wind ... photosynthetic pigments during the time of inten- sification of ... calculation of Ekman pumping (We) using finite- differencing to ..... Legeckis R 1986 A satellite time series sea surface tempera-.

  5. Photosynthetic Rates of Citronella and Lemongrass 1

    Science.gov (United States)

    Herath, H. M. Walter; Ormrod, Douglas P.

    1979-01-01

    Ten selections of citronella (Cymbopogon nardus [L.] Rendle) were grown at 32/27, 27/21, or 15/10 C day/night temperatures, and plants from three populations of lemongrass (Cymbopogon citratus [D.C.] Stapf from Japan or Sri Lanka and Cymbopogon flexuosus [D.C.] Stapf from India) were grown at 8- or 15-hour photoperiods. Net photosynthetic rates of mature leaves were measured in a controlled environment at 25 C and 260 microeinsteins per meter2 per second. Rates declined with increasing leaf age, and from the tip to the base of the leaf blade. Rates for citronella leaves grown at 15/10 C were extremely low for all selections. Highest rates of net photosynthesis were recorded for four selections grown at 27/21 C and for two selections grown at 32/27 C. Lemongrass grown at 8-hour photoperiod had higher photosynthetic rates than that grown at 15-hour photoperiod. PMID:16660737

  6. [Effects of low-light stress on photosynthetic characteristics of Paris polyphylla var. chinensis in artificial domestication cultivation].

    Science.gov (United States)

    Zheng, Shun-lin; Tian, Meng-liang; Liu, Jin-liang; Zhao, Ting-ting; Zhang, Zhong

    2014-09-01

    To decide on the optimum artificial domestication cultivation light environment for Paris polyphylla var. chinensis through investigating the effect of light intensity on leaf's gas exchange parameters, photosynthetic parameters, light saturation point and compensation point of Paris polyphylla var. chinensis. Different low-light stress gradients' effect on the growth of Paris polyphylla var. chinensis was compared with no low-light stress treatment through calculating leaf's gas exchange parameters, photosynthetic parameters, light saturation point and compensation point, and then all these parameters were statistically analyzed. Light intensity had significant influence on the photosynthetic characteristics of Paris polyphylla var. chinensis. With the strengthening of the low-light stress, chlorophyll content, gas exchange parameters, photosynthetic parameters P., AQY and light saturation point all gradually increased at first, and then decreased. However, both photosynthetic parameters Rd and light compensation point firstly decreased and then rose again. These results showed that too strong or too weak light intensity affected the optimization of photosynthetic parameters of Paris polyphylla var. chinensis. The optimal illuminance for each parameter was not completely same, but they could all reach a relative ideal state when the shading ranges between 40% and 60%. However, photosynthetic parameters deteriorated rapidly when the shading surpass 80%. For artificially cultivating Paris polyphylla var. chinensis in Baoxing,Sichuan or the similar ecological region, shading 40%-60% is the optimal light environment, which can enhance the photosynthesis of Paris polyphylla var. chinensis and promote the accumulation of photosynthetic products.

  7. Managing the Microbial Ecology of a Cyanobacteria-Based Photosynthetic Factory Direct!, Final Report for EE0006100

    Energy Technology Data Exchange (ETDEWEB)

    Rittmann, Bruce [Arizona State Univ., Tempe, AZ (United States); Krajmalnik‐Brown, Rosa [Arizona State Univ., Tempe, AZ (United States); Zevin, Alexander [Arizona State Univ., Tempe, AZ (United States); Nguyen, Binh [Arizona State Univ., Tempe, AZ (United States); Patel, Megha [Arizona State Univ., Tempe, AZ (United States)

    2015-02-28

    The grandest challenge facing human society today is providing large amounts of energy and industrial chemicals that are renewable and carbon-neutral. An outstanding opportunity lies in employing photosynthetic microorganisms, which have the potential to generate energy and chemical feedstock from sunlight and CO2 at rates 10 to 100 times greater than plants. Major challenges for solar-powered production using photosynthetic microorganisms are associated with the harvesting and downstream processing of biomass to yield the usable energy or material feedstock e.g. The technical challenges and costs of downstream processing could be avoided if, powered by solar energy, the photosynthetic microorganisms were to convert CO2 directly to the desired product, which they release for direct harvesting. This approach creates a true photosynthetic factory, our goal for Photosynthetic Factory Direct! Our team is able to genetically modify the cyanobacterium Synechocystis sp. PCC 6803 so that it produces and excretes a range of renewable energy and chemical products directly from CO2 and sunlight. Essential to realizing the potential of the photosynthetic factory is an engineered Advanced Photobioreactor (APBR) for reliable synthesis and harvest of the products.

  8. Oxygenation of the Mesoproterozoic ocean and the evolution of complex eukaryotes

    Science.gov (United States)

    Zhang, Kan; Zhu, Xiangkun; Wood, Rachel A.; Shi, Yao; Gao, Zhaofu; Poulton, Simon W.

    2018-05-01

    The Mesoproterozoic era (1,600-1,000 million years ago (Ma)) has long been considered a period of relative environmental stasis, with persistently low levels of atmospheric oxygen. There remains much uncertainty, however, over the evolution of ocean chemistry during this period, which may have been of profound significance for the early evolution of eukaryotic life. Here we present rare earth element, iron-speciation and inorganic carbon isotope data to investigate the redox evolution of the 1,600-1,550 Ma Yanliao Basin, North China Craton. These data confirm that the ocean at the start of the Mesoproterozoic was dominantly anoxic and ferruginous. Significantly, however, we find evidence for a progressive oxygenation event starting at 1,570 Ma, immediately prior to the occurrence of complex multicellular eukaryotes in shelf areas of the Yanliao Basin. Our study thus demonstrates that oxygenation of the Mesoproterozoic environment was far more dynamic and intense than previously envisaged, and establishes an important link between rising oxygen and the emerging record of diverse, multicellular eukaryotic life in the early Mesoproterozoic.

  9. Tracking the rise of eukaryotes to ecological dominance with zinc isotopes.

    Science.gov (United States)

    Isson, Terry T; Love, Gordon D; Dupont, Christopher L; Reinhard, Christopher T; Zumberge, Alex J; Asael, Dan; Gueguen, Bleuenn; McCrow, John; Gill, Ben C; Owens, Jeremy; Rainbird, Robert H; Rooney, Alan D; Zhao, Ming-Yu; Stueeken, Eva E; Konhauser, Kurt O; John, Seth G; Lyons, Timothy W; Planavsky, Noah J

    2018-06-05

    The biogeochemical cycling of zinc (Zn) is intimately coupled with organic carbon in the ocean. Based on an extensive new sedimentary Zn isotope record across Earth's history, we provide evidence for a fundamental shift in the marine Zn cycle ~800 million years ago. We discuss a wide range of potential drivers for this transition and propose that, within available constraints, a restructuring of marine ecosystems is the most parsimonious explanation for this shift. Using a global isotope mass balance approach, we show that a change in the organic Zn/C ratio is required to account for observed Zn isotope trends through time. Given the higher affinity of eukaryotes for Zn relative to prokaryotes, we suggest that a shift toward a more eukaryote-rich ecosystem could have provided a means of more efficiently sequestering organic-derived Zn. Despite the much earlier appearance of eukaryotes in the microfossil record (~1700 to 1600 million years ago), our data suggest a delayed rise to ecological prominence during the Neoproterozoic, consistent with the currently accepted organic biomarker records. © 2018 John Wiley & Sons Ltd.

  10. Proton-pumping rhodopsins are abundantly expressed by microbial eukaryotes in a high-Arctic fjord.

    Science.gov (United States)

    Vader, Anna; Laughinghouse, Haywood D; Griffiths, Colin; Jakobsen, Kjetill S; Gabrielsen, Tove M

    2018-02-01

    Proton-pumping rhodopsins provide an alternative pathway to photosynthesis by which solar energy can enter the marine food web. Rhodopsin genes are widely found in marine bacteria, also in the Arctic, and were recently reported from several eukaryotic lineages. So far, little is known about rhodopsin expression in Arctic eukaryotes. In this study, we used metatranscriptomics and 18S rDNA tag sequencing to examine the mid-summer function and composition of marine protists (size 0.45-10 µm) in the high-Arctic Billefjorden (Spitsbergen), especially focussing on the expression of microbial proton-pumping rhodopsins. Rhodopsin transcripts were highly abundant, at a level similar to that of genes involved in photosynthesis. Phylogenetic analyses placed the environmental rhodopsins within disparate eukaryotic lineages, including dinoflagellates, stramenopiles, haptophytes and cryptophytes. Sequence comparison indicated the presence of several functional types, including xanthorhodopsins and a eukaryotic clade of proteorhodopsin. Transcripts belonging to the proteorhodopsin clade were also abundant in published metatranscriptomes from other oceanic regions, suggesting a global distribution. The diversity and abundance of rhodopsins show that these light-driven proton pumps play an important role in Arctic microbial eukaryotes. Understanding this role is imperative to predicting the future of the Arctic marine ecosystem faced by a changing light climate due to diminishing sea-ice. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Reversal of Resistance in Microorganisms by help of Non-antibiotics

    DEFF Research Database (Denmark)

    Kristiansen, Jette E.; Hendricks, Oliver; Delvin, Thomas

    2007-01-01

    -threatening situations where the non-antibiotic dosage would be in the lower, non-chronic dosage ranges generally prescribed for individuals with mild mental health problems. The results point to the prokaryotic and eukaryotic microorganisms' phospholipid/protein domain involvement of the cationic, amphiphilic, non...

  12. Photosynthetic pathway types of evergreen rosette plants (Liliaceae) of the Chihuahuan desert.

    Science.gov (United States)

    Kemp, Paul R; Gardetto, Pietra E

    1982-11-01

    Diurnal patterns of CO 2 exchange and titratable acidity were monitored in six species of evergreen rosette plants growing in controlled environment chambers and under outdoor environmental conditions. These patterns indicated that two of the species, Yucca baccata and Y. torreyi, were constituitive CAM plants while the other species, Y. elata, Y. campestris, Nolina microcarpa and Dasylirion wheeleri, were C 3 plants. The C 3 species did not exhibit CAM when grown in any of several different temperature, photoperiod, and moisture regimes. Both photosynthetic pathway types appear adapted to desert environments and all species show environmentally induced changes in their photosynthetic responses consistent with desert adaptation. The results of this study do not indicate that changes in the photosynthetic pathway type are an adaptation in any of these species.

  13. Phylogenetic analysis of P5 P-type ATPases, a eukaryotic lineage of secretory pathway pumps

    DEFF Research Database (Denmark)

    Møller, Annette; Asp, Torben; Holm, Preben Bach

    2008-01-01

    prokaryotic genome. Based on a protein alignment we could group the P5 ATPases into two subfamilies, P5A and P5B that, based on the number of negative charges in conserved trans-membrane segment 4, are likely to have different ion specificities. P5A ATPases are present in all eukaryotic genomes sequenced so......Eukaryotes encompass a remarkable variety of organisms and unresolved lineages. Different phylogenetic analyses have lead to conflicting conclusions as to the origin and associations between lineages and species. In this work, we investigated evolutionary relationship of a family of cation pumps...... exclusive for the secretory pathway of eukaryotes by combining the identification of lineage-specific genes with phylogenetic evolution of common genes. Sequences of P5 ATPases, which are regarded to be cation pumps in the endoplasmic reticulum (ER), were identified in all eukaryotic lineages but not in any...

  14. DAILY BUDGETS OF PHOTOSYNTHETICALLY FIXED CARBON IN SYMBIOTIC ZOANTHIDS.

    Science.gov (United States)

    Steen, R Grant; Muscatine, L

    1984-10-01

    We tested the hypothesis that some zoanthids are able to meet a portion of their daily respiratory carbon requirement with photosynthetic carbon from symbiotic algal cells (= zooxanthellae). A daily budget was constructed for carbon (C) photosynthetically fixed by zooxanthellae of the Bermuda zoanthids Zoanthus sociatus and Palythoa variabilis. Zooxanthellae have an average net photosynthetic C fixation of 7.48 and 15.56 µgC·polyp -1 ·day -1 for Z. sociatus and P. variabilis respectively. The C-specific growth rate (µ c ) was 0.215·day -1 for Z. sociatus and 0.152·day -1 for P. variabilis. The specific growth rate (µ) of zooxanthellae in the zoanthids was measured to be 0.011 and 0.017·day -1 for Z. sociatus and P. variabilis zooxanthellae respectively. Z. sociatus zooxanthellae translocated 95.1% of the C assimilated in photosynthesis, while P. variabilis zooxanthellae translocated 88.8% of their fixed C. As the animal tissue of a polyp of Z. sociatus required 14.75 µgC·day -1 for respiration, and one of P. variabiis required 105.54 µgC·day -1 , the contribution of zooxanthellae to animal respiration (CZAR) was 48.2% for Z. sociatus and 13.1% for P. variabilis.

  15. Connectionist neuropsychology: uncovering ultimate causes of acquired dyslexia.

    Science.gov (United States)

    Woollams, Anna M

    2014-01-01

    Acquired dyslexia offers a unique window on to the nature of the cognitive and neural architecture supporting skilled reading. This paper provides an integrative overview of recent empirical and computational work on acquired dyslexia within the context of the primary systems framework as implemented in connectionist neuropsychological models. This view proposes that damage to general visual, phonological or semantic processing abilities are the root causes of different forms of acquired dyslexia. Recent case-series behavioural evidence concerning pure alexia, phonological dyslexia and surface dyslexia that supports this perspective is presented. Lesion simulations of these findings within connectionist models of reading demonstrate the viability of this approach. The commitment of such models to learnt representations allows them to capture key aspects of performance in each type of acquired dyslexia, particularly the associated non-reading deficits, the role of relearning and the influence of individual differences in the premorbid state of the reading system. Identification of these factors not only advances our understanding of acquired dyslexia and the mechanisms of normal reading but they are also relevant to the complex interactions underpinning developmental reading disorders.

  16. GenColors-based comparative genome databases for small eukaryotic genomes.

    Science.gov (United States)

    Felder, Marius; Romualdi, Alessandro; Petzold, Andreas; Platzer, Matthias; Sühnel, Jürgen; Glöckner, Gernot

    2013-01-01

    Many sequence data repositories can give a quick and easily accessible overview on genomes and their annotations. Less widespread is the possibility to compare related genomes with each other in a common database environment. We have previously described the GenColors database system (http://gencolors.fli-leibniz.de) and its applications to a number of bacterial genomes such as Borrelia, Legionella, Leptospira and Treponema. This system has an emphasis on genome comparison. It combines data from related genomes and provides the user with an extensive set of visualization and analysis tools. Eukaryote genomes are normally larger than prokaryote genomes and thus pose additional challenges for such a system. We have, therefore, adapted GenColors to also handle larger datasets of small eukaryotic genomes and to display eukaryotic gene structures. Further recent developments include whole genome views, genome list options and, for bacterial genome browsers, the display of horizontal gene transfer predictions. Two new GenColors-based databases for two fungal species (http://fgb.fli-leibniz.de) and for four social amoebas (http://sacgb.fli-leibniz.de) were set up. Both new resources open up a single entry point for related genomes for the amoebozoa and fungal research communities and other interested users. Comparative genomics approaches are greatly facilitated by these resources.

  17. Consistent mutational paths predict eukaryotic thermostability

    Directory of Open Access Journals (Sweden)

    van Noort Vera

    2013-01-01

    Full Text Available Abstract Background Proteomes of thermophilic prokaryotes have been instrumental in structural biology and successfully exploited in biotechnology, however many proteins required for eukaryotic cell function are absent from bacteria or archaea. With Chaetomium thermophilum, Thielavia terrestris and Thielavia heterothallica three genome sequences of thermophilic eukaryotes have been published. Results Studying the genomes and proteomes of these thermophilic fungi, we found common strategies of thermal adaptation across the different kingdoms of Life, including amino acid biases and a reduced genome size. A phylogenetics-guided comparison of thermophilic proteomes with those of other, mesophilic Sordariomycetes revealed consistent amino acid substitutions associated to thermophily that were also present in an independent lineage of thermophilic fungi. The most consistent pattern is the substitution of lysine by arginine, which we could find in almost all lineages but has not been extensively used in protein stability engineering. By exploiting mutational paths towards the thermophiles, we could predict particular amino acid residues in individual proteins that contribute to thermostability and validated some of them experimentally. By determining the three-dimensional structure of an exemplar protein from C. thermophilum (Arx1, we could also characterise the molecular consequences of some of these mutations. Conclusions The comparative analysis of these three genomes not only enhances our understanding of the evolution of thermophily, but also provides new ways to engineer protein stability.

  18. Diversity and evolution of Ty1-copia and Ty3-gypsy retroelements in the non-photosynthetic flowering plants Orobanche and Phelipanche (Orobanchaceae).

    Science.gov (United States)

    Park, Jeong-Mi; Schneeweiss, Gerald M; Weiss-Schneeweiss, Hanna

    2007-01-31

    We present the first study on the diversity and evolution of Ty1-copia and Ty3-gypsy retroelements in a group of non-photosynthetic flowering plants. To this end partial sequences of the reverse transcriptase (rt) gene were obtained from 20 clones for each retroelement type from seven and six accessions of Orobanche and Phelipanche (Orobanchaceae), respectively. Overall sequence similarity is higher in Ty3-gypsy elements than in Ty1-copia elements in agreement with the results from other angiosperm groups. Higher sequence diversity and stronger phylogenetic structure, especially of Ty1-copia sequences, in Orobanche species compared to Phelipanche species support the previously suggested hypothesis (based on karyological and cytological data) that genomes of Orobanche species are more dynamic than those of Phelipanche species. No evidence was found for intraspecific differences of retroelement diversity nor for differences between pest taxa and their putative wild relatives, e.g., O. crenata and O. owerini. The occurrence of a few sequences from Phelipanche species in clades otherwise comprising sequences from Orobanche species might be due to horizontal gene transfer, but the alternative of vertical transmission cannot be rejected unambiguously.

