WorldWideScience

Sample records for non-perturbative qcd calculations

  1. New Methods in Non-Perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Unsal, Mithat [North Carolina State Univ., Raleigh, NC (United States)

    2017-01-31

    In this work, we investigate the properties of quantum chromodynamics (QCD), by using newly developing mathematics and physics formalisms. Almost all of the mass in the visible universe emerges from a quantum chromodynamics (QCD), which has a completely negligible microscopic mass content. An intimately related issue in QCD is the quark confinement problem. Answers to non-perturbative questions in QCD remained largely elusive despite much effort over the years. It is also believed that the usual perturbation theory is inadequate to address these kinds of problems. Perturbation theory gives a divergent asymptotic series (even when the theory is properly renormalized), and there are non-perturbative phenomena which never appear at any order in perturbation theory. Recently, a fascinating bridge between perturbation theory and non-perturbative effects has been found: a formalism called resurgence theory in mathematics tells us that perturbative data and non-perturbative data are intimately related. Translating this to the language of quantum field theory, it turns out that non-perturbative information is present in a coded form in perturbation theory and it can be decoded. We take advantage of this feature, which is particularly useful to understand some unresolved mysteries of QCD from first principles. In particular, we use: a) Circle compactifications which provide a semi-classical window to study confinement and mass gap problems, and calculable prototypes of the deconfinement phase transition; b) Resurgence theory and transseries which provide a unified framework for perturbative and non-perturbative expansion; c) Analytic continuation of path integrals and Lefschetz thimbles which may be useful to address sign problem in QCD at finite density.

  2. Testing QCD in the non-perturbative regime

    Energy Technology Data Exchange (ETDEWEB)

    A.W. Thomas

    2007-01-01

    This is an exciting time for strong interaction physics. We have a candidate for a fundamental theory, namely QCD, which has passed all the tests thrown at it in the perturbative regime. In the non-perturbative regime it has also produced some promising results and recently a few triumphs but the next decade will see enormous progress in our ability to unambiguously calculate the consequences of non-perturbative QCD and to test those predictions experimentally. Amongst the new experimental facilities being constructed, the hadronic machines at JPARC and GSI-FAIR and the 12 GeV Upgrade at Jefferson Lab, the major new electromagnetic facility worldwide, present a beautifully complementary network aimed at producing precise new measurements which will advance our knowledge of nuclear systems and push our ability to calculate the consequences of QCD to the limit. We will first outline the plans at Jefferson Lab for doubling the energy of CEBAF. The new facility presents some wonderful opportunities for discovery in strong interaction physics, as well as beyond the standard model. Then we turn to the theoretical developments aimed at extracting precise results for physical hadron properties from lattice QCD simulations. This discussion will begin with classical examples, such as the mass of the nucleon and ?, before dealing with a very recent and spectacular success involving information extracted from modern parity violating electron scattering.

  3. Non-perturbative QCD Effect on K-Factor of Drell-Yan Process

    International Nuclear Information System (INIS)

    Hou Zhaoyu; Zhi Haisu; Chen Junxiao

    2006-01-01

    By using a non-perturbative quark propagator with the lowest-dimensional condensate contributions from the QCD vacuum, the non-perturbative effect to K-factor of the Drell-Yan process is numerically investigated for 12 6 C- 12 6 C collision at the center-of-mass energy (s) 1/2 = 200 GeV, 630 GeV respectively. Calculated results show that the non-perturbative QCD effect has just a weak influence on K-factor in the two cases.

  4. Non-perturbative Aspects of QCD and Parameterized Quark Propagator

    Institute of Scientific and Technical Information of China (English)

    HAN Ding-An; ZHOU Li-Juan; ZENG Ya-Guang; GU Yun-Ting; CAO Hui; MA Wei-Xing; MENG Cheng-Ju; PAN Ji-Huan

    2008-01-01

    Based on the Global Color Symmetry Model, the non-perturbative QCD vacuum is investigated in theparameterized fully dressed quark propagator. Our theoretical predictions for various quantities characterized the QCD vacuum are in agreement with those predicted by many other phenomenological QCD inspired models. The successful predictions clearly indicate the extensive validity of our parameterized quark propagator used here. A detailed discussion on the arbitrariness in determining the integration cut-off parameter of# in calculating QCD vacuum condensates and a good method, which avoided the dependence of calculating results on the cut-off parameter is also strongly recommended to readers.

  5. Non-perturbative QCD and hadron physics

    International Nuclear Information System (INIS)

    Cobos-Martínez, J J

    2016-01-01

    A brief exposition of contemporary non-perturbative methods based on the Schwinger-Dyson (SDE) and Bethe-Salpeter equations (BSE) of Quantum Chromodynamics (QCD) and their application to hadron physics is given. These equations provide a non-perturbative continuum formulation of QCD and are a powerful and promising tool for the study of hadron physics. Results on some properties of hadrons based on this approach, with particular attention to the pion distribution amplitude, elastic, and transition electromagnetic form factors, and their comparison to experimental data are presented. (paper)

  6. Non-perturbative supersymmetry anomaly in supersymmetric QCD

    International Nuclear Information System (INIS)

    Shamir, Y.

    1991-03-01

    The zero modes of the Dirac operator in an instanton and other topologically non-trivial backgrounds are unstable in a large class of massless or partially massless supersymmetric gauge theories. We show that under a generic perturbation of the scalar fields all zero modes become resonances, and discuss the ensuing breakdown of conventional perturbation theory. As a result, despite of the presence of massless fermions, the field theoretic tunneling amplitude is not suppressed. In massless supersymmetric QCD with N c ≤ N f the effective potential is found to be negative and monotonically increasing in the weak coupling regime for scalar VEVs which lie on the perturbatively flat directions. Consequently, massless supersymmetric QCD with N c ≤ N f exhibits a non-perturbative supersymmetry anomaly and exists in a strongly interacting phase which closely resembles ordinary QCD. The same conclusions apply if small masses are added to the lagrangian and the massless limit is smooth. (author). 21 refs, 5 figs

  7. Non-leading contributions in QCD: Summing the perturbative series

    International Nuclear Information System (INIS)

    Trentadue, L.

    1984-01-01

    This paper presents the results of a systematic analysis of the leading and non-leading contributions in perturbative QCD and addresses the question of logarithmic contributions to all orders of the perturbative series

  8. Non-perturbative renormalization of HQET and QCD

    International Nuclear Information System (INIS)

    Sommer, Rainer

    2003-01-01

    We discuss the necessity of non-perturbative renormalization in QCD and HQET and explain the general strategy for solving this problem. A few selected topics are discussed in some detail, namely the importance of off shell improvement in the MOM-scheme on the lattice, recent progress in the implementation of finite volume schemes and then particular emphasis is put on the recent idea to carry out a non-perturbative renormalization of the Heavy Quark Effective Theory (HQET)

  9. Non-perturbative O(a) improvement of lattice QCD

    CERN Document Server

    Lüscher, Martin; Sommer, Rainer; Weisz, P; Wolff, U; Luescher, Martin; Sint, Stefan; Sommer, Rainer; Weisz, Peter; Wolff, Ulli

    1997-01-01

    The coefficients multiplying the counterterms required for O($a$) improvement of the action and the isovector axial current in lattice QCD are computed non-perturbatively, in the quenched approximation and for bare gauge couplings $g_0$ in the range $0 \\leq g_0 \\leq 1$. A finite-size method based on the Schrödinger functional is employed, which enables us to perform all calculations at zero or nearly zero quark mass. As a by-product the critical hopping parameter $\\kappa_c$ is obtained at all couplings considered.

  10. Quasilocal quark models as effective theory of non-perturbative QCD

    International Nuclear Information System (INIS)

    Andrianov, A.A.

    2006-01-01

    We consider the Quasilocal Quark Model of NJL type (QNJLM) as effective theory of non-perturbative QCD including scalar (S), pseudo-scalar (P), vector (V) and axial-vector (A) four-fermion interaction with derivatives. In the presence of a strong attraction in the scalar channel the chiral symmetry is spontaneously broken and as a consequence the composite meson states are generated in all channels. With the help of Operator Product Expansion the appropriate set of Chiral Symmetry Restoration (CSR) Sum Rules in these channels are imposed as matching rules to QCD at intermediate energies. The mass spectrum and some decay constants for ground and excited meson states are calculated

  11. Controlling quark mass determinations non-perturbatively in three-flavour QCD

    CERN Document Server

    Campos, Isabel

    2017-01-01

    The determination of quark masses from lattice QCD simulations requires a non-perturbative renormalization procedure and subsequent scale evolution to high energies, where a conversion to the commonly used MS-bar scheme can be safely established. We present our results for the non-perturbative running of renormalized quark masses in Nf=3 QCD between the electroweak and a hadronic energy scale, where lattice simulations are at our disposal. Recent theoretical advances in combination with well-established techniques allows to follow the scale evolution to very high statistical accuracy, and full control of systematic effects.

  12. Non-perturbative Debye mass in finite-T QCD

    CERN Document Server

    Kajantie, Keijo; Peisa, J; Rajantie, A; Rummukainen, K; Shaposhnikov, Mikhail E

    1997-01-01

    Employing a non-perturbative gauge invariant definition of the Debye screening mass m_D in the effective field theory approach to finite T QCD, we use 3d lattice simulations to determine the leading O(g^2) and to estimate the next-to-leading O(g^3) corrections to m_D in the high temperature region. The O(g^2) correction is large and modifies qualitatively the standard power-counting hierarchy picture of correlation lengths in high temperature QCD.

  13. Calculating hadronic properties in strong QCD

    International Nuclear Information System (INIS)

    Pennington, M.R.

    1996-01-01

    This talk gives a brief review of the progress that has been made in calculating the properties of hadrons in strong QCD. In keeping with this meeting I will concentrate on those properties that can be studied with electromagnetic probes. Though perturbative QCD is highly successful, it only applies in a limited kinematic regime, where hard scattering occur, and the quarks move in the interaction region as if they are free, pointlike objects. However, the bulk of strong interactions are governed by the long distance regime, where the strong interaction is strong. It is this regime of length scales of the order of a Fermi, that determines the spectrum of light hadrons and their properties. The calculation of these properties requires an understanding of non-perturbative QCD, of confinement and chiral symmetry breaking. (author)

  14. The FLUKA Monte Carlo, Non-Perturbative QCD and Cosmic Ray Cascades

    International Nuclear Information System (INIS)

    Battistoni, G.

    2005-01-01

    The FLUKA Monte Carlo code, presently used in cosmic ray physics, contains packages to sample soft hadronic processes which are built according to the Dual Parton Model. This is a phenomenological model capable of reproducing many of the features of hadronic collisions in the non perturbative QCD regime. The basic principles of the model are summarized and, as an example, the associated Lambda-K production is discussed. This is a process which has some relevance for the calculation of atmospheric neutrino fluxes

  15. Fundamental parameters of QCD from non-perturbative methods for two and four flavors

    International Nuclear Information System (INIS)

    Marinkovic, Marina

    2013-01-01

    The non-perturbative formulation of Quantumchromodynamics (QCD) on a four dimensional space-time Euclidean lattice together with the finite size techniques enable us to perform the renormalization of the QCD parameters non-perturbatively. In order to obtain precise predictions from lattice QCD, one needs to include the dynamical fermions into lattice QCD simulations. We consider QCD with two and four mass degenerate flavors of O(a) improved Wilson quarks. In this thesis, we improve the existing determinations of the fundamental parameters of two and four flavor QCD. In four flavor theory, we compute the precise value of the Λ parameter in the units of the scale L max defined in the hadronic regime. We also give the precise determination of the Schroedinger functional running coupling in four flavour theory and compare it to the perturbative results. The Monte Carlo simulations of lattice QCD within the Schroedinger Functional framework were performed with a platform independent program package Schroedinger Funktional Mass Preconditioned Hybrid Monte Carlo (SF-MP-HMC), developed as a part of this project. Finally, we compute the strange quark mass and the Λ parameter in two flavour theory, performing a well-controlled continuum limit and chiral extrapolation. To achieve this, we developed a universal program package for simulating two flavours of Wilson fermions, Mass Preconditioned Hybrid Monte Carlo (MP-HMC), which we used to run large scale simulations on small lattice spacings and on pion masses close to the physical value.

  16. Consistent Perturbative Fixed Point Calculations in QCD and Supersymmetric QCD

    DEFF Research Database (Denmark)

    Ryttov, Thomas A.

    2016-01-01

    order by order in $\\Delta_f$. We then compute $\\gamma_*$ through $O(\\Delta_f^2)$ for supersymmetric QCD in the $\\overline{\\text{DR}}$ scheme and find that it matches the exact known result. We find that $\\gamma_*$ is astonishingly well described in perturbation theory already at the few loops level...

  17. Introduction and overview to some topics in perturbative QCD and their relationship to non perturbative effects

    International Nuclear Information System (INIS)

    West, G.

    1990-01-01

    The main thrust of this talk is to review and discuss various topics in both perturbative and non-perturbative QCD that are, by and large, model independent. This inevitably means that we shall rely heavily on the renormalization group and asymptotic freedom. Although this usually means that one has to concentrate on high energy phenomena, there are some physical processes even involving bound states which are certainly highly non-perturbative, where one can make some progress without becoming overly model independent. Experience with the EMC effect, where there are about as many ''explanations'' as authors, has surely taught us that it may well be worth returning to ''basics'' and thinking about general properties of QCD rather than guessing, essentially arbitrarily, what we think is its low energy structure. No doubt we shall have to await further numerical progress or for some inspired theoretical insight before we can, with confidence, attack these extremely difficult problems. So, with this in mine, I shall review a smattering of problems which do have a non-perturbative component and where some rather modest progress can actually be made; I emphasize the adjective ''modest''exclamation point

  18. Non-perturbative QCD correlation functions

    Energy Technology Data Exchange (ETDEWEB)

    Cyrol, Anton Konrad

    2017-11-27

    Functional methods provide access to the non-perturbative regime of quantum chromo- dynamics. Hence, they allow investigating confinement and chiral symmetry breaking. In this dissertation, correlation functions of Yang-Mills theory and unquenched two-flavor QCD are computed from the functional renormalization group. Employing a self-consistent vertex expansion of the effective action, Yang-Mills correlation functions are obtained in four as well as in three spacetime dimensions. To this end, confinement and Slavnov-Taylor identities are discussed. Our numerical results show very good agreement with corresponding lattice results. Next, unquenched two-flavor QCD is considered where it is shown that the unquenched two-flavor gluon propagator is insensitive to the pion mass. Furthermore, the necessity for consistent truncations is emphasized. Finally, correlation functions of finite-temperature Yang-Mills theory are computed in a truncation that includes the splitting of the gluon field into directions that are transverse and longitudinal to the heat bath. In particular, it includes the splitting of the three- and four-gluon vertices. The obtained gluon propagator allows to extract a Debye screening mass that coincides with the hard thermal loop screening mass at high temperatures, but is meaningful also at temperatures below the phase transition temperature.

  19. Towards a non-perturbative matching of HQET and QCD with dynamical light quarks

    International Nuclear Information System (INIS)

    Della Morte, M.; Simma, H.; Sommer, R.

    2007-10-01

    We explain how the strategy of solving renormalization problems in HQET non-perturbatively by a matching to QCD in finite volume can be implemented to include dynamical fermions. As a primary application, some elements of an HQET computation of the mass of the b-quark beyond the leading order with N f =2 are outlined. In particular, the matching of HQET and QCD requires relativistic QCD simulations in a volume with L∼0.5 fm, which will serve to quantitatively determine the heavy quark mass dependence of heavy-light meson observables in the continuum limit of finite-volume two-flavour lattice QCD. As a preparation for the latter, we report on our determination of the renormalization constants and improvement coefficients relating the renormalized current and subtracted bare quark mass in the relevant weak coupling region. The calculation of these coefficients employs a constant physics condition in the Schrodinger functional scheme, where the box size L is fixed by working at a prescribed value of the renormalized coupling. (orig.)

  20. Towards a non-perturbative matching of HQET and QCD with dynamical light quarks

    Energy Technology Data Exchange (ETDEWEB)

    Della Morte, M. [CERN, Geneva (Switzerland). Physics Dept.; Fritzsch, P.; Heitger, J. [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1; Meyer, H.B. [Massachusets Institute of Technology, Center for Theoretical Physics, Cambridge, MA (United States); Simma, H.; Sommer, R. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2007-10-15

    We explain how the strategy of solving renormalization problems in HQET non-perturbatively by a matching to QCD in finite volume can be implemented to include dynamical fermions. As a primary application, some elements of an HQET computation of the mass of the b-quark beyond the leading order with N{sub f} =2 are outlined. In particular, the matching of HQET and QCD requires relativistic QCD simulations in a volume with L{approx}0.5 fm, which will serve to quantitatively determine the heavy quark mass dependence of heavy-light meson observables in the continuum limit of finite-volume two-flavour lattice QCD. As a preparation for the latter, we report on our determination of the renormalization constants and improvement coefficients relating the renormalized current and subtracted bare quark mass in the relevant weak coupling region. The calculation of these coefficients employs a constant physics condition in the Schrodinger functional scheme, where the box size L is fixed by working at a prescribed value of the renormalized coupling. (orig.)

  1. Death to perturbative QCD in exclusive processes?

    Energy Technology Data Exchange (ETDEWEB)

    Eckardt, R.; Hansper, J.; Gari, M.F. [Institut fuer Theoretische Physik, Bochum (Germany)

    1994-04-01

    The authors discuss the question of whether perturbative QCD is applicable in calculations of exclusive processes at available momentum transfers. They show that the currently used method of determining hadronic quark distribution amplitudes from QCD sum rules yields wave functions which are completely undetermined because the polynomial expansion diverges. Because of the indeterminacy of the wave functions no statement can be made at present as to whether perturbative QCD is valid. The authors emphasize the necessity of a rigorous discussion of the subject and the importance of experimental data in the range of interest.

  2. Non-perturbative phenomena in QCD vacuum, hadrons, and quark-gluon plasma

    International Nuclear Information System (INIS)

    Shuryak, E.V.

    1983-01-01

    These lectures provide a brief review of recent progress in non-perturbative quantum chromodynamics (QCD). They are intended for non specialists, mainly experimentalists. The main object of discussion, the QCD vacuum, is a rather complicated medium. It may be studied either by infinitesimal probes producing microscopic excitations (=hadrons), or by finite excitations (say, heating some volume to a given temperature T). In the latter case, some qualitative changes (phase transitions) should take place. A summary is given of the extent to which such phenomena can be observed in the laboratory by proton-proton, proton-nucleus, and nucleus-nucleus collisions. (orig.)

  3. New results in perturbative QCD

    International Nuclear Information System (INIS)

    Ellis, R.K.

    1986-01-01

    Three topics in perturbative QCD important for Super-collider physics are reviewed. The topics are: 1. (2 → 2) jet phenomena calculated in O(αs 3 ). 2. New techniques for the calculation of tree graphs. 3. Color coherence in jet phenomena. 31 references, 6 figures

  4. On ambiguities in the exponentiation of large QCD perturbative corrections

    International Nuclear Information System (INIS)

    Chyla, Jiri

    1986-01-01

    Ambiguities and some practical questions connected with the exponentiation of higher-order QCD perturbative corrections are discussed for the case of deep inelastic lepton-hadron scattering in the non-singlet channel. The importance of still higher-order calculations for resolving these ambiguities is stressed. (author)

  5. Non-perturbative chiral corrections for lattice QCD

    International Nuclear Information System (INIS)

    Thomas, A.W.; Leinweber, D.B.; Lu, D.H.

    2002-01-01

    We explore the chiral aspects of extrapolation of observables calculated within lattice QCD, using the nucleon magnetic moments as an example. Our analysis shows that the biggest effects of chiral dynamics occur for quark masses corresponding to a pion mass below 600 MeV. In this limited range chiral perturbation theory is not rapidly convergent, but we can develop some understanding of the behaviour through chiral quark models. This model dependent analysis leads us to a simple Pade approximant which builds in both the limits m π → 0 and m π → ∞ correctly and permits a consistent, model independent extrapolation to the physical pion mass which should be extremely reliable. (author)

  6. Perturbative QCD and electromagnetic form factors

    International Nuclear Information System (INIS)

    Carlson, C.E.; Gross, F.

    1987-01-01

    We calculate nucleon magnetic form factors using perturbative QCD for several distribution amplitudes including a general one given in terms of Appell polynomials. We find that the magnitude and sign of both nucleon magnetic form factors can be explained within perturbative QCD. The observed normalization of G/sub Mp/ requires that the distribution amplitude be broader than its superhigh momentum transfer limit, and the G/sub Mn//G/sub Mp/ data may require the distribution amplitude to be asymmetric, in accord with distribution amplitudes derived from QCD sum rules. Some speculation as to how an asymmetric distribution amplitude can come about is offered. Finally, we show that the soft contributions corresponding to the particular distribution amplitudes we use need not be bigger than the data. 16 refs., 6 figs

  7. Non-perturbative quark mass renormalization

    CERN Document Server

    Capitani, S.; Luescher, M.; Sint, S.; Sommer, R.; Weisz, P.; Wittig, H.

    1998-01-01

    We show that the renormalization factor relating the renormalization group invariant quark masses to the bare quark masses computed in lattice QCD can be determined non-perturbatively. The calculation is based on an extension of a finite-size technique previously employed to compute the running coupling in quenched QCD. As a by-product we obtain the $\\Lambda$--parameter in this theory with completely controlled errors.

  8. Duality between QCD perturbative series and power corrections

    International Nuclear Information System (INIS)

    Narison, S.; Zakharov, V.I.

    2009-01-01

    We elaborate on the relation between perturbative and power-like corrections to short-distance sensitive QCD observables. We confront theoretical expectations with explicit perturbative calculations existing in literature. As is expected, the quadratic correction is dual to a long perturbative series and one should use one of them but not both. However, this might be true only for very long perturbative series, with number of terms needed in most cases exceeding the number of terms available. What has not been foreseen, the quartic corrections might also be dual to the perturbative series. If confirmed, this would imply a crucial modification of the dogma. We confront this quadratic correction against existing phenomenology (QCD (spectral) sum rules scales, determinations of light quark masses and of α s from τ-decay). We find no contradiction and (to some extent) better agreement with the data and with recent lattice calculations.

  9. Duality between QCD perturbative series and power corrections

    Energy Technology Data Exchange (ETDEWEB)

    Narison, S. [Laboratoire de Physique Theorique et Astroparticules, CNRS-IN2P3 and Universite de Montpellier II, Case 070, Place Eugene, 34095 Montpellier Cedex 05 (France)], E-mail: snarison@yahoo.fr; Zakharov, V.I. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Munich (Germany); Institute of Theoretical and Experimental Physics, B. Cheremushkinskaya 25, Moscow 117218 (Russian Federation)], E-mail: xxz@mppmu.mpg.de

    2009-08-31

    We elaborate on the relation between perturbative and power-like corrections to short-distance sensitive QCD observables. We confront theoretical expectations with explicit perturbative calculations existing in literature. As is expected, the quadratic correction is dual to a long perturbative series and one should use one of them but not both. However, this might be true only for very long perturbative series, with number of terms needed in most cases exceeding the number of terms available. What has not been foreseen, the quartic corrections might also be dual to the perturbative series. If confirmed, this would imply a crucial modification of the dogma. We confront this quadratic correction against existing phenomenology (QCD (spectral) sum rules scales, determinations of light quark masses and of {alpha}{sub s} from {tau}-decay). We find no contradiction and (to some extent) better agreement with the data and with recent lattice calculations.

  10. Perturbative QCD and exclusive processes

    International Nuclear Information System (INIS)

    Bennett, J.; Hawes, F.; Zhao, M.; Zyla, P.

    1991-01-01

    The authors discuss perturbation theory as applied to particle physics calculations. In particle physics one is generally interested in the scattering amplitude for a system going from some initial state to a final state. The intermediate state or states are unknown. To get the scattering amplitude it is necessary to sum the contributions from processes which pass through all possible intermediate states. Intermediate states involve the exchange of intermediate vector bosons between the particles, and with this interaction is associated a coupling constant α. Each additional boson exchange involves an additional contribution of α to the coupling. If α is less than 1, one can see that the relative contribution of higher order processes is less and less important as α falls. In QCD the gluons serve as the intermediate vector bosons exchanged by quarks and gluons, and the interaction constant is not really a constant, but depends upon the distance between the particles. At short distances the coupling is small, and one can assume perturbative expansions may converge rapidly. Exclusive scattering processes, as opposed to inclusive, are those in which all of the final state products are detected. The authors then discuss the application of perturbative QCD to the deuteron. The issues of chiral conservation and color transparancy are also discussed, in the scheme of large Q 2 interations, where perturbative QCD should be applicable

  11. Perturbative QCD (1/3)

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Perturbative QCD is the general theoretical framework for describing hard scattering processes yielding multiparticle production at hadron colliders. In these lectures, we shall introduce fundamental features of perturbative QCD and describe its application to several high energy collider processes, including jet production in electron-positron annihilation, deep inelastic scattering, Higgs boson and gauge boson production at the LHC.

  12. QCD non-perturbative study in radiative and pure-leptonic decays of Bc by wave function

    International Nuclear Information System (INIS)

    Guo Peng; Hou Zhaoyu; Zhi Haisu

    2012-01-01

    The radiative and pure-leptonic decays of B c mesons are of hadrons uncertainty in theoretical calculations. Using three types of the B c meson wave functions which describe the characteristics of the QCD non-perturbative and by controlling the parameters in them, the uncertainties of B c meson decay caused by the hadron decay model are studied in detail. The theoretical results show the branching ratios are (1.81981∼3.18961) × 10 -5 , which are sensitive to the type of wave functions. (authors)

  13. Non-Perturbative QCD Coupling and Beta Function from Light Front Holography

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.

    2010-01-01

    The light-front holographic mapping of classical gravity in AdS space, modified by a positive-sign dilaton background, leads to a non-perturbative effective coupling α s AdS (Q 2 ). It agrees with hadron physics data extracted from different observables, such as the effective charge defined by the Bjorken sum rule, as well as with the predictions of models with built-in confinement and lattice simulations. It also displays a transition from perturbative to nonperturbative conformal regimes at a momentum scale ∼ 1 GeV. The resulting β-function appears to capture the essential characteristics of the full β-function of QCD, thus giving further support to the application of the gauge/gravity duality to the confining dynamics of strongly coupled QCD. Commensurate scale relations relate observables to each other without scheme or scale ambiguity. In this paper we extrapolate these relations to the nonperturbative domain, thus extending the range of predictions based on α s AdS (Q 2 ).

  14. Numerical studies of QCD renormalons in high-order perturbative expansions

    International Nuclear Information System (INIS)

    Bauer, Clemens

    2013-01-01

    Perturbative expansions in four-dimensional non-Abelian gauge theories such as Quantum Chromodynamics (QCD) are expected to be divergent, at best asymptotic. One reason is that it is impossible to strictly exclude from the relevant Feynman diagrams those energy regions in which a perturbative treatment is inapplicable. The divergent nature of the series is then signaled by a rapid (factorial) growth of the perturbative expansion coefficients, commonly referred to as a renormalon. In QCD, the most severe divergences occur in the infrared (IR) limit and therefore they are classified as IR renormalons. Their appearance can be understood within the well-accepted Operator Product Expansion (OPE) framework. According to the OPE, the perturbative calculation of a physical observable must be amended by non-perturbative power corrections that come in the form of condensates, universal characteristics of the rich QCD vacuum structure. Adding up perturbative and non-perturbative contributions, the ambiguity due to the renormalon cancels and the physical observable is well-defined. Although the field has made considerable progress in the last twenty years, a proof of renormalon existence is still pending. It has only been tested assuming strong simplifications or in toy models. The aim of this thesis is to provide the first numerical evidence for renormalon existence in the gauge sector of QCD. We use Numerical Stochastic Perturbation Theory (NSPT) to directly obtain perturbative coefficients within lattice regularization, a means to replace continuum spacetime by a four-dimensional hypercubic lattice. A peculiar feature of NSPT are comparatively low simulation costs when reaching high expansion orders. We examine two distinct observables: the static self-energy of an isolated quark and the elementary plaquette. Following the OPE classification, the static quark self-energy is ideally suited for a renormalon study. Taking into account peculiarities of the lattice approach such

  15. Understanding Theoretical Uncertainties in Perturbative QCD Computations

    DEFF Research Database (Denmark)

    Jenniches, Laura Katharina

    effective field theories and perturbative QCD to predict the effect of New Physics on measurements at the LHC and at other future colliders. We use heavy-quark, heavy-scalar and soft-collinear effective theory to calculate a three-body cascade decay at NLO QCD in the expansion-by-regions formalism...... discuss an extension of the Cacciari-Houdeau approach to observables with hadrons in the initial state....

  16. Calculation of the Odderon intercept in perturbative QCD

    International Nuclear Information System (INIS)

    Gauron, P.; Lipatov, L.; Nicolescu, B.; Paris-6 Univ., 75

    1993-01-01

    The question of the equality of hadron-hadron and hadron-antihadron cross sections at very high energies is investigated. By using a variational method combined with conformal invariant techniques it is shown that the Odderon J-plane singularity in the leading logarithmic approximation of QCD lies above 1. Therefore, in the perturbative theory the difference between hadron-hadron and antihadron-hadron interactions grows with energy. (K.A.) 11 refs

  17. Non-perturbative renormalization of static-light four-fermion operators in quenched lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Palombi, F. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Papinutto, M.; Pena, C. [CERN, Geneva (Switzerland). Physics Dept., Theory Div.; Wittig, H. [Mainz Univ. (Germany). Inst. fuer Kernphysik

    2007-06-15

    We perform a non-perturbative study of the scale-dependent renormalization factors of a multiplicatively renormalizable basis of {delta}B=2 parity-odd four-fermion operators in quenched lattice QCD. Heavy quarks are treated in the static approximation with various lattice discretizations of the static action. Light quarks are described by nonperturbatively O(a) improved Wilson-type fermions. The renormalization group running is computed for a family of Schroedinger functional (SF) schemes through finite volume techniques in the continuum limit. We compute non-perturbatively the relation between the renormalization group invariant operators and their counterparts renormalized in the SF at a low energy scale. Furthermore, we provide non-perturbative estimates for the matching between the lattice regularized theory and all the SF schemes considered. (orig.)

  18. Non-Perturbative QCD Coupling and Beta Function from Light Front Holography

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.; /Costa Rica U.; Deur, Alexandre; /Jefferson Lab

    2010-05-26

    The light-front holographic mapping of classical gravity in AdS space, modified by a positive-sign dilaton background, leads to a non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q{sup 2}). It agrees with hadron physics data extracted from different observables, such as the effective charge defined by the Bjorken sum rule, as well as with the predictions of models with built-in confinement and lattice simulations. It also displays a transition from perturbative to nonperturbative conformal regimes at a momentum scale {approx} 1 GeV. The resulting {beta}-function appears to capture the essential characteristics of the full {beta}-function of QCD, thus giving further support to the application of the gauge/gravity duality to the confining dynamics of strongly coupled QCD. Commensurate scale relations relate observables to each other without scheme or scale ambiguity. In this paper we extrapolate these relations to the nonperturbative domain, thus extending the range of predictions based on {alpha}{sub s}{sup AdS} (Q{sup 2}).

  19. Analytic continuation in perturbative QCD

    International Nuclear Information System (INIS)

    Caprini, Irinel

    2002-01-01

    We discuss some attempts to improve standard perturbative expansion in QCD by using the analytic continuation in the momentum and the Borel complex planes. We first analyse the momentum-plane analyticity properties of the Borel-summed Green functions in perturbative QCD and the connection between the Landau singularities and the infrared renormalons. By using the analytic continuation in the Borel complex plane, we propose a new perturbative series replacing the standard expansion in powers of the normalized coupling constant a. The new expansion functions have branch point and essential singularities at the origin of the complex a-plane and divergent Taylor expansions in powers of a. On the other hand the modified expansion of the QCD correlators is convergent under rather conservative conditions. (author)

  20. Perturbative and nonperturbative renormalization in lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Goeckeler, M. [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Horsley, R. [University of Edinburgh (United Kingdom). School of Physics and Astronomy; Perlt, H. [Leipzig Univ. (DE). Institut fuer Theoretische Physik] (and others)

    2010-03-15

    We investigate the perturbative and nonperturbative renormalization of composite operators in lattice QCD restricting ourselves to operators that are bilinear in the quark fields (quark-antiquark operators). These include operators which are relevant to the calculation of moments of hadronic structure functions. The nonperturbative computations are based on Monte Carlo simulations with two flavors of clover fermions and utilize the Rome-Southampton method also known as the RI-MOM scheme. We compare the results of this approach with various estimates from lattice perturbation theory, in particular with recent two-loop calculations. (orig.)

  1. Simultaneous analysis in renormalization and factorization scheme dependences in perturbative QCD

    International Nuclear Information System (INIS)

    Nakkagawa, Hisao; Niegawa, Akira.

    1983-01-01

    Combined and thorough investigations of both the factorization and the renormalization scheme dependences of perturbative QCD calculations are given. Our findings are that (i) by introducing a multiscale-dependent coupling the simultaneous parametrization of both scheme-dependences can be accomplished, (ii) Stevenson's optimization method works quite well so that it gives a remarkable prediction which forces us to exponentiate ''everything'' with uncorrected subprocess cross sections, and (iii) the perturbation series in QCD may converge when Stevenson's principle of minimal sensitivity is taken into account at each order of perturbative approximation. (author)

  2. Non-perturbative studies of QCD at small quark masses

    Energy Technology Data Exchange (ETDEWEB)

    Wennekers, J.

    2006-07-15

    We investigate the quenched approximation of lattice QCD with numerical simulations of Ginsparg-Wilson fermions, which are a fermion discretisation with exact chiral symmetry. We compute the renormalisation constant of the scalar density, which allows to extrapolate the chiral condensate to the continuum limit. Furthermore we match lattice results of matrix elements describing hadronic kaon decays to Chiral Perturbation Theory in finite volume and at almost vanishing quark mass. The resulting low-energy constants in the considered SU(4)-flavour symmetric case indicate a substantial contribution of low scale QCD effects to the {delta}I = 1/2 rule. (Orig.)

  3. All-loops calculation of the structure function x→0 in perturbative QCD

    International Nuclear Information System (INIS)

    Catani, S.

    1991-01-01

    We study in perturbative QCD the initial-state radiation associated to hadron processes in the semi-hard region of small x (x is the Bjorken variable). A recent analysis of the exclusive multi-gluon distributions to double (infrared and collinear) logarithmic accuracy is extended to the case of inclusive distributions, which we evaluate to single (infrared) logarithmic accuracy. Thus the resulting x→0 structure function or N→1 gluon anomalous dimension is computed to all-loops accuracy. For the inclusive distributions we are able to perform a calculation to such an accuracy by extensively using cancellations which originate from coherence of QCD radiation and the infrared regularity of real-virtual singularities. We find that the x→0 structure function satisfies the Lipatov equation. With the present study we therefore provide a new derivation of the Lipatov result in the context of hard collisions together with a fully exclusive description. We discuss the structure of the Lipatov equation in relation with the x→0 exclusive distributions previously obtained and with the Altarelli-Parisi equation valid for finite values of x. (orig.)

  4. Perturbative QCD at finite temperature

    International Nuclear Information System (INIS)

    Altherr, T.

    1989-03-01

    We discuss an application of finite temperature QCD to lepton-pair production in a quark-gluon plasma. The perturbative calculation is performed within the realtime formalism. After cancellation of infrared and mass singularities, the corrections at O (α s ) are found to be very small in the region where the mass of the Drell-Yan pair is much larger than the temperature of the plasma. Interesting effects, however, appear at the annihilation threshold of the thermalized quarks

  5. Non-perturbative running of quark masses in three-flavour QCD

    CERN Document Server

    Campos, Isabel; Pena, Carlos; Preti, David; Ramos, Alberto; Vladikas, Anastassios

    2016-01-01

    We present our preliminary results for the computation of the non-perturbative running of renormalized quark masses in $N_f = 3$ QCD, between the electroweak and hadronic scales, using standard finite-size scaling techniques. The computation is carried out to very high precision, using massless $\\mathcal{O}(a)$-improved Wilson quarks. Following the strategy adopted by the ALPHA Collaboration for the running coupling, different schemes are used above and below a scale $\\mu_0 \\sim m_b$, which differ by using either the Schr\\"odinger Functional or Gradient Flow renormalized coupling. We discuss our results for the running in both regions, and the procedure to match the two schemes.

  6. AdS/QCD, LIight-Front Holography, and the Non-perturbative Running Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC; de Teramond, Guy; /Costa Rica U.; Deur, Alexandre; /Jefferson Lab

    2010-04-29

    The combination of Anti-de Sitter space (AdS) methods with light-front (LF) holography provides a remarkably accurate first approximation for the spectra and wavefunctions of meson and baryon light-quark bound states. The resulting bound-state Hamiltonian equation of motion in QCD leads to relativistic light-front wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti-de Sitter (AdS) space. The eigenvalues give the hadronic spectrum, and the eigenmodes represent the probability distributions of the hadronic constituents at a given scale. A positive-sign confining dilaton background modifying AdS space gives a very good account of meson and baryon spectroscopy and form factors. The light-front holographic mapping of this model also leads to a non-perturbative effective coupling {alpha}{sub s}{sup Ads} (Q{sup 2}) which agrees with the effective charge defined by the Bjorken sum rule and lattice simulations. It displays a transition from perturbative to nonperturbative conformal regimes at a momentum scale {approx} 1 GeV. The resulting {beta}-function appears to capture the essential characteristics of the full {beta}-function of QCD, thus giving further support to the application of the gauge/gravity duality to the confining dynamics of strongly coupled QCD.

  7. The Operator Product Expansion Beyond Perturbation Theory in QCD

    International Nuclear Information System (INIS)

    Dominguez, C. A.

    2011-01-01

    The Operator Product Expansion (OPE) of current correlators at short distances beyond perturbation theory in QCD, together with Cauchy's theorem in the complex energy plane, are the pillars of the method of QCD sum rules. This technique provides an analytic tool to relate QCD with hadronic physics at low and intermediate energies. It has been in use for over thirty years to determine hadronic parameters, form factors, and QCD parameters such as the quark masses, and the running strong coupling at the scale of the τ-lepton. QCD sum rules provide a powerful complement to numerical simulations of QCD on the lattice. In this talk a short review of the method is presented for non experts, followed by three examples of recent applications.

  8. Evaluating results from the Relativistic Heavy Ion Collider with perturbative QCD and hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.J.; Nonaka, C.

    2011-07-01

    We review the basic concepts of perturbative quantum chromodynamics (QCD) and relativistic hydrodynamics, and their applications to hadron production in high energy nuclear collisions. We discuss results from the Relativistic Heavy Ion Collider (RHIC) in light of these theoretical approaches. Perturbative QCD and hydrodynamics together explain a large amount of experimental data gathered during the first decade of RHIC running, although some questions remain open. We focus primarily on practical aspects of the calculations, covering basic topics like perturbation theory, initial state nuclear effects, jet quenching models, ideal hydrodynamics, dissipative corrections, freeze-out and initial conditions. We conclude by comparing key results from RHIC to calculations.

  9. Non-perturbative test of the Witten-Veneziano formula from lattice QCD

    International Nuclear Information System (INIS)

    Cichy, Krzysztof; Jansen, Karl; Ottnad, Konstantin; Urbach, Carsten; Bonn Univ.

    2015-10-01

    We compute both sides of the Witten-Veneziano formula using lattice techniques. For the one side we perform dedicated quenched simulations and use the spectral projector method to determine the topological susceptibility in the pure Yang-Mills theory. The other side we determine in lattice QCD with N f =2 +1+1 dynamical Wilson twisted mass fermions including for the first time also the flavour singlet decay constant. The Witten-Veneziano formula represents a leading order expression in the framework of chiral perturbation theory and we also employ leading order chiral perturbation theory to relate the flavor singlet decay constant to the relevant decay constant parameters in the quark flavor basis and flavor non-singlet decay constants. After taking the continuum and the SU(2) chiral limits we compare both sides and find good agreement within uncertainties.

  10. Introduction to non-perturbative quantum chromodynamics; Introduction a QCD non perturbatif

    Energy Technology Data Exchange (ETDEWEB)

    Pene, O. [Paris-11 Univ., 91 - Orsay (France). Lab. de Physique Theorique et Hautes Energies

    1995-12-31

    Quantum chromodynamics is considered to be the theory of strong interaction. The main peculiarity of this theory is that its asymptotic states (hadrons) are different from its elementary fields (quarks and gluons). This property plays a great part in any physical process involving small momentum-energy transfers. In such a range perturbative methods are no longer allowed. This work focuses on other tools such as QCD symmetry, the quark model, Green functions and the sum rules. To get hadron characteristics numerically, QCD on lattices is used but only in the case of simple process involving no more than one hadron in the initial and final states because of the complexity of the Green function. Some examples using a Monte-Carlo simulation are given. (A.C.) 39 refs.

  11. A new perturbative approach to QCD

    International Nuclear Information System (INIS)

    Pervushin, V.N.; Kallies, W.; Sarikov, N.A.

    1988-01-01

    For the description of bound states in QED and QCD the physical perturbation theory on the spatial components of the vector over the exact solution, defined by the time one, is proposed. It is shown this perturbation theory in QCD can be redefined so that it reproduces the main elements of hadron physics: confinement, spectroscopy of light and heavy quarkonia, dual-resonance amplitudes, chiral Lagrangians and the parton model

  12. The accuracy of QCD perturbation theory at high energies

    CERN Document Server

    Dalla Brida, Mattia; Korzec, Tomasz; Ramos, Alberto; Sint, Stefan; Sommer, Rainer

    2016-01-01

    We discuss the determination of the strong coupling $\\alpha_\\mathrm{\\overline{MS}}^{}(m_\\mathrm{Z})$ or equivalently the QCD $\\Lambda$-parameter. Its determination requires the use of perturbation theory in $\\alpha_s(\\mu)$ in some scheme, $s$, and at some energy scale $\\mu$. The higher the scale $\\mu$ the more accurate perturbation theory becomes, owing to asymptotic freedom. As one step in our computation of the $\\Lambda$-parameter in three-flavor QCD, we perform lattice computations in a scheme which allows us to non-perturbatively reach very high energies, corresponding to $\\alpha_s = 0.1$ and below. We find that perturbation theory is very accurate there, yielding a three percent error in the $\\Lambda$-parameter, while data around $\\alpha_s \\approx 0.2$ is clearly insufficient to quote such a precision. It is important to realize that these findings are expected to be generic, as our scheme has advantageous properties regarding the applicability of perturbation theory.

  13. Leading non-cancelling infra-red divergences in perturbative QCD

    International Nuclear Information System (INIS)

    Carneiro, C.E.; Frenkel, J.; Thomaz, M.T.; Day, M.; Taylor, J.C.

    1980-01-01

    In QCD in perturbative theory, for the inclusive cross-section for the scattering of two coloured particles, graphs which contribute to the general leading order αs(αs/nΛ)(sup n) are identified and these contributions are added (Λ is the IR cut-off). The work is done in the Coulomb gauge; an appendix discusses the Feynman gauge. (Author) [pt

  14. Studies in the renormalization-prescription dependence of perturbative calculations

    International Nuclear Information System (INIS)

    Celmaster, W.; Sivers, D.

    1981-01-01

    Now that the quantitative testing of perturbative quantum chromodynamics (QCD) has become a major experimental and theoretical effort, it is important to understand the renormalization-prescription dependence of perturbative calculations. We stress the phenomenological importance of finding a definition of the QCD expansion parameter which reduces the magnitude of high-order corrections. We give explicit arguments suggesting that a choice of coupling based on momentum-space subtraction can be phenomenologically useful. Examples from QCD and QED are used to illustrate these arguments, and we also discuss possibilities for refining them

  15. Resolution of ambiguities in perturbative QCD

    International Nuclear Information System (INIS)

    Nakkagawa, Hisao; Niegawa, Akira.

    1984-01-01

    In the perturbative QCD analyses of the deeply inelastic processes, the coupling constant depends on at least two mass-scales, the renormalization scale and the factorization scale. By integrating the coupled renormalization group equations with respect to these two mass-scales, the running coupling constant is defined. A perturbative approximation then introduces a new ambiguity, the integration-path dependence, into the theory. We show that the problem of this new ambiguity is resolved by imposing Stevenson's principle of minimal sensitivity. Together with the analogous analysis of the operator matrix element or the cut vertex, we can completely solve the problem of getting an unambiguous perturbative QCD prediction. (author)

  16. Perturbative QCD and jets

    International Nuclear Information System (INIS)

    Mueller, A.H.

    1986-03-01

    A brief review of some of the recent progress in perturbative QCD is given (heavy quark production, small-x physics, minijets and related topics, classical simulations in high energy reactions, coherence and the string effect)

  17. Perturbative QCD effects in heavy meson decays

    International Nuclear Information System (INIS)

    Szezepaniak, A.; Henley, E.M.

    1991-01-01

    The amplitude for the exclusive nonleptonic decay of a heavy meson into two light pseudoscalar mesons is analyzed using the factorization formalism of perturbative QCD for exclusive reactions at large momentum transfer. We calculate the form factor b → u transition and compare it to the old quark model calculation and the new one based on the light cone formulation of the full quark model wave function. The new results we obtain are smaller by a factor of 2 - 3 as compared to the old value. (orig.)

  18. Insights on non-perturbative aspects of TMDs from models

    Energy Technology Data Exchange (ETDEWEB)

    H. Avakian, A. Efremov, P. Schweitzer, O. Teryaev, F. Yuan, P. Zavada

    2009-12-01

    Transverse momentum dependent parton distribution functions are a key ingredient in the description of spin and azimuthal asymmetries in deep-inelastic scattering processes. Recent results from non-perturbative calculations in effective approaches are reviewed, with focus on relations among different parton distribution functions in QCD and models.

  19. Perturbative QCD Lagrangian at large distances and stochastic dimensionality reduction. Pt. 2

    International Nuclear Information System (INIS)

    Shintani, M.

    1986-11-01

    Using the method of stochastic dimensional reduction, we derive a four-dimensional quantum effective Lagrangian for the classical Yang-Mills system coupled to the Gaussian white noise. It is found that the Lagrangian coincides with the perturbative QCD at large distances constructed in our previous paper. That formalism is based on the local covariant operator formalism which maintains the unitarity of the S-matrix. Furthermore, we show the non-perturbative equivalence between super-Lorentz invariant sectors of the effective Lagrangian and two dimensional QCD coupled to the adjoint pseudo-scalars. This implies that stochastic dimensionality reduction by two is approximately operative in QCD at large distances. (orig.)

  20. Aspects of perturbative QCD in Monte Carlo shower models

    International Nuclear Information System (INIS)

    Gottschalk, T.D.

    1986-01-01

    The perturbative QCD content of Monte Carlo models for high energy hadron-hadron scattering is examined. Particular attention is given to the recently developed backwards evolution formalism for initial state parton showers, and the merging of parton shower evolution with hard scattering cross sections. Shower estimates of K-factors are discussed, and a simple scheme is presented for incorporating 2 → QCD cross sections into shower model calculations without double counting. Additional issues in the development of hard scattering Monte Carlo models are summarized. 69 references, 20 figures

  1. Non-perturbative renormalization of the static vector current and its O(a)-improvement in quenched QCD

    Energy Technology Data Exchange (ETDEWEB)

    Palombi, F.

    2007-06-15

    We carry out the renormalization and the Symanzik O(a)-improvement programme for the static vector current in quenched lattice QCD. The scale independent ratio of the renormalization constants of the static vector and axial currents is obtained non-perturbatively from an axial Ward identity with Wilson-type light quarks and various lattice discretizations of the static action. The improvement coefficients c{sub V}{sup stat} and b{sub V}{sup stat} are obtained up to O(g{sub 4}{sup 0})-terms by enforcing improvement conditions respectively on the axial Ward identity and a three-point correlator of the static vector current. A comparison between the non-perturbative estimates and the corresponding one-loop results shows a non-negligible effect of the O(g{sub 4}{sup 0})-terms on the improvement coefficients but a good accuracy of the perturbative description of the ratio of the renormalization constants. (orig.)

  2. Charmless decays of the B-meson in perturbative QCD

    International Nuclear Information System (INIS)

    Libo Guo; Dongsheng Du; Lianshou Liu

    1999-01-01

    Using the perturbative QCD method and Chau's six-quark-graph scheme, we report a theoretical calculation of exclusive nonleptonic decays of the B meson into two light pseudoscalar mesons in the context of the low-energy effective Hamiltonian. The contributions from both tree-level and one-loop diagrams are taken into account. Under the approximation of neglecting light quark and light meson masses, we find that (i) within perturbative QCD there is no singularity which exists in the computation of spacelike penguin diagrams when the BSW model is used; (ii) the contributions from spacelike-type (W-annihilation, W-exchange, spacelike penguin and penguin-annihilation) graphs are strongly suppressed relative to those from timelike-type (external W-emission, internal W-emission and timelike penguin) ones; (iii) our results are well below the experimental upper limits but lower than the BSW ones. (author)

  3. Geometric scaling in ultrahigh energy neutrinos and nonlinear perturbative QCD

    International Nuclear Information System (INIS)

    Machado, Magno V.T.

    2011-01-01

    The ultrahigh energy neutrino cross section is a crucial ingredient in the calculation of the event rate in high energy neutrino telescopes. Currently there are several approaches which predict different behaviors for its magnitude for ultrahigh energies. In this contribution is presented a summary of current predictions based on the non-linear QCD evolution equations, the so-called perturbative saturation physics. In particular, predictions are shown based on the parton saturation approaches and the consequences of geometric scaling property at high energies are discussed. The scaling property allows an analytical computation of the neutrino scattering on nucleon/nucleus at high energies, providing a theoretical parameterization. (author)

  4. Next-to-leading QCD calculation of the heavy quark fragmentation function

    International Nuclear Information System (INIS)

    Mele, B.; Nason, P.

    1990-01-01

    We present the results of a next-to-leading order QCD calculation of the fragmentation function of b flavoured hadrons at LEP. We find that the addition of the next-to-leading effects improves the stability of the result under changes of the evolution scale and does not alter drastically the leading order prediction. Our next-to-leading calculation suggests that, if we neglect non-perturbative effects, the b fragmentation function is peaked at fairly large values of x, even if the average value of x is not necessarily large. (orig.)

  5. A convergent reformulation of perturbative QCD

    International Nuclear Information System (INIS)

    Alves, R.J.G.

    2000-10-01

    We present and explore a new formulation of perturbative QCD based not on the renormalised coupling but on the dimensional transmutation parameter of the theory and the property of asymptotic scaling. The approach yields a continued function, the iterated function being that involved in the solution of the two-loop β-function equation. In the so-called large-b limit the continued function reduces to a continued fraction and the successive approximants are diagonal Pade approximants. We investigate numerically the convergence of successive approximants using the leading-b approximation, motivated by renormalons, to model the all-orders result. We consider the Adler D-function of vacuum polarisation, the Polarised Bjorken and Gross-LIewellyn Smith sum rules, the (unpolarised) Bjorken sum rule, and the Minkowskian quantities R τ and the R-ratio of e + e - annihilation. In contrast to diagonal Pade approximants the truncated continued function method gives remarkably stable large-order approximants in cases where infrared renormalon effects are important. We also use the new approach to determine the QCD fundamental parameters from the R τ and the R-ratio measurements, where we find Λ-tilde (3)/MS = 516 ± 48 MeV (which yields α s (μ = m τ ) = 0.360 -0.020 +0.021 ), and Λ-tilde (5)/MS = 299 -7 +6 MeV (which yields α s (μ = m z 0 ) = 0.1218 ± 0.0004), respectively. The evolution of the former value to the m z 0 energy results in α s (μ = m z 0 ) = 0.123 ± 0.002. These values are in line with other determinations available in the literature. We implement the Complete Renormalisation Group Improvement (CORGI) scheme throughout all the calculations. We report on how the mathematical concept of Stieltjes series can be used to assess the convergence of Pade approximants of perturbative series. We find that the combinations of UV renormalons which occur in perturbative QCD may or may not be Stieltjes series depending on the renormalisation scheme used. (author)

  6. Chiral perturbation theory for lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Oliver

    2010-07-21

    The formulation of chiral perturbation theory (ChPT) for lattice Quantum Chromodynamics (QCD) is reviewed. We start with brief summaries of ChPT for continuum QCD as well as the Symanzik effective theory for lattice QCD. We then review the formulation of ChPT for lattice QCD. After an additional chapter on partial quenching and mixed action theories various concrete applications are discussed: Wilson ChPT, staggered ChPT and Wilson ChPT with a twisted mass term. The remaining chapters deal with the epsilon regime with Wilson fermions and selected results in mixed action ChPT. Finally, the formulation of heavy vector meson ChPT with Wilson fermions is discussed. (orig.)

  7. Chiral perturbation theory for lattice QCD

    International Nuclear Information System (INIS)

    Baer, Oliver

    2010-01-01

    The formulation of chiral perturbation theory (ChPT) for lattice Quantum Chromodynamics (QCD) is reviewed. We start with brief summaries of ChPT for continuum QCD as well as the Symanzik effective theory for lattice QCD. We then review the formulation of ChPT for lattice QCD. After an additional chapter on partial quenching and mixed action theories various concrete applications are discussed: Wilson ChPT, staggered ChPT and Wilson ChPT with a twisted mass term. The remaining chapters deal with the epsilon regime with Wilson fermions and selected results in mixed action ChPT. Finally, the formulation of heavy vector meson ChPT with Wilson fermions is discussed. (orig.)

  8. QCD phenomenology

    International Nuclear Information System (INIS)

    Gaillard, M.K.

    1979-01-01

    Selected topics in QCD phenomenology are reviewed: the development of an effective jet perturbation series with applications to factorization, energy flow analysis and photon physics; implications of non-perturbative phenomena for hard scattering processes and the pseudoscalar mass spectrum; resonance properties as extracted from the combined technologies of perturbative and non-perturbative QCD. (orig.)

