WorldWideScience

Sample records for non-phosphorylated neurofilament smi-32

  1. Areas of cat auditory cortex as defined by neurofilament proteins expressing SMI-32.

    Science.gov (United States)

    Mellott, Jeffrey G; Van der Gucht, Estel; Lee, Charles C; Carrasco, Andres; Winer, Jeffery A; Lomber, Stephen G

    2010-08-01

    The monoclonal antibody SMI-32 was used to characterize and distinguish individual areas of cat auditory cortex. SMI-32 labels non-phosphorylated epitopes on the high- and medium-molecular weight subunits of neurofilament proteins in cortical pyramidal cells and dendritic trees with the most robust immunoreactivity in layers III and V. Auditory areas with unique patterns of immunoreactivity included: primary auditory cortex (AI), second auditory cortex (AII), dorsal zone (DZ), posterior auditory field (PAF), ventral posterior auditory field (VPAF), ventral auditory field (VAF), temporal cortex (T), insular cortex (IN), anterior auditory field (AAF), and the auditory field of the anterior ectosylvian sulcus (fAES). Unique patterns of labeling intensity, soma shape, soma size, layers of immunoreactivity, laminar distribution of dendritic arbors, and labeled cell density were identified. Features that were consistent in all areas included: layers I and IV neurons are immunonegative; nearly all immunoreactive cells are pyramidal; and immunoreactive neurons are always present in layer V. To quantify the results, the numbers of labeled cells and dendrites, as well as cell diameter, were collected and used as tools for identifying and differentiating areas. Quantification of the labeling patterns also established profiles for ten auditory areas/layers and their degree of immunoreactivity. Areal borders delineated by SMI-32 were highly correlated with tonotopically-defined areal boundaries. Overall, SMI-32 immunoreactivity can delineate ten areas of cat auditory cortex and demarcate topographic borders. The ability to distinguish auditory areas with SMI-32 is valuable for the identification of auditory cerebral areas in electrophysiological, anatomical, and/or behavioral investigations.

  2. Neurofilament proteins are preferentially expressed in descending output neurons of the cat the superior colliculus: a study using SMI-32.

    Science.gov (United States)

    Fuentes-Santamaria, V; Stein, B E; McHaffie, J G

    2006-01-01

    Physiological studies indicate that the output neurons in the multisensory (i.e. intermediate and deep) laminae of the cat superior colliculus receive converging information from widespread regions of the neuraxis, integrate this information, and then relay the product to regions of the brainstem involved in the control of head and eye movements. Yet, an understanding of the neuroanatomy of these converging afferents has been hampered because many terminals contact distal dendrites that are difficult to label with the neurochemical markers generally used to visualize superior colliculus output neurons. Here we show that the SMI-32 antibody, directed at the non-phosphorylated epitopes of high molecular weight neurofilament proteins, is an effective marker for these superior colliculus output neurons. It is also one that can label their distal dendrites. Superior colliculus sections processed for SMI-32 revealed numerous labeled neurons with varying morphologies within the deep laminae. In contrast, few labeled neurons were observed in the superficial laminae. Neurons with large somata in the lateral aspects of the deep superior colliculus were particularly well labeled, and many of their secondary and tertiary dendrites were clearly visible. Injections of the fluorescent biotinylated dextran amine into the pontine reticular formation revealed that approximately 80% of the SMI-32 immunostained neurons also contained retrogradely transported biotinylated dextran amine, indicating that SMI-32 is a common cytoskeletal component expressed in descending output neurons. Superior colliculus output neurons also are known to express the calcium-binding protein parvalbumin, and many SMI-32 immunostained neurons also proved to be parvalbumin immunostained. These studies suggest that SMI-32 can serve as a useful immunohistochemical marker for detailing the somatic and dendritic morphology of superior colliculus output neurons and for facilitating evaluations of their input

  3. Maturation of multisensory integration in the superior colliculus: expression of nitric oxide synthase and neurofilament SMI-32.

    Science.gov (United States)

    Fuentes-Santamaria, Veronica; McHaffie, John G; Stein, Barry E

    2008-11-25

    Nitric oxide (NO) containing (nitrergic) interneurons are well-positioned to convey the cortical influences that are crucial for multisensory integration in superior colliculus (SC) output neurons. However, it is not known whether nitrergic interneurons are in this position early in life, and might, therefore, also play a role in the functional maturation of this circuit. In the present study, we investigated the postnatal developmental relationship between these two populations of neurons using Beta-nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH) histochemistry and SMI-32 immunocytochemistry to label presumptive interneurons and output neurons, respectively. SMI-32 immunostained neurons were proved to mature and retained immature anatomical features until approximately 8 postnatal weeks. In contrast, nitrergic interneurons developed more rapidly. They had achieved their adult-like anatomy by 4 postnatal weeks and were in a position to influence the dendritic elaboration of output neurons. It is this dendritic substrate through which much of the cortico-collicular influence is expressed. Double-labeling experiments showed that the dendritic and axonal processes of nitrergic interneurons already apposed the somata and dendrites of SMI-32 labeled neurons even at the earliest age examined. The results suggest that nitrergic interneurons play a role in refining the cortico-collicular projection patterns that are believed to be essential for SC output neurons to engage in multisensory integration and to support normal orientation responses to cross-modal stimuli.

  4. Distribution of SMI-32-immunoreactive neurons in the central auditory system of the rat.

    Science.gov (United States)

    Ouda, Ladislav; Druga, Rastislav; Syka, Josef

    2012-01-01

    SMI-32 antibody recognizes a non-phosphorylated epitope of neurofilament proteins, which are thought to be necessary for the maintenance of large neurons with highly myelinated processes. We investigated the distribution and quantity of SMI-32-immunoreactive(-ir) neurons in individual parts of the rat auditory system. SMI-32-ir neurons were present in all auditory structures; however, in most regions they constituted only a minority of all neurons (10-30%). In the cochlear nuclei, a higher occurrence of SMI-32-ir neurons was found in the ventral cochlear nucleus. Within the superior olivary complex, SMI-32-ir cells were particularly abundant in the medial nucleus of the trapezoid body (MNTB), the only auditory region where SMI-32-ir neurons constituted an absolute majority of all neurons. In the inferior colliculus, a region with the highest total number of neurons among the rat auditory subcortical structures, the percentage of SMI-32-ir cells was, in contrast to the MNTB, very low. In the medial geniculate body, SMI-32-ir neurons were prevalent in the ventral division. At the cortical level, SMI-32-ir neurons were found mainly in layers III, V and VI. Within the auditory cortex, it was possible to distinguish the Te1, Te2 and Te3 areas on the basis of the variable numerical density and volumes of SMI-32-ir neurons, especially when the pyramidal cells of layer V were taken into account. SMI-32-ir neurons apparently form a representative subpopulation of neurons in all parts of the rat central auditory system and may belong to both the inhibitory and excitatory systems, depending on the particular brain region.

  5. Selective neurofilament (SMI-32, FNP-7 and N200) expression in subpopulations of layer V pyramidal neurons in vivo and in vitro.

    Science.gov (United States)

    Voelker, Courtney C J; Garin, Nathalie; Taylor, Jeremy S H; Gähwiler, Beat H; Hornung, Jean-Pierre; Molnár, Zoltán

    2004-11-01

    There are two main types of layer V pyramidal neurons in rat cortex. Type I neurons have tufted apical dendrites extending into layer I, produce bursts of action potentials and project to subcortical targets (spinal cord, superior colliculus and pontine nuclei). Type II neurons have apical dendrites, which arborize in layers II-IV, do not produce bursts of action potentials and project to ipsilateral and contralateral cortex. The specific expression of different genes and proteins in these two distinct layer V neurons is unknown. To distinguish between distinct subpopulations, fluorescent microspheres were injected into subcortical targets (labeling type I neurons) or primary somatosensory cortex (labeling type II neurons) of adult rats. After transport, cortical sections were processed for immunohistochemistry using various antibodies. This study demonstrated that antigens recognized by SMI-32, N200 and FNP-7 antibodies were only expressed in subcortical (type I)--but not in contralateral (type II)--projecting neurons. NR1, NR2a/b, PLCbeta1, BDNF, NGF and TrkB antigens were highly expressed in all neuronal subpopulations examined. Organotypic culture experiments demonstrated that the development of neurofilament expression and laminar specificity does not depend on the presence of the subcortical targets. This study suggests specific markers for the subcortical projecting layer V neuron subpopulations.

  6. Neurofilament heavy chain expression and neuroplasticity in rat auditory cortex after unilateral and bilateral deafness.

    Science.gov (United States)

    Park, Min-Hyun; Jang, Jeong Hun; Song, Jae-Jin; Lee, Ho Sun; Oh, Seung Ha

    2016-09-01

    Deafness induces many plastic changes in the auditory neural system. For instance, dendritic changes cause synaptic changes in neural cells. SMI-32, a monoclonal antibody reveals auditory areas and recognizes non-phosphorylated epitopes on medium- and high-molecular-weight subunits of neurofilament proteins in cortical pyramidal neuron dendrites. We investigated SMI-32-immunoreactive (-ir) protein levels in the auditory cortices of rats with induced unilateral and bilateral deafness. Adult male Sprague-Dawley rats were divided into unilateral deafness (UD), bilateral deafness (BD), and control groups. Deafness was induced by cochlear ablation. All rats were sacrificed, and the auditory cortices were harvested for real-time quantitative polymerase chain reaction (RT-qPCR) and western blot analyses at 2, 4, 6, and 12 weeks after deafness was induced. Immunohistochemical staining was performed to evaluate the location of SMI-32-ir neurons. Neurofilament heavy chain (NEFH) mRNA expression and SMI-32-ir protein levels were increased in the BD group. In particular, SMI-32-ir protein levels increased significantly 6 and 12 weeks after deafness was induced. In contrast, no significant changes in protein level were detected in the right or left auditory cortices at any time point in the UD group. NEFH mRNA level decreased at 4 weeks after deafness was induced in the UD group, but recovered thereafter. Taken together, BD induced plastic changes in the auditory cortex, whereas UD did not affect the auditory neural system sufficiently to show plastic changes, as measured by neurofilament protein level.

  7. SMI-32 parcellates the visual cortical areas of the marmoset.

    Science.gov (United States)

    Baldauf, Zsolt B

    The distribution pattern of SMI-32-immunoreactivity (SMI-32-ir) of neuronal elements was examined in the visual cortical areas of marmoset monkey. Layer IV of the primary visual cortex (V1) and layers III and V of the extrastriate areas showed the most abundant SMI-32-ir. The different areal and laminar distribution of SMI-32-ir allowed the distinction between various extrastriate areas and determined their exact anatomical boundaries in the New World monkey, Callithrix penicillata. It is shown here that the parcellating nature of SMI-32 described earlier in the visual cortical areas of other mammals - including Old World monkeys - is also present in the marmoset. Furthermore, a comparison became possible between the chemoanatomical organization of New World and Old World primates' visual cortical areas.

  8. The influence of aging on the number of neurons and levels of non-phosporylated neurofilament proteins in the central auditory system of rats

    Directory of Open Access Journals (Sweden)

    Jana eBurianová

    2015-03-01

    Full Text Available In the present study, an unbiased stereological method was used to determine the number of all neurons in Nissl stained sections of the inferior colliculus (IC, medial geniculate body (MGB and auditory cortex (AC in rats (strains Long Evans and Fischer 344 and their changes with aging. In addition, using the optical fractionator and western blot technique, we also evaluated the number of SMI-32-immunoreactive(-ir neurons and levels of non-phosphorylated neurofilament proteins in the IC, MGB, AC, and visual cortex (VC of young and old rats of the two strains. The SMI-32 positive neuronal population comprises about 10% of all neurons in the rat IC, MGB and AC and represents a prevalent population of large neurons with highly myelinated and projecting processes. In both Long Evans and Fischer 344 rats, the total number of neurons in the IC was roughly similar to that in the AC. With aging, we found a rather mild and statistically non-significant decline in the total number of neurons in all three analyzed auditory regions in both rat strains. In contrast to this, the absolute number of SMI-32-ir neurons in both Long Evans and Fischer 344 rats significantly decreased with aging in all the examined structures. The western blot technique also revealed a significant age-related decline in the levels of non-phosphorylated neurofilaments in the auditory brain structures, 30-35%. Our results demonstrate that presbycusis in rats is not likely to be primarily associated with changes in the total number of neurons. On the other hand, the pronounced age-related decline in the number of neurons containing non-phosphorylated neurofilaments as well as their protein levels in the central auditory system may contribute to age-related deterioration of hearing function.

  9. Expression and phosphorylation of neurofilament protein in different neuronal tissues

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The neurofilament proteins (NFPs) from different neuronal tissues including Alzheimer and Huntington disease gray matter, rat brain gray, white matter and spinal cord were separated biochemically into two major fractions. A systematic investigation on the distribution, expression and phosphorylation of NFPs in those fractions was undertaken in the present study. It was found that only non-phosphorylated NF-H and NF-M, but not NF-L subunit were detected in Alzheimer brain gray matter high speed supernatant, whereas all neurofilament subunits including non-phosphorylated and phosphorylated were measured in high speed pellet fraction of the same tissue. The hyperphosphorylation of NF-H and NF-M in Alzheimer brain was shown by phosphorylation dependent monoclonal antibodies SMI31 and SMI34. This hyperphosphorylation was confirmed by non-phosphorylation dependent antibody SMI32 with dephosphosphorylation of the samples. Furthermore, an increased amount of NF-H, NH-M and NF-L, detected by SMI33 and NR4 respectively, was also observed in Alzheimer samples, in which the elevation in NF-L was significant. A significantly different immunoblot patterns in distribution, expression and phosphorylation were determined in various position of the neural system and alternative fractions. To our best knowledge, this is the first data shown definite abnormality of NFPs in Alzheimer disease. The information obtained in the present study will be extremely valuable in further study of the proteins both in physiological and pathological conditions.

  10. Neurochemical organization of the human basal ganglia: anatomofunctional territories defined by the distributions of calcium-binding proteins and SMI-32.

    Science.gov (United States)

    Morel, Anne; Loup, Fabienne; Magnin, Michel; Jeanmonod, Daniel

    2002-01-28

    The distribution of the calcium-binding proteins calbindin-D28K (CB), parvalbumin (PV) and calretinin (CR), and of the nonphosphorylated neurofilament protein (with SMI-32) was investigated in the human basal ganglia to identify anatomofunctional territories. In the striatum, gradients of neuropil immunostaining define four major territories: The first (T1) includes all but the rostroventral half of the putamen and is characterized by enhanced matriceal PV and SMI-32 immunoreactivity (-ir). The second territory (T2) encompasses most part of the caudate nucleus (Cd) and rostral putamen (PuT), which show enhanced matriceal CB-ir. The third and fourth territories (T3 and T4) comprise rostroventral parts of Cd and PuT characterized by complementary patch/matrix distributions of CB- and CR-ir, and the accumbens nucleus (Acb), respectively. The latter is separated into lateral (prominently enhanced in CB-ir) and medial (prominently enhanced in CR-ir) subdivisions. In the pallidum, parallel gradients also delimit four territories, T1 in the caudal half of external (GPe) and internal (GPi) divisions, characterized by enhanced PV- and SMI-32-ir; T2 in their rostral half, characterized by enhanced CB-ir; and T3 and T4 in their rostroventral pole and in the subpallidal area, respectively, both expressing CB- and CR-ir but with different intensities. The subthalamic nucleus (STh) shows contrasting patterns of dense PV-ir (sparing only the most medial part) and low CB-ir. Expression of CR-ir is relatively low, except in the medial, low PV-ir, part of the nucleus, whereas SMI-32-ir is moderate across the whole nucleus. The substantia nigra is characterized by complementary patterns of high neuropil CB- and SMI-32-ir in pars reticulata (SNr) and high CR-ir in pars compacta (SNc) and in the ventral tegmental area (VTA). The compartmentalization of calcium-binding proteins and SMI-32 in the human basal ganglia, in particular in the striatum and pallidum, delimits anatomofunctional

  11. Loss of nonphosphorylated neurofilament immunoreactivity in temporal cortical areas in Alzheimer's disease.

    Science.gov (United States)

    Thangavel, R; Sahu, S K; Van Hoesen, G W; Zaheer, A

    2009-05-05

    The distribution of immunoreactive neurons with nonphosphorylated neurofilament protein (SMI32) was studied in temporal cortical areas in normal subjects and in patients with Alzheimer's disease (AD). SMI32 immunopositive neurons were localized mainly in cortical layers II, III, V and VI, and were medium to large-sized pyramidal neurons. Patients with AD had prominent degeneration of SMI32 positive neurons in layers III and V of Brodmann areas 38, 36, 35 and 20; in layers II and IV of the entorhinal cortex (Brodmann area 28); and hippocampal neurons. Neurofibrillary tangles (NFTs) were stained with Thioflavin-S and with an antibody (AT8) against hyperphosphorylated tau. The NFT distribution was compared to that of the neuronal cytoskeletal marker SMI32 in these temporal cortical regions. The results showed that the loss of SMI32 immunoreactivity in temporal cortical regions of AD brain is paralleled by an increase in NFTs and AT8 immunoreactivity in neurons. The SMI32 immunoreactivity was drastically reduced in the cortical layers where tangle-bearing neurons are localized. A strong SMI32 immunoreactivity was observed in numerous neurons containing NFTs by double-immunolabeling with SMI32 and AT8. However, few neurons were labeled by AT8 and SMI32. These results suggest that the development of NFTs in some neurons results from some alteration in SMI32 expression, but does not account for all, particularly, early NFT-related changes. Also, there is a clear correlation of NFTs with selective population of pyramidal neurons in the temporal cortical areas and these pyramidal cells are specifically prone to formation of paired helical filaments. Furthermore, these pyramidal neurons might represent a significant portion of the neurons of origin of long corticocortical connection, and consequently contribute to the destruction of memory-related input to the hippocampal formation.

  12. Axonal loss and neurofilament phosphorylation changes accompany lesion development and clinical progression in multiple sclerosis.

    Science.gov (United States)

    Schirmer, Lucas; Antel, Jack P; Brück, Wolfgang; Stadelmann, Christine

    2011-07-01

    Neuroaxonal damage and loss are increasingly recognized as disability determining features in multiple sclerosis (MS) pathology. However, little is known about the long-term sequelae of inflammatory demyelination on neurons and axons. Spinal cord tissue of 31 MS patients was compared to three amyotrophic lateral sclerosis (ALS) and 10 control subjects. MS lesions were staged according to the density of KiM-1P positive macrophages and microglia and the presence of myelin basic protein (MBP) positive phagocytes. T cells were quantified in the parenchyma and meninges. Neuroaxonal changes were studied by immunoreactivity (IR) for amyloid precursor protein (APP) and variably phosphorylated neurofilaments (SMI312, SMI31, SMI32). Little T cell infiltration was still evident in chronic inactive lesions. The loss of SMI32 IR in ventral horn neurons correlated with MS lesion development and disease progression. Similarly, axonal loss in white matter (WM) lesions correlated with disease duration. A selective reduction of axonal phosphorylated neurofilaments (SMI31) was observed in WM lesions. In ALS, the loss of neuronal SMI32 IR was even more pronounced, whereas the relative axonal reduction resembled that found in MS. Progressive neuroaxonal neurofilament alterations in the context of chronic inflammatory demyelination may reflect changes in neuroaxonal metabolism and result in chronic neuroaxonal dysfunction as a putative substrate of clinical progression.

  13. Melatonin attenuates β-amyloid-induced inhibition of neurofilament expression

    Institute of Scientific and Technical Information of China (English)

    Ying-chun ZHANG; Ze-fen WANG; Qun WANG; Yi-peng WANG; Jian-zhi WANG

    2004-01-01

    AIM: To explore the effect of β-amyloid (Aβ) on metabolism of cytoskeletal protein neurofilament, and search for effective cure to the lesion. METHODS: Wild type murine neuroblastoma N2a (N2awt) and N2a stably transfected with wild type amyloid precursor protein (N2aAPP) were cultured. Sandwich ELISA, immunocytochemistry, and Western blot were used respectively to measure the level of Aβ, the expression and phosphorylation of neurofilament proteins. RESULTS: The immunoreactivity of neurofilament protein was almost abolished in N2aAPP, which beard a significantly higher level of Aβ. Melatonin effectively decreased the level of Aβ, and restored partially the level of phosphorylated and non-phosphorylated neurofilament in N2aAPP. CONCLUSION: Overproduction of Aβ inhibits neurofilament expression, and melatonin attenuates the Aβ-induced lesion in cytoskeletal protein.

  14. Hyperphosphorylation and accumulation of neurofilament proteins in Alzheimer brain and the possible mechanism

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Alzheimer disease (AD) neurofibrillary degeneration is characterized by a disruption of the cytoskeleton. The alteration of microtubule system and the microtubule-associated protein has been extensively investigated in this pathology. In the present study, we decided to explore the role of neurofilament (NF) proteins in AD neurofibrillary degeneration. We first investigated the content and the phosphorylation level of NF proteins in AD brain by using a panel of anti-NF antibodies. It was found by quantitative Western blot that the NF subunits were exclusively detected in an insoluble fraction from AD brain grey matter. The level of phosphorylated (p)-NF-H and (p)-NF-M was increased 1.5 and 1.3 times (P<0.05) respectively at phosphorylation specific antibody SMI31 epitope in AD as compared to neurological controls of Huntington disease (HD). A 1.6 fold elevation (P>0.05) of p-NF-H to another phosphate reactive antibody SMI34 was also seen in AD. The level of non-phosphorylated (np)-NF-H/M recognized by SMI33 was similar before alkaline phosphatase (ALP) treatment, but the total level of NF-H/M was 1.5 and 1.6 times (P<0.01) higher in AD than HD after dephosphorylation. Furthermore, a 1.8 fold increase of NF-M to SMI32 was observed in AD only after ALP treatment, suggesting that the NF-H/M are increased in the phosphorylated form. The amount of NF-L determined by NR-4 was 1.6 fold (P<0.01) higher in AD than HD. To our knowledge, this is the first biochemical data shown definite abnormality of NF subunits in AD brain. To understand the possible mechanism for the abnormal hyperphosphorylation and elevation of NF in AD brain, we treated human SY5Y neuroblastoma cell with protein phosphatase(PP)-2A and PP-1 inhibitor okadaic acid(OA). Then, we determined the relationship between an AD-like PP-A and PP-1 activity deficiency and NF phosphorylation as well as intracellular translocation in modeled cell system. It was demonstrated that p-NF-H/M detected by SMI31 and

  15. Both electrical stimulation thresholds and SMI-32-immunoreactive retinal ganglion cell density correlate with age in S334ter line 3 rat retina.

    Science.gov (United States)

    Chan, Leanne L H; Lee, Eun-Jin; Humayun, Mark S; Weiland, James D

    2011-06-01

    Electrical stimulation threshold and retinal ganglion cell density were measured in a rat model of retinal degeneration. We performed in vivo electrophysiology and morphometric analysis on normal and S334ter line 3 (RD) rats (ages 84-782 days). We stimulated the retina in anesthetized animals and recorded evoked responses in the superior colliculus. Current pulses were delivered with a platinum-iridium (Pt-Ir) electrode of 75-μm diameter positioned on the epiretinal surface. In the same animals used for electrophysiology, SMI-32 immunolabeling of the retina enabled ganglion cell counting. An increase in threshold currents positively correlated with age of RD rats. SMI-32-labeled retinal ganglion cell density negatively correlated with age of RD rats. ANOVA shows that RD postnatal day (P)100 and P300 rats have threshold and density similar to normal rats, but RD P500 and P700 rats have threshold and density statistically different from normal rats (P < 0.05). Threshold charge densities were within the safety limits of Pt for all groups and pulse configurations, except at RD P600 and RD P700, where pulses were only safe up to 1- and 0.2-ms duration, respectively. Preservation of ganglion cells may enhance the efficiency and safety of electronic retinal implants.

  16. 可卡因导致tau蛋白和神经细丝阿尔采末病样磷酸化%Alzheimer-like phosphorylation of tau and neurofilament induced by cocaine in vivo

    Institute of Scientific and Technical Information of China (English)

    刘世杰; 方征宇; 杨莹; 邓亨梅; 王建枝

    2003-01-01

    AIM: To explore the relationship between cocaine-induced cyclin-dependent kinase-5 (CDK5) overexpression oroveractivation and Alzheimer-like hyperphosphorylation of cytoskeletal protein. METHODS: Cocaine was injected(ip, 20 mg@kg-1@d-1) into rats and the phosphorylation of neuronal cytoskeletal proteins was measured by Westernblotting. RESULTS: The levels of phosphorylated tau at PHF-1 epitope and phosphorylated neurofilament deter-mined by SMI31 were elevated in rat brain hippocampus, cortex, and caudatoputamen on d 8 and d 16 after theinjection of cocaine, when compared with saline control rat at the same brain regions. On the other hand, the levelsof tau non-phosphorylated at tau-1 site and non-phosphorylated neurofilament determined by SMI32 were de-creased in same brain regions at the same time points examined. No significant difference of phosphorylated tauand neurofilament at those epitopes was seen on d 4. Although cocaine injection could induce significanthyperphosphorylation of neuronal cytoskeletal proteins, the overexpression of CDK5 and p35 was not detected.CONCLUSION: Peritoneal injection of cocaine induces Alzheimer-like hyperphosphorylation of tau and neurofilamentin rat brain, and the effect may be not relevant to an increase in overexpression or overactivation of CDK5.%目的:研究可卡因导致细胞环素依赖激酶5(CDK5)过度表达与细胞骨架蛋白阿尔采末病样过度磷酸化的关系.方法:大鼠腹腔注射可卡因(20 mg.kg-1.d-1),采用免疫印迹技术检测tau蛋白和神经细丝的过度磷酸化.结果:腹腔注射可卡因8天和16天后,大鼠海马、皮质和尾壳核的tau蛋白在PHF-1位点的磷酸化和神经细丝磷酸化水平显著增加.在4天未见细胞骨架蛋白磷酸程度的改变.另外,在同样的脑区和相同的时相点,tau蛋白在Tau-1位点的非磷酸化和神经细丝的非磷酸化水平显著降低.然而,未在实验中发现CDK5和p35的过度表达.结论:腹腔注射可卡因可

  17. Neurofilament ELISA validation.

    NARCIS (Netherlands)

    Petzold, A.; Altintas, A.; Andreoni, L.; Bartos, A.; Berthele, A.; Blankenstein, M.A.; Buee, L.; Castellazzi, M.; Cepok, S.; Comabella, M.; Constantinescu, C.S.; Deisenhammer, F.; Deniz, G.; Erten, G.; Espino, M.; Fainardi, E.; Franciotta, D.; Freedman, M.S.; Giedraitis, V.; Gilhus, N.E.; Giovannoni, G.; Glabinski, A.; Grieb, P.; Hartung, H.P.; Hemmer, B.; Herukka, S.K.; Hintzen, R.; Ingelsson, M.; Jackson, S.; Jacobsen, S.; Jafari, N.; Jalosinski, M.; Jarius, S.; Kapaki, E.; Kieseier, B.C.; Koel-Simmelink, M.J.; Kornhuber, J.; Kuhle, J.; Kurzepa, J.; Lalive, P.H.; Lannfelt, L.; Lehmensiek, V.; Lewczuk, P.; Livrea, P.; Marnetto, F.; Martino, D.; Menge, T.; Norgren, N.; Papuc, E.; Paraskevas, G.P.; Pirttila, T.; Rajda, C.; Rejdak, K.; Ricny, J.; Ripova, D.; Rosengren, L.; Ruggieri, M.; Schraen, S.; Shaw, G.; Sindic, C.; Siva, A.; Stigbrand, T.; Stonebridge, I.; Topcular, B.; Trojano, M.; Tumani, H.; Twaalfhoven, H.A.; Vecsei, L.; Pesch, V. Van; Stichele, H. van der; Vedeler, C.; Verbeek, M.M.; Villar, L.M.; Weissert, R.; Wildemann, B.; Yang, C.; Yao, K.; Teunissen, C.E.

    2010-01-01

    BACKGROUND: Neurofilament proteins (Nf) are highly specific biomarkers for neuronal death and axonal degeneration. As these markers become more widely used, an inter-laboratory validation study is required to identify assay criteria for high quality performance. METHODS: The UmanDiagnostics NF-light

  18. Neurofilament ELISA validation.

    NARCIS (Netherlands)

    Petzold, A.; Altintas, A.; Andreoni, L.; Bartos, A.; Berthele, A.; Blankenstein, M.A.; Buee, L.; Castellazzi, M.; Cepok, S.; Comabella, M.; Constantinescu, C.S.; Deisenhammer, F.; Deniz, G.; Erten, G.; Espino, M.; Fainardi, E.; Franciotta, D.; Freedman, M.S.; Giedraitis, V.; Gilhus, N.E.; Giovannoni, G.; Glabinski, A.; Grieb, P.; Hartung, H.P.; Hemmer, B.; Herukka, S.K.; Hintzen, R.; Ingelsson, M.; Jackson, S.; Jacobsen, S.; Jafari, N.; Jalosinski, M.; Jarius, S.; Kapaki, E.; Kieseier, B.C.; Koel-Simmelink, M.J.; Kornhuber, J.; Kuhle, J.; Kurzepa, J.; Lalive, P.H.; Lannfelt, L.; Lehmensiek, V.; Lewczuk, P.; Livrea, P.; Marnetto, F.; Martino, D.; Menge, T.; Norgren, N.; Papuc, E.; Paraskevas, G.P.; Pirttila, T.; Rajda, C.; Rejdak, K.; Ricny, J.; Ripova, D.; Rosengren, L.; Ruggieri, M.; Schraen, S.; Shaw, G.; Sindic, C.; Siva, A.; Stigbrand, T.; Stonebridge, I.; Topcular, B.; Trojano, M.; Tumani, H.; Twaalfhoven, H.A.; Vecsei, L.; Pesch, V. Van; Stichele, H. van der; Vedeler, C.; Verbeek, M.M.; Villar, L.M.; Weissert, R.; Wildemann, B.; Yang, C.; Yao, K.; Teunissen, C.E.

    2010-01-01

    BACKGROUND: Neurofilament proteins (Nf) are highly specific biomarkers for neuronal death and axonal degeneration. As these markers become more widely used, an inter-laboratory validation study is required to identify assay criteria for high quality performance. METHODS: The UmanDiagnostics NF-light

  19. Neurofilament light chain

    OpenAIRE

    Lu, CH; Macdonald-Wallis, C.; Gray, E; Pearce, N; Petzold, A; Norgren, N.; Giovannoni, G; Fratta, P.; Sidle, K.; Fish, M.; Orrell, R; Howard, R; Talbot, K.; Greensmith, L.; Kuhle, J

    2015-01-01

    OBJECTIVE: To test blood and CSF neurofilament light chain (NfL) levels in relation to disease progression and survival in amyotrophic lateral sclerosis (ALS). METHODS: Using an electrochemiluminescence immunoassay, NfL levels were measured in samples from 2 cohorts of patients with sporadic ALS and healthy controls, recruited in London (ALS/control, plasma: n = 103/42) and Oxford (ALS/control, serum: n = 64/36; paired CSF: n = 38/20). NfL levels in patients were measured at regular intervals...

  20. Alzheimer—like phosphorylation of tau and neurofilament induced by cocaine in vivo

    Institute of Scientific and Technical Information of China (English)

    LIUShi-Jie; FANGZheng-Yu; YANGYing; DENGHeng-Mei; WANGJian-Zhi

    2003-01-01

    AIM:To explore the relationship between cocaine-induced cyclin-dependent kinase-5(CDK5) overexpression or overactivation and Alzheimer-like hyperphosphorylation of cytoskeletal protein. METHODS: Cocaine was injected (ip,20mg·kg-1·d-1) into rats and the phosphorylation of neuronal cytoskeletal proteins was measured by Western blotting.RESULTS:The levels of phosphorylated tau at PHF-1 epitope and phosphorylated neurofilament determined by SMI31 were elevated in rat brain hippocampus, cortex, and caudatoputamen on d 8 and d 16 after the injection of cocaine, when compared with saline control rat at the same brain regions. On the other hand, the levels of tau non-phosphorylated at tau-1 site and non-phosphorylated neurofilament determined by SIM32 were decreased in same brain regions at the same time points examined. No significant difference of phosphorylated tau and neurofilament at those epitopes was seen on d 4. Although cocaine injection could induce significant hyperphosphorylation of neuronal cytoskeletal proteins, the overexpression of CDK5 and p35 was not detected. CONCLUSION:Peritoneal injection of cocaine induces Alzheimer-like hyperphosphorylation of tau and neurofilament in rat brain, and the effect may be not relevant to an increase in overexpression or overactivation of CDK5.

  1. Neurofilament light chain

    Science.gov (United States)

    Lu, Ching-Hua; Macdonald-Wallis, Corrie; Gray, Elizabeth; Pearce, Neil; Petzold, Axel; Norgren, Niklas; Giovannoni, Gavin; Fratta, Pietro; Sidle, Katie; Fish, Mark; Orrell, Richard; Howard, Robin; Talbot, Kevin; Greensmith, Linda; Kuhle, Jens

    2015-01-01

    Objective: To test blood and CSF neurofilament light chain (NfL) levels in relation to disease progression and survival in amyotrophic lateral sclerosis (ALS). Methods: Using an electrochemiluminescence immunoassay, NfL levels were measured in samples from 2 cohorts of patients with sporadic ALS and healthy controls, recruited in London (ALS/control, plasma: n = 103/42) and Oxford (ALS/control, serum: n = 64/36; paired CSF: n = 38/20). NfL levels in patients were measured at regular intervals for up to 3 years. Change in ALS Functional Rating Scale–Revised score was used to assess disease progression. Survival was evaluated using Cox regression and Kaplan–Meier analysis. Results: CSF, serum, and plasma NfL discriminated patients with ALS from healthy controls with high sensitivity (97%, 89%, 90%, respectively) and specificity (95%, 75%, 71%, respectively). CSF NfL was highly correlated with serum levels (r = 0.78, p NfL levels were approximately 4 times as high in patients with ALS compared with controls in both cohorts, and maintained a relatively constant expression during follow-up. Blood NfL levels at recruitment were strong, independent predictors of survival. The highest tertile of blood NfL at baseline had a mortality hazard ratio of 3.91 (95% confidence interval 1.98–7.94, p NfL level is an easily accessible biomarker with prognostic value in ALS. The individually relatively stable levels longitudinally offer potential for NfL as a pharmacodynamic biomarker in future therapeutic trials. Classification of evidence: This report provides Class III evidence that the NfL electrochemiluminescence immunoassay accurately distinguishes patients with sporadic ALS from healthy controls. PMID:25934855

  2. Neurofilaments and traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Mariusz Kobek

    2015-03-01

    Full Text Available Objective determination of the time of brain contusion is of key importance in medicolegal neurotraumatology. Currently, the progress of immunohistochemistry allows the study of structural elements of cells including neurofilaments, i.e. neuronal cytoskeletal proteins possessing properties that could be used for determining the age of brain injury in forensic medicine. The purpose of this study was to review recently published literature with a focus on studies investigating changes which occur in neurofilaments after brain trauma, both in animal models and in human biological material. The review has shown a lack of data on temporal changes in neurofilament expression after human brain trauma which could be used for determining the age of injuries in forensic medicine.

  3. Genetic Manipulation of Neurofilament Protein Phosphorylation.

    Science.gov (United States)

    Jones, Maria R; Villalón, Eric; Garcia, Michael L

    2016-01-01

    Neurofilament biology is important to understanding structural properties of axons, such as establishment of axonal diameter by radial growth. In order to study the function of neurofilaments, a series of genetically modified mice have been generated. Here, we describe a brief history of genetic modifications used to study neurofilaments, as well as an overview of the steps required to generate a gene-targeted mouse. In addition, we describe steps utilized to analyze neurofilament phosphorylation status using immunoblotting. Taken together, these provide comprehensive analysis of neurofilament function in vivo, which can be applied to many systems.

  4. Expression of SM I-32 in neocortex of cortical dysplasia model rats%皮质发育不良模型鼠脑层特异性标志物SMI-32的表达

    Institute of Scientific and Technical Information of China (English)

    官云里; 晏勇; 马勋泰; 黄华; 张建刚

    2008-01-01

    目的:探讨层特异标记物非磷酸化神经丝重链(SMI一32)在皮质发育不良(Cortical dysplasia,CD)模型鼠大脑皮质中的表达.方法:孕17d大鼠腹腔注射卡莫司汀,所产子1代鼠于第28d取大脑皮质组织进行病理学检查.结果:药物组尼氏染色见皮层组织紊乱、巨大神经元和神经元异位.免疫组化染色见SMI-32在第1躯体感觉运动区(SMl区)的表达减少,多数在第Ⅳ、Ⅵ层表达且有簇集,在第Ⅱ、V层表达较少,第Ⅲ层几乎无表达.结论:大脑皮质特异性层标志物SMl-32在cD模型鼠皮质表达异常,可作为CD病理诊断的一项指标.

  5. Neurofilaments and Neurofilament Proteins in Health and Disease.

    Science.gov (United States)

    Yuan, Aidong; Rao, Mala V; Veeranna; Nixon, Ralph A

    2017-04-03

    SUMMARYNeurofilaments (NFs) are unique among tissue-specific classes of intermediate filaments (IFs) in being heteropolymers composed of four subunits (NF-L [neurofilament light]; NF-M [neurofilament middle]; NF-H [neurofilament heavy]; and α-internexin or peripherin), each having different domain structures and functions. Here, we review how NFs provide structural support for the highly asymmetric geometries of neurons and, especially, for the marked radial expansion of myelinated axons crucial for effective nerve conduction velocity. NFs in axons extensively cross-bridge and interconnect with other non-IF components of the cytoskeleton, including microtubules, actin filaments, and other fibrous cytoskeletal elements, to establish a regionally specialized network that undergoes exceptionally slow local turnover and serves as a docking platform to organize other organelles and proteins. We also discuss how a small pool of oligomeric and short filamentous precursors in the slow phase of axonal transport maintains this network. A complex pattern of phosphorylation and dephosphorylation events on each subunit modulates filament assembly, turnover, and organization within the axonal cytoskeleton. Multiple factors, and especially turnover rate, determine the size of the network, which can vary substantially along the axon. NF gene mutations cause several neuroaxonal disorders characterized by disrupted subunit assembly and NF aggregation. Additional NF alterations are associated with varied neuropsychiatric disorders. New evidence that subunits of NFs exist within postsynaptic terminal boutons and influence neurotransmission suggests how NF proteins might contribute to normal synaptic function and neuropsychiatric disease states. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  6. Neurofilament dynamics and involvement in neurological disorders.

    Science.gov (United States)

    Gentil, Benoit J; Tibshirani, Michael; Durham, Heather D

    2015-06-01

    Neurons are extremely polarised cells in which the cytoskeleton, composed of microtubules, microfilaments and neurofilaments, plays a crucial role in maintaining structure and function. Neurofilaments, the 10-nm intermediate filaments of neurons, provide structure and mechanoresistance but also provide a scaffolding for the organization of the nucleus and organelles such as mitochondria and ER. Disruption of neurofilament organization and expression or metabolism of neurofilament proteins is characteristic of certain neurological syndromes including Amyotrophic Lateral Sclerosis, Charcot-Marie-Tooth sensorimotor neuropathies and Giant Axonal Neuropathy. Microfluorometric live imaging techniques have been instrumental in revealing the dynamics of neurofilament assembly and transport and their functions in organizing intracellular organelle networks. The insolubility of neurofilament proteins has limited identifying interactors by conventional biochemical techniques but yeast two-hybrid experiments have revealed new roles for oligomeric, nonfilamentous structures including vesicular trafficking. Although having long half-lives, new evidence points to degradation of subunits by the ubiquitin-proteasome system as a mechanism of normal turnover. Although certain E3-ligases ubiquitinating neurofilament proteins have been identified, the overall process of neurofilament degradation is not well understood. We review these mechanisms of neurofilament homeostasis and abnormalities in motor neuron and peripheral nerve disorders. Much remains to discover about the disruption of processes that leads to their pathological aggregation and accumulation and the relevance to pathogenesis. Understanding these mechanisms is crucial for identifying novel therapeutic strategies.

  7. Neurofilament subunit (NFL) head domain phosphorylation regulates axonal transport of neurofilaments.

    LENUS (Irish Health Repository)

    Yates, Darran M

    2009-04-01

    Neurofilaments are the intermediate filaments of neurons and are synthesised in neuronal cell bodies and then transported through axons. Neurofilament light chain (NFL) is a principal component of neurofilaments, and phosphorylation of NFL head domain is believed to regulate the assembly of neurofilaments. However, the role that NFL phosphorylation has on transport of neurofilaments is poorly understood. To address this issue, we monitored axonal transport of phosphorylation mutants of NFL. We mutated four known phosphorylation sites in NFL head domain to either preclude phosphorylation, or mimic permanent phosphorylation. Mutation to preclude phosphorylation had no effect on transport but mutation of three sites to mimic permanent phosphorylation inhibited transport. Mutation of all four sites together to mimic permanent phosphorylation proved especially potent at inhibiting transport and also disrupted neurofilament assembly. Our results suggest that NFL head domain phosphorylation is a regulator of neurofilament axonal transport.

  8. Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: a quantitative immunohistochemical analysis

    Science.gov (United States)

    Hof, P. R.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    Visual function in monkeys is subserved at the cortical level by a large number of areas defined by their specific physiological properties and connectivity patterns. For most of these cortical fields, a precise index of their degree of anatomical specialization has not yet been defined, although many regional patterns have been described using Nissl or myelin stains. In the present study, an attempt has been made to elucidate the regional characteristics, and to varying degrees boundaries, of several visual cortical areas in the macaque monkey using an antibody to neurofilament protein (SMI32). This antibody labels a subset of pyramidal neurons with highly specific regional and laminar distribution patterns in the cerebral cortex. Based on the staining patterns and regional quantitative analysis, as many as 28 cortical fields were reliably identified. Each field had a homogeneous distribution of labeled neurons, except area V1, where increases in layer IVB cell and in Meynert cell counts paralleled the increase in the degree of eccentricity in the visual field representation. Within the occipitotemporal pathway, areas V3 and V4 and fields in the inferior temporal cortex were characterized by a distinct population of neurofilament-rich neurons in layers II-IIIa, whereas areas located in the parietal cortex and part of the occipitoparietal pathway had a consistent population of large labeled neurons in layer Va. The mediotemporal areas MT and MST displayed a distinct population of densely labeled neurons in layer VI. Quantitative analysis of the laminar distribution of the labeled neurons demonstrated that the visual cortical areas could be grouped in four hierarchical levels based on the ratio of neuron counts between infragranular and supragranular layers, with the first (areas V1, V2, V3, and V3A) and third (temporal and parietal regions) levels characterized by low ratios and the second (areas MT, MST, and V4) and fourth (frontal regions) levels characterized by

  9. Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: a quantitative immunohistochemical analysis

    Science.gov (United States)

    Hof, P. R.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    Visual function in monkeys is subserved at the cortical level by a large number of areas defined by their specific physiological properties and connectivity patterns. For most of these cortical fields, a precise index of their degree of anatomical specialization has not yet been defined, although many regional patterns have been described using Nissl or myelin stains. In the present study, an attempt has been made to elucidate the regional characteristics, and to varying degrees boundaries, of several visual cortical areas in the macaque monkey using an antibody to neurofilament protein (SMI32). This antibody labels a subset of pyramidal neurons with highly specific regional and laminar distribution patterns in the cerebral cortex. Based on the staining patterns and regional quantitative analysis, as many as 28 cortical fields were reliably identified. Each field had a homogeneous distribution of labeled neurons, except area V1, where increases in layer IVB cell and in Meynert cell counts paralleled the increase in the degree of eccentricity in the visual field representation. Within the occipitotemporal pathway, areas V3 and V4 and fields in the inferior temporal cortex were characterized by a distinct population of neurofilament-rich neurons in layers II-IIIa, whereas areas located in the parietal cortex and part of the occipitoparietal pathway had a consistent population of large labeled neurons in layer Va. The mediotemporal areas MT and MST displayed a distinct population of densely labeled neurons in layer VI. Quantitative analysis of the laminar distribution of the labeled neurons demonstrated that the visual cortical areas could be grouped in four hierarchical levels based on the ratio of neuron counts between infragranular and supragranular layers, with the first (areas V1, V2, V3, and V3A) and third (temporal and parietal regions) levels characterized by low ratios and the second (areas MT, MST, and V4) and fourth (frontal regions) levels characterized by

  10. Neurofilament proteins in axonal regeneration and neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    Haitao Wang; Minfei Wu; Chuanjun Zhan; Enyuan Ma; Maoguang Yang; Xiaoyu Yang; Yingpu Li

    2012-01-01

    Neurofilament protein is a component of the mature neuronal cytoskeleton, and it interacts with the zygosome, which is mediated by neurofilament-related proteins. Neurofilament protein regulates enzyme function and the structure of linker proteins. In addition, neurofilament gene expression plays an important role in nervous system development. Previous studies have shown that neurofilament gene transcriptional regulation is crucial for neurofilament protein expression, especially in axonal regeneration and degenerative diseases. Post-transcriptional regulation increased neurofilament protein gene transcription during axonal regeneration, ultimately resulting in a pattern of neurofilament protein expression. An expression imbalance of post-transcriptional regulatory proteins and other disorders could lead to amyotrophic lateral sclerosis or other neurodegenerative diseases. These findings indicated that after transcription, neurofilament protein regulated expression of related proteins and promoted regeneration of damaged axons, suggesting that regulation disorders could lead to neurodegenerative diseases.

  11. Recovery of neurofilament following early monocular deprivation

    Directory of Open Access Journals (Sweden)

    Timothy P O'Leary

    2012-04-01

    Full Text Available A brief period of monocular deprivation in early postnatal life can alter the structure of neurons within deprived-eye-receiving layers of the dorsal lateral geniculate nucleus. The modification of structure is accompanied by a marked reduction in labeling for neurofilament, a protein that composes the stable cytoskeleton and that supports neuron structure. This study examined the extent of neurofilament recovery in monocularly deprived cats that either had their deprived eye opened (binocular recovery, or had the deprivation reversed to the fellow eye (reverse occlusion. The degree to which recovery was dependent on visually-driven activity was examined by placing monocularly deprived animals in complete darkness (dark rearing. The loss of neurofilament and the reduction of soma size caused by monocular deprivation were both ameliorated equally following either binocular recovery or reverse occlusion for 8 days. Though monocularly deprived animals placed in complete darkness showed recovery of soma size, there was a generalized loss of neurofilament labeling that extended to originally non-deprived layers. Overall, these results indicate that recovery of soma size is achieved by removal of the competitive disadvantage of the deprived eye, and occurred even in the absence of visually-driven activity. Recovery of neurofilament occurred when the competitive disadvantage of the deprived eye was removed, but unlike the recovery of soma size, was dependent upon visually-driven activity. The role of neurofilament in providing stable neural structure raises the intriguing possibility that dark rearing, which reduced overall neurofilament levels, could be used to reset the deprived visual system so as to make it more ameliorable with treatment by experiential manipulations.

  12. CSF neurofilament proteins in the differential diagnosis of dementia

    NARCIS (Netherlands)

    de Jong, D; Jansen, R W M M; Pijnenburg, Y A L; van Geel, W J A; Borm, G F; Kremer, Berry; Verbeek, M.

    BACKGROUND: Neurofilament (NF) proteins are major cytoskeletal constituents of neurons. Increased CSF NF levels may reflect neuronal degeneration. OBJECTIVE: To investigate the diagnostic value of CSF NF analysis to discriminate in relatively young dementia patients between frontotemporal lobe

  13. CSF neurofilament proteins in the differential diagnosis of dementia.

    NARCIS (Netherlands)

    Jong, D. de; Jansen, R.W.M.M.; Pijnenburg, Y.A.; Geel, W.J.A. van; Borm, G.F.; Kremer, H.P.H.; Verbeek, M.M.

    2007-01-01

    BACKGROUND: Neurofilament (NF) proteins are major cytoskeletal constituents of neurons. Increased CSF NF levels may reflect neuronal degeneration. OBJECTIVE: To investigate the diagnostic value of CSF NF analysis to discriminate in relatively young dementia patients between frontotemporal lobe

  14. Compartment-Specific Phosphorylation of Squid Neurofilaments.

    Science.gov (United States)

    Grant, Philip; Pant, Harish C

    2016-01-01

    Studies of the giant axon and synapse of third-order neurons in the squid stellate ganglion have provided a vast literature on neuronal physiology and axon transport. Large neuronal size also lends itself to comparative biochemical studies of cell body versus axon. These have focused on the regulation of synthesis, assembly, posttranslational modification and function of neuronal cytoskeletal proteins (microtubules (MTs) and neurofilaments (NFs)), the predominant proteins in axoplasm. These contribute to axonal organization, stability, transport, and impulse transmission responsible for rapid contractions of mantle muscles underlying jet propulsion. Studies of vertebrate NFs have established an extensive literature on NF structure, organization, and function; studies of squid NFs, however, have made it possible to compare compartment-specific regulation of NF synthesis, assembly, and function in soma versus axoplasm. Since NFs contain over 100 eligible sites for phosphorylation by protein kinases, the compartment-specific patterns of phosphorylation have been a primary focus of biochemical studies. We have learned that NF phosphorylation is tightly compartmentalized; extensive phosphorylation occurs only in the axonal compartment in squid and in vertebrate neurons. This extensive phosphorylation plays a key role in organizing NFs, in association with microtubules (MTs), into a stable, dynamic functional lattice that supports axon growth, diameter, impulse transmission, and synaptic activity. To understand how cytoskeletal phosphorylation is topographically regulated, the kinases and phosphatases, bound to NFs isolated from cell bodies and axoplasm, have also been studied.

  15. Detection of UCP1 protein and measurements of dependent GDP-sensitive proton leak in non-phosphorylating thymus mitochondria.

    Science.gov (United States)

    Clarke, Kieran J; Carroll, Audrey M; O'Brien, Gemma; Porter, Richard K

    2015-01-01

    Over several years we have provided evidence that uncoupling protein 1 (UCP1) is present in thymus mitochondria. We have demonstrated the conclusive evidence for the presence of UCP1 in thymus mitochondria and we have been able to demonstrate a GDP-sensitive UCP1-dependent proton leak in non-phosphorylating thymus mitochondria. In this chapter, we show how to detect UCP1 in mitochondria isolated from whole thymus using immunoblotting. We show how to measure GDP-sensitive UCP1-dependent oxygen consumption in non-phosphorylating thymus mitochondria and we show that increased reactive oxygen species production occurs on addition of GDP to non-phosphorylating thymus mitochondria. We conclude that reactive oxygen species production rate can be used as a surrogate for detecting UCP1 catalyzed proton leak activity in thymus mitochondria.

  16. Lipid Head Group Charge and Fatty Acid Configuration Dictate Liposome Mobility in Neurofilament Networks

    NARCIS (Netherlands)

    Arends, F.; Chaudhary, H.; Janmey, P.; Claessens, M.M.A.E.; Lieleg, O.

    2016-01-01

    Intermediate filaments constitute a class of biopolymers whose function is still poorly understood. One example for such intermediate filaments is given by neurofilaments, large macromolecules that fill the axon of neurons. Here, reconstituted networks of purified porcine neurofilaments are studied

  17. Lipid Head Group Charge and Fatty Acid Configuration Dictate Liposome Mobility in Neurofilament Networks

    NARCIS (Netherlands)

    Arends, F.; Chaudhary, H.; Janmey, P.; Claessens, M.M.A.E.; Lieleg, O.

    2017-01-01

    Intermediate filaments constitute a class of biopolymers whose function is still poorly understood. One example for such intermediate filaments is given by neurofilaments, large macromolecules that fill the axon of neurons. Here, reconstituted networks of purified porcine neurofilaments are studied

  18. Characterization of an Arabidopsis thaliana mutant lacking a cytosolic non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase.

    Science.gov (United States)

    Rius, Sebastián P; Casati, Paula; Iglesias, Alberto A; Gomez-Casati, Diego F

    2006-08-01

    Non-phosphorylating glyceraldehyde- 3-phosphate dehydrogenase (NP-GAPDH) is a conserved cytosolic protein found in higher plants. In photosynthetic cells, the enzyme is involved in a shuttle transfer mechanism to export NADPH from the chloroplast to the cytosol. To investigate the role of this enzyme in plant tissues, we characterized a mutant from Arabidopsis thaliana having an insertion at the NP-GAPDH gene locus. The homozygous mutant was determined to be null respect to NP-GAPDH, as it exhibited undetectable levels of both transcription of NP-GAPDH mRNA, protein expression and enzyme activity. Transcriptome analysis demonstrated that the insertion mutant plant shows altered expression of several enzymes involved in carbohydrate metabolism. Significantly, cytosolic phosphorylating (NAD-dependent) glyceraldehyde-3-phosphate dehydrogenase mRNA levels are induced in the mutant, which correlates with an increase in enzyme activity. mRNA levels and enzymatic activity of glucose-6-phosphate dehydrogenase were also elevated, correlating with an increase in NADPH concentration. Moreover, increased ROS levels were measured in the mutant plants. Down-regulation of several glycolytic and photosynthetic genes suggests that NP-GAPDH is important for the efficiency of both metabolic processes. The results presented demonstrate that NP-GAPDH has a relevant role in plant growth and development.

  19. Kinetic analyses of phosphorylated and non-phosphorylated eIFiso4E binding to mRNA cap analogues.

    Science.gov (United States)

    Khan, Mateen A; Goss, Dixie J

    2017-08-08

    Phosphorylation of eukaryotic initiation factors was previously shown to interact with m(7)G cap and play an important role in the regulation of translation initiation of protein synthesis. To gain further insight into the phosphorylation process of plant protein synthesis, the kinetics of phosphorylated wheat eIFiso4E binding to m(7)G cap analogues were examined. Phosphorylation of wheat eIFiso4E showed similar kinetic effects to human eIF4E binding to m(7)-G cap. Phosphorylation of eIFiso4E decreased the kinetic rate (2-fold) and increased the dissociation rate (2-fold) as compared to non-phosphorylated eIFiso4E binding to both mono- and di-nucleotide analogues at 22°C. Phosphorylated and non-phosphorylated eIFiso4E-m(7)G cap binding rates were found to be independent of concentration, suggesting conformational changes were rate limiting. Rate constant for phosphorylated and non-phosphorylated eIFiso4E binding to m(7)-G cap increased with temperature. Phosphorylation of eIFiso4E decreased (2-fold) the activation energy for both m(7)-G cap analogues binding as compared to non-phosphorylated eIFiso4E. The reduced energy barrier for the formation of eIFiso4E-m(7)-G cap complex suggests a more stable platform for further initiation complex formation and possible means of adapting variety of environmental conditions. Furthermore, the formation of phosphorylated eIFiso4E-cap complex may contribute to modulation of the initiation of protein synthesis in plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A Stochastic Multiscale Model That Explains the Segregation of Axonal Microtubules and Neurofilaments in Neurological Diseases.

    Directory of Open Access Journals (Sweden)

    Chuan Xue

    2015-08-01

    Full Text Available The organization of the axonal cytoskeleton is a key determinant of the normal function of an axon, which is a long thin projection of a neuron. Under normal conditions two axonal cytoskeletal polymers, microtubules and neurofilaments, align longitudinally in axons and are interspersed in axonal cross-sections. However, in many neurotoxic and neurodegenerative disorders, microtubules and neurofilaments segregate apart from each other, with microtubules and membranous organelles clustered centrally and neurofilaments displaced to the periphery. This striking segregation precedes the abnormal and excessive neurofilament accumulation in these diseases, which in turn leads to focal axonal swellings. While neurofilament accumulation suggests an impairment of neurofilament transport along axons, the underlying mechanism of their segregation from microtubules remains poorly understood for over 30 years. To address this question, we developed a stochastic multiscale model for the cross-sectional distribution of microtubules and neurofilaments in axons. The model describes microtubules, neurofilaments and organelles as interacting particles in a 2D cross-section, and is built upon molecular processes that occur on a time scale of seconds or shorter. It incorporates the longitudinal transport of neurofilaments and organelles through this domain by allowing stochastic arrival and departure of these cargoes, and integrates the dynamic interactions of these cargoes with microtubules mediated by molecular motors. Simulations of the model demonstrate that organelles can pull nearby microtubules together, and in the absence of neurofilament transport, this mechanism gradually segregates microtubules from neurofilaments on a time scale of hours, similar to that observed in toxic neuropathies. This suggests that the microtubule-neurofilament segregation can be a consequence of the selective impairment of neurofilament transport. The model generates the

  1. Squid Giant Axon Contains Neurofilament Protein mRNA but does not Synthesize Neurofilament Proteins.

    Science.gov (United States)

    Gainer, Harold; House, Shirley; Kim, Dong Sun; Chin, Hemin; Pant, Harish C

    2017-04-01

    When isolated squid giant axons are incubated in radioactive amino acids, abundant newly synthesized proteins are found in the axoplasm. These proteins are translated in the adaxonal Schwann cells and subsequently transferred into the giant axon. The question as to whether any de novo protein synthesis occurs in the giant axon itself is difficult to resolve because the small contribution of the proteins possibly synthesized intra-axonally is not easily distinguished from the large amounts of the proteins being supplied from the Schwann cells. In this paper, we reexamine this issue by studying the synthesis of endogenous neurofilament (NF) proteins in the axon. Our laboratory previously showed that NF mRNA and protein are present in the squid giant axon, but not in the surrounding adaxonal glia. Therefore, if the isolated squid axon could be shown to contain newly synthesized NF protein de novo, it could not arise from the adaxonal glia. The results of experiments in this paper show that abundant 3H-labeled NF protein is synthesized in the squid giant fiber lobe containing the giant axon's neuronal cell bodies, but despite the presence of NF mRNA in the giant axon no labeled NF protein is detected in the giant axon. This lends support to the glia-axon protein transfer hypothesis which posits that the squid giant axon obtains newly synthesized protein by Schwann cell transfer and not through intra-axonal protein synthesis, and further suggests that the NF mRNA in the axon is in a translationally repressed state.

  2. Organizational dynamics, functions, and pathobiological dysfunctions of neurofilaments.

    Science.gov (United States)

    Shea, Thomas B; Chan, Walter K-H; Kushkuley, Jacob; Lee, Sangmook

    2009-01-01

    Neurofilament phosphorylation has long been considered to regulate their axonal transport rate, and in doing so it provides stability to mature axons. We evaluate the collective evidence to date regarding how neurofilament C-terminal phosphorylation may regulate axonal transport. We present a few suggestions for further experimentation in this area, and expand upon previous models for axonal NF dynamics. We present evidence that the NFs that display extended residence along axons are critically dependent upon the surrounding microtubules, and that simultaneous interaction with multiple microtubule motors provides the architectural force that regulates their distribution. Finally, we address how C-terminal phosphorylation is regionally and temporally regulated by a balance of kinase and phosphatase activities, and how misregulation of this balance might contribute to motor neuron disease.

  3. Neurofilament light chain: a biomarker for genetic frontotemporal dementia

    OpenAIRE

    Meeter, Lieke H.; Dopper, Elise G.; Jiskoot, Lize C.; Sanchez-Valle, Raquel; Graff, Caroline; Benussi, Luisa; Ghidoni, Roberta; Pijnenburg, Yolande A; Borroni, Barbara; Galimberti, Daniela; Laforce, Robert Jr; Masellis, Mario; Vandenberghe, Rik; Le Ber, Isabelle; Otto, Markus

    2016-01-01

    Abstract Objective To evaluate cerebrospinal fluid (CSF) and serum neurofilament light chain (NfL) levels in genetic frontotemporal dementia (FTD) as a potential biomarker in the presymptomatic stage and during the conversion into the symptomatic stage. Additionally, to correlate NfL levels to clinical and neuroimaging parameters. Methods In this multicenter case?control study, we investigated CSF NfL in 174 subjects (48 controls, 40 presymptomatic carriers and 86 patients with microtubule?as...

  4. CSF neurofilament light chain reflects corticospinal tract degeneration in ALS

    OpenAIRE

    Menke, Ricarda A.L.; Gray, Elizabeth; Lu, Ching-Hua; Kuhle, Jens; Talbot, Kevin; Malaspina, Andrea; Turner, Martin R.

    2015-01-01

    Objective Diffusion tensor imaging (DTI) is sensitive to white matter tract pathology. A core signature involving the corticospinal tracts (CSTs) has been identified in amyotrophic lateral sclerosis (ALS). Raised neurofilament light chain protein (NfL) in cerebrospinal fluid (CSF) is thought to reflect axonal damage in a range of neurological disorders. The relationship between these two measures was explored. Methods CSF and serum NfL concentrations and DTI acquired at 3?Tesla on the same da...

  5. Cloning and developmental expression of the murine neurofilament gene family.

    NARCIS (Netherlands)

    J-P. Julien (Jean-Pierre); D.N. Meijer (Dies); D. Flavell (David); J. Hurst; F.G. Grosveld (Frank)

    1986-01-01

    textabstractDNA clones encoding the 3 mouse neurofilament (NF) genes have been isolated by cross-hybridization with a previously described NF-L cDNA probe from the rat. Screening of a lambda gt10 cDNA library prepared from mouse brain RNA led to the cloning of an NF-L cDNA of 2.0 kb that spans the e

  6. Riluzole protects against glutamate-induced slowing of neurofilament axonal transport.

    LENUS (Irish Health Repository)

    Stevenson, Alison

    2009-04-24

    Riluzole is the only drug approved for the treatment of amyotrophic lateral sclerosis (ALS) but its precise mode of action is not properly understood. Damage to axonal transport of neurofilaments is believed to be part of the pathogenic mechanism in ALS and this has been linked to defective glutamate handling and increased phosphorylation of neurofilament side-arm domains. Here, we show that riluzole protects against glutamate-induced slowing of neurofilament transport. Protection is associated with decreased neurofilament side-arm phosphorylation and inhibition of the activities of two neurofilament kinases, ERK and p38 that are activated in ALS. Thus, the anti-glutamatergic properties of riluzole include protection against glutamate-induced changes to neurofilament phosphorylation and transport.

  7. Cloning of a cDNA encoding the smallest neurofilament protein from the rat

    NARCIS (Netherlands)

    J-P. Julien (Jean-Pierre); K. Ramachadran; F.G. Grosveld (Frank)

    1985-01-01

    textabstractWe have cloned a cDNA coding for the smallest rat neurofilament protein. The cDNA is 861 nucleotides long coding for 287 amino acids from the internal alpha-helical region and the carboxy-terminal tail domain of the neurofilament protein. Comparison of the porcine, mouse and rat neurofil

  8. Neurofilament localization and phosphorylation in the developing inner ear of the rat.

    NARCIS (Netherlands)

    Tonnaer, E.L.G.M.; Peters, T.A.; Curfs, J.H.A.J.

    2010-01-01

    Detailed understanding of neurofilament protein distribution in the inner ear can shed light on regulatory mechanisms involved in neuronal development of this tissue. We assessed the spatio-temporal changes in the distribution of neurofilaments in the developing rat inner ear between embryonic day

  9. Specific detection of neuronal cell bodies: in situ hybridization with a biotin-labelled neurofilament cDNA probe.

    NARCIS (Netherlands)

    P. Liesi; J-P. Julien (Jean-Pierre); P. Vilja; F.G. Grosveld (Frank); L. Rechardt

    1986-01-01

    textabstractWe have used a biotinylated, 300-nucleotide cDNA probe which encodes the 68,000 MW neurofilament protein to detect neurofilament-specific mRNA in situ. The neurofilament message specifically demonstrates the neuronal cell bodies, in contrast to the usual antibody staining which detects t

  10. Diffuse axonal injury in brain trauma: insights from alterations in neurofilaments

    Directory of Open Access Journals (Sweden)

    Declan Guenter Siedler

    2014-12-01

    Full Text Available Traumatic brain injury from penetrating or closed forces to the cranium can result in a range of forms of neural damage, which culminate in mortality or impart mild to significant neurological disability. In this regard, diffuse axonal injury is a major neuronal pathophenotype of traumatic brain injury and is associated with a complex set of cytoskeletal changes. The neurofilament triplet proteins are key structural cytoskeletal elements, which may also be important contributors to the tensile strength of axons. This has significant implications with respect to how axons may respond to traumatic brain injury. It is not known, however, whether neurofilament compaction and the cytoskeletal changes that evolve following axonal injury represent a component of a protective mechanism following damage, or whether they serve to augment degeneration and progression to secondary axotomy. Here we review the structure and role of neurofilament proteins in normal neuronal function. We also discuss the processes that characterize diffuse axonal injury and the resultant alterations in neurofilaments, highlighting potential clues to a possible protective or degenerative influence of specific neurofilament alterations within injured neurons. The potential utility of neurofilament assays as biomarkers for axonal injury is also discussed. Insights into the complex alterations in neurofilaments will contribute to future efforts in developing therapeutic strategies to prevent, ameliorate or reverse neuronal degeneration in the CNS following traumatic injury.

  11. Assembly and structure of neurofilaments isolated from bovine spinal cord

    Institute of Scientific and Technical Information of China (English)

    佟向军; 陈建国; 刘洁; 庞世瑾; 翟中和

    1999-01-01

    Neurofilaments (NFs) are neuron-specific intermediate filaments. The NFs were isolated from bovine spinal cord by differential centrifugation. The NFs were detected with electron microscopy and scanning tunneling microscopy (STM). Under STM, two kinds of sidearm of NFs were revealed: one was short, the other was long. They were arrayed along the 10-nm width core filaments one by one. The intervals between two adjacent long sidearms or two short sidearms were 20—22 nm, while those between two adjacent long and short sidearms were 10—11 nm. It was proposed that the rod domain of NF triplet prnteins was 3/4-staggered. The assembly properties of NF triplet proteins were also studied. Immuno-colloidal-gold labeling assay showed that NF-M and NF-H are able to co-assemble into long filaments with NF-L. NF-M and NF-H can also co-constitute into winding filaments.

  12. Dissociation of Axonal Neurofilament Content from Its Transport Rate.

    Directory of Open Access Journals (Sweden)

    Aidong Yuan

    Full Text Available The axonal cytoskeleton of neurofilament (NF is a long-lived network of fibrous elements believed to be a stationary structure maintained by a small pool of transported cytoskeletal precursors. Accordingly, it may be predicted that NF content in axons can vary independently from the transport rate of NF. In the present report, we confirm this prediction by showing that human NFH transgenic mice and transgenic mice expressing human NFL Ser55 (Asp develop nearly identical abnormal patterns of NF accumulation and distribution in association with opposite changes in NF slow transport rates. We also show that the rate of NF transport in wild-type mice remains constant along a length of the optic axon where NF content varies 3-fold. Moreover, knockout mice lacking NFH develop even more extreme (6-fold proximal to distal variation in NF number, which is associated with a normal wild-type rate of NF transport. The independence of regional NF content and NF transport is consistent with previous evidence suggesting that the rate of incorporation of transported NF precursors into a metabolically stable stationary cytoskeletal network is the major determinant of axonal NF content, enabling the generation of the striking local variations in NF number seen along axons.

  13. Cerebrospinal fluid tau, neurogranin, and neurofilament light in Alzheimer's disease.

    Science.gov (United States)

    Mattsson, Niklas; Insel, Philip S; Palmqvist, Sebastian; Portelius, Erik; Zetterberg, Henrik; Weiner, Michael; Blennow, Kaj; Hansson, Oskar

    2016-10-01

    Cerebrospinal fluid (CSF) tau (total tau, T-tau), neurofilament light (NFL), and neurogranin (Ng) are potential biomarkers for neurodegeneration in Alzheimer's disease (AD). It is unknown whether these biomarkers provide similar or complementary information in AD. We examined 93 patients with AD, 187 patients with mild cognitive impairment, and 109 controls. T-tau, Ng, and NFL were all predictors of AD diagnosis. Combinations improved the diagnostic accuracy (AUC 85.5% for T-tau, Ng, and NFL) compared to individual biomarkers (T-tau 80.8%; Ng 71.4%; NFL 77.7%). T-tau and Ng were highly correlated (ρ = 0.79, P NFL on the other hand was not associated with Aβ pathology and was associated with cognitive decline and brain atrophy independent of Aβ. T-tau, Ng, and NFL provide partly independent information about neuronal injury and may be combined to improve the diagnostic accuracy for AD. T-tau and Ng reflect Aβ-dependent neurodegeneration, while NFL reflects neurodegeneration independently of Aβ pathology. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  14. Neurofilament light chain: a biomarker for genetic frontotemporal dementia.

    Science.gov (United States)

    Meeter, Lieke H; Dopper, Elise G; Jiskoot, Lize C; Sanchez-Valle, Raquel; Graff, Caroline; Benussi, Luisa; Ghidoni, Roberta; Pijnenburg, Yolande A; Borroni, Barbara; Galimberti, Daniela; Laforce, Robert Jr; Masellis, Mario; Vandenberghe, Rik; Ber, Isabelle Le; Otto, Markus; van Minkelen, Rick; Papma, Janne M; Rombouts, Serge A; Balasa, Mircea; Öijerstedt, Linn; Jelic, Vesna; Dick, Katrina M; Cash, David M; Harding, Sophie R; Jorge Cardoso, M; Ourselin, Sebastien; Rossor, Martin N; Padovani, Alessandro; Scarpini, Elio; Fenoglio, Chiara; Tartaglia, Maria C; Lamari, Foudil; Barro, Christian; Kuhle, Jens; Rohrer, Jonathan D; Teunissen, Charlotte E; van Swieten, John C

    2016-08-01

    To evaluate cerebrospinal fluid (CSF) and serum neurofilament light chain (NfL) levels in genetic frontotemporal dementia (FTD) as a potential biomarker in the presymptomatic stage and during the conversion into the symptomatic stage. Additionally, to correlate NfL levels to clinical and neuroimaging parameters. In this multicenter case-control study, we investigated CSF NfL in 174 subjects (48 controls, 40 presymptomatic carriers and 86 patients with microtubule-associated protein tau (MAPT), progranulin (GRN), and chromosome 9 open reading frame 72 (C9orf72) mutations), and serum NfL in 118 subjects (39 controls, 44 presymptomatic carriers, 35 patients). In 55 subjects both CSF and serum was determined. In two subjects CSF was available before and after symptom onset (converters). Additionally, NfL levels were correlated with clinical parameters, survival, and regional brain atrophy. CSF NfL levels in patients (median 6762 pg/mL, interquartile range 3186-9309 pg/mL) were strongly elevated compared with presymptomatic carriers (804 pg/mL, 627-1173 pg/mL, P NfL correlated highly with CSF NfL (r s = 0.87, P NfL after disease onset. Additionally, NfL levels in patients correlated with disease severity, brain atrophy, annualized brain atrophy rate and survival. NfL in both serum and CSF has the potential to serve as a biomarker for clinical disease onset and has a prognostic value in genetic FTD.

  15. CSF neurofilament light chain reflects corticospinal tract degeneration in ALS

    Science.gov (United States)

    Menke, Ricarda A L; Gray, Elizabeth; Lu, Ching-Hua; Kuhle, Jens; Talbot, Kevin; Malaspina, Andrea; Turner, Martin R

    2015-01-01

    Objective Diffusion tensor imaging (DTI) is sensitive to white matter tract pathology. A core signature involving the corticospinal tracts (CSTs) has been identified in amyotrophic lateral sclerosis (ALS). Raised neurofilament light chain protein (NfL) in cerebrospinal fluid (CSF) is thought to reflect axonal damage in a range of neurological disorders. The relationship between these two measures was explored. Methods CSF and serum NfL concentrations and DTI acquired at 3 Tesla on the same day were obtained from ALS patients (n = 25 CSF, 40 serum) and healthy, age-similar controls (n = 17 CSF, 25 serum). Within-group correlations between NfL and DTI measures of microstructural integrity in major white matter tracts (CSTs, superior longitudinal fasciculi [SLF], and corpus callosum) were performed using tract-based spatial statistics. Results NfL levels were higher in patients compared to controls. CSF levels correlated with clinical upper motor neuron burden and rate of disease progression. Higher NfL levels were significantly associated with lower DTI fractional anisotropy and increased radial diffusivity in the CSTs of ALS patients, but not in controls. Interpretation Elevated CSF and serum NfL is, in part, a result of CST degeneration in ALS. This highlights the wider potential for combining neurochemical and neuroimaging-based biomarkers in neurological disease. PMID:26273687

  16. Overexpression of neurofilament H disrupts normal cell structure and function

    Science.gov (United States)

    Szebenyi, Gyorgyi; Smith, George M.; Li, Ping; Brady, Scott T.

    2002-01-01

    Studying exogenously expressed tagged proteins in live cells has become a standard technique for evaluating protein distribution and function. Typically, expression levels of experimentally introduced proteins are not regulated, and high levels are often preferred to facilitate detection. However, overexpression of many proteins leads to mislocalization and pathologies. Therefore, for normative studies, moderate levels of expression may be more suitable. To understand better the dynamics of intermediate filament formation, transport, and stability in a healthy, living cell, we inserted neurofilament heavy chain (NFH)-green fluorescent protein (GFP) fusion constructs in adenoviral vectors with tetracycline (tet)-regulated promoters. This system allows for turning on or off the synthesis of NFH-GFP at a selected time, for a defined period, in a dose-dependent manner. We used this inducible system for live cell imaging of changes in filament structure and cell shape, motility, and transport associated with increasing NFH-GFP expression. Cells with low to intermediate levels of NFH-GFP were structurally and functionally similar to neighboring, nonexpressing cells. In contrast, overexpression led to pathological alterations in both filament organization and cell function. Copyright 2002 Wiley-Liss, Inc.

  17. A hereditary spastic paraplegia mutation in kinesin-1A/KIF5A disrupts neurofilament transport

    Directory of Open Access Journals (Sweden)

    Brown Anthony

    2010-11-01

    Full Text Available Abstract Background Hereditary spastic paraplegias are a group of neurological disorders characterized by progressive distal degeneration of the longest ascending and descending axons in the spinal cord, leading to lower limb spasticity and weakness. One of the dominantly inherited forms of this disease (spastic gait type 10, or SPG10 is caused by point mutations in kinesin-1A (also known as KIF5A, which is thought to be an anterograde motor for neurofilaments. Results We investigated the effect of an SPG10 mutation in kinesin-1A (N256S-kinesin-1A on neurofilament transport in cultured mouse cortical neurons using live-cell fluorescent imaging. N256S-kinesin-1A decreased both anterograde and retrograde neurofilament transport flux by decreasing the frequency of anterograde and retrograde movements. Anterograde velocity was not affected, whereas retrograde velocity actually increased. Conclusions These data reveal subtle complexities to the functional interdependence of the anterograde and retrograde neurofilament motors and they also raise the possibility that anterograde and retrograde neurofilament transport may be disrupted in patients with SPG10.

  18. CSF neurofilament concentration reflects disease severity in frontotemporal degeneration

    Science.gov (United States)

    Scherling, Carole S.; Hall, Tracey; Berisha, Flora; Klepac, Kristen; Karydas, Anna; Coppola, Giovanni; Kramer, Joel H.; Rabinovici, Gil; Ahlijanian, Michael; Miller, Bruce L.; Seeley, William; Grinberg, Lea T.; Rosen, Howard; Meredith, Jere; Boxer, Adam L.

    2014-01-01

    Objective Cerebrospinal fluid (CSF) neurofilament light chain (NfL) concentration is elevated in neurological disorders including frontotemporal degeneration (FTD). We investigated the clinical correlates of elevated CSF NfL levels in FTD. Methods CSF NfL, amyloid-β42 (Aβ42), tau and phosphorylated tau (ptau) concentrations were compared in 47 normal controls (NC), 8 asymptomatic gene carriers (NC2) of FTD-causing mutations, 79 FTD (45 behavioral variant frontotemporal dementia [bvFTD], 18 progressive nonfluent aphasia [PNFA], 16 semantic dementia [SD]), 22 progressive supranuclear palsy, 50 Alzheimer’s disease, 6 Parkinson’s disease and 17 corticobasal syndrome patients. Correlations between CSF analyte levels were performed with neuropsychological measures and the Clinical Dementia Rating scale sum of boxes (CDRsb). Voxel-based morphometry of structural MR images determined the relationship between brain volume and CSF NfL. Results Mean CSF NfL concentrations were higher in bvFTD, SD and PNFA than other groups. NfL in NC2 was similar to NC. CSF NfL, but not other CSF measures, correlated with CDRsb and neuropsychological measures in FTD, and not in other diagnostic groups. Analyses in two independent FTD cohorts and a group of autopsy verified or biomarker enriched cases confirmed the larger group analysis. In FTD, gray and white matter volume negatively correlated with CSF NfL concentration, such that individuals with highest NfL levels exhibited the most atrophy. Interpretation CSF NfL is elevated in symptomatic FTD and correlates with disease severity. This measurement may be a useful surrogate endpoint of disease severity in FTD clinical trials. Longitudinal studies of CSF NfL in FTD are warranted. PMID:24242746

  19. Neurofilament light chain: A prognostic biomarker in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Lu, Ching-Hua; Macdonald-Wallis, Corrie; Gray, Elizabeth; Pearce, Neil; Petzold, Axel; Norgren, Niklas; Giovannoni, Gavin; Fratta, Pietro; Sidle, Katie; Fish, Mark; Orrell, Richard; Howard, Robin; Talbot, Kevin; Greensmith, Linda; Kuhle, Jens; Turner, Martin R; Malaspina, Andrea

    2015-06-02

    To test blood and CSF neurofilament light chain (NfL) levels in relation to disease progression and survival in amyotrophic lateral sclerosis (ALS). Using an electrochemiluminescence immunoassay, NfL levels were measured in samples from 2 cohorts of patients with sporadic ALS and healthy controls, recruited in London (ALS/control, plasma: n = 103/42) and Oxford (ALS/control, serum: n = 64/36; paired CSF: n = 38/20). NfL levels in patients were measured at regular intervals for up to 3 years. Change in ALS Functional Rating Scale-Revised score was used to assess disease progression. Survival was evaluated using Cox regression and Kaplan-Meier analysis. CSF, serum, and plasma NfL discriminated patients with ALS from healthy controls with high sensitivity (97%, 89%, 90%, respectively) and specificity (95%, 75%, 71%, respectively). CSF NfL was highly correlated with serum levels (r = 0.78, p NfL levels were approximately 4 times as high in patients with ALS compared with controls in both cohorts, and maintained a relatively constant expression during follow-up. Blood NfL levels at recruitment were strong, independent predictors of survival. The highest tertile of blood NfL at baseline had a mortality hazard ratio of 3.91 (95% confidence interval 1.98-7.94, p NfL level is an easily accessible biomarker with prognostic value in ALS. The individually relatively stable levels longitudinally offer potential for NfL as a pharmacodynamic biomarker in future therapeutic trials. This report provides Class III evidence that the NfL electrochemiluminescence immunoassay accurately distinguishes patients with sporadic ALS from healthy controls. © 2015 American Academy of Neurology.

  20. Plasma neurofilament light chain predicts progression in progressive supranuclear palsy.

    Science.gov (United States)

    Rojas, Julio C; Karydas, Anna; Bang, Jee; Tsai, Richard M; Blennow, Kaj; Liman, Victor; Kramer, Joel H; Rosen, Howard; Miller, Bruce L; Zetterberg, Henrik; Boxer, Adam L

    2016-03-01

    Blood-based biomarkers for neurodegenerative conditions could improve diagnosis and treatment development. Neurofilament light chain (NfL), a marker of axonal injury, is elevated in cerebrospinal fluid (CSF) of patients with progressive supranuclear palsy (PSP). The goal of this study was to determine the diagnostic and prognostic value of plasma NfL in patients with PSP. Plasma NfL was measured with ultrasensitive digital immunoassay-based technology at baseline and 1-year follow-up in a pilot cohort of 15 PSP patients and 12 healthy controls, and a validation cohort of 147 PSP patients. Mixed linear models tested the ability of plasma NfL to predict neurological, cognitive and functional decline, and brain atrophy. Baseline mean plasma NfL levels were elevated in PSP patients (31 ± 4 pg/mL, vs. control, 17.5 ± 1 pg/mL, P NfL levels had more severe neurological (PSPRS, -36.9% vs. -28.9%, P = 0.04), functional (SEADL, -38.2% vs. -20%, P = 0.03), and neuropsychological (RBANS, -23.9% vs. -12.3%, P = 001) deterioration over 1 year. Higher baseline NfL predicted greater whole-brain and superior cerebellar peduncle volume loss. Plasma and CSF NfL were significantly correlated (r = 0.74, P = 0.002). Plasma NfL is elevated in PSP and could be of value as a biomarker both to assist clinical diagnosis and to monitor pharmacodynamic effects on the neurodegenerative process in clinical trials.

  1. Neurofilaments in CSF as diagnostic biomarkers in motor neuron disease: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Dawei Li

    2016-11-01

    Full Text Available AbstractObjective: Neurofilaments in CSF are promising biomarkers which might help in the diagnosis of motor neuron disease (MND. We aim to assess the diagnostic value of neurofilaments in CSF for MND.Methods: Pubmed, Emabase and Web of Science were searched for relevant studies systematically. Articles in English that evaluated the utility of neurofilaments in CSF in the diagnosis of MND were included. Data were extracted by two independent investigators. Diagnostic indexes for neurofilament light chain (NFL and phosphorylated neurofilament heavy chain (pNFH were calculated separately. Stata 12.0 software with a bivariate mixed-effects model was used to summarize the diagnostic indexes from eligible studies.Results: Five studies on NFL and eight studies on pNFH met inclusion criteria. For NFL, the pooled sensitivity and specificity were 81% (95% confidence interval CI, 72%-88% and 85% (95%CI, 76%-91%, respectively; the positive likelihood ratio (PLR and negative likelihood ratio (NLR were 5.5 (95%CI, 3.1-9.8 and 0.22 (95%CI, 0.14-0.35, respectively; the summary diagnostic odds ratio (DOR was 25 (95%CI, 9-70, and the area under summary receiver operator characteristic curve (AUC was 0.90 (95%CI, 0.87-0.92. For pNFH, the pooled sensitivity, specificity, PLR and NLR were 85% (95% CI, 80%-88%, 85% (95%CI, 77%-90%, 5.5 (95%CI, 3.6-8.4 and 0.18 (95%CI, 0.13-0.25 respectively; the DOR was 30 (95%CI, 16-58, and the AUC was 0.91 (95%CI, 0.88-0.93.Conclusion: Neurofilaments in CSF have a high value in the diagnosis of MND, though the optimal cutoff value remains to be further investigated.

  2. Increased neurofilament light chain blood levels in neurodegenerative neurological diseases.

    Directory of Open Access Journals (Sweden)

    Johanna Gaiottino

    Full Text Available Neuronal damage is the morphological substrate of persisting neurological disability. Neurofilaments (Nf are cytoskeletal proteins of neurons and their release into cerebrospinal fluid has shown encouraging results as a biomarker for neurodegeneration. This study aimed to validate the quantification of the Nf light chain (NfL in blood samples, as a biofluid source easily accessible for longitudinal studies.We developed and applied a highly sensitive electrochemiluminescence (ECL based immunoassay for quantification of NfL in blood and CSF.Patients with Alzheimer's disease (AD (30.8 pg/ml, n=20, Guillain-Barré-syndrome (GBS (79.4 pg/ml, n=19 or amyotrophic lateral sclerosis (ALS (95.4 pg/ml, n=46 had higher serum NfL values than a control group of neurological patients without evidence of structural CNS damage (control patients, CP (4.4 pg/ml, n=68, p<0.0001 for each comparison, p=0.002 for AD patients and healthy controls (HC (3.3 pg/ml, n=67, p<0.0001. Similar differences were seen in corresponding CSF samples. CSF and serum levels correlated in AD (r=0.48, p=0.033, GBS (r=0.79, p<0.0001 and ALS (r=0.70, p<0.0001, but not in CP (r=0.11, p=0.3739. The sensitivity and specificity of serum NfL for separating ALS from healthy controls was 91.3% and 91.0%.We developed and validated a novel ECL based sandwich immunoassay for the NfL protein in serum (NfL(Umea47:3; levels in ALS were more than 20-fold higher than in controls. Our data supports further longitudinal studies of serum NfL in neurodegenerative diseases as a potential biomarker of on-going disease progression, and as a potential surrogate to quantify effects of neuroprotective drugs in clinical trials.

  3. Cyto- and chemoarchitecture of the dorsal thalamus of the monotreme Tachyglossus aculeatus, the short beaked echidna.

    Science.gov (United States)

    Ashwell, Ken W S; Paxinos, George

    2005-12-01

    We have examined the cyto- and chemoarchitecture of the dorsal thalamus of the short beaked echidna (Tachyglossus aculeatus), using Nissl and myelin staining, immunoreactivity for parvalbumin, calbindin, calretinin and non-phosphorylated neurofilament protein (SMI-32 antibody), and histochemistry for acetylcholinesterase and NADPH diaphorase. Immunohistochemical methods revealed many nuclear boundaries, which were difficult to discern with Nissl staining. Parvalbumin immunoreactive somata were concentrated in the ventral posterior, reticular, posterior, lateral and medial geniculate nuclei, while parvalbumin immunoreactivity of the neuropil was present throughout all but the midline nuclei. Large numbers of calbindin immunoreactive somata were also found within the midline thalamic nuclei, and thalamic sensory relay nuclei. Immunoreactivity for calretinin was found in many small somata within the lateral geniculate "a" nucleus, with other labelled somata found in the lateral geniculate "b" nucleus, ventral posterior medial and ventral posterior lateral nuclei. Immunoreactivity with the SMI-32 antibody was largely confined to somata and neuropil within the thalamocortical relay nuclei (ventral posterior medial and lateral nuclei, lateral and medial geniculate nuclei and the posterior thalamic nucleus). In broad terms there were many similarities between the thalamus of this monotreme and that of eutheria (e.g. disposition of somatosensory thalamus, complementarity of parvalbumin and calbindin immunoreactive structures), but there were some unique features of the thalamus of the echidna. These include the relatively small size of the thalamic reticular nucleus and the preponderance of calbindin immunoreactive neurons over parvalbumin immunoreactive neurons in the ventral posterior nucleus.