  19. Photosynthetic pathways of some aquatic plants

    Energy Technology Data Exchange (ETDEWEB)

    Hough, R A [Wayne State Univ., Detroit; Wetzel, R G

    1977-12-01

    Over 40 species of aquatic angiosperms, including submersed, floating and emergent types, have been examined for photosynthetic status as part of a search for possible aquatic C/sub 4/ species. The C/sub 4/ system is viewed as potentially of adaptive value in certain aquatic situations, although evidence for its occurrence there is not conclusive. Emphasis was on plants from North-temperate softwater and hardwater lakes to explore both possibilities of CO/sub 2/ limitation, i.e., low total inorganic carbon in softwater vs. low free CO/sub 2/ in hardwater lakes. On the basis of leaf cross-section anatomy, all plants examined, with one exception, clearly did not show evidence of C/sub 4/ ''Krantz anatomy.'' In the submersed plant Potamogeton praelongus Wulf, large starch-producing chloroplasts were concentrated in cells surrounding vascular bundles and in a narrow band of cells between vascular bundles. The in situ photosynthetic rate of this plant was twice that of a related species, but other evidence including PEP carboxylase content and photorespiratory response to high O/sub 2/ did not confirm the presence of the C/sub 4/ photosynthesis.

  20. Signaling mechanisms of apoptosis-like programmed cell death in unicellular eukaryotes.

    Science.gov (United States)

    Shemarova, Irina V

    2010-04-01

    In unicellular eukaryotes, apoptosis-like cell death occurs during development, aging and reproduction, and can be induced by environmental stresses and exposure to toxic agents. The essence of the apoptotic machinery in unicellular organisms is similar to that in mammals, but the apoptotic signal network is less complex and of more ancient origin. The review summarizes current data about key apoptotic proteins and mechanisms of the transduction of apoptotic signals by caspase-like proteases and mitochondrial apoptogenic proteins in unicellular eukaryotes. The roles of receptor-dependent and receptor-independent caspase cascades are reviewed. 2010 Elsevier Inc. All rights reserved.

  1. Non-Escherichia coli versus Escherichia coli community-acquired urinary tract infections in children hospitalized in a tertiary center: relative frequency, risk factors, antimicrobial resistance and outcome.

    Science.gov (United States)

    Marcus, Nir; Ashkenazi, Shai; Yaari, Arnon; Samra, Zmira; Livni, Gilat

    2005-07-01

    Currently hospitalization for children with urinary tract infections (UTIs) is reserved for severe or complicated cases. Changes may have taken place in the characteristics and causative uropathogens of hospital-treated community-acquired UTI. To study children hospitalized in a tertiary center with community-acquired UTI, compare Escherichia coli and non-E. coli UTI, define predictors for non-E. coli UTI and elucidate the appropriate therapeutic approach. A prospective clinical and laboratory study from 2001 through 2002 in a tertiary pediatric medical center. Patients were divided by results of the urine culture into E. coli and non-E. coli UTI groups, which were compared. Of 175 episodes of culture-proved UTI, 70 (40%) were caused by non-E. coli pathogens. Non-E. coli UTI was more commonly found in children who were male (P = 0.005), who had underlying renal abnormalities (P = 0.0085) and who had received antibiotic therapy in the prior month (P = 0.0009). Non-E. coli uropathogens were often resistant to antibiotics usually recommended for initial therapy for UTI, including cephalosporins and aminoglycosides; 19% were initially treated with inappropriate empiric intravenous antibiotics (compared with 2% for E. coli UTI, P = 0.0001), with a longer hospitalization. Current treatment routines are often inappropriate for hospitalized children with non-E. coli UTI, which is relatively common in this population. The defined risk factors associated with non-E. coli UTIs and its antimicrobial resistance patterns should be considered to improve empiric antibiotic therapy for these infections.

  2. Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga.

    Science.gov (United States)

    Qin, Jie; Lehr, Corinne R; Yuan, Chungang; Le, X Chris; McDermott, Timothy R; Rosen, Barry P

    2009-03-31

    Arsenic is the most common toxic substance in the environment, ranking first on the Superfund list of hazardous substances. It is introduced primarily from geochemical sources and is acted on biologically, creating an arsenic biogeocycle. Geothermal environments are known for their elevated arsenic content and thus provide an excellent setting in which to study microbial redox transformations of arsenic. To date, most studies of microbial communities in geothermal environments have focused on Bacteria and Archaea, with little attention to eukaryotic microorganisms. Here, we show the potential of an extremophilic eukaryotic alga of the order Cyanidiales to influence arsenic cycling at elevated temperatures. Cyanidioschyzon sp. isolate 5508 oxidized arsenite [As(III)] to arsenate [As(V)], reduced As(V) to As(III), and methylated As(III) to form trimethylarsine oxide (TMAO) and dimethylarsenate [DMAs(V)]. Two arsenic methyltransferase genes, CmarsM7 and CmarsM8, were cloned from this organism and demonstrated to confer resistance to As(III) in an arsenite hypersensitive strain of Escherichia coli. The 2 recombinant CmArsMs were purified and shown to transform As(III) into monomethylarsenite, DMAs(V), TMAO, and trimethylarsine gas, with a T(opt) of 60-70 degrees C. These studies illustrate the importance of eukaryotic microorganisms to the biogeochemical cycling of arsenic in geothermal systems, offer a molecular explanation for how these algae tolerate arsenic in their environment, and provide the characterization of algal methyltransferases.

  3. Methyl labeling and TROSY NMR spectroscopy of proteins expressed in the eukaryote Pichia pastoris

    International Nuclear Information System (INIS)

    Clark, Lindsay; Zahm, Jacob A.; Ali, Rustam; Kukula, Maciej; Bian, Liangqiao; Patrie, Steven M.; Gardner, Kevin H.; Rosen, Michael K.; Rosenbaum, Daniel M.

    2015-01-01

    13 C Methyl TROSY NMR spectroscopy has emerged as a powerful method for studying the dynamics of large systems such as macromolecular assemblies and membrane proteins. Specific 13 C labeling of aliphatic methyl groups and perdeuteration has been limited primarily to proteins expressed in E. coli, preventing studies of many eukaryotic proteins of physiological and biomedical significance. We demonstrate the feasibility of efficient 13 C isoleucine δ1-methyl labeling in a deuterated background in an established eukaryotic expression host, Pichia pastoris, and show that this method can be used to label the eukaryotic protein actin, which cannot be expressed in bacteria. This approach will enable NMR studies of previously intractable targets

  4. Photosynthetic efficiency of Chlamydomonas reinhardtii in flashing light

    NARCIS (Netherlands)

    Vejrazka, C.; Janssen, M.G.J.; Streefland, M.; Wijffels, R.H.

    2011-01-01

    Efficient light to biomass conversion in photobioreactors is crucial for economically feasible microalgae production processes. It has been suggested that photosynthesis is enhanced in short light path photobioreactors by mixing-induced flashing light regimes. In this study, photosynthetic

  5. Evolution of an intricate J-protein network driving protein disaggregation in eukaryotes.

    Science.gov (United States)

    Nillegoda, Nadinath B; Stank, Antonia; Malinverni, Duccio; Alberts, Niels; Szlachcic, Anna; Barducci, Alessandro; De Los Rios, Paolo; Wade, Rebecca C; Bukau, Bernd

    2017-05-15

    Hsp70 participates in a broad spectrum of protein folding processes extending from nascent chain folding to protein disaggregation. This versatility in function is achieved through a diverse family of J-protein cochaperones that select substrates for Hsp70. Substrate selection is further tuned by transient complexation between different classes of J-proteins, which expands the range of protein aggregates targeted by metazoan Hsp70 for disaggregation. We assessed the prevalence and evolutionary conservation of J-protein complexation and cooperation in disaggregation. We find the emergence of a eukaryote-specific signature for interclass complexation of canonical J-proteins. Consistently, complexes exist in yeast and human cells, but not in bacteria, and correlate with cooperative action in disaggregation in vitro. Signature alterations exclude some J-proteins from networking, which ensures correct J-protein pairing, functional network integrity and J-protein specialization. This fundamental change in J-protein biology during the prokaryote-to-eukaryote transition allows for increased fine-tuning and broadening of Hsp70 function in eukaryotes.

  6. Photosynthetic activity, photoprotection and photoinhibition in intertidal microphytobenthos as studied in situ using variable chlorophyll fluorescence

    Science.gov (United States)

    Serôdio, João; Vieira, Sónia; Cruz, Sónia

    2008-06-01

    The photosynthetic activity of microphytobenthos biofilms was studied in situ on an intertidal mudflat of the Ria de Aveiro, Portugal. Time series of physical variables characterizing the microenvironment at the sediment photic zone (incident solar irradiance, temperature, salinity), photophysiological parameters and productive biomass of undisturbed microalgal assemblages were measured during daytime low-tide periods along one spring-neap tidal cycle, with the objective of (1) characterizing the short-term variability in photosynthetic activity in situ, (2) relating it with the changing environmental conditions and (3) with the operation of physiologically (xanthophyll cycle) and behaviorally (vertical migration) based photoprotective processes, and (4) assessing the occurrence of photoinhibition. Pulse Amplitude Modulated (PAM) fluorometry was applied to measure photosynthetic activity (the effective and maximum quantum yield of photosystem II, Δ F/ Fm' and Fv/ Fm; the photosynthesis index EFY; rapid light-response curves (RLC)), the photoprotective operation of the xanthophyll cycle and photoinhibition (non-photochemical quenching, NPQ; quantum efficiency of open RCs, Fv'/ Fm'), and vertical migration (productive biomass, Fo). The photosynthetic activity was found to be strongly affected by the cumulative light dose received during the morning low-tide periods. The fluorescence indices Δ F/ Fm', EFY, Fv'/ Fm' and RLC parameters were more depressed under high irradiances when clear sky was present during the morning low tide than when foggy conditions reduced the light dose received during a comparable period. Productive biomass exhibited maximum values in the first hours of the morning, followed by a steep decrease when irradiance reached moderate levels, due to the downward migration of the microalgae. This photophobic migratory response appeared to display a photoprotective role, allowing Δ F/ Fm' to remain near optimum values until irradiance reached

  7. An algorithm for detecting eukaryotic sequences in metagenomic ...

    Indian Academy of Sciences (India)

    species but also from accidental contamination from the genome of eukaryotic host cells. The latter scenario generally occurs in the case of host-associated metagenomes, e.g. microbes living in human gut. In such cases, one needs to identify and remove contaminating host DNA sequences, since the latter sequences will ...

  8. Investigating and comparing uranium and gamma radiation induced effects on photosynthetic parameters for Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Vanhoudt, Nathalie; Horemans, Nele; Saenen, Eline; Biermans, Geert; Nauts, Robin; Wannijn, Jean; Van Hees, May; Vandenhove, Hildegarde [Belgian Nuclear Research Centre (SCK.CEN), Biosphere Impact Studies, 2400, Mol (Belgium)

    2014-07-01

    As the environment is inevitably exposed to radionuclides and ionizing radiation from natural and anthropogenic sources, it is important to study the effects induced by these stressors on plants. In addition, it is already known that photosynthesis can be affected under various metal exposure situations. The objective of this research is to compare uranium induced effects with gamma radiation induced effects on photosynthetic parameters in Arabidopsis thaliana. First, 18-day-old seedlings were exposed to 50 μM uranium during 4 days. Second, 14-day-old seedlings were exposed to gamma radiation for 7 days to a total dose of 6.7 Gy. By using chlorophyll fluorescence measurements, the photosynthetic performance was assessed. Based on the data obtained during the measurement of induction curves, parameters providing information on the photosynthetic efficiency and heat dissipation can be calculated. For uranium exposed leaves, it was observed that the potential photosynthetic efficiency (measured as Fv/Fm) remained maximal while the effective efficiency of photosystem II (φPSII), which is a measure for the proportion of light absorbed by PSII used in photochemistry, even increased. The increase of φPSII could be related to a decrease in non-photochemical quenching (NPQ), which reflects the protective mechanism against excess light intensity by converting energy into heat, but no alterations in non-regulated energy dissipation (NO). A high NO value would indicate the inefficiency of photochemistry and heat conversion and the plant's inability to regulate the radiation energy. In plants exposed to uranium, NO levels were similar to the control. Under gamma irradiation, the capacity of PSII remained intact and plants started optimizing their photosynthetic process by increasing φPSII and decreasing NPQ. When comparing the NPQ kinetic responses of gamma radiation and uranium exposure, a remarkable difference can be highlighted. While gamma radiation exposure

  9. Antibiotic resistance in community-acquired urinary tract infections

    African Journals Online (AJOL)

    of community-acquired UTI organisms to amoxycillin and co-trimoxazole was .... Treatment of uncomplicated urinary tract infection in non-pregnant women. Postgrad ... Single-dose antibiotic treatment for symptomatic uri- nary tract infections in ...

  10. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi [corrected]. indicated by metagenomics.

    Science.gov (United States)

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-27

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Neamphius huxleyi [corrected] . at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Neamphius huxleyi [corrected]. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Neamphius huxleyi [corrected].

  11. Distribution of 14C-photosynthetate in the shoot of Vitis vinifera L. cv Cabernet Sauvignon: Pt. II

    International Nuclear Information System (INIS)

    Hunter, J.J.; Visser, J.H.

    1988-01-01

    The effect of partial defoliation of Vitis vinifera L. cv Cabernet Sauvignon on the distribution of photosynthetates, originating in leaves in different positions on the shoot at berry set, pea size, veraison and ripeness stages, was investigated. Partial defoliation (33% and 66%) resulted in a higher apparent photosynthetic effectivity for all the remaining leaves on the shoot. The pattern of distribution of photosynthetates would seem to stay the same between the defoliation treatments. The control vines were found to carry excess foliage. Optimal photosynthetic activity of all the leaves on the vine was therefore not reached

  12. Photosynthetic Responses of Seedlings of two Indigenous Plants ...

    African Journals Online (AJOL)

    Bheema

    ABSTRACT. The potential role of exotic tree plantations in facilitating successional processes on degraded areas was evaluated in southern Ethiopia, Munessa-Shashemene forest, by examining photosynthetic responses of Bersamaabyssinica Fres. and Croton macrostachyusDel. seedlings naturally grown inside ...

  13. Lateral transfer of tetrahymanol-synthesizing genes has allowed multiple diverse eukaryote lineages to independently adapt to environments without oxygen

    Directory of Open Access Journals (Sweden)

    Takishita Kiyotaka

    2012-02-01

    Full Text Available Abstract Sterols are key components of eukaryotic cellular membranes that are synthesized by multi-enzyme pathways that require molecular oxygen. Because prokaryotes fundamentally lack sterols, it is unclear how the vast diversity of bacterivorous eukaryotes that inhabit hypoxic environments obtain, or synthesize, sterols. Here we show that tetrahymanol, a triterpenoid that does not require molecular oxygen for its biosynthesis, likely functions as a surrogate of sterol in eukaryotes inhabiting oxygen-poor environments. Genes encoding the tetrahymanol synthesizing enzyme squalene-tetrahymanol cyclase were found from several phylogenetically diverged eukaryotes that live in oxygen-poor environments and appear to have been laterally transferred among such eukaryotes. Reviewers This article was reviewed by Eric Bapteste and Eugene Koonin.

  14. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae.

    NARCIS (Netherlands)

    Wijffels, R.H.; Kruse, O.; Hellingwerf, K.J.

    2013-01-01

    Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments. Cyanobacteria are promising host organisms

  15. Study the effect of insecticide dimethoate on photosynthetic pigments and photosynthetic activity of pigeon pea: Laser-induced chlorophyll fluorescence spectroscopy.

    Science.gov (United States)

    Pandey, Jitendra Kumar; Dubey, Gunjan; Gopal, R

    2015-10-01

    Pigeon pea is one of the most important legume crops in India and dimethoate is a widely used insecticide in various crop plants. We studied the effect of dimethoate on growth and photosynthetic activity of pigeon pea plants over a short and long term exposure. Plant growth parameters, photosynthetic pigment content and chlorophyll fluorescence response of pigeon pea (Cajanus cajan L.) plants treated with various concentrations of the insecticide dimethoate (10, 20, 40 and 80 ppm) have been compared for 30 days at regular intervals of 10 days each. Laser induced chlorophyll fluorescence spectra and fluorescence-induction kinetics (FIK) curve of dimethoate treated pigeon pea plants were recorded after 10, 20 and 30 days of treatment. Fluorescence intensity ratio at the two fluorescence maxima (F685/F730) was calculated by evaluating curve-fitted parameters. The variable chlorophyll fluorescence decrease ratio (Rfd) was determined from the FIK curves. Our study revealed that after 10 days of treatment, 10 ppm of dimethoate showed stimulatory response whereas 20, 40 and 80 ppm of dimethoate showed inhibitory response for growth and photosynthetic activity of pigeon pea plants, but after 20 and 30 days of treatment all the tested concentrations of dimethoate became inhibitory. This study clearly shows that dimethoate is highly toxic to the pigeon pea plant, even at very low concentration (10 ppm), if used for a prolonged duration. Our study may thus be helpful in determining the optimal dose of dimethoate in agricultural practices. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae

    NARCIS (Netherlands)

    Wijffels, R.H.; Kruse, O.; Hellingwerf, K.J.

    2013-01-01

    Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments.Cyanobacteria are promising host organisms for

  17. Counting viruses and bacteria in photosynthetic microbial mats

    NARCIS (Netherlands)

    Carreira, C; Staal, M.; Middelboe, M.; Brussaard, C.P.D.

    2015-01-01

    Viral abundances in benthic environments are the highest found in aquatic systems. Photosynthetic microbial mats represent benthic environments with high microbial activity and possibly high viral densities, yet viral abundances have not been examined in such systems. Existing extraction procedures

  18. Toward understanding as photosynthetic biosignatures: light harvesting and energy transfer calculation

    Science.gov (United States)

    Komatsu, Y.; Umemura, M.; Shoji, M.; Shiraishi, K.; Kayanuma, M.; Yabana, K.