  9. Non-perturbative background field calculations

    International Nuclear Information System (INIS)

    Stephens, C.R.; Department of Physics, University of Utah, Salt Lake City, Utah 84112)

    1988-01-01

    New methods are developed for calculating one loop functional determinants in quantum field theory. Instead of relying on a calculation of all the eigenvalues of the small fluctuation equation, these techniques exploit the ability of the proper time formalism to reformulate an infinite dimensional field theoretic problem into a finite dimensional covariant quantum mechanical analog, thereby allowing powerful tools such as the method of Jacobi fields to be used advantageously in a field theory setting. More generally the methods developed herein should be extremely valuable when calculating quantum processes in non-constant background fields, offering a utilitarian alternative to the two standard methods of calculation: perturbation theory in the background field or taking the background field into account exactly. The formalism developed also allows for the approximate calculation of covariances of partial differential equations from a knowledge of the solutions of a homogeneous ordinary differential equation. copyright 1988 Academic Press, Inc

  10. Introduction to non-perturbative heavy quark effective theory

    International Nuclear Information System (INIS)

    Sommer, R.

    2010-08-01

    My lectures on the effective field theory for heavy quarks, an expansion around the static limit, concentrate on the motivation and formulation of HQET, its renormalization and discretization. This provides the basis for understanding that and how this effective theory can be formulated fully non-perturbatively in the QCD coupling, while by the very nature of an effective field theory, it is perturbative in the expansion parameter 1/m. After the couplings in the effective theory have been determined, the result at a certain order in 1/m is unique up to higher order terms in 1/m. In particular the continuum limit of the lattice regularized theory exists and leaves no trace of how it was regularized. In other words, the theory yields an asymptotic expansion of the QCD observables in 1/m - as usual in a quantum field theory modified by powers of logarithms. None of these properties has been shown rigorously (e.g. to all orders in perturbation theory) but perturbative computations and recently also non-perturbative lattice results give strong support to this ''standard wisdom''. A subtle issue is that a theoretically consistent formulation of the theory is only possible through a non-perturbative matching of its parameters with QCD at finite values of 1/m. As a consequence one finds immediately that the splitting of a result for a certain observable into, for example, lowest order and first order is ambiguous. Depending on how the matching between effective theory and QCD is done, a first order contribution may vanish and appear instead in the lowest order. For example, the often cited phenomenological HQET parameters anti Λ and λ 1 lack a unique non-perturbative definition. But this does not affect the precision of the asymptotic expansion in 1/m. The final result for an observable is correct up to order (1/m) n+1 if the theory was treated including (1/m) n terms. Clearly, the weakest point of HQET is that it intrinsically is an expansion. In practise, carrying it

  11. Accelerated convergence of perturbative QCD by conformal mappings in the Borel plane

    International Nuclear Information System (INIS)

    Caprini, I.; Fischer, J.

    1998-01-01

    The behaviour of the large order terms in perturbative QCD received much attention in recent years. The presence of instantons and certain classes of Feynman diagrams lead to increasing coefficients of the perturbative expansion of the QCD Green functions, making this series divergent and even Borel non-summable. In the present paper we adopt a definite prescription for the Borel summation and investigate the improvement of the low order expansion by using some information about the behaviour of the large order coefficients. We use the technique of conformal mappings to extend the convergence region of the Borel series, and exploit the behaviour of the Borel transform near the first renormalons. Our approach improves previous work where only the ultraviolet renormalons were considered. The polarization function, relevant for the hadronic τ decay, which allows the determinations of the strong coupling constant a s (m τ 2 ) is used. We consider the Adler function D(s), i.e. the logarithmic derivative of the vacuum polarization for massless quarks, and its QCD perturbative expansion (D(a s )) in terms of the running coupling a s (-s). The first 3 coefficients D n of Adler function D(s) are known from explicit calculations, while for large n they are expected to have a factorial growth. By applying the Borel method with the Principal Value (PV) prescription to avoid the infrared renormalons, we write D(a s ) in terms of its Borel transform B(u). The Borel integral is given as a function of a s for a model function resembling the Borel transform of the Adler function in the large β 0 limit. The data obtained by truncating the expansion at N=3 which corresponds to the physical situation are presented. Even at such low values of N our method gives very good results (the improvement increases with N, since the optimality is an asymptotic feature). Using this technique we calculated also the running coupling constant a s (m τ 2 ), for which we obtained the value 0

  12. Non-perturbative background field calculations

    Science.gov (United States)

    Stephens, C. R.

    1988-01-01

    New methods are developed for calculating one loop functional determinants in quantum field theory. Instead of relying on a calculation of all the eigenvalues of the small fluctuation equation, these techniques exploit the ability of the proper time formalism to reformulate an infinite dimensional field theoretic problem into a finite dimensional covariant quantum mechanical analog, thereby allowing powerful tools such as the method of Jacobi fields to be used advantageously in a field theory setting. More generally the methods developed herein should be extremely valuable when calculating quantum processes in non-constant background fields, offering a utilitarian alternative to the two standard methods of calculation—perturbation theory in the background field or taking the background field into account exactly. The formalism developed also allows for the approximate calculation of covariances of partial differential equations from a knowledge of the solutions of a homogeneous ordinary differential equation.

  13. Reggeon interactions in perturbative QCD

    International Nuclear Information System (INIS)

    Kirschner, R.

    1994-08-01

    We study the pairwise interaction of reggeized gluons and quarks in the Regge limit of perturbative QCD. The interactions are represented as integral kernels in the transverse momentum space and as operators in the impact parameter space. We observe conformal symmetry and holomorphic factorization in all cases. (orig.)

  14. QCD calculation of π0γγ vertex at equal Euclidean q2 of both photons

    International Nuclear Information System (INIS)

    Voloshin, M.B.

    1982-01-01

    The form factor of the π 6 γγ vertex at equal space-like four- momentum q 2 of the photons (q 1 2 =q 2 2 =-Q 2 ) and a small four- momentum p 2 of the pion is calculated within QCD. Explicit expressions for leading perturbative and non perturbative preasymptotic corrections are derived. To find the latter correction matrix elements of operators of dimension d=5 between the pion and vacuum are calculated. The result for the form factor smoothly matches at Q 2 approximately 0.5 GeV 2 the estimate based on the vector mesom dominance model [ru

  15. Prompt atmospheric neutrino fluxes: perturbative QCD models and nuclear effects

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Atri [Department of Physics, University of Arizona,1118 E. 4th St. Tucson, AZ 85704 (United States); Space sciences, Technologies and Astrophysics Research (STAR) Institute,Université de Liège,Bât. B5a, 4000 Liège (Belgium); Enberg, Rikard [Department of Physics and Astronomy, Uppsala University,Box 516, SE-75120 Uppsala (Sweden); Jeong, Yu Seon [Department of Physics and IPAP, Yonsei University,50 Yonsei-ro Seodaemun-gu, Seoul 03722 (Korea, Republic of); National Institute of Supercomputing and Networking, KISTI,245 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Kim, C.S. [Department of Physics and IPAP, Yonsei University,50 Yonsei-ro Seodaemun-gu, Seoul 03722 (Korea, Republic of); Reno, Mary Hall [Department of Physics and Astronomy, University of Iowa,Iowa City, Iowa 52242 (United States); Sarcevic, Ina [Department of Physics, University of Arizona,1118 E. 4th St. Tucson, AZ 85704 (United States); Department of Astronomy, University of Arizona,933 N. Cherry Ave., Tucson, AZ 85721 (United States); Stasto, Anna [Department of Physics, 104 Davey Lab, The Pennsylvania State University,University Park, PA 16802 (United States)

    2016-11-28

    We evaluate the prompt atmospheric neutrino flux at high energies using three different frameworks for calculating the heavy quark production cross section in QCD: NLO perturbative QCD, k{sub T} factorization including low-x resummation, and the dipole model including parton saturation. We use QCD parameters, the value for the charm quark mass and the range for the factorization and renormalization scales that provide the best description of the total charm cross section measured at fixed target experiments, at RHIC and at LHC. Using these parameters we calculate differential cross sections for charm and bottom production and compare with the latest data on forward charm meson production from LHCb at 7 TeV and at 13 TeV, finding good agreement with the data. In addition, we investigate the role of nuclear shadowing by including nuclear parton distribution functions (PDF) for the target air nucleus using two different nuclear PDF schemes. Depending on the scheme used, we find the reduction of the flux due to nuclear effects varies from 10% to 50% at the highest energies. Finally, we compare our results with the IceCube limit on the prompt neutrino flux, which is already providing valuable information about some of the QCD models.

  16. Chiral symmetry in perturbative QCD

    International Nuclear Information System (INIS)

    Trueman, T.L.

    1979-04-01

    The chiral symmetry of quantum chromodynamics with massless quarks is unbroken in perturbation theory. Dimensional regularization is used. The ratio of the vector and axial vector renormalization constante is shown to be independent of the renormalization mass. The general results are explicitly verified to fourth order in g, the QCD coupling constant

  17. Introduction to non-perturbative heavy quark effective theory

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, R. [DESY, Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2010-08-15

    My lectures on the effective field theory for heavy quarks, an expansion around the static limit, concentrate on the motivation and formulation of HQET, its renormalization and discretization. This provides the basis for understanding that and how this effective theory can be formulated fully non-perturbatively in the QCD coupling, while by the very nature of an effective field theory, it is perturbative in the expansion parameter 1/m. After the couplings in the effective theory have been determined, the result at a certain order in 1/m is unique up to higher order terms in 1/m. In particular the continuum limit of the lattice regularized theory exists and leaves no trace of how it was regularized. In other words, the theory yields an asymptotic expansion of the QCD observables in 1/m - as usual in a quantum field theory modified by powers of logarithms. None of these properties has been shown rigorously (e.g. to all orders in perturbation theory) but perturbative computations and recently also non-perturbative lattice results give strong support to this ''standard wisdom''. A subtle issue is that a theoretically consistent formulation of the theory is only possible through a non-perturbative matching of its parameters with QCD at finite values of 1/m. As a consequence one finds immediately that the splitting of a result for a certain observable into, for example, lowest order and first order is ambiguous. Depending on how the matching between effective theory and QCD is done, a first order contribution may vanish and appear instead in the lowest order. For example, the often cited phenomenological HQET parameters anti {lambda} and {lambda}{sub 1} lack a unique non-perturbative definition. But this does not affect the precision of the asymptotic expansion in 1/m. The final result for an observable is correct up to order (1/m){sup n+1} if the theory was treated including (1/m){sup n} terms. Clearly, the weakest point of HQET is that it

  18. The running coupling of QCD with four flavors

    International Nuclear Information System (INIS)

    Tekin, Fatih; Wolff, Ulli; Sommer, Rainer

    2010-06-01

    We have calculated the step scaling function and the running coupling of QCD in the Schroedinger functional scheme with four flavors of O(a) improved Wilson quarks. Comparisons of our non-perturbative results with 2-loop and 3-loop perturbation theory as well as with non-perturbative data for only two flavors are made. (orig.)

  19. Dynamical gluon masses in perturbative calculations at the loop level

    International Nuclear Information System (INIS)

    Machado, Fatima A.; Natale, Adriano A.

    2013-01-01

    Full text: In the phenomenology of strong interactions one always has to deal at some extent with the interplay between perturbative and non-perturbative QCD. On one hand, the former has quite developed tools, yielded by asymptotic freedom. On the other, concerning the latter, we nowadays envisage the following scenario: 1) There are strong evidences for a dynamically massive gluon propagator and infrared finite coupling constant; 2) There is an extensive and successful use of an infrared finite coupling constant in phenomenological calculations at tree level; 3) The infrared finite coupling improves the perturbative series convergence; 4) The dynamical gluon mass provides a natural infrared cutoff in the physical processes at the tree level. Considering this scenario it is natural to ask how these non-perturbative results can be used in perturbative calculations of physical observables at the loop level. Recent papers discuss how off-shell gauge and renormalization group invariant Green functions can be computed with the use of the Pinch Technique (PT), with IR divergences removed by the dynamical gluon mass, and using a well defined effective charge. In this work we improve the former results by the authors, which evaluate 1-loop corrections to some two- and three-point functions of SU(3) pure Yang-Mills, investigating the dressing of quantities that could account for an extension of loop calculations to the infrared domain of the theory, in a way applicable to phenomenological calculations. One of these improvements is maintaining the gluon propagator transverse in such a scheme. (author)

  20. Threshold resummation in SCET vs. perturbative QCD. An analytic comparison

    International Nuclear Information System (INIS)

    Bonvini, Marco; Forte, Stefano; Ghezzi, Margherita; Ridolfi, Giovanni

    2012-01-01

    We compare threshold resummation in QCD, as performed using soft-collinear effective theory (SCET), to the standard perturbative QCD formalism based on factorization and resummation of Mellin moments of partonic cross-sections. We consider various forms of the SCET result, which correspond to different choices of the soft scale μ s that characterizes this approach. We derive a master formula that relates the SCET resummation to the QCD result for any choice of μ s . We then use it first, to show that if SCET resummation is performed in N-Mellin moment space by suitable choice of μ s it is equivalent to the standard perturbative approach. Next, we show that if SCET resummation is performed by choosing for μ s a partonic momentum variable, the perturbative result for partonic resummed cross-sections is again reproduced, but like its standard perturbative counterpart it is beset by divergent behaviour at the endpoint. Finally, using the master formula we show that when μ s is chosen as a hadronic momentum variable the SCET and standard approach are related through a multiplicative (convolutive) factor, which contains the dependence on the Landau pole and associated divergence. This factor depends on the luminosity in a non-universal way; it lowers by one power of log the accuracy of the resummed result, but it is otherwise subleading if one assumes the luminosity not to contain logarithmically enhanced terms. Therefore, the SCET approach can be turned into a prescription to remove the Landau pole from the perturbative result, but the price to pay for this is the reduction by one logarithmic power of the accuracy at each order and the need to make assumptions on the parton luminosity. (orig.)

  1. Threshold resummation in SCET vs. perturbative QCD. An analytic comparison

    Energy Technology Data Exchange (ETDEWEB)

    Bonvini, Marco [Genoa Univ. (Italy). Dipt. di Fisica; Istituto Nazionale di Fisica Nucleare, Genoa (Italy); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Forte, Stefano [Milano Univ. (Italy). Dipt. di Fisica; Istituto Nazionale di Fisica Nucleare, Milan (Italy); Ghezzi, Margherita [Milano Univ. (Italy). Dipt. di Fisica; Istituto Nazionale di Fisica Nucleare, Milan (Italy); Rome Univ. (Italy). Dipt. di Fisica; Istituto Nazionale di Fisica Nucleare, Rome (Italy); Ridolfi, Giovanni [Genoa Univ. (Italy). Dipt. di Fisica; Istituto Nazionale di Fisica Nucleare, Genoa (Italy)

    2012-01-15

    We compare threshold resummation in QCD, as performed using soft-collinear effective theory (SCET), to the standard perturbative QCD formalism based on factorization and resummation of Mellin moments of partonic cross-sections. We consider various forms of the SCET result, which correspond to different choices of the soft scale {mu}{sub s} that characterizes this approach. We derive a master formula that relates the SCET resummation to the QCD result for any choice of {mu}{sub s}. We then use it first, to show that if SCET resummation is performed in N-Mellin moment space by suitable choice of {mu}{sub s} it is equivalent to the standard perturbative approach. Next, we show that if SCET resummation is performed by choosing for {mu}{sub s} a partonic momentum variable, the perturbative result for partonic resummed cross-sections is again reproduced, but like its standard perturbative counterpart it is beset by divergent behaviour at the endpoint. Finally, using the master formula we show that when {mu}{sub s} is chosen as a hadronic momentum variable the SCET and standard approach are related through a multiplicative (convolutive) factor, which contains the dependence on the Landau pole and associated divergence. This factor depends on the luminosity in a non-universal way; it lowers by one power of log the accuracy of the resummed result, but it is otherwise subleading if one assumes the luminosity not to contain logarithmically enhanced terms. Therefore, the SCET approach can be turned into a prescription to remove the Landau pole from the perturbative result, but the price to pay for this is the reduction by one logarithmic power of the accuracy at each order and the need to make assumptions on the parton luminosity. (orig.)

  2. Large x Behaviour and the Non-Perturbative Structure of Hadronic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Anthony W. Thomas

    2005-02-01

    While the traditional interest in structure functions has been the confirmation of the predictions of perturbative QCD, this data also contains a wealth of information on how QCD works in the infrared, or confinement, region. As the challenge of the strong force now turns to the study of QCD in the non-perturbative region, such information is extremely valuable.We outline some of the key issues for both nucleon and nuclear structure functions.

  3. Current issues in perturbative QCD

    International Nuclear Information System (INIS)

    Hinchliffe, I.

    1994-12-01

    This review talk discusses some issues of active research in perturbative QCD. The following topics are discussed: (1) current value of αs; (2) heavy quark production in hadron collisions; (3) production of Ψ and Υ in p anti p collisions; (4) prompt photon production; (5) small-x and related phenomena; and (6) particle multiplicity in heavy quark jets

  4. Basics of QCD perturbation theory

    International Nuclear Information System (INIS)

    Soper, D.E.

    1997-01-01

    This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs

  5. Basics of QCD perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Soper, D.E. [Univ. of Oregon, Eugene, OR (United States). Inst. of Theoretical Science

    1997-06-01

    This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs.

  6. Seven topics in perturbative QCD

    International Nuclear Information System (INIS)

    Buras, A.J.

    1980-09-01

    The following topics of perturbative QCD are discussed: (1) deep inelastic scattering; (2) higher order corrections to e + e - annihilation, to photon structure functions and to quarkonia decays; (3) higher order corrections to fragmentation functions and to various semi-inclusive processes; (4) higher twist contributions; (5) exclusive processes; (6) transverse momentum effects; (7) jet and photon physics

  7. On-Shell Methods in Perturbative QCD

    International Nuclear Information System (INIS)

    Bern, Zvi; Dixon, Lance J.; Kosower, David A.

    2007-01-01

    We review on-shell methods for computing multi-parton scattering amplitudes in perturbative QCD, utilizing their unitarity and factorization properties. We focus on aspects which are useful for the construction of one-loop amplitudes needed for phenomenological studies at the Large Hadron Collider

  8. Nearly perturbative lattice-motivated QCD coupling with zero IR limit

    Science.gov (United States)

    Ayala, César; Cvetič, Gorazd; Kögerler, Reinhart; Kondrashuk, Igor

    2018-03-01

    The product of the gluon dressing function and the square of the ghost dressing function in the Landau gauge can be regarded to represent, apart from the inverse power corrections 1/{Q}2n, a nonperturbative generalization { \\mathcal A }({Q}2) of the perturbative QCD running coupling a({Q}2) (\\equiv {α }s({Q}2)/π ). Recent large volume lattice calculations for these dressing functions indicate that the coupling defined in such a way goes to zero as { \\mathcal A }({Q}2)∼ {Q}2 when the squared momenta Q 2 go to zero ({Q}2\\ll 1 {GeV}}2). In this work we construct such a QCD coupling { \\mathcal A }({Q}2) which fulfills also various other physically motivated conditions. At high momenta it becomes the underlying perturbative coupling a({Q}2) to a very high precision. And at intermediate low squared momenta {Q}2∼ 1 {GeV}}2 it gives results consistent with the data of the semihadronic τ lepton decays as measured by OPAL and ALEPH. The coupling is constructed in a dispersive way, resulting as a byproduct in the holomorphic behavior of { \\mathcal A }({Q}2) in the complex Q 2-plane which reflects the holomorphic behavior of the spacelike QCD observables. Application of the Borel sum rules to τ-decay V + A spectral functions allows us to obtain values for the gluon (dimension-4) condensate and the dimension-6 condensate, which reproduce the measured OPAL and ALEPH data to a significantly better precision than the perturbative \\overline{MS}} coupling approach.

  9. Asymptotic perturbative QCD in elastic scattering, color transparency and ANN

    International Nuclear Information System (INIS)

    Botts, J.

    1989-01-01

    Sorting out the various perturbative contributions to wide angel elastic hadron-hadron scattering has been the subject of recent enquiry. Distinguishing the various contributions are the transverse size of the external hadrons and the interaction region and restrictions on the internal momenta flows. For wide angle elastic hadron-hadron scattering, the interaction between two types of perturbative processes, multiple and single scattering, can be the source of interference phenomena and interesting physics. In the following, after a brief description of the leading and non-leading processes, we shall give a picture of what perturbative QCD may have to say about elastic scattering, color transparency and the spin asymmetry, A NN . 9 refs., 5 figs

  10. World-Line Formalism: Non-Perturbative Applications

    Directory of Open Access Journals (Sweden)

    Dmitry Antonov

    2016-11-01

    Full Text Available This review addresses the impact on various physical observables which is produced by confinement of virtual quarks and gluons at the level of the one-loop QCD diagrams. These observables include the quark condensate for various heavy flavors, the Yang-Mills running coupling with an infra-red stable fixed point, and the correlation lengths of the stochastic Yang-Mills fields. Other non-perturbative applications of the world-line formalism presented in the review are devoted to the determination of the electroweak phase-transition critical temperature, to the derivation of a semi-classical analogue of the relation between the chiral and the gluon QCD condensates, and to the calculation of the free energy of the gluon plasma in the high-temperature limit. As a complementary result, we demonstrate Casimir scaling of k-string tensions in the Gaussian ensemble of the stochastic Yang-Mills fields.

  11. Analytic perturbation theory in analyzing some QCD observables

    International Nuclear Information System (INIS)

    Shirkov, D.V.

    2001-01-01

    The paper is devoted to application of recently devised ghost-free Analytic Perturbation Theory (APT) for analysis of some QCD observables. We start with the discussion of the main problem of the perturbative QCD - ghost singularities and with the resume of this trouble solution within the APT. By a few examples in the various energy and momentum transfer regions (with the flavor number f = 3, 4 and 5) we demonstrate the effect of improved convergence of the APT modified perturbative QCD expansion. Our first observation is that in the APT analysis the three-loop contribution (of an order of α s 3 ) is as a rule numerically inessential. This raises hope for practical solving the well-known problem of asymptotic nature of common QFT perturbation series. The second conclusion is that a common perturbative analysis of time-like events with the big π 2 term in the π 2 coefficient is not adequate at s ≤ 2 GeV 2 . In particular, this relates to τ decay. Then, for the 'high' (f = 5) region it is shown that the common two-loop (NLO, NLLA) perturbation approximation widely used there (at 10 GeV ≤ √s ≤ 170 GeV) for analysis of shape/events data contains a systematic negative error of a 1 - 2 per cent level for the extracted α bar s (2) values. Our physical conclusion is that the α bar s (M Z 2 ) value averaged over the f = 5 data s (M Z 2 )> APT; f= 5 ≅ 0.124 appreciably differs from the currently accepted 'world average' (= 0.118)

  12. Structure of Nonlocal quark vacuum condensate in non-perturbative QCD vacuum

    International Nuclear Information System (INIS)

    Xiang Qianfei; Ma Weixing; Zhou Lijuan; Jiang Weizhou

    2014-01-01

    Based on the Dyson-Schwinger Equations (DSEs) with the rainbow truncation, and Operator Product Expansion, the structure of nonlocal quark vacuum condensate in QCD, described by quark self-energy functions A_f and B_f given usually by the solutions of the DSEs of quark propagator, is predicted numerically. We also calculate the local quark vacuum condensate, quark-gluon mixed local vacuum condensate, and quark virtuality. The self-energy functions A_f and B_f are given by the parameterized quark propagator functions σ_v"f (p"2) and σ_s"f (p"2) of Roberts and Williams, instead of the numerical solutions of the DSEs. Our calculated results are in reasonable agreement with those of QCD sum rules, Lattice QCD calculations, and instanton model predictions, although the resulting local quark vacuum condensate for light quarks, u, d, s, are a little bit larger than those of the above theoretical predictions. We think the differences are caused by model dependence. The larger of strange quark vacuum condensate than u, d quark is due to the s quark mass which is more larger than u, d quark masses. Of course, the Roberts-Williams parameterized quark propagator is an empirical formulism, which approximately describes quark propagation. (authors)

  13. The next-next-to-leading QCD approximation for non-singlet moments of deep inelastic structure functions

    International Nuclear Information System (INIS)

    Larin, S.A.; Ritbergen, T. van; Vermaseren, J.A.M.

    1993-12-01

    We obtain the analytic next-next-to-leading perturbative QCD corrections in the leading twist approximation for the moments N = 2, 4, 6, 8 of the non-singlet deep inelastic structure functions F 2 and F L . We calculate the three-loop anomalous dimensions of the corresponding non-singlet operators and the three-loop coefficient functions of the structure function F L . (orig.)

  14. Dynamical quark and gluon condensates from a modified perturbative QCD

    International Nuclear Information System (INIS)

    Cabo Montes de Oca, A.; Martinez Pedrera, D.

    2004-12-01

    As it was suggested by previous works on a modified perturbation expansion for QCD, the possibility for the generation of large quark condensates in the massless version of the theory is explored. For this purpose, it is firstly presented a way to well define the Feynman diagrams at any number of loops by just employing dimensional regularization. After that, the calculated zero and one loop corrections to the effective potential indicate a strong instability of the system under the generation of quark condensates even in the absence of the gluon one. The quark condensate dependence of particular two loop terms does not modify the instability picture arising at one loop. The results suggest a possible mechanism for a sort of Top Condensate Model to be a dynamically fixed effective action for massless QCD. The inability of lattice calculations in detecting this possibility could be related to the current limitations in treating the fermion determinants. (author)

  15. Non-perturbative inputs for gluon distributions in the hadrons

    International Nuclear Information System (INIS)

    Ermolaev, B.I.; Troyan, S.I.

    2017-01-01

    Description of hadronic reactions at high energies is conventionally done in the framework of QCD factorization. All factorization convolutions comprise non-perturbative inputs mimicking non-perturbative contributions and perturbative evolution of those inputs. We construct inputs for the gluon-hadron scattering amplitudes in the forward kinematics and, using the optical theorem, convert them into inputs for gluon distributions in the hadrons, embracing the cases of polarized and unpolarized hadrons. In the first place, we formulate mathematical criteria which any model for the inputs should obey and then suggest a model satisfying those criteria. This model is based on a simple reasoning: after emitting an active parton off the hadron, the remaining set of spectators becomes unstable and therefore it can be described through factors of the resonance type, so we call it the resonance model. We use it to obtain non-perturbative inputs for gluon distributions in unpolarized and polarized hadrons for all available types of QCD factorization: basic, K_T-and collinear factorizations. (orig.)

  16. Non-perturbative inputs for gluon distributions in the hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Ermolaev, B.I. [Ioffe Physico-Technical Institute, Saint Petersburg (Russian Federation); Troyan, S.I. [St. Petersburg Institute of Nuclear Physics, Gatchina (Russian Federation)

    2017-03-15

    Description of hadronic reactions at high energies is conventionally done in the framework of QCD factorization. All factorization convolutions comprise non-perturbative inputs mimicking non-perturbative contributions and perturbative evolution of those inputs. We construct inputs for the gluon-hadron scattering amplitudes in the forward kinematics and, using the optical theorem, convert them into inputs for gluon distributions in the hadrons, embracing the cases of polarized and unpolarized hadrons. In the first place, we formulate mathematical criteria which any model for the inputs should obey and then suggest a model satisfying those criteria. This model is based on a simple reasoning: after emitting an active parton off the hadron, the remaining set of spectators becomes unstable and therefore it can be described through factors of the resonance type, so we call it the resonance model. We use it to obtain non-perturbative inputs for gluon distributions in unpolarized and polarized hadrons for all available types of QCD factorization: basic, K{sub T}-and collinear factorizations. (orig.)

  17. Hadron structure from lattice QCD

    International Nuclear Information System (INIS)

    Schaefer, Andreas

    2008-01-01

    Some elements and current developments of lattice QCD are reviewed, with special emphasis on hadron structure observables. In principle, high precision experimental and lattice data provide nowadays a very detailled picture of the internal structure of hadrons. However, to relate both, a very good controle of perturbative QCD is needed in many cases. Finally chiral perturbation theory is extremely helpful to boost the precision of lattice calculations. The mutual need and benefit of all four elements: experiment, lattice QCD, perturbative QCD and chiral perturbation theory is the main topic of this review

  18. The non-perturbative QCD Debye mass from a Wilson line operator

    CERN Document Server

    Laine, Mikko

    1999-01-01

    According to a proposal by Arnold and Yaffe, the non-perturbative g^2T-contribution to the Debye mass in the deconfined QCD plasma phase can be determined from a single Wilson line operator in the three-dimensional pure SU(3) gauge theory. We extend a previous SU(2) measurement of this quantity to the physical SU(3) case. We find a numerical coefficient which is more accurate and smaller than that obtained previously with another method, but still very large compared with the naive expectation: the correction is larger than the leading term up to T ~ 10^7 T_c, corresponding to g^2 ~ 0.4. At moderate temperatures T ~ 2 T_c, a consistent picture emerges where the Debye mass is m_D ~ 6T, the lightest gauge invariant screening mass in the system is ~ 3T, and the purely magnetic operators couple dominantly to a scale ~ 6T. Electric (~ gT) and magnetic (~ g^2T) scales are therefore strongly overlapping close to the phase transition, and the colour-electric fields play an essential role in the dynamics.

  19. Determination of the QCD Λ-parameter and the accuracy of perturbation theory at high energies

    International Nuclear Information System (INIS)

    Dalla Brida, Mattia; Fritzsch, Patrick; Korzec, Tomasz; Ramos, Alberto; Sint, Stefan; Sommer, Rainer; Humboldt-Universitaet, Berlin

    2016-04-01

    We discuss the determination of the strong coupling α_M_S(m_Z) or equivalently the QCD Λ-parameter. Its determination requires the use of perturbation theory in α_s(μ) in some scheme, s, and at some energy scale μ. The higher the scale μ the more accurate perturbation theory becomes, owing to asymptotic freedom. As one step in our computation of the Λ-parameter in three-flavor QCD, we perform lattice computations in a scheme which allows us to non-perturbatively reach very high energies, corresponding to α_s=0.1 and below. We find that (continuum) perturbation theory is very accurate there, yielding a three percent error in the Λ-parameter, while data around α_s∼0.2 is clearly insufficient to quote such a precision. It is important to realize that these findings are expected to be generic, as our scheme has advantageous properties regarding the applicability of perturbation theory.

  20. Determination of the QCD Λ-parameter and the accuracy of perturbation theory at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Brida, Mattia [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Fritzsch, Patrick [Univ. Autonoma de Madrid (Spain). Inst. de Fisica Teorica UAM/CSIC; Korzec, Tomasz [Wuppertal Univ. (Germany). Dept. of Physics; Ramos, Alberto [CERN - European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; Sint, Stefan [Trinity College Dublin (Ireland). School of Mathematics; Sommer, Rainer [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Collaboration: ALPHA Collaboration

    2016-04-15

    We discuss the determination of the strong coupling α{sub MS}(m{sub Z}) or equivalently the QCD Λ-parameter. Its determination requires the use of perturbation theory in α{sub s}(μ) in some scheme, s, and at some energy scale μ. The higher the scale μ the more accurate perturbation theory becomes, owing to asymptotic freedom. As one step in our computation of the Λ-parameter in three-flavor QCD, we perform lattice computations in a scheme which allows us to non-perturbatively reach very high energies, corresponding to α{sub s}=0.1 and below. We find that (continuum) perturbation theory is very accurate there, yielding a three percent error in the Λ-parameter, while data around α{sub s}∼0.2 is clearly insufficient to quote such a precision. It is important to realize that these findings are expected to be generic, as our scheme has advantageous properties regarding the applicability of perturbation theory.

  1. The next-next-to-leading QCD approximation for non-singlet moments of deep inelastic structure functions

    Energy Technology Data Exchange (ETDEWEB)

    Larin, S.A.; Ritbergen, T. van; Vermaseren, J.A.M.

    1993-12-01

    We obtain the analytic next-next-to-leading perturbative QCD corrections in the leading twist approximation for the moments N = 2, 4, 6, 8 of the non-singlet deep inelastic structure functions F{sub 2} and F{sub L}. We calculate the three-loop anomalous dimensions of the corresponding non-singlet operators and the three-loop coefficient functions of the structure function F{sub L}. (orig.).

  2. Pomeron in perturbative QCD - its elementary theory and possible phenomenology at HERA

    International Nuclear Information System (INIS)

    Kwiecinski, J.

    1992-04-01

    Theoretical ideas concerning the Pomeron in perturbative QCD are reviewed. The Lipatov equation with asymptotic freedom effects taken into account is recalled and the corresponding spectrum of eigenvalues controlling the bare Pomeron intercept analysed. Possible phenomenological implications of the perturbative QCD Pomeron for deep inelastic scattering at the HERA ep collider are briefly discussed. 9 figs., 49 refs. (author)

  3. On high-order perturbative calculations at finite density

    CERN Document Server

    Ghisoiu, Ioan; Kurkela, Aleksi; Romatschke, Paul; Säppi, Matias; Vuorinen, Aleksi

    2017-01-01

    We discuss the prospects of performing high-order perturbative calculations in systems characterized by a vanishing temperature but finite density. In particular, we show that the determination of generic Feynman integrals containing fermionic chemical potentials can be reduced to the evaluation of three-dimensional phase space integrals over vacuum on-shell amplitudes. Applications of these rules will be discussed in the context of the thermodynamics of cold and dense QCD, where it is argued that they facilitate an extension of the Equation of State of cold quark matter to higher perturbative orders.

  4. Effective Lagrangians for SUSY QCD with properties seen in perturbation theory

    International Nuclear Information System (INIS)

    Sharatchandra, H.S.

    1984-06-01

    We construct effective Lagrangians for supersymmetric QCD which properly incorporate the relevant Ward identities and possess features encountered in perturbation theory. This shows that the unusual scenarios, proposed for SUSY QCD, are not necessary. (author)

  5. Photon-photon inclusive scattering and perturbative QCD

    International Nuclear Information System (INIS)

    Maor, U.

    1988-01-01

    Perturbative QCD expectations and problems associated with the study of the photon structure function data are reviewed. An assessment is given for the viability and sensitivity of photon-photon scattering as a decisive tool for the determination of the QCD scale. Particular attention is given to the theoretical problems of singularity cancellations at x = 0 and threshold-associated difficulties at x = 1 and their implications on the actual data analysis. It is concluded that the experimental results, while not providing a decisive verification of QCD at small distances, do add to other independent experiments which are all consistent with the theory and suggest a reasonably well defined QCD scale parameter. The importance of the small Q 2 limit to photon-photon analysis is discussed and the data are examined in an attempt to identify and isolate the contributions of the hadronic and point-like sectors of the target photon. 21 refs., 7 figs. (author)

  6. A calculation of the three-loop helicity-dependent splitting functions in QCD

    International Nuclear Information System (INIS)

    Vogt, A.

    2014-05-01

    We have calculated the complete matrix of three-loop helicity-difference ('polarized') splitting functions ΔP ik (2) (x), i,k=q,g, in massless perturbative QCD. In this note we briefly discuss some properties of the polarized splitting functions and our non-standard determination of the hitherto missing lower-row quantities ΔP gq (2) and ΔP gg (2) . The resulting next-to-next-to-leading order (NNLO) corrections to the evolution of polarized parton distributions are illustrated and found to be small even at rather large values of the strong coupling constant α s .

  7. Non-perturbative investigation of current correlators in twisted mass lattice QCD

    International Nuclear Information System (INIS)

    Petschlies, Marcus

    2013-01-01

    We present an investigation of hadronic current-current correlators based on the first principles of Quantum Chromodynamics. Specifically we apply the non-perturbative methods of twisted mass lattice QCD with dynamical up and down quark taking advantage of its automatic O(a) improvement. As a special application we discuss the calculation of the hadronic leading order contribution to the muon anomalous magnetic moment. The latter is regarded as a promising quantity for the search for physics beyond the standard model. The origin of the strong interest in the muon anomaly lies in the persistent discrepancy between the standard model estimate and its experimental measurement. In the theoretical determination the hadronic leading order part is currently afflicted with the largest uncertainty and a dedicated lattice investigation of the former can be of strong impact on future estimates. We discuss our study of all systematic uncertainties in the lattice calculation, including three lattice volumes, two lattice spacings, pion masses from 650 MeV to 290 MeV and the quark-disconnected contribution. We present a new method for the extrapolation to the physical point that softens the pion mass dependence of a μ hlo and allows for a linear extrapolation with small statistical uncertainty at the physical point. We determine the contribution of up and down quark as a μ hlo (N f =2)=5.69(15)10 -8 . The methods used for the muon are extended to the electron and tau lepton and we find a e hlo (N f =2)=1.512(43)10 -12 and a τ hlo (N f =2)=2.635(54)10 -6 . We estimate the charm contribution to a μ hlo in partially quenched tmLQCD with the result a μ hlo (charm)=1.447(24)(30)10 -9 in very good agreement with a dispersion-relation based result using experimental data for the hadronic R-ratio.

  8. Heavy-quark fragmentation functions at next-to-leading perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Moosavi Nejad, S.M. [Yazd University, Faculty of Physics, Yazd (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of); Sartipi Yarahmadi, P. [Yazd University, Faculty of Physics, Yazd (Iran, Islamic Republic of)

    2016-10-15

    It is well known that the dominant mechanism to produce hadronic bound states with large transverse momentum is fragmentation. This mechanism is described by the fragmentation functions (FFs) which are the universal and process-independent functions. Here, we review the perturbative FFs formalism as an appropriate tool for studying these hadronization processes and detail the extension of this formalism at next-to-leading order (NLO). Using Suzuki's model, we calculate the perturbative QCD FF for a heavy quark to fragment into a S-wave heavy meson at NLO. As an example, we study the LO and NLO FFs for a charm quark to split into the S-wave D-meson and compare our analytic results both with experimental data and well-known phenomenological models. (orig.)

  9. Shadowing of gluons in perturbative QCD: A comparison of different models

    International Nuclear Information System (INIS)

    Jalilian-Marian, Jamal; Wang, Xin-Nian

    2001-01-01

    We investigate the different perturbative QCD-based models for nuclear shadowing of gluons. We show that, in the kinematic region appropriate to the BNL relativistic heavy ion collider experiment, all models give similar estimates for the magnitude of gluon shadowing. At scales relevant to CERN large hadron collider (LHC), there is a sizable difference between the predictions of the different models. However, the uncertainties in gluon shadowing coming from a different parametrization of the gluon distribution in nucleons, are larger than those due to different perturbative QCD models of gluon shadowing. We also investigate the effect of initial nonperturbative shadowing on the magnitude of perturbative shadowing and show that the magnitudes of perturbative and nonperturbative shadowing are comparable at RHIC but perturbative shadowing dominates over nonperturbative shadowing at smaller values of x reached at LHC

  10. The impact of quark masses on pQCD thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Thorben; Schaffner-Bielich, Juergen [Goethe University, Institute for Theoretical Physics, Frankfurt am Main (Germany); Fraga, Eduardo S. [Universidade Federal do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro (Brazil)

    2016-07-15

    We present results for several thermodynamic quantities within the next-to-leading order calculation of the thermodynamic potential in perturbative QCD at finite temperature and chemical potential including non-vanishing quark masses. These results are compared to lattice data and to higher-order optimized perturbative calculations to investigate the trend brought about by mass corrections. (orig.)

  11. The heavy quark-antiquark potential from lattice and perturbative QCD

    OpenAIRE

    Laschka, Alexander; Kaiser, Norbert; Weise, Wolfram

    2009-01-01

    The heavy quark-antiquark potential in perturbative QCD is subject to ambiguities. We show how to derive a well-defined and stable short-distance potential that can be matched to results from lattice QCD simulations at intermediate distances. The static potential as well as the order 1/m potential are discussed.

  12. Topics in perturbative QCD beyond the leading order

    International Nuclear Information System (INIS)

    Buras, A.J.

    1979-08-01

    The basic structure of QCD formulae for various inclusive and semi-inclusive processes is presented. Next to leading order QCD corrections to inclusive deep-inelastic scattering are discussed in some detail. The methods for calculations of QCD corrections (leading, next to leading) to semi-inclusive processes are outlined. Some results of these calculations are discussed. 58 references

  13. The status of perturbative QCD

    International Nuclear Information System (INIS)

    Ellis, R.K.

    1988-10-01

    The advances in perturbative QCD are reviewed. The status of determinations of the coupling constant α/sub S/ and the parton distribution functions is presented. New theoretical results on the spin dependent structure functions of the proton are also reviewed. The theoretical description of the production of vector bosons, jets and heavy quarks is outlined with special emphasis on new results. Expected rates for top quark production at hadronic colliders are presented. 111 refs., 8 figs

  14. Explaining jet quenching with perturbative QCD alone

    CERN Document Server

    Zapp, Korinna C; Wiedemann, Urs A

    2011-01-01

    We present a new formulation of jet quenching in perturbative QCD beyond the eikonal approximation. Multiple scattering in the medium is modelled through infra-red-continued (2 -> 2) scattering matrix elements in QCD and the parton shower describing further emissions. The interplay between these processes is arranged in terms of a formation time constraint such that coherent emissions can be treated consistently. Emerging partons are hadronised by the Lund string model, tuned to describe LEP data in conjunction with the parton shower. Based on this picture we obtain a good description of the nuclear modification factor R_AA at RHIC and LHC.

  15. The Glauber approach in perturbative QCD: nucleon case

    International Nuclear Information System (INIS)

    Ayala Filho, A.L.; Pelotas Univ., RS; Ducaty, M.B. Gay; Levin, E.M.; Petersburg Nuclear Physics Inst.,

    1997-01-01

    We investigate the shadowing corrections for the nucleon gluon distribution predicted from Glauber (Mueller) approach in perturbative QCD. This work is a digest for the nucleon case of the extended work prior presented by the authors

  16. Masses and couplings of open beauty states in QCD

    International Nuclear Information System (INIS)

    Rubinstein, H.R.; Reinders, L.J.; Yazaki, S.

    1981-05-01

    Masses and couplings of open beauty states (strange and non-strange) with Jsup(PC) = 0 ++ , 0 -+ , 1 -- . and 1 ++ are calculated using the QCD sum rule formalism. Non-perturbative effects due to quark and gluon condensate operators are shown to be important, confirming earlier calculations for equal quark mass systems. (author)

  17. The strong coupling constant of QCD with four flavors

    Energy Technology Data Exchange (ETDEWEB)

    Tekin, Fatih

    2010-11-01

    In this thesis we study the theory of strong interaction Quantum Chromodynamics on a space-time lattice (lattice QCD) with four flavors of dynamical fermions by numerical simulations. In the early days of lattice QCD, only pure gauge field simulations were accessible to the computational facilities and the effects of quark polarization were neglected. The so-called fermion determinant in the path integral was set to one (quenched approximation). The reason for this approximation was mainly the limitation of computational power because the inclusion of the fermion determinant required an enormous numerical effort. However, for full QCD simulations the virtual quark loops had to be taken into account and the development of new machines and new algorithmic techniques made the so-called dynamical simulations with at least two flavors possible. In recent years, different collaborations studied lattice QCD with dynamical fermions. In our project we study lattice QCD with four degenerated flavors of O(a) improved Wilson quarks in the Schroedinger functional scheme and calculate the energy dependence of the strong coupling constant. For this purpose, we determine the O(a) improvement coefficient c{sub sw} with four flavors and use this result to calculate the step scaling function of QCD with four flavors which describes the scale evolution of the running coupling. Using a recursive finite-size technique, the {lambda} parameter is determined in units of a technical scale L{sub max} which is an unambiguously defined length in the hadronic regime. The coupling {alpha}{sub SF} of QCD in the so-called Schroedinger functional scheme is calculated over a wide range of energies non-perturbatively and compared with 2-loop and 3-loop perturbation theory as well as with the non-perturbative result for only two flavors. (orig.)

  18. The strong coupling constant of QCD with four flavors

    International Nuclear Information System (INIS)

    Tekin, Fatih

    2010-01-01

    In this thesis we study the theory of strong interaction Quantum Chromodynamics on a space-time lattice (lattice QCD) with four flavors of dynamical fermions by numerical simulations. In the early days of lattice QCD, only pure gauge field simulations were accessible to the computational facilities and the effects of quark polarization were neglected. The so-called fermion determinant in the path integral was set to one (quenched approximation). The reason for this approximation was mainly the limitation of computational power because the inclusion of the fermion determinant required an enormous numerical effort. However, for full QCD simulations the virtual quark loops had to be taken into account and the development of new machines and new algorithmic techniques made the so-called dynamical simulations with at least two flavors possible. In recent years, different collaborations studied lattice QCD with dynamical fermions. In our project we study lattice QCD with four degenerated flavors of O(a) improved Wilson quarks in the Schroedinger functional scheme and calculate the energy dependence of the strong coupling constant. For this purpose, we determine the O(a) improvement coefficient c sw with four flavors and use this result to calculate the step scaling function of QCD with four flavors which describes the scale evolution of the running coupling. Using a recursive finite-size technique, the Λ parameter is determined in units of a technical scale L max which is an unambiguously defined length in the hadronic regime. The coupling α SF of QCD in the so-called Schroedinger functional scheme is calculated over a wide range of energies non-perturbatively and compared with 2-loop and 3-loop perturbation theory as well as with the non-perturbative result for only two flavors. (orig.)

  19. Comparing energy loss and pperpendicular -broadening in perturbative QCD with strong coupling N=4 SYM theory

    International Nuclear Information System (INIS)

    Dominguez, Fabio; Marquet, C.; Mueller, A.H.; Wu Bin; Xiao, Bo-Wen

    2008-01-01

    We compare medium induced energy loss and p perpendicular -broadening in perturbative QCD with that of the trailing string picture of SYM theory. We consider finite and infinite extent matter as well as relativistic heavy quarks which correspond to those being produced in the medium or external to it. When expressed in terms of the appropriate saturation momentum, we find identical parametric forms for energy loss in perturbative QCD and SYM theory. We find simple correspondences between p perpendicular -broadening in QCD and in SYM theory although p perpendicular -broadening is radiation dominated in SYM theory and multiple scattering dominated in perturbative QCD

  20. Non-perturbative plaquette in 3d pure SU(3)

    CERN Document Server

    Hietanen, A; Laine, Mikko; Rummukainen, K; Schröder, Y

    2005-01-01

    We present a determination of the elementary plaquette and, after the subsequent ultraviolet subtractions, of the finite part of the gluon condensate, in lattice regularization in three-dimensional pure SU(3) gauge theory. Through a change of regularization scheme to MSbar and a matching back to full four-dimensional QCD, this result determines the first non-perturbative contribution in the weak-coupling expansion of hot QCD pressure.

  1. Super-leading logarithms in non-global observables in QCD colour basis independent calculation

    CERN Document Server

    Forshaw, J R; Seymour, M H

    2008-01-01

    In a previous paper we reported the discovery of super-leading logarithmic terms in a non-global QCD observable. In this short update we recalculate the first super-leading logarithmic contribution to the 'gaps between jets' cross-section using a colour basis independent notation. This sheds light on the structure and origin of the super-leading terms and allows them to be calculated for gluon scattering processes for the first time.

  2. On high-order perturbative calculations at finite density

    Energy Technology Data Exchange (ETDEWEB)

    Ghişoiu, Ioan, E-mail: ioan.ghisoiu@helsinki.fi [Helsinki Institute of Physics and Department of Physics, University of Helsinki (Finland); Gorda, Tyler, E-mail: tyler.gorda@helsinki.fi [Helsinki Institute of Physics and Department of Physics, University of Helsinki (Finland); Department of Physics, University of Colorado Boulder, Boulder, CO (United States); Kurkela, Aleksi, E-mail: aleksi.kurkela@cern.ch [Theoretical Physics Department, CERN, Geneva (Switzerland); Faculty of Science and Technology, University of Stavanger, Stavanger (Norway); Romatschke, Paul, E-mail: paul.romatschke@colorado.edu [Department of Physics, University of Colorado Boulder, Boulder, CO (United States); Center for Theory of Quantum Matter, University of Colorado, Boulder, CO (United States); Säppi, Matias, E-mail: matias.sappi@helsinki.fi [Helsinki Institute of Physics and Department of Physics, University of Helsinki (Finland); Vuorinen, Aleksi, E-mail: aleksi.vuorinen@helsinki.fi [Helsinki Institute of Physics and Department of Physics, University of Helsinki (Finland)

    2017-02-15

    We discuss the prospects of performing high-order perturbative calculations in systems characterized by a vanishing temperature but finite density. In particular, we show that the determination of generic Feynman integrals containing fermionic chemical potentials can be reduced to the evaluation of three-dimensional phase space integrals over vacuum on-shell amplitudes — a result reminiscent of a previously proposed “naive real-time formalism” for vacuum diagrams. Applications of these rules are discussed in the context of the thermodynamics of cold and dense QCD, where it is argued that they facilitate an extension of the Equation of State of cold quark matter to higher perturbative orders.

  3. The scale of soft resummation in SCET vs perturbative QCD

    International Nuclear Information System (INIS)

    Bonvini, Marco; Forte, Stefano; Ghezzi, Margherita; Ridolfi, Giovanni

    2013-01-01

    We summarize and extend previous results on the comparison of threshold resummation, performed, using softcollinear effective theory (SCET), in the Becher-Neubert approach, to the standard perturbative QCD formalism based on factorization and resummation of Mellin moments of partonic cross sections. We show that the logarithmic accuracy of this SCET result can be extended by half a logarithmic order, thereby bringing it in full agreement with the standard QCD result if a suitable choice is made for the soft scale μ s which characterizes the SCET result. We provide a master formula relating the two approaches for other scale choices. We then show that with the Becher-Neubert scale choice the Landau pole, which in the perturbative QCD approach is usually removed through power- or exponentially suppressed terms, in the SCET approach is removed by logarithmically subleading terms which break factorization. Such terms may become leading for generic choices of parton distributions, and are always leading when resummation is used far enough from the hadronic threshold.

  4. The scale of soft resummation in SCET vs perturbative QCD

    International Nuclear Information System (INIS)

    Bonvini, Marco; Forte, Stefano; Ghezzi, Margherita; Ridolfi, Giovanni

    2013-01-01

    We summarize and extend previous results on the comparison of threshold resummation, performed using soft-collinear effective theory (SCET) in the Becher-Neubert approach, to the standard perturbative QCD formalism based on factorization and resummation of Mellin moments of partonic cross sections. We show that the logarithmic accuracy of the SCET result can be extended by half a logarithmic order, thereby bringing it in full agreement with the standard QCD result if a suitable choice is made for the soft scale μ s which characterizes the SCET result. We provide a master formula relating the two approaches for other scale choices. We then show that with the Becher-Neubert scale choice the Landau pole, which in the perturbative QCD approach is usually removed through power- or exponentially suppressed terms, in the SCET approach is removed by logarithmically subleading terms which break factorization. Such terms may become leading for generic choices of parton distributions, and are always leading when resummation is used far enough from the hadronic threshold

  5. The scale of soft resummation in SCET vs perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bonvini, Marco [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Forte, Stefano [Milano Univ. (Italy). Dipt. di Fisica; INFN, Milano (Italy); Ghezzi, Margherita [Rome-3 Univ. (Italy). Dipt. di Fisica; INFN, Roma (Italy); Ridolfi, Giovanni [Genova Univ. (Italy). Dipt. di Fisica; INFN, Genova (Italy)

    2013-01-15

    We summarize and extend previous results on the comparison of threshold resummation, performed, using softcollinear effective theory (SCET), in the Becher-Neubert approach, to the standard perturbative QCD formalism based on factorization and resummation of Mellin moments of partonic cross sections. We show that the logarithmic accuracy of this SCET result can be extended by half a logarithmic order, thereby bringing it in full agreement with the standard QCD result if a suitable choice is made for the soft scale {mu}{sub s} which characterizes the SCET result. We provide a master formula relating the two approaches for other scale choices. We then show that with the Becher-Neubert scale choice the Landau pole, which in the perturbative QCD approach is usually removed through power- or exponentially suppressed terms, in the SCET approach is removed by logarithmically subleading terms which break factorization. Such terms may become leading for generic choices of parton distributions, and are always leading when resummation is used far enough from the hadronic threshold.

  6. Non-perturbative renormalization of three-quark operators

    Energy Technology Data Exchange (ETDEWEB)

    Goeckeler, Meinulf [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Horsley, Roger [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Kaltenbrunner, Thomas [Regensburg Univ. (DE). Inst. fuer Theoretische Physik] (and others)

    2008-10-15

    High luminosity accelerators have greatly increased the interest in semi-exclusive and exclusive reactions involving nucleons. The relevant theoretical information is contained in the nucleon wavefunction and can be parametrized by moments of the nucleon distribution amplitudes, which in turn are linked to matrix elements of local three-quark operators. These can be calculated from first principles in lattice QCD. Defining an RI-MOM renormalization scheme, we renormalize three-quark operators corresponding to low moments non-perturbatively and take special care of the operator mixing. After performing a scheme matching and a conversion of the renormalization scale we quote our final results in the MS scheme at {mu}=2 GeV. (orig.)

  7. Multiplicity and event shape in the perturbative QCD

    International Nuclear Information System (INIS)

    Tesima, K.

    1995-01-01

    The multiple hadroproduction in the perturbative QCD is briefly reviewed. There are a number of quantities which can be analysed with the use of the high-luminosity TRISTAN data. The analysis will contribute to clarifying some unsolved questions, and to the deeper understanding of the jet physics. (author)

  8. Non-perturbative computation of the strong coupling constant on the lattice

    International Nuclear Information System (INIS)

    Sommer, Rainer; Humboldt-Universitaet, Berlin; Wolff, Ulli

    2015-01-01

    We review the long term project of the ALPHA collaboration to compute in QCD the running coupling constant and quark masses at high energy scales in terms of low energy hadronic quantities. The adapted techniques required to numerically carry out the required multiscale non-perturbative calculation with our special emphasis on the control of systematic errors are summarized. The complete results in the two dynamical flavor approximation are reviewed and an outlook is given on the ongoing three flavor extension of the programme with improved target precision.

  9. Renormalisaton of composite operators in lattice QCD. Perturbative versus nonperturbative

    Energy Technology Data Exchange (ETDEWEB)

    Goeckeler, M.; Nakamura, Y. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Horsley, R. [Edinburgh Univ. (GB). School of Physics and Astronomy] (and others)

    2010-07-01

    The perturbative and nonperturbative renormalisation of quark-antiquark operators in lattice QCD with two flavours of clover fermions is investigated within the research programme of the QCDSF collaboration. Operators with up to three derivatives are considered. The nonperturbative results based on the RI-MOM scheme are compared with estimates from one- and two-loop lattice perturbation theory. (orig.)

  10. Tests of hard and soft QCD with $e^{+}e^{-}$ Annihilation Data

    CERN Document Server

    Kluth, S

    2002-01-01

    Experimental tests of QCD predictions for event shape distributions combining contributions from hard and soft processes are discussed. The hard processes are predicted by perturbative QCD calculations. The soft processes cannot be calculated directly using perturbative QCD, they are treated by a power correction model based on the analysis of infrared renormalons. Furthermore, an analysis of the gauge structure of QCD is presented using fits of the colour factors within the same combined QCD predictions.