  4. The C-terminal domains of NF-H and NF-M subunits maintain axonal neurofilament content by blocking turnover of the stationary neurofilament network.

    Directory of Open Access Journals (Sweden)

    Mala V Rao

    Full Text Available Newly synthesized neurofilaments or protofilaments are incorporated into a highly stable stationary cytoskeleton network as they are transported along axons. Although the heavily phosphorylated carboxyl-terminal tail domains of the heavy and medium neurofilament (NF subunits have been proposed to contribute to this process and particularly to stability of this structure, their function is still obscure. Here we show in NF-H/M tail deletion [NF-(H/M(tailΔ] mice that the deletion of both of these domains selectively lowers NF levels 3-6 fold along optic axons without altering either rates of subunit synthesis or the rate of slow axonal transport of NF. Pulse labeling studies carried out over 90 days revealed a significantly faster rate of disappearance of NF from the stationary NF network of optic axons in NF-(H/M(tailΔ mice. Faster NF disappearance was accompanied by elevated levels of NF-L proteolytic fragments in NF-(H/M(tailΔ axons. We conclude that NF-H and NF-M C-terminal domains do not normally regulate NF transport rates as previously proposed, but instead increase the proteolytic resistance of NF, thereby stabilizing the stationary neurofilament cytoskeleton along axons.

  5. CSF Neurofilament Proteins Levels are Elevated in Sporadic Creutzfeldt-Jakob Disease

    NARCIS (Netherlands)

    van Eijk, Jeroen J. J.; van Everbroeck, Bart; Abdo, W. Farid; Kremer, Berry P. H.; Verbeek, Marcel M.

    2010-01-01

    In this study we investigated the cerebrospinal fluid (CSF) levels of neurofilament light (NFL) and heavy chain (NFHp35), total tau (t-tau), and glial fibrillary acidic protein (GFAP) to detect disease specific profiles in sporadic Creutzfeldt Jakob disease (sCJD) patients and Alzheimer's disease

  6. CSF neurofilament light chain and tau differentiate multiple system atrophy from Parkinson's disease.

    NARCIS (Netherlands)

    Abdo, W.; Bloem, B.R.; Geel, W.J.A. van; Esselink, R.A.J.; Verbeek, M.M.

    2007-01-01

    BACKGROUND: In early disease stages it can be clinically difficult to differentiate idiopathic Parkinson's disease (IPD) from patients with multiple system atrophy predominated by parkinsonism (MSA-P). METHODS: In CSF of 31 patients with IPD, 19 patients with MSA-P, we analyzed tau, neurofilament

  7. CSF neurofilament proteins levels are elevated in sporadic Creutzfeldt-Jakob disease.

    NARCIS (Netherlands)

    Eijk, J.J.J. van; Everbroeck, B. van; Abdo, W.; Kremer, H.P.H.; Verbeek, M.M.

    2010-01-01

    In this study we investigated the cerebrospinal fluid (CSF) levels of neurofilament light (NFL) and heavy chain (NFHp35), total tau (t-tau), and glial fibrillary acidic protein (GFAP) to detect disease specific profiles in sporadic Creutzfeldt Jakob disease (sCJD) patients and Alzheimer's disease

  8. Sequence and structure of the mouse gene coding for the largest neurofilament subunit.

    NARCIS (Netherlands)

    J-P. Julien (Jean-Pierre); F. Cote; L. Beaudet (Lucille); M. Sidky (Malak); D. Flavell (David); F.G. Grosveld (Frank); W. Mushynski (Walter)

    1988-01-01

    textabstractWe have determined the complete nucleotide sequence of the mouse gene encoding the neurofilament NF-H protein. The C-terminal domain of NF-H is very rich in charged amino acids (aa) and contains a 3-aa sequence, Lys-Ser-Pro, that is repeated 51 times within a stretch of 368 aa. The

  9. CSF neurofilament light chain and tau differentiate multiple system atrophy from Parkinson's disease.

    NARCIS (Netherlands)

    Abdo, W.; Bloem, B.R.; Geel, W.J.A. van; Esselink, R.A.J.; Verbeek, M.M.

    2007-01-01

    BACKGROUND: In early disease stages it can be clinically difficult to differentiate idiopathic Parkinson's disease (IPD) from patients with multiple system atrophy predominated by parkinsonism (MSA-P). METHODS: In CSF of 31 patients with IPD, 19 patients with MSA-P, we analyzed tau, neurofilament li

  10. CSF Neurofilament Proteins Levels are Elevated in Sporadic Creutzfeldt-Jakob Disease

    NARCIS (Netherlands)

    van Eijk, Jeroen J. J.; van Everbroeck, Bart; Abdo, W. Farid; Kremer, Berry P. H.; Verbeek, Marcel M.

    2010-01-01

    In this study we investigated the cerebrospinal fluid (CSF) levels of neurofilament light (NFL) and heavy chain (NFHp35), total tau (t-tau), and glial fibrillary acidic protein (GFAP) to detect disease specific profiles in sporadic Creutzfeldt Jakob disease (sCJD) patients and Alzheimer's disease (A

  11. Neurofilament Phosphorylation during Development and Disease: Which Came First, the Phosphorylation or the Accumulation?

    Directory of Open Access Journals (Sweden)

    Jeffrey M. Dale

    2012-01-01

    Full Text Available Posttranslational modification of proteins is a ubiquitous cellular mechanism for regulating protein function. Some of the most heavily modified neuronal proteins are cytoskeletal proteins of long myelinated axons referred to as neurofilaments (NFs. NFs are type IV intermediate filaments (IFs that can be composed of four subunits, neurofilament heavy (NF-H, neurofilament medium (NF-M, neurofilament light (NF-L, and α-internexin. Within wild type axons, NFs are responsible for mediating radial growth, a process that determines axonal diameter. NFs are phosphorylated on highly conserved lysine-serine-proline (KSP repeats located along the C-termini of both NF-M and NF-H within myelinated axonal regions. Phosphorylation is thought to regulate aspects of NF transport and function. However, a key pathological hallmark of several neurodegenerative diseases is ectopic accumulation and phosphorylation of NFs. The goal of this review is to provide an overview of the posttranslational modifications that occur in both normal and diseased axons. We review evidence that challenges the role of KSP phosphorylation as essential for radial growth and suggests an alternative role for NF phosphorylation in myelinated axons. Furthermore, we demonstrate that regulation of NF phosphorylation dynamics may be essential to avoiding NF accumulations.

  12. Sensory-motor deficits and neurofilament disorganization in gigaxonin-null mice

    Directory of Open Access Journals (Sweden)

    Boizot Alexia

    2011-04-01

    Full Text Available Abstract Background Giant Axonal Neuropathy (GAN is a fatal neurodegenerative disorder with early onset characterized by a severe deterioration of the peripheral and central nervous system, involving both the motor and the sensory tracts and leading to ataxia, speech defect and intellectual disabilities. The broad deterioration of the nervous system is accompanied by a generalized disorganization of the intermediate filaments, including neurofilaments in neurons, but the implication of this defect in disease onset or progression remains unknown. The identification of gigaxonin, the substrate adaptor of an E3 ubiquitin ligase, as the defective protein in GAN allows us to now investigate the crucial role of the gigaxonin-E3 ligase in sustaining neuronal and intermediate filament integrity. To study the mechanisms controlled by gigaxonin in these processes and to provide a relevant model to test the therapeutic approaches under development for GAN, we generated a Gigaxonin-null mouse by gene targeting. Results We investigated for the first time in Gigaxonin-null mice the deterioration of the motor and sensory functions over time as well as the spatial disorganization of neurofilaments. We showed that gigaxonin depletion in mice induces mild but persistent motor deficits starting at 60 weeks of age in the 129/SvJ-genetic background, while sensory deficits were demonstrated in C57BL/6 animals. In our hands, another gigaxonin-null mouse did not display the early and severe motor deficits reported previously. No apparent neurodegeneration was observed in our knock-out mice, but dysregulation of neurofilaments in proximal and distal axons was massive. Indeed, neurofilaments were not only more abundant but they also showed the abnormal increase in diameter and misorientation that are characteristics of the human pathology. Conclusions Together, our results show that gigaxonin depletion in mice induces mild motor and sensory deficits but recapitulates the

  13. Semi-in situ atomic force microscopy imaging of intracellular neurofilaments under physiological conditions through the 'sandwich' method.

    Science.gov (United States)

    Sato, Fumiya; Asakawa, Hitoshi; Fukuma, Takeshi; Terada, Sumio

    2016-08-01

    Neurofilaments are intermediate filament proteins specific for neurons and characterized by formation of biochemically stable, obligate heteropolymers in vivo While purified or reassembled neurofilaments have been subjected to morphological analyses by electron microscopy and atomic force microscopy, there has been a need for direct imaging of cytoplasmic genuine intermediate filaments with minimal risk of artefactualization. In this study, we applied the modified 'cells on glass sandwich' method to exteriorize intracellular neurofilaments, reducing the risk of causing artefacts through sample preparation. SW13vim(-) cells were double transduced with neurofilament medium polypeptide (NF-M) and alpha-internexin (α-inx). Cultured cells were covered with a cationized coverslip after prestabilization with tannic acid to form a sandwich and then split into two. After confirming that neurofilaments could be deposited on ventral plasma membranes exposed via unroofing, we performed atomic force microscopy imaging semi-in situ in aqueous solution. The observed thin filaments, considered to retain native structures of the neurofilaments, exhibited an approximate periodicity of 50-60 nm along their length. Their structural property appeared to reflect the morphology formed by their constituents, i.e. NF-M and α-inx. The success of semi-in situ atomic force microscopy of exposed bona fide assembled neurofilaments through separating the sandwich suggests that it can be an effective and alternative method for investigating cytoplasmic intermediate filaments under physiological conditions by atomic force microscopy.

  14. Age-associated and cell-type-specific neurofibrillary pathology in transgenic mice expressing the human midsized neurofilament subunit.

    Science.gov (United States)

    Vickers, J C; Morrison, J H; Friedrich, V L; Elder, G A; Perl, D P; Katz, R N; Lazzarini, R A

    1994-09-01

    Alterations in neurofilaments are a common occurrence in neurons of the human nervous system during aging and diseases associated with aging. Such pathologic changes may be attributed to species-specific properties of human neurofilaments as well as cell-type-specific regulation of this element of the cytoskeleton. The development of transgenic animals containing human neurofilament subunits offers an opportunity to study the effects of aging and other experimental conditions on the human-specific form of these proteins in a rodent model. The present study shows that mice from the transgenic line NF(M)27, which express the human midsized neurofilament subunit at low levels (2-25% of the endogenous NF-M), develop neurofilamentous accumulations in specific subgroups of neurons that are age dependent, affecting 78% of transgenic mice over 12 months of age. Similar accumulations do not occur in age-matched, wild-type littermates or in 3-month-old transgenic mice. In 12-month-old transgenic mice, somatic neurofilament accumulations resembling neurofibrillary tangles were present predominantly in layers III and V of the neocortex, as well as in select subpopulations of subcortical neurons. Intraperikaryal, spherical neurofilamentous accumulations were particularly abundant in cell bodies in layer II of the neocortex, and neurofilament-containing distentions of Purkinje cell proximal axons occurred in the cerebellum. These pathological accumulations contained mouse as well as human NF subunits, but could be distinguished by their content of phosphorylation-dependent NF epitopes. These cytoskeletal alterations closely resemble the cell-type-specific alterations in neurofilaments that occur during normal human aging and in diseases associated with aging, indicating that these transgenic animals may serve as models of some aspects of the pathologic features of human neurodegenerative diseases.

  15. Deficiency in ubiquitin ligase TRIM2 causes accumulation of neurofilament light chain and neurodegeneration

    OpenAIRE

    Balastik, M.; Ferraguti, F.; A. Pires da Silva; Lee, T; Alvarez-Bolado, G.; Lu, K.; Gruss, P

    2008-01-01

    TRIM RING finger proteins have been shown to play an important role in cancerogenesis, in the pathogenesis of some human hereditary disorders, and in the defense against viral infection, but the function of the majority of TRIM proteins remains unknown. Here, we show that TRIM RING finger protein TRIM2, highly expressed in the nervous system, is an UbcH5a-dependent ubiquitin ligase. We further demonstrate that TRIM2 binds to neurofilament light subunit (NF-L) and regulates NF-L ubiquitination...

  16. Plasma neurofilament heavy chain is not a useful biomarker in Charcot-Marie-Tooth disease.

    Science.gov (United States)

    Rossor, Alexander M; Liu, Ching-Hua; Petzold, Axel; Malaspina, Andreas; Laura, Matilde; Greensmith, Linda; Reilly, Mary M

    2016-06-01

    The negative results in trials of vitamin C in Charcot-Marie-Tooth disease (CMT) type 1A have highlighted the lack of sensitive outcome measures. Neurofilaments are abundant neuronal cytoskeletal proteins, and their concentration in blood is likely to reflect axonal breakdown. We therefore examined plasma neurofilament heavy-chain (NfH) concentration as a potential biomarker in CMT. Blood samples were collected from healthy controls and patients with CMT over a 2-year period. Disease severity was measured using the CMT Examination Score. An in-house enzyme-linked immunoabsorbent assay was used to measure plasma NfH levels. There was no significant difference in plasma NfH concentrations between CMT patients and controls (P = 0.449). There was also no significant difference in plasma NfH levels in the CMT group over 1 year (mean difference = -0.02, SEM = 4.44, P = 0.98). Plasma NfH levels are not altered in patients with CMT and are not a suitable biomarker of disease activity. Muscle Nerve 53: 972-975, 2016. © 2016 Wiley Periodicals, Inc.

  17. Cryptic Amyloidogenic Elements in the 3′ UTRs of Neurofilament Genes Trigger Axonal Neuropathy

    Science.gov (United States)

    Rebelo, Adriana P.; Abrams, Alexander J.; Cottenie, Ellen; Horga, Alejandro; Gonzalez, Michael; Bis, Dana M.; Sanchez-Mejias, Avencia; Pinto, Milena; Buglo, Elena; Markel, Kasey; Prince, Jeffrey; Laura, Matilde; Houlden, Henry; Blake, Julian; Woodward, Cathy; Sweeney, Mary G.; Holton, Janice L.; Hanna, Michael; Dallman, Julia E.; Auer-Grumbach, Michaela; Reilly, Mary M.; Zuchner, Stephan

    2016-01-01

    Abnormal protein aggregation is observed in an expanding number of neurodegenerative diseases. Here, we describe a mechanism for intracellular toxic protein aggregation induced by an unusual mutation event in families affected by axonal neuropathy. These families carry distinct frameshift variants in NEFH (neurofilament heavy), leading to a loss of the terminating codon and translation of the 3′ UTR into an extra 40 amino acids. In silico aggregation prediction suggested the terminal 20 residues of the altered NEFH to be amyloidogenic, which we confirmed experimentally by serial deletion analysis. The presence of this amyloidogenic motif fused to NEFH caused prominent and toxic protein aggregates in transfected cells and disrupted motor neurons in zebrafish. We identified a similar aggregation-inducing mechanism in NEFL (neurofilament light) and FUS (fused in sarcoma), in which mutations are known to cause aggregation in Charcot-Marie-Tooth disease and amyotrophic lateral sclerosis, respectively. In summary, we present a protein-aggregation-triggering mechanism that should be taken into consideration during the evaluation of stop-loss variants. PMID:27040688

  18. Morphine causes persistent induction of nitrated neurofilaments in cortex and subcortex even during abstinence.

    Science.gov (United States)

    Pal, A; Das, S

    2015-04-16

    Morphine has a profound role in neurofilament (NF) expression. However, there are very few studies on the fate of NFs during morphine abstinence coinciding with periods of relapse. Mice were treated chronically with morphine to render them tolerant to and dependent on morphine and sacrificed thereafter while another group, treated similarly, was left for 2 months without morphine. A long-lasting alteration in the stoichiometric ratio of the three NFs was observed under both conditions in both the cortex and subcortex. Morphine abstinence caused significant alterations in the phosphorylated and nitrated forms of the three NF subunits. Nitrated neurofilament light polypeptide chain (NFL) was significantly increased during chronic morphine treatment which persisted even after 2 months of morphine withdrawal. Mass spectrometric analysis following two-dimensional gel electrophoresis (2DE)-gel electrophoresis of cytoskeleton fractions of both cortex and subcortex regions identified enzymes associated with energy metabolism, cytoskeleton-associated proteins as well as NFs which showed sustained regulation even after abstinence of morphine for 2 months. It is suggestive that alteration in the levels of some of these proteins may be instrumental in the increased nitration of NFL during morphine exposure. Such gross alteration in NF dynamics is indicative of a concerted biological process of neuroadaptation during morphine abstinence.

  19. Quantitative study of neurofilament-positive fiber length in rat spinal cord lesions using isotropic virtual planes

    DEFF Research Database (Denmark)

    von Euler, Mia; Larsen, Jytte Overgaard; Janson, A M

    1998-01-01

    Spontaneous reocurrence of neurofilament (NF)-positive fibers has been described after spinal cord lesions in rats. However, previously introduced methods to evaluate the lesion and the regenerative fiber outgrowth suffer from several biases, why a new concept of quantitative, morphological analy...

  20. Biochemical and functional characterization of phosphoserine aminotransferase from Entamoeba histolytica, which possesses both phosphorylated and non-phosphorylated serine metabolic pathways.

    Science.gov (United States)

    Ali, Vahab; Nozaki, Tomoyoshi

    2006-01-01

    The enteric protozoan parasite Entamoeba histolytica is a unicellular eukaryote that possesses both phosphorylated and non-phosphorylated serine metabolic pathways. In the present study, we described enzymological and functional characterization of phosphoserine aminotransferase (PSAT) from E. histolytica. E. histolytica PSAT (EhPSAT) showed maximum activity for the forward reaction at basic pH, dissimilar to mammalian PSAT, which showed sharp neutral optimum pH. EhPSAT activity was significantly inhibited by substrate analogs, O-phospho-d-serine, O-phospho-l-threonine, and O-acetylserine, suggesting possible regulation of the amoebic PSAT by these metabolic intermediates. Fractionation of the whole parasite lysate and rEhPSAT by anion exchange chromatography verified that EhPSAT represents a dominant PSAT activity. EhPSAT showed a close kinship to PSAT from bacteroides based on amino acid alignment and phylogenetic analyses, suggesting that E. histolytica gained this gene from bacteroides by lateral gene transfer. Comparisons of kinetic properties of recombinant PSAT from E. histolytica and Arabidopsis thaliana showed that EhPSAT possesses significantly higher affinity toward glutamate than the A. thaliana counterpart, which may be explained by significant differences in the isoelectric point and the substitution of arginine, which is involved the binding to the gamma-carboxylate moiety of glutamate, in Escherichia coli PSAT, to serine or threonine in E. histolytica or A. thaliana PSAT, respectively. Heterologous expression of EhPSAT successfully rescued growth defect of a serine-auxotrophic E. coli strain KL282, where serC was deleted, confirming its in vivo role in serine biosynthesis. Together with our previous demonstration of phosphoglycerate dehydrogenase, the present study reinforces physiological significance of the phosphorylated pathway in amoeba.

  1. Neurofilament protein is differentially distributed in subpopulations of corticocortical projection neurons in the macaque monkey visual pathways

    Science.gov (United States)

    Hof, P. R.; Ungerleider, L. G.; Webster, M. J.; Gattass, R.; Adams, M. M.; Sailstad, C. A.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1996-01-01

    Previous studies of the primate cerebral cortex have shown that neurofilament protein is present in pyramidal neuron subpopulations displaying specific regional and laminar distribution patterns. In order to characterize further the neurochemical phenotype of the neurons furnishing feedforward and feedback pathways in the visual cortex of the macaque monkey, we performed an analysis of the distribution of neurofilament protein in corticocortical projection neurons in areas V1, V2, V3, V3A, V4, and MT. Injections of the retrogradely transported dyes Fast Blue and Diamidino Yellow were placed within areas V4 and MT, or in areas V1 and V2, in 14 adult rhesus monkeys, and the brains of these animals were processed for immunohistochemistry with an antibody to nonphosphorylated epitopes of the medium and heavy molecular weight subunits of the neurofilament protein. Overall, there was a higher proportion of neurons projecting from areas V1, V2, V3, and V3A to area MT that were neurofilament protein-immunoreactive (57-100%), than to area V4 (25-36%). In contrast, feedback projections from areas MT, V4, and V3 exhibited a more consistent proportion of neurofilament protein-containing neurons (70-80%), regardless of their target areas (V1 or V2). In addition, the vast majority of feedback neurons projecting to areas V1 and V2 were located in layers V and VI in areas V4 and MT, while they were observed in both supragranular and infragranular layers in area V3. The laminar distribution of feedforward projecting neurons was heterogeneous. In area V1, Meynert and layer IVB cells were found to project to area MT, while neurons projecting to area V4 were particularly dense in layer III within the foveal representation. In area V2, almost all neurons projecting to areas MT or V4 were located in layer III, whereas they were found in both layers II-III and V-VI in areas V3 and V3A. These results suggest that neurofilament protein identifies particular subpopulations of

  2. Phosphorylation-induced mechanical regulation of intrinsically disordered neurofilament protein assemblies

    CERN Document Server

    Malka-Gibor, Eti; Laser-Azogui, Adi; Doron, Ofer; Zingerman-Koladko, Irena; Medalia, Ohad; Beck, Roy

    2016-01-01

    The biological function of protein assemblies was conventionally equated with a unique three-dimensional protein structure and protein-specific interactions. However, in the past 20 years it was found that some assemblies contain long flexible regions that adopt multiple structural conformations. These include neurofilament (NF) proteins that constitute the stress-responsive supportive network of neurons. Herein, we show that NF networks macroscopic properties are tuned by enzymatic regulation of the charge found on the flexible protein regions. The results reveal an enzymatic (phosphorylation) regulation of macroscopic properties such as orientation, stress-response and expansion in flexible protein assemblies. Together with a model explaining the attractive electrostatic interactions induced by enzymatically added charges, we demonstrate that phosphorylation-regulation is far richer and versatile than previously considered.

  3. Analysis of the neurofilament heavy subunit (NFH) gene in familial amyotrophic lateral sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Rooke, K.; Rouleau, G.A. [McGill Univ., Montreal (Canada); Figlewicz, D.A. [Univ. of Rochester Medical Center, NY (United States)

    1994-09-01

    Amyotrophic lateral sclerosis (ALS) is a fatal, adult-onset, degenerative disorder of the motor neurons in the cortex, brainstem and spinal cord. Approximately 10% of ALS cases are familial (FALS) and are inherited as an age-dependent autosomal dominant trait. Mutations in the Cu/Zn superoxide dismutase (SOD-1) gene on chromosome 21 have been found in a subset of cases. However, for the remaining FALS cases, the etiology is unknown. The abnormal accumulation of neurofilaments in the cell body and proximal axon of motor neurons is a characteristic pathological finding in ALS. Furthermore, aberrant neuronal swellings that closely resemble those found in ALS have been reported in transgenic mice overexpressing NFH. The C-terminal region of NFH contains a unique functional domain with multiple repeats of the amino acids (Lys-Ser-Pro) (KSP) and forms the side-arms which appear, at the level of electron microscopy, to cross-link neurofilaments. Recently, deletions in the DSP repeat domain have been identified in five ALS patients diagnosed as sporadic cases of the disease. Based on these findings, we propose to analyze all 4 exons of the NFH gene for variation in FALS. DNA from 110 FALS cases has been amplified by the polymerase chain reaction (PCR) and analyzed by single strand conformation polymorphism (SSCP) analysis. Exon 2, exon 3 and the KSP repeat domain (part of exon 4) appear normal in all our FALS individuals under several different SSCP conditions. The analysis of exon 1 and the remainder of exon 4 has yet to be completed.

  4. High- and medium-molecular-weight neurofilament proteins define specific neuron types in the guinea-pig enteric nervous system.

    Science.gov (United States)

    Rivera, Leni R; Thacker, Michelle; Furness, John B

    2009-03-01

    Previous studies have demonstrated that neurofilament proteins are expressed by type II neurons in the enteric plexuses of a range of species from mouse to human. However, two previous studies have failed to reveal this association in the guinea-pig. Furthermore, immunohistochemistry for neurofilaments has revealed neurons with a single axon and spiny dendrites in human and pig but this morphology has not been described in the guinea-pig or other species. We have used antibodies against high- and medium-weight neurofilament proteins (NF-H and NF-M) to re-examine enteric neurons in the guinea-pig. NF-H immunoreactivity occurred in all type II neurons (identified by their IB4 binding) but these neurons were never NF-M-immunoreactive. On the other hand, 17% of myenteric neurons expressed NF-M. Many of these were uni-axonal neurons with spiny dendrites and nitric oxide synthase (NOS) immunoreactivity. NOS immunoreactivity occurred in surface expansions of the cytoplasm that did not contain neurofilament immunoreactivity. Thus, because of their NOS immunoreactivity, spiny neurons had the appearance of type I neurons. This indicates that the apparent morphologies and the morphological classifications of these neurons are dependent on the methods used to reveal them. We conclude that spiny type I NOS-immunoreactive neurons have similar morphologies in human and guinea-pig and that many of these are inhibitory motor neurons. Both type II and neuropeptide-Y-immunoreactive neurons in the submucosal ganglia exhibit NF-H immunoreactivity. NF-M has been observed in nerve fibres, but not in nerve cell bodies, in the submucosa.

  5. Increased CSF levels of phosphorylated neurofilament heavy protein following bout in amateur boxers.

    Directory of Open Access Journals (Sweden)

    Sanna Neselius

    Full Text Available INTRODUCTION: Diagnosis of mild TBI is hampered by the lack of imaging or biochemical measurements for identifying or quantifying mild TBI in a clinical setting. We have previously shown increased biomarker levels of protein reflecting axonal (neurofilament light protein and tau and glial (GFAP and S-100B damage in cerebrospinal fluid (CSF after a boxing bout. The aims of this study were to find other biomarkers of mild TBI, which may help clinicians diagnose and monitor mild TBI, and to calculate the role of APOE ε4 allele genotype which has been associated with poor outcome after TBI. MATERIALS AND METHODS: Thirty amateur boxers with a minimum of 45 bouts and 25 non-boxing matched controls were included in a prospective cohort study. CSF and blood were collected at one occasion between 1 and 6 days after a bout, and after a rest period for at least 14 days (follow up. The controls were tested once. CSF levels of neurofilament heavy (pNFH, amyloid precursor proteins (sAPPα and sAPPβ, ApoE and ApoA1 were analyzed. In blood, plasma levels of Aβ42 and ApoE genotype were analyzed. RESULTS: CSF levels of pNFH were significantly increased between 1 and 6 days after boxing as compared with controls (p<0.001. The concentrations decreased at follow up but were still significantly increased compared to controls (p = 0.018. CSF pNFH concentrations correlated with NFL (r =  0.57 after bout and 0.64 at follow up, p<0.001. No significant change was found in the other biomarkers, as compared to controls. Boxers carrying the APOE ε4 allele had similar biomarker concentrations as non-carriers. CONCLUSIONS: Subconcussive repetitive trauma in amateur boxing causes a mild TBI that may be diagnosed by CSF analysis of pNFH, even without unconsciousness or concussion symptoms. Possession of the APOE ε4 allele was not found to influence biomarker levels after acute TBI.

  6. Prolonged Cerebrospinal Fluid Neurofilament Light Chain Increase in Patients with Post-Traumatic Disorders of Consciousness.

    Science.gov (United States)

    Bagnato, Sergio; Grimaldi, Luigi M E; Di Raimondo, Giorgio; Sant'Angelo, Antonino; Boccagni, Cristina; Virgilio, Vittorio; Andriolo, Maria

    2017-08-15

    The mechanisms involved in secondary brain injury after the acute phase of severe traumatic brain injury (TBI) are largely unknown. Ongoing axonal degeneration, consequent to the initial trauma, may lead to secondary brain injury. To test this hypothesis, we evaluated the cerebrospinal fluid (CSF) level of neurofilament light chain (NF-L), a proposed marker of axonal degeneration, in 10 patients who developed a severe disorder of consciousness after a TBI, including 7 in a minimally conscious state and 3 with unresponsive wakefulness syndrome (time since brain injury, 309 ± 169 days). CSF NF-L level was measured with a commercially available NF-L enzyme-linked immunosorbent assay. CSF NF-L level was very high in all 10 patients, ranging from 2.4- to 60.5-fold the upper normal limit (median value, 4458 pg/mL; range, 695-23,000). Moreover, NF-L level was significantly higher after a severe TBI than in a reference group of 9 patients with probable Alzheimer's disease, a population with elevated levels of CSF NF-L attributed to neuronal degeneration (median value, 1173 pg/mL; range, 670-3643; p < 0.01). CSF NF-L level was correlated with time post-TBI (p = 0.04). These results demonstrate prolonged secondary brain injury, suggesting that patients exhibit ongoing axonal degeneration up to 19 months after a severe TBI.

  7. Elevated neurofilament light chain (NFL) mRNA levels in prediabetic peripheral neuropathy.

    Science.gov (United States)

    Celikbilek, Asuman; Tanik, Nermin; Sabah, Seda; Borekci, Elif; Akyol, Lutfi; Ak, Hakan; Adam, Mehmet; Suher, Murat; Yilmaz, Neziha

    2014-06-01

    Evidence suggests that peripheral nerve injury occurs during the early stages of disease with mild glycemic dysregulation. Two proteins, neuron-specific enolase (NSE) and neurofilament light chain (NFL), have been examined previously as possible markers of neuronal damage in the pathophysiology of neuropathies. Herein, we aimed to determine the potential value of circulatory NSE and NFL mRNA levels in prediabetic patients and in those with peripheral neuropathy. This prospective clinical study included 45 prediabetic patients and 30 age- and sex-matched controls. All prediabetic patients were assessed with respect to diabetes-related microvascular complications, such as peripheral neuropathy, retinopathy and nephropathy. mRNA levels of NSE and NFL were determined in the blood by real-time polymerase chain reaction. NSE mRNA levels were similar between prediabetic and control groups (p > 0.05), whereas NFL mRNA levels were significantly higher in prediabetics than in controls (p 0.05), while NFL mRNA levels were significantly higher in prediabetics with peripheral neuropathy than in those without (p = 0.038). According to correlation analysis, NFL mRNA levels were positively correlated with the Douleur Neuropathique 4 questionnaire score in prediabetic patients (r = 0.302, p = 0.044). This is the first study to suggest blood NFL mRNA as a surrogate marker for early prediction of prediabetic peripheral neuropathy, while NSE mRNA levels may be of no diagnostic value in prediabetic patients.

  8. Antiretroviral treatment reduces increased CSF neurofilament protein (NFL) in HIV-1 infection.

    Science.gov (United States)

    Mellgren, A; Price, R W; Hagberg, L; Rosengren, L; Brew, B J; Gisslén, M

    2007-10-09

    Increased levels of the light-chain neurofilament protein (NFL) in CSF provide a marker of CNS injury in several neurodegenerative disorders and have been reported in the AIDS dementia complex (ADC). We examined the effects of highly active antiretroviral treatment (HAART) on CSF NFL in HIV-1-infected subjects with and without ADC who underwent repeated lumbar punctures (LPs). NFL was measured by ELISA (normal reference value NFL at baseline, with a median level of 780 ng/L and an intraquartile range (IQR) of 480 to 7300. After 3 months of treatment, NFL concentrations had fallen to normal in 48% (10/21), and the median decreased to 340 ng/L (IQR NFL levels. Thirty-two subjects had normal NFL at baseline, and all but one remained normal at follow-up. These effects on CSF NFL were seen in association with clinical improvement in ADC patients, decreases in plasma and CSF HIV-1 RNA and CSF neopterin, and increases in blood CD4 T cell counts. HAART seems to halt the neurodegenerative process(es) caused by HIV-1, as shown by the significant decrease in CSF NFL after treatment initiation. CSF NFL may serve as a useful marker in monitoring CNS injury in HIV-1 infection and in evaluating CNS efficacy of antiretroviral therapy.

  9. Cerebrospinal fluid neurofilament light chain levels predict visual outcome after optic neuritis

    DEFF Research Database (Denmark)

    Modvig, Signe; Degn, M; Sander, B

    2016-01-01

    BACKGROUND: Optic neuritis is a good model for multiple sclerosis relapse, but currently no tests can accurately predict visual outcome. OBJECTIVE: The purpose of this study was to examine whether cerebrospinal fluid (CSF) biomarkers of tissue damage and remodelling (neurofilament light chain (NF-L...... cell layer+inner plexiform layer (GC-IPL) thicknesses. RESULTS: CSF NF-L levels at onset predicted inter-ocular differences in follow-up LCVA (β=13.8, p=0.0008), RNFL (β=5.6, p=0.0004) and GC-IPL (β=4.0, p=0.0008). The acute-phase GC-IPL thickness also predicted follow-up LCVA (β=12.9, p=0.0021 for NF-L......, β=-1.1, p=0.0150 for GC-IPL). Complete/incomplete remission was determined based on LCVA from 30 healthy controls. NF-L had a positive predictive value of 91% and an area under the curve (AUC) of 0.79 for incomplete remission. CONCLUSION: CSF NF-L is a promising biomarker of visual outcome after...

  10. CSF neurofilament protein (NFL) -- a marker of active HIV-related neurodegeneration.

    Science.gov (United States)

    Abdulle, Sahra; Mellgren, Asa; Brew, Bruce J; Cinque, Paola; Hagberg, Lars; Price, Richard W; Rosengren, Lars; Gisslén, Magnus

    2007-08-01

    The light subunit of the neurofilament protein (NFL), a major structural component of myelinated axons, is a sensitive indicator of axonal injury in the central nervous system (CNS) in a variety of neurodegenerative disorders. Cerebrospinal fluid (CSF) NFL concentrations were measured by ELISA (normal NFL concentrations were significantly higher in patients with ADC (median 2590 ng/l, IQR 780-7360) and CNS OIs (2315 ng/l, 985-7390 ng/l) than in neuroasymptomatic patients (NFL declined during HAART to the limit of detection in parallel with virological response and neurological improvement in ADC.CSF NFL concentrations were higher in neuroasymptomatic patients with lower CD4-cell strata than higher, p or =200/microl. The findings of this study support the value of CSF NFL as a useful marker of ongoing CNS damage in HIV infection. Markedly elevated CSF NFL concentrations in patients without CNS OIs are associated with ADC, follow the grade of severity, and decrease after initiation of effective antiretroviral treatment. Nearly all previously suggested CSF markers of ADC relate to immune activation or HIV viral load that do not directly indicate brain injury. By contrast NFL is a sensitive marker of such injury, and should prove useful in evaluating the presence and activity of ongoing CNS injury in HIV infection.

  11. Serum neurofilament light chain levels are increased in patients with a clinically isolated syndrome

    DEFF Research Database (Denmark)

    Disanto, Giulio; Adiutori, Rocco; Dobson, Ruth

    2016-01-01

    BACKGROUND: Neurofilament light chain (NfL) represents a promising biomarker for axonal injury. We present the first exploratory study on serum NfL in patients with a clinically isolated syndrome (CIS) and healthy controls. METHODS: We investigated serum NfL levels in 100 patients with CIS...... with a short conversion interval to clinically definite multiple sclerosis (MS) (fast converters (FC), median (IQR) conversion time: 110 days (79-139)); 98 patients with non-converting CIS (non-converters (NC), follow-up: 6.5 years (5.3-7.9)); and 92 healthy controls. RESULTS: NfL levels were higher in FC (24.......1 pg/mL (13.5-51.8)) and NC (19.3 pg/mL (13.6-35.2)) than in healthy controls (7.9 pg/mL (5.6-17.2)) (OR=5.85; 95% CI 2.63 to 13.02; p=1.5×10(-5) and OR=7.03; 95% CI 2.85 to 17.34; p=2.3×10(-5), respectively). When grouping FC and NC, increased serum NfL concentration was also associated...

  12. Total-tau and neurofilament light in CSF reflect spinal cord ischaemia after endovascular aortic repair.

    Science.gov (United States)

    Merisson, Edyta; Mattsson, Niklas; Zetterberg, Henrik; Blennow, Kaj; Pikwer, Andreas; Mehmedagic, Irma; Acosta, Stefan; Åkeson, Jonas

    2016-02-01

    Repair of extensive aortic disease may be associated with spinal cord ischaemia (SCI). Here we test if levels of cerebrospinal fluid (CSF) biomarkers for neuronal injury are altered in patients with SCI after advanced endovascular repair in extensive aortic disease. CSF was sampled for up to 48 h in ten patients undergoing endovascular aortic repair and analyzed for the axonal damage markers total-tau (T-tau) and neurofilament light (NFL). Six of ten patients developed SCI (clinically present within 3-6 h). CSF levels of NFL increased up to 37-fold in patients with, but were stable in patients without, SCI. CSF levels of T-tau also increased in patients with SCI, but with some overlap with patients without SCI. Levels of NFL and T-tau did not increase until after the appearance of clinical signs of neurological dysfunction (12-48 h after aortic repair). The CSF biomarkers NFL and T-tau both reflect development of SCI after endovascular aortic repair, but do not rise until after clinical signs of SCI appear. Future studies are desirable to further evaluate potential use of these biomarkers for assessment of the severity of SCI, and also to identify earlier biomarkers of SCI. Copyright © 2015. Published by Elsevier Ltd.

  13. Association of Plasma Neurofilament Light With Neurodegeneration in Patients With Alzheimer Disease.

    Science.gov (United States)

    Mattsson, Niklas; Andreasson, Ulf; Zetterberg, Henrik; Blennow, Kaj

    2017-05-01

    Existing cerebrospinal fluid (CSF) or imaging (tau positron emission tomography) biomarkers for Alzheimer disease (AD) are invasive or expensive. Biomarkers based on standard blood test results would be useful in research, drug development, and clinical practice. Plasma neurofilament light (NFL) has recently been proposed as a blood-based biomarker for neurodegeneration in dementias. To test whether plasma NFL concentrations are increased in AD and associated with cognitive decline, other AD biomarkers, and imaging evidence of neurodegeneration. In this prospective case-control study, an ultrasensitive assay was used to measure plasma NFL concentration in 193 cognitively healthy controls, 197 patients with mild cognitive impairment (MCI), and 180 patients with AD dementia from the Alzheimer's Disease Neuroimaging Initiative. The study dates were September 7, 2005, to February 13, 2012. The plasma NFL analysis was performed in September 2016. Associations were tested between plasma NFL and diagnosis, Aβ pathologic features, CSF biomarkers of neuronal injury, cognition, brain structure, and metabolism. Among 193 cognitively healthy controls, 197 patients with mild cognitive impairment, and 180 patients with AD with dementia, plasma NFL correlated with CSF NFL (Spearman ρ = 0.59, P disease. This finding implies a potential usefulness for plasma NFL as a noninvasive biomarker in AD.

  14. Mechanisms and Consequences of Dopamine Depletion-Induced Attenuation of the Spinophilin/Neurofilament Medium Interaction

    Directory of Open Access Journals (Sweden)

    Andrew C. Hiday

    2017-01-01

    Full Text Available Signaling changes that occur in the striatum following the loss of dopamine neurons in the Parkinson disease (PD are poorly understood. While increases in the activity of kinases and decreases in the activity of phosphatases have been observed, the specific consequences of these changes are less well understood. Phosphatases, such as protein phosphatase 1 (PP1, are highly promiscuous and obtain substrate selectivity via targeting proteins. Spinophilin is the major PP1-targeting protein enriched in the postsynaptic density of striatal dendritic spines. Spinophilin association with PP1 is increased concurrent with decreases in PP1 activity in an animal model of PD. Using proteomic-based approaches, we observed dopamine depletion-induced decreases in spinophilin binding to multiple protein classes in the striatum. Specifically, there was a decrease in the association of spinophilin with neurofilament medium (NF-M in dopamine-depleted striatum. Using a heterologous cell line, we determined that spinophilin binding to NF-M required overexpression of the catalytic subunit of protein kinase A and was decreased by cyclin-dependent protein kinase 5. Functionally, we demonstrate that spinophilin can decrease NF-M phosphorylation. Our data determine mechanisms that regulate, and putative consequences of, pathological changes in the association of spinophilin with NF-M that are observed in animal models of PD.

  15. Neurofilament heavy polypeptide regulates the Akt-beta-catenin pathway in human esophageal squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Myoung Sook Kim

    Full Text Available Aerobic glycolysis and mitochondrial dysfunction are common features of aggressive cancer growth. We observed promoter methylation and loss of expression in neurofilament heavy polypeptide (NEFH in a significant proportion of primary esophageal squamous cell carcinoma (ESCC samples that were of a high tumor grade and advanced stage. RNA interference-mediated knockdown of NEFH accelerated ESCC cell growth in culture and increased tumorigenicity in vivo, whereas forced expression of NEFH significantly inhibited cell growth and colony formation. Loss of NEFH caused up-regulation of pyruvate kinase-M2 type and down-regulation of pyruvate dehydrogenase, via activation of the Akt/beta-catenin pathway, resulting in enhanced aerobic glycolysis and mitochondrial dysfunction. The acceleration of glycolysis and mitochondrial dysfunction in NEFH-knockdown cells was suppressed in the absence of beta-catenin expression, and was decreased by the treatment of 2-Deoxyglucose, a glycolytic inhibitor, or API-2, an Akt inhibitor. Loss of NEFH activates the Akt/beta-catenin pathway and increases glycolysis and mitochondrial dysfunction. Cancer cells with methylated NEFH can be targeted for destruction with specific inhibitors of deregulated downstream pathways.

  16. The diagnostic and prognostic value of neurofilament heavy chain levels in immune-mediated optic neuropathies.

    Science.gov (United States)

    Petzold, Axel; Plant, Gordon T

    2012-01-01

    Background. Loss of visual function differs between immune-mediated optic neuropathies and is related to axonal loss in the optic nerve. This study investigated the diagnostic and prognostic value of a biomarker for neurodegeneration, the neurofilament heavy chain (NfH) in three immune-mediated optic neuropathies. Methods. A prospective, longitudinal study including patients with optic neuritis due to multiple sclerosis (MSON, n = 20), chronic relapsing inflammatory optic neuritis (CRION, n = 19), neuromyelitis optica (NMO, n = 9), and healthy controls (n = 28). Serum NfH-SMI35 levels were quantified by ELISA. Findings. Serum NfH-SMI35 levels were highest in patients with NMO (mean 0.79 ± 1.51 ng/mL) compared to patients with CRION (0.13 ± 0.16 ng/mL, P = 0.007), MSON (0.09 ± 0.09, P = 0.008), and healthy controls (0.01 ± 0.02 ng/mL, P = 0.001). High serum NfH-SMI35 levels were related to poor visual outcome. Conclusions. Blood NfH-SMI35 levels are of moderate diagnostic and more important prognostic value in immune-mediated optic neuropathies. We speculate that longitudinal blood NfH levels may help to identify particular disabling events in relapsing conditions.

  17. Serum Neurofilament light: A biomarker of neuronal damage in multiple sclerosis

    Science.gov (United States)

    Disanto, Giulio; Barro, Christian; Benkert, Pascal; Naegelin, Yvonne; Schädelin, Sabine; Giardiello, Antonella; Zecca, Chiara; Blennow, Kaj; Zetterberg, Henrik; Leppert, David; Kappos, Ludwig; Gobbi, Claudio; Kuhle, Jens; Lorscheider, Johannes; Yaldizli, Özgür; Derfuss, Tobias; Kappos, Ludwig; Disanto, Giulio; Zecca, Chiara; Gobbi, Claudio; Benkert, Pascal; Achtnichts, Lutz; Nedeltchev, Krassen; Kamm, Christian P; Salmen, Anke; Chan, Andrew; Lalive, Patrice H; Pot, Caroline; Schluep, Myriam; Granziera, Cristina; Du Pasquier, Renaud; Müller, Stefanie; Vehoff, Jochen

    2017-01-01

    Objective Neurofilament light chains (NfL) are unique to neuronal cells, are shed to the cerebrospinal fluid (CSF), and are detectable at low concentrations in peripheral blood. Various diseases causing neuronal damage have resulted in elevated CSF concentrations. We explored the value of an ultrasensitive single‐molecule array (Simoa) serum NfL (sNfL) assay in multiple sclerosis (MS). Methods sNfL levels were measured in healthy controls (HC, n = 254) and two independent MS cohorts: (1) cross‐sectional with paired serum and CSF samples (n = 142), and (2) longitudinal with repeated serum sampling (n = 246, median follow‐up = 3.1 years, interquartile range [IQR] = 2.0–4.0). We assessed their relation to concurrent clinical, imaging, and treatment parameters and to future clinical outcomes. Results sNfL levels were higher in both MS cohorts than in HC (p EDSS) assessments (β = 1.105, p EDSS worsening (97.5th percentile: OR = 2.41, 95% CI = 1.07–5.42, p = 0.034). Interpretation These results support the value of sNfL as a sensitive and clinically meaningful blood biomarker to monitor tissue damage and the effects of therapies in MS. Ann Neurol 2017;81:857–870 PMID:28512753

  18. Mechanisms and Consequences of Dopamine Depletion-Induced Attenuation of the Spinophilin/Neurofilament Medium Interaction

    Science.gov (United States)

    Hiday, Andrew C.; Edler, Michael C.; Salek, Asma B.; Morris, Cameron W.; Thang, Morrent; Rentz, Tyler J.; Rose, Kristie L.; Jones, Lisa M.

    2017-01-01

    Signaling changes that occur in the striatum following the loss of dopamine neurons in the Parkinson disease (PD) are poorly understood. While increases in the activity of kinases and decreases in the activity of phosphatases have been observed, the specific consequences of these changes are less well understood. Phosphatases, such as protein phosphatase 1 (PP1), are highly promiscuous and obtain substrate selectivity via targeting proteins. Spinophilin is the major PP1-targeting protein enriched in the postsynaptic density of striatal dendritic spines. Spinophilin association with PP1 is increased concurrent with decreases in PP1 activity in an animal model of PD. Using proteomic-based approaches, we observed dopamine depletion-induced decreases in spinophilin binding to multiple protein classes in the striatum. Specifically, there was a decrease in the association of spinophilin with neurofilament medium (NF-M) in dopamine-depleted striatum. Using a heterologous cell line, we determined that spinophilin binding to NF-M required overexpression of the catalytic subunit of protein kinase A and was decreased by cyclin-dependent protein kinase 5. Functionally, we demonstrate that spinophilin can decrease NF-M phosphorylation. Our data determine mechanisms that regulate, and putative consequences of, pathological changes in the association of spinophilin with NF-M that are observed in animal models of PD. PMID:28634551

  19. The Diagnostic and Prognostic Value of Neurofilament Heavy Chain Levels in Immune-Mediated Optic Neuropathies

    Directory of Open Access Journals (Sweden)

    Axel Petzold

    2012-01-01

    Full Text Available Background. Loss of visual function differs between immune-mediated optic neuropathies and is related to axonal loss in the optic nerve. This study investigated the diagnostic and prognostic value of a biomarker for neurodegeneration, the neurofilament heavy chain (NfH in three immune-mediated optic neuropathies. Methods. A prospective, longitudinal study including patients with optic neuritis due to multiple sclerosis (MSON, n=20, chronic relapsing inflammatory optic neuritis (CRION, n=19, neuromyelitis optica (NMO, n=9, and healthy controls (n=28. Serum NfH-SMI35 levels were quantified by ELISA. Findings. Serum NfH-SMI35 levels were highest in patients with NMO (mean 0.79±1.51 ng/mL compared to patients with CRION (0.13±0.16 ng/mL, P=0.007, MSON (0.09±0.09, P=0.008, and healthy controls (0.01±0.02 ng/mL, P=0.001. High serum NfH-SMI35 levels were related to poor visual outcome. Conclusions. Blood NfH-SMI35 levels are of moderate diagnostic and more important prognostic value in immune-mediated optic neuropathies. We speculate that longitudinal blood NfH levels may help to identify particular disabling events in relapsing conditions.

  20. Association of Cerebrospinal Fluid Neurofilament Light Concentration With Alzheimer Disease Progression

    Science.gov (United States)

    Zetterberg, Henrik; Skillbäck, Tobias; Mattsson, Niklas; Trojanowski, John Q.; Portelius, Erik; Shaw, Leslie M.; Weiner, Michael W.; Blennow, Kaj

    2017-01-01

    IMPORTANCE The extent to which large-caliber axonal degeneration contributes to Alzheimer disease (AD) progression is unknown. Cerebrospinal fluid (CSF) neurofilament light (NFL) concentration is a general marker of damage to large-caliber myelinated axons. OBJECTIVE To test whether CSF NFL concentration is associated with cognitive decline and imaging evidence of neurodegeneration and white matter change in AD. DESIGN, SETTING, AND PARTICIPANTS A commercially available immunoassay was used to analyze CSF NFL concentration in a cohort of patients with AD (n = 95) or mild cognitive impairment (MCI) (n = 192) and in cognitively normal individuals (n = 110) from the Alzheimer’s Disease Neuroimaging Initiative. The study dates were January 2005 to December 2007. The NFL analysis was performed in November 2014. MAIN OUTCOMES AND MEASURES Correlation was investigated among baseline CSF NFL concentration and longitudinal cognitive impairment, white matter change, and regional brain atrophy within each diagnostic group. RESULTS Cerebrospinal fluid NFL concentration (median [interquartile range]) was higher in the AD dementia group (1479 [1134–1842] pg/mL), stable MCI group (no progression to AD during follow-up; 1182 [923–1687] pg/mL), and progressive MCI group (MCI with progression to AD dementia during follow-up; 1336 [1061–1693] pg/mL) compared with control participants (1047 [809–1265] pg/mL) (P NFL concentration was associated with faster brain atrophy over time as measured by changes in whole-brain volume (β = −4177, P = .003), ventricular volume (β = 1835, P NFL concentration is increased by the early clinical stage of AD and is associated with cognitive deterioration and structural brain changes over time. This finding corroborates the contention that degeneration of large-caliber axons is an important feature of AD neurodegeneration. PMID:26524180

  1. Interaction of small heat shock proteins with light component of neurofilaments (NFL).

    Science.gov (United States)

    Nefedova, Victoria V; Sudnitsyna, Maria V; Gusev, Nikolai B

    2017-07-01

    The interaction of human small heat shock protein HspB1, its point mutants associated with distal hereditary motor neuropathy, and three other small heat shock proteins (HspB5, HspB6, HspB8) with the light component of neurofilaments (NFL) was analyzed by differential centrifugation, analytical ultracentrifugation, and fluorescent spectroscopy. The wild-type HspB1 decreased the quantity of NFL in pellets obtained after low- and high-speed centrifugation and increased the quantity of NFL remaining in the supernatant after high-speed centrifugation. Part of HspB1 was detected in the pellet of NFL after high-speed centrifugation, and at saturation, 1 mol of HspB1 monomer was bound per 2 mol of NFL. Point mutants of HspB1 associated with distal hereditary motor neuropathy (G84R, L99M, R140G, K141Q, and P182S) were almost as effective as the wild-type HspB1 in modulation of NFL assembly. At low ionic strength, HspB1 weakly interacted with NFL tetramers, and this interaction was increased upon salt-induced polymerization of NFL. HspB1 and HspB5 (αB-crystallin) decreased the rate of NFL polymerization measured by fluorescent spectroscopy. HspB6 (Hsp20) and HspB8 (Hsp22) were less effective than HspB1 (or HspB5) in modulation of NFL assembly. The data presented indicate that the small heat shock proteins affect NFL transition from tetramers to filaments, hydrodynamic properties of filaments, and their bundling and therefore probably modulate the formation of intermediate filament networks in neurons.

  2. CSF Neurofilament Light Chain but not FLT3 Ligand Discriminates Parkinsonian Disorders

    Science.gov (United States)

    Herbert, Megan K.; Aerts, Marjolein B.; Beenes, Marijke; Norgren, Niklas; Esselink, Rianne A. J.; Bloem, Bastiaan R.; Kuiperij, H. Bea; Verbeek, Marcel M.

    2015-01-01

    The differentiation between multiple system atrophy (MSA) and Parkinson’s disease (PD) is difficult, particularly in early disease stages. Therefore, we aimed to evaluate the diagnostic value of neurofilament light chain (NFL), fms-like tyrosine kinase ligand (FLT3L), and total tau protein (t-tau) in cerebrospinal fluid (CSF) as biomarkers to discriminate MSA from PD. Using commercially available enzyme-linked immunosorbent assays, we measured CSF levels of NFL, FLT3L, and t-tau in a discovery cohort of 36 PD patients, 27 MSA patients, and 57 non-neurological controls and in a validation cohort of 32 PD patients, 25 MSA patients, 15 PSP patients, 5 CBS patients, and 56 non-neurological controls. Cut-offs obtained from individual assays and binary logistic regression models developed from combinations of biomarkers were assessed. CSF levels of NFL were substantially increased in MSA and discriminated between MSA and PD with a sensitivity of 74% and specificity of 92% (AUC = 0.85) in the discovery cohort and with 80% sensitivity and 97% specificity (AUC = 0.94) in the validation cohort. FLT3L levels in CSF were significantly lower in both PD and MSA compared to controls in the discovery cohort, but not in the validation cohort. t-tau levels were significantly higher in MSA than PD and controls. Addition of either FLT3L or t-tau to NFL did not improve discrimination of PD from MSA above NFL alone. Our findings show that increased levels of NFL in CSF offer clinically relevant, high accuracy discrimination between PD and MSA. PMID:25999911

  3. Serum neurofilament light chain levels are increased in patients with a clinically isolated syndrome.

    Science.gov (United States)

    Disanto, Giulio; Adiutori, Rocco; Dobson, Ruth; Martinelli, Vittorio; Dalla Costa, Gloria; Runia, Tessel; Evdoshenko, Evgeniy; Thouvenot, Eric; Trojano, Maria; Norgren, Niklas; Teunissen, Charlotte; Kappos, Ludwig; Giovannoni, Gavin; Kuhle, Jens

    2016-02-01

    Neurofilament light chain (NfL) represents a promising biomarker for axonal injury. We present the first exploratory study on serum NfL in patients with a clinically isolated syndrome (CIS) and healthy controls. We investigated serum NfL levels in 100 patients with CIS with a short conversion interval to clinically definite multiple sclerosis (MS) (fast converters (FC), median (IQR) conversion time: 110 days (79-139)); 98 patients with non-converting CIS (non-converters (NC), follow-up: 6.5 years (5.3-7.9)); and 92 healthy controls. NfL levels were higher in FC (24.1 pg/mL (13.5-51.8)) and NC (19.3 pg/mL (13.6-35.2)) than in healthy controls (7.9 pg/mL (5.6-17.2)) (OR=5.85; 95% CI 2.63 to 13.02; p = 1.5 × 10(-5) and OR = 7.03; 95% CI 2.85 to 17.34; p = 2.3 × 10(-5), respectively). When grouping FC and NC, increased serum NfL concentration was also associated with increasing numbers of T2 hyperintense MRI lesions (OR = 2.36; 95% CI 1.21 to 4.59; p = 0.011), gadolinium-enhancing lesions (OR = 2.69; 95% CI 1.13 to 6.41; p=0.026) and higher disability scores (OR = 2.54; 95% CI 1.21 to 5.31; p = 0.013) at CIS diagnosis. If replicated in future studies, serum NfL may represent a reliable and easily accessible biomarker of early axonal damage in CIS and MS. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  4. Association of Cerebrospinal Fluid Neurofilament Light Concentration With Alzheimer Disease Progression.

    Science.gov (United States)

    Zetterberg, Henrik; Skillbäck, Tobias; Mattsson, Niklas; Trojanowski, John Q; Portelius, Erik; Shaw, Leslie M; Weiner, Michael W; Blennow, Kaj

    2016-01-01

    The extent to which large-caliber axonal degeneration contributes to Alzheimer disease (AD) progression is unknown. Cerebrospinal fluid (CSF) neurofilament light (NFL) concentration is a general marker of damage to large-caliber myelinated axons. To test whether CSF NFL concentration is associated with cognitive decline and imaging evidence of neurodegeneration and white matter change in AD. A commercially available immunoassay was used to analyze CSF NFL concentration in a cohort of patients with AD (n = 95) or mild cognitive impairment (MCI) (n = 192) and in cognitively normal individuals (n = 110) from the Alzheimer's Disease Neuroimaging Initiative. The study dates were January 2005 to December 2007. The NFL analysis was performed in November 2014. Correlation was investigated among baseline CSF NFL concentration and longitudinal cognitive impairment, white matter change, and regional brain atrophy within each diagnostic group. Cerebrospinal fluid NFL concentration (median [interquartile range]) was higher in the AD dementia group (1479 [1134-1842] pg/mL), stable MCI group (no progression to AD during follow-up; 1182 [923-1687] pg/mL), and progressive MCI group (MCI with progression to AD dementia during follow-up; 1336 [1061-1693] pg/mL) compared with control participants (1047 [809-1265] pg/mL) (P NFL concentration was associated with faster brain atrophy over time as measured by changes in whole-brain volume (β = -4177, P = .003), ventricular volume (β = 1835, P NFL concentration is increased by the early clinical stage of AD and is associated with cognitive deterioration and structural brain changes over time. This finding corroborates the contention that degeneration of large-caliber axons is an important feature of AD neurodegeneration.

  5. Neurofilament light chain level is a weak risk factor for the development of MS.

    Science.gov (United States)

    Arrambide, Georgina; Espejo, Carmen; Eixarch, Herena; Villar, Luisa M; Alvarez-Cermeño, José C; Picón, Carmen; Kuhle, Jens; Disanto, Giulio; Kappos, Ludwig; Sastre-Garriga, Jaume; Pareto, Deborah; Simon, Eva; Comabella, Manuel; Río, Jordi; Nos, Carlos; Tur, Carmen; Castilló, Joaquín; Vidal-Jordana, Angela; Galán, Ingrid; Arévalo, Maria J; Auger, Cristina; Rovira, Alex; Montalban, Xavier; Tintore, Mar

    2016-09-13

    To determine the prognostic value of selected biomarkers in clinically isolated syndromes (CIS) for conversion to multiple sclerosis (MS) and disability accrual. Data were acquired from 2 CIS cohorts. The screening phase evaluated patients developing clinically definite MS (CIS-CDMS) and patients who remained as CIS during a 2-year minimum follow-up (CIS-CIS). We determined levels of neurofascin, semaphorin 3A, fetuin A, glial fibrillary acidic protein, and neurofilament light (NfL) and heavy chains in CSF (estimated mean [95% confidence interval; CI]). We evaluated associations between biomarker levels, conversion, disability, and magnetic resonance parameters. In the replication phase, we determined NfL levels (n = 155) using a 900 ng/L cutoff. Primary endpoints in uni- and multivariate analyses were CDMS and 2010 McDonald MS. The only biomarker showing significant differences in the screening was NfL (CIS-CDMS 1,553.1 [1,208.7-1,897.5] ng/L and CIS-CIS 499.0 [168.8-829.2] ng/L, p NfL did not correlate with disability. In the replication phase, more NfL-positive patients, according to the cutoff, evolved to MS. Every 100-ng/L increase in NfL predicted CDMS (hazard ratio [HR] = 1.009, 95% CI 1.005-1.014) and McDonald MS (HR = 1.009, 95% CI 1.005-1.013), remaining significant for CDMS in the multivariate analysis (adjusted HR = 1.005, 95% CI 1.000-1.011). This risk was lower than the presence of oligoclonal bands or T2 lesions. NfL is a weak independent risk factor for MS. Its role as an axonal damage biomarker may be more relevant as suggested by its association with medium-term brain volume changes. © 2016 American Academy of Neurology.

  6. Neurofilaments as Biomarkers for Amyotrophic Lateral Sclerosis: A Systematic Review and Meta-Analysis

    Science.gov (United States)

    Henderson, Robert David; David, Michael; McCombe, Pamela Ann

    2016-01-01

    Background To allow early diagnosis and monitoring of disease progression, there is a need for biomarkers in amyotrophic lateral sclerosis (ALS). Neurofilaments (NF) are emerging protein biomarkers in other neurological diseases, and are of possible use in ALS. Objective The aim of this study is to evaluate the utility of NF levels as blood or cerebrospinal fluid (CSF) biomarker in patients with ALS. Methods A systematic search of Pubmed, Embase and Scopus was performed. Methodological quality assessment was applied to refine the final search results. Meta-analysis of the data was performed. Results Level of NF heavy chain and light chains were significantly elevated in the CSF of ALS patients compared to healthy controls/controls without parenchymal central nervous system (CNS) involvement and ALS mimic disease patients. NF light chain level in CSF was higher in ALS patients than in neurological patients with CNS involvement (SMD = 1.352, P = 0.01). NF light chain concentration in blood was higher in ALS patients than healthy controls/controls without CNS involvement (SMD = 1.448, P<0.0001). NF heavy chain levels in CSF were negatively correlated disease duration and ALSFRS-R ((r = -0.447, P<0.0001; r = -0.486, P<0.0001). NF light chain levels in CSF were negatively correlated with disease duration (r = -0.273, P = 0.011). Conclusion NF heavy and light chain levels have potential use as a marker of neural degeneration in ALS, but are not specific for the disease, and are more likely to be used as measures of disease progression. PMID:27732645

  7. Role of neurofilament light polypeptide in head and neck cancer chemoresistance.

    Science.gov (United States)

    Chen, Baishen; Chen, Ju; House, Michael G; Cullen, Kevin J; Nephew, Kenneth P; Guo, Zhongmin

    2012-03-01

    Resistance to cisplatin-based chemotherapy is responsible for therapeutic failure of many common human cancers including cancer of head and neck (HNC). Mechanisms underlying cisplatin resistance remain unclear. In this study, we identified neurofilament light polypeptide (NEFL) as a novel hypermethylated gene associated with resistance to cisplatin-based chemotherapy in HNC. Analysis of 14 HNC cell lines revealed that downregulation of NEFL expression significantly correlated with increased resistance to cisplatin. Hypermethylation of NEFL promoter CpG islands was observed in cell lines as examined by bisulfite DNA sequencing and methylation-specific PCR (MSP) and tightly correlated with reduced NEFL mRNA and protein expression. Furthermore, in patient samples with HNC (n = 51) analyzed by quantitative MSP, NEFL promoter hypermethylation was associated with resistance to cisplatin-based chemotherapy [relative risk (RR), 3.045; 95% confidence interval (CI), 1.459-6.355; P = 0.007] and predicted diminished overall and disease-free survival for patients treated with cisplatin-based chemotherapy. Knockdown of NEFL by siRNA in the highly cisplatin-sensitive cell line PCI13 increased (P cells, restored expression of NEFL significantly increased sensitivity to the drug. Furthermore, NEFL physically associated with tuberous sclerosis complex 1 (TSC1), a known inhibitor of the mTOR pathway, and NEFL downregulation led to functional activation of mTOR pathway and consequentially conferred cisplatin resistance. This is the first study to show a role for NEFL in HNC chemoresistance. Our findings suggest that NEFL methylation is a novel mechanism for HNC chemoresistance and may represent a candidate biomarker predictive of chemotherapeutic response and survival in patients with HNC.

  8. Differential expression of GAP-43 and neurofilament during peripheral nerve regeneration through bio-artificial conduits.

    Science.gov (United States)

    Carriel, Víctor; Garzón, Ingrid; Campos, Antonio; Cornelissen, Maria; Alaminos, Miguel

    2017-02-01

    Nerve conduits are promising alternatives for repairing nerve gaps; they provide a close microenvironment that supports nerve regeneration. In this sense, histological analysis of axonal growth is a determinant to achieve successful nerve regeneration. To evaluate this process, the most-used immunohistochemical markers are neurofilament (NF), β-III tubulin and, infrequently, GAP-43. However, GAP-43 expression in long-term nerve regeneration models is still poorly understood. In this study we analysed GAP-43 expression and its correlation with NF and S-100, using three tissue-engineering approaches with different regeneration profiles. A 10 mm gap was created in the sciatic nerve of 12 rats and repaired using collagen conduits or collagen conduits filled with fibrin-agarose hydrogels or with hydrogels containing autologous adipose-derived mesenchymal stem cells (ADMSCs). After 12 weeks the conduits were harvested for histological analysis. Our results confirm the long-term expression of GAP-43 in all groups. The expression of GAP-43 and NF was significantly higher in the group with ADMSCs. Interestingly, GAP-43 was observed in immature, newly formed axons and NF in thicker and mature axons. These proteins were not co-expressed, demonstrating their differential expression in newly formed nerve fascicles. Our descriptive and quantitative histological analysis of GAP-43 and NFL allowed us to determine, with high accuracy, the heterogenic population of axons at different stages of maturation in three tissue-engineering approaches. Finally, to perform a complete assessment of axonal regeneration, the quantitative immunohistochemical evaluation of both GAP-43 and NF could be a useful quality control in tissue engineering. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  9. CSF neurofilament light chain but not FLT3 ligand discriminates Parkinsonian disorders

    Directory of Open Access Journals (Sweden)

    Megan Kristy Herbert

    2015-05-01

    Full Text Available The differentiation between multiple system atrophy (MSA and Parkinson’s disease (PD is difficult, particularly in early disease stages. Therefore, we aimed to evaluate the diagnostic value of neurofilament light chain (NFL, fms-like tyrosine kinase ligand (FLT3L and total tau protein (t-tau in cerebrospinal fluid (CSF as biomarkers to discriminate MSA from PD. Using commercially available enzyme-linked immunoassays (ELISAs, we measured CSF levels of NFL, FLT3L and t-tau in a discovery cohort of 36 PD patients, 27 MSA patients and 57 non-neurological controls and in a validation cohort of 32 PD patients, 25 MSA patients, 15 PSP patients, 5 CBS patients, and 56 non-neurological controls. Cut-offs obtained from individual assays and binary logistic regression models developed from combinations of biomarkers were assessed. CSF levels of NFL were substantially increased in MSA and discriminated between MSA and PD with a sensitivity of 74% and specificity of 92% (AUC = 0.85 in the discovery cohort and with 80% sensitivity and 97% specificity (AUC = 0.94 in the validation cohort. FLT3L levels in CSF were significantly lower in both PD and MSA compared to controls in the discovery cohort, but not in the validation cohort. T-tau levels were significantly higher in MSA than PD and controls. Addition of either FLT3L or t-tau to NFL did not improve discrimination of PD from MSA above NFL alone. Our findings show that increased levels of NFL in CSF offer clinically relevant, high accuracy discrimination between PD and MSA.

  10. Distribution of neurofilament protein and calcium-binding proteins parvalbumin, calbindin, and calretinin in the canine hippocampus.

    Science.gov (United States)

    Hof, P R; Rosenthal, R E; Fiskum, G

    1996-07-01

    Neurofilament protein and calcium-binding proteins parvalbumin, calbindin, and calretinin are present in morphologically distinct neuronal subpopulations in the mammalian cerebral cortex. Immunohistochemical studies of the hippocampal formation and neocortex have demonstrated that while neurofilament protein and calbindin are localized in subsets of pyramidal neurons, the three calcium-binding proteins are useful markers to differentiate non-overlapping populations of interneurons. To date, most studies have been performed in rodents and primates. In the present analysis, we analyzed the distribution of these proteins in the canine hippocampus. Neurofilament protein was present in large multipolar neurons in the hilus and in pyramidal neurons in the CA3 field, whereas pyramidal neurons in the CA1 field and subiculum were less intensely immunoreactive. Parvalbumin immunoreactivity was observed in large multipolar neurons in the hilus and throughout the CA3-CA1 fields, in a few pyramidal-shaped neurons in the CA1 field and subiculum, and had a distinct neuropil staining pattern in the granule cell layer and stratum pyramidale of the Ammon's horn. Calbindin immunoreactivity displayed a strong labeling of the granule cells and mossy fibers and was also observed in a population of moderately immunoreactive neurons in the CA1 field and subiculum. Calretinin immunoreactivity was relatively weaker overall. The inner molecular layer in the dentate gyrus had a distinct band of labeling, the stratum lacunosum/moleculare contained a punctate neuropil staining, and there were a few small multipolar neurons in the hilus, CA3-CA1 fields, and subiculum. Comparison of the staining patterns observed in the dog hippocampus with those in human, macaque monkeys and rats revealed that although there are some subregional differences among these taxa, the dog may constitute a valuable large animal model for the study of certain neurological conditions that affect humans, in spite of the

  11. Cyto- and chemoarchitecture of the sensory trigeminal nuclei of the echidna, platypus and rat.

    Science.gov (United States)

    Ashwell, Ken W S; Hardman, Craig D; Paxinos, George

    2006-02-01

    We have examined the cyto- and chemoarchitecture of the trigeminal nuclei of two monotremes using Nissl staining, enzyme reactivity for cytochrome oxidase, immunoreactivity for calcium binding proteins and non-phosphorylated neurofilament (SMI-32 antibody) and lectin histochemistry (Griffonia simplicifolia isolectin B4). The principal trigeminal nucleus and the oralis and interpolaris spinal trigeminal nuclei were substantially larger in the platypus than in either the echidna or rat, but the caudalis subnucleus was similar in size in both monotremes and the rat. The numerical density of Nissl stained neurons was higher in the principal, oralis and interpolaris nuclei of the platypus relative to the echidna, but similar to that in the rat. Neuropil immunoreactivity for parvalbumin was particularly intense in the principal trigeminal, oralis and interpolaris subnuclei of the platypus, but the numerical density of parvalbumin immunoreactive neurons was not particularly high in these nuclei of the platypus. Neuropil immunoreactivity for calbindin and calretinin was relatively weak in both monotremes, although calretinin immunoreactive somata made up a large proportion of neurons in the principal, oralis and interpolaris subnuclei of the echidna. Distribution of calretinin immunoreactivity and Griffonia simplicifolia B4 isolectin reactivity suggested that the caudalis subnucleus of the echidna does not have a clearly defined gelatinosus region. Our findings indicate that the trigeminal nuclei of the echidna do not appear to be highly specialized, but that the principal, oralis and interpolaris subnuclei of the platypus trigeminal complex are highly differentiated, presumably for processing of tactile and electrosensory information from the bill.

  12. Neurofilament light chain level is a weak risk factor for the development of MS

    Science.gov (United States)

    Arrambide, Georgina; Eixarch, Herena; Villar, Luisa M.; Alvarez-Cermeño, José C.; Picón, Carmen; Kuhle, Jens; Disanto, Giulio; Kappos, Ludwig; Sastre-Garriga, Jaume; Pareto, Deborah; Simon, Eva; Comabella, Manuel; Río, Jordi; Nos, Carlos; Tur, Carmen; Castilló, Joaquín; Vidal-Jordana, Angela; Galán, Ingrid; Arévalo, Maria J.; Auger, Cristina; Rovira, Alex; Montalban, Xavier

    2016-01-01

    Objective: To determine the prognostic value of selected biomarkers in clinically isolated syndromes (CIS) for conversion to multiple sclerosis (MS) and disability accrual. Methods: Data were acquired from 2 CIS cohorts. The screening phase evaluated patients developing clinically definite MS (CIS-CDMS) and patients who remained as CIS during a 2-year minimum follow-up (CIS-CIS). We determined levels of neurofascin, semaphorin 3A, fetuin A, glial fibrillary acidic protein, and neurofilament light (NfL) and heavy chains in CSF (estimated mean [95% confidence interval; CI]). We evaluated associations between biomarker levels, conversion, disability, and magnetic resonance parameters. In the replication phase, we determined NfL levels (n = 155) using a 900 ng/L cutoff. Primary endpoints in uni- and multivariate analyses were CDMS and 2010 McDonald MS. Results: The only biomarker showing significant differences in the screening was NfL (CIS-CDMS 1,553.1 [1,208.7–1,897.5] ng/L and CIS-CIS 499.0 [168.8–829.2] ng/L, p < 0.0001). The strongest associations were with brain parenchymal fraction change (rs = −0.892) and percentage brain volume change (rs = −0.842) at 5 years. NfL did not correlate with disability. In the replication phase, more NfL-positive patients, according to the cutoff, evolved to MS. Every 100-ng/L increase in NfL predicted CDMS (hazard ratio [HR] = 1.009, 95% CI 1.005–1.014) and McDonald MS (HR = 1.009, 95% CI 1.005–1.013), remaining significant for CDMS in the multivariate analysis (adjusted HR = 1.005, 95% CI 1.000–1.011). This risk was lower than the presence of oligoclonal bands or T2 lesions. Conclusions: NfL is a weak independent risk factor for MS. Its role as an axonal damage biomarker may be more relevant as suggested by its association with medium-term brain volume changes. PMID:27521440

  13. Discrete nuclear structures in actively growing neuroblastoma cells are revealed by antibodies raised against phosphorylated neurofilament proteins

    Directory of Open Access Journals (Sweden)

    Raabe Timothy D

    2003-04-01

    Full Text Available Abstract Background Nuclear objects that have in common the property of being recognized by monoclonal antibodies specific for phosphoprotein epitopes and cytoplasmic intermediate filaments (in particular, SMI-31 and RT-97 have been reported in glial and neuronal cells, in situ and in vitro. Since neurofilament and glial filaments are generally considered to be restricted to the cytoplasm, we were interested in exploring the identity of the structures labeled in the nucleus as well as the conditions under which they could be found there. Results Using confocal microscopy and western analysis techniques, we determined 1 the immunolabeled structures are truly within the nucleus; 2 the phosphoepitope labeled by SMI-31 and RT-97 is not specific to neurofilaments (NFs and it can be identified on other intermediate filament proteins (IFs in other cell types; and 3 there is a close relationship between DNA synthesis and the amount of nuclear staining by these antibodies thought to be specific for cytoplasmic proteins. Searches of protein data bases for putative phosphorylation motifs revealed that lamins, NF-H, and GFAP each contain a single tyrosine phosphorylation motif with nearly identical amino acid sequence. Conclusion We therefore suggest that this sequence may be the epitope recognized by SMI-31 and RT-97 mABs, and that the nuclear structures previously reported and shown here are likely phosphorylated lamin intermediate filaments, while the cytoplasmic labeling revealed by the same mABs indicates phosphorylated NFs in neurons or GFAP in glia.

  14. Neuronal apoptosis and neurofilament protein expression in the lateral geniculate body of cats following acute optic nerve injuries

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: The visual pathway have 6 parts, involving optic nerve, optic chiasm, optic tract, lateral geniculate body, optic radiation and cortical striatum area. Corresponding changes may be found in these 6 parts following optic nerve injury. At present, studies mainly focus on optic nerve and retina, but studies on lateral geniculate body are few.OBJECTIVE: To prepare models of acute optic nerve injury for observing the changes of neurons in lateral geniculate body, expression of neurofilament protein at different time after injury and cell apoptosis under the optical microscope, and for investigating the changes of neurons in lateral geniculate body following acute optic nerve injury.DESIGN: Completely randomized grouping design, controlled animal experiment.SETTING: Department of Neurosurgery, General Hospital of Ji'nan Military Area Command of Chinese PLA.MATERIALS: Twenty-eight adult healthy cats of either gender and common grade, weighing from 2.0 to 3.5 kg, were provided by the Animal Experimental Center of Fudan University. The involved cats were divided into 2 groups according to table of random digit: normal control group (n =3) and model group (n =25). Injury 6 hours, 1, 3, 7 and 14 days five time points were set in model group for later observation, 5 cats at each time point. TUNEL kit (Bohringer-Mannheim company)and NF200& Mr 68 000 mouse monoclonal antibody (NeoMarkers Company) were used in this experiment.METHODS: This experiment was carried out in the Department of Neurosurgery, General Hospital of Ji'nan Military Area Command of Chinese PLA between June 2004 and June 2005. ① The cats of model group were developed into cat models of acute intracranial optic nerve injury as follows: The anesthetized cats were placed in lateral position. By imitating operation to human, pterion approach was used. An incision was made at the joint line between outer canthus and tragus, and deepened along cranial base until white optic nerve via optic nerve pore

  15. Expression of neural cell adhesion molecules and neurofilament protein isoforms in Ewing's sarcoma of bone and soft tissue sarcomas of other than rhabdomyosarcoma

    NARCIS (Netherlands)

    Molenaar, W.M.; Muntinghe, F.L.H.

    1999-01-01

    In a previous study, it was shown that rhabdomyosarcomas widely express "neural" markers, such as neural cell adhesion molecules (N-CAM) and neurofilament protein isoforms, In the current study, a series of Ewing's sarcomas of bone and soft tissue sarcomas other than rhabdomyosarcoma was probed for

  16. The structure of a human neurofilament gene (NF-L): A unique exon-intron organization in the intermediate filament gene family.

    NARCIS (Netherlands)

    J-P. Julien (Jean-Pierre); F.G. Grosveld (Frank); K. Yazdanbakhsh; D. Flavell (David); D.N. Meijer (Dies); W.E. Mushynski

    1987-01-01

    textabstractWe have cloned and determined the nucleotide sequence of the human gene for the neurofilament subunit NF-L. The cloned DNA contains the entire transcriptional unit and generates two mRNAs of approx. 2.6 and 4.3 kb after transfection into mouse L-cells. The NF-L gene has an unexpected

  17. Changes in the distribution of the neuron-specific B-50, neurofilament protein and glial fibrillary acidic proteins following an unilateral mesencephalic lesion in the rat

    NARCIS (Netherlands)

    Gispen, W.H.; Oestreicher, A.B.; Devay, P.; Isaacson, R.L.

    1988-01-01

    Following a unilateral electrolytic lesion in the ventral rat mesencephalon, changes in the immunocytochemical distribution of the neuron-specific B-50, neurofilament (NF) protein and glial fibrillary acidic (GFAP) proteins were studied around the lesion after 0, 3, 10 and 28 days. At all recovery t

  18. Cerebrospinal fluid neurofilament light chain as a biomarker of neurodegeneration in the Tg4510 and MitoPark mouse models

    DEFF Research Database (Denmark)

    Clement, Amalie; Mitchelmore, Cathy; Andersson, Daniel

    2017-01-01

    disorders like Alzheimer's disease (AD), Parkinson's disease (PD) and tauopathies. We hypothesized that CSF neurofilament light (NF-L) can be used to track progression of neurodegeneration and potentially monitor the efficacy of novel therapeutic agents in preclinical development. To substantiate this, we...... examined whether changes in NF-L levels in brain, plasma, and CSF reflect the changing disease status of preclinical models of neurodegeneration. Using Western Blot and ELISA we characterized NF-L and disease-related proteins in brain, CSF and plasma samples from Tg4510 mice (tauopathy/AD), MitoPark mice...... (PD), and their age-matched control littermates. We found that CSF NF-L clearly discriminates Tg4510 from control littermates, which was not observed for the MitoPark model. However, both Tg4510 and MitoPark showed altered expression and solubilization of NFs compared to control littermates. We found...

  19. Congenital pachygyria

    Directory of Open Access Journals (Sweden)

    Jing-xia HU

    2016-02-01

    Full Text Available Objective To investigate the imaging and clinicopathological features of pachygyria limited in the right temporo-parieto-occipital lobe and the key points of its diagnosis and treatment, in order to improve the recognition of this disease.  Methods and Results A 2-year-old boy was admitted to hospital because of paroxysmal loss of consciousness and convulsion for 18 months with progressive aggravation. MRI showed malformations of cortical development in the right temporo-parieto-occipital lobe. Epileptic foci resection on the right temporo-parieto-occipital lobe was made. Histological examination after operation showed uneven thickening of gray matter, shrinking of white matter and disappearing cortical stratification, while a lot of dysmorphic neurons, balloon cells and scattered balloon cells in white matter appeared. Immunohistochemical staining revealed that dysmorphic neurons were positive for non-phosphorylated neurofilament protein SMI-32, microtubule-associated protein-2 (MAP-2 and vimentin (Vim or neurofilament protein (NF. Both dysmorphic neurons and balloon cells expressed phosphorylated ribosomal S6 protein (RPS6, while the former was stronger than the latter. Balloon cells were not positive for MAP-2 or Vim. No disturbance of consciousness or limb twitches occurred in this patient during one-year follow-up.  Conclusions Congenital pachygyria was cortical dysplasia caused by the early proliferation and migration disorder of brain, and should be distinguished with focal cortical dysplasia (FCD type Ⅱ b and tuberous sclerosis complex (TSC. Clinical history, imaging and histological features should be included in the diagnosis. DOI: 10.3969/j.issn.1672-6731.2016.02.005

  20. Arsenic metabolites affect expression of the neurofilament and tau genes: an in-vitro study into the mechanism of arsenic neurotoxicity.

    Science.gov (United States)

    Vahidnia, A; van der Straaten, R J H M; Romijn, F; van Pelt, J; van der Voet, G B; de Wolff, F A

    2007-09-01

    Neurological studies indicate that the central (CNS) and peripheral nervous system (PNS) may be affected by arsenic (As). As-exposed patients show significantly lower nerve conduction velocities (NCVs) in their peripheral nerves in comparison to healthy subjects. As may play a role in the disruption of neuroskeletal integrity, but the mechanisms by which it exerts a toxic effect on the peripheral and central nervous system are still unclear. In the present study, we examined the neurotoxic effects of various arsenic metabolites (iAs(III), iAs(V), MMA(V) and DMA(V)) on two different cell lines derived from the peripheral (ST-8814) and central (SK-N-SH) nervous system. The effects of the arsenic metabolites were examined on the relative quantification levels of the cytoskeletal genes, neurofilament-light (NEFL), neurofilament-medium (NEF3), neurofilament-heavy (NEFH) and microtubule-associated protein-tau (MAPT), using real-time PCR. Our results show that iAs(III) and iAs(V) have no significant effects on either cell lines. On the other hand, MMA(V) and DMA(V) cause significant changes in expression levels of NEF3 and NEFL genes, while the expression level of the NEFH gene is significantly increased in both cell lines.

  1. 14-3-3 protein binds to the low molecular weight neurofilament (NFL) mRNA 3' UTR.

    Science.gov (United States)

    Ge, Wei-Wen; Volkening, Kathryn; Leystra-Lantz, Cheryl; Jaffe, Howard; Strong, Michael J

    2007-01-01

    We have previously reported that altered stability of low molecular weight neurofilament (NFL) mRNA in lumbar spinal cord homogenates in amyotrophic lateral sclerosis (ALS) is associated with altered expression of trans-acting 3' UTR mRNA binding proteins. We have identified two hexanucleotide motifs as the main cis elements and, using LC/MS/MS of peptide digests of NFL 3' UTR interacting proteins from human spinal cord, observed that 14-3-3 proteins interact with these motifs. 14-3-3 beta, zeta, tau, gamma, and eta isoforms were found to be expressed in human spinal cord. Each isoform was expressed in vitro and shown to interact with NFL 3' UTR mRNA. Mutation of one or both motifs resulted in decreased 14-3-3 interaction, changes in predicted mRNA structure or alteration in stability of the mRNA. These data show a novel interaction for 14-3-3 with NFL mRNA, and suggests that 14-3-3 may play a role in regulating NFL mRNA stability.

  2. Comparison of three analytical platforms for quantification of the neurofilament light chain in blood samples: ELISA, electrochemiluminescence immunoassay and Simoa.

    Science.gov (United States)

    Kuhle, Jens; Barro, Christian; Andreasson, Ulf; Derfuss, Tobias; Lindberg, Raija; Sandelius, Åsa; Liman, Victor; Norgren, Niklas; Blennow, Kaj; Zetterberg, Henrik

    2016-10-01

    Neuronal damage is the morphological substrate of persisting neurological disability. Neurofilaments (Nf) are specific cytoskeletal proteins of neurons and their quantification has shown encouraging results as a biomarker for axonal injury. We aimed at comparing a widely used conventional ELISA for Nf light chain (NfL) with an electrochemiluminescence-based method (ECL assay) and a newly developed single-molecule array (Simoa) method in clinically relevant cerebrospinal fluid (CSF) and serum samples. Analytical sensitivity was 0.62 pg/mL for Simoa, 15.6 pg/mL for the ECL assay, and 78.0 pg/mL for the ELISA. Correlations between paired CSF and serum samples were strongest for Simoa (r=0.88, pNfL measurements between the platforms were highly correlated (r=1.0, pNfL levels were highly related between ECL assay and Simoa (r=0.86, pNfL levels than controls when measured with Simoa (p=0.001) but not with the other platforms. We found Simoa to be more sensitive than ELISA or the ECL assay. Our results support the feasibility of quantifying NfL in serum; the results correlate with the more-established CSF NfL test. The highly sensitive Simoa technology deserves further studies in larger patient cohorts to clarify whether serum NfL could be used in the future to measure disease severity and determine prognosis or response to treatment interventions in neurological diseases.

  3. Neurofilament Light Chain in Blood and CSF as Marker of Disease Progression in Mouse Models and in Neurodegenerative Diseases.