    2014-03-01

    Among several proposed biosignatures, red edge is a direct evidence of photosynthetic life if it is detected (Kiang et al 2007). Red edge is a sharp change in reflectance spectra of vegetation in NIR region (about 700-750 nm). The sign of red edge is observed by Earthshine or remote sensing (Wolstencroft & Raven 2002, Woolf et al 2002). But, why around 700-750 nm? The photosynthetic organisms on Earth have evolved to optimize the sunlight condition. However, if we consider about photosynthetic organism on extrasolar planets, they should have developed to utilize the spectra of its principal star. Thus, it is not strange even if it shows different vegetation spectra. In this study, we focused on the light absorption mechanism of photosynthetic organisms on Earth and investigated the fundamental properties of the light harvesting mechanisms, which is the first stage for the light absorption. Light harvesting complexes contain photosynthetic pigments like chlorophylls. Effective light absorption and the energy transfer are accomplished by the electronic excitations of collective photosynthetic pigments. In order to investigate this mechanism, we constructed an energy transfer model by using a dipole-dipole approximation for the interactions between electronic excitations. Transition moments and transition energies of each pigment are calculated at the time-dependent density functional theory (TDDFT) level (Marques & Gross 2004). Quantum dynamics simulation for the excitation energy transfer was calculated by the Liouvelle's equation. We adopted the model to purple bacteria, which has been studied experimentally and known to absorb lower energy. It is meaningful to focus on the mechanism of this bacteria, since in the future mission, M planets will become a important target. We calculated the oscillator strengths in one light harvesting complex and confirmed the validity by comparing to the experimental data. This complex is made of an inner and an outer ring. The

  19. Leucine-Rich repeat receptor kinases are sporadically distributed in eukaryotic genomes

    Directory of Open Access Journals (Sweden)

    Diévart Anne

    2011-12-01

    Full Text Available Abstract Background Plant leucine-rich repeat receptor-like kinases (LRR-RLKs are receptor kinases that contain LRRs in their extracellular domain. In the last 15 years, many research groups have demonstrated major roles played by LRR-RLKs in plants during almost all developmental processes throughout the life of the plant and in defense/resistance against a large range of pathogens. Recently, a breakthrough has been made in this field that challenges the dogma of the specificity of plant LRR-RLKs. Results We analyzed ~1000 complete genomes and show that LRR-RK genes have now been identified in 8 non-plant genomes. We performed an exhaustive phylogenetic analysis of all of these receptors, revealing that all of the LRR-containing receptor subfamilies form lineage-specific clades. Our results suggest that the association of LRRs with RKs appeared independently at least four times in eukaryotic evolutionary history. Moreover, the molecular evolutionary history of the LRR-RKs found in oomycetes is reminiscent of the pattern observed in plants: expansion with amplification/deletion and evolution of the domain organization leading to the functional diversification of members of the gene family. Finally, the expression data suggest that oomycete LRR-RKs may play a role in several stages of the oomycete life cycle. Conclusions In view of the key roles that LRR-RLKs play throughout the entire lifetime of plants and plant-environment interactions, the emergence and expansion of this type of receptor in several phyla along the evolution of eukaryotes, and particularly in oomycete genomes, questions their intrinsic functions in mimicry and/or in the coevolution of receptors between hosts and pathogens.

  20. Photosynthetic efficiency of Pedunculate oak seedlings under simulated water stress

    Directory of Open Access Journals (Sweden)

    Popović Zorica

    2010-01-01

    Full Text Available Photosynthetic performance of seedlings of Quercus robur exposed to short-term water stress in the laboratory conditions was assessed through the method of induced fluorometry. The substrate for seedlings was clayey loam, with the dominant texture fraction made of silt, followed by clay and fine sand, with total porosity 68.2%. Seedlings were separated in two groups: control (C (soil water regime in pots was maintained at the level of field water capacity and treated (water-stressed, WS (soil water regime was maintained in the range of wilting point and lentocapillary capacity. The photosynthetic efficiency was 0.642±0.25 and 0.522±0.024 (WS and C, respectively, which was mostly due to transplantation disturbances and sporadic leaf chlorosis. During the experiment Fv/Fm decreased in both groups (0.551±0.0100 and 0.427±0.018 in C and WS, respectively. Our results showed significant differences between stressed and control group, in regard to both observed parameters (Fv/Fm and T½. Photosynthetic efficiency of pedunculate oak seedlings was significantly affected by short-term water stress, but to a lesser extent than by sufficient watering.

  1. The reduced kinome of Ostreococcus tauri: core eukaryotic signalling components in a tractable model species.

    Science.gov (United States)

    Hindle, Matthew M; Martin, Sarah F; Noordally, Zeenat B; van Ooijen, Gerben; Barrios-Llerena, Martin E; Simpson, T Ian; Le Bihan, Thierry; Millar, Andrew J

    2014-08-02

    The current knowledge of eukaryote signalling originates from phenotypically diverse organisms. There is a pressing need to identify conserved signalling components among eukaryotes, which will lead to the transfer of knowledge across kingdoms. Two useful properties of a eukaryote model for signalling are (1) reduced signalling complexity, and (2) conservation of signalling components. The alga Ostreococcus tauri is described as the smallest free-living eukaryote. With less than 8,000 genes, it represents a highly constrained genomic palette. Our survey revealed 133 protein kinases and 34 protein phosphatases (1.7% and 0.4% of the proteome). We conducted phosphoproteomic experiments and constructed domain structures and phylogenies for the catalytic protein-kinases. For each of the major kinases families we review the completeness and divergence of O. tauri representatives in comparison to the well-studied kinomes of the laboratory models Arabidopsis thaliana and Saccharomyces cerevisiae, and of Homo sapiens. Many kinase clades in O. tauri were reduced to a single member, in preference to the loss of family diversity, whereas TKL and ABC1 clades were expanded. We also identified kinases that have been lost in A. thaliana but retained in O. tauri. For three, contrasting eukaryotic pathways - TOR, MAPK, and the circadian clock - we established the subset of conserved components and demonstrate conserved sites of substrate phosphorylation and kinase motifs. We conclude that O. tauri satisfies our two central requirements. Several of its kinases are more closely related to H. sapiens orthologs than S. cerevisiae is to H. sapiens. The greatly reduced kinome of O. tauri is therefore a suitable model for signalling in free-living eukaryotes.

  2. Construction of hybrid photosynthetic units using peripheral and core antennae from two different species of photosynthetic bacteria: detection of the energy transfer from bacteriochlorophyll a in LH2 to bacteriochlorophyll b in LH1.

    Science.gov (United States)

    Fujii, Ritsuko; Shimonaka, Shozo; Uchida, Naoko; Gardiner, Alastair T; Cogdell, Richard J; Sugisaki, Mitsuru; Hashimoto, Hideki

    2008-01-01

    Typical purple bacterial photosynthetic units consist of supra-molecular arrays of peripheral (LH2) and core (LH1-RC) antenna complexes. Recent atomic force microscopy pictures of photosynthetic units in intact membranes have revealed that the architecture of these units is variable (Scheuring et al. (2005) Biochim Bhiophys Acta 1712:109-127). In this study, we describe methods for the construction of heterologous photosynthetic units in lipid-bilayers from mixtures of purified LH2 (from Rhodopseudomonas acidophila) and LH1-RC (from Rhodopseudomonas viridis) core complexes. The architecture of these reconstituted photosynthetic units can be varied by controlling ratio of added LH2 to core complexes. The arrangement of the complexes was visualized by electron-microscopy in combination with Fourier analysis. The regular trigonal array of the core complexes seen in the native photosynthetic membrane could be regenerated in the reconstituted membranes by temperature cycling. In the presence of added LH2 complexes, this trigonal symmetry was replaced with orthorhombic symmetry. The small lattice lengths for the latter suggest that the constituent unit of the orthorhombic lattice is the LH2. Fluorescence and fluorescence-excitation spectroscopy was applied to the set of the reconstituted membranes prepared with various proportions of LH2 to core complexes. Remarkably, even though the LH2 complexes contain bacteriochlorophyll a, and the core complexes contain bacteriochlorophyll b, it was possible to demonstrate energy transfer from LH2 to the core complexes. These experiments provide a first step along the path toward investigating how changing the architecture of purple bacterial photosynthetic units affects the overall efficiency of light-harvesting.

  3. Relationship between photosynthetic pigments and chlorophyll fluorescence in soybean under varying phosphorus nutrition at ambient and elevated CO2

    Science.gov (United States)

    Photosynthetic pigments such as chlorophyll (Chl) a, Chl b and carotenoids concentration, and chlorophyll fluorescence (CF) have widely been used as indicators of stress and photosynthetic performance in plants. Although photosynthetic pigments and CF are partly interdependent due to absorption and ...

  4. Difference in leaf water use efficiency/photosynthetic nitrogen use efficiency of Bt-cotton and its conventional peer.

    Science.gov (United States)

    Guo, Ruqing; Sun, Shucun; Liu, Biao

    2016-09-15

    This study is to test the effects of Bt gene introduction on the foliar water/nitrogen use efficiency in cotton. We measured leaf stomatal conductance, photosynthetic rate, and transpiration rate under light saturation condition at different stages of a conventional cultivar (zhongmian no. 16) and its counterpart Bt cultivar (zhongmian no. 30) that were cultured on three levels of fertilization, based on which leaf instantaneous water use efficiency was derived. Leaf nitrogen concentration was measured to calculate leaf photosynthetic nitrogen use efficiency, and leaf δ(13)C was used to characterize long term water use efficiency. Bt cultivar was found to have lower stomatal conductance, net photosynthetic rates and transpiration rates, but higher instantaneous and long time water use efficiency. In addition, foliar nitrogen concentration was found to be higher but net photosynthetic rate was lower in the mature leaves of Bt cultivar, which led to lower photosynthetic nitrogen use efficiency. This might result from the significant decrease of photosynthetic rate due to the decrease of stomatal conductance. In conclusion, our findings show that the introduction of Bt gene should significantly increase foliar water use efficiency but decrease leaf nitrogen use efficiency in cotton under no selective pressure.

  5. Eukaryotic DNA Replication Fork.

    Science.gov (United States)

    Burgers, Peter M J; Kunkel, Thomas A

    2017-06-20

    This review focuses on the biogenesis and composition of the eukaryotic DNA replication fork, with an emphasis on the enzymes that synthesize DNA and repair discontinuities on the lagging strand of the replication fork. Physical and genetic methodologies aimed at understanding these processes are discussed. The preponderance of evidence supports a model in which DNA polymerase ε (Pol ε) carries out the bulk of leading strand DNA synthesis at an undisturbed replication fork. DNA polymerases α and δ carry out the initiation of Okazaki fragment synthesis and its elongation and maturation, respectively. This review also discusses alternative proposals, including cellular processes during which alternative forks may be utilized, and new biochemical studies with purified proteins that are aimed at reconstituting leading and lagging strand DNA synthesis separately and as an integrated replication fork.

  6. Blocking Modification of Eukaryotic Initiation 5A2 Antagonizes Cervical Carcinoma via Inhibition of RhoA/ROCK Signal Transduction Pathway.

    Science.gov (United States)

    Liu, Xiaojun; Chen, Dong; Liu, Jiamei; Chu, Zhangtao; Liu, Dongli

    2017-10-01

    Cervical carcinoma is one of the leading causes of cancer-related death for female worldwide. Eukaryotic initiation factor 5A2 belongs to the eukaryotic initiation factor 5A family and is proposed to be a key factor involved in the development of diverse cancers. In the current study, a series of in vivo and in vitro investigations were performed to characterize the role of eukaryotic initiation factor 5A2 in oncogenesis and metastasis of cervical carcinoma. The expression status of eukaryotic initiation factor 5A2 in 15 cervical carcinoma patients was quantified. Then, the effect of eukaryotic initiation factor 5A2 knockdown on in vivo tumorigenicity ability, cell proliferation, cell cycle distribution, and cell mobility of HeLa cells was measured. To uncover the mechanism driving the function of eukaryotic initiation factor 5A2 in cervical carcinoma, expression of members within RhoA/ROCK pathway was detected, and the results were further verified with an RhoA overexpression modification. The level of eukaryotic initiation factor 5A2 in cervical carcinoma samples was significantly higher than that in paired paratumor tissues ( P cycle arrest ( P ROCK I, and ROCK II were downregulated. The above-mentioned changes in eukaryotic initiation factor 5A2 knockdown cells were alleviated by the overexpression of RhoA. The major findings outlined in the current study confirmed the potential of eukaryotic initiation factor 5A2 as a promising prognosis predictor and therapeutic target for cervical carcinoma treatment. Also, our data inferred that eukaryotic initiation factor 5A2 might function in carcinogenesis of cervical carcinoma through an RhoA/ROCK-dependent manner.

  7. Revisiting the Relationship between Transposable Elements and the Eukaryotic Stress Response.

    Science.gov (United States)

    Horváth, Vivien; Merenciano, Miriam; González, Josefa

    2017-11-01

    A relationship between transposable elements (TEs) and the eukaryotic stress response was suggested in the first publications describing TEs. Since then, it has often been assumed that TEs are activated by stress, and that this activation is often beneficial for the organism. In recent years, the availability of new high-throughput experimental techniques has allowed further interrogation of the relationship between TEs and stress. By reviewing the recent literature, we conclude that although there is evidence for a beneficial effect of TE activation under stress conditions, the relationship between TEs and the eukaryotic stress response is quite complex. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Geminin: a major DNA replication safeguard in higher eukaryotes

    DEFF Research Database (Denmark)

    Melixetian, Marina; Helin, Kristian

    2004-01-01

    Eukaryotes have evolved multiple mechanisms to restrict DNA replication to once per cell cycle. These mechanisms prevent relicensing of origins of replication after initiation of DNA replication in S phase until the end of mitosis. Most of our knowledge of mechanisms controlling prereplication...

  9. Deriving C4 photosynthetic parameters from combined gas exchange and chlorophyll fluorescence using an Excel tool: theory and practice.

    Science.gov (United States)

    Bellasio, Chandra; Beerling, David J; Griffiths, Howard

    2016-06-01

    The higher photosynthetic potential of C4 plants has led to extensive research over the past 50 years, including C4 -dominated natural biomes, crops such as maize, or for evaluating the transfer of C4 traits into C3 lineages. Photosynthetic gas exchange can be measured in air or in a 2% Oxygen mixture using readily available commercial gas exchange and modulated PSII fluorescence systems. Interpretation of these data, however, requires an understanding (or the development) of various modelling approaches, which limit the use by non-specialists. In this paper we present an accessible summary of the theory behind the analysis and derivation of C4 photosynthetic parameters, and provide a freely available Excel Fitting Tool (EFT), making rigorous C4 data analysis accessible to a broader audience. Outputs include those defining C4 photochemical and biochemical efficiency, the rate of photorespiration, bundle sheath conductance to CO2 diffusion and the in vivo biochemical constants for PEP carboxylase. The EFT compares several methodological variants proposed by different investigators, allowing users to choose the level of complexity required to interpret data. We provide a complete analysis of gas exchange data on maize (as a model C4 organism and key global crop) to illustrate the approaches, their analysis and interpretation. © 2015 John Wiley & Sons Ltd. © 2016 John Wiley & Sons Ltd.

  10. The adaptive response of lichens to mercury exposure involves changes in the photosynthetic machinery

    International Nuclear Information System (INIS)

    Nicolardi, Valentina; Cai, Giampiero; Parrotta, Luigi; Puglia, Michele; Bianchi, Laura; Bini, Luca; Gaggi, Carlo

    2012-01-01

    Lichens are an excellent model to study the bioaccumulation of heavy metals but limited information is available on the molecular mechanisms occurring during bioaccumulation. We investigated the changes of the lichen proteome during exposure to constant concentrations of mercury. We found that most of changes involves proteins of the photosynthetic pathway, such as the chloroplastic photosystem I reaction center subunit II, the oxygen-evolving protein and the chloroplastic ATP synthase β-subunit. This suggests that photosynthesis is a target of the toxic effects of mercury. These findings are also supported by changes in the content of photosynthetic pigments (chlorophyll a and b, and β-carotene). Alterations to the photosynthetic machinery also reflect on the structure of thylakoid membranes of algal cells. Response of lichens to mercury also involves stress-related proteins (such as Hsp70) but not cytoskeletal proteins. Results suggest that lichens adapt to mercury exposure by changing the metabolic production of energy. - Highlights: ► Lichens exposed to Hg° vapors accumulate this metal irreversibly. ► Hg° interferes with physiological processes of the epiphytic lichen Evernia prunastri. ► Hg° promotes changes in the concentration of photosynthetic pigments. ► Hg° treatment causes changes in the ultrastructure of the photobiont plastids. ► Hg° induces changes in the protein machinery involved in the photosynthesis pathway. - Mercury affects the photosynthetic protein machinery of lichens.

  11. Influence of thermal light correlations on photosynthetic structures

    Science.gov (United States)

    de Mendoza, Adriana; Manrique, Pedro; Caycedo-Soler, Felipe; Johnson, Neil F.; Rodríguez, Ferney J.; Quiroga, Luis

    2014-03-01

    The thermal light from the sun is characterized by both classical and quantum mechanical correlations. These correlations have left a fingerprint on the natural harvesting structures developed through five billion years of evolutionary pressure, specially in photosynthetic organisms. In this work, based upon previous extensive studies of spatio-temporal correlations of light fields, we hypothesize that structures involving photosensitive pigments like those present in purple bacteria vesicles emerge as an evolutionary response to the different properties of incident light. By using burstiness and memory as measures that quantify higher moments of the photon arrival statistics, we generate photon-time traces. They are used to simulate absorption on detectors spatially extended over regions comparable to these light fields coherence length. Finally, we provide some insights into the connection between these photo-statistical features with the photosynthetic membrane architecture and the lights' spatial correlation. Facultad de Ciencias Uniandes.