  11. Status of perturbative QCD

    International Nuclear Information System (INIS)

    Collins, J.C.

    1985-01-01

    Progress in quantum chromodynamics in the past year is reviewed in these specific areas: proof of factorization for hadron-hadron collisions, fast calculation of higher order graphs, perturbative Monte Carlo calculations for hadron-hadron scattering, applicability of perturbative methods to heavy quark production, and understanding of the small-x problem. 22 refs

  12. A general algorithm for calculating jet cross sections in NLO QCD

    CERN Document Server

    Catani, S.; Catani, Stefano; Seymour, Michael H

    1997-01-01

    We present a new general algorithm for calculating arbitrary jet cross sections in arbitrary scattering processes to next-to-leading accuracy in perturbative QCD. The algorithm is based on the subtraction method. The key ingredients are new factorization formulae, called dipole formulae, which implement in a Lorentz covariant way both the usual soft and collinear approximations, smoothly interpolating the two. The corresponding dipole phase space obeys exact factorization, so that the dipole contributions to the cross section can be exactly integrated analytically over the whole of phase space. We obtain explicit analytic results for any jet observable in any scattering or fragmentation process in lepton, lepton-hadron or hadron-hadron collisions. All the analytical formulae necessary to construct a numerical program for next-to-leading order QCD calculations are provided. The algorithm is straightforwardly implementable in general purpose Monte Carlo programs.

  13. Infrared singularities of scattering amplitudes in perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Becher, Thomas [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Neubert, Matthias [Johannes Gutenberg-Universitaet Mainz, Mainz (Germany)

    2013-11-01

    An exact formula is derived for the infrared singularities of dimensionally regularized scattering amplitudes in massless QCD with an arbitrary number of legs, valid at any number of loops. It is based on the conjecture that the anomalous-dimension matrix of n-jet operators in soft-collinear effective theory contains only a single non-trivial color structure, whose coefficient is the cusp anomalous dimension of Wilson loops with light-like segments. Its color-diagonal part is characterized by two anomalous dimensions, which are extracted to three-loop order from known perturbative results for the quark and gluon form factors. This allows us to predict the three-loop coefficients of all 1/epsilon^k poles for an arbitrary n-parton scattering amplitudes, generalizing existing two-loop results.

  14. QCD and string theories

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, G.

    1990-01-01

    This paper is devoted to a review of the connections between quantumchromodynamics (QCD) and string theories. One reviews the phenomenological models leading to string pictures in non perturbative QCD and the string effects, related to soft gluon coherence, which arise in perturbative QCD. One tries to build a string theory which goes to QCD at the zero slope limit. A specific model, based on superstring theories is shown to agree with QCD four point amplitudes at the Born approximation and with one loop corrections. One shows how this approach can provide a theoretical framework to account for the phenomenological property of parton-hadron duality

  15. QCD and hadronic strings

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, G.

    1989-01-01

    This series of lectures is devoted to review ot he connections between QCD and string theories. One reviews the phenomenological models leading to string pictures in non perturbative QCD and the string effects, related to soft gluon coherence, which arise in perturbative QCD. One tries to build a string theory which goes to QCD at the zero slope limit. A specific model, based on superstring theories is shown to agree with QCD four point amplitudes at the Born approximation and with one loop corrections. One shows how this approach can provide a theoretical framework to account for the phenomenological property of parton-hadron duality.(author)

  16. The scale of soft resummation in SCET vs perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bonvini, Marco [Deutsches Elektronen-Synchroton, DESY, Notkestraße 85, D-22603 Hamburg (Germany); Forte, Stefano, E-mail: Stefano.Forte@mi.infn.it [Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Ghezzi, Margherita [Dipartimento di Fisica, Sapienza Università di Roma and INFN, Sezione di Roma, Piazzale Aldo Moro 2, I-00185 Roma,Italy (Italy); Ridolfi, Giovanni [Dipartimento di Fisica, Università di Genova and INFN, Sezione di Genova, Via Dodecaneso 33, I-16146 Genova (Italy)

    2013-08-15

    We summarize and extend previous results on the comparison of threshold resummation, performed using soft-collinear effective theory (SCET) in the Becher-Neubert approach, to the standard perturbative QCD formalism based on factorization and resummation of Mellin moments of partonic cross sections. We show that the logarithmic accuracy of the SCET result can be extended by half a logarithmic order, thereby bringing it in full agreement with the standard QCD result if a suitable choice is made for the soft scale μ{sub s} which characterizes the SCET result. We provide a master formula relating the two approaches for other scale choices. We then show that with the Becher-Neubert scale choice the Landau pole, which in the perturbative QCD approach is usually removed through power- or exponentially suppressed terms, in the SCET approach is removed by logarithmically subleading terms which break factorization. Such terms may become leading for generic choices of parton distributions, and are always leading when resummation is used far enough from the hadronic threshold.

  17. Nonperturbative calculations in the framework of variational perturbation theory in QCD

    Science.gov (United States)

    Solovtsova, O. P.

    2017-07-01

    We discuss applications of the method based on the variational perturbation theory to perform calculations down to the lowest energy scale. The variational series is different from the conventional perturbative expansion and can be used to go beyond the weak-coupling regime. We apply this method to investigate the Borel representation of the light Adler function constructed from the τ data and to determine the residual condensates. It is shown that within the method suggested the optimal values of these lower dimension condensates are close to zero.

  18. The instanton liquid model of QCD

    International Nuclear Information System (INIS)

    Blotz, A.

    1998-01-01

    Within a microscopic model for the non-perturbative vacuum of QCD, hadronic correlation functions are calculated. In the model the vacuum is a statistical, interacting ensemble of instantons and anti-instantons at the scale of Λ QCD . Hadronic two-point as well as three-point correlation functions are evaluated and compared with phenomenological information about the spectra, couplings and form factors. Especially the electro magnetic form factor of the pion is obtained and new predictions for the charm contribution to DIS structure functions are made

  19. Properties of the quark gluon plasma from lattice QCD

    International Nuclear Information System (INIS)

    Mages, Simon Wolfgang

    2015-01-01

    Quantum Chromodynamics (QCD) is the theory of the strong interaction, the theory of the interaction between the constituents of composite elementary particles (hadrons). In the low energy regime of the theory, standard methods of theoretical physics like perturbative approaches break down due to a large value of the coupling constant. However, this is the region of most interest, where the degrees of freedom of QCD, the color charges, form color-neutral composite elementary particles, like protons and neutrons. Also the transition to more energetic states of matter like the quark gluon plasma (QGP), is difficult to investigate with perturbative approaches. A QGP is a state of strongly interacting matter, which existed shortly after the Big Bang and can be created with heavy ion collisions for example at the LHC at CERN. In a QGP the color charges of QCD are deconfined. This thesis explores ways how to use the non-perturbative approach of lattice QCD to determine properties of the QGP. It focuses mostly on observables which are derived from the energy momentum tensor, like two point correlation functions. In principle these contain information on low energy properties of the QGP like the shear and bulk viscosity and other transport coefficients. The thesis describes the lattice QCD simulations which are necessary to measure the correlation functions and proposes new methods to extract these low energy properties. The thesis also tries to make contact to another non-perturbative approach which is Improved Holographic QCD. The aim of this approach is to use the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence to make statements about QCD with calculations of a five dimensional theory of gravity. This thesis contributes to that work by constraining the parameters of the model action by comparing the predictions with those of measurements with lattice QCD.

  20. QCD at finite temperature

    International Nuclear Information System (INIS)

    Kikkawa, Keiji

    1983-01-01

    The varidity of the perturbation method in the high temperature QCD is discussed. The skeleton expansion method takes account of plasmon effects and eliminates the electric infrared singularity but not the magnetic one. A possibility of eliminating the latter, which was recently proposed, is examined by a gauge invariant skeleton expansion. The magnetic singularity is unable to be eliminated by the perturbation method. This implies that some non-perturbative approaches must be incorporated in the high temperature QCD. (author)

  1. Recent progress on perturbative QCD fragmentation functions

    International Nuclear Information System (INIS)

    Cheung, K.

    1995-05-01

    The recent development of perturbative QCD (PQCD) fragmentation functions has strong impact on quarkonium production. I shall summarize B c meson production based on these PQCD fragmentation functions, as well as, the highlights of some recent activities on applying these PQCD fragmentation functions to explain anomalous J/ψ and ψ' production at the Tevatron. Finally, I discuss a fragmentation model based on the PQCD fragmentation functions for heavy quarks fragmenting into heavy-light mesons

  2. Holographic models and the QCD trace anomaly

    International Nuclear Information System (INIS)

    Goity, Jose L.; Trinchero, Roberto C.

    2012-01-01

    Five dimensional dilaton models are considered as possible holographic duals of the pure gauge QCD vacuum. In the framework of these models, the QCD trace anomaly equation is considered. Each quantity appearing in that equation is computed by holographic means. Two exact solutions for different dilaton potentials corresponding to perturbative and non-perturbative β-functions are studied. It is shown that in the perturbative case, where the β-function is the QCD one at leading order, the resulting space is not asymptotically AdS. In the non-perturbative case, the model considered presents confinement of static quarks and leads to a non-vanishing gluon condensate, although it does not correspond to an asymptotically free theory. In both cases analyses based on the trace anomaly and on Wilson loops are carried out.

  3. Non-perturbative effects in supersymmetry

    International Nuclear Information System (INIS)

    Veneziano, G.

    1987-01-01

    Some non perturbative aspects of globally supersymmetric (SUSY) gauge theories are discussed. These share with their non-supersymmetric analogues interesting non perturbative features, such as the spontaneous breaking of chiral symmetries via condensates. What is peculiar about supersymmetric theories, however, is that one is able to say a lot about non-perturbative effects even without resorting to elaborate numerical calculations: general arguments, supersymmetric and chiral Ward identities and analytic, dynamical calculations will turn out to effectively determine most of the supersymmetric vacuum properties. 28 references, 5 figures

  4. QCD improved exclusive rare B-decays at the heavy b-quark limit

    International Nuclear Information System (INIS)

    Liu Dongsheng.

    1993-09-01

    The renormalization effects from the b-quark scale down to the non-perturbative QCD regime are studied for rare B-decays at the heavy b-quark limit. Phenomenological consequences of these effects are investigated. We find that the anomalous scaling behaviour plays a positive role in making non-perturbative model calculations consistent with recent CLEO measurements of B → K*γ. (author). 21 refs, 3 tabs

  5. A non-perturbative operator product expansion

    International Nuclear Information System (INIS)

    Bietenholz, W.; Cundy, N.; Goeckeler, M.

    2009-10-01

    Nucleon structure functions can be observed in Deep Inelastic Scattering experiments, but it is an outstanding challenge to confront them with fully non-perturbative QCD results. For this purpose we investigate the product of electromagnetic currents (with large photonmomenta) between quark states (of low momenta). By means of an Operator Product Expansion the structure function can be decomposed into matrix elements of local operators, and Wilson coefficients. For consistency both have to be computed non-perturbatively. Here we present precision results for a set of Wilson coefficients. They are evaluated from propagators for numerous quark momenta on the lattice, where the use of chiral fermions suppresses undesired operator mixing. This overdetermines the Wilson coefficients, but reliable results can be extracted by means of a Singular Value Decomposition. (orig.)

  6. Structure functions of hadrons in the QCD effective theory

    International Nuclear Information System (INIS)

    Shigetani, Takayuki

    1996-01-01

    We study the structure functions of hadrons with the low energy effective theory of QCD. We try to clarify a link between the low energy effective theory, where non-perturbative dynamics is essential, and the high energy deep inelastic scattering experiment. We calculate the leading twist matrix elements of the structure function at the low energy model scale within the effective theory. Calculated structure functions are evoluted to the high momentum scale with the help of the perturbative QCD, and compared with the experimental data. Through the comparison of the model calculations with the experiment, we discuss how the non-perturbative dynamics of the effective theory is reflected in the deep inelastic phenomena. We first evaluate the structure functions of the pseudoscalar mesons using the NJL model. The resulting structure functions show reasonable agreements with experiments. We study then the quark distribution functions of the nucleon using a covariant quark-diquark model. We calculate three leading twist distribution functions, spin-independent f 1 (x), longitudinal spin distribution g 1 (x), and chiral-odd transversity spin distribution h 1 (x). The results for f 1 (x) and g 1 (x) turn out to be consistent with available experiments because of the strong spin-0 diquark correlation. (author)

  7. A non-perturbative approach to jet cross-sections and a new model for hadron-hadron interactions

    International Nuclear Information System (INIS)

    Andersson, B.

    1986-01-01

    The author discusses two subjects in this work. The first is a description of a non-perturbative approach to calculate the probabilities to obtain a particular state of confined force field in a hard interaction like e/sup +/e/sup -/ annihilation. This approach has been discussed previously by the author. There are at this time many more results of the program, in particular, some rather puzzling and disturbing ones as compared to the results obtained in perturbative QCD. The second subject is a new approach to hadron-hadron inelastic scattering. A model for these interactions based upon multiple perturbative parton interactions and subsequent string-stretching and breaking has been formulated by others in earlier works

  8. Non-perturbative QCD Effects and the Top Mass at the Tevatron

    CERN Document Server

    Wicke, Daniel

    2008-01-01

    The modelling of non-perturbative effects is an important part of modern collider physics simulations. In hadron collisions there is some indication that the modelling of the interactions of the beam remnants, the underlying event, may require non-trivial colour reconnection effects to be present. We recently introduced a universally applicable toy model of such reconnections, based on hadronising strings. This model, which has one free parameter, has been implemented in the Pythia event generator. We then considered several parameter sets (`tunes'), constrained by fits to Tevatron minimum-bias data, and determined the sensitivity of a simplified top mass analysis to these effects, in exclusive semi-leptonic top events at the Tevatron. A first attempt at isolating the genuine non-perturbative effects gave an estimate of order +-0.5GeV from non-perturbative uncertainties. The results presented here are an update to the original study and include recent bug fixes of Pythia that influenced the tunings investigat...

  9. Perturbative current quark masses in QCD

    International Nuclear Information System (INIS)

    Scadron, M.D.

    1982-01-01

    Neutral PCAC current quark masses follow from the covariant light plane of QCD requirement that α-m-circumflex(M), which is not inconsistent with the spontaneous breakdown of chiral symmetry. The resulting current quark mass ratio (m sub(s)/m-circumflex) sub(curr)=5 and scale m-circumflex sub(curr)=62 MeV at M=2 Gev are compatible with the observed πNσ - term, the Goldberger-Treiman discrepancy, the low-lying 0 - , 1/2 + , 1 - , 3/2 + hadron mass spectrum, the flavor independence of the dynamically generated quark mass and the perturbative weak binding limit. (author)

  10. Non-perturbative improvement of stout-smeared three flavour clover fermions

    Energy Technology Data Exchange (ETDEWEB)

    Cundy, N.; Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Horsley, R. [Edinburgh Univ. (GB). School of Physics and Astronomy] (and others)

    2009-01-15

    We discuss a 3-flavour lattice QCD action with clover improvement in which the fermion matrix has single level stout smearing for the hopping terms together with unsmeared links for the clover term. With the (tree-level) Symanzik improved gluon action this constitutes the Stout Link Non-perturbative Clover or SLiNC action. To cancel O(a) terms the clover term coefficient has to be tuned. We present here results of a non-perturbative determination of this coefficient using the Schroedinger functional and as a by-product a determination of the critical hopping parameter. Comparisons of the results are made with lowest order perturbation theory. (orig.)

  11. ChPT calculations for the analysis of lattice QCD data

    International Nuclear Information System (INIS)

    Greil, Ludwig

    2014-01-01

    We present calculations within the framework of three-flavor chiral perturbation theory (ChPT) for several observables (first moments of parton distributions, baryon octet masses and vector meson masses including phi-omega-mixing). We use lattice QCD data to determine the local couplings appearing in this chosen effective theory and we use these extrapolations to study the convergence of the chiral expansion around the symmetric point where all light quark masses have the same value. We also comment on the various benefits that stem from an expansion around the symmetric point.

  12. QCD factorizations in γ*γ*->ρL0ρL0

    International Nuclear Information System (INIS)

    Pire, B.; Segond, M.; Szymanowski, L.; Wallon, S.

    2006-01-01

    We calculate the lowest order QCD amplitude, i.e. the quark exchange contribution, to the forward production amplitude of a pair of longitudinally polarized ρ mesons in the scattering of two virtual photons γ*(Q 1 )γ*(Q 2 )->ρ L 0 ρ L 0 . We show that the scattering amplitude simultaneously factorizes in two quite different ways: the part with transverse photons is described by the QCD factorization formula involving the generalized distribution amplitude of two final ρ mesons, whereas the part with longitudinally polarized photons takes the QCD factorized form with the γ L *->ρ L 0 transition distribution amplitude. Perturbative expressions for these, in general, non-perturbative functions are obtained in terms of the ρ-meson distribution amplitude

  13. Perturbation theory in light-cone gauge

    International Nuclear Information System (INIS)

    Vianello, Eliana

    2000-01-01

    Perturbation calculations are presented for the light-cone gauge Schwinger model. Eigenstates can be calculated perturbatively but the perturbation theory is nonstandard. We hope to extend the work to QCD 2 to resolve some outstanding issues in those theories

  14. Second-order QCD analysis of the photon structure function

    International Nuclear Information System (INIS)

    Antoniadis, I.; Grunberg, G.

    1983-01-01

    The QCD predictions for the photon structure function are reexamined with particular emphasis on the small-x behavior. A simple parametrization of the real photon structure function, free of 1/x singularity, is derived. The structure function is found to be sensitive at small x to the non-perturbatively calculable constant term in the n=2 moment, and we show that the problem of a negative structure function can be solved on the basis of the knowledge of this single non-perturbative parameter. (orig.)

  15. Method of analytic continuation by duality in QCD: Beyond QCD sum rules

    International Nuclear Information System (INIS)

    Kremer, M.; Nasrallah, N.F.; Papadopoulos, N.A.; Schilcher, K.

    1986-01-01

    We present the method of analytic continuation by duality which allows the approximate continuation of QCD amplitudes to small values of the momentum variables where direct perturbative calculations are not possible. This allows a substantial extension of the domain of applications of hadronic QCD phenomenology. The method is illustrated by a simple example which shows its essential features

  16. Non-perturbative RPA-method implemented in the Coulomb gauge QCD Hamiltonian: From quarks and gluons to baryons and mesons

    Science.gov (United States)

    Yepez-Martinez, Tochtli; Civitarese, Osvaldo; Hess, Peter O.

    2018-02-01

    Starting from an algebraic model based on the QCD-Hamiltonian and previously applied to study meson states, we have developed an extension of it in order to explore the structure of baryon states. In developing our approach we have adapted concepts taken from group theory and non-perturbative many-body methods to describe states built from effective quarks and anti-quarks degrees of freedom. As a Hamiltonian we have used the QCD Hamiltonian written in the Coulomb Gauge, and expressed it in terms of effective quark-antiquark, di-quarks and di-antiquark excitations. To gain some insights about the relevant interactions of quarks in hadronic states, the Hamiltonian was approximately diagonalized by mapping quark-antiquark pairs and di-quarks (di-antiquarks) onto phonon states. In dealing with the structure of the vacuum of the theory, color-scalar and color-vector states are introduced to account for ground-state correlations. While the use of a purely color-scalar ground state is an obvious choice, so that colorless hadrons contain at least three quarks, the presence of coupled color-vector pairs in the ground state allows for colorless excitations resulting from the action of color objects upon it.

  17. Calculating infrared contributions to vacuum expectation values of gluonic and quark fields

    International Nuclear Information System (INIS)

    Arbuzov, B.A.; Boos, E.E.; Turashvili, K.Sh.

    1986-01-01

    Based on the infrared asymptotics of the lower QCD Green's functions obtained before, we propose a definition and elaborate a technique for calculating non-perturbative vacuum expectations of gluon and quark fields. In our calculations, we use only the known QCD parameters: constituent quark masses, the confining potential slope and the QCD parameter Λ. The values obtained for the vacuum expectations agree well with experiment. (orig.)

  18. Lattice QCD. A critical status report

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Karl

    2008-10-15

    The substantial progress that has been achieved in lattice QCD in the last years is pointed out. I compare the simulation cost and systematic effects of several lattice QCD formulations and discuss a number of topics such as lattice spacing scaling, applications of chiral perturbation theory, non-perturbative renormalization and finite volume effects. Additionally, the importance of demonstrating universality is emphasized. (orig.)

  19. Lattice QCD. A critical status report

    International Nuclear Information System (INIS)

    Jansen, Karl

    2008-10-01

    The substantial progress that has been achieved in lattice QCD in the last years is pointed out. I compare the simulation cost and systematic effects of several lattice QCD formulations and discuss a number of topics such as lattice spacing scaling, applications of chiral perturbation theory, non-perturbative renormalization and finite volume effects. Additionally, the importance of demonstrating universality is emphasized. (orig.)

  20. Heavy quark form factors at two loops in perturbative QCD

    International Nuclear Information System (INIS)

    Ablinger, J.; Schneider, C.; Behring, A.; Falcioni, G.

    2017-11-01

    We present the results for heavy quark form factors at two-loop order in perturbative QCD for different currents, namely vector, axial-vector, scalar and pseudo-scalar currents, up to second order in the dimensional regularization parameter. We outline the necessary computational details, ultraviolet renormalization and corresponding universal infrared structure.

  1. Heavy quark form factors at two loops in perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, J.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Behring, A. [RWTH Aachen Univ. (Germany). Inst. fuer Theoretische Teilchenphysik und Kosmologie; Bluemlein, J.; Freitas, A. de; Marquard, P.; Rana, N. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Falcioni, G. [Nikhef, Amsterdam (Netherlands). Theory Group

    2017-11-15

    We present the results for heavy quark form factors at two-loop order in perturbative QCD for different currents, namely vector, axial-vector, scalar and pseudo-scalar currents, up to second order in the dimensional regularization parameter. We outline the necessary computational details, ultraviolet renormalization and corresponding universal infrared structure.

  2. Quark content of the nucleon in QCD: Perturbative and nonperturbative aspects

    International Nuclear Information System (INIS)

    Stefanis, N.G.

    1989-01-01

    We elaborate on two proposed model distribution amplitudes for the nucleon, based on perturbative light-cone QCD supplemented by QCD sum rules. The novel nonperturbative features of these amplitudes are discussed in detail. Reasonable predictions for the Dirac form factor of the proton and the neutron are obtained, paying particular attention to the treatment of the effective coupling constant α s (Q 2 ) and the scale parameter Λ QCD . In addition, the stability properties of the sum rules for the moments of these model distribution amplitudes are analyzed. The range of values of the parameters entering the sum rules is estimated. Relying on expectation values of longitudinal-momentum fractions instead of moments, a heuristic interpretation of the physical content of the model distribution amplitudes is attempted

  3. A non-perturbative exploration of the high energy regime in Nf=3 QCD. ALPHA Collaboration

    Science.gov (United States)

    Dalla Brida, Mattia; Fritzsch, Patrick; Korzec, Tomasz; Ramos, Alberto; Sint, Stefan; Sommer, Rainer

    2018-05-01

    Using continuum extrapolated lattice data we trace a family of running couplings in three-flavour QCD over a large range of scales from about 4 to 128 GeV. The scale is set by the finite space time volume so that recursive finite size techniques can be applied, and Schrödinger functional (SF) boundary conditions enable direct simulations in the chiral limit. Compared to earlier studies we have improved on both statistical and systematic errors. Using the SF coupling to implicitly define a reference scale 1/L_0≈ 4 GeV through \\bar{g}^2(L_0) =2.012, we quote L_0 Λ ^{N_f=3}_{{\\overline{MS}}} =0.0791(21). This error is dominated by statistics; in particular, the remnant perturbative uncertainty is negligible and very well controlled, by connecting to infinite renormalization scale from different scales 2^n/L_0 for n=0,1,\\ldots ,5. An intermediate step in this connection may involve any member of a one-parameter family of SF couplings. This provides an excellent opportunity for tests of perturbation theory some of which have been published in a letter (ALPHA collaboration, M. Dalla Brida et al. in Phys Rev Lett 117(18):182001, 2016). The results indicate that for our target precision of 3 per cent in L_0 Λ ^{N_f=3}_{{\\overline{MS}}}, a reliable estimate of the truncation error requires non-perturbative data for a sufficiently large range of values of α _s=\\bar{g}^2/(4π ). In the present work we reach this precision by studying scales that vary by a factor 2^5= 32, reaching down to α _s≈ 0.1. We here provide the details of our analysis and an extended discussion.

  4. Color-magnetic permeability of QCD vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T [Kyoto Prefectural Univ. of Medicine (Japan); Shigemoto, K

    1980-03-01

    In the very strong background gauge field the QCD true vacuum has been shown to have lower energy than the ''perturbative vacuum.'' The color-magnetic permeability of the QCD true vacuum is then calculated to be 1/2 within the quark-one-loop approximation.

  5. Lattice QCD

    International Nuclear Information System (INIS)

    Hasenfratz, P.

    1983-01-01

    The author presents a general introduction to lattice gauge theories and discusses non-perturbative methods in the gauge sector. He then shows how the lattice works in obtaining the string tension in SU(2). Lattice QCD at finite physical temperature is discussed. Universality tests in SU(2) lattice QCD are presented. SU(3) pure gauge theory is briefly dealt with. Finally, fermions on the lattice are considered. (Auth.)

  6. Experimental investigations of strong interaction in the non-perturbative QCD region

    International Nuclear Information System (INIS)

    Lindenbaum, S.J.; Samuel, S.

    1993-09-01

    A critical investigation of non-perturbative QCD require investigating glueballs, search for a Quark Gluon Plasma (OGP), and search for strangelets. In the glueball area the data obtained (E- 881) at 8 GeV/c were analyzed for π - + p → φφn (OZI forbidden), φK + K - n (OZI allowed), K - p → φφ(ΛΣ) (OZI allowed), and bar pp → φφ → φφπ 0 (OZI forbidden), φK + K - π 0 (OZI allowed). By comparing the OZI forbidden (glueball filter reactions) with the OZI allowed and previous 22 GeV/c π - p → φφn or φK + K - n data a further critical test of the so far unsuccessfully challenged hypothesis that our g T (2010), g T '(2300) and g T double-prime(2340) all with I G J PC = 0 + 2 ++ are produced by 1-3 2 ++ glueballs will be made. In the QGP search with a large-solid-angle TPC a good Ξ signal was observed. The ratio of Ξ to single strange quark particles such as λ is a better indication of strangeness enhancement in QGP formation. The data indicate enhancement by a factor ∼ 2 over cascade model (corrected to observed strangeness) predictions, but it is definitely far from conclusive at this stage since the result is model dependent. Double λ topologies of the type needed to discover light strangelets in the nanosecond lifetime region were found. In addition, research has been accomplished in three main areas: bosonic technicolor and strings, buckministerfullerene C 60 and neutrino oscillations in a dense neutrino gas

  7. Threshold resummation and higher order effects in QCD

    International Nuclear Information System (INIS)

    Ringer, Felix Maximilian

    2015-01-01

    Quantum chromodynamics (QCD) is a quantum field theory that describes the strong interactions between quarks and gluons, the building blocks of all hadrons. Thanks to the experimental progress over the past decades, there has been an ever-growing need for QCD precision calculations for scattering processes involving hadrons. For processes at large momentum transfer, perturbative QCD offers a systematic approach for obtaining precise predictions. This approach relies on two key concepts: the asymptotic freedom of QCD and factorization. In a perturbative calculation at higher orders, the infrared cancellation between virtual and real emission diagrams generally leaves behind logarithmic contributions. In many observables relevant for hadronic scattering these logarithms are associated with a kinematic threshold and are hence known as ''threshold logarithms''. They become large when the available phase space for real gluon emission shrinks. In order to obtain a reliable prediction from QCD, the threshold logarithms need to be taken into account to all orders in the strong coupling constant, a procedure known as ''threshold resummation''. The main focus of my PhD thesis is on studies of QCD threshold resummation effects beyond the next-to-leading logarithmic order. Here we primarily consider the production of hadron pairs in hadronic collisions as an example. In addition, we also consider hadronic jet production, which is particularly interesting for the phenomenology at the LHC. For both processes, we fully take into account the non-trivial QCD color structure of the underlying partonic hard- scattering cross sections. We find that threshold resummation leads to sizable numerical effects in the kinematic regimes relevant for comparisons to experimental data.

  8. Unambiguity of renormalization group calculations in QCD

    International Nuclear Information System (INIS)

    Vladimirov, A.A.

    1979-01-01

    A detailed analysis of the reduction of ambiguities determined by an arbitrary renormalization scheme is presented for the renormalization group calculations of physical quantities in quantum chromodynamics (QCD). Some basic formulas concerning the renormalization-scheme dependence of Green's and renormalization group functions are given. A massless asymptotically free theory with one coupling constant g is considered. In conclusion, several rules for renormalization group calculations in QCD are formulated

  9. Higher order corrections in perturbative quantum chromodynamics

    Indian Academy of Sciences (India)

    Since the discovery of asymptotic freedom in non-abelian gauge field theories, like quan- tum chromodynamics (QCD), many perturbative calculations have been performed to ..... The integral above appears in the partial integration with respect to the momentum. &½ of the expression below (see figure 2). ¼. Т&½. ґѕπµТ.

  10. Perturbative QCD lagrangian at large distances and stochastic dimensionality reduction

    International Nuclear Information System (INIS)

    Shintani, M.

    1986-10-01

    We construct a Lagrangian for perturbative QCD at large distances within the covariant operator formalism which explains the color confinement of quarks and gluons while maintaining unitarity of the S-matrix. It is also shown that when interactions are switched off, the mechanism of stochastic dimensionality reduction is operative in the system due to exact super-Lorentz symmetries. (orig.)

  11. Thoughts on non-perturbative thermalization and jet quenching in heavy ion collisions

    International Nuclear Information System (INIS)

    Kovchegov, Yuri V.

    2006-01-01

    We start by presenting physical arguments for the impossibility of perturbative thermalization leading to (non-viscous) Bjorken hydrodynamic description of heavy ion collisions. These arguments are complimentary to our more formal argument presented in [Yu.V. Kovchegov, hep-ph/0503038]. We argue that the success of hydrodynamic models in describing the quark-gluon system produced in heavy ion collisions could only be due to non-perturbative strong coupling effects. We continue by studying non-perturbative effects in heavy ion collisions at high energies. We model non-perturbative phenomena by an instanton ensemble. We show that non-perturbative instanton vacuum fields may significantly contribute to jet quenching in nuclear collisions. At the same time, the instanton ensemble contribution to thermalization is likely to be rather weak, leading to non-perturbative thermalization time comparable to the time of hadronization. This example illustrates that jet quenching is not necessarily a signal of a thermalized medium. Indeed, since the instanton models do not capture all the effects of QCD vacuum (e.g., they do not account for confinement), there may be other non-perturbative effects facilitating thermalization of the system

  12. Strong coupling QCD and the (π+,π-) reaction

    International Nuclear Information System (INIS)

    Miller, G.A.; Washington Univ., Seattle, WA

    1989-01-01

    Previous six-quark bag model calculations are in disagreement with new (π + , π - ) data, but conventional nucleonic calculations are generally successful. Six-quark bag models are related to perturbative QCD. I argue that the strong coupling limit of QCD (SCQCD) is a more appropriate starting point for nuclear physics. 15 refs., 3 figs

  13. Higher order QCD corrections in exclusive charmless B decays

    International Nuclear Information System (INIS)

    Bell, G.

    2006-10-01

    We discuss exclusive charmless B decays within the Standard Model of particle physics. These decays play a central role in the on-going process to constrain the parameters of the CKM matrix and to clarify the nature of CP violation. In order to exploit the rich source of data that is currently being collected at the experiments, a systematic theoretical treatment of the complicated hadronic dynamics is strongly desired. QCD Factorization represents a model-independent framework to compute hadronic matrix elements from first principles. It is based on a power expansion in Λ QCD /m b and allows for the systematic implementation of perturbative corrections. In particular, we consider hadronic two-body decays as B → ππ and perform a conceptual analysis of heavy-to-light form factors which encode the strong interaction effects in semi-leptonic decays as B → πlν. Concerning the hadronic decays we compute NNLO QCD corrections which are particularly important with respect to strong interaction phases and hence direct CP asymmetries. On the technical level, we perform a 2-loop calculation which is based on an automatized reduction algorithm and apply sophisticated techniques for the calculation of loop-integrals. We indeed find that the considered quantities are well-defined as predicted by QCD Factorization, which is the result of a highly complicated subtraction procedure. We present results for the imaginary part of the topological tree amplitudes and observe that the considered corrections are substantial. The calculation of the real part of the amplitudes is far more complicated and we present a preliminary result which is based on certain simplifications. Our calculation is one part of the full NNLO analysis of nonleptonic B decays within QCD Factorization which is currently pursued by various groups. In our conceptual analysis of the QCD dynamics in heavy-to-light transitions we consider form factors between non-relativistic bound states which can be

  14. Higher order QCD corrections in exclusive charmless B decays

    Energy Technology Data Exchange (ETDEWEB)

    Bell, G.

    2006-10-15

    We discuss exclusive charmless B decays within the Standard Model of particle physics. These decays play a central role in the on-going process to constrain the parameters of the CKM matrix and to clarify the nature of CP violation. In order to exploit the rich source of data that is currently being collected at the experiments, a systematic theoretical treatment of the complicated hadronic dynamics is strongly desired. QCD Factorization represents a model-independent framework to compute hadronic matrix elements from first principles. It is based on a power expansion in {lambda}{sub QCD}/m{sub b} and allows for the systematic implementation of perturbative corrections. In particular, we consider hadronic two-body decays as B {yields} {pi}{pi} and perform a conceptual analysis of heavy-to-light form factors which encode the strong interaction effects in semi-leptonic decays as B {yields} {pi}l{nu}. Concerning the hadronic decays we compute NNLO QCD corrections which are particularly important with respect to strong interaction phases and hence direct CP asymmetries. On the technical level, we perform a 2-loop calculation which is based on an automatized reduction algorithm and apply sophisticated techniques for the calculation of loop-integrals. We indeed find that the considered quantities are well-defined as predicted by QCD Factorization, which is the result of a highly complicated subtraction procedure. We present results for the imaginary part of the topological tree amplitudes and observe that the considered corrections are substantial. The calculation of the real part of the amplitudes is far more complicated and we present a preliminary result which is based on certain simplifications. Our calculation is one part of the full NNLO analysis of nonleptonic B decays within QCD Factorization which is currently pursued by various groups. In our conceptual analysis of the QCD dynamics in heavy-to-light transitions we consider form factors between non

  15. Variational techniques in non-perturbative QCD

    CERN Document Server

    Kovner, Alex; Kovner, Alex

    2004-01-01

    We review attempts to apply the variational principle to understand the vacuum of non-abelian gauge theories. In particular, we focus on the method explored by Ian Kogan and collaborators, which imposes exact gauge invariance on the trial Gaussian wave functional prior to the minimization of energy. We describe the application of the method to a toy model -- confining compact QED in 2+1 dimensions -- where it works wonderfully and reproduces all known non-trivial results. We then follow its applications to pure Yang-Mills theory in 3+1 dimensions at zero and finite temperature. Among the results of the variational calculation are dynamical mass generation and the analytic description of the deconfinement phase transition.

  16. Non-perturbative versus perturbative renormalization of lattice operators

    International Nuclear Information System (INIS)

    Goeckeler, M.; Technische Hochschule Aachen; Horsley, R.; Ilgenfritz, E.M.; Oelrich, H.; Forschungszentrum Juelich GmbH; Schierholz, G.; Forschungszentrum Juelich GmbH; Perlt, H.; Schiller, A.; Rakow, P.

    1995-09-01

    Our objective is to compute the moments of the deep-inelastic structure functions of the nucleon on the lattice. A major source of uncertainty is the renormalization of the lattice operators that enter the calculation. In this talk we compare the renormalization constants of the most relevant twist-two bilinear quark operators which we have computed non-perturbatively and perturbatively to one loop order. Furthermore, we discuss the use of tadpole improved perturbation theory. (orig.)

  17. Understanding of QCD through solvable models

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, G.

    1980-07-01

    Various aspects of strong interaction physics are discussed. It is shown that several nontrivial features arise from non-perturbative 'solutions' of QCD-like models in (1+1) dimensions. An attempt is made to bring these features in (3+1) dimensional semiclassical treatments of QCD.

  18. Determinations of the QCD strong coupling αsub(s) and the scale Λsub(QCD)

    International Nuclear Information System (INIS)

    Duke, D.W.; Roberts, R.G.

    1984-08-01

    The authors review determinations, via experiment of the strong coupling of QCD, αsub(s). In almost every case, the results are used of perturbative QCD to make the necessary extraction from data. These include scaling violations of deep inelastic scattering, e + e - annihilation experiments (including quarkonium decays) and lepton pair production. Finally estimates for Λ from lattice calculations are listed. (author)

  19. Static QCD potential at rQCD-1: Perturbative expansion and operator-product expansion

    International Nuclear Information System (INIS)

    Sumino, Y.

    2007-01-01

    We analyze the static QCD potential V QCD (r) in the distance region 0.1 fm QCD (r) analytically. Higher-order terms are estimated by large-β 0 approximation or by renormalization group, and the renormalization scale is varied around the minimal-sensitivity scale. A 'Coulomb'+linear potential can be identified with the scale-independent and renormalon-free part of the prediction and can be separated from the renormalon-dominating part. (II) In the frame of OPE, we define two types of renormalization schemes for the leading Wilson coefficient. One scheme belongs to the class of conventional factorization schemes. The other scheme belongs to a new class, which is independent of the factorization scale, derived from a generalization of the Coulomb+linear potential of (I). The Wilson coefficient is free from IR renormalons and IR divergences in both schemes. We study properties of the Wilson coefficient and of the corresponding nonperturbative contribution δE US (r) in each scheme. (III) We compare numerically perturbative predictions of the Wilson coefficient and lattice computations of V QCD (r) when n l =0. We confirm either correctness or consistency (within uncertainties) of the theoretical predictions made in (II). Then we perform fits to simultaneously determine δE US (r) and r 0 Λ MS 3-loop (relation between lattice scale and Λ MS ). As for the former quantity, we improve bounds as compared to the previous determination; as for the latter quantity, our analysis provides a new method for its determination. We find that (a) δE US (r)=0 is disfavored, and (b) r 0 Λ MS 3-loop =0.574±0.042. We elucidate the mechanism for the sensitivities and examine sources of errors in detail

  20. Hard And Soft QCD Physics In ATLAS

    Directory of Open Access Journals (Sweden)

    Adomeit Stefanie

    2014-04-01

    Full Text Available Hard and soft QCD results using proton-proton collisions recorded with the ATLAS detector at the LHC are reported. Charged-particle distributions and forward-backward correlations have been studied in low-luminosity minimum bias data taken at centre-of-mass energies of √s = 0.9, 2.36 and 7 TeV. Recent measurements on underlying event characteristics using charged-particle jets are also presented. The results are tested against various phenomenological soft QCD models implemented in Monte-Carlo generators. A summary of hard QCD measurements involving high transverse momentum jets is also given. Inclusive jet and dijet cross-sections have been measured at a centre-of-mass energy of 7 TeV and are compared to expectations based on NLO pQCD calculations corrected for non-perturbative effects as well as to NLO Monte Carlo predictions. Recent studies exploiting jet substructure techniques to identify hadronic decays of boosted massive particles are reported.

  1. QCD

    CERN Multimedia

    1999-01-01

    Basic Properties of QCD: the Lagrangian, the running coupling, asymptotic freedom and colour confinement. Examples of perturbative calculations in electron- positron physics (total cross sections and event) Parton branching approach will be used to derive the evolution equations for hadron structure functions Comarison with data on deep inelastic scattering and jet production will be for hadron structure functions and jet fragmentation functions

  2. Light-front QCD. II. Two-component theory

    International Nuclear Information System (INIS)

    Zhang, W.; Harindranath, A.

    1993-01-01

    The light-front gauge A a + =0 is known to be a convenient gauge in practical QCD calculations for short-distance behavior, but there are persistent concerns about its use because of its ''singular'' nature. The study of nonperturbative field theory quantizing on a light-front plane for hadronic bound states requires one to gain a priori systematic control of such gauge singularities. In the second paper of this series we study the two-component old-fashioned perturbation theory and various severe infrared divergences occurring in old-fashioned light-front Hamiltonian calculations for QCD. We also analyze the ultraviolet divergences associated with a large transverse momentum and examine three currently used regulators: an explicit transverse cutoff, transverse dimensional regularization, and a global cutoff. We discuss possible difficulties caused by the light-front gauge singularity in the applications of light-front QCD to both old-fashioned perturbative calculations for short-distance physics and upcoming nonperturbative investigations for hadronic bound states

  3. Developments in perturbative QCD? challenges from collider physics

    Energy Technology Data Exchange (ETDEWEB)

    Zeppenfeld, Dieter [Valencia Univ. (Spain). Dept. de Fisica Teorica]. E-mail: dieter@phenom.physics.wisc.edu

    1996-07-01

    The search for new phenomena at hadron colliders requires a good understanding of QCD processes. The analysis of multi-jet signatures in the top quark search at the Tevatron is one example, forward jet tagging and rapidity gap techniques in the analysis of weak boson scattering events at the LH C will be another important application. These topics are discussed in the context of multi-parton/multi-jet QCD processes. Also described are some of the calculation tools, like amplitude techniques and automatic code generation for tree level processes. (author)

  4. Developments in perturbative QCD? challenges from collider physics

    International Nuclear Information System (INIS)

    Zeppenfeld, Dieter

    1996-01-01

    The search for new phenomena at hadron colliders requires a good understanding of QCD processes. The analysis of multi-jet signatures in the top quark search at the Tevatron is one example, forward jet tagging and rapidity gap techniques in the analysis of weak boson scattering events at the LH C will be another important application. These topics are discussed in the context of multi-parton/multi-jet QCD processes. Also described are some of the calculation tools, like amplitude techniques and automatic code generation for tree level processes. (author)

  5. Pion form factor within QCD instanton vacuum model

    International Nuclear Information System (INIS)

    Dorokhov, A.E.

    1997-01-01

    Instanton induced pion wave function is constructed. It provides an intrinsic k 1 dependence which suppress soft virtual one-gluon exchanges and thus legitimate the perturbative QCD (pQCD) calculations of the pion electromagnetic form factor in the region of momentum transfers above the scale. (author)

  6. QCD factorizations in {gamma}*{gamma}*->{rho}{sub L}{sup 0}{rho}{sub L}{sup 0}

    Energy Technology Data Exchange (ETDEWEB)

    Pire, B. [CPHT, Unite mixte 7644 du CNRS, Ecole Polytechnique, 91128 Palaiseau (France)]. E-mail: pire@cpht.polytechnique.fr; Segond, M. [LPT, Unite mixte 8627 du CNRS, Universite Paris-Sud, 91405 Orsay (France); Szymanowski, L. [LPT, Unite mixte 8627 du CNRS, Universite Paris-Sud, 91405 Orsay (France); Universite de Liege, B-4000 Liege (Belgium); Soltan Institute for Nuclear Studies, Hoza 69, 00-681 Warsaw (Poland); Wallon, S. [LPT, Unite mixte 8627 du CNRS. , Universite Paris-Sud, 91405 Orsay (France)

    2006-08-24

    We calculate the lowest order QCD amplitude, i.e. the quark exchange contribution, to the forward production amplitude of a pair of longitudinally polarized {rho} mesons in the scattering of two virtual photons {gamma}*(Q{sub 1}){gamma}*(Q{sub 2})->{rho}{sub L}{sup 0}{rho}{sub L}{sup 0}. We show that the scattering amplitude simultaneously factorizes in two quite different ways: the part with transverse photons is described by the QCD factorization formula involving the generalized distribution amplitude of two final {rho} mesons, whereas the part with longitudinally polarized photons takes the QCD factorized form with the {gamma}{sub L}*->{rho}{sub L}{sup 0} transition distribution amplitude. Perturbative expressions for these, in general, non-perturbative functions are obtained in terms of the {rho}-meson distribution amplitude.

  7. 13. international QCD conference (QCD 06)

    International Nuclear Information System (INIS)

    2006-01-01

    This conference was organized around 5 sessions: 1) quantum chromodynamics (QCD) at colliders, 2) CP-violation, Kaon decays and Chiral symmetry, 3) perturbative QCD, 4) physics of light and heavy hadrons, 5) confinement, thermodynamics QCD and axion searches. This document gathers only the slides of the presentations

  8. 13. international QCD conference (QCD 06)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This conference was organized around 5 sessions: 1) quantum chromodynamics (QCD) at colliders, 2) CP-violation, Kaon decays and Chiral symmetry, 3) perturbative QCD, 4) physics of light and heavy hadrons, 5) confinement, thermodynamics QCD and axion searches. This document gathers only the slides of the presentations.

  9. A new LHC search channel for a light Higgs boson and associated QCD calculations

    International Nuclear Information System (INIS)

    Rubin, Mathieu

    2010-01-01

    This thesis addresses various topics related to LHC studies and predictions. We were first interested in a boosted (p t ≥ 200 GeV) light Higgs boson at the LHC (M H ∼ 120 GeV) in the pp →WH and pp → ZH search channels with H → bb-bar. We showed how these challenging channels can be recovered as promising search channels using a subject analysis procedure in two steps: a 'mass-drop' analysis, which allows one to reduce the large QCD backgrounds, and a 'filtering' analysis, which improves the resolution on the reconstructed Higgs jet mass. Then we focused on the filtering analysis, which allows one to suppress the diffuse background from the underlying-event and pile-up, which are mainly responsible for the bad Higgs mass resolution. We optimized its parameters using semi-analytical calculations which led us to examine the structure of the non-global logarithms that appear in this problem. Finally, we studied some processes whose perturbative series converges poorly at next-to-leading (NLO) order for some observables, a property that we had noticed in the Z+jet and W+jet processes at high-p t during our Higgs analysis. This is important because it leads to questions about the reliability of the predictions resulting from perturbative calculations. It thus becomes necessary to examine higher-order corrections. The method that we developed, called 'LoopSim', consists in approximating these higher order corrections by merging different orders of perturbation theory such that all infra-red and collinear divergences are cancelled. (author)

  10. Correlations in double parton distributions: perturbative and non-perturbative effects

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldi, Matteo; Scopetta, Sergio [Dipartimento di Fisica e Geologia, Università degli Studi di Perugia andIstituto Nazionale di Fisica Nucleare, Sezione di Perugia, via A. Pascoli, I-06123 Perugia (Italy); Traini, Marco [Institut de Physique Théorique CEA-Saclay, F-91191 Gif-sur-Yvette (France); INFN - TIFPA, Dipartimento di Fisica, Università degli Studi di Trento,Via Sommarive 14, I-38123 Povo (Trento) (Italy); Vento, Vicente [Departament de Física Teòrica, Universitat de València and Institut de Física Corpuscular,Consejo Superior de Investigaciones Científicas, 46100 Carrer del Dr. Moliner 50 València (Spain)

    2016-10-12

    The correct description of Double Parton Scattering (DPS), which represents a background in several channels for the search of new Physics at the LHC, requires the knowledge of double parton distribution functions (dPDFs). These quantities represent also a novel tool for the study of the three-dimensional nucleon structure, complementary to the possibilities offered by electromagnetic probes. In this paper we analyze dPDFs using Poincaré covariant predictions obtained by using a Light-Front constituent quark model proposed in a recent paper, and QCD evolution. We study to what extent factorized expressions for dPDFs, which neglect, at least in part, two-parton correlations, can be used. We show that they fail in reproducing the calculated dPDFs, in particular in the valence region. Actually measurable processes at existing facilities occur at low longitudinal momenta of the interacting partons; to have contact with these processes we have analyzed correlations between pairs of partons of different kind, finding that, in some cases, they are strongly suppressed at low longitudinal momenta, while for other distributions they can be sizeable. For example, the effect of gluon-gluon correlations can be as large as 20 %. We have shown that these behaviors can be understood in terms of a delicate interference of non-perturbative correlations, generated by the dynamics of the model, and perturbative ones, generated by the model independent evolution procedure. Our analysis shows that at LHC kinematics two-parton correlations can be relevant in DPS, and therefore we address the possibility to study them experimentally.

  11. Perturbative quantum chromodynamics

    International Nuclear Information System (INIS)

    Radyushkin, A.V.

    1987-01-01

    The latest achievements in perturbative quantum chromodynamics (QCD) relating to the progress in factorization of small and large distances are presented. The following problems are concerned: Development of the theory of Sudakov effects on the basis of mean contour formalism. Development of nonlocal condensate formalism. Calculation of hadron wave functions and hadron distribution functions using QCD method of sum rules. Development of the theory of Regge behaviour in QCD, behaviour of structure functions at small x. Study of polarization effects in hadron processes with high momentum transfer

  12. The b-quark mass from non-perturbative $N_f=2$ Heavy Quark Effective Theory at $O(1/m_h)$

    DEFF Research Database (Denmark)

    Bernardoni, F.; Blossier, B.; Bulava, J.

    2014-01-01

    We report our final estimate of the b-quark mass from $N_f=2$ lattice QCD simulations using Heavy Quark Effective Theory non-perturbatively matched to QCD at $O(1/m_h)$. Treating systematic and statistical errors in a conservative manner, we obtain $\\overline{m}_{\\rm b}^{\\overline{\\rm MS}}(2 {\\rm...

  13. Non-perturbative calculation of equilibrium polarization of stored electron beams

    International Nuclear Information System (INIS)

    Yokoya, Kaoru.

    1992-05-01

    Stored electron/positron beams polarize spontaneously owing to the spin-flip synchrotron radiation. In the existing computer codes, the degree of the equilibrium polarization has been calculated using perturbation expansions in terms of the orbital oscillation amplitudes. In this paper a new numerical method is presented which does not employ the perturbation expansion. (author)

  14. Perturbative QCD predictions for the small x behaviour of unpolarized and polarized deep inelastic scattering structure functions

    International Nuclear Information System (INIS)

    Kwiecinski, J.

    1996-01-01

    The perturbative QCD predictions for the small x behaviour of the nucleon structure functions F 2L (x,Q 2 ) and g 1 (x,Q 2 ) are summarized. The importance of the double logarithmic terms for the small x behaviour of the spin structure function g 1 (x,Q 2 ) is emphasized. These terms correspond to the contributions containing the leading powers of α s ln 2 (1/x) at each order of the perturbative expansion. In the non-singlet case they can be approximately accounted for by the ladder diagrams with quark (antiquark) exchange. We solve the corresponding integral equation with the running coupling effects taken into account and present estimate of the effective slope controlling the small x behaviour of the non-singlet spin structure function g 1 (x,Q 2 ) of a nucleon. (author)

  15. Hadronic and nuclear interactions in QCD

    International Nuclear Information System (INIS)

    1982-01-01

    Despite the evidence that QCD - or something close to it - gives a correct description of the structure of hadrons and their interactions, it seems paradoxical that the theory has thus far had very little impact in nuclear physics. One reason for this is that the application of QCD to distances larger than 1 fm involves coherent, non-perturbative dynamics which is beyond present calculational techniques. For example, in QCD the nuclear force can evidently be ascribed to quark interchange and gluon exchange processes. These, however, are as complicated to analyze from a fundamental point of view as is the analogous covalent bond in molecular physics. Since a detailed description of quark-quark interactions and the structure of hadronic wavefunctions is not yet well-understood in QCD, it is evident that a quantitative first-principle description of the nuclear force will require a great deal of theoretical effort. Another reason for the limited impact of QCD in nuclear physics has been the conventional assumption that nuclear interactions can for the most part be analyzed in terms of an effective meson-nucleon field theory or potential model in isolation from the details of short distance quark and gluon structure of hadrons. These lectures, argue that this view is untenable: in fact, there is no correspondence principle which yields traditional nuclear physics as a rigorous large-distance or non-relativistic limit of QCD dynamics. On the other hand, the distinctions between standard nuclear physics dynamics and QCD at nuclear dimensions are extremely interesting and illuminating for both particle and nuclear physics

  16. Pion form factor in QCD sum rules, local duality approach, and O(A2) fractional analytic perturbation theory

    International Nuclear Information System (INIS)

    Bakulev, Alexander P.

    2010-01-01

    Using the results on the electromagnetic pion Form Factor (FF) obtained in the O(α s ) QCD sum rules with non-local condensates [A.P. Bakulev, A.V. Pimikov, and N.G. Stefanis, Phys. Rev. D79 (2009) 093010] we determine the effective continuum threshold for the local duality approach. Then we apply it to construct the O(α s 2 ) estimation of the pion FF in the framework of the fractional analytic perturbation theory.

  17. Pion structure from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Javadi Motaghi, Narjes

    2015-05-12

    In this thesis we use lattice QCD to compute the second Mellin moments of pion generalized parton distributions and pion electromagnetic form factors. For our calculations we are able to analyze a large set of gauge configurations with 2 dynamical flavours using non-perturbatively the improved Wilson-Sheikholeslami-Wohlert fermionic action pion masses ranging down to 151 MeV. By employing improved smearing we were able to suppress excited state contamination. However, our data in the physical quark mass limit show that some excited state contamination remains. We show the non-zero sink momentum is optimal for the computation of the electromagnetic form factors and generalized form factors at finite momenta.

  18. Uses of Effective Field Theory in Lattice QCD

    OpenAIRE

    Kronfeld, Andreas S.

    2002-01-01

    Several physical problems in particle physics, nuclear physics, and astrophysics require information from non-perturbative QCD to gain a full understanding. In some cases the most reliable technique for quantitative results is to carry out large-scale numerical calculations in lattice gauge theory. As in any numerical technique, there are several sources of uncertainty. This chapter explains how effective field theories are used to keep them under control and, then, obtain a sensible error ba...

  19. Quark masses from quark-gluon condensates in a modified perturbative QCD

    CERN Document Server

    Cabo-Montes de Oca, Alejandro

    2003-01-01

    In this note, it is argued that the mass matrix for the six quarks can be generated in first approximation by introducing fermion condensates on the same lines as was done before for gluons, within the modified perturbative expansion for QCD proposed in former works. Thus, the results point in the direction of the conjectured link of the approximate `Democratic' symmetry of the quark mass matrix and `gap' effects similar to the ones occuring in superconductivity. The condensates are introduced here non-dynamically and therefore the question of the possibility for their spontaneous generation remains open. However, possible ways out of the predicted lack of the `Democratic' symmetry of the condensates resulting from the spontaneous breaking of the flavour symmetry are suggested. They come from an analysis based on the Cornwall--Jackiw--Tomboulis (CJT) effective potential for composite operators

  20. Iso-vector form factors of the delta and nucleon in QCD sum rules

    International Nuclear Information System (INIS)

    Ozpineci, A.