    Science.gov (United States)

    Bacioglu, Mehtap; Maia, Luis F; Preische, Oliver; Schelle, Juliane; Apel, Anja; Kaeser, Stephan A; Schweighauser, Manuel; Eninger, Timo; Lambert, Marius; Pilotto, Andrea; Shimshek, Derya R; Neumann, Ulf; Kahle, Philipp J; Staufenbiel, Matthias; Neumann, Manuela; Maetzler, Walter; Kuhle, Jens; Jucker, Mathias

    2016-07-01

    A majority of current disease-modifying therapeutic approaches for age-related neurodegenerative diseases target their characteristic proteopathic lesions (α-synuclein, Tau, Aβ). To monitor such treatments, fluid biomarkers reflecting the underlying disease process are crucial. We found robust increases of neurofilament light chain (NfL) in CSF and blood in murine models of α-synucleinopathies, tauopathy, and β-amyloidosis. Blood and CSF NfL levels were strongly correlated, and NfL increases coincided with the onset and progression of the corresponding proteopathic lesions in brain. Experimental induction of α-synuclein lesions increased CSF and blood NfL levels, while blocking Aβ lesions attenuated the NfL increase. Consistently, we also found NfL increases in CSF and blood of human α-synucleinopathies, tauopathies, and Alzheimer's disease. Our results suggest that CSF and particularly blood NfL can serve as a reliable and easily accessible biomarker to monitor disease progression and treatment response in mouse models and potentially in human proteopathic neurodegenerative diseases.

  4. Disruption of neurofilament network with aggregation of light neurofilament protein: a common pathway leading to motor neuron degeneration due to Charcot-Marie-Tooth disease-linked mutations in NFL and HSPB1.

    Science.gov (United States)

    Zhai, Jinbin; Lin, Hong; Julien, Jean-Pierre; Schlaepfer, William W

    2007-12-15

    Mutations in neurofilament light (NFL) subunit and small heat-shock protein B1 (HSPB1) cause autosomal-dominant axonal Charcot-Marie-Tooth disease type 2E (CMT2E) and type 2F (CMT2F). Previous studies have shown that CMT mutations in NFL and HSPB1 disrupt NF assembly and cause aggregation of NFL protein. In this study, we investigate the role of aggregation of NFL protein in the neurotoxicity of CMT mutant NFL and CMT mutant HSPB1 in motor neurons. We find that expression of CMT mutant NFL leads to progressive degeneration and loss of neuronal viability of cultured motor neurons. Degenerating motor neurons show fragmentation and loss of neuritic processes associated with disruption of NF network and aggregation of NFL protein. Co-expression of wild-type HSPB1 diminishes aggregation of CMT mutant NFL, induces reversal of CMT mutant NFL aggregates and reduces CMT mutant NFL-induced loss of motor neuron viability. Like CMT mutant NFL, expression of S135F CMT mutant HSPB1 also leads to progressive degeneration of motor neurons with disruption of NF network and aggregation of NFL protein. Further studies show that wild-type and S135F mutant HSPB1 associate with wild-type and CMT mutant NFL and that S135F mutant HSPB1 has dominant effect on disruption of NF assembly and aggregation of NFL protein. Finally, we show that deletion of NFL markedly reduces degeneration and loss of motor neuron viability induced by S135F mutant HSPB1. Together, our data support the view that disruption of NF network with aggregation of NFL is a common triggering event of motor neuron degeneration in CMT2E and CMT2F disease.

  5. The Neurofilament-Derived Peptide NFL-TBS.40-63 Targets Neural Stem Cells and Affects Their Properties.

    Science.gov (United States)

    Lépinoux-Chambaud, Claire; Barreau, Kristell; Eyer, Joël

    2016-07-01

    Targeting neural stem cells (NSCs) in the adult brain represents a promising approach for developing new regenerative strategies, because these cells can proliferate, self-renew, and differentiate into new neurons, astrocytes, and oligodendrocytes. Previous work showed that the NFL-TBS.40-63 peptide, corresponding to the sequence of a tubulin-binding site on neurofilaments, can target glioblastoma cells, where it disrupts their microtubules and inhibits their proliferation. We show that this peptide targets NSCs in vitro and in vivo when injected into the cerebrospinal fluid. Although neurosphere formation was not altered by the peptide, the NSC self-renewal capacity and proliferation were reduced and were associated with increased adhesion and differentiation. These results indicate that the NFL-TBS.40-63 peptide represents a new molecular tool to target NSCs to develop new strategies for regenerative medicine and the treatment of brain tumors. In the present study, the NFL-TBS.40-63 peptide targeted neural stem cells in vitro when isolated from the subventricular zone and in vivo when injected into the cerebrospinal fluid present in the lateral ventricle. The in vitro formation of neurospheres was not altered by the peptide; however, at a high concentration of the peptide, the neural stem cell (NSC) self-renewal capacity and proliferation were reduced and associated with increased adhesion and differentiation. These results indicate that the NFL-TBS.40-63 peptide represents a new molecular tool to target NSCs to develop new strategies for regenerative medicine and the treatment of brain tumors. ©AlphaMed Press.

  6. Analytical comparison between Nixon-Logvinenko's and Jung-Brown's theories of slow neurofilament transport in axons.

    Science.gov (United States)

    Kuznetsov, I A; Kuznetsov, A V

    2013-10-01

    This paper develops analytical solutions describing slow neurofilament (NF) transport in axons. The obtained solutions are based on two theories of NF transport: Nixon-Logvinenko's theory that postulates that most NFs are incorporated into a stationary cross-linked network and only a small pool is slowly transported and Jung-Brown's theory that postulates a single dynamic pool of NFs that are transported according to the stop-and-go hypothesis. The simplest two-kinetic state version of the model developed by Jung and Brown was compared with the theory developed by Nixon and Logvinenko. The model for Nixon-Logvinenko's theory included stationary, pausing, and running NF populations while the model used for Jung-Brown's theory only included pausing and running NF populations. Distributions of NF concentrations resulting from Nixon-Logvinenko's and Jung-Brown's theories were compared. In previous publications, Brown and colleagues successfully incorporated slowing of NF transport into their model by assuming that some kinetic constants depend on the distance from the axon hillock. In this paper we defined the average rate of NF transport as the rate of motion of the center of mass of radiolabeled NFs. We have shown that for this definition, if all kinetic rates are assumed constant, Jung-Brown's theory predicts a constant average rate of NF transport. We also demonstrated that Nixon-Logvinenko's theory predicts slowing of NF transport even if all kinetic rates are assumed constant, and the obtained slowing agrees well with published experimental data. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Biomarker report from the phase II lamotrigine trial in secondary progressive MS - neurofilament as a surrogate of disease progression.

    Directory of Open Access Journals (Sweden)

    Sharmilee Gnanapavan

    Full Text Available OBJECTIVE: Lamotrigine trial in SPMS was a randomised control trial to assess whether partial blockade of sodium channels has a neuroprotective effect. The current study was an additional study to investigate the value of neurofilament (NfH and other biomarkers in predicting prognosis and/or response to treatment. METHODS: SPMS patients who attended the NHNN or the Royal Free Hospital, UK, eligible for inclusion were invited to participate in the biomarker study. Primary outcome was whether lamotrigine would significantly reduce detectable serum NfH at 0-12, 12-24 and 0-24 months compared to placebo. Other serum/plasma and CSF biomarkers were also explored. RESULTS: Treatment effect by comparing absolute changes in NfH between the lamotrigine and placebo group showed no difference, however based on serum lamotrigine adherence there was significant decline in NfH (NfH 12-24 months p=0.043, Nfh 0-24 months p=0.023. Serum NfH correlated with disability: walking times, 9-HPT (non-dominant hand, PASAT, z-score, MSIS-29 (psychological and EDSS and MRI cerebral atrophy and MTR. Other biomarkers explored in this study were not found to be significantly associated, aside from that of plasma osteopontin. CONCLUSIONS: The relations between NfH and clinical scores of disability and MRI measures of atrophy and disease burden support NfH being a potential surrogate endpoint complementing MRI in neuroprotective trials and sample sizes for such trials are presented here. We did not observe a reduction in NfH levels between the Lamotrigine and placebo arms, however, the reduction in serum NfH levels based on lamotrigine adherence points to a possible neuroprotective effect of lamotrigine on axonal degeneration.

  8. Expression of the zebrafish intermediate neurofilament Nestin in the developing nervous system and in neural proliferation zones at postembryonic stages

    Directory of Open Access Journals (Sweden)

    Driever Wolfgang

    2007-07-01

    Full Text Available Abstract Background The intermediate filament Nestin has been reported as a marker for stem cells and specific precursor cell populations in the developing mammalian central nervous system (CNS. Nestin expressing precursors may give rise to neurons and glia. Mouse nestin expression starts at the onset of neurulation in the neuroectodermal cells and is dramatically down regulated when progenitor cells differentiate and become postmitotic. It has been reported that in the adult zebrafish (Danio rerio active neurogenesis continues in all major subdivisions of the CNS, however few markers for zebrafish precursors cells are known, and Nestin has not been described in zebrafish. Results We cloned a zebrafish nestin gDNA fragment in order to find a marker for precursor cells in the developing and postembryonic brain. Phylogenetic tree analysis reveals that this zebrafish ortholog clusters with Nestin sequences from other vertebrates but not with other intermediate filament proteins. We analyzed nestin expression from gastrula stage to 4 day larvae, and in post-embryonic brains. We found broad expression in the neuroectoderm during somitogenesis. In the larvae, nestin expression progressively becomes restricted to all previously described proliferative zones of the developing and postembryonic central nervous system. nestin expressing cells of the forebrain also express PCNA during late embryogenesis, identifying them as proliferating precursor or neural stem cells. nestin is also expressed in the cranial ganglia, in mesodermal precursors of muscle cells, and in cranial mesenchymal tissue. Conclusion Our data demonstrate that in zebrafish, like in mammals, the expression of the intermediated neurofilament nestin gene may serve as a marker for stem cells and proliferating precursors in the developing embryonic nervous system as well as in the postembryonic brain.

  9. Ca{sup 2+}/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) interacts with neurofilament L and inhibits its filament association

    Energy Technology Data Exchange (ETDEWEB)

    Ozaki, Hana [Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521 (Japan); Katoh, Tsuyoshi [Department of Biochemistry, Asahikawa Medical University, Asahikawa, 078-8510 (Japan); Nakagawa, Ryoko; Ishihara, Yasuhiro [Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521 (Japan); Sueyoshi, Noriyuki; Kameshita, Isamu [Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795 (Japan); Taniguchi, Takanobu [Department of Biochemistry, Asahikawa Medical University, Asahikawa, 078-8510 (Japan); Hirano, Tetsuo; Yamazaki, Takeshi [Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521 (Japan); Ishida, Atsuhiko, E-mail: aishida@hiroshima-u.ac.jp [Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521 (Japan)

    2016-09-02

    Ca{sup 2+}/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) is a Ser/Thr phosphatase that belongs to the PPM family. Growing evidence suggests that PPM phosphatases including CaMKP act as a complex with other proteins to regulate cellular functions. In this study, using the two-dimensional far-western blotting technique with digoxigenin-labeled CaMKP as a probe, in conjunction with peptide mass fingerprinting analysis, we identified neurofilament L (NFL) as a CaMKP-binding protein in a Triton-insoluble fraction of rat brain. We confirmed binding of fluorescein-labeled CaMKP (F-CaMKP) to NFL in solution by fluorescence polarization. The analysis showed that the dissociation constant of F-CaMKP for NFL is 73 ± 17 nM (n = 3). Co-immunoprecipitation assay using a cytosolic fraction of NGF-differentiated PC12 cells showed that endogenous CaMKP and NFL form a complex in cells. Furthermore, the effect of CaMKP on self-assembly of NFL was examined. Electron microscopy revealed that CaMKP markedly prevented NFL from forming large filamentous aggregates, suggesting that CaMKP-binding to NFL inhibits its filament association. These findings may provide new insights into a novel mechanism for regulating network formation of neurofilaments during neuronal differentiation. - Highlights: • NFL was identified as a CaMKP-binding protein in an insoluble fraction of rat brain. • CaMKP bound to NFL in solution with a K{sub d} value of 73 ± 17 nM. • A CaMKP-NFL complex was found in NGF-differentiated PC12 cells. • CaMKP-binding to NFL inhibited its filament association. • CaMKP may regulate network formation of neurofilaments in neurons.

  10. Cerebrospinal fluid levels of chitinase 3-like 1 and neurofilament light chain predict multiple sclerosis development and disability after optic neuritis

    DEFF Research Database (Denmark)

    Modvig, S; Degn, M; Roed, H

    2015-01-01

    BACKGROUND: Cerebrospinal fluid (CSF) biomarkers have been suggested to predict multiple sclerosis (MS) after clinically isolated syndromes, but studies investigating long-term prognosis are needed. OBJECTIVE: To assess the predictive ability of CSF biomarkers with regard to MS development and long......-term disability after optic neuritis (ON). METHODS: Eighty-six patients with ON as a first demyelinating event were included retrospectively. Magnetic resonance imaging (MRI), CSF leukocytes, immunoglobulin G index and oligoclonal bands were registered. CSF levels of chitinase-3-like-1, osteopontin, neurofilament...

  11. Elevated levels of phosphorylated neurofilament heavy subunit in the cerebrospinal fluid of patients with lumbar spinal stenosis: preliminary findings.

    Science.gov (United States)

    Ohya, Junichi; Chikuda, Hirotaka; Kato, So; Hayakawa, Kentaro; Oka, Hiroyuki; Takeshita, Katsushi; Tanaka, Sakae; Ogata, Toru

    2015-07-01

    The phosphorylated neurofilament heavy subunit (pNfH) is an axon fiber structural protein that is released into the cerebrospinal fluid (CSF) after nerve damage. Although the previous studies have reported elevated CSF levels of pNfH in various neurological diseases, including amyotrophic lateral sclerosis, these levels have not been examined in patients with spinal stenosis. The purpose of this study was to investigate the CSF levels of pNfH in patients with lumbar spinal stenosis (LSS) and to examine the relationship between CSF levels of pNfH and the severity of LSS. This is a prospective observational study. We included consecutive patients with LSS who were undergoing myelography for preoperative evaluation. The CSF samples from patients with idiopathic scoliosis were used as the controls. Physiological measures: CSF levels of pNfH were measured using an enzyme-linked immunosorbent assay. The Zurich Claudication Questionnaire (ZCQ) and the Numerical Rating Scale (NRS) for sciatic pain were used to assess the clinical severity of LSS, and patients were grouped into tertiles according to their symptom severity and pain grading. Axial magnetic resonance imaging was used to evaluate the morphological severity of LSS, and patients were classified into three groups based on their morphological grading (using the CSF/rootlet ratio). Analysis of variance was used to examine the relationship between the CSF levels of pNfH and the severity of LSS. Thirty-three patients with LSS were included (13 men and 20 women and mean age 73.2 [range 58-88] years). Most patients (n=32) were positive for pNfH in their CSF (mean 1,344 [149-9,250] pg/mL), whereas all control subjects were negative for pNfH in their CSF. Regarding the association with clinical severity, patients in the third tertiles of ZCQ and NRS tended to have higher levels of pNfH compared with the other groups. There was no association between the CSF level of pNfH and the morphological severity of LSS. This study

  12. Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) interacts with neurofilament L and inhibits its filament association.

    Science.gov (United States)

    Ozaki, Hana; Katoh, Tsuyoshi; Nakagawa, Ryoko; Ishihara, Yasuhiro; Sueyoshi, Noriyuki; Kameshita, Isamu; Taniguchi, Takanobu; Hirano, Tetsuo; Yamazaki, Takeshi; Ishida, Atsuhiko

    2016-09-02

    Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) is a Ser/Thr phosphatase that belongs to the PPM family. Growing evidence suggests that PPM phosphatases including CaMKP act as a complex with other proteins to regulate cellular functions. In this study, using the two-dimensional far-western blotting technique with digoxigenin-labeled CaMKP as a probe, in conjunction with peptide mass fingerprinting analysis, we identified neurofilament L (NFL) as a CaMKP-binding protein in a Triton-insoluble fraction of rat brain. We confirmed binding of fluorescein-labeled CaMKP (F-CaMKP) to NFL in solution by fluorescence polarization. The analysis showed that the dissociation constant of F-CaMKP for NFL is 73 ± 17 nM (n = 3). Co-immunoprecipitation assay using a cytosolic fraction of NGF-differentiated PC12 cells showed that endogenous CaMKP and NFL form a complex in cells. Furthermore, the effect of CaMKP on self-assembly of NFL was examined. Electron microscopy revealed that CaMKP markedly prevented NFL from forming large filamentous aggregates, suggesting that CaMKP-binding to NFL inhibits its filament association. These findings may provide new insights into a novel mechanism for regulating network formation of neurofilaments during neuronal differentiation. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. The pretectal nuclei in two monotremes: the short-beaked echidna (Tachyglossus aculeatus) and the platypus (Ornithorhynchus anatinus).

    Science.gov (United States)

    Ashwell, K W S; Paxinos, G

    2007-12-01

    We have examined the organization of the pretectal area in two monotremes (the short beaked echidna-Tachyglossus aculeatus, and the platypus-Ornithorhynchus anatinus) and compared it to that in the Wistar strain rat, using Nissl staining in conjunction with enzyme histochemistry (acetylcholinesterase and NADPH diaphorase) and immunohistochemistry for parvalbumin, calbindin, calretinin and non-phosphorylated neurofilament protein (SMI-32 antibody). We were able to identify distinct anterior, medial, posterior (now called tectal gray) and olivary pretectal nuclei as well as a nucleus of the optic tract, all with largely similar topographical and chemoarchitectonic features to the homologous regions in therian mammals. The positions of these pretectal nuclei correspond to the distributions of retinofugal terminals identified by other authors. The overall size of the pretectum in both monotremes was found to be at least comparable in size, if not larger than, the pretectum of representative therian mammals of similar brain and body size. Our findings suggest that the pretectum of these two monotreme species is comparable in both size and organization to that of eutherian mammals, and is more than just an undifferentiated area pretectalis. The presence of a differentiated pretectum with similar chemoarchitecture to therians in both living monotremes lends support to the idea that the stem mammal for both prototherian and therian lineages also had a differentiated pretectum. This in turn indicates that a differentiated pretectum appeared at least 125 million years ago in the mammalian lineage and that the stem mammal for proto- and eutherian lineages probably had similar pretectal nuclei to those identified in its descendants.

  14. GPNMB ameliorates mutant TDP-43-induced motor neuron cell death.

    Science.gov (United States)

    Nagahara, Yuki; Shimazawa, Masamitsu; Ohuchi, Kazuki; Ito, Junko; Takahashi, Hitoshi; Tsuruma, Kazuhiro; Kakita, Akiyoshi; Hara, Hideaki

    2017-08-01

    Glycoprotein nonmetastatic melanoma protein B (GPNMB) aggregates are observed in the spinal cord of amyotrophic lateral sclerosis (ALS) patients, but the detailed localization is still unclear. Mutations of transactive response DNA binding protein 43kDa (TDP-43) are associated with neurodegenerative diseases including ALS. In this study, we evaluated the localization of GPNMB aggregates in the spinal cord of ALS patients and the effect of GPNMB against mutant TDP-43 induced motor neuron cell death. GPNMB aggregates were not localized in the glial fibrillary acidic protein (GFAP)-positive astrocyte and ionized calcium binding adaptor molecule-1 (Iba1)-positive microglia. GPNMB aggregates were localized in the microtubule-associated protein 2 (MAP-2)-positive neuron and neurofilament H non-phosphorylated (SMI-32)-positive neuron, and these were co-localized with TDP-43 aggregates in the spinal cord of ALS patients. Mock or TDP-43 (WT, M337V, and A315T) plasmids were transfected into mouse motor neuron cells (NSC34). The expression level of GPNMB was increased by transfection of mutant TDP-43 plasmids. Recombinant GPNMB ameliorated motor neuron cell death induced by transfection of mutant TDP-43 plasmids and serum-free stress. Furthermore, the expression of phosphorylated ERK1/2 and phosphorylated Akt were decreased by this stress, and these expressions were increased by recombinant GPNMB. These results indicate that GPNMB has protective effects against mutant TDP-43 stress via activating the ERK1/2 and Akt pathways, and GPNMB may be a therapeutic target for TDP-43 proteinopathy in familial and sporadic ALS. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. A New Variant of Charcot-Marie-Tooth Disease Type 2 Is Probably the Result of a Mutation in the Neurofilament-Light Gene

    Science.gov (United States)

    Mersiyanova, Irina V.; Perepelov, Alexander V.; Polyakov, Alexander V.; Sitnikov, Vladimir F.; Dadali, Elena L.; Oparin, Roman B.; Petrin, Alexander N.; Evgrafov, Oleg V.

    2000-01-01

    Charcot-Marie-Tooth (CMT) disease is the most common inherited motor and sensory neuropathy. The axonal form of the disease is designated as “CMT type 2” (CMT2). Although four loci known to be implicated in autosomal dominant CMT2 have been mapped thus far (on 1p35-p36, 3q13.1, 3q13-q22, and 7p14), no one causative gene is yet known. A large Russian family with CMT2 was found in the Mordovian Republic (Russia). Affected members had the typical CMT2 phenotype. Additionally, several patients suffered from hyperkeratosis, although the association, if any, between the two disorders is not clear. Linkage with the CMT loci already known (CMT1A, CMT1B, CMT2A, CMT2B, CMT2D, and a number of other CMT-related loci) was excluded. Genomewide screening pinpointed the disease locus in this family to chromosome 8p21, within a 16-cM interval between markers D8S136 and D8S1769. A maximum two-point LOD score of 5.93 was yielded by a microsatellite from the 5′ region of the neurofilament-light gene (NF-L). Neurofilament proteins play an important role in axonal structure and are implicated in several neuronal disorders. Screening of affected family members for mutations in the NF-L gene and in the tightly linked neurofilament-medium gene (NF-M) revealed the only DNA alteration linked with the disease: a A998C transversion in the first exon of NF-L, which converts a conserved Gln333 amino acid to proline. This alteration was not found in 180 normal chromosomes. Twenty unrelated CMT2 patients, as well as 26 others with an undetermined form of CMT, also were screened for mutations in NF-L, but no additional mutations were found. It is suggested that Gln333Pro represents a rare disease-causing mutation, which results in the CMT2 phenotype. PMID:10841809

  16. Structure-function analysis of the glioma targeting NFL-TBS.40-63 peptide corresponding to the tubulin-binding site on the light neurofilament subunit.

    Directory of Open Access Journals (Sweden)

    Raphael Berges

    Full Text Available We previously reported that a 24 amino acid peptide (NFL-TBS.40-63 corresponding to the tubulin-binding site located on the light neurofilament subunit, selectively enters in glioblastoma cells where it disrupts their microtubule network and inhibits their proliferation. Here, we analyzed the structure-function relationships using an alanine-scanning strategy, in order to identify residues essential for these biological activities. We showed that the majority of modified peptides present a decreased or total loss to penetrate in these cells, or to alter microtubules. Correspondingly, circular dichroism measurements showed that this peptide forms either β-sheet or α-helix structures according to the solvent and that alanine substitution modified or destabilized the structure, in relation with changes in the biological activities. Moreover, substitution of serine residues by phosphoserine or aspartic acid concomitantly decreased the cell penetrating activity and the structure stability. These results indicate the importance of structure for the activities, including selectivity to glioblastoma cells of this peptide, and its regulation by phosphorylation.

  17. Structure-function analysis of the glioma targeting NFL-TBS.40-63 peptide corresponding to the tubulin-binding site on the light neurofilament subunit.

    Science.gov (United States)

    Berges, Raphael; Balzeau, Julien; Takahashi, Masayuki; Prevost, Chantal; Eyer, Joel

    2012-01-01

    We previously reported that a 24 amino acid peptide (NFL-TBS.40-63) corresponding to the tubulin-binding site located on the light neurofilament subunit, selectively enters in glioblastoma cells where it disrupts their microtubule network and inhibits their proliferation. Here, we analyzed the structure-function relationships using an alanine-scanning strategy, in order to identify residues essential for these biological activities. We showed that the majority of modified peptides present a decreased or total loss to penetrate in these cells, or to alter microtubules. Correspondingly, circular dichroism measurements showed that this peptide forms either β-sheet or α-helix structures according to the solvent and that alanine substitution modified or destabilized the structure, in relation with changes in the biological activities. Moreover, substitution of serine residues by phosphoserine or aspartic acid concomitantly decreased the cell penetrating activity and the structure stability. These results indicate the importance of structure for the activities, including selectivity to glioblastoma cells of this peptide, and its regulation by phosphorylation.

  18. Human low molecular weight neurofilament (NFL) mRNA interacts with a predicted p190RhoGEF homologue (RGNEF) in humans.

    Science.gov (United States)

    Volkening, Kathryn; Leystra-Lantz, Cheryl; Strong, Michael J

    2010-01-01

    In the mouse, p190RhoGEF is a low molecular weight neurofilament (NFL) mRNA stability factor that is involved in NF aggregate formation in neurons. A human homologue of this protein has not been described. Our objective was to identify a human homologue of p190RhoGEF, and to determine its interaction with human NFL mRNA. We used sequence homology searches to predict a human homologue (RGNEF), and RT-PCR to determine the expression of mRNA in ALS and neuropathologically normal control tissues. Gel shift assays determined the interaction of RGNEF with human NFL mRNA in vitro, while IP-RT-PCR and gel shift assays were used to confirm the interaction in tissue lysates. We determined that RGNEF is a human homologue of p190RhoGEF, and that its RNA is expressed in both brain and spinal cord. While RGNEF and NFL mRNA interact directly in vitro, interestingly they only appear to interact in ALS lysates and not in controls. These data add another player to the family of NFL mRNA stability regulators, and raise the intriguing possibility that the mechanism by which p190RhoGEF contributes to murine neuronal NF aggregate formation may be important to human ALS NF aggregate formation.

  19. Levels and Age Dependency of Neurofilament Light and Glial Fibrillary Acidic Protein in Healthy Individuals and Their Relation to the Brain Parenchymal Fraction.

    Science.gov (United States)

    Vågberg, Mattias; Norgren, Niklas; Dring, Ann; Lindqvist, Thomas; Birgander, Richard; Zetterberg, Henrik; Svenningsson, Anders

    2015-01-01

    Neurofilament light (NFL) and Glial Fibrillary Acidic Protein (GFAP) are integral parts of the axonal and astrocytal cytoskeletons respectively and are released into the cerebrospinal fluid (CSF) in cases of cellular damage. In order to interpret the levels of these biomarkers in disease states, knowledge on normal levels in the healthy is required. Another biomarker for neurodegeneration is brain atrophy, commonly measured as brain parenchymal fraction (BPF) using magnetic resonance imaging (MRI). Potential correlations between levels of NFL, GFAP and BPF in healthy individuals have not been investigated. To present levels of NFL and GFAP in healthy individuals stratified for age, and investigate the correlation between them as well as their correlation with BPF. The CSF was analysed in 53 healthy volunteers aged 21 to 70 (1 sample missing for GFAP analysis) and 48 of the volunteers underwent determination of BPF using MRI. Mean (±SD) NFL was 355 ng/L (±214), mean GFAP was 421 ng/L (±129) and mean BPF was 0.867 (±0.035). All three biomarkers correlated with age. NFL also correlated with both GFAP and BPF. When controlled for age, only the correlation between NFL and GFAP retained statistical significance. This study presents data on age-stratified levels of NFL and GFAP in the CSF of healthy individuals. There is a correlation between levels of NFL and GFAP and both increase with age. A correlation between NFL and BPF was also found, but did not retain statistical significance if controlled for age.

  20. Neurofilament-tubulin binding site peptide NFL-TBS.40-63 increases the differentiation of oligodendrocytes in vitro and partially prevents them from lysophosphatidyl choline toxiciy.

    Science.gov (United States)

    Fressinaud, Catherine; Eyer, Joël

    2014-02-01

    During multiple sclerosis (MS), the main axon cystoskeleton proteins, neurofilaments (NF), are altered, and their release into the cerebrospinal fluid correlates with disease severity. The role of NF in the extraaxonal location is unknown. Therefore, we tested whether synthetic peptides corresponding to the tubulin-binding site (TBS) sequence identified on light NF chain (NFL-TBS.40-63) and keratin (KER-TBS.1-24), which could be released during MS, modulate remyelination in vitro. Biotinylated NFL-TBS.40-63, NFL-Scramble2, and KER-TBS.1-54 (1-100 μM, 24 hr) were added to rat oligodendrocyte (OL) and astrocyte (AS) cultures, grown in chemically defined medium. Proliferation and differentiation were characterized by using specific antibodies (A2B5, CNP, MBP, GFAP) and compared with untreated cultures. Lysophosphatidyl choline (LPC; 2 × 10(-5) M) was used to induce OL death and to test the effects of TBS peptides under these conditions. NFL-TBS.40-63 significantly increased OL differentiation and maturation, with more CNP(+) and MBP(+) cells characterized by numerous ramified processes, along with myelin balls. When OL were challenged with LPC, concomitant treatment with NFL-TBS.40-63 rescued more than 50% of OL compared with cultures treated with LPC only. Proliferation of OL progenitors was not affected, nor were AS proliferation and differentiation. NFL-TBS.40-63 peptide induces specific effects in vitro, increasing OL differentiation and maturation without altering AS fate. In addition, it partially protects OL from demyelinating injury. Thus release of NFL-TBS.40-63 caused by axonal damage in vivo could improve repair through increased OL differentiation, which is a prerequisite for remyelination. Copyright © 2013 Wiley Periodicals, Inc.

  1. Plasma Concentration of the Neurofilament Light Protein (NFL) is a Biomarker of CNS Injury in HIV Infection: A Cross-Sectional Study.

    Science.gov (United States)

    Gisslén, Magnus; Price, Richard W; Andreasson, Ulf; Norgren, Niklas; Nilsson, Staffan; Hagberg, Lars; Fuchs, Dietmar; Spudich, Serena; Blennow, Kaj; Zetterberg, Henrik

    2016-01-01

    Cerebrospinal fluid (CSF) neurofilament light chain protein (NFL) is a sensitive marker of neuronal injury in a variety of neurodegenerative conditions, including the CNS dysfunction injury that is common in untreated HIV infection. However, an important limitation is the requirement for lumbar puncture. For this reason, a sensitive and reliable blood biomarker of CNS injury would represent a welcome advance in both clinical and research settings. To explore whether plasma concentrations of NFL might be used to detect CNS injury in HIV infection, an ultrasensitive Single molecule array (Simoa) immunoassay was developed. Using a cross-sectional design, we measured NFL in paired CSF and plasma samples from 121 HIV-infected subjects divided into groups according to stage of their systemic disease, presence of overt HIV-associated dementia (HAD), and after antiretroviral treatment (ART)-induced viral suppression. HIV-negative controls were also examined. Plasma and CSF NFL concentrations were very highly correlated (r = 0.89, P NFL was more than 50-fold lower plasma than CSF it was within the quantifiable range of the new plasma assay in all subjects, including the HIV negatives and the HIV positives with normal CSF NFL concentrations. The pattern of NFL changes were almost identical in plasma and CSF, both exhibiting similar age-related increases in concentrations along with highest values in HAD and substantial elevations in ART-naïve neuroasymptomatic subjects with low blood CD4(+) T cells. These results show that plasma NFL may prove a valuable tool to evaluate ongoing CNS injury in HIV infection that may be applied in the clinic and in research settings to assess the presence if active CNS injury. Because CSF NFL is also elevated in a variety of other CNS disorders, sensitive measures of plasma NFL may similarly prove useful in other settings.

  2. Neurofilaments and NFL-TBS.40-63 peptide penetrate oligodendrocytes through clathrin-dependent endocytosis to promote their growth and survival in vitro.

    Science.gov (United States)

    Fressinaud, C; Eyer, J

    2015-07-09

    Neurofilaments (NF) are released into the cerebrospinal fluid (CSF) during multiple sclerosis (MS), but their role outside the axon is still unknown. In vitro NF fractions, as well as tubulin (TUB), increase oligodendrocyte (OL) progenitor proliferation and/or their differentiation depending on the stage of their purification (Fressinaud et al., 2012). However the mechanism by which NF enter these cells, as well as that of synthetic peptides displaying NFL-tubulin-binding site (NFL-TBS.40-63) (Fressinaud and Eyer, 2014), remains elusive. Using rat OL secondary cultures we localized NF, TUB, and NFL-TBS.40-63 by double immunocytochemistry and confocal microscopy. After treating OL cultures with NF P2 (2nd pellet of the purification), or TRITC-TUB, these proteins were localized in the cytoplasmic processes of myelin basic protein (MBP+) expressing OL. Similarly biotinylated NFL-TBS.40-63 synthetic peptides and KER-TBS.1-24 were detected in OL progenitors, differentiated (CNP+) and MBP+ OL. In addition, NFL-TBS.40-63 colocalized with cholera toxin, a known marker of endocytosis, within the cells. Pretreatment of OL by methyl β cyclodextrin abolishes both cholera toxin and NFL-TBS.40-63 uptake, indicating endocytosis. Clathrin-dependent endocytosis was further confirmed by treatment with dynasore, a dynamin inhibitor, which inhibited the uptake of peptides, as well as NFP2 fractions, by 50%. This study demonstrates that axon cytoskeletal proteins and peptides can be internalized by OL through endocytosis. This process could be involved during demyelination, and the release of axon proteins might promote remyelination. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. NG2 cells response to axonal alteration in the spinal cord white matter in mice with genetic disruption of neurofilament light subunit expression

    Directory of Open Access Journals (Sweden)

    Xiao Zhi

    2008-10-01

    Full Text Available Abstract Background Chondroitin sulphate proteoglycan (NG2 expressing cells, morphologically characterized by multi-branched processes and small cell bodies, are the 4th commonest cell population of non-neuronal cell type in the central nervous system (CNS. They can interact with nodes of Ranvier, receive synaptic input, generate action potential and respond to some pathological stimuli, but the function of the cells is still unclear. We assumed the NG2 cells may play an active role in neuropathogenesis and aimed to determine if NG2 cells could sense and response to the alterations in the axonal contents caused by disruption of neurofilament light subunit (NFL expression. Results In the early neuropathological development stage, our study showed that the diameter of axons of upper motor neurons of NFL-/- mice decreased significantly while the thickness of their myelin sheath increased remarkably. Although there was an obvious morphological distortion in axons with occasionally partial demyelination, no obvious changes in expression of myelin proteins was detected. Parallel to these changes in the axons and their myelination, the processes of NG2 cells were disconnected from the nodes of Ranvier and extended further, suggesting that these cells in the spinal cord white matter could sense the alteration in axonal contents caused by disruption of NFL expression before astrocytic and microglial activation. Conclusion The structural configuration determined by the NFL gene may be important for maintenance of normal morphology of myelinated axons. The NG2 cells might serve as an early sensor for the delivery of information from impaired neurons to the local environment.

  4. Serum neurofilament light chain in early relapsing remitting MS is increased and correlates with CSF levels and with MRI measures of disease severity.

    Science.gov (United States)

    Kuhle, Jens; Barro, Christian; Disanto, Giulio; Mathias, Amandine; Soneson, Charlotte; Bonnier, Guillaume; Yaldizli, Özguer; Regeniter, Axel; Derfuss, Tobias; Canales, Mathieu; Schluep, Myriam; Du Pasquier, Renaud; Krueger, Gunnar; Granziera, Cristina

    2016-10-01

    Neurofilament light chain (NfL) levels in the cerebrospinal fluid (CSF) of multiple sclerosis (MS) patients correlate with the degree of neuronal injury. To date, little is known about NfL concentrations in the serum of relapsing remitting multiple sclerosis (RRMS) patients and their relationship with CSF levels and magnetic resonance imaging (MRI) measures of disease severity. We aimed to validate the quantification of NfL in serum samples of RRMS, as a biofluid source easily accessible for longitudinal studies. A total of 31 RRMS patients underwent CSF and serum sampling. After a median time of 3.6 years, 19 of these RRMS patients, 10 newly recruited RRMS patients and 18 healthy controls had a 3T MRI and serum sampling. NfL concentrations were determined by electrochemiluminescence immunoassay. NfL levels in serum were highly correlated to levels in CSF (r = 0.62, p = 0.0002). Concentrations in serum were higher in patients than in controls at baseline (p = 0.004) and follow-up (p = 0.0009) and did not change over time (p = 0.56). Serum NfL levels correlated with white matter (WM) lesion volume (r = 0.68, p NfL levels were highly correlated, and serum concentrations were increased in RRMS. Serum NfL levels correlated with MRI markers of WM disease severity. Our findings further support longitudinal studies of serum NfL as a potential biomarker of on-going disease progression and as a potential surrogate to quantify effects of neuroprotective drugs in clinical trials. © The Author(s), 2016.

  5. Specific human astrocyte subtype revealed by affinity purified GFAP antibody; unpurified serum cross-reacts with neurofilament-L in Alzheimer.

    Directory of Open Access Journals (Sweden)

    Jinte Middeldorp

    Full Text Available The human GFAP splice variants GFAPDelta164 and GFAPDeltaexon6 both result in a GFAP protein isoform with a unique out-of-frame carboxy-terminus that can be detected by the GFAP+1 antibody. We previously reported that GFAP+1 was expressed in astrocytes and in degenerating neurons in Alzheimer's disease brains. In this study we aimed at further investigating the neuronal GFAP+1 expression and we started by affinity purifying the GFAP+1 antibody. The purified antibody resulted in a loss of neuronal GFAP+1 signal, although other antibodies directed against the amino- and carboxy-terminus of GFAPalpha still revealed GFAP-immunopositive neurons, as described before. With an in-depth analysis of a western blot, followed by mass spectrometry we discovered that the previously detected neuronal GFAP+1 expression was due to cross-reactivity of the antibody with neurofilament-L (NF-L. This was confirmed by double-label fluorescent immunohistochemistry and western blotting with the unpurified GFAP+1 antibody and an antibody against NF-L. Our data imply that NF-L can accumulate in some tangle-like structures in Alzheimer brains. More importantly, the purified GFAP+1 antibody clearly revealed a specific subtype of astrocytes in the adult human brain. These large astrocytes are present throughout the brain, e.g., along the subventricular zone, in the hippocampus, in the striatum and in the spinal cord of controls, Alzheimer, and Parkinson patients. The presence of a specific GFAP-isoform suggests a specialized function of these astrocytes.

  6. Activation of the niacin receptor HCA2 reduces demyelination and neurofilament loss, and promotes functional recovery after spinal cord injury in mice.

    Science.gov (United States)

    Yang, Ruilin; He, Jiyong; Wang, Yuliang

    2016-11-15

    After spinal cord injury (SCI), there is an acute phase of alternatively activated (M2) macrophage infiltration, followed by a long-lasting phase of classically activated (M1) macrophage accumulation in the wound, which is believed to derail healing and compromize organ functions. Thus, agents which are able to modulate macrophage phenotypes may provide significant benefits to SCI patients. In the present study, we demonstrate that the niacin receptor HCA2 is specifically expressed on the cell surface of M1 but not M2 macrophages. Treatment of M1 macrophages with niacin (300μM) resulted in down-regulation of the p65 NF-κB phosphorylation, associated with a marked decrease in the levels of M1 markers, including CD86, IL-12, and IL-6, and a significant increase in the expressions of M2 markers, such as CD206, IL-10, and IL-13, suggesting that niacin causes a shift of M1 to M2. Moreover, treatment of the M1-oligodendrocyte precursor cell (OPC) co-cultures with niacin markedly promoted the expression of myelin binding protein (MBP). After SCI in C57/BL6 mice for a week, a marked accumulation of M1 macrophages, which expressed HCA2 receptor, was evident in the wound. Treatment of the SCI mice with niacin (100mg/kg) resulted in a dramatic decrease in the number of M1 macrophages and a significant increase in the number of M2 macrophages in the wound. This was associated with a robust inflammation resolution, attenuation of demyelination and neurofilament loss, and significant improvement of locomotor function. Thus, HCA2 receptor may serve as a therapeutic target to promote post-SCI recovery.

  7. Specific Human Astrocyte Subtype Revealed by Affinity Purified GFAP+1 Antibody; Unpurified Serum Cross-Reacts with Neurofilament-L in Alzheimer

    Science.gov (United States)

    Middeldorp, Jinte; van den Berge, Simone A.; Aronica, Eleonora; Speijer, Dave; Hol, Elly M.

    2009-01-01

    The human GFAP splice variants GFAPΔ164 and GFAPΔexon6 both result in a GFAP protein isoform with a unique out-of-frame carboxy-terminus that can be detected by the GFAP+1 antibody. We previously reported that GFAP+1 was expressed in astrocytes and in degenerating neurons in Alzheimer's disease brains. In this study we aimed at further investigating the neuronal GFAP+1 expression and we started by affinity purifying the GFAP+1 antibody. The purified antibody resulted in a loss of neuronal GFAP+1 signal, although other antibodies directed against the amino- and carboxy-terminus of GFAPα still revealed GFAP-immunopositive neurons, as described before. With an in-depth analysis of a western blot, followed by mass spectrometry we discovered that the previously detected neuronal GFAP+1 expression was due to cross-reactivity of the antibody with neurofilament-L (NF-L). This was confirmed by double-label fluorescent immunohistochemistry and western blotting with the unpurified GFAP+1 antibody and an antibody against NF-L. Our data imply that NF-L can accumulate in some tangle-like structures in Alzheimer brains. More importantly, the purified GFAP+1 antibody clearly revealed a specific subtype of astrocytes in the adult human brain. These large astrocytes are present throughout the brain, e.g., along the subventricular zone, in the hippocampus, in the striatum and in the spinal cord of controls, Alzheimer, and Parkinson patients. The presence of a specific GFAP-isoform suggests a specialized function of these astrocytes. PMID:19888461

  8. Suitability of antigens PGP 9.5 and neurofilament light as marker proteins for detection of neuronal tissue in processed meat products.

    Science.gov (United States)

    Gaunitz, Christine; Gabert, Jörg; Lücker, Ernst; Seeger, Johannes; Stahl, Tobias

    2009-05-01

    The enforcement of rules for food labeling and quantitative ingredient declaration presupposes appropriate test systems. Additionally, central nervous system (CNS) tissue of ruminants is classified as specified risk material for the transmission of prion diseases, and its detection is needed to support the specified risk material ban. Existing antibody-based test systems are hampered by relatively high limits of detection and susceptibility to food processing conditions. For that reason we tested a broad panel of commercially available monoclonal antibodies to identify marker antigens appropriate for the development of a sensitive test system. Western blot analysis using organ-specific samples from cow, pig, and chicken and differently processed meat products containing defined amounts of CNS tissue revealed neurofilament light (NF-L) and protein gene product 9.5 (PGP 9.5) as suitable antigens for the organ-specific and sensitive detection of porcine and bovine CNS tissue. None of the tested PGP 9.5 antibodies displayed cross-reactivity to chicken tissues. Both antigens could be detected in moderately (F(10)121.1 = 0.84) and strongly (F(10)121.1 = 4.01) heated processed meat products containing 5% (NF-L) or 0.2% (PGP 9.5) CNS tissue, respectively. Further, two monoclonal antibodies (clones 13C4 and 31A3) directed against PGP 9.5 were used for the development of a sandwich enzyme-linked immunosorbent assay. The limits of detection of the enzyme-linked immunosorbent assay were approximately 2% added CNS tissue in fresh processed meat products and approximately 0.5% for strongly heated processed meat products (F(10)121.1 = 4.01). In conclusion this test system constitutes a valuable supplementation to existing procedures, which could improve enforcement of food safety regulations.

  9. Poor efficacy of the phosphorylated high-molecular-weight neurofilament heavy subunit serum level, a biomarker of axonal damage, as a marker of chemotherapy-induced peripheral neuropathy

    Science.gov (United States)

    SUMITANI, MASAHIKO; OGATA, TORU; NATORI, AKINA; HOZUMI, JUN; SHIMOJO, NOBUTAKE; KIDA, KUMIKO; YAMAUCHI, HIDEKO; YAMAUCHI, TERUO

    2016-01-01

    The phosphorylated form of the high-molecular-weight neurofilament heavy subunit (pNF-H) is a major structural protein in axons. The pNF-H level is elevated in the serum of certain patients with central nervous disorders, including chemotherapy-induced cognitive impairment. The present study was conducted to elucidate the potential role of pNF-H as a marker of chemotherapy-induced peripheral neuropathy (CIPN). A total of 71 patients with early breast cancer in various stages of treatment (following 1, 3 or 7 cycles of chemotherapy, or a previous history of breast cancer chemotherapy) were assessed with a self-administered PainDETECT questionnaire [pain location, pain intensity on an 11-point numeric rating scale (NRS), and various pain qualities] and a single serum pNF-H measurement. Patients were divided into two groups based on the presence or absence of bilateral symmetric pain in the distal portions of the extremities [CIPN(+) or CIPN(−)]. The χ2 and Mann-Whitney tests were used for statistical analyses. Among the participants, only 8 patients complained of CIPN. Their pain intensity was 3.5±1.9 (mean ± standard deviation) compared with 1.5±1.8 in the CIPN(−) group (P<0.01). The NRS of numbness in the CIPN(+) group was significantly higher (2.4±1.4) than that of the CIPN(−) group (1.0±1.0). Increased pNF-H levels were observed in 37.5% of the CIPN(+) patients and in 23.8% of CIPN(−) patients (P=0.40). In conclusion, CIPN is observed in the most distal portions of the peripheral nerves that are composed of dendrites but not axons. Although serum pNF-H is a biomarker of axonal damage, it is not useful as a marker of CIPN. PMID:27284419

  10. Levels and Age Dependency of Neurofilament Light and Glial Fibrillary Acidic Protein in Healthy Individuals and Their Relation to the Brain Parenchymal Fraction.

    Directory of Open Access Journals (Sweden)

    Mattias Vågberg

    Full Text Available Neurofilament light (NFL and Glial Fibrillary Acidic Protein (GFAP are integral parts of the axonal and astrocytal cytoskeletons respectively and are released into the cerebrospinal fluid (CSF in cases of cellular damage. In order to interpret the levels of these biomarkers in disease states, knowledge on normal levels in the healthy is required. Another biomarker for neurodegeneration is brain atrophy, commonly measured as brain parenchymal fraction (BPF using magnetic resonance imaging (MRI. Potential correlations between levels of NFL, GFAP and BPF in healthy individuals have not been investigated.To present levels of NFL and GFAP in healthy individuals stratified for age, and investigate the correlation between them as well as their correlation with BPF.The CSF was analysed in 53 healthy volunteers aged 21 to 70 (1 sample missing for GFAP analysis and 48 of the volunteers underwent determination of BPF using MRI.Mean (±SD NFL was 355 ng/L (±214, mean GFAP was 421 ng/L (±129 and mean BPF was 0.867 (±0.035. All three biomarkers correlated with age. NFL also correlated with both GFAP and BPF. When controlled for age, only the correlation between NFL and GFAP retained statistical significance.This study presents data on age-stratified levels of NFL and GFAP in the CSF of healthy individuals. There is a correlation between levels of NFL and GFAP and both increase with age. A correlation between NFL and BPF was also found, but did not retain statistical significance if controlled for age.

  11. Dynamic interplay between phosphorylation and O-glycosylation of neurofilaments in neurodegenerative diseases%神经丝蛋白质糖基化与磷酸化的相互调节和神经退行性疾病

    Institute of Scientific and Technical Information of China (English)

    崔冉亮; 胡海燕; 吕朴; 戎凯; 陈宁; 邓艳秋

    2009-01-01

    Neurofilaments (NFs), assembled from three subunits of different molecular masses, namely NFL (neurofilament light, 68 kDa), NFM (neurofilament medium, 160 kDa), and NFH (neurofilament heavy, 200 kDa), are one of major cytoskeletal elements in neurons and play a very significant role in stabilizing morphology and structure of cells and maintaining axon transportation. Two important posttranslational modifications exist in NFs protein are phosphorylation and O-linked N-acetylglucosamine (O-GlcNAc), which modify the same or proximal hydroxyl groups of serine or threonine, therefore, there may exist competitive inter-regulation between phosphorylation and O-glycosylation, which may play an important role in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD), Amyotrophic lateral sclerosis (ALS) and Spinal muscular atrophy (SMA).%神经丝(neurofnament,NF)蛋白质是神经元细胞骨架的主要成分,由低(68 kDa)、中(160 kDa)和高(200 kDa)分子量的三种哑基聚合而成,在维持细胞骨架、稳定细胞形态和轴突转运方面均有十分重要意义.NF蛋白质存在两个非常重要的翻译后修饰--磷酸化和O位N-乙酰葡萄糖胺(O-linked N-acetylgltlcosamine.O-GlcNAc)糖基化.由于它们修饰同一蛋白质的相同或邻近丝氨酸和苏氨酸羟基,因此磷酸化和糖基化修饰可能存在着竞争性调节,在神经退行性变性疾病如阿尔茨海默病、肌萎缩性脊髓侧索硬化症和进行性肌肉萎缩症等发病机制中可能起十分重要的作用.

  12. Comparative Assessment of the Prognostic Value of Biomarkers in Traumatic Brain Injury Reveals an Independent Role for Serum Levels of Neurofilament Light.

    Directory of Open Access Journals (Sweden)

    Faiez Al Nimer

    Full Text Available Traumatic brain injury (TBI is a common cause of death and disability, worldwide. Early determination of injury severity is essential to improve care. Neurofilament light (NF-L has been introduced as a marker of neuroaxonal injury in neuroinflammatory/-degenerative diseases. In this study we determined the predictive power of serum (s- and cerebrospinal fluid (CSF- NF-L levels towards outcome, and explored their potential correlation to diffuse axonal injury (DAI. A total of 182 patients suffering from TBI admitted to the neurointensive care unit at a level 1 trauma center were included. S-NF-L levels were acquired, together with S100B and neuron-specific enolase (NSE. CSF-NF-L was measured in a subcohort (n = 84 with ventriculostomies. Clinical and neuro-radiological parameters, including computerized tomography (CT and magnetic resonance imaging, were included in the analyses. Outcome was assessed 6 to 12 months after injury using the Glasgow Outcome Score (1-5. In univariate proportional odds analyses mean s-NF-L, -S100B and -NSE levels presented a pseudo-R2 Nagelkerke of 0.062, 0.214 and 0.074 in correlation to outcome, respectively. In a multivariate analysis, in addition to a model including core parameters (pseudo-R2 0.33 towards outcome; Age, Glasgow Coma Scale, pupil response, Stockholm CT score, abbreviated injury severity score, S100B, S-NF-L yielded an extra 0.023 pseudo-R2 and a significantly better model (p = 0.006 No correlation between DAI or CT assessed-intracranial damage and NF-L was found. Our study thus demonstrates that S-NF-L correlates to TBI outcome, even if used in models with S100B, indicating an independent contribution to the prediction, perhaps by reflecting different pathophysiological processes, not possible to monitor using conventional neuroradiology. Although we did not find a predictive value of NF-L for DAI, this cannot be completely excluded. We suggest further studies, with volume quantification of axonal

  13. Influence of Scalp Point-through-point Acupuncture on 200 kDa Neurofilament Protein in Rats with Acute Cerebral Infarction

    Institute of Scientific and Technical Information of China (English)

    李红颖; 朱文增; 东贵荣; 王凤军; 客蕊

    2007-01-01

    目的:研究头穴透刺对急性脑梗死大鼠神经丝蛋白-200(NF-200)的影响,探讨针刺对脑梗死大鼠神经可塑性影响的机制.方法:将健康雄性Wistar大鼠随机分为假手术组(A组)、模型组(B组)、针刺组(C组).通过建立大鼠局灶性脑缺血模型(MCAO),用逆转录-聚合酶链反应(RT-PCR)法,测定以上各组在7 d、14 d、28 d不同时间点NF200 mRNA变化情况.结果:头穴透刺组脑组织NF-200的表达与假手术组、造模组相比差异有统计学意义(P<0.05);而在不同时间窗内头穴透刺组,模型组与假手术组比较差异有统计学意义(P<0.01).表明头穴透刺可以促进脑组织神经丝蛋白-200的表达.结论:头穴透刺能够提高脑缺血后神经功能,促进肢体功能恢复,增加神经丝蛋白-200的表达,发挥对脑组织神经细胞可塑性的调节作用.%Objective: To investigate the effect of scalp point-through-point acupuncture on 200 kDa neurofilament protein (NF-200) in rats with acute cerebral infarction and explore its mechanism on nerve plasticity in cerebral infarction rats. Methods: Healthy male Wistar rats were randomly allocated to sham operation (Group A), model (Group B) and acupuncture (Group C) groups. A rat middle cerebral artery occlusion (MCAO) model of cerebral ischemia was made. NF-200 mRNA was measured by reverse transcriptase polymerase chain reaction (RT-PCR) in each group on the 7th, 14th and 28th days. Results: The cerebral expression of NF-200 in group C was significantly different from those in groups A and B (P<0.05); there was a significant difference between groups C and B or A at different time windows (P<0.01),indicating that scalp point-through-point acupuncture could improve the cerebral expression of NF-200. Conclusion: Scalp point-through-point acupuncture can improve neural function,promote the recovery of limb function and increase the expression of NF-200 after cerebral ischemia, exerting a regulative effect on

  14. The N Terminus of Pro-endothelial Monocyte-activating Polypeptide II (EMAP II) Regulates Its Binding with the C Terminus, Arginyl-tRNA Synthetase, and Neurofilament Light Protein*

    Science.gov (United States)

    Xu, Haiming; Malinin, Nikolay L.; Awasthi, Niranjan; Schwarz, Roderich E.; Schwarz, Margaret A.

    2015-01-01

    Pro-endothelial monocyte-activating polypeptide II (EMAP II), one component of the multi-aminoacyl tRNA synthetase complex, plays multiple roles in physiological and pathological processes of protein translation, signal transduction, immunity, lung development, and tumor growth. Recent studies have determined that pro-EMAP II has an essential role in maintaining axon integrity in central and peripheral neural systems where deletion of the C terminus of pro-EMAP II has been reported in a consanguineous Israeli Bedouin kindred suffering from Pelizaeus-Merzbacher-like disease. We hypothesized that the N terminus of pro-EMAP II has an important role in the regulation of protein-protein interactions. Using a GFP reporter system, we defined a putative leucine zipper in the N terminus of human pro-EMAP II protein (amino acid residues 1–70) that can form specific strip-like punctate structures. Through GFP punctum analysis, we uncovered that the pro-EMAP II C terminus (amino acids 147–312) can repress GFP punctum formation. Pulldown assays confirmed that the binding between the pro-EMAP II N terminus and its C terminus is mediated by a putative leucine zipper. Furthermore, the pro-EMAP II 1–70 amino acid region was identified as the binding partner of arginyl-tRNA synthetase, a polypeptide of the multi-aminoacyl tRNA synthetase complex. We also determined that the punctate GFP pro-EMAP II 1–70 amino acid aggregate colocalizes and binds to the neurofilament light subunit protein that is associated with pathologic neurofilament network disorganization and degeneration of motor neurons. These findings indicate the structure and binding interaction of pro-EMAP II protein and suggest a role of this protein in pathological neurodegenerative diseases. PMID:25724651

  15. The Relation of Study & Memory Function and Cortex Neurofilament Protein Expression in Growth and Senescence Course of Rats%大鼠生长及衰老过程中学习记忆能力与皮层神经丝蛋白表达关系

    Institute of Scientific and Technical Information of China (English)

    郭德玉; 李斌; 李林

    2003-01-01

    Objective The study and memory function changes with the growth and senescence course in brain. The study of substance basis for this changes is the hotspot in neuroscience research at present. It' s very important for improving the brainpower in child and protecting intellect decline in elder. The ability of study & memory and the expression of cortex neurofilament protein, which is a kind of framework protein in rats at different ages were analyzed in this paper. Method SD male rats were choice in this study, the rats were divided into 22 days, 1 month, 5 months, 10months and 24 months age groups. The ability of study and memory was evaluated by channel water maze. The neurofilament protein expression in parietal and frontal section in rats was quantificationally measured by immunohistochemistry and image analysis. Results The swimming time and error count in immature rats (age 22 days and 1 month) and old rats (age 24 months) were longer and more than adult rats (age 5 months and 10 months), the difference is significant(P< 0.05). This means that the study and memory function in immature and old rats were lower than adult rats. The highest expression of neurofilament protein was in 10 months age group, next is 5 months group, 24 months group, 1 month group in turn. The lowest was 22 days group. It ' s significant in different groups. The study and memory function is positive correlation with expression of neurofilament protein(table 1 ). Discussion The nerves mechanism of study and memory depend on the plasticity of nerves system in one aspect, on the other hand, it also depends on the integrality of nerve net. There are parallel processing and complementation features in nerves system. The transmit of a sign are parallel by many nerve fiber. The impediment of one axon can' t interrupt the whole pathway, but the quality of massage transport is affected. Thus, if the development of nerve transport pathway is better, the mount of message is greater, it is more

  16. Ⅱ型糖尿病兔大脑皮质和海马神经元的神经丝蛋白表达%THE EXPRESSION OF NEUROFILAMENT PROTEINS IN CEREBRAL CORTEX AND HIPPOCAMPUS IN TYPE Ⅱ DIABETES IN RABBITS

    Institute of Scientific and Technical Information of China (English)

    马志健; 刘正清; 张秋菊; 蔡维君; 李明波; 刘小丹; 陈二云

    2002-01-01

    Objective:To investigate the morphological changes of the neuronal neurites in diabetic rabbit brain. Methods: Twenty- four New Zealand White rabbits were divided into 2 groups: control group and type Ⅱ diabetic group induced by high - carbohydrate and high- fat diet. The levels of blood sugar and insulin were detected at week 0(w0), w4, w8, w13, w18, w23 and w28. Brain tissue was stained by Nissl staining and immunolistochemistry with a specific antibody to neurofilament proteins. Result: In diabetic rabbits, the amount of large pyramidal neuron was significantly reduced, and neuronal neurites became swollen, whorled, disrupted and changed in caliber. In hippocampus CA1 region neurofilament staining was very weak. Conclusion: Neurotoxicity of chronic hyperglycemia might be relevant to vascular chronic complications, which affected the expression of NF and led to neurophysiological and structural changes in the brain of rabbits with type Ⅱ diabetes.

  17. Mutation analysis of neurofilament-light gene in Chinese Charcot-Marie-Tooth disease%神经丝轻链基因在腓骨肌萎缩症中的突变分析

    Institute of Scientific and Technical Information of China (English)

    罗巍; 唐北沙; 赵国华; 李崎; 萧剑锋; 杨期东; 夏家辉

    2003-01-01

    目的探讨神经丝轻链基因(neurofilament-light gene, NF-L)在中国人腓骨肌萎缩症(Charcot-Marie-Tooth disease,CMT)中的突变特点. 方法应用聚合酶链反应-单链构象多态性技术结合DNA序列分析方法,对32个来自全国5省汉族的CMT家系先证者进行了NF-L基因的突变分析. 结果32例先证者中只有1例患者出现异常条带,经DNA测序证实该患者在NF-L基因的外显子3发生了1329C→T碱基改变,由于编码的氨基酸未改变,均为酪氨酸(Tyr),为一种同义突变. 结论 NF-L基因突变可能在中国人的腓骨肌萎缩症患者中少见.

  18. Overexpression of dishevelled-1 attenuates wortmannin-induced hyperphosphorylation of cytoskeletal proteins in N2a cell

    Institute of Scientific and Technical Information of China (English)

    Hai-hong WANG; Ai-hong ZHANG; Ling-qiang ZHU; Qun WANG; Jian-zhi WANG

    2005-01-01

    Aim: To investigate the effect of dishevelled- 1 (DVL- 1) on wortmannin-induced Alzheimer-like hyperphosphorylation of cytoskeletal proteins in mouse neuroblastoma 2a (N2a) cells. Methods: Cultured N2a cells were transitorily transfected with DVL-1 expression plasmid using LipofectamineTM 2000. Western blot and immunofluorescence microscopy were used to measure the phosphorylation of neurofilament and tau. Results: Level of phosphorylated neurofilament at SMI31 epitope and phosphorylated tau determined by PHF-1 was increased at 1 h and 3 h and back to normal at 6 h after wortmannin 1 μmol/L treatment. The highest level of phosphorylated neurofilament and phosphorylated tau was seen at 1 h and 3 h after wortmannin treatment, respectively. When DVL- 1 protein was overexpressed,the hyperphosphorylation of neurofilament at SMI31 and SMI32 epitopes and tau at PHF- 1 (Ser-396/404), M4 (Thr-231/Ser-235), and Tau- 1 (Ser- 198/199/202) epitopes was attenuated. Conclusion: Overexpression of mouse DVL-1 protein inhibits wortmannin-induced hyperphosphorylation of neurofilament and tau in N2a cells.

  19. Shared Molecular Mechanisms in Alzheimer's Disease and Amyotrophic Lateral Sclerosis: Neurofilament-Dependent Transport of sAPP, FUS, TDP-43 and SOD1, with Endoplasmic Reticulum-Like Tubules.

    Science.gov (United States)

    Muresan, Virgil; Ladescu Muresan, Zoia

    2016-01-01

    Amyotrophic lateral sclerosis (ALS), a debilitating neurodegenerative disorder of the motor neurons, leads to the disorganization of the neurofilament (NF) cytoskeleton and - ultimately - the deterioration of the neuromuscular junction. Some familial cases of ALS are caused by mutated FUS, TDP-43 or SOD1; it is thought that the mutated proteins inflict pathology either by gain or loss of function. The proper function of the neuromuscular junction requires sAPP, a soluble proteolytic fragment of the amyloid-β precursor protein (APP) - a transmembrane protein implicated in the pathology of Alzheimer's disease (AD). Whether sAPP, FUS, TDP-43 and SOD1 are mechanistically linked in a common pathway deregulated in both AD and ALS is not known. We show that sAPP, TDP-43, FUS and SOD1 are transported to neurite terminals by a mechanism that involves endoplasmic reticulum (ER)-like tubules and requires peripherin NFs. The transport of these proteins, and the translocation of the ER protein reticulon 4 (Rtn4) into neurites was studied in CAD cells, a brainstem-derived neuronal cell line highly relevant to AD and ALS. We show that a significant fraction of sAPP is generated in the soma and accumulates in a juxtanuclear ER subdomain. In neurites, sAPP localizes to Rtn4-positive ER-like tubules that extend from the soma into the growth cone and colocalizes with peripherin NFs. Knocking down peripherin disrupts the NF network and diminishes the accumulation of sAPP, TDP-43, FUS, SOD1 and Rtn4 at terminals. We propose that the impediment of a common, ER-mediated mechanism of transport of sAPP, TDP-43, FUS and SOD1, caused by a disrupted NF network, could be part of the mechanisms leading to AD and ALS. © 2015 S. Karger AG, Basel.

  20. CSF neurofilament protein analysis in the differential diagnosis of ALS.

    NARCIS (Netherlands)

    Reijn, T.S.M.; Abdo, W.; Schelhaas, H.J.; Verbeek, M.M.

    2009-01-01

    BACKGROUND: Cerebrospinal fluid (CSF) biomarkers have been studied to differentiate between patients with ALS and neurological controls, but not in comparison to clinically more relevant disorders mimicking ALS. METHODS: In this retrospective study, CSF concentrations of various brain-specific

  1. Effect of truncated apolipoprotein E4 on the neurofilament phosphorylation in cultured neurons%截断型载脂蛋白E4对培养神经元细胞中神经细丝磷酸化的影响

    Institute of Scientific and Technical Information of China (English)

    周洁; 陈娟; 肖志宏; 金光耀; 冯友梅

    2006-01-01

    背景:神经细丝的磷酸化程度与阿尔茨海默病的发生密切相关,载脂蛋白E4是阿尔茨海默病公认的易患因子,但载脂蛋白E4对神经元细胞内神经细丝磷酸化的影响及机制尚不十分清楚.研究显示在阿尔茨海默病患者脑组织和体外培养的神经元细胞中,载脂蛋白E4蛋白C末端的272~299位氨基酸残基可被水解截去,产生truncated-apoE4片段,且与阿尔茨海默病的特征性病理改变神经纤维缠结中的磷酸化神经细丝相互作用.目的:在细胞水平观察truncated-ApoE4过度表达对培养的神经元中神经细丝磷酸化的影响.设计:非随机对照实验观察. 单位:华中科技大学同济医学院基础医学院生物化学与分子生物学系.材料:实验于2005/12在华中科技大学同济医学院生物化学与分子生物学实验室完成.小鼠成神经瘤贴壁生长细胞株N2a由许华熙博士提供.方法:构建pEGFp-T-apoE4真核表达重组体,采用脂质体介导的方法分别将pEGFP-c3、pEGFP-apoE4和pEGFP-T-apoE4瞬时转染小鼠成神经瘤细胞株(N2a),24~48 h后,免疫印迹技术检测神经细丝的磷酸化状态,测定糖原合酶激酶3、细胞周期依赖性蛋白激酶5(CDK5)的活性.主要观察指标:神经细丝的磷酸化程度及糖原合酶激酶3、细胞周期依赖性蛋白激酶5的酶活性.结果:转染组细胞内磷酸化神经细丝含量显著增多,糖原合酶激酶3酶活性显著增加,以pEGFP-T-apoE4转染组最为显著(P<0.05),细胞周期依赖性蛋白激酶5酶活性与对照组相比差异无显著性意义(P>0.05).结论:Truncated-ApoE4过度表达可通过激活糖原合酶激酶3而非细胞周期依赖性蛋白激酶5引起成神经瘤细胞株(N2a)细胞中神经细丝过度磷酸化,提示truncated-ApoE4可能参与了阿尔茨海默病的病理过程.%BACKGROUND: The degree of neurofilament (NF) phosphorylation is closely correlated with the occurrence of Alzheimer disease (AD

  2. Structural and functional changes of neuronal and glial components of the feline enteric nervous system in cats with chronic inflammatory and non-inflammatory diseases of the gastrointestinal tract.

    Science.gov (United States)

    Kleinschmidt, Sven; Nolte, Ingo; Hewicker-Trautwein, Marion

    2011-12-01

    Immunohistochemical examinations of the enteric nervous system (ENS) were performed on biopsies of healthy cats and compared to findings in cats suffering from inflammatory bowel disease or intestinal lymphoma. In lymphocytic-plasmacytic enterocolitis all affected samples had significant reductions in glial fibrillary acidic protein and vasoactive intestinal peptide (VIP) and mostly of neuron-specific enolase (NSE) possibly reflecting alterations in enteric glial cells and neurons. In cases with eosinophilic gastroenterocolitis significantly reduced phosphorylated neurofilament (PN) expression was present suggesting a disturbance in neuronal cytoskeleton, whereas cats with fibrosing enteropathy had reduced expression of NSE, non-phosphorylated neurofilaments (NPN), PN and VIP, possibly reflecting neuronal disturbances. In cases with intestinal lymphoma only the reduction in PN and the increase in NPN were obvious suggesting direct damage or interference of neoplastic cells with enteric neurons. In conclusion, structural and functional alterations of the ENS may contribute to clinically evident signs of vomiting and/or diarrhea.

  3. The non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) of Sulfolobus solfataricus: a key-enzyme of the semi-phosphorylative branch of the Entner-Doudoroff pathway

    NARCIS (Netherlands)

    Ettema, T.J.G.; Ahmed, H.; Geerling, A.C.M.; Oost, van der J.; Siebers, B.

    2008-01-01

    Archaea utilize a branched modification of the classical Entner¿Doudoroff (ED) pathway for sugar degradation. The semi-phosphorylative branch merges at the level of glyceraldehyde 3-phosphate (GAP) with the lower common shunt of the Emden-Meyerhof-Parnas pathway. In Sulfolobus solfataricus two

  4. The precerebellar linear nucleus in the mouse defined by connections, immunohistochemistry, and gene expression.

    Science.gov (United States)

    Fu, YuHong; Tvrdik, Petr; Makki, Nadja; Palombi, Olivier; Machold, Robert; Paxinos, George; Watson, Charles

    2009-05-19

    The linear nucleus (Li) is a prominent cell group in the caudal hindbrain, which was first described in a study of cerebellar afferents in the rat by [Watson, C.R.R., Switzer, R.C. III, 1978. Trigeminal projections to cerebellar tactile areas in the rat origin mainly from N. interpolaris and N. principalis. Neurosci. Lett. 10, 77-82.]. It was named for its elongated appearance in transverse sections. Since this original description in the rat, reference to the nucleus seems to have been largely absent from experimental studies of mammalian precerebellar nuclei. We therefore set out to define the cytoarchitecture, cerebellar connections, and molecular characteristics of Li in the mouse. In coronal Nissl sections at the level of the rostral inferior olive, it consists of two parallel bands of cells joined at their dorsal apex by a further band of cells, making the shape of the Greek capital letter pi. Our three-dimensional reconstruction demonstrated that the nucleus is continuous with the lateral reticular nucleus (LRt) and that the ambiguus nucleus sits inside the arch of Li. Cerebellar horseradish peroxidase injections confirmed that the cells of Li project to cerebellum. We have shown that Li cells express Atoh1 and Wnt1 lineage markers that are known to label the rhombic lip derived precerebellar nuclei. We have examined the relationship of Li cells to a number of molecular markers, and have found that many of the cells express a nonphosphorylated epitope in neurofilament H (SMI 32), a feature they share with the LRt. The mouse Li therefore appears to be a rostrodorsal extension of the LRt.

  5. Histological features of layers and sublayers in cortical visual areas V1 and V2 of chimpanzees, macaque monkeys, and humans

    Directory of Open Access Journals (Sweden)

    Balaram P

    2014-09-01

    Full Text Available Pooja Balaram, Nicole A Young, Jon H Kaas Department of Psychology, Vanderbilt University, Nashville, TN, USA Abstract: The layers and sublayers of primary visual cortex, or V1, in primates are easily distinguishable compared to those in other cortical areas, and are especially distinct in anthropoid primates – monkeys, apes, and humans – where they also vary in histological appearance. This variation in primate-specific specialization has led to a longstanding confusion over the identity of layer 4 and its proposed sublayers in V1. As the application of different histological markers relate to the issue of defining and identifying layers and sublayers, we applied four traditional and four more recent histological markers to brain sections of V1 and adjoining secondary visual cortex (V2 in macaque monkeys, chimpanzees, and humans in order to compare identifiable layers and sublayers in both cortical areas across these species. The use of Nissl, neuronal nuclear antigen (NeuN, Gallyas myelin, cytochrome oxidase (CO, acetylcholinesterase (AChE, nonphosphorylated neurofilament H (SMI-32, parvalbumin (PV, and vesicular glutamate transporter 2 (VGLUT2 preparations support the conclusion that the most popular scheme of V1 lamination, that of Brodmann, misidentifies sublayers of layer 3 (3Bβ and 3C as sublayers of layer 4 (4A and 4B, and that the specialized sublayer of layer 3 in monkeys, 3Bβ, is not present in humans. These differences in interpretation are important as they relate to the proposed functions of layer 4 in primate species, where layer 4 of V1 is a layer that receives and processes information from the visual thalamus, and layer 3 is a layer that transforms and distributes information to other cortical areas. Keywords: area 17, area 18, cortical layers, histology, immunohistochemistry

  6. Histological features of layers and sublayers in cortical visual areas V1 and V2 of chimpanzees, macaque monkeys, and humans.

    Science.gov (United States)

    Balaram, Pooja; Young, Nicole A; Kaas, Jon H

    2014-09-01

    The layers and sublayers of primary visual cortex, or V1, in primates are easily distinguishable compared to those in other cortical areas, and are especially distinct in anthropoid primates - monkeys, apes, and humans - where they also vary in histological appearance. This variation in primate-specific specialization has led to a longstanding confusion over the identity of layer 4 and its proposed sublayers in V1. As the application of different histological markers relate to the issue of defining and identifying layers and sublayers, we applied four traditional and four more recent histological markers to brain sections of V1 and adjoining secondary visual cortex (V2) in macaque monkeys, chimpanzees, and humans in order to compare identifiable layers and sublayers in both cortical areas across these species. The use of Nissl, neuronal nuclear antigen (NeuN), Gallyas myelin, cytochrome oxidase (CO), acetylcholinesterase (AChE), nonphosphorylated neurofilament H (SMI-32), parvalbumin (PV), and vesicular glutamate transporter 2 (VGLUT2) preparations support the conclusion that the most popular scheme of V1 lamination, that of Brodmann, misidentifies sublayers of layer 3 (3Bβ and 3C) as sublayers of layer 4 (4A and 4B), and that the specialized sublayer of layer 3 in monkeys, 3Bβ, is not present in humans. These differences in interpretation are important as they relate to the proposed functions of layer 4 in primate species, where layer 4 of V1 is a layer that receives and processes information from the visual thalamus, and layer 3 is a layer that transforms and distributes information to other cortical areas.

  7. Characterization of immune response to neurofilament light in experimental autoimmune encephalomyelitis

    NARCIS (Netherlands)

    F. Puentes (Fabiola); B.J. van der Star (Baukje); M. Victor (Marion); M. Kipp (Markus); C. Beyer (Cordian); R.M.B. Peferoen-Baert (Regina); K. Ummenthum (Kimberley); K. Pryce (Karena); W. Gerritsen (Wouter); R. Huizinga (Ruth); A. Reijerkerk (Arie); P. van der Valk (Paul); D.A. Baker (David); S. Amor (Sandra)

    2013-01-01

    textabstractBackground: Autoimmunity to neuronal proteins occurs in several neurological syndromes, where cellular and humoral responses are directed to surface as well as intracellular antigens. Similar to myelin autoimmunity, pathogenic immune response to neuroaxonal components such as neurofilame

  8. Neurofilaments Function as Shock Absorbers: Compression Response Arising from Disordered Proteins

    Science.gov (United States)

    Kornreich, Micha; Malka-Gibor, Eti; Zuker, Ben; Laser-Azogui, Adi; Beck, Roy

    2016-09-01

    What can cells gain by using disordered, rather than folded, proteins in the architecture of their skeleton? Disordered proteins take multiple coexisting conformations, and often contain segments which act as random-walk-shaped polymers. Using x-ray scattering we measure the compression response of disordered protein hydrogels, which are the main stress-responsive component of neuron cells. We find that at high compression their mechanics are dominated by gaslike steric and ionic repulsions. At low compression, specific attractive interactions dominate. This is demonstrated by the considerable hydrogel expansion induced by the truncation of critical short protein segments. Accordingly, the floppy disordered proteins form a weakly cross-bridged hydrogel, and act as shock absorbers that sustain large deformations without failure.

  9. Diffuse axonal injury in brain trauma: insights from alterations in neurofilaments

    National Research Council Canada - National Science Library

    Siedler, Declan G; Chuah, Meng Inn; Kirkcaldie, Matthew T K; Vickers, James C; King, Anna E

    2014-01-01

    Traumatic brain injury (TBI) from penetrating or closed forces to the cranium can result in a range of forms of neural damage, which culminate in mortality or impart mild to significant neurological disability...

  10. CSF neurofilament light chain is elevated in OMS (decreasing with immunotherapy) and other pediatric neuroinflammatory disorders.

    Science.gov (United States)

    Pranzatelli, Michael R; Tate, Elizabeth D; McGee, Nathan R; Verhulst, Steven J

    2014-01-15

    Using a panel of seven brain cell-specific biomarkers in cerebrospinal fluid (CSF), pediatric opsoclonus-myoclonus syndrome (OMS) (n=234) was compared to pediatric non-inflammatory neurological controls (n=84) and other inflammatory neurological disorders (OIND) (n=44). Only CSF NFL was elevated in untreated OMS versus controls (+83%). It was 87% higher in OIND than in OMS. On combination treatment with front-loaded ACTH, IVIg, rituximab, median CSF NFL decreased by 60% to control levels. These biochemical data suggest neuronal/axonal injury in some children with OMS without indicators of astrogliosis, and reduction on sufficient immunotherapy.

  11. The hypothalamic supraoptic and paraventricular nuclei of the echidna and platypus.

    Science.gov (United States)

    Ashwell, Ken W S; Lajevardi, Shahab-Eddin; Cheng, Gang; Paxinos, George

    2006-01-01

    The monotremes are an intriguing group of mammals that have major differences in their reproductive physiology and lactation from therian mammals. Monotreme young hatch from leathery skinned eggs and are nourished by milk secreted onto areolae rather than through nipples. Parturition and lactation are in part controlled through the paraventricular and supraoptic nuclei of the hypothalamus. We have used Nissl staining, enzyme histochemistry, immunohistochemistry for tyrosine hydroxylase, calbindin, oxytocin, neurophysin and non-phosphorylated neurofilament protein, and carbocyanine dye tracing techniques to examine the supraoptic and paraventricular nuclei and the course of the hypothalamo-neurohypophysial tract in two monotremes: the short-beaked echidna (Tachyglossus aculeatus) and the platypus (Ornithorhynchus anatinus). In both monotremes, the supraoptic nucleus consisted of loosely packed neurons, mainly in the retrochiasmatic position. In the echidna, the paraventricular nucleus was quite small, but had similar chemoarchitectural features to therians. In the platypus, the paraventricular nucleus was larger and appeared to be part of a stream of magnocellular neurons extending from the paraventricular nucleus to the retrochiasmatic supraoptic nucleus. Immunohistochemistry for non-phosphorylated neurofilament protein and carbocyanine dye tracing suggested that hypothalamo-neurohypophysial tract neurons in the echidna lie mainly in the retrochiasmatic supraoptic and lateral hypothalamic regions, but most neurophysin and oxytocin immunoreactive neurons in the echidna were found in the paraventricular, lateral hypothalamus and supraoptic nuclei and most oxytocinergic neurons in the platypus were distributed in a band from the paraventricular nucleus to the retrochiasmatic supraoptic nucleus. The small size of the supraoptic nucleus in the two monotremes might reflect functional aspects of monotreme lactation.

  12. Landolphia owariensis Attenuates Alcohol-induced Cerebellar Neurodegeneration: Significance of Neurofilament Protein Alteration in the Purkinje Cells

    Directory of Open Access Journals (Sweden)

    Oyinbo Charles A.

    2016-12-01

    Full Text Available Background: Alcohol-induced cerebellar neurodegeneration is a neuroadaptation that is associated with chronic alcohol abuse. Conventional drugs have been largely unsatisfactory in preventing neurodegeneration. Yet, multimodal neuro-protective therapeutic agents have been hypothesised to have high therapeutic potential for the treatment of CNS conditions; there is yet a dilemma of how this would be achieved. Contrarily, medicinal botanicals are naturally multimodal in their mechanism of action.

  13. CXCR7 antagonism prevents axonal injury during experimental autoimmune encephalomyelitis as revealed by in vivo axial diffusivity

    Directory of Open Access Journals (Sweden)

    Cruz-Orengo Lillian

    2011-12-01

    Full Text Available Abstract Background Multiple Sclerosis (MS is characterized by the pathological trafficking of leukocytes into the central nervous system (CNS. Using the murine MS model, experimental autoimmune encephalomyelitis (EAE, we previously demonstrated that antagonism of the chemokine receptor CXCR7 blocks endothelial cell sequestration of CXCL12, thereby enhancing the abluminal localization of CXCR4-expressing leukocytes. CXCR7 antagonism led to decreased parenchymal entry of leukocytes and amelioration of ongoing disease during EAE. Of note, animals that received high doses of CXCR7 antagonist recovered to baseline function, as assessed by standard clinical scoring. Because functional recovery reflects axonal integrity, we utilized diffusion tensor imaging (DTI to evaluate axonal injury in CXCR7 antagonist- versus vehicle-treated mice after recovery from EAE. Methods C57BL6/J mice underwent adoptive transfer of MOG-reactive Th1 cells and were treated daily with either CXCR7 antagonist or vehicle for 28 days; and then evaluated by DTI to assess for axonal injury. After imaging, spinal cords underwent histological analysis of myelin and oligodendrocytes via staining with luxol fast blue (LFB, and immunofluorescence for myelin basic protein (MBP and glutathione S-transferase-π (GST-π. Detection of non-phosphorylated neurofilament H (NH-F was also performed to detect injured axons. Statistical analysis for EAE scores, DTI parameters and non-phosphorylated NH-F immunofluorescence were done by ANOVA followed by Bonferroni post-hoc test. For all statistical analysis a p Results In vivo DTI maps of spinal cord ventrolateral white matter (VLWM axial diffusivities of naïve and CXCR7 antagonist-treated mice were indistinguishable, while vehicle-treated animals exhibited decreased axial diffusivities. Quantitative differences in injured axons, as assessed via detection of non-phosphorylated NH-F, were consistent with axial diffusivity measurements. Overall

  14. Plasma Concentration of the Neurofilament Light Protein (NFL is a Biomarker of CNS Injury in HIV Infection: A Cross-Sectional Study

    Directory of Open Access Journals (Sweden)

    Magnus Gisslén

    2016-01-01

    Interpretation: These results show that plasma NFL may prove a valuable tool to evaluate ongoing CNS injury in HIV infection that may be applied in the clinic and in research settings to assess the presence if active CNS injury. Because CSF NFL is also elevated in a variety of other CNS disorders, sensitive measures of plasma NFL may similarly prove useful in other settings.

  15. The spinal precerebellar nuclei: calcium binding proteins and gene expression profile in the mouse.

    Science.gov (United States)

    Fu, YuHong; Sengul, Gulgun; Paxinos, George; Watson, Charles

    2012-06-19

    We have localized the spinocerebellar neuron groups in C57BL/6J mice by injecting the retrograde neuronal tracer Fluoro-Gold into the cerebellum and examined the distribution of SMI 32 and the calcium-binding proteins (CBPs), calbindin-D-28K (Cb), calretinin (Cr), and parvalbumin (Pv) in the spinal precerebellar nuclei. The spinal precerebellar neuron clusters identified were the dorsal nucleus, central cervical nucleus, lumbar border precerebellar nucleus, lumbar precerebellar nucleus, and sacral precerebellar nucleus. Some dispersed neurons in the deep dorsal horn and spinal laminae 6-8 also projected to the cerebellum. Cb, Cr, Pv, and SMI 32 were present in all major spinal precerebellar nuclei and Pv was the most commonly observed CBP. A number of genes expressed in hindbrain precerebellar nuclei are also expressed in spinal precerebellar groups, but there were some differences in gene expression profile between the different spinal precerebellar nuclei, pointing to functional diversity amongst them.

  16. Quantitative analysis of basal dendritic tree of layer III pyramidal neurons in different areas of adult human frontal cortex.

    Science.gov (United States)

    Zeba, Martina; Jovanov-Milosević, Natasa; Petanjek, Zdravko

    2008-01-01

    Large long projecting (cortico-cortical) layer IIIc pyramidal neurons were recently disclosed to be in the basis of cognitive processing in primates. Therefore, we quantitatively examined the basal dendritic morphology of these neurons by using rapid Golgi and Golgi Cox impregnation methods among three distinct Brodmann areas (BA) of an adult human frontal cortex: the primary motor BA4 and the associative magnopyramidal BA9 from left hemisphere and the Broca's speech BA45 from both hemispheres. There was no statistically significant difference in basal dendritic length or complexity, as dendritic spine number or their density between analyzed BA's. In addition, we analyzed each of these BA's immunocytochemically for distribution of SMI-32, a marker of largest long distance projecting neurons. Within layer IIIc, the highest density of SMI-32 immunopositive pyramidal neurons was observed in associative BA9, while in primary BA4 they were sparse. Taken together, these data suggest that an increase in the complexity of cortico-cortical network within human frontal areas of different functional order may be principally based on the increase in density of large, SMI-32 immunopositive layer IIIc neurons, rather than by further increase in complexity of their dendritic tree and synaptic network.

  17. Altered neuronal architecture and plasticity in the visual cortex of adult MMP-3-deficient mice.

    Science.gov (United States)

    Aerts, Jeroen; Nys, Julie; Moons, Lieve; Hu, Tjing-Tjing; Arckens, Lutgarde

    2015-09-01

    Matrix metalloproteinases (MMPs) are Zn(2+)-dependent endopeptidases considered to be essential for normal brain development and neuroplasticity by modulating extracellular matrix proteins, receptors, adhesion molecules, growth factors and cytoskeletal proteins. Specifically, MMP-3 has recently been implicated in synaptic plasticity, hippocampus-dependent learning and neuronal development and migration in the cerebellum. However, the function(s) of this enzyme in the neocortex is understudied. Therefore, we explored the phenotypical characteristics of the neuronal architecture and the capacity for experience-dependent cortical plasticity in the visual cortex of adult MMP-3-deficient (MMP-3(-/-)) mice. Golgi-Cox stainings revealed a significant reduction in apical dendritic length and an increased number of apical obliques for layer V pyramidal neurons in the visual cortex of adult MMP-3(-/-) mice compared to wild-type (WT) animals. In addition, a significant upregulation of both phosphorylated and non-phosphorylated neurofilament protein (NF)-high, phosphorylated NF-medium, NF-low and α-internexin was detected in the visual cortex of MMP-3(-/-) mice. To assess the effect of MMP-3 deficiency on cortical plasticity, we monocularly enucleated adult MMP-3(-/-) mice and analyzed the reactivation of the contralateral visual cortex 7 weeks post-enucleation. In contrast to previous results in C57Bl/6J adult mice, activity remained confined to the binocular zone and did not expand into the monocular regions indicative for an aberrant open-eye potentiation. Permanent hypoactivity in the monocular cortex lateral and medial to V1 also indicated a lack of cross-modal plasticity. These observations demonstrate that genetic inactivation of MMP-3 has profound effects on the structural integrity and plasticity response of the visual cortex of adult mice.

  18. The red nucleus and the rubrospinal projection in the mouse.

    Science.gov (United States)

    Liang, Huazheng; Paxinos, George; Watson, Charles

    2012-04-01

    We studied the organization and spinal projection of the mouse red nucleus with a range of techniques (Nissl stain, immunofluorescence, retrograde tracer injections into the spinal cord, anterograde tracer injections into the red nucleus, and in situ hybridization) and counted the number of neurons in the red nucleus (3,200.9 ± 230.8). We found that the rubrospinal neurons were mainly located in the parvicellular region of the red nucleus, more lateral in the rostral part and more medial in the caudal part. Labeled neurons were least common in the rostral and caudal most parts of the red nucleus. Neurons projecting to the cervical cord were predominantly dorsomedially placed and neurons projecting to the lumbar cord were predominantly ventrolaterally placed. Immunofluorescence staining with SMI-32 antibody showed that ~60% of SMI-32-positive neurons were cervical cord-projecting neurons and 24% were lumbar cord-projecting neurons. SMI-32-positive neurons were mainly located in the caudomedial part of the red nucleus. A study of vGluT2 expression showed that the number and location of glutamatergic neurons matched with those of the rubrospinal neurons. In the anterograde tracing experiments, rubrospinal fibers travelled in the dorsal portion of the lateral funiculus, between the lateral spinal nucleus and the calretinin-positive fibers of the lateral funiculus. Rubrospinal fibers terminated in contralateral laminae 5, 6, and the dorsal part of lamina 7 at all spinal cord levels. A few fibers could be seen next to the neurons in the dorsolateral part of lamina 9 at levels of C8-T1 (hand motor neurons) and L5-L6 (foot motor neurons), which is consistent with a view that rubrospinal fibers may play a role in distal limb movement in rodents.