  12. Changes in photosynthetic performance and antioxidative strategies during maturation of Norway maple (Acer platanoides L.) leaves.

    Science.gov (United States)

    Lepeduš, Hrvoje; Gaća, Vlatka; Viljevac, Marija; Kovač, Spomenka; Fulgosi, Hrvoje; Simić, Domagoj; Jurković, Vlatka; Cesar, Vera

    2011-04-01

    Different structural and functional changes take place during leaf development. Since some of them are highly connected to oxidative metabolism, regulation of reactive oxygen species (ROS) abundance is required. Most of the reactive oxygen species ROS in plant cells are produced in chloroplasts as a result of highly energetic reactions of photosynthesis. The aim of our study was to examine the changes in concentration of oxidative stress parameters (TBARS - thiobarbituric acid-reacting substances and protein carbonyls) as well as antioxidative strategies during development of maple (Acer platanoides L.) leaves in the light of their enhanced photosynthetic performance. We reveal that biogenesis of the photosynthetic apparatus during maple leaf maturation corresponded with oxidative damage of lipids, but not proteins. In addition, antioxidative responses in young leaves differed from that in older leaves. Young leaves had high values of non-photochemical quenching (NPQ) and catalase (CAT, EC 1.11.1.6) activity which declined during the maturation process. Developing leaves were characterized by an increase in TBARS level, the content of non-enzymatic antioxidants as well as ascorbate peroxidase activity (APX, EC 1.11.1.11), while the content of protein carbonyls decreased with leaf maturation. Fully developed leaves had the highest lipid peroxidation level accompanied by a maximum in ascorbic acid content and superoxide dismutase activity (SOD, EC1.15.1.1). These observations imply completely different antioxidative strategies during leaf maturation enabling them to perform their basic function. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  13. Fiber-optic fluorometer for microscale mapping of photosynthetic pigments in microbial communities

    DEFF Research Database (Denmark)

    Thar, Roland Matthias; Kühl, Michael; Holst, Gerhard

    2001-01-01

    Microscale fluorescence measurements were performed in photosynthetic biofilms at a spatial resolution of 100 to 200 µm with a new fiber-optic fluorometer which allowed four different excitation and emission wavelengths and was configured for measuring phycobiliproteins, chlorophylls, and bacteri......Microscale fluorescence measurements were performed in photosynthetic biofilms at a spatial resolution of 100 to 200 µm with a new fiber-optic fluorometer which allowed four different excitation and emission wavelengths and was configured for measuring phycobiliproteins, chlorophylls...

  14. Challenges in Whole-Genome Annotation of Pyrosequenced Eukaryotic Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Alan; Grigoriev, Igor

    2009-04-17

    Pyrosequencing technologies such as 454/Roche and Solexa/Illumina vastly lower the cost of nucleotide sequencing compared to the traditional Sanger method, and thus promise to greatly expand the number of sequenced eukaryotic genomes. However, the new technologies also bring new challenges such as shorter reads and new kinds and higher rates of sequencing errors, which complicate genome assembly and gene prediction. At JGI we are deploying 454 technology for the sequencing and assembly of ever-larger eukaryotic genomes. Here we describe our first whole-genome annotation of a purely 454-sequenced fungal genome that is larger than a yeast (>30 Mbp). The pezizomycotine (filamentous ascomycote) Aspergillus carbonarius belongs to the Aspergillus section Nigri species complex, members of which are significant as platforms for bioenergy and bioindustrial technology, as members of soil microbial communities and players in the global carbon cycle, and as agricultural toxigens. Application of a modified version of the standard JGI Annotation Pipeline has so far predicted ~;;10k genes. ~;;12percent of these preliminary annotations suffer a potential frameshift error, which is somewhat higher than the ~;;9percent rate in the Sanger-sequenced and conventionally assembled and annotated genome of fellow Aspergillus section Nigri member A. niger. Also,>90percent of A. niger genes have potential homologs in the A. carbonarius preliminary annotation. Weconclude, and with further annotation and comparative analysis expect to confirm, that 454 sequencing strategies provide a promising substrate for annotation of modestly sized eukaryotic genomes. We will also present results of annotation of a number of other pyrosequenced fungal genomes of bioenergy interest.

  15. Photoelectrochemical cells based on photosynthetic systems: a review

    Directory of Open Access Journals (Sweden)

    Roman A. Voloshin

    2015-06-01

    Full Text Available Photosynthesis is a process which converts light energy into energy contained in the chemical bonds of organic compounds by photosynthetic pigments such as chlorophyll (Chl a, b, c, d, f or bacteriochlorophyll. It occurs in phototrophic organisms, which include higher plants and many types of photosynthetic bacteria, including cyanobacteria. In the case of the oxygenic photosynthesis, water is a donor of both electrons and protons, and solar radiation serves as inexhaustible source of energy. Efficiency of energy conversion in the primary processes of photosynthesis is close to 100%. Therefore, for many years photosynthesis has attracted the attention of researchers and designers looking for alternative energy systems as one of the most efficient and eco-friendly pathways of energy conversion. The latest advances in the design of optimal solar cells include the creation of converters based on thylakoid membranes, photosystems, and whole cells of cyanobacteria immobilized on nanostructured electrode (gold nanoparticles, carbon nanotubes, nanoparticles of ZnO and TiO2. The mode of solar energy conversion in photosynthesis has a great potential as a source of renewable energy while it is sustainable and environmentally safety as well. Application of pigments such as Chl f and Chl d (unlike Chl a and Chl b, by absorbing the far red and near infrared region of the spectrum (in the range 700-750 nm, will allow to increase the efficiency of such light transforming systems. This review article presents the last achievements in the field of energy photoconverters based on photosynthetic systems.

  16. Protein translocons in photosynthetic organelles of Paulinella chromatophora

    Directory of Open Access Journals (Sweden)

    Przemysław Gagat

    2014-12-01

    Full Text Available The rhizarian amoeba Paulinella chromatophora harbors two photosynthetic cyanobacterial endosymbionts (chromatophores, acquired independently of primary plastids of glaucophytes, red algae and green plants. These endosymbionts have lost many essential genes, and transferred substantial number of genes to the host nuclear genome via endosymbiotic gene transfer (EGT, including those involved in photosynthesis. This indicates that, similar to primary plastids, Paulinella endosymbionts must have evolved a transport system to import their EGT-derived proteins. This system involves vesicular trafficking to the outer chromatophore membrane and presumably a simplified Tic-like complex at the inner chromatophore membrane. Since both sequenced Paulinella strains have been shown to undergo differential plastid gene losses, they do not have to possess the same set of Toc and Tic homologs. We searched the genome of Paulinella FK01 strain for potential Toc and Tic homologs, and compared the results with the data obtained for Paulinella CCAC 0185 strain, and 72 cyanobacteria, eight Archaeplastida as well as some other bacteria. Our studies revealed that chromatophore genomes from both Paulinella strains encode the same set of translocons that could potentially create a simplified but fully-functional Tic-like complex at the inner chromatophore membranes. The common maintenance of the same set of translocon proteins in two Paulinella strains suggests a similar import mechanism and/or supports the proposed model of protein import. Moreover, we have discovered a new putative Tic component, Tic62, a redox sensor protein not identified in previous comparative studies of Paulinella translocons.

  17. Critical analysis of eukaryotic phylogeny: a case study based on the HSP70 family.

    Science.gov (United States)

    Germot, A; Philippe, H

    1999-01-01

    Trichomonads, together with diplomonads and microsporidia, emerge at the base of the eukaryotic tree, on the basis of the small subunit rRNA phylogeny. However, phylogenies based on protein sequences such as tubulin are markedly different with these protists emerging much later. We have investigated 70 kDa heat-shock protein (HSP70), which could be a reliable phylogenetic marker. In eukaryotes, HSP70s are found in cytosol, endoplasmic reticulum, and organelles (mitochondria and chloroplasts). In Trichomonas vaginalis we identified nine different HSP70-encoding genes and sequenced three nearly complete cDNAs corresponding to cytosolic, endoplasmic reticulum, and mitochondrial-type HSP70. Phylogenies of eukaryotes were reconstructed using the classical methods while varying the number of species and characters considered. Almost all the undoubtedly monophyletic groups, defined by ultrastructural characters, were recovered. However, due to the long branch attraction phenomenon, the evolutionary rates were the main factor determining the position of species, even with the use of a close outgroup, which is an important advantage of HSP70 with respect to many other markers. Numerous variable sites are peculiar to Trichomonas and probably generated the artefactual placement of this species at the base of the eukaryotes or as the sister group of fast-evolving species. The inter-phyla relationships were not well supported and were sensitive to the reconstruction method, the number of species; and the quantity of information used. This lack of resolution could be explained by the very rapid diversification of eukaryotes, likely after the mitochondrial endosymbiosis.

  18. Extreme Diversity of Diplonemid Eukaryotes in the Ocean

    Czech Academy of Sciences Publication Activity Database

    Flegontova, Olga; Flegontov, Pavel; Malviya, S.; Audic, S.; Wincker, P.; de Vargas, C.; Bowler, C.; Lukeš, Julius; Horák, Aleš

    2016-01-01

    Roč. 26, č. 22 (2016), s. 3060-3065 ISSN 0960-9822 R&D Projects: GA ČR GPP506/12/P931; GA ČR(CZ) GA14-23986S Institutional support: RVO:60077344 Keywords : virus-sized particles * microbial eukaryotes * sea-floor * phytoplankton * communities * euglenozoa * dispersal * ecosystem Subject RIV: EG - Zoology Impact factor: 8.851, year: 2016

  19. RNA function and phosphorus use by photosynthetic organisms

    Directory of Open Access Journals (Sweden)

    John Albert Raven

    2013-12-01

    Full Text Available Phosphorus (P in RNA accounts for half or more of the total non-storage P in oxygenic photolithotrophs grown in either P-replete or P-limiting growth conditions. Since many natural environments are P-limited for photosynthetic primary productivity, and peak phosphorus fertilizer production is forecast for the next few decades, the paper analyses what economies in P allocation to RNA could, in principle, increase P use efficiency of growth (rate of dry matter production per unit organism P. The possibilities of decreasing P allocation to RNA without decreasing growth rate include a more widespread down-regulation of RNA production in P-limited organisms (as in the growth rate hypothesis, optimal allocation of P to RNA spatially among cell compartments and organs, and temporally depending on the stage of growth, and, for exponentially growing organisms with a constant fraction of P in RNA, a constant rate of protein synthesis through the diel cycle. Acting on these suggestions would be technically demanding, and could have unintended consequences for other aspect of metabolism.

  20. Strong eukaryotic IRESs have weak secondary structure.

    Directory of Open Access Journals (Sweden)

    Xuhua Xia

    Full Text Available BACKGROUND: The objective of this work was to investigate the hypothesis that eukaryotic Internal Ribosome Entry Sites (IRES lack secondary structure and to examine the generality of the hypothesis. METHODOLOGY/PRINCIPAL FINDINGS: IRESs of the yeast and the fruit fly are located in the 5'UTR immediately upstream of the initiation codon. The minimum folding energy (MFE of 60 nt RNA segments immediately upstream of the initiation codons was calculated as a proxy of secondary structure stability. MFE of the reverse complements of these 60 nt segments was also calculated. The relationship between MFE and empirically determined IRES activity was investigated to test the hypothesis that strong IRES activity is associated with weak secondary structure. We show that IRES activity in the yeast and the fruit fly correlates strongly with the structural stability, with highest IRES activity found in RNA segments that exhibit the weakest secondary structure. CONCLUSIONS: We found that a subset of eukaryotic IRESs exhibits very low secondary structure in the 5'-UTR sequences immediately upstream of the initiation codon. The consistency in results between the yeast and the fruit fly suggests a possible shared mechanism of cap-independent translation initiation that relies on an unstructured RNA segment.

  1. RNA Export through the NPC in Eukaryotes.

    Science.gov (United States)

    Okamura, Masumi; Inose, Haruko; Masuda, Seiji

    2015-03-20

    In eukaryotic cells, RNAs are transcribed in the nucleus and exported to the cytoplasm through the nuclear pore complex. The RNA molecules that are exported from the nucleus into the cytoplasm include messenger RNAs (mRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs), micro RNAs (miRNAs), and viral mRNAs. Each RNA is transported by a specific nuclear export receptor. It is believed that most of the mRNAs are exported by Nxf1 (Mex67 in yeast), whereas rRNAs, snRNAs, and a certain subset of mRNAs are exported in a Crm1/Xpo1-dependent manner. tRNAs and miRNAs are exported by Xpot and Xpo5. However, multiple export receptors are involved in the export of some RNAs, such as 60S ribosomal subunit. In addition to these export receptors, some adapter proteins are required to export RNAs. The RNA export system of eukaryotic cells is also used by several types of RNA virus that depend on the machineries of the host cell in the nucleus for replication of their genome, therefore this review describes the RNA export system of two representative viruses. We also discuss the NPC anchoring-dependent mRNA export factors that directly recruit specific genes to the NPC.

  2. Construction of rat beta defensin-2 eukaryotic expression vector and expression in the transfected rat corneal epithelial cell

    Directory of Open Access Journals (Sweden)

    Jing Dan

    2017-03-01

    Full Text Available AIM: To construct a recombinant eukaryotic expression vector of rat beta defensin-2(rBD-2, transfect it into the rat corneal epithelial cells with lipofection, determine the expression of target gene in the transfected cells, and discuss the potentiality of recombinant plasmid expressed in corneal epithelial cells, hoping to provide an experimental foundation for further study on the antimicrobial activity of rBD-2 in vitro and in vivo and to assess the probability of defensins as a new application for infectious corneal diseases in the future. METHODS: The synthetic rBD-2 DNA fragment was inserted between the XhoI and BamHI restriction enzyme cutting sites of eukaryotic expression vector pIRES2-ZsGreen1 to construct the recombinant plasmid pIRES2-ZsGreen1-rBD-2, then transformed it into E.coli DH5α, positive clones were screened by kanamycin and identified with restriction endonucleases and sequencing analysis. Transfection into the rat corneal epithelial cells was performed by lipofection. Then the experiment was divided into three groups: rat corneal epithelial cell was transfected with the recombinant plasmid pIRES2- ZsGreen1-rBD-2, rat corneal epithelial cell was transfected with the empty plasmid pIRES2-ZsGreen1 and the non-transfected group. The inverted fluorescence microscope was used to observe the transfection process. At last, the level of rBD-2 mRNA expressed in the transfected cells and the control groups are compared by the real-time fluoresence relative quantitative PCR. RESULTS: The recombinant eukaryotic expression vector of pIRES2-ZsGreen1-rBD-2 was successfully constructed. The level of rBD-2 mRNA in transfected cells was significantly higher than that in control groups through the real-time fluorescence relative quantitative PCR. CONCLUSION: The recombinant eukaryotic expression vector pIRES2-ZsGreen1-rBD-2 could be transfected into rat corneal epithelial cells, and exogenous rBD-2 gene could be transcripted into mRNA in

  3. Next-Generation Sequencing Assessment of Eukaryotic Diversity in Oil Sands Tailings Ponds Sediments and Surface Water.

    Science.gov (United States)

    Aguilar, Maria; Richardson, Elisabeth; Tan, BoonFei; Walker, Giselle; Dunfield, Peter F; Bass, David; Nesbø, Camilla; Foght, Julia; Dacks, Joel B

    2016-11-01

    Tailings ponds in the Athabasca oil sands (Canada) contain fluid wastes, generated by the extraction of bitumen from oil sands ores. Although the autochthonous prokaryotic communities have been relatively well characterized, almost nothing is known about microbial eukaryotes living in the anoxic soft sediments of tailings ponds or in the thin oxic layer of water that covers them. We carried out the first next-generation sequencing study of microbial eukaryotic diversity in oil sands tailings ponds. In metagenomes prepared from tailings sediment and surface water, we detected very low numbers of sequences encoding eukaryotic small subunit ribosomal RNA representing seven major taxonomic groups of protists. We also produced and analysed three amplicon-based 18S rRNA libraries prepared from sediment samples. These revealed a more diverse set of taxa, 169 different OTUs encompassing up to eleven higher order groups of eukaryotes, according to detailed classification using homology searching and phylogenetic methods. The 10 most abundant OTUs accounted for > 90% of the total of reads, vs. large numbers of rare OTUs (< 1% abundance). Despite the anoxic and hydrocarbon-enriched nature of the environment, the tailings ponds harbour complex communities of microbial eukaryotes indicating that these organisms should be taken into account when studying the microbiology of the oil sands. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  4. Importance of structure and density of macroalgae communities (Fucus serratus) for photosynthetic production and light utilisation

    DEFF Research Database (Denmark)

    Binzer, Thomas; Sand-Jensen, Kaj

    2002-01-01

    at high light depended on community density. Therefore, while the determination of the production of individual algal thalli is useful for evaluating differences in acclimatisation and adaptation between species and stands, it is not useful for evaluating production rates for entire plants and communities......Determination of photosynthetic production in plant communities is essential for evaluating plant growth rates and carbon fluxes in ecosystems, but it cannot easily be derived from the photosynthetic response of individual leaves or thalli, which has been the focus of virtually all previous aquatic...... studies. To evaluate the regulation of aquatic community production, we measured the photosynthetic production of thallus parts and entire communities of Fucus serratus (L.) of different density and spatial structure exposed to varying photon flux density and dissolved CO2 concentration. Photosynthetic...