    2012-01-01

    Form factors are important non-perturbative properties of hadrons. They give information about the internal structure of the hadrons. In this work, iso-vector axial-vector and iso-vector tensor form factors of the nucleon and the iso-vector axial-vector Δ→N transition form factor calculations in QCD Sum Rules are presented.

  1. QCD contributions to vacuum polarization

    International Nuclear Information System (INIS)

    Reinders, L.J.; Rubinstein, H.R.; Yazaki, S.

    1980-01-01

    We have computed to lowest non-trivial order the perturbative and non-perturbative contributions to the vacuum polarization from all currents up to and including spin 2 ++ . These expressions are important, for example to evaluate QCD sum rules for heavy and light quark systems as shown by Shifman, Vainshtein and Zakharov. Most of the known ones are verified, one slightly changed, and many new ones are displayed. (orig.)

  2. A Precise determination of B(K) in quenched QCD

    CERN Document Server

    Dimopoulos, P.; Palombi, F.; Pena, C.; Sint, S.; Vladikas, A.

    2006-01-01

    The $B_K$ parameter is computed in quenched lattice QCD with Wilson twisted mass fermions. Two variants of tmQCD are used; in both of them the relevant $\\Delta S = 2$ four-fermion operator is renormalised multiplicatively. The renormalisation adopted is non-perturbative, with a Schroedinger functional renormalisation condition. Renormalisation group running is also non-perturbative, up to very high energy scales. In one of the two tmQCD frameworks the computations have been performed at the physical $K$-meson mass, thus eliminating the need of mass extrapolations. Simulations have been performed at several lattice spacings and the continuum limit was reached by combining results from both tmQCD regularisations. Finite volume effects have been partially checked and turned out to be small. Exploratory studies have also been performed with non-degenerate valence flavours. The final result for the RGI bag parameter, with all sources of uncertainty (except quenching) under control, is $\\hat B_K =0.789 \\pm 0.046$.

  3. Heavy flavour production in perturbative QCD

    International Nuclear Information System (INIS)

    Nason, P.; Ridolfi, G.; Frixione, S.; Mangano, M.L.

    1994-01-01

    The status of heavy flavour production in QCD is reviewed. Recent results on the doubly-differential cross section are discussed for the photoproduction of heavy flavours. Comparison of experimental results with theoretical calculation is discussed both for b production at hadron colliders and c production in fixed-target hadroproduction and photoproduction. The possibility of using photoproduction of heavy flavour in order to determine the gluon density in the proton is also discussed. (author). 38 refs., 8 figs

  4. Decay Constants of B and D Mesons from Non-pertubatively Improved Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    K.C. Bowler; L. Del Debbio; J.M. Flynn; G.N, Lacagnina; V.I. Lesk; C.M. Maynard; D.G. Richards

    2000-07-01

    The decay constants of B and D mesons are computed in quenched lattice QCD at two different values of the coupling. The action and operators are ? (a) improved with non-perturbative coefficients where available. The results and systematic errors are discussed in detail. Results for vector decay constants, flavour symmetry breaking ratios of decay constants, the pseudoscalar-vector mass splitting and D meson masses are also presented.

  5. Challenges for QCD theory: some personal reflections

    International Nuclear Information System (INIS)

    Sjöstrand, T

    2013-01-01

    At the LHC all processes are QCD ones, whether ‘signal’ or ‘background’. In this review the frontiers of current QCD research are addressed, towards increased understanding, improved calculational precision, and role in potential future discoveries. Issues raised include: - the limits of perturbative QCD calculations and parton distribution usage,; - the nature of multiparton interactions,; - the impact of colour reconnection on physical observables,; - the need for progress on hadronization modelling,; - the improvements of parton showers and their combination with the matrix-element description,; - the use of QCD concepts in Beyond-the-Standard-Model scenarios and; - the key position of event generators and other software in the successful exploration of LHC physics. On the way, several questions are posed, where further studies are needed. (paper)

  6. Improved estimates of the B{sub (s)}→VV decays in perturbative QCD approach

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Zhi-Tian; Li, Ying [Yantai Univ. (China). Dept. of Physics; Ali, Ahmed [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Lue, Cai-Dian [Institute of High Energy Physics, Beijing, BJ (China); Theoretical Physics Center for Science Facilities, CAS, Beijing (China); Liu, Xin [Jiangsu Normal Univ., Xuzhou (China). School of Physics and Electronic Engineering

    2015-01-15

    We reexamine the branching ratios, CP-asymmetries, and other observables in a large number of B{sub q}→VV(q=u,d,s) decays in the perturbative QCD (PQCD) approach, where V denotes a light vector meson (ρ,K{sup *},ω,φ). The essential difference between this work and the earlier similar works is of parametric origin and in the estimates of the power corrections related to the ratio r{sup 2}{sub i}=m{sup 2}{sub V{sub i}}/m{sup 2}{sub B} (i=2,3) (m{sub V} and m{sub B} denote the masses of the vector and B meson, respectively). In particular, we use up-to-date distribution amplitudes for the final state mesons and keep the terms proportional to the ratio r{sup 2}{sub i} in our calculations. Our updated calculations are in agreement with the experimental data, except for a limited number of decays which we discuss. We emphasize that the penguin annihilation and the hard-scattering emission contributions are essential to understand the polarization anomaly, such as in the B→φK{sup *} and B{sub s}→φφ decay modes. We also compare our results with those obtained in the QCD factorization (QCDF) approach and comment on the similarities and differences, which can be used to discriminate between these approaches in future experiments.

  7. Recent developments in QCD for LHC physics

    International Nuclear Information System (INIS)

    Anastasiou, C.

    2006-01-01

    We will review recent theoretical developments in QCD, attempting to assess the phenomenological impact of new theoretical results and to identify potentially useful directions for the future. A part of the talk will be devoted to new imaginative ideas which are rapidly changing the traditional approach to QCD computations, and surprising theoretical discoveries from perturbative calculations on the structure of gauge theories. (author)

  8. Perturbative QCD contributions to inclusive processes

    International Nuclear Information System (INIS)

    Ritbergen, T. van.

    1996-01-01

    This thesis treats the calculation of quantum corrections to a number of high energy processes that are measured in current and future accelerator experiments. The main objective of these experiments is to accurately verify the generally accepted theory of electro-weak and strong interactions, known as the Standard model, and to look for possible deviations. Most of the processes that are treated in this thesis are of a type for which the final state of of a highly energetic scattering or decay process is measured inclusively. The higher order quantum corrections discussed in this thesis are due to strong interactions. To the inclusive decay rate of Z 0 bosons into all possible final states consisting of hadrons third order QCD contributions have been obtained. Also in the third order QCD an expansion for the inclusive hadronic decay rate of a τ-lepton was obtained. Then the top-quark-mass effects on the decay channels of a Higgs boson: Higgs→b-quarks and Higgs→gluons, were investigated. Thereafter the calculation of 3-loop contributions to the deep-inelastic lepton-nucleon scattering process is discussed. Finally the 3-loop contributions to the q 2 -dependence of the lower moments ∫ 0 1 x N-1 F(x,q 2 )dx, N=2,4,6,8 of the structure functions F 2 and F L were obtained. (orig./HSI)

  9. Nuclear properties from perturbative QCD

    International Nuclear Information System (INIS)

    Close, F.E.; Roberts, R.G.; Ross, G.G.

    1986-01-01

    Two apparently different descriptions of quark distributions in a nucleus may in fact be connected. A ''duality'' between the QCD approach and the conventional model of nucleon binding leads to nuclear properties being simply related to the anomalous dimensions of QCD. (orig.)

  10. Axion cosmology, lattice QCD and the dilute instanton gas

    International Nuclear Information System (INIS)

    Borsanyi, S.; Fodor, Z.; Mages, S.W.; Nogradi, D.; Szabo, K.K.

    2015-08-01

    Axions are one of the most attractive dark matter candidates. The evolution of their number density in the early universe can be determined by calculating the topological susceptibility χ(T) of QCD as a function of the temperature. Lattice QCD provides an ab initio technique to carry out such a calculation. A full result needs two ingredients: physical quark masses and a controlled continuum extrapolation from non-vanishing to zero lattice spacings. We determine χ(T) in the quenched framework (infinitely large quark masses) and extrapolate its values to the continuum limit. The results are compared with the prediction of the dilute instanton gas approximation (DIGA). A nice agreement is found for the temperature dependence, whereas the overall normalization of the DIGA result still differs from the non-perturbative continuum extrapolated lattice results by a factor of order ten. We discuss the consequences of our findings for the prediction of the amount of axion dark matter.

  11. A study on the interplay between perturbative QCD and CSS/TMD formalism in SIDIS processes

    Energy Technology Data Exchange (ETDEWEB)

    Boglione, M. [Univ. di Torino, Torino (Italy); INFN, Torino (Italy); Gonzalez Hernandez, J. O. [INFN, Torino (Italy); Melis, S. [Univ. di Torino, Torino (Italy); Prokudin, A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2015-02-16

    We study the Semi-Inclusive Deep Inelastic Scattering (SIDIS) cross section as a function of the transverse momentum, qT. In order to describe it over a wide region of qT, soft gluon resummation has to be performed. Here we will use the original Collins-Soper-Sterman (CSS) formalism; however, the same procedure would hold within the improved Transverse Momentum Dependent (TMD) framework. We study the matching between the region where fixed order perturbative QCD can successfully be applied and the region where soft gluon resummation is necessary. We find that the commonly used prescription of matching through the so-called Y-factor cannot be applied in the SIDIS kinematical configurations we examine. In particular, the non-perturbative component of the resummed cross section turns out to play a crucial role and should not be overlooked even at relatively high energies. As a result, the perturbative expansion of the resummed cross section in the matching region is not as reliable as it is usually believed and its treatment requires special attention.

  12. M{sub b} and f{sub B} from non-perturbatively renormalized HQET with N{sub f} = 2 light quarks

    Energy Technology Data Exchange (ETDEWEB)

    Blossier, Benoit [CNRS et Univ. Paris-Sud XI, Orsay (France). Lab. de Physique Theorique; Bulava, John [CERN, Geneva (Switzerland). Physics Dept.; Della Morte, Michele; Hippel, Georg von [Mainz Univ. (Germany). Inst. fuer Kernphysik; Donnellan, Michael; Simma, Hubert; Sommer, Rainer [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). NIC; Fritzsch, Patrick [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Garron, Nicolas [Edinburgh Univ. (United Kingdom). Tait Inst.; Heitger, Jochen [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1

    2011-12-15

    We present an updated analysis of the non-perturbatively renormalized b-quark mass and B meson decay constant based on CLS lattices with two dynamical non-perturbatively improved Wilson quarks. This update incorporates additional light quark masses and lattice spacings in large physical volume to improve chiral extrapolations and to reach the continuum limit. We use Heavy Quark Effective Theory (HQET) including 1/m{sub b} terms with non-perturbative coefficients based on the matching of QCD and HQET developed by the ALPHA collaboration during the past years. (orig.)

  13. Semihard QCD

    International Nuclear Information System (INIS)

    Kwiecinski, J.

    1989-01-01

    Recent results concerning the small x limit of parton distributions in perturbative QCD are reviewed. This includes in particular discussion of the bare Pomeron in perturbative QCD and of shadowing corrections. The minijet production processes and possible manifestation of semihard interactions in high energy pp-bar elastic scattering are also discussed. 46 refs., 8 figs. (author)

  14. Nucleon structure from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Dinter, Simon

    2012-11-13

    In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a{sup 2}) discretization effects.

  15. Nucleon structure from lattice QCD

    International Nuclear Information System (INIS)

    Dinter, Simon

    2012-01-01

    In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a 2 ) discretization effects.

  16. QCD: Renormalization for the practitioner

    International Nuclear Information System (INIS)

    Pascual, P.; Tarrach, R.

    1984-01-01

    These notes correspond to a GIFT (Grupo Interuniversitario de Fisica Teorica) course which was given by us in autumn 1983 at the University of Barcelona. Their main subject is renormalization in perturbative QCD and only the last chapter goes beyond perturbation theory. They are essentially self contained and their aim is to teach the student the techniques of perturbative QCD and the QCD sum rules. (orig./HSI)

  17. Hadronic corrections to electroweak observables from twisted mass lattice QCD

    International Nuclear Information System (INIS)

    Pientka, Grit

    2015-01-01

    For several benchmark quantities investigated to detect signs for new physics beyond the standard model of elementary particle physics, lattice QCD currently constitutes the only ab initio approach available at small momentum transfers for the computation of non-perturbative hadronic contributions. Among those observables are the lepton anomalous magnetic moments and the running of the electroweak coupling constants. We compute the leading QCD contribution to the muon anomalous magnetic moment by performing lattice QCD calculations on ensembles incorporating N f =2+1+1 dynamical twisted mass fermions. Considering active up, down, strange, and charm quarks, admits for the first time a direct comparison of the lattice data for the muon anomaly with phenomenological results because both the latter as well as the experimentally obtained values are sensitive to the complete first two generations of quarks at the current level of precision. Recently, it has been noted that improved measurements of the electron and tau anomalous magnetic moments might also provide ways of detecting new physics contributions. Therefore, we also compute their leading QCD contributions, which simultaneously serve as cross-checks of the value obtained for the muon. Additionally, we utilise the obtained data to compute the leading hadronic contribution to the running of the fine structure constant, which enters all perturbative QED calculations. Furthermore, we show that even for the weak mixing angle the leading QCD contribution can be computed from this data. In this way, we identify a new prime observable in the search for new physics whose hadronic contributions can be obtained from lattice QCD. With the results obtained in this thesis, we are able to exclude unsuitable phenomenologically necessary flavour separations and thus directly assist the presently more precise phenomenological determinations of this eminent quantity.

  18. Heterotic Pomeron: high energy hadronic collisions in QCD

    International Nuclear Information System (INIS)

    Chung-I Tan

    1993-01-01

    A unified treatment of high energy collisions in QCD is presented. Using a probabilistic approach, both perturbative (hard) and non-perturbative (soft) components are incorporated in a consistent fashion, leading to a ''Heterotic Pomeron''. As a Regge trajectory, it is non linear, approaching 1 in the limit t → -∞. 2 tabs., 9 refs

  19. Non-perturbative materialization of ghosts

    International Nuclear Information System (INIS)

    Emparan, Roberto; Garriga, Jaume

    2006-01-01

    In theories with a hidden ghost sector that couples to visible matter through gravity only, empty space can decay into ghosts and ordinary matter by graviton exchange. Perturbatively, such processes can be very slow provided that the gravity sector violates Lorentz invariance above some cut-off scale. Here, we investigate non-perturbative decay processes involving ghosts, such as the spontaneous creation of self-gravitating lumps of ghost matter, as well as pairs of Bondi dipoles (i.e. lumps of ghost matter chasing after positive energy objects). We find the corresponding instantons and calculate their Euclidean action. In some cases, the instantons induce topology change or have negative Euclidean action. To shed some light on the meaning of such peculiarities, we also consider the nucleation of concentrical domain walls of ordinary and ghost matter, where the Euclidean calculation can be compared with the canonical (Lorentzian) description of tunneling. We conclude that non-perturbative ghost nucleation processes can be safely suppressed in phenomenological scenarios

  20. Perturbative QCD contributions to inclusive processes

    Energy Technology Data Exchange (ETDEWEB)

    Ritbergen, T. van

    1996-09-24

    This thesis treats the calculation of quantum corrections to a number of high energy processes that are measured in current and future accelerator experiments. The main objective of these experiments is to accurately verify the generally accepted theory of electro-weak and strong interactions, known as the Standard model, and to look for possible deviations. Most of the processes that are treated in this thesis are of a type for which the final state of of a highly energetic scattering or decay process is measured inclusively. The higher order quantum corrections discussed in this thesis are due to strong interactions. To the inclusive decay rate of Z{sup 0} bosons into all possible final states consisting of hadrons third order QCD contributions have been obtained. Also in the third order QCD an expansion for the inclusive hadronic decay rate of a {tau}-lepton was obtained. Then the top-quark-mass effects on the decay channels of a Higgs boson: Higgs{yields}b-quarks and Higgs{yields}gluons, were investigated. Thereafter the calculation of 3-loop contributions to the deep-inelastic lepton-nucleon scattering process is discussed. Finally the 3-loop contributions to the q{sup 2}-dependence of the lower moments {integral}{sub 0}{sup 1}x{sup N-1}F(x,q{sup 2})dx, N=2,4,6,8 of the structure functions F{sub 2} and F{sub L} were obtained. (orig./HSI).

  1. Resummation of perturbative QCD by pade approximants

    International Nuclear Information System (INIS)

    Gardi, E.

    1997-01-01

    In this lecture I present some of the new developments concerning the use of Pade Approximants (PA's) for resuming perturbative series in QCD. It is shown that PA's tend to reduce the renormalization scale and scheme dependence as compared to truncated series. In particular it is proven that in the limit where the β function is dominated by the 1-loop contribution, there is an exact symmetry that guarantees invariance of diagonal PA's under changing the renormalization scale. In addition it is shown that in the large β 0 approximation diagonal PA's can be interpreted as a systematic method for approximating the flow of momentum in Feynman diagrams. This corresponds to a new multiple scale generalization of the Brodsky-Lepage-Mackenzie (BLM) method to higher orders. I illustrate the method with the Bjorken sum rule and the vacuum polarization function. (author)

  2. QCD Dual

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2009-01-01

    We uncover a novel solution of the 't Hooft anomaly matching conditions for QCD. Interestingly in the perturbative regime the new gauge theory, if interpreted as a possible QCD dual, predicts the critical number of flavors above which QCD in the nonperturbative regime, develops an infrared stable...

  3. Status and prospects for the calculation of hadron structure from lattice QCD

    International Nuclear Information System (INIS)

    Renner, Dru B.

    2010-02-01

    Lattice QCD calculations of hadron structure are a valuable complement to many experimental programs as well as an indispensable tool to understand the dynamics of QCD. I present a focused review of a few representative topics chosen to illustrate both the challenges and advances of our community: the momentum fraction, axial charge and charge radius of the nucleon. I will discuss the current status of these calculations and speculate on the prospects for accurate calculations of hadron structure from lattice QCD. (orig.)

  4. Recent Tests of QCD with the ATLAS Detector

    CERN Document Server

    Callea, Giuseppe; The ATLAS collaboration

    2018-01-01

    The ATLAS Collaboration has a large program to study various aspects of Quantum Chromodynamics starting from non-perturbative effects over diffractive physics to high precision perturbative calculations. In this talk, we review the latest results on Bose-Einstein correlations measured with the ATLAS detector along with an analysis of the momentum difference between charged hadrons in high–energy proton–proton collisions. The latter allows the investigation of observables sensitive to the predictions of the quantized string model. Going to higher energy scales, we present first measurements of jet substructure quantities at a hadron collider, calculated at next-to-next-to-leading-logarithm accuracy. In particular, the soft drop mass is measured in dijet events with the ATLAS detector at 13 TeV, unfolded to particle-level and compared to Monte Carlo simulations. Perturbative QCD at highest energies can be precisely tested with the measurement of particle jet production of which we present the latest results...

  5. Fractional analytic perturbation theory in Minkowski space and application to Higgs boson decay into a bb pair

    International Nuclear Information System (INIS)

    Bakulev, A. P.; Mikhailov, S. V.; Stefanis, N. G.

    2007-01-01

    We work out and discuss the Minkowski version of fractional analytic perturbation theory for QCD observables, recently developed and presented by us for the Euclidean region. The original analytic approach to QCD, initiated by Shirkovand Solovtsov, is summarized and relations to other proposals to achieve an analytic strong coupling are pointed out. The developed framework is applied to the Higgs boson decay into a bb pair, using recent results for the massless correlator of two quark scalar currents in the MS scheme.We present calculations for the decay width within the Minkowski version off ractional analytic perturbation theory including those non-power-series contributions that correspond to the O(α s 3 )-terms, also taking into account evolution effects of the running coupling and the b-quark-mass renormalization. Comparisons with previous results within standard QCD perturbation theory are performed and the differences are pointed out. The interplay between effects originating from the analyticity requirement and the analytic continuation from the spacelike to the timelike region and those due to the evolution of the heavy-quark mass is addressed, highlighting the differences from the conventional QCD perturbation theory

  6. Lattice QCD results on soft and hard probes of strongly interacting matter

    Science.gov (United States)

    Kaczmarek, Olaf

    2017-11-01

    We present recent results from lattice QCD relevant for the study of strongly interacting matter as it is produced in heavy ion collision experiments. The equation of state at non-vanishing density from a Taylor expansion up to 6th order will be discussed for a strangeness neutral system and using the expansion coefficients of the series limits on the critical point are estimated. Chemical freeze-out temperatures from the STAR and ALICE Collaborations will be compared to lines of constant physics calculated from the Taylor expansion of QCD bulk thermodynamic quantities. We show that qualitative features of the √{sNN} dependence of skewness and kurtosis ratios of net proton-number fluctuations measured by the STAR Collaboration can be understood from QCD results for cumulants of conserved baryon-number fluctuations. As an example for recent progress towards the determination of spectral and transport properties of the QGP from lattice QCD, we will present constraints on the thermal photon rate determined from a spectral reconstruction of continuum extrapolated lattice correlation functions in combination with input from most recent perturbative calculations.

  7. The strange quark mass and Lambda parameter of two flavor QCD

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsch, Patrick; Marinkovic, Marina [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Knechtli, Francesco; Leder, Bjoern [Wuppertal Univ. (Germany). Fachbereich C - Mathematik und Naturwissenschaften; Schaefer, Stefan [CERN, Geneva (Switzerland). Physics Dept.; Sommer, Rainer; Virotta, Francesco [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2012-06-15

    We complete the non-perturbative calculations of the strange quark mass and the {lambda} parameter in two flavor QCD by the ALPHA collaboration. The missing lattice scale is determined via the kaon decay constant, for whose chiral extrapolation complementary strategies are compared. We also give a value for the scale r{sub 0} in physical units as well as an improved determination of the renormalization constant Z{sub A}.

  8. Non-perturbative field theory/field theory on a lattice

    International Nuclear Information System (INIS)

    Ambjorn, J.

    1988-01-01

    The connection between the theory of critical phenomena in statistical mechanics and the renormalization of field theory is briefly outlined. The way of using this connection is described to get information about non-perturbative quantities in QCD and about more intelligent ways of doing the Monte Carlo (MC) simulations. The (MC) method is shown to be a viable one in high energy physics, but it is not a good substitute for an analytic understanding. MC-methods will be very valuable both for getting out hard numbers and for testing the correctness of new ideas

  9. QCD on the light cone

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1992-09-01

    The quantization of gauge theory at fixed light-cone time τ = t - z/c provides new perspectives for solving non-perturbative problems in quantum chromodynamics. The light-cone Fock state expansion provides both a precise definition of the relativistic wavefunctions of hadrons as bound-states of quarks and gluons and a general calculus for predicting QCD processes at the amplitude level. Applications to exclusive processes and weak decay amplitudes are discussed. The problem of computing the hadronic spectrum and the corresponding light-cone wavefunctions of QCD in one space and one time dimension has been successfully reduced to the diagonalization of a discrete representation of the light-cone Hamiltonian. The problems confronting the solution of gauge theories in 3 + 1 dimensions in the light-cone quantization formalism,, including zero modes and non-perturbative renormalization, are reviewed

  10. QCD factorization beyond leading twist in exclusive processes: rhoT-meson production

    International Nuclear Information System (INIS)

    Wallon, S.; Anikin, I.; ); Ivanov, D.; Pire, B.; Szymanowski, L.

    2009-01-01

    Exclusive processes in hard electroproduction with asymptotic γ * p center of mass energy is one of the best place for understanding QCD in the perturbative Regge limit. The HERA experiment recently provided precise data for rho electroproduction, including all spin density matrix elements. From QCD, it is expected that such a process should factorize between a hard (calculable) coefficient function, and hadronic (P and ρ) matrix elements. Such a factorization is up to now only proven for a longitudinally polarized rho. Within the kt-factorization approach (valid at large s γ * p), we evaluate the impact factor of the transition γ * → ρT taking into account the twist 3 contributions. We show that a gauge invariant expression is obtained with the help of QCD equations of motion. More generally, relying on these equations and on the gauge invariance of the factorized amplitude, the non-perturbative Distribution Amplitudes can be reduced to a minimal set. This opens the way to a consistent treatment of factorization for exclusive processes with a transversally polarized vector meson. (author)

  11. Perturbative corrections to Λ_b→Λ form factors from QCD light-cone sum rules

    International Nuclear Information System (INIS)

    Wang, Yu-Ming; Shen, Yue-Long

    2016-01-01

    We compute radiative corrections to Λ_b→Λ from factors, at next-to-leading logarithmic accuracy, from QCD light-cone sum rules with Λ_b-baryon distribution amplitudes. Employing the diagrammatic approach factorization of the vacuum-to-Λ_b-baryon correlation function is justified at leading power in Λ/m_b, with the aid of the method of regions. Hard functions entering the factorization formulae are identical to the corresponding matching coefficients of heavy-to-light currents from QCD onto soft-collinear effective theory. The universal jet function from integrating out the hard-collinear fluctuations exhibits richer structures compared with the one involved in the factorization expressions of the vacuum-to-B-meson correlation function. Based upon the QCD resummation improved sum rules we observe that the perturbative corrections at O(α_s) shift the Λ_b→Λ from factors at large recoil significantly and the dominant contribution originates from the next-to-leading order jet function instead of the hard coefficient functions. Having at hand the sum rule predictions for the Λ_b→Λ from factors we further investigate several decay observables in the electro-weak penguin Λ_b→Λ ℓ"+ℓ"− transitions in the factorization limit (i.e., ignoring the “non-factorizable' hadronic effects which cannot be expressed in terms of the Λ_b→Λ from factors), including the invariant mass distribution of the lepton pair, the forward-backward asymmetry in the dilepton system and the longitudinal polarization fraction of the leptonic sector.

  12. QCD in e+e- annihilation

    International Nuclear Information System (INIS)

    Ali, A.

    1981-04-01

    The promise of e + e - annihilation as an ideal laboratory to test Quantum Chromodynamics, QCD, has been the dominating theme in elementary particle physics during the last several years. An attempt is made to partially survey the subject in deep perturbative region in e + e - annihilation where theoretical ambiguities are minimal. Topics discussed include a review of the renormalization group methods relevant for e + e - annihilation, total hadronic cross section, jets and large-psub(T) phenomena, non-perturbative quark and gluon fragmentation effects and analysis of the jet distributions measured at DORIS, SPEAR and PETRA. My hope is to review realistic tests of QCD in e + e - annihilation - as opposed to the ultimate tests, which abound in literature. (orig.)

  13. The generalized scheme-independent Crewther relation in QCD

    Science.gov (United States)

    Shen, Jian-Ming; Wu, Xing-Gang; Ma, Yang; Brodsky, Stanley J.

    2017-07-01

    The Principle of Maximal Conformality (PMC) provides a systematic way to set the renormalization scales order-by-order for any perturbative QCD calculable processes. The resulting predictions are independent of the choice of renormalization scheme, a requirement of renormalization group invariance. The Crewther relation, which was originally derived as a consequence of conformally invariant field theory, provides a remarkable connection between two observables when the β function vanishes: one can show that the product of the Bjorken sum rule for spin-dependent deep inelastic lepton-nucleon scattering times the Adler function, defined from the cross section for electron-positron annihilation into hadrons, has no pQCD radiative corrections. The ;Generalized Crewther Relation; relates these two observables for physical QCD with nonzero β function; specifically, it connects the non-singlet Adler function (Dns) to the Bjorken sum rule coefficient for polarized deep-inelastic electron scattering (CBjp) at leading twist. A scheme-dependent ΔCSB-term appears in the analysis in order to compensate for the conformal symmetry breaking (CSB) terms from perturbative QCD. In conventional analyses, this normally leads to unphysical dependence in both the choice of the renormalization scheme and the choice of the initial scale at any finite order. However, by applying PMC scale-setting, we can fix the scales of the QCD coupling unambiguously at every order of pQCD. The result is that both Dns and the inverse coefficient CBjp-1 have identical pQCD coefficients, which also exactly match the coefficients of the corresponding conformal theory. Thus one obtains a new generalized Crewther relation for QCD which connects two effective charges, αˆd (Q) =∑i≥1 αˆg1 i (Qi), at their respective physical scales. This identity is independent of the choice of the renormalization scheme at any finite order, and the dependence on the choice of the initial scale is negligible. Similar

  14. Non-singlet coefficient functions for charged-current deep-inelastic scattering to the third order in QCD

    International Nuclear Information System (INIS)

    Davies, J.; Vogt, A.

    2016-06-01

    We have calculated the coefficient functions for the structure functions F_2, F_L and F_3 in ν- anti ν charged-current deep-inelastic scattering (DIS) at the third order in the strong coupling α_s, thus completing the description of unpolarized inclusive W"±-exchange DIS to this order of massless perturbative QCD. In this brief note, our new results are presented in terms of compact approximate expressions that are sufficiently accurate for phenomenological analyses. For the benefit of such analyses we also collect, in a unified notation, the corresponding lower-order contributions and the flavour non-singlet coefficient functions for ν+ anti ν charged-current DIS. The behaviour of all six third-order coefficient functions at small Bjorken-x is briefly discussed.

  15. Dynamical effects of QCD vacuum structure

    International Nuclear Information System (INIS)

    Ferreira, Erasmo

    1994-01-01

    The role of the QCD vacuum structure in the determination of the properties of states and processes occurring in the confinement regime of QCD is reviewed. The finite range of the vacuum correlations is discussed, and an analytical form is suggested for the correlation functions. The role of the vacuum quantum numbers in the phenomenology of high-energy scattering is reviewed. The vacuum correlation model of non-perturbative QCD is mentioned as a bridge between the fundamental theory and the description of the experiments. (author). 13 refs., 1 fig

  16. Neutron star structure from QCD

    CERN Document Server

    Fraga, Eduardo S; Vuorinen, Aleksi

    2016-01-01

    In this review article, we argue that our current understanding of the thermodynamic properties of cold QCD matter, originating from first principles calculations at high and low densities, can be used to efficiently constrain the macroscopic properties of neutron stars. In particular, we demonstrate that combining state-of-the-art results from Chiral Effective Theory and perturbative QCD with the current bounds on neutron star masses, the Equation of State of neutron star matter can be obtained to an accuracy better than 30% at all densities.

  17. Dynamical chiral-symmetry breaking in dual QCD

    International Nuclear Information System (INIS)

    Krein, G.; Williams, A.G.

    1991-01-01

    We have extended recent studies by Baker, Ball, and Zachariasen (BBZ) of dynamical chiral-symmetry breaking in dual QCD. Specifically, we have taken dual QCD to specify the nonperturbative infrared nature of the quark-quark interaction and then we have smoothly connected onto this the known leading-log perturbative QCD interaction in the ultraviolet region. In addition, we have solved for a momentum-dependent self-energy and have used the complete lowest-order dual QCD quark-quark interaction. We calculate the quark condensate left-angle bar qq right-angle and the pion decay constant f π within this model. We find that the dual QCD parameters needed to give acceptable results are reasonably consistent with those extracted from independent physical considerations by BBZ

  18. Investigation of the factorization scheme dependence of finite order perturbative QCD calculations

    Czech Academy of Sciences Publication Activity Database

    Kolář, Karel

    -, č. 11 (2011), 005/1-005/44 ISSN 1126-6708 R&D Projects: GA MŠk LC527 Institutional research plan: CEZ:AV0Z10100502 Keywords : QCD * parton distribution functions * factorization schemes * NLO Monte Carlo event generators Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 5.831, year: 2011

  19. Experimental status QCD

    International Nuclear Information System (INIS)

    Radyushkin, A.V.; Slepchenko, L.A.

    1983-01-01

    Analysis of experimental status of quantum chromodynamics (QCD) has been carried out. A short introduction into QCD is given. QCD sum rules are considered. Jets in e + e - annihilation and inclusive processes of lepton-hadron and hadron-hadron scattering are considered. Effect of QCD corrections to perturbation theory on quark count is analyzed

  20. Study of B0→J/ψD(*) and ηcD(*) in perturbative QCD

    International Nuclear Information System (INIS)

    Eilam, Gad; Ladisa, Massimo; Yang Yadong

    2002-01-01

    Motivated by recent interest in soft J/ψ production in B decays, we investigate B 0 →J/ψ D ( * ) and η c D ( * ) decays in perturbative QCD. We find that, within that framework, these decays are calculable since the heavy cc(bar sign) pair in the final states is created by a hard gluon. The branching ratios are estimated to be around 10 -7 -10 -8 , too small to be consistent with the data, suggesting that other mechanism(s) contribute to the observed excess of soft J/ψ in B 0 →J/ψ+X decays. The possibility of the production of a hybrid sd(bar sign)g meson with a mass of about 2 GeV is briefly entertained

  1. The IR sector of QCD: lattice versus Schwinger-Dyson equations

    International Nuclear Information System (INIS)

    Binosi, Daniele

    2010-01-01

    Important information about the infrared dynamics of QCD is encoded in the behavior of its (of-shell) Green's functions, most notably the gluon and the ghost propagators. Due to recent improvements in the quality of lattice data and the truncation schemes employed for the Schwinger-Dyson equations we have now reached a point where the interplay between these two non-perturbative tools can be most fruitful. In this talk several of the above points will be reviewed, with particular emphasis on the implications for the ghost sector, the non-perturbative effective charge of QCD, and the Kugo-Ojima function.

  2. Application of the perturbation theory for sensitivity calculations in thermalhydraulics reactor calculations

    International Nuclear Information System (INIS)

    Andrade Lima, F.R. de

    1986-01-01

    The sensitivity of non linear responses associated with physical quantities governed by non linear differential systems can be studied using perturbation theory. The equivalence and formal differences between the differential and GPT formalisms are shown and both are used for sensitivity calculations of transient problems in a typical PWR coolant channel. The results obtained are encouraging with respect to the potential of the method for thermalhydraulics calculations normally performed for reactor design and safety analysis. (Author) [pt

  3. Solving QCD via multi-Regge theory

    International Nuclear Information System (INIS)

    White, A. R.

    1998-01-01

    To solve QCD at high-energy the authors must simultaneously find the hadronic states and the exchanged pomeron (IP) giving UNITARY scattering amplitudes. Experimentally, the IP ∼ a Regge pole at small Q 2 and a single gluon at larger Q 2 . (F 2 D -H1, dijets-ZEUS). In the solution which the author describes, these non-perturbative properties of the IP are directly related to the non-perturbative confinement and chiral symmetry breaking properties of hadrons

  4. N-jettiness Subtractions for NNLO QCD calculations

    International Nuclear Information System (INIS)

    Gaunt, Jonathan R.; Stahlhofen, Maximilian; Tackmann, Frank J.; Walsh, Jonathan R.; California Univ., CA

    2015-05-01

    We present a subtraction method utilizing the N-jettiness observable, Τ N , to perform QCD calculations for arbitrary processes at next-to-next-to-leading order (NNLO). Our method employs soft-collinear effective theory (SCET) to determine the IR singular contributions of N-jet cross sections for Τ N → 0, and uses these to construct suitable Τ N -subtractions. The construction is systematic and economic, due to being based on a physical observable. The resulting NNLO calculation is fully differential and in a form directly suitable for combining with resummation and parton showers. We explain in detail the application to processes with an arbitrary number of massless partons at lepton and hadron colliders together with the required external inputs in the form of QCD amplitudes and lower-order calculations. We provide explicit expressions for the Τ N -subtractions at NLO and NNLO. The required ingredients are fully known at NLO, and at NNLO for processes with two external QCD partons. The remaining NNLO ingredient for three or more external partons can be obtained numerically with existing NNLO techniques. As an example, we employ our method to obtain the NNLO rapidity spectrum for Drell-Yan and gluon-fusion Higgs production. We discuss aspects of numerical accuracy and convergence and the practical implementation. We also discuss and comment on possible extensions, such as more-differential subtractions, necessary steps for going to N 3 LO, and the treatment of massive quarks.

  5. Topics in quantum chromodynamics: two loop Feynman gauge calculation of the meson nonsinglet evolution potential and fourier acceleration of the calculation of the fermion propagator in lattice QCD

    International Nuclear Information System (INIS)

    Katz, G.R.

    1986-01-01

    Part I of this thesis is a perturbative QCD calculation to two loops of the meson nonsinglet evolution potential in the Feynman gauge. The evolution potential describes the momentum dependence of the distribution amplitude. This amplitude is needed for the calculation to beyond leading order of exclusive amplitudes and form factors. Techniques are presented that greatly simplify the calculation. The results agree with an independent light-cone gauge calculation and disagree with predictions made using conformal symmetry. In Part II the author presents a Fourier acceleration method that is effective in accelerating the computation of the fermion propagator in lattice QCD. The conventional computation suffers from critical slowing down: the long distance structure converges much slower than the short distance structure. by evaluating the fermion propagator in momentum space using fast Fourier transforms, it is possible to make different length scales converge at a more equal rate. From numerical experiments made on a 8 4 lattice, the author obtained savings of a factor of 3 to 4 by using Fourier acceleration. He also discusses the important of gauge fixing when using Fourier acceleration

  6. The running QCD coupling in the pre-asymptotic region

    Energy Technology Data Exchange (ETDEWEB)

    Burgio, G.; Di Renzo, F.; Parrinello, C.; Pittori, C

    1999-03-01

    We study deviations from the perturbative asymptotic behaviour in the running QCD coupling by analysing non-perturbative measurements of {alpha}{sub s}(p) at low momenta (p {approx} 2 GeV) as obtained from the lattice three-gluon vertex. Our exploratory study provides some evidence for power corrections to the perturbative running proportional to 1/p{sup 2}.

  7. QCD in gauge-boson production at the LHC

    CERN Document Server

    Schott, Matthias; The ATLAS collaboration

    2018-01-01

    Measurements of the Drell-Yan production of W and Z/gamma* bosons at the LHC provide a benchmark of our understanding of perturbative QCD and probe the proton structure in a unique way. The ATLAS and CMS collaborations have performed several high precision measurements at different center-of-mass energies, ranging from single to triple differential cross sections. These measurements are the key in improving physics modelling uncertainties of electroweak precision measurements at the LHC. Moreover, perturbative QCD can be tested further in a multi-scale environment, when studying the production of jets in association with single and di-bosons final states. In this talk, we review the latest measurements, discuss the compatibility between the experiments and compare the results to the state-of-the-art QCD calculations and Monte Carlo simulations, as well their potential impact on improving our understanding PDFs.

  8. Winter Workshop on Recent QCD Advances at the LHC, Slides of the presentations

    International Nuclear Information System (INIS)

    D'Enterria, D.; Skands, P.; Siodmok, A.K.; Hoeth, H.; Jung, H.; Caforio, D.; Poghosyan, M.; Aquines, O.; Mitsuka, G.; Toia, A.; Jalilian-Marian, J.; Watt, G.; Guzzi, M.; Sarkar, A.; Paukkunen, H.; Kucharczyk, M.; Gouzevitch, M.; Bartels, J.; Lopez Albacete, J.; Teixeira de Almeida Milhano, G.; Marquet, C.; Kosower, D.; Guillet, J.P.; Arleo, F.; Hance, M.; Kolberg, T.R.; Weber, M.A.; Delsart, P.A.; Hinzmann, A.; Vincter, M.; Soyez, G.; Busch, O.; Nguyen, M.; Rybar, M.; Schienbein, I.; Lansberg, J.P.; Britsch, M.; Dorigo, T.; De Capua, S.; Greco, V.; Prino, F.; Panikashvili, N.; Park, W.J.; Ulrich, R.M.; Pecjak, B.; Silvestre, C.; Van Eldik, N.

    2012-01-01

    With the recent startup of operation at the Large Hadron Collider (LHC), the physics of the strong interaction described by the theory of Quantum Chromodynamics (QCD) explores a new territory in proton-proton and Pb-Pb collisions at energies never reached before: √(s)=7 TeV for p-p collisions and √=2.76 TeV for Pb-Pb collisions. The topics of the workshop are organized around 3 main axes: perturbative QCD (including jets, high-P T , direct photons, heavy quarks, quarkonia,...), QCD in the non-perturbative regime (including inclusive hadron production, diffraction,...) and low-x QCD. This document gathers the slides of all the presentations

  9. Probing QCD in low energy anti pp collisions

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1986-06-01

    A number of exclusive and inclusive antiproton reactions are discussed which could provide useful constraints or test novel features of quantum chromodynamics in the intermediate momentum transfer domain involving both perturbative and non-perturbative dynamics. High momentum transfer reactions are briefly reviewed. Inclusive antiproton reactions and the QCD critical length, QCD predictions for proton-antiproton exclusive processes, and studies of the Compton amplitude in proton-antiproton annihilation are covered. Testing hadron helicity conservation in heavy quark resonance is discussed. Also covered are heavy hadron pair production in proton-antiproton exclusive interactions, exclusive nuclear reactions, and quasi-exclusive nuclear processes

  10. The QCD equation of state for two flavours at non-zero chemical potential

    CERN Document Server

    Ejiri, S; Döring, M; Hands, S J; Kaczmarek, O; Karsch, Frithjof; Laermann, E; Redlich, K

    2006-01-01

    We present results of a simulation of 2 flavour QCD on a $16^3\\times4$ lattice using p4-improved staggered fermions with bare quark mass $m/T=0.4$. Derivatives of the thermodynamic grand canonical partition function $Z(V,T,\\mu_u,\\mu_d)$ with respect to chemical potentials $\\mu_{u,d}$ for different quark flavours are calculated up to sixth order, enabling estimates of the pressure and the quark number density as well as the chiral condensate and various susceptibilities as functions of $\\mu_{u,d}$ via Taylor series expansion. Results are compared to high temperature perturbation theory as well as a hadron resonance gas model. We also analyze baryon as well as isospin fluctuations and discuss the relation to the chiral critical point in the QCD phase diagram. We moreover discuss the dependence of the heavy quark free energy on the chemical potential.

  11. Non-perturbative improvement of the axial current with three dynamical flavors and the Iwasaki gauge action

    International Nuclear Information System (INIS)

    Kaneko, T.; Hashimoto, S.; Aoki, S.; Hoffmann, R.

    2007-03-01

    We perform a non-perturbative determination of the improvement coefficient c A to remove O(a) discretization errors in the axial vector current in three-flavor lattice QCD with the Iwasaki gauge action and the standard O(a)-improved Wilson quark action. An improvement condition with a good sensitivity to c A is imposed at constant physics. Combining our results with the perturbative expansion, c A is now known rather precisely for a -1 >or similar 1.6 GeV. (orig.)

  12. Tests of perturbative and non perturbative structure of moments of hadronic event shapes using experiments JADE and OPAL

    International Nuclear Information System (INIS)

    Pahl, Christoph Johannes

    2008-01-01

    In hadron production data of the e + e - annihilation experiments JADE and OPAL we measure the first five moments of twelve hadronic-event-shape variables at c.m. energies from 14 to 207 GeV. From the comparison of the QCD NLO prediction with the data corrected by means of MC models about hadronization we obtain the reference value of the strong coupling α s (M Z 0 )=0.1254±0.0007(stat.)±0.0010(exp.) +0.0009 -0.0 0 23 (had.) +0.0069 -0.0053 (theo.). For some, especially higher moments, systematic unsufficiencies in the QCD NLO prediction are recognizable. Simultaneous fits to two moments under assumption of identical renormalization scales yield scale values from x μ =0.057 to x μ =0.196. We check predictions of different non-perturbative models. From the single-dressed-gluon approximation a perturbative prediction in O(α 5 s ) results with neglegible energy power correction, which describes the thrust average on hadron level well with α s (M Z 0 )=0.1186±0,0017(exp.) -0.0028 +0.0033 (theo.). The variance of the event-shape variable is measured and compared with models as well as predictions. [de

  13. Introduction to non-perturbative quantum chromodynamics

    International Nuclear Information System (INIS)

    Pene, O.

    1995-01-01

    Quantum chromodynamics is considered to be the theory of strong interaction. The main peculiarity of this theory is that its asymptotic states (hadrons) are different from its elementary fields (quarks and gluons). This property plays a great part in any physical process involving small momentum-energy transfers. In such a range perturbative methods are no longer allowed. This work focuses on other tools such as QCD symmetry, the quark model, Green functions and the sum rules. To get hadron characteristics numerically, QCD on lattices is used but only in the case of simple process involving no more than one hadron in the initial and final states because of the complexity of the Green function. Some examples using a Monte-Carlo simulation are given. (A.C.)

  14. Perturbative corrections to B → D form factors in QCD

    Science.gov (United States)

    Wang, Yu-Ming; Wei, Yan-Bing; Shen, Yue-Long; Lü, Cai-Dian

    2017-06-01

    We compute perturbative QCD corrections to B → D form factors at leading power in Λ/ m b , at large hadronic recoil, from the light-cone sum rules (LCSR) with B-meson distribution amplitudes in HQET. QCD factorization for the vacuum-to- B-meson correlation function with an interpolating current for the D-meson is demonstrated explicitly at one loop with the power counting scheme {m}_c˜ O(√{Λ {m}_b}) . The jet functions encoding information of the hard-collinear dynamics in the above-mentioned correlation function are complicated by the appearance of an additional hard-collinear scale m c , compared to the counterparts entering the factorization formula of the vacuum-to- B-meson correction function for the construction of B → π from factors. Inspecting the next-to-leading-logarithmic sum rules for the form factors of B → Dℓν indicates that perturbative corrections to the hard-collinear functions are more profound than that for the hard functions, with the default theory inputs, in the physical kinematic region. We further compute the subleading power correction induced by the three-particle quark-gluon distribution amplitudes of the B-meson at tree level employing the background gluon field approach. The LCSR predictions for the semileptonic B → Dℓν form factors are then extrapolated to the entire kinematic region with the z-series parametrization. Phenomenological implications of our determinations for the form factors f BD +,0 ( q 2) are explored by investigating the (differential) branching fractions and the R( D) ratio of B → Dℓν and by determining the CKM matrix element |V cb | from the total decay rate of B → Dμν μ .

  15. Freezing of the QCD coupling constant and the pion form factor

    International Nuclear Information System (INIS)

    Aguilar, A.C.; Mihara, A.; Natale, A.A.

    2003-01-01

    The possibility that the QCD coupling constant (α s ) has an infrared finite behavior (freezing) has been extensively studied in recent years. We compare phenomenological values of the 'frozen' the QCD running coupling between different classes of solutions obtained through non-perturbative Schwinger-Dyson Equations. With these solutions were computed QCD predictions for the asymptotic pion form factor which, in turn, were compared with experiment. (author)

  16. High-loop perturbative renormalization constants for Lattice QCD (III): three-loop quark currents for Iwasaki gauge action and n{sub f} = 4 Wilson fermions

    Energy Technology Data Exchange (ETDEWEB)

    Brambilla, M.; Di Renzo, F. [Universita di Parma (Italy); INFN, Gruppo Collegato di Parma, Dipartimento di Fisica e Scienze della Terra, Parma (Italy); Hasegawa, M. [Universita di Parma (Italy); Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); INFN, Gruppo Collegato di Parma, Dipartimento di Fisica e Scienze della Terra, Parma (Italy)

    2014-07-15

    This is the third of a series of papers on three-loop computation of renormalization constants for Lattice QCD. Our main points of interest are results for the regularization defined by the Iwasaki gauge action and n{sub f} Wilson fermions. Our results for quark bilinears renormalized according to the RI'-MOM scheme can be compared to non-perturbative results. The latter are available for twisted mass QCD: being defined in the chiral limit, the renormalization constants must be the same. We also address more general problems. In particular, we discuss a few methodological issues connected to summing the perturbative series such as the effectiveness of boosted perturbation theory and the disentanglement of irrelevant and finite-volume contributions. Discussing these issues we consider not only the new results of this paper, but also those for the regularization defined by the tree-level Symanzik improved gauge action and n{sub f} Wilson fermions, which we presented in a recent paper of ours. We finally comment on the extent to which the techniques we put at work in the NSPT context can provide a fresher look into the lattice version of the RI'-MOM scheme. (orig.)

  17. On the chiral perturbation theory for two-flavor two-color QCD at finite chemical potential

    Czech Academy of Sciences Publication Activity Database

    Brauner, Tomáš

    2006-01-01

    Roč. 21, č. 7 (2006), s. 559-569 ISSN 0217-7323 R&D Projects: GA ČR(CZ) GD202/05/H003 Institutional research plan: CEZ:AV0Z10480505 Keywords : two-color QCD * chiral perturbation theory * chemical potential Subject RIV: BE - Theoretical Physics Impact factor: 1.564, year: 2006

  18. Towards the chiral limit in QCD

    International Nuclear Information System (INIS)

    Shailesh Chandrasekharan

    2006-01-01

    Computing hadronic observables by solving QCD from first principles with realistic quark masses is an important challenge in fundamental nuclear and particle physics research. Although lattice QCD provides a rigorous framework for such calculations many difficulties arise. Firstly, there are no good algorithms to solve lattice QCD with realistically light quark masses. Secondly, due to critical slowing down, Monte Carlo algorithms are able to access only small lattice sizes on coarse lattices. Finally, due to sign problems it is almost impossible to study the physics of finite baryon density. Lattice QCD contains roughly three mass scales: the cutoff (or inverse lattice spacing) a -1 , the confinement scale Λ QCD , and the pion mass m π . Most conventional Monte Carlo algorithms for QCD become inefficient in two regimes: when Λ QCD becomes small compared to a -1 and when m π becomes small compared to Λ QCD . The former can be largely controlled by perturbation theory thanks to asymptotic freedom. The latter is more difficult since chiral extrapolations are typically non-analytic and can be unreliable if the calculations are not done at sufficiently small quark masses. For this reason it has been difficult to compute quantities close to the chiral limit. The essential goal behind this proposal was to develop a new approach towards understanding QCD and QCD-like theories with sufficiently light quarks. The proposal was based on a novel cluster algorithm discovered in the strong coupling limit with staggered fermions [1]. This algorithm allowed us to explore the physics of exactly massless quarks and as well as light quarks. Thus, the hope was that this discovery would lead to the complete solution of at least a few strongly coupled QCD-like theories. The solution would be far better than those achievable through conventional methods and thus would be able to shed light on the chiral physics from a new direction. By the end of the funding period, the project led

  19. Components of QCD

    International Nuclear Information System (INIS)

    Sivers, D.

    1979-10-01

    Some aspects of a simple strategy for testing the validity of QCD perturbation theory are examined. The importance of explicit evaluation of higher-order contributions is illustrated by considering Z 0 decays. The recent progress toward understanding exclusive processes in QCD is discussed and some simple examples are given of how to isolate and test the separate components of the perturbation expansion in a hypothetical series of jet experiments

  20. Non-perturbative improvement of the axial current with three dynamical flavors and the Iwasaki gauge action

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, T.; Hashimoto, S. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan)]|[Graduate Univ. for Advanced Studies, Tsukuba, Ibaraki (Japan); Aoki, S. [Tsukuba Univ., Ibaraki (Japan). Graduate School of Pure and Applied Sciences]|[Brookhaven National Laboratory, Upton, NY (United States). Riken BNL Research Center; Della Morte, M. [CERN, Physics Dept., Geneva (Switzerland); Hoffmann, R. [Colorado Univ., Boulder, CO (United States). Dept. of Physics; Sommer, R. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2007-03-15

    We perform a non-perturbative determination of the improvement coefficient c{sub A} to remove O(a) discretization errors in the axial vector current in three-flavor lattice QCD with the Iwasaki gauge action and the standard O(a)-improved Wilson quark action. An improvement condition with a good sensitivity to c{sub A} is imposed at constant physics. Combining our results with the perturbative expansion, c{sub A} is now known rather precisely for a{sup -1}>or similar 1.6 GeV. (orig.)

  1. Hadron scattering, resonances, and QCD

    Science.gov (United States)

    Briceño, R. A.

    2016-11-01

    The non-perturbative nature of quantum chromodynamics (QCD) has historically left a gap in our understanding of the connection between the fundamental theory of the strong interactions and the rich structure of experimentally observed phenomena. For the simplest properties of stable hadrons, this is now circumvented with the use of lattice QCD (LQCD). In this talk I discuss a path towards a rigorous determination of few-hadron observables from LQCD. I illustrate the power of the methodology by presenting recently determined scattering amplitudes in the light-meson sector and their resonance content.

  2. Parton distributions and lattice QCD calculations: A community white paper

    Science.gov (United States)

    Lin, Huey-Wen; Nocera, Emanuele R.; Olness, Fred; Orginos, Kostas; Rojo, Juan; Accardi, Alberto; Alexandrou, Constantia; Bacchetta, Alessandro; Bozzi, Giuseppe; Chen, Jiunn-Wei; Collins, Sara; Cooper-Sarkar, Amanda; Constantinou, Martha; Del Debbio, Luigi; Engelhardt, Michael; Green, Jeremy; Gupta, Rajan; Harland-Lang, Lucian A.; Ishikawa, Tomomi; Kusina, Aleksander; Liu, Keh-Fei; Liuti, Simonetta; Monahan, Christopher; Nadolsky, Pavel; Qiu, Jian-Wei; Schienbein, Ingo; Schierholz, Gerrit; Thorne, Robert S.; Vogelsang, Werner; Wittig, Hartmut; Yuan, C.-P.; Zanotti, James

    2018-05-01

    In the framework of quantum chromodynamics (QCD), parton distribution functions (PDFs) quantify how the momentum and spin of a hadron are divided among its quark and gluon constituents. Two main approaches exist to determine PDFs. The first approach, based on QCD factorization theorems, realizes a QCD analysis of a suitable set of hard-scattering measurements, often using a variety of hadronic observables. The second approach, based on first-principle operator definitions of PDFs, uses lattice QCD to compute directly some PDF-related quantities, such as their moments. Motivated by recent progress in both approaches, in this document we present an overview of lattice-QCD and global-analysis techniques used to determine unpolarized and polarized proton PDFs and their moments. We provide benchmark numbers to validate present and future lattice-QCD calculations and we illustrate how they could be used to reduce the PDF uncertainties in current unpolarized and polarized global analyses. This document represents a first step towards establishing a common language between the two communities, to foster dialogue and to further improve our knowledge of PDFs.