  19. Architectonic mapping of somatosensory areas involved in skilled forelimb movements and tool use.

    Science.gov (United States)

    Mayer, Andrei; Nascimento-Silva, Márcio L; Keher, Natalia B; Bittencourt-Navarrete, Ruben Ernesto; Gattass, Ricardo; Franca, João G

    2016-05-01

    Cebus monkeys stand out from other New World monkeys by their ability to perform fine hand movements, and by their spontaneous use of tools in the wild. Those behaviors rely on the integration of somatosensory information, which occurs in different areas of the parietal cortex. Although a few studies have examined and parceled the somatosensory areas of the cebus monkey, mainly using electrophysiological criteria, very little is known about its anatomical organization. In this study we used SMI-32 immunohistochemistry, myelin, and Nissl stains to characterize the architecture of the parietal cortical areas of cebus monkeys. Seven cortical areas were identified between the precentral gyrus and the anterior bank of the intraparietal sulcus. Except for areas 3a and 3b, distinction between different somatosensory areas was more evident in myelin-stained sections and SMI-32 immunohistochemistry than in Nissl stain, especially for area 2 and subdivisions of area 5. Our results show that cebus monkeys have a relatively complex somatosensory cortex, similar to that of macaques and humans. This suggests that, during primate evolution, the emergence of new somatosensory areas underpinned complex manual behaviors in most Old World simians and in the New World cebus monkey. J. Comp. Neurol. 524:1399-1423, 2016. © 2015 Wiley Periodicals, Inc.

  20. Video Object Tracking in Neural Axons with Fluorescence Microscopy Images

    Directory of Open Access Journals (Sweden)

    Liang Yuan

    2014-01-01

    tracking. In this paper, we describe two automated tracking methods for analyzing neurofilament movement based on two different techniques: constrained particle filtering and tracking-by-detection. First, we introduce the constrained particle filtering approach. In this approach, the orientation and position of a particle are constrained by the axon’s shape such that fewer particles are necessary for tracking neurofilament movement than object tracking techniques based on generic particle filtering. Secondly, a tracking-by-detection approach to neurofilament tracking is presented. For this approach, the axon is decomposed into blocks, and the blocks encompassing the moving neurofilaments are detected by graph labeling using Markov random field. Finally, we compare two tracking methods by performing tracking experiments on real time-lapse image sequences of neurofilament movement, and the experimental results show that both methods demonstrate good performance in comparison with the existing approaches, and the tracking accuracy of the tracing-by-detection approach is slightly better between the two.

  1. 1-溴丙烷吸入对大鼠脑皮质神经丝蛋白表达的影响%Alteration of cerebral cortex levels of neurofilament in male SD rats induced by 16-day repeated inhalation exposure to 1-bromopropane

    Institute of Scientific and Technical Information of China (English)

    宋向荣; 王海兰; 黄芬; 黄永; 阮小林; 伍津

    2009-01-01

    目的 研究1-溴丙烷(1-BP)对雄性SD大鼠神经丝蛋白(NF)表达的影响.方法 SD雄性大鼠48只(12周龄,体质量318~320 g)按体质量随机分4组,每组12只,其中3组分别在1 705、3 848、7 382 mg/m3 1-BP浓度下吸入染毒,每天8 h,连续16 d,对照组吸入新鲜空气,试验结束后处死全部动物,每组灌流固定3只,制成大脑切片,用过氧化物酶法测定高相对分子质量NF(NF-H)和中相对分子质量NF(NF-M)在脑皮质中的定位表达;每组9只分离脑组织,称重,用Western blotting方法检测脑皮质中NF-H和NF-M的含量变化.结果 1-BP染毒后大鼠体质量增长缓慢,特别是染毒12~16 d,7 382 mg/m3组的大鼠体质量明显低于对照组(P<0.05),7 382 mg/m3组脑皮质中NF-H和NF-M含量均显著高于对照组(P<0.05),且NF-H含量增加与1-BP暴露浓度呈正相关[相关系数(r)=0.573,P<0.01],3 848mg/m3组脑皮质中NF-H含量高于对照组(P<0.05).结论 1-BP吸入染毒可抑制SD大鼠体质量的增长,能引起NF-H和NF-M蛋白表达上调.

  2. Effect of lead acetate on mRNA expression of neurofilament protein and microtubule associated protein in ST-8814 cell line%醋酸铅对ST-8814细胞神经丝蛋白、微管结合蛋白mRNA水平的影响

    Institute of Scientific and Technical Information of China (English)

    逯晓波; 李莉; 王宁; 蔡静仪; 毕建蕾

    2009-01-01

    目的 初步探讨铅的周围神经毒性是否与其对神经细胞骨架蛋白表达的影响相关.方法 ST-8814细胞作为周围神经体外细胞模型,100 μmol/L醋酸铅染毒24 h后,实时定量PCR扩增仪分析神经丝各亚型(NF-H、NF-M、NF-L)及微管结合蛋白MAPT基因mRNA水平的改变.结果 100 μmol/L醋酸铅对ST-8814细胞的抑制率约为50%,100 μmol/L醋酸铅处理ST-8814细胞前后神经丝各亚型基因NF-H、NF-M及NF-L的mRNA表达无明显差别;微管结合蛋白MAPT基因mRNA水平升高.结论 铅的周围神经毒性可能与其影响微管结合蛋白MAPT的表达,导致神经细胞骨架某些成分的功能变化有关.

  3. Expression of Kv3.1b potassium channel is widespread in macaque motor cortex pyramidal cells: A histological comparison between rat and macaque.

    Science.gov (United States)

    Soares, David; Goldrick, Isabelle; Lemon, Roger N; Kraskov, Alexander; Greensmith, Linda; Kalmar, Bernadett

    2017-02-18

    There are substantial differences across species in the organisation and function of the motor pathways. These differences extend to basic electrophysiological properties. Thus, in rat motor cortex, pyramidal cells have long duration action potentials, while in the macaque, some pyramidal neurons exhibit short duration 'thin' spikes. These differences may be related to the expression of the fast potassium channel Kv3.1b, which in rat interneurons is associated with generation of thin spikes. Rat pyramidal cells typically lack these channels, while there are reports that they are present in macaque pyramids. Here we made a systematic, quantitative comparison of the expression of Kv3.1b in sections from macaque and rat motor cortex, using two different antibodies (NeuroMab, Millipore). As our standard reference, we examined, in the same sections, Kv3.1b staining in parvalbumin-positive interneurons, which show strong Kv3.1b immunoreactivity. In macaque motor cortex, a large sample of pyramidal neurons were nearly all found to express Kv3.1b in their soma membranes. These labelled neurons were identified as pyramidal based either by expression of SMI32 (a pyramidal marker), or by their shape and size, lack of expression of parvalbumin (a marker for some classes of interneuron). Large (Betz cells), medium and small pyramidal neurons all expressed Kv3.1b. In rat motor cortex, SMI32-postive pyramidal neurons expressing Kv3.1b were very rare and weakly stained. Thus, there is a marked species difference in the immunoreactivity of Kv3.1b in pyramidal neurons, and this may be one of the factors explaining the pronounced electrophysiological differences between rat and macaque pyramidal neurons. This article is protected by copyright. All rights reserved.

  4. α-Internexin and Peripherin: Expression, Assembly, Functions, and Roles in Disease.

    Science.gov (United States)

    Zhao, Jian; Liem, Ronald K H

    2016-01-01

    α-Internexin and peripherin are neuronal-specific intermediate filament (IF) proteins. α-Internexin is a type IV IF protein like the neurofilament triplet proteins (NFTPs, which include neurofilament light chain, neurofilament medium chain, and neurofilament high chain) that are generally considered to be the primary components of the neuronal IFs. However, α-internexin is often expressed together with the NFTPs and has been proposed as the fourth subunit of the neurofilaments in the central nervous system. α-Internexin is also expressed earlier in the development than the NFTPs and is a maker for neuronal IF inclusion disease. α-Internexin can self-polymerize in vitro and in transfected cells and it is present in the absence of the NFTP in development and in granule cells in the cerebellum. In contrast, peripherin is a type III IF protein. Like α-internexin, peripherin is specific to the nervous system, but it is expressed predominantly in the peripheral nervous system (PNS). Peripherin can also self-assemble both in vitro and in transfected cells. It is as abundant as the NFTPs in the sciatic nerve and can be considered a fourth subunit of the neurofilaments in the PNS. Peripherin has multiple isoforms that arise from intron retention, cryptic intron receptor site or alternative translation initiation. The functional significance of these isoforms is not clear. Peripherin is a major component found in inclusions of patients with amyotrophic lateral sclerosis (ALS) and peripherin expression is upregulated in ALS patients.

  5. Morphometric analysis of Mauthner axon cytoskeletal components in adult and subadult fish.

    Science.gov (United States)

    Alfei, L; Medolago-Albani, L; Zezze, G M; Stefanelli, A

    1992-01-01

    A previous cytoskeletal analysis on trout MA during developmental stages demonstrated, during the subadult stages, neurofilaments (NF) as main components as expressed by the high values of neurofilament to microtubules (MT) ratio which was found to be of the order of 300:1. Since the MA cytoskeletal composition is not known in the adult fish, the MA cytoskeletal composition has been compared to other axons of much smaller diameter of the fasciculus longitudinalis medialis (flm) among which the MA run in the ventral spinal cord. The following parameters were measured on conventional electron microscopy in MA and flm axons cross sections micrographs by means of a computer linked graphic tablet (Apple II): axonal caliber, number of microtubules (MT), microtubular (MT/microns2) and neurofilament (NF/microns2) densities. The analysis of these parameters demonstrated that neurofilaments are the main architectural components in the adult and subadult fish MA and flm axons. However, MA cytoskeletal composition differs from the other flm axons because of its particular very high ratio of neurofilaments to microtubules. The inverse relationship of axonal caliber to microtubular density, previously found in the trout during developmental stages and suggested also for many other vertebrate species, was further confirmed for flm axons which, with calibers 10 times smaller than MA, exhibit a microtubular density 10 times larger.

  6. Neurochemical, morphologic, and laminar characterization of cortical projection neurons in the cingulate motor areas of the macaque monkey

    Science.gov (United States)

    Nimchinsky, E. A.; Hof, P. R.; Young, W. G.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1996-01-01

    The primate cingulate gyrus contains multiple cortical areas that can be distinguished by several neurochemical features, including the distribution of neurofilament protein-enriched pyramidal neurons. In addition, connectivity and functional properties indicate that there are multiple motor areas in the cortex lining the cingulate sulcus. These motor areas were targeted for analysis of potential interactions among regional specialization, connectivity, and cellular characteristics such as neurochemical profile and morphology. Specifically, intracortical injections of retrogradely transported dyes and intracellular injection were combined with immunocytochemistry to investigate neurons projecting from the cingulate motor areas to the putative forelimb region of the primary motor cortex, area M1. Two separate groups of neurons projecting to area M1 emanated from the cingulate sulcus, one anterior and one posterior, both of which furnished commissural and ipsilateral connections with area M1. The primary difference between the two populations was laminar origin, with the anterior projection originating largely in deep layers, and the posterior projection taking origin equally in superficial and deep layers. With regard to cellular morphology, the anterior projection exhibited more morphologic diversity than the posterior projection. Commissural projections from both anterior and posterior fields originated largely in layer VI. Neurofilament protein distribution was a reliable tool for localizing the two projections and for discriminating between them. Comparable proportions of the two sets of projection neurons contained neurofilament protein, although the density and distribution of the total population of neurofilament protein-enriched neurons was very different in the two subareas of origin. Within a projection, the participating neurons exhibited a high degree of morphologic heterogeneity, and no correlation was observed between somatodendritic morphology and

  7. Neuroaxonal regeneration is more pronounced in early multiple sclerosis than in traumatic brain injury lesions.

    Science.gov (United States)

    Schirmer, Lucas; Merkler, Doron; König, Fatima B; Brück, Wolfgang; Stadelmann, Christine

    2013-01-01

    The extent of irreversible neuroaxonal damage is the key determinant of permanent disability in traumatic and inflammatory conditions of the central nervous system (CNS). Structural damage is nevertheless in part compensated by neuroplastic events. However, it is unknown whether the same kinetics and mechanisms of neuroaxonal de- and regeneration take place in inflammatory and traumatic conditions. We analyzed neuroaxonal degeneration and plasticity in early multiple sclerosis (MS) lesions and traumatic brain injury (TBI). Neuroaxonal degeneration identified by the presence of SMI31+ chromatolytic neurons and SMI32+ axonal profiles were characteristic features of leukocortical TBI lesions. Axonal transport disturbances as determined by amyloid precursor protein (APP)+ spheroids were present in both TBI and MS lesions to a similar degree. Neurons expressing growth-associated protein 43 (GAP43) and synaptophysin (Syn) were found under both pathological conditions. However, axonal swellings immunopositive for GAP43 and Syn clearly prevailed in subcortical MS lesions, suggesting a higher regenerative potential in MS. In this context, GAP43+/APP+ axonal spheroid ratios correlated with macrophage infiltration in TBI and MS lesions, supporting the idea that phagocyte activation might promote neuroplastic events. Furthermore, axonal GAP43+ and Syn+ swellings correlated with prolonged survival after TBI, indicating a sustained regenerative response.

  8. Selected statins produce rapid spinal motor neuron loss in vitro

    Directory of Open Access Journals (Sweden)

    Murinson Beth B

    2012-06-01

    Full Text Available Abstract Background Hmg-CoA reductase inhibitors (statins are widely used to prevent disease associated with vascular disease and hyperlipidemia. Although side effects are uncommon, clinical observations suggest statin exposure may exacerbate neuromuscular diseases, including peripheral neuropathy and amyotrophic lateral sclerosis. Although some have postulated class-effects, prior studies of hepatocytes and myocytes indicate that the statins may exhibit differential effects. Studies of neuronal cells have been limited. Methods We examined the effects of statins on cultured neurons and Schwann cells. Cultured spinal motor neurons were grown on transwell inserts and assessed for viability using immunochemical staining for SMI-32. Cultured cortical neurons and Schwann cells were assessed using dynamic viability markers. Results 7 days of exposure to fluvastatin depleted spinal motor neurons in a dose-dependent manner with a KD of  Conclusions It is known from pharmacokinetic studies that daily treatment of young adults with fluvastatin can produce serum levels in the single micromolar range. We conclude that specific mechanisms may explain neuromuscular disease worsening with statins and further study is needed.

  9. Using a panel of immunomarkers to define homologies in Mammalian brains.

    Science.gov (United States)

    Watson, Charles R; Paxinos, George; Tokuno, Hironobu

    2010-01-01

    Brain mapping has relied on a small number of routine chemical stains for many decades. The advent of immunomarkers has had a major impact on the ability to define homologous nuclei from one species to another. The first atlas to present a panel of immunomarkers was that of Paxinos et al. (1999a,b) in the adult rat brain. The markers used were parvalbumin, calbindin, calretinin, SMI32, tyrosine hydroxylase, and NADPH diaphorase (plus nissl and acetylcholinesterase). The 'signature' of a nucleus of interest in a new species can be tested against the findings in the rat. Since the pattern of immunomarkers seems to be conserved in mammalian evolution, such extrapolations can be made with reasonable confidence. A marmoset brain stained with a comprehensive set of immunomarkers has recently been published on the internet (Tokuno et al., 2009) and we are in the process of defining nuclear homologies in this brain by comparison with the same markers in the rat. In this article, we present an example (mapping the amygdala in the marmoset) which demonstrates the application of this immunomarker panel in defining homologies. The technique is particularly valuable in situations where little data on hodology or electrophysiology are available.

  10. Using a panel of immunomarkers to define homologies in mammalian brains

    Directory of Open Access Journals (Sweden)

    Charles R Watson

    2010-02-01

    Full Text Available Brain mapping has relied on a small number of routine chemical stains for many decades. The advent of immunomarkers has had a major impact on the ability to define homologous nuclei from one species to another. The first atlas to present a panel of immunomarkers was that of Paxinos et al. (1999a,b in the adult rat brain. The markers used were parvalbumin, calbindin, calretinin, SMI32, tyrosine hydroxylase, and NADPH diaphorase (plus nissl and acetylcholinesterase. The ‘signature’ of a nucleus of interest in a new species can be tested against the findings in the rat. Since the pattern of immunomarkers seems to be conserved in mammalian evolution, such extrapolations can be made with reasonable confidence. A marmoset brain stained with a comprehensive set of immunomarkers has recently been published on the internet (Tokuno et al 2009 and we are in the process of defining nuclear homologies in this brain by comparison with the same markers in the rat. In this article, we present an example (mapping the amygdala in the marmoset which demonstrates the application of this immunomarker panel in defining homologies. The technique is particularly valuable in situations where little data on hodology or electrophysiology are available.

  11. Modified areal cartography in auditory cortex following early- and late-onset deafness.

    Science.gov (United States)

    Wong, Carmen; Chabot, Nicole; Kok, Melanie A; Lomber, Stephen G

    2014-07-01

    Cross-modal plasticity following peripheral sensory loss enables deprived cortex to provide enhanced abilities in remaining sensory systems. These functional adaptations have been demonstrated in cat auditory cortex following early-onset deafness in electrophysiological and psychophysical studies. However, little information is available concerning any accompanying structural compensations. To examine the influence of sound experience on areal cartography, auditory cytoarchitecture was examined in hearing cats, early-deaf cats, and cats with late-onset deafness. Cats were deafened shortly after hearing onset or in adulthood. Cerebral cytoarchitecture was revealed immunohistochemically using SMI-32, a monoclonal antibody used to distinguish auditory areas in many species. Auditory areas were delineated in coronal sections and their volumes measured. Staining profiles observed in hearing cats were conserved in early- and late-deaf cats. In all deaf cats, dorsal auditory areas were the most mutable. Early-deaf cats showed further modifications, with significant expansions in second auditory cortex and ventral auditory field. Borders between dorsal auditory areas and adjacent visual and somatosensory areas were shifted ventrally, suggesting expanded visual and somatosensory cortical representation. Overall, this study shows the influence of acoustic experience in cortical development, and suggests that the age of auditory deprivation may significantly affect auditory areal cartography. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Spontaneous axonal regeneration in rodent spinal cord after ischemic injury

    DEFF Research Database (Denmark)

    von Euler, Mia; Janson, A M; Larsen, Jytte Overgaard

    2002-01-01

    Here we present evidence for spontaneous and long-lasting regeneration of CNS axons after spinal cord lesions in adult rats. The length of 200 kD neurofilament (NF)-immunolabeled axons was estimated after photochemically induced ischemic spinal cord lesions using a stereological tool. The total l...

  13. AcEST: DK948014 [AcEST

    Lifescience Database Archive (English)

    Full Text Available ht neurofilament (Fragment) OS... 45 0.006 tr|Q1X6H7|Q1X6H7_9TREM Paramyosin OS=Paragonimus westermani GN=C.... Paramyosin OS=Paragonimus westermani GN=CDPK PE=2 SV=1 Length = 864 Score = 44.7 bits (104), Expect = 0.006

  14. Structural biomarkers in the cerebrospinal fluid within 24 h after a traumatic spinal cord injury: a descriptive analysis of 16 subjects

    NARCIS (Netherlands)

    Pouw, M.H.; Kwon, B.K.; Verbeek, M.M.; Vos, P.E.; Kampen, A. van; Fisher, C.G.; Street, J.; Paquette, S.J.; Dvorak, M.F.; Boyd, M.C.; Hosman, A.J.F.; Meent, H. van de

    2014-01-01

    Study design:Prospective cohort study.Objectives:To characterize the cerebrospinal fluid (CSF) concentrations of glial fibrillary acidic protein, neuron specific enolase (NSE), S-100beta, tau and neurofilament heavy chain (NFH) within 24 h of an acute traumatic spinal cord injury (SCI), and to corre

  15. A ketogenic diet as a potential novel therapeutic intervention in amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Humala Nelson

    2006-04-01

    Full Text Available Abstract Background The cause of neuronal death in amyotrophic lateral sclerosis (ALS is uncertain but mitochondrial dysfunction may play an important role. Ketones promote mitochondrial energy production and membrane stabilization. Results SOD1-G93A transgenic ALS mice were fed a ketogenic diet (KD based on known formulations for humans. Motor performance, longevity, and motor neuron counts were measured in treated and disease controls. Because mitochondrial dysfunction plays a central role in neuronal cell death in ALS, we also studied the effect that the principal ketone body, D-β-3 hydroxybutyrate (DBH, has on mitochondrial ATP generation and neuroprotection. Blood ketones were > 3.5 times higher in KD fed animals compared to controls. KD fed mice lost 50% of baseline motor performance 25 days later than disease controls. KD animals weighed 4.6 g more than disease control animals at study endpoint; the interaction between diet and change in weight was significant (p = 0.047. In spinal cord sections obtained at the study endpoint, there were more motor neurons in KD fed animals (p = 0.030. DBH prevented rotenone mediated inhibition of mitochondrial complex I but not malonate inhibition of complex II. Rotenone neurotoxicity in SMI-32 immunopositive motor neurons was also inhibited by DBH. Conclusion This is the first study showing that diet, specifically a KD, alters the progression of the clinical and biological manifestations of the G93A SOD1 transgenic mouse model of ALS. These effects may be due to the ability of ketone bodies to promote ATP synthesis and bypass inhibition of complex I in the mitochondrial respiratory chain.

  16. GAS6 enhances repair following cuprizone-induced demyelination.

    Directory of Open Access Journals (Sweden)

    Vladislav Tsiperson

    Full Text Available Growth arrest-specific protein 6 (gas6 activities are mediated through the Tyro3, Axl, and Mer family of receptor tyrosine kinases. Gas6 is expressed and secreted by a wide variety of cell types, including cells of the central nervous system (CNS. In this study, we tested the hypothesis that administration of recombinant human Gas6 (rhGas6 protein into the CNS improves recovery following cuprizone withdrawal. After a 4-week cuprizone diet, cuprizone was removed and PBS or rhGas6 (400 ng/ml, 4 µg/ml and 40 µg/ml was delivered by osmotic mini-pump into the corpus callosum of C57Bl6 mice for 14 days. Nine of 11 (82% PBS-treated mice had abundant lipid-associated debris in the corpus callosum by Oil-Red-O staining while only 4 of 19 (21% mice treated with rhGas6 had low Oil-Red-O positive droplets. In rhGas6-treated mice, SMI32-positive axonal spheroids and APP-positive deposits were reduced in number relative to PBS-treated mice. Compared to PBS, rhGas6 enhanced remyelination as revealed by MBP immunostaining and electron microscopy. The rhGas6-treated mice had more oligodendrocytes expressing Olig1 in the cytoplasm, indicative of oligodendrocyte progenitor cell maturation. Relative to PBS-treated mice, rhGas6-treated mice had fewer activated microglia in the corpus callosum by Iba1 immunostaining. The data show that rhGas6 treatment resulted in more efficient repair following cuprizone-induced injury.

  17. A case of polymicrogyria in macaque monkey: impact on anatomy and function of the motor system

    Directory of Open Access Journals (Sweden)

    Rouiller Eric M

    2009-12-01

    Full Text Available Abstract Background Polymicrogyria is a malformation of the cerebral cortex often resulting in epilepsy or mental retardation. It remains unclear whether this pathology affects the structure and function of the corticospinal (CS system. The anatomy and histology of the brain of one macaque monkey exhibiting a spontaneous polymicrogyria (PMG monkey were examined and compared to the brain of normal monkeys. The CS tract was labelled by injecting a neuronal tracer (BDA unilaterally in a region where low intensity electrical microstimulation elicited contralateral hand movements (presumably the primary motor cortex in the PMG monkey. Results The examination of the brain showed a large number of microgyri at macro- and microscopic levels, covering mainly the frontoparietal regions. The layered cortical organization was locally disrupted and the number of SMI-32 stained pyramidal neurons in the cortical layer III of the presumed motor cortex was reduced. We compared the distribution of labelled CS axons in the PMG monkey at spinal cervical level C5. The cumulated length of CS axon arbors in the spinal grey matter was not significantly different in the PMG monkey. In the red nucleus, numerous neurons presented large vesicles. We also assessed its motor performances by comparing its capacity to execute a complex reach and grasp behavioral task. The PMG monkey exhibited an increase of reaction time without any modification of other motor parameters, an observation in line with a normal CS tract organisation. Conclusion In spite of substantial cortical malformations in the frontal and parietal lobes, the PMG monkey exhibits surprisingly normal structure and function of the corticospinal system.

  18. Corneal Neurotoxicity Due to Topical Benzalkonium Chloride

    Science.gov (United States)

    Sarkar, Joy; Chaudhary, Shweta; Namavari, Abed; Ozturk, Okan; Chang, Jin-Hong; Yco, Lisette; Sonawane, Snehal; Khanolkar, Vishakha; Hallak, Joelle; Jain, Sandeep

    2012-01-01

    Purpose. The aim of this study was to determine and characterize the effect of topical application of benzalkonium chloride (BAK) on corneal nerves in vivo and in vitro. Methods. Thy1-YFP+ neurofluorescent mouse eyes were treated topically with vehicle or BAK (0.01% or 0.1%). Wide-field stereofluorescence microscopy was performed to sequentially image the treated corneas in vivo every week for 4 weeks, and changes in stromal nerve fiber density (NFD) and aqueous tear production were determined. Whole-mount immunofluorescence staining of corneas was performed with antibodies to axonopathy marker SMI-32. Western immunoblot analyses were performed on trigeminal ganglion and corneal lysates to determine abundance of proteins associated with neurotoxicity and regeneration. Compartmental culture of trigeminal ganglion neurons was performed in Campenot devices to determine whether BAK affects neurite outgrowth. Results. BAK-treated corneas exhibited significantly reduced NFD and aqueous tear production, and increased inflammatory cell infiltration and fluorescein staining at 1 week (P < 0.05). These changes were most significant after 0.1% BAK treatment. The extent of inflammatory cell infiltration in the cornea showed a significant negative correlation with NFD. Sequential in vivo imaging of corneas showed two forms of BAK-induced neurotoxicity: reversible neurotoxicity characterized by axonopathy and recovery, and irreversible neurotoxicity characterized by nerve degeneration and regeneration. Increased abundance of beta III tubulin in corneal lysates confirmed regeneration. A dose-related significant reduction in neurites occurred after BAK addition to compartmental cultures of dissociated trigeminal ganglion cells. Although both BAK doses (0.0001% and 0.001%) reduced nerve fiber length, the reduction was significantly more with the higher dose (P < 0.001). Conclusion. Topical application of BAK to the eye causes corneal neurotoxicity, inflammation, and reduced aqueous

  19. Celastrol blocks neuronal cell death and extends life in transgenic mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Kiaei, Mahmoud; Kipiani, Khatuna; Petri, Susanne; Chen, Junyu; Calingasan, Noel Y; Beal, M Flint

    2005-01-01

    There is substantial evidence that both inflammation and oxidative damage contribute to the pathogenesis of motor neuron degeneration in the G93A SOD1 transgenic mouse model of amyotrophic lateral sclerosis (ALS). Celastrol is a natural product from Southern China, which exerts potent anti-inflammatory and antioxidative effects. It also acts potently to increase expression of heat shock proteins including HSP70. We administered it in the diet to G93A SOD1 mice starting at 30 days of age. Celastrol treatment significantly improved weight loss, motor performance and delayed the onset of ALS. Survival of celastrol-treated G93A mice increased by 9.4% and 13% for 2 mg/kg/day and 8 mg/kg/day doses, respectively. Cell counts of lumbar spinal cord neurons confirmed a protective effect, i.e. 30% increase in neuronal number in the lumbar spinal cords of celastrol-treated animals. Celastrol treatment reduced TNF-alpha, iNOS, CD40, and GFAP immunoreactivity in the lumbar spinal cord sections of celastrol-treated G93A mice compared to untreated G93A mice. TNF-alpha immunoreactivity co-localized with SMI-32 (neuronal marker) and GFAP (astrocyte marker). HSP70 immunoreactivity was increased in lumbar spinal cord neurons of celastrol-treated G93A mice. Celastrol has been widely used in treating inflammatory diseases in man, and is well tolerated; therefore, it may be a promising therapeutic candidate for the treatment of human ALS. Copyright 2005 S. Karger AG, Basel.

  20. Cerebrospinal fluid signs of neuronal damage after antiretroviral treatment interruption in HIV-1 infection

    Directory of Open Access Journals (Sweden)

    Deeks Steven G

    2005-08-01

    Full Text Available Abstract Background The neurofilament is a major structural component of myelinated axons. Increased cerebrospinal fluid (CSF concentrations of the light chain of the neurofilament protein (NFL can serve as a sensitive indicator of central nervous system (CNS injury. To assess whether interrupting antiretroviral treatment of HIV infection might have a deleterious effect on the CNS, we measured NFL levels in HIV-infected subjects interrupting therapy. We identified subjects who had CSF HIV RNA concentrations below 50 copies/mL at the time combination antiretroviral therapy was interrupted, and for whom CSF samples were available before and after the interruption. Results A total of 8 subjects were studied. The median (range CSF NFL level at baseline was Conclusion These findings suggest that resurgence of active HIV replication may result in measurable, albeit subclinical, CNS injury. Further studies are needed to define the frequency and pathobiological importance of the increase in CSF NFL.

  1. Transplantation of embryonic porcine neocortical tissue into newborn rats

    DEFF Research Database (Denmark)

    Castro, Anthony J; Meyer, Morten; Møller Dall, Annette

    2003-01-01

    Several previous studies, suggesting the potential use of embryonic xenografts in the treatment of neurological disorders, indicate that neural growth and axonal guidance factors may function across species. In this light, blocks of fetal porcine neocortex were grafted into small cortical lesion...... cavities made in newborn rats. Sacrifice at 3-12.5 weeks posttransplantation revealed healthy looking grafts in several animals. Apparent graft rejection evidenced by areas of necrosis and OX1 reactivity was observed in some of the older transplants. Treatment of nursing mothers or of postweaning newborns...... with cyclosporin A did not appear to promote graft survival. Some transplants grew to extremely large proportions and were characterized by bands of cells and bundles of axons as observed using immunohistochemical staining for pig neurofilament. Neurofilament-positive axons projected from several of the grafts...

  2. Motoneuron differentiation of immortalized human spinal cord cell lines.

    Science.gov (United States)

    Li, R; Thode, S; Zhou, J; Richard, N; Pardinas, J; Rao, M S; Sah, D W

    2000-02-01

    Human motoneuron cell lines will be valuable tools for spinal cord research and drug discovery. To create such cell lines, we immortalized NCAM(+)/neurofilament(+) precursors from human embryonic spinal cord with a tetracycline repressible v-myc oncogene. Clonal NCAM(+)/neurofilament(+) cell lines differentiated exclusively into neurons within 1 week. These neurons displayed extensive processes, exhibited immunoreactivity for mature neuron-specific markers such as tau and synaptophysin, and fired action potentials upon current injection. Moreover, a clonal precursor cell line gave rise to multiple types of spinal cord neurons, including ChAT(+)/Lhx3(+)/Lhx4(+) motoneurons and GABA(+) interneurons. These neuronal restricted precursor cell lines will expedite the elucidation of molecular mechanisms that regulate the differentiation, maturation and survival of specific subsets of spinal cord neurons, and the identification and validation of novel drug targets for motoneuron diseases and spinal cord injury.

  3. Sericin protects against diabetes-induced injuries in sciatic nerve and related nerve cells

    Institute of Scientific and Technical Information of China (English)

    Chengjun Song; Zhenjun Yang; Meirong Zhong; Zhihong Chen

    2013-01-01

    Sericin from discarded silkworm cocoons of silk reeling has been used in different fields, such as cosmetology, skin care, nutrition, and oncology. The present study established a rat model of type 2 diabetes by consecutive intraperitoneal injections of low-dose (25 mg/kg) streptozotocin. After intragastrical perfusion of sericin for 35 days, blood glucose levels significantly declined, and the expression of neurofilament protein in the sciatic nerve and nerve growth factor in L4–6 spinal ganglion and anterior horn cells significantly increased. However, the expression of neuropeptide Y in spinal ganglion and anterior horn cells significantly decreased in model rats. These findings indicate that sericin protected the sciatic nerve and related nerve cells against injury in a rat type 2 diabetic model by upregulating the expression of neurofilament protein in the sciatic nerve and nerve growth factor in spinal ganglion and anterior horn cells, and downregulating the expression of neuropeptide Y in spinal ganglion and anterior horn cells.

  4. Blood-based NfL

    OpenAIRE

    Hansson, Oskar; Janelidze, Shorena; Hall, Sara; Magdalinou, Nadia; Lees, Andrew J.; Andreasson, Ulf; Norgren, Niklas; Linder, Jan; Forsgren, Lars; Constantinescu, Radu; Zetterberg, Henrik; Blennow, Kaj; ,

    2017-01-01

    Objective: To determine if blood neurofilament light chain (NfL) protein can discriminate between Parkinson disease (PD) and atypical parkinsonian disorders (APD) with equally high diagnostic accuracy as CSF NfL, and can therefore improve the diagnostic workup of parkinsonian disorders. Methods: The study included 3 independent prospective cohorts: the Lund (n = 278) and London (n = 117) cohorts, comprising healthy controls and patients with PD, progressive supranuclear palsy (PSP), corticoba...

  5. Prion-like transmission of α-synuclein pathology in the context of an NFL null background.

    Science.gov (United States)

    Rutherford, Nicola J; Brooks, Mieu; Riffe, Cara J; Gorion, Kimberly-Marie M; Howard, Jasie K; Dhillon, Jess-Karan S; Giasson, Benoit I

    2017-09-28

    Neurofilaments are a major component of the axonal cytoskeleton in neurons and have been implicated in a number of neurodegenerative diseases due to their presence within characteristic pathological inclusions. Their contributions to these diseases are not yet fully understood, but previous studies investigated the effects of ablating the obligate subunit of neurofilaments, low molecular mass neurofilament subunit (NFL), on disease phenotypes in transgenic mouse models of Alzheimer's disease and tauopathy. Here, we tested the effects of ablating NFL in α-synuclein M83 transgenic mice expressing the human pathogenic A53T mutation, by breeding them onto an NFL null background. The induction and spread of α-synuclein inclusion pathology was triggered by the injection of preformed α-synuclein fibrils into the gastrocnemius muscle or hippocampus in M83 versus M83/NFL null mice. We observed no difference in the post-injection time to motor-impairment and paralysis endpoint or amount and distribution of α-synuclein inclusion pathology in the muscle injected M83 and M83/NFL null mice. Hippocampal injected M83/NFL null mice displayed subtle region-specific differences in the amount of α-synuclein inclusions however, pathology was observed in the same regions as the M83 mice. Overall, we observed only minor differences in the induction and transmission of α-synuclein pathology in these induced models of synucleinopathy in the presence or absence of NFL. This suggests that NFL and neurofilaments do not play a major role in influencing the induction and transmission of α-synuclein aggregation. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Blood-based NfL: A biomarker for differential diagnosis of parkinsonian disorder

    OpenAIRE

    Hansson, O.; Janelidze, S.; Hall, S.; Magdalinou, N.; Lees, A J; Andreasson, U.; Norgren, N.; Linder, J; Forsgren, L.; R. CONSTANTINESCU; Zetterberg, H; Blennow, K.; Swedish BioFINDER Study

    2017-01-01

    OBJECTIVE: To determine if blood neurofilament light chain (NfL) protein can discriminate between Parkinson disease (PD) and atypical parkinsonian disorders (APD) with equally high diagnostic accuracy as CSF NfL, and can therefore improve the diagnostic workup of parkinsonian disorders. METHODS: The study included 3 independent prospective cohorts: the Lund (n = 278) and London (n = 117) cohorts, comprising healthy controls and patients with PD, progressive supranuclear palsy (PSP), corticoba...

  7. Skin-derived precursor cells promote wound healing in diabetic mice.

    Science.gov (United States)

    Sato, Hideyoshi; Ebisawa, Katsumi; Takanari, Keisuke; Yagi, Shunjiro; Toriyama, Kazuhiro; Yamawaki-Ogata, Aika; Kamei, Yuzuru

    2015-01-01

    Impaired wound healing as one of the complications arising from diabetes mellitus is a serious clinical issue. Recently, various cell therapies have been reported for promotion of wound healing. Skin-derived precursor cells (SKPs) are multipotent adult stem cells with the tendency to differentiate into neurons. We investigated the potency of promoting diabetic wound healing by the application of SKPs. Skin-derived precursor cells isolated from diabetic murine skin were cultured in sphere formation medium. At passage 2, they were suspended in phosphate-buffered saline (PBS), and applied topically to full-thickness excisional cutaneous wounds in diabetic mice. Application of PBS served as controls (n = 21 for each group; n = 42 total). Time to closure and percentage closure were calculated by morphometry. Wounds were harvested at 10 and 28 days and then processed, sectioned, and stained (CD31, α-smooth muscle actin, and neurofilament heavy chain) to quantify vascularity and neurofilaments. Wounds treated with SKPs demonstrated a significantly decreased time to closure (18.63 days) compared with PBS-control wounds (21.72 days, P wounds (P wounds at day 10 but not at day 28. Nerve Density (the number of neurofilaments/mm2) had increased significantly in SKP-treated wounds at day 28 compared with control group. Some applied SKPs were stained by neurofilament heavy chain, which demonstrates that SKPs directly differentiated into neurons. Skin-derived precursor cells promoted diabetic wound healings through vasculogenesis at the early stage of wound healing. Skin-derived precursor cells are a possible therapeutic tool for diabetic impaired wound healing.

  8. Blood-brain barrier integrity, intrathecal immunoactivation, and neuronal injury in HIV

    OpenAIRE

    Anesten, B.; YILMAZ, A.; Hagberg, L.; Zetterberg, H; Nilsson, S; Brew, B. J.; Fuchs, D.; Price, R W; Gisslén, M.

    2016-01-01

    Objective: Although blood?brain barrier (BBB) impairment has been reported in HIV-infected individuals, characterization of this impairment has not been clearly defined. Methods: BBB integrity was measured by CSF/plasma albumin ratio in this cross-sectional study of 631 HIV-infected individuals and 71 controls. We also analyzed CSF and blood HIV RNA and neopterin, CSF leukocyte count, and neurofilament light chain protein (NFL) concentrations. The HIV-infected participants included untreated ...

  9. Neurochemical aftermath of amateur boxing.

    Science.gov (United States)

    Zetterberg, Henrik; Hietala, M Albert; Jonsson, Michael; Andreasen, Niels; Styrud, Ewa; Karlsson, Ingvar; Edman, Ake; Popa, Cornel; Rasulzada, Abdullah; Wahlund, Lars-Olof; Mehta, Pankaj D; Rosengren, Lars; Blennow, Kaj; Wallin, Anders

    2006-09-01

    Little solid information is available on the possible risks for neuronal injury in amateur boxing. To determine whether amateur boxing and severity of hits are associated with elevated levels of biochemical markers for neuronal injury in cerebrospinal fluid. Longitudinal study. Referral center specializing in evaluation of neurodegenerative disorders. Fourteen amateur boxers (11 men and 3 women) and 10 healthy male nonathletic control subjects. The boxers underwent lumbar puncture 7 to 10 days and 3 months after a bout. The control subjects underwent LP once. Neurofilament light protein, total tau, glial fibrillary acidic protein, phosphorylated tau, and beta-amyloid protein 1-40 (Abeta([1-40])) and 1-42 (Abeta([1-42])) concentrations in cerebrospinal fluid were measured. Increased levels after a bout compared with after 3 months of rest from boxing were found for 2 markers for neuronal and axonal injury, neurofilament light protein (mean +/- SD, 845 +/- 1140 ng/L vs 208 +/- 108 ng/L; P = .008) and total tau (mean +/- SD, 449 +/- 176 ng/L vs 306 +/- 78 ng/L; P = .006), and for the astroglial injury marker glial fibrillary acidic protein (mean +/- SD, 541 +/- 199 ng/L vs 405 +/- 138 ng/L; P = .003). The increase was significantly higher among boxers who had received many hits (>15) or high-impact hits to the head compared with boxers who reported few hits. In the boxers, concentrations of neurofilament light protein and glial fibrillary acidic protein, but not total tau, were significantly elevated after a bout compared with the nonathletic control subjects. With the exception of neurofilament light protein, there were no significant differences between boxers after 3 months of rest from boxing and the nonathletic control subjects. Amateur boxing is associated with acute neuronal and astroglial injury. If verified in longitudinal studies with extensive follow-up regarding the clinical outcome, analyses of cerebrospinal fluid may provide a scientific basis for

  10. [Application of aspartic acid as a non-specific binding inhibitor in the enrichment of phosphopeptides with titanium dioxide].

    Science.gov (United States)

    Chi, Ming; Bi, Wei; Lu, Zhuang; Song, Lina; Jia, Wei; Zhang, Yangjun; Qian, Xiaohong; Cai, Yun

    2010-02-01

    Titanium dioxide (TiO2) is one of metal oxides widely used for phosphopeptide enrichment in phosphoproteomic research nowadays. However it can bind to some non-phosphorylated peptides containing one or more aspartic acid residues and/or glutamic acid residues. These non-phosphorylated peptides can be eluted along with phosphorylated peptides and cause the reduction of the selectivity. Conventional inhibitors for the non-specific binding of non-phosphorylated peptides can often contaminate the ion source of mass spectrometry and therefore their applications are limited in liquid chromatography-mass spectrometry (LC-MS). In this study, aspartic acid was reported as a novel non-specific binding inhibitor for phosphopeptide enrichment by titanium dioxide. Firstly, the tryptic peptide mixtures of 3 and 9 standard proteins were used for the comparison of the enrichment efficiency of titanium dioxide. The effects with the presence of aspartic acid, glutamic acid and no-inhibitor in the enrichment systems were compared separately. The results showed that aspartic acid can greatly improve the selectivity of titanium dioxide for phosphopeptide enrichment. Then, aspartic acid was used for the enrichment of tryptic peptide mixture of C57BL/6J mouse liver lysate and good results were also obtained which demonstrated that aspartic acid was a promising non-specific binding inhibitor for complex biological samples. Besides, no contamination in the ion source occurred during the mass spectrometric analysis.

  11. Emerging molecular biomarker targets for amyotrophic lateral sclerosis.

    Science.gov (United States)

    Costa, Júlia; de Carvalho, Mamede

    2016-04-01

    Amyotrophic lateral sclerosis is a rapidly progressive neurodegenerative disease that affects upper (UMN) and lower motor (LMN) neurons. It is associated with a short survival and there is no effective treatment, in spite of a large number of clinical trials. Strong efforts have been made to identify novel disease biomarkers to support diagnosis, provide information on prognosis, to measure disease progression in trials and increase our knowledge on disease pathogenesis. Electromyography by testing the function of the LMN can be used as a biomarker of its dysfunction. A number of electrophysiological and neuroimaging methods have been explored to identify a reliable marker of UMN degeneration. Recently, strong evidence from independent groups, large cohorts of patients and multicenter studies indicate that neurofilaments are very promising diagnostic biomarkers, in particular cerebrospinal fluid and blood levels of phosphoneurofilament heavy chain and neurofilament light chain. Furthermore, their increased levels are associated with poor prognosis. Additional studies have been performed aiming to identify other biomarkers, which alone or in combination with neurofilaments could increase the sensitivity and the specificity of the assays. Emerging molecular marker targets are being discovered, but more studies with standardized methods are required in larger cohorts of ALS patients.

  12. Alteration of microRNA expressions in the pons and medulla in rats after 3,3'-iminodipropionitrile administration.

    Science.gov (United States)

    Ogata, Keiko; Kushida, Masahiko; Miyata, Kaori; Sumida, Kayo; Takeda, Shuji; Izawa, Takeshi; Kuwamura, Mitsuru; Yamate, Jyoji

    2016-10-01

    Although 3,3'-iminodipropionitrile (IDPN) is widely used as a neurotoxicant to cause axonopathy due to accumulation of neurofilaments in several rodent models, its mechanism of neurotoxicity has not been fully understood. In particular, no information regarding microRNA (miRNA) alteration associated with IDPN is available. This study was conducted to reveal miRNA alteration related to IDPN-induced neurotoxicity. Rats were administered IDPN (20, 50, or 125 mg/kg/day) orally for 3, 7, and 14 days. Histopathological features were investigated using immunohistochemistry for neurofilaments and glial cells, and miRNA alterations were analyzed by microarray and reverse transcription polymerase chain reaction. Nervous symptoms such as ataxic gait and head bobbing were observed from Day 9 at 125 mg/kg. Axonal swelling due to accumulation of neurofilaments was observed especially in the pons, medulla, and spinal cord on Day 7 at 125 mg/kg and on Day 14 at 50 and 125 mg/kg. Furthermore, significant upregulation of miR-547* was observed in the pons and medulla in treated animals only on Day 14 at 125 mg/kg. This is the first report indicating that miR-547* is associated with IDPN-induced neurotoxicity, especially in an advanced stage of axonopathy.

  13. Changes in microtubule stability and density in myelin-deficient shiverer mouse CNS axons

    Science.gov (United States)

    Kirkpatrick, L. L.; Witt, A. S.; Payne, H. R.; Shine, H. D.; Brady, S. T.

    2001-01-01

    Altered axon-Schwann cell interactions in PNS myelin-deficient Trembler mice result in changed axonal transport rates, neurofilament and microtubule-associated protein phosphorylation, neurofilament density, and microtubule stability. To determine whether PNS and CNS myelination have equivalent effects on axons, neurofilaments, and microtubules in CNS, myelin-deficient shiverer axons were examined. The genetic defect in shiverer is a deletion in the myelin basic protein (MBP) gene, an essential component of CNS myelin. As a result, shiverer mice have little or no compact CNS myelin. Slow axonal transport rates in shiverer CNS axons were significantly increased, in contrast to the slowing in demyelinated PNS nerves. Even more striking were substantial changes in the composition and properties of microtubules in shiverer CNS axons. The density of axonal microtubules is increased, reflecting increased expression of tubulin in shiverer, and the stability of microtubules is drastically reduced in shiverer axons. Shiverer transgenic mice with two copies of a wild-type myelin basic protein transgene have an intermediate level of compact myelin, making it possible to determine whether the actual level of compact myelin is an important regulator of axonal microtubules. Both increased microtubule density and reduced microtubule stability were still observed in transgenic mouse nerves, indicating that signals beyond synaptogenesis and the mere presence of compact myelin are required for normal regulation of the axonal microtubule cytoskeleton.

  14. Cultured human embryonic neocortical cells survive and grow in infarcted cavities of adult rat brains and interconnect with host brain

    Institute of Scientific and Technical Information of China (English)

    ZENG Jin-sheng; YU Jian; CUI Chun-mei; ZHAO Zhan; HONG Hua; SHENG Wen-li; TAO Yu-qian; LI Ling; HUANG Ru-xun

    2005-01-01

    Background There are no reports on exnografting cultured human fetal neocortical cells in this infracted cavities of adult rat brains. This study was undertaken to observe whether cultured human cortical neurons and astrocytes can survive and grow in the infarcted cavities of adult rat brains and whether they interconnect with host brains.Methods The right middle cerebral artery was ligated distal to the striatal branches in 16 adult stroke-prone renovascular hypertensive rats. One week later, cultured cells from human embryonic cerebral cortexes were stereotaxically transferred to the infarcted cavity of 11 rats. The other 5 rats receiving sham transplants served as controls. For immunosuppression, all transplanted rats received intraperitoneal injection of cyclosporine A daily starting on the day of grafting. Immunohistochemistry for glial fibrillary acidic protein (GFAP), synaptophysin, neurofilament, and microtubule associated protein-2 (MAP-2) was performed on brain sections perfused in situ 8 weeks after transplantation.Results Grafts in the infarcted cavities of 6 of 10 surviving rats consisted of bands of neurons with an immature appearance, bundles of fibers, and GFAP-immunopositive astrocytes, which were unevenly distributed. The grafts were rich in synaptophysin, neurofilament, and MAP2-positive neurons with long processes. The graft/host border was diffuse with dendrites apparently bridging over to the host brain, into which neurofilament immunopositive fibers protruded. Conclusion Cultured human fetal brain cells can survive and grow in the infarcted cavities of immunodepressed rats and integrate with the host brain.

  15. The expression of intermediate filaments in canine mammary glands and their tumors.

    Science.gov (United States)

    Hellmén, E; Lindgren, A

    1989-09-01

    Monoclonal antibodies specific for different types of intermediate filaments (cytokeratin, vimentin, desmin and neurofilaments) were used to study the histogenesis of canine mammary glands and 57 canine mammary tumors by immunocytochemistry. The intra- and interlobular duct epithelium, acinar, and intralobular myoepithelial cells stained positively for cytokeratin. Peripheral ductal and acinar cells, as well as interstitial cells, stained positively for vimentin. A similar staining pattern was seen in adenomas, complex adenomas, benign mixed tumors, ductular carcinomas, and one myoepithelioma-like tumor. Additionally, cytokeratin positive cells were scattered interstitially in one single adenoma, most complex adenomas, some benign mixed tumors, complex carcinomas, and in the malignant mixed tumors. All stromal cells stained positively for vimentin. The fibrosarcomas were positive only for vimentin, while the following expressed both desmin and cytokeratin: epithelial-like cells in one adenoma, three complex adenomas, the myoepithelioma-like tumor, the single comedo carcinoma, two complex carcinomas, the single lobular carcinoma, one malignant mixed tumor, and three osteosarcomas. Epithelial-like cells in one adenoma, six complex adenomas, two benign mixed tumors, two complex carcinomas, the lobular carcinoma, and the malignant schwannoma stained for neurofilaments. Three tumors, one adenoma, one complex adenoma, and the lobular carcinoma expressed both desmin and neurofilaments in addition to cytokeratin and vimentin. The results show the expression of different types of intermediate filaments and indicate that there might be a stem cell origin in most of the canine mammary tumors.

  16. Pretreatment methods to improve nerve immunostaining in corneas from long-term fixed embryonic quail eyes

    Science.gov (United States)

    Barrett, J. E.; Wells, D. C.; Conrad, G. W.

    1999-01-01

    Pretreatment methods were used to improve neurofilament immunostaining in corneas from embryonic day 16 Japanese quail corneas that had been stored in fixative solution for several months. A sequential combination of the following three pretreatments: brief microwave heating in saline, followed by extraction with sodium dodecyl sulfate (SDS) at 37 degrees C, followed by digestion with hyaluronidase at 37 degrees C, produced significantly increased antibody staining of corneal neurofilament proteins, compared with embryonic corneas subjected to no prior pretreatments or to single or two-step protocols. After applying the sequence of all three pretreatments, darkest nerve staining and increased numbers of fine branches were observed, together with lower background staining. Thus, the result of applying the three-step pretreatment sequence is better than that of applying any of its component single pretreatments or even combinations of any two of them. These findings therefore suggest that each of these three pretreatments causes a unique effect, beneficial to immunostaining of neurofilament proteins, and that their individual effects are independent and additive. In addition to embryonic corneas, the three-step procedure also may be useful for immunostaining of nerves in other very delicate, highly-hydrated tissues containing an abundance of extracellular matrix.

  17. Cell stress promotes the association of phosphorylated HspB1 with F-actin.

    Directory of Open Access Journals (Sweden)

    Joseph P Clarke

    Full Text Available Previous studies have suggested that the small heat shock protein, HspB1, has a direct influence on the dynamics of cytoskeletal elements, in particular, filamentous actin (F-actin polymerization. In this study we have assessed the influence of HspB1 phosphorylation on its interaction(s with F-actin. We first determined the distribution of endogenous non-phosphorylated HspB1, phosphorylated HspB1 and F-actin in neuroendocrine PC12 cells by immunocytochemistry and confocal microscopy. We then investigated a potential direct interaction between HspB1 with F-actin by precipitating F-actin directly with biotinylated phalloidin followed by Western analyses; the reverse immunoprecipitation of HspB1 was also carried out. The phosphorylation influence of HspB1 in this interaction was investigated by using pharmacologic inhibition of p38 MAPK. In control cells, HspB1 interacts with F-actin as a predominantly non-phosphorylated protein, but subsequent to stress there is a redistribution of HspB1 to the cytoskeletal fraction and a significantly increased association of pHspB1 with F-actin. Our data demonstrate HspB1 is found in a complex with F-actin both in phosphorylated and non-phosphorylated forms, with an increased association of pHspB1 with F-actin after heat stress. Overall, our study combines both cellular and biochemical approaches to show cellular localization and direct demonstration of an interaction between endogenous HspB1 and F-actin using methodolgy that specifically isolates F-actin.

  18. Brain-derived neurotrophic factor promotes vesicular glutamate transporter 3 expression and neurite outgrowth of dorsal root ganglion neurons through the activation of the transcription factors Etv4 and Etv5.

    Science.gov (United States)

    Liu, Dong; Liu, Zhen; Liu, Huaxiang; Li, Hao; Pan, Xinliang; Li, Zhenzhong

    2016-03-01

    Brain-derived neurotrophic factor (BDNF) is critical for sensory neuron survival and is necessary for vesicular glutamate transporter 3 (VGLUT3) expression. Whether the transcription factors Etv4 and Etv5 are involved in these BDNF-induced effects remains unclear. In the present study, primary cultured dorsal root ganglion (DRG) neurons were used to test the link between BDNF and transcription factors Etv4 and Etv5 on VGLUT3 expression and neurite outgrowth. BDNF promoted the mRNA and protein expression of Etv4 and Etv5 in DRG neurons. These effects were blocked by extracellular signal-regulated protein kinase 1/2 (ERK1/2) inhibitor PD98059 but not phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 or phospholipase C-γ (PLC-γ) inhibitor U73122. Etv4 siRNA and Etv5 siRNA effectively blocked the VGLUT3 expression and neurite elongation induced by BNDF. The overexpression of Etv4 or Etv5 potentiated the effects of BNDF-induced neurite elongation and growth-associated protein 43 (GAP-43), medium neurofilament (NF-M), and light neurofilament (NF-L) expression while these effects could be inhibited by Etv4 and Etv5 siRNA. These data imply that Etv4 and Etv5 are essential transcription factors in modulating BDNF/TrkB signaling-mediated VGLUT3 expression and neurite outgrowth. BDNF, through the ERK1/2 signaling pathway, activates Etv4 and Etv5 to initiate GAP-43 expression, promote neurofilament (NF) protein expression, induce neurite outgrowth, and mediate VGLUT3 expression for neuronal function improvement. The biological effects initiated by BDNF/TrkB signaling linked to E26 transformation-specific (ETS) transcription factors are important to elucidate neuronal differentiation, axonal regeneration, and repair in various pathological states.

  19. Spinal afferent neurons projecting to the rat lung and pleura express acid sensitive channels

    Directory of Open Access Journals (Sweden)

    Kummer Wolfgang

    2006-07-01

    Full Text Available Abstract Background The acid sensitive ion channels TRPV1 (transient receptor potential vanilloid receptor-1 and ASIC3 (acid sensing ion channel-3 respond to tissue acidification in the range that occurs during painful conditions such as inflammation and ischemia. Here, we investigated to which extent they are expressed by rat dorsal root ganglion neurons projecting to lung and pleura, respectively. Methods The tracer DiI was either injected into the left lung or applied to the costal pleura. Retrogradely labelled dorsal root ganglion neurons were subjected to triple-labelling immunohistochemistry using antisera against TRPV1, ASIC3 and neurofilament 68 (marker for myelinated neurons, and their soma diameter was measured. Results Whereas 22% of pulmonary spinal afferents contained neither channel-immunoreactivity, at least one is expressed by 97% of pleural afferents. TRPV1+/ASIC3- neurons with probably slow conduction velocity (small soma, neurofilament 68-negative were significantly more frequent among pleural (35% than pulmonary afferents (20%. TRPV1+/ASIC3+ neurons amounted to 14 and 10% respectively. TRPV1-/ASIC3+ neurons made up between 44% (lung and 48% (pleura of neurons, and half of them presumably conducted in the A-fibre range (larger soma, neurofilament 68-positive. Conclusion Rat pleural and pulmonary spinal afferents express at least two different acid-sensitive channels that make them suitable to monitor tissue acidification. Patterns of co-expression and structural markers define neuronal subgroups that can be inferred to subserve different functions and may initiate specific reflex responses. The higher prevalence of TRPV1+/ASIC3- neurons among pleural afferents probably reflects the high sensitivity of the parietal pleura to painful stimuli.

  20. Deregulated Cdk5 Activity Is Involved in Inducing Alzheimer’s Disease

    Science.gov (United States)

    Shukla, Varsha; Skuntz, Susan; Pant, Harish C.

    2012-01-01

    Alzheimer’s disease (AD), the most devastating chronic neurodegenerative disease in adults, causes dementia and eventually, death of the affected individuals. Clinically, AD is characterized as late-onset, age-dependent cognitive decline due to loss of neurons in cortex and hippocampus. The pathologic corollary of these symptoms is the formation of senile plaques and neurofibrillary tangles. Senile plaques are formed due to accumulation of oligomeric amyloid beta (Aβ) forming fibrillary plaques. This occurs due to the amyloidogenic processing of the amyloid precursor protein (APP) by various secretases. On the other hand, neurofibrillary tangles are formed due to hyperphosphorylation of cytoskeleton proteins like tau and neurofilament. Both are hyperphosphorylated by cyclin-dependent kinase-5 (Cdk5) and are part of the paired helical filament (PHF), an integral part of neurofibrillary tangles. Unlike other cyclin-dependent kinases, Cdk5 plays a very important role in the neuronal development. Cdk5 gets activated by its neuronal activators p35 and p39. Upon stress, p35 and p39 are cleaved by calpain resulting in truncated products as p25 and p29. Association of Cdk5/p25 is longer and uncontrolled causing aberrant hyperphosphorylation of various substrates of Cdk5 like APP, tau and neurofilament, leading to neurodegenerative pathology like AD. Additionally recent evidence has shown increased levels of p25, Aβ, hyperactivity of Cdk5, phosphorylated tau and neurofilament in human AD brains. This review briefly describes the above-mentioned aspects of involvement of Cdk5 in the pathology of AD and at the end summarizes the advances in Cdk5 as a therapeutic target. PMID:23142263

  1. Neuron-like differentiation of adult rat bone marrow stromal cells induced by transforming growth factor-beta and brain-derived neurotrophic factor

    Institute of Scientific and Technical Information of China (English)

    Chang Liu; Xifan Mei; Gang Lü; Yansong Wang; Quanshuang Li; Zhanpeng Guo

    2009-01-01

    BACKGROUND: It has been demonstrated that transforming growth factor-β (TGF-β) and brain-derived neurotrophic factor (BDNF) can induce stem cell differentiation into neuron-like cells.OBJECTIVE: To investigate the efficacy of TGF-β and BDNF at inducing the differentiation of adult rat bone marrow stromal cells (BMSCs) into neuron-like cells, both in combination or alone.DESIGN, TIME AND SETTING: A comparative observation experiment was performed at the Department of Orthopedics, First Affiliated Hospital of Liaoning Medical University between October 2007 and January 2008.MATERIALS: TGF-βand BDNF were purchased from Sigma, USA; mouse anti-rat neuron specific enolase, neurofilament and glial fibrillary acidic protein were purchased from Beijing HMHL Biochem Ltd., China.METHODS: BMSCs were isolated from rats aged 4 weeks and incubated with TGF-β(1μg/L) and/or BDNF (50μg/mL).MAIN OUTCOME MEASURES: Expression of neuron-specific enolase, neurofilament and glial fibrillary acidic protein were determined by immunocytochemistry.RESULTS: BMSCs differentiated into neuron-like cells following induction of TGF-β and BDNF, and expressed both neuron-specific enolase and neurofilament. The percent of positive cells was significantly greater in the combination group than those induced with TGF-β or BDNF alone (P<0.01).CONCLUSION: Treatment of BMSCs with a combination of TGF-β and BDNF induced differentiation into neuron-like cells, with the induction being significantly greater than with TGF-β or BDNF alone.

  2. An immunohistochemical, clinical and electroneuromyographic correlative study of the neural markers in the neuritic form of leprosy

    Directory of Open Access Journals (Sweden)

    S.L.G. Antunes

    2006-08-01

    Full Text Available The nerve biopsies of 11 patients with pure neuritic leprosy were submitted to routine diagnostic procedures and immunoperoxidase staining with antibodies against axonal (neurofilament, nerve growth factor receptor (NGFr, and protein gene product (PGP 9.5 and Schwann cell (myelin basic protein, S-100 protein, and NGFr markers. Two pairs of non-adjacent histological cross-sections of the peripheral nerve were removed for quantification. All the fascicles of the nerve were examined with a 10X-ocular and 40X-objective lens. The immunohistochemistry results were compared to the results of semithin section analysis and clinical and electroneuromyographic data. Neurofilament staining was reduced in 100% of the neuritic biopsies. NGFr positivity was also reduced in 81.8%, PGP staining in 100% of the affected nerves, S100 positivity in 90.9%, and myelin basic protein immunoreactivity in 90.9%. Hypoesthesia was associated with decreased NGFr (81.8% and PGP staining (90.9%. Reduced potential amplitudes (electroneuromyographic data were found to be associated with reduced PGP 9.5 (63.6% and nerve fiber neurofilament staining (45.4% by immunohistochemistry and with loss of myelinated fibers (100% by semithin section analysis. On the other hand, the small fibers (immunoreactive dots seen amid inflammatory cells continued to be present even after 40% of the larger myelinated fibers had disappeared. The present study shows an in-depth view of the destructive effects of leprosy upon the expression of neural markers and the integrity of nerve fiber. The association of these structural changes with the clinical and electroneuromyographic manifestations of leprosy peripheral neuropathy was also discussed.

  3. Neocortical neuron types in Xenarthra and Afrotheria: implications for brain evolution in mammals.

    Science.gov (United States)

    Sherwood, Chet C; Stimpson, Cheryl D; Butti, Camilla; Bonar, Christopher J; Newton, Alisa L; Allman, John M; Hof, Patrick R

    2009-02-01

    Interpreting the evolution of neuronal types in the cerebral cortex of mammals requires information from a diversity of species. However, there is currently a paucity of data from the Xenarthra and Afrotheria, two major phylogenetic groups that diverged close to the base of the eutherian mammal adaptive radiation. In this study, we used immunohistochemistry to examine the distribution and morphology of neocortical neurons stained for nonphosphorylated neurofilament protein, calbindin, calretinin, parvalbumin, and neuropeptide Y in three xenarthran species-the giant anteater (Myrmecophaga tridactyla), the lesser anteater (Tamandua tetradactyla), and the two-toed sloth (Choloepus didactylus)-and two afrotherian species-the rock hyrax (Procavia capensis) and the black and rufous giant elephant shrew (Rhynchocyon petersi). We also studied the distribution and morphology of astrocytes using glial fibrillary acidic protein as a marker. In all of these species, nonphosphorylated neurofilament protein-immunoreactive neurons predominated in layer V. These neurons exhibited diverse morphologies with regional variation. Specifically, high proportions of atypical neurofilament-enriched neuron classes were observed, including extraverted neurons, inverted pyramidal neurons, fusiform neurons, and other multipolar types. In addition, many projection neurons in layers II-III were found to contain calbindin. Among interneurons, parvalbumin- and calbindin-expressing cells were generally denser compared to calretinin-immunoreactive cells. We traced the evolution of certain cortical architectural traits using phylogenetic analysis. Based on our reconstruction of character evolution, we found that the living xenarthrans and afrotherians show many similarities to the stem eutherian mammal, whereas other eutherian lineages display a greater number of derived traits.

  4. G-CSF prevents caspase 3 activation in Schwann cells after sciatic nerve transection, but does not improve nerve regeneration.

    Science.gov (United States)

    Frost, Hanna K; Kodama, Akira; Ekström, Per; Dahlin, Lars B

    2016-10-15

    Exogenous granulocyte-colony stimulating factor (G-CSF) has emerged as a drug candidate for improving the outcome after peripheral nerve injuries. We raised the question if exogenous G-CSF can improve nerve regeneration following a clinically relevant model - nerve transection and repair - in healthy and diabetic rats. In short-term experiments, distance of axonal regeneration and extent of injury-induced Schwann cell death was quantified by staining for neurofilaments and cleaved caspase 3, respectively, seven days after repair. There was no difference in axonal outgrowth between G-CSF-treated and non-treated rats, regardless if healthy Wistar or diabetic Goto-Kakizaki (GK) rats were examined. However, G-CSF treatment caused a significant 13% decrease of cleaved caspase 3-positive Schwann cells at the lesion site in healthy rats, but only a trend in diabetic rats. In the distal nerve segments of healthy rats a similar trend was observed. In long-term experiments of healthy rats, regeneration outcome was evaluated at 90days after repair by presence of neurofilaments, wet weight of gastrocnemius muscle, and perception of touch (von Frey monofilament testing weekly). The presence of neurofilaments distal to the suture line was similar in G-CSF-treated and non-treated rats. The weight ratio of ipsi-over contralateral gastrocnemius muscles, and perception of touch at any time point, were likewise not affected by G-CSF treatment. In addition, the inflammatory response in short- and long-term experiments was studied by analyzing ED1 stainable macrophages in healthy rats, but in neither case was any attenuation seen at the injury site or distal to it. G-CSF can prevent caspase 3 activation in Schwann cells in the short-term, but does not detectably affect the inflammatory response, nor improve early or late axonal outgrowth or functional recovery.

  5. Reference: 434 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available tián P et al. 2006 Aug. Plant Mol. Biol. 61(6):945-57. Non-phosphorylating glyceraldehyde- 3-phosphate dehyd...rogenase (NP-GAPDH) is a conserved cytosolic protein found in higher plants. In photosynthetic cells, the en...ignificantly, cytosolic phosphorylating (NAD-dependent) glyceraldehyde-3-phosphat...e dehydrogenase mRNA levels are induced in the mutant, which correlates with an increase in enzyme activity....h an increase in NADPH concentration. Moreover, increased ROS levels were measured in the mutant plants. Dow

  6. Multidimensional Strategy for Sensitive Phosphoproteomics Incorporating Protein Prefractionation Combined with SIMAC, HILIC, and TiO(2) Chromatography Applied to Proximal EGF Signaling

    DEFF Research Database (Denmark)

    Engholm-Keller, Kasper; Hansen, Thomas Aarup; Palmisano, Giuseppe;

    2011-01-01

    applied to 400 µg of protein from EGF stimulated HeLa cells. The proteins are separated into membrane and cytoplasmic fractions using sodium carbonate combined with ultracentrifugation. The phosphopeptides were separated into mono-phosphorylated and multi-phosphorylated pools using Sequential elution from...... IMAC (SIMAC) followed by hydrophilic interaction liquid chromatography of the mono- and non-phosphorylated peptides and subsequent titanium dioxide chromatography of the HILIC fractions. This strategy facilitated the identification of >4,700 unique phosphopeptides, while 636 phosphosites were changing...

  7. Interchromatin granule clusters in vitellogenic oocytes of the flesh fly, Sarcophaga sp.

    Directory of Open Access Journals (Sweden)

    Dmitry Bogolyubov

    2008-01-01

    Full Text Available Insect oocyte nuclei contain different extrachromosomal nuclear bodies including Cajal bodies and interchromatin granule clusters (IGCs. In the present study, we describe IGC equivalents in the vitellogenic oocytes of the flesh fly, Sarcophaga sp. These structures were found to consist of 20-40-nm granules and also include the fibrillar areas of high and low electron density. Immunogold labeling electron microscopy revealed IGC marker protein SC35, Sm proteins, and trimethylguanosine cap of small nuclear (sn RNAs in these bodies. Antibody against the non-phosphorylated RNA polymerase II selectively labeled the fibrillar areas of low electron density located inside the IGCs.

  8. Targeting Class I PI3Ks in the Treatment of T-cell Acute Lymphoblastic Leukemia

    Science.gov (United States)

    2013-08-01

    serine phosphorylation at position 134 of the glucocorticoid receptor (Fig. 8g,h). Mass spectrometry of the digested peptides by nanoLC-ESI-MS/MS...verified the presence of NRC31 phosphorylation at S134 [ratio non-phosphorylated peptide : phosphorylated peptide (non-P:P)= 1.5:1] in addition to other...et al., 2010). Clinical outcomes in adult T-ALL are substantially worse, with only about 50% of the patients achieving long-term remissions (Marks et

  9. 湖南石门雄黄矿区矿样中的砷氧化细菌的分离及鉴定%Isolation and Identification of Arsenic-oxidizing Bacteria from Shimen Realgar Mine, Hunan

    Institute of Scientific and Technical Information of China (English)

    杨宇; 白飞; 杨莉; 许庆; 邱冠周

    2015-01-01

    With the rapid industrialization, especially the arsenic containing gold ore mining, arsenic contamination has become a universal concerned eco-environmental problem. How to make better use of a rapid and green approach in biology to disposal of arsenic wastewater could be of great value in relieving arsenic contamination brought by industrial development, improving residents' quality of life and improving human settlements. In the present study, three samples were used as the research objects, which were collected from the water of tailings pond (SY), mine drainage from the mine tunnel 400 m below the surface (XY) and the sediment of tailings pond (NY) in the Shimen Realgar Mine, respectively. Three kinds of As(Ⅲ)-oxidizing microfloras were obtained from these three samples by enrichment culture with arsenic containing medium and subculture after several generation. The As(Ⅲ) tolerance ability was determined in the medium with l~5 g·L-1 of arsenic. Results showed that the cell density of these microfloras reached 109 cells·mL-1 within 2~3 d under 5 g·L-1 of arsenic. Results also showed that the solution containing 1 g·L-1 of sodium arsenite could be completely oxidized by SY, XY and NY within 25 h, 20 h and 35 h respectively, with the decrease of total arsenic mass concentration by 66.7%. 11 As(Ⅲ)-oxidizing bacteria were obtained from those microfloras by repeated plate streaking and qualitative AgNO3 screening method. The 16S rDNA of these strains were examined by sequence alignment of the BLASTN in NCBI. Results showed strains SMY24, SMY33, SMY22, SMY32, SMY21 and SMY31 are Pseudomonas, SMY104 is Acinetobacter. of all known sequences, the maximum rate of sequence similarity of SMY17, SMY25, SMY9 and SMY1 is only 91%, while the minimum is 76%, indicating they are pure culture bacteria that never been reported. By measuring the As(Ⅲ)-oxidizing ability of each strain, results showed SMY104 and SMY21 could completely remove As(Ⅲ) within 20 h

  10. Autoantibodies associated with prenatal and childhood exposure to environmental chemicals in faroese children

    DEFF Research Database (Denmark)

    Osuna, Christa E; Grandjean, Philippe; Weihe, Pál

    2014-01-01

    to both neural (neurofilaments, cholineacetyltransferase, astrocyte glial fibrillary acidic protein, and myelin basic protein) and non-neural (actin, desmin, and keratin) antigens were measured and the associations of these autoantibody concentrations with chemical exposures were assessed using linear...... regression. Age-7 blood-mercury concentrations were positively associated with titers of multiple neural- and non-neural-specific antibodies, mostly of the IgM isotype. Additionally, prenatal blood-mercury and -PCBs were negatively associated with anti-keratin IgG and prenatal PFOS was negatively associated...

  11. Comparative analysis of sequences from PT 2013

    DEFF Research Database (Denmark)

    Mikkelsen, Susie Sommer

    . All but one sequence mapped to the MCP gene while the last sequence mapped to the Neurofilament gene. Approx. half of the sequences contained no errors while the rest differed with 88-99 percent similarity with most having 99% similarity. One sequence, when BLASTed, showed most similarity to European...... Sheatfish and not EHNV. Generally, mistakes occurred at the ends of the sequences. This can be due to several factors. One is that the sequence has not been trimmed of the sequence primer sites. Another is the lack of quality control of the chromatogram. Finally, sequencing in just one direction can result...

  12. Lingual neurofibroma causing dysaesthesia of the tongue

    DEFF Research Database (Denmark)

    Lykke, Eva; Nørgaard, Tove; Rye Rasmussen, Eva

    2013-01-01

    of otorhinolaryngology with irritation and dysaesthesia of the lateral aspect of the tongue. The only finding was a slightly red area from which a biopsy was taken. The macroscopic findings observed by the surgeon were consistent with normal tongue tissue. The histopathological examination showed a small, rounded tumour...... closely approximated to an invagination of the surface epithelium and with a small lymphatic infiltrate. The tumour was a neurofibroma. A Schwannoma type B was considered but the presence of small nerves and positive neurofilament reaction favoured a neurofibroma. The patient had no other neurofibromas...

  13. In vitro differentiation of quail neural crest cells into sensory-like neuroblasts

    Science.gov (United States)

    Sieber-Blum, Maya; Kumar, Sanjiv R.; Riley, Danny A.

    1988-01-01

    Data are presented that demonstrate the ability of quail neural-crest embrionic cells grown as primary culture to differentiate in vitro into sensorylike neuroblasts. After 7-14 days of growth as primary culture, many of the putative sensory neuroblasts displayed substance P (SP)-like immunoreactivity and some exhibited histochemical carbonic anhydrase activity. Double staining experiments showed that the SP-like immunoreactive neuroblasts did not contain detectable levels of tyrosine hydroxylase or dopamine-beta-hydroxylase. The neuronal nature of the cultured sensorylike neuroblasts was further documented by double labeling for antibodies against the 68 kDa neurofilament polypeptide and substance P.

  14. Adenovirus-mediated human brain-derived neurotrophic factor gene-modified bone marrow mesenchymal stem cell transplantation for spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Changsheng Wang; Jianhua Lin; Chaoyang Wu; Rongsheng Chen

    2011-01-01

    Rat bone marrow mesenchymal stem cells expressing brain-derived neurotrophic factor were successfully obtained using a gene transfection method, then intravenously transplanted into rats with spinal cord injury. At 1, 3, and 5 weeks after transplantation, the expression of ??brain-derived neurotrophic factor and neurofilament-200 was upregulated in the injured spinal cord, spinal cord injury was alleviated, and Basso-Beattie-Bresnahan scores of hindlimb motor function were significantly increased. This evidence suggested that intravenous transplantation of adenovirus- mediated brain-derived neurotrophic factor gene-modified rat bone marrow mesenchymal stem cells could play a dual role, simultaneously providing neural stem cells and neurotrophic factors.

  15. Atypical teratoid/rhabdoid tumour in sella turcica in an adult.

    Science.gov (United States)

    Arita, K; Sugiyama, K; Sano, T; Oka, H

    2008-05-01

    Although atypical teratoid rhabdoid tumours preferentially arise in the posterior fossa of infants, we encountered a 56 year old woman with an atypical teratoid rhabdoid tumour located in the sella. She presented with right abducent and oculomotor nerve paresis. Magnetic resonance imaging demonstrated an intrasellar tumour impinging on the right cavernous sinus. Microscopically, the tumour was composed of cells with rhabdoid features; we observed atypia, eccentric nuclei, and intracytoplasmic inclusion bodies. The Ki-67 labeling index was around 30%. The tumour cells were positive for vimentin, epithelial membrane antigen, and neurofilament, but negative for INI1. Despite extended local brain and whole-spine irradiation she died of neural axis dissemination.

  16. AcEST: DK963536 [AcEST

    Lifescience Database Archive (English)

    Full Text Available D41_MOUSE Coiled-coil domain-containing protein 41 O... 34 0.71 sp|O35047|HOP2_MOUSE Homologous-pairing...|O77788|NFM_BOVIN Neurofilament medium polypeptide OS=Bos taur... 31 6.0 sp|Q9P2W1|HOP2_HUMAN Homologous-pairing...47|HOP2_MOUSE Homologous-pairing protein 2 homolog OS=Mus musculus GN=Psmc3ip PE=1 SV=1 Length = 217 Score =

  17. Oncogenic Brain Metazoan Parasite Infection

    Directory of Open Access Journals (Sweden)

    Angela N. Spurgeon

    2013-01-01

    Full Text Available Multiple observations suggest that certain parasitic infections can be oncogenic. Among these, neurocysticercosis is associated with increased risk for gliomas and hematologic malignancies. We report the case of a 71-year-old woman with colocalization of a metazoan parasite, possibly cysticercosis, and a WHO grade IV neuroepithelial tumor with exclusively neuronal differentiation by immunohistochemical stains (immunopositive for synaptophysin, neurofilament protein, and Neu-N and not for GFAP, vimentin, or S100. The colocalization and temporal relationship of these two entities suggest a causal relationship.

  18. Highly selective recovery of phosphopeptides using trypsin-assisted digestion of precipitated lanthanide-phosphoprotein complexes.

    Science.gov (United States)

    Güzel, Yüksel; Rainer, Matthias; Mirza, Munazza R; Messner, Christoph B; Bonn, Günther K

    2013-05-21

    The basic idea of this study was to recover phosphopeptides after trypsin-assisted digestion of precipitated phosphoproteins using trivalent lanthanide ions. In the first step, phosphoproteins were extracted from the protein solution by precipitation with La(3+) and Ce(3+) ions, forming stable pellets. Additionally, the precipitated lanthanide-phosphoprotein complexes were suspended and directly digested on-pellet using trypsin. Non-phosphorylated peptides were released into the supernatants by enzymatic cleavage and phosphopeptides remained bound on the precipitated pellet. Further washing steps improved the removal of non-phosphorylated peptides. For the recovery of phosphopeptides the precipitated pellets were dissolved in 3.7% hydrochloric acid. The performance of this method was evaluated by several experiments using MALDI-TOF MS measurements and delivered the highest selectivity for phosphopeptides. This can be explained by the overwhelming preference of lanthanides for binding to oxygen-containing anions such as phosphates. The developed enrichment method was evaluated with several types of biological samples, including fresh milk and egg white. The uniqueness and the main advantages of the presented approach are the enrichment on the protein-level and the recovery of phosphopeptides on the peptide-level. This allows much easier handling, as the number of molecules on the peptide level is unavoidably higher, by complicating every enrichment strategy.

  19. Phosphorylation of the Goodpasture antigen by type A protein kinases.

    Science.gov (United States)

    Revert, F; Penadés, J R; Plana, M; Bernal, D; Johansson, C; Itarte, E; Cervera, J; Wieslander, J; Quinones, S; Saus, J

    1995-06-02

    Collagen IV is the major component of basement membranes. The human alpha 3 chain of collagen IV contains an antigenic domain called the Goodpasture antigen that is the target for the circulating immunopathogenic antibodies present in patients with Goodpasture syndrome. Characteristically, the gene region encoding the Goodpasture antigen generates multiple alternative products that retain the antigen amino-terminal region with a five-residue motif (KRGDS). The serine therein appears to be the major in vitro cAMP-dependent protein kinase phosphorylation site in the isolated antigen and can be phosphorylated in vitro by two protein kinases of approximately 50 and 41 kDa associated with human kidney plasma membrane, suggesting that it can also be phosphorylated in vivo. Consistent with this, the Goodpasture antigen is isolated from human kidney in phosphorylated and non-phosphorylated forms and only the non-phosphorylated form is susceptible to phosphorylation in vitro. Since this motif is exclusive to the human alpha 3(IV) chain and includes the RGD cell adhesion motif, its phosphorylation might play a role in pathogenesis and influence cell attachment to basement membrane.

  20. Translocation of PKC-betaII is mediated via RACK-1 in the neuronal cells following dioxin exposure.

    Science.gov (United States)

    Lee, Hyun-Gyo; Kim, Sun-Young; Choi, Eun-Jung; Park, Ki-Yeon; Yang, Jae-Ho

    2007-03-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is known to induce neurotoxic effects. However, the mechanism of TCDD-mediated signaling pathways and its possible molecular targets in neurons remains unknown. In this study, we analyzed effects of TCDD on neurofilament subunits, receptor for activated C kinase-1 (RACK-1), and PKC-betaII activity in developing neuronal cells. TCDD induced a significant increase of RACK-1, an adaptor protein for protein kinase C (PKC), in cerebellar granule cells in both dose- and time-dependent manner, indicating that RACK-1 is a sensitive molecular target in neuronal cells for TCDD exposure. TCDD induced a dose-dependent translocation of PKC-betaII from cytosol to membrane fractions. However, when RACK-1 induction was blocked by antisense oligonucleotide or alpha-naphthoflavone, Ah receptor (AhR) inhibitor, the translocation of PKC-betaII was inhibited. Our data suggests that TCDD activates PKC-betaII via RACK-1 in an AhR-dependent manner. This is the first report identifying RACK-1 as a target molecule involved in TCDD-mediated signaling pathways. TCDD exposure also increased the level of neurofilament-H mRNA. These results suggest that identification of target molecules may contribute to improve our understanding of TCDD-mediated signaling pathway and the risk assessment of TCDD-induced neurotoxicities.

  1. Isolation of Low Abundance Proteins and Cells Using Buoyant Glass Microbubble Chromatography

    Directory of Open Access Journals (Sweden)

    Steingrimur Stefansson

    2013-01-01

    Full Text Available Conventional protein affinity chromatography relies on highly porous resins that have large surface areas. These properties are ideal for fast flow separation of proteins from biological samples with maximum yields, but these properties can also lead to increased nonspecific protein binding. In certain applications where the purity of an isolated protein is more important than the yield, using a glass solid phase could be advantageous as glass is nonporous and hydrophilic and has a low surface area and low nonspecific protein binding. As a proof of principle, we used protein A-conjugated hollow glass microbubbles to isolate fluorescently labeled neurofilament heavy chain spiked into serum and compared them to protein A Sepharose and protein A magnetic beads (Dynabeads using an anti-neurofilament protein antibody. As expected, a greater volume of glass bubbles was required to match the binding capacity of the magnetic beads and Sepharose resins. On the other hand, nonspecific protein binding to glass bubbles was greatly reduced compared to the other resins. Additionally, since the glass bubbles are buoyant and transparent, they are well suited for isolating cells from biological samples and staining them in situ.

  2. Intracerebroventricular Streptozotocin as a Model of Alzheimer's Disease: Neurochemical and Behavioral Characterization in Mice.

    Science.gov (United States)

    Ravelli, Katherine Garcia; Rosário, Barbara Dos Anjos; Camarini, Rosana; Hernandes, Marina Sorrentino; Britto, Luiz Roberto

    2017-04-01

    Streptozotocin has been widely used to mimic some aspects of Alzheimer's disease (AD). However, especially in mice, several characteristics involved in the streptozotocin (STZ)-induced AD pathology are not well known. The main purpose of this study was to evaluate temporally the expression of AD-related proteins, such as amyloid-β (Aβ), choline acetyltransferase (ChAT), synapsin, axonal neurofilaments, and phosphorylated Tau in the hippocampus following intracerebroventricular (icv) administration of STZ in adult mice. We also analyzed the impact of STZ on short- and long-term memory by novel object recognition test. Male mice were injected with STZ or citrate buffer, and AD-related proteins were evaluated by immunoblotting assays in the hippocampus at 7, 14, or 21 days after injection. No differences between the groups were found at 7 days. The majority of AD markers evaluated were found altered at 14 days, i.e., the STZ group showed increased amyloid-β protein and neurofilament expression, increased phosphorylation of Tau protein, and decreased synapsin expression levels compared to controls. Except for synapsin, all of these neurochemical changes were transient and did not last up to 21 days of STZ injection. Moreover, both short-term and long-term memory deficits were demonstrated after STZ treatment at 14 and 21 days after STZ treatment.

  3. Effect of low level laser therapy (LLLT) on ouabain induced auditory neuropathy in gerbils (Conference Presentation)

    Science.gov (United States)

    Rhee, Chung-Ku; Bae, Sung Huyn; Chang, So-Young; Chung, Phil-Sang; Jung, Jae-Yun

    2016-02-01

    Aim: to investigate effectiveness of Low level laser therapy (LLLT) in rescueing ouabain induced spiral ganglion cell damage using Mongolian gerbils. Methods: Animals were divided into 3 groups; Control, Ouabain, Ouabain + LLLT group. Auditory neuropathy was induced by topical application of ouabain (1 mmol/L, 3uL) on the round window membrane in gerbils. Transmeatal LLLT was irradiated into the right ear for 1h (200mW, 720 J) daily for 7d in Ouabain + LLLT group. Before and 7 days after ouabain application, hearing was evaluated using both ABR and distortion product otoacoustic emissions (DPOAE). Seven days after ouabain application, animals were sacrificed to evaluate the morphological changes of cochlea using cochlear section image and whole mount Immunofluorescent staining. Results: DPOAE tests were normal in all animals after ouabain topical treatment indicating intact outer hair cells. Ouabain group showed ABR threshold increase compared with control group. Ouabain+LLLT group showed significant improvement of ABR threshold compared to ouabain only group. H and E stains of mid-modiolar section of cochlear showed spiral ganglion cells, neurofilaments, and post synaptic receptor counts were decreased while inner and outer hair cells were preserved in ouabain group. Ouabain +LLLT group showed higher numbers of spiral ganglion cells, density of neurofilaments and post synaptic receptor counts compared to ouabain group. Conclusions: The results demonstrated that LLLT was effective to rescue ouabain-induced spiral ganglion neuropathy.