  5. Effects of silicon on photosynthetic characteristics of maize (Zea mays L.) on alluvial soil.

    Science.gov (United States)

    Xie, Zhiming; Song, Fengbin; Xu, Hongwen; Shao, Hongbo; Song, Ri

    2014-01-01

    The objectives of the study were to determine the effects of silicon on photosynthetic characteristics of maize on alluvial soil, including total chlorophyll contents, photosynthetic rate (P n), stomatal conductance (g s), transpiration rate (E), and intercellular CO2 concentration (C i ) using the method of field experiment, in which there were five levels (0, 45, 90, 150, and 225 kg · ha(-1)) of silicon supplying. The results showed that certain doses of silicon fertilizers can be used successfully in increasing the values of total chlorophyll contents, P n, and g s and decreasing the values of E and C i of maize leaves, which meant that photosynthetic efficiency of maize was significantly increased in different growth stages by proper doses of Si application on alluvial soil, and the optimal dose of Si application was 150 kg · ha(-1). Our results indicated that silicon in proper amounts can be beneficial in increasing the photosynthetic ability of maize, which would be helpful for the grain yield and growth of maize.

  6. Evolution of glutamate dehydrogenase genes: evidence for lateral gene transfer within and between prokaryotes and eukaryotes

    Directory of Open Access Journals (Sweden)

    Roger Andrew J

    2003-06-01

    Full Text Available Abstract Background Lateral gene transfer can introduce genes with novel functions into genomes or replace genes with functionally similar orthologs or paralogs. Here we present a study of the occurrence of the latter gene replacement phenomenon in the four gene families encoding different classes of glutamate dehydrogenase (GDH, to evaluate and compare the patterns and rates of lateral gene transfer (LGT in prokaryotes and eukaryotes. Results We extend the taxon sampling of gdh genes with nine new eukaryotic sequences and examine the phylogenetic distribution pattern of the various GDH classes in combination with maximum likelihood phylogenetic analyses. The distribution pattern analyses indicate that LGT has played a significant role in the evolution of the four gdh gene families. Indeed, a number of gene transfer events are identified by phylogenetic analyses, including numerous prokaryotic intra-domain transfers, some prokaryotic inter-domain transfers and several inter-domain transfers between prokaryotes and microbial eukaryotes (protists. Conclusion LGT has apparently affected eukaryotes and prokaryotes to a similar extent within the gdh gene families. In the absence of indications that the evolution of the gdh gene families is radically different from other families, these results suggest that gene transfer might be an important evolutionary mechanism in microbial eukaryote genome evolution.

  7. Variability of photosynthetic pigments in the Colombian Pacific ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 111; Issue 3. Variability of photosynthetic pigments in the Colombian Pacific Ocean and its relationship with the wind field using ADEOS-I data. Efrain Rodriguez-Rubio Jose Stuardo. Volume 111 Issue 3 September 2002 pp 227-236 ...

  8. Introns Protect Eukaryotic Genomes from Transcription-Associated Genetic Instability.

    Science.gov (United States)

    Bonnet, Amandine; Grosso, Ana R; Elkaoutari, Abdessamad; Coleno, Emeline; Presle, Adrien; Sridhara, Sreerama C; Janbon, Guilhem; Géli, Vincent; de Almeida, Sérgio F; Palancade, Benoit

    2017-08-17

    Transcription is a source of genetic instability that can notably result from the formation of genotoxic DNA:RNA hybrids, or R-loops, between the nascent mRNA and its template. Here we report an unexpected function for introns in counteracting R-loop accumulation in eukaryotic genomes. Deletion of endogenous introns increases R-loop formation, while insertion of an intron into an intronless gene suppresses R-loop accumulation and its deleterious impact on transcription and recombination in yeast. Recruitment of the spliceosome onto the mRNA, but not splicing per se, is shown to be critical to attenuate R-loop formation and transcription-associated genetic instability. Genome-wide analyses in a number of distant species differing in their intron content, including human, further revealed that intron-containing genes and the intron-richest genomes are best protected against R-loop accumulation and subsequent genetic instability. Our results thereby provide a possible rationale for the conservation of introns throughout the eukaryotic lineage. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Regulated eukaryotic DNA replication origin firing with purified proteins.

    Science.gov (United States)

    Yeeles, Joseph T P; Deegan, Tom D; Janska, Agnieszka; Early, Anne; Diffley, John F X

    2015-03-26

    Eukaryotic cells initiate DNA replication from multiple origins, which must be tightly regulated to promote precise genome duplication in every cell cycle. To accomplish this, initiation is partitioned into two temporally discrete steps: a double hexameric minichromosome maintenance (MCM) complex is first loaded at replication origins during G1 phase, and then converted to the active CMG (Cdc45-MCM-GINS) helicase during S phase. Here we describe the reconstitution of budding yeast DNA replication initiation with 16 purified replication factors, made from 42 polypeptides. Origin-dependent initiation recapitulates regulation seen in vivo. Cyclin-dependent kinase (CDK) inhibits MCM loading by phosphorylating the origin recognition complex (ORC) and promotes CMG formation by phosphorylating Sld2 and Sld3. Dbf4-dependent kinase (DDK) promotes replication by phosphorylating MCM, and can act either before or after CDK. These experiments define the minimum complement of proteins, protein kinase substrates and co-factors required for regulated eukaryotic DNA replication.

  10. Phylogenetic analysis of ferlin genes reveals ancient eukaryotic origins

    Directory of Open Access Journals (Sweden)

    Lek Monkol

    2010-07-01

    Full Text Available Abstract Background The ferlin gene family possesses a rare and identifying feature consisting of multiple tandem C2 domains and a C-terminal transmembrane domain. Much currently remains unknown about the fundamental function of this gene family, however, mutations in its two most well-characterised members, dysferlin and otoferlin, have been implicated in human disease. The availability of genome sequences from a wide range of species makes it possible to explore the evolution of the ferlin family, providing contextual insight into characteristic features that define the ferlin gene family in its present form in humans. Results Ferlin genes were detected from all species of representative phyla, with two ferlin subgroups partitioned within the ferlin phylogenetic tree based on the presence or absence of a DysF domain. Invertebrates generally possessed two ferlin genes (one with DysF and one without, with six ferlin genes in most vertebrates (three DysF, three non-DysF. Expansion of the ferlin gene family is evident between the divergence of lamprey (jawless vertebrates and shark (cartilaginous fish. Common to almost all ferlins is an N-terminal C2-FerI-C2 sandwich, a FerB motif, and two C-terminal C2 domains (C2E and C2F adjacent to the transmembrane domain. Preservation of these structural elements throughout eukaryotic evolution suggests a fundamental role of these motifs for ferlin function. In contrast, DysF, C2DE, and FerA are optional, giving rise to subtle differences in domain topologies of ferlin genes. Despite conservation of multiple C2 domains in all ferlins, the C-terminal C2 domains (C2E and C2F displayed higher sequence conservation and greater conservation of putative calcium binding residues across paralogs and orthologs. Interestingly, the two most studied non-mammalian ferlins (Fer-1 and Misfire in model organisms C. elegans and D. melanogaster, present as outgroups in the phylogenetic analysis, with results suggesting

  11. An Interactive Exercise To Learn Eukaryotic Cell Structure and Organelle Function.

    Science.gov (United States)

    Klionsky, Daniel J.; Tomashek, John J.

    1999-01-01

    Describes a cooperative, interactive problem-solving exercise for studying eukaryotic cell structure and function. Highlights the dynamic aspects of movement through the cell. Contains 15 references. (WRM)

  12. Large variability of bathypelagic microbial eukaryotic communities across the world's oceans.

    Science.gov (United States)

    Pernice, Massimo C; Giner, Caterina R; Logares, Ramiro; Perera-Bel, Júlia; Acinas, Silvia G; Duarte, Carlos M; Gasol, Josep M; Massana, Ramon

    2016-04-01

    In this work, we study the diversity of bathypelagic microbial eukaryotes (0.8-20 μm) in the global ocean. Seawater samples from 3000 to 4000 m depth from 27 stations in the Atlantic, Pacific and Indian Oceans were analyzed by pyrosequencing the V4 region of the 18S ribosomal DNA. The relative abundance of the most abundant operational taxonomic units agreed with the results of a parallel metagenomic analysis, suggesting limited PCR biases in the tag approach. Although rarefaction curves for single stations were seldom saturated, the global analysis of all sequences together suggested an adequate recovery of bathypelagic diversity. Community composition presented a large variability among samples, which was poorly explained by linear geographic distance. In fact, the similarity between communities was better explained by water mass composition (26% of the variability) and the ratio in cell abundance between prokaryotes and microbial eukaryotes (21%). Deep diversity appeared dominated by four taxonomic groups (Collodaria, Chrysophytes, Basidiomycota and MALV-II) appearing in different proportions in each sample. Novel diversity amounted to 1% of the pyrotags and was lower than expected. Our study represents an essential step in the investigation of bathypelagic microbial eukaryotes, indicating dominating taxonomic groups and suggesting idiosyncratic assemblages in distinct oceanic regions.

  13. Metabolism in anoxic permeable sediments is dominated by eukaryotic dark fermentation

    Science.gov (United States)

    Bourke, Michael F.; Marriott, Philip J.; Glud, Ronnie N.; Hasler-Sheetal, Harald; Kamalanathan, Manoj; Beardall, John; Greening, Chris; Cook, Perran L. M.

    2017-01-01

    Permeable sediments are common across continental shelves and are critical contributors to marine biogeochemical cycling. Organic matter in permeable sediments is dominated by microalgae, which as eukaryotes have different anaerobic metabolic pathways to bacteria and archaea. Here we present analyses of flow-through reactor experiments showing that dissolved inorganic carbon is produced predominantly as a result of anaerobic eukaryotic metabolic activity. In our experiments, anaerobic production of dissolved inorganic carbon was consistently accompanied by large dissolved H2 production rates, suggesting the presence of fermentation. The production of both dissolved inorganic carbon and H2 persisted following administration of broad spectrum bactericidal antibiotics, but ceased following treatment with metronidazole. Metronidazole inhibits the ferredoxin/hydrogenase pathway of fermentative eukaryotic H2 production, suggesting that pathway as the source of H2 and dissolved inorganic carbon production. Metabolomic analysis showed large increases in lipid production at the onset of anoxia, consistent with documented pathways of anoxic dark fermentation in microalgae. Cell counts revealed a predominance of microalgae in the sediments. H2 production was observed in dark anoxic cultures of diatoms (Fragilariopsis sp.) and a chlorophyte (Pyramimonas) isolated from the study site, substantiating the hypothesis that microalgae undertake fermentation. We conclude that microalgal dark fermentation could be an important energy-conserving pathway in permeable sediments.

  14. Mathematical Modeling of Acclimation Processes of the Photosynthetic Chain

    Directory of Open Access Journals (Sweden)

    S Heidari

    2016-10-01

    Full Text Available Introduction Photosynthetic energy conversion efficiency is characteristic of a system which is determined by interactions between various components of the system. The complex process of photosynthesis has been studied as a whole system which enables in silico examination of a large number of candidate genes for genetic engineering for a higher photosynthetic energy conversion efficiency. One of the most important environmental factors which influence the photosynthesis efficiency is light regime which can cause producing ROS components. To acclimate to such fluctuations, plants have evolved adaptive mechanisms to minimize damage of the photosynthetic apparatus excess light. A fast compatibility response to high light stresses is non-photochemical quenching process (NPQ, dissipating excessive energy to heat. Light harvested state switches into a quenched state by a conformational change of light harvesting complex (LHCII that regulated by xanthophylls and the PsbS protein within seconds. Low lumen pH activates xanthophyll synthesis via a xanthophyll cycle which consists of the de-epoxidation of violaxanthin to zeaxanthin by violaxanthin de-epoxidase in high light and inversely by zeaxanthin epoxidase in low light which occurs more slowly. Materials and Methods Thale cress (Arabidopsis thaliana (Chlombia-0 were grown on soil at 25/22 °C day/night temperature, with a 16/8 h photoperiod, and 40-70% (depend of plant species relative humidity. The light intensity was 150–200 µE m-2s-1 white light. Intensity of chlorophyll fluorescence was measured with PAM-2000 fluorometer (Heinz Walz, Germany and the manufacturer’s software (PamWin v.2. Results and Discussion In the present study, a dynamic kinetics amplified mathematical model was developed based on differential equations in order to predict short-term changes in NPQ in the process of adaptation to different light conditions. We investigated the stationary and dynamic behavior of the model

  15. Overlapping toxic effect of long term thallium exposure on white mustard (Sinapis alba L.) photosynthetic activity.

    Science.gov (United States)

    Mazur, Radosław; Sadowska, Monika; Kowalewska, Łucja; Abratowska, Agnieszka; Kalaji, Hazem M; Mostowska, Agnieszka; Garstka, Maciej; Krasnodębska-Ostręga, Beata

    2016-09-02

    photosynthetic complexes were responsible for disappearance of the chloroplast grana. Based on the presented results we postulate two phases of thallium toxicity on photosynthesis: the non-destructive phase at early stages of toxicant accumulation and the destructive phase that is restricted to the discolored leaf areas containing high toxicant content. There was no distinct border between the two phases of thallium toxicity in leaves and the degree of toxicity was proportional to the migration rate of the toxicant outside the vascular bundles. The three-fold (nearly linear) increase of Tl(I) concentration was observed in damaged tissue and the damage appears to be associated with the presence of the oxidized form of thallium - Tl(III).

  16. The effect of temperature on photosynthetic induction under fluctuating light in Chrysanthemum morifolium

    DEFF Research Database (Denmark)

    Öztürk, Isik; Ottosen, Carl-Otto; Ritz, Christian

    2013-01-01

    for photosynthetic induction. Gas exchange measurements were used to investigate the rate of induction and the opening of stomata. It was determined that induction equilibrium for C. morifolium at varying temperatures under dynamic light conditions was reached within 15 to 45 minutes except at saturating light...... intensity. For the same photon irradiance, the momentary state of induction equilibrated was higher approximately at 30° C and it decreased as temperature increased. The interaction effect of irradiance and temperature on induction equilibrium was not significant. The rate of photosynthetic induction...... and the time that it reached its 90% value (t90) was influenced by irradiance significantly. The light history of a leaf had a significant effect on t90, which indicated that an equilibrium state of induction will not always be reached within the same time. The effect of temperature on photosynthetic induction...

  17. Electrochemical studies of a reconstituted photosynthetic electron-transfer chain or towards a biomimetic photoproduction of hydrogen

    International Nuclear Information System (INIS)

    Fourmond, V.

    2007-04-01

    The aim of this work is to find an efficient process to convert solar energy into hydrogen. The electrons transfers in reconstituted photosynthetic chains have been particularly studied with the aims 1)in one hand, to better understand the interactions of the different molecules of the photosynthetic chain in order to optimize the changes of the entire organisms for hydrogen production 2)in another hand, to insert the hydrogenases in a photosynthetic chain and then to photo reduce them in order to obtain kinetic data to better understand how it works. (O.M.)

  18. Effect of gamma radiation on photosynthetic metabolism of Chlorella pyrenoidosa studied by 14CO2 assimilation

    International Nuclear Information System (INIS)

    Martin Moreno, C.; Fernandez Gonzalez, J.

    1983-01-01

    The effect of five dose of gamma radiation (10, 100, 500, 1000 and 5000 Gy) on photosynthetic activity and metabolism of the primary products of photosynthesis has been studied, on Chlorella pyrenoidoBa cultures, by 14 C O 2 assimilation. The photosynthetic assimilation rate is remarkably depressed after irradiation at 500, 1000 and 5000 Gy dose, which also produce a significant change in radioactivity distribution pattern of primary compounds from photosynthesis. No significant effects have been observed on photosynthetic metabolism after irradiation at 10 and 100 Gy. (Author) 19 refs

  19. Eukaryotic resistance to fluoride toxicity mediated by a widespread family of fluoride export proteins.

    Science.gov (United States)

    Li, Sanshu; Smith, Kathryn D; Davis, Jared H; Gordon, Patricia B; Breaker, Ronald R; Strobel, Scott A

    2013-11-19

    Fluorine is an abundant element and is toxic to organisms from bacteria to humans, but the mechanisms by which eukaryotes resist fluoride toxicity are unknown. The Escherichia coli gene crcB was recently shown to be regulated by a fluoride-responsive riboswitch, implicating it in fluoride response. There are >8,000 crcB homologs across all domains of life, indicating that it has an important role in biology. Here we demonstrate that eukaryotic homologs [renamed FEX (fluoride exporter)] function in fluoride export. FEX KOs in three eukaryotic model organisms, Neurospora crassa, Saccharomyces cerevisiae, and Candida albicans, are highly sensitized to fluoride (>200-fold) but not to other halides. Some of these KO strains are unable to grow in fluoride concentrations found in tap water. Using the radioactive isotope of fluoride, (18)F, we developed an assay to measure the intracellular fluoride concentration and show that the FEX deletion strains accumulate fluoride in excess of the external concentration, providing direct evidence of FEX function in fluoride efflux. In addition, they are more sensitive to lower pH in the presence of fluoride. These results demonstrate that eukaryotic FEX genes encode a previously unrecognized class of fluoride exporter necessary for survival in standard environmental conditions.

  20. EuGI: a novel resource for studying genomic islands to facilitate horizontal gene transfer detection in eukaryotes.

    Science.gov (United States)

    Clasen, Frederick Johannes; Pierneef, Rian Ewald; Slippers, Bernard; Reva, Oleg

    2018-05-03

    Genomic islands (GIs) are inserts of foreign DNA that have potentially arisen through horizontal gene transfer (HGT). There are evidences that GIs can contribute significantly to the evolution of prokaryotes. The acquisition of GIs through HGT in eukaryotes has, however, been largely unexplored. In this study, the previously developed GI prediction tool, SeqWord Gene Island Sniffer (SWGIS), is modified to predict GIs in eukaryotic chromosomes. Artificial simulations are used to estimate ratios of predicting false positive and false negative GIs by inserting GIs into different test chromosomes and performing the SWGIS v2.0 algorithm. Using SWGIS v2.0, GIs are then identified in 36 fungal, 22 protozoan and 8 invertebrate genomes. SWGIS v2.0 predicts GIs in large eukaryotic chromosomes based on the atypical nucleotide composition of these regions. Averages for predicting false negative and false positive GIs were 20.1% and 11.01% respectively. A total of 10,550 GIs were identified in 66 eukaryotic species with 5299 of these GIs coding for at least one functional protein. The EuGI web-resource, freely accessible at http://eugi.bi.up.ac.za , was developed that allows browsing the database created from identified GIs and genes within GIs through an interactive and visual interface. SWGIS v2.0 along with the EuGI database, which houses GIs identified in 66 different eukaryotic species, and the EuGI web-resource, provide the first comprehensive resource for studying HGT in eukaryotes.