  3. Determination of electric dipole transitions in heavy quarkonia using potential non-relativistic QCD

    Science.gov (United States)

    Segovia, Jorge; Steinbeißer, Sebastian

    2018-05-01

    The electric dipole transitions {χ }bJ(1P)\\to γ \\Upsilon (1S) with J = 0, 1, 2 and {h}b(1P)\\to γ {η }b(1S) are computed using the weak-coupling version of a low-energy effective field theory named potential non-relativistic QCD (pNRQCD). In order to improve convergence and thus give firm predictions for the studied reactions, the full static potential is incorporated into the leading order Hamiltonian; moreover, we must handle properly renormalon effects and re-summation of large logarithms. The precision we reach is {k}γ 3/{(mv)}2× O({v}2), where kγ is the photon energy, m is the mass of the heavy quark and v its velocity. Our analysis separates those relativistic contributions that account for the electromagnetic interaction terms in the pNRQCD Lagrangian which are v 2 suppressed and those that account for wave function corrections of relative order v 2. Among the last ones, corrections from 1/m and 1/m2 potentials are computed, but not those coming from higher Fock states since they demand non-perturbative input and are {{{Λ }}}{{QCD}}2/{(mv)}2 or {{{Λ }}}{{QCD}}3/({m}3{v}4) suppressed, at least, in the strict weak coupling regime. These proceedings are based on the forthcoming publication [1].

  4. Calculation of hadronic matrix elements using lattice QCD

    International Nuclear Information System (INIS)

    Gupta, R.

    1993-01-01

    The author gives a brief introduction to the scope of lattice QCD calculations in his effort to extract the fundamental parameters of the standard model. This goal is illustrated by two examples. First the author discusses the extraction of CKM matrix elements from measurements of form factors for semileptonic decays of heavy-light pseudoscalar mesons such as D → Keν. Second, he presents the status of results for the kaon B parameter relevant to CP violation. He concludes the talk with a short outline of his experiences with optimizing QCD codes on the CM5

  5. Calculation of hadronic matrix elements using lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, R.

    1993-08-01

    The author gives a brief introduction to the scope of lattice QCD calculations in his effort to extract the fundamental parameters of the standard model. This goal is illustrated by two examples. First the author discusses the extraction of CKM matrix elements from measurements of form factors for semileptonic decays of heavy-light pseudoscalar mesons such as D {yields} Ke{nu}. Second, he presents the status of results for the kaon B parameter relevant to CP violation. He concludes the talk with a short outline of his experiences with optimizing QCD codes on the CM5.

  6. Small-x physics in perturbative QCD

    International Nuclear Information System (INIS)

    Lipatov, L.N.

    1996-07-01

    We review the parton model and the Regge approach to the QCD description of the deep-inelastic ep scattering at the small Bjorken variable x and demonstrate their relation with the DGLAP and BFKL evolution equations. It is shown, that in the leading logarithmic approximation the gluon is reggeized and the pomeron is a compound state of two reggeized gluons. The conformal invariance of the BFKL pomeron in the impact parameter space is used to investigate the scattering amplitudes at high energies and fixed momentum transfers. The remarkable properties of the Schroedinger equation for compound states of an arbitrary number of reggeized gluons in the multi-colour QCD are reviewed. The gauge-invariant effective action describing the gluon-Reggeon interactions is constructed. The known next-to-leading corrections to the QCD pomeron are discussed. (orig.)

  7. Multiphoton transitions in semiconductors in the non-perturbative approach

    International Nuclear Information System (INIS)

    Iqbal, M.Z.; Hassan, A.R.

    1987-09-01

    Transition rates for multiphoton absorption via direct band-to-band excitation have been calculated using a non-perturbative approach due to Jones and Reiss, based on the Volkov type final state wave functions. Both cases of parabolic and non-parabolic energy bands have been included in our calculations. Absorption coefficients have been obtained for the cases of plane polarized and circularly polarized light. In particular, two-photon absorption coefficients are derived for the two cases of polarization for the parabolic band approximation as well as for non-parabolic bands and compared with the results based on perturbation theory. Numerical estimates of the two photon absorption coefficients resulting from our calculations are also provided. (author). 10 refs, 1 tab

  8. Effective field theory approach to parton-hadron conversion in high energy QCD processes

    CERN Document Server

    Kinder-Geiger, Klaus

    1995-01-01

    A QCD based effective action is constructed to describe the dynamics of confinement and symmetry breaking in the process of parton-hadron conversion. The deconfined quark and gluon degrees of freedom of the perturbative QCD vacuum are coupled to color singlet collective fields representing the non-perturbative vacuum with broken scale and chiral symmetry. The effective action recovers QCD with its scale and chiral symmetry properties at short space-time distances, but yields at large distances (r > 1 fm) to the formation of symmetry breaking gluon and quark condensates. The approach is applied to the evolution of a fragmenting q\\bar q pair with its generated gluon distribution, starting from a large hard scale Q^2. The modification of the gluon distribution arising from the coupling to the non-perturbative collective field results eventually in a complete condensation of gluons. Color flux tube configurations of the gluons in between the q\\bar q pair are obtained as solutions of the equations of motion. With ...

  9. QCD: color or glow

    International Nuclear Information System (INIS)

    Reya, E.

    1982-01-01

    The some of motivations for color and the numerous qualitative successes of QCD are presented. Non-leading higher order contributions to the (x, Q 2 )-dependence of scaling violations of non-singlet and singlet structure functions are discussed, especially non-perturbative correction to deep inelastic processes such as higher twist contributions. Finally the topic of how to account theoretically for the existence of free fractionally charged particles by concentrating mainly on spontaneously breaking SU(3) color is presented. (M.F.W.)

  10. Lattice QCD Calculation of Nucleon Structure

    International Nuclear Information System (INIS)

    Liu, Keh-Fei; Draper, Terrence

    2016-01-01

    It is emphasized in the 2015 NSAC Long Range Plan that 'understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics.' Over the last three decades, lattice QCD has developed into a powerful tool for ab initio calculations of strong-interaction physics. Up until now, it is the only theoretical approach to solving QCD with controlled statistical and systematic errors. Since 1985, we have proposed and carried out first-principles calculations of nucleon structure and hadron spectroscopy using lattice QCD which entails both algorithmic development and large-scale computer simulation. We started out by calculating the nucleon form factors -- electromagnetic, axial-vector, ?NN, and scalar form factors, the quark spin contribution to the proton spin, the strangeness magnetic moment, the quark orbital angular momentum, the quark momentum fraction, and the quark and glue decomposition of the proton momentum and angular momentum. The first round of calculations were done with Wilson fermions in the 'quenched' approximation where the dynamical effects of the quarks in the sea are not taken into account in the Monte Carlo simulation to generate the background gauge configurations. Beginning in 2000, we have started implementing the overlap fermion formulation into the spectroscopy and structure calculations. This is mainly because the overlap fermion honors chiral symmetry as in the continuum. It is going to be more and more important to take the symmetry into account as the simulations move closer to the physical point where the u and d quark masses are as light as a few MeV only. We began with lattices which have quark masses in the sea corresponding to a pion mass at ~ 300 MeV and obtained the strange form factors, charm and strange quark masses, the charmonium spectrum and the D_s meson decay constant f_D__s, the strangeness and charmness, the meson mass decomposition and the strange quark spin from the

  11. Non-hard sphere thermodynamic perturbation theory.

    Science.gov (United States)

    Zhou, Shiqi

    2011-08-21

    A non-hard sphere (HS) perturbation scheme, recently advanced by the present author, is elaborated for several technical matters, which are key mathematical details for implementation of the non-HS perturbation scheme in a coupling parameter expansion (CPE) thermodynamic perturbation framework. NVT-Monte Carlo simulation is carried out for a generalized Lennard-Jones (LJ) 2n-n potential to obtain routine thermodynamic quantities such as excess internal energy, pressure, excess chemical potential, excess Helmholtz free energy, and excess constant volume heat capacity. Then, these new simulation data, and available simulation data in literatures about a hard core attractive Yukawa fluid and a Sutherland fluid, are used to test the non-HS CPE 3rd-order thermodynamic perturbation theory (TPT) and give a comparison between the non-HS CPE 3rd-order TPT and other theoretical approaches. It is indicated that the non-HS CPE 3rd-order TPT is superior to other traditional TPT such as van der Waals/HS (vdW/HS), perturbation theory 2 (PT2)/HS, and vdW/Yukawa (vdW/Y) theory or analytical equation of state such as mean spherical approximation (MSA)-equation of state and is at least comparable to several currently the most accurate Ornstein-Zernike integral equation theories. It is discovered that three technical issues, i.e., opening up new bridge function approximation for the reference potential, choosing proper reference potential, and/or using proper thermodynamic route for calculation of f(ex-ref), chiefly decide the quality of the non-HS CPE TPT. Considering that the non-HS perturbation scheme applies for a wide variety of model fluids, and its implementation in the CPE thermodynamic perturbation framework is amenable to high-order truncation, the non-HS CPE 3rd-order or higher order TPT will be more promising once the above-mentioned three technological advances are established. © 2011 American Institute of Physics

  12. Illustrated study of the semi-holographic non-perturbative framework

    NARCIS (Netherlands)

    Banerjee, Souvik; Gaddam, Nava; Mukhopadhyay, Ayan

    2017-01-01

    Semi-holography has been proposed as an effective nonperturbative framework which can combine perturbative and nonperturbative effects consistently for theories like QCD. It is postulated that the strongly coupled nonperturbative sector has a holographic dual in the form of a classical gravity

  13. Single hadron spectrum in γγ collisions: The QCD contribution to order αsub(s) and the non perturbative background

    International Nuclear Information System (INIS)

    Aurenche, P.; Douiri, A.; Baier, R.; Fontannaz, M.; Schiff, D.

    1985-01-01

    We calculate the corrections of order αsub(s) to the process γγ->HX where both initial photons are real. The analytic expressions are given and a detailed discussion of the variation of the corrections with psub(T) and rapidity is presented. The dependence on the factorization prescription and scale is also discussed. Using the equivalent photon approximation the cross-section for e + e - ->e + e - HX is calculated both in the PEP/PETRA and LEP energy range. Based on the vector meson dominance model the non perturbative background is estimated and its importance for present and future experiments is emphasized. (orig.)

  14. Early Run 2 Hard QCD Results from the ATLAS Collaboration

    Directory of Open Access Journals (Sweden)

    Orlando Nicola

    2016-01-01

    Full Text Available We provide an overview of hard QCD results based on data collected with the ATLAS detector in proton-proton collision at √s = 13 TeV at the Large Hadron Collider. The production of high transverse momentum jets, photons and photon-pairs were studied; the inclusive jet cross section is found to agree well with the prediction of perturbative QCD calculations performed at next-to-leading accuracy. The production cross sections for W and Z bosons in their e and μ decays was measured; in general, agreement is found with the expectation of next-to-next-to leading order QCD calculations and interesting sensitivities to the proton structure functions are already observed. The top production cross sections were measured in different top decay channels and found to agree with the state of the art QCD predictions.

  15. Colour singlets in perturbative QCD

    International Nuclear Information System (INIS)

    Bassetto, A.

    1979-01-01

    In the axial gauge and at the leading log level, a definite and consistent picture seems to emerge of a parton decay into states in which many partons are found just before confinement should take place. They are grouped into colourless clusters in a number sufficient to exhaust the ''final'' state, still possessing a finite average mass. This result is peculiar of QCD, in particular of its non-abelian nature. Large transverse momenta or more generally average invariant quantities of partons are mainly due to the multiplicities involved in the branching processes. If eventually confinement would convert these clusters into hadrons (and this is of course the main issue which has still to be proven) without a large rearrangement of the colour lines, the picture we have found for colour singlets could apply to the real hadronic world. (author)

  16. Perturbative corrections to sigma sub(tot) (e+e- -> hadrons) in supersymmetric QCD

    International Nuclear Information System (INIS)

    Kataev, A.L.; Pivovarov, A.A.

    1983-11-01

    sigmasub(tot) (e + e - -> γsup(*) -> hadrons) have been calculated in QCD at two-loop level. Three-loop corrections due to gluon pair production are quoted accompanied by quark-antiquark two-jet events. (orig.)

  17. Testing QCD with Hypothetical Tau Leptons

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.

    1998-10-21

    We construct new tests of perturbative QCD by considering a hypothetical {tau} lepton of arbitrary mass, which decays hadronically through the electromagnetic current. We can explicitly compute its hadronic width ratio directly as an integral over the e{sup +}e{sup -} annihilation cross section ratio, R{sub e{sup +}e{sup -}}. Furthermore, we can design a set of commensurate scale relations and perturbative QCD tests by varying the weight function away from the form associated with the V-A decay of the physical {tau}. This method allows the wide range of the R{sub e{sup +}e{sup -}} data to be used as a probe of perturbative QCD.

  18. Weak-interacting holographic QCD

    International Nuclear Information System (INIS)

    Gazit, D.; Yee, H.-U.

    2008-06-01

    We propose a simple prescription for including low-energy weak-interactions into the frame- work of holographic QCD, based on the standard AdS/CFT dictionary of double-trace deformations. As our proposal enables us to calculate various electro-weak observables involving strongly coupled QCD, it opens a new perspective on phenomenological applications of holographic QCD. We illustrate efficiency and usefulness of our method by performing a few exemplar calculations; neutron beta decay, charged pion weak decay, and meson-nucleon parity non-conserving (PNC) couplings. The idea is general enough to be implemented in both Sakai-Sugimoto as well as Hard/Soft Wall models. (author)

  19. Divergent Perturbation Series

    International Nuclear Information System (INIS)

    Suslov, I.M.

    2005-01-01

    Various perturbation series are factorially divergent. The behavior of their high-order terms can be determined by Lipatov's method, which involves the use of instanton configurations of appropriate functional integrals. When the Lipatov asymptotic form is known and several lowest order terms of the perturbation series are found by direct calculation of diagrams, one can gain insight into the behavior of the remaining terms of the series, which can be resummed to solve various strong-coupling problems in a certain approximation. This approach is demonstrated by determining the Gell-Mann-Low functions in φ 4 theory, QED, and QCD with arbitrary coupling constants. An overview of the mathematical theory of divergent series is presented, and interpretation of perturbation series is discussed. Explicit derivations of the Lipatov asymptotic form are presented for some basic problems in theoretical physics. A solution is proposed to the problem of renormalon contributions, which hampered progress in this field in the late 1970s. Practical perturbation-series summation schemes are described both for a coupling constant of order unity and in the strong-coupling limit. An interpretation of the Borel integral is given for 'non-Borel-summable' series. Higher order corrections to the Lipatov asymptotic form are discussed

  20. Applicability of perturbative QCD and NLO power corrections for the pion form factor

    International Nuclear Information System (INIS)

    Yeh Tsungwen

    2002-01-01

    As is well recognized, the asymptotic of the perturbative QCD prediction for the pion form factor is much smaller than the upper end of the data. We investigate this problem. We first evaluate the next-to-leading-order (NLO) power correction for the pion form factor. The corrected form factor contains nonperturbative parameters which are determined from a χ 2 fit to the data. Interpreting these parameters leads to the fact that the involved strong interaction coupling constant should be identified as an effective coupling constant under a nonperturbative QCD vacuum. If the scale associated with the effective coupling constant is identified as 2 Q 2 , then Q 2 , the momentum transfer square for the pion form factor to be measured, can have a value about 1 GeV 2 , and , the averaged momentum fraction variable, can locate around 0.5. This circumstance is consistent with the asymptotic model for the pion wave function

  1. Non-perturbative effective interactions in the standard model

    CERN Document Server

    Arbuzov, Boris A

    2014-01-01

    This monograph is devoted to the nonperturbative dynamics in the Standard Model (SM), the basic theory of all, but gravity, fundamental interactions in nature. The Standard Model is devided into two parts: the Quantum chromodynamics (QCD) and the Electro-weak theory (EWT) are well-defined renormalizable theories in which the perturbation theory is valid. However, for the adequate description of the real physics nonperturbative effects are inevitable. This book describes how these nonperturbative effects may be obtained in the framework of spontaneous generation of effective interactions. The well-known example of such effective interaction is provided by the famous Nambu--Jona-Lasinio effective interaction. Also a spontaneous generation of this interaction in the framework of QCD is described and applied to the method for other effective interactions in QCD and EWT. The method is based on N.N. Bogoliubov conception of compensation equations. As a result we then describe the principle feathures of the Standard...

  2. Importance of Plasma Response to Non-axisymmetric Perturbations in Tokamaks

    International Nuclear Information System (INIS)

    Park, Jong-kyu; Boozer, Allen H.; Menard, Jonathan E.; Garofalo, Andrea M.; Schaffer, Michael J.; Hawryluk, Richard J.; Kaye, Stanley M.; Gerhardt, Stefan P.; Sabbagh, Steve A. and the NSTX Team

    2009-01-01

    Tokamaks are sensitive to deviations from axisymmetry as small as (delta)B/B 0 ∼ 10 -4 . These non-axisymmetric perturbations greatly modify plasma confinement and performance by either destroying magnetic surfaces with subsequent locking or deforming magnetic surfaces with associated non-ambipolar transport. The Ideal Perturbed Equilibrium Code (IPEC) calculates ideal perturbed equilibria and provides important basis for understanding the sensitivity of tokamak plasmas to perturbations. IPEC calculations indicate that the ideal plasma response, or equivalently the effect by ideally perturbed plasma currents, is essential to explain locking experiments on National Spherical Torus eXperiment (NSTX) and DIII-D. The ideal plasma response is also important for Neoclassical Toroidal Viscosity (NTV) in non-ambipolar transport. The consistency between NTV theory and magnetic braking experiments on NSTX and DIII-D can be improved when the variation in the field strength in IPEC is coupled with generalized NTV theory. These plasma response effects will be compared with the previous vacuum superpositions to illustrate the importance. However, plasma response based on ideal perturbed equilibria is still not sufficiently accurate to predict the details of NTV transport, and can be inconsistent when currents associated with a toroidal torque become comparable to ideal perturbed currents

  3. On the collinear singularity problem of hot QCD

    International Nuclear Information System (INIS)

    Candelpergher, B.; Grandou, T.

    2002-01-01

    The collinear singularity problem of hot QCD is revisited within a perturbative resummation scheme (PR) of the leading thermal fluctuations. On the basis of actual calculations, new aspects are discovered concerning the origin of the singularity plaguing the soft real photon emission rate out of a quark-gluon plasma at thermal equilibrium, when the latter is calculated by means of the Resummation Program (RP)

  4. Moments of structure functions in full QCD

    International Nuclear Information System (INIS)

    Dolgov, D.; Brower, R.; Capitani, S.; Negele, J.W.; Pochinsky, A.; Renner, D.; Eicker, N.; Lippert, T.; Schilling, K.; Edwards, R.G.; Heller, U.M.

    2001-01-01

    Moments of the quark density distribution, moments of the quark helicity distribution, and the tensor charge are calculated in full QCD. Calculations of matrix elements of operators from the operator product expansion have been performed on 16 3 x 32 lattices for Wilson fermions at β = 5.6 using configurations from the SESAM collaboration and at β = 5.5 using configurations from SCRI. One-loop perturbative renormalization corrections are included. Selected results are compared with corresponding quenched calculations and with calculations using cooled configurations

  5. Renormalization scheme invariant predictions for deep-inelastic scattering and determination of ΛQCD

    International Nuclear Information System (INIS)

    Vovk, V.I.

    1989-01-01

    Theoretical aspects of the renormalization scheme (RS) ambiguity problem and the approaches to its solution are discussed from the point of view of QCD phenomenology and the scale Λ determination. The method of RS-invariant perturbation theory (RSIPT) as a sound basis for describing experiment in QCD is advocated. To this end the method is developed for the non-singlet structure functions (SF) of deep-inelastic scattering and recent high precision data on SF's are analyzed in a RS-invariant way. It is shown that RSIPT leads to a more accurate and reliable determination of the QCD scale Λ, which is consistent with the theoretical assumption of a better convergence of RS-invariant perturbative series. 24 refs.; 1 tab

  6. A strategy for implementing non-perturbative renormalisation of heavy-light four-quark operators in the static approximation

    Energy Technology Data Exchange (ETDEWEB)

    Palombi, F. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie; Papinutto, M. [Istituto Nazionale di Fisica Nucleare, Rome (Italy); Pena, C. [European Organization for Nuclear Research, Geneva (Switzerland). Theoretical Physics Div.; Wittig, H. [Mainz Univ. (Germany). Inst. fuer Kernphysik

    2006-04-15

    We discuss the renormalisation properties of the complete set of {delta}B=2 four-quark operators with the heavy quark treated in the static approximation. We elucidate the role of heavy quark symmetry and other symmetry transformations in constraining their mixing under renormalisation. By employing the Schroedinger functional, a set of non-perturbative renormalisation conditions can be defined in terms of suitable correlation functions. As a first step in a fully non-perturbative determination of the scale-dependent renormalisation factors, we evaluate these conditions in lattice perturbation theory at one loop. Thereby we verify the expected mixing patterns and determine the anomalous dimensions of the operators at NLO in the Schroedinger functional scheme. Finally, by employing twisted-mass QCD it is shown how finite subtractions arising from explicit chiral symmetry breaking can be avoided completely. (Orig.)

  7. A strategy for implementing non-perturbative renormalisation of heavy-light four-quark operators in the static approximation

    International Nuclear Information System (INIS)

    Palombi, F.; Pena, C.; Wittig, H.

    2006-04-01

    We discuss the renormalisation properties of the complete set of ΔB=2 four-quark operators with the heavy quark treated in the static approximation. We elucidate the role of heavy quark symmetry and other symmetry transformations in constraining their mixing under renormalisation. By employing the Schroedinger functional, a set of non-perturbative renormalisation conditions can be defined in terms of suitable correlation functions. As a first step in a fully non-perturbative determination of the scale-dependent renormalisation factors, we evaluate these conditions in lattice perturbation theory at one loop. Thereby we verify the expected mixing patterns and determine the anomalous dimensions of the operators at NLO in the Schroedinger functional scheme. Finally, by employing twisted-mass QCD it is shown how finite subtractions arising from explicit chiral symmetry breaking can be avoided completely. (Orig.)

  8. Lattice QCD Calculation of Nucleon Structure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Keh-Fei [University of Kentucky, Lexington, KY (United States). Dept. of Physics and Astronomy; Draper, Terrence [University of Kentucky, Lexington, KY (United States). Dept. of Physics and Astronomy

    2016-08-30

    It is emphasized in the 2015 NSAC Long Range Plan that "understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics." Over the last three decades, lattice QCD has developed into a powerful tool for ab initio calculations of strong-interaction physics. Up until now, it is the only theoretical approach to solving QCD with controlled statistical and systematic errors. Since 1985, we have proposed and carried out first-principles calculations of nucleon structure and hadron spectroscopy using lattice QCD which entails both algorithmic development and large-scale computer simulation. We started out by calculating the nucleon form factors -- electromagnetic, axial-vector, πNN, and scalar form factors, the quark spin contribution to the proton spin, the strangeness magnetic moment, the quark orbital angular momentum, the quark momentum fraction, and the quark and glue decomposition of the proton momentum and angular momentum. The first round of calculations were done with Wilson fermions in the `quenched' approximation where the dynamical effects of the quarks in the sea are not taken into account in the Monte Carlo simulation to generate the background gauge configurations. Beginning in 2000, we have started implementing the overlap fermion formulation into the spectroscopy and structure calculations. This is mainly because the overlap fermion honors chiral symmetry as in the continuum. It is going to be more and more important to take the symmetry into account as the simulations move closer to the physical point where the u and d quark masses are as light as a few MeV only. We began with lattices which have quark masses in the sea corresponding to a pion mass at ~ 300 MeV and obtained the strange form factors, charm and strange quark masses, the charmonium spectrum and the Ds meson decay constant fDs, the strangeness and charmness, the meson mass

  9. Uncertainty quantification in lattice QCD calculations for nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Beane, Silas R. [Univ. of Washington, Seattle, WA (United States); Detmold, William [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Orginos, Kostas [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Savage, Martin J. [Institute for Nuclear Theory, Seattle, WA (United States)

    2015-02-05

    The numerical technique of Lattice QCD holds the promise of connecting the nuclear forces, nuclei, the spectrum and structure of hadrons, and the properties of matter under extreme conditions with the underlying theory of the strong interactions, quantum chromodynamics. A distinguishing, and thus far unique, feature of this formulation is that all of the associated uncertainties, both statistical and systematic can, in principle, be systematically reduced to any desired precision with sufficient computational and human resources. As a result, we review the sources of uncertainty inherent in Lattice QCD calculations for nuclear physics, and discuss how each is quantified in current efforts.

  10. Stochastic processes and the non-perturbative structure of the QCD vacuum

    International Nuclear Information System (INIS)

    Vilela Mendes, R.

    1992-01-01

    Based on a local Gaussian evaluation of the functional integral representation, a method is developed to obtain ground state functionals. The method is applied to the gluon sector of QCD. For the leading term in the ground state functional, stochastic techniques are used to check consistency of the quantum theory, finiteness of the mass gap and the scaling relation in the continuum limit. The functional also implies strong chromomagnetic fluctuations which constrain the propagators in the fermion sector. (orig.)

  11. Measurement of Angular Correlation in b Quark Pair Production at the LHC as a Test of Perturbative QCD

    CERN Document Server

    Dorney, Brian Lee

    2013-01-01

    Beauty quarks are pair-produced by strong interactions in multi-TeV proton- proton (pp) collisions at the CERN Large Hadron Collider (LHC). Such interactions allow for a test of perturbative Quantum Chromodynamics (QCD) in a new energy regime. The primary beauty-antibeauty quark b b pair production mechanisms in perturbative QCD are referred to as avor creation, avor excitation, and gluon splitting. These three mechanisms produce b b pairs with characteristic kinematic behavior, which contribute dierently to the shape of the dierential b b production cross section with respect to the dierence in the azimuthal angle and the combined separation variable R = p 2 + 2 between the beauty and antibeauty quarks ( b and b , respectively); with being the change in the pseudorapidity = ln ( tan ( = 2)), being the polar angle. These and R variables are collectively referred to as angular correlation variables and hence forth referred to as A . By measuring the shape and absolute normalization of the dierential prod...

  12. Production of transverse energy from minijets in next-to-leading order perturbative QCD

    CERN Document Server

    Eskola, Kari J

    2000-01-01

    We compute in next-to-leading order (NLO) perturbative QCD the transverse energy carried into the central rapidity unit of hadron or nuclear collisions by the partons freed in the few-GeV subcollisions. The formulation is based on a rapidity window and a measurement function of a new type. The behaviour of the NLO results as a function of the minimum transverse momentum and as a function of the scale choice is studied. The NLO results are found to be stable relative to the leading-order ones even in the few-GeV domain.

  13. Non-perturbative Approach to Equation of State and Collective Modes of the QGP

    Directory of Open Access Journals (Sweden)

    Y.F. Liu Shuai

    2018-01-01

    Full Text Available We discuss a non-perturbative T-matrix approach to investigate the microscopic structure of the quark-gluon plasma (QGP. Utilizing an effective Hamiltonian which includes both light- and heavy-parton degrees of freedoms. The basic two-body interaction includes color-Coulomb and confining contributions in all available color channels, and is constrained by lattice-QCD data for the heavy-quark free energy. The in-medium T-matrices and parton spectral functions are computed selfconsistently with full account of off-shell properties encoded in large scattering widths. We apply the T-matrices to calculate the equation of state (EoS for the QGP, including a ladder resummation of the Luttinger-Ward functional using a matrix-log technique to account for the dynamical formation of bound states. It turns out that the latter become the dominant degrees of freedom in the EoS at low QGP temperatures indicating a transition from parton to hadron degrees of freedom. The calculated spectral properties of one- and two-body states confirm this picture, where large parton scattering rates dissolve the parton quasiparticle structures while broad resonances start to form as the pseudocritical temperature is approached from above. Further calculations of transport coefficients reveal a small viscosity and heavy-quark diffusion coefficient.

  14. EDITORIAL: Non-linear and non-Gaussian cosmological perturbations Non-linear and non-Gaussian cosmological perturbations

    Science.gov (United States)

    Sasaki, Misao; Wands, David

    2010-06-01

    In recent years there has been a resurgence of interest in the study of non-linear perturbations of cosmological models. This has been the result of both theoretical developments and observational advances. New theoretical challenges arise at second and higher order due to mode coupling and the need to develop new gauge-invariant variables beyond first order. In particular, non-linear interactions lead to deviations from a Gaussian distribution of primordial perturbations even if initial vacuum fluctuations are exactly Gaussian. These non-Gaussianities provide an important probe of models for the origin of structure in the very early universe. We now have a detailed picture of the primordial distribution of matter from surveys of the cosmic microwave background, notably NASA's WMAP satellite. The situation will continue to improve with future data from the ESA Planck satellite launched in 2009. To fully exploit these data cosmologists need to extend non-linear cosmological perturbation theory beyond the linear theory that has previously been sufficient on cosmological scales. Another recent development has been the realization that large-scale structure, revealed in high-redshift galaxy surveys, could also be sensitive to non-linearities in the primordial curvature perturbation. This focus section brings together a collection of invited papers which explore several topical issues in this subject. We hope it will be of interest to theoretical physicists and astrophysicists alike interested in understanding and interpreting recent developments in cosmological perturbation theory and models of the early universe. Of course it is only an incomplete snapshot of a rapidly developing field and we hope the reader will be inspired to read further work on the subject and, perhaps, fill in some of the missing pieces. This focus section is dedicated to the memory of Lev Kofman (1957-2009), an enthusiastic pioneer of inflationary cosmology and non-Gaussian perturbations.

  15. High energy asymptotics of perturbative multi-color QCD

    International Nuclear Information System (INIS)

    Lipatov, L.N.

    1993-01-01

    The structure functions of deep-inelastic scattering at small-x satisfy two different equations in the leading logarithmic approximation (LLA). The first one -- the GLAP equation, describes the Q 2 -evolution of partonic distributions h i (x). The second one -- the BFKL, equation determines the x-dependence of parton densities H i (x, k perpendicular ). Analogous equations for matrix elements of higher twist operators were constructed in Refs. 3 and 4. Here the author discusses the possibility of finding an exact solution for multi-gluon compound states in LLA for the color group SU(N), in the limit N → ∞. The contributions of diagrams with many reggeized gluons are important for the unitarization of the perturbative Pomeron in QCD. It is shown that the Bethe-Salpeter equations for compound states of many reggeized gluons are conformally invariant in the two-dimensional impact parameter space. Their solutions can be written in holomorphically factorized form and there is a differential operator commuting with the holomorphic part of the corresponding Hamiltonian

  16. Perturbative corrections to Λ{sub b}→Λ form factors from QCD light-cone sum rules

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu-Ming [Fakultät für Physik, Universität Wien,Boltzmanngasse 5, 1090 Vienna (Austria); Physik Department T31, Technische Universität München,James-Franck-Straße 1, D-85748 Garching (Germany); Shen, Yue-Long [College of Information Science and Engineering, Ocean University of China,Songling Road 238, Qingdao, Shandong 266100 (China)

    2016-02-29

    We compute radiative corrections to Λ{sub b}→Λ from factors, at next-to-leading logarithmic accuracy, from QCD light-cone sum rules with Λ{sub b}-baryon distribution amplitudes. Employing the diagrammatic approach factorization of the vacuum-to-Λ{sub b}-baryon correlation function is justified at leading power in Λ/m{sub b}, with the aid of the method of regions. Hard functions entering the factorization formulae are identical to the corresponding matching coefficients of heavy-to-light currents from QCD onto soft-collinear effective theory. The universal jet function from integrating out the hard-collinear fluctuations exhibits richer structures compared with the one involved in the factorization expressions of the vacuum-to-B-meson correlation function. Based upon the QCD resummation improved sum rules we observe that the perturbative corrections at O(α{sub s}) shift the Λ{sub b}→Λ from factors at large recoil significantly and the dominant contribution originates from the next-to-leading order jet function instead of the hard coefficient functions. Having at hand the sum rule predictions for the Λ{sub b}→Λ from factors we further investigate several decay observables in the electro-weak penguin Λ{sub b}→Λ ℓ{sup +}ℓ{sup −} transitions in the factorization limit (i.e., ignoring the “non-factorizable' hadronic effects which cannot be expressed in terms of the Λ{sub b}→Λ from factors), including the invariant mass distribution of the lepton pair, the forward-backward asymmetry in the dilepton system and the longitudinal polarization fraction of the leptonic sector.

  17. Exactly soluble QCD and confinement of quarks

    International Nuclear Information System (INIS)

    Rusakov, B.

    1997-01-01

    An exactly soluble non-perturbative model of the pure gauge QCD is derived as a weak coupling limit of the lattice theory in plaquette formulation [B. Rusakov, Phys. Lett. B 398 (1997) 331]. The model represents QCD as a theory of the weakly interacting field strength fluxes. The area law behavior of the Wilson loop average is a direct result of this representation: the total flux through macroscopic loop is the additive (due to the weakness of the interaction) function of the elementary fluxes. The compactness of the gauge group is shown to be the factor which prevents the elementary fluxes contributions from cancellation. There is no area law in the non-compact theory. (orig.)

  18. Shear viscosity of the quark-gluon plasma in a weak magnetic field in perturbative QCD: Leading log

    Science.gov (United States)

    Li, Shiyong; Yee, Ho-Ung

    2018-03-01

    We compute the shear viscosity of two-flavor QCD plasma in an external magnetic field in perturbative QCD at leading log order, assuming that the magnetic field is weak or soft: e B ˜g4log (1 /g )T2. We work in the assumption that the magnetic field is homogeneous and static, and the electrodynamics is nondynamical in a formal limit e →0 while e B is kept fixed. We show that the shear viscosity takes a form η =η ¯(B ¯)T3/(g4log (1 /g )) with a dimensionless function η ¯(B ¯) in terms of a dimensionless variable B ¯=(e B )/(g4log (1 /g )T2). The variable B ¯ corresponds to the relative strength of the effect of cyclotron motions compared to the QCD collisions: B ¯˜lmfp/lcyclo. We provide a full numerical result for the scaled shear viscosity η ¯(B ¯).

  19. The Top Quark, QCD, And New Physics.

    Science.gov (United States)

    Dawson, S.

    2002-06-01

    The role of the top quark in completing the Standard Model quark sector is reviewed, along with a discussion of production, decay, and theoretical restrictions on the top quark properties. Particular attention is paid to the top quark as a laboratory for perturbative QCD. As examples of the relevance of QCD corrections in the top quark sector, the calculation of e{sup+}e{sup -}+ t{bar t} at next-to-leading-order QCD using the phase space slicing algorithm and the implications of a precision measurement of the top quark mass are discussed in detail. The associated production of a t{bar t} pair and a Higgs boson in either e{sup+}e{sup -} or hadronic collisions is presented at next-to-leading-order QCD and its importance for a measurement of the top quark Yulrawa coupling emphasized. Implications of the heavy top quark mass for model builders are briefly examined, with the minimal supersymmetric Standard Model and topcolor discussed as specific examples.

  20. arXiv A non-perturbative exploration of the high energy regime in $N_\\text{f}=3$ QCD

    CERN Document Server

    Dalla Brida, Mattia; Korzec, Tomasz; Ramos, Alberto; Sint, Stefan; Sommer, Rainer

    Using continuum extrapolated lattice data we trace a family of running couplings in three-flavour QCD over a large range of scales from about 4 to 128 GeV. The scale is set by the finite space time volume so that recursive finite size techniques can be applied, and Schr\\"odinger functional (SF) boundary conditions enable direct simulations in the chiral limit. Compared to earlier studies we have improved on both statistical and systematic errors. Using the SF coupling to implicitly define a reference scale $1/L_0\\approx 4$ GeV through $\\bar{g}^2(L_0) =2.012$, we quote $L_0 \\Lambda^{N_{\\rm f}=3}_{\\overline{\\rm MS}} =0.0791(21)$. This error is dominated by statistics; in particular, the remnant perturbative uncertainty is negligible and very well controlled, by connecting to infinite renormalization scale from different scales $2^n/L_0$ for $n=0,1,\\ldots,5$. An intermediate step in this connection may involve any member of a one-parameter family of SF couplings. This provides an excellent opportunity for tests ...

  1. Non-perturbative effective interactions in the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Arbuzov, Boris A. [Moscow Lomonosov State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics

    2014-07-01

    This monograph is devoted to the nonperturbative dynamics in the Standard Model (SM), the basic theory of allfundamental interactions in natureexcept gravity. The Standard Model is divided into two parts: the quantum chromodynamics (QCD) and the electro-weak theory (EWT) are well-defined renormalizable theories in which the perturbation theory is valid. However, for the adequate description of the real physics nonperturbative effects are inevitable. This book describes how these nonperturbative effects may be obtained in the framework of spontaneous generation of effective interactions. The well-known example of such effective interaction is provided by the famous Nambu-Jona-Lasinio effective interaction. Also a spontaneous generation of this interaction in the framework of QCD is described and applied to the method for other effective interactions in QCD and EWT. The method is based on N.N. Bogolyubov's conception of compensation equations. As a result we then describe the principal features of the Standard Model, e.g. Higgs sector, and significant nonperturbative effects including recent results obtained at LHC and TEVATRON.

  2. Aspects of Chiral Symmetry Breaking in Lattice QCD

    Science.gov (United States)

    Horkel, Derek P.

    In this thesis we describe two studies concerting lattice quantum chromodynamics (LQCD): first, an analysis of the phase structure of Wilson and twisted-mass fermions with isospin breaking effects, second a computational study measuring non-perturbative Greens functions. We open with a brief overview of the formalism of QCD and LQCD, focusing on the aspects necessary for understanding how a lattice computation is performed and how discretization effects can be understood. Our work in Wilson and twisted-mass fermions investigates an increasingly relevant regime where lattice simulations are performed with quarks at or near their physical masses and both the mass difference of the up and down quarks and their differing electric charges are included. Our computation of a non-perturbative Greens functions on the lattice serves as a first attempt to validate recent work by Dine et. al. [24] in which they calculate Greens functions which vanish in perturbation theory, yet have a contribution from the one instanton background. In chapter 2, we determine the phase diagram and pion spectrum for Wilson and twisted-mass fermions in the presence of non-degeneracy between the up and down quark and discretization errors, using Wilson and twisted-mass chiral perturbation theory. We find that the CP-violating phase of the continuum theory (which occurs for sufficiently large non-degeneracy) is continuously connected to the Aoki phase of the lattice theory with degenerate quarks. We show that discretization effects can, in some cases, push simulations with physical masses closer to either the CP-violating phase or another phase not present in the continuum, so that at sufficiently large lattice spacings physical-point simulations could lie in one of these phases. In chapter 3, we extend the work in chapter 2 to include the effects of electromagnetism, so that it is applicable to recent simulations incorporating all sources of isospin breaking. For Wilson fermions, we find that the

  3. Hadronization of QCD and effective interactions

    International Nuclear Information System (INIS)

    Frank, M.R.

    1994-01-01

    An introductory treatment of hadronization through functional integral calculus and bifocal Bose fields is given. Emphasis is placed on the utility of this approach for providing a connection between QCD and effective hadronic field theories. The hadronic interactions obtained by this method are nonlocal due to the QCD substructure, yet, in the presence of an electromagnetic field, maintain the electromagnetic gauge invariance manifest at the quark level. A local chiral model which is structurally consistent with chiral perturbation theory is obtained through a derivative expansion of the nonlocalities with determined, finite coefficients. Tree-level calculations of the pion form factor and π - π scattering, which illustrate the dual constituent-quark-chiral-model nature of this approach, are presented

  4. Non-perturbative aspects of quantum field theory. From the quark-gluon plasma to quantum gravity

    International Nuclear Information System (INIS)

    Christiansen, Nicolai

    2015-01-01

    In this dissertation we investigate several aspects of non-perturbative quantum field theory. Two main parts of the thesis are concerned with non-perturbative renormalization of quantum gravity within the asymptotic safety scenario. This framework is based on a non-Gaussian ultraviolet fixed point and provides a well-defined theory of quantized gravity. We employ functional renormalization group (FRG) techniques that allow for the study of quantum fields even in strongly coupled regimes. We construct a setup for the computation of graviton correlation functions and analyze the ultraviolet completion of quantum gravity in terms of the properties of the two- and three point function of the graviton. Moreover, the coupling of gravity to Yang-Mills theories is discussed. In particular, we study the effects of graviton induced interactions on asymptotic freedom on the one hand, and the role of gluonic fluctuations in the gravity sector on the other hand. The last subject of this thesis is the physics of the quark-gluon plasma. We set-up a general non-perturbative strategy for the computation of transport coefficients in non-Abelian gauge theories. We determine the viscosity over entropy ratio η/s in SU(3) Yang-Mills theory as a function of temperature and estimate its behavior in full quantum chromodynamics (QCD).

  5. Gluon and ghost propagator studies in lattice QCD at finite temperature

    International Nuclear Information System (INIS)

    Aouane, Rafik

    2013-01-01

    Gluon and ghost propagators in quantum chromodynamics (QCD) computed in the infrared momentum region play an important role to understand quark and gluon confinement. They are the subject of intensive research thanks to non-perturbative methods based on Dyson-Schwinger (DS) and functional renormalization group (FRG) equations. Moreover, their temperature behavior might also help to explore the chiral and deconfinement phase transition or crossover within QCD at non-zero temperature. Our prime tool is the lattice discretized QCD (LQCD) providing a unique ab-initio non-perturbative approach to deal with the computation of various observables of the hadronic world. We investigate the temperature dependence of Landau gauge gluon and ghost propagators in pure gluodynamics and in full QCD. Regarding the gluon propagator, we compute its longitudinal D L as well its transversal D T components. The aim is to provide a data set in terms of fitting formulae which can be used as input for DS (or FRG) equations. We deal with full (N f =2) LQCD with the twisted mass fermion discretization. We employ gauge field configurations provided by the tmfT collaboration for temperatures in the crossover region and for three fixed pion mass values in the range [300,500] MeV. Finally, within SU(3) pure gauge theory (at T=0) we compute the Landau gauge gluon propagator according to different gauge fixing criteria. Our goal is to understand the influence of gauge copies with minimal (non-trivial) eigenvalues of the Faddeev-Popov operator.

  6. B-physics from non-perturbatively renormalized HQET in two-flavour lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bernardoni, Fabio; Simma, Hubert [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Blossier, Benoit; Gerardin, Antoine [Paris-11 Univ., 91 - Orsay (France). Lab. de Physique Theorique; CNRS, Orsay (France); Bulava, John [CERN, Geneva (Switzerland). Physics Department; Della Morte, Michele; Hippel, Georg M. von [Mainz Univ. (Germany). Inst. fuer Kernphysik; Fritzsch, Patrick [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Garron, Nicolas [Trinity College, Dublin (Ireland). School of Mathematics; Heitger, Jochen [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1; Collaboration: ALPHA Collaboration

    2012-10-15

    We report on the ALPHA Collaboration's lattice B-physics programme based on N{sub f}=2 O(a) improved Wilson fermions and HQET, including all NLO effects in the inverse heavy quark mass, as well as non-perturbative renormalization and matching, to fix the parameters of the effective theory. Our simulations in large physical volume cover 3 lattice spacings a {approx} (0.08-0.05) fm and pion masses down to 190 MeV to control continuum and chiral extrapolations. We present the status of results for the b-quark mass and the B{sub (s)}-meson decay constants, f{sub B} and f{sub B{sub s}}.

  7. Resummation of the QCD perturbative series for hard processes

    International Nuclear Information System (INIS)

    Catani, S.

    1989-01-01

    We study the region of inhibited radiation in hard hadronic processes, as for jet cross sections and heavy flavour production near threshold. The cases of deep inelastic scattering and Drell-Yan annihilation are explicitly considered. A general method to exponentiate leading and next-to-leading logarithms to all orders in perturbation theory is developed. A complete formula for the large N-moments is given and shown to agree with previous two-loop calculations. The resummation procedure suggests how to connect the perturbative and nonperturbative regions. The natural limit within the perturbative phase is shown to be the intrinsic transverse momentum. (orig.)

  8. Feynman-Hellmann theorem for resonances and the quest for QCD exotica

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz de Elvira, J. [University of Bern, Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern (Switzerland); Meissner, U.G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen-und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Juelich Center for Hadron Physics and JARA-HPC, Forschungszentrum Juelich, Institute for Advanced Simulation (IAS-4), Institut fuer Kernphysik (IKP-3), Juelich (Germany); Rusetsky, A. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen-und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Schierholz, G. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany)

    2017-10-15

    The generalization of the Feynman-Hellmann theorem for resonance states in quantum field theory is derived. On the basis of this theorem, a criterion is proposed to study the possible exotic nature of certain hadronic states emerging in QCD. It is shown that this proposal is supported by explicit calculations in chiral perturbation theory and by large-N{sub c} arguments. Analyzing recent lattice data on the quark mass dependence in the pseudoscalar, vector meson, baryon octet and baryon decuplet sectors, we conclude that, as expected, these are predominately quark-model states, albeit the corrections are non-negligible. (orig.)

  9. QCD as a Theory of Hadrons

    Science.gov (United States)

    Narison, Stephan

    2007-07-01

    About Stephan Narison; Outline of the book; Preface; Acknowledgements; Part I. General Introduction: 1. A short flash on particle physics; 2. The pre-QCD era; 3. The QCD story; 4. Field theory ingredients; Part II. QCD Gauge Theory: 5. Lagrangian and gauge invariance; 6. Quantization using path integral; 7. QCD and its global invariance; Part III. MS scheme for QCD and QED: Introduction; 8. Dimensional regularization; 9. The MS renormalization scheme; 10. Renormalization of operators using the background field method; 11. The renormalization group; 12. Other renormalization schemes; 13. MS scheme for QED; 14. High-precision low-energy QED tests; Part IV. Deep Inelastic Scattering at Hadron Colliders: 15. OPE for deep inelastic scattering; 16. Unpolarized lepton-hadron scattering; 17. The Altarelli-Parisi equation; 18. More on unpolarized deep inelastic scatterings; 19. Polarized deep-inelastic processes; 20. Drell-Yan process; 21. One 'prompt photon' inclusive production; Part V. Hard Processes in e+e- Collisions: Introduction; 22. One hadron inclusive production; 23. gg scatterings and the 'spin' of the photon; 24. QCD jets; 25. Total inclusive hadron productions; Part VI. Summary of QCD Tests and as Measurements; Part VII. Power Corrections in QCD: 26. Introduction; 27. The SVZ expansion; 28. Technologies for evaluating Wilson coefficients; 29. Renormalons; 30. Beyond the SVZ expansion; Part VIII. QCD Two-Point Functions: 31. References guide to original works; 32. (Pseudo)scalar correlators; 33. (Axial-)vector two-point functions; 34. Tensor-quark correlator; 35. Baryonic correlators; 36. Four-quark correlators; 37. Gluonia correlators; 38. Hybrid correlators; 39. Correlators in x-space; Part IX. QCD Non-Perturbative Methods: 40. Introduction; 41. Lattice gauge theory; 42. Chiral perturbation theory; 43. Models of the QCD effective action; 44. Heavy quark effective theory; 45. Potential approaches to quarkonia; 46. On monopole and confinement; Part X. QCD

  10. A perturbative approach to mass-generation - the non-linear sigma model

    International Nuclear Information System (INIS)

    Davis, A.C.; Nahm, W.

    1985-01-01

    A calculational scheme is presented to include non-perturbative effects into the perturbation expansion. As an example we use the O(N + 1) sigma model. The scheme uses a natural parametrisation such that the lagrangian can be written in a form normal-ordered with respect to the O(N + 1) symmetric vacuum plus vacuum expectation values, the latter calculated by symmetry alone. Including such expectation values automatically leads to the inclusion of a mass-gap in the perturbation series. (orig.)

  11. Kaon-nucleon S-wave phase shifts in a QCD-motivated quark model

    International Nuclear Information System (INIS)

    Bender, I.; Dosch, H.G.

    1982-01-01

    We calculate kaon-nucleon central potentials and S-wave phase shifts for I = 0 and I = 1 in an QCD-motivated quark model. In our model the K-N interaction is derived from short-range perturbative quark-quark interactions. (orig.)

  12. QCD are we ready for the LHC?

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    The LHC energy regime poses a serious challenge to our capability of predicting QCD reactions to the level of accuracy necessary for a successful programme of searches for physics beyond the Standard Model. In these lectures, I'll introduce basic concepts in QCD, and present techniques based on perturbation theory, such as fixed-order and resummed computations, and Monte Carlo simulations. I'll discuss applications of these techniques to hadron-hadron processes, concentrating on recent trends in perturbative QCD aimed at improving our understanding of LHC phenomenology.

  13. RIKEN WINTER SCHOOL: STRUCTURE OF HADRONS - INTRODUCTION TO QCD HARD PROCESSES. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, DECEMBER 9-12, 1998

    International Nuclear Information System (INIS)

    Saito, N.

    1999-01-01

    In this lecture I give a pedagogical introduction to the Perturbative QCD to understand the short-distance dynamics of the strong interaction. Starting with fundamental concepts such as the color degree of freedom of QCD, non-abelian gauge field theory, renormalization group equation etc., I explain a basic idea of the perturbative QCD and apply this idea to the e + e - processes and the structure functions. The notion of mass singularity and the necessity of its factorization is discussed in some detail

  14. Higher-Twist Distribution Amplitudes of the K Meson in QCD

    CERN Document Server

    Ball, P; Lenz, A; Ball, Patricia

    2006-01-01

    We present a systematic study of twist-3 and twist-4 light-cone distribution amplitudes of the K meson in QCD. The structure of SU(3)-breaking corrections is studied in detail. Non-perturbative input parameters are estimated from QCD sum rules and renormalons. As a by-product, we give a complete reanalysis of the twist-3 and -4 parameters of the pi-meson distribution amplitudes; some of the results differ from those usually quoted in the literature.

  15. Asymptotics of QCD factorization in exclusive hadronic decays of B mesons

    International Nuclear Information System (INIS)

    Becher, Thomas; Neubert, Matthias; Pecjak, Ben D.

    2001-01-01

    Using the renormalon calculus, we study the asymptotic behavior of the perturbative expansion of the hard-scattering kernels entering the QCD factorization formula for the nonleptonic weak decays B-bar 0 →D (*)+ M - , where M is a light meson. In the 'large-β 0 limit', the kernels are infrared finite and free of endpoint singularities to all orders of perturbation theory. The leading infrared renormalon singularity corresponding to a power correction of order Λ QCD /m b vanishes if the light meson has a symmetric light-cone distribution amplitude. We calculate the Borel transforms and the corresponding momentum distribution functions of the hard-scattering kernels, and resum the series of O(β 0 n-1 α s n ) corrections to explore the numerical significance of higher-order perturbative and power corrections. We also derive explicit expressions for the O(β 0 α s 2 ) contributions to the kernels, and for the renormalon singularities corresponding to power corrections of order (Λ QCD /m b ) 2 . Finally, we study the limit m c →0 relevant to charmless hadronic decays such as B→ππ

  16. Quantum chromodynamics (QCD) and collider physics

    International Nuclear Information System (INIS)

    Ellis, R.K.; Stirling, W.J.

    1990-01-01

    This report discusses: fundamentals of perturbative QCD; QCD in e + e - → hadrons; deep inelastic scattering and parton distributions; the QCD parton model in hadron-hadron collisions; large p T jet production in hadron-hadron collisions; the production of vector bosons in hadronic collisions; and the production of heavy quarks

  17. The lightest hybrid meson supermultiplet in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Dudek, Jozef J

    2011-10-01

    We interpret the spectrum of meson states recently obtained in non-perturbative lattice QCD calculations in terms of constituent quark-antiquark bound states and states, called 'hybrids', in which the q{bar q} pair is supplemented by an excitation of the gluonic field. We identify a lightest supermultiplet of hybrid mesons with J{sup PC} = (0,1,2){sup {-+}}, 1{sup -} built from a gluonic excitation of chromomagnetic character coupled to q{bar q} in an S-wave. The next lightest hybrids are suggested to be quark orbital excitations with the same gluonic excitation, while the next distinct gluonic excitation is significantly heavier. Existing models of gluonic excitations are compared to these findings and possible phenomenological consequences explored.

  18. J /ψ →Ds ,dπ , Ds ,dK decays with perturbative QCD approach

    Science.gov (United States)

    Sun, Junfeng; Yang, Yueling; Gao, Jie; Chang, Qin; Huang, Jinshu; Lu, Gongru

    2016-08-01

    Besides the conventional strong and electromagnetic decay modes, the J /ψ particle can also decay via the weak interaction in the standard model. In this paper, nonleptonic J /ψ →Ds ,dπ , Ds ,dK weak decays, corresponding to the externally emitted virtual W boson process, are investigated with the perturbative QCD approach. It is found that the branching ratio for the Cabibbo-favored J /ψ →Dsπ decay can reach up to O (10-10), which might be potentially measurable at the future high-luminosity experiments.

  19. Infrared behavior of the effective coupling in quantum chromodynamics: A non-perturbative approach

    International Nuclear Information System (INIS)

    Bar-Gadda, U.

    1980-01-01

    In this paper we examine a different viewpoint, based on a self-consistent approach. This means that rather than attempting to identify any particular physical mechanism as dominating the QCD vacuum state we use the non-perturbative Schwinger-Dyson equations and Slavnov-Taylor identities of QCD as well as the renormalization group equation to obtain the self-consistent behavior of the effective coupling in the infrared region. We show that the infrared effective coupling behavior anti g(q 2 /μ 2 , gsub(R)(μ)) = (μ 2 /q 2 )sup(lambda/2)gsub(R)(μ) in the infrared limit q 2 /μ 2 → 0, where μ 2 is the euclidean subtraction point; lambda = 1/2(d - 2), where d is the space-time dimension, is the preferred solution if a sufficient self-consistency condition is satisfied. Finally we briefly discuss the nature of the dynamical mass Λ and the 1/N expansion as well as an effective bound state equation. (orig.)

  20. Simulations of dimensionally reduced effective theories of high temperature QCD

    CERN Document Server

    Hietanen, Ari

    Quantum chromodynamics (QCD) is the theory describing interaction between quarks and gluons. At low temperatures, quarks are confined forming hadrons, e.g. protons and neutrons. However, at extremely high temperatures the hadrons break apart and the matter transforms into plasma of individual quarks and gluons. In this theses the quark gluon plasma (QGP) phase of QCD is studied using lattice techniques in the framework of dimensionally reduced effective theories EQCD and MQCD. Two quantities are in particular interest: the pressure (or grand potential) and the quark number susceptibility. At high temperatures the pressure admits a generalised coupling constant expansion, where some coefficients are non-perturbative. We determine the first such contribution of order g^6 by performing lattice simulations in MQCD. This requires high precision lattice calculations, which we perform with different number of colors N_c to obtain N_c-dependence on the coefficient. The quark number susceptibility is studied by perf...