  4. Multicentre quality control evaluation of different biomarker candidates for amyotrophic lateral sclerosis.

    Science.gov (United States)

    Lehnert, Stefan; Costa, Julia; de Carvalho, Mamede; Kirby, Janine; Kuzma-Kozakiewicz, Magdalena; Morelli, Claudia; Robberecht, Wim; Shaw, Pamela; Silani, Vincenzo; Steinacker, Petra; Tumani, Hayrettin; Van Damme, Philip; Ludolph, Albert; Otto, Markus

    2014-09-01

    Abstract Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease that mainly causes degeneration of the upper and lower motor neurons, ultimately leading to paralysis and death within three to five years after first symptoms. The pathological mechanisms leading to ALS are still not completely understood. Several biomarker candidates have been proposed in cerebrospinal fluid (CSF). However, none of these has successfully translated into clinical routine. Part of the reason for this failure to translate may relate to differences across laboratories. For this reason, several of the most commonly used ALS biomarker candidates were evaluated on clinically well-defined ALS samples from six European centres in a multicentre sample-collection approach with centralized sample processing. Results showed that phosphorylated neurofilament heavy chain differentiated between ALS and control cases in all centres. We therefore propose that measurement of phosphorylated neurofilaments in CSF is the most promising candidate for translation into the clinical setting and might serve as a benchmark for other biomarker candidates.

  5. Caffeine treatment aggravates secondary degeneration after spinal cord injury.

    Science.gov (United States)

    Yang, Cheng-Chang; Jou, I-Ming

    2016-03-01

    Spinal cord injury (SCI) often results in some form of paralysis. Recently, SCI therapy has been focused on preventing secondary injury to reduce both neuroinflammation and lesion size so that functional outcome after an SCI may be improved. Previous studies have shown that adenosine receptors (AR) are a major regulator of inflammation after an SCI. The current study was performed to examine the effect of caffeine, a pan-AR blocker, on spontaneous functional recovery after an SCI. Animals were assigned into 3 groups randomly, including sham, PBS and caffeine groups. The rat SCI was generated by an NYU impactor with a 10 g rod dropped from a 25 mm height at thoracic 9 spinal cord level. Caffeine and PBS were injected daily during the experiment period. Hind limb motor function was evaluated by the Basso, Beattie, Bresnahan (BBB) locomotor rating scale at 1 week and 4 weeks after the SCI. Spinal cord segments were collected after final behavior evaluation for morphological analysis. The tissue sparing was evaluated by luxol fast blue staining. Immunofluorescence stain was employed to assess astrocyte activation and neurofilament positioning, while microglia activation was examined by immunohistochemistry stain.The results showed that spontaneous functional recovery was blocked after the animals were subjected caffeine daily. Moreover, caffeine administration increased the demyelination area, promoted astrocyte and microglia activation and decreased the quantity of neurofilaments. These findings suggest that the neurotoxicity effect of caffeine may be associated with the inhibition of neural repair and the promotion of neuroinflammation.

  6. Song Bu Li Decoction, a Traditional Uyghur Medicine, Protects Cell Death by Regulation of Oxidative Stress and Differentiation in Cultured PC12 Cells

    Directory of Open Access Journals (Sweden)

    Maitinuer Maiwulanjiang

    2013-01-01

    Full Text Available Song Bu Li decoction (SBL is a traditional Uyghur medicinal herbal preparation, containing Nardostachyos Radix et Rhizoma. Recently, SBL is being used to treat neurological disorders (insomnia and neurasthenia and heart disorders (arrhythmia and palpitation. Although this herbal extract has been used for many years, there is no scientific basis about its effectiveness. Here, we aimed to evaluate the protective and differentiating activities of SBL in cultured PC12 cells. The pretreatment of SBL protected the cell against tBHP-induced cell death in a dose-dependent manner. In parallel, SBL suppressed intracellular reactive oxygen species (ROS formation. The transcriptional activity of antioxidant response element (ARE, as well as the key antioxidative stress proteins, was induced in dose-dependent manner by SBL in the cultures. In cultured PC12 cells, the expression of neurofilament, a protein marker for neuronal differentiation, was markedly induced by applied herbal extract. Moreover, the nerve growth factor- (NGF- induced neurite outgrowth in cultured PC12 cells was significantly potentiated by the cotreatment of SBL. In accord, the expression of neurofilament was increased in the treatment of SBL. These results therefore suggested a possible role of SBL by its effect on neuron differentiation and protection against oxidative stress.

  7. Isorhamnetin, A Flavonol Aglycone from Ginkgo biloba L., Induces Neuronal Differentiation of Cultured PC12 Cells: Potentiating the Effect of Nerve Growth Factor

    Directory of Open Access Journals (Sweden)

    Sherry L. Xu

    2012-01-01

    Full Text Available Flavonoids, a group of compounds mainly derived from vegetables and herbal medicines, share a chemical resemblance to estrogen, and indeed some of which have been used as estrogen substitutes. In searching for possible functions of flavonoids, the neuroprotective effect in brain could lead to novel treatment, or prevention, for neurodegenerative diseases. Here, different subclasses of flavonoids were analyzed for its inductive role in neurite outgrowth of cultured PC12 cells. Amongst the tested flavonoids, a flavonol aglycone, isorhamnetin that was isolated mainly from the leaves of Ginkgo biloba L. showed robust induction in the expression of neurofilament, a protein marker for neurite outgrowth, of cultured PC12 cells. Although isorhamnetin by itself did not show significant inductive effect on neurite outgrowth of cultured PC12 cells, the application of isorhamnetin potentiated the nerve growth factor- (NGF-induced neurite outgrowth. In parallel, the expression of neurofilaments was markedly increased in the cotreatment of NGF and isorhamnetin in the cultures. The identification of these neurite-promoting flavonoids could be very useful in finding potential drugs, or food supplements, for treating various neurodegenerative diseases, including Alzheimer’s disease and depression.

  8. Isorhamnetin, A Flavonol Aglycone from Ginkgo biloba L., Induces Neuronal Differentiation of Cultured PC12 Cells: Potentiating the Effect of Nerve Growth Factor.

    Science.gov (United States)

    Xu, Sherry L; Choi, Roy C Y; Zhu, Kevin Y; Leung, Ka-Wing; Guo, Ava J Y; Bi, Dan; Xu, Hong; Lau, David T W; Dong, Tina T X; Tsim, Karl W K

    2012-01-01

    Flavonoids, a group of compounds mainly derived from vegetables and herbal medicines, share a chemical resemblance to estrogen, and indeed some of which have been used as estrogen substitutes. In searching for possible functions of flavonoids, the neuroprotective effect in brain could lead to novel treatment, or prevention, for neurodegenerative diseases. Here, different subclasses of flavonoids were analyzed for its inductive role in neurite outgrowth of cultured PC12 cells. Amongst the tested flavonoids, a flavonol aglycone, isorhamnetin that was isolated mainly from the leaves of Ginkgo biloba L. showed robust induction in the expression of neurofilament, a protein marker for neurite outgrowth, of cultured PC12 cells. Although isorhamnetin by itself did not show significant inductive effect on neurite outgrowth of cultured PC12 cells, the application of isorhamnetin potentiated the nerve growth factor- (NGF-)induced neurite outgrowth. In parallel, the expression of neurofilaments was markedly increased in the cotreatment of NGF and isorhamnetin in the cultures. The identification of these neurite-promoting flavonoids could be very useful in finding potential drugs, or food supplements, for treating various neurodegenerative diseases, including Alzheimer's disease and depression.

  9. How does the motor relearning program improve neurological function of brain ischemia monkeys?

    Institute of Scientific and Technical Information of China (English)

    Yong Yin; Zhongtang Feng; Zhen Gu; Lei Pan; Lu Gan; Dongdong Qin; Bo Yang; Jin Guo; Xintian Hu; Tinghua Wang

    2013-01-01

    The motor relearning program can significantly improve various functional disturbance induced by ischemic cerebrovascular diseases. However, its mechanism of action remains poorly understood. In injured brain tissues, glial fibrillary acidic protein and neurofilament protein changes can reflect the condition of injured neurons and astrocytes, while vascular endothelial growth factor and basic fibroblast growth factor changes can indicate angiogenesis. In the present study, we induced ischemic brain injury in the rhesus macaque by electrocoagulation of the M1 segment of the right middle cerebral artery. The motor relearning program was conducted for 60 days from the third day after model establishment. Immunohistochemistry and single-photon emission CT showed that the numbers of glial fibrillary acidic protein-, neurofilament protein-, vascular endothelial growth factorand basic fibroblast growth factor-positive cells were significantly increased in the infarcted side compared with the contralateral hemisphere following the motor relearning program. Moreover, cerebral blood flow in the infarcted side was significantly improved. The clinical rating scale for stroke was used to assess neurological function changes in the rhesus macaque following the motor relearning program. Results showed that motor function was improved, and problems with consciousness, self-care ability and balance function were significantly ameliorated. These findings indicate that the motor relearning program significantly promoted neuronal regeneration, repair and angiogenesis in the surroundings of the infarcted hemisphere, and improve neurological function in the rhesus macaque following brain ischemia.

  10. Severe neuromuscular denervation of clinically relevant muscles in a mouse model of spinal muscular atrophy.

    Science.gov (United States)

    Ling, Karen K Y; Gibbs, Rebecca M; Feng, Zhihua; Ko, Chien-Ping

    2012-01-01

    Spinal muscular atrophy (SMA), a motoneuron disease caused by a deficiency of the survival of motor neuron (SMN) protein, is characterized by motoneuron loss and muscle weakness. It remains unclear whether widespread loss of neuromuscular junctions (NMJs) is involved in SMA pathogenesis. We undertook a systematic examination of NMJ innervation patterns in >20 muscles in the SMNΔ7 SMA mouse model. We found that severe denervation (<50% fully innervated endplates) occurs selectively in many vulnerable axial muscles and several appendicular muscles at the disease end stage. Since these vulnerable muscles were located throughout the body and were comprised of varying muscle fiber types, it is unlikely that muscle location or fiber type determines susceptibility to denervation. Furthermore, we found a similar extent of neurofilament accumulation at NMJs in both vulnerable and resistant muscles before the onset of denervation, suggesting that neurofilament accumulation does not predict subsequent NMJ denervation. Since vulnerable muscles were initially innervated, but later denervated, loss of innervation in SMA may be attributed to defects in synapse maintenance. Finally, we found that denervation was amendable by trichostatin A (TSA) treatment, which increased innervation in clinically relevant muscles in TSA-treated SMNΔ7 mice. Our findings suggest that neuromuscular denervation in vulnerable muscles is a widespread pathology in SMA, and can serve as a preparation for elucidating the biological basis of synapse loss, and for evaluating therapeutic efficacy.

  11. Application of molecular modeling to polymer grafted nanostructures

    Science.gov (United States)

    Adiga, Shashishekar P.

    Polymer chains undergo conformational transitions in response to a change in solvent quality of their environment, making them strong candidates to be used in smart nanometer-scale devices. In the present work molecular modeling is used to explore grafted polymer structures with various functionalities. The first part of this research focuses on two examples of selective transport through nanopores modified with polymer brush structures. The first is the investigation of solvent flow through nanopores grafted with linear chains. Molecular dynamics (MD) simulations are used to demonstrate how a stretch-collapse transition in grafted polymer chains can be used to control solvent flow rate through a nanopore in response to environmental stimuli. A continuum fluid dynamics method based on porous layer model for describing flow through the smart nanopore is described and its accuracy is analyzed by comparing with the results from MD simulations. The continuum method is then applied to determine regulation of water permeation in response to pH through a poly(L-glutamic acid) grafted nanoporous membrane. A second example is use of a rod-coil transition in "bottle brush" molecules that are grafted to the inside of a nanopore to size select macromolecules as they diffuse through the functionalized nanopores. These stimuli-responsive nanopores have a variety of potential applications including molecular sorting, smart drug delivery, and ultrafiltration, as well as controlled chemical release. Tethered polymers play an important role in biological structures as well. In the second part of the research, application of atomistic simulations to characterize the effect of phosphorylation on neurofilament structure is presented. Neurofilaments are intermediate filaments that regulate axonal diameter through their long, flexible side arms extending from the central core. Their functionality is imparted by polymer brush like structure that causes steric repulsion between the

  12. Ultrastructural observation of effect of moderate hypothermia on axonal damage in an animal model of diffuse axonal injury

    Institute of Scientific and Technical Information of China (English)

    孙晓川; 唐文渊; 郑履平

    2002-01-01

    Objective: To investigate the effect of moderate hypothermia on responses of axonal cytoskeleton to axonal injury in the acute stage of injury. Methods: Of fifteen adult guinea pigs, twelve animals were subjected to stretch injury to the right optic nerves and divided into the normothermic group (n=6) in which the animal's core temperature was maintained at 36.0-37.5℃ and the hypothermia group (n=6) in which the core temperature was reduced to 32.0-32.5℃ after stretch injury. Remaining three animals sustained no injury to the right optic nerves and served as control group. Half of injured animals (n=3) of either normothermic group or hypothermic group were killed at either 2 hours or 4 hours after injury. The ultrastructural changes of axonal cytoskeleton of the right optic nerve fibers from the animals were examined under a transmission electron microscope and analyzed by quantitative analysis with a computer image analysis system. Results: At 2 hours after stretch injury, there was a significant reduction in the mean number of microtubules (P<0.001), and a significant increase in the mean intermicrotubule spacing (P<0.05 or P<0.01) in axons of all sizes in normothermic animals. The mean number of neurofilaments also decreased statistically (P<0.01) in large and medium subgroups of axons in the same experimental group at 2 hours. By 4 hours, the large subgroup of axons in normothermic animals still demonstrated a significant decline in the mean number of microtubules (P<0.01) and an increase in the mean intermicrotubule spacing (P<0.05), while the medium and small subgroups of axons displayed a significant increase in the mean number of neurofilaments (P<0.05) and reduction in the mean interneurofilament spacing (P<0.05). On the contrary, either the mean number of microtubules and the mean intermicrotubule spacing, or the mean number of neurofilaments and interneurofilament spacing in axons of all sizes in hypothermic stretch-injured animals was not

  13. Effects of sub-lethal neurite outgrowth inhibitory concentrations of chlorpyrifos oxon on cytoskeletal proteins and acetylcholinesterase in differentiating N2a cells

    Energy Technology Data Exchange (ETDEWEB)

    Flaskos, J., E-mail: flaskos@vet.auth.gr [Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Nikolaidis, E. [Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Harris, W. [School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS (United Kingdom); Sachana, M. [Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Hargreaves, A.J., E-mail: alan.hargreaves@ntu.ac.uk [School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS (United Kingdom)

    2011-11-15

    Previous work in our laboratory has shown that sub-lethal concentrations (1-10 {mu}M) of chlorpyrifos (CPF), diazinon (DZ) and diazinon oxon (DZO) inhibit the outgrowth of axon-like neurites in differentiating mouse N2a neuroblastoma cells concomitant with altered levels and/or phosphorylation state of axonal cytoskeleton and growth-associated proteins. The aim of the present work was to determine whether chlorpyrifos oxon (CPO) was capable of inhibiting N2a cell differentiation in a similar manner. Using experimental conditions similar to our previous work, sub-lethal concentrations (1-10 {mu}M) of CPO were found to inhibit N2a cell differentiation. However, unlike previous studies with DZ and DZO, there was a high level of sustained inhibition of acetylcholinesterase (AChE) in CPO treated cells. Impairment of neurite outgrowth was also associated with reduced levels of growth associated protein-43 and neurofilament heavy chain (NFH), and the distribution of NFH in cells stained by indirect immunofluorescence was disrupted. However, in contrast to previous findings for DZO, the absolute level of phosphorylated NFH was unaffected by CPO exposure. Taken together, the findings suggest that sub-lethal concentrations of CPO inhibit axon outgrowth in differentiating N2a cells and that this effect involves reduced levels of two proteins that play key roles in axon outgrowth and maintenance. Although the inhibition of neurite outgrowth is unlikely to involve AChE inhibition directly, further work will help to determine whether the persistent inhibition of AChE by CPO can account for the different effects induced by CPO and DZO on the levels of total and phosphorylated NFH. -- Highlights: Black-Right-Pointing-Pointer Sub-lethal levels of chlorpyrifos oxon inhibit neurite outgrowth in N2a cells Black-Right-Pointing-Pointer Acetylcholinesterase exhibits sustained inhibition throughout exposure Black-Right-Pointing-Pointer The levels of neurofilament heavy chain and GAP-43

  14. Different forms of MARCKS protein are involved in memory formation in the learning process of imprinting.

    Science.gov (United States)

    Solomonia, Revaz O; Apkhazava, David; Nozadze, Maia; Jackson, Antony P; McCabe, Brian J; Horn, Gabriel

    2008-06-01

    There is strong evidence that a restricted part of the chick forebrain, the IMM (formerly IMHV), stores information acquired through the learning process of visual imprinting. Twenty-four hours after imprinting training, a learning-specific increase in amount of myristoylated, alanine-rich C-kinase substrate (MARCKS) protein is known to occur in the homogenate fraction of IMM. We investigated the two components of this fraction, membrane-bound and cytoplasmic-phosphorylated MARCKS. In IMM, amount of membrane-bound MARCKS, but not of cytoplasmic-phosphorylated MARCKS, increased as chicks learned. No changes were observed for either form of MARCKS in PPN, a control forebrain region. The results indicate that there is a learning-specific increase in membrane-bound, non-phosphorylated MARCKS 24 h after training. This increase might contribute to stabilization of synaptic morphology.

  15. Structural dynamics and topology of phosphorylated phospholamban homopentamer reveal its role in the regulation of calcium transport in sarcoplasmic reticulum

    Science.gov (United States)

    Vostrikov, Vitaly V.; Mote, Kaustubh R.; Verardi, Raffaello; Veglia, Gianluigi

    2013-01-01

    Phospholamban (PLN) inhibits the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA), thereby regulating cardiac diastole. In membranes, PLN assembles into homopentamers that in both the phosphorylated and non-phosphorylated states have been proposed to form ion-selective channels. Here, we determined the structure of the phosphorylated pentamer using a combination of solution and solid-state nuclear magnetic resonance methods. We found that the pinwheel architecture of the homopentamer is preserved upon phosphorylation, with each monomer having an L-shaped conformation of each monomer. The TM domains form a hydrophobic pore of approximately 24 Å long, and 2 Å in diameter, which is inconsistent with canonical Ca2+ selective channels. Phosphorylation, however, enhances the conformational dynamics of the cytoplasmic region of PLN, causing the partial unwinding of the amphipathic helix. We propose that PLN oligomers act as storage for active monomers, keeping SERCA function within a physiological window. PMID:24207128

  16. FHA domains: Phosphopeptide binding and beyond.

    Science.gov (United States)

    Almawi, Ahmad W; Matthews, Lindsay A; Guarné, Alba

    2017-08-01

    Forkhead-associated (FHA) domains are small phosphopeptide recognition modules found in eubacterial and eukaryotic, but not archeal, genomes. Although they were originally found in forkhead-type transcription factors, they have now been identified in many other signaling proteins. FHA domains share a remarkably conserved fold despite very low sequence conservation. They only have five conserved amino acids that are important for binding to phosphorylated epitopes. Recent work from several laboratories has demonstrated that FHA domains can mediate many interactions that do not depend on their ability to recognize a phosphorylated threonine. In this review, we present structural and biochemical work that has unveiled novel interaction interfaces on FHA domains. We discuss how these non-canonical interactions modulate the recognition of phosphorylated and non-phosphorylated substrates, as well as protein oligomerization - events that collectively determine FHA function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Phosphorylated cystatin alpha is a natural substrate of epidermal transglutaminase for formation of skin cornified envelope.

    Science.gov (United States)

    Takahashi, M; Tezuka, T; Katunuma, N

    1992-08-10

    Both keratohyalin granules (KHG) and cornified envelopes were stained histochemically in an indirect immunofluorescent study by antiphosphorylated cystatin alpha antibody, indicating that phosphorylated cystatin alpha is a component of the cornified envelope proteins. When phosphorylated cystatin alpha (P-cystatin alpha) was incubated with epidermal transglutaminase (TGase) and Ca2+ ions, polymerized protein was produced by formation of epsilon-(gamma-glutamyl)lysine cross-linking peptide bonds between lysine residues of cystatin alpha and glutamine residues of suitable protein(s) in the enzyme preparation. However, phosphorylated and non-phosphorylated cystatins were polymerized to similar extents by the TGase. Immunofluorescent and immunoelectron microscopic observations revealed that P-cystatin alpha could be detected in vivo in the KHG and cornified envelopes. Treatment of sphingosine, a specific inhibitor of protein kinase C, markedly suppressed the incorporation of cystatin alpha into KHG. Thus phosphorylation of cystatin alpha by protein kinase C may play an important role in targeting cystatin alpha into KHG.

  18. The role of GH receptor tyrosine phosphorylation in Stat5 activation

    DEFF Research Database (Denmark)

    Hansen, J A; Hansen, L H; Wang, X;

    1997-01-01

    Stimulation of GH receptors leads to rapid activation of Jak2 kinase and subsequent tyrosine phosphorylation of the GH receptor. Three specific tyrosines located in the C-terminal domain of the GH receptor have been identified as being involved in GH-stimulated transcription of the Spi 2.1 promoter....... Mutated GH receptors lacking all but one of these three tyrosines are able to mediate a transcriptional response when transiently transfected into CHO cells together with a Spi 2.1 promoter/luciferase construct. Similarly, these GH receptors were found to be able to mediate activation of Stat5 DNA......-binding activity, whereas the GH receptor mutant lacking all intracellular tyrosines was not. Synthetic tyrosine phosphorylated peptides corresponding to the GH receptor sequence around the three tyrosines inhibited Stat5 DNA-binding activity while their non-phosphorylated counterparts were ineffective. Tyrosine...

  19. Phosphorylated SAP155, the spliceosomal component, is localized to chromatin in postnatal mouse testes

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Ko, E-mail: etoko@gpo.kumamoto-u.ac.jp [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan); Sonoda, Yoshiyuki [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan); Jin, Yuji [School of Basic Medicine, Jilin Medical College, Jilin 132013 (China); Abe, Shin-ichi [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan)

    2010-03-19

    SAP155 is an essential component of the spliceosome and its phosphorylation is required for splicing catalysis, but little is known concerning its expression and regulation during spermatogenesis in postnatal mouse testes. We report that SAP155 is ubiquitously expressed in nuclei of germ and Sertoli cells within the seminiferous tubules of 6- and 35-day postpartum (dpp) testes. Analyses by fractionation of testes revealed that (1) phosphorylated SAP155 was found in the fraction containing nuclear structures at 6 dpp in amounts much larger than that at other ages; (2) non-phosphorylated SAP155 was detected in the fraction containing nucleoplasm; and (3) phosphorylated SAP155 was preferentially associated with chromatin. Our findings suggest that the active spliceosome, containing phosphorylated SAP155, performs pre-mRNA splicing on chromatin concomitant with transcription during testicular development.

  20. The effect of stromelysin-1 (MMP-3) on non-collagenous extracellular matrix proteins of demineralized dentin and the adhesive properties of restorative resins.

    Science.gov (United States)

    Boukpessi, T; Menashi, S; Camoin, L; Tencate, J M; Goldberg, M; Chaussain-Miller, C

    2008-11-01

    Dentin non-collagenous matrix components (NCPs) are structural proteins involved in the formation, the architecture and the mineralization of the extracellular matrix (ECM). We investigated here how recombinant metalloproteinase stromelysin-1, also termed MMP-3, initiates the release of ECM molecules from artificially demineralized human dentin. Analysis of the supernatants by Western blotting reveals that MMP-3 extracts PGs (decorin, biglycan), and also a series of phosphorylated proteins: dentin sialoprotein (DSP), osteopontin (OPN), bone sialoprotein (BSP) and MEPE, but neither dentin matrix protein-1 (DMP1), another member of the SIBLING family, nor osteocalcin (OC), a non-phosphorylated matrix molecule. After treatment of dentin surfaces by MMP-3, scanning electron microscope (SEM) examination of resin replica shows an increased penetration of the resin into the dentin tubules when compared to surfaces only treated by demineralizing solutions. This preclinical investigation suggests that MMP-3 may be used to improve the adhesive properties of restorative materials.

  1. Investigating the Structural Variability and Binding Modes of the Glioma Targeting NFL-TBS.40-63 Peptide on Tubulin.

    Science.gov (United States)

    Laurin, Yoann; Savarin, Philippe; Robert, Charles H; Takahashi, Masayuki; Eyer, Joel; Prevost, Chantal; Sacquin-Mora, Sophie

    2015-06-16

    NFL-TBS.40-63 is a 24 amino acid peptide corresponding to the tubulin-binding site located on the light neurofilament subunit, which selectively enters glioblastoma cells, where it disrupts their microtubule network and inhibits their proliferation. We investigated its structural variability and binding modes on a tubulin heterodimer using a combination of NMR experiments, docking, and molecular dynamics (MD) simulations. Our results show that, while lacking a stable structure, the peptide preferentially binds on a specific single site located near the β-tubulin C-terminal end, thus giving us precious hints regarding the mechanism of action of the NFL-TBS.40-63 peptide's antimitotic activity at the molecular level.

  2. Cerebrospinal fluid biomarkers of neurodegeneration are decreased or normal in narcolepsy

    DEFF Research Database (Denmark)

    Jennum, Poul Jørgen; Pedersen, Lars Østergaard; Bahl, Justyna Maria Czarna

    2017-01-01

    -synuclein, neurofilament light chain (NF-L), and chitinase 3-like protein-1 (CHI3L1). RESULTS: Levels of β-amyloid were lower in patients with type 1 narcolepsy (375.4 ±143.5 pg/ml) and type 2 narcolepsy (455.9 ± 65.0 pg/ml) compared with controls (697.9 ± 167.3 pg/ml, p ... narcolepsy, levels of T-tau (79.0 ± 27.5 pg/ml), and P-tau181 (19.1 ± 4.3 pg/ml) were lower than in controls (162.2 ± 49.9 pg/ml and 33.8 ± 9.2 pg/ml, p NF-L, and CHI3L1 in CSF from narcolepsy patients were similar to those of healthy individuals. CONCLUSION: Six CSF...

  3. Alpha-mannosidosis

    DEFF Research Database (Denmark)

    Borgwardt, Line Gutte; Danielsen, E R; Thomsen, Carsten;

    2016-01-01

    Alpha-mannosidosis (AM) (OMIM 248500) is a rare lysosomal storage disease. The understanding of the central nervous system (CNS) pathology is limited. This study is the first describing the CNS pathology and the correlation between the CNS pathology and intellectual disabilities in human AM. Thirty......-protein, glial fibrillary acidic protein and neurofilament light protein in 97 patients, 74% and 41% of CSF samples, respectively. A negative correlation between CSF-biomarkers and cognitive function and CSF-oligosaccharides and cognitive function was found. The combination of MRS/MRI changes, elevated...... concentrations of CSF-biomarkers and CSF-oligosaccharides suggests gliosis and reduced myelination, as part of the CNS pathology in AM. Our data demonstrate early neuropathological changes, which may be taken into consideration when planning initiation of treatment....

  4. Biomarkers of injury to neural tissue in veterinary medicine

    Directory of Open Access Journals (Sweden)

    Płonek Marta

    2016-09-01

    Full Text Available There are numerous biomarkers of central and peripheral nervous system damage described in human and veterinary medicine. Many of these are already used as tools in the diagnosis of human neurological disorders, and many are investigated in regard to their use in small and large animal veterinary medicine. The following review presents the current knowledge about the application of cell-type (glial fibrillary acidic protein, neurofilament subunit NF-H, myelin basic protein and central nervous system specific proteins (S100B, neuron specific enolase, tau protein, alpha II spectrin, ubiquitin carboxy-terminal hydrolase L1, creatine kinase BB present in the cerebrospinal fluid and/or serum of animals in the diagnosis of central or peripheral nervous system damage in veterinary medicine.

  5. A combination of chondroitinase ABC, glial cell line-derived neurotrophic factor, and Nogo A antibody delayed-release microspheres for the treatment of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Yu Zhang; Yueming Song

    2011-01-01

    The purpose of this study was to evaluate the effect of poly(lactide-co-glycolic acid) delayed-release microspheres, which were prepared using glial cell line-derived neurotrophic factor (GDNF), on the delayed-release, controllability, and protection of GDNF activity. The present study is the first to combine chondroitinase ABC, GDNF, and Nogo A antibody delayed-release microspheres for the treatment of spinal cord injury. Results show that the combined therapy of chondroitinase ABC,GDNF, and Nogo A antibody microspheres can increase the immunoreaction of neurofilament 200in the injured spinal cord, and this therapeutic effect was better than chondroitinase ABC, GDNF, or Nogo A antibody microspheres administered singularly.

  6. Differentiation of Bone Marrow Mesenchymal Cells to Neural Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To explore the possibility and condition of differentiation of bone marrow mesenchymal cells (BMSCs) to neural cells in vitro, BMSCs from whole bone marrow of rats were cultured. The BMSCs of passage 3 were identified with immunocytochemical staining of CD44 ( + ), CD71 ( + )and CD45(-). There were type Ⅰ and type Ⅱ cells in BMSCs. Type Ⅰ BMSCs were spindleshaped and strong positive in immunocytochemical staining of CD44 and CD71, whereas flat and big type Ⅱ BMSCs were lightly stained. The BMSCs of same passage were induced to differentiate into neural cells by β-mercaptoethanol (BME). After induction by BME, the type Ⅰ BMSCs withdrew to form neuron-like round soma and axon-like and dendrite-like processes, and were stained positively for neurofilament (NF). The type Ⅱ BMSCs did not change in the BME medium and were negatively or slightly stained of NF.

  7. Effects of poly lactic-co-glycolic acid-Nogo A antibody delayed-release microspheres on regeneration of injured spinal cord in rats

    Institute of Scientific and Technical Information of China (English)

    Hai Lan; Yueming Song

    2009-01-01

    BACKGROUND: Nogo A antigen is the major inhibiting factor blocking regeneration of the injured spinal cord. Neutralizing Nogo A antigens using Nogo A antibodies may help promote neurite regeneration and nervous function recovery. For successful regeneration, sustained release of the antibody from a biodegradable material loaded with Nogo A antibodies to the injury site is required. OBJECTIVE: To compare the therapeutic effects of poly lactic-co-glycolic acid (PLGA)-Nogo A antibody delayed-release microspheres and Nogo A antibody alone on spinal regeneration in Sprague-Dawley rats with complete transverse injury to the spinal cord.DESIGN, TIME AND SETTING: A randomized, controlled animal trial was performed at the Pharmacological Laboratory of West China Center of Medical Sciences, Sichuan University, between October 2007 and January 2008.MATERIALS: Goat anti-rat Nogo A monoclonal antibody was purchased from Santa, American; goat anti-rat neurofilament 200 monoclonal antibody was from Zhongshan Goldenbridge, Beijing, China; PLGA-Nogo A antibody delayed-release microspheres were provided by the College of Pharmacy, Sichuan University.METHODS: A total of 36 adult female Sprague Dawley rats were used to establish models of completely transected spinal cord injury, at T10. Animals were randomly divided into three groups (n=12): model, Nogo A antibody alone, and Nogo A antibody delayed-release microsphere groups. After transverse injury of the spinal cord, 50 μL normal saline solution, 50 μL normal saline solution containing 50 μ g Nogo A antibody, and 50 μ L normal saline solution containing 50 μg Nogo A antibody microspheres were administered to the respective groups at the injury site. MAIN OUTCOME MEASURES: The expression of Nogo A and neurofilament 200 in injured spinal cord was tested immunohistochemically, and motor function of rats was assessed by Basso-Beattie-Bresnahan (BBB) locomotor rating scale.RESULTS: Four weeks after injury, expression of Nogo A in

  8. CD34-positive interstitial cells of the human detrusor

    DEFF Research Database (Denmark)

    Rasmussen, Helle; Hansen, Alastair; Smedts, Frank;

    2007-01-01

    Interstitial cells of Cajal (ICC) are well described in the bowel wall. They are c-kit positive and play a role as pacemaker cells. Similar c-kit-positive cells have recently been described in the human bladder. The aim of this study was to characterize interstitial cells of the bladder detrusor...... using a panel of antibodies directed against CD117/c-kit, CD34, CD31, S100, tryptase, neurofilament, NSE, Factor-VIII and GFAP. A striking finding was an interstitial type of cell which is CD34 immunoreactive (CD34-ir) but CD117/c-kit negative. The cells have a tentacular morphology, enveloping...... and intermingling with individual muscle fasicles. Morphologically and immunohistochemically, they show no neurogenic, endothelial or mast cell differentiation. Transmission electron microscopy (TEM) showed the presence of interstitial cells with a round-to-oval nucleus, sparse perinuclear cytoplasm and long...

  9. A reliable primary human CNS culture protocol for morphological studies of dendritic and synaptic elements.

    Science.gov (United States)

    Hammond, Robert R; Iskander, Sam; Achim, Cristian L; Hearn, Stephen; Nassif, Jane; Wiley, Clayton A

    2002-08-30

    Primary dissociated human fetal forebrain cultures were grown in defined serum-free conditions. At 4 weeks in vitro the cultures contained abundant morphologically well differentiated neurons with complex dendritic arbors. Astrocytic proliferation was negligible without the use of antimitotic agents. Confocal scanning laser microscopy (CSLM) and electron microscopy confirmed the presence of a dense neuropil, numerous cell-cell contacts and synapses. Neurons expressed a variety of proteins including growth associated protein-43 (GAP43), microtubule associated protein-2ab (MAP), class-III beta tubulin (C3BT), neurofilaments (NF), synaptophysin (SYN), parvalbumin (PA) and calbindin (CB). The cultures have proven to be reliable and simple to initiate and maintain for many weeks without passaging. They are useful in investigations of dendritic growth and injury of primary human CNS neurons.

  10. Peripheral primitive neuroectodermal tumor in a two-year-old paint horse.

    Science.gov (United States)

    Facemire, Paul R; Facemire, Lynn M; Honnold, Shelley P

    2012-07-01

    A 2-year-old gelding presented with a history of lethargy and anorexia. Physical examination revealed pleural and abdominal fluid, as well as several masses in the scrotum. The horse became acutely dyspneic despite 7 days of supportive care. Because of the poor prognosis, the owners elected euthanasia. Gross necropsy findings included multiple masses in the scrotum and inguinal canals and along the dorsal peritoneal cavity. The neoplasm infiltrated the kidneys, liver, spleen, mesenteric lymph nodes, mesentery, and abdominal surface of the diaphragm. Histologically, the neoplasm is composed of spindle to round cells arranged in densely cellular areas, vague streams, and rare rosettes. Neoplastic cells were immunoreactive for S-100 protein, glial fibrillary acidic protein, neuron-specific enolase, neurofilament protein, and synaptophysin. Based on gross, histological, and immunohistochemical findings, a diagnosis of peripheral primitive neuroectodermal tumor was made. Primitive neuroectodermal tumors are rarely described in horses that were associated with the eyes.

  11. Induction of cholinergic differentiation by 5-azacytidine in NG108-15 neuronal cells.

    Science.gov (United States)

    Aizawa, Shu; Sensui, Naoto; Yamamuro, Yutaka

    2009-01-28

    The DNA-demethylating agent 5-azacytidine (5-azaC) causes extensive genomic demethylation of 5-methyl-cytosine residues and reduces DNA methyltransferase activity in cells. This study evaluated the effect of 5-azaC on neuronal differentiation in proliferating NG108-15 neuronal cells, which exhibit cholinergic traits. The expression of choline acetyltransferase, an enzyme responsible for acetylcholine synthesis, was increased at both the mRNA and protein level, and neurite outgrowth was markedly induced with an increase of neurofilament-heavy chain protein, in the 5-azaC-treated cells. These findings show that global DNA demethylation markedly induces the expression of the neurotransmitter phenotype and morphological differentiation in NG108-15 neuronal cells as a model for cholinergic neuron.

  12. Isolation and differentiation of neural stem/progenitor cells from fetal rat dorsal root ganglia

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    To find a promising alternative to neurons or schwann cells (SCs) for peripheral nerve repair applications,this study sought to isolate stem cells from fetal rat dorsal root ganglion (DRG) explants.Molecular expression analysis confirmed neural stem cell characteristics of DRG-derived neurospheres in terms of expressing neural stem cell-specific genes and a set of well-defined genes related to stem cell niches and glial fate decision.Under the influence of neurotrophic factors,bFGF and NGF,the neurospheres gave rise to neurofilament-expressing neurons and S100-expressing Schwann cell-like cells by different pathways.This study suggests that a subpopulation of stem cells that reside in DRGs is the progenitor of neurons and glia,which could directly induce the differentiation toward neurons,or SCs.

  13. Coculture of elongated neuron axon with poly (D, L-lactide-co-glycolide) biomembrane in vitro

    Institute of Scientific and Technical Information of China (English)

    程飚; 陈峥嵘

    2004-01-01

    Objective: To elongate human nerve axon in culture and search for suitable support matrices for peripheral nervous system transplantation.Methods: Human embryo cortical neuronal cells,seeded on poly ( D, L-lactide-co-glycolide ) ( PLGA )membrane scaffolds, were elongated with a self-made neuro-axon extending device. The growth and morphological changes of neuron axons were observed to measure axolemmal permeability after elongation.Neurofilament protein was stained by immunohistochemical technique.Results: Human embryo neuron axon could be elongated and cultured on the PLGA membrane and retain their normal form and function.Conclusions: Three dimensional scaffolds with elongated neuron axon have the basic characteristics of artificial nerves, indicating a fundemental theory of nerve repair with elongated neuron axon.

  14. Structural and Ultrastructural Analysis of Cerebral Cortex, Cerebellum, and Hypothalamus from Diabetic Rats

    Science.gov (United States)

    Hernández-Fonseca, Juan P.; Rincón, Jaimar; Pedreañez, Adriana; Viera, Ninoska; Arcaya, José L.; Carrizo, Edgardo; Mosquera, Jesús

    2009-01-01

    Autonomic and peripheral neuropathies are well-described complications in diabetes. Diabetes mellitus is also associated to central nervous system damage. This little-known complication is characterized by impairment of brain functions and electrophysiological changes associated with neurochemical and structural abnormalities. The purpose of this study was to investigate brain structural and ultrastructural changes in rats with streptozotocin-induced diabetes. Cerebral cortex, hypothalamus, and cerebellum were obtained from controls and 8 weeks diabetic rats. Light and electron microscope studies showed degenerative changes of neurons and glia, perivascular and mitochondrial swelling, disarrangement of myelin sheath, increased area of myelinated axons, presynaptic vesicle dispersion in swollen axonal boutoms, fragmentation of neurofilaments, and oligodendrocyte abnormalities. In addition, depressive mood was observed in diabetic animals. The brain morphological alterations observed in diabetic animals could be related to brain pathologic process leading to abnormal function, cellular death, and depressive behavioral. PMID:19812703

  15. Immunohistochemical detection of brain tissue in heated meat products.

    Science.gov (United States)

    Tersteeg, M H G; Koolmees, P A; van Knapen, F

    2002-05-01

    Immunohistochemical methods were used to determine whether brain tissue could be detected in test batches of meat products prepared with known levels of this tissue (0, 1, 5, 10, or 20% bovine brain tissue or 5% porcine brain tissue). Four different, commercially-available antibodies were examined: anti-Neurofilament (anti-NF), anti-MyelinBasicProtein (anti-MBP), anti-NeuronSpecificEnolase (anti-NSE) and anti-GlialFibrillaryAcidicProtein (anti-GFAP). Results obtained with the four antibodies differed with the heat treatment applied to the products (pasteurisation or sterilisation). The amount of immunoreaction product in the raw meat product varied with the antibody, even when the sample contained the same amount of brain tissue. The staining pattern also varied with the antibody. Overall, the anti-MBP antibody proved to be most useful in detecting brain tissue in finely comminuted heated meat products.

  16. "COMPARISON BETWEEN NUMBER OF NERVE FIBERS IN NORMAL BREAST TISSUE, BENIGN LESIONS AND MALIGNANT BREAST TUMORS"

    Directory of Open Access Journals (Sweden)

    H. Soltanghoraiee

    2004-10-01

    Full Text Available Breast cancer is common and is considered second cause of cancer related mortality in females. Regarding importance of breast cancer, more investigation in this field is recommended. For many years investigators believed that neoplasms were not innervated but new findings have proved otherwise. This descriptive study was carried out to compare number of nerve fibers in benign, malignant and normal breast tissue. Of each group several slides were reviewed and 3608.50 mm2 of malignant tumors (ductal carcinoma, 3641 mm2 of benign tumors (fibroadenoma and 2331.25 mm2 of normal breast tissue (mammoplasty were assessed. Numbers of nerve fibers were compared and a significant increase in nerve fibers was found in malignant tumors compared with benign tumors and normal breast tissue. Accuracy of hematoxylin and eosin method were examined by immunohistochemistry staining (neurofilament method and affirmed. These results reveal that malignant tumors of breast have more nerve fibers than normal breast tissue or benign tumors.

  17. Mechanoreceptors found in a posterior cruciate ligament from a well-functioning total knee arthroplasty retrieval.

    Science.gov (United States)

    Mihalko, William M; Creek, Aaron T; Mary, Michelle N; Williams, John L; Komatsu, David E

    2011-04-01

    Histologic analysis of the posterior cruciate ligament has been reported in the normal and osteoarthritic knee but not after cruciate-retaining (CR) total knee arthroplasty (TKA). Retention of the posterior cruciate ligament during TKA has been debated as to whether it is beneficial in stability and function. If the presence of mechanoreceptors is shown to be maintained in CR TKA, then there may be an argument for retention. This case report used a retrieval of a well-functioning TKA specimen that had a CR TKA. To prove the presence of mechanoreceptors within the ligament, immunohistochemistry techniques using S100 protein and neurofilament protein were used. This specimen had pacini and lamellar type of mechanoreceptors present on immunohistochemistry analysis. The presence or retention of mechanoreceptors and innervations of the ligament may indicate an advantage when retained during TKA.

  18. Painful Charcot-Marie-Tooth neuropathy type 2E/1F due to a novel NEFL mutation.

    Science.gov (United States)

    Doppler, Kathrin; Kunstmann, Erdmute; Krüger, Stefan; Sommer, Claudia

    2017-05-01

    Charcot-Marie-Tooth neuropathy (CMT) 2E/1F is caused by mutations in the neurofilament light-chain polypeptide (NEFL) gene. Giant axons are a histological hallmark frequently seen in nerves of patients with CMT2E. We describe the case of a 43-year-old patient with a painful, predominantly sensory neuropathy. The patient's sural nerve biopsy showed multiple giant axons. Genetic sequencing of the NEFL gene revealed that the patient was heterozygous for an altered sequence of the gene, c.816C>G, p.Asn272Lys, which has not yet been described in CMT2E/1F. In contrast to other cases of CMT2E/1F, where motor symptoms are predominant, pain was the most disabling symptom in this patient. Muscle Nerve 55: 752-755, 2017. © 2016 Wiley Periodicals, Inc.

  19. Spontaneous cerebellar primitive neuroectodermal tumor in a juvenile cynomolgus monkey (Macaca fascicularis).

    Science.gov (United States)

    Mukaratirwa, Sydney; Rogerson, Petrina; Blanco, Ana L; Naylor, Stuart W; Bradley, Alys

    2012-08-01

    A neoplastic mass compressing the left cerebellar hemisphere and hindbrain was observed at trimming in a 3½-year-old male cynomolgus monkey from a control dose group. Microscopically, the neoplastic mass was nonencapsulated, invasive, and showed two morphological patterns. The predominant area consisted of densely packed undifferentiated, polygonal to spindle cells arranged in vague sheets supported by a scant fibrovascular stroma. The other area was less cellular and composed of round neoplastic cells separated by eosinophilic fibrillar material. Immunohistochemical staining for vimentin, synaptophysin, glial fibrillary acidic protein, neuron-specific enolase, neurofilament, and S-100 confirmed the presence of primitive undifferentiated neuroectodermal cells and some cells with neuronal or glial differentiation. On the basis of histopathology and immunohistochemical findings, a diagnosis of cerebellar primitive neuroectodermal tumor with neuronal and glial differentiation was made. Primitive neuroectodermal tumors are rare in animals including nonhuman primates; this is the first published report in this species.

  20. Central type primitive neuroectodermal tumor/neuroblastoma of the uterus: a case report.

    Science.gov (United States)

    Shimada, Chisa; Todo, Yukiharu; Okamoto, Kazuhira; Akashi, Daisuke; Yamashiro, Katsushige; Hasegawa, Tadashi

    2014-10-01

    We encountered a 63-year-old woman who had a uterine tumor with peritoneal dissemination and para-aortic lymph node metastasis. Microscopic specimens of the tumor showed a small blue round-cell tumor. Immunohistochemistry showed cells to be negative for cytokeratin AE1/3, desmin, myogenin, CD10, CD34, and CD99, focal positive for vimentin, and positive for muscle-specific actin (HHF-35), neurofilament, synaptophysin and CD56. Fluorescence in situ hybridization revealed no split signal showing Ewing sarcoma breakpoint region 1 gene translocation. Deletion of 1p36 was identified in 30% of the tumor cells. These findings are thought to be equivalent to central type primitive neuroectodermal tumors/neuroblastoma. Cytoreductive debulking surgery followed by chemotherapy, including cyclophosphamide, vincristine and adriamycin, resulted in complete remission. She has no evidence of disease at 24 months after surgery.

  1. Neuropeptide Y and nestin expression in the hippocampal CA3 region following restrained and inverted stress in rats

    Institute of Scientific and Technical Information of China (English)

    Guogang Sun; Ailing Li; Bo Chen; Guangbi Fan; Hongwen Xiao; Yue Chen; Jie Xu; Ye Nie; Bing Zhang; Lin Gong

    2011-01-01

    Our preliminary study demonstrated that neuropeptide Y (NPY)/nestin-positive cells exhibit a consistent spatial distribution in the hippocampus of normal adult rats. However, following severe acute and chronic stress-induced impaired learning and memory, synchronous decreased expression of nestin and NPY takes place in the hippocampus, and the underlying mechanisms remain unclear. In the present study, acute and chronic stress rat models were established using combined restrained and inverted stress. Results showed that learning and memory significantly decreased in acute and chronic stress rats. In addition, hippocampal cells were damaged, in particular in the acute stress rats, and nestin and NPY expression, as well as the number of NPY/nestin-positive cells in the CA3 region, significantly decreased. Furthermore, mature neurofilament 200-positive neurons were absent in the chronic stress rats. The NPY and cytoskeletal protein system equally contributed to stress-induced early learning and memory deficits, as well as sustained cerebral injury in the adult hippocampus.

  2. Regeneration of unmyelinated and myelinated sensory nerve fibres studied by a retrograde tracer method

    DEFF Research Database (Denmark)

    Lozeron, Pierre; Krarup, Christian; Schmalbruch, Henning

    2004-01-01

    to large neurons after crush and regeneration than in controls, indicating that regeneration of small neurons was less complete than that of large ones. This contrasted with the fact that unmyelinated axons in the regenerated sural nerve after 74 days were only slightly reduced....... of axons. Axonal counts do not reflect the number of regenerated neurons because of axonal branching and because myelinated axons form unmyelinated sprouts. Two days to 10 weeks after crushing, the distal sural or peroneal nerves were cut and exposed to fluoro-dextran. Large and small dorsal root ganglion...... cells that had been labelled, i.e., that had regenerated axons towards or beyond the injection site, were counted in serial sections. Large and small neurons with presumably myelinated and unmyelinated axons, respectively, were classified by immunostaining for neurofilaments. The axonal growth rate...

  3. Differential expression of cytoskeletal proteins in the dendrites of parvalbumin-positive interneurons versus granule cells in the adult rat dentate gyrus.

    Science.gov (United States)

    de Haas Ratzliff, A; Soltesz, I

    2000-01-01

    Parvalbumin-positive interneurons and granule cells of the dentate gyrus exhibit characteristic differences in morphological, cytochemical, physiological, and pathophysiological properties. Several of these defining features, including dendritic morphology, spine density, and sensitivity to insults, are likely to be influenced by the neuronal cytoskeleton. The data in this paper demonstrate striking differences in the expression levels of all three neurofilament triplet proteins, as well as alpha-internexin and beta-tubulin III, between the parvalbumin-positive interneurons and dentate granule cells. Therefore, the molecular composition of intermediate filaments and microtubules in the dendritic domain of parvalbumin-positive dentate interneurons is distinct from the cytoskeleton of neighboring granule cells, indicating the existence of highly cell type-specific cytoskeletal architecture within the dentate gyrus.

  4. Acute axonal damage predicts clinical outcome in patients with multiple sclerosis

    DEFF Research Database (Denmark)

    Lim, E.T; Sellebjerg, F; Jensen, C.V

    2005-01-01

    The objectives of this study were (1) to determine how cerebrospinal fluid (CSF) neurofilament heavy chain (NfH(SM134) and NfH(SM135)) levels relate to clinical outcome in optic neuritis (ON) and multiple sclerosis (MS) relapse patients treated with high dose oral methylprednisolone; and (2...... in the MS attack trial were treated with oral methylprednisolone. In the MS attack trial group, CSF NfH(SM134) and NfH(SM135) measured at week 3 and deltaCSF NfH(SMI34) levels from baseline to week 3 were predictive of clinical outcome at week 8 and 52. In the ON group, no such association was seen. When...... both groups were combined, baseline CSF NfH(SHM134) and NfH(SM135) correlated positively with baseline enhancing lesion volume (ELV) (r(s) =0.50, P

  5. Brain-derived neurotrophic factor induces neuron-like cellular differentiation of mesenchymal stem cells derived from human umbilical cord blood cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Lei Chen; Guozhen Hui; Zhongguo Zhang; Bing Chen; Xiaozhi Liu; Zhenlin Liu; Hongliang Liu; Gang Li; Zhiguo Su; Junfei Wang

    2011-01-01

    Human umbilical cord blood was collected from full-term deliveries scheduled for cesarean section. Mononuclear cells were isolated, amplified and induced as mesenchymal stem cells. Isolated mesenchymal stem cells tested positive for the marker CD29, CD44 and CD105 and negative for typical hematopoietic and endothelial markers. Following treatment with neural induction medium containing brain-derived neurotrophic factor for 7 days, the adherent cells exhibited neuron-like cellular morphology. Immunohistochemical staining and reverse transcription-PCR revealed that the induced mesenchymal stem cells expressed the markers for neuron-specific enolase and neurofilament. The results demonstrated that human umbilical cord blood-derived mesenchymal stem cells can differentiate into neuron-like cells induced by brain-derived neurotrophic factor in vitro.

  6. Immunohistochemical detection of tyrosine kinase B (TrkB in the enteric nervous system of the small intestine in pigeon (Columba livia

    Directory of Open Access Journals (Sweden)

    A Germanà

    2009-06-01

    Full Text Available The presence and cell localization of TrkB, the main receptor for the neurotrophins (NTs, was investigated immunohistochemically in the small intestine of adult pigeons, with special reference to the enteric nervous system (ENS. Several neuronal (neurofilament proteins and PGP 9.5 and glial cell (S100 protein markers were studied in parallel. TrkB immunoreactivity (TrkB-IR was found to be restricted to immunohistochemically-identified glial cells present in the enteric plexuses, and to Schwann cells forming the perivascular plexus. Also, TrkB-IR was detected in enterochromaffin cells and in unidentified dendritic cells within the gut-associated lymphoid tissue. The present results demonstrate that as for mammals, TrkB in the ENS is restricted to the glial cells. The possible function of the TrkB ligands, however, remains to be established.

  7. Mathematical modeling of biological processes

    CERN Document Server

    Friedman, Avner

    2014-01-01

    This book on mathematical modeling of biological processes includes a wide selection of biological topics that demonstrate the power of mathematics and computational codes in setting up biological processes with a rigorous and predictive framework. Topics include: enzyme dynamics, spread of disease, harvesting bacteria, competition among live species, neuronal oscillations, transport of neurofilaments in axon, cancer and cancer therapy, and granulomas. Complete with a description of the biological background and biological question that requires the use of mathematics, this book is developed for graduate students and advanced undergraduate students with only basic knowledge of ordinary differential equations and partial differential equations; background in biology is not required. Students will gain knowledge on how to program with MATLAB without previous programming experience and how to use codes in order to test biological hypothesis.

  8. Brain-Specific Cytoskeletal Damage Markers in Cerebrospinal Fluid: Is There a Common Pattern between Amyotrophic Lateral Sclerosis and Primary Progressive Multiple Sclerosis?

    Directory of Open Access Journals (Sweden)

    Ahmed Abdelhak

    2015-07-01

    Full Text Available Many neurodegenerative disorders share a common pathophysiological pathway involving axonal degeneration despite different etiological triggers. Analysis of cytoskeletal markers such as neurofilaments, protein tau and tubulin in cerebrospinal fluid (CSF may be a useful approach to detect the process of axonal damage and its severity during disease course. In this article, we review the published literature regarding brain-specific CSF markers for cytoskeletal damage in primary progressive multiple sclerosis and amyotrophic lateral sclerosis in order to evaluate their utility as a biomarker for disease progression in conjunction with imaging and histological markers which might also be useful in other neurodegenerative diseases associated with affection of the upper motor neurons. A long-term benefit of such an approach could be facilitating early diagnostic and prognostic tools and assessment of treatment efficacy of disease modifying drugs.

  9. Brain-Specific Cytoskeletal Damage Markers in Cerebrospinal Fluid: Is There a Common Pattern between Amyotrophic Lateral Sclerosis and Primary Progressive Multiple Sclerosis?

    Science.gov (United States)

    Abdelhak, Ahmed; Junker, Andreas; Brettschneider, Johannes; Kassubek, Jan; Ludolph, Albert C; Otto, Markus; Tumani, Hayrettin

    2015-07-31

    Many neurodegenerative disorders share a common pathophysiological pathway involving axonal degeneration despite different etiological triggers. Analysis of cytoskeletal markers such as neurofilaments, protein tau and tubulin in cerebrospinal fluid (CSF) may be a useful approach to detect the process of axonal damage and its severity during disease course. In this article, we review the published literature regarding brain-specific CSF markers for cytoskeletal damage in primary progressive multiple sclerosis and amyotrophic lateral sclerosis in order to evaluate their utility as a biomarker for disease progression in conjunction with imaging and histological markers which might also be useful in other neurodegenerative diseases associated with affection of the upper motor neurons. A long-term benefit of such an approach could be facilitating early diagnostic and prognostic tools and assessment of treatment efficacy of disease modifying drugs.

  10. Neuromuscular Junctions as Key Contributors and Therapeutic Targets in Spinal Muscular Atrophy

    Science.gov (United States)

    Boido, Marina; Vercelli, Alessandro

    2016-01-01

    Spinal muscular atrophy (SMA) is a recessive autosomal neuromuscular disease, representing the most common fatal pediatric pathology. Even though, classically and in a simplistic way, it is categorized as a motor neuron (MN) disease, there is an increasing general consensus that its pathogenesis is more complex than expected. In particular, neuromuscular junctions (NMJs) are affected by dramatic alterations, including immaturity, denervation and neurofilament accumulation, associated to impaired synaptic functions: these abnormalities may in turn have a detrimental effect on MN survival. Here, we provide a description of NMJ development/maintenance/maturation in physiological conditions and in SMA, focusing on pivotal molecules and on the time-course of pathological events. Moreover, since NMJs could represent an important target to be exploited for counteracting the pathology progression, we also describe several therapeutic strategies that, directly or indirectly, aim at NMJs. PMID:26869891

  11. Calpains participate in nerve terminal degeneration induced by spider and snake presynaptic neurotoxins.

    Science.gov (United States)

    Duregotti, Elisa; Tedesco, Erik; Montecucco, Cesare; Rigoni, Michela

    2013-03-15

    α-latrotoxin and snake presynaptic phospholipases A2 neurotoxins target the presynaptic membrane of axon terminals of the neuromuscular junction causing paralysis. These neurotoxins display different biochemical activities, but similarly alter the presynaptic membrane permeability causing Ca(2+) overload within the nerve terminals, which in turn induces nerve degeneration. Using different methods, here we show that the calcium-activated proteases calpains are involved in the cytoskeletal rearrangements that we have previously documented in neurons exposed to α-latrotoxin or to snake presynaptic phospholipases A2 neurotoxins. These results indicate that calpains, activated by the massive calcium influx from the extracellular medium, target fundamental components of neuronal cytoskeleton such as spectrin and neurofilaments, whose cleavage is functional to the ensuing nerve terminal fragmentation.

  12. [Current Status of Genetic Diagnosis of Charcot-Marie-Tooth Disease: Variety of the Disease-causing Genes].

    Science.gov (United States)

    Hashiguchi, Akihiro; Higuchi, Yujiro; Takashima, Hiroshi

    2016-01-01

    At least 40 genes have been associated with Charcot-Marie-Tooth disease (CMT) and the related inherited neuropathies. Genetic studies have revealed the following factors as causes of inherited neuropathies: myelin components, transcription factors for myelination, myelin maintenance systems, differentiation factors of the peripheral nerve, neurofilaments, protein transfer systems, mitochondrial proteins, DNA repair, RNA/protein synthesis, ion channels, and aminoacyl-tRNA synthetases. Since 2007, we have tried to screen for mutations in CMT patients using microarrays or next generation sequencers. As a result, the detection rate of gene mutations has improved to about 25%. In this study, we applied target resequencing to 72 genes. From the negative examples, we identified the cases based on clinical course, family history, and electrophysiological findings, and then performed exome analysis. We then tried to identify novel causative genes by analyzing the enormous data obtained from our exome analysis.

  13. Giant axonal neuropathy alters the structure of keratin intermediate filaments in human hair.

    Science.gov (United States)

    Soomro, Asfia; Alsop, Richard J; Negishi, Atsuko; Kreplak, Laurent; Fudge, Douglas; Kuczmarski, Edward R; Goldman, Robert D; Rheinstädter, Maikel C

    2017-04-01

    Giant axonal neuropathy (GAN) follows an autosomal recessive genetic inheritance and impedes the peripheral and central nervous system due to axonal swellings that are packed with neurofilaments. The patients display a number of phenotypes, including hypotonia, muscle weakness, decreased reflexes, ataxia, seizures, intellectual disability, pale skin and often curled hair. We used X-ray diffraction and tensile testing to determine potential changes to the structure of keratin intermediate filaments (IFs) in the hair of patients with GAN. A statistically significant decrease in the 47 and the 27 Å diffraction signals were observed. Tensile tests determined that the hair was slightly stiffer, stronger and more extensible in GAN patients. These results suggest that the structure of keratin IFs in hair is altered in GAN, and the findings are compatible with an increased positional disorder of the keratin tetramers within the hair fibres. © 2017 The Author(s).

  14. Structural and Ultrastructural Analysis of Cerebral Cortex, Cerebellum, and Hypothalamus from Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Juan P. Hernández-Fonseca

    2009-01-01

    Full Text Available Autonomic and peripheral neuropathies are well-described complications in diabetes. Diabetes mellitus is also associated to central nervous system damage. This little-known complication is characterized by impairment of brain functions and electrophysiological changes associated with neurochemical and structural abnormalities. The purpose of this study was to investigate brain structural and ultrastructural changes in rats with streptozotocin-induced diabetes. Cerebral cortex, hypothalamus, and cerebellum were obtained from controls and 8 weeks diabetic rats. Light and electron microscope studies showed degenerative changes of neurons and glia, perivascular and mitochondrial swelling, disarrangement of myelin sheath, increased area of myelinated axons, presynaptic vesicle dispersion in swollen axonal boutoms, fragmentation of neurofilaments, and oligodendrocyte abnormalities. In addition, depressive mood was observed in diabetic animals. The brain morphological alterations observed in diabetic animals could be related to brain pathologic process leading to abnormal function, cellular death, and depressive behavioral.

  15. Oligodendroglioma in a French bulldog.

    Science.gov (United States)

    Park, Chun-Ho

    2003-08-01

    A 5-year-old, male French bulldog with bradycardia, dyspnea, and decerebrate rigidity was necropsied. Macroscopic findings were restricted to the brain, and a single mass, 1.5 x 2.0 x 1.5 cm in size, was observed mainly at the right cingulum with prominently protruding into the dilated right lateral ventricle. The mass was grayish white in color, soft and gelatinous, but not clearly delineated. Microscopically, the mass consisted of diffuse proliferated neoplastic oligodendroglial cells characterized by small, round, and hyperchromatic nuclei with clear cytoplasm and the cells aggressively invaded into the adjacent parenchyma. Immunohistochemistry demonstrated that most of the neoplastic cells were positive for S-100 protein, vimentin, neuron specific enolase (NSE), and neurofilament protein (NFP). From these findings, the mass was diagnosed as oligodendroglioma.

  16. Mechanical Flexibility Reduces the Foreign Body Response to Long-Term Implanted Microelectrodes in Rabbit Cortex

    Science.gov (United States)

    Sohal, Harbaljit S.; Clowry, Gavin J.

    2016-01-01

    Micromotion between the brain and implanted electrodes is a major contributor to the failure of invasive microelectrodes. Movements of the electrode tip cause recording instabilities while spike amplitudes decline over the weeks/months post-implantation due to glial cell activation caused by sustained mechanical trauma. We compared the glial response over a 26–96 week period following implantation in the rabbit cortex of microwires and a novel flexible electrode. Horizontal sections were used to obtain a depth profile of the radial distribution of microglia, astrocytes and neurofilament. We found that the flexible electrode was associated with decreased gliosis compared to the microwires over these long indwelling periods. This was in part due to a decrease in overall microgliosis and enhanced neuronal density around the flexible probe, especially at longer periods of implantation. PMID:27788240

  17. Absence of systemic oxidative stress and increased CSF prostaglandin F2α in progressive MS

    DEFF Research Database (Denmark)

    Lam, Magda A.; Maghzal, Ghassan J.; Khademi, Mohsen

    2016-01-01

    Objective: We aimed to investigate the role of oxidative stress in the progression of multiple sclerosis (MS).  Methods: We determined by liquid chromatography-tandem mass spectrometry nonenzymatic (F2-isoprostanes) and enzymatic oxidation products of arachidonic acid (prostaglandin F2α [PGF2α......]) in plasma and CSF of 45 controls (other neurologic disease [OND] with no signs of inflammation) and 62 patients with MS. Oxidation products were correlated with disease severity and validated biomarkers of inflammation (chemokine ligand 13; matrix metalloproteinase-9; osteopontin) and axonal damage...... (neurofilament light protein).  Results: Compared with OND controls, plasma concentrations of F2-isoprostanes and PGF2α were significantly lower in patients with progressive disease, and decreased with increasing disability score (Expanded Disability Status Scale). In contrast, CSF concentrations of PGF2α...

  18. Role of 20-kDa amelogenin (P148) phosphorylation in calcium phosphate formation in vitro.

    Science.gov (United States)

    Kwak, Seo-Young; Wiedemann-Bidlack, Felicitas B; Beniash, Elia; Yamakoshi, Yasuo; Simmer, James P; Litman, Amy; Margolis, Henry C

    2009-07-10

    The potential role of amelogenin phosphorylation in enamel formation is elucidated through in vitro mineralization studies. Studies focused on the native 20-kDa porcine amelogenin proteolytic cleavage product P148 that is prominent in developing enamel. Experimental conditions supported spontaneous calcium phosphate precipitation with the initial formation of amorphous calcium phosphate (ACP). In the absence of protein, ACP was found to undergo relatively rapid transformation to randomly oriented plate-like apatitic crystals. In the presence of non-phosphorylated recombinant full-length amelogenin, rP172, a longer induction period was observed during which relatively small ACP nanoparticles were transiently stabilized. In the presence of rP172, these nanoparticles were found to align to form linear needle-like particles that subsequently transformed and organized into parallel arrays of apatitic needle-like crystals. In sharp contrast to these findings, P148, with a single phosphate group on serine 16, was found to inhibit calcium phosphate precipitation and stabilize ACP formation for more than 1 day. Additional studies using non-phosphorylated recombinant (rP147) and partially dephosphorylated forms of P148 (dephoso-P148) showed that the single phosphate group in P148 was responsible for the profound effect on mineral formation in vitro. The present study has provided, for the first time, evidence suggesting that the native proteolytic cleavage product P148 may have an important functional role in regulating mineralization during enamel formation by preventing unwanted mineral formation within the enamel matrix during the secretory stage of amelogenesis. Results obtained have also provided new insights into the functional role of the highly conserved hydrophilic C terminus found in full-length amelogenin.

  19. Evolutionary constraints of phosphorylation in eukaryotes, prokaryotes, and mitochondria.

    Science.gov (United States)

    Gnad, Florian; Forner, Francesca; Zielinska, Dorota F; Birney, Ewan; Gunawardena, Jeremy; Mann, Matthias

    2010-12-01

    High accuracy mass spectrometry has proven to be a powerful technology for the large scale identification of serine/threonine/tyrosine phosphorylation in the living cell. However, despite many described phosphoproteomes, there has been no comparative study of the extent of phosphorylation and its evolutionary conservation in all domains of life. Here we analyze the results of phosphoproteomics studies performed with the same technology in a diverse set of organisms. For the most ancient organisms, the prokaryotes, only a few hundred proteins have been found to be phosphorylated. Applying the same technology to eukaryotic species resulted in the detection of thousands of phosphorylation events. Evolutionary analysis shows that prokaryotic phosphoproteins are preferentially conserved in all living organisms, whereas-site specific phosphorylation is not. Eukaryotic phosphosites are generally more conserved than their non-phosphorylated counterparts (with similar structural constraints) throughout the eukaryotic domain. Yeast and Caenorhabditis elegans are two exceptions, indicating that the majority of phosphorylation events evolved after the divergence of higher eukaryotes from yeast and reflecting the unusually large number of nematode-specific kinases. Mitochondria present an interesting intermediate link between the prokaryotic and eukaryotic domains. Applying the same technology to this organelle yielded 174 phosphorylation sites mapped to 74 proteins. Thus, the mitochondrial phosphoproteome is similarly sparse as the prokaryotic phosphoproteomes. As expected from the endosymbiotic theory, phosphorylated as well as non-phosphorylated mitochondrial proteins are significantly conserved in prokaryotes. However, mitochondrial phosphorylation sites are not conserved throughout prokaryotes, consistent with the notion that serine/threonine phosphorylation in prokaryotes occurred relatively recently in evolution. Thus, the phosphoproteome reflects major events in the

  20. PINK1-mediated phosphorylation of Parkin boosts Parkin activity in Drosophila.

    Directory of Open Access Journals (Sweden)

    Kahori Shiba-Fukushima

    2014-06-01

    Full Text Available Two genes linked to early onset Parkinson's disease, PINK1 and Parkin, encode a protein kinase and a ubiquitin-ligase, respectively. Both enzymes have been suggested to support mitochondrial quality control. We have reported that Parkin is phosphorylated at Ser65 within the ubiquitin-like domain by PINK1 in mammalian cultured cells. However, it remains unclear whether Parkin phosphorylation is involved in mitochondrial maintenance and activity of dopaminergic neurons in vivo. Here, we examined the effects of Parkin phosphorylation in Drosophila, in which the phosphorylation residue is conserved at Ser94. Morphological changes of mitochondria caused by the ectopic expression of wild-type Parkin in muscle tissue and brain dopaminergic neurons disappeared in the absence of PINK1. In contrast, phosphomimetic Parkin accelerated mitochondrial fragmentation or aggregation and the degradation of mitochondrial proteins regardless of PINK1 activity, suggesting that the phosphorylation of Parkin boosts its ubiquitin-ligase activity. A non-phosphorylated form of Parkin fully rescued the muscular mitochondrial degeneration due to the loss of PINK1 activity, whereas the introduction of the non-phosphorylated Parkin mutant in Parkin-null flies led to the emergence of abnormally fused mitochondria in the muscle tissue. Manipulating the Parkin phosphorylation status affected spontaneous dopamine release in the nerve terminals of dopaminergic neurons, the survivability of dopaminergic neurons and flight activity. Our data reveal that Parkin phosphorylation regulates not only mitochondrial function but also the neuronal activity of dopaminergic neurons in vivo, suggesting that the appropriate regulation of Parkin phosphorylation is important for muscular and dopaminergic functions.

  1. Ischemic preconditioning preserves connexin 43 phosphorylation during sustained ischemia in pig hearts in vivo.

    Science.gov (United States)

    Schulz, Rainer; Gres, Petra; Skyschally, Andreas; Duschin, Alexej; Belosjorow, Sergej; Konietzka, Ina; Heusch, Gerd

    2003-07-01

    During myocardial ischemia, connexin 43 (Cx43) is dephosphorylated in vitro, and the subsequent opening of gap junctions formed by two opposing Cx43 hexamers was suggested to propagate ischemia/reperfusion injury. Reduction of infarct size (IS) by ischemic preconditioning (IP) involves activation of protein kinase C (PKC) and p38 mitogen activated protein kinase (MAPK), both of which can phosphorylate Cx43. We now studied in anesthetized pigs whether IP impacts on Cx43 phosphorylation by measuring the density of non-phosphorylated and total Cx43 (confocal laser) during normoperfusion and 90-min ischemia in non-preconditioned and preconditioned hearts. Co-localization of PKCalpha, p38MAPKalpha, and p38MAPKbeta with Cx43 and the activity of p38MAPK were assessed. IP by 10 min ischemia and 15 min reperfusion reduced IS. Non-phosphorylated Cx43 remained unchanged during ischemia in preconditioned hearts, while it increased from 35+/-3 to 75+/-8 AU (P<0.05) in non-preconditioned hearts. Co-localization of PKCalpha, p38MAPKalpha, and p38MAPKbeta with Cx43 during ischemia increased only in preconditioned hearts. While the ischemia-induced increase in p38MAPKalpha activity was comparable in preconditioned and non-preconditioned hearts, p38MAPKbeta activity was increased only in preconditioned hearts. Blockade of p38MAPK by SB203580 attenuated the IS-reduction and the increased p38MAPK-Cx43 co-localization by IP. We conclude that IP increases co-localization of protein kinases with Cx43 and preserves phosphorylation of Cx43 during ischemia.

  2. Phosphorylation of thymidylate synthase affects slow-binding inhibition by 5-fluoro-dUMP and N(4)-hydroxy-dCMP.

    Science.gov (United States)

    Ludwiczak, Jan; Maj, Piotr; Wilk, Piotr; Frączyk, Tomasz; Ruman, Tomasz; Kierdaszuk, Borys; Jarmuła, Adam; Rode, Wojciech

    2016-04-01

    Endogenous thymidylate synthases, isolated from tissues or cultured cells of the same specific origin, have been reported to show differing slow-binding inhibition patterns. These were reflected by biphasic or linear dependence of the inactivation rate on time and accompanied by differing inhibition parameters. Considering its importance for chemotherapeutic drug resistance, the possible effect of thymidylate synthase inhibition by post-translational modification was tested, e.g. phosphorylation, by comparing sensitivities to inhibition by two slow-binding inhibitors, 5-fluoro-dUMP and N(4)-hydroxy-dCMP, of two fractions of purified recombinant mouse enzyme preparations, phosphorylated and non-phosphorylated, separated by metal oxide/hydroxide affinity chromatography on Al(OH)3 beads. The modification, found to concern histidine residues and influence kinetic properties by lowering Vmax, altered both the pattern of dependence of the inactivation rate on time from linear to biphasic, as well as slow-binding inhibition parameters, with each inhibitor studied. Being present on only one subunit of at least a great majority of phosphorylated enzyme molecules, it probably introduced dimer asymmetry, causing the altered time dependence of the inactivation rate pattern (biphasic with the phosphorylated enzyme) and resulting in asymmetric binding of each inhibitor studied. The latter is reflected by the ternary complexes, stable under denaturing conditions, formed by only the non-phosphorylated subunit of the phosphorylated enzyme with each of the two inhibitors and N(5,10)-methylenetetrahydrofolate. Inhibition of the phosphorylated enzyme by N(4)-hydroxy-dCMP was found to be strongly dependent on [Mg(2+)], cations demonstrated previously to also influence the activity of endogenous mouse TS isolated from tumour cells.

  3. Phosphorylated form of adrenocorticotropin and corticotropin-like intermediary lobe peptide in human tumors

    Energy Technology Data Exchange (ETDEWEB)

    Massias, J.F.; Hardouin, S.; Vieau, D.; Lenne, F.; Bertagna, X. (Univ Rene Descartes, Paris (France))

    1994-10-01

    Many peptides contribute to the heterogeneity of immunoreactive adrenocorticotropin (ACTH) in man. The use of a radioimmunoassay (RIA) specifically directed against the C-terminal end of ACTH allowed the precise study of the following four peptides: ACTH itself, corticotropin-like intermediary lobe peptide (CLIP) or ACTH and their phosphorylated forms on SeR[sup 31]. The authors have set up a high-performance liquid chromatography system that separates these four molecules in a single run, to establish their relative distributions in tumors responsible for Cushing's disease or for the ectopic ACTH syndrome, and to evaluate the possible interference of phospho-Ser[sup 31] on various RIA or immuno-radiometric assay (IRMA) recognition systems for ACTH. In this system, alkaline phosphatase treatment shifted the retention time of the phosphorylated peptides to that of their non-phosphorylated counterparts. In three tumors responsible for the ectopic ACTH syndrome, CLIP peptides were predominant in two and phosphorylated molecules represented between 22% and 50% of immuno-reactive materials. In five pituitary tumors responsible for Cushing's disease, ACTH peptides were predominant and the phosphorylated molecules varied between 35% and 75% in four of them. In the same tumor the ratios of phosphorylated to non-phosphorylated CLIP or ACTH were identical. The presence of phospho-Ser[sup 31] did not affect the recognition ability of two mid-ACTH and two C-terminal ACTH RIA's, nor of the ACTH IRMA. 15 refs., 5 figs., 2 tabs.

  4. Effects of Phosphorylation of β Subunits of Phycocyanins on State Transition in the Model Cyanobacterium Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Chen, Zhuo; Zhan, Jiao; Chen, Ying; Yang, Mingkun; He, Chenliu; Ge, Feng; Wang, Qiang

    2015-10-01

    Synechocystis sp. PCC 6803 (hereafter Synechocystis) is a model cyanobacterium and has been used extensively for studies concerned with photosynthesis and environmental adaptation. Although dozens of protein kinases and phosphatases with specificity for Ser/Thr/Tyr residues have been predicted, only a few substrate proteins are known in Synechocystis. In this study, we report 194 in vivo phosphorylation sites from 149 proteins in Synechocystis, which were identified using a combination of peptide pre-fractionation, TiO(2) enrichment and liquid chromatograpy-tandem mass spectrometry (LC-MS/MS) analysis. These phosphorylated proteins are implicated in diverse biological processes, such as photosynthesis. Among all identified phosphoproteins involved in photosynthesis, the β subunits of phycocyanins (CpcBs) were found to be phosphorylated on Ser22, Ser49, Thr94 and Ser154. Four non-phosphorylated mutants were constructed by using site-directed mutagenesis. The in vivo characterization of the cpcB mutants showed a slower growth under high light irradiance and displayed fluorescence quenching to a lower level and less efficient energy transfer inside the phycobilisome (PBS). Notably, the non-phosphorylated mutants exhibited a slower state transition than the wild type. The current results demonstrated that the phosphorylation status of CpcBs affects the energy transfer and state transition of photosynthesis in Synechocystis. This study provides novel insights into the molecular mechanisms of protein phosphorylation in the regulation of photosynthesis in cyanobacteria and may facilitate the elucidation of the entire regulatory network by linking kinases to their physiological substrates. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Degeneration of axons in spinal white matter in G93A mSOD1 mouse characterized by NFL and α-internexin immunoreactivity.

    Science.gov (United States)

    King, Anna E; Blizzard, Catherine A; Southam, Katherine A; Vickers, James C; Dickson, Tracey C

    2012-07-17

    Axonal degeneration is a prominent feature of amyotrophic lateral sclerosis (ALS) both in lower motor nerves as well as descending white matter axons in the spinal cord of human patients. Although the pathology of lower motor axonal degeneration has been described in both human ALS and related transgenic animal models, few studies have examined the pathological features of descending axon degeneration, particularly in mouse models of ALS. We have examined the degeneration of white matter tracts in the G93A mutant superoxide dismutase-1 (mSOD1+) mouse spinal cord white matter from 12 weeks of age to end-stage disease. In a G93A mSOD1 mouse model where green fluorescent protein was expressed in neurons (mSOD1+/GFP+), degeneration of white matter tracts was present from the ventral to dorsolateral funiculi. This pattern of axonal pathology occurred from 16 weeks of age. However, the dorsal funiculus, the site of the major corticospinal tract in mice, showed relatively less degeneration. Immunohistochemical analysis demonstrated that the neurofilament light chain (NFL) and neuronal intermediate filament protein alpha-internexin accumulated in axon swellings in the spinal white matter. Increased levels of alpha-internexin protein, in mSOD1+ mouse spinal cord tissue, were demonstrated by Western blotting. In contrast, degenerating axons did not show obvious accumulations of neurofilament medium and heavy chain proteins (NFM and NFH). These data suggest that white matter degeneration in this mouse model of ALS is widespread and involves a specific molecular signature, particularly the accumulation of NFL and alpha-internexin proteins. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Cytosolic TDP-43 expression following axotomy is associated with caspase 3 activation in NFL-/- mice: support for a role for TDP-43 in the physiological response to neuronal injury.

    Science.gov (United States)

    Moisse, Katie; Mepham, Jennifer; Volkening, Kathryn; Welch, Ian; Hill, Tracy; Strong, Michael J

    2009-11-03

    TAR DNA binding protein (TDP-43) mislocalization has been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). We have recently reported that TDP-43 and PGRN expression is altered in response to axotomy in C57BL6 mice and that normal expression is restored following recovery. We have performed axotomies in two different presymptomatic models of motor neuron degeneration, low molecular weight neurofilament knockout (NFL(-/-)) mice and mutant SOD1(G93A) transgenic (mtSOD1(G93A)) mice aged 6 weeks, and observed TDP-43 and PGRN expression patterns in axotomized spinal motor neurons over 28 days. In contrast to both C57BL6 mice and mtSOD1(G93A) mice, behavioural deficits in NFL(-/-) mice were sustained. We did not observe differences in TDP-43 or PGRN expression between C57BL6 mice and mtSOD1(G93A) mice throughout the observation period. However, compared to C57BL6 mice and mtSOD1(G93A) mice, NFL(-/-) mice exhibited late upregulation of cytosolic TDP-43 expression and persistent downregulation of neuronal PGRN expression accompanied by caspase 3 activation on post-injury day 28. By post-injury day 42, no cytosolic TDP-43-positive neurons remained in NFL(-/-) mice, suggesting that they had undergone apoptotic cell death. These findings suggest that whereas TDP-43 expression is normally upregulated transiently following axotomy, in the absence of NFL this response is delayed and associated with caspase 3 activation and neuronal death. These results further support that TDP-43 is involved in neurofilament mRNA metabolism and transport, and provide insight into the pathogenesis of motor neuron death in ALS in which NFL mRNA levels are selectively suppressed.

  7. Biomarker evidence of axonal injury in neuroasymptomatic HIV-1 patients.

    Directory of Open Access Journals (Sweden)

    Jan Jessen Krut

    Full Text Available Prevalence of neurocognitive impairment in HIV-1 infected patients is reported to be high. Whether this is a result of active HIV-related neurodegeneration is unclear. We examined axonal injury in HIV-1 patients by measuring the light subunit of neurofilament protein (NFL in CSF with a novel, sensitive method.With a cross-sectional design, CSF concentrations of neurofilament protein light (NFL (marker of neuronal injury, neopterin (intrathecal immunoactivation and CSF/Plasma albumin ratio (blood-brain barrier integrity were analyzed on CSF from 252 HIV-infected patients, subdivided into untreated neuroasymptomatics (n = 200, HIV-associated dementia (HAD (n = 14 and on combinations antiretroviral treatment (cART (n = 85, and healthy controls (n = 204. 46 HIV-infected patients were included in both treated and untreated groups, but sampled at different timepoints. Furthermore, 78 neuroasymptomatic patients were analyzed before and after treatment initiation.While HAD patients had the highest NFL concentrations, elevated CSF NFL was also found in 33% of untreated neuroasymptomatic patients, mainly in those with blood CD4+ cell counts below 250 cells/μL. CSF NFL concentrations in the untreated neuroasymptomatics and treated groups were equivalent to controls 18.5 and 3.9 years older, respectively. Neopterin correlated with NFL levels in untreated groups while the albumin ratio correlated with NFL in both untreated and treated groups.Increased CSF NFL indicates ongoing axonal injury in many neuroasymptomatic patients. Treatment decreases NFL, but treated patients retain higher levels than controls, indicating either continued virus-related injury or an aging-like effect of HIV infection. NFL correlates with neopterin and albumin ratio, suggesting an association between axonal injury, neuroinflammation and blood-brain barrier permeability. NFL appears to be a sensitive biomarker of subclinical and clinical brain injury in HIV and warrants further

  8. Biomarker Evidence of Axonal Injury in Neuroasymptomatic HIV-1 Patients

    Science.gov (United States)

    Price, Richard W.; Hagberg, Lars; Fuchs, Dietmar; Rosengren, Lars; Nilsson, Staffan; Zetterberg, Henrik; Gisslén, Magnus

    2014-01-01

    Background Prevalence of neurocognitive impairment in HIV-1 infected patients is reported to be high. Whether this is a result of active HIV-related neurodegeneration is unclear. We examined axonal injury in HIV-1 patients by measuring the light subunit of neurofilament protein (NFL) in CSF with a novel, sensitive method. Methods With a cross-sectional design, CSF concentrations of neurofilament protein light (NFL) (marker of neuronal injury), neopterin (intrathecal immunoactivation) and CSF/Plasma albumin ratio (blood-brain barrier integrity) were analyzed on CSF from 252 HIV-infected patients, subdivided into untreated neuroasymptomatics (n = 200), HIV-associated dementia (HAD) (n = 14) and on combinations antiretroviral treatment (cART) (n = 85), and healthy controls (n = 204). 46 HIV-infected patients were included in both treated and untreated groups, but sampled at different timepoints. Furthermore, 78 neuroasymptomatic patients were analyzed before and after treatment initiation. Results While HAD patients had the highest NFL concentrations, elevated CSF NFL was also found in 33% of untreated neuroasymptomatic patients, mainly in those with blood CD4+ cell counts below 250 cells/μL. CSF NFL concentrations in the untreated neuroasymptomatics and treated groups were equivalent to controls 18.5 and 3.9 years older, respectively. Neopterin correlated with NFL levels in untreated groups while the albumin ratio correlated with NFL in both untreated and treated groups. Conclusions Increased CSF NFL indicates ongoing axonal injury in many neuroasymptomatic patients. Treatment decreases NFL, but treated patients retain higher levels than controls, indicating either continued virus-related injury or an aging-like effect of HIV infection. NFL correlates with neopterin and albumin ratio, suggesting an association between axonal injury, neuroinflammation and blood-brain barrier permeability. NFL appears to be a sensitive biomarker of subclinical and

  9. Multilineage potential of stable human mesenchymal stem cell line derived from fetal marrow.

    Directory of Open Access Journals (Sweden)

    Atsushi Nagai

    Full Text Available Human bone marrow contains two major cell types, hematopoietic stem cells (HSCs and mesenchymal stem cells (MSCs. MSCs possess self-renewal capacity and pluripotency defined by their ability to differentiate into osteoblasts, chondrocytes, adipocytes and muscle cells. MSCs are also known to differentiate into neurons and glial cells in vitro, and in vivo following transplantation into the brain of animal models of neurological disorders including ischemia and intracerebral hemorrhage (ICH stroke. In order to obtain sufficient number and homogeneous population of human MSCs, we have clonally isolated permanent and stable human MSC lines by transfecting primary cell cultures of fetal human bone marrow MSCs with a retroviral vector encoding v-myc gene. One of the cell lines, HM3.B10 (B10, was found to differentiate into neural cell types including neural stem cells, neurons, astrocytes and oligodendrocytes in vitro as shown by expression of genetic markers for neural stem cells (nestin and Musashi1, neurons (neurofilament protein, synapsin and MAP2, astrocytes (glial fibrillary acidic protein, GFAP and oligodendrocytes (myelin basic protein, MBP as determined by RT-PCR assay. In addition, B10 cells were found to differentiate into neural cell types as shown by immunocytochical demonstration of nestin (for neural stem cells, neurofilament protein and beta-tubulin III (neurons GFAP (astrocytes, and galactocerebroside (oligodendrocytes. Following brain transplantation in mouse ICH stroke model, B10 human MSCs integrate into host brain, survive, differentiate into neurons and astrocytes and induce behavioral improvement in the ICH animals. B10 human MSC cell line is not only a useful tool for the studies of organogenesis and specifically for the neurogenesis, but also provides a valuable source of cells for cell therapy studies in animal models of stroke and other neurological disorders.