  1. Estimating Photosynthetic Radiation Use Efficiency Using Incident Light and Photosynthesis of Individual Leaves

    OpenAIRE

    ROSATI, A.; DEJONG, T. M.

    2003-01-01

    It has been theorized that photosynthetic radiation use efficiency (PhRUE) over the course of a day is constant for leaves throughout a canopy if leaf nitrogen content and photosynthetic properties are adapted to local light so that canopy photosynthesis over a day is optimized. To test this hypothesis, ‘daily’ photosynthesis of individual leaves of Solanum melongena plants was calculated from instantaneous rates of photosynthesis integrated over the daylight hours. Instantaneous photosynthes...

  2. Changes in growth, photosynthetic activities, biochemical parameters and amino acid profile of Thompson Seedless grapes (Vitis vinifera L.).

    Science.gov (United States)

    Somkuwar, R G; Bahetwar, Anita; Khan, I; Satisha, J; Ramteke, S D; Itroutwar, Prerna; Bhongale, Aarti; Oulkar, Dashrath

    2014-11-01

    The study on photosynthetic activity and biochemical parameters in Thompson Seedless grapes grafted on Dog Ridge rootstock and its impact on growth, yield and amino acid profile at various stages of berry development was conducted during the year 2012-2013. Leaf and berry samples from ten year old vines of Thompson Seedless were collected at different growth and berry developmental stages. The analysis showed difference in photosynthetic activity, biochemical parameters and amino acid status with the changes in berry development stage. Higher photosynthetic rate of 17.39 umol cm(-2) s(-1) was recorded during 3-4mm berry size and the lowest (10.08 umol cm(-2) s(-1)) was recorded during the veraison stage. The photosynthetic activity showed gradual decrease with the onset of harvest while the different biochemical parameters showed increase and decrease from one stage to another in both berry and leaves. Changes in photosynthetic activity and biochemical parameters thereby affected the growth, yield and amino acid content of the berry. Positive correlation of leaf area and photosynthetic rate was recorded during the period of study. Reducing sugar (352.25 mg g(-1)) and total carbohydrate (132.52 mg g(-1)) was more in berries as compared to leaf. Amino acid profile showed variations in different stages of berry development. Marked variations in photosynthetic as well as biochemical and amino acid content at various berry development stages was recorded and thereby its cumulative effect on the development of fruit quality.

  3. Eu-Detect: An algorithm for detecting eukaryotic sequences in ...

    Indian Academy of Sciences (India)

    Supplementary figure 1. Plots depicting the classification accuracy of Eu-Detect with various combinations of. 'cumulative sequence count' (40K, 50K, 60K, 70K, 80K) and 'coverage threshold' (20%, 30%, 40%, 50%, 60%, 70%,. 80%). While blue bars represent Eu-Detect's average classification accuracy with eukaryotic ...

  4. EuMicroSatdb: A database for microsatellites in the sequenced genomes of eukaryotes

    Directory of Open Access Journals (Sweden)

    Grover Atul

    2007-07-01

    Full Text Available Abstract Background Microsatellites have immense utility as molecular markers in different fields like genome characterization and mapping, phylogeny and evolutionary biology. Existing microsatellite databases are of limited utility for experimental and computational biologists with regard to their content and information output. EuMicroSatdb (Eukaryotic MicroSatellite database http://ipu.ac.in/usbt/EuMicroSatdb.htm is a web based relational database for easy and efficient positional mining of microsatellites from sequenced eukaryotic genomes. Description A user friendly web interface has been developed for microsatellite data retrieval using Active Server Pages (ASP. The backend database codes for data extraction and assembly have been written using Perl based scripts and C++. Precise need based microsatellites data retrieval is possible using different input parameters like microsatellite type (simple perfect or compound perfect, repeat unit length (mono- to hexa-nucleotide, repeat number, microsatellite length and chromosomal location in the genome. Furthermore, information about clustering of different microsatellites in the genome can also be retrieved. Finally, to facilitate primer designing for PCR amplification of any desired microsatellite locus, 200 bp upstream and downstream sequences are provided. Conclusion The database allows easy systematic retrieval of comprehensive information about simple and compound microsatellites, microsatellite clusters and their locus coordinates in 31 sequenced eukaryotic genomes. The information content of the database is useful in different areas of research like gene tagging, genome mapping, population genetics, germplasm characterization and in understanding microsatellite dynamics in eukaryotic genomes.

  5. [Effects of light intensities after anthesis on the photosynthetic characteristics and chloroplast ultrastructure in mesophyll cell of summer maize (Zea mays L. )].

    Science.gov (United States)

    Gao, Jia; Cui, Hai Yan; Shi, Jian Guo; Dong, Shu Ting; Liu, Peng; Zhao, Bin; Zhang, Ji Wang

    2018-03-01

    We examined the changes of photosynthetic characteristics and chloroplast ultrastructure in mesophyll cell of summer maize in response to different light intensities in the field, with the summer maize hybrid Denghai 605 as experimental material. Two treatments of both shading (S) and increasing light (L) from flowering to physiological maturity stage were designed, with the ambient sunlight treatment as control (CK). Under shading treatment, poorly developed thylakoid structure, blurry lamellar structure, loose granum, large gap between slices and warping granum were the major characteristics in chloroplast. Meanwhile, photosynthetic rate (P n ), transpiration rate, stomatal conductance, chlorophyll content, and actual photo-chemical efficiency (Φ PSII ) decreased, whereas the maximal photochemical efficiency and non-photochemical quenching increased, which resulted in decreases in grain yield under shading treatment. However, a better development was observed in chloroplasts for L treatment, with the number of grana and lamellae increased and lamellae arranged compactly. In addition, P n and Φ PSII increased under L treatment, which increased grain yield. The chloroplast arrangement dispersed in mesophyll cells and chloroplast ultrastructure was destroyed after shading, and then chlorophyll synthesis per unit leaf area and photosynthetic capacity decreased. In contrast, the number of grana and lamellae increased and lamellae arranged compactly after increasing light, which are beneficial for corn yield.

  6. Community-acquired pneumonia - a clinical approach to ...

    African Journals Online (AJOL)

    to pneumonia acquired within the general community. CAP remains a common and ... patients.2 The exact incidence of atypical pathogens as a cause of CAP in South Africa is ... nor specific enough to use in clinical practice. There is a ..... resolve within 14 days but non-respiratory symptoms such as fatigue may persist for ...

  7. Internal and external factors affecting photosynthetic pigment composition in plants: a meta-analytical approach.

    Science.gov (United States)

    Esteban, Raquel; Barrutia, Oihana; Artetxe, Unai; Fernández-Marín, Beatriz; Hernández, Antonio; García-Plazaola, José Ignacio

    2015-04-01

    Photosynthetic pigment composition has been a major study target in plant ecophysiology during the last three decades. Although more than 2000 papers have been published, a comprehensive evaluation of the responses of photosynthetic pigment composition to environmental conditions is not yet available. After an extensive survey, we compiled data from 525 papers including 809 species (subkingdom Viridiplantae) in which pigment composition was described. A meta-analysis was then conducted to assess the ranges of photosynthetic pigment content. Calculated frequency distributions of pigments were compared with those expected from the theoretical pigment composition. Responses to environmental factors were also analysed. The results revealed that lutein and xanthophyll cycle pigments (VAZ) were highly responsive to the environment, emphasizing the high phenotypic plasticity of VAZ, whereas neoxanthin was very stable. The present meta-analysis supports the existence of relatively narrow limits for pigment ratios and also supports the presence of a pool of free 'unbound' VAZ. Results from this study provide highly reliable ranges of photosynthetic pigment contents as a framework for future research on plant pigments. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  8. Photosynthetic performance in Sphagnum transplanted along a latitudinal nitrogen deposition gradient.

    Science.gov (United States)

    Granath, Gustaf; Strengbom, Joachim; Breeuwer, Angela; Heijmans, Monique M P D; Berendse, Frank; Rydin, Håkan

    2009-04-01

    Increased N deposition in Europe has affected mire ecosystems. However, knowledge on the physiological responses is poor. We measured photosynthetic responses to increasing N deposition in two peatmoss species (Sphagnum balticum and Sphagnum fuscum) from a 3-year, north-south transplant experiment in northern Europe, covering a latitudinal N deposition gradient ranging from 0.28 g N m(-2) year(-1) in the north, to 1.49 g N m(-2) year(-1) in the south. The maximum photosynthetic rate (NP(max)) increased southwards, and was mainly explained by tissue N concentration, secondly by allocation of N to the photosynthesis, and to a lesser degree by modified photosystem II activity (variable fluorescence/maximum fluorescence yield). Although climatic factors may have contributed, these results were most likely attributable to an increase in N deposition southwards. For S. fuscum, photosynthetic rate continued to increase up to a deposition level of 1.49 g N m(-2) year(-1), but for S. balticum it seemed to level out at 1.14 g N m(-2) year(-1). The results for S. balticum suggested that transplants from different origin (with low or intermediate N deposition) respond differently to high N deposition. This indicates that Sphagnum species may be able to adapt or physiologically adjust to high N deposition. Our results also suggest that S. balticum might be more sensitive to N deposition than S. fuscum. Surprisingly, NP(max) was not (S. balticum), or only weakly (S. fuscum) correlated with biomass production, indicating that production is to a great extent is governed by factors other than the photosynthetic capacity.

  9. Photosynthetic carbon reduction by seagrasses exposed to ultraviolet A radiation

    Science.gov (United States)

    1979-01-01

    The seagrasses Halophila engelmannii, Halodule wrightii, and Syringodium filiforme were examined for their intrinsic sensitivity to ultraviolet-A-UV-A and ultraviolet-B-UV-B radiation. The effect of UV-A on photosynthetically active radiation (PAR) was also determined. Ultraviolet-A and ultraviolet-B were studied with emphasis on the greater respective environmental consequence in terms of seagrass distribution and abundance. Results indicate that an intrinsic sensitivity to UV-A alone is apparent only in Halophila, while net photosynthesis in Halodule and Syringodium seems unaffected by the level of UV-A provided. The sensitivity of Halophila to UV-A in the absense of (PAR) indicates that the photosynthetic reaction does not need to be in operation for damage to occur. Other significant results are reported.

  10. BOREAS TE-9 NSA Photosynthetic Capacity and Foliage Nitrogen Data

    Science.gov (United States)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Dang, Qinglai; Margolis, Hank; Coyea, Marie

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-9 (Terrestrial Ecology) team collected several data sets related to chemical and photosynthetic properties of leaves in boreal forest tree species. This data set describes the spatial and temporal relationship between foliage nitrogen concentration and photosynthetic capacity in the canopies of black spruce, jack pine, and aspen located within the Northern Study Area (NSA). The data were collected from June to September 1994 and are useful for modeling the vertical distribution of carbon fixation for different forest types in the boreal forest. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  11. PS2013 Satellite Workshop on Photosynthetic Light-Harvesting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Niederman, Robert A. [Rutgers Univ., New Brunswick, NJ (United States); Blankenship, Robert E. [Washington Univ., St. Louis, MO (United States); Frank, Harry A. [Univ. of Connecticut, Storrs, CT (United States)

    2015-02-07

    These funds were used for partial support of the PS2013 Satellite Workshop on Photosynthetic Light-Harvesting Systems, that was held on 8-11 August, 2013, at Washington University, St. Louis, MO. This conference, held in conjunction with the 16th International Congress on Photosynthesis/St. Louis, continued a long tradition of light-harvesting satellite conferences that have been held prior to the previous six international photosynthesis congresses. In this Workshop, the basis was explored for the current interest in replacing fossil fuels with energy sources derived form direct solar radiation, coupled with light-driven electron transport in natural photosynthetic systems and how they offer a valuable blueprint for conversion of sunlight to useful energy forms. This was accomplished through sessions on the initial light-harvesting events in the biological conversion of solar energy to chemically stored energy forms, and how these natural photosynthetic processes serve as a guide to the development of robust bio-hybrid and artificial systems for solar energy conversion into both electricity or chemical fuels. Organized similar to a Gordon Research Conference, a lively, informal and collegial setting was established, highlighting the exchange of exciting new data and unpublished results from ongoing studies. A significant amount of time was set aside for open discussion and interactive poster sessions, with a special session devoted to oral presentations by talented students and postdoctoral fellows judged to have the best posters. This area of research has seen exceptionally rapid progress in recent years, with the availability of a number of antenna protein structures at atomic resolution, elucidation of the molecular surface architecture of native photosynthetic membranes by atomic force microscopy and the maturing of ultrafast spectroscopic and molecular biological techniques for the investigation and manipulation of photosynthetic systems. The conferees

  12. Application of heat stress in situ demonstrates a protective role of irradiation on photosynthetic performance in alpine plants

    OpenAIRE

    Buchner, Othmar; STOLL, Magdalena; Karadar, Matthias; Kranner, Ilse; Neuner, Gilbert

    2014-01-01

    The impact of sublethal heat on photosynthetic performance, photosynthetic pigments and free radical scavenging activity was examined in three high mountain species, R hododendron ferrugineum, S enecio incanus and R anunculus glacialis using controlled in situ applications of heat stress, both in darkness and under natural solar irradiation. Heat treatments applied in the dark reversibly reduced photosynthetic performance and the maximum quantum efficiency of photosystem II (Fv/Fm), which rem...

  13. Energy transfer from natural photosynthetic complexes to single-wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wiwatowski, Kamil [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Dużyńska, Anna; Świniarski, Michał [Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Szalkowski, Marcin [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Zdrojek, Mariusz; Judek, Jarosław [Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Mackowski, Sebastian, E-mail: mackowski@fizyka.umk.pl [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Wroclaw Research Center EIT+, Stablowicka 147, Wroclaw (Poland); Kaminska, Izabela [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland)

    2016-02-15

    Combination of fluorescence imaging and spectroscopy results indicates that single-walled carbon nanotubes are extremely efficient quenchers of fluorescence emission associated with chlorophylls embedded in a natural photosynthetic complex, peridinin-chlorophyll-protein. When deposited on a network of the carbon nanotubes forming a thin film, the emission of the photosynthetic complexes diminishes almost completely. This strong reduction of fluorescence intensity is accompanied with dramatic shortening of the fluorescence lifetime. Concluding, such thin films of carbon nanotubes can be extremely efficient energy acceptors in structures involving biologically functional complexes. - Highlights: • Fluorescence imaging of carbon nanotube - based hybrid structure. • Observation of efficient energy transfer from chlorophylls to carbon nanotubes.

  14. Melatonin Improves the Photosynthetic Carbon Assimilation and Antioxidant Capacity in Wheat Exposed to Nano-ZnO Stress

    Directory of Open Access Journals (Sweden)

    Zhiyu Zuo

    2017-10-01

    Full Text Available The release of nanoparticles into the environment is inevitable, which has raised global environmental concern. Melatonin is involved in various stress responses in plants. The present study investigated the effects of melatonin on photosynthetic carbon (C assimilation and plant growth in nano-ZnO stressed plants. It was found that melatonin improved the photosynthetic C assimilation in nano-ZnO stressed wheat plants, mainly due to the enhanced photosynthetic energy transport efficiency, higher chlorophyll concentration and higher activities of Rubisco and ATPases. In addition, melatonin enhanced the activities of antioxidant enzymes to protect the photosynthetic electron transport system in wheat leaves against the oxidative burst caused by nano-ZnO stress. These results suggest that melatonin could improve the tolerance of wheat plants to nano-ZnO stress.

  15. Biotechnological Approaches to Enhance Halotolerance and Photosynthetic Efficacy in the Cyanobacterium, Fremyella diplosiphon

    Science.gov (United States)

    Tabatabai, Ben

    Growing concerns over dwindling energy supplies linked to nonrenewable fossil fuels have driven profound interest in biofuels as a clean and sustainable alternative. Cyanobacteria are a promising source of third-generation biofuel due to their fast generation time and high net biomass conversion. In this study, the effect of salinity stress on Fremyella diplosiphon, a model organism for studying photosynthetic pathways, was investigated and nanobiotechnological approaches undertaken to enhance its halotolerance and photosynthetic efficacy. Heat-induced mutagenesis resulted in a mutant strain that could survive in 20 g L-1 sodium chloride (NaCl) with no loss in pigmentation. To further enhance F. diplosiphon halotolerance, expression plasmids harboring the hlyB and mdh genes were overexpressed in the wild type resulting in two transformants that thrived in 35 g L-1 NaCl, the average salinity of sea water. In addition, no significant reduction in photosynthetic efficacy was detected in the halotolerant strains relative to the wild type. Total lipid content and fatty acid methyl ester composition of wild type and halotolerant strains were assessed for their potential as a production-scale biofuel agent. Methyl palmitate, the methyl ester of hexodeconoate (C16:0), was found to be most abundant in the wild type and transformants accounting for 60-70% of total FAMEs produced. Efforts to enhance the photosynthetic efficiency of the strains revealed that gold nanoparticle-derived surface plasmon resonance augmented culture growth and pigment accumulation. Cell-nanoparticles interactions were visualized using scanning and transmission electron microscopy. Our findings address two key challenges that cyanobacterial biofuel agents need to overcome: enhanced halotolerance and photosynthetic efficacy to minimize freshwater input and artificial light supply. These innovations have paved the way for an efficient cyanobacterial cultivation system for large-scale production of

  16. Autumn photosynthetic decline and growth cessation in seedlings of white spruce are decoupled under warming and photoperiod manipulations.