  1. Analyzing Bs - anti Bs mixing. Non-perturbative contributions to bag parameters from sum rules

    International Nuclear Information System (INIS)

    Mannel, T.; Pivovarov, A.A.; Russian Academy of Sciecnes, Moscow

    2007-03-01

    We use QCD sum rules to compute matrix elements of the ΔB=2 operators appearing in the heavy-quark expansion of the width difference of the B s mass eigenstates. Our analysis includes the leading-order operators Q and Q S , as well as the subleading operators R 2 and R 3 , which appear at next-to-leading order in the 1/m b expansion. We conclude that the violation of the factorization approximation for these matrix elements due to non-perturbative vacuum condensates is as low as 1-2%. (orig.)

  2. Some higher moments of deep inelastic structure functions at next-to-next-to-leading order of perturbative QCD

    International Nuclear Information System (INIS)

    Retey, A.; Vermaseren, J.A.M.

    2001-01-01

    We present the analytic next-to-next-to-leading QCD calculation of some higher moments of deep inelastic structure functions in the leading twist approximation. We give results for the moments N=1,3,5,7,9,11,13 of the structure function F 3 . Similarly we present the moments N=10,12 for the flavour singlet and N=12,14 for the non-singlet structure functions F 2 and F L . We have calculated both the three-loop anomalous dimensions of the corresponding operators and the three-loop coefficient functions of the moments of these structure functions

  3. Non-perturbative approach for laser radiation interactions with solids

    International Nuclear Information System (INIS)

    Jalbert, G.

    1985-01-01

    Multiphoton transitions in direct-gap crystals are studied considering non-perturbative approaches. Two methods currently used for atoms and molecules are revised, generalized and applied to solids. In the first one, we construct an S-matrix which incorporates the eletromagnetic field to all orders in an approximated way leading to analytical solution for the multiphoton transition rates. In the second one, the transition probability is calculated within the Bloch-Floquet formalism applieed to the specific case of solids. This formalism is interpreted as a classical approximation to the quantum treatment of the field. In the weak field limit, we compare our results with the usual perturbation calculations. We also incorporate, in the first approach, the non homogeneity and the multimodes effects of a real laser. (author) [pt

  4. Approximate Q.C.D. lower bound for the bag constant B

    International Nuclear Information System (INIS)

    Nielsen, H.B.

    1978-01-01

    Using an article by Savvidy from 1977 in which a state in Q.C.D. with lower energy than the perturbative vacuum was found, the author calculates an approximate lower bound for the M.I.T. bag constant B relative to the Q.C.D. coupling parameter Λ. With an M.I.T. bag constant Bsup(1/4)=145 MeV the author finds Λsub(P)<=0.89 GeV when the propagator of the gluon is used to renormalize the coupling constant. (Auth.)

  5. Gluon and ghost correlation functions of 2-color QCD at finite density

    Science.gov (United States)

    Hajizadeh, Ouraman; Boz, Tamer; Maas, Axel; Skullerud, Jon-Ivar

    2018-03-01

    2-color QCD, i. e. QCD with the gauge group SU(2), is the simplest non-Abelian gauge theory without sign problem at finite quark density. Therefore its study on the lattice is a benchmark for other non-perturbative approaches at finite density. To provide such benchmarks we determine the minimal-Landau-gauge 2-point and 3-gluon correlation functions of the gauge sector and the running gauge coupling at finite density. We observe no significant effects, except for some low-momentum screening of the gluons at and above the supposed high-density phase transition.

  6. Gluon and ghost propagator studies in lattice QCD at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Aouane, Rafik

    2013-04-29

    Gluon and ghost propagators in quantum chromodynamics (QCD) computed in the infrared momentum region play an important role to understand quark and gluon confinement. They are the subject of intensive research thanks to non-perturbative methods based on Dyson-Schwinger (DS) and functional renormalization group (FRG) equations. Moreover, their temperature behavior might also help to explore the chiral and deconfinement phase transition or crossover within QCD at non-zero temperature. Our prime tool is the lattice discretized QCD (LQCD) providing a unique ab-initio non-perturbative approach to deal with the computation of various observables of the hadronic world. We investigate the temperature dependence of Landau gauge gluon and ghost propagators in pure gluodynamics and in full QCD. Regarding the gluon propagator, we compute its longitudinal D{sub L} as well its transversal D{sub T} components. The aim is to provide a data set in terms of fitting formulae which can be used as input for DS (or FRG) equations. We deal with full (N{sub f}=2) LQCD with the twisted mass fermion discretization. We employ gauge field configurations provided by the tmfT collaboration for temperatures in the crossover region and for three fixed pion mass values in the range [300,500] MeV. Finally, within SU(3) pure gauge theory (at T=0) we compute the Landau gauge gluon propagator according to different gauge fixing criteria. Our goal is to understand the influence of gauge copies with minimal (non-trivial) eigenvalues of the Faddeev-Popov operator.

  7. A lattice QCD calculation of the transverse decay constant of the b1(1235) meson

    International Nuclear Information System (INIS)

    Jansen, K.; McNeile, C.; Michael, C.; Urbach, C.

    2009-10-01

    We review various B meson decays that require knowledge of the transverse decay constant of the b 1 (1235) meson. We report on an exploratory lattice QCD calculation of the transverse decay constant of the b 1 meson. The lattice QCD calculations used unquenched gauge configurations, at two lattice spacings, generated with two flavours of sea quarks. The twisted mass formalism is used. (orig.)

  8. Two-color lattice QCD with staggered quarks

    Energy Technology Data Exchange (ETDEWEB)

    Scheffler, David

    2015-07-20

    The study of quantum chromodynamics (QCD) at finite temperature and density provides important contributions to the understanding of strong-interaction matter as it is present e.g. in nuclear matter and in neutron stars or as produced in heavy-ion collision experiments. Lattice QCD is a non-perturbative approach, where equations of motion for quarks and gluons are discretized on a finite space-time lattice. The method successfully describes the behavior of QCD in the vacuum and at finite temperature, however it cannot be applied to finite baryon density due to the fermion sign problem. Various QCD-like theories, that offer to draw conclusions about QCD, allow simulations also at finite densities. In this work we investigate two-color QCD as a popular example of a QCD-like theory free from the sign problem with methods from lattice gauge theory. For the generation of gauge configurations with two dynamical quark flavors in the staggered formalism with the ''rooting trick'' we apply the Rational Hybrid Monte Carlo (RHMC) algorithm. We carry out essential preparatory work for future simulations at finite density. As a start, we concentrate on the calculation of the effective potential for the Polyakov loop, which is an order parameter for the confinement-deconfinement transition, in dependence of the temperature and quark mass. It serves as an important input for effective models of QCD. We obtain the effective potential via the histogram method from local distributions of the Polyakov loop. To study the influence of dynamical quarks on gluonic observables, the simulations are performed with large quark masses and are compared to calculations in the pure gauge theory. In the second part of the thesis we examine aspects of the chiral phase transition along the temperature axis. The symmetry group of chiral symmetry in two-color QCD is enlarged to SU(2N{sub f}). Discretized two-color QCD in the staggered formalism exhibits a chiral symmetry breaking

  9. Scheme-Independent Predictions in QCD: Commensurate Scale Relations and Physical Renormalization Schemes

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.

    1998-01-01

    Commensurate scale relations are perturbative QCD predictions which relate observable to observable at fixed relative scale, such as the ''generalized Crewther relation'', which connects the Bjorken and Gross-Llewellyn Smith deep inelastic scattering sum rules to measurements of the e + e - annihilation cross section. All non-conformal effects are absorbed by fixing the ratio of the respective momentum transfer and energy scales. In the case of fixed-point theories, commensurate scale relations relate both the ratio of couplings and the ratio of scales as the fixed point is approached. The relations between the observables are independent of the choice of intermediate renormalization scheme or other theoretical conventions. Commensurate scale relations also provide an extension of the standard minimal subtraction scheme, which is analytic in the quark masses, has non-ambiguous scale-setting properties, and inherits the physical properties of the effective charge α V (Q 2 ) defined from the heavy quark potential. The application of the analytic scheme to the calculation of quark-mass-dependent QCD corrections to the Z width is also reviewed

  10. Non-perturbative aspects of string theory from elliptic curves

    International Nuclear Information System (INIS)

    Reuter, Jonas

    2015-08-01

    We consider two examples for non-perturbative aspects of string theory involving elliptic curves. First, we discuss F-theory on genus-one fibered Calabi-Yau manifolds with the fiber being a hypersurface in a toric fano variety. We discuss in detail the fiber geometry in order to find the gauge groups, matter content and Yukawa couplings of the corresponding supergravity theories for the four examples leading to gauge groups SU(3) x SU(2) x U(1), SU(4) x SU(2) x SU(2)/Z 2 , U(1) and Z 3 . The theories are connected by Higgsings on the field theory side and conifold transitions on the geometry side. We extend the discussion to the network of Higgsings relating all theories stemming from the 16 hypersurface fibrations. For the models leading to gauge groups SU(3) x SU(2) x U(1), SU(4) x SU(2) x SU(2)/Z 2 and U(1) we discuss the construction of vertical G 4 fluxes. Via the D3-brane tadpole cancelation condition we can restrict the minimal number of families in the first two of these models to be at least three. As a second example for non-perturbative aspects of string theory we discuss a proposal for a non-perturbative completion of topological string theory on local B-model geometries. We discuss in detail the computation of quantum periods for the examples of local F 1 , local F 2 and the resolution of C 3 /Z 5 . The quantum corrections are calculated order by order using second order differential operators acting on the classical periods. Using quantum geometry we calculate the refined free energies in the Nekrasov-Shatashvili limit. Finally we check the non-perturbative completion of topological string theory for the geometry of local F 2 against numerical calculations.

  11. Perturbative calculations and their application to Higgs physics

    International Nuclear Information System (INIS)

    Zirke, Tom J.E.

    2014-09-01

    In this thesis the numerical calculation of IR-finite two-loop integrals for processes related to Higgs physics in four-dimensional regularization regarding especilla the process gg→HZ is described. An application to two-loop vacuum integrals with φ→γγ at NLO QCD is presented. (HSI)

  12. The nucleon axial charge in full lattice QCD

    International Nuclear Information System (INIS)

    Edwards, R.G.; Richards, D.G.; Fleming, G.T.; Haegler, P.; Technische Univ. Muenchen, Garching; Negele, J.W.; Pochinsky, A.V.; Orginos, K.; College of William and Mary, Williamsburg, VA; Renner, D.B.; Schroers, W.

    2005-10-01

    The nucleon axial charge is calculated as a function of the pion mass in full QCD. Using domain wall valence quarks and improved staggered sea quarks, we present the first calculation with pion masses as light as 354 MeV and volumes as large as (3.5 fm) 3 . We show that finite volume effects are small for our volumes and that a constrained fit based on finite volume chiral perturbation theory agrees with experiment within 7% statistical errors. (orig.)

  13. Improved actions for QCD thermodynamics on the lattice

    CERN Document Server

    Beinlich, B; Laermann, E

    1996-01-01

    Finite cut-off effects strongly influence the thermodynamics of lattice regularized QCD at high temperature in the standard Wilson formulation. We analyze the reduction of finite cut-off effects in formulations of the thermodynamics of SU(N) gauge theories with three different O(a^2) and O(a^4) improved actions. We calculate the energy density and pressure on finite lattices in leading order weak coupling perturbation theory (T\\rightarrow \\infty) and perform Monte Carlo simulations with improved SU(3) actions at non-zero g^2. Already on lattices with temporal extent N_\\tau=4 we find a strong reduction of finite cut-off effects in the high temperature limit, which persists also down to temperatures a few times the deconfinement transition temperature.

  14. Lattice QCD at finite density. An introductory review

    International Nuclear Information System (INIS)

    Muroya, Shin; Nakamura, Atushi; Nonaka, Chiho; Takaishi, Tetsuya

    2003-01-01

    This is a pedagogical review of the lattice study of finite density QCD. It is intended to provide the minimum necessary content, so that it may be used as an introduction for newcomers to the field and also for those working in nonlattice areas. After a brief introduction in which we discuss the reasons that finite density QCD is an active and important subject, we present the fundamental formulae that are necessary for the treatment given in the following sections. Next, we survey lattice QCD simulational studies of system with small chemical potentials, of which there have been several prominent works reported recently. Then, two-color QCD calculations are discussed, where we are free from the notorious phase problem and have a chance to consider many new features of finite density QCD. Of special note is the result of recent simulations indicating quark pair condensation and the in-medium effect. Tables of SU(3) and SU(2) lattice simulations at finite baryon density are given. In the next section, we survey several related works that may represent a starting point of future development, although some of these works have not attracted much attention yet. This material is described in a pedagogical manner. Starting from a simple 2-d model, we briefly discuss a lattice analysis of the NJL model. We describe a non-perturbative analytic approach, i.e., the strong coupling approximation method and some results. The canonical ensemble approach, instead of the usual canonical ensemble may be another route to reach high density. We examine the density of state method and show that this old idea includes the recently proposed factorization method. An alternative method, the complex Langevin equation, and an interesting model, the finite isospin model, are also discussed. We give brief comments on a partial sum with respect to Z 3 symmetry and the meron-cluster algorithm, which might solve the sign problem partially or completely. In the Appendix, we discuss several

  15. Fragmentation function in non-equilibrium QCD using closed-time path integral formalism

    International Nuclear Information System (INIS)

    Nayak, Gouranga C.

    2009-01-01

    In this paper we implement the Schwinger-Keldysh closed-time path integral formalism in non-equilibrium QCD in accordance to the definition of the Collins-Soper fragmentation function. We consider a high-p T parton in QCD medium at initial time τ 0 with an arbitrary non-equilibrium (non-isotropic) distribution function f(vector (p)) fragmenting to a hadron. We formulate the parton-to-hadron fragmentation function in non-equilibrium QCD in the light-cone quantization formalism. It may be possible to include final-state interactions with the medium via a modification of the Wilson lines in this definition of the non-equilibrium fragmentation function. This may be relevant to the study of hadron production from a quark-gluon plasma at RHIC and LHC. (orig.)

  16. High momentum transfer processes in QCD

    International Nuclear Information System (INIS)

    Efremov, A.V.; Radyushkin, A.V.

    1978-01-01

    A unified approach to the investigation of inclusive high momentum transfer processes in the QCD framework is proposed. A modified parton model (with parton distribution functions depending on an additional renormalization parameter) is shown to be valid in all orders of perturbation theory. The approach is also applicable for studying wide-angle elastic scattering processes of colourless bound states of quarks (the hadrons). The asymptotic behaviour of pion electromagnetic form factor is calculated as an example

  17. Recent QCD results from ATLAS

    CERN Document Server

    Meyer, C; The ATLAS collaboration

    2014-01-01

    The ATLAS collaboration has performed studies of a wide range of QCD phenomena, from soft particle to hard photon and jet production. Recent soft-QCD measurements include studies of underlying event and vector meson production. Differential measurements of inclusive and dijet production provide stringent tests of high-order QCD predictions and provide input for determination of parton density functions. Measurements of isolated inclusive and di-photons cross sections for high transverse momentum photons test theoretical predictions of perturbative QCD and constrain parton density functions. An overview of these results is given.

  18. Ab initio approach to the non-perturbative scalar Yukawa model

    OpenAIRE

    Li, YangDepartment of Physics and Astronomy, Iowa State University, Ames, IA, 50011, USA; Karmanov, V.A.(Lebedev Physical Institute, Leninsky Prospekt 53, Moscow, 119991, Russia); Maris, P.(Department of Physics and Astronomy, Iowa State University, Ames, IA, 50011, USA); Vary, J.P.(Department of Physics and Astronomy, Iowa State University, Ames, IA, 50011, USA)

    2015-01-01

    We report on the first non-perturbative calculation of the scalar Yukawa model in the single-nucleon sector up to four-body Fock sector truncation (one "scalar nucleon" and three "scalar pions"). The light-front Hamiltonian approach with a systematic non-perturbative renormalization is applied. We study the $n$-body norms and the electromagnetic form factor. We find that the one- and two-body contributions dominate up to coupling $\\alpha \\approx 1.7$. As we approach the coupling $\\alpha \\appr...

  19. Direct calculations of the odderon intercept in perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Braun, M.A.; Gauron, P.; Nicolescu, B

    1999-03-08

    The odderon intercept is calculated directly, from its expression via an average energy of the odderon Hamiltonian, using both trial wave functions in the variational approach and the wave function recently constructed by Janik and Wosiek. The results confirm their reported value for the energy. Variational calculations give energies some 30% higher. However, they also predict the odderon intercept to be quite close to unity. In fact, for realistic values of {alpha}{sub s}, the intercept calculated variationally is at most 2% lower than the exact one: 0.94 instead of 0.96. It is also found that the solution for q{sub 3} = 0 does not belong to the odderon spectrum. The diffusion parameter is found to be of the order 0.6.

  20. A comparison of jet production rates on the Z0 resonance to perturbative QCD

    International Nuclear Information System (INIS)

    Abreu, P.; Adam, W.; Adami, F.

    1990-01-01

    The production rates for 2-, 3-, 4- and 5-jet hardronic final states have been measured with the DELPHI detector at the e + e - storage ring LEP at centre of mass energies around 91.5 GeV. Fully corrected data are compared to O(α s 2 ) QCD matrix element calculations and the QCD scale parameter Λsub(anti Manti S) is determined for different parametrizations of the renormalization scale μ 2 . Including all uncertainties our result is α s (M Z 2 )=0.114±0.003[stat.]±0.004[syst.]±0.012[theor.]. (orig.)

  1. A non-perturbative argument for the non-abelian Higgs mechanism

    International Nuclear Information System (INIS)

    De Palma, G.; Strocchi, F.

    2013-01-01

    The evasion of massless Goldstone bosons by the non-abelian Higgs mechanism is proved by a non-perturbative argument in the local BRST gauge. -- Highlights: •The perturbative explanation of the Higgs mechanism (HM) is not under mathematical control. •We offer a non-perturbative proof of the absence of Goldstone bosons from the non-abelian HM. •Our non-perturbative proof in the BRST gauge avoids a mean field ansatz and expansion

  2. A non-perturbative argument for the non-abelian Higgs mechanism

    Energy Technology Data Exchange (ETDEWEB)

    De Palma, G. [Scuola Normale Superiore, Pisa (Italy); INFN, Sezione di Pisa, Pisa (Italy); Strocchi, F., E-mail: franco.strocchi@sns.it [INFN, Sezione di Pisa, Pisa (Italy)

    2013-09-15

    The evasion of massless Goldstone bosons by the non-abelian Higgs mechanism is proved by a non-perturbative argument in the local BRST gauge. -- Highlights: •The perturbative explanation of the Higgs mechanism (HM) is not under mathematical control. •We offer a non-perturbative proof of the absence of Goldstone bosons from the non-abelian HM. •Our non-perturbative proof in the BRST gauge avoids a mean field ansatz and expansion.

  3. Non-perturbative renormalization of left-left four-fermion operators in quenched lattice QCD

    CERN Document Server

    Guagnelli, M; Peña, C; Sint, S; Vladikas, A

    2006-01-01

    We define a family of Schroedinger Functional renormalization schemes for the four-quark multiplicatively renormalizable operators of the $\\Delta F = 1$ and $\\Delta F = 2$ effective weak Hamiltonians. Using the lattice regularization with quenched Wilson quarks, we compute non-perturbatively the renormalization group running of these operators in the continuum limit in a large range of renormalization scales. Continuum limit extrapolations are well controlled thanks to the implementation of two fermionic actions (Wilson and Clover). The ratio of the renormalization group invariant operator to its renormalized counterpart at a low energy scale, as well as the renormalization constant at this scale, is obtained for all schemes.

  4. Non-perturbative Heavy-Flavor Transport at RHIC and LHC

    Energy Technology Data Exchange (ETDEWEB)

    He, Min, E-mail: mhe@comp.tamu.edu; Fries, Rainer J.; Rapp, Ralf

    2013-08-15

    We calculate open heavy-flavor (HF) transport in relativistic heavy-ion collisions by applying a strong-coupling treatment in both macro- and microscopic dynamics (hydrodynamics and non-perturbative diffusion interactions). The hydrodynamic medium evolution is quantitatively constrained by bulk and multi-strange hadron spectra and elliptic flow. The heavy quark transport coefficient is evaluated from a non-perturbative T-matrix approach in the Quark–Gluon Plasma which, close to the critical temperature, leads to resonance formation and feeds into the recombination of heavy quarks on a hydrodynamic hypersurface. In the hadronic phase, the diffusion of HF mesons is obtained from effective hadronic theory. We compute observables at RHIC and LHC for non-photonic electrons and HF mesons, respectively.

  5. Multiplicity and Underlying Event in ALICE: as measurements and as tools to probe QCD arXiv

    CERN Document Server

    INSPIRE-00361691

    With the high collision energies at the LHC, the contributions to particle production from hard-QCD processes increase, but it remains dominated by soft-QCD processes. Such processes challenge the theoretical models, since they are described by non-perturbative phenomenology. A selection of the most recent ALICE measurements of charged-particle multiplicities and the Underlying Event will be presented, focusing on model comparisons. A summary of the current understanding of soft-QCD processes will be discussed, evaluating possible ways to further constrain theory.

  6. Jet fragmentation and predictions of the resummed perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Safonov, Alexei Nikolayevich [Univ. of Florida, Gainesville, FL (United States)

    2001-01-01

    This dissertation is dedicated to the experimental analysis of jet fragmentation, the process of formation of jets of particles produced in high-energy collisions, and to the comparison of the results to the predictions of resummed perturbative calculations within Quantum Chromodynamics.

  7. Chiral properties of two-flavour QCD at zero and non-zero temperature

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Bastian Benjamin

    2012-11-22

    Lattice Quantum Chromodynamics (LQCD) is the preferred tool for obtaining non-perturbative results from QCD in the low-energy regime. It has by now entered the era in which high precision calculations for a number of phenomenologically relevant observables at the physical point, with dynamical quark degrees of freedom and controlled systematics, become feasible. Despite these successes there are still quantities where control of systematic effects is insufficient. The subject of this thesis is the exploration of the potential of todays state-of-the-art simulation algorithms for non-perturbatively O(a)-improved Wilson fermions to produce reliable results in the chiral regime and at the physical point both for zero and non-zero temperature. Important in this context is the control over the chiral extrapolation. This thesis is concerned with two particular topics, namely the computation of hadronic form factors at zero temperature, and the properties of the phase transition in the chiral limit of two-flavour QCD. The electromagnetic iso-vector form factor of the pion provides a platform to study systematic effects and the chiral extrapolation for observables connected to the structure of mesons (and baryons). Mesonic form factors are computationally simpler than their baryonic counterparts but share most of the systematic effects. This thesis contains a comprehensive study of the form factor in the regime of low momentum transfer q{sup 2}, where the form factor is connected to the charge radius of the pion. A particular emphasis is on the region very close to q{sup 2}=0 which has not been explored so far, neither in experiment nor in LQCD. The results for the form factor close the gap between the smallest spacelike q{sup 2}-value available so far and q{sup 2}=0, and reach an unprecedented accuracy at full control over the main systematic effects. This enables the model-independent extraction of the pion charge radius. The results for the form factor and the charge

  8. Chiral properties of two-flavour QCD at zero and non-zero temperature

    International Nuclear Information System (INIS)

    Brandt, Bastian Benjamin

    2012-01-01

    Lattice Quantum Chromodynamics (LQCD) is the preferred tool for obtaining non-perturbative results from QCD in the low-energy regime. It has by now entered the era in which high precision calculations for a number of phenomenologically relevant observables at the physical point, with dynamical quark degrees of freedom and controlled systematics, become feasible. Despite these successes there are still quantities where control of systematic effects is insufficient. The subject of this thesis is the exploration of the potential of todays state-of-the-art simulation algorithms for non-perturbatively O(a)-improved Wilson fermions to produce reliable results in the chiral regime and at the physical point both for zero and non-zero temperature. Important in this context is the control over the chiral extrapolation. This thesis is concerned with two particular topics, namely the computation of hadronic form factors at zero temperature, and the properties of the phase transition in the chiral limit of two-flavour QCD. The electromagnetic iso-vector form factor of the pion provides a platform to study systematic effects and the chiral extrapolation for observables connected to the structure of mesons (and baryons). Mesonic form factors are computationally simpler than their baryonic counterparts but share most of the systematic effects. This thesis contains a comprehensive study of the form factor in the regime of low momentum transfer q 2 , where the form factor is connected to the charge radius of the pion. A particular emphasis is on the region very close to q 2 =0 which has not been explored so far, neither in experiment nor in LQCD. The results for the form factor close the gap between the smallest spacelike q 2 -value available so far and q 2 =0, and reach an unprecedented accuracy at full control over the main systematic effects. This enables the model-independent extraction of the pion charge radius. The results for the form factor and the charge radius are used to

  9. A lattice QCD calculation of the transverse decay constant of the b{sub 1}(1235) meson

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; McNeile, C. [Wuppertal Univ. (Germany). Theoretische Teilchenphysik; Michael, C. [Liverpool Univ. (United Kingdom). Theoretical Physics Division, Dept. of Mathematical Sciences; Urbach, C. [Humboldt-Univ., Berlin (Germany). Theorie der Elementarteilchen

    2009-10-15

    We review various B meson decays that require knowledge of the transverse decay constant of the b{sub 1}(1235) meson. We report on an exploratory lattice QCD calculation of the transverse decay constant of the b{sub 1} meson. The lattice QCD calculations used unquenched gauge configurations, at two lattice spacings, generated with two flavours of sea quarks. The twisted mass formalism is used. (orig.)

  10. Efficient analytic computation of higher-order QCD amplitudes

    International Nuclear Information System (INIS)

    Bern, Z.; Chalmers, G.; Dunbar, D.C.; Kosower, D.A.

    1995-01-01

    The authors review techniques simplifying the analytic calculation of one-loop QCD amplitudes with many external legs, for use in next-to-leading-order corrections to multi-jet processes. Particularly useful are the constraints imposed by perturbative unitarity, collinear singularities and a supersymmetry-inspired organization of helicity amplitudes. Certain sequences of one-loop helicity amplitudes with an arbitrary number of external gluons have been obtained using these constraints

  11. Light-Front Holography, Light-Front Wavefunctions, and Novel QCD Phenomena

    DEFF Research Database (Denmark)

    Brodsky, S. J.; de Teramond, G. F.

    2012-01-01

    Light-front holography is one of the most remarkable features of the AdS/CFT correspondence. In spite of its present limitations, it provides important physical insights into the non-perturbative regime of QCD and its transition to the perturbative domain. This novel framework allows hadronic...... projected on the free Fock basis provides the complete set of valence and non-valence light-front Fock state wavefunctions Psi(n)/H(x(i), k(perpendicular to i), lambda(i)) which describe the hadron's momentum and spin distributions needed to compute the direct measures of hadron structure at the quark...

  12. On the non-perturbative effects

    International Nuclear Information System (INIS)

    Manjavidze, J.; Voronyuk, V.

    2004-01-01

    The quantum correspondence principle based on the time reversibility is adopted to take into account the non-Abelian symmetry constrains. The main properties of the new strong-coupling perturbation theory which take into account non-perturbative effects are described. (author)

  13. Studying the perturbative Reggeon

    International Nuclear Information System (INIS)

    Griffiths, S.; Ross, D.A.

    2000-01-01

    We consider the flavour non-singlet Reggeon within the context of perturbative QCD. This consists of ladders built out of ''reggeized'' quarks. We propose a method for the numerical solution of the integro-differential equation for the amplitude describing the exchange of such a Reggeon. The solution is known to have a sharp rise at low values of Bjorken-x when applied to non-singlet quantities in deep-inelastic scattering. We show that when the running of the coupling is taken into account this sharp rise is further enhanced, although the Q 2 dependence is suppressed by the introduction of the running coupling. We also investigate the effects of simulating non-perturbative physics by introducing a constituent mass for the soft quarks and an effective mass for the soft gluons exchanged in the t-channel. (orig.)

  14. What can we learn from sum rules for vertex functions in QCD

    International Nuclear Information System (INIS)

    Craigie, N.S.; Stern, J.

    1982-04-01

    We demonstrate that the light cone sum rules for vertex functions based on the operator product expansion and QCD perturbation theory lead to interesting relationships between various non-perturbative parameters associated with hadronic bound states (e.g. vertex couplings and decay constants). We also show that such sum rules provide a valuable means of estimating the matrix elements of the higher spin operators in the meson wave function. (author)

  15. Penguin-dominated B→PV decays in NLO perturbative QCD

    International Nuclear Information System (INIS)

    Li Hsiangnan; Mishima, Satoshi

    2006-01-01

    We study the penguin-dominated B→PV decays, with P (V) representing a pseudoscalar (vector) meson, in the next-to-leading-order (NLO) perturbative QCD (PQCD) formalism, concentrating on the B→Kφ, πK*, ρK, and ωK modes. It is found that the NLO corrections dramatically enhance the B→ρK, ωK branching ratios, which were estimated to be small under the naive factorization assumption. The patterns of the direct CP asymmetries A CP (B 0 →ρ ± K ± )≅A CP (B ± →ρ 0 K ± ) and A CP (B 0 →π ± K* ± )>A CP (B ± →π 0 K* ± ) are predicted, differing from A CP (B 0 →π ± K ± )>>A CP (B ± →π 0 K ± ). The above patterns, if confirmed by data, will support the source of strong phases from the scalar penguin annihilation in PQCD. The results for the mixing-induced CP asymmetries S f are consistent with those obtained in the literature, except that our S ρ 0 K S is as low as 0.5

  16. Perturbative ambiguities in Coulomb gauge QCD

    International Nuclear Information System (INIS)

    Doust, P.

    1987-01-01

    The naive Coulomb gauge Feynman rules in non-abelian gauge theory give rise to ambiguous integrals, in addition to the usual ultraviolet divergences. Generalizing the work of Cheng and Tsai, these ambiguities are resolved to all orders in perturbation theory, by defining a gauge that interpolates smoothly between the Feynman gauge and the Coulomb gauge. The extra terms V 1 +V 2 of Christ and Lee are identified with certain two-loop ambiguous terms. However, there still seem to be unsolved problems connected with renormalisation. copyright 1987 Academic Press, Inc

  17. Inverse magnetic catalysis from improved holographic QCD in the Veneziano limit

    International Nuclear Information System (INIS)

    Gürsoy, Umut; Iatrakis, Ioannis; Järvinen, Matti; Nijs, Govert

    2017-01-01

    We study the dependence of the chiral condensate on external magnetic field in the context of holographic QCD at large number of flavors. We consider a holographic QCD model where the flavor degrees of freedom fully backreact on the color dynamics. Perturbative QCD calculations have shown that B acts constructively on the chiral condensate, a phenomenon called “magnetic catalysis”. In contrast, recent lattice calculations show that, depending on the number of flavors and temperature, the magnetic field may also act destructively, which is called “inverse magnetic catalysis”. Here we show that the holographic theory is capable of both behaviors depending on the choice of parameters. For reasonable choice of the potentials entering the model we find qualitative agreement with the lattice expectations. Our results provide insight for the physical reasons behind the inverse magnetic catalysis. In particular, we argue that the backreaction of the flavors to the background geometry decatalyzes the condensate.

  18. Inverse magnetic catalysis from improved holographic QCD in the Veneziano limit

    Energy Technology Data Exchange (ETDEWEB)

    Gürsoy, Umut; Iatrakis, Ioannis [Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena,Utrecht University,Leuvenlaan 4, 3584 CE Utrecht (Netherlands); Järvinen, Matti [Laboratoire de Physique Théorique de l’École Normale Supérieure & Institut de Physique Théorique Philippe Meyer, PSL Research University,CNRS, Sorbonne Universités, UPMC University Paris 06,24 rue Lhomond, 75231 Paris Cedex 05 (France); Nijs, Govert [Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena,Utrecht University,Leuvenlaan 4, 3584 CE Utrecht (Netherlands)

    2017-03-09

    We study the dependence of the chiral condensate on external magnetic field in the context of holographic QCD at large number of flavors. We consider a holographic QCD model where the flavor degrees of freedom fully backreact on the color dynamics. Perturbative QCD calculations have shown that B acts constructively on the chiral condensate, a phenomenon called “magnetic catalysis”. In contrast, recent lattice calculations show that, depending on the number of flavors and temperature, the magnetic field may also act destructively, which is called “inverse magnetic catalysis”. Here we show that the holographic theory is capable of both behaviors depending on the choice of parameters. For reasonable choice of the potentials entering the model we find qualitative agreement with the lattice expectations. Our results provide insight for the physical reasons behind the inverse magnetic catalysis. In particular, we argue that the backreaction of the flavors to the background geometry decatalyzes the condensate.

  19. Polarized and unpolarized nucleon structure functions from lattice QCD

    International Nuclear Information System (INIS)

    Goeckeler, M.; Technische Hochschule Aachen; Horsley, R.; Humboldt-Universitaet, Berlin; Ilgenfritz, E.M.; Perlt, H.; Rakow, P.; Schierholz, G.; Forschungszentrum Juelich GmbH; Schiller, A.

    1995-06-01

    We report on a high statistics quenched lattice QCD calculation of the deep-inelastic structure functions F 1 , F 2 , g 1 and g 2 of the proton and neutron. The theoretical basis for the calculation is the operator product expansion. We consider the moments of the leading twist operators up to spin four. Using Wilson fermions the calculation is done for three values of K, and we perform the extrapolation to the chiral limit. The renormalization constants, which lead us from lattice to continuum operators, are calculated in perturbation theory to one loop order. (orig.)

  20. The Electric Dipole Form Factor of the Nucleon in Chiral Perturbation Theory to Sub-leading Order

    CERN Document Server

    Mereghetti, E; Hockings, W H; Maekawa, C M; van Kolck, U

    2011-01-01

    The electric dipole form factor (EDFF) of the nucleon stemming from the QCD theta term and from the quark color-electric dipole moments is calculated in chiral perturbation theory to sub-leading order. This is the lowest order in which the isoscalar EDFF receives a calculable, non-analytic contribution from the pion cloud. In the case of the theta term, the expected lower bound on the deuteron electric dipole moment is |d_d| > 1.4 10^(-4) \\theta e fm. The momentum dependence of the isovector EDFF is proportional to a non-derivative time-reversal-violating pion-nucleon coupling, and the scale for momentum variation ---appearing, in particular, in the radius of the form factor--- is the pion mass.

  1. NNLO QCD corrections for the differential Higgs boson production cross-section in gluon fusion

    International Nuclear Information System (INIS)

    Anastasiou, Charalampos

    2006-01-01

    I describe a recent computation of the NNLO QCD corrections for the fully differential cross-section for Higgs boson production in the gluon fusion channel. This result is an application of a new method for calculating perturbative corrections beyond the next-to-leading order

  2. MCNP Perturbation Capability for Monte Carlo Criticality Calculations

    International Nuclear Information System (INIS)

    Hendricks, J.S.; Carter, L.L.; McKinney, G.W.

    1999-01-01

    The differential operator perturbation capability in MCNP4B has been extended to automatically calculate perturbation estimates for the track length estimate of k eff in MCNP4B. The additional corrections required in certain cases for MCNP4B are no longer needed. Calculating the effect of small design changes on the criticality of nuclear systems with MCNP is now straightforward

  3. Charmless non-leptonic Bs decays to PP, PV and VV final states in the pQCD approach

    International Nuclear Information System (INIS)

    Ali, A.; Kramer, G.

    2007-03-01

    We calculate the CP-averaged branching ratios and CP-violating asymmetries of a number of two-body charmless hadronic decays B s 0 →PP,PV,VV in the perturbative QCD (pQCD) approach to leading order in α s (here P and V denote light pseudoscalar and vector mesons, respectively). The mixinginduced CP violation parameters are also calculated for these decays. We also predict the polarization fractions of B s →VV decays and find that the transverse polarizations are enhanced in some penguin dominated decays such as B s 0 →K * K * , K * ρ. Some of the predictions worked out here can already be confronted with the recently available data from the CDF collaboration on the branching ratios for the decays B s 0 →K + π - , B s 0 →K + K - and the CP-asymmetry in the decay B s 0 →K + π - , and are found to be in agreement within the current errors. A large number of predictions for the branching ratios, CP-asymmetries and vector-meson polarizations in B s 0 decays, presented in this paper and compared with the already existing results in other theoretical frameworks, will be put to stringent experimental tests in forthcoming experiments at Fermilab, LHC and Super B-factories. (orig.)

  4. QCD predictions for four-jet final states in e/sup +/e/sup -/ annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A; Koerner, J G; Kunszt, Z; Pietarinen, E [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany, F.R.); Kramer, G; Schierholz, G; Willrodt, J [Hamburg Univ. (Germany, F.R.). 2. Inst. fuer Theoretische Physik

    1980-05-01

    We have calculated the four-jet production processes e/sup +/e/sup -/ ..-->.. q anti q gg and e/sup -/e/sup -/ ..-->.. q anti q q anti q to lowest order QCD perturbation theory. We find that (q anti q q anti q) production is small compared to the dominant process e/sup +/e/sup -/ ..-->.. q anti q gg which can in part be traced to the fact that the latter process is more singular as the 2- and 3-jet phase-space limits are approached. We present differential 4-jet acoplanarity distributions and compare them with non-perturbative acoplanarity distributions at maximum PETRA and PEP energies. Leading log cross-section formulae are derived for various cut-off procedures and are compared to the results of our numerical integrations. We also present results on associated heavy quark production in e/sup +/e/sup -/ annihilation.

  5. Twisted mass lattice QCD with non-degenerate quark masses

    International Nuclear Information System (INIS)

    Muenster, Gernot; Sudmann, Tobias

    2006-01-01

    Quantum Chromodynamics on a lattice with Wilson fermions and a chirally twisted mass term is considered in the framework of chiral perturbation theory. For two and three numbers of quark flavours, respectively, with non-degenerate quark masses the pseudoscalar meson masses and decay constants are calculated in next-to-leading order including lattice effects quadratic in the lattice spacing a

  6. O(a) improvement of the HYP static axial and vector currents at one-loop order of perturbation theory

    CERN Document Server

    Grimbach, A; Knechtli, F; Palombi, Filippo

    2008-01-01

    We calculate analytically the improvement coefficients of the static axial and vector currents in O(a) improved lattice QCD at one-loop order of perturbation theory. The static quark is described by the hypercubic action, previously introduced in the literature in order to improve the signal-to-noise ratio of static observables. Within a Schroedinger Functional setup, we derive the Feynman rules of the hypercubic link in time-momentum representation. The improvement coefficients are obtained from on-shell correlators of the static axial and vector currents. As a by-product, we localise the minimum of the static self-energy as a function of the smearing parameters of the action at one-loop order and show that the perturbative minimum is close to its non-perturbative counterpart.

  7. Matching of heavy-light flavour currents between HQET at order 1/m and QCD. I. Strategy and tree-level study

    Energy Technology Data Exchange (ETDEWEB)

    Della Morte, Michele [Instituto de Fisica Corpuscular IFIC (CSIC), Paterna (Spain); Dooling, Samantha; Heitger, Jochen [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1; Hesse, Dirk [Parma Univ. degli Studi (Italy); Simma, Hubert [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Collaboration: ALPHA Collaboration

    2013-12-15

    We present a strategy how to match the full set of components of the heavy-light axial and vector currents in Heavy Quark Effective Theory (HQET), up to and including 1/m{sub h}-corrections, to QCD. While the ultimate goal is to apply these matching conditions non-perturbatively, in this study we first have implemented them at tree-level, in order to find good choices of the matching observables with small O(1/m{sup 2}{sub h}) contributions. They can later be employed in the non-perturbative matching procedure which is a crucial part of precision HQET computations of semileptonic decay form factors in lattice QCD.

  8. {alpha}{sub s} from the non-perturbatively renormalised lattice three-gluon vertex

    Energy Technology Data Exchange (ETDEWEB)

    Alles, B. [Pisa Univ. (Italy). Dipt. di Fisica; Henty, D.S. [Department of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Panagopoulos, H. [Department of Natural Sciences, University of Cyprus, CY-1678 Nicosia (Cyprus); Parrinello, C. [Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX (United Kingdom); Pittori, C. [L.P.T.H.E., Universite de Paris Sud, Centre d`Orsay, 91405 Orsay (France); Richards, D.G. [Department of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom)]|[Fermilab, P.O. Box 500, Batavia, IL 60510 (United States)

    1997-09-29

    We compute the running QCD coupling on the lattice by evaluating two-point and three-point off-shell gluon Green`s functions in a fixed gauge and imposing non-perturbative renormalisation conditions on them. Our exploratory study is performed in the quenched approximation at {beta}=6.0 on 16{sup 4} and 24{sup 4} lattices. We show that, for momenta in the range 1.8-2.3 GeV, our coupling runs according to the two-loop asymptotic formula, allowing a precise determination of the corresponding {Lambda} parameter. The role of lattice artifacts and finite-volume effects is carefully analysed and these appear to be under control in the momentum range of interest. Our renormalisation procedure corresponds to a momentum subtraction scheme in continuum field theory, and therefore lattice perturbation theory is not needed in order to match our results to the anti M anti S scheme, thus eliminating a major source of uncertainty in the determination of {alpha} {sub anti} {sub M} {sub anti} {sub S}. Our method can be applied directly to the unquenched case. (orig.). 20 refs.

  9. Nonperturbative QCD and elastic processes at CEBAF energies

    Energy Technology Data Exchange (ETDEWEB)

    Radyushkin, A.V. [Old Dominion Univ., Norfolk, VA (United States)]|[Continuous Electron Beam Accelerator Facility, Newport News, VA (United States)

    1994-04-01

    The author outlines how one can approach nonperturbative aspects of the QCD dynamics studying elastic processes at energies accessible at upgraded CEBAF. The author`s point is that, in the absence of a complete theory of the nonperturbative effects, a possible way out is based on a systematic use of the QCD factorization procedure which separates theoretically understood ({open_quotes}known{close_quotes}) short-distance effects and nonperturbative ({open_quotes}unknown{close_quotes}) long-distance ones. The latter include hadronic distribution amplitudes, soft components of hadronic form factors etc. Incorporating the QCD sum rule version of the QCD factorization approach, one can relate these nonperturbative functions to more fundamental objects, vacuum condensates, which accumulate information about the nonperturbative structure of the QCD vacuum. The emerging QCD sum rule picture of hadronic form factors is characterized by a dominant role of essentially nonperturbative effects in the few GeV region, with perturbative mechanisms starting to show up for momentum transfers Q{sup 2} closer to 10 GeV{sup 2} and higher. Thus, increasing CEBAF energy provides a unique opportunity for a precision study of interplay between the perturbative and nonperturbative phenomena in the QCD description of elastic processes.

  10. Nonperturbative QCD and elastic processes at CEBAF energies

    International Nuclear Information System (INIS)

    Radyushkin, A.V.

    1994-01-01

    The author outlines how one can approach nonperturbative aspects of the QCD dynamics studying elastic processes at energies accessible at upgraded CEBAF. The author's point is that, in the absence of a complete theory of the nonperturbative effects, a possible way out is based on a systematic use of the QCD factorization procedure which separates theoretically understood (open-quotes knownclose quotes) short-distance effects and nonperturbative (open-quotes unknownclose quotes) long-distance ones. The latter include hadronic distribution amplitudes, soft components of hadronic form factors etc. Incorporating the QCD sum rule version of the QCD factorization approach, one can relate these nonperturbative functions to more fundamental objects, vacuum condensates, which accumulate information about the nonperturbative structure of the QCD vacuum. The emerging QCD sum rule picture of hadronic form factors is characterized by a dominant role of essentially nonperturbative effects in the few GeV region, with perturbative mechanisms starting to show up for momentum transfers Q 2 closer to 10 GeV 2 and higher. Thus, increasing CEBAF energy provides a unique opportunity for a precision study of interplay between the perturbative and nonperturbative phenomena in the QCD description of elastic processes

  11. arXiv Mass-improvement of the vector current in three-flavor QCD

    CERN Document Server

    Fritzsch, Patrick

    2018-06-04

    We determine two improvement coefficients which are relevant to cancel mass-dependent cutoff effects in correlation functions with operator insertions of the non-singlet local QCD vector current. This determination is based on degenerate three-flavor QCD simulations of non-perturbatively O(a) improved Wilson fermions with tree-level improved gauge action. Employing a very robust strategy that has been pioneered in the quenched approximation leads to an accurate estimate of a counterterm cancelling dynamical quark cutoff effects linear in the trace of the quark mass matrix. To our knowledge this is the first time that such an effect has been determined systematically with large significance.

  12. Multi-group diffusion perturbation calculation code. PERKY (2002)

    Energy Technology Data Exchange (ETDEWEB)

    Iijima, Susumu; Okajima, Shigeaki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-12-01

    Perturbation calculation code based on the diffusion theory ''PERKY'' is designed for nuclear characteristic analyses of fast reactor. The code calculates reactivity worth on the multi-group diffusion perturbation theory in two or three dimensional core model and kinetics parameters such as effective delayed neutron fraction, prompt neutron lifetime and absolute reactivity scale factor ({rho}{sub 0} {delta}k/k) for FCA experiments. (author)

  13. The QCD/SM working group: Summary report

    International Nuclear Information System (INIS)

    Giele, W.

    2004-01-01

    Quantum Chromo-Dynamics (QCD), and more generally the physics of the Standard Model (SM), enter in many ways in high energy processes at TeV Colliders, and especially in hadron colliders (the Tevatron at Fermilab and the forthcoming LHC at CERN), First of all, at hadron colliders, QCD controls the parton luminosity, which rules the production rates of any particle or system with large invariant mass and/or large transverse momentum. Accurate predictions for any signal of possible ''New Physics'' sought at hadron colliders, as well as the corresponding backgrounds, require an improvement in the control of uncertainties on the determination of PDF and of the propagation of these uncertainties in the predictions. Furthermore, to fully exploit these new types of PDF with uncertainties, uniform tools (computer interfaces, standardization of the PDF evolution codes used by the various groups fitting PDF's) need to be proposed and developed. The dynamics of colour also affects, both in normalization and shape, various observables of the signals of any possible ''New Physics'' sought at the TeV scale, such as, e.g. the production rate, or the distributions in transverse momentum of the Higgs boson. Last, but not least, QCD governs many backgrounds to the searches for this ''New Physics''. Large and important QCD corrections may come from extra hard parton emission (and the corresponding virtual corrections), involving multi-leg and/or multi-loop amplitudes. This requires complex higher order calculations, and new methods have to be designed to compute the required multi-legs and/or multi-loop corrections in a tractable form. In the case of semi-inclusive observables, logarithmically enhanced contributions coming from multiple soft and collinear gluon emission require sophisticated QCD resummation techniques. Resummation is a catch-all name for efforts to extend the predictive power of QCD by summing the large logarithmic corrections to all orders in perturbation theory. In

  14. The QCD/SM working group: Summary report

    Energy Technology Data Exchange (ETDEWEB)

    W. Giele et al.

    2004-01-12

    logarithmic corrections to all orders in perturbation theory. In practice, the resummation formalism depends on the observable at issue, through the type of logarithm to be resummed, and the resummation methods. In parallel with this perturbative QCD-oriented working programme, the implementation of both QCD/SM and New physics in Monte Carlo event generators is confronted with a number of issues which deserve uniformization or improvements. The important issues are: (1) the problem of interfacing partonic event generators to showering Monte-Carlos; (2) an implementation using this interface to calculate backgrounds which are poorly simulated by the showering Monte-Carlos alone; (3) a comparison of the HERWIG and PYTHIA parton shower models with the predictions of soft gluon resummation; (4) studies of the underlying events at hadron colliders to check how well they are modeled by the Monte-Carlo generators.

  15. Non-perturbative treatment of relativistic quantum corrections in large Z atoms

    International Nuclear Information System (INIS)

    Dietz, K.; Weymans, G.

    1983-09-01

    Renormalised g-Hartree-Dirac equations incorporating Dirac sea contributions are derived. Their implications for the non-perturbative, selfconsistent calculation of quantum corrections in large Z atoms are discussed. (orig.)

  16. Ratio of a strange quark mass ms to up or down quark mass mu,d predicted by a quark propagator in the framework of the chiral perturbation theory

    International Nuclear Information System (INIS)

    Peng Jinsong; Meng Chengju; Pan Jihuan; Yuan Tongquan; Zhou Lijuan; Ma Weixing

    2013-01-01

    Based on the fully dressed quark propagator and chiral perturbation theory, we study the ratio of the strange quark mass m s to up or down quark mass m u,d . The ratio is related to the determination of quark masses which are fundamental input parameters of QCD Lagrangian in the Standard Model of particle physics and can not be directly measured since the quark is confined within a hadron. An accurate determination of these QCD free parameters is extremely important for both phenomenological and theoretical applications. We begin with a brief introduction to the non-perturbation QCD theory, and then study the mass ratio in the framework of the chiral perturbation theory (χPT) with a parameterized fully dressed quark propagator which describes confining fully dressed quark propagation and is analytic everywhere in the finite complex p 2 -plane and has no Lehmann representation so there are no quark production thresholds in any theoretical calculations of observable data. Our prediction for the ratio m s /m u,d is consistent with other model predictions such as Lattice QCD, instanton model, QCD sum rules and the empirical values used widely in the literature. As a by-product of this study, our theoretical results, together with other predictions of physical quantities that used this quark propagator in our previous publications, clearly show that the parameterized form of the fully dressed quark propagator is an applicable and reliable approximation to the solution of the Dyson-Schwinger Equation of quark propagator in the QCD. (authors)

  17. Curvature perturbation spectra from waterfall transition, black hole constraints and non-Gaussianity

    Energy Technology Data Exchange (ETDEWEB)

    Bugaev, Edgar; Klimai, Peter, E-mail: bugaev@pcbai10.inr.ruhep.ru, E-mail: pklimai@gmail.com [Institute for Nuclear Research, Russian Academy of Sciences, 60th October Anniversary Prospect 7a, 117312 Moscow (Russian Federation)

    2011-11-01

    We carried out numerical calculations of a contribution of the waterfall field to the primordial curvature perturbation (on uniform density hypersurfaces) ζ, which is produced during waterfall transition in hybrid inflation scenario. The calculation is performed for a broad interval of values of the model parameters. We show that there is a strong growth of amplitudes of the curvature perturbation spectrum in the limit when the bare mass-squared of the waterfall field becomes comparable with the square of Hubble parameter. We show that in this limit the primordial black hole constraints on the curvature perturbations must be taken into account. It is shown that, in the same limit, peak values of the curvature perturbation spectra are far beyond horizon, and the spectra are strongly non-Gaussian.

  18. Curvature perturbation spectra from waterfall transition, black hole constraints and non-Gaussianity

    International Nuclear Information System (INIS)

    Bugaev, Edgar; Klimai, Peter

    2011-01-01

    We carried out numerical calculations of a contribution of the waterfall field to the primordial curvature perturbation (on uniform density hypersurfaces) ζ, which is produced during waterfall transition in hybrid inflation scenario. The calculation is performed for a broad interval of values of the model parameters. We show that there is a strong growth of amplitudes of the curvature perturbation spectrum in the limit when the bare mass-squared of the waterfall field becomes comparable with the square of Hubble parameter. We show that in this limit the primordial black hole constraints on the curvature perturbations must be taken into account. It is shown that, in the same limit, peak values of the curvature perturbation spectra are far beyond horizon, and the spectra are strongly non-Gaussian

  19. Universality of non-leading logarithmic contributions in transverse-momentum distributions

    CERN Document Server

    Catani, S; Grazzini, Massimiliano

    2001-01-01

    We consider the resummation of the logarithmic contributions to the region of small transverse momenta in the distributions of high-mass systems (lepton pairs, vector bosons, Higgs particles, ....) produced in hadron collisions. We point out that the resummation formulae that are usually used to compute the distributions in perturbative QCD involve process-dependent form factors and coefficient functions. We present a new universal form of the resummed distribution, in which the dependence on the process is embodied in a single perturbative factor. The new form simplifies the calculation of non-leading logarithms at higher perturbative orders. It can also be useful to systematically implement process-independent non-perturbative effects in transverse-momentum distributions. We also comment on the dependence of these distributions on the factorization and renormalization scales.

  20. Non-gaussianity from the trispectrum and vector field perturbations

    International Nuclear Information System (INIS)

    Valenzuela-Toledo, Cesar A.; Rodriguez, Yeinzon

    2010-01-01

    We use the δN formalism to study the trispectrum T ζ of the primordial curvature perturbation ζ when the latter is generated by vector field perturbations, considering the tree-level and one-loop contributions. The order of magnitude of the level of non-gaussianity in the trispectrum, τ NL , is calculated in this scenario and related to the order of magnitude of the level of non-gaussianity in the bispectrum, f NL , and the level of statistical anisotropy in the power spectrum, g ζ . Such consistency relations will put under test this scenario against future observations. Comparison with the expected observational bound on τ NL from WMAP, for generic inflationary models, is done.

  1. Challenges in the extraction of TMDs from SIDIS data: perturbative vs non-perturbative aspects

    Energy Technology Data Exchange (ETDEWEB)

    Boglione, Mariaelena [aDipartimento di Fisica Teorica, Università di Torino, Via P. Giuria 1, I-10125 Torino, Italy; Gonzalez Hernandez, Jose O. [INFN, Sezione di Torino, and Dipartimento di Fisica Teorica, Università di Torino, Via P. Giuria 1, I-10125 Torino, Italy; Melis, Stefano [Univ. Torino, Torino, Italy; Prokudin, Alexey [Jefferson Laboratory, 12000 Jeerson Avenue, Newport News, VA 23606, USA

    2015-09-01

    We present our recent results on the study of the Semi-Inclusive Deep Inelastic Scattering (SIDIS) cross section as a function of the transverse momentum, qT. Using the Collins-Soper-Sterman (CSS) formalism, we study the matching between the region where fixed-order perturbative QCD can successfully be applied and the region where soft gluon resummation is necessary. We find that the commonly used prescription of matching through the so-called Y-factor cannot be applied in the SIDIS kinematical configurations we examine. We comment on the impact that the nonperturbative component has even at relatively high energies.