  10. Globin s-propyl cysteine and urinary N-acetyl-S-propylcysteine as internal biomarkers of 1-bromopropane exposure.

    Science.gov (United States)

    Valentine, Holly; Amarnath, Kalyani; Amarnath, Venkataraman; Li, Weihua; Ding, Xuncheng; Valentine, William M; Ichihara, Gaku

    2007-08-01

    1-Bromopropane (1-BP), an alternative to ozone-depleting solvents, is a neuro and reproductive toxicant in animals and humans. In this study, the dose responses for urinary AcPrCys and S-propylcysteine (PrCys) adducts on globin and neurofilaments were determined as a function of 1-BP exposure level and duration in the rat; and globin PrCys adducts and urinary AcPrCys were quantified in samples obtained from workers in a 1-BP production facility. Rats were exposed to 1-BP by inhalation for 2 weeks at 0, 50, 200, or 800 ppm and to 1-BP at 0 or 50 ppm for 4 weeks. After the 4-week exposures ended, half of the animals were euthanized immediately and half euthanized 8 days later. Urinary AcPrCys was measured using liquid chromatography-tandem mass spectrometry (LC/MS/MS) and gas chromatograph-mass spectrometry (GC/MS); and PrCys adducts were determined on globin and neurofilaments using LC/MS/MS. In rats, PrCys adduct and urinary AcPrCys levels demonstrated a linear dose response relative to exposure level. PrCys globin adducts demonstrated a linear cumulative dose response over the 4-week exposure period. Elimination of AcPrCys appeared biphasic with detectable levels still present in urine up to 8 days postexposure. A significant increase in globin PrCys adducts was observed in the 1-BP workers relative to control workers; and urinary AcPrCys increased with increasing 1-BP ambient exposure levels. The results of these studies demonstrate the ability of 1-BP to covalently modify proteins in vivo and support the potential of urinary AcPrCys and globin PrCys adducts to serve as biomarkers of 1-BP exposure in humans.

  11. Developmental neurotoxicity of the hippocampus following in utero exposure to methylmercury: impairment in cell signaling.

    Science.gov (United States)

    Heimfarth, Luana; Delgado, Jeferson; Mignori, Moara Rodrigues; Gelain, Daniel Pens; Moreira, José Cláudio Fonseca; Pessoa-Pureur, Regina

    2017-08-18

    In this study, we assessed some hippocampal signaling cascades and behavioral impairments in 30-day-old rat pups prenatally exposed to methylmercury (MeHg). Pregnant rats were exposed to 1.0 or 2.0 mg/kg MeHg by gavage in alternated days from gestational day 5 until parturition. We found increased anxiety-like and decreased exploration behavior evaluated by open field test and deficit of both short- and long-term memories by novel object recognition task, respectively, in MeHg-treated pups. Downregulated PI3K/Akt/mTOR pathway and activated/hypophosphorylated (Ser9) GSK3β in MeHg-treated pups could be upstream of hyperphosphorylated Tau (Ser396) destabilizing microtubules and contributing to neural dysfunction in the hippocampus of these rats. Hyperphosphorylated/activated p38MAPK and downregulated phosphoErk1/2 support a role for mitogen-activated protein kinase (MAPK) cascade on MeHg neurotoxicity. Decreased receptor of advanced glycation end products (RAGE) immunocontent supports the assumption that downregulated RAGE/Erk1/2 pathway could be involved in hypophosphorylated lysine/serine/proline (KSP) repeats on neurofilament subunits and disturbed axonal transport. Downregulated myelin basic protein (MBP), the major myelin protein, is compatible with dysmyelination and neurofilament hypophosphorylation. Increased glial fibrillary acidic protein (GFAP) levels suggest reactive astrocytes, and active apoptotic pathways BAD/BCL-2, BAX/BCL-XL, and caspase 3 suggest cell death. Taken together, our findings get light on important signaling mechanisms that could underlie the behavioral deficits in 30-day-old pups prenatally exposed to MeHg.

  12. Distribution of components of basal lamina and dystrophin-dystroglycan complex in the rat pineal gland: differences from the brain tissue and between the subdivisions of the gland.

    Science.gov (United States)

    Bagyura, Zsolt; Pócsai, Károly; Kálmán, Mihály

    2010-01-01

    The pineal gland is an evagination of the brain tissue, a circumventricular neuroendocrine organ. Our immunohistochemical study investigates basal lamina components (laminin, agrin, perlecan, fibronectin), their receptor, the dystrophin-dystroglycan complex (beta-dystroglycan, dystrophin utrophin), aquaporins (-4,-9) and cellular markers (S100, neurofilament, GFAP, glutamine synthetase) in the adult rat corpus pineale. The aim was to compare the immunohistochemical features of the cerebral and pineal vessels and their environment, and to compare their features in the distal and proximal subdivisions of the so-called 'superficial pineal gland'. In contrast to the cerebral vessels, pineal vessels proved to be immunonegative to alpha1-dystrobrevin, but immunoreactive to laminin. An inner, dense, and an outer, loose layer of laminin as two basal laminae were present. The gap between them contained agrin and perlecan. Basal lamina components enmeshed the pinealocytes, too. Components of dystrophin-dystroglycan complex were also distributed along the vessels. Dystrophin, utrophin and agrin gave a 'patchy' distribution rather than a continuous one. The vessels were interconnected by wing-like structures, composed of basal lamina-components: a delicate network forming nests for cells. Cells immunostained with glutamine synthetase, S100-protein or neurofilament protein contacted the vessels, as well as GFAP- or aquaporin-immunostained astrocytes. Within the body a smaller, proximal, GFAP-and aquaporin-containing subdivision, and a larger, distal, GFAP-and aquaporin-free subdivision could be distinguished. The vascular localization of agrin and utrophin, as well as dystrophin, delineated vessels unequally, preferring the proximal or distal end of the body, respectively.

  13. The human G93A-SOD1 mutation in a pre-symptomatic rat model of amyotrophic lateral sclerosis increases the vulnerability to a mild spinal cord compression

    Directory of Open Access Journals (Sweden)

    Priestley John V

    2010-11-01

    Full Text Available Abstract Background Traumatic injuries can undermine neurological functions and act as risk factors for the development of irreversible and fatal neurodegenerative disorders like amyotrophic lateral sclerosis (ALS. In this study, we have investigated how a mutation of the superoxide dismutase 1 (SOD1 gene, linked to the development of ALS, modifies the acute response to a gentle mechanical compression of the spinal cord. In a 7-day post-injury time period, we have performed a comparative ontological analysis of the gene expression profiles of injured spinal cords obtained from pre-symptomatic rats over-expressing the G93A-SOD1 gene mutation and from wild type (WT littermates. Results The steady post-injury functional recovery observed in WT rats was accompanied by the early activation at the epicenter of injury of several growth-promoting signals and by the down-regulation of intermediate neurofilaments and of genes involved in the regulation of ion currents at the 7 day post-injury time point. The poor functional recovery observed in G93A-SOD1 transgenic animals was accompanied by the induction of fewer pro-survival signals, by an early activation of inflammatory markers, of several pro-apoptotic genes involved in cytochrome-C release and by the persistent up-regulation of the heavy neurofilament subunits and of genes involved in membrane excitability. These molecular changes occurred along with a pronounced atrophy of spinal cord motor neurones in the G93A-SOD1 rats compared to WT littermates after compression injury. Conclusions In an experimental paradigm of mild mechanical trauma which causes no major tissue damage, the G93A-SOD1 gene mutation alters the balance between pro-apoptotic and pro-survival molecular signals in the spinal cord tissue from the pre-symptomatic rat, leading to a premature activation of molecular pathways implicated in the natural development of ALS.

  14. Axonal TDP-43 aggregates in sporadic amyotrophic lateral sclerosis.

    Science.gov (United States)

    Onozato, T; Nakahara, A; Suzuki-Kouyama, E; Hineno, A; Yasude, T; Nakamura, T; Yahikozawa, H; Watanabe, M; Kayanuma, K; Makishita, H; Ohara, S; Hashimoto, T; Higuchi, K; Sakai, T; Asano, K; Hashimoto, T; Kanno, H; Nakayama, J; Oyanagi, K

    2016-10-01

    Axonal aggregates of phosphorylated (p-) transactive response DNA-binding protein 43 kDa (TDP-43) in sporadic amyotrophic lateral sclerosis (sALS) were examined in relation to propagation of the protein in the nervous system. Brains and spinal cords of Japanese patients with sALS and control subjects were examined immunohistochemically using formalin-fixed paraffin-embedded specimens with special reference to the topographical distribution, microscopic features, presynaptic aggregates, and correlation between the aggregates in axons and the clinical course. (i) Aggregates of p-TDP-43 were frequently present in axons of the hypoglossal and facial nerve fibres and the spinal anterior horn cells. (ii) Aggregates of p-TDP-43 in the axons showed two characteristic microscopic features - dash-like granuloreticular aggregates (GRAs) and massive aggregates (MAs). (iii) MAs were surrounded by p-neurofilaments, but p-neurofilament immunnoreactivity decreased at the inside of axons with GRAs. (iv) Patients showing MAs and GRAs had a relatively shorter clinical course than patients without the aggregates. (v) Some neurones in the red nucleus in patients were surrounded by synapses containing p- and p-independent (i)-TDP-43, and almost all neurones had lost their nuclear TDP-43 immunoreactivity; 17% of those neurones in the red nucleus also had TDP-43-immunopositive neuronal cytoplasmic inclusions, but no postsynaptic p-TDP-43 deposition was evident. There are two types of axonal p-TDP-43 aggregates, MAs and GRAs, located predominantly in the facial and hypoglossal nuclei and anterior horn cells. These aggregates may influence the function of neurones, and presynaptic aggregates of the protein induce loss of p-i-TDP-43 in the nuclei of postsynaptic neurones. © 2016 British Neuropathological Society.

  15. Enriched Environment Protects the Optic Nerve from Early Diabetes-Induced Damage in Adult Rats.

    Directory of Open Access Journals (Sweden)

    Damián Dorfman

    Full Text Available Diabetic retinopathy is a leading cause of reduced visual acuity and acquired blindness. Axoglial alterations of the distal (close to the chiasm optic nerve (ON could be the first structural change of the visual pathway in streptozotocin (STZ-induced diabetes in rats. We analyzed the effect of environmental enrichment on axoglial alterations of the ON provoked by experimental diabetes. For this purpose, three days after vehicle or STZ injection, animals were housed in enriched environment (EE or remained in a standard environment (SE for 6 weeks. Anterograde transport, retinal morphology, optic nerve axons (toluidine blue staining and phosphorylated neurofilament heavy immunoreactivity, microglia/macrophages (ionized calcium binding adaptor molecule 1 (Iba-1 immunoreactivity, astrocyte reactivity (glial fibrillary acid protein-immunostaining, myelin (myelin basic protein immunoreactivity, ultrastructure, and brain derived neurotrophic factor (BDNF levels were assessed in non-diabetic and diabetic animals housed in SE or EE. No differences in retinal morphology or retinal ganglion cell number were observed among groups. EE housing which did not affect the STZ-induced weight loss and hyperglycemia, prevented a decrease in the anterograde transport from the retina to the superior colliculus, ON axon number, and phosphorylated neurofilament heavy immunoreactivity. Moreover, EE housing prevented an increase in Iba-1 immunoreactivity, and astrocyte reactivity, as well as ultrastructural myelin alterations in the ON distal portion at early stages of diabetes. In addition, EE housing avoided a decrease in BDNF levels induced by experimental diabetes. These results suggest that EE induced neuroprotection in the diabetic visual pathway.

  16. Analysis of novel NEFL mRNA targeting microRNAs in amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Muhammad Ishtiaq

    Full Text Available Amyotrophic lateral sclerosis (ALS is a fatal disease characterized by progressive motor neuron degeneration and neurofilament aggregate formation. Spinal motor neurons in ALS also show a selective suppression in the levels of low molecular weight neurofilament (NEFL mRNA. We have been interested in investigating the role of microRNAs (miRNAs in NEFL transcript stability. MiRNAs are small, 20-25 nucleotide, non-coding RNAs that act as post-transcriptional gene regulators by targeting the 3' untranslated region (3'UTR of mRNA resulting in mRNA decay or translational silencing. In this study, we characterized putative novel miRNAs from a small RNA library derived from control and sporadic ALS (sALS spinal cords. We detected 80 putative novel miRNAs, 24 of which have miRNA response elements (MREs within the NEFL mRNA 3'UTR. From this group, we determined by real-time PCR that 10 miRNAs were differentially expressed in sALS compared to controls. Functional analysis by reporter gene assay and relative quantitative RT-PCR showed that two novel miRNAs, miR-b1336 and miR-b2403, were downregulated in ALS spinal cord and that both stabilize NEFL mRNA. We confirmed the direct effect of these latter miRNAs using anit-miR-b1336 and anti-miR-b2403. These results demonstrate that the expression of two miRNAs (miRNAs miR-b1336 and miR-b2403 whose effect is to stabilize NEFL mRNA are down regulated in ALS, the net effect of which is predicted to contribute directly to the loss of NEFL steady state mRNA which is pathognomic of spinal motor neurons in ALS.

  17. Xenotransplantation of human adipose-derived stem cells in the regeneration of a rabbit peripheral nerve.

    Science.gov (United States)

    Lasso, J M; Pérez Cano, R; Castro, Y; Arenas, L; García, J; Fernández-Santos, M E

    2015-12-01

    Adipose tissue-derived mesenchymal stem cells (AdMSCs) are useful in the regeneration of neural tissues. Furthermore, xenotransplantation of human adipose tissue-derived mesenchymal stem cells (hAdMSCs) into animal models has already been tested and the results encouraged us to study peripheral nerve regeneration in rabbits, in order to test the feasibility of a xenotransplantation of hAdMSCs. To promote end-to-end nerve fiber contacts of a 4-cm gap in the peroneal nerve of white New Zealand rabbits, an autologous vein conduit was used and three groups of animals were evaluated. In Group I, the gap was repaired with a vein conduit refilled with fibrin. Group II was similar, but the animals were treated with cyclosporine A. In Group III, a fibrin scaffold with hAdMSCs was placed inside the autologous vein conduit, and animals were treated with cyclosporine A. Neurofilament immunohistochemistry results showed 100% nerve regeneration at the vein guidance channel 90 days after the surgery in the hAdMSC-transplanted group but lesser neural regeneration in the neurofilaments of groups I and II. The analysis of variance (ANOVA) test showed statistically significant differences among all groups (p nerve regeneration through a vein conduit that connected a 4-cm gap created at the peroneal nerve of rabbits. Animals treated with hAdMSCs presented negative inflammatory response at the regenerated nerve gaps, but it was demonstrated that hAdMSCs were incorporated to the new nerve creating neural tissue and endothelial cells. However, hAdMSCs required immunosuppression with cyclosporine A to achieve axonal regeneration. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  18. Sera from patients with seropositive neuromyelitis optica spectral disorders caused the degeneration of rodent optic nerve.

    Science.gov (United States)

    Matsumoto, Yoshiko; Kanamori, Akiyasu; Nakamura, Makoto; Takahashi, Toshiyuki; Nakashima, Ichiro; Negi, Akira

    2014-02-01

    Neuromyelitis optica (NMO) is an autoimmune inflammatory, neurodestructive disease primarily targeting the optic nerve and spinal cord. An autoantibody against water channel protein aquaporin-4 (AQP4), which is expressed at endofeet of astrocytes has been implicated in the pathogenesis of NMO. We evaluated the impact of sera of seropositive patients with NMO spectrum disorders (NMOSDs) on the rodent optic nerve and retina. Serum was obtained either from patients with seropositive NMOSD (AQP4+), seronegative patient with idiopathic optic neuritis (AQP4-), and healthy volunteers (control). Anti-AQP4 antibody in a serum was measured by a previously established cell-based assay. The patients' sera were applied on the optic nerve after de-sheathed. Immunohistochemistry showed that at 7 days after the treatment, the area of the optic nerve exposed to the AQP4+ sera lost expression of both AQP4 and glial fibrillary acidic protein. Also, Human-IgG immunoreactivity and marked invasion of inflammation cells were observed in the optic nerve treated with AQP4+ serum. Immnoreactivity of neurofilament was reduced at 14 days after the treatment, not 7 days. Real-time polymerase chain reaction revealed the reduced gene expression of neurofilament in retina from the eye that was exposed to the AQP4+ sera at 14 days. Retrograde fluorogold-labeling on the retinal flatmount disclosed the significantly reduced number of retinal ganglion cells when the AQP4+ sera were applied. The present model has demonstrated that the sera from patients with seropositive NMOSDs led to the regional astrocytic degeneration and inflammatory cell invasion in the optic nerve, resulting in the ultimate loss of RGCs and their axons at areas beyond the injury site.

  19. Effects of lithium and valproic acid on gene expression and phenotypic markers in an NT2 neurosphere model of neural development.

    Directory of Open Access Journals (Sweden)

    Eric J Hill

    Full Text Available Mood stabilising drugs such as lithium (LiCl and valproic acid (VPA are the first line agents for treating conditions such as Bipolar disorder and Epilepsy. However, these drugs have potential developmental effects that are not fully understood. This study explores the use of a simple human neurosphere-based in vitro model to characterise the pharmacological and toxicological effects of LiCl and VPA using gene expression changes linked to phenotypic alterations in cells. Treatment with VPA and LiCl resulted in the differential expression of 331 and 164 genes respectively. In the subset of VPA targeted genes, 114 were downregulated whilst 217 genes were upregulated. In the subset of LiCl targeted genes, 73 were downregulated and 91 were upregulated. Gene ontology (GO term enrichment analysis was used to highlight the most relevant GO terms associated with a given gene list following toxin exposure. In addition, in order to phenotypically anchor the gene expression data, changes in the heterogeneity of cell subtype populations and cell cycle phase were monitored using flow cytometry. Whilst LiCl exposure did not significantly alter the proportion of cells expressing markers for stem cells/undifferentiated cells (Oct4, SSEA4, neurons (Neurofilament M, astrocytes (GFAP or cell cycle phase, the drug caused a 1.4-fold increase in total cell number. In contrast, exposure to VPA resulted in significant upregulation of Oct4, SSEA, Neurofilament M and GFAP with significant decreases in both G2/M phase cells and cell number. This neurosphere model might provide the basis of a human-based cellular approach for the regulatory exploration of developmental impact of potential toxic chemicals.

  20. Mouse intermittent hypoxia mimicking apnoea of prematurity: effects on myelinogenesis and axonal maturation.

    Science.gov (United States)

    Cai, Jun; Tuong, Chi Minh; Zhang, Yiping; Shields, Christopher B; Guo, Gang; Fu, Hui; Gozal, David

    2012-02-01

    Premature babies are at high risk for both infantile apnoea and long-term neurobehavioural deficits. Recent studies suggest that diffuse structural changes in brain white matter are a positive predictor of poor cognitive outcomes. Since oligodendrocyte maturation, myelination, axon development, and synapse formation mainly occur in the third trimester of gestation and first postnatal year, infantile apnoea could lead to and/or exaggerate white matter impairments in preterm neonates. Therefore, we investigated oligodendroglia and axon development in a neonatal mouse model of intermittent hypoxia between postnatal days 2 and 10. During critical phases of central nervous system development, intermittent hypoxia induced hypomyelination in the corpus callosum, striatum, fornix, and cerebellum, but not in the pons or spinal cord. Intermittent hypoxia-elicited alterations in myelin-forming processes were reflected by decreased expression of myelin proteins, including MBP, PLP, MAG, and CNPase, possibly due to arrested maturation of oligodendrocytes. Ultrastructural abnormalities were apparent in the myelin sheath and axon. Immature oligodendrocytes were more vulnerable to neonatal intermittent hypoxia exposures than developing axons, suggesting that hypomyelination may contribute, at least partially, to axonal deficits. Insufficient neurofilament synthesis with anomalous components of neurofilament subunits, β-tubulin, and MAP2 isoforms indicated immaturity of axons in intermittent hypoxia-exposed mouse brains. In addition, down-regulation of synapsin I, synaptophysin, and Gap-43 phosphorylation suggested a potential stunt in axonogenesis and synaptogenesis. The region-selective and complex impairment in brain white matter induced by intermittent hypoxia was further associated with electrophysiological changes that may underlie long-term neurobehavioural sequelae.

  1. High field (9.4 Tesla) magnetic resonance imaging of cortical grey matter lesions in multiple sclerosis.

    Science.gov (United States)

    Schmierer, Klaus; Parkes, Harold G; So, Po-Wah; An, Shu F; Brandner, Sebastian; Ordidge, Roger J; Yousry, Tarek A; Miller, David H

    2010-03-01

    Multiple sclerosis is an inflammatory, degenerative disease of the central nervous system. The most obvious pathological change in multiple sclerosis is multifocal demyelination of the white matter, but grey matter demyelination may be of equal or even greater importance for its clinical manifestations. In order to assess the pathogenetic role of lesions in the grey and white matter, and to explore the association between demyelinated and non-lesional brain tissue, tools are needed to depict each of these tissue components accurately in vivo. Due to its sensitivity in detecting white matter lesions, T(2)-weighted magnetic resonance imaging at 1.5 T is important in the diagnosis of multiple sclerosis. However, magnetic resonance imaging at 1.5 T largely fails to detect grey matter lesions. In this study, we used T(2)-weighted magnetic resonance imaging at 9.4 T to detect grey matter lesions in fixed post-mortem multiple sclerosis motor cortex. Furthermore, we produced T(1), T(2) and magnetization transfer ratio maps, and correlated these indices with quantitative histology [neuronal density, intensity of immunostaining for myelin basic protein (reflecting myelin content) and phosphorylated neurofilament (reflecting axonal area)] using t-tests and multivariate regression. In 21 tissue samples, 28 cortical grey matter lesions were visible on both T(2)-weighted magnetic resonance imaging and sections immunostained for myelin basic protein, 15/28 being mixed white and grey matter and 11/28 subpial cortical grey matter lesions; 2/28 cortical grey matter lesions involved all layers of the cortex. Compared with non-lesional cortex, cortical grey matter lesions showed reduction of neuronal density (98/mm(2), SD = 34/mm(2;) versus 129/mm(2), SD = 44; P < 0.01), phosphorylated neurofilament (1/transmittance = 1.16; SD = 0.09 versus 1.24; SD = 0.1; P < 0.01) and magnetization transfer ratio (31.1 pu; SD = 11.9 versus 37.5 pu; SD = 8.7; P = 0.01), and an increase of T(2) (25

  2. Quality assessment of report gene green fluorescence protein in chicken embryo in vivo electroporation%鸡胚活体原位电转基因技术报告基因绿色荧光蛋白质量评估

    Institute of Scientific and Technical Information of China (English)

    杨慈清; 毛会丽; 郭志坤; 林俊堂

    2012-01-01

    Objective The method of in vivo electroporation has been set up successfully and we further analyzed the effect of report gene green fluorescence protein(GFP) on the morphology of developing chicken embryos after in vivo electrop oration , and also analyzed the expression of ct-smooth muscle actin y (α-SMA) and neurofilament during chicken embryonic development. Methods pCAGGS-GFP was transformed into chicken embryos with in ovo culture at 3days and ex ovo culture at 3-5days. In 24hours after in vivo electroporation, GFP-positive embryos were selected under stereo fluorescence microscope, and the GFP-negative embryos served as controls. Five embryos were analayzed for each group, r luorescence immunohistochemistry was applied to analyze the expression of α-SMA and neuroiilament in chicken spinal cord and tectum. Results At different stages of chicken embryos and different time after in vivo electroporation, the expression of a-smooth muscle actin and neurofilament did not show difference in experimental group and wild type, as well as in GFP-positive area and GFP-negative area. The morphology of embryos was not changed after electroporation with pCAGGS-GFP either. Conclusion GFP as a report gene to in vivo electroporation for chicken embryos does not affect the expression of α-smooth muscle actin and neurofilament, as well as no effect on the morphology of chicken embryos, so GFP can well serve as a report gene for chicken embryo in vivo electroporation.%目的 在成功建立鸡胚活体原位电转基因技术的基础上,探讨报告基因绿色荧光蛋白(GFP)的表达及其在鸡胚发育过程对胚胎形态结构影响,分析α-平滑肌肌动蛋白(α-SMA)和神经丝蛋白(NF)的表达情况.方法 活体原位电转基因技术将pCAGGS-GFP质粒转入带壳培养第3天和第3天去壳培养至第5天的鸡胚,在电转基因24h后荧光体视显微镜观察,选择对照组和阳性表达胚胎,每组各5个胚胎,冷冻切片后进行荧光免疫

  3. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65

    Science.gov (United States)

    Kazlauskaite, Agne; Kondapalli, Chandana; Gourlay, Robert; Campbell, David G.; Ritorto, Maria Stella; Hofmann, Kay; Alessi, Dario R.; Knebel, Axel; Trost, Matthias; Muqit, Miratul M. K.

    2014-01-01

    We have previously reported that the Parkinson's disease-associated kinase PINK1 (PTEN-induced putative kinase 1) is activated by mitochondrial depolarization and stimulates the Parkin E3 ligase by phosphorylating Ser65 within its Ubl (ubiquitin-like) domain. Using phosphoproteomic analysis, we identified a novel ubiquitin phosphopeptide phosphorylated at Ser65 that was enriched 14-fold in HEK (human embryonic kidney)-293 cells overexpressing wild-type PINK1 stimulated with the mitochondrial uncoupling agent CCCP (carbonyl cyanide m-chlorophenylhydrazone), to activate PINK1, compared with cells expressing kinase-inactive PINK1. Ser65 in ubiquitin lies in a similar motif to Ser65 in the Ubl domain of Parkin. Remarkably, PINK1 directly phosphorylates Ser65 of ubiquitin in vitro. We undertook a series of experiments that provide striking evidence that Ser65-phosphorylated ubiquitin (ubiquitinPhospho−Ser65) functions as a critical activator of Parkin. First, we demonstrate that a fragment of Parkin lacking the Ubl domain encompassing Ser65 (ΔUbl-Parkin) is robustly activated by ubiquitinPhospho−Ser65, but not by non-phosphorylated ubiquitin. Secondly, we find that the isolated Parkin Ubl domain phosphorylated at Ser65 (UblPhospho−Ser65) can also activate ΔUbl-Parkin similarly to ubiquitinPhospho−Ser65. Thirdly, we establish that ubiquitinPhospho−Ser65, but not non-phosphorylated ubiquitin or UblPhospho−Ser65, activates full-length wild-type Parkin as well as the non-phosphorylatable S65A Parkin mutant. Fourthly, we provide evidence that optimal activation of full-length Parkin E3 ligase is dependent on PINK1-mediated phosphorylation of both Parkin at Ser65 and ubiquitin at Ser65, since only mutation of both proteins at Ser65 completely abolishes Parkin activation. In conclusion, the findings of the present study reveal that PINK1 controls Parkin E3 ligase activity not only by phosphorylating Parkin at Ser65, but also by phosphorylating ubiquitin at Ser65

  4. Thermodynamic study of the native and phosphorylated regulatory domain of the CFTR

    Energy Technology Data Exchange (ETDEWEB)

    Marasini, Carlotta, E-mail: marasini@ge.ibf.cnr.it [Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini 6, 16149 Genova (Italy); Galeno, Lauretta; Moran, Oscar [Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via De Marini 6, 16149 Genova (Italy)

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer CFTR mutations produce cystic fibrosis. Black-Right-Pointing-Pointer Chloride transport depends on the regulatory domain phosphorylation. Black-Right-Pointing-Pointer Regulatory domain is intrinsically disordered. Black-Right-Pointing-Pointer Secondary structure and protein stability change upon phosphorylation. -- Abstract: The regulatory domain (RD) of the cystic fibrosis transmembrane conductance regulator (CFTR), the defective protein in cystic fibrosis, is the region of the channel that regulates the CFTR activity with multiple phosphorylation sites. This domain is an intrinsically disordered protein, characterized by lack of stable or unique tertiary structure. The disordered character of a protein is directly correlated with its function. The flexibility of RD may be important for its regulatory role: the continuous conformational change may be necessary for the progressive phosphorylation, and thus activation, of the channel. However, the lack of a defined and stable structure results in a considerable limitation when trying to in build a unique molecular model for the RD. Moreover, several evidences indicate significant structural differences between the native, non-phosphorylated state, and the multiple phosphorylated state of the protein. The aim of our work is to provide data to describe the conformations and the thermodynamic properties in these two functional states of RD. We have done the circular dichroism (CD) spectra in samples with a different degree of phosphorylation, from the non-phosphorylated state to a bona fide completely phosphorylated state. Analysis of CD spectra showed that the random coil and {beta}-sheets secondary structure decreased with the polypeptide phosphorylation, at expenses of an increase of {alpha}-helix. This observation lead to interpret phosphorylation as a mechanism favoring a more structured state. We also studied the thermal denaturation curves of the protein in the two

  5. Early cytoskeletal protein modifications precede overt structural degeneration in the DBA/2J mouse model of glaucoma

    Directory of Open Access Journals (Sweden)

    Gina Nicole Wilson

    2016-11-01

    Full Text Available Axonal transport deficits precede structural loss in glaucoma and other neurodegenerations. Impairments in structural support, including modified cytoskeletal proteins and microtubule-destabilizing elements, could be initiating factors in glaucoma pathogenesis. We investigated the time course of changes in protein levels and post-translational modifications in the DBA/2J mouse model of glaucoma. Using anterograde tract tracing of the retinal projection, we assessed major cytoskeletal and transported elements as a function of transport integrity in different stages of pathological progression. Using capillary-based electrophoresis, single- and multiplex immunosorbent assays, and immunofluorescence, we quantified hyperphosphorylated neurofilament-heavy chain, phosphorylated tau (ptau, calpain-mediated spectrin breakdown product (145/150kDa, β –tubulin, and amyloid-β42 proteins based on age and transport outcome to the superior colliculus (SC, the main retinal target in mice. Phosphorylated neurofilament-heavy chain (pNF-H was elevated within the optic nerve (ON and SC of 8-10 month-old DBA/2J mice, but was not evident in the retina until 12-15 months, suggesting that cytoskeletal modifications first appear in the distal retinal projection. As expected, higher pNF-H levels in the SC and retina were correlated with axonal transport deficits. Elevations in hyperphosphorylated tau (ptau occurred in ON and SC between 3-8 month of age while retinal ptau accumulations occurred at 12-15 months in DBA/2J mice. In vitro co-immunoprecipitation experiments suggested increased affinity of ptau for the retrograde motor complex protein, dynactin. We observed a transport-related decrease of β-tubulin in ON of 10-12 month-old DBA/2J mice, suggesting destabilized microtubule array. Elevations in calpain-mediated spectrin breakdown product were seen in ON and SC at the earliest age examined, well before axonal transport loss is evident. Finally, transport

  6. HCN1 and HCN2 in Rat DRG neurons: levels in nociceptors and non-nociceptors, NT3-dependence and influence of CFA-induced skin inflammation on HCN2 and NT3 expression.

    Science.gov (United States)

    Acosta, Cristian; McMullan, Simon; Djouhri, Laiche; Gao, Linlin; Watkins, Roger; Berry, Carol; Dempsey, Katherine; Lawson, Sally N

    2012-01-01

    I(h), which influences neuronal excitability, has recently been measured in vivo in sensory neuron subtypes in dorsal root ganglia (DRGs). However, expression levels of HCN (hyperpolarization-activated cyclic nucleotide-gated) channel proteins that underlie I(h) were unknown. We therefore examined immunostaining of the most abundant isoforms in DRGs, HCN1 and HCN2 in these neuron subtypes. This immunostaining was cytoplasmic and membrane-associated (ring). Ring-staining for both isoforms was in neurofilament-rich A-fiber neurons, but not in small neurofilament-poor C-fiber neurons, although some C-neurons showed cytoplasmic HCN2 staining. We recorded intracellularly from DRG neurons in vivo, determined their sensory properties (nociceptive or low-threshold-mechanoreceptive, LTM) and conduction velocities (CVs). We then injected fluorescent dye enabling subsequent immunostaining. For each dye-injected neuron, ring- and cytoplasmic-immunointensities were determined relative to maximum ring-immunointensity. Both HCN1- and HCN2-ring-immunointensities were positively correlated with CV in both nociceptors and LTMs; they were high in Aβ-nociceptors and Aα/β-LTMs. High HCN1 and HCN2 levels in Aα/β-neurons may, via I(h), influence normal non-painful (e.g. touch and proprioceptive) sensations as well as nociception and pain. HCN2-, not HCN1-, ring-intensities were higher in muscle spindle afferents (MSAs) than in all other neurons. The previously reported very high I(h) in MSAs may relate to their very high HCN2. In normal C-nociceptors, low HCN1 and HCN2 were consistent with their low/undetectable I(h.) In some C-LTMs HCN2-intensities were higher than in C-nociceptors. Together, HCN1 and HCN2 expressions reflect previously reported I(h) magnitudes and properties in neuronal subgroups, suggesting these isoforms underlie I(h) in DRG neurons. Expression of both isoforms was NT3-dependent in cultured DRG neurons. HCN2-immunostaining in small neurons increased 1 day after

  7. Brain Activity of Thioctic Acid Enantiomers: In Vitro and in Vivo Studies in an Animal Model of Cerebrovascular Injury

    Directory of Open Access Journals (Sweden)

    Seyed Khosrow Tayebati

    2013-02-01

    SHR, the occurrence of astrogliosis and neuronal damage, with a decreased expression of neurofilament 200 kDa were observed. Treatment of SHR for 30 days with (+-thioctic acid reduced the size of astrocytes and increased the neurofilament immunoreaction. The above findings could contribute to clarify the role played by thioctic acid in central nervous system injury related to oxidative stress. The more pronounced effect of (+-thioctic acid observed in this study may have practical therapeutic implications worthy of being investigated in further preclinical and clinical studies.

  8. Experimental pathology study on the effect of ACR on axon of both Ola mice and 6J mice%丙烯酰胺对变异Ola鼠和正常6J鼠轴突影响的实验研究

    Institute of Scientific and Technical Information of China (English)

    赫秋月; 韩漫夫; 饶明俐

    2000-01-01

    Objective :To observate the axon changes in pathology of Ola mice,compared with those of 6Jmice. Methods:The peroneal nerve and sural nerve were studied by light-microscope and electronmi-croscope. Results :In light-microscope,the total transverse fascicular area was significantly large ;density ofmyelinated fibers was significantly less;the maximal diameter of myelinated fibers was significantly less;minimal diameter of myelinated fibers had no changens in 6J mice. The Ola mice were nomal. In electronmi-croscope observation, the neurofilament was accumulated within axons. Conclusion: In Ola mice treatedwith ACR,the like-Wallerian degeneration wes delayed. However,in 6J mice the neurofilament and mito-chondria accumulation was found within axons.%目的:观察丙烯酰胺(ACR)中毒后Ola鼠轴突的病理改变进行,并与6J鼠比较。方法:利用光镜和电镜技术对腓神经和腓肠神经的改变进行定性和定量分析。结果:光镜下6J鼠的总横断纤维面积(TTFA)明显增大,纤维密度(DMF)明显降低,腓神经和腓肠神经的改变相似,大径纤维数减少,而小径纤维数无明显改变。Ola鼠无明显改变。神经轴突肿胀,髓鞘深染形状不规则,有些被破坏。电镜下见轴突内神经微丝大量增多排列密集,线粒体增多,聚集。结论:Ola鼠对ACR所致的类华勒氏变性反应也是延迟的,而6J鼠出现轴突的肿胀、变性,电镜下以神经微丝的聚集、线粒体堆积为特征。

  9. The role of hSCs in promoting neural differentiation of hUC-MSCs in spinal cord injury

    Directory of Open Access Journals (Sweden)

    Wu QL

    2013-11-01

    Full Text Available Qiuli Wu,1,* You Chen,1,* Guangzhi Ning,1 Shiqing Feng,1 Junling Han,2 Qiang Wu,1 Yulin LI,1 Hong Wu,1 Hongyu Shi1 1Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China; 2Tianjin Union Stem Cell and Gene Engineering Co., Ltd, Tianjin, People's Republic of China * These authors contributed equally to this paper Abstract: Cell therapy is a promising approach to treating spinal cord injury (SCI. Previous studies demonstrated that co-transplantation of human umbilical cord mesenchymal stem cells (hUC-MSCs and human Schwann cells (hSCs was an effective strategy by which to promote the regeneration of corticospinal fibers and locomotor recovery after SCI in rats. However, the neural differentiation potential of hUC-MSCs was not fully understood. In the present study, we examined the influence of hSCs on the survival and differentiation of hUC-MSCs in SCI rats. Four groups of rats were implanted with Dulbecco's Modified Eagle's Medium (DMEM, hSCs, hUC-MSCs, or a combination of hSCs and hUC-MSCs, respectively. Our results demonstrated that MAB1281 immunopositive cells appeared in the injured site of the transplanted cell groups, while myelin basic protein and high-molecular-weight neurofilament immunopositive cells were detected only in the co-transplantation group under the positive background of MAB1281. Furthermore, polymerase chain reaction (PCR and Western blot showed significantly higher expression of myelin basic protein and high-molecular-weight neurofilament and lower expression of glial fibrillary acidic protein in the co-transplantation group (P < 0.05, which correlated strongly with immunofluorescence findings. These results suggest that hSCs could induce hUC-MSC differentiation into neurons and oligodendrocytes and inhibit the formation of glial scarring after SCI. The neural differentiation of hUC-MSCs is likely induced by soluble factors provided by hSCs. Keywords: spinal cord injury

  10. 血管紧张素转换酶抑制剂对糖尿病大鼠周围神经病变的防治作用%Effects of angiotensin-converting enzyme inhibitor on diabetic peripheral neuropathy in rats

    Institute of Scientific and Technical Information of China (English)

    韩丽萍; 于德民; 谢云

    2008-01-01

    目的研究血管紧张素转换酶抑制剂(ACEI)对精尿病大鼠周围神经病变的防治作用,并探讨其作用机制.方法链脲佐菌素(STZ)诱导糖尿病大鼠,预防及治疗性给药8周,观察赖诺普利(lisinopril)对坐骨神经传导速度及超微结构的影响;并测定神经组织超氧化物歧化酶(SOD)、丙二醛(MDA)、Na+-K+-ATPase活性及神经丝蛋白、髓鞘碱性蛋白(MBP)的表达、神经内膜毛细血管密度.结果赖诺普利预防或治疗可不同程度地改善坐骨神经的功能和结构;改善神经组织的氧化应激状态、提高Na+ -K+ -ATPase活性、增加神经结构蛋白的表达、促进血管新生.结论 ACEI足防治糖尿病周围神经病变的有效措施,其机制可能与改善神经组织缺血及相关代谢紊乱有关.%Objective The aim of this study is to investigate the prevention and therapy effects of ACE inhibitor on diabetic peripheral neuropathy(DPN) in rats and to explore the mechanism.Methods Diabtes was induced by STZ.After 8 weeks of prevention or treatment,we observed the effects of ACEI(lisinopril) on nerve conduction velocity and uhramicrostructure of sciatic nerve;determined SOD, MDA, Na+ -K +-ATPase activity,assessed neurofilament, MBP and capillary density of sciatic nerve.Results Lisinopril prevention/therapy treatment improved nerve structure and function at different degrees; improved oxidative stress state, Na+ -K+ -ATPase activity, neurofilament, MBP expression and angiogenesis. Conchusions ACEI is an effective measurement on DPN.The possible mechanisms were related to its improvement of nerve isehemic state and relative metabolic disorders.

  11. Enhanced nigrostriatal neuron-specific, long-term expression by using neural-specific promoters in combination with targeted gene transfer by modified helper virus-free HSV-1 vector particles

    Directory of Open Access Journals (Sweden)

    Kong Lingxin

    2008-04-01

    Full Text Available Abstract Background Direct gene transfer into neurons has potential for developing gene therapy treatments for specific neurological conditions, and for elucidating neuronal physiology. Due to the complex cellular composition of specific brain areas, neuronal type-specific recombinant gene expression is required for many potential applications of neuronal gene transfer. One approach is to target gene transfer to a specific type of neuron. We developed modified Herpes Simplex Virus (HSV-1 particles that contain chimeric glycoprotein C (gC – glial cell line-derived neurotrophic factor (GDNF or brain-derived neurotrophic factor (BDNF proteins. HSV-1 vector particles containing either gC – GDNF or gC – BDNF target gene transfer to nigrostriatal neurons, which contain specific receptors for GDNF or BDNF. A second approach to achieve neuronal type-specific expression is to use a cell type-specific promoter, and we have used the tyrosine hydroxylase (TH promoter to restrict expression to catecholaminergic neurons or a modified neurofilament heavy gene promoter to restrict expression to neurons, and both of these promoters support long-term expression from HSV-1 vectors. To both improve nigrostriatal-neuron specific expression, and to establish that targeted gene transfer can be followed by long-term expression, we performed targeted gene transfer with vectors that support long-term, neuronal-specific expression. Results Helper virus-free HSV-1 vector packaging was performed using either gC – GDNF or gC – BDNF and vectors that contain either the TH promoter or the modified neurofilament heavy gene promoter. Vector stocks were injected into the midbrain proximal to the substantia nigra, and the rats were sacrificed at either 4 days or 1 month after gene transfer. Immunofluorescent costaining was performed to detect both recombinant gene products and nigrostriatal neurons. The combination of targeted gene transfer with neuronal

  12. Conformational transition of FGFR kinase activation revealed by site-specific unnatural amino acid reporter and single molecule FRET

    Science.gov (United States)

    Perdios, Louis; Lowe, Alan R.; Saladino, Giorgio; Bunney, Tom D.; Thiyagarajan, Nethaji; Alexandrov, Yuriy; Dunsby, Christopher; French, Paul M. W.; Chin, Jason W.; Gervasio, Francesco Luigi; Tate, Edward W.; Katan, Matilda

    2017-01-01

    Protein kinases share significant structural similarity; however, structural features alone are insufficient to explain their diverse functions. Thus, bridging the gap between static structure and function requires a more detailed understanding of their dynamic properties. For example, kinase activation may occur via a switch-like mechanism or by shifting a dynamic equilibrium between inactive and active states. Here, we utilize a combination of FRET and molecular dynamics (MD) simulations to probe the activation mechanism of the kinase domain of Fibroblast Growth Factor Receptor (FGFR). Using genetically-encoded, site-specific incorporation of unnatural amino acids in regions essential for activation, followed by specific labeling with fluorescent moieties, we generated a novel class of FRET-based reporter to monitor conformational differences corresponding to states sampled by non phosphorylated/inactive and phosphorylated/active forms of the kinase. Single molecule FRET analysis in vitro, combined with MD simulations, shows that for FGFR kinase, there are populations of inactive and active states separated by a high free energy barrier resulting in switch-like activation. Compared to recent studies, these findings support diversity in features of kinases that impact on their activation mechanisms. The properties of these FRET-based constructs will also allow further studies of kinase dynamics as well as applications in vivo.

  13. Draft genome sequence of Lampropedia cohaerens strain CT6(T) isolated from arsenic rich microbial mats of a Himalayan hot water spring.

    Science.gov (United States)

    Tripathi, Charu; Mahato, Nitish K; Rani, Pooja; Singh, Yogendra; Kamra, Komal; Lal, Rup

    2016-01-01

    Lampropedia cohaerens strain CT6(T), a non-motile, aerobic and coccoid strain was isolated from arsenic rich microbial mats (temperature ~45 °C) of a hot water spring located atop the Himalayan ranges at Manikaran, India. The present study reports the first genome sequence of type strain CT6(T) of genus Lampropedia cohaerens. Sequencing data was generated using the Illumina HiSeq 2000 platform and assembled with ABySS v 1.3.5. The 3,158,922 bp genome was assembled into 41 contigs with a mean GC content of 63.5 % and 2823 coding sequences. Strain CT6(T) was found to harbour genes involved in both the Entner-Duodoroff pathway and non-phosphorylated ED pathway. Strain CT6(T) also contained genes responsible for imparting resistance to arsenic, copper, cobalt, zinc, cadmium and magnesium, providing survival advantages at a thermal location. Additionally, the presence of genes associated with biofilm formation, pyrroloquinoline-quinone production, isoquinoline degradation and mineral phosphate solubilisation in the genome demonstrate the diverse genetic potential for survival at stressed niches.

  14. Pathological TDP-43 changes in Betz cells differ from those in bulbar and spinal α-motoneurons in sporadic amyotrophic lateral sclerosis.

    Science.gov (United States)

    Braak, Heiko; Ludolph, Albert C; Neumann, Manuela; Ravits, John; Del Tredici, Kelly

    2017-01-01

    Two nerve cells types, Betz cells in layer Vb of the primary motor neocortex and α-motoneurons of the lower brainstem and spinal cord, become involved at the beginning of the pathological cascade underlying sporadic amyotrophic lateral sclerosis (sALS). In both neuronal types, the cell nuclei forfeit their normal (non-phosphorylated) expression of the 43-kDa transactive response DNA-binding protein (TDP-43). Here, we present initial evidence that in α-motoneurons the loss of normal nuclear TDP-43 expression is followed by the formation of phosphorylated TDP-43 aggregates (pTDP-43) within the cytoplasm, whereas in Betz cells, by contrast, the loss of normal nuclear TDP-43 expression remains mostly unaccompanied by the development of cytoplasmic aggregations. We discuss some implications of this phenomenon of nuclear clearing in the absence of cytoplasmic inclusions, namely, abnormal but soluble (and, thus, probably toxic) cytoplasmic TDP-43 could enter the axoplasm of Betz cells, and following its transmission to the corresponding α-motoneurons in the lower brainstem and spinal cord, possibly contribute in recipient neurons to the dysregulation of the normal nuclear protein. Because the cellular mechanisms that possibly inhibit the aggregation of TDP-43 in the cytoplasm of involved Betz cells are unknown, insight into such mechanisms could disclose a pathway by which the development of aggregates in this cell population could be accelerated, thereby opening an avenue for a causally based therapy.

  15. Site-specific methylation and acetylation of lysine residues in the C-terminal domain (CTD) of RNA polymerase II

    Science.gov (United States)

    Voss, Kirsten; Forné, Ignasi; Descostes, Nicolas; Hintermair, Corinna; Schüller, Roland; Maqbool, Muhammad Ahmad; Heidemann, Martin; Flatley, Andrew; Imhof, Axel; Gut, Marta; Gut, Ivo; Kremmer, Elisabeth; Andrau, Jean-Christophe; Eick, Dirk

    2015-01-01

    Dynamic modification of heptad-repeats with the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 of RNA polymerase II (RNAPII) C-terminal domain (CTD) regulates transcription-coupled processes. Mass spectrometry analysis revealed that K7-residues in non-consensus repeats of human RNAPII are modified by acetylation, or mono-, di-, and tri-methylation. K7ac, K7me2, and K7me3 were found exclusively associated with phosphorylated CTD peptides, while K7me1 occurred also in non-phosphorylated CTD. The monoclonal antibody 1F5 recognizes K7me1/2 residues in CTD and reacts with RNAPIIA. Treatment of cellular extracts with phosphatase or of cells with the kinase inhibitor flavopiridol unmasked the K7me1/2 epitope in RNAPII0, consistent with the association of K7me1/2 marks with phosphorylated CTD peptides. Genome-wide profiling revealed high levels of K7me1/2 marks at the transcriptional start site of genes for sense and antisense transcribing RNAPII. The new K7 modifications further expand the mammalian CTD code to allow regulation of differential gene expression. PMID:26566685

  16. Phylogenetic conservation of the preapoptotic calreticulin exposure pathway from yeast to mammals.

    Science.gov (United States)

    Madeo, Frank; Durchschlag, Michael; Kepp, Oliver; Panaretakis, Theocharis; Zitvogel, Laurence; Fröhlich, Kai-Uwe; Kroemer, Guido

    2009-02-15

    The pre-apoptotic exposure of calreticulin (CRT) on the cell surface determines the efficient engulfment of mouse or human tumor cells by antigen-presenting dendritic cells. CRT exposure is rapidly induced by anthracyclins and ionizing irradiation and follows a complex signal transduction pathway that is interrupted by depletion of PERK, caspase-8, BAP31, Bax, Bak or SNAREs, as well as by knock-in mutation of eIF2alpha (to make it non-phosphorylable by PERK) or BAP31 (to render it uncleavable by caspase-8). Here, we show that yeast (Saccharomyces cerevisiae) can expose the CRT orthologue CNE1 on the surface in response to cell death induced by the anthracylin mitoxantrone (MTX). This MTX-triggered CNE1 translocation is abolished by knockout of the yeast orthologues of PERK (Gcn2), BAP31 (Yet3) and SNAREs (Nyv1, Sso1). Altogether, our data point to the existence of an ancestral and cell death-related CRT exposure pathway with conserved elements shared between unicellular fungi and mammals.

  17. The identification of (3R,4S)-5-fluoro-5-deoxy-D-ribulose-1-phosphate as an intermediate in fluorometabolite biosynthesis in Streptomyces cattleya.

    Science.gov (United States)

    Onega, Mayca; McGlinchey, Ryan P; Deng, Hai; Hamilton, John T G; O'Hagan, David

    2007-10-01

    (3R,4S)-5-Fluoro-5-deoxy-D-ribulose-1-phosphate (5-FDRulP) has been identified as the third fluorinated intermediate on the biosynthetic pathway to fluoroacetate and 4-fluorothreonine in Streptomyces cattleya. 5-FDRulP is generated after formation of 5'-fluoro-5'-deoxyadenosine (5'-FDA) and then phosphorolysis of 5'-FDA to 5-fluoro-5-deoxy-D-ribose-1-phosphate (5-FDRP) by the action of a purine nucleoside phosphorylase. An isomerase mediates the conversion of 5-FDRP to 5-FDRulP. The identity of the (3R,4S) diastereoisomer of 5-FDRulP was established by comparative (19)F{(1)H} NMR studies whereby 5-FDRulP that accumulated in a cell free extract of S. cattleya, was treated with a phytase to generate the non-phosphorylated sugar, 5-fluoro-5-deoxy-D-ribulose (5-FDRul). This S. cattleya product was compared to the product of an in-vitro biotransformation where separately 5-fluoro-5-deoxy-D-ribose and 5-fluoro-5-deoxy-D-xylose were converted to 5-fluoro-5-deoxy-D-ribulose and 5-fluoro-5-deoxy-D-xylulose respectively by the action of glucose isomerase. It was demonstrated that 5-fluoro-5-deoxy-D-ribose gave the identical diastereoisomer to that observed from 5-FDRulP.

  18. Component co-expression and purification of recombinant human pyruvate dehydrogenase complex from baculovirus infected SF9 cells.

    Science.gov (United States)

    Jiang, Yong; Wang, Juan; Zhang, Guofeng; Oza, Khyati; Myers, Linda; Holbert, Marc A; Sweitzer, Sharon

    2014-05-01

    The mammalian pyruvate dehydrogenase complex (PDC) is a multi-component mitochondrial enzyme that plays a key role in the conversion of pyruvate to acetyl-CoA connecting glycolysis to the citric acid cycle. Recent studies indicate that targeting the regulation of PDC enzymatic activity might offer therapeutic opportunities by inhibiting cancer cell metabolism. To facilitate drug discovery in this area, a well defined PDC sample is needed. Here, we report a new method of producing functional, recombinant, high quality human PDC complex. All five components were co-expressed in the cytoplasm of baculovirus-infected SF9 cells by deletion of the mitochondrial localization signal sequences of all the components and E1a was FLAG-tagged to facilitate purification. The protein FLAG tagged E1a complex was purified using FLAG-M2 affinity resin, followed by Superdex 200 sizing chromatography. The E2 and E3BP components were then Lipoylated using an enzyme based in vitro process. The resulting PDC is over 90% pure and homogenous. This non-phosphorylated, lipoylated human PDC was demonstrated to produce a robust detection window when used to develop an enzyme coupled assay of PDHK.

  19. Acidic Fibroblast Growth Factor Promotes Endothelial Progenitor Cells Function via Akt/FOXO3a Pathway.

    Directory of Open Access Journals (Sweden)

    Liya Huang

    Full Text Available Acidic fibroblast growth factor (FGF1 has been suggested to enhance the functional activities of endothelial progenitor cells (EPCs. The Forkhead homeobox type O transcription factors (FOXOs, a key substrate of the survival kinase Akt, play important roles in regulation of various cellular processes. We previously have shown that FOXO3a is the main subtype of FOXOs expressed in EPCs. Here, we aim to determine whether FGF1 promotes EPC function through Akt/FOXO3a pathway. Human peripheral blood derived EPCs were transduced with adenoviral vectors either expressing a non-phosphorylable, constitutively active triple mutant of FOXO3a (Ad-TM-FOXO3a or a GFP control (Ad-GFP. FGF1 treatment improved functional activities of Ad-GFP transduced EPCs, including cell viability, proliferation, antiapoptosis, migration and tube formation, whereas these beneficial effects disappeared by Akt inhibitor pretreatment. Moreover, EPC function was declined by Ad-TM-FOXO3a transduction and failed to be attenuated even with FGF1 treatment. FGF1 upregulated phosphorylation levels of Akt and FOXO3a in Ad-GFP transduced EPCs, which were repressed by Akt inhibitor pretreatment. However, FGF1 failed to recover Ad-TM-FOXO3a transduced EPCs from dysfunction. These data indicate that FGF1 promoting EPC function is at least in part mediated through Akt/FOXO3a pathway. Our study may provide novel ideas for enhancing EPC angiogenic ability and optimizing EPC transplantation therapy in the future.

  20. Site-specific methylation and acetylation of lysine residues in the C-terminal domain (CTD) of RNA polymerase II.

    Science.gov (United States)

    Voss, Kirsten; Forné, Ignasi; Descostes, Nicolas; Hintermair, Corinna; Schüller, Roland; Maqbool, Muhammad Ahmad; Heidemann, Martin; Flatley, Andrew; Imhof, Axel; Gut, Marta; Gut, Ivo; Kremmer, Elisabeth; Andrau, Jean-Christophe; Eick, Dirk

    2015-01-01

    Dynamic modification of heptad-repeats with the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 of RNA polymerase II (RNAPII) C-terminal domain (CTD) regulates transcription-coupled processes. Mass spectrometry analysis revealed that K7-residues in non-consensus repeats of human RNAPII are modified by acetylation, or mono-, di-, and tri-methylation. K7ac, K7me2, and K7me3 were found exclusively associated with phosphorylated CTD peptides, while K7me1 occurred also in non-phosphorylated CTD. The monoclonal antibody 1F5 recognizes K7me1/2 residues in CTD and reacts with RNAPIIA. Treatment of cellular extracts with phosphatase or of cells with the kinase inhibitor flavopiridol unmasked the K7me1/2 epitope in RNAPII0, consistent with the association of K7me1/2 marks with phosphorylated CTD peptides. Genome-wide profiling revealed high levels of K7me1/2 marks at the transcriptional start site of genes for sense and antisense transcribing RNAPII. The new K7 modifications further expand the mammalian CTD code to allow regulation of differential gene expression.

  1. The acclimation of photosynthesis and respiration to temperature in the C3 -C4 intermediate Salsola divaricata: induction of high respiratory CO2 release under low temperature.

    Science.gov (United States)

    Gandin, Anthony; Koteyeva, Nuria K; Voznesenskaya, Elena V; Edwards, Gerald E; Cousins, Asaph B

    2014-11-01

    Photosynthesis in C(3) -C(4) intermediates reduces carbon loss by photorespiration through refixing photorespired CO(2) within bundle sheath cells. This is beneficial under warm temperatures where rates of photorespiration are high; however, it is unknown how photosynthesis in C(3) -C(4) plants acclimates to growth under cold conditions. Therefore, the cold tolerance of the C(3) -C(4) Salsola divaricata was tested to determine whether it reverts to C(3) photosynthesis when grown under low temperatures. Plants were grown under cold (15/10 °C), moderate (25/18 °C) or hot (35/25 °C) day/night temperatures and analysed to determine how photosynthesis, respiration and C(3) -C(4) features acclimate to these growth conditions. The CO(2) compensation point and net rates of CO(2) assimilation in cold-grown plants changed dramatically when measured in response to temperature. However, this was not due to the loss of C(3) -C(4) intermediacy, but rather to a large increase in mitochondrial respiration supported primarily by the non-phosphorylating alternative oxidative pathway (AOP) and, to a lesser degree, the cytochrome oxidative pathway (COP). The increase in respiration and AOP capacity in cold-grown plants likely protects against reactive oxygen species (ROS) in mitochondria and photodamage in chloroplasts by consuming excess reductant via the alternative mitochondrial respiratory electron transport chain.

  2. Structural Mechanism for Regulation of Bcl-2 protein Noxa by phosphorylation.

    Science.gov (United States)

    Karim, Christine B; Espinoza-Fonseca, L Michel; James, Zachary M; Hanse, Eric A; Gaynes, Jeffrey S; Thomas, David D; Kelekar, Ameeta

    2015-09-28

    We showed previously that phosphorylation of Noxa, a 54-residue Bcl-2 protein, at serine 13 (Ser13) inhibited its ability to promote apoptosis through interactions with canonical binding partner, Mcl-1. Using EPR spectroscopy, molecular dynamics (MD) simulations and binding assays, we offer evidence that a structural alteration caused by phosphorylation partially masks Noxa's BH3 domain, inhibiting the Noxa-Mcl-1 interaction. EPR of unphosphorylated Noxa, with spin-labeled amino acid TOAC incorporated within the BH3 domain, revealed equilibrium between ordered and dynamically disordered states. Mcl-1 further restricted the ordered component for non-phosphorylated Noxa, but left the pSer13 Noxa profile unchanged. Microsecond MD simulations indicated that the BH3 domain of unphosphorylated Noxa is housed within a flexible loop connecting two antiparallel β-sheets, flanked by disordered N- and C-termini and Ser13 phosphorylation creates a network of salt-bridges that facilitate the interaction between the N-terminus and the BH3 domain. EPR showed that a spin label inserted near the N-terminus was weakly immobilized in unphosphorylated Noxa, consistent with a solvent-exposed helix/loop, but strongly constrained in pSer13 Noxa, indicating a more ordered peptide backbone, as predicted by MD simulations. Together these studies reveal a novel mechanism by which phosphorylation of a distal serine inhibits a pro-apoptotic BH3 domain and promotes cell survival.

  3. Structural basis for the regulation of nuclear import of Epstein-Barr virus nuclear antigen 1 (EBNA1) by phosphorylation of the nuclear localization signal.

    Science.gov (United States)

    Nakada, Ryohei; Hirano, Hidemi; Matsuura, Yoshiyuki

    2017-02-26

    Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is expressed in every EBV-positive tumor and is essential for the maintenance, replication, and transcription of the EBV genome in the nucleus of host cells. EBNA1 is a serine phosphoprotein, and it has been shown that phosphorylation of S385 in the nuclear localization signal (NLS) of EBNA1 increases the binding affinity to the nuclear import adaptor importin-α1 as well as importin-α5, and stimulates nuclear import of EBNA1. To gain insights into how phosphorylation of the EBNA1 NLS regulates nuclear import, we have determined the crystal structures of two peptide complexes of importin-α1: one with S385-phosphorylated EBNA1 NLS peptide, determined at 2.0 Å resolution, and one with non-phosphorylated EBNA1 NLS peptide, determined at 2.2 Å resolution. The structures show that EBNA1 NLS binds to the major and minor NLS-binding sites of importin-α1, and indicate that the binding affinity of the EBNA1 NLS to the minor NLS-binding site could be enhanced by phosphorylation of S385 through electrostatic interaction between the phosphate group of phospho-S385 and K392 of importin-α1 (corresponding to R395 of importin-α5) on armadillo repeat 8.

  4. Regulation of RKIP function by Helicobacter pylori in gastric cancer.

    Directory of Open Access Journals (Sweden)

    Erika L Moen

    Full Text Available Helicobacter pylori (H. pylori is a gram-negative, spiral-shaped bacterium that infects more than half of the world's population and is a major cause of gastric adenocarcinoma. The mechanisms that link H. pylori infection to gastric carcinogenesis are not well understood. In the present study, we report that the Raf-kinase inhibitor protein (RKIP has a role in the induction of apoptosis by H. pylori in gastric epithelial cells. Western blot and luciferase transcription reporter assays demonstrate that the pathogenicity island of H. pylori rapidly phosphorylates RKIP, which then localizes to the nucleus where it activates its own transcription and induces apoptosis. Forced overexpression of RKIP enhances apoptosis in H. pylori-infected cells, whereas RKIP RNA inhibition suppresses the induction of apoptosis by H. pylori infection. While inducing the phosphorylation of RKIP, H. pylori simultaneously targets non-phosphorylated RKIP for proteasome-mediated degradation. The increase in RKIP transcription and phosphorylation is abrogated by mutating RKIP serine 153 to valine, demonstrating that regulation of RKIP activity by H. pylori is dependent upon RKIP's S153 residue. In addition, H. pylori infection increases the expression of Snail, a transcriptional repressor of RKIP. Our results suggest that H. pylori utilizes a tumor suppressor protein, RKIP, to promote apoptosis in gastric cancer cells.

  5. The Use of Titanium Dioxide for Selective Enrichment of Phosphorylated Peptides.

    Science.gov (United States)

    Thingholm, Tine E; Larsen, Martin R

    2016-01-01

    Titanium dioxide (TiO2) has very high affinity for phosphopeptides and in recent years it has become one of the most popular methods for phosphopeptide enrichment from complex biological samples. Peptide loading onto TiO2 resin in a highly acidic environment in the presence of 2,5-dihydroxybenzoic acid (DHB), phthalic acid, lactic acid, or glycolic acid has been shown to improve selectivity significantly by reducing unspecific binding of non-phosphorylated peptides. The phosphopeptides bound to the TiO2 are subsequently eluted from the chromatographic material using an alkaline buffer. TiO2 chromatography is extremely tolerant towards most buffers used in biological experiments, highly robust and as such it has become the method of choice in large-scale phosphoproteomics. Here we describe a batch mode protocol for phosphopeptide enrichment using TiO2 chromatographic material followed by desalting and concentration of the sample by reversed phase micro-columns prior to downstream MS and LC-MS/MS analysis.

  6. Ubiquinol (QH(2)) functions as a negative regulator of purine nucleotide inhibition of Acanthamoeba castellanii mitochondrial uncoupling protein.

    Science.gov (United States)

    Woyda-Ploszczyca, Andrzej; Jarmuszkiewicz, Wieslawa

    2011-01-01

    We compared the influence of different adenine and guanine nucleotides on the free fatty acid-induced uncoupling protein (UCP) activity in non-phosphorylating Acanthamoeba castellanii mitochondria when the membranous ubiquinone (Q) redox state was varied. The purine nucleotides exhibit an inhibitory effect in the following descending order: GTP>ATP>GDP>ADP≫GMP>AMP. The efficiency of guanine and adenine nucleotides to inhibit UCP-sustained uncoupling in A. castellanii mitochondria depends on the Q redox state. Inhibition by purine nucleotides can be increased with decreasing Q reduction level (thereby ubiquinol, QH₂ concentration) even with nucleoside monophosphates that are very weak inhibitors at the initial respiration. On the other hand, the inhibition can be alleviated with increasing Q reduction level (thereby QH₂ concentration). The most important finding was that ubiquinol (QH₂) but not oxidised Q functions as a negative regulator of UCP inhibition by purine nucleotides. For a given concentration of QH₂, the linoleic acid-induced GTP-inhibited H(+) leak was the same for two types of A. castellanii mitochondria that differ in the endogenous Q content. When availability of the inhibitor (GTP) or the negative inhibition modulator (QH₂) was changed, a competitive influence on the UCP activity was observed. QH₂ decreases the affinity of UCP for GTP and, vice versa, GTP decreases the affinity of UCP for QH₂. These results describe the kinetic mechanism of regulation of UCP affinity for purine nucleotides by endogenous QH₂ in the mitochondria of a unicellular eukaryote.

  7. Hydroxynonenal, a lipid peroxidation end product, stimulates uncoupling protein activity in Acanthamoeba castellanii mitochondria; the sensitivity of the inducible activity to purine nucleotides depends on the membranous ubiquinone redox state.

    Science.gov (United States)

    Woyda-Ploszczyca, Andrzej M; Jarmuszkiewicz, Wieslawa

    2012-10-01

    We studied the influence of exogenously generated superoxide and exogenous 4-hydroxy-2-nonenal (HNE), a lipid peroxidation end product, on the activity of the Acanthamoeba castellanii uncoupling protein (AcUCP). The superoxide-generating xanthine/xanthine oxidase system was insufficient to induce mitochondrial uncoupling. In contrast, exogenously added HNE induced GTP-sensitive AcUCP-mediated mitochondrial uncoupling. In non-phosphorylating mitochondria, AcUCP activation by HNE was demonstrated by increased oxygen consumption accompanied by a decreased membrane potential and ubiquinone (Q) reduction level. The HNE-induced GTP-sensitive proton conductance was similar to that observed with linoleic acid. In phosphorylating mitochondria, the HNE-induced AcUCP-mediated uncoupling decreased the yield of oxidative phosphorylation. We demonstrated that the efficiency of GTP to inhibit HNE-induced AcUCP-mediated uncoupling was regulated by the endogenous Q redox state. A high Q reduction level activated AcUCP by relieving the inhibition caused by GTP while a low Q reduction level favoured the inhibition. We propose that the regulation of UCP activity involves a rapid response through the endogenous Q redox state that modulates the inhibition of UCP by purine nucleotides, followed by a late response through lipid peroxidation products resulting from an increase in the formation of reactive oxygen species that modulate the UCP activation.

  8. Hepatitis C virus core protein inhibits interferon production by a human plasmacytoid dendritic cell line and dysregulates interferon regulatory factor-7 and signal transducer and activator of transcription (STAT 1 protein expression.

    Directory of Open Access Journals (Sweden)

    Amy E L Stone

    Full Text Available Plasmacytoid Dendritic Cells (pDCs represent a key immune cell population in the defense against viruses. pDCs detect viral pathogen associated molecular patterns (PAMPs through pattern recognition receptors (PRR. PRR/PAMP interactions trigger signaling events that induce interferon (IFN production to initiate local and systemic responses. pDCs produce Type I and Type III (IFNL IFNs in response to HCV RNA. Extracellular HCV core protein (Core is found in the circulation in chronic infection. This study defined how Core modulates PRR signaling in pDCs. Type I and III IFN expression and production following exposure to recombinant Core or β-galactosiade was assessed in human GEN2.2 cells, a pDC cell line. Core suppressed type I and III IFN production in response to TLR agonists and the HCV PAMP agonist of RIG-I. Core suppression of IFN induction was linked with decreased IRF-7 protein levels and increased non-phosphorylated STAT1 protein. Circulating Core protein interferes with PRR signaling by pDCs to suppress IFN production. Strategies to define and target Core effects on pDCs may serve to enhance IFN production and antiviral actions against HCV.

  9. Enzymatic conversion from pyridoxal to pyridoxine caused by microorganisms within tobacco phyllosphere.

    Science.gov (United States)

    Huang, ShuoHao; Zhang, JianYun; Tao, Zhen; Lei, Liang; Yu, YongHui; Huang, LongQuan

    2014-12-01

    Vitamin B6 (VB6) comprises six interconvertible pyridine compounds (vitamers), among which pyridoxal 5'-phosphate (PLP) is a coenzyme involved in a high diversity of biochemical reactions. In plants, PLP is de novo synthesized, and pyridoxine (PN) is usually maintained as the predominant B6 vitamer. Although the conversion from pyridoxal (PL) to PN catalyzed by PL reductase in plants has been confirmed, the enzyme itself remains largely unknown. We previously found pre-incubation at 35 °C dramatically enhanced PL reductase activity in tobacco leaf homogenate. In this study, we demonstrated that the increase in the reductase activity was a consequence of phyllosphere microbial proliferation. VB6 was detected from tobacco phyllosphere, and PL level was the highest among three non-phosphorylated B6 vitamers. When the sterile tobacco rich in PL were kept in an open, warm and humid environment to promote microorganism proliferation, a significant change from PL to PN was observed. Our results suggest that there may be a plant-microbe interaction in the conversion from PL to PN within tobacco phyllosphere.

  10. Identification and characterization of uncoupling protein 4 in fat body and muscle mitochondria from the cockroach Gromphadorhina cocquereliana.

    Science.gov (United States)

    Slocinska, Malgorzata; Antos-Krzeminska, Nina; Rosinski, Grzegorz; Jarmuszkiewicz, Wieslawa

    2011-12-01

    We have identified and characterized an uncoupling protein in mitochondria isolated from leg muscle and from fat body, an insect analogue tissue of mammalian liver and adipose tissue, of the cockroach Gromphadorhina coquereliana (GcUCP). This is the first functional characterization of UCP activity in isolated insect mitochondria. Bioenergetic studies clearly indicate UCP function in both insect tissues. In resting (non-phosphorylating) mitochondria, cockroach GcUCP activity was stimulated by the addition of micromolar concentrations of palmitic acid and inhibited by the purine nucleotide GTP. Moreover, in phosphorylating mitochondria, GcUCP activity was able to divert energy from oxidative phosphorylation. Functional studies indicate a higher activity of GcUCP-mediated uncoupling in cockroach muscle mitochondria compared to fat body mitochondria. GcUCP activation by palmitic acid resulted in a decrease in superoxide anion production, suggesting that protection against mitochondrial oxidative stress may be a physiological role of UCPs in insects. GcUCP protein was immunodetected using antibodies raised against human UCP4 as a single band of around 36 kDa. GcUCP protein expression in cockroach muscle mitochondria was significantly higher compared to mitochondria isolated from fat body. LC-MS/MS analyses revealed 100% sequence identities for peptides obtained from GcUCP to UCP4 isoforms from D. melanogaster (the highest homology), human, rat or other insect mitochondria. Therefore, it can be proposed that cockroach GcUCP corresponds to the UCP4 isoforms of other animals.

  11. Molecular identification and functional characterisation of uncoupling protein 4 in larva and pupa fat body mitochondria from the beetle Zophobas atratus.

    Science.gov (United States)

    Slocinska, Malgorzata; Antos-Krzeminska, Nina; Rosinski, Grzegorz; Jarmuszkiewicz, Wieslawa

    2012-08-01

    Uncoupling protein 4 (UCP4) is a member of the UCP subfamily that mediates mitochondrial uncoupling, and sequence alignment predicts the existence of UCP4 in several insects. The present study demonstrates the first molecular identification of a partial Zophobas atratus UCP4-coding sequence and the functional characterisation of ZaUCP4 in the mitochondria of larval and pupal fat bodies of the beetle. ZaUCP4 shows a high similarity to predicted insect UCP4 isoforms and known mammalian UCP4s, both at the nucleotide and amino acid sequence levels. Bioenergetic studies clearly demonstrate UCP function in mitochondria from larval and pupal fat bodies. In non-phosphorylating mitochondria, ZaUCP activity was stimulated by palmitic acid and inhibited by the purine nucleotide GTP. In phosphorylating mitochondria, ZaUCP4 activity decreased the yield of oxidative phosphorylation. ZaUCP4 was immunodetected with antibodies raised against human UCP4 as a single 36-kDa band. A lower expression of ZaUCP4 at the level of mRNA and protein and a decreased ZaUCP4 activity were observed in the Z. atratus pupal fat body compared with the larval fat body. The different expression patterns and activity of ZaUCP4 during the larval-pupal transformation indicates an important physiological role for UCP4 in insect fat body development and function during insect metamorphosis. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Structural and dynamic insights into the energetics of activation loop rearrangement in FGFR1 kinase.

    Science.gov (United States)

    Klein, Tobias; Vajpai, Navratna; Phillips, Jonathan J; Davies, Gareth; Holdgate, Geoffrey A; Phillips, Chris; Tucker, Julie A; Norman, Richard A; Scott, Andrew D; Higazi, Daniel R; Lowe, David; Thompson, Gary S; Breeze, Alexander L

    2015-07-23

    Protein tyrosine kinases differ widely in their propensity to undergo rearrangements of the N-terminal Asp-Phe-Gly (DFG) motif of the activation loop, with some, including FGFR1 kinase, appearing refractory to this so-called 'DFG flip'. Recent inhibitor-bound structures have unexpectedly revealed FGFR1 for the first time in a 'DFG-out' state. Here we use conformationally selective inhibitors as chemical probes for interrogation of the structural and dynamic features that appear to govern the DFG flip in FGFR1. Our detailed structural and biophysical insights identify contributions from altered dynamics in distal elements, including the αH helix, towards the outstanding stability of the DFG-out complex with the inhibitor ponatinib. We conclude that the αC-β4 loop and 'molecular brake' regions together impose a high energy barrier for this conformational rearrangement, and that this may have significance for maintaining autoinhibition in the non-phosphorylated basal state of FGFR1.

  13. Structural and dynamic insights into the energetics of activation loop rearrangement in FGFR1 kinase

    Science.gov (United States)

    Klein, Tobias; Vajpai, Navratna; Phillips, Jonathan J.; Davies, Gareth; Holdgate, Geoffrey A.; Phillips, Chris; Tucker, Julie A.; Norman, Richard A.; Scott, Andrew D.; Higazi, Daniel R.; Lowe, David; Thompson, Gary S.; Breeze, Alexander L.

    2015-01-01

    Protein tyrosine kinases differ widely in their propensity to undergo rearrangements of the N-terminal Asp–Phe–Gly (DFG) motif of the activation loop, with some, including FGFR1 kinase, appearing refractory to this so-called ‘DFG flip'. Recent inhibitor-bound structures have unexpectedly revealed FGFR1 for the first time in a ‘DFG-out' state. Here we use conformationally selective inhibitors as chemical probes for interrogation of the structural and dynamic features that appear to govern the DFG flip in FGFR1. Our detailed structural and biophysical insights identify contributions from altered dynamics in distal elements, including the αH helix, towards the outstanding stability of the DFG-out complex with the inhibitor ponatinib. We conclude that the αC-β4 loop and ‘molecular brake' regions together impose a high energy barrier for this conformational rearrangement, and that this may have significance for maintaining autoinhibition in the non-phosphorylated basal state of FGFR1. PMID:26203596

  14. The phosphotransferase protein EIIA(Ntr) modulates the phosphate starvation response through interaction with histidine kinase PhoR in Escherichia coli.

    Science.gov (United States)

    Lüttmann, Denise; Göpel, Yvonne; Görke, Boris

    2012-10-01

    Many Proteobacteria possess the paralogous PTS(Ntr), in addition to the sugar transport phosphotransferase system (PTS). In the PTS(Ntr) phosphoryl-groups are transferred from phosphoenolpyruvate to protein EIIA(Ntr) via the phosphotransferases EI(Ntr) and NPr. The PTS(Ntr) has been implicated in regulation of diverse physiological processes. In Escherichia coli, the PTS(Ntr) plays a role in potassium homeostasis. In particular, EIIA(Ntr) binds to and stimulates activity of a two-component histidine kinase (KdpD) resulting in increased expression of the genes encoding the high-affinity K(+) transporter KdpFABC. Here, we show that the phosphate (pho) regulon is likewise modulated by PTS(Ntr). The pho regulon, which comprises more than 30 genes, is activated by the two-component system PhoR/PhoB under conditions of phosphate starvation. Mutants lacking EIIA(Ntr) are unable to fully activate the pho genes and exhibit a growth delay upon adaptation to phosphate limitation. In contrast, pho expression is increased above the wild-type level in mutants deficient for EIIA(Ntr) phosphorylation suggesting that non-phosphorylated EIIA(Ntr) modulates pho. Protein interaction analyses reveal binding of EIIA(Ntr) to histidine kinase PhoR. This interaction increases the amount of phosphorylated response regulator PhoB. Thus, EIIA(Ntr) is an accessory protein that modulates the activities of two distinct sensor kinases, KdpD and PhoR, in E. coli.

  15. Dephosphorylation of cardiomyocyte Cx43 is associated with myocardial ischemia and reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Zhijuan Cao; Xuan Xu; Linli Que; Qi Chen; Yuehua Li

    2009-01-01

    Objective:Myocardial ischemia/reperfusion(I/R) injury is the leading cause of death in the world. However, the details of the mechanism of its pathophysioiogy are still unknown. The present study was designed to investigate the role of connexin 43(Cx63) in acute models of myocardial I/R injury. Methods: Male C57BL/6 mice were subjected to myocardial ischemia(45 rain) followed by reperfusion(4 hrs) in vivo. The whole operation was monitored using a two-lead ECG. Hearts were harvested and the level of protein was assessed by western blot analysis. Haematoxylin and Eosin(HE) staining was used to detect the extent of neutrophil infiltration. The expression level of IL-6 was detected by ELISA. Results: A murine myocardial I/R injury model was constructed successfully. Phosphorylated Cx43 decreased 83.45% while non-phosphorylated Cx43 increased 1.62- fold in the myocardium after I/R injury. Neutrophil infiltration and the expression of the inflammatory cytokine IL-6 increased in the myocardium following I/R. Conclusion: During myocardial I/R injury, cardiomyocyte Cx43 is dephosphorylated, and this may be associated with an inflammatory response.

  16. Structural basis for the interaction of the free SH2 domain EAT-2 with SLAM receptors in hematopoietic cells.

    Science.gov (United States)

    Morra, M; Lu, J; Poy, F; Martin, M; Sayos, J; Calpe, S; Gullo, C; Howie, D; Rietdijk, S; Thompson, A; Coyle, A J; Denny, C; Yaffe, M B; Engel, P; Eck, M J; Terhorst, C

    2001-11-01

    The T and natural killer (NK) cell-specific gene SAP (SH2D1A) encodes a 'free SH2 domain' that binds a specific tyrosine motif in the cytoplasmic tail of SLAM (CD150) and related cell surface proteins. Mutations in SH2D1A cause the X-linked lymphoproliferative disease, a primary immunodeficiency. Here we report that a second gene encoding a free SH2 domain, EAT-2, is expressed in macrophages and B lympho cytes. The EAT-2 structure in complex with a phosphotyrosine peptide containing a sequence motif with Tyr281 of the cytoplasmic tail of CD150 is very similar to the structure of SH2D1A complexed with the same peptide. This explains the high affinity of EAT-2 for the pTyr motif in the cytoplasmic tail of CD150 but, unlike SH2D1A, EAT-2 does not bind to non-phosphorylated CD150. EAT-2 binds to the phosphorylated receptors CD84, CD150, CD229 and CD244, and acts as a natural inhibitor, which interferes with the recruitment of the tyrosine phosphatase SHP-2. We conclude that EAT-2 plays a role in controlling signal transduction through at least four receptors expressed on the surface of professional antigen-presenting cells.

  17. Phosphorylation of the leukemic oncoprotein EVI1 on serine 196 modulates DNA binding, transcriptional repression and transforming ability.

    Directory of Open Access Journals (Sweden)

    Daniel J White

    Full Text Available The EVI1 (ecotropic viral integration site 1 gene at 3q26 codes for a transcriptional regulator with an essential role in haematopoiesis. Overexpression of EVI1 in acute myeloid leukaemia (AML is frequently associated with 3q26 rearrangements and confers extremely poor prognosis. EVI1 mediates transcriptional regulation, signalling, and epigenetic modifications by interacting with DNA, proteins and protein complexes. To explore to what extent protein phosphorylation impacts on EVI1 functions, we analysed endogenous EVI1 protein from a high EVI1 expressing Fanconi anaemia (FA derived AML cell line. Mass spectrometric analysis of immunoprecipitated EVI1 revealed phosphorylation at serine 196 (S196 in the sixth zinc finger of the N-terminal zinc finger domain. Mutated EVI1 with an aspartate substitution at serine 196 (S196D, which mimics serine phosphorylation of this site, exhibited reduced DNA-binding and transcriptional repression from a gene promotor selectively targeted by the N-terminal zinc finger domain. Forced expression of the S196D mutant significantly reduced EVI1 mediated transformation of Rat1 fibroblasts. While EVI1-mediated serial replating of murine haematopoietic progenitors was maintained by EVI1-S196D, this was associated with significantly higher Evi1-trancript levels compared with WT-EVI1 or EVI1-S196A, mimicking S196 non-phosphorylated EVI1. These data suggest that EVI1 function is modulated by phosphorylation of the first zinc finger domain.

  18. Conformational transition of FGFR kinase activation revealed by site-specific unnatural amino acid reporter and single molecule FRET

    Science.gov (United States)

    Perdios, Louis; Lowe, Alan R.; Saladino, Giorgio; Bunney, Tom D.; Thiyagarajan, Nethaji; Alexandrov, Yuriy; Dunsby, Christopher; French, Paul M. W.; Chin, Jason W.; Gervasio, Francesco Luigi; Tate, Edward W.; Katan, Matilda

    2017-01-01

    Protein kinases share significant structural similarity; however, structural features alone are insufficient to explain their diverse functions. Thus, bridging the gap between static structure and function requires a more detailed understanding of their dynamic properties. For example, kinase activation may occur via a switch-like mechanism or by shifting a dynamic equilibrium between inactive and active states. Here, we utilize a combination of FRET and molecular dynamics (MD) simulations to probe the activation mechanism of the kinase domain of Fibroblast Growth Factor Receptor (FGFR). Using genetically-encoded, site-specific incorporation of unnatural amino acids in regions essential for activation, followed by specific labeling with fluorescent moieties, we generated a novel class of FRET-based reporter to monitor conformational differences corresponding to states sampled by non phosphorylated/inactive and phosphorylated/active forms of the kinase. Single molecule FRET analysis in vitro, combined with MD simulations, shows that for FGFR kinase, there are populations of inactive and active states separated by a high free energy barrier resulting in switch-like activation. Compared to recent studies, these findings support diversity in features of kinases that impact on their activation mechanisms. The properties of these FRET-based constructs will also allow further studies of kinase dynamics as well as applications in vivo. PMID:28045057

  19. Structural insights into the mechanism of phosphoregulation of the retinoblastoma protein.

    Directory of Open Access Journals (Sweden)

    Ekaterina P Lamber

    Full Text Available The retinoblastoma susceptibility protein RB1 is a key regulator of cell proliferation and fate. RB1 operates through nucleating the formation of multi-component protein complexes involved in the regulation of gene transcription, chromatin structure and protein stability. Phosphorylation of RB1 by cyclin-dependent kinases leads to conformational alterations and inactivates the capability of RB1 to bind partner protein. Using small angle X-ray scattering in combination with single particle analysis of transmission electron microscope images of negative-stained material we present the first three-dimensional reconstruction of non-phosphorylated RB1 revealing an extended architecture and deduce the domain arrangement within the molecule. Phosphorylation results in an overt alteration of the molecular shape and dimensions, consistent with the transition to a compact globular architecture. The work presented provides what is to our knowledge the first description of the relative domain arrangement in active RB1 and predicts the molecular movement that leads to RB1 inactivation following protein phosphorylation.

  20. JAM-A and aPKC: A close pair during cell-cell contact maturation and tight junction formation in epithelial cells.

    Science.gov (United States)

    Ebnet, Klaus

    2013-01-01

    Cell-cell adhesion plays a critical role in the formation of barrier-forming epithelia. The molecules which mediate cell-cell adhesion frequently act as signaling molecules by recruiting and/or assembling cytoplasmic protein complexes. Junctional Adhesion Molecule (JAM)-A interacts with the cell polarity protein PAR-3, a member of the PAR-3-aPKC-PAR-6 complex, which regulates the formation of cell-cell contacts and the development of tight junctions (TJs). In our recent study we found that JAM-A is localized at primordial, spot-like cell-cell junctions (pAJs) in a non-phosphorylated form. After the recruitment of the PAR-aPKC complex and its activation at pAJs, aPKC phosphorylates JAM-A at Ser285 to promote the maturation of immature junctions. In polarized epithelial cells, aPKC phosphorylates JAM-A selectively at the TJs to maintain the barrier function of TJs. Thus, through mutual regulation, JAM-A and aPKC form a functional unit that regulates the establishment of barrier-forming junctions in vertebrate epithelial cells.

  1. Phosphorylation of CPAP by Aurora-A Maintains Spindle Pole Integrity during Mitosis.

    Science.gov (United States)

    Chou, En-Ju; Hung, Liang-Yi; Tang, Chieh-Ju C; Hsu, Wen-Bin; Wu, Hsin-Yi; Liao, Pao-Chi; Tang, Tang K

    2016-03-29

    CPAP is required for centriole elongation during S/G2 phase, but the role of CPAP in mitosis is incompletely understood. Here, we show that CPAP maintains spindle pole integrity through its phosphorylation by Aurora-A during mitosis. Depletion of CPAP induced a prolonged delay in mitosis, pericentriolar material (PCM) dispersion, and multiple mitotic abnormalities. Further studies demonstrated that CPAP directly interacts with and is phosphorylated by Aurora-A at serine 467 during mitosis. Interestingly, the dispersal of the PCM was effectively rescued by ectopic expression of wild-type CPAP or a phospho-mimic CPAP-S467D mutant, but not a non-phosphorylated CPAP-S467A mutant. Finally, we found that CPAP-S467D has a low affinity for microtubule binding but a high affinity for PCM proteins. Together, our results support a model wherein CPAP is required for proper mitotic progression, and phosphorylation of CPAP by Aurora-A is essential for maintaining spindle pole integrity.

  2. A novel titanium dioxide-polydimethylsiloxane plate for phosphopeptide enrichment and mass spectrometry analysis.

    Science.gov (United States)

    Chen, Chao-Jung; Lai, Chien-Chen; Tseng, Mei-Chun; Liu, Yu-Ching; Liu, Yu-Huei; Chiou, Liang-Wei; Tsai, Fuu-Jen

    2014-02-17

    The phosphorylation of proteins is a major post-translational modification that is required for the regulation of many cellular processes and activities. Mass spectrometry signals of low-abundance phosphorylated peptides are commonly suppressed by the presence of abundant non-phosphorylated peptides. Therefore, one of the major challenges in the detection of low-abundance phosphopeptides is their enrichment from complex peptide mixtures. Titanium dioxide (TiO2) has been proven to be a highly efficient approach for phosphopeptide enrichment and is widely applied. In this study, a novel TiO2 plate was developed by coating TiO2 particles onto polydimethylsiloxane (PDMS)-coated MALDI plates, glass, or plastic substrates. The TiO2-PDMS plate (TP plate) could be used for on-target MALDI-TOF analysis, or as a purification plate on which phosphopeptides were eluted out and subjected to MALDI-TOF or nanoLC-MS/MS analysis. The detection limit of the TP plate was ∼10-folds lower than that of a TiO2-packed tip approach. The capacity of the ∼2.5 mm diameter TiO2 spots was estimated to be ∼10 μg of β-casein. Following TiO2 plate enrichment of SCC4 cell lysate digests and nanoLC-MS/MS analysis, ∼82% of the detected proteins were phosphorylated, illustrating the sensitivity and effectiveness of the TP plate for phosphoproteomic study.