    Science.gov (United States)

    Stinziano, Joseph R; Way, Danielle A

    2017-08-01

    Climate warming is expected to increase the seasonal duration of photosynthetic carbon fixation and tree growth in high-latitude forests. However, photoperiod, a crucial cue for seasonality, will remain constant, which may constrain tree responses to warming. We investigated the effects of temperature and photoperiod on weekly changes in photosynthetic capacity, leaf biochemistry and growth in seedlings of a boreal evergreen conifer, white spruce [Picea glauca (Moench) Voss]. Warming delayed autumn declines in photosynthetic capacity, extending the period when seedlings had high carbon uptake. While photoperiod was correlated with photosynthetic capacity, short photoperiods did not constrain the maintenance of high photosynthetic capacity under warming. Rubisco concentration dynamics were affected by temperature but not photoperiod, while leaf pigment concentrations were unaffected by treatments. Respiration rates at 25 °C were stimulated by photoperiod, although respiration at the growth temperatures was increased in warming treatments. Seedling growth was stimulated by increased photoperiod and suppressed by warming. We demonstrate that temperature is a stronger control on the seasonal timing of photosynthetic down-regulation than is photoperiod. Thus, while warming can stimulate carbon uptake in boreal conifers, the extra carbon may be directed towards respiration rather than biomass, potentially limiting carbon sequestration under climate change. © 2017 John Wiley & Sons Ltd.

  17. Complete plastid genome sequences suggest strong selection for retention of photosynthetic genes in the parasitic plant genus Cuscuta.

    Science.gov (United States)

    McNeal, Joel R; Kuehl, Jennifer V; Boore, Jeffrey L; de Pamphilis, Claude W

    2007-10-24

    Plastid genome content and protein sequence are highly conserved across land plants and their closest algal relatives. Parasitic plants, which obtain some or all of their nutrition through an attachment to a host plant, are often a striking exception. Heterotrophy can lead to relaxed constraint on some plastid genes or even total gene loss. We sequenced plastid genomes of two species in the parasitic genus Cuscuta along with a non-parasitic relative, Ipomoea purpurea, to investigate changes in the plastid genome that may result from transition to the parasitic lifestyle. Aside from loss of all ndh genes, Cuscuta exaltata retains photosynthetic and photorespiratory genes that evolve under strong selective constraint. Cuscuta obtusiflora has incurred substantially more change to its plastid genome, including loss of all genes for the plastid-encoded RNA polymerase. Despite extensive change in gene content and greatly increased rate of overall nucleotide substitution, C. obtusiflora also retains all photosynthetic and photorespiratory genes with only one minor exception. Although Epifagus virginiana, the only other parasitic plant with its plastid genome sequenced to date, has lost a largely overlapping set of transfer-RNA and ribosomal genes as Cuscuta, it has lost all genes related to photosynthesis and maintains a set of genes which are among the most divergent in Cuscuta. Analyses demonstrate photosynthetic genes are under the highest constraint of any genes within the plastid genomes of Cuscuta, indicating a function involving RuBisCo and electron transport through photosystems is still the primary reason for retention of the plastid genome in these species.

  18. Complete plastid genome sequences suggest strong selection for retention of photosynthetic genes in the parasitic plant genus Cuscuta

    Directory of Open Access Journals (Sweden)

    Kuehl Jennifer V

    2007-10-01

    Full Text Available Abstract Background Plastid genome content and protein sequence are highly conserved across land plants and their closest algal relatives. Parasitic plants, which obtain some or all of their nutrition through an attachment to a host plant, are often a striking exception. Heterotrophy can lead to relaxed constraint on some plastid genes or even total gene loss. We sequenced plastid genomes of two species in the parasitic genus Cuscuta along with a non-parasitic relative, Ipomoea purpurea, to investigate changes in the plastid genome that may result from transition to the parasitic lifestyle. Results Aside from loss of all ndh genes, Cuscuta exaltata retains photosynthetic and photorespiratory genes that evolve under strong selective constraint. Cuscuta obtusiflora has incurred substantially more change to its plastid genome, including loss of all genes for the plastid-encoded RNA polymerase. Despite extensive change in gene content and greatly increased rate of overall nucleotide substitution, C. obtusiflora also retains all photosynthetic and photorespiratory genes with only one minor exception. Conclusion Although Epifagus virginiana, the only other parasitic plant with its plastid genome sequenced to date, has lost a largely overlapping set of transfer-RNA and ribosomal genes as Cuscuta, it has lost all genes related to photosynthesis and maintains a set of genes which are among the most divergent in Cuscuta. Analyses demonstrate photosynthetic genes are under the highest constraint of any genes within the plastid genomes of Cuscuta, indicating a function involving RuBisCo and electron transport through photosystems is still the primary reason for retention of the plastid genome in these species.

  19. Respiratory viruses among children with non-severe community-acquired pneumonia: A prospective cohort study.

    Science.gov (United States)

    Nascimento-Carvalho, Amanda C; Vilas-Boas, Ana-Luisa; Fontoura, Maria-Socorro H; Vuorinen, Tytti; Nascimento-Carvalho, Cristiana M

    2018-06-06

    Community-acquired pneumonia (CAP) causes a major burden to the health care system among children under-5 years worldwide. Information on respiratory viruses in non-severe CAP cases is scarce. To estimate the frequency of respiratory viruses among non-severe CAP cases. Prospective study conducted in Salvador, Brazil. Out of 820 children aged 2-59 months with non-severe CAP diagnosed by pediatricians (respiratory complaints and radiographic pulmonary infiltrate/consolidation), recruited in a clinical trial (ClinicalTrials.gov Identifier NCT01200706), nasopharyngeal aspirate samples were obtained from 774 (94.4%) patients and tested for 16 respiratory viruses by PCRs. Viruses were detected in 708 (91.5%; 95%CI: 89.3-93.3) cases, out of which 491 (69.4%; 95%CI: 65.9-72.7) harbored multiple viruses. Rhinovirus (46.1%; 95%CI: 42.6-49.6), adenovirus (38.4%; 95%CI: 35.0-41.8), and enterovirus (26.5%; 95%CI: 23.5-29.7) were the most commonly found viruses. The most frequent combination comprised rhinovirus plus adenovirus. No difference was found in the frequency of RSVA (16.1% vs. 14.6%; P = 0.6), RSVB (10.9% vs. 13.2%; P = 0.4) influenza (Flu) A (6.3% vs. 5.1%; P = 0.5), FluB (4.5% vs. 1.8%; P = 0.09), parainfluenza virus (PIV) 1 (5.1% vs. 2.8%; P = 0.2), or PIV4 (7.7% vs. 4.1%; P = 0.08), when children with multiple or sole virus detection were compared. Conversely, rhinovirus, adenovirus, enterovirus, bocavirus, PIV2, PIV3, metapneumovirus, coronavirus OC43, NL63, 229E were significantly more frequent among cases with multiple virus detection. Respiratory viruses were detected in over 90% of the cases, out of which 70% had multiple viruses. Several viruses are more commonly found in multiple virus detection whereas other viruses are similarly found in sole and in multiple virus detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Carbon isotopic composition of legumes with photosynthetic stems from Mediterranean and desert habitats

    International Nuclear Information System (INIS)

    Nilsen, E.T.; Sharifi, M.R.

    1997-01-01

    The carbon isotopic compositions of leaves and stems of woody legumes growing in coastal mediterranean and inland desert sites in California were compared. The overall goal was to determine what factors were most associated with the carbon isotope composition of photosynthetic stems in these habitats. The carbon isotope signature (delta 13C) of photosynthetic stems was less negative than that of leaves on the same plants by an average of 1.51 +/- 0.42 per thousand. The delta 13C of bark (cortical chlorenchyma and epidermis) was more negative than that of wood (vascular tissue and pith) from the same plant for all species studied on all dates. Desert woody legumes had a higher delta 13C (less negative) and a lower intercellular CO2 concentration (Ci) (for both photosynthetic tissues) than that of woody legumes from mediterranean climate sites. Differences in the delta 13C of stems among sites could be entirely accounted for by differences among site air temperatures. Thus, the delta 13C composition of stems did not indicate a difference in whole-plant integrated water use efficiency (WUE) among sites. In contrast, stems on all plants had a lower stem Ci and a higher delta 13C than leaves on the same plant, indicating that photosynthetic stems improve long-term, whole-plant water use efficiency in a diversity of species

  1. Continuous cultivation of photosynthetic microorganisms: Approaches, applications and future trends.

    Science.gov (United States)

    Fernandes, Bruno D; Mota, Andre; Teixeira, Jose A; Vicente, Antonio A

    2015-11-01

    The possibility of using photosynthetic microorganisms, such as cyanobacteria and microalgae, for converting light and carbon dioxide into valuable biochemical products has raised the need for new cost-efficient processes ensuring a constant product quality. Food, feed, biofuels, cosmetics and pharmaceutics are among the sectors that can profit from the application of photosynthetic microorganisms. Biomass growth in a photobioreactor is a complex process influenced by multiple parameters, such as photosynthetic light capture and attenuation, nutrient uptake, photobioreactor hydrodynamics and gas-liquid mass transfer. In order to optimize productivity while keeping a standard product quality, a permanent control of the main cultivation parameters is necessary, where the continuous cultivation has shown to be the best option. However it is of utmost importance to recognize the singularity of continuous cultivation of cyanobacteria and microalgae due to their dependence on light availability and intensity. In this sense, this review provides comprehensive information on recent breakthroughs and possible future trends regarding technological and process improvements in continuous cultivation systems of microalgae and cyanobacteria, that will directly affect cost-effectiveness and product quality standardization. An overview of the various applications, techniques and equipment (with special emphasis on photobioreactors) in continuous cultivation of microalgae and cyanobacteria are presented. Additionally, mathematical modeling, feasibility, economics as well as the applicability of continuous cultivation into large-scale operation, are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Distribution and Diversity of Microbial Eukaryotes in Bathypelagic Waters of the South China Sea.

    Science.gov (United States)

    Xu, Dapeng; Jiao, Nianzhi; Ren, Rui; Warren, Alan

    2017-05-01

    Little is known about the biodiversity of microbial eukaryotes in the South China Sea, especially in waters at bathyal depths. Here, we employed SSU rDNA gene sequencing to reveal the diversity and community structure across depth and distance gradients in the South China Sea. Vertically, the highest alpha diversity was found at 75-m depth. The communities of microbial eukaryotes were clustered into shallow-, middle-, and deep-water groups according to the depth from which they were collected, indicating a depth-related diversity and distribution pattern. Rhizaria sequences dominated the microeukaryote community and occurred in all samples except those from less than 50-m deep, being most abundant near the sea floor where they contributed ca. 64-97% and 40-74% of the total sequences and OTUs recovered, respectively. A large portion of rhizarian OTUs has neither a nearest named neighbor nor a nearest neighbor in the GenBank database which indicated the presence of new phylotypes in the South China Sea. Given their overwhelming abundance and richness, further phylogenetic analysis of rhizarians were performed and three new genetic clusters were revealed containing sequences retrieved from the deep waters of the South China Sea. Our results shed light on the diversity and community structure of microbial eukaryotes in this not yet fully explored area. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  3. Quantum measurement corrections to CIDNP in photosynthetic reaction centers

    International Nuclear Information System (INIS)

    Kominis, Iannis K

    2013-01-01

    Chemically induced dynamic nuclear polarization is a signature of spin order appearing in many photosynthetic reaction centers. Such polarization, significantly enhanced above thermal equilibrium, is known to result from the nuclear spin sorting inherent in the radical pair mechanism underlying long-lived charge-separated states in photosynthetic reaction centers. We will show here that the recently understood fundamental quantum dynamics of radical-ion-pair reactions open up a new and completely unexpected pathway toward obtaining chemically induced dynamic nuclear polarization signals. The fundamental decoherence mechanism inherent in the recombination process of radical pairs is shown to produce nuclear spin polarizations of the order of 10 4 times (or more) higher than the thermal equilibrium value at the Earth's magnetic field relevant to natural photosynthesis. This opens up the possibility of a fundamentally new exploration of the biological significance of high nuclear polarizations in photosynthesis. (paper)

  4. A theoretical approach to photosynthetically active radiation silicon sensor

    International Nuclear Information System (INIS)

    Tamasi, M.J.L.; Martínez Bogado, M.G.

    2013-01-01

    This paper presents a theoretical approach for the development of low cost radiometers to measure photosynthetically active radiation (PAR). Two alternatives are considered: a) glass optical filters attached to a silicon sensor, and b) dielectric coating on a silicon sensor. The devices proposed are based on radiometers previously developed by the Argentine National Atomic Energy Commission. The objective of this work is to adapt these low cost radiometers to construct reliable instruments for measuring PAR. The transmittance of optical filters and sensor response have been analyzed for different dielectric materials, number of layers deposited, and incidence angles. Uncertainties in thickness of layer deposition were evaluated. - Highlights: • Design of radiometers to measure photosynthetically active radiation • The study has used a filter and a Si sensor to modify spectral response. • Dielectric multilayers on glass and silicon sensor • Spectral response related to different incidence angles, materials and spectra

  5. Characterization of an eukaryotic peptide deformylase from Plasmodium falciparum.

    Science.gov (United States)

    Bracchi-Ricard, V; Nguyen, K T; Zhou, Y; Rajagopalan, P T; Chakrabarti, D; Pei, D

    2001-12-15

    Ribosomal protein synthesis in eubacteria and eukaryotic organelles initiates with an N-formylmethionyl-tRNA(i), resulting in N-terminal formylation of all nascent polypeptides. Peptide deformylase (PDF) catalyzes the subsequent removal of the N-terminal formyl group from the majority of bacterial proteins. Until recently, PDF has been thought as an enzyme unique to the bacterial kingdom. Searches of the genomic DNA databases identified several genes that encode proteins of high sequence homology to bacterial PDF from eukaryotic organisms. The cDNA encoding Plasmodium falciparum PDF (PfPDF) has been cloned and overexpressed in Escherichia coli. The recombinant protein is catalytically active in deformylating N-formylated peptides, shares many of the properties of bacterial PDF, and is inhibited by specific PDF inhibitors. Western blot analysis indicated expression of mature PfPDF in trophozoite, schizont, and segmenter stages of intraerythrocytic development. These results provide strong evidence that a functional PDF is present in P. falciparum. In addition, PDF inhibitors inhibited the growth of P. falciparum in the intraerythrocytic culture. (c)2001 Elsevier Science.

  6. Mycorrhiza Symbiosis Increases the Surface for Sunlight Capture in Medicago truncatula for Better Photosynthetic Production

    Science.gov (United States)

    Adolfsson, Lisa; Keresztes, Áron; Uddling, Johan; Schoefs, Benoît; Spetea, Cornelia

    2015-01-01

    Arbuscular mycorrhizal (AM) fungi play a prominent role in plant nutrition by supplying mineral nutrients, particularly inorganic phosphate (Pi), and also constitute an important carbon sink. AM stimulates plant growth and development, but the underlying mechanisms are not well understood. In this study, Medicago truncatula plants were grown with Rhizophagus irregularis BEG141 inoculum (AM), mock inoculum (control) or with Pi fertilization. We hypothesized that AM stimulates plant growth through either modifications of leaf anatomy or photosynthetic activity per leaf area. We investigated whether these effects are shared with Pi fertilization, and also assessed the relationship between levels of AM colonization and these effects. We found that increased Pi supply by either mycorrhization or fertilization led to improved shoot growth associated with increased nitrogen uptake and carbon assimilation. Both mycorrhized and Pi-fertilized plants had more and longer branches with larger and thicker leaves than the control plants, resulting in an increased photosynthetically active area. AM-specific effects were earlier appearance of the first growth axes and increased number of chloroplasts per cell section, since they were not induced by Pi fertilization. Photosynthetic activity per leaf area remained the same regardless of type of treatment. In conclusion, the increase in growth of mycorrhized and Pi-fertilized Medicago truncatula plants is linked to an increase in the surface for sunlight capture, hence increasing their photosynthetic production, rather than to an increase in the photosynthetic activity per leaf area. PMID:25615871

  7. Mycorrhiza symbiosis increases the surface for sunlight capture in Medicago truncatula for better photosynthetic production.

    Directory of Open Access Journals (Sweden)

    Lisa Adolfsson

    Full Text Available Arbuscular mycorrhizal (AM fungi play a prominent role in plant nutrition by supplying mineral nutrients, particularly inorganic phosphate (Pi, and also constitute an important carbon sink. AM stimulates plant growth and development, but the underlying mechanisms are not well understood. In this study, Medicago truncatula plants were grown with Rhizophagus irregularis BEG141 inoculum (AM, mock inoculum (control or with P(i fertilization. We hypothesized that AM stimulates plant growth through either modifications of leaf anatomy or photosynthetic activity per leaf area. We investigated whether these effects are shared with P(i fertilization, and also assessed the relationship between levels of AM colonization and these effects. We found that increased P(i supply by either mycorrhization or fertilization led to improved shoot growth associated with increased nitrogen uptake and carbon assimilation. Both mycorrhized and P(i-fertilized plants had more and longer branches with larger and thicker leaves than the control plants, resulting in an increased photosynthetically active area. AM-specific effects were earlier appearance of the first growth axes and increased number of chloroplasts per cell section, since they were not induced by P(i fertilization. Photosynthetic activity per leaf area remained the same regardless of type of treatment. In conclusion, the increase in growth of mycorrhized and P(i-fertilized Medicago truncatula plants is linked to an increase in the surface for sunlight capture, hence increasing their photosynthetic production, rather than to an increase in the photosynthetic activity per leaf area.