  2. Extracting scattering phase shifts in higher partial waves from lattice QCD calculations

    Energy Technology Data Exchange (ETDEWEB)

    Luu, Thomas; Savage, Martin J.

    2011-06-01

    Lüscher’s method is routinely used to determine meson-meson, meson-baryon, and baryon-baryon s-wave scattering amplitudes below inelastic thresholds from lattice QCD calculations—presently at unphysical light-quark masses. In this work we review the formalism and develop the requisite expressions to extract phase shifts describing meson-meson scattering in partial waves with angular momentum l≤6 and l=9. The implications of the underlying cubic symmetry, and strategies for extracting the phase shifts from lattice QCD calculations, are presented, along with a discussion of the signal-to-noise problem that afflicts the higher partial waves.

  3. Non-adiabatic perturbations in multi-component perfect fluids

    Energy Technology Data Exchange (ETDEWEB)

    Koshelev, N.A., E-mail: koshna71@inbox.ru [Ulyanovsk State University, Leo Tolstoy str 42, 432970 (Russian Federation)

    2011-04-01

    The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models.

  4. Non-adiabatic perturbations in multi-component perfect fluids

    International Nuclear Information System (INIS)

    Koshelev, N.A.

    2011-01-01

    The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models

  5. Wilson loops in very high order lattice perturbation theory

    International Nuclear Information System (INIS)

    Ilgenfritz, E.M.; Nakamura, Y.; Perlt, H.; Schiller, A.; Rakow, P.E.L.; Schierholz, G.; Regensburg Univ.

    2009-10-01

    We calculate Wilson loops of various sizes up to loop order n=20 for lattice sizes of L 4 (L=4,6,8,12) using the technique of Numerical Stochastic Perturbation Theory in quenched QCD. This allows to investigate the behaviour of the perturbative series at high orders. We discuss three models to estimate the perturbative series: a renormalon inspired fit, a heuristic fit based on an assumed power-law singularity and boosted perturbation theory. We have found differences in the behavior of the perturbative series for smaller and larger Wilson loops at moderate n. A factorial growth of the coefficients could not be confirmed up to n=20. From Monte Carlo measured plaquette data and our perturbative result we estimate a value of the gluon condensate left angle (α)/(π)GG right angle. (orig.)

  6. On the resolvents methods in quantum perturbation calculations

    International Nuclear Information System (INIS)

    Burzynski, A.

    1979-01-01

    This paper gives a systematic review of resolvent methods in quantum perturbation calculations. The case of discrete spectrum of hamiltonian is considered specially (in the literature this is the fewest considered case). The topics of calculations of quantum transitions by using of the resolvent formalism, quantum transitions between states from particular subspaces, the shifts of energy levels, are shown. The main ideas of stationary perturbation theory developed by Lippmann and Schwinger are considered too. (author)

  7. Calculation of electromagnetic rhoπ formfactor from QCD sum rules

    International Nuclear Information System (INIS)

    Eletskij, V.L.; Kogan, Ya.I.

    1982-01-01

    Electromagnetic rhoπγ form factor at intermediate momentum transfer, 0.7 GeV 2 2 2 , is calculated using QCD sum rules for the vertex function of two vector and one axial-vector currents. In this region the results obtained are consistent within 25% accuracy with the vector meson dominance model predictions and can be regarded as its theoretical ustification

  8. Counting the number of Feynman graphs in QCD

    Science.gov (United States)

    Kaneko, T.

    2018-05-01

    Information about the number of Feynman graphs for a given physical process in a given field theory is especially useful for confirming the result of a Feynman graph generator used in an automatic system of perturbative calculations. A method of counting the number of Feynman graphs with weight of symmetry factor was established based on zero-dimensional field theory, and was used in scalar theories and QED. In this article this method is generalized to more complicated models by direct calculation of generating functions on a computer algebra system. This method is applied to QCD with and without counter terms, where many higher order are being calculated automatically.

  9. Investigations of chiral symmetry breaking and topological aspects of lattice QCD

    International Nuclear Information System (INIS)

    Garcia Ramos, Elena

    2013-01-01

    The spontaneous breaking of chiral symmetry is a fascinating phenomenon of QCD whose mechanism is still not well understood and it has fundamental phenomenological implications. It is, for instance, responsible for the low mass of the pions which are effectively Goldstone bosons of the spontaneously broken symmetry. Since these phenomena belong to the low energy regime of QCD, non-perturbative techniques have to be applied in order to study them. In this work we use the twisted mass lattice QCD regularization to compute the chiral condensate, the order parameter of spontaneous chiral symmetry breaking. To this end we apply the recently introduced method of spectral projectors which allows us to perform calculations in large volumes due to its inherently low computational cost. This approach, moreover, enables a direct calculation of the chiral condensate based on a theoretically clean definition of the observable via density chains. We thus present a continuum limit determination of the chirally extrapolated condensate for N f =2 and N f =2+1+1 flavours of twisted mass fermions at maximal twist. In addition we study the chiral behavior of the topological susceptibility, a measure of the topological fluctuations of the gauge fields. We again apply the spectral projector method for this calculation. We comment on the difficulties which appear in the calculation of this observable due to the large autocorrelations involved. Finally we present the continuum limit result of the topological susceptibility in the pure gluonic theory which allows us to perform a test of the Witten-Veneziano relation. We found that this relation is well satisfied. Our results support the validity of the Witten-Veneziano formula which relates the topological fluctuations of the gauge fields with the unexpectedly large value of the η' mass.

  10. Word of caution

    International Nuclear Information System (INIS)

    Quinn, H.R.

    1983-08-01

    It is stated that we should discard the phrase testing QCD and talk instead of studying the phenomenology of perturbative QCD. If the data lead to discrepancies with perturbative predictions plus hadronization models, we may learn something about the possible non-perturbative effects, but we will almost certainly not be led to discard QCD. Meanwhile, when the model works, we are continually reinforcing the view that our assumptions about hadronization as a soft process work well, and that the underlying hard parton process does indeed follow the behavior calculated from perturbative QCD

  11. Calculation of the Nucleon Axial Form Factor Using Staggered Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Aaron S. [Fermilab; Hill, Richard J. [Perimeter Inst. Theor. Phys.; Kronfeld, Andreas S. [Fermilab; Li, Ruizi [Indiana U.; Simone, James N. [Fermilab

    2016-10-14

    The nucleon axial form factor is a dominant contribution to errors in neutrino oscillation studies. Lattice QCD calculations can help control theory errors by providing first-principles information on nucleon form factors. In these proceedings, we present preliminary results on a blinded calculation of $g_A$ and the axial form factor using HISQ staggered baryons with 2+1+1 flavors of sea quarks. Calculations are done using physical light quark masses and are absolutely normalized. We discuss fitting form factor data with the model-independent $z$ expansion parametrization.

  12. Single slepton production associated with a top quark at LHC in NLO QCD

    International Nuclear Information System (INIS)

    Li, Xiao-Peng; Guo, Lei; Ma, Wen-Gan; Han, Liang; Zhang, Ren-You; Wang, Shao-Ming

    2012-01-01

    Single slepton production in association with a top quark at the CERN Large Hadron Collider (LHC) is one of the important processes in probing the R-parity violation couplings. We calculate the QCD next-to-leading order (NLO) corrections to the pp→tl - (anti tl + ) + X process at the LHC and discuss the impacts of the QCD corrections on kinematic distributions. We investigate the dependence of the leading order (LO) and the NLO QCD corrected integrated cross section on the factorization/renormalization energy scale, slepton, stop-quark and gluino masses. We find that the uncertainty of the LO cross section due to the energy scale is obviously improved by the NLO QCD corrections, and the exclusive jet event selection scheme keeps the convergence of the perturbative series better than the inclusive scheme. The results show that the polarization asymmetry of the top-quark will be reduced by the NLO QCD corrections, and the QCD corrections generally increase with the increment of the t 1 or g mass value. (orig.)

  13. The pressure of hot QCD up to $g^{6}$ ln(1/g)

    CERN Document Server

    Kajantie, Keijou; Rummukainen, K; Schröder, Y

    2003-01-01

    The free energy density, or pressure, of QCD has at high temperatures an expansion in the coupling constant g, known so far up to order g^5. We compute here the last contribution which can be determined perturbatively, g^6 ln(1/g), by summing together results for the 4-loop vacuum energy densities of two different three-dimensional effective field theories. We also demonstrate that the inclusion of the new perturbative g^6 ln(1/g) terms, together with the so far unknown perturbative and non-perturbative g^6 terms, could potentially extend the applicability of the resummed coupling constant series down to surprisingly low temperatures.

  14. fB from finite size effects in lattice QCD

    International Nuclear Information System (INIS)

    Guagnelli, M.; Palombi, F.; Petronzio, R.; Tantalo, N.

    2003-01-01

    We discuss a novel method to calculate f B on the lattice, introduced in [1], based on the study of the dependence of finite size effects upon the heavy quark mass of flavoured mesons and on a non-perturbative recursive finite size technique. This method avoids the systematic errors related to extrapolations from the static limit or to the tuning of the coefficients of effective Lagrangian and the results admit an extrapolation to the continuum limit. We show the results of a first estimate at finite lattice spacing, but close to the continuum limit, giving f B = 170(11)(5)(22) MeV. We also obtain f B s = 192(9)(5)(24)MeV. The first error is statistical, the second is our estimate of the systematic error from the method and the third the systematic error from the specific approximations adopted in this first exploratory calculation. The method can be generalized to two-scale problems in lattice QCD

  15. Measuring infrared contributions to the QCD pressure

    CERN Document Server

    Kajantie, Keijo; Rummukainen, K; Schröder, Y

    2002-01-01

    For the pressure (or free energy) of QCD, four-dimensional (4d) lattice data is available at zero baryon density up to a few times the critical temperature $T_c$. Perturbation theory, on the other hand, has serious convergence problems even at very high temperatures. In a combined analytical and three-dimensional (3d) lattice method, we show that it is possible to compute the QCD pressure from about $2 T_c$ to infinity. The numerical accuracy is good enough to resolve in principle, e.g., logarithmic contributions related to 4-loop perturbation theory.

  16. QCD for Collider Physics

    OpenAIRE

    Skands, Peter

    2011-01-01

    These lectures are directed at a level suitable for graduate students in experimental and theoretical High Energy Physics. They are intended to give an introduction to the theory and phenomenology of quantum chromodynamics (QCD) as it is used in collider physics applications. The aim is to bring the reader to a level where informed decisions can be made concerning different approaches and their uncertainties. The material is divided into four main areas: 1) fundamentals, 2) perturbative QCD, ...

  17. Academic Training: QCD: are we ready for the LHC

    CERN Multimedia

    2006-01-01

    2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 4, 5, 6, 7 December, from 11:00 to 12:00 4, 5, 6 December - Main Auditorium, bldg. 500, 7 December - TH Auditorium, bldg. 4 - 3-006 QCD: are we ready for the LHC S. FRIXIONE / INFN, Genoa, Italy The LHC energy regime poses a serious challenge to our capability of predicting QCD reactions to the level of accuracy necessary for a successful programme of searches for physics beyond the Standard Model. In these lectures, I'll introduce basic concepts in QCD, and present techniques based on perturbation theory, such as fixed-order and resummed computations, and Monte Carlo simulations. I'll discuss applications of these techniques to hadron-hadron processes, concentrating on recent trends in perturbative QCD aimed at improving our understanding of LHC phenomenology.

  18. NNLO time-like splitting functions in QCD

    International Nuclear Information System (INIS)

    Moch, S.; Vogt, A.

    2008-07-01

    We review the status of the calculation of the time-like splitting functions for the evolution of fragmentation functions to the next-to-next-to-leading order in perturbative QCD. By employing relations between space-like and time-like deep-inelastic processes, all quark-quark and the gluon-gluon time-like splitting functions have been obtained to three loops. The corresponding quantities for the quark-gluon and gluon-quark splitting at this order are presently still unknown except for their second Mellin moments. (orig.)

  19. The electric dipole form factor of the nucleon in chiral perturbation theory to sub-leading order

    NARCIS (Netherlands)

    Mereghetti, E.; de Vries, J.; Hockings, W. H.; Maekawa, C. M.; van Kolck, U.

    2011-01-01

    The electric dipole form factor (EDFF) of the nucleon stemming from the QCD (theta) over bar term and from the quark color-electric dipole moments is calculated in chiral perturbation theory to sub-leading order. This is the lowest order in which the isoscalar EDFF receives a calculable,

  20. QCD ghost f(T)-gravity model

    Energy Technology Data Exchange (ETDEWEB)

    Karami, K.; Abdolmaleki, A.; Asadzadeh, S. [University of Kurdistan, Department of Physics, Sanandaj (Iran, Islamic Republic of); Safari, Z. [Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of)

    2013-09-15

    Within the framework of modified teleparallel gravity, we reconstruct a f(T) model corresponding to the QCD ghost dark energy scenario. For a spatially flat FRW universe containing only the pressureless matter, we obtain the time evolution of the torsion scalar T (or the Hubble parameter). Then, we calculate the effective torsion equation of state parameter of the QCD ghost f(T)-gravity model as well as the deceleration parameter of the universe. Furthermore, we fit the model parameters by using the latest observational data including SNeIa, CMB and BAO data. We also check the viability of our model using a cosmographic analysis approach. Moreover, we investigate the validity of the generalized second law (GSL) of gravitational thermodynamics for our model. Finally, we point out the growth rate of matter density perturbation. We conclude that in QCD ghost f(T)-gravity model, the universe begins a matter dominated phase and approaches a de Sitter regime at late times, as expected. Also this model is consistent with current data, passes the cosmographic test, satisfies the GSL and fits the data of the growth factor well as the {Lambda}CDM model. (orig.)

  1. Probing the perturbative NLO parton evolution in the small-x region

    International Nuclear Information System (INIS)

    Glueck, M.; Pisano, C.; Reya, E.

    2005-01-01

    A dedicated test of the perturbative QCD NLO parton evolution in the very small-x region is performed. We find a good agreement with recent precision HERA data for F 2 p (x,Q 2 ), as well as with the present determination of the curvature of F 2 p . Characteristically, perturbative QCD evolutions result in a positive curvature which increases as xdecreases. Future precision measurements in the very small x-region, x -4 , could provide a sensitive test of the range of validity of perturbative QCD. (orig.)

  2. Non-gaussianity from the trispectrum and vector field perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela-Toledo, Cesar A., E-mail: cavalto@ciencias.uis.edu.c [Escuela de Fisica, Universidad Industrial de Santander, Ciudad Universitaria, Bucaramanga (Colombia); Rodriguez, Yeinzon, E-mail: yeinzon.rodriguez@uan.edu.c [Escuela de Fisica, Universidad Industrial de Santander, Ciudad Universitaria, Bucaramanga (Colombia); Centro de Investigaciones, Universidad Antonio Narino, Cra 3 Este 47A-15, Bogota D.C. (Colombia)

    2010-03-01

    We use the deltaN formalism to study the trispectrum T{sub z}eta of the primordial curvature perturbation zeta when the latter is generated by vector field perturbations, considering the tree-level and one-loop contributions. The order of magnitude of the level of non-gaussianity in the trispectrum, tau{sub NL}, is calculated in this scenario and related to the order of magnitude of the level of non-gaussianity in the bispectrum, f{sub NL}, and the level of statistical anisotropy in the power spectrum, g{sub z}eta. Such consistency relations will put under test this scenario against future observations. Comparison with the expected observational bound on tau{sub NL} from WMAP, for generic inflationary models, is done.

  3. Effective methods in QCD and the phenomenology of hadrons

    International Nuclear Information System (INIS)

    Chemtob, M.

    1989-01-01

    To place the problem in perspective I will first discuss the decoupling of heavy quarks in QCD which is a simpler perturbative problem. Then, I will review two experimental observables (the σ-term in πN scattering and the polarised deep inelastic scattering) which diagnose the possibility of non-perturbative effects associated with the decoupling of the strange quark and will next discuss their possible interpretation on the basis of the skyrme model. I will also present some simple-minded results for a related low-energy application to the meson-nucleon scattering lengths obtained in a chiral effective lagrangian approach

  4. QCD description of high order factorial moments and Hq moments in quark and gluon jets and in e+e- annihilation

    International Nuclear Information System (INIS)

    Lupia, S.

    1999-01-01

    The complete QCD evolution equation for factorial moments in quark and gluon jets is numerically solved with absolute normalization at threshold. Within the picture of Local Parton Hadron Duality, perturbative QCD predictions are compared with existing experimental data for the factorial cumulants, the factorial moments and their ratio both in quark and gluon jets and in e + e - annihilation. The main differences with previous approximate calculations are also pointed out. (author)

  5. Improved perturbative calculations in field theory; Calculation of the mass spectrum and constraints on the supersymmetric standard model; Calculs perturbatifs variationnellement ameliores en theorie des champs; Calcul du spectre et contraintes sur le modele supersymetrique standard

    Energy Technology Data Exchange (ETDEWEB)

    Kneur, J.L

    2006-06-15

    This document is divided into 2 parts. The first part describes a particular re-summation technique of perturbative series that can give a non-perturbative results in some cases. We detail some applications in field theory and in condensed matter like the calculation of the effective temperature of Bose-Einstein condensates. The second part deals with the minimal supersymmetric standard model. We present an accurate calculation of the mass spectrum of supersymmetric particles, a calculation of the relic density of supersymmetric black matter, and the constraints that we can infer from models.

  6. Non-perturbative renormalisation of {delta}F=2 four-fermion operators in two-flavour QCD

    Energy Technology Data Exchange (ETDEWEB)

    Dimopoulos, P.; Vladikas, A. [INFN, Sezione di Roma II (Italy)]|[Rome-3 Univ. (Italy). Dipt. di Fisica; Herdoiza, G. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Palombi, F.; Papinutto, M. [CERN, Geneva (Switzerland). Physics Dept., TH Division; Pena, C. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica C-XI]|[Univ. Autonoma de Madrid (Spain). Inst. de Fisica Teorica UAM/CSIC C-XVI; Wittig, H. [Mainz Univ. (Germany). Inst. fuer Kernphysik

    2007-12-15

    Using Schroedinger Functional methods, we compute the non-perturbative renormalisation and renormalisation group running of several four-fermion operators, in the framework of lattice simulations with two dynamical Wilson quarks. Two classes of operators have been targeted: (i) those with left-left current structure and four propagating quark fields; (ii) all operators containing two static quarks. In both cases, only the parity-odd contributions have been considered, being the ones that renormalise multiplicatively. Our results, once combined with future simulations of the corresponding lattice hadronic matrix elements, may be used for the computation of phenomenological quantities of interest, such as B{sub K} and B{sub B} (the latter also in the static limit). (orig.)

  7. Assuming Regge trajectories in holographic QCD: from OPE to Chiral Perturbation Theory

    CERN Document Server

    Cappiello, Luigi; Greynat, David

    2015-01-01

    The Soft Wall model in holographic QCD has Regge trajectories but wrong operator product expansion (OPE) for the two-point vectorial QCD Green function. We correct analytically this problem and describe the axial sector and chiral symmetry breaking. The low energy chiral parameters, $F_{\\pi}$ and $L_{10}$ , are well described analytically by the model in terms of Regge spacing and QCD condensates. The model nicely supports and extends previous theoretical analyses advocating Digamma function to study QCD two-point functions in different momentum regions.

  8. Anti-Pauli blocking in QCD1+1

    International Nuclear Information System (INIS)

    Burkardt, M.; Busch, R.

    1991-02-01

    We investigate the flavor asymmetry of the q bar q sea in a (uu)-proton for QCD 1+1 with SU(2)-color. The excess of bar u over bar d which apparently seems to be in conflict with the exclusion principle is explained by taking the color degrees of freedom into account. By computing color factors for the relevant perturbation theory diagrams we show that the non-abelian sea quarks behave effectively similar to abelian bosons. For the magnitude of the flavor asymmetry of the sea we predict scaling proportional to the ratio of the quark Compton wavelength to the proton radius. We show that the sign of the asymmetry in QCD 1+1 is different from the sign measured in 3+1 dimensions. 9 refs., 1 fig., 1 tab

  9. Quantum chromo dynamite

    International Nuclear Information System (INIS)

    Rujula, A. de

    1979-01-01

    The explosion of interest in QCD makes a review both timely and impossible. In this talk I discuss aspects of QCD that were not covered by other speakers at the same Conference (EPS 79). These include topics in 'non-perturbative' QCD (i.e. the 1/N expansion), in perturbative QCD (is it really being tested, are form factors calculable), and in the land of in-between (higher twists, duality, preconfinement...). (orig.)

  10. Reactor perturbation calculations by Monte Carlo methods

    International Nuclear Information System (INIS)

    Gubbins, M.E.

    1965-09-01

    Whilst Monte Carlo methods are useful for reactor calculations involving complicated geometry, it is difficult to apply them to the calculation of perturbation worths because of the large amount of computing time needed to obtain good accuracy. Various ways of overcoming these difficulties are investigated in this report, with the problem of estimating absorbing control rod worths particularly in mind. As a basis for discussion a method of carrying out multigroup reactor calculations by Monte Carlo methods is described. Two methods of estimating a perturbation worth directly, without differencing two quantities of like magnitude, are examined closely but are passed over in favour of a third method based on a correlation technique. This correlation method is described, and demonstrated by a limited range of calculations for absorbing control rods in a fast reactor. In these calculations control rod worths of between 1% and 7% in reactivity are estimated to an accuracy better than 10% (3 standard errors) in about one hour's computing time on the English Electric KDF.9 digital computer. (author)

  11. Exploring the nucleon structure from first principles of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bietenholz, W. [Universidad Nacional Autonoma de Mexico (Mexico). Inst. de Ciencias Nucleares; Cundy, N.; Goeckeler, M. [Regensburg Univ. (DE). Inst. fuer Theoretische Physik] (and others)

    2010-04-15

    Quantum Chromodynamics (QCD) is generally assumed to be the fundamental theory underlying nuclear physics. In recent years there is progress towards investigating the nucleon structure from first principles of QCD. Although this structure is best revealed in Deep Inelastic Scattering, a consistent analysis has to be performed in a fully non-perturbative scheme. The only known method for this purpose are lattice simulations. We first sketch the ideas of Monte Carlo simulations in lattice gauge theory. Then we comment in particular on the issues of chiral symmetry and operator mixing. Finally we present our results for the Bjorken variable of a single quark, and for the second Nachtmann moment of the nucleon structure functions. (orig.)

  12. Exploring the nucleon structure from first principles of QCD

    International Nuclear Information System (INIS)

    Bietenholz, W.; Cundy, N.; Goeckeler, M.

    2010-04-01

    Quantum Chromodynamics (QCD) is generally assumed to be the fundamental theory underlying nuclear physics. In recent years there is progress towards investigating the nucleon structure from first principles of QCD. Although this structure is best revealed in Deep Inelastic Scattering, a consistent analysis has to be performed in a fully non-perturbative scheme. The only known method for this purpose are lattice simulations. We first sketch the ideas of Monte Carlo simulations in lattice gauge theory. Then we comment in particular on the issues of chiral symmetry and operator mixing. Finally we present our results for the Bjorken variable of a single quark, and for the second Nachtmann moment of the nucleon structure functions. (orig.)

  13. A finite element formulation for perturbation theory calculations

    International Nuclear Information System (INIS)

    Ozgener, B.; Kaluc, S.

    2004-01-01

    Full text: When the introduced change in the configuration of a nuclear system is neutronically not too significant, the use of the perturbation theory approximation ('the perturbation theory method' or PTM) is usually considered as an alternative to the recalculation of the effective multiplication factor (K eff ) of the modified system ('the diffusion theory method' or DTM) for the determination of the ensuing change in reactivity. In the DTM, the change in reactivity due to the introduced change can be calculated by the multigroup diffusion theory by performing two K eff determinations, one for the original and one for the modified system. The accuracy of this method is only limited by the approximations inherent in the multigroup diffusion theory and the numerical method employed for its solution. The error stemming from the numerical approximation can be nearly eliminated by utilizing a fine enough spatial mesh ad an 'exact' solution is nearly possible. Its basic disadvantage relative to the PTM is the necessity of a new K eff calculation for every change in the configuration no matter how small. On the other hand, if we use PTM, with an only one-time calculation of the flux and the adjoint flux of the original system, the change in reactivity due to any kind of perturbation can be approximately calculated using the changes in the cross section data in the perturbation theory reactivity formula. The accuracy of the PTM is restricted by the size and location of the induced change. In this work, our aim is to assess the accuracy of PTM relative to the DTM and determine criteria for the justification of its use. For all required solutions of the normal and adjoint multigroup diffusion equations, we choose the finite element method (FEM) as our numerical method and a 1-D cylindrical geometry model. The underlying theory is implemented in our FORTRAN program PERTURB. The validation of PERTURB is carried out via comparisons with analytical solutions for bare and

  14. Form factors and QCD in spacelike and timelike region

    International Nuclear Information System (INIS)

    A.P. Bakulev; A.V. Radyushkin; N.G. Stefanis

    2000-01-01

    The authors analyze the basic hard exclusive processes: πγ * γ-transition, pion and nucleon electromagnetic form factors, and discuss the analytic continuation of QCD formulas from the spacelike q 2 2 > 0 of the relevant momentum transfers. They describe the construction of the timelike version of the coupling constant α s . They show that due to the analytic continuation of the collinear logarithms each eigenfunction of the evolution equation acquires a phase factor and investigate the resulting interference effects which are shown to be very small. They found no sources for the K-factor-type enhancements in the perturbative QCD contribution to the hadronic form factors. To study the soft part of the pion electromagnetic form factor, they use a QCD sum rule inspired model and show that there are non-canceling Sudakov double logarithms which result in a K-factor-type enhancement in the timelike region

  15. QCD-resummation and non-minimal flavour-violation for supersymmetric particle production at hadron colliders

    International Nuclear Information System (INIS)

    Fuks, B.

    2007-06-01

    Cross sections for supersymmetric particles production at hadron colliders have been extensively studied in the past at leading order and also at next-to-leading order of perturbative QCD. The radiative corrections include large logarithms which have to be re-summed to all orders in the strong coupling constant in order to get reliable perturbative results. In this work, we perform a first and extensive study of the resummation effects for supersymmetric particle pair production at hadron colliders. We focus on Drell-Yan like slepton-pair and slepton-sneutrino associated production in minimal supergravity and gauge-mediated supersymmetry-breaking scenarios, and present accurate transverse-momentum and invariant-mass distributions, as well as total cross sections. In non-minimal supersymmetric models, novel effects of flavour violation may occur. In this case, the flavour structure in the squark sector cannot be directly deduced from the trilinear Yukawa couplings of the fermion and Higgs supermultiplets. We perform a precise numerical analysis of the experimentally allowed parameter space in the case of minimal supergravity scenarios with non-minimal flavour violation, looking for regions allowed by low-energy, electroweak precision, and cosmological data. Leading order cross sections for the production of squarks and gauginos at hadron colliders are implemented in a flexible computer program, allowing us to study in detail the dependence of these cross sections on flavour violation. (author)

  16. Non-Gaussianity from isocurvature perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Kawasaki, Masahiro; Nakayama, Kazunori; Sekiguchi, Toyokazu; Suyama, Teruaki [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa 277-8582 (Japan); Takahashi, Fuminobu, E-mail: kawasaki@icrr.u-tokyo.ac.jp, E-mail: nakayama@icrr.u-tokyo.ac.jp, E-mail: sekiguti@icrr.u-tokyo.ac.jp, E-mail: suyama@icrr.u-tokyo.ac.jp, E-mail: fuminobu.takahashi@ipmu.jp [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa 277-8568 (Japan)

    2008-11-15

    We develop a formalism for studying non-Gaussianity in both curvature and isocurvature perturbations. It is shown that non-Gaussianity in the isocurvature perturbation between dark matter and photons leaves distinct signatures in the cosmic microwave background temperature fluctuations, which may be confirmed in future experiments, or possibly even in the currently available observational data. As an explicit example, we consider the quantum chromodynamics axion and show that it can actually induce sizable non-Gaussianity for the inflationary scale, H{sub inf} = O(10{sup 9}-10{sup 11}) GeV.

  17. QCD description of high order factorial moments and H(q) moments in quark and gluon jets and in e+e- annihilation

    International Nuclear Information System (INIS)

    Lupia, S.

    1998-01-01

    The complete QCD evolution equation for factorial moments in quark and gluon jets is numerically solved with absolute normalization at threshold. Within the picture of Local Parton Hadron Duality, perturbative QCD predictions are compared with existing experimental data for the factorial cumulants, the factorial moments and their ratio both in quark and gluon jets and in e + e - annihilation. The main differences with previous approximate calculations are also pointed out. (author)

  18. Light hadron spectrum in 2+1 flavor full QCD by CP-PACS and JLQCD Collaborations

    International Nuclear Information System (INIS)

    Ishikawa, T.; Aoki, S.; Fukugita, M.; Hashimoto, S.; Ishikawa, K-I.; Ishizuka, N.; Iwasaki, Y.; Kanaya, K.; Kaneko, T.; Kuramashi, Y.; Okawa, M.; Onogi, T.; Taniguchi, N.; Tsutsui, N.; Ukawa, A.; Yoshie, T.

    2005-01-01

    CP-PACS and JLQCD Collaborations are carrying out a joint project of the 2+1 flavor full QCD with the RG-improved gauge action and the non-perturbatively O(a)-improved Wilson quark action. This simulation removes quenching effects of all three light quarks, which is the last major uncertainty in lattice QCD. In this report we present our results for the light meson spectrum and quark masses on a 20 3 x40 lattice at the lattice spacing a∼0.10 fm

  19. Iterative and iterative-noniterative integral solutions in 3-loop massive QCD calculations

    International Nuclear Information System (INIS)

    Ablinger, J.; Radu, C.S.; Schneider, C.; Behring, A.; Imamoglu, E.; Van Hoeij, M.; Von Manteuffel, A.; Raab, C.G.

    2017-11-01

    Various of the single scale quantities in massless and massive QCD up to 3-loop order can be expressed by iterative integrals over certain classes of alphabets, from the harmonic polylogarithms to root-valued alphabets. Examples are the anomalous dimensions to 3-loop order, the massless Wilson coefficients and also different massive operator matrix elements. Starting at 3-loop order, however, also other letters appear in the case of massive operator matrix elements, the so called iterative non-iterative integrals, which are related to solutions based on complete elliptic integrals or any other special function with an integral representation that is definite but not a Volterra-type integral. After outlining the formalism leading to iterative non-iterative integrals,we present examples for both of these cases with the 3-loop anomalous dimension γ (2) qg and the structure of the principle solution in the iterative non-interative case of the 3-loop QCD corrections to the ρ-parameter.

  20. Iterative and iterative-noniterative integral solutions in 3-loop massive QCD calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, J.; Radu, C.S.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Behring, A. [RWTH Aachen Univ. (Germany). Inst. fuer Theoretische Teilchenphysik und Kosmologie; Bluemlein, J.; Freitas, A. de [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Imamoglu, E.; Van Hoeij, M. [Florida State Univ., Tallahassee, FL (United States). Dept. of Mathematics; Von Manteuffel, A. [Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Raab, C.G. [Johannes Kepler Univ., Linz (Austria). Inst. for Algebra

    2017-11-15

    Various of the single scale quantities in massless and massive QCD up to 3-loop order can be expressed by iterative integrals over certain classes of alphabets, from the harmonic polylogarithms to root-valued alphabets. Examples are the anomalous dimensions to 3-loop order, the massless Wilson coefficients and also different massive operator matrix elements. Starting at 3-loop order, however, also other letters appear in the case of massive operator matrix elements, the so called iterative non-iterative integrals, which are related to solutions based on complete elliptic integrals or any other special function with an integral representation that is definite but not a Volterra-type integral. After outlining the formalism leading to iterative non-iterative integrals,we present examples for both of these cases with the 3-loop anomalous dimension γ{sup (2)}{sub qg} and the structure of the principle solution in the iterative non-interative case of the 3-loop QCD corrections to the ρ-parameter.

  1. Perturbative quantum chromodynamics

    CERN Document Server

    1989-01-01

    This book will be of great interest to advanced students and researchers in the area of high energy theoretical physics. Being the most complete and updated review volume on Perturbative QCD, it serves as an extremely useful textbook or reference book. Some of the reviews in this volume are the best that have been written on the subject anywhere. Contents: Factorization of Hard Processes in QCD (J C Collins, D E Soper & G Sterman); Exclusive Processes in Quantum Chromodynamics (S J Brodsky & G P Lepage); Coherence and Physics of QCD Jets (Yu L Dokshitzer, V A Khoze & S I Troyan); Pomeron in Qu

  2. A Framework for Lattice QCD Calculations on GPUs

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Frank; Clark, M A; Edwards, Robert G; Joo, Balint

    2014-08-01

    Computing platforms equipped with accelerators like GPUs have proven to provide great computational power. However, exploiting such platforms for existing scientific applications is not a trivial task. Current GPU programming frameworks such as CUDA C/C++ require low-level programming from the developer in order to achieve high performance code. As a result porting of applications to GPUs is typically limited to time-dominant algorithms and routines, leaving the remainder not accelerated which can open a serious Amdahl's law issue. The lattice QCD application Chroma allows to explore a different porting strategy. The layered structure of the software architecture logically separates the data-parallel from the application layer. The QCD Data-Parallel software layer provides data types and expressions with stencil-like operations suitable for lattice field theory and Chroma implements algorithms in terms of this high-level interface. Thus by porting the low-level layer one can effectively move the whole application in one swing to a different platform. The QDP-JIT/PTX library, the reimplementation of the low-level layer, provides a framework for lattice QCD calculations for the CUDA architecture. The complete software interface is supported and thus applications can be run unaltered on GPU-based parallel computers. This reimplementation was possible due to the availability of a JIT compiler (part of the NVIDIA Linux kernel driver) which translates an assembly-like language (PTX) to GPU code. The expression template technique is used to build PTX code generators and a software cache manages the GPU memory. This reimplementation allows us to deploy an efficient implementation of the full gauge-generation program with dynamical fermions on large-scale GPU-based machines such as Titan and Blue Waters which accelerates the algorithm by more than an order of magnitude.

  3. Compositeness and QCD at the SSC

    International Nuclear Information System (INIS)

    Barnes, V.; Blumenfeld, B.; Cahn, R.

    1987-01-01

    Compositeness may be signaled by an increase in the production of high transverse momentum hadronic jet pairs or lepton pairs. The hadronic jet signal competes with the QCD production of jets, a subject of interest in its own right. Tests of perturbative QCD at the SSC will be of special interest because the calculations are expected to be quite reliable. Studies show that compositeness up to a scale of 20 to 35 TeV would be detected in hadronic jets at the SSC. Leptonic evidence would be discovered for scales up to 10 to 20 TeV. The charge asymmetry for leptons would provide information on the nature of the compositeness interaction. Calorimetry will play a crucial role in the detection of compositeness in the hadronic jet signal. Deviations from an e/h response of 1 could mask the effect. The backgrounds for lepton pair production seem manageable. 30 refs., 19 figs., 10 tabs

  4. Specific features of the REDUCE system and calculation of QCD Feynman graphs

    International Nuclear Information System (INIS)

    Dulyan, L.S.

    1990-01-01

    The ways and methods used in calculation of one class of the QCD Feynman graphs with the help of the REDUCE system are described. It is shown how by introducing new constructions and operations the user could avoid difficulties connected with specific restrictions and features of the REDUCE system

  5. Calibrated geometries and non perturbative superpotentials in M-theory

    International Nuclear Information System (INIS)

    Hernandez, R.

    1999-12-01

    We consider non perturbative effects in M-theory compactifications on a seven-manifold of G 2 holonomy arising from membranes wrapped on supersymmetric three-cycles. When membranes are wrapped on associative submanifolds they induce a superpotential that can be calculated using calibrated geometry. This superpotential is also derived from compactification on a seven-manifold, to four dimensional Anti-de Sitter spacetime, of eleven dimensional supergravity with non vanishing expectation value of the four-form field strength. (author)

  6. The renormalization group and lattice QCD

    International Nuclear Information System (INIS)

    Gupta, R.

    1989-01-01

    This report discusses the following topics: scaling of thermodynamic quantities and critical exponents; scaling relations; block spin idea of Kadanoff; exact RG solution of the 1-d Ising model; Wilson's formulation of the renormalization group; linearized transformation matrix and classification of exponents; derivation of exponents from the eigenvalues of Τ αβ ; simple field theory: the gaussian model; linear renormalization group transformations; numerical methods: MCRG; block transformations for 4-d SU(N) LGT; asymptotic freedom makes QCD simple; non-perturbative β-function and scaling; and the holy grail: the renormalized trajectory

  7. Renormalon chains contributions to the non-singlet evolution kernels in [φ3]6 and QCD

    International Nuclear Information System (INIS)

    Mikhajlov, S.V.

    1997-01-01

    The contributions to non-singlet evolution kernels P (z) for the DGLAP equation and V (x,y) for the Brodsky-Lepage evolution equation are calculated for certain classes of diagrams which include the renormalon chains. Closed expressions are obtained for the sums of contributions associated with these diagram classes. Calculations are performed in the [φ 3 ] 6 model and QCD in the M bar S bar scheme. The contribution for one of the classes of diagrams dominates for a number of flavors N f >>1. For the latter case, a simple solution to the Brodsky-Lepage evolution equation is obtained

  8. ADS/CFT and QCD

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.; de Teramond, Guy F.

    2007-01-01

    The AdS/CFT correspondence between string theory in AdS space and conformal .eld theories in physical spacetime leads to an analytic, semi-classical model for strongly-coupled QCD which has scale invariance and dimensional counting at short distances and color confinement at large distances. Although QCD is not conformally invariant, one can nevertheless use the mathematical representation of the conformal group in five-dimensional anti-de Sitter space to construct a first approximation to the theory. The AdS/CFT correspondence also provides insights into the inherently non-perturbative aspects of QCD, such as the orbital and radial spectra of hadrons and the form of hadronic wavefunctions. In particular, we show that there is an exact correspondence between the fifth-dimensional coordinate of AdS space z and a specific impact variable ζ which measures the separation of the quark and gluonic constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions, the fundamental entities which encode hadron properties and allow the computation of decay constants, form factors, and other exclusive scattering amplitudes. New relativistic lightfront equations in ordinary space-time are found which reproduce the results obtained using the 5-dimensional theory. The effective light-front equations possess remarkable algebraic structures and integrability properties. Since they are complete and orthonormal, the AdS/CFT model wavefunctions can also be used as a basis for the diagonalization of the full light-front QCD Hamiltonian, thus systematically improving the AdS/CFT approximation

  9. Quenching parameter in a holographic thermal QCD

    Science.gov (United States)

    Patra, Binoy Krishna; Arya, Bhaskar

    2017-01-01

    We have calculated the quenching parameter, q ˆ in a model-independent way using the gauge-gravity duality. In earlier calculations, the geometry in the gravity side at finite temperature was usually taken as the pure AdS black hole metric for which the dual gauge theory becomes conformally invariant unlike QCD. Therefore we use a metric which incorporates the fundamental quarks by embedding the coincident D7 branes in the Klebanov-Tseytlin background and a finite temperature is switched on by inserting a black hole into the background, known as OKS-BH metric. Further inclusion of an additional UV cap to the metric prepares the dual gauge theory to run similar to thermal QCD. Moreover q ˆ is usually defined in the literature from the Glauber model perturbative QCD evaluation of the Wilson loop, which has no reasons to hold if the coupling is large and is thus against the main idea of gauge-gravity duality. Thus we use an appropriate definition of q ˆ : q ˆ L- = 1 /L2, where L is the separation for which the Wilson loop is equal to some specific value. The above two refinements cause q ˆ to vary with the temperature as T4 always and to depend linearly on the light-cone time L- with an additional (1 /L-) correction term in the short-distance limit whereas in the long-distance limit, q ˆ depends only linearly on L- with no correction term. These observations agree with other holographic calculations directly or indirectly.

  10. Quenching parameter in a holographic thermal QCD

    Directory of Open Access Journals (Sweden)

    Binoy Krishna Patra

    2017-01-01

    Full Text Available We have calculated the quenching parameter, qˆ in a model-independent way using the gauge–gravity duality. In earlier calculations, the geometry in the gravity side at finite temperature was usually taken as the pure AdS black hole metric for which the dual gauge theory becomes conformally invariant unlike QCD. Therefore we use a metric which incorporates the fundamental quarks by embedding the coincident D7 branes in the Klebanov–Tseytlin background and a finite temperature is switched on by inserting a black hole into the background, known as OKS-BH metric. Further inclusion of an additional UV cap to the metric prepares the dual gauge theory to run similar to thermal QCD. Moreover qˆ is usually defined in the literature from the Glauber model perturbative QCD evaluation of the Wilson loop, which has no reasons to hold if the coupling is large and is thus against the main idea of gauge–gravity duality. Thus we use an appropriate definition of qˆ: qˆL−=1/L2, where L is the separation for which the Wilson loop is equal to some specific value. The above two refinements cause qˆ to vary with the temperature as T4 always and to depend linearly on the light-cone time L− with an additional (1/L− correction term in the short-distance limit whereas in the long-distance limit, qˆ depends only linearly on L− with no correction term. These observations agree with other holographic calculations directly or indirectly.

  11. QCD in heavy quark production and decay

    Energy Technology Data Exchange (ETDEWEB)

    Wiss, J. [Univ. of Illinois, Urbana, IL (United States)

    1997-06-01

    The author discusses how QCD is used to understand the physics of heavy quark production and decay dynamics. His discussion of production dynamics primarily concentrates on charm photoproduction data which are compared to perturbative QCD calculations which incorporate fragmentation effects. He begins his discussion of heavy quark decay by reviewing data on charm and beauty lifetimes. Present data on fully leptonic and semileptonic charm decay are then reviewed. Measurements of the hadronic weak current form factors are compared to the nonperturbative QCD-based predictions of Lattice Gauge Theories. He next discusses polarization phenomena present in charmed baryon decay. Heavy Quark Effective Theory predicts that the daughter baryon will recoil from the charmed parent with nearly 100% left-handed polarization, which is in excellent agreement with present data. He concludes by discussing nonleptonic charm decay which is traditionally analyzed in a factorization framework applicable to two-body and quasi-two-body nonleptonic decays. This discussion emphasizes the important role of final state interactions in influencing both the observed decay width of various two-body final states as well as modifying the interference between interfering resonance channels which contribute to specific multibody decays. 50 refs., 77 figs.

  12. QCD in heavy quark production and decay

    International Nuclear Information System (INIS)

    Wiss, J.

    1997-01-01

    The author discusses how QCD is used to understand the physics of heavy quark production and decay dynamics. His discussion of production dynamics primarily concentrates on charm photoproduction data which are compared to perturbative QCD calculations which incorporate fragmentation effects. He begins his discussion of heavy quark decay by reviewing data on charm and beauty lifetimes. Present data on fully leptonic and semileptonic charm decay are then reviewed. Measurements of the hadronic weak current form factors are compared to the nonperturbative QCD-based predictions of Lattice Gauge Theories. He next discusses polarization phenomena present in charmed baryon decay. Heavy Quark Effective Theory predicts that the daughter baryon will recoil from the charmed parent with nearly 100% left-handed polarization, which is in excellent agreement with present data. He concludes by discussing nonleptonic charm decay which is traditionally analyzed in a factorization framework applicable to two-body and quasi-two-body nonleptonic decays. This discussion emphasizes the important role of final state interactions in influencing both the observed decay width of various two-body final states as well as modifying the interference between interfering resonance channels which contribute to specific multibody decays. 50 refs., 77 figs

  13. Predictive Lattice QCD

    International Nuclear Information System (INIS)

    Kronfeld, Andreas

    2005-01-01

    Quantum chromodynamics (QCD) is the quantum field theory describing the strong interactions of quarks bound inside hadrons. It is marvelous theory, which works (mathematically) at all distance scales. Indeed, for thirty years, theorists have known how to calculate short-distance properties of QCD, thanks to the (Nobel-worthy) idea of asymptotic freedom. More recently, numerical techniques applied to the strong-coupling regime of QCD have enabled us to compute long-distance bound-state properties. In this colloquium, we review these achievements and show how the new-found methods of calculation will influence high-energy physics.

  14. Non-Gaussianity at tree and one-loop levels from vector field perturbations

    International Nuclear Information System (INIS)

    Valenzuela-Toledo, Cesar A.; Rodriguez, Yeinzon; Lyth, David H.

    2009-01-01

    We study the spectrum P ζ and bispectrum B ζ of the primordial curvature perturbation ζ when the latter is generated by scalar and vector field perturbations. The tree-level and one-loop contributions from vector field perturbations are worked out considering the possibility that the one-loop contributions may be dominant over the tree-level terms [both (either) in P ζ and (or) in B ζ ] and vice versa. The level of non-Gaussianity in the bispectrum, f NL , is calculated and related to the level of statistical anisotropy in the power spectrum, g ζ . For very small amounts of statistical anisotropy in the power spectrum, the level of non-Gaussianity may be very high, in some cases exceeding the current observational limit.

  15. Perturbative calculations of flow patterns in free convection between coaxial cylinders. Non-linear temperature dependences of the fluid properties

    International Nuclear Information System (INIS)

    Navarro, J. A.; Madariaga, J. A.; Santamaria, C. M.; Saviron, J. M.

    1980-01-01

    10 refs. Flow pattern calculations in natural convection between two vertical coaxial cylinders are reported. It is assumed trough the paper. that fluid properties, viscosity, thermal conductivity and density, depend no-linearly on temperature and that the aspects (height/radius) ratio of the cylinders is high. Velocity profiles are calculated trough a perturbative scheme and analytic results for the three first perturbation orders are presented. We outline also an iterative method to estimate the perturbations on the flow patterns which arise when a radial composition gradient is established by external forces in a two-component fluid. This procedure, based on semiempirical basis, is applied to gaseous convection. The influence of the molecules gas properties on tho flow is also discussed. (Author) 10 refs

  16. Semileptonic decays of B_c meson to S-wave charmonium states in the perturbative QCD approach

    International Nuclear Information System (INIS)

    Rui, Zhou; Li, Hong; Wang, Guang-xin; Xiao, Ying

    2016-01-01

    Inspired by the recent measurement of the ratio of B_c branching fractions to J/ψπ"+ and J/ψμ"+ν_μ final states at the LHCb detector, we study the semileptonic decays of B_c meson to the S-wave ground and radially excited 2S and 3S charmonium states with the perturbative QCD approach. After evaluating the form factors for the transitions B_c → P,V, where P and V denote pseudoscalar and vector S-wave charmonia, respectively, we calculate the branching ratios for all these semileptonic decays. The theoretical uncertainty of hadronic input parameters are reduced by utilizing the light-cone wave function for the B_c meson. It is found that the predicted branching ratios range from 10"-"7 up to 10"-"2 and could be measured by the future LHCb experiment. Our prediction for the ratio of branching fractions (BR(B_c"+→J/Ψπ"+))/(BR(B_c"+→J/Ψμ"+ν_μ)) is in good agreement with the data. For B_c → Vlν_l decays, the relative contributions of the longitudinal and transverse polarization are discussed in different momentum transfer squared regions. These predictions will be tested on the ongoing and forthcoming experiments. (orig.)

  17. Hadronic Structure from Perturbative Dressing

    Energy Technology Data Exchange (ETDEWEB)

    Arash, Firooz [Physics Department, Tafresh University, Tafresh, Iran and Center for theoretical physics and Mathematics, AEOI, P.O. Box 11365-8486, Tehran (Iran, Islamic Republic of)]. E-mail: farash@cic.aut.ac.ir

    2005-09-15

    Perturbative dressing of a valence quark in QCD produces the internal structure of an extended object, the so-called Valon. The valon structure is universal and independent of the hosting hadron. Polarized and unpolarized proton and pion structure functions are calculated in the valon representation. One finds that although all the available data on g{sub 1}{sup p,n,d} are easily reproduced, a sizable orbital angular momentum associated with the partonic structure of the valon is required in order to have a spin 1/2 valon.

  18. QCD with jets and photons at ATLAS and CMS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00265099; The ATLAS collaboration

    2017-01-01

    A selection of recent QCD measurements by the ATLAS and CMS collaborations in final states with photons and jets is presented. New results with improved precision provide a probe of perturbative QCD, allowing to perform PDF fits and extracting the strong coupling constant $\\alpha_{S}$.

  19. Non-Perturbative Quantum Geometry III

    CERN Document Server

    Krefl, Daniel

    2016-08-02

    The Nekrasov-Shatashvili limit of the refined topological string on toric Calabi-Yau manifolds and the resulting quantum geometry is studied from a non-perturbative perspective. The quantum differential and thus the quantum periods exhibit Stockes phenomena over the combined string coupling and quantized Kaehler moduli space. We outline that the underlying formalism of exact quantization is generally applicable to points in moduli space featuring massless hypermultiplets, leading to non-perturbative band splitting. Our prime example is local P1xP1 near a conifold point in moduli space. In particular, we will present numerical evidence that in a Stockes chamber of interest the string based quantum geometry reproduces the non-perturbative corrections for the Nekrasov-Shatashvili limit of 4d supersymmetric SU(2) gauge theory at strong coupling found in the previous part of this series. A preliminary discussion of local P2 near the conifold point in moduli space is also provided.

  20. Analyzing B{sub s} - anti B{sub s} mixing. Non-perturbative contributions to bag parameters from sum rules

    Energy Technology Data Exchange (ETDEWEB)

    Mannel, T. [Siegen Univ. (Germany). FB 7, Theoretische Physik; Pecjak, B.D. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Pivovarov, A.A. [Siegen Univ. (Germany). FB 7, Theoretische Physik]|[Russian Academy of Sciecnes, Moscow (Russian Federation). Inst. for Nuclear Research

    2007-03-15

    We use QCD sum rules to compute matrix elements of the {delta}B=2 operators appearing in the heavy-quark expansion of the width difference of the B{sub s} mass eigenstates. Our analysis includes the leading-order operators Q and Q{sub S}, as well as the subleading operators R{sub 2} and R{sub 3}, which appear at next-to-leading order in the 1/m{sub b} expansion. We conclude that the violation of the factorization approximation for these matrix elements due to non-perturbative vacuum condensates is as low as 1-2%. (orig.)

  1. Self-consistent areas law in QCD

    International Nuclear Information System (INIS)

    Makeenko, Yu.M.; Migdal, A.A.

    1980-01-01

    The problem of obtaining the self-consistent areas law in quantum chromodynamics (QCD) is considered from the point of view of the quark confinement. The exact equation for the loop average in multicolor QCD is reduced to a bootstrap form. Its iterations yield new manifestly gauge invariant perturbation theory in the loop space, reproducing asymptotic freedom. For large loops, the areas law apprears to be a self-consistent solution

  2. Sum rules for baryonic vertex functions and the proton wave function in QCD

    International Nuclear Information System (INIS)

    Lavelle, M.J.

    1985-01-01

    We consider light-cone sum rules for vertex functions involving baryon-meson couplings. These sum rules relate the non-perturbative, and experimentally known, coupling constants to the moments of the wave function of the proton state. Our results for these moments are consistent with those obtained from QCD sum rules for two-point functions. (orig.)

  3. Induced QCD I: theory

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Bastian B. [Institute for Theoretical Physics, Goethe-University of Frankfurt,60438 Frankfurt (Germany); Institute for Theoretical Physics, University of Regensburg,93040 Regensburg (Germany); Lohmayer, Robert; Wettig, Tilo [Institute for Theoretical Physics, University of Regensburg,93040 Regensburg (Germany)

    2016-11-14

    We explore an alternative discretization of continuum SU(N{sub c}) Yang-Mills theory on a Euclidean spacetime lattice, originally introduced by Budzcies and Zirnbauer. In this discretization the self-interactions of the gauge field are induced by a path integral over N{sub b} auxiliary boson fields, which are coupled linearly to the gauge field. The main progress compared to earlier approaches is that N{sub b} can be as small as N{sub c}. In the present paper we (i) extend the proof that the continuum limit of the new discretization reproduces Yang-Mills theory in two dimensions from gauge group U(N{sub c}) to SU(N{sub c}), (ii) derive refined bounds on N{sub b} for non-integer values, and (iii) perform a perturbative calculation to match the bare parameter of the induced gauge theory to the standard lattice coupling. In follow-up papers we will present numerical evidence in support of the conjecture that the induced gauge theory reproduces Yang-Mills theory also in three and four dimensions, and explore the possibility to integrate out the gauge fields to arrive at a dual formulation of lattice QCD.

  4. Towards finite density QCD with Taylor expansions

    International Nuclear Information System (INIS)

    Karsch, F.; Schaefer, B.-J.; Wagner, M.; Wambach, J.

    2011-01-01

    Convergence properties of Taylor expansions of observables, which are also used in lattice QCD calculations at non-zero chemical potential, are analyzed in an effective N f =2+1 flavor Polyakov quark-meson model. A recently developed algorithmic technique allows the calculation of higher-order Taylor expansion coefficients in functional approaches. This novel technique is for the first time applied to an effective N f =2+1 flavor Polyakov quark-meson model and the findings are compared with the full model solution at finite densities. The results are used to discuss prospects for locating the QCD phase boundary and a possible critical endpoint in the phase diagram.

  5. Kaon matrix elements and CP violation from quenched lattice QCD: The 3-flavor case

    International Nuclear Information System (INIS)

    Blum, T.; Wingate, M.; Chen, P.; Christ, N.; Cristian, C.; Fleming, G.; Mawhinney, R.; Siegert, G.; Wu, L.; Zhestkov, Y.; Dawson, C.; Soni, A.; Ohta, S.; Vranas, P.