  3. Multidimensional electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) for quantitative analysis of the proteome and phosphoproteome in clinical and biomedical research.

    Science.gov (United States)

    Loroch, Stefan; Schommartz, Tim; Brune, Wolfram; Zahedi, René Peiman; Sickmann, Albert

    2015-05-01

    Quantitative proteomics and phosphoproteomics have become key disciplines in understanding cellular processes. Fundamental research can be done using cell culture providing researchers with virtually infinite sample amounts. In contrast, clinical, pre-clinical and biomedical research is often restricted to minute sample amounts and requires an efficient analysis with only micrograms of protein. To address this issue, we generated a highly sensitive workflow for combined LC-MS-based quantitative proteomics and phosphoproteomics by refining an ERLIC-based 2D phosphoproteomics workflow into an ERLIC-based 3D workflow covering the global proteome as well. The resulting 3D strategy was successfully used for an in-depth quantitative analysis of both, the proteome and the phosphoproteome of murine cytomegalovirus-infected mouse fibroblasts, a model system for host cell manipulation by a virus. In a 2-plex SILAC experiment with 150 μg of a tryptic digest per condition, the 3D strategy enabled the quantification of ~75% more proteins and even ~134% more peptides compared to the 2D strategy. Additionally, we could quantify ~50% more phosphoproteins by non-phosphorylated peptides, concurrently yielding insights into changes on the levels of protein expression and phosphorylation. Beside its sensitivity, our novel three-dimensional ERLIC-strategy has the potential for semi-automated sample processing rendering it a suitable future perspective for clinical, pre-clinical and biomedical research. Copyright © 2015. Published by Elsevier B.V.

  4. Metabolism evaluation of biomimetic prodrugs by in vitro models and mass spectrometry.

    Science.gov (United States)

    Lalanne, Muriel; Khoury, Hania; Deroussent, Alain; Bosquet, Nathalie; Benech, Henri; Clayette, Pascal; Couvreur, Patrick; Vassal, Gilles; Paci, Angelo; Andrieux, Karine

    2009-09-11

    Glycerolipidic prodrug is an interesting concept to enhance lymphatic absorption of polar drugs intended to oral delivery such as didanosine (ddI). In order to improve ddI bioavailability, two didanosine glycerolipidic prodrugs, the phosphorylated (ProddIP) and the non-phosphorylated derivatives (ProddINP) were synthesized to follow triglyceride metabolism. The biomimetism approach of these prodrugs has been studied in vitro at two steps. First, liposomal formulation of each prodrug was incubated with a lipolysis model based on pancreatin and analysed using liquid chromatography combined with tandem mass spectrometry (LC-MS/MS). These experiments evidenced that both didanosine prodrugs were recognized by the lipases; as expected, they were cleaved at both positions sn-1 and sn-3 of glycerol. ProddIP was metabolised twice more rapidly than ProddINP suggesting an implication of some phospholipases in ProddIP degradation. Secondly, the detection of dideoxyadenosine triphosphate (ddA-TP) into HIV-1 infected cells after their incubation with ProddINP loaded liposomes evidenced their ability to release ddI that could penetrate into the cells and be metabolised by intracellular kinases. These results confirmed that the synthesized glycerolipidic prodrugs of didanosine could be investigated for a biomimetic approach with final aiming of increasing the drug oral bioavailability by enhancing intestinal absorption.

  5. Localization of interchromatin granule cluster and Cajal body components in oocyte nuclear bodies of the hemipterans.

    Science.gov (United States)

    Bogolyubov, D S; Batalova, F M; Ogorzałek, A

    2007-10-01

    An oocyte nucleus contains different extrachromosomal nuclear domains collectively called nuclear bodies (NBs). In the present work we revealed, using immunogold labeling electron microscopy, some marker components of interchromatin granule clusters (IGCs) and Cajal bodies (CBs) in morphologically heterogeneous oocyte NBs studied in three hemipteran species: Notostira elongata, Capsodes gothicus (Miridae) and Velia caprai (Veliidae). Both IGC and CB counterparts were revealed in oocyte nuclei of the studied species but morphological and biochemical criteria were found to be not sufficient to determine carefully the define type of oocyte NBs. We found that the molecular markers of the CBs (coilin and non-phosphorylated RNA polymerase II) and IGCs (SC35 protein) may be localized in the same NB. Anti-SC35 antibody may decorate not only a granular material representing "true" interchromatin granules but also masks some fibrillar parts of complex NBs. Our first observations on the hemipteran oocyte NBs confirm the high complexity and heterogeneity of insect oocyte IGCs and CBs in comparison with those in mammalian somatic cells and amphibian oocytes.

  6. Phosphorylation of the mitochondrial autophagy receptor Nix enhances its interaction with LC3 proteins.

    Science.gov (United States)

    Rogov, Vladimir V; Suzuki, Hironori; Marinković, Mija; Lang, Verena; Kato, Ryuichi; Kawasaki, Masato; Buljubašić, Maja; Šprung, Matilda; Rogova, Natalia; Wakatsuki, Soichi; Hamacher-Brady, Anne; Dötsch, Volker; Dikic, Ivan; Brady, Nathan R; Novak, Ivana

    2017-04-25

    The mitophagy receptor Nix interacts with LC3/GABARAP proteins, targeting mitochondria into autophagosomes for degradation. Here we present evidence for phosphorylation-driven regulation of the Nix:LC3B interaction. Isothermal titration calorimetry and NMR indicate a ~100 fold enhanced affinity of the serine 34/35-phosphorylated Nix LC3-interacting region (LIR) to LC3B and formation of a very rigid complex compared to the non-phosphorylated sequence. Moreover, the crystal structure of LC3B in complex with the Nix LIR peptide containing glutamic acids as phosphomimetic residues and NMR experiments revealed that LIR phosphorylation stabilizes the Nix:LC3B complex via formation of two additional hydrogen bonds between phosphorylated serines of Nix LIR and Arg11, Lys49 and Lys51 in LC3B. Substitution of Lys51 to Ala in LC3B abrogates binding of a phosphomimetic Nix mutant. Functionally, serine 34/35 phosphorylation enhances autophagosome recruitment to mitochondria in HeLa cells. Together, this study provides cellular, biochemical and biophysical evidence that phosphorylation of the LIR domain of Nix enhances mitophagy receptor engagement.

  7. Comparative phosphoproteomics of zebrafish Fyn/Yes morpholino knockdown embryos.

    Science.gov (United States)

    Lemeer, Simone; Jopling, Chris; Gouw, Joost; Mohammed, Shabaz; Heck, Albert J R; Slijper, Monique; den Hertog, Jeroen

    2008-11-01

    The coordinated movement of cells is indispensable for normal vertebrate gastrulation. Several important players and signaling pathways have been identified in convergence and extension (CE) cell movements during gastrulation, including non-canonical Wnt signaling. Fyn and Yes, members of the Src family of kinases, are key regulators of CE movements as well. Here we investigated signaling pathways in early development by comparison of the phosphoproteome of wild type zebrafish embryos with Fyn/Yes knockdown embryos that display specific CE cell movement defects. For quantitation we used differential stable isotope labeling by reductive amination of peptides. Equal amounts of labeled peptides from wild type and Fyn/Yes knockdown embryos were mixed and analyzed by on-line reversed phase TiO(2)-reversed phase LC-MS/MS. Phosphorylated and non-phosphorylated peptides were quantified, and significant changes in protein expression and/or phosphorylation were detected. We identified 348 phosphoproteins of which 69 showed a decrease in phosphorylation in Fyn/Yes knockdown embryos and 72 showed an increase in phosphorylation. Among these phosphoproteins were known regulators of cell movements, including Adducin and PDLIM5. Our results indicate that quantitative phosphoproteomics combined with morpholino-mediated knockdowns can be used to identify novel signaling pathways that act in zebrafish development in vivo.

  8. A Cost-Effective Approach to Sequence Hundreds of Complete Mitochondrial Genomes.

    Science.gov (United States)

    Nunez, Joaquin C B; Oleksiak, Marjorie F

    2016-01-01

    We present a cost-effective approach to sequence whole mitochondrial genomes for hundreds of individuals. Our approach uses small reaction volumes and unmodified (non-phosphorylated) barcoded adaptors to minimize reagent costs. We demonstrate our approach by sequencing 383 Fundulus sp. mitochondrial genomes (192 F. heteroclitus and 191 F. majalis). Prior to sequencing, we amplified the mitochondrial genomes using 4-5 custom-made, overlapping primer pairs, and sequencing was performed on an Illumina HiSeq 2500 platform. After removing low quality and short sequences, 2.9 million and 2.8 million reads were generated for F. heteroclitus and F. majalis respectively. Individual genomes were assembled for each species by mapping barcoded reads to a reference genome. For F. majalis, the reference genome was built de novo. On average, individual consensus sequences had high coverage: 61-fold for F. heteroclitus and 57-fold for F. majalis. The approach discussed in this paper is optimized for sequencing mitochondrial genomes on an Illumina platform. However, with the proper modifications, this approach could be easily applied to other small genomes and sequencing platforms.

  9. Aurora kinase A induces papillary thyroid cancer lymph node metastasis by promoting cofilin-1 activity.

    Science.gov (United States)

    Maimaiti, Yusufu; Jie, Tan; Jing, Zhou; Changwen, Wang; Pan, Yu; Chen, Chen; Tao, Huang

    2016-04-22

    Aurora-A (Aur-A), a member of the serine/threonine Aurora kinase family, plays an important role in ensuring genetic stability during cell division. Previous studies indicated that Aur-A possesses oncogenic activity and may be a valuable therapeutic target in cancer therapy. However, the role of Aur-A in the most common thyroid cancer, papillary thyroid cancer (PTC), remains largely unknown. In patients with PTC, cancer cell migration and invasion account for most of the metastasis, recurrence, and cancer-related deaths. Cofilin-1 (CFL-1) is the most important effector of actin polymerization and depolymerization, determining the direction of cell migration. Here, we assessed the correlation between Aur-A and CFL-1 in PTC with lymph node metastasis. Tissue microarray data showed that simultaneous overexpression of Aur-A and CFL-1 correlated with lymph node metastasis in thyroid cancer tissue. Inhibition of Aur-A suppressed thyroid cancer cell migration in vitro and decreased lymph node metastasis in nude mice. Importantly, Aur-A increased the non-phosphorylated, active form of CFL-1 in TPC-1 cells, thus promoting cancer cell migration and thyroid cancer lymph node metastasis. Our findings indicate that the combination of Aur-A and CFL-1 may be useful as a molecular prediction model for lymph node metastasis in thyroid cancer and raise the possibility of targeting Aur-A and CFL-1 for more effective treatment of thyroid cancer.

  10. Structural basis for Mep2 ammonium transceptor activation by phosphorylation.

    Science.gov (United States)

    van den Berg, Bert; Chembath, Anupama; Jefferies, Damien; Basle, Arnaud; Khalid, Syma; Rutherford, Julian C

    2016-04-18

    Mep2 proteins are fungal transceptors that play an important role as ammonium sensors in fungal development. Mep2 activity is tightly regulated by phosphorylation, but how this is achieved at the molecular level is not clear. Here we report X-ray crystal structures of the Mep2 orthologues from Saccharomyces cerevisiae and Candida albicans and show that under nitrogen-sufficient conditions the transporters are not phosphorylated and present in closed, inactive conformations. Relative to the open bacterial ammonium transporters, non-phosphorylated Mep2 exhibits shifts in cytoplasmic loops and the C-terminal region (CTR) to occlude the cytoplasmic exit of the channel and to interact with His2 of the twin-His motif. The phosphorylation site in the CTR is solvent accessible and located in a negatively charged pocket ∼30 Å away from the channel exit. The crystal structure of phosphorylation-mimicking Mep2 variants from C. albicans show large conformational changes in a conserved and functionally important region of the CTR. The results allow us to propose a model for regulation of eukaryotic ammonium transport by phosphorylation.

  11. Identification of a crab gill FXYD2 protein and regulation of crab microsomal Na,K-ATPase activity by mammalian FXYD2 peptide.

    Science.gov (United States)

    Silva, Elias C C; Masui, Douglas C; Furriel, Rosa P; McNamara, John C; Barrabin, Hector; Scofano, Helena M; Perales, Jonas; Teixeira-Ferreira, André; Leone, Francisco A; Fontes, Carlos Frederico L

    2012-11-01

    This investigation discloses the recognition of an FXYD2 protein in a microsomal Na,K-ATPase preparation from the posterior gills of the blue crab, Callinectes danae, by a mammalian (rabbit) FXYD2 peptide specific antibody (γC(33)) and MALDI-TOF-TOF mass spectrometry techniques. This is the first demonstration of an invertebrate FXYD2 protein. The addition of exogenous pig FXYD2 peptide to the crab gill microsomal fraction stimulated Na,K-ATPase activity in a dose-dependent manner. Exogenous pig FXYD2 also considerably increased enzyme affinity for K(+), ATP and NH(4)(+). K(0.5) for Na(+) was unaffected. Exogenous pig FXYD2 increased the V(max) for stimulation of gill Na,K-ATPase activity by Na(+), K(+) and ATP, by 30% to 40%. The crab gill FXYD2 is phosphorylated by PKA, suggesting a regulatory function similar to that known for the mammalian enzyme. The PKA-phosphorylated pig FXYD2 peptide stimulated the crab gill Na,K-ATPase activity by 80%, about 2-fold greater than did the non-phosphorylated peptide. Stimulation by the PKC-phosphorylated pig FXYD2 peptide was minimal. These findings confirm the presence of an FXYD2 peptide in the crab gill Na,K-ATPase and demonstrate that this peptide plays an important role in regulating enzyme activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Regulation of glycogen breakdown and its consequences for skeletal muscle function after training.

    Science.gov (United States)

    Katz, Abram; Westerblad, Håkan

    2014-10-01

    Repeated bouts of physical exercise, i.e., training, induce mitochondrial biogenesis and result in improved physical performance and attenuation of glycogen breakdown during submaximal exercise. It has been suggested that as a consequence of the increased mitochondrial volume, a smaller degree of metabolic stress (e.g., smaller increases in ADP and Pi) is required to maintain mitochondrial respiration in the trained state during exercise at the same absolute intensity. The lower degree of Pi accumulation is believed to account for the diminished glycogen breakdown, since Pi is a substrate for glycogen phosphorylase, the rate-limiting enzyme for glycogenolysis. However, in this review, we present an alternative explanation for the diminished glycogen breakdown. Thus, the lower degree of metabolic stress after training is also associated with smaller increases in AMP (free concentration during contraction at specific intracellular sites) and this results in less activation of phosphorylase b (the non-phosphorylated form of phosphorylase), resulting in diminished glycogen breakdown. Concomitantly, the smaller accumulation of Pi, which interferes with cross-bridge function and intracellular Ca(2+) handling, contributes to the increased fatigue resistance. The delay in glycogen depletion also contributes to enhanced performance during prolonged exercise by functioning as an energy reserve.

  13. Cyclic ADP-ribose as an endogenous inhibitor of the mTOR pathway downstream of dopamine receptors in the mouse striatum.

    Science.gov (United States)

    Higashida, Haruhiro; Kamimura, Shin-Ya; Inoue, Takeshi; Hori, Osamu; Islam, Mohammad Saharul; Lopatina, Olga; Tsuji, Chiharu

    2016-12-26

    The role of cyclic ADP-ribose (cADPR) as a second messenger and modulator of the mTOR pathway downstream of dopamine (DA) receptors and/or CD38 was re-examined in the mouse. ADP-ribosyl activity was low in the membranes of neonates, but DA stimulated it via both D1- and D2-like receptors. ADP-ribosyl cyclase activity increased significantly during development in association with increased expression of CD38. The cADPR binding proteins, FKBP12 and FKBP12.6, were expressed in the adult mouse striatum. The ratio of phosphorylated to non-phosphorylated S6 kinase (S6K) in whole mouse striatum homogenates decreased after incubation of adult mouse striatum with extracellular cADPR for 5 min. This effect of cADPR was much weaker in MPTP-treated Parkinson's disease model mice. The inhibitory effects of cADPR and rapamycin were identical. These data suggest that cADPR is an endogenous inhibitor of the mTOR signaling pathway downstream of DA receptors in the mouse striatum and that cADPR plays a certain role in the brain in psychiatric and neurodegenerative diseases.

  14. Development of a silica monolith modified with Fe3O4 nano-particles in centrifugal spin column format for the extraction of phosphorylated compounds.

    Science.gov (United States)

    Alwy, Ali; Clarke, Sarah P; Brougham, Dermot F; Twamley, Brendan; Paull, Brett; White, Blánaid; Connolly, Damian

    2015-01-01

    In this study, citrate-stabilised iron oxide nano-particles (∼16 nm) have been immobilised on commercial silica monolithic centrifugal spin columns (MonoSpin) for the extraction of phosphorylated compounds. Two alternative strategies were adopted involving either direct electrostatic attachment to an aminated MonoSpin (single-layer method) in the first instance, or the use of a layer-by-layer method with poly(diallyldimethylammonium) chloride. Field-emission scanning electron spectroscopy and energy-dispersive X-ray spectroscopy was used for confirming notably higher coverage of nano-particles using the layer-by-layer method (2.49 ± 0.53 wt%) compared with the single-layer method (0.43 ± 0.30 wt%). The modified monolith was used for the selective separation/extraction of adenosine monophosphate, adenosine diphosphate and adenosine triphosphate with elution using a phosphate buffer. A reversed-phase liquid chromatographic assay was used for confirming that adenosine, as a non-phosphorylated control was not retained on the modified MonoSpin devices, whereas recovery of 80% for adenosine monophosphate, 86% for adenosine diphosphate and 82% for adenosine triphosphate was achieved.

  15. Host alpha-adducin is redistributed and localized to the inclusion membrane in chlamydia- and chlamydophila-infected cells.

    Science.gov (United States)

    Chu, Hencelyn G; Weeks, Sara K; Gilligan, Diana M; Rockey, Daniel D

    2008-12-01

    A large-scale analysis of proteins involved in host-cell signalling pathways was performed using chlamydia-infected murine cells in order to identify host proteins that are differentially activated or localized following infection. Two proteins whose distribution was altered in Chlamydia trachomatis-infected cells relative to mock-infected cells were the actin-binding protein adducin and the regulatory kinase Raf-1. Immunoblot analysis with antibodies to both phosphorylated and non-phosphorylated forms of these proteins demonstrated that the abundance of each protein was markedly reduced in the cytosolic fraction of C. trachomatis- and Chlamydophila caviae-infected cells, but the total cellular protein abundance remained unaffected by infection. Fluorescence microscopy of chlamydia-infected cells using anti-alpha-adducin antibodies demonstrated labelling at or near the chlamydial inclusion membrane. Treatment of infected cells with nocodazole or cytochalasin D did not affect alpha-adducin that was localized to the margins of the inclusion. The demonstration of alpha-adducin and Raf-1 redistribution within cells infected by different chlamydiae provides novel opportunities for analysis of host-pathogen interactions in this system.

  16. Photoactivation of Dok1/ERK/PPARγ signaling axis inhibits excessive lipolysis in insulin-resistant adipocytes.

    Science.gov (United States)

    Jiang, Xiaoxiao; Huang, Lei; Xing, Da

    2015-07-01

    Insulin resistance is a hallmark of the metabolic syndrome and type 2 diabetes. Increased plasma FFA level is an important cause of obesity-associated insulin resistance. Over-activated ERK is closely related with FFA release from adipose tissues in patients with type 2 diabetes. Nevertheless, there are no effective strategies to lower plasma FFA level. Low-power laser irradiation (LPLI) has been reported to regulate multiple biological processes. However, whether LPLI could ameliorate metabolic disorders and the molecular mechanisms involved remain unknown. In this study, we first demonstrated that LPLI suppresses excessive lipolysis of insulin-resistant adipocytes by activating tyrosine kinases-1(Dok1)/ERK/PPARγ pathway. Our data showed that LPLI inhibits ERK phosphorylation through the activation of Dok1, resulting in decreased phospho-PPARγ level. Non-phosphorylated PPARγ maintains in nucleus to promote the expression of adipogenic genes, reversing excessive lipolysis in insulin-resistant adipocytes. In summary, the present research highlights the important roles of Dok1/ERK/PPARγ pathway in lowering FFA release from adipocytes, and our research extends the knowledge of the biological effects induced by LPLI. Copyright © 2015. Published by Elsevier Inc.

  17. The rise, the fall and the renaissance of vitamin E.

    Science.gov (United States)

    Azzi, Angelo; Meydani, Simin Nikbin; Meydani, Mohsen; Zingg, Jean Marc

    2016-04-01

    This review deals with the expectations of vitamin E ability of preventing or curing, as a potent antioxidant, alleged oxidative stress based ailments including cardiovascular disease, cancer, neurodegenerative diseases, cataracts, macular degeneration and more. The results obtained with clinical intervention studies have highly restricted the range of effectiveness of this vitamin. At the same time, new non-antioxidant mechanisms have been proposed. The new functions of vitamin E have been shown to affect cell signal transduction and gene expression, both in vitro and in vivo. Phosphorylation of vitamin E, which takes place in vivo, results in a molecule provided with functions that are in part stronger and in part different from those of the non-phosphorylate compound. The in vivo documented functions of vitamin E preventing the vitamin E deficiency ataxia (AVED), slowing down the progression of non-alcoholic steato-hepatitis (NASH), decreasing inflammation and potentiating the immune response are apparently based on these new molecular mechanisms. It should be stressed however that vitamin E, when present at higher concentrations in the body, should exert antioxidant properties to the extent that its chromanol ring is unprotected or un-esterified.

  18. Dynamic changes in the mitochondrial electron transport chain underpinning cold acclimation of leaf respiration.

    Science.gov (United States)

    Armstrong, Anna F; Badger, Murray R; Day, David A; Barthet, Michelle M; Smith, Penelope M C; Millar, A Harvey; Whelan, Jim; Atkin, Owen K

    2008-08-01

    We examined the effect of short- and long-term changes in temperature on gene expression, protein abundance, and the activity of the alternative oxidase and cytochrome oxidase pathways (AOP and COP, respectively) in Arabidopsis thaliana. The AOP was more sensitive to short-term changes in temperature than the COP, with partitioning to the AOP decreasing significantly below a threshold temperature of 20 degrees C. AOP activity was increased in leaves, which had been shifted to the cold for several days, but this response was transient, with AOP activity subsiding (and COP activity increasing) following the development of leaves in the cold. The transient increase in AOP activity in 10-d cold-shifted leaves was not associated with an increase in alternative oxidase (AOX) protein or AOX1a transcript abundance. By contrast, the amount of uncoupling protein was significantly increased in cold-developed leaves. In conjunction with this, transcript levels of the uncoupling protein-encoding gene UCP1 and the external NAD(P)H dehydrogenase-encoding gene NDB2 exhibited sustained increases following growth in the cold. The data suggest a role for each of these alternative non-phosphorylating bypasses of mitochondrial electron transport at different points in time following exposure to cold, with increased AOP activity being important only in the early stages of cold treatment.

  19. Dasatinib as a treatment for Duchenne muscular dystrophy.

    Science.gov (United States)

    Lipscomb, Leanne; Piggott, Robert W; Emmerson, Tracy; Winder, Steve J

    2016-01-15

    Identification of a systemically acting and universal small molecule therapy for Duchenne muscular dystrophy would be an enormous advance for this condition. Based on evidence gained from studies on mouse genetic models, we have identified tyrosine phosphorylation and degradation of β-dystroglycan as a key event in the aetiology of Duchenne muscular dystrophy. Thus, preventing tyrosine phosphorylation and degradation of β-dystroglycan presents itself as a potential therapeutic strategy. Using the dystrophic sapje zebrafish, we have investigated the use of tyrosine kinase and other inhibitors to treat the dystrophic symptoms in this model of Duchenne muscular dystrophy. Dasatinib, a potent and specific Src tyrosine kinase inhibitor, was found to decrease the levels of β-dystroglycan phosphorylation on tyrosine and to increase the relative levels of non-phosphorylated β-dystroglycan in sapje zebrafish. Furthermore, dasatinib treatment resulted in the improved physical appearance of the sapje zebrafish musculature and increased swimming ability as measured by both duration and distance of swimming of dasatinib-treated fish compared with control animals. These data suggest great promise for pharmacological agents that prevent the phosphorylation of β-dystroglycan on tyrosine and subsequent steps in the degradation pathway as therapeutic targets for the treatment of Duchenne muscular dystrophy.

  20. Phosphorylation of CPAP by Aurora-A Maintains Spindle Pole Integrity during Mitosis

    Directory of Open Access Journals (Sweden)

    En-Ju Chou

    2016-03-01

    Full Text Available CPAP is required for centriole elongation during S/G2 phase, but the role of CPAP in mitosis is incompletely understood. Here, we show that CPAP maintains spindle pole integrity through its phosphorylation by Aurora-A during mitosis. Depletion of CPAP induced a prolonged delay in mitosis, pericentriolar material (PCM dispersion, and multiple mitotic abnormalities. Further studies demonstrated that CPAP directly interacts with and is phosphorylated by Aurora-A at serine 467 during mitosis. Interestingly, the dispersal of the PCM was effectively rescued by ectopic expression of wild-type CPAP or a phospho-mimic CPAP-S467D mutant, but not a non-phosphorylated CPAP-S467A mutant. Finally, we found that CPAP-S467D has a low affinity for microtubule binding but a high affinity for PCM proteins. Together, our results support a model wherein CPAP is required for proper mitotic progression, and phosphorylation of CPAP by Aurora-A is essential for maintaining spindle pole integrity.

  1. Taurine attenuates hippocampal and corpus callosum damage, and enhances neurological recovery after closed head injury in rats.

    Science.gov (United States)

    Gu, Y; Zhao, Y; Qian, K; Sun, M

    2015-04-16

    The protective effects of taurine against closed head injury (CHI) have been reported. This study was designed to investigate whether taurine reduced white matter damage and hippocampal neuronal death through suppressing calpain activation after CHI in rats. Taurine (50 mg/kg) was administered intravenously 30 min and 4 h again after CHI. It was found that taurine lessened the corpus callosum damage, attenuated the neuronal cell death in hippocampal CA1 and CA3 subfields and improved the neurological functions 7 days after CHI. Moreover, it suppressed the over-activation of calpain, enhanced the levels of calpastatin, and reduced the degradation of neurofilament heavy protein, myelin basic protein and αII-spectrin in traumatic tissue 24 h after CHI. These data confirm the protective effects of taurine against gray and white matter damage due to CHI, and suggest that down-regulating calpain activation could be one of the protective mechanisms of taurine against CHI. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Low-grade oligodendroglioma of the pineal gland: a case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Levidou Georgia

    2010-09-01

    Full Text Available Abstract Background Gliomas are a very rare subtype of pineal region tumours, whereas oligodendrogliomas of the pineal region are exceedingly rare, since there have been only 3 cases of anaplastic oligodedrogliomas reported this far. Methods-Results We present a case of a low-grade oligodendroglioma arising in the pineal gland of a 37 year-old woman. The patient presented with diplopia associated with a cystic pineal region mass demonstrated on MRI. Total resection was performed and histological examination showed that the cystic wall consisted of tumour cells with a central nucleus a perinuclear halo and minimal pleomorphism. Immnunohistochemical analysis showed that these cells were diffusely positive for CD57, and negative for GFAP, CD10, CD99, cytokeratins, neurofilaments and synaptophysin. FISH analysis was performed in a small number of neoplastic cells, which were not exhausted after immunohistochemistry and did not reveal deletion of 1p and 19q chromosome arms. However, the diagnosis of a low grade oligodendroglioma of the pineal gland was assigned. Conclusion Although the spectrum of tumours arising in the pineal gland is broad, the reports of oligodendrogliomas confined to this location are exceedingly rare, and to the best of our knowledge there is no report of a low-grade oligodendroglioma. However, they should be added in the long list of tumours arising in the pineal gland.

  3. Propagation Modeling and Analysis of Molecular Motors in Molecular Communication.

    Science.gov (United States)

    Chahibi, Youssef; Akyildiz, Ian F; Balasingham, Ilangko

    2016-12-01

    Molecular motor networks (MMNs) are networks constructed from molecular motors to enable nanomachines to perform coordinated tasks of sensing, computing, and actuation at the nano- and micro- scales. Living cells are naturally enabled with this same mechanism to establish point-to-point communication between different locations inside the cell. Similar to a railway system, the cytoplasm contains an intricate infrastructure of tracks, named microtubules, interconnecting different internal components of the cell. Motor proteins, such as kinesin and dynein, are able to travel along these tracks directionally, carrying with them large molecules that would otherwise be unreliably transported across the cytoplasm using free diffusion. Molecular communication has been previously proposed for the design and study of MMNs. However, the topological aspects of MMNs, including the effects of branches, have been ignored in the existing studies. In this paper, a physical end-to-end model for MMNs is developed, considering the location of the transmitter node, the network topology, and the receiver nodes. The end-to-end gain and group delay are considered as the performance measures, and analytical expressions for them are derived. The analytical model is validated by Monte-Carlo simulations and the performance of MMNs is analyzed numerically. It is shown that, depending on their nature and position, MMN nodes create impedance effects that are critical for the overall performance. This model could be applied to assist the design of artificial MMNs and to study cargo transport in neurofilaments to elucidate brain diseases related to microtubule jamming.

  4. The NFL-TBS.40-63 anti-glioblastoma peptide disrupts microtubule and mitochondrial networks in the T98G glioma cell line.

    Science.gov (United States)

    Rivalin, Romain; Lepinoux-Chambaud, Claire; Eyer, Joël; Savagner, Frédérique

    2014-01-01

    Despite aggressive therapies, including combinations of surgery, radiotherapy and chemotherapy, glioblastoma remains a highly aggressive brain cancer with the worst prognosis of any central nervous system disease. We have previously identified a neurofilament-derived cell-penetrating peptide, NFL-TBS.40-63, that specifically enters by endocytosis in glioblastoma cells, where it induces microtubule destruction and inhibits cell proliferation. Here, we explore the impact of NFL-TBS.40-63 peptide on the mitochondrial network and its functions by using global cell respiration, quantitative PCR analysis of the main actors directing mitochondrial biogenesis, western blot analysis of the oxidative phosphorylation (OXPHOS) subunits and confocal microscopy. We show that the internalized peptide disturbs mitochondrial and microtubule networks, interferes with mitochondrial dynamics and induces a rapid depletion of global cell respiration. This effect may be related to reduced expression of the NRF-1 transcription factor and of specific miRNAs, which may impact mitochondrial biogenesis, in regard to default mitochondrial mobility.

  5. Multiple disease-linked myotubularin mutations cause NFL assembly defects in cultured cells and disrupt myotubularin dimerization.

    Science.gov (United States)

    Goryunov, Dmitry; Nightingale, Andrew; Bornfleth, Lorelei; Leung, Conrad; Liem, Ronald K H

    2008-03-01

    Charcot-Marie-Tooth disease (CMT) is an inherited peripheral neuropathy that has been linked to mutations in multiple genes. Mutations in the neurofilament light (NFL) chain gene lead to the CMT2E form whereas mutations in the myotubularin-related protein 2 and 13 (MTMR2 and MTMR13) genes lead to the CMT4B form. These two forms share characteristic pathological hallmarks on nerve biopsies including concentric sheaths ('onion bulbs') and, in at least one case, myelin loops. In addition, MTMR2 protein has been shown to interact physically with both NFL and MTMR13. Here, we present evidence that CMT-linked mutations of MTMR2 can cause NFL aggregation in a cell line devoid of endogenous intermediate filaments, SW13vim(-). Mutations in the protein responsible for X-linked myotubular myopathy (myotubularin, MTM1) also induced NFL abnormalities in these cells. We also show that two MTMR2 mutant proteins, G103E and R283W, are unable to form dimers and undergo phosphorylation in vivo, implicating impaired complex formation in myotubularin-related pathology.

  6. Soluble CD14 in cerebrospinal fluid is associated with markers of inflammation and axonal damage in untreated HIV-infected patients

    DEFF Research Database (Denmark)

    Jespersen, Sofie; Pedersen, Karin Kæreby; Anesten, Birgitta

    2016-01-01

    neurofilament light chain protein (NFL) and CSF neopterin concentrations are increased in those patients. Microbial translocation in HIV infection has been suggested to contribute to chronic inflammation, and lipopolysaccharide (LPS) and soluble CD14 (sCD14) are markers of microbial translocation...... cognitive symptoms from Sahlgrenska University Hospital, Gothenburg, Sweden. Measurements of neopterin and NFL in CSF were available from previous studies. Plasma and CSF sCD14 was measured using ELISA (R&D, Minneapolis, MN), and plasma and CSF LPS was measured using LAL colorimetric assay (Lonza......, Walkersville, MD, USA). Univariate and multivariate regression analyses were performed. RESULTS: LPS in plasma was associated with plasma sCD14 (r = 0.31, P = 0.015), and plasma sCD14 was associated with CSF sCD14 (r = 0.32, P = 0.012). Furthermore, CSF sCD14 was associated with NFL (r = 0.32, P = 0...

  7. The NFL-TBS.40-63 anti-glioblastoma peptide enters selectively in glioma cells by endocytosis.

    Science.gov (United States)

    Lépinoux-Chambaud, Claire; Eyer, Joël

    2013-10-01

    Glioblastoma are the most frequent and aggressive tumour of the nervous system despite surgical resection associated with chemotherapy and radiotherapy. Recently, we showed that the NFL-TBS.40-63 peptide corresponding to the sequence of a tubulin-binding site of neurofilaments, enters selectively in glioblastoma cells where it blocks microtubule polymerization, inhibits their proliferation, and reduces tumour development in rats bearing glioblastoma (Bocquet et al., 2009; Berges et al., 2012a). Here, we characterized the molecular mechanism responsible for the uptake of NFL-TBS.40-63 peptide by glioblastoma cells. Unlike other cell penetrating peptides (CPPs), which use a balance between endocytosis and direct translocation, the NFL-TBS.40-63 peptide is unable to translocate directly through the membrane when incubated with giant plasma membrane vesicles. Then, using a panel of markers and inhibitors, flow cytometry and confocal microscopy investigations showed that the uptake occurs mainly through endocytosis. Moreover, glycosaminoglycans and αVβ3 integrins are not involved in the NFL-TBS.40-63 peptide recognition and internalization by glioblastoma cells. Finally, the signalling of tyrosine kinase receptors is involved in the peptide uptake, especially via EGFR overexpressed in tumour cells, indicating that the uptake of NFL-TBS.40-63 peptide by glioblastoma cells is related to their abnormally high proliferative activity. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. CEREBROSPINAL FLUID BIOCHEMICAL STUDIES IN PATIENTS WITH PARKINSON’S DISEASE: TOWARDS A POTENTIAL SEARCH FOR BIOMARKERS FOR THIS DISEASE

    Directory of Open Access Journals (Sweden)

    Félix Javier eJiménez-Jiménez

    2014-11-01

    Full Text Available The blood-brain barrier supplies brain tissues with nutrients and filters certain compounds from the brain back to the bloodstream. In several neurodegenerative diseases, including Parkinson’s disease (PD, there are disruptions of the blood-brain barrier. Cerebrospinal fluid (CSF has been widely investigated in PD and in other parkinsonian syndromes with the aim of establishing useful biomarkers for an accurate differential diagnosis among these syndromes. This review article summarizes the studies reported on CSF levels of many potential biomarkers of PD. The most consistent findings are: (a the possible role of CSF urate on the progression of the disease; (b the possible relations of CSF total tau and phosphotau protein with the progression of PD and with the preservation of cognitive function in PD patients; (c the possible value of CSF beta-amyloid 1-42 as a useful marker of further cognitive decline in PD patients, and (d the potential usefulness of CSF neurofilament (NFL protein levels in the differential diagnosis between PD and other parkinsonian syndromes. Future multicentric, longitudinal, prospective studies with long-term follow-up and neuropathological confirmation would be useful inestablishing appropriate biomarkers for PD.

  9. Increased Intrathecal Immune Activation in Virally Suppressed HIV-1 Infected Patients with Neurocognitive Impairment.

    Directory of Open Access Journals (Sweden)

    Arvid Edén

    Full Text Available Although milder forms of HIV-associated neurocognitive disorder (HAND remain prevalent, a correlation to neuronal injury has not been established in patients on antiretroviral therapy (ART. We examined the relationship between mild HAND and CSF neurofilament light protein (NFL, a biomarker of neuronal injury; and CSF neopterin, a biomarker of CNS immunoactivation, in virally suppressed patients on antiretroviral therapy (ART.We selected 99 subjects on suppressive ART followed longitudinally from the CNS HIV Anti-Retroviral Therapy Effects Research (CHARTER study. Based on standardized comprehensive neurocognitive performance (NP testing, subjects were classified as neurocognitively normal (NCN; n = 29 or impaired (NCI; n = 70. The NCI group included subjects with asymptomatic (ANI; n = 37 or mild (MND; n = 33 HAND. CSF biomarkers were analyzed on two occasions.Geometric mean CSF neopterin was 25% higher in the NCI group (p = 0.04 and NFL and neopterin were significantly correlated within the NCI group (r = 0.30; p<0.001 but not in the NCN group (r = -0.13; p = 0.3. Additionally, a trend towards higher NFL was seen in the NCI group (p = 0.06.Mild HAND was associated with increased intrathecal immune activation, and the correlation between neopterin and NFL found in NCI subjects indicates an association between neurocognitive impairment, CNS inflammation and neuronal damage. Together these findings suggest that NCI despite ART may represent an active pathological process within the CNS that needs further characterization in prospective studies.

  10. Complement component C3 and butyrylcholinesterase activity are associated with neurodegeneration and clinical disability in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Shahin Aeinehband

    Full Text Available Dysregulation of the complement system is evident in many CNS diseases but mechanisms regulating complement activation in the CNS remain unclear. In a recent large rat genome-wide expression profiling and linkage analysis we found co-regulation of complement C3 immediately downstream of butyrylcholinesterase (BuChE, an enzyme hydrolyzing acetylcholine (ACh, a classical neurotransmitter with immunoregulatory effects. We here determined levels of neurofilament-light (NFL, a marker for ongoing nerve injury, C3 and activity of the two main ACh hydrolyzing enzymes, acetylcholinesterase (AChE and BuChE, in cerebrospinal fluid (CSF from patients with MS (n = 48 and non-inflammatory controls (n = 18. C3 levels were elevated in MS patients compared to controls and correlated both to disability and NFL. C3 levels were not induced by relapses, but were increased in patients with ≥9 cerebral lesions on magnetic resonance imaging and in patients with progressive disease. BuChE activity did not differ at the group level, but was correlated to both C3 and NFL levels in individual samples. In conclusion, we show that CSF C3 correlates both to a marker for ongoing nerve injury and degree of disease disability. Moreover, our results also suggest a potential link between intrathecal cholinergic activity and complement activation. These results motivate further efforts directed at elucidating the regulation and effector functions of the complement system in MS, and its relation to cholinergic tone.

  11. Neuronal and Glia-Related Biomarkers in Cerebrospinal Fluid of Patients with Acute Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Clara Hjalmarsson

    2014-01-01

    Full Text Available Background Cerebral ischemia promotes morphological reactions of the neurons, astrocytes, oligodendrocytes, and microglia in experimental studies. Our aim was to examine the profile of CSF (cerebrospinal fluid biomarkers and their relation to stroke severity and degree of white matter lesions (WML. Methods A total of 20 patients (mean age 76 years were included within 5–10 days after acute ischemic stroke (AIS onset. Stroke severity was assessed using NIHSS (National Institute of Health stroke scale. The age-related white matter changes (ARWMC scale was used to evaluate the extent of WML on CT-scans. The concentrations of specific CSF biomarkers were analyzed. Results Patients with AIS had significantly higher levels of NFL (neurofilament, light, T-tau, myelin basic protein (MBP, YKL-40, and glial fibrillary acidic protein (GFAP compared with controls; T-Tau, MBP, GFAP, and YKL-40 correlated with clinical stroke severity, whereas NFL correlated with severity of WML (tested by Mann–Whitney test. Conclusions Several CSF biomarkers increase in AIS, and they correlate to clinical stroke severity. However, only NFL was found to be a marker of degree of WML.

  12. Cerebrospinal fluid markers before and after shunting in patients with secondary and idiopathic normal pressure hydrocephalus

    Directory of Open Access Journals (Sweden)

    Tisell Magnus

    2008-04-01

    Full Text Available Abstract Background The aim of this study was to explore biochemical changes in the cerebrospinal fluid (CSF induced by shunt surgery and the relationship between these changes and clinical improvement. Methods We measured clinical symptoms and analysed lumbar CSF for protein content, neurodegeneration and neurotransmission markers in patients with secondary (SNPH, n = 17 and idiopathic NPH (INPH, n = 18 before and 3 months after shunt surgery. Patients were divided into groups according to whether or not there was improvement in clinical symptoms after surgery. Results Preoperatively, the only pathological findings were elevated neurofilament protein (NFL, significantly more so in the SNPH patients than in the INPH patients, and elevated albumin content. Higher levels of NFL correlated with worse gait, balance, wakefulness and neuropsychological performance. Preoperatively, no differences were seen in any of the CSF biomarkers between patients that improved after surgery and those that did not improve. Postoperatively, a greater improvement in gait and balance performance correlated with a more pronounced reduction in NFL. Levels of albumin, albumin ratio, neuropeptide Y, vasoactive intestinal peptide and ganglioside GD3 increased significantly after shunting in both groups. In addition, Gamma amino butyric acid increased significantly in SNPH and tau in INPH. Conclusion We conclude that a number of biochemical changes occur after shunt surgery, but there are no marked differences between the SNPH and INPH patients. The results indicate that NFL may be a marker that can predict a surgically reversible state in NPH.

  13. The effect of functionalizing lipid nanocapsules with NFL-TBS.40-63 peptide on their uptake by glioblastoma cells.

    Science.gov (United States)

    Balzeau, Julien; Pinier, Maud; Berges, Raphael; Saulnier, Patrick; Benoit, Jean-Pierre; Eyer, Joel

    2013-04-01

    We previously described a neurofilament derived cell-penetrating peptide, NFL-TBS.40-63, that specifically enters in glioblastoma cells where it disturbs the microtubule network both in vitro and in vivo. The aim of this study is to test whether this peptide can increase the targeted uptake by glioblastoma cells of lipid nanocapsules filled with Paclitaxel, and thus can increase their anti-proliferation in vitro and in vivo. Here, using the drop tensiometry we show that approximately 60 NFL-TBS.40-63 peptides can bind to one 50 nm lipid nanocapsule. When nanocapsules are filled with a far-red fluorochrome (DiD) and Paclitaxel, the presence of the NFL-TBS.40-63 peptide increases their uptake by glioblastoma cells in culture as evaluated by FACS analysis, and thus reduces their proliferation. Finally, when such nanocapsules were injected in mice bearing a glioma tumour, they are preferentially targeted to the tumour and reduce its progression. These results show that nanocapsules functionalized with the NFL-TBS.40-63 peptide represent a powerful drug-carrier system for glioma targeted treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Association between Plasma Homocysteine Levels and Neuronal Injury in HIV Infection

    Science.gov (United States)

    Ahlgren, Erika; Hagberg, Lars; Fuchs, Dietmar; Andersson, Lars-Magnus; Nilsson, Staffan; Zetterberg, Henrik; Gisslén, Magnus

    2016-01-01

    Objective To investigate the role of homocysteine in neuronal injury in HIV infection. Methods Using a cross-sectional design and archived samples, we compared concentrations of plasma homocysteine and cerebrospinal fluid (CSF) neurofilament light protein (NFL), a sensitive marker of neuronal injury, in 83 HIV-1-infected subjects without antiretroviral treatment. We also analyzed plasma vitamin B12, serum folate, CSF, and plasma HIV RNA, the immune activation marker neopterin in CSF and serum, and albumin ratio as a marker of blood-brain barrier integrity. Twenty-two subjects provided a second sample median of 12.5 months after antiretroviral treatment initiation. Results A significant correlation was found between plasma homocysteine and CSF NFL concentrations in untreated individuals (r = 0.52, p NFL in HIV-1-infected individuals. The correlation of plasma homocysteine and CSF NFL was also present in the group receiving antiretroviral therapy (r = 0.51, p = 0.016). Conclusion A correlation between plasma homocysteine and axonal injury, as measured by CSF NFL, was found in both untreated and treated HIV. While this study is not able to prove a causal link, homocysteine and functional B12/folate deficiency appear to play a role in neural injury in HIV-infected individuals. PMID:27441551

  15. Increased Intrathecal Immune Activation in Virally Suppressed HIV-1 Infected Patients with Neurocognitive Impairment

    Science.gov (United States)

    Edén, Arvid; Marcotte, Thomas D.; Heaton, Robert K.; Nilsson, Staffan; Zetterberg, Henrik; Fuchs, Dietmar; Franklin, Donald; Price, Richard W.; Grant, Igor; Letendre, Scott L.; Gisslén, Magnus

    2016-01-01

    Objective Although milder forms of HIV-associated neurocognitive disorder (HAND) remain prevalent, a correlation to neuronal injury has not been established in patients on antiretroviral therapy (ART). We examined the relationship between mild HAND and CSF neurofilament light protein (NFL), a biomarker of neuronal injury; and CSF neopterin, a biomarker of CNS immunoactivation, in virally suppressed patients on antiretroviral therapy (ART). Design and Methods We selected 99 subjects on suppressive ART followed longitudinally from the CNS HIV Anti-Retroviral Therapy Effects Research (CHARTER) study. Based on standardized comprehensive neurocognitive performance (NP) testing, subjects were classified as neurocognitively normal (NCN; n = 29) or impaired (NCI; n = 70). The NCI group included subjects with asymptomatic (ANI; n = 37) or mild (MND; n = 33) HAND. CSF biomarkers were analyzed on two occasions. Results Geometric mean CSF neopterin was 25% higher in the NCI group (p = 0.04) and NFL and neopterin were significantly correlated within the NCI group (r = 0.30; pNFL was seen in the NCI group (p = 0.06). Conclusions Mild HAND was associated with increased intrathecal immune activation, and the correlation between neopterin and NFL found in NCI subjects indicates an association between neurocognitive impairment, CNS inflammation and neuronal damage. Together these findings suggest that NCI despite ART may represent an active pathological process within the CNS that needs further characterization in prospective studies. PMID:27295036

  16. Exploring the caffeine-induced teratogenicity on neurodevelopment using early chick embryo.

    Directory of Open Access Journals (Sweden)

    Zheng-lai Ma

    Full Text Available Caffeine consumption is worldwide. It has been part of our diet for many centuries; indwelled in our foods, drinks, and medicines. It is often perceived as a "legal drug", and though it is known to have detrimental effects on our health, more specifically, disrupt the normal fetal development following excessive maternal intake, much ambiguity still surrounds the precise mechanisms and consequences of caffeine-induced toxicity. Here, we employed early chick embryos as a developmental model to assess the effects of caffeine on the development of the fetal nervous system. We found that administration of caffeine led to defective neural tube closures and expression of several abnormal morphological phenotypes, which included thickening of the cephalic mesenchymal tissues and scattering of somites. Immunocytochemistry of caffeine-treated embryos using neural crest cell markers also demonstrated uncharacteristic features; HNK1 labeled migratory crest cells exhibited an incontinuous dorsal-ventral migration trajectory, though Pax7 positive cells of the caffeine-treated groups were comparatively similar to the control. Furthermore, the number of neurons expressing neurofilament and the degree of neuronal branching were both significantly reduced following caffeine administration. The extent of these effects was dose-dependent. In conclusion, caffeine exposure can result in malformations of the neural tube and induce other teratogenic effects on neurodevelopment, although the exact mechanism of these effects requires further investigation.

  17. Gene Expression Differences Predict Treatment Outcome of Merkel Cell Carcinoma Patients

    Directory of Open Access Journals (Sweden)

    Loren Masterson

    2014-01-01

    Full Text Available Due to the rarity of Merkel cell carcinoma (MCC, prospective clinical trials have not been practical. This study aimed to identify biomarkers with prognostic significance. While sixty-two patients were identified who were treated for MCC at our institution, only seventeen patients had adequate formalin-fixed paraffin-embedded archival tissue and followup to be included in the study. Patients were stratified into good, moderate, or poor prognosis. Laser capture microdissection was used to isolate tumor cells for subsequent RNA isolation and gene expression analysis with Affymetrix GeneChip Human Exon 1.0 ST arrays. Among the 191 genes demonstrating significant differential expression between prognostic groups, keratin 20 and neurofilament protein have previously been identified in studies of MCC and were significantly upregulated in tumors from patients with a poor prognosis. Immunohistochemistry further established that keratin 20 was overexpressed in the poor prognosis tumors. In addition, novel genes of interest such as phospholipase A2 group X, kinesin family member 3A, tumor protein D52, mucin 1, and KIT were upregulated in specimens from patients with poor prognosis. Our pilot study identified several gene expression differences which could be used in the future as prognostic biomarkers in MCC patients.

  18. Effects of silica and titanium oxide particles on a human neural stem cell line: morphology, mitochondrial activity, and gene expression of differentiation markers.

    Science.gov (United States)

    Fujioka, Kouki; Hanada, Sanshiro; Inoue, Yuriko; Sato, Keisuke; Hirakuri, Kenji; Shiraishi, Kouichi; Kanaya, Fumihide; Ikeda, Keiichi; Usui, Ritsuko; Yamamoto, Kenji; Kim, Seung U; Manome, Yoshinobu

    2014-07-02

    Several in vivo studies suggest that nanoparticles (smaller than 100 nm) have the ability to reach the brain tissue. Moreover, some nanoparticles can penetrate into the brains of murine fetuses through the placenta by intravenous administration to pregnant mice. However, it is not clear whether the penetrated nanoparticles affect neurogenesis or brain function. To evaluate its effects on neural stem cells, we assayed a human neural stem cell (hNSCs) line exposed in vitro to three types of silica particles (30 nm, 70 nm, and <44 µm) and two types of titanium oxide particles (80 nm and < 44 µm). Our results show that hNSCs aggregated and exhibited abnormal morphology when exposed to the particles at concentrations = 0.1 mg/mL for 7 days. Moreover, all the particles affected the gene expression of Nestin (stem cell marker) and neurofilament heavy polypeptide (NF-H, neuron marker) at 0.1 mg/mL. In contrast, only 30-nm silica particles at 1.0 mg/mL significantly reduced mitochondrial activity. Notably, 30-nm silica particles exhibited acute membrane permeability at concentrations =62.5 µg/mL in 24 h. Although these concentrations are higher than the expected concentrations of nanoparticles in the brain from in vivo experiments in a short period, these thresholds may indicate the potential toxicity of accumulated particles for long-term usage or continuous exposure.

  19. Can Archival Tissue Reveal Answers to Modern Research Questions?: Computer-Aided Histological Assessment of Neuroblastoma Tumours Collected over 60 Years.

    Science.gov (United States)

    Chetcuti, Albert; Mackie, Nicole; Tafavogh, Siamak; Graf, Nicole; Henwood, Tony; Charlton, Amanda; Catchpoole, Daniel

    2014-02-28

    Despite neuroblastoma being the most common extracranial solid cancer in childhood, it is still a rare disease. Consequently, the unavailability of tissue for research limits the statistical power of studies. Pathology archives are possible sources of rare tissue, which, if proven to remain consistent over time, could prove useful to research of rare disease types. We applied immunohistochemistry to investigate whether long term storage caused any changes to antigens used diagnostically for neuroblastoma. We constructed and quantitatively assessed a tissue microarray containing neuroblastoma archival material dating between 1950 and 2007. A total of 119 neuroblastoma tissue cores were included spanning 6 decades. Fourteen antibodies were screened across the tissue microarray (TMA). These included seven positive neuroblastoma diagnosis markers (NB84, Chromogranin A, NSE, Ki-67, INI1, Neurofilament Protein, Synaptophysin), two anticipated to be negative (S100A, CD99), and five research antibodies (IL-7, IL-7R, JAK1, JAK3, STAT5). The staining of these antibodies was evaluated using Aperio ImageScope software along with novel pattern recognition and quantification algorithms. This analysis demonstrated that marker signal intensity did not decrease over time and that storage for 60 years had little effect on antigenicity. The construction and assessment of this neuroblastoma TMA has demonstrated the feasibility of using archival samples for research.

  20. Alzheimer's disease markers in the aged sheep (Ovis aries).

    Science.gov (United States)

    Reid, Suzanne J; Mckean, Natasha E; Henty, Kristen; Portelius, Erik; Blennow, Kaj; Rudiger, Skye R; Bawden, C Simon; Handley, Renee R; Verma, Paul J; Faull, Richard L M; Waldvogel, Henry J; Zetterberg, Henrik; Snell, Russell G

    2017-10-01

    This study reports the identification and characterization of markers of Alzheimer's disease (AD) in aged sheep (Ovis aries) as a preliminary step toward making a genetically modified large animal model of AD. Importantly, the sequences of key proteins involved in AD pathogenesis are highly conserved between sheep and human. The processing of the amyloid-β (Aβ) protein is conserved between sheep and human, and sheep Aβ1-42/Aβ1-40 ratios in cerebrospinal fluid (CSF) are also very similar to human. In addition, total tau and neurofilament light levels in CSF are comparable with those found in human. The presence of neurofibrillary tangles in aged sheep brain has previously been established; here, we report for the first time that plaques, the other pathologic hallmark of AD, are also present in the aged sheep brain. In summary, the biological machinery to generate the key neuropathologic features of AD is conserved between the human and sheep, making the sheep a good candidate for future genetic manipulation to accelerate the condition for use in pathophysiological discovery and therapeutic testing. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Glycidol induces axonopathy and aberrations of hippocampal neurogenesis affecting late-stage differentiation by exposure to rats in a framework of 28-day toxicity study.

    Science.gov (United States)

    Akane, Hirotoshi; Shiraki, Ayako; Imatanaka, Nobuya; Akahori, Yumi; Itahashi, Megu; Abe, Hajime; Shibutani, Makoto

    2014-01-30

    Developmental exposure to glycidol induces aberrations of late-stage neurogenesis in the hippocampal dentate gyrus of rat offspring, whereas maternal animals develop axonopathy. To investigate the possibility whether similar effects on adult neurogenesis could be induced by exposure in a framework of 28-day toxicity study, glycidol was orally administered to 5-week-old male Sprague-Dawley rats by gavage at 0, 30 or 200 mg/kg for 28 days. At 200 mg/kg, animals revealed progressively worsening gait abnormalities as well as histopathological and immunohistochemical changes suggestive of axonal injury as evidenced by generation of neurofilament-L(+) spheroids in the cerebellar granule layer and dorsal funiculus of the medulla oblongata, central chromatolysis in the trigeminal nerve ganglion cells and axonal degeneration in the sciatic nerves. At the same dose, animals revealed aberrations in neurogenesis at late-stage differentiation as evidenced by decreases of both doublecortin(+) and dihydropyrimidinase-like 3(+) cells in the subgranular zone (SGZ) and increased reelin(+) or calbindin-2(+) γ-aminobutyric acid-ergic interneurons and neuron-specific nuclear protein(+) mature neurons in the dentate hilus. These effects were essentially similar to that observed in offspring after maternal exposure to glycidol. These results suggest that glycidol causes aberrations in adult neurogenesis in the SGZ at the late stage involving the process of neurite extension similar to the developmental exposure study in a standard 28-day toxicity study.

  2. Hepatic myelopathy Morphology of the thoracic and lumbar cord in liver cirrhosis and non-cirrhosis corpses and comparison of neuron functional protein

    Institute of Scientific and Technical Information of China (English)

    Yu Lei; Zhen Liu; Huilong Huang; Suiliang Zhang; Yunheng Zhou; Shuai Wu; Xiaojun Hou; Jie Gong; Aiqun Wu

    2011-01-01

    The current study demonstrated that injury of the spinal cord lateral funiculus occurs in liver cirrhosis. This study sought to compare the morphology of the thoracic and lumbar cord, the expression of functional proteins, and changes in vessels between liver cirrhosis and non-cirrhosis corpses. Results showed that in the liver cirrhosis group, the hepatic vein expanded, the gastrointestinal tract was full of coagulated blood, blood-stasis was easily seen in the veniplex of the vertebral canal and the lumbar spinal cord, and the cell bodies of the anterior horn in the thoracic and lumbar cord were smaller than those in non-cirrhosis corpses. In addition, nerve cells shrank, Nissl bodies were concentrated with obscured nuclei, and neurofilament and synapsin containing cell bodies of the anterior horn and white matter decreased in the liver cirrhosis group. These experimental findings indicate that abnormal circulation of the spinal cord, resulting from hemodynamic change of cirrhotic portal hypertension, may be the most significant cause of hepatic myelopathy.

  3. Redox Regulation in Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    Parakh, Sonam; Spencer, Damian M.; Halloran, Mark A.; Soo, Kai Y.; Atkin, Julie D.

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that results from the death of upper and lower motor neurons. Due to a lack of effective treatment, it is imperative to understand the underlying mechanisms and processes involved in disease progression. Regulations in cellular reduction/oxidation (redox) processes are being increasingly implicated in disease. Here we discuss the possible involvement of redox dysregulation in the pathophysiology of ALS, either as a cause of cellular abnormalities or a consequence. We focus on its possible role in oxidative stress, protein misfolding, glutamate excitotoxicity, lipid peroxidation and cholesterol esterification, mitochondrial dysfunction, impaired axonal transport and neurofilament aggregation, autophagic stress, and endoplasmic reticulum (ER) stress. We also speculate that an ER chaperone protein disulphide isomerase (PDI) could play a key role in this dysregulation. PDI is essential for normal protein folding by oxidation and reduction of disulphide bonds, and hence any disruption to this process may have consequences for motor neurons. Addressing the mechanism underlying redox regulation and dysregulation may therefore help to unravel the molecular mechanism involved in ALS. PMID:23533690

  4. Grey matter pathology in multiple sclerosis.

    Science.gov (United States)

    Vercellino, Marco; Plano, Federica; Votta, Barbara; Mutani, Roberto; Giordana, Maria Teresa; Cavalla, Paola

    2005-12-01

    The aim of our study is to evaluate the extent and distribution of grey matter demyelinating lesions in multiple sclerosis (MS), addressing also neuronal loss and synaptic loss. Whole coronal sections of 6 MS brains and 6 control brains were selected. Immunohistochemistry was performed for myelin basic protein, neurofilaments, synaptophysin, ubiquitin, and activated caspase-3. Neuronal density and optical density of synaptophysin staining were estimated in cortical lesions and compared with those observed in corresponding areas of normal (i.e. nondemyelinated) cortex in the same section. Demyelinating lesions were observed in the cerebral cortex, in the thalamus, basal ganglia, and in the hippocampus. The percentage of demyelinated cortex was remarkable in 2 cases of secondary progressive MS (48% and 25.5%, respectively). Neuronal density was significantly reduced in cortical lesions (18-23% reduction), if compared with adjacent normal cortex, in the 2 cases showing the higher extent of cortical demyelination; in the same cases, very rare apoptotic neurons expressing caspase-3 were observed in cortical lesions and not in adjacent normal cortex. No significant decrease in optical density of synaptophysin staining was observed in cortical lesions. Grey matter demyelination and neuronal loss could contribute to disability and cognitive dysfunctions in MS.

  5. Altered glutamate reuptake in relapsing-remitting and secondary progressive multiple sclerosis cortex: correlation with microglia infiltration, demyelination, and neuronal and synaptic damage.

    Science.gov (United States)

    Vercellino, Marco; Merola, Aristide; Piacentino, Chiara; Votta, Barbara; Capello, Elisabetta; Mancardi, Giovanni Luigi; Mutani, Roberto; Giordana, Maria Teresa; Cavalla, Paola

    2007-08-01

    Cortical involvement in multiple sclerosis (MS) is emerging as an important determinant of disease progression. The mechanisms responsible for MS cortical pathology are not fully characterized. The objective of this study was to assess the role of excitotoxicity in MS cortex, evaluating excitatory amino acid transporter (EAAT) expression and its relationship with demyelination, inflammation, gliosis, and neuronal and synaptic pathology. EAATs are essential in maintaining low extracellular glutamate concentrations and preventing excitotoxicity. Ten MS brains (3 relapsing-remitting MS cases and 7 secondary progressive MS cases) were evaluated by immunohistochemistry for myelin basic protein, CD68, HLA-DR, EAAT1, EAAT2, glial fibrillary acidic protein, phosphorylated c-Jun N-terminal kinase (pJNK), synaptophysin, and neurofilaments. Cortical lesions were frequently observed in MS brains in variable numbers and extensions. In cortical lesions, activated microglia infiltration correlated with focal loss of EAAT1, EAAT2, and synaptophysin immunostaining, and with neuronal immunostaining for pJNK, a protein involved in response to excitotoxic injury. No reduction of EAATs or synaptophysin immunostaining was observed in demyelinated cortex in the absence of activated microglia. Alterations of the mechanisms of glutamate reuptake are found in cortical MS lesions in the presence of activated microglia and are associated with signs of neuronal and synaptic damage suggestive of excitotoxicity. Excitotoxicity may be involved in the pathogenesis of demyelination and of neuronal and synaptic damage in MS cortex.

  6. Desmoplastic non-infantile ganglioglioma. Case report.

    Science.gov (United States)

    Marti, A; Almostarchid, B; Maher, M; Saidi, A

    2000-09-01

    Desmoplastic gangliogliomas are rare mixed glial and neuronal cerebral tumors, especially described in infants below 4 years of age but exceptional cases have been reported in young adults. These tumors are generally localised in parietal or temporal lobes, present as a large cystic lesion with peripheral contrast enhancement. They also have characteristic histological features: extensive desmoplasia and tumoral cells of variable size exhibiting immunohistochemical and ultrastructural features of glial and neuronal differentiation. Total surgical removal is sufficient for the treatment of these tumors and no radiotherapy or chemotherapy are indicated if complete resection is achieved. We report a case of desmoplastic ganglioglioma in a 19-year-old male. This tumor presented as a large parieto- temporal cystic lesion with rimmed contrast enhancement. At histological examination, this tumor exhibited extensive desmoplasia and comprised 2 types of tumoral cells: small cells with round nuclei, positive for NSE, neurofilaments and synaptophysin and sometimes presenting typical morphological features of neuronal differentiation, and large cells with abundant eosinophilic strongly staining for GFAP. This observation emphazises on the fact that desmoplastic ganglioglioma can no more be considered as a specific entity of infancy and must be well recognised even in young adults because it may be misdiagnosed as malignant glioma.

  7. The tight junction component protein, claudin-4, is expressed by enteric neurons in the rat distal colon.

    Science.gov (United States)

    Karaki, Shin-ichiro; Kaji, Izumi; Otomo, Yasuko; Tazoe, Hideaki; Kuwahara, Atsukazu

    2007-11-27

    The expression of a tight junction (TJ) component protein, claudin-4, in the enteric neurons was investigated in the rat distal colon by immunohistochemistry and RT-PCR. Claudin-4 immunoreactivity was detected in almost all neurofilament-positive enteric neurons both of the submucosal and the myenteric plexuses, and both of the cell bodies and the neurofibers. The immunoreactivity of enteric neurons for claudin-4 was divided into two types: strongly and weakly positive neurons. Especially in the myenteric plexus, the stained neurons were classified by Dogiel's morphological classification of enteric neurons. The strongly stained claudin-4 positive neurons show Dogiel type II morphology, while the weakly stained claudin-4 positive neurons show Dogiel type I morphology. These immunohistochemical data were supported by mRNA expression in the muscle plus submucosa preparation containing the submucosal and myenteric plexuses, as well as mucosa preparation. The physiological function of claudin-4 expressed on enteric neurons is unclear up to now. It is however suggested that claudin-4 expressed on enteric neurons might play roles for the neural activity, for example as insulation between neurofibers. In conclusion, the present study clearly shows that claudin-4 is expressed by enteric neurons. This is the first evidence that the neuron itself expresses the TJ component protein, claudin-4, in the nervous system.

  8. Three-dimensional imaging of intracochlear tissue by scanning laser optical tomography (SLOT)

    Science.gov (United States)

    Tinne, N.; Nolte, L.; Antonopoulos, G. C.; Schulze, J.; Andrade, J.; Heisterkamp, A.; Meyer, H.; Warnecke, A.; Majdani, O.; Ripken, T.

    2016-02-01

    The presented study focuses on the application of scanning laser optical tomography (SLOT) for non-destructive visualization of anatomical structures inside the human cochlea ex vivo. SLOT is a laser-based highly efficient microscopy technique, which allows for tomographic imaging of the internal structure of transparent large-scale specimens (up to 1 cm3). Thus, in the field of otology this technique is best convenient for an ex vivo study of the inner ear anatomy. For this purpose, the preparation before imaging comprises mechanically assisted decalcification, dehydration as well as optical clearing of the cochlea samples. Here, we demonstrate results of SLOT visualizing hard and soft tissue structures of the human cochlea with an optical resolution in the micrometer range using absorption and autofluorescence as contrast mechanisms. Furthermore, we compare our results with the method of X-ray micro tomography (micro-CT, μCT) as clinical gold standard which is based only on absorption. In general, SLOT can provide the advantage of covering all contrast mechanisms known from other light microscopy techniques, such as fluorescence or scattering. For this reason, a protocol for antibody staining has been developed, which additionally enables selective mapping of cellular structures within the cochlea. Thus, we present results of SLOT imaging rodent cochleae showing specific anatomical structures such as hair cells and neurofilament via fluorescence. In conclusion, the presented study has shown that SLOT is an ideally suited tool in the field of otology for in toto visualization of the inner ear microstructure.

  9. Effects of spaceflight in the adductor longus muscle of rats flown in the Soviet Biosatellite COSMOS 2044. A study employing neural cell adhesion molecule (N-CAM) immunocytochemistry and conventional morphological techniques (light and electron microscopy)

    Science.gov (United States)

    D'Amelio, F.; Daunton, N. G.

    1992-01-01

    The effects of spaceflight upon the "slow" muscle adductor longus were examined in rats flown in the Soviet Biosatellite COSMOS 2044. The techniques employed included standard methods for light microscopy, neural cell adhesion molecule (N-CAM) immunocytochemistry and electron microscopy. Light microscopic observations revealed myofiber atrophy and segmental necrosis accompanied by cellular infiltrates composed of macrophages, leukocytes and mononuclear cells. Neural cell adhesion molecule immunoreactivity (N-CAM-IR) was seen on the myofiber surface and in regenerating myofibers. Ultrastructural alterations included Z band streaming, disorganization of myofibrillar architecture, sarcoplasmic degradation, extensive segmental necrosis with apparent preservation of the basement membrane, degenerative phenomena of the capillary endothelium and cellular invasion of necrotic areas. Regenerating myofibers were identified by the presence of increased amounts of ribosomal aggregates and chains of polyribosomes associated with myofilaments. The principal electron microscopic changes of the neuromuscular junctions showed axon terminals with a decrease or absence of synaptic vesicles replaced by microtubules and neurofilaments, degeneration of axon terminals, vacant axonal spaces and changes suggestive of axonal sprouting. The present observations suggest that alterations such as myofibrillar disruption and necrosis, muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight.

  10. Histopathological and immunohistochemical profile in anaplastic gangliogliomas.

    Science.gov (United States)

    Romero-Rojas, Alfredo E; Diaz-Perez, Julio A; Chinchilla-Olaya, Sandra I; Amaro, Deirdre; Lozano-Castillo, Alfonso; Restrepo-Escobar, Ligia I

    2013-01-01

    The anaplastic ganglioglioma (AG) is the high-grade counterpart of ganglioglioma, a rare mixed tumor composed of neuronal/ganglion and glial cells. We describe the histopathology and immunohistochemistry in 7 cases of AG and correlate them with the clinical and radiological features. Our AG patients correspond to 2.5% of the central nervous system tumor patients evaluated in our institution. The mean age at presentation was 25.7 years, with a male predominance. The most common clinical presentation was generalized tonic-clonic seizures (3/7 cases), in correlation with frequent cortical/subcortical location (6/7 cases). Histopathologically, all our cases showed high-grade features in glial (glial fibrillary acid protein-positive) and neuron-ganglion cells (synaptophysin, PGP-9.5, neurofilament, NSE and CD56-positive), as well as moderate cellularity, frequent mitotic figures and a Ki-67 labeling index >5%. All our patients had poor survival. We found that a typical histopathological and immunohistochemical profile is constant and can be useful in early diagnosis of these aggressive neoplasms. Copyright © 2013 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  11. Cerebrovascular Biomarker Profile Is Related to White Matter Disease and Ventricular Dilation in a LADIS Substudy

    Directory of Open Access Journals (Sweden)

    Maria Bjerke

    2014-10-01

    Full Text Available Background: Small vessel disease (SVD represents a common often progressive condition in elderly people contributing to cognitive disability. The relationship between cerebrospinal fluid (CSF biomarkers and imaging correlates of SVD was investigated, and the findings were hypothesized to be associated with a neuropsychological profile of SVD. Methods: CSF SVD-related biomarkers [neurofilament light (NF-L, myelin basic protein (MBP, soluble amyloid precursor protein-β (sAPPβ, matrix metalloproteinases (MMPs, and tissue inhibitor of metalloproteinase (TIMP] were analysed in 46 non-demented elderly with imaging findings of SVD. We assessed the relationship between the CSF biomarkers and white matter hyperintensity (WMH volume, diffusion-weighted imaging and atrophy as well as their association with neuropsychological profiles. Results: The WMH volume correlated with ventricular dilation, which was associated with executive function and speed and attention. Increased WMH and ventricular dilation were related to increased CSF levels of TIMP-1, NF-L and MBP and to decreased sAPPβ. A positive correlation was found between the CSF biomarker MMP-9 and WMH progression. Conclusions: The link between progressive WMH and MMP-9 suggests an involvement of the enzyme in white matter degeneration. CSF TIMP-1, NF-L, MBP and sAPPβ may function as biological markers of white matter damage.

  12. Safrole oxide induced human umbilical vein vascular endothelial cell differentiation into neuron-like cells by depressing the reactive oxygen species level at the low concentration.

    Science.gov (United States)

    Su, Le; Zhao, Jing; Zhao, Bao Xiang; Miao, Jun Ying; Yin, De Ling; Zhang, Shang Li

    2006-02-01

    Previously, we found that 5-25 microg/ml safrole oxide could inhibit apoptosis and dramatically make a morphological change in human umbilical vein vascular endothelial cells (HUVECs). But the possible mechanism by which safrole oxide function is unknown. To answer this question, in this study, we first investigated the effects of it on the activity of nitric oxide synthetase (NOS), the expressions of Fas and integrin beta4, which play important roles in HUVEC growth and apoptosis, respectively. The results showed that, at the low concentration (10 microg/ml), safrole oxide had no effects on NOS activity and the expressions of Fas and integrin beta4. Then, we investigated whether HUVECs underwent differentiation. We examined the expressions of neuron-specific enolase (NSE) and neurofilament-L (NF-L). Furthermore, we analyzed the changes of intracellular reactive oxygen species (ROS). After 10 h of treatment with 10 microg/ml safrole oxide, some HUVECs became neuron-like cells in morphology, and intensively displayed positive NSE and NF-L. Simultaneously, ROS levels dramatically decreased during HUVECs differentiation towards neuron-like cells. At the low concentration, safrole oxide induced HUVECs differentiation into neuron-like cells. Furthermore, our data suggested that safrole oxide might perform this function by depressing intracellular ROS levels instead of by affecting cell growth or apoptosis signal pathways.

  13. Safrole oxide induced neuronal differentiation of rat bone-marrow mesenchymal stem cells by elevating Hsp70.

    Science.gov (United States)

    Zhao, YanChun; Xin, Jie; Sun, ChunHui; Zhao, BaoXiang; Zhao, Jing; Su, Le

    2012-11-01

    In a previous study, we found that at low concentrations, safrole oxide (SFO) could induce vascular endothelial cell (VEC) transdifferentiation into neuron-like cells; however, whether SFO could induce bone-marrow mesenchymal stem cell (BMSC) neural differentiation was unknown. Here, we found that SFO could effectively induce BMSC neural differentiation in the presence of serum and fibroblast growth factor 2 and did not affect cell viability at low concentrations. The levels of neuron-specific enolase and neurofilament-L were increased greatly, but that of glial fibrillary acidic protein was absent with SFO treatment for 48h. Furthermore, SFO could increase the level of heat shock protein 70 (Hsp70), an important factor in neuronal differentiation. Knockdown of Hsp70 by its small interfering RNA blocked SFO-induced BMSC differentiation. Thus, SFO is a novel inducer of BMSC differentiation to neuron-like cells and Hsp70 is implicated in the differentiation process. We provide a new tool for obtaining neuron-like cells from BMSCs and for further investigating the new effect of Hsp70 on BMSC neuronal differentiation.

  14. Do CSF Biomarkers Predict Progression to Cognitive Impairment in Parkinson's disease patients? A Systematic Review.

    Science.gov (United States)

    Leaver, Katherine; Poston, Kathleen L

    2015-12-01

    Many patients with Parkinson's disease (PD) will develop cognitive impairment. Cross-sectional studies have shown that certain protein levels are altered in the cerebrospinal fluid (CSF) of PD patients with dementia and are thought to represent potential biomarkers of underlying pathogenesis. Recent studies suggest that CSF biomarker levels may be predictive of future risk of cognitive decline in non-demented PD patients. However, the strength of this evidence and difference between specific CSF biomarkers is not well delineated. We therefore performed a systematic review to assess if levels of specific CSF protein biomarkers are predictive of progression to cognitive impairment. Nine articles were identified that met inclusion criteria for the review. Findings from the review suggest a convergence of evidence that a low baseline Aβ42 in the CSF of non-demented PD patients predicts development of cognitive impairment over time. Conversely, there is limited evidence that CSF levels of tau, either total tau or phosphorylated tau, is a useful predictive biomarker. There are mixed results for other CSF biomarkers such as α-synuclein, Neurofilament light chain, and Heart fatty acid-binding protein. Overall the results of this review show that certain CSF biomarkers have better predictive ability to identify PD patients who are at risk for developing cognitive impairment. Given the interest in developing disease-modifying therapies, identifying this group will be important for clinical trials as initiation of therapy prior to the onset of cognitive decline is likely to be more efficacious.

  15. Cerebrospinal fluid biomarkers for Parkinson's disease - a systematic review.

    Science.gov (United States)

    Andersen, A D; Binzer, M; Stenager, E; Gramsbergen, J B

    2017-01-01

    Diagnosis of Parkinson's disease (PD) relies on clinical history and physical examination, but misdiagnosis is common in early stages. Identification of biomarkers for PD may allow early and more precise diagnosis and monitoring of dopamine replacement strategies and disease modifying treatments. Developments in analytical chemistry allow the detection of large numbers of molecules in plasma or cerebrospinal fluid, associated with the pathophysiology or pathogenesis of PD. This systematic review includes cerebrospinal fluid biomarker studies focusing on different disease pathways: oxidative stress, neuroinflammation, lysosomal dysfunction and proteins involved in PD and other neurodegenerative disorders, focusing on four clinical domains: their ability to (1) distinguish PD from healthy subjects and other neurodegenerative disorders as well as their relation to (2) disease duration after initial diagnosis, (3) severity of disease (motor symptoms) and (4) cognitive dysfunction. Oligomeric alpha-synuclein might be helpful in the separation of PD from controls. Through metabolomics, changes in purine and tryptophan metabolism have been discovered in patients with PD. Neurofilament light chain (NfL) has a significant role in distinguishing PD from other neurodegenerative diseases. Several oxidative stress markers are related to disease severity, with the antioxidant urate also having a prognostic value in terms of disease severity. Increased levels of amyloid and tau-proteins correlate with cognitive decline and may have prognostic value for cognitive deficits in PD. In the future, larger longitudinal studies, corroborating previous research on viable biomarker candidates or using metabolomics identifying a vast amount of potential biomarkers, could be a good approach.

  16. Cerebrospinal fluid biomarker candidates for parkinsonian disorders

    Directory of Open Access Journals (Sweden)

    Radu eConstantinescu

    2013-01-01

    Full Text Available The parkinsonian disorders are a large group of neurodegenerative diseases including idiopathic Parkinson's disease (PD and atypical parkinsonian disorders, such as multiple system atrophy, progressive supranuclear palsy, corticobasal degeneration, and dementia with Lewy bodies. The etiology of these disorders is not known although it is considered to be a combination of genetic and environmental factors. One of the greatest obstacles for developing efficacious disease-modifying treatment strategies is the lack of biomarkers. Reliable biomarkers are needed for early and accurate diagnosis, to measure disease progression and response to therapy. In this review several of the most promising cerebrospinal biomarker candidates are discussed. Alpha synuclein seems to be intimately involved in the pathogenesis of synucleinopathies and its levels can be measured in the cerebrospinal fluid and in plasma. In a similar way, tau protein accumulation seems to be involved in the pathogenesis of tauopathies. Urate, a potent antioxidant, seems to be associated to the risk of developing PD and with its progression. Neurofilament light chain levels are increased in atypical parkinsonian disorders compared with PD and healthy controls. The new "omics" techniques are potent tools offering new insights in the patho-etiology of these disorders. Some of the difficulties encountered in developing biomarkers are discussed together with future perspectives.

  17. No neurochemical evidence for brain injury caused by heading in soccer.

    Science.gov (United States)

    Zetterberg, Henrik; Jonsson, Michael; Rasulzada, Abdullah; Popa, Cornel; Styrud, Ewa; Hietala, Max Albert; Rosengren, Lars; Wallin, Anders; Blennow, Kaj

    2007-09-01

    The possible injurious effect to the brain of heading in soccer is a matter of discussion. To determine whether standardised headings in soccer are associated with increased levels of biochemical markers for neuronal injury in cerebrospinal fluid (CSF) and serum. 23 male amateur soccer players took part in a heading training session involving heading a ball kicked from a distance of 30 m at least 10 m forward. Ten players performed 10 and 13 players performed 20 approved headings. The players underwent lumbar puncture and serum sampling 7-10 days after the headings. The study also included 10 healthy male non-athletic control subjects. CSF was analysed for neurofilament light protein, total tau, glial fibrillary acidic protein, S-100B and albumin concentrations. Serum was analysed for S-100B and albumin. None of the biomarker levels were abnormal and there were no significant differences between any of the three groups, except for a slightly increased CSF S-100B concentration in controls compared with headers. Biomarker levels did not correlate with the number of headings performed. Repeated low-severity head impacts due to heading in soccer are not associated with any neurochemical signs of injury to the brain.

  18. Axonal outgrowth is associated with increased ERK 1/2 activation but decreased caspase 3 linked cell death in Schwann cells after immediate nerve repair in rats

    Directory of Open Access Journals (Sweden)

    Kanje Martin

    2011-01-01

    Full Text Available Abstract Background Extracellular-signal regulated kinase (ERK1/2 is activated by nerve damage and its activation precedes survival and proliferation of Schwann cells. In contrast, activation of caspase 3, a cysteine protease, is considered as a marker for apoptosis in Schwann cells. In the present study, axonal outgrowth, activation of ERK1/2 by phosphorylation (p-ERK 1/2 and immunoreactivity of cleaved caspase 3 were examined after immediate, delayed, or no repair of transected rat sciatic nerves. Results Axonal outgrowth, detected by neurofilament staining, was longer after immediate repair than after either the delayed or no repair conditions. Immediate repair also showed a higher expression of p-ERK 1/2 and a lower number of cleaved caspase 3 stained Schwann cells than after delayed nerve repair. If the transected nerve was not repaired a lower level of p-ERK 1/2 was found than in either the immediate or delayed repair conditions. Axonal outgrowth correlated to p-ERK 1/2, but not clearly with cleaved caspase 3. Contact with regenerating axons affected Schwann cells with respect to p-ERK 1/2 and cleaved caspase 3 after immediate nerve repair only. Conclusion The decreased regenerative capacity that has historically been observed after delayed nerve repair may be related to impaired activation of Schwann cells and increased Schwann cell death. Outgrowing axons influence ERK 1/2 activation and apoptosis of Schwann cells.

  19. Remodeling of skin nerve fibers during burn wound healing

    Institute of Scientific and Technical Information of China (English)

    Yongqiang Feng; Xia Li; Rui Zhang; Yu Liu; Tingting Leng; Yibing Wang

    2010-01-01

    Burn wound healing involves a complex sequence of processes.Recent studies have revealed that skin reinnervation may have an impact on physiological wound repair.Few studies have addressed the process of reinnervation and morphological changes in regenerated nerve fibers.The regeneration of neurites during full-thickness burn wound healing was determined by immunofluorescent staining using an anti-neurofilament protein monoclonal antibody,and three-dimensional morphology was observed under a laser scanning confocal microscope.Morphology and the volume fraction of collagen and nerve fibers were measured.Skin reinnervation increased during wound healing,peaked during the proliferative scar stage,and then decreased to lower levels during the maturation period.The results from the skin nerve fibers correlated with those from collagen using semi-quantitative analysis.Disintegration and fragmentation were observed frequently in samples from the proliferative stage,and seldom occurred during the maturation stage.There was a remodeling process of regenerated nerve fibers during wound healing,which comprised changed innervation density and topical morphology.The mechanism of remodeling for nerve fibers requires further investigation.

  20. The NFL-TBS.40-63 anti-glioblastoma peptide disrupts microtubule and mitochondrial networks in the T98G glioma cell line.

    Directory of Open Access Journals (Sweden)

    Romain Rivalin

    Full Text Available Despite aggressive therapies, including combinations of surgery, radiotherapy and chemotherapy, glioblastoma remains a highly aggressive brain cancer with the worst prognosis of any central nervous system disease. We have previously identified a neurofilament-derived cell-penetrating peptide, NFL-TBS.40-63, that specifically enters by endocytosis in glioblastoma cells, where it induces microtubule destruction and inhibits cell proliferation. Here, we explore the impact of NFL-TBS.40-63 peptide on the mitochondrial network and its functions by using global cell respiration, quantitative PCR analysis of the main actors directing mitochondrial biogenesis, western blot analysis of the oxidative phosphorylation (OXPHOS subunits and confocal microscopy. We show that the internalized peptide disturbs mitochondrial and microtubule networks, interferes with mitochondrial dynamics and induces a rapid depletion of global cell respiration. This effect may be related to reduced expression of the NRF-1 transcription factor and of specific miRNAs, which may impact mitochondrial biogenesis, in regard to default mitochondrial mobility.

  1. Peptidomics and Secretomics of the Mammalian Peripheral Sensory-Motor System

    Science.gov (United States)

    Tillmaand, Emily G.; Yang, Ning; Kindt, Callie A. C.; Romanova, Elena V.; Rubakhin, Stanislav S.; Sweedler, Jonathan V.

    2015-12-01

    The dorsal root ganglion (DRG) and its anatomically and functionally associated spinal nerve and ventral and dorsal roots are important components of the peripheral sensory-motor system in mammals. The cells within these structures use a number of peptides as intercellular signaling molecules. We performed a variety of mass spectrometry (MS)-based characterizations of peptides contained within and secreted from these structures, and from isolated and cultured DRG cells. Liquid chromatography-Fourier transform MS was utilized in DRG and nerve peptidome analysis. In total, 2724 peptides from 296 proteins were identified in tissue extracts. Neuropeptides are among those detected, including calcitonin gene-related peptide I, little SAAS, and known hemoglobin-derived peptides. Solid phase extraction combined with direct matrix-assisted laser desorption/ionization time-of-flight MS was employed to investigate the secretome of these structures. A number of peptides were detected in the releasate from semi-intact preparations of DRGs and associated nerves, including neurofilament- and myelin basic protein-related peptides. A smaller set of analytes was observed in releasates from cultured DRG neurons. The peptide signals observed in the releasates have been mass-matched to those characterized and identified in homogenates of entire DRGs and associated nerves. This data aids our understanding of the chemical composition of the mammalian peripheral sensory-motor system, which is involved in key physiological functions such as nociception, thermoreception, itch sensation, and proprioception.

  2. Coil-1 of rod domain of NF-L is essential for its assembly in vivo

    Institute of Scientific and Technical Information of China (English)

    佟向军; 翟中和; 陈建国

    1999-01-01

    Neurofilaments take highly ordered structures composed of parallel arrays of 10 nm filaments linked to each other with frequent cross-bridge. It is composed of three components named NF-L, NF-M and NF-H. NF-L is able to form filamentous network alone in Sf9 cells, while M could not. To identify which domain is essential for the assembly of NF-L, two chimera proteins named ML and MML were constructed: ML was composed of the head domain of NF-M and other domains of NF-L; MML was composed of the head and Coil-1 domains of NF-M and Coil-2 and tail domains of NFL. ML was not only able to form filaments in Sf9 cells, but also co-assemble with NF-M into parallel filamentous bundies. MML could not assemble into filaments. Thus the Coil-1 domain of NF-L was essential for its assembly.