  8. Warming delays autumn declines in photosynthetic capacity in a boreal conifer, Norway spruce (Picea abies).

    Science.gov (United States)

    Stinziano, Joseph R; Hüner, Norman P A; Way, Danielle A

    2015-12-01

    Climate change, via warmer springs and autumns, may lengthen the carbon uptake period of boreal tree species, increasing the potential for carbon sequestration in boreal forests, which could help slow climate change. However, if other seasonal cues such as photoperiod dictate when photosynthetic capacity declines, warmer autumn temperatures may have little effect on when carbon uptake capacity decreases in these species. We investigated whether autumn warming would delay photosynthetic decline in Norway spruce (Picea abies (L.) H. Karst.) by growing seedlings under declining weekly photoperiods and weekly temperatures either at ambient temperature or a warming treatment 4 °C above ambient. Photosynthetic capacity was relatively constant in both treatments when weekly temperatures were >8 °C, but declined rapidly at lower temperatures, leading to a delay in the autumn decline in photosynthetic capacity in the warming treatment. The decline in photosynthetic capacity was not related to changes in leaf nitrogen or chlorophyll concentrations, but was correlated with a decrease in the apparent fraction of leaf nitrogen invested in Rubisco, implicating a shift in nitrogen allocation away from the Calvin cycle at low autumn growing temperatures. Our data suggest that as the climate warms, the period of net carbon uptake will be extended in the autumn for boreal forests dominated by Norway spruce, which could increase total carbon uptake in these forests. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Differences in microbiological profile between community-acquired, healthcare-associated and hospital-acquired infections.

    Science.gov (United States)

    Cardoso, Teresa; Ribeiro, Orquídea; Aragão, Irene; Costa-Pereira, Altamiro; Sarmento, António

    2013-01-01

    Microbiological profiles were analysed and compared for intra-abdominal, urinary, respiratory and bloodstream infections according to place of acquisition: community-acquired, with a separate analysis of healthcare-associated, and hospital-acquired. Prospective cohort study performed at a university tertiary care hospital over 1 year. Inclusion criteria were meeting the Centers for Disease Control definition of intra-abdominal, urinary, respiratory and bloodstream infections. A total of 1035 patients were included in the study. More than 25% of intra-abdominal infections were polymicrobial; multi-drug resistant gram-negatives were 38% in community-acquired, 50% in healthcare-associated and 57% in hospital-acquired. E. coli was the most prevalent among urinary infections: 69% in community-acquired, 56% in healthcare-associated and 26% in hospital-acquired; ESBL producers' pathogens were 10% in healthcare-associated and 3% in community-acquired and hospital-acquired. In respiratory infections Streptococcus pneumoniae was the most prevalent in community-acquired (54%) and MRSA in healthcare-associated (24%) and hospital-acquired (24%). A significant association was found between MRSA respiratory infection and hospitalization in the previous year (adjusted OR = 6.3), previous instrumentation (adjusted OR = 4.3) and previous antibiotic therapy (adjusted OR = 5.7); no cases were documented among patients without risk factors. Hospital mortality rate was 10% in community-acquired, 14% in healthcare-associated and 19% in hospital-acquired infection. This study shows that healthcare-associated has a different microbiologic profile than those from community or hospital acquired for the four main focus of infection. Knowledge of this fact is important because the existing guidelines for community-acquired are not entirely applicable for this group of patients.

  10. Adipose tissue-deprived stem cells acquire cementoblast features treated with dental follicle cell conditioned medium containing dentin non-collagenous proteins in vitro

    International Nuclear Information System (INIS)

    Wen, Xiujie; Nie, Xin; Zhang, Li; Liu, Luchuan; Deng, Manjing

    2011-01-01

    Highlights: → In this study we examine the effects of dental follicle cell conditioned medium (DFCCM) containing dentin non-collagenous proteins (dNCPs) on differentiation of ADSCs. → We examined that ADSCs treated with dNCPs/DFCCM underwent morphological changes and significantly lost their proliferative capacity. → dNCPs/DFCCM enhanced the mineralization behaviour and mineralization-related marker expression of ADSCs. → ADSCs acquired cementoblast features in vitro with dNCPs/DFCCM treatment. -- Abstract: Adipose tissue-derived stem cells (ADSCs), which are easily harvested and show excellent pluripotency potential, have generated considerable interest in regenerative medicine. In this study, the differentiation of ADSCs was assessed after treatment with dental follicle cell conditioned medium (DFCCM) containing dentin non-collagenous proteins (dNCPs). ADSCs exhibited a fibroblast-like morphology and high proliferative capacity. However, after treatment with dNCPs/DFCCM, ADSCs changed from a fibroblast-like to cementoblast-like morphology and significantly lost their proliferative capacity. Alkaline phosphatase activity and in vitro mineralization behaviour of ADSCs were significantly enhanced. Mineralization-related markers including cementum attachment protein, bone sialoprotein, osteocalcin, osteopontin and osteonectin were detected at mRNA or protein levels, whereas dentin sialophosphoprotein and dentin sialoprotein were not detected, implying a cementoblast-like phenotype. These results demonstrate that ADSCs acquired cementoblast features in vitro with dNCPs/DFCCM treatment and could be a potential source of cementogenic cells for periodontal regeneration.

  11. Adipose tissue-deprived stem cells acquire cementoblast features treated with dental follicle cell conditioned medium containing dentin non-collagenous proteins in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Xiujie; Nie, Xin; Zhang, Li [Department of Stomatology, Daping Hospital and Research Institute of Surgery, Third Military Medical University, 10 Daping Changjiang Branch Road, Yuzhong District, Chongqing 400042 (China); Liu, Luchuan, E-mail: liuluchuan1957@126.com [Department of Stomatology, Daping Hospital and Research Institute of Surgery, Third Military Medical University, 10 Daping Changjiang Branch Road, Yuzhong District, Chongqing 400042 (China); Deng, Manjing, E-mail: iradeng@163.com [Department of Stomatology, Daping Hospital and Research Institute of Surgery, Third Military Medical University, 10 Daping Changjiang Branch Road, Yuzhong District, Chongqing 400042 (China)

    2011-06-10

    Highlights: {yields} In this study we examine the effects of dental follicle cell conditioned medium (DFCCM) containing dentin non-collagenous proteins (dNCPs) on differentiation of ADSCs. {yields} We examined that ADSCs treated with dNCPs/DFCCM underwent morphological changes and significantly lost their proliferative capacity. {yields} dNCPs/DFCCM enhanced the mineralization behaviour and mineralization-related marker expression of ADSCs. {yields} ADSCs acquired cementoblast features in vitro with dNCPs/DFCCM treatment. -- Abstract: Adipose tissue-derived stem cells (ADSCs), which are easily harvested and show excellent pluripotency potential, have generated considerable interest in regenerative medicine. In this study, the differentiation of ADSCs was assessed after treatment with dental follicle cell conditioned medium (DFCCM) containing dentin non-collagenous proteins (dNCPs). ADSCs exhibited a fibroblast-like morphology and high proliferative capacity. However, after treatment with dNCPs/DFCCM, ADSCs changed from a fibroblast-like to cementoblast-like morphology and significantly lost their proliferative capacity. Alkaline phosphatase activity and in vitro mineralization behaviour of ADSCs were significantly enhanced. Mineralization-related markers including cementum attachment protein, bone sialoprotein, osteocalcin, osteopontin and osteonectin were detected at mRNA or protein levels, whereas dentin sialophosphoprotein and dentin sialoprotein were not detected, implying a cementoblast-like phenotype. These results demonstrate that ADSCs acquired cementoblast features in vitro with dNCPs/DFCCM treatment and could be a potential source of cementogenic cells for periodontal regeneration.

  12. Ionizing radiation and photosynthetic ability of cyanobacteria

    International Nuclear Information System (INIS)

    Agarwal, Rachna; Sainis, Jayashree K.

    2006-01-01

    Unicellular photoautotrophic cyanobacteria, Anacystis nidulans when exposed to lethal dose of 1.5 kGy of 60 Co γ- radiation (D 10 = 257.32 Gy) were as effective photosynthetical as unirradiated controls immediately after irradiation although level of ROS was higher by several magnitudes in these irradiated cells. The results suggested the preservation of the functional integrity of thylakoids even after exposure to lethal dose of ionizing radiation. (author)

  13. Coherent memory functions for finite systems: hexagonal photosynthetic unit

    International Nuclear Information System (INIS)

    Barvik, I.; Herman, P.

    1990-10-01

    Coherent memory functions entering the Generalized Master Equation are presented for an hexagonal model of a photosynthetic unit. Influence of an energy heterogeneity on an exciton transfer is an antenna system as well as to a reaction center is investigated. (author). 9 refs, 3 figs

  14. Transcriptome analyses to investigate symbiotic relationships between marine protists

    Science.gov (United States)

    Balzano, Sergio; Corre, Erwan; Decelle, Johan; Sierra, Roberto; Wincker, Patrick; Da Silva, Corinne; Poulain, Julie; Pawlowski, Jan; Not, Fabrice

    2015-01-01

    Rhizaria are an important component of oceanic plankton communities worldwide. A number of species harbor eukaryotic microalgal symbionts, which are horizontally acquired in the environment at each generation. Although these photosymbioses are determinant for Rhizaria ability to thrive in oceanic ecosystems, the mechanisms for symbiotic interactions are unclear. Using high-throughput sequencing technology (i.e., 454), we generated large Expressed Sequence Tag (EST) datasets from four uncultured Rhizaria, an acantharian (Amphilonche elongata), two polycystines (Collozoum sp. and Spongosphaera streptacantha), and one phaeodarian (Aulacantha scolymantha). We assessed the main genetic features of the host/symbionts consortium (i.e., the holobiont) transcriptomes and found rRNA sequences affiliated to a wide range of bacteria and protists in all samples, suggesting that diverse microbial communities are associated with the holobionts. A particular focus was then carried out to search for genes potentially involved in symbiotic processes such as the presence of c-type lectins-coding genes, which are proteins that play a role in cell recognition among eukaryotes. Unigenes coding putative c-type lectin domains (CTLD) were found in the species bearing photosynthetic symbionts (A. elongata, Collozoum sp., and S. streptacantha) but not in the non-symbiotic one (A. scolymantha). More particularly, phylogenetic analyses group CTLDs from A. elongata and Collozoum sp. on a distinct branch from S. streptacantha CTLDs, which contained carbohydrate-binding motifs typically observed in other marine photosymbiosis. Our data suggest that similarly to other well-known marine photosymbiosis involving metazoans, the interactions of glycans with c-type lectins is likely involved in modulation of the host/symbiont specific recognition in Radiolaria. PMID:25852650

  15. Plastid genome structure and loss of photosynthetic ability in the parasitic genus Cuscuta.

    Science.gov (United States)

    Revill, Meredith J W; Stanley, Susan; Hibberd, Julian M

    2005-09-01

    The genus Cuscuta (dodder) is composed of parasitic plants, some species of which appear to be losing the ability to photosynthesize. A molecular phylogeny was constructed using 15 species of Cuscuta in order to assess whether changes in photosynthetic ability and alterations in structure of the plastid genome relate to phylogenetic position within the genus. The molecular phylogeny provides evidence for four major clades within Cuscuta. Although DNA blot analysis showed that Cuscuta species have smaller plastid genomes than tobacco, and that plastome size varied significantly even within one Cuscuta clade, dot blot analysis indicated that the dodders possess homologous sequence to 101 genes from the tobacco plastome. Evidence is provided for significant rates of DNA transfer from plastid to nucleus in Cuscuta. Size and structure of Cuscuta plastid genomes, as well as photosynthetic ability, appear to vary independently of position within the phylogeny, thus supporting the hypothesis that within Cuscuta photosynthetic ability and organization of the plastid genome are changing in an unco-ordinated manner.

  16. Effect of different levels of air pollution on photosynthetic activity of some lichens

    Directory of Open Access Journals (Sweden)

    Ewa Niewiadomska

    2014-01-01

    Full Text Available Four lichen species: Hypogymnia physodes, Pseudevernia furfuracea, Parmelia saxatilis, and Platismatia glauca were collected from two sites (S. Poland with a different air pollution level: "Kamienica valley" (less polluted and "Kopa" (more polluted. The thalli were compared with respect to their: net photosynthetic rate (PN, fluorescence parameters (Fv/Fm, Fm, Fm/Fo, chlorophyll a+b content, and phaeophytinization quotient (O.D.435/O.D.415. PN intensity, chlorophyll a+b and O.D.435/O.D.415 were reduced only in Pa furfuracea collected from Kopa, which is in agreement with the Hawksworth-Rose scale of sensitivity of lichens to air pollution. Fluorescence parameters were significantly lowered in all lichens coming from the more polluted site (except of Fv/Fm and Fm/F0 in P. saxatilis. Parameters based on chlorophyll fluorescence measurements enable to reveal the very early signs of decreased photosynthetical capacity of the thalli, caused by air pollution, before changes in the other photosynthetic parameters become mesurable.

  17. Photosynthetic functions of Synechococcus in the ocean microbiomes of diverse salinity and seasons.

    Science.gov (United States)

    Kim, Yihwan; Jeon, Jehyun; Kwak, Min Seok; Kim, Gwang Hoon; Koh, InSong; Rho, Mina

    2018-01-01

    Synechococcus is an important photosynthetic picoplankton in the temperate to tropical oceans. As a photosynthetic bacterium, Synechococcus has an efficient mechanism to adapt to the changes in salinity and light intensity. The analysis of the distributions and functions of such microorganisms in the ever changing river mouth environment, where freshwater and seawater mix, should help better understand their roles in the ecosystem. Toward this objective, we have collected and sequenced the ocean microbiome in the river mouth of Kwangyang Bay, Korea, as a function of salinity and temperature. In conjunction with comparative genomics approaches using the sequenced genomes of a wide phylogeny of Synechococcus, the ocean microbiome was analyzed in terms of their composition and clade-specific functions. The results showed significant differences in the compositions of Synechococcus sampled in different seasons. The photosynthetic functions in such enhanced Synechococcus strains were also observed in the microbiomes in summer, which is significantly different from those in other seasons.

  18. The N-terminal region of eukaryotic translation initiation factor 5A signals to nuclear localization of the protein

    International Nuclear Information System (INIS)

    Parreiras-e-Silva, Lucas T.; Gomes, Marcelo D.; Oliveira, Eduardo B.; Costa-Neto, Claudio M.

    2007-01-01

    The eukaryotic translation initiation factor 5A (eIF5A) is a ubiquitous protein of eukaryotic and archaeal organisms which undergoes hypusination, a unique post-translational modification. We have generated a polyclonal antibody against murine eIF5A, which in immunocytochemical assays in B16-F10 cells revealed that the endogenous protein is preferentially localized to the nuclear region. We therefore analyzed possible structural features present in eIF5A proteins that could be responsible for that characteristic. Multiple sequence alignment analysis of eIF5A proteins from different eukaryotic and archaeal organisms showed that the former sequences have an extended N-terminal segment. We have then performed in silico prediction analyses and constructed different truncated forms of murine eIF5A to verify any possible role that the N-terminal extension might have in determining the subcellular localization of the eIF5A in eukaryotic organisms. Our results indicate that the N-terminal extension of the eukaryotic eIF5A contributes in signaling this protein to nuclear localization, despite of bearing no structural similarity with classical nuclear localization signals

  19. Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees.

    Science.gov (United States)

    Kenzo, Tanaka; Inoue, Yuta; Yoshimura, Mitsunori; Yamashita, Megumi; Tanaka-Oda, Ayumi; Ichie, Tomoaki

    2015-01-01

    Knowledge of variations in morphophysiological leaf traits with forest height is essential for quantifying carbon and water fluxes from forest ecosystems. Here, we examined changes in leaf traits with forest height in diverse tree species and their role in environmental acclimation in a tropical rain forest in Borneo that does not experience dry spells. Height-related changes in leaf physiological and morphological traits [e.g., maximum photosynthetic rate (Amax), stomatal conductance (gs), dark respiration rate (Rd), carbon isotope ratio (δ(13)C), nitrogen (N) content, and leaf mass per area (LMA)] from understory to emergent trees were investigated in 104 species in 29 families. We found that many leaf area-based physiological traits (e.g., A(max-area), Rd, gs), N, δ(13)C, and LMA increased linearly with tree height, while leaf mass-based physiological traits (e.g., A(max-mass)) only increased slightly. These patterns differed from other biomes such as temperate and tropical dry forests, where trees usually show decreased photosynthetic capacity (e.g., A(max-area), A(max-mass)) with height. Increases in photosynthetic capacity, LMA, and δ(13)C are favored under bright and dry upper canopy conditions with higher photosynthetic productivity and drought tolerance, whereas lower R d and LMA may improve shade tolerance in lower canopy trees. Rapid recovery of leaf midday water potential to theoretical gravity potential during the night supports the idea that the majority of trees do not suffer from strong drought stress. Overall, leaf area-based photosynthetic traits were associated with tree height and the degree of leaf drought stress, even in diverse tropical rain forest trees.

  20. Ancient Origin of the U2 Small Nuclear RNA Gene-Targeting Non-LTR Retrotransposons Utopia.

    Science.gov (United States)

    Kojima, Kenji K; Jurka, Jerzy

    2015-01-01

    Most non-long terminal repeat (non-LTR) retrotransposons encoding a restriction-like endonuclease show target-specific integration into repetitive sequences such as ribosomal RNA genes and microsatellites. However, only a few target-specific lineages of non-LTR retrotransposons are distributed widely and no lineage is found across the eukaryotic kingdoms. Here we report the most widely distributed lineage of target sequence-specific non-LTR retrotransposons, designated Utopia. Utopia is found in three supergroups of eukaryotes: Amoebozoa, SAR, and Opisthokonta. Utopia is inserted into a specific site of U2 small nuclear RNA genes with different strength of specificity for each family. Utopia families from oomycetes and wasps show strong target specificity while only a small number of Utopia copies from reptiles are flanked with U2 snRNA genes. Oomycete Utopia families contain an "archaeal" RNase H domain upstream of reverse transcriptase (RT), which likely originated from a plant RNase H gene. Analysis of Utopia from oomycetes indicates that multiple lineages of Utopia have been maintained inside of U2 genes with few copy numbers. Phylogenetic analysis of RT suggests the monophyly of Utopia, and it likely dates back to the early evolution of eukaryotes.