    2003-01-01

    We report the results of a calculation of the K→ππ matrix elements relevant for the ΔI=1/2 rule and ε ' /ε in quenched lattice QCD using domain wall fermions at a fixed lattice spacing a -1 ∼2 GeV. Working in the three-quark effective theory, where only the u, d, and s quarks enter and which is known perturbatively to next-to-leading order, we calculate the lattice K→π and K→|0> matrix elements of dimension six, four-fermion operators. Through lowest order chiral perturbation theory these yield K→ππ matrix elements, which we then normalize to continuum values through a nonperturbative renormalization technique. For the ratio of isospin amplitudes vertical bar A 0 vertical bar/vertical bar A 2 vertical bar we find a value of 25.3±1.8 (statistical error only) compared to the experimental value of 22.2, with individual isospin amplitudes 10%-20% below the experimental values. For ε ' /ε, using known central values for standard model parameters, we calculate (-4.0±2.3)x10 -4 (statistical error only) compared to the current experimental average of (17.2±1.8)x10 -4 . Because we find a large cancellation between the I=0 and I=2 contributions to ε ' /ε, the result may be very sensitive to the approximations employed. Among these are the use of quenched QCD, lowest order chiral perturbation theory, and continuum perturbation theory below 1.3 GeV. We also calculate the kaon B parameter B K and find B K,MS (2 GeV)=0.532(11). Although currently unable to give a reliable systematic error, we have control over statistical errors and more simulations will yield information about the effects of the approximations on this first-principles determination of these important quantities

  6. The Pressure in 2, 2+1 and 3 Flavour QCD

    CERN Document Server

    Karsch, Frithjof; Peikert, A

    2000-01-01

    We calculate the pressure in QCD with two and three light quarks on a latticeof size 16^3x4 using tree level improved gauge and fermion actions. We arguethat for temperatures T > 2T_c systematic effects due to the finite latticecut-off and non-vanishing quark masses are below 15 0n this calculation andgive an estimate for the continuum extrapolated pressure in QCD with masslessquarks. We find that the flavour dependence of the pressure is dominated bythat of the Stefan-Boltzmann constant. Furthermore we perform a calculation ofthe pressure using 2 light (m_u,d/T=0.4) and one heavier quark (m_s/T = 1). Inthis case the pressure is reduced relative to that of three flavour QCD. Thiseffect is stronger than expected from the mass dependence of an ideal Fermigas.

  7. Top-quark decay at next-to-next-to-leading order in QCD.

    Science.gov (United States)

    Gao, Jun; Li, Chong Sheng; Zhu, Hua Xing

    2013-01-25

    We present the complete calculation of the top-quark decay width at next-to-next-to-leading order in QCD, including next-to-leading electroweak corrections as well as finite bottom quark mass and W boson width effects. In particular, we also show the first results of the fully differential decay rates for the top-quark semileptonic decay t → W(+)(l(+)ν)b at next-to-next-to-leading order in QCD. Our method is based on the understanding of the invariant mass distribution of the final-state jet in the singular limit from effective field theory. Our result can be used to study arbitrary infrared-safe observables of top-quark decay with the highest perturbative accuracy.

  8. QCD constraints for the electromagnetic form factor of the pion

    International Nuclear Information System (INIS)

    Machet, B.

    1980-07-01

    Using the modulus representation, we derive constraints for the behaviour of the electromagnetic form factor of the pion in the time like region [1 GeV 2 , + infinity[, from information given by perturbative QCD in the space like region [-μ 2 , - infinity[. A phenomenological μ dependent upper bound for the exponent of the first non leading logarithmic correction is deduced. Restrictions and problems of the method are discussed

  9. Academic training: QCD: are we ready for the LHC

    CERN Multimedia

    2006-01-01

    2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 4, 5, 6, 7 December, from 11:00 to 12:00 4, 5, 6 December - Main Auditorium, bldg. 500, 7 December - TH Auditorium, bldg. 4 - 3-006 QCD: are we ready for the LHC S. FRIXIONE / INFN, Genoa, Italy The LHC energy regime poses a serious challenge to our capability of predicting QCD reactions to the level of accuracy necessary for a successful programme of searches for physics beyond the Standard Model. In these lectures, I'll introduce basic concepts in QCD, and present techniques based on perturbation theory, such as fixed-order and resummed computations, and Monte Carlo simulations. I'll discuss applications of these techniques to hadron-hadron processes, concentrating on recent trends in perturbative QCD aimed at improving our understanding of LHC phenomenology. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply ...

  10. Perturbatively improving RI-MOM renormalization constants

    Energy Technology Data Exchange (ETDEWEB)

    Constantinou, M.; Costa, M.; Panagopoulos, H. [Cyprus Univ. (Cyprus). Dept. of Physics; Goeckeler, M. [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics; Perlt, H.; Schiller, A. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Dept. of Mathematical Sciences; Schhierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-03-15

    The determination of renormalization factors is of crucial importance in lattice QCD. They relate the observables obtained on the lattice to their measured counterparts in the continuum in a suitable renormalization scheme. Therefore, they have to be computed as precisely as possible. A widely used approach is the nonperturbative Rome-Southampton method. It requires, however, a careful treatment of lattice artifacts. In this paper we investigate a method to suppress these artifacts by subtracting one-loop contributions to renormalization factors calculated in lattice perturbation theory. We compare results obtained from a complete one-loop subtraction with those calculated for a subtraction of contributions proportional to the square of the lattice spacing.

  11. Chiral perturbation theory

    International Nuclear Information System (INIS)

    Harada, Masayasu

    2009-01-01

    Chiral perturbation theory has been used for great number of phenomenological analyses in low energy QCD as well as the lattice QCD analyses since the creation of the theory by Weinberg in 1979 followed by its consolidation by Gasser and Leutwyler in 1984 and 85. The theory is now the highly established one as the approach based on the effective field theory to search for Green function including quantum correlations in the frame of the systematic expansion technique using Lagrangian which includes all of the terms allowed by the symmetry. This review has been intended to describe how systematically physical quantities are calculated in the framework of the chiral symmetry. Consequently many of the various phenomenological analyses are not taken up here for which other reports are to be referred. Further views are foreseen to be developed based on the theory in addition to numbers of results reported up to the present. Finally π-π scattering is taken up to discuss to what energy scale the theory is available. (S. Funahashi)

  12. Photoionization cross sections and Auger rates calculated by many-body perturbation theory

    International Nuclear Information System (INIS)

    Kelly, H.P.

    1976-01-01

    Methods for applying the many body perturbation theory to atomic calculations are discussed with particular emphasis on calculation of photoionization cross sections and Auger rates. Topics covered include: Rayleigh--Schroedinger theory; many body perturbation theory; calculations of photoionization cross sections; and Auger rates

  13. Matching of heavy-light flavour currents between HQET at order 1/m and QCD

    DEFF Research Database (Denmark)

    Della Morte, Michele; Dooling, Samantha; Heitger, Jochen

    2014-01-01

    We present a strategy how to match the full set of components of the heavy-light axial and vector currents in Heavy Quark Effective Theory (HQET), up to and including 1/m-corrections, to QCD. While the ultimate goal is to apply these matching conditions non-perturbatively, in this study we first...

  14. S -wave K π contributions to the hadronic charmonium B decays in the perturbative QCD approach

    Science.gov (United States)

    Rui, Zhou; Wang, Wen-Fei

    2018-02-01

    We extend our recent works on the two-pion S -wave resonance contributions to the kaon-pion ones in the B meson hadronic charmonium decay modes based on the perturbative QCD approach. The S -wave K π timelike form factor in its distribution amplitudes is described by the LASS parametrization, which consists of the K0*(1430 ) resonant state together with an effective range nonresonant component. The predictions for the decays B →J /ψ K π in this work agree well with the experimental results from the BABAR and Belle collaborations. We also discuss theoretical uncertainties, indicating that the results of this work, which can be tested by the LHCb and Belle-II experiments, are reasonably accurate.

  15. Simulation of QCD with N_f=2+1 flavors of non-perturbatively improved Wilson fermions

    International Nuclear Information System (INIS)

    Bruno, Mattia; Djukanovic, Dalibor; Engel, Georg P.; Francis, Anthony; Herdoiza, Gregorio; Horch, Hanno; Korcyl, Piotr; Korzec, Tomasz; Papinutto, Mauro; Schaefer, Stefan; Scholz, Enno E.; Simeth, Jakob; Simma, Hubert; Söldner, Wolfgang

    2015-01-01

    We describe a new set of gauge configurations generated within the CLS effort. These ensembles have N_f=2+1 flavors of non-perturbatively improved Wilson fermions in the sea with the Lüscher-Weisz action used for the gluons. Open boundary conditions in time are used to address the problem of topological freezing at small lattice spacings and twisted-mass reweighting for improved stability of the simulations. We give the bare parameters at which the ensembles have been generated and how these parameters have been chosen. Details of the algorithmic setup and its performance are presented as well as measurements of the pion and kaon masses alongside the scale parameter t_0.

  16. Non-Perturbative Asymptotic Improvement of Perturbation Theory and Mellin-Barnes Representation

    Directory of Open Access Journals (Sweden)

    Samuel Friot

    2010-10-01

    Full Text Available Using a method mixing Mellin-Barnes representation and Borel resummation we show how to obtain hyperasymptotic expansions from the (divergent formal power series which follow from the perturbative evaluation of arbitrary ''N-point'' functions for the simple case of zero-dimensional φ4 field theory. This hyperasymptotic improvement appears from an iterative procedure, based on inverse factorial expansions, and gives birth to interwoven non-perturbative partial sums whose coefficients are related to the perturbative ones by an interesting resurgence phenomenon. It is a non-perturbative improvement in the sense that, for some optimal truncations of the partial sums, the remainder at a given hyperasymptotic level is exponentially suppressed compared to the remainder at the preceding hyperasymptotic level. The Mellin-Barnes representation allows our results to be automatically valid for a wide range of the phase of the complex coupling constant, including Stokes lines. A numerical analysis is performed to emphasize the improved accuracy that this method allows to reach compared to the usual perturbative approach, and the importance of hyperasymptotic optimal truncation schemes.

  17. Renormalization group summation of Laplace QCD sum rules for scalar gluon currents

    Directory of Open Access Journals (Sweden)

    Farrukh Chishtie

    2016-03-01

    Full Text Available We employ renormalization group (RG summation techniques to obtain portions of Laplace QCD sum rules for scalar gluon currents beyond the order to which they have been explicitly calculated. The first two of these sum rules are considered in some detail, and it is shown that they have significantly less dependence on the renormalization scale parameter μ2 once the RG summation is used to extend the perturbative results. Using the sum rules, we then compute the bound on the scalar glueball mass and demonstrate that the 3 and 4-Loop perturbative results form lower and upper bounds to their RG summed counterparts. We further demonstrate improved convergence of the RG summed expressions with respect to perturbative results.

  18. Non-equilibrium QCD of high-energy multi-gluon dynamics

    International Nuclear Information System (INIS)

    Geiger, K.

    1996-01-01

    A non-equilibrium QCD description of multiparticle dynamics in space-time is of both fundamental and phenomenological interest. Here the authors discusses an attempt to derive from first principles, a real-time formalism to study the dynamical interplay of quantum and statistical-kinetic properties of non-equilibrium multi-parton systems produced in high-energy QCD processes. The ultimate goal (from which one is still far away) is to have a practically applicable description of the space-time evolution of a general initial system of gluons and quarks, characterized by some large energy or momentum scale, that expands, diffuses and dissipates according to the self- and mutual-interactions, and eventually converts dynamically into final state hadrons. For example, the evolution of parton showers in the mechanism of parton-hadron conversion in high-energy hadronic collisions, or, the description of formation, evolution and freezeout of a quark-gluon plasma, in ultra-relativistic heavy-ion collisions

  19. A study of quark and gluon jets and of the long distance QCD force field at the Z0

    International Nuclear Information System (INIS)

    Gary, J.W.

    1993-10-01

    Quantum Chromodynamics (QCD) is widely accepted as the correct theory of the strong nuclear force in elementary particle physics. The precision to which QCD has been tested is relatively limited, however, compared to the precision to which other interactions such as the electro-weak one have been tested. In part, this is because the large value of the QCD coupling constant, α s , renders theoretical calculations based on perturbation theory relatively imprecise. The confinement of quarks and gluons inside hadrons also leads to uncertainty because the theoretical predictions cannot, in general, be tested directly against the experimental measurements but are subject to hadronization corrections. From an experimental standpoint, it has proven difficult to isolate gluon jets inside multi-jet events in an unbiased manner so as to determine gluon jet properties using model independent methods. Basic quark-gluon interactions such as the four-jet matrix element in e + e - annihilations have been relatively untested due to the lack of a data sample with sufficient statistics. Perturbation theory has essentially nothing to say about the properties of the hadronization process itself. It is for these reasons that QCD has remained relatively untested

  20. QCD-resummation and non-minimal flavour-violation for supersymmetric particle production at hadron colliders; Resommation des corrections radiatives QCD et violation de la saveur non-minimale pour la production de particules supersymetriques aupres des collisionneurs hadroniques

    Energy Technology Data Exchange (ETDEWEB)

    Fuks, B

    2007-06-15

    Cross sections for supersymmetric particles production at hadron colliders have been extensively studied in the past at leading order and also at next-to-leading order of perturbative QCD. The radiative corrections include large logarithms which have to be re-summed to all orders in the strong coupling constant in order to get reliable perturbative results. In this work, we perform a first and extensive study of the resummation effects for supersymmetric particle pair production at hadron colliders. We focus on Drell-Yan like slepton-pair and slepton-sneutrino associated production in minimal supergravity and gauge-mediated supersymmetry-breaking scenarios, and present accurate transverse-momentum and invariant-mass distributions, as well as total cross sections. In non-minimal supersymmetric models, novel effects of flavour violation may occur. In this case, the flavour structure in the squark sector cannot be directly deduced from the trilinear Yukawa couplings of the fermion and Higgs supermultiplets. We perform a precise numerical analysis of the experimentally allowed parameter space in the case of minimal supergravity scenarios with non-minimal flavour violation, looking for regions allowed by low-energy, electroweak precision, and cosmological data. Leading order cross sections for the production of squarks and gauginos at hadron colliders are implemented in a flexible computer program, allowing us to study in detail the dependence of these cross sections on flavour violation. (author)

  1. The supercritical pomeron in QCD

    International Nuclear Information System (INIS)

    White, A. R.

    1998-01-01

    Deep-inelastic diffractive scaling violations have provided fundamental insight into the QCD pomeron, suggesting a single gluon inner structure rather than that of a perturbative two-gluon bound state. This talk outlines a derivation of a high-energy, transverse momentum cut-off, confining solution of QCD. The pomeron, in first approximation, is a single reggeized gluon plus a ''wee parton'' component that compensates for the color and particle properties of the gluon. This solution corresponds to a super-critical phase of Reggeon Field Theory

  2. Many body perturbation calculations of photoionization

    International Nuclear Information System (INIS)

    Kelly, H.P.

    1979-01-01

    The application of many body perturbation theory to the calculation of atomic photoionization cross sections is reviewed. The choice of appropriate potential for the single-particle state is discussed and results are presented for several atoms including resonance structure. In addition to single photoionization, the process of double photoionization is considered and is found to be significant. (Auth.)

  3. Fast spectral source integration in black hole perturbation calculations

    Science.gov (United States)

    Hopper, Seth; Forseth, Erik; Osburn, Thomas; Evans, Charles R.

    2015-08-01

    This paper presents a new technique for achieving spectral accuracy and fast computational performance in a class of black hole perturbation and gravitational self-force calculations involving extreme mass ratios and generic orbits. Called spectral source integration (SSI), this method should see widespread future use in problems that entail (i) a point-particle description of the small compact object, (ii) frequency domain decomposition, and (iii) the use of the background eccentric geodesic motion. Frequency domain approaches are widely used in both perturbation theory flux-balance calculations and in local gravitational self-force calculations. Recent self-force calculations in Lorenz gauge, using the frequency domain and method of extended homogeneous solutions, have been able to accurately reach eccentricities as high as e ≃0.7 . We show here SSI successfully applied to Lorenz gauge. In a double precision Lorenz gauge code, SSI enhances the accuracy of results and makes a factor of 3 improvement in the overall speed. The primary initial application of SSI—for us its the raison d'être—is in an arbitrary precision mathematica code that computes perturbations of eccentric orbits in the Regge-Wheeler gauge to extraordinarily high accuracy (e.g., 200 decimal places). These high-accuracy eccentric orbit calculations would not be possible without the exponential convergence of SSI. We believe the method will extend to work for inspirals on Kerr and will be the subject of a later publication. SSI borrows concepts from discrete-time signal processing and is used to calculate the mode normalization coefficients in perturbation theory via sums over modest numbers of points around an orbit. A variant of the idea is used to obtain spectral accuracy in a solution of the geodesic orbital motion.

  4. Non-adiabatic perturbations in Ricci dark energy model

    International Nuclear Information System (INIS)

    Karwan, Khamphee; Thitapura, Thiti

    2012-01-01

    We show that the non-adiabatic perturbations between Ricci dark energy and matter can grow both on superhorizon and subhorizon scales, and these non-adiabatic perturbations on subhorizon scales can lead to instability in this dark energy model. The rapidly growing non-adiabatic modes on subhorizon scales always occur when the equation of state parameter of dark energy starts to drop towards -1 near the end of matter era, except that the parameter α of Ricci dark energy equals to 1/2. In the case where α = 1/2, the rapidly growing non-adiabatic modes disappear when the perturbations in dark energy and matter are adiabatic initially. However, an adiabaticity between dark energy and matter perturbations at early time implies a non-adiabaticity between matter and radiation, this can influence the ordinary Sachs-Wolfe (OSW) effect. Since the amount of Ricci dark energy is not small during matter domination, the integrated Sachs-Wolfe (ISW) effect is greatly modified by density perturbations of dark energy, leading to a wrong shape of CMB power spectrum. The instability in Ricci dark energy is difficult to be alleviated if the effects of coupling between baryon and photon on dark energy perturbations are included

  5. QCD-instantons at LHC. Theoretical aspects; QCD-Instantonen am LHC. Theoretische Aspekte

    Energy Technology Data Exchange (ETDEWEB)

    Petermann, M.

    2007-06-15

    Instantons are nonperturbative, topologically nontrivial field configurations, which occur in every nonabelian gauge theory. They can be understood as tunneling processes between topologically distinct vacua. Although being a basic theoretical aspect of the Standard Model, a direct experimental verification of instanton processes is still lacking. In this thesis the general discovery potential for QCD-instantons at the LHC is studied in detail by means of instanton perturbation theory. In this context the close correspondence between the leading instanton induced processes at HERA and at LHC becomes important. Essential aspects and differences to deep inelastic scattering can already be revealed by studying the simplest process. Based on these results inclusive cross sections are calculated including the emission of final state gluons. Compared to deep inelastic scattering, a large enhancement of the cross section is found. (orig.)

  6. The effective QCD theory at low energy; La theorie effective de QCD a basse energie

    Energy Technology Data Exchange (ETDEWEB)

    Knecht, M. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    1995-12-31

    Quantum chromodynamics is studied here in the range of low energies. The Chiral perturbation theory is presented, this theory is based on a thorough study of QCD symmetry, of general field theory principles and of S-matrices. Ward identities are defined within the scope of current algebras and by using functional method. Their consequences on Chiral structure of QCD emptiness and on strong interaction at low energies are studied. The pion-pion diffusion at low energies is treated as an example. (A.C.) 70 refs.

  7. Perturbative calculation of quasinormal modes of AdS Schwarzschild black holes

    International Nuclear Information System (INIS)

    Musiri, Suphot; Ness, Scott; Siopsis, George

    2006-01-01

    We calculate analytically quasinormal modes of AdS Schwarzschild black holes including first-order corrections. We consider massive scalar, gravitational and electromagnetic perturbations. Our results are in good agreement with numerical calculations. In the case of electromagnetic perturbations, ours is the first calculation to provide an analytic expression for quasinormal frequencies, because the effective potential vanishes at zeroth order. We show that the first-order correction is logarithmic

  8. Non-perturbative QCD. Renormalization, O(a)-improvement and matching to heavy quark effective theory

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, R.

    2006-11-15

    We give an introduction to three topics in lattice gauge theory: I. The Schroedinger Functional and O(a) improvement. O(a) improvement has been reviewed several times. Here we focus on explaining the basic ideas in detail and then proceed directly to an overview of the literature and our personal assessment of what has been achieved and what is missing. II. The computation of the running coupling, running quark masses and the extraction of the renormalization group invariants. We focus on the basic strategy and on the large effort that has been invested in understanding the continuum limit. We point out what remains to be done. III. Non-perturbative Heavy Quark Effective Theory. Since the literature on this subject is still rather sparse, we go beyond the basic ideas and discuss in some detail how the theory works in principle and in practice. (orig.)

  9. Non-perturbative QCD. Renormalization, O(a)-improvement and matching to heavy quark effective theory

    International Nuclear Information System (INIS)

    Sommer, R.

    2006-11-01

    We give an introduction to three topics in lattice gauge theory: I. The Schroedinger Functional and O(a) improvement. O(a) improvement has been reviewed several times. Here we focus on explaining the basic ideas in detail and then proceed directly to an overview of the literature and our personal assessment of what has been achieved and what is missing. II. The computation of the running coupling, running quark masses and the extraction of the renormalization group invariants. We focus on the basic strategy and on the large effort that has been invested in understanding the continuum limit. We point out what remains to be done. III. Non-perturbative Heavy Quark Effective Theory. Since the literature on this subject is still rather sparse, we go beyond the basic ideas and discuss in some detail how the theory works in principle and in practice. (orig.)

  10. Lattice QCD Calculations in Nuclear Physics towards the Exascale

    Science.gov (United States)

    Joo, Balint

    2017-01-01

    The combination of algorithmic advances and new highly parallel computing architectures are enabling lattice QCD calculations to tackle ever more complex problems in nuclear physics. In this talk I will review some computational challenges that are encountered in large scale cold nuclear physics campaigns such as those in hadron spectroscopy calculations. I will discuss progress in addressing these with algorithmic improvements such as multi-grid solvers and software for recent hardware architectures such as GPUs and Intel Xeon Phi, Knights Landing. Finally, I will highlight some current topics for research and development as we head towards the Exascale era This material is funded by the U.S. Department of Energy, Office Of Science, Offices of Nuclear Physics, High Energy Physics and Advanced Scientific Computing Research, as well as the Office of Nuclear Physics under contract DE-AC05-06OR23177.

  11. Lattice calculation of 1/p2 corrections to αs and of Λrm(QCD) in the MOM-tilde scheme

    International Nuclear Information System (INIS)

    Boucaud, Ph.; Burgio, G.; Di Renzo, F.; Leroy, J.P.; Micheli, J.; Parrinello, C.; Pene, O.; Pittori, C.; Rodriguez-Quintero, J.; Roiesnel, C.; Sharkey, K.

    2000-01-01

    We report on very strong evidence of the occurrence of power terms in as(p), the QCD running coupling constant in the MOM-tilde scheme, by analyzing non-perturbative measurements from the lattice three-gluon vertex between 2.0 and 10.0 GeV at zero flavor. While putting forward the caveat that this definition of the coupling is a gauge dependent one, the general relevance of such an occurrence is discussed. We fit Λ rm-bar(MS) (n f =0)= 237 /pm 3/ + 0 - 10 MeV in perfect agreement with the result obtained by the ALPHA group with a totally different method. The power correction to as(p) is fitted to (0.63/pm 0.03/ + 0.0 - 0.13),rm GeV 2 /p 2 . (author)

  12. Lattice QCD at the physical point meets S U (2 ) chiral perturbation theory

    Science.gov (United States)

    Dürr, Stephan; Fodor, Zoltán; Hoelbling, Christian; Krieg, Stefan; Kurth, Thorsten; Lellouch, Laurent; Lippert, Thomas; Malak, Rehan; Métivet, Thibaut; Portelli, Antonin; Sastre, Alfonso; Szabó, Kálmán; Budapest-Marseille-Wuppertal Collaboration

    2014-12-01

    We perform a detailed, fully correlated study of the chiral behavior of the pion mass and decay constant, based on 2 +1 flavor lattice QCD simulations. These calculations are implemented using tree-level, O (a )-improved Wilson fermions, at four values of the lattice spacing down to 0.054 fm and all the way down to below the physical value of the pion mass. They allow a sharp comparison with the predictions of S U (2 ) chiral perturbation theory (χ PT ) and a determination of some of its low energy constants. In particular, we systematically explore the range of applicability of next-to-leading order (NLO) S U (2 ) χ PT in two different expansions: the first in quark mass (x expansion), and the second in pion mass (ξ expansion). We find that these expansions begin showing signs of failure for Mπ≳300 MeV , for the typical percent-level precision of our Nf=2 +1 lattice results. We further determine the LO low energy constants (LECs), F =88.0 ±1.3 ±0.2 and BMS ¯(2 GeV )=2.61 (6 )(1 ) GeV , and the related quark condensate, ΣMS ¯(2 GeV )=(272 ±4 ±1 MeV )3 , as well as the NLO ones, ℓ¯3=2.6 (5 )(3 ) and ℓ¯4=3.7 (4 )(2 ), with fully controlled uncertainties. We also explore the next-to-next-to-leading order (NNLO) expansions and the values of NNLO LECs. In addition, we show that the lattice results favor the presence of chiral logarithms. We further demonstrate how the absence of lattice results with pion masses below 200 MeV can lead to misleading results and conclusions. Our calculations allow a fully controlled, ab initio determination of the pion decay constant with a total 1% error, which is in excellent agreement with experiment.

  13. Lattice regularized chiral perturbation theory

    International Nuclear Information System (INIS)

    Borasoy, Bugra; Lewis, Randy; Ouimet, Pierre-Philippe A.

    2004-01-01

    Chiral perturbation theory can be defined and regularized on a spacetime lattice. A few motivations are discussed here, and an explicit lattice Lagrangian is reviewed. A particular aspect of the connection between lattice chiral perturbation theory and lattice QCD is explored through a study of the Wess-Zumino-Witten term

  14. Nf=2 Lattice QCD and Chiral Perturbation Theory

    International Nuclear Information System (INIS)

    Scorzato, L.; Farchioni, F.; Hofmann, P.; Jansen, K.; Montvay, I.; Muenster, G.; Papinutto, M.; Scholz, E.E.; Shindler, A.; Ukita, N.; Urbach, C.; Wenger, U.; Wetzorke, I.

    2006-01-01

    By employing a twisted mass term, we compare recent results from lattice calculations of N f =2 dynamical Wilson fermions with Wilson Chiral Perturbation Theory (WChPT). The final goal is to determine some com- binations of Gasser-Leutwyler Low Energy Constants (LECs). A wide set of data with different lattice spacings (a ∼ 0.2 - 0.12 fm), different gauge actions (Wilson plaquette, DBW2) and different quark masses (down to the lowest pion mass allowed by lattice artifacts and including negative quark masses) provide a strong check of the applicability of WChPT in this regime and the scaling behaviours in the continuum limit

  15. Search for ({lambda}{sup 2})/p{sup 2} corrections to the QCD running coupling

    Energy Technology Data Exchange (ETDEWEB)

    Burgio, G.; Di Renzo, F.; Parrinello, C.; Pittori, C

    1999-03-01

    We investigate the occurrence of power terms ({lambda}{sup 2})/p>{sup 2} in the running QCD coupling by analysing non-perturbative measurements of {alpha}{sub s}(p) at quite low momenta obtained from the lattice three-gluon vertex. Our study provides some evidence for such a contribution. The phenomenological implications of such a presence are reviewed.

  16. Forward and Small-x QCD Physics Results from CMS Experiment at LHC

    CERN Document Server

    AUTHOR|(CDS)2079608

    2016-01-01

    The Compact Muon Solenoid (CMS) is one of the two large, multi-purpose experiments at the Large Hadron Collider (LHC) at CERN. During the Run I Phase a large pp collision dataset has been collected and the CMS collaboration has explored measurements that shed light on a new era. Forward and small-$x$ quantum chromodynamics (QCD) physics measurements with CMS experiment covers a wide range of physics subjects. Some of highlights in terms of testing the very low-$x$ QCD, underlying event and multiple interaction characteristics, photon-mediated processes, jets with large rapidity separation at high pseudo-rapidities and the inelastic proton-proton cross section dominated by diffractive interactions are presented. Results are compared to Monte Carlo (MC) models with different parameter tunes for the description of the underlying event and to perturbative QCD calculations. The prominent role of multi-parton interactions has been confirmed in the semihard sector but no clear deviation from the standard DGLAP parto...

  17. Tests of perturbative and non perturbative structure of moments of hadronic event shapes using experiments JADE and OPAL; Untersuchung perturbativer und nichtperturbativer Struktur der Momente hadronischer Ereignisformvariablen mit den Experimenten JADE und OPAL

    Energy Technology Data Exchange (ETDEWEB)

    Pahl, Christoph Johannes

    2008-01-29

    In hadron production data of the e{sup +}e{sup -} annihilation experiments JADE and OPAL we measure the first five moments of twelve hadronic-event-shape variables at c.m. energies from 14 to 207 GeV. From the comparison of the QCD NLO prediction with the data corrected by means of MC models about hadronization we obtain the reference value of the strong coupling {alpha}{sub s}(M{sub Z{sup 0}})=0.1254{+-}0.0007(stat.){+-}0.0010(exp.){sup +0.0009}{sub -0.0023}(had.){sup +0.0069}{sub -0.0053}(theo.). For some, especially higher moments, systematic unsufficiencies in the QCD NLO prediction are recognizable. Simultaneous fits to two moments under assumption of identical renormalization scales yield scale values from x{sub {mu}}=0.057 to x{sub {mu}}=0.196. We check predictions of different non-perturbative models. From the single-dressed-gluon approximation a perturbative prediction in O({alpha}{sup 5}{sub s}) results with neglegible energy power correction, which describes the thrust average on hadron level well with {alpha}{sub s}(M{sub Z{sup 0}})=0.1186{+-}0,0017(exp.){sub -0.0028}{sup +0.0033}(theo.). The variance of the event-shape variable is measured and compared with models as well as predictions. [German] In Hadronproduktionsdaten der e{sup +}e{sup -}-Vernichtungsexperimente JADE und OPAL messen wir die ersten fuenf Momente von zwoelf hadronischen Ereignisformvariablen bei Schwerpunktsenergien von 14 bis 207 GeV. Aus dem Vergleich der QCD NLO-Vorhersage mit den mittels MC-Modellen um Hadronisierung korrigierten Daten erhalten wir den Referenzwert der starken Kopplung {alpha}{sub s}(M{sub Z{sup 0}})=0.1254{+-}0.0007(stat.){+-}0.0010(exp.){sup +0.0009}{sub -0.0023}(had.){sup +0.0069}{sub -0.0053}(theo.). Fuer einige, insbesondere hoehere, Momente sind systematische Unzulaenglichkeiten in der QCD NLO-Vorhersage erkenntlich. Simultane Fits an zwei Momente unter Annahme identischer Renormierungsskalen ergeben Skalenwerte von x{sub {mu}}=0.057 bis x{sub {mu}}=0

  18. Perturbative quantum chromodynamics

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1979-12-01

    The application of QCD to hadron dynamics at short distances, where asymptotic freedom allows a systematic perturbative approach, is addressed. The main theme of the approach is to incorporate systematically the effects of the hadronic wave function in large momentum transfer exclusive and inclusive reactions. Although it is conventional to treat the hadron as a classical source of on-shell quarks, there are important dynamical effects due to hadronic constituent structure which lead to a broader testing ground for QCD. QCD predictions are discussed for exclusive processes and form factors at large momentum transfer in which the short-distance behavior and the finite compositeness of the hadronic wave functions play crucial roles. Many of the standard tests of QCD are reviewed including the predictions for R = sigma/sub e + e - →had//sigma/sub e + e - →μ + μ - /, the structure functions of hadrons and photons, jet phenomena, and the QCD corrections to deep inelastic processes. The exclusive-inclusive connection in QCD, the effects of power-law scale-breaking contributions, and the important role of the available energy in controlling logarithmic scale violations are also discussed. 150 references, 44 figures

  19. Hadronic matrix elements in lattice QCD

    International Nuclear Information System (INIS)

    Jaeger, Benjamin

    2014-01-01

    The lattice formulation of Quantum ChromoDynamics (QCD) has become a reliable tool providing an ab initio calculation of low-energy quantities. Despite numerous successes, systematic uncertainties, such as discretisation effects, finite-size effects, and contaminations from excited states, are inherent in any lattice calculation. Simulations with controlled systematic uncertainties and close to the physical pion mass have become state-of-the-art. We present such a calculation for various hadronic matrix elements using non-perturbatively O(a)-improved Wilson fermions with two dynamical light quark flavours. The main topics covered in this thesis are the axial charge of the nucleon, the electro-magnetic form factors of the nucleon, and the leading hadronic contributions to the anomalous magnetic moment of the muon. Lattice simulations typically tend to underestimate the axial charge of the nucleon by 5-10%. We show that including excited state contaminations using the summed operator insertion method leads to agreement with the experimentally determined value. Further studies of systematic uncertainties reveal only small discretisation effects. For the electro-magnetic form factors of the nucleon, we see a similar contamination from excited states as for the axial charge. The electro-magnetic radii, extracted from a dipole fit to the momentum dependence of the form factors, show no indication of finite-size or cutoff effects. If we include excited states using the summed operator insertion method, we achieve better agreement with the radii from phenomenology. The anomalous magnetic moment of the muon can be measured and predicted to very high precision. The theoretical prediction of the anomalous magnetic moment receives contribution from strong, weak, and electro-magnetic interactions, where the hadronic contributions dominate the uncertainties. A persistent 3σ tension between the experimental determination and the theoretical calculation is found, which is

  20. LHC physics: challenges for QCD

    OpenAIRE

    Frixione, S.

    2003-01-01

    I review the status of the comparisons between a few measurements at hadronic colliders and perturbative QCD predictions, which emphasize the need for improving the current computations. Such improvements will be mandatory for a satisfactory understanding of high-energy collisions at the LHC

  1. Bootstrap calculation of the dynamical quark mass in QCD4 at finite temperature

    International Nuclear Information System (INIS)

    Cabo, A.; Kalashnikov, O.K.; Veliev, E.Kh.

    1988-01-01

    Nonperturbative calculations of the dynamical quark mass m(T) are given in QCD 4 , based on the bootstrap solution of the Schwinger-Dyson equation for the quark Green function at finite temperatures. A closed nonlinear equation is obtained for m(T) whose solution is found under some simplifying assumptions. We used a particular approximation for the effective charge and the nonperturbative expressions of the gluon magnetic and electric masses. The singular behavior of m(T) is established and its parameters are determined numerically. The singularity found is shown to correctly reproduce the chiral phase transition and the temperature limits obtained for m(T) are qualitatively correct. The complete phase diagram of QCD 4 in the (μ,T) plane is briefly discussed. (orig.)

  2. Magnetic monopoles in 4D: a perturbative calculation

    Energy Technology Data Exchange (ETDEWEB)

    Khvedelidze, Arsen [Department of Theoretical Physics, A.M.Razmadze Mathematical Institute, Tbilisi, GE-0193 (Georgia); McMullan, David [School of Mathematics and Statistics, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Kovner, Alex [Physics Department, University of Connecticut, 2152 Hillside Road, Storrs, CT 06269-3046 (United States)

    2006-01-15

    We address the question of defining the second quantised monopole creation operator in the 3+1 dimensional Georgi-Glashow model, and calculating its expectation value in the confining phase. Our calculation is performed directly in the continuum theory within the framework of perturbation theory. We find that, although it is possible to define the 'coherent state' operator M(x) that creates the Coulomb magnetic field, the dependence of this operator on the Dirac string does not disappear even in the nonabelian theory. This is due to the presence of the charged fields (W{sup {+-}}). We also set up the calculation of the expectation value of this operator in the confining phase and show that it is not singular along the Dirac string. We find that in the leading order of the perturbation theory the VEV vanishes as a power of the volume of the system. This is in accordance with our naive expectation. We expect that nonperturbative effects will introduce an effective infrared cutoff on the calculation making the VEV finite.

  3. Magnetic monopoles in 4D: a perturbative calculation

    International Nuclear Information System (INIS)

    Khvedelidze, Arsen; McMullan, David; Kovner, Alex

    2006-01-01

    We address the question of defining the second quantised monopole creation operator in the 3+1 dimensional Georgi-Glashow model, and calculating its expectation value in the confining phase. Our calculation is performed directly in the continuum theory within the framework of perturbation theory. We find that, although it is possible to define the 'coherent state' operator M(x) that creates the Coulomb magnetic field, the dependence of this operator on the Dirac string does not disappear even in the nonabelian theory. This is due to the presence of the charged fields (W ± ). We also set up the calculation of the expectation value of this operator in the confining phase and show that it is not singular along the Dirac string. We find that in the leading order of the perturbation theory the VEV vanishes as a power of the volume of the system. This is in accordance with our naive expectation. We expect that nonperturbative effects will introduce an effective infrared cutoff on the calculation making the VEV finite

  4. The calculation of isotopic partition function ratios by a perturbation theory technique

    International Nuclear Information System (INIS)

    Singh, G.; Wolfsberg, M.

    1975-01-01

    The vibrational Hamiltonian of a molecule in the harmonic approximation, H = (1/2) Σ (g/subi/jp/subi/p/subj/ + f/subi/jq/subi/q/subj/), has been divided into a diagonal part (terms with i=j) and an off-diagonal part (inot-equalj), which is regarded as the perturbation. The vibrational partition function of the molecule is then calculated by Schwinger perturbation theory as the partition function of the unperturbed problem, corresponding to a collection of oscillators with frequencies 2πν/subi/' = (f/subi/ig/subi/i)/sup 1 / 2 /, plus perturbation correction terms which are calculated to second order. With the usual assumptions of isotope effect calculations that the molecular translations and rotations are classical and separable from the vibrations, the perturbation formulation of the vibrational partition function is easily transformed into a perturbation theory formulation of (reduced) isotopic partition function ratios. If, for example, the molecular potential function is expressed in terms of the displacements of bond stretches and bond angle bends from their respective equilibrium values, the unperturbed partition function ratio corresponds to the isotope effect expected for noninteracting bond-stretch and bond-angle-bend oscillators. Detailed comparison is made for a number of molecular systems of perturbation theory calculations of partition functions and isotopic partition function ratios with exact calculations carried out by actually obtaining the normal mode vibrational frequencies of the vibrational Hamiltonian. Good agreement is found. The utility of the perturbation theory formulation resides in the fact that it permits one to look at isotope effects in a very simple manner; some demonstrations are given

  5. Jet analysis in lepton-hadron scattering from QCD

    International Nuclear Information System (INIS)

    Ranft, J.; Ranft, G.

    1978-10-01

    For deep inelastic lepton-hadron scattering the cross sections dσ/dT and dσ/dS are deduced from QCD perturbation theory in terms of the collective jet variables thrust T and spherocity S. It is found that the shape of these cross sections depends mainly on the total hadronic energy W. While present data are consistent with the cross sections calculated they do not yet prove or disprove the presence of three-jet contributions. It is predicted that these contributions will be clearly visible for W greater than approximately 12 to 15 GeV. (author)

  6. Wgamma and Zgamma production at the LHC in NNLO QCD

    International Nuclear Information System (INIS)

    Grazzini, Massimiliano; Kallweit, Stefan; Rathlev, Dirk

    2016-01-01

    We consider the production of Wγ and Zγ pairs at the LHC, and report on the fully differential computation of next-to-next-to-leading order (NNLO) corrections in QCD perturbation theory. The calculation includes leptonic vector-boson decays with the corresponding spin correlations, off-shell effects and final-state photon radiation. We present numerical results for pp collisions at 7 TeV, and compare them with available ATLAS data. In the case of Zγ production, the impact of NNLO corrections is generally moderate, ranging from 8% to 17%, depending on the applied cuts. In the case of Wγ production, the NNLO effects are more important, and range from 19% to 26%, thereby improving the agreement of the theoretical predictions with the data. As expected, a veto against jets significantly reduces the impact of QCD radiative corrections.

  7. Non-standard perturbative methods for the effective potential in λφ4 QFT

    International Nuclear Information System (INIS)

    Okopinska, A.

    1986-07-01

    The effective potential in scalar QFT is calculated in the non-standard perturbative methods and compared with the conventional loop expansion. In the space time dimensions 0 and 1 the results are compared with the ''exact'' effective potential obtained numerically. In 4 dimensions we show that λφ 4 theory is non-interacting. (author)

  8. Perturbation theory instead of large scale shell model calculations

    International Nuclear Information System (INIS)

    Feldmeier, H.; Mankos, P.

    1977-01-01

    Results of large scale shell model calculations for (sd)-shell nuclei are compared with a perturbation theory provides an excellent approximation when the SU(3)-basis is used as a starting point. The results indicate that perturbation theory treatment in an SU(3)-basis including 2hω excitations should be preferable to a full diagonalization within the (sd)-shell. (orig.) [de

  9. The QCD form factor of massive quarks and applications

    International Nuclear Information System (INIS)

    Moch, S.

    2009-11-01

    We review the electromagnetic form factor of heavy quarks with emphasis on the QCD radiative corrections at two-loop order in the perturbative expansion. We discuss important properties of the heavy-quark form factor such as its exponentiation in the high-energy limit and its role in QCD factorization theorems for massive n-parton amplitudes. (orig.)

  10. NLO QCD result for the gluon polarization from open charm $D^{0}$ meson production at COMPASS

    CERN Document Server

    Kurek, Krzysztof

    2011-01-01

    One of the main goals of the COMPASS experiment is the measurement of the gluon contribution to the nucleon spin. Among the processes studied by COMPASS, open- charm $D^{0}$ meson production seems to be the cleanest channel for probing gluons in the energy range covered by the experiment. The gluon polarisation is related to the measured asymmetry for charmed mesons production via the analyzing power (asymmetry at the partonic level) calculated in the perturbative QCD frame. The analyzing power for the "photon-gluon fusion" process corresponds to a LO QCD approximation. The signicant improvement of the statistical precision and the new, nal LO result are presented . The NLO QCD corrections to the partonic cross sections (unpolarised and polarized ones) are now also included into the analysis scheme since these higher order contributions are not negligible. The preliminary NLO QCD result on the gluon polarisation based on a set of measured $D^{0}$ meson asymmetries in kinematical bins of the $D^{0}$ energy amd...

  11. Charmless non-leptonic B{sub s} decays to PP, PV and VV final states in the pQCD approach

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kramer, G. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Li, Y.; Lue, C.D.; Shen, Y.L.; Wang, W.; Wang, Y.M. [Institute of High Energy Physics, CAS, Beijing (China)

    2007-03-15

    We calculate the CP-averaged branching ratios and CP-violating asymmetries of a number of two-body charmless hadronic decays B{sub s}{sup 0}{yields}PP,PV,VV in the perturbative QCD (pQCD) approach to leading order in {alpha}{sub s} (here P and V denote light pseudoscalar and vector mesons, respectively). The mixinginduced CP violation parameters are also calculated for these decays. We also predict the polarization fractions of B{sub s}{yields}VV decays and find that the transverse polarizations are enhanced in some penguin dominated decays such as B{sub s}{sup 0}{yields}K{sup *}K{sup *}, K{sup *}{rho}. Some of the predictions worked out here can already be confronted with the recently available data from the CDF collaboration on the branching ratios for the decays B{sub s}{sup 0}{yields}K{sup +}{pi}{sup -}, B{sub s}{sup 0}{yields}K{sup +}K{sup -} and the CP-asymmetry in the decay B{sub s}{sup 0}{yields}K{sup +}{pi}{sup -}, and are found to be in agreement within the current errors. A large number of predictions for the branching ratios, CP-asymmetries and vector-meson polarizations in B{sub s}{sup 0} decays, presented in this paper and compared with the already existing results in other theoretical frameworks, will be put to stringent experimental tests in forthcoming experiments at Fermilab, LHC and Super B-factories. (orig.)

  12. Static spin-dependent forces between heavy quarks in the classical approximation to dual QCD

    International Nuclear Information System (INIS)

    Baker, M.; Ball, J.S.; Zachariasen, F.

    1991-01-01

    We compute the static spin-dependent forces V S (R) (proportional to σ 1 ·σ 2 ) and V T (R) (proportional to 3σ 1 ·Rσ 2 ·R-σ 1 ·σ 2 ) between two quarks separated by R. This is done by treating the (weak) spin-dependent effects as a perturbation on the spin-independent potentials and fields computed earlier for dual QCD. What results is a definite prediction for the heavy-quark potentials which are similar to, but different in form from, those used in phenomenological treatments. Calculations of the masses and splittings of heavy-quark states using our potentials will provide a further test of the dual superconductor picture of QCD

  13. Studies of QCD at $e^{+}e^{-}$ Centre-of-Mass Energies between 91 and 209 GeV

    CERN Document Server

    Heister, A; Barate, R; Brunelière, R; De Bonis, I; Décamp, D; Goy, C; Jézéquel, S; Lees, J P; Martin, F; Merle, E; Minard, M N; Pietrzyk, B; Trocmé, B; Bravo, S; Casado, M P; Chmeissani, M; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Martínez, M; Pacheco, A; Ruiz, H; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Iaselli, G; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Barklow, T; Buchmüller, O L; Cattaneo, M; Clerbaux, B; Drevermann, H; Forty, R W; Frank, M; Gianotti, F; Hansen, J B; Harvey, J; Hutchcroft, D E; Janot, P; Jost, B; Kado, M; Mato, P; Moutoussi, A; Ranjard, F; Rolandi, Luigi; Schlatter, W D; Sguazzoni, G; Teubert, F; Valassi, Andrea; Videau, I; Badaud, F; Dessagne, S; Falvard, A; Fayolle, D; Gay, P; Jousset, J; Michel, B; Monteil, S; Pallin, D; Pascolo, J M; Perret, P; Hansen, J D; Hansen, J R; Hansen, P H; Kraan, A C; Nilsson, B S; Kyriakis, A; Markou, C; Simopoulou, Errietta; Vayaki, Anna; Zachariadou, K; Blondel, A; Brient, J C; Machefert, F P; Rougé, A; Videau, H L; Ciulli, V; Focardi, E; Parrini, G; Antonelli, A; Antonelli, M; Bencivenni, G; Bossi, F; Capon, G; Cerutti, F; Chiarella, V; Laurelli, P; Mannocchi, G; Murtas, G P; Passalacqua, L; Kennedy, J; Lynch, J G; Negus, P; O'Shea, V; Thompson, A S; Wasserbaech, S R; Cavanaugh, R J; Dhamotharan, S; Geweniger, C; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Stenzel, H; Tittel, K; Wunsch, M; Beuselinck, R; Cameron, W; Davies, G; Dornan, P J; Girone, M; Hill, R D; Marinelli, N; Nowell, J; Rutherford, S A; Sedgbeer, J K; Thompson, J C; White, R; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bouhova-Thacker, E; Bowdery, C K; Clarke, D P; Ellis, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Pearson, M R; Robertson, N A; Smizanska, M; van der Aa, O; Delaere, C; Leibenguth, G; Lemaître, V; Blumenschein, U; Hölldorfer, F; Jakobs, K; Kayser, F; Kleinknecht, K; Müller, A S; Renk, B; Sander, H G; Schmeling, S; Wachsmuth, H W; Zeitnitz, C; Ziegler, T; Bonissent, A; Coyle, P; Curtil, C; Ealet, A; Fouchez, D; Payre, P; Tilquin, A; Ragusa, F; David, A; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Männer, W; Moser, H G; Settles, Ronald; Villegas, M; Wolf, G; Boucrot, J; Callot, O; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacholkowska, A; Serin, L; Veillet, J J; Azzurri, P; Bagliesi, G; Boccali, T; Foà, L; Giammanco, A; Giassi, A; Ligabue, F; Messineo, A; Palla, F; Sanguinetti, G; Sciabà, A; Spagnolo, P; Tenchini, R; Venturi, A; Verdini, P G; Awunor, O; Blair, G A; Cowan, G; García-Bellido, A; Green, M G; Medcalf, T; Misiejuk, A; Strong, J A; Teixeira-Dias, P; Clifft, R W; Edgecock, T R; Norton, P R; Tomalin, I R; Ward, J J; Bloch-Devaux, B; Boumediene, D E; Colas, P; Fabbro, B; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Tuchming, B; Vallage, B; Litke, A M; Taylor, G; Booth, C N; Cartwright, S; Combley, F; Hodgson, P N; Lehto, M H; Thompson, L F; Böhrer, A; Brandt, S; Grupen, C; Hess, J; Ngac, A; Prange, G; Borean, C; Giannini, G; He, H; Pütz, J; Rothberg, J E; Armstrong, S R; Berkelman, K; Cranmer, K; Ferguson, D P S; Gao, Y; González, S; Hayes, O J; Hu, H; Jin, S; Kile, J; McNamara, P A; Nielsen, J; Pan, Y B; Von Wimmersperg-Töller, J H; Wiedenmann, W; Wu, J; Wu Sau Lan; Wu, X; Zobernig, G; Dissertori, G

    2004-01-01

    The hadronic final states observed with the ALEPH detector at LEP in e+e- annihilation are analysed using 730 pb-1 of data collected between 91 and 209 GeV in the framework of QCD. In particular event-shape variables and inclusive charged particle spectra are measured. The energy evolution of quantities derived from these measurements is compared to analytic QCD predictions. The mean charged particle multiplicity, the charged particle momentum spectrum and its peak position are compared to predictions of the modified-leading-logarithmic approximation. The strong coupling constant alpha_s is determined from a fit of the QCD prediction to distributions of six event-shape variables at eight centre-of-mass energies. A study of non-perturbative power law corrections is presented

  14. Hadron physics from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Andreas [Regensburg Univ. (Germany). Inst. for Theoretical Physics

    2016-11-01

    Particle physics experiments at modern high luminosity particle accelerators achieve orders of magnitude higher count rates than what was possible ten or twenty years ago. This extremely large statistics allows to draw far reaching conclusions even from minute signals, provided that these signals are well understood by theory. This is, however, ever more difficult to achieve. Presently, technical and scientific progress in general and experimental progress in particle physics in particular, shows typically an exponential growth rate. For example, data acquisition and analysis are, among many other factor, driven by the development of ever more efficient computers and thus by Moore's law. Theory has to keep up with this development by also achieving an exponential increase in precision, which is only possible using powerful computers. This is true for both types of calculations, analytic ones as, e.g., in quantum field perturbation theory, and purely numerical ones as in Lattice QCD. As stated above such calculations are absolutely indispensable to make best use of the extremely costly large particle physics experiments. Thus, it is economically reasonable to invest a certain percentage of the cost of accelerators and experiments in related theory efforts. The basic ideas behind Lattice QCD simulations are the following: Because quarks and gluons can never be observed individually but are always ''confined'' into colorless hadrons, like the proton, all quark-gluon states can be expressed in two different systems of basis states, namely in a quark-gluon basis and the basis of hadron states. The proton, e.g., is an eigenstate of the latter, a specific quark-gluon configuration is part of the former. In the quark-gluon basis a physical hadron, like a proton, is given by an extremely complicated multi-particle wave function containing all effects of quantum fluctuations. This state is so complicated that it is basically impossible to model it

  15. The spectral density of the QCD Dirac operator and patterns of chiral symmetry breaking

    International Nuclear Information System (INIS)

    Toublan, D.; Verbaarschot, J.J.M.

    1999-01-01

    We study the spectrum of the QCD Dirac operator for two colors with fermions in the fundamental representation and for two or more colors with adjoint fermions. For N f flavors, the chiral flavor symmetry of these theories is spontaneously broken according to SU (2N f → Sp (2N f ) and SU (N f → O (N f ), respectively, rather than the symmetry breaking pattern SU (N f ) x SU (N f ) → SU (N f ) for QCD with three or more colors and fundamental fermions. In this paper we study the Dirac spectrum for the first two symmetry breaking patterns. Following previous work for the third case we find the Dirac spectrum in the domain λ QCD by means of partially quenched chiral perturbation theory. In particular, this result allows us to calculate the slope of the Dirac spectrum at λ = 0. We also show that for λ 2 Λ QCD (wing L the linear size of the system) the Dirac spectrum is given by a chiral Random Matrix Theory with the symmetries of the Dirac operator

  16. Quantum chromodynamical calculations of meson wave functions in the light-cone formalism by means of QCD sum rules

    International Nuclear Information System (INIS)

    Guellenstern, S.

    1991-09-01

    Using the technique of Cherniak and Zhitnitzky we have calculated the wavefunctions of ρ(770) and Φ(1020) within the framework of QCD sum rules. Whereas the standard approach assumes light-like distances of the quarks (z 2 = 0), we also have taken into account higher order terms in z 2 . Thus, we obtained non-vanishing orbital angular momentum contributions. The first few moments of various invariant functions have been calculated with the help of an especially developed REDUCE program package. In zeroth order (z 2 = 0) our results of the reconstructed wavefunctions agree with those in the literature. However, we got first order contributions in z 2 of an amount of almost 10% of the corresponding zeroth order. (orig.)

  17. The time development of QCD jets

    International Nuclear Information System (INIS)

    Caneschi, L.

    1979-01-01

    The time development of jets in perturbative QCD is studied. In spite of the fact that the total time for the jet to develop increases indefinitely with increasing energy, quark antiquark pairs remain unscreened only an infinitesimal time. (author)

  18. Phenomenological applications of perturbative quantum chromodynamics

    International Nuclear Information System (INIS)

    Zahir, M.S.Z.

    1981-01-01

    In this thesis, three diffrent topics in high energy particle physics are investigated each of which is a case of theoretical and phenomenological application of perturbative Quantum Chromodynamics. The first topic is addressed to the structure of nucleons as probed in deep-inelastic lepton-nucleon scattering. Since, at present, meaningful calculations in Quantum Chromodynamics (QCD) can be done only for short distances or large momentum transfers, phenomenological applications of QCD to the full hadronic processes many a time require additional model dependent procedures. In this thesis, the structure functions of the nucleon in the framework of the valon model in which a nucleon is assumed to be a bound state of three valence quark clusters (valons) are analyzed. In the second topic the production of massive dimuons at large transverse momentum in Drell-Yan process is analyzed where it is believed that the dimuons acquire large transverse momentum through the emission or absorption of hard gluons. Following a model independent formalism, in this thesis, the lowest order QCD contributions to the structure functions in lepton-pair production are calculated and it is shown that there exist sum rules connecting the four sructure functions to be satisfied at zero rapidity and large transverse momentum of the muon-pair for similar interacting hadrons. In the third topic a discussion is given on how high energy photons can replace hadrons in new lepton-pair production process

  19. Instantons in the QCD vacuum and in deep inelastic scattering

    International Nuclear Information System (INIS)

    Ringwald, A.; Schrempp, F.

    1999-01-01

    We give a brief status report on our on-going investigation of the prospects to discover QCD instantons in deep inelastic scattering (DIS) at HERA. A recent high-quality lattice study of the topological structure of the QCD vacuum is exploited to provide crucial support of our predictions for DIS, based on instanton perturbation theory

  20. Staggering towards a calculation of weak amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Sharpe, S.R.

    1988-09-01

    An explanation is given of the methods required to calculate hadronic matrix elements of the weak Hamiltonians using lattice QCD with staggered fermions. New results are presented for the 1-loop perturbative mixing of the weak interaction operators. New numerical techniques designed for staggered fermions are described. A preliminary result for the kaon B parameter is presented. 24 refs., 3 figs.