  3. 宫内移植骨髓间充质干细胞对显性脊柱裂胎鼠神经元重建的作用研究%Neuron regeneration of in utero mesenchymal stem cell transplantation in rat fetuses with spina bifida aperta

    Institute of Scientific and Technical Information of China (English)

    马丽丽; 袁正伟; 蒋俊红; 陈海琛; 杨兆辉; 姜艳; 徐延波

    2014-01-01

    目的 胚胎期移植骨髓间充质干细胞(bone marrow stem cell,BMSCs)至先天性脊柱裂模型胎鼠脊髓中,观察其在显性脊柱裂胎鼠脊髓中存活及分化情况,并探讨其对脊髓神经元修复的治疗潜能.方法 利用胎仔外科和显微注射技术将绿色荧光蛋白(eGFP)转染的BMSCs分别在胚胎第16、17和18天移植到83只脊柱裂和20只正常大鼠胚胎中(group E16、E17and E18),胚胎20 d的胎鼠脊髓被取出并固定.经冰冻切片后,计数eGFP阳性细胞数目,并利用免疫荧光方法检测脊髓中eGFP阳性的BMSCs中神经干细胞(Nestin)、神经元(Neurofilament)和神经胶质细胞(GFAP)的分布与表达.结果 本研究成功的将MSC在宫内移植入胎鼠体内,孕鼠的存活率为94%(81/86),胎鼠的存活率为78.1%(136/174);实验中孕16d的胎鼠存活率为75.8%(91/120)低于孕17 d的80.6%(25/31)和孕18d的87.0%(20/23).计数脊髓中eGFP阳性细胞数,范围在166~735个/根,其中P0代MSCs存活率最低,为10.8%;P3~6代为22.6%、P10~14代为20.1%;P10~14代MSC在母鼠孕16d时移植得到最佳分化率;统计eGFP阳性细胞表达Nestin、Neurofilament和GFAP的阳性率分别为4%~5%、1%~2%和5%~7%.结论 BMSCs移植到显性脊柱裂胎鼠脊髓中能够存活,并在脊髓中表达Nestin、Neurofilament和GFAP,提示移植骨髓间充质干细胞具有向神经干细胞、神经元和神经胶质细胞分化的可能.%Objective To observe the survival and differentiation status of transplanted bone marrow mesenchymal stem cells (BM-MSCs) in spinal cord of dominant spina bifida fetal rats and discuss their therapeutic potentials for repairing spinal cord neurons.Methods Fetal surgery and micro-injection technology were employed to transplant green fluorescent protein (eGFP)-transfected BMSCs into 83 spina bifida and 20 normal rat embryos respectively at embryonic days 16,17 and 18 (groups E16,E17 & E18).And,at Day 20,spinal cord was

  4. Inhibition of fast axonal transport by pathogenic SOD1 involves activation of p38 MAP kinase.

    Directory of Open Access Journals (Sweden)

    Gerardo A Morfini

    Full Text Available Dying-back degeneration of motor neuron axons represents an established feature of familial amyotrophic lateral sclerosis (FALS associated with superoxide dismutase 1 (SOD1 mutations, but axon-autonomous effects of pathogenic SOD1 remained undefined. Characteristics of motor neurons affected in FALS include abnormal kinase activation, aberrant neurofilament phosphorylation, and fast axonal transport (FAT deficits, but functional relationships among these pathogenic events were unclear. Experiments in isolated squid axoplasm reveal that FALS-related SOD1 mutant polypeptides inhibit FAT through a mechanism involving a p38 mitogen activated protein kinase pathway. Mutant SOD1 activated neuronal p38 in mouse spinal cord, neuroblastoma cells and squid axoplasm. Active p38 MAP kinase phosphorylated kinesin-1, and this phosphorylation event inhibited kinesin-1. Finally, vesicle motility assays revealed previously unrecognized, isoform-specific effects of p38 on FAT. Axon-autonomous activation of the p38 pathway represents a novel gain of toxic function for FALS-linked SOD1 proteins consistent with the dying-back pattern of neurodegeneration characteristic of ALS.

  5. An experimental test of stroke recovery by implanting a hyaluronic acid hydrogel carrying a Nogo receptor antibody in a rat model

    Energy Technology Data Exchange (ETDEWEB)

    Ma Jun [Biomaterials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Tian Weiming [Biomaterials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Hou Shaoping [Beijing Institute of Neuroscience, Capital University of Medical Sciences, Beijing 100054 (China); Xu Qunyuan [Beijing Institute of Neuroscience, Capital University of Medical Sciences, Beijing 100054 (China); Spector, Myron [Tissue Engineering, VA Boston Healthcare System, Harvard Medical School, Boston, MA (United States); Cui Fuzhai [Biomaterials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2007-12-15

    The objective of the study was to determine the effects of a hyaluronic-acid-based (HA-based) hydrogel implant, carrying a polyclonal antibody to the Nogo-66 receptor (NgR), on adult rats that underwent middle cerebral artery occlusion (MCAO). Behavioral tests of a forelimb-reaching task suggested that the disabled function of the impaired forelimb in this stroke model was ameliorated by the implant to a certain extent. These behavioral findings were correlated with immunohistochemical results of investigating the distribution of NgR antibody, neurofilaments (NF) and neuron-specific class III {beta}-tubulin (TuJ1) in the brain sections. The porous hydrogel functioned as a scaffold to deliver the NgR antibody, support cell migration and development. In addition, it was found NF-positive and TuJ1-positive expressions were distributed in the implanted hydrogel. Collectively, the results demonstrate the promise of the HA hydrogel as a scaffold material and the delivery vehicle of the NgR antibody for the repair of defects and the support of neural regeneration in the brain.

  6. [Neuronal differentiation of human small cell lung cancer cell line PC-6 by Solcoseryl].

    Science.gov (United States)

    Shimizu, T

    1997-11-01

    Solcoseryl is composed of extracts from calf blood, and is a drug known to activate tissue respiration. In the present study, I demonstrated the cell biological effects of Solcoseryl on a human small cell lung cancer cell line, PC-6, by analyzing cell morphology, cell growth, expression of neuronal differentiation markers, and the ras proto-oncogene product(ras p21). Exposure of PC-6 cells to Solcoseryl at the concentration of 200 microliters/ml induced (1) cell morphological changes, including neurodendrite-like projections from the cell surface, and (2) complete inhibition of cell growth, that was shown by the loss of Ki-67 expression. Solcoseryl also induced the expression of neurofilament protein and acetylcholinesterase, both of which are markers of neuronal differentiation. Moreover, it upregulated the expression of the ras proto-oncogene product, ras p21. Taken together, these data suggest that Solcoseryl is composed of component(s) which can induce neuronal differentiation of the human small cell lung cancer cell line, PC-6.

  7. Inhibition of glycogen synthase kinase-3 enhances the differentiation and reduces the proliferation of adult human olfactory epithelium neural precursors

    Energy Technology Data Exchange (ETDEWEB)

    Manceur, Aziza P. [Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario (Canada); Donnelly Centre, University of Toronto, Toronto, Ontario (Canada); Tseng, Michael [Laboratory of Cellular and Molecular Pathophysiology, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario (Canada); Department of Psychiatry, University of Toronto, Toronto, ON (Canada); Institute of Medical Science, University of Toronto, Toronto, ON (Canada); Holowacz, Tamara [Donnelly Centre, University of Toronto, Toronto, Ontario (Canada); Witterick, Ian [Institute of Medical Science, University of Toronto, Toronto, ON (Canada); Department of Otolaryngology, Head and Neck Surgery, University of Toronto, ON (Canada); Weksberg, Rosanna [Institute of Medical Science, University of Toronto, Toronto, ON (Canada); The Hospital for Sick Children, Research Institute, Program in Genetics and Genomic Biology, Toronto, Ontario Canada (Canada); McCurdy, Richard D. [The Hospital for Sick Children, Research Institute, Program in Genetics and Genomic Biology, Toronto, Ontario Canada (Canada); Warsh, Jerry J. [Laboratory of Cellular and Molecular Pathophysiology, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario (Canada); Department of Psychiatry, University of Toronto, Toronto, ON (Canada); Institute of Medical Science, University of Toronto, Toronto, ON (Canada); Audet, Julie, E-mail: julie.audet@utoronto.ca [Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario (Canada); Donnelly Centre, University of Toronto, Toronto, Ontario (Canada)

    2011-09-10

    The olfactory epithelium (OE) contains neural precursor cells which can be easily harvested from a minimally invasive nasal biopsy, making them a valuable cell source to study human neural cell lineages in health and disease. Glycogen synthase kinase-3 (GSK-3) has been implicated in the etiology and treatment of neuropsychiatric disorders and also in the regulation of murine neural precursor cell fate in vitro and in vivo. In this study, we examined the impact of decreased GSK-3 activity on the fate of adult human OE neural precursors in vitro. GSK-3 inhibition was achieved using ATP-competitive (6-bromoindirubin-3'-oxime and CHIR99021) or substrate-competitive (TAT-eIF2B) inhibitors to eliminate potential confounding effects on cell fate due to off-target kinase inhibition. GSK-3 inhibitors decreased the number of neural precursor cells in OE cell cultures through a reduction in proliferation. Decreased proliferation was not associated with a reduction in cell survival but was accompanied by a reduction in nestin expression and a substantial increase in the expression of the neuronal differentiation markers MAP1B and neurofilament (NF-M) after 10 days in culture. Taken together, these results suggest that GSK-3 inhibition promotes the early stages of neuronal differentiation in cultures of adult human neural precursors and provide insights into the mechanisms by which alterations in GSK-3 signaling affect adult human neurogenesis, a cellular process strongly suspected to play a role in the etiology of neuropsychiatric disorders.

  8. Rimmed vacuoles and the added value of SMI-31 staining in diagnosing sporadic inclusion body myositis.

    Science.gov (United States)

    van der Meulen, M F; Hoogendijk, J E; Moons, K G; Veldman, H; Badrising, U A; Wokke, J H

    2001-07-01

    Problems in diagnosing sporadic inclusion body myositis may arise if all clinical features fit a diagnosis of polymyositis, but the muscle biopsy shows some rimmed vacuoles. Recently, immunohistochemistry with an antibody directed against phosphorylated neurofilament (SMI-31) has been advocated as a diagnostic test for sporadic inclusion body myositis. The aims of the present study were to define a quantitative criterion to differentiate sporadic inclusion body myositis from polymyositis based on the detection of rimmed vacuoles in the haematoxylin-eosin staining and to evaluate the additional diagnostic value of the SMI-31 staining. Based on clinical criteria and creatine kinase levels in patients with endomysial infiltrates, 18 patients complied with the diagnosis of sporadic inclusion body myositis, and 17 with the diagnosis of polymyositis. A blinded observer counted the abnormal fibres in haematoxylin-eosin-stained sections and in SMI-31-stained sections. The optimal cut-off in the haematoxylin-eosin test was 0.3% vacuolated fibres. Adding the SMI-31 staining significantly increased the positive predictive value from 87 to 100%, but increased the negative predictive value only to small extent. We conclude that (1) patients with clinical and laboratory features of polymyositis, including response to treatment, may show rimmed vacuoles in their muscle biopsy and that (2) adding the SMI-31 stain can be helpful in differentiating patients who respond to treatment from patients who do not.

  9. Expression of mRNAs for PPT, CGRP, NF-200, and MAP-2 in cocultures of dissociated DRG neurons and skeletal muscle cells in administration of NGF or NT-3.

    Science.gov (United States)

    Zhang, Weiwei; Li, Hao; Xing, Ziying; Yuan, Hongtu; Kindy, Mark S; Li, Zhenzhong

    2012-07-05

    Both neurotrophins (NTs) and target skeletal muscle (SKM) cells are essential for the maintenance of the function of neurons and nerve-muscle communication. However, much less is known about the association of target SKM cells with distinct NTs on the expression of mRNAs for preprotachykinin (PPT), calcitonin-gene related peptide (CGRP), neurofilament 200 (NF-200), and microtubule associated protein 2 (MAP-2) in dorsal root ganglion (DRG) sensory neurons. In the present study, a neuromuscular coculture model of dissociated dorsal root ganglion (DRG) neurons and SKM cells was established. The morphology of DRG neurons and SKM cells in coculture was observed with an inverted phase contrast microscope. The effects of nerve growth factor (NGF) or neurotrophin-3 (NT-3) on the expression of mRNAs for PPT, CGRP, NF-200, and MAP-2 was analyzed by real time-PCR assay. The morphology of DRG neuronal cell bodies and SKM cells in neuromuscular coculture at different conditions was similar. The neurons presented evidence of dense neurite outgrowth in the presence of distinct NTs in neuromuscular cocultures. NGF and NT-3 increased mRNA levels of PPT, CGRP, and NF-200, but not MAP-2, in neuromuscular cocultures. These results offer new clues towards a better understanding of the association of target SKM cells with distinct NTs on the expression of mRNAs for PPT, CGRP, NF-200 and MAP-2, and implicate the association of target SKM cells and NTs with DRG sensory neuronal phenotypes.

  10. Expression of mRNAs for PPT, CGRP, NF-200, and MAP-2 in cocultures of dissociated DRG neurons and skeletal muscle cells in administration of NGF or NT-3

    Directory of Open Access Journals (Sweden)

    Weiwei Zhang

    2012-07-01

    Full Text Available Both neurotrophins (NTs and target skeletal muscle (SKM cells are essential for the maintenance of the function of neurons and nerve-muscle communication. However, much less is known about the association of target SKM cells with distinct NTs on the expression of mRNAs for preprotachykinin (PPT, calcitonin-gene related peptide (CGRP, neurofilament 200 (NF-200, and microtubule associated protein 2 (MAP-2 in dorsal root ganglion (DRG sensory neurons. In the present study, a neuromuscular coculture model of dissociated dorsal root ganglion (DRG neurons and SKM cells was established. The morphology of DRG neurons and SKM cells in coculture was observed with an inverted phase contrast microscope. The effects of nerve growth factor (NGF or neurotrophin-3 (NT-3 on the expression of mRNAs for PPT, CGRP, NF-200, and MAP-2 was analyzed by real time-PCR assay. The morphology of DRG neuronal cell bodies and SKM cells in neuromuscular coculture at different conditions was similar. The neurons presented evidence of dense neurite outgrowth in the presence of distinct NTs in neuromuscular cocultures. NGF and NT-3 increased mRNA levels of PPT, CGRP, and NF-200, but not MAP-2, in neuromuscular cocultures. These results offer new clues towards a better understanding of the association of target SKM cells with distinct NTs on the expression of mRNAs for PPT, CGRP, NF-200 and MAP-2, and implicate the association of target SKM cells and NTs with DRG sensory neuronal phenotypes.

  11. Neuronal differentiation distinguishes supratentorial and infratentorial childhood ependymomas.

    Science.gov (United States)

    Andreiuolo, Felipe; Puget, Stéphanie; Peyre, Matthieu; Dantas-Barbosa, Carmela; Boddaert, Nathalie; Philippe, Cathy; Mauguen, Audrey; Grill, Jacques; Varlet, Pascale

    2010-11-01

    Ependymomas are glial neoplasms occurring in any location throughout the central nervous system and supposedly are derived from radial glia cells. Recent data suggest that these tumors may have different biological and clinical behaviors according to their location. Pediatric supratentorial and infratentorial ependymoma (SE and IE) were compared with respect to clinical and radiological parameters and immunohistochemistry (IHC). Neuronal markers were specifically assessed by IHC and quantitative PCR (qPCR). No single morphological or radiological characteristic was associated with location or any neuronal marker. However, there was a significant overexpression of neuronal markers in SE compared with IE: neurofilament light polypeptide 70 (NEFL)-positive tumor cells were found in 23 of 34 SE and in only 4 of 32 IE (P < .001). Among SE, 10 of 34 exhibited high expression of NEFL, defined as more than 5% positive cells. qPCR confirmed the upregulation of neuronal markers (NEFL, LHX2, FOXG1, TLX1, and NPTXR) in SE compared with IE. In addition, strong NEFL expression in SE was correlated with better progression-free survival (P = .007). Our results support the distinction of SE and IE. SEs are characterized by neuronal differentiation, which seems to be associated with better prognosis.

  12. Oxygen-glucose deprivation preconditioning protects neurons against oxygen-glucose deprivation/reperfusion induced injury via bone morphogenetic protein-7 mediated ERK, p38 and Smad signalling pathways.

    Science.gov (United States)

    Guan, Junhong; Du, Shaonan; Lv, Tao; Qu, Shengtao; Fu, Qiang; Yuan, Ye

    2016-01-01

    Bone morphogenetic protein (BMP)-7 mediated neuroprotective effect of cerebral ischemic preconditioning (IPC) has been studied in an ischemic animal model, but the underlying cellular mechanisms have not been clearly clarified. In this study, primary cortical neurons and the SH-SY5Y cell line were used to investigate the role of BMP-7 and its downstream signals in the neuroprotective effects of oxygen-glucose deprivation preconditioning (OGDPC). Immunocytochemistry was used to detect the expression of neurofilament in neurons. MTT and lactate dehydrogenase activity assays were used to measure the cytotoxicity. Western blot was used to detect the protein expression of BMP-7 and downstream signals. BMP inhibitor, mitogen-activated protein kinase inhibitors, Smad inhibitor and siRNA of Smad 1 were used to investigate the role of corresponding signalling pathways in the OGDPC. Results showed that OGDPC-induced overexpression of BMP-7 in primary cortical neurons and SH-SY5Y cells. Both of endogenous and exogenous BMP-7 could replicate the neuroprotective effects seen in OGDPC pretreatment. In addition, extracellular regulated protein kinases, p38 and Smad signalling pathway were found to be involved in the neuroprotective effects mediated by OGDPC via BMP-7. This study primarily reveals the cellular mechanisms of the neuroprotection mediated by OGDPC, and provides evidence for better understanding of this intrinsic factor against ischemia.

  13. Sesamin modulates tyrosine hydroxylase, superoxide dismutase, catalase, inducible NO synthase and interleukin-6 expression in dopaminergic cells under MPP+-induced oxidative stress.

    Science.gov (United States)

    Lahaie-Collins, Vicky; Bournival, Julie; Plouffe, Marilyn; Carange, Julie; Martinoli, Maria-Grazia

    2008-01-01

    Oxidative stress is regarded as a mediator of nerve cell death in several neurodegenerative disorders, such as Parkinson's disease. Sesamin, a lignan mainly found in sesame oil, is currently under study for its anti-oxidative and possible neuroprotective properties. We used 1-methyl-4-phenyl-pyridine (MPP(+)) ion, the active metabolite of the potent parkinsonism-causing toxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine, to produce oxidative stress and neurodegeneration in neuronal PC12 cells, which express dopamine, as well as neurofilaments. Our results show that picomolar doses of sesamin protected neuronal PC12 cells from MPP(+)-induced cellular death, as revealed by colorimetric measurements and production of reactive oxygen species. We also demonstrated that sesamin acted by rescuing tyrosine hydroxylase levels from MPP(+)-induced depletion. Sesamin, however, did not modulate dopamine transporter levels, and estrogen receptor-alpha and -beta protein expression. By examining several parameters of cell distress, we found that sesamin also elicited a strong increase in superoxide dismutase activity as well as protein expression and decreased catalase activity and the MPP(+) stimulated inducible nitric oxide synthase protein expression, in neuronal PC12 cells. Finally, sesamin possessed significant anti-inflammatory properties, as disclosed by its potential to reduce MPP(+)-induced interleukin-6 mRNA levels in microglia. From these studies, we determined the importance of the lignan sesamin as a neuroprotective molecule and its possible role in complementary and/or preventive therapies of neurodegenerative diseases.

  14. Redox Regulation in Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Sonam Parakh

    2013-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a neurodegenerative disease that results from the death of upper and lower motor neurons. Due to a lack of effective treatment, it is imperative to understand the underlying mechanisms and processes involved in disease progression. Regulations in cellular reduction/oxidation (redox processes are being increasingly implicated in disease. Here we discuss the possible involvement of redox dysregulation in the pathophysiology of ALS, either as a cause of cellular abnormalities or a consequence. We focus on its possible role in oxidative stress, protein misfolding, glutamate excitotoxicity, lipid peroxidation and cholesterol esterification, mitochondrial dysfunction, impaired axonal transport and neurofilament aggregation, autophagic stress, and endoplasmic reticulum (ER stress. We also speculate that an ER chaperone protein disulphide isomerase (PDI could play a key role in this dysregulation. PDI is essential for normal protein folding by oxidation and reduction of disulphide bonds, and hence any disruption to this process may have consequences for motor neurons. Addressing the mechanism underlying redox regulation and dysregulation may therefore help to unravel the molecular mechanism involved in ALS.

  15. Pathogenesis of motor neuron disease

    Institute of Scientific and Technical Information of China (English)

    Xuefei Wang

    2006-01-01

    OBJECTIVE: To summarize and analyze the factors and theories related to the attack of motor neuron disease, and comprehensively investigate the pathogenesis of motor neuron disease.DATA SOURCES: A search of Pubmed database was undertaken to identify articles about motor neuron disease published in English from January 1994 to June 2006 by using the keywords of "neurodegenerative diseases". Other literatures were collected by retrieving specific journals and articles.STUDY SELECTION: The data were checked primarily, articles related to the pathogenesis of motor neuron disease were involved, and those obviously irrelated to the articles were excluded.DATA EXTRACTION: Totally 54 articles were collected, 30 of them were involved, and the other 24 were excluded.DATA SYNTHESIS: The pathogenesis of motor neuron disease has multiple factors, and the present related theories included free radical oxidation, excitotoxicity, genetic and immune factors, lack of neurotrophic factor,injury of neurofilament, etc. The studies mainly come from transgenic animal models, cell culture in vitro and patients with familial motor neuron disease, but there are still many restrictions and disadvantages.CONCLUSION: It is necessary to try to find whether there is internal association among different mechanisms,comprehensively investigate the pathogenesis of motor neuron diseases, in order to provide reliable evidence for the clinical treatment.

  16. A 3D Electroactive Polypyrrole-Collagen Fibrous Scaffold for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Kam W. Leong

    2011-02-01

    Full Text Available Fibers that can provide topographical, biochemical and electrical cues would be attractive for directing the differentiation of stem cells into electro-responsive cells such as neuronal or muscular cells. Here we report on the fabrication of polypyrrole-incorporated collagen-based fibers via interfacial polyelectrolyte complexation (IPC. The mean ultimate tensile strength of the fibers is 304.0 ± 61.0 MPa and the Young’s Modulus is 10.4 ± 4.3 GPa. Human bone marrow-derived mesenchymal stem cells (hMSCs are cultured on the fibers in a proliferating medium and stimulated with an external electrical pulse generator for 5 and 10 days. The effects of polypyrrole in the fiber system can be observed, with hMSCs adopting a neuronal-like morphology at day 10, and through the upregulation of neural markers, such as noggin, MAP2, neurofilament, β tubulin III and nestin. This study demonstrates the potential of this fiber system as an attractive 3D scaffold for tissue engineering, where collagen is present on the fiber surface for cellular adhesion, and polypyrrole is encapsulated within the fiber for enhanced electrical communication in cell-substrate and cell-cell interactions.

  17. Ekspresi level gen mRNA protein ekstraseluler otak embrio mencit black-6 uk-12 akibat induksi 2-methoxyethanol : analisis secara real time RT-PCR

    Directory of Open Access Journals (Sweden)

    Yulia Irnidayanti

    2012-02-01

    Full Text Available The aim of this research was to investigate impact of 2-methoxyethanol, a major industrial chemical, and its individual metaboliteson the expression DNA of the embryonic brain development of black-6 mice. The expression levels mRNA protein of GAPDH, Fibronectin,tenascin, vimentin, Neurofilamen, NCam between brain embrio treatment with 2-ME at gestation day 12 and Embryo control wereachieved. The Electroforesis DNA on brain Embryonic day 12 showed that there were expression of GAPDH (447bp, Fibronectin(462bp, NCAM (293 bp, Tenascin (416bp, Vimentin (327, Neurofilamen high (301bp, Neurofilamen medium (289bp, Neurofilamenlow (398bp. This Data not showed. The expression of level of mRNA for protein Vimentin at embryonic brain treatment at GD-12 is487 copies, meanwhile on the embryinoc brain control is 209 copies. This expression is tendency very higher than control. Anotherlevel of mRNA for protein fibronectin, NCAM, Tenascin, Neurofilament were tendency not differe between embryinoc brain treatmentsand control. Intermediate filaments, vimentin, is found in specific cell types in the developing and adult central nervous systems (CNS,particularly astrocytes. Recently, found that vimentin immunoreactivities were increased in astrocytes and/or macrophages in the spinalcords of rats with autoimmune inflammation. So that The higher level mRNA for protein vimentin caused by effect 2-methoxyethanol.Vimentin contribute to the repair of brain through the migration of activated cells and increased level vimentin at embryionic braintreatment with 2-ME.

  18. Neurite dispersion: a new marker of multiple sclerosis spinal cord pathology?

    Science.gov (United States)

    Grussu, Francesco; Schneider, Torben; Tur, Carmen; Yates, Richard L; Tachrount, Mohamed; Ianuş, Andrada; Yiannakas, Marios C; Newcombe, Jia; Zhang, Hui; Alexander, Daniel C; DeLuca, Gabriele C; Gandini Wheeler-Kingshott, Claudia A M

    2017-09-01

    Conventional magnetic resonance imaging (MRI) of the multiple sclerosis spinal cord is limited by low specificity regarding the underlying pathological processes, and new MRI metrics assessing microscopic damage are required. We aim to show for the first time that neurite orientation dispersion (i.e., variability in axon/dendrite orientations) is a new biomarker that uncovers previously undetected layers of complexity of multiple sclerosis spinal cord pathology. Also, we validate against histology a clinically viable MRI technique for dispersion measurement (neurite orientation dispersion and density imaging, NODDI), to demonstrate the strong potential of the new marker. We related quantitative metrics from histology and MRI in four post mortem spinal cord specimens (two controls; two progressive multiple sclerosis cases). The samples were scanned at high field, obtaining maps of neurite density and orientation dispersion from NODDI and routine diffusion tensor imaging (DTI) indices. Histological procedures provided markers of astrocyte, microglia, myelin and neurofilament density, as well as neurite dispersion. We report from both NODDI and histology a trend toward lower neurite dispersion in demyelinated lesions, indicative of reduced neurite architecture complexity. Also, we provide unequivocal evidence that NODDI-derived dispersion matches its histological counterpart (P dispersion detects a previously undescribed and potentially relevant layer of microstructural complexity of multiple sclerosis spinal cord pathology. Clinically feasible techniques such as NODDI may play a key role in clinical trial and practice settings, as they provide histologically meaningful dispersion indices.

  19. Redox regulation in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Parakh, Sonam; Spencer, Damian M; Halloran, Mark A; Soo, Kai Y; Atkin, Julie D

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that results from the death of upper and lower motor neurons. Due to a lack of effective treatment, it is imperative to understand the underlying mechanisms and processes involved in disease progression. Regulations in cellular reduction/oxidation (redox) processes are being increasingly implicated in disease. Here we discuss the possible involvement of redox dysregulation in the pathophysiology of ALS, either as a cause of cellular abnormalities or a consequence. We focus on its possible role in oxidative stress, protein misfolding, glutamate excitotoxicity, lipid peroxidation and cholesterol esterification, mitochondrial dysfunction, impaired axonal transport and neurofilament aggregation, autophagic stress, and endoplasmic reticulum (ER) stress. We also speculate that an ER chaperone protein disulphide isomerase (PDI) could play a key role in this dysregulation. PDI is essential for normal protein folding by oxidation and reduction of disulphide bonds, and hence any disruption to this process may have consequences for motor neurons. Addressing the mechanism underlying redox regulation and dysregulation may therefore help to unravel the molecular mechanism involved in ALS.

  20. Probing mechanisms of axonopathy. Part II: Protein targets of 2,5-hexanedione, the neurotoxic metabolite of the aliphatic solvent n-hexane.

    Science.gov (United States)

    Tshala-Katumbay, Desire; Monterroso, Victor; Kayton, Robert; Lasarev, Michael; Sabri, Mohammad; Spencer, Peter

    2009-02-01

    Neuroprotein changes in the spinal cord of rodents with aliphatic gamma-diketone axonopathy induced by 2,5-hexanedione (2,5-HD) are compared with those reported previously in aromatic gamma-diketone-like axonopathy induced by 1,2-diacetylbenzene (1,2-DAB). Sprague-Dawley rats were treated intraperitoneally with 500 mg/kg/day 2,5-HD, equimolar doses of 2,3-hexanedione (negative control), or an equivalent amount of saline containing 50% dimethyl sulfoxide (vehicle), 5 days a week, for 3 weeks. Analysis of the lumbosacral proteome by 2-dimensional differential in-gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight/tandem mass spectrometry revealed 34 proteins markedly modified by 2,5-HD of which neurofilament triplet L, gelsolin, protein disulfide isomerase, glutathione S-transferase, nicotinamide adenine dinucleotide (reduced) dehydrogenase 1 alpha, pyruvate kinase, and fatty acid synthase were also modified by 1,2-DAB. The expression of proteins involved in maintaining the physical integrity of the cytoskeleton or controlling the redox and protein-folding mechanisms was reduced, whereas that of proteins supporting energy metabolism was mainly increased. The similarity of the neuroproteomic patterns of 2,5-HD and 1,2-DAB axonopathy suggests common biomarkers and/or mechanisms of neurotoxicity associated with exposure to their parent chemicals, namely the industrial solvents n-hexane and 1,2-diethylbenzene, respectively.

  1. Different Tissue-Derived Stem Cells: A Comparison of Neural Differentiation Capability.

    Directory of Open Access Journals (Sweden)

    Gabriele Bonaventura

    Full Text Available Stem cells are capable of self-renewal and differentiation into a wide range of cell types with multiple clinical and therapeutic applications. Stem cells are providing hope for many diseases that currently lack effective therapeutic methods, including strokes, Huntington's disease, Alzheimer's and Parkinson's disease. However, the paucity of suitable cell types for cell replacement therapy in patients suffering from neurological disorders has hampered the development of this promising therapeutic approach.The innovative aspect of this study has been to evaluate the neural differentiation capability of different tissue-derived stem cells coming from different tissue sources such as bone marrow, umbilical cord blood, human endometrium and amniotic fluid, cultured under the same supplemented media neuro-transcription factor conditions, testing the expression of neural markers such as GFAP, Nestin and Neurofilaments using the immunofluorescence staining assay and some typical clusters of differentiation such as CD34, CD90, CD105 and CD133 by using the cytofluorimetric test assay.Amniotic fluid derived stem cells showed a more primitive phenotype compared to the differentiating potential demonstrated by the other stem cell sources, representing a realistic possibility in the field of regenerative cell therapy suitable for neurodegenerative diseases.

  2. Loss of ATF2 function leads to cranial motoneuron degeneration during embryonic mouse development.

    Directory of Open Access Journals (Sweden)

    Julien Ackermann

    Full Text Available The AP-1 family transcription factor ATF2 is essential for development and tissue maintenance in mammals. In particular, ATF2 is highly expressed and activated in the brain and previous studies using mouse knockouts have confirmed its requirement in the cerebellum as well as in vestibular sense organs. Here we present the analysis of the requirement for ATF2 in CNS development in mouse embryos, specifically in the brainstem. We discovered that neuron-specific inactivation of ATF2 leads to significant loss of motoneurons of the hypoglossal, abducens and facial nuclei. While the generation of ATF2 mutant motoneurons appears normal during early development, they undergo caspase-dependent and independent cell death during later embryonic and foetal stages. The loss of these motoneurons correlates with increased levels of stress activated MAP kinases, JNK and p38, as well as aberrant accumulation of phosphorylated neurofilament proteins, NF-H and NF-M, known substrates for these kinases. This, together with other neuropathological phenotypes, including aberrant vacuolisation and lipid accumulation, indicates that deficiency in ATF2 leads to neurodegeneration of subsets of somatic and visceral motoneurons of the brainstem. It also confirms that ATF2 has a critical role in limiting the activities of stress kinases JNK and p38 which are potent inducers of cell death in the CNS.

  3. The lymph node as a new site for kidney organogenesis.

    Science.gov (United States)

    Francipane, Maria Giovanna; Lagasse, Eric

    2015-03-01

    The shortage of organs for kidney transplantation has created the need to develop new strategies to restore renal structure and function. Given our recent finding that the lymph node (LN) can serve as an in vivo factory to generate or sustain complex structures like liver, pancreas, and thymus, we investigated whether it could also support kidney organogenesis from mouse renal embryonic tissue (metanephroi). Here we provide the first evidence that metanephroi acquired a mature phenotype upon injection into LN, and host cells likely contributed to this process. Urine-like fluid-containing cysts were observed in several grafts 12 weeks post-transplantation, indicating metanephroi transplants' ability to excrete products filtered from the blood. Importantly, the kidney graft adapted to a loss of host renal mass, speeding its development. Thus, the LN might provide a unique tool for studying the mechanisms of renal maturation, cell proliferation, and fluid secretion during cyst development. Moreover, we provide evidence that inside the LN, short-term cultured embryonic kidney cells stimulated with the Wnt agonist R-Spondin 2 gave rise to a monomorphic neuron-like cell population expressing the neuronal 200-kDa neurofilament heavy marker. This finding indicates that the LN might be used to validate the differentiation potential of candidate stem cells in regenerative nephrology.

  4. Roles of db-cAMP, IBMX and RA in aspects of neural differentiation of cord blood derived mesenchymal-like stem cells.

    Directory of Open Access Journals (Sweden)

    Murni Tio

    Full Text Available Mesenchymal stem cells (MSCs have multilineage differentiation potential which includes cell lineages of the central nervous system; hence MSCs might be useful in the treatment of neurodegenerative diseases such as Parkinson's disease. Although mesenchymal stem cells have been shown to differentiate into the neural lineage, there is still little knowledge about the underlying mechanisms of differentiation particularly towards specialized neurons such as dopaminergic neurons. Here, we show that MSCs derived from human umbilical cord blood (MSC(hUCBs are capable of expressing tyrosine hydroxylase (TH and Nurr1, markers typically associated with DA neurons. We also found differential phosphorylation of TH isoforms indicating the presence of post-translational mechanisms possibly activating and modifying TH in MSC(hUCB. Furthermore, functional dissection of components in the differentiation medium revealed that dibutyryl-cAMP (db-cAMP, 3-isobutyl-1-methylxanthine (IBMX and retinoic acid (RA are involved in the regulation of Nurr1 and Neurofilament-L expression as well as in the differential phosphorylation of TH. We also demonstrate a possible inhibitory role of the protein kinase A signaling pathway in the phosphorylation of specific TH isoforms.

  5. Adipose tissue-derived stromal cells express neuronal phenotypes

    Institute of Scientific and Technical Information of China (English)

    杨立业; 刘相名; 孙兵; 惠国桢; 费俭; 郭礼和

    2004-01-01

    Background Adipose tissue-derived stromal cells (ADSCs) can be greatly expanded in vitro, and induced to differentiate into multiple mesenchymal cell types, including osteogenic, chondrogenic, myogenic, and adipogenic cells. This study was designed to investigate the possibility of ADSCs differentiating into neurons.Methods Adipose tissue from rats was digested with collagenase, and adherent stromal cells were cultured. A medium containing a low concentration of fetal bovine serum was adopted to induce the cells to differentiate. ADSCs were identified by immunocytochemistry, and semi-quantitative RT-PCR was applied to detect mRNA expression of neurofilament 1 (NF1), nestin, and neuron-specific enolase (NSE).Results Nestin-positive cells were found occasionally among ADSCs. ADSCs were found to express NSE mRNA and nestin mRNA, but not NF1 mRNA. ADSCs could differentiate into neuron-like cells in a medium composed of a low concentration of fetal bovine serum, and these differentiated cells displayed complicated neuron-like morphologies.Conclusions The data support the hypothesis that adipose tissue contains stem cells capable of differentiating into neurons. These stem cells can overcome their mesenchymal commitment, and may represent an alternative autologous stem cell source for CNS cell transplantation.

  6. Uncompacted Myelin Lamellae and Nodal Ion Channel Disruption in POEMS Syndrome.

    Science.gov (United States)

    Hashimoto, Rina; Koike, Haruki; Takahashi, Mie; Ohyama, Ken; Kawagashira, Yuichi; Iijima, Masahiro; Sobue, Gen

    2015-12-01

    To elucidate the significance of uncompacted myelin lamellae (UML) and ion channel disruption at the nodes of Ranvier in the polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy, and skin changes (POEMS) syndrome, we evaluated sural nerve biopsy specimens from 33 patients with POEMS syndrome and from 7 control patients. Uncompacted myelin lamellae distribution was assessed by electron microscopy and immunofluorescence microscopy. In the POEMS patient biopsies, UML were seen more frequently in small versus large myelinated fibers. Paranodes and Schmidt-Lanterman incisures, where normal physiologic UM is located, were frequently associated with UM. Widening of the nodes of Ranvier (i.e. segmental demyelination) was not associated with UML. There was axonal hollowing with neurofilament condensation at Schmidt-Lanterman incisures with abnormal UML, suggesting axonal damage at those sites in the POEMS patient biopsies. Myelin sheath irregularity was conspicuous in large myelinated fibers and was associated with abnormally widened bizarrely shaped Schmidt-Lanterman incisures. Indirect immunofluorescent studies revealed abnormalities of sodium (pan sodium) and potassium (KCNQ2) channels, even at nonwidened nodes of Ranvier. Thus, UML was not apparently associated with segmental demyelination but seemed to be associated with axonal damage. These observations suggest that nodal ion channel disruption may be associated with functional deficits in POEMS syndrome patient nerves.

  7. Progressive axonopathy: an inherited neuropathy of boxer dogs. 2. The nature and distribution of the pathological changes.

    Science.gov (United States)

    Griffiths, I R; McCulloch, M C; Abrahams, S

    1985-01-01

    This report describes the neuropathology of progressive axonopathy (PA), an autosomal recessive inherited neuropathy of Boxer dogs, which affects CNS and PNS. The nerve roots contain numerous myelin bubbles and proximal paranodal axonal swellings containing vesicles, vesiculo-tubular profiles and disorganized neurofilaments. The myelin sheath overlying such swellings is often attenuated. As the disease develops there are progressive changes in the myelin sheath with thinning at paranodal and internodal locations, loss of myelin from lengths of axon and the formation of short internodes with disproportionately thin sheaths. The abnormalities show a very definite selectivity for nerve roots and proximal nerves. Conversely, the frequency of degeneration and regeneration is greater distally except in the cervical ventral roots which contain numerous regenerating clusters. In the CNS numerous axonal spheroids are found in the lateral and ventral columns of the spinal cord and in various brain stem nuclei, particularly the superior olives, accessory cuneate nuclei and lateral lemniscus and its nucleus. Axonal degeneration which occurs mainly in the cord shows no obvious tract or proximal/distal selectivity. The optic pathways are also involved, predominantly adjacent to the chiasma. The autonomic nervous system is affected and distal limb muscles show varying, but usually minor, degrees of neurogenic atrophy. The condition, which has no obvious direct parallel in human or veterinary medicine, shows gross disturbances of axon-glial inter-relationships in both CNS and PNS.

  8. Arrest of myelination and reduced axon growth when Schwann cells lack mTOR.

    Science.gov (United States)

    Sherman, Diane L; Krols, Michiel; Wu, Lai-Man N; Grove, Matthew; Nave, Klaus-Armin; Gangloff, Yann-Gaël; Brophy, Peter J

    2012-02-01

    In developing peripheral nerves, differentiating Schwann cells sort individual axons from bundles and ensheath them to generate multiple layers of myelin. In recent years, there has been an increased understanding of the extracellular and intracellular factors that initiate and stimulate Schwann cell myelination, together with a growing appreciation of some of the signaling pathways involved. However, our knowledge of how Schwann cell growth is regulated during myelination is still incomplete. The mammalian target of rapamycin (mTOR) is a core kinase in two major complexes, mTORC1 and mTORC2, that regulate cell growth and differentiation in a variety of mammalian cells. Here we show that elimination of mTOR from murine Schwann cells prevented neither radial sorting nor the initiation of myelination. However, normal postnatal growth of myelinating Schwann cells, both radially and longitudinally, was highly retarded. The myelin sheath in the mutant was much thinner than normal; nevertheless, sheath thickness relative to axon diameter (g-ratio) remained constant in both wild-type and mutant nerves from P14 to P90. Although axon diameters were normal in the mutant at the initiation of myelination, further growth as myelination proceeded was retarded, and this was associated with reduced phosphorylation of neurofilaments. Consistent with thinner axonal diameters and internodal lengths, conduction velocities in mutant quadriceps nerves were also reduced. These data establish a critical role for mTOR signaling in both the longitudinal and radial growth of the myelinating Schwann cell.

  9. HIV-1 infected and immune competent mononuclear phagocytes induce quantitative alterations in neuronal dendritic arbor: relevance for HIV-1-associated dementia.

    Science.gov (United States)

    Zheng, J; Thylin, M R; Cotter, R L; Lopez, A L; Ghorpade, A; Persidsky, Y; Xiong, H; Leisman, G B; Che, M H; Gendelman, H E

    2001-10-01

    Neuronal loss, alterations in dendritic arbor, and decreased synaptic density, in infected brain tissue, are neuropathological signatures of HIV-1-associated dementia (HAD). Brain mononuclear phagocyte (MP) (macrophage and microglia) secretory products can effect neuronal compromise, although the underlying mechanism(s) remain incompletely defined. To these ends, we quantitatively assessed the effects of virus-infected and/or immune activated MP secretory products on multiple aspects of neuronal morphology. Rat cortical and hippocampal neurons were exposed to secretory products from HIV-1-infected and lipopolysaccharide (LPS)-activated human monocyte-derived macrophage (MDM). Our assays for alterations in neuronal dendritic arbor and cell loss included the quantification of neurofilament (NF), neuron-specific enolase (NSE), and MAP-2 by ELISA and cellular morphology. MDM conditioned media (MCM) enhanced neuronal survival. HIV-1 infection or activation by LPS had modest neurotoxic effects. In contrast, the combination of HIV-1 infection and activation of MDM produced significant neurotoxicity. Such MDM products altered dendritic arbor, decreased synaptic density, and increased LDH release. Comparable neurotrophic/toxic responses were observed when neurons were exposed to MCM collected from 12 separate human donors. Similar responses were observed with MCM from human fetal microglia, further supporting the role of HIV-1-infected and immune-activated brain MP in the overall neurotoxic responses. This work provides quantitative measures of neuronal damage by which virus infected and activated MP can elicit neuronal injury in HAD.

  10. Biomarkers for the clinical differential diagnosis in traumatic brain injury--a systematic review.

    Science.gov (United States)

    Yokobori, Shoji; Hosein, Khadil; Burks, Stephen; Sharma, Ishna; Gajavelli, Shyam; Bullock, Ross

    2013-08-01

    Rapid triage and decision-making in the treatment of traumatic brain injury (TBI) present challenging dilemma in "resource poor" environments such as the battlefield and developing areas of the world. There is an urgent need for additional tools to guide treatment of TBI. The aim of this review is to establish the possible use of diagnostic TBI biomarkers in (1) identifying diffuse and focal brain injury and (2) assess their potential for determining outcome, intracranial pressure (ICP), and responses to therapy. At present, there is insufficient literature to support a role for diagnostic biomarkers in distinguishing focal and diffuse injury or for accurate determination of raised ICP. Presently, neurofilament (NF), S100β, glial fibrillary acidic protein (GFAP), and ubiquitin carboxyl terminal hydrolase-L1 (UCH-L1) seemed to have the best potential as diagnostic biomarkers for distinguishing focal and diffuse injury, whereas C-tau, neuron-specific enolase (NSE), S100β, GFAP, and spectrin breakdown products (SBDPs) appear to be candidates for ICP reflective biomarkers. With the combinations of different pathophysiology related to each biomarker, a multibiomarker analysis seems to be effective and would likely increase diagnostic accuracy. There is limited research focusing on the differential diagnostic properties of biomarkers in TBI. This fact warrants the need for greater efforts to innovate sensitive and reliable biomarkers. We advocate awareness and inclusion of the differentiation of injury type and ICP elevation in further studies with brain injury biomarkers.

  11. Impulse noise transiently increased the permeability of nerve and glial cell membranes, an effect accentuated by a recent brain injury.

    Science.gov (United States)

    Säljö, Annette; Huang, Ying-Lai; Hansson, Hans-Arne

    2003-08-01

    A single exposure to intense impulse noise may cause diffuse brain injury, revealed by increased expression of immediate early gene products, transiently altered distribution of neurofilaments, accumulation of beta-amyloid precursor protein, apoptosis, and gliosis. Neither hemorrage nor any gross structural damage are seen. The present study focused on whether impulse noise exposure increased the permeability of nerve and glial cell membranes to proteins. Also, we investigated whether a preceding, minor focal surgical brain lesion accentuated the leakage of cytosolic proteins. Anaesthetized rats were exposed to a single impulse noise at either 199 or 202 dB for 2 milliseconds. Transiently elevated levels of the cellular protein neuron specific enolase (NSE) and the glial cytoplasmic protein S-100 were recorded in the cerebrospinal fluid (CSF) during the first hours after the exposure to 202 dB. A surgical brain injury, induced the day before the exposure to the impulse noise, was associated with significantly increased concentrations of both markers in the CSF. It is concluded that intense impulse noise damages both nerve and glial cells, an effect aggravated by a preexisting surgical lesion. The impulse of the shock wave, i.e. the pressure integrated over time, is likely to be the injurious mechanism. The abnormal membrane permeability and the associated cytoskeletal changes may initiate events, which eventually result in a progressive diffuse brain injury.

  12. Axon guidance of sympathetic neurons to cardiomyocytes by glial cell line-derived neurotrophic factor (GDNF.

    Directory of Open Access Journals (Sweden)

    Keiko Miwa

    Full Text Available Molecular signaling of cardiac autonomic innervation is an unresolved issue. Here, we show that glial cell line-derived neurotrophic factor (GDNF promotes cardiac sympathetic innervation in vitro and in vivo. In vitro, ventricular myocytes (VMs and sympathetic neurons (SNs isolated from neonatal rat ventricles and superior cervical ganglia were cultured at a close distance. Then, morphological and functional coupling between SNs and VMs was assessed in response to GDNF (10 ng/ml or nerve growth factor (50 ng/ml. As a result, fractions of neurofilament-M-positive axons and synapsin-I-positive area over the surface of VMs were markedly increased with GDNF by 9-fold and 25-fold, respectively, compared to control without neurotrophic factors. Pre- and post-synaptic stimulation of β1-adrenergic receptors (BAR with nicotine and noradrenaline, respectively, resulted in an increase of the spontaneous beating rate of VMs co-cultured with SNs in the presence of GDNF. GDNF overexpressing VMs by adenovirus vector (AdGDNF-VMs attracted more axons from SNs compared with mock-transfected VMs. In vivo, axon outgrowth toward the denervated myocardium in adult rat hearts after cryoinjury was also enhanced significantly by adenovirus-mediated GDNF overexpression. GDNF acts as a potent chemoattractant for sympathetic innervation of ventricular myocytes, and is a promising molecular target for regulation of cardiac function in diseased hearts.

  13. Effect of Surface Pore Structure of Nerve Guide Conduit on Peripheral Nerve Regeneration

    Science.gov (United States)

    Oh, Se Heang; Kim, Jin Rae; Kwon, Gu Birm; Namgung, Uk; Song, Kyu Sang

    2013-01-01

    Polycaprolactone (PCL)/Pluronic F127 nerve guide conduits (NGCs) with different surface pore structures (nano-porous inner surface vs. micro-porous inner surface) but similar physical and chemical properties were fabricated by rolling the opposite side of asymmetrically porous PCL/F127 membranes. The effect of the pore structure on peripheral nerve regeneration through the NGCs was investigated using a sciatic nerve defect model of rats. The nerve fibers and tissues were shown to have regenerated along the longitudinal direction through the NGC with a nano-porous inner surface (Nanopore NGC), while they grew toward the porous wall of the NGC with a micro-porous inner surface (Micropore NGC) and, thus, their growth was restricted when compared with the Nanopore NGC, as investigated by immunohistochemical evaluations (by fluorescence microscopy with anti-neurofilament staining and Hoechst staining for growth pattern of nerve fibers), histological evaluations (by light microscopy with Meyer's modified trichrome staining and Toluidine blue staining and transmission electron microscopy for the regeneration of axon and myelin sheath), and FluoroGold retrograde tracing (for reconnection between proximal and distal stumps). The effect of nerve growth factor (NGF) immobilized on the pore surfaces of the NGCs on nerve regeneration was not so significant when compared with NGCs not containing immobilized NGF. The NGC system with different surface pore structures but the same chemical/physical properties seems to be a good tool that is used for elucidating the surface pore effect of NGCs on nerve regeneration. PMID:22871377

  14. Integrative Proteomics and Metabolomics Analysis of Insect Larva Brain: Novel Insights into the Molecular Mechanism of Insect Wandering Behavior.

    Science.gov (United States)

    Li, Yi; Wang, Xin; Hou, Yong; Zhou, Xiaoying; Chen, Quanmei; Guo, Chao; Xia, Qingyou; Zhang, Yan; Zhao, Ping

    2016-01-04

    Before metamorphosis, most holometabolous insects, such as the silkworm studied here, undergo a special phase called the wandering stage. Insects in this stage often display enhanced locomotor activity (ELA). ELA is vital because it ensures that the insect finds a safe and suitable place to live through the pupal stage. The physiological mechanisms of wandering behavior are still unclear. Here, we integrated proteomics and metabolomics approaches to analyze the brain of the lepidopteran insect, silkworm, at the feeding and wandering stages. Using LC-MS/MS and GC-MS, in all we identified 3004 proteins and 37 metabolites at these two stages. Among them, 465 proteins and 22 metabolites were changed. Neural signal transduction proteins and metabolites, such as neurofilament, dopaminergic synapse related proteins, and glutamic acid, were significantly altered, which suggested that active neural conduction occurred in the brain at the wandering stage. We also found decreased dopamine degradation at the wandering stage. The proposed changes in active neural conduction and increased dopamine concentration might induce ELA. In addition, proteins involved in the ubiquitin proteasome system and lysosome pathway were upregulated, revealing that the brain experiences morphological remodeling during metamorphosis. These findings yielded novel insights into the molecular mechanism underlying insect wandering behavior.

  15. Noggin versus basic fibroblast growth factor on the differentiation of human embryonic stem cells*

    Institute of Scientific and Technical Information of China (English)

    Yan Zhang; Junmei Zhou; Zhenfu Fang; Manxi Jiang; Xuejin Chen

    2013-01-01

    The difference between Noggin and basic fibroblast growth factor for the neural precursor differen-tiation from human embryonic stem cel s has not been studied. In this study, 100 µg/L Noggin or 20 µg/L basic fibroblast growth factor in serum-free neural induction medium was used to differen-tiate human embryonic stem cel s H14 into neural precursors using monolayer differentiation. Two weeks after induction, significantly higher numbers of neural rosettes formed in the Noggin-induced group than the basic fibroblast growth factor-induced group, as detected by phase contrast micro-scope. Immunofluorescence staining revealed expression levels of Nestin,β-III Tubulin and Sox-1 were higher in the induced cel s and reverse-transcription PCR showed induced cel s expressed Nestin, Sox-1 and Neurofilament mRNA. Protein and mRNA expression in the Noggin-induced group was increased compared with the basic fibroblast growth factor-induced group. Noggin has a greater effect than basic fibroblast growth factor on the induction of human embryonic stem cel differentiation into neural precursors by monolayer differentiation, as Noggin accelerates and in-creases the differentiation of neural precursors.

  16. Mapping the mosaic sequence of primate visual cortical development

    Directory of Open Access Journals (Sweden)

    Inaki-Carril eMundinano

    2015-10-01

    Full Text Available Traditional ‘textbook’ theory suggests that the development and maturation of visual cortical areas occur as a wave from V1. However, more recent evidence would suggest that this is not the case, and the emergence of extrastriate areas occurs in a non-hierarchical fashion. This proposition comes from both physiological and anatomical studies but the actual developmental sequence of extrastriate areas remains unknown. In the current study, we examined the development and maturation of the visual cortex of the marmoset monkey, a New World simian, from embryonic day 130 (15 days prior to birth through to adulthood. Utilizing the well-described expression characteristics of the calcium-binding proteins calbindin and parvalbumin, and nonphosphorylated neurofilament for the pyramidal neurons, we were able to accurately map the sequence of development and maturation of the visual cortex. To this end, we demonstrated that both V1 and middle temporal area (MT emerge first and that MT likely supports dorsal stream development while V1 supports ventral stream development. Furthermore, the emergence of the dorsal stream-associated areas was significantly earlier than ventral stream areas. The difference in the temporal development of the visual streams is likely driven by a teleological requirement for specific visual behavior in early life.

  17. Neuronal-like cell differentiation of non-adherent bone marrow cell-derived mesenchymal stem cells*

    Institute of Scientific and Technical Information of China (English)

    Yuxin Wu; Jinghan Zhang; Xiaoming Ben

    2013-01-01

    Non-adherent bone marrow cel-derived mesenchymal stem cel s from C57BL/6J mice were sepa-rated and cultured using the “pour-off” method. Non-adherent bone marrow cel-derived mesen-chymal stem cel s developed colony-forming unit-fibroblasts, and could be expanded by supple-mentation with epidermal growth factor. Immunocytochemistry showed that the non-adherent bone marrow cel-derived mesenchymal stem cel s exposed to basic fibroblast growth factor/epidermal growth factor/nerve growth factor expressed the neuron specific markers, neurofilament-200 and NeuN, in vitro. Non-adherent bone marrow cel-derived mesenchymal stem cel s fromβ-galactosidase transgenic mice were also transplanted into focal ischemic brain (right corpus striatum) of C57BL/6J mice. At 8 weeks, cel s positive for LacZ andβ-galactosidase staining were observed in the ischemic tissues, and cel s co-labeled with both β-galactosidase and NeuN were seen by double immunohistochemical staining. These findings suggest that the non-adherent bone marrow cel-derived mesenchymal stem cel s could differentiate into neuronal-like cel s in vitro and in vivo.

  18. Dopamine D2 receptor expression in the corticotroph cells of the human normal pituitary gland.

    Science.gov (United States)

    Pivonello, Rosario; Waaijers, Marlijn; Kros, Johan M; Pivonello, Claudia; de Angelis, Cristina; Cozzolino, Alessia; Colao, Annamaria; Lamberts, Steven W J; Hofland, Leo J

    2017-08-01

    The dopamine D2 receptor is the main dopamine receptor expressed in the human normal pituitary gland. The aim of the current study was to evaluate dopamine D2 receptor expression in the corticotroph cell populations of the anterior lobe and pars intermedia, as well as posterior lobe of the human normal pituitary gland by immunohistochemistry. Human normal pituitary gland samples obtained from routine autopsies were used for the study. In all cases, histology together with immunostaining for adrenocorticotropic hormone, melanocyte-stimulating hormone, prolactin, and neurofilaments were performed and compared to the immunostaining for D2 receptor. D2 receptor was heterogeneously expressed in the majority of the cell populations of the anterior and posterior lobe as well as in the area localized between the anterior and posterior lobe, and arbitrary defined as "intermediate zone". This zone, characterized by the presence of nerve fibers included the residual pars intermedia represented by the colloid-filled cysts lined by the remnant melanotroph cells strongly expressing D2 receptors, and clusters of corticotroph cells, belonging to the anterior lobe but localized within the cysts and adjacent to the posterior lobe, variably expressing D2 receptors. D2 dopamine receptor is expressed in the majority of the cell populations of the human normal pituitary gland, and particularly, in the different corticotroph cell populations localized in the anterior lobe and the intermediate zone of the pituitary gland.

  19. Polyneuropathy induced by n-hexane intoxication in Taiwan.

    Science.gov (United States)

    Huang, Chin-Chang

    2008-03-01

    n-Hexane and methyl n-butyl ketone share a common metabolite, 2,5-hexanedione, a potent neurotoxin. Neurotoxic effects to both peripheral and central nervous systems may occur after occupational exposure or recreational abuse of n-hexane. Initial clinical manifestations include numbness and tingling sensation in the toes and fingers, followed by progressive weakness and areflexia, particularly in the distal limbs. Chronic low-dose n-hexane exposure, often observed in industrial workers, apparently causes axonal loss with sensory impairment. Subacute high-dose n-hexane exposure, often observed in glue-sniffers, can cause axonal swelling and secondary demyelination with muscle wasting and weakness. Electrophysiological studies demonstrate prominent prolongation of distal latencies, slowing of nerve conduction velocities, and conduction block with temporal dispersion particularly in severely intoxicated patients. Pathological hallmarks include giant axonal swelling with secondary demyelination and relative loss of large myelinated fibers. Giant axons are accumulated by 10 nm neurofilaments. The clinical course tends to be biphasic with "coasting" for 2-3 months, followed by a slow recovery for about 1-2 years after cessation of exposure to n-hexane. Prognosis is usually favorable. Severely affected patients may develop sequelae of muscle wasting, foot drop, and spasticity. Increased awareness of the n-hexane neurotoxicity in industrial workers and glue sniffers as well as use of safe solvents and adequate ventilation systems are important for preventing n-hexane toxicity.

  20. Disruption of the MAP1B-related Protein FUTSCH Leads to Changes in the Neuronal Cytoskeleton, Axonal Transport Defects, and Progressive Neurodegeneration in DrosophilaD⃞V⃞

    Science.gov (United States)

    da Cruz, Alexandre Bettencourt; Schwärzel, Martin; Schulze, Sabine; Niyyati, Mahtab; Heisenberg, Martin; Kretzschmar, Doris

    2005-01-01

    The elaboration of neuronal axons and dendrites is dependent on a functional cytoskeleton. Cytoskeletal components have been shown to play a major role in the maintenance of the nervous system through adulthood, and changes in neurofilaments and microtubule-associated proteins (MAPs) have been linked to a variety of neurodegenerative diseases. Here we show that Futsch, the fly homolog of MAP1B, is involved in progressive neurodegeneration. Although Futsch is widely expressed throughout the CNS, degeneration in futscholk primarily occurs in the olfactory system and mushroom bodies. Consistent with the predicted function of Futsch, we find abnormalities in the microtubule network and defects in axonal transport. Degeneration in the adult brain is preceded by learning deficits, revealing a neuronal dysfunction before detectable levels of cell death. Futsch is negatively regulated by the Drosophila Fragile X mental retardation gene, and a mutation in this gene delays the onset of neurodegeneration in futscholk. A similar effect is obtained by expression of either fly or bovine tau, suggesting a certain degree of functional redundancy of MAPs. The futscholk mutants exhibit several characteristics of human neurodegenerative diseases, providing an opportunity to study the role of MAPs in progressive neurodegeneration within an experimentally accessible, in vivo model system. PMID:15772149

  1. Disruption of the MAP1B-related protein FUTSCH leads to changes in the neuronal cytoskeleton, axonal transport defects, and progressive neurodegeneration in Drosophila.

    Science.gov (United States)

    Bettencourt da Cruz, Alexandre; Schwärzel, Martin; Schulze, Sabine; Niyyati, Mahtab; Heisenberg, Martin; Kretzschmar, Doris

    2005-05-01

    The elaboration of neuronal axons and dendrites is dependent on a functional cytoskeleton. Cytoskeletal components have been shown to play a major role in the maintenance of the nervous system through adulthood, and changes in neurofilaments and microtubule-associated proteins (MAPs) have been linked to a variety of neurodegenerative diseases. Here we show that Futsch, the fly homolog of MAP1B, is involved in progressive neurodegeneration. Although Futsch is widely expressed throughout the CNS, degeneration in futsch(olk) primarily occurs in the olfactory system and mushroom bodies. Consistent with the predicted function of Futsch, we find abnormalities in the microtubule network and defects in axonal transport. Degeneration in the adult brain is preceded by learning deficits, revealing a neuronal dysfunction before detectable levels of cell death. Futsch is negatively regulated by the Drosophila Fragile X mental retardation gene, and a mutation in this gene delays the onset of neurodegeneration in futsch(olk). A similar effect is obtained by expression of either fly or bovine tau, suggesting a certain degree of functional redundancy of MAPs. The futsch(olk) mutants exhibit several characteristics of human neurodegenerative diseases, providing an opportunity to study the role of MAPs in progressive neurodegeneration within an experimentally accessible, in vivo model system.

  2. Antidepressant imipramine induces human astrocytes to differentiate into cells with neuronal phenotype.

    Science.gov (United States)

    Cabras, Stefano; Saba, Francesca; Reali, Camilla; Scorciapino, Maria Laura; Sirigu, Annarita; Talani, Giuseppe; Biggio, Giovanni; Sogos, Valeria

    2010-06-01

    Several recent studies have expanded our conception of the role of astrocytes in neurogenesis, proposing that these cells may contribute to this phenomenon not only as a source of trophic substances, but also as stem cells themselves. We recently observed in vitro that human mature astrocytes can be induced to differentiate into cells with a neuronal phenotype. Antidepressant drugs have been shown to increase neurogenesis in the adult rodent hippocampus. In order to better understand the role of astroglia in antidepressant-induced neurogenesis, primary astrocyte cultures were treated with the antidepressant imipramine. Cell morphology was rapidly modified by treatment. In fact, whereas untreated astrocytes showed large, flat morphology, after a few hours of treatment cells exhibited a round-shaped cell body with long, thin processes. The expression of neuronal markers was analysed by immunocytochemistry, Western Blot and RT-PCR at different treatment times. Results showed an increase in neuronal markers such as neurofilament and neuron-specific enolase (NSE), whereas glial fibrillary acidic protein (GFAP) and nestin expression were not significantly modified by treatment. Similar results were obtained with fluoxetine and venlafaxine. Hes1 mRNA significantly increased after 2 h of treatment, suggesting involvement of this transcription factor in this process. These results confirm the role of astrocytes in neurogenesis and suggest that these cells may represent one of the targets of antidepressants.

  3. Malignant renal schwannoma in a cat

    Directory of Open Access Journals (Sweden)

    Monier Sharif

    2017-07-01

    Full Text Available A nine-year-old male European shorthair cat with rapidly enlarging mass at the left kidney doubted to be malignant was presented. The purpose of this study is to present the clinical, radiological and pathological findings of a primary renal tumor in the cat. Grossly, the mass mostly encapsulated the kidney. Histologically, excisional biopsy showed worrying histological features. A sarcoma-like tumor composed mainly of neoplastic spindle-shaped cells. Neoplastic nodules of aggregations of fusiform cells arranged in multidirectional bundles. Immunohistochemically, several immunohistochemical satins (melan-A, S-100, vimentin, actin, desmin, cytokeratin, neurofilament, melan-A, NSE, synaptophysin, chromogranin, Glial Fibrillary Acidic Protein GFAP, Collagen IV and CD99 were used to differentially diagnose the mass. The stained neoplastic sections positively tested to S-100, but negative to the other aforementioned immunohistochemical stains. Immunohistochemistry with S-100 antibody staining showed an unusually strong positive reaction throughout the tumor cells. Based on our comparative diagnosis relative to other tumors, in addition to the progressive clinical signs, histopathological and immunohistochemical results, this case was presumptively diagnosis as a malignant schwannoma. According to our investigation of the relevant literature, this study of malignant renal Schwannoma (malignant peripheral nerve sheath tumor is a highly rare case not previously characterized in a cat.

  4. Muscle spindles in the human bulbospongiosus and ischiocavernosus muscles.

    Science.gov (United States)

    Peikert, Kevin; May, Christian Albrecht

    2015-07-01

    Muscle spindles are crucial for neuronal regulation of striated muscles, but their presence and involvement in the superficial perineal muscles is not known. Bulbospongiosus and ischiocavernosus muscle specimens were obtained from 31 human cadavers. Serial sections were stained with hematoxylin and eosin, Sirius red, antibodies against Podocalyxin, myosin heavy chain isoforms (MyHC-slow tonic, S46; MyHC-2a/2x, A4.74), and neurofilament for the purpose of muscle spindle screening, counting, and characterization. A low but consistent number of spindles were detected in both muscles. The muscles contained few intrafusal fibers, but otherwise showed normal spindle morphology. The extrafusal fibers of both muscles were small in diameter. The presence of muscle spindles in bulbospongiosus and ischiocavernosus muscles supports physiological models of pelvic floor regulation and may provide a basis for further clinical observations regarding sexual function and micturition. The small number of muscle spindles points to a minor level of proprioceptive regulation. © 2014 Wiley Periodicals, Inc.

  5. Cerebrospinal fluid biomarkers of neurodegeneration are decreased or normal in narcolepsy

    DEFF Research Database (Denmark)

    Jennum, Poul Jørgen; Pedersen, Lars Østergaard; Bahl, Justyna Maria Czarna;

    2017-01-01

    OBJECTIVES: To investigate whether cerebrospinal fluid (CSF) biomarkers of neurodegeneration are altered in narcolepsy in order to evaluate whether the hypocretin deficiency and abnormal sleep-wake pattern in narcolepsy leads to neurodegeneration. METHODS: Twenty-one patients with central...... hypersomnia (10 type 1 narcolepsy, 5 type 2 narcolepsy, and 6 idiopathic hypersomnia cases) aged 33 years on average, and with a disease duration of 2-29 years, and 12 healthy controls underwent CSF analyses of levels of β-amyloid, total tau protein (T-tau), phosphorylated tau protein (P-tau181), α......-synuclein, neurofilament light chain (NF-L), and chitinase 3-like protein-1 (CHI3L1). RESULTS: Levels of β-amyloid were lower in patients with type 1 narcolepsy (375.4 ±143.5 pg/ml) and type 2 narcolepsy (455.9 ± 65.0 pg/ml) compared with controls (697.9 ± 167.3 pg/ml, p

  6. Axon guidance of sympathetic neurons to cardiomyocytes by glial cell line-derived neurotrophic factor (GDNF).

    Science.gov (United States)

    Miwa, Keiko; Lee, Jong-Kook; Takagishi, Yoshiko; Opthof, Tobias; Fu, Xianming; Hirabayashi, Masumi; Watabe, Kazuhiko; Jimbo, Yasuhiko; Kodama, Itsuo; Komuro, Issei

    2013-01-01

    Molecular signaling of cardiac autonomic innervation is an unresolved issue. Here, we show that glial cell line-derived neurotrophic factor (GDNF) promotes cardiac sympathetic innervation in vitro and in vivo. In vitro, ventricular myocytes (VMs) and sympathetic neurons (SNs) isolated from neonatal rat ventricles and superior cervical ganglia were cultured at a close distance. Then, morphological and functional coupling between SNs and VMs was assessed in response to GDNF (10 ng/ml) or nerve growth factor (50 ng/ml). As a result, fractions of neurofilament-M-positive axons and synapsin-I-positive area over the surface of VMs were markedly increased with GDNF by 9-fold and 25-fold, respectively, compared to control without neurotrophic factors. Pre- and post-synaptic stimulation of β1-adrenergic receptors (BAR) with nicotine and noradrenaline, respectively, resulted in an increase of the spontaneous beating rate of VMs co-cultured with SNs in the presence of GDNF. GDNF overexpressing VMs by adenovirus vector (AdGDNF-VMs) attracted more axons from SNs compared with mock-transfected VMs. In vivo, axon outgrowth toward the denervated myocardium in adult rat hearts after cryoinjury was also enhanced significantly by adenovirus-mediated GDNF overexpression. GDNF acts as a potent chemoattractant for sympathetic innervation of ventricular myocytes, and is a promising molecular target for regulation of cardiac function in diseased hearts.

  7. Glial cell line-derived neurotrophic factor (GDNF) enhances sympathetic neurite growth in rat hearts at early developmental stages.

    Science.gov (United States)

    Miwa, Keiko; Lee, Jong-Kook; Takagishi, Yoshiko; Opthof, Tobias; Fu, Xianming; Kodama, Itsuo

    2010-12-01

    Molecular signaling of sympathetic innervation of myocardium is an unresolved issue. The purpose of this study was to investigate the effect of neurotrophic factors on sympathetic neurite growth towards cardiomyocytes. Cardiomyocytes (CMs) and sympathetic neurons (SNs) were isolated from neonatal rat hearts and superior cervical ganglia, and were co-cultured, either in a random or localized way. Neurite growth from SNs toward CMs was assessed by immunohistochemistry for neurofilament M and α-actinin in response to neurotrophic factors-nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), ciliary neurotrophic factor (CNTF) and a chemical repellent, semaphorin 3A. As a result, GDNF as well as NGF and BDNF stimulated neurite growth. GDNF enhanced neurite outgrowth even under the NGF-depleted culture condition, excluding an indirect effect of GDNF via NGF. Quantification of mRNA and protein by real-time PCR and immunohistochemistry at different developmental stages revealed that GDNF is abundantly expressed in the hearts of embryos and neonates, but not in adult hearts. GDNF plays an important role in inducing cardiac sympathetic innervation at the early developmental stages. A possible role in (re)innervation of injured or transplanted or cultured and transplanted myocardium may deserve investigation.

  8. No neurochemical evidence of brain injury after blast overpressure by repeated explosions or firing heavy weapons.

    Science.gov (United States)

    Blennow, K; Jonsson, M; Andreasen, N; Rosengren, L; Wallin, A; Hellström, P A; Zetterberg, H

    2011-04-01

    Psychiatric and neurological symptoms are common among soldiers exposed to blast without suffering a direct head injury. It is not known whether such symptoms are direct consequences of blast overpressure. To examine if repeated detonating explosions or firing if of heavy weapons is associated with neurochemical evidence of brain damage. Three controlled experimental studies. In the first, army officers were exposed to repeated firing of a FH77B howitzer or a bazooka. Cerebrospinal fluid (CSF) was taken post-exposure to measure biomarkers for brain damage. In the second, officers were exposed for up to 150 blasts by firing a bazooka, and in the third to 100 charges of detonating explosives of 180 dB. Serial serum samples were taken after exposure. Results were compared with a control group consisting of 19 unexposed age-matched healthy volunteers. The CSF biomarkers for neuronal/axonal damage (tau and neurofilament protein), glial cell injury (GFAP and S-100b), blood-brain barrier damage (CSF/serum albumin ratio) and hemorrhages (hemoglobin and bilirubin) and the serum GFAP and S-100b showed normal and stable levels in all exposed officers. Repeated exposure to high-impact blast does not result in any neurochemical evidence of brain damage. These findings are of importance for soldiers regularly exposed to high-impact blast when firing artillery shells or other types of heavy weapons. © 2010 John Wiley & Sons A/S.

  9. Different Tissue-Derived Stem Cells: A Comparison of Neural Differentiation Capability.

    Science.gov (United States)

    Bonaventura, Gabriele; Chamayou, Sandrine; Liprino, Annalisa; Guglielmino, Antonino; Fichera, Michele; Caruso, Massimo; Barcellona, Maria Luisa

    2015-01-01

    Stem cells are capable of self-renewal and differentiation into a wide range of cell types with multiple clinical and therapeutic applications. Stem cells are providing hope for many diseases that currently lack effective therapeutic methods, including strokes, Huntington's disease, Alzheimer's and Parkinson's disease. However, the paucity of suitable cell types for cell replacement therapy in patients suffering from neurological disorders has hampered the development of this promising therapeutic approach. The innovative aspect of this study has been to evaluate the neural differentiation capability of different tissue-derived stem cells coming from different tissue sources such as bone marrow, umbilical cord blood, human endometrium and amniotic fluid, cultured under the same supplemented media neuro-transcription factor conditions, testing the expression of neural markers such as GFAP, Nestin and Neurofilaments using the immunofluorescence staining assay and some typical clusters of differentiation such as CD34, CD90, CD105 and CD133 by using the cytofluorimetric test assay. Amniotic fluid derived stem cells showed a more primitive phenotype compared to the differentiating potential demonstrated by the other stem cell sources, representing a realistic possibility in the field of regenerative cell therapy suitable for neurodegenerative diseases.

  10. A comparison of the innervation characteristics of the lateral spinal ligaments between normal subjects and patients with adolescent idiopathic scoliosis.

    Science.gov (United States)

    Jiang, H; Greidanus, N; Moreau, M; Mahood, J; Raso, V J; Russell, G; Bagnall, K

    1997-01-01

    Evidence is rapidly accumulating to suggest that general proprioceptive dysfunction might be a major contributing factor in the development of adolescent idiopathic scoliosis (AIS). The innervation of appropriate ligaments which has been shown to be involved in proprioceptive feedback mechanisms, has also been suggested to play a part in this sensory dysfunction. Accordingly, this study compared the innervation characteristics of lateral spinal ligaments from patients with AIS to similar measurements from control subjects. Using an antibody to neurofilament protein, Ruffini corpuscles, small and large nerve bundles, and free nerve endings were identified and their numbers and distribution patterns compared. In the control group, the innervation was found to be symmetrical between left and right sides but was more concentrated in the ventral portion of each ligament. No apparent morphological defect of the innervation was found in the lateral spinal ligaments of the scoliosis patients but the innervation densities of Ruffini corpuscles, single nerve fibres and total neural elements were significantly lower (p<0.01) than those found in normal subjects. These results suggest a possible mechanism for the production of AIS and warrant further study.

  11. Identification of novel NPRAP/δ-catenin-interacting proteins and the direct association of NPRAP with dynamin 2.

    Directory of Open Access Journals (Sweden)

    Carolina Koutras

    Full Text Available Neural plakophilin-related armadillo protein (NPRAP or δ-catenin is a neuronal-specific protein that is best known for its interaction with presenilin 1 (PS1. Interestingly, the hemizygous loss of NPRAP is associated with severe mental retardation in cri du chat syndrome (CDCS, and mutations in PS1 cause an aggressive, early-onset form of Alzheimer's disease. Until recently, studies on the function of NPRAP have focused on its ability to modulate dendritic protrusion elaboration through its binding to cell adhesion and scaffolding molecules. However, mounting evidence indicates that NPRAP participates in intracellular signaling and exists in the nucleus, where it modulates gene expression. This apparent bifunctional nature suggests an elaborate neuronal role, but how NPRAP came to participate in such distinct subcellular events remains a mystery. To gain insight into this pathway, we immunoprecipitated NPRAP from human SH SY5Y cells and identified several novel interacting proteins by mass spectrometry. These included neurofilament alpha-internexin, interferon regulatory protein 2 binding factors, and dynamins 1 and 2. We further validated dynamin 2/NPRAP colocalization and direct interaction in vivo, confirming their bona fide partnership. Interestingly, dynamin 2 has established roles in endocytosis and actin assembly, and both of these processes have the potential to interface with the cell adhesion and intracellular signaling processes that involve NPRAP. Our data provide new avenues for approaching NPRAP biology and suggest a broader role for this protein than previously thought.

  12. Neuromuscular alterations in the dilated ileum of an adult patient with segmental lymphangiectasia.

    Science.gov (United States)

    Paggi, Silvia; Ferrero, Stefano; Braidotti, Paola; de Rai, Paolo; Conte, Dario; Basilisco, Guido

    2008-09-01

    Intestinal lymphangiectasia is a rare condition, which is characterized by the dilation of small bowel lymphatics and presents with signs and symptoms of protein-losing enteropathy. Some patients have complained of occlusive symptoms attributable to the mechanical obstruction caused by the considerable mucosal edema associated with the lymphatic dilation. On the basis of the hypothesis that alterations in the neuromuscular structures controlling clearance function or gut tone may play a role in ileal dilation, we examined the resected ileum of a 48-year-old male patient with segmental lymphangiectasia histologically, immunohistochemically (for S100 protein, PGP 9.5, Bcl-2, neuron-specific enolase, neurofilaments, synaptophysin, and CD117/C-kit), and by means of electron microscopy. Histology showed pseudocystic dilation of the mucosal, submucosal, and muscular lymphatics with fragmentation of the circular and longitudinal muscle layers. Hardly any neural expression of synaptophysin was observed, but the neural structures were otherwise morphologically normal and reacted normally to the other neural markers. This case shows that neuromuscular alterations can be found in the dilated ileum of patients with segmental lymphangiectasia.

  13. Human vomeronasal epithelium development: An immunohistochemical overview.

    Science.gov (United States)

    Dénes, Lóránd; Pap, Zsuzsanna; Szántó, Annamária; Gergely, István; Pop, Tudor Sorin

    2015-06-01

    The vomeronasal organ (VNO) is the receptor structure of the vomeronasal system (VNS) in vertebrates. It is found bilaterally in the submucosa of the inferior part of the nasal septum. There are ongoing controversies regarding the functionality of this organ in humans. In this study we propose the immunohistochemical evaluation of changes in components of the human vomeronasal epithelium during foetal development. We used 45 foetuses of different age, which were included in three age groups. After VNO identification immunohistochemical reactions were performed using primary antibodies against the following: neuron specific enolase, calretinin, neurofilament, chromogranin, synaptophysin, cytokeratin 7, pan-cytokeratin and S100 protein. Digital slides were obtained and following colorimetric segmentation, surface area measurements were performed. The VNO was found in less than half of the studied specimens (42.2%). Neuron specific enolase and calretinin immunoexpression showed a decreasing trend with foetal age, while the other neural/neuroendocrine markers were negative in all specimens. Cytokeratin 7 expression increased with age, while Pan-Ctk had no significant variations. S100 protein immunoexpression also decreased around the VNO. The results of the present work uphold the theory of regression of the neuroepithelium that is present during initial stages of foetal development.

  14. Early changes in Huntington's disease patient brains involve alterations in cytoskeletal and synaptic elements.

    Science.gov (United States)

    DiProspero, Nicholas A; Chen, Er-Yun; Charles, Vinod; Plomann, Markus; Kordower, Jeffrey H; Tagle, Danilo A

    2004-09-01

    Huntington's disease (HD) is caused by a polyglutamine repeat expansion in the N-terminus of the huntingtin protein. Huntingtin is normally present in the cytoplasm where it may interact with structural and synaptic elements. The mechanism of HD pathogenesis remains unknown but studies indicate a toxic gain-of-function possibly through aberrant protein interactions. To investigate whether early degenerative changes in HD involve alterations of cytoskeletal and vesicular components, we examined early cellular changes in the frontal cortex of HD presymptomatic (PS), early pathological grade (grade 1) and late-stage (grade 3 and 4) patients as compared to age-matched controls. Morphologic analysis using silver impregnation revealed a progressive decrease in neuronal fiber density and organization in pyramidal cell layers beginning in presymptomatic HD cases. Immunocytochemical analyses for the cytoskeletal markers alpha -tubulin, microtubule-associated protein 2, and phosphorylated neurofilament demonstrated a concomitant loss of staining in early grade cases. Immunoblotting for synaptic proteins revealed a reduction in complexin 2, which was marked in some grade 1 HD cases and significantly reduced in all late stage cases. Interestingly, we demonstrate that two synaptic proteins, dynamin and PACSIN 1, which were unchanged by immunoblotting, showed a striking loss by immunocytochemistry beginning in early stage HD tissue suggesting abnormal distribution of these proteins. We propose that mutant huntingtin affects proteins involved in synaptic function and cytoskeletal integrity before symptoms develop which may influence early disease onset and/or progression.

  15. Expression of activating transcription factor 3 (ATF 3) and caspase 3 in Schwann cells and axonal outgrowth after sciatic nerve repair in diabetic BB rats.

    Science.gov (United States)

    Stenberg, Lena; Kanje, Martin; Dolezal, Katarina; Dahlin, Lars B

    2012-04-25

    The aim of this study was to evaluate nerve regeneration in relation to the transcription factor, Activating Transcription Factor 3 (ATF 3), and an apoptotic marker, caspase 3, in the Schwann cells of diabetic BB rats (i.e. display type 1 diabetes phenotype). Sciatic nerves in healthy Wistar rats and in diabetic BB rats were transected and immediately repaired. Axonal outgrowth (neurofilament staining) and expression of ATF 3 and caspase 3 were quantified by immunohistochemistry after six days. There was no difference in axonal outgrowth between healthy and diabetic rats. However, the sciatic nerve in the diabetic rats exhibited a larger number of ATF 3 expressing Schwann cells at the site of the lesion and also a higher number of caspase 3 expressing Schwann cells. Similar differences were observed in the distal nerve segment between the healthy and diabetic rats. There were no correlations between the number of Schwann cells expressing ATF 3 and caspase 3. Thus, diabetic BB rats display an increased activation of ATF 3 and also a rise in apoptotic caspase 3 expressing Schwann cells, but with no discrepancy in length of axonal outgrowth after nerve injury and repair at six days. Knowledge about signal transduction mechanisms in diabetes after stress may provide new insights into the development of diabetic neuropathy and neuropathic pain. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Activated microglia mediate axoglial disruption that contributes to axonal injury in multiple sclerosis.

    Science.gov (United States)

    Howell, Owain W; Rundle, Jon L; Garg, Anurag; Komada, Masayuki; Brophy, Peter J; Reynolds, Richard

    2010-10-01

    The complex manifestations of chronic multiple sclerosis (MS)are due in part to widespread axonal abnormalities that affect lesional and nonlesional areas in the central nervous system. We describe an association between microglial activation and axon/oligodendrocyte pathology at nodal and paranodal domains in normal-appearing white matter (NAWM) of MS cases and in experimental autoimmune encephalomyelitis (EAE). The extent of paranodal axoglial (neurofascin-155(+)/Caspr1(+)) disruption correlated with local microglial inflammation and axonal injury (expression of nonphosphorylated neurofilaments) in MS NAWM. These changes were independent of demyelinating lesions and did not correlate with the density of infiltrating lymphocytes. Similar axoglial alterations were seen in the subcortical white matter of Parkinson disease cases and in preclinical EAE, at a time point when there is microglial activation before the infiltration of immune cells. Disruption of the axoglial unit in adjuvant-immunized animals was reversible and coincided with the resolution of microglial inflammation; paranodal damage and microglial inflammation persisted in chronic EAE. Axoglial integrity could be preserved by the administration of minocycline, which inhibited microglial activation, in actively immunized animals. These data indicate that, in MS NAWM, permanent disruption to axoglial domains in an environment of microglial inflammation is an early indicator of axonal injury that likely affects nerve conduction and may contribute to physiologic dysfunction.

  17. The Solubilization of Model Alzheimer Tangles: Reversing the β-Sheet Conformation Induced by Aluminum with Silicates

    Science.gov (United States)

    Fasman, Gerald D.; Moore, Cathy D.

    1994-11-01

    Neurofibrillary tangles are one of two lesions found in the brain of Alzheimer disease victims. With synthetic peptide fragments of human neurofilament NF-M17 (Glu-Glu-Lys-Gly-Lys-Ser-Pro-Val-Pro-Lys-Ser-Pro-Val-Glu-Glu-Lys-Gly, phosphorylated and unphosphorylated), CD studies were done to examine the effect of sodium orthosilicate on the conformational state produced by Al3+ on fragments of neuronal proteins. Previous studies had shown a conformational transition from α-helix and random to β-pleated sheet upon addition of Al3+ to both phosphorylated and unphosphorylated peptides. If sufficient quantities of Al3+ are added, the peptide precipitates from solution. The ability to reverse or slow the progression of aggregation was examined. Al3+ binding was reversed with 1-2 molar equivalents of sodium orthosilicate (with respect to Al3+), altering the conformation from β-sheet to random coil and resulting in a CD spectrum similar to that of the initial peptide. The tight binding of the SiO4-_4 with the Al3+ provides the mechanism for this transition. These results provide additional information toward understanding the role of aluminum in the Alzheimer diseased brain and suggest the investigation of the possible use of silicates as a therapeutic agent.

  18. Sub-cellular distribution of UNC-104(KIF1A) upon binding to adaptors as UNC-16(JIP3), DNC-1(DCTN1/Glued) and SYD-2(Liprin-α) in C. elegans neurons.

    Science.gov (United States)

    Hsu, C-C; Moncaleano, J D; Wagner, O I

    2011-03-10

    The accumulation of cargo (tau, amyloid precursor protein, neurofilaments etc.) in neurons is a hallmark of various neurodegenerative diseases while we have only little knowledge how axonal transport is regulated. Kinesin-3 UNC-104(KIF1A) is the major transporter of synaptic vesicles and recent reports suggest that a cargo itself can affect the motor's activity. Inspecting an interactome map, we identify three putative UNC-104 interactors, namely UNC-16(JIP3), DNC-1(DCTN1/Glued) and SYD-2(Liprin-α), known to be adaptors in essential neuronal protein complexes. We then employed the novel method bimolecular fluorescence complementation (BiFC) assay to visualize motor-adaptor complexes in the nervous system of living C. elegans. Interestingly, the binding of UNC-104 to each adaptor protein results in different sub-cellular distributions and has distinctive effects on the motor's motility. Specifically, if UNC-104 bound to UNC-16, the motor is primarily localized in the soma of neurons while bound to DNC-1, the motor is basically found in axonal termini. On the other hand, if UNC-104 is bound to SYD-2 we identify motor populations mostly along axons. Therefore, these three adaptors inherit different functions in steering the motor to specific sub-cellular locations in the neuron.

  19. Spindle neurons of the human anterior cingulate cortex

    Science.gov (United States)

    Nimchinsky, E. A.; Vogt, B. A.; Morrison, J. H.; Hof, P. R.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The human anterior cingulate cortex is distinguished by the presence of an unusual cell type, a large spindle neuron in layer Vb. This cell has been noted numerous times in the historical literature but has not been studied with modern neuroanatomic techniques. For instance, details regarding the neuronal class to which these cells belong and regarding their precise distribution along both ventrodorsal and anteroposterior axes of the cingulate gyrus are still lacking. In the present study, morphological features and the anatomic distribution of this cell type were studied using computer-assisted mapping and immunocytochemical techniques. Spindle neurons are restricted to the subfields of the anterior cingulate cortex (Brodmann's area 24), exhibiting a greater density in anterior portions of this area than in posterior portions, and tapering off in the transition zone between anterior and posterior cingulate cortex. Furthermore, a majority of the spindle cells at any level is located in subarea 24b on the gyral surface. Immunocytochemical analysis revealed that the neurofilament protein triple was present in a large percentage of these neurons and that they did not contain calcium-binding proteins. Injections of the carbocyanine dye DiI into the cingulum bundle revealed that these cells are projection neurons. Finally, spindle cells were consistently affected in Alzheimer's disease cases, with an overall loss of about 60%. Taken together, these observations indicate that the spindle cells of the human cingulate cortex represent a morphological subpopulation of pyramidal neurons whose restricted distribution may be associated with functionally distinct areas.

  20. Neurogenic potential of progenitors derived from human circulating CD14+ monocytes.

    Science.gov (United States)

    Kodama, Hiroaki; Inoue, Takafumi; Watanabe, Ryuichi; Yasutomi, Dais