WorldWideScience

Sample records for non-permissive brain disorder

  1. Non-human Primate Models for Brain Disorders - Towards Genetic Manipulations via Innovative Technology.

    Science.gov (United States)

    Qiu, Zilong; Li, Xiao

    2017-04-01

    Modeling brain disorders has always been one of the key tasks in neurobiological studies. A wide range of organisms including worms, fruit flies, zebrafish, and rodents have been used for modeling brain disorders. However, whether complicated neurological and psychiatric symptoms can be faithfully mimicked in animals is still debatable. In this review, we discuss key findings using non-human primates to address the neural mechanisms underlying stress and anxiety behaviors, as well as technical advances for establishing genetically-engineered non-human primate models of autism spectrum disorders and other disorders. Considering the close evolutionary connections and similarity of brain structures between non-human primates and humans, together with the rapid progress in genome-editing technology, non-human primates will be indispensable for pathophysiological studies and exploring potential therapeutic methods for treating brain disorders.

  2. Brain structure-function associations in multi-generational families genetically enriched for bipolar disorder.

    Science.gov (United States)

    Fears, Scott C; Schür, Remmelt; Sjouwerman, Rachel; Service, Susan K; Araya, Carmen; Araya, Xinia; Bejarano, Julio; Knowles, Emma; Gomez-Makhinson, Juliana; Lopez, Maria C; Aldana, Ileana; Teshiba, Terri M; Abaryan, Zvart; Al-Sharif, Noor B; Navarro, Linda; Tishler, Todd A; Altshuler, Lori; Bartzokis, George; Escobar, Javier I; Glahn, David C; Thompson, Paul M; Lopez-Jaramillo, Carlos; Macaya, Gabriel; Molina, Julio; Reus, Victor I; Sabatti, Chiara; Cantor, Rita M; Freimer, Nelson B; Bearden, Carrie E

    2015-07-01

    Recent theories regarding the pathophysiology of bipolar disorder suggest contributions of both neurodevelopmental and neurodegenerative processes. While structural neuroimaging studies indicate disease-associated neuroanatomical alterations, the behavioural correlates of these alterations have not been well characterized. Here, we investigated multi-generational families genetically enriched for bipolar disorder to: (i) characterize neurobehavioural correlates of neuroanatomical measures implicated in the pathophysiology of bipolar disorder; (ii) identify brain-behaviour associations that differ between diagnostic groups; (iii) identify neurocognitive traits that show evidence of accelerated ageing specifically in subjects with bipolar disorder; and (iv) identify brain-behaviour correlations that differ across the age span. Structural neuroimages and multi-dimensional assessments of temperament and neurocognition were acquired from 527 (153 bipolar disorder and 374 non-bipolar disorder) adults aged 18-87 years in 26 families with heavy genetic loading for bipolar disorder. We used linear regression models to identify significant brain-behaviour associations and test whether brain-behaviour relationships differed: (i) between diagnostic groups; and (ii) as a function of age. We found that total cortical and ventricular volume had the greatest number of significant behavioural associations, and included correlations with measures from multiple cognitive domains, particularly declarative and working memory and executive function. Cortical thickness measures, in contrast, showed more specific associations with declarative memory, letter fluency and processing speed tasks. While the majority of brain-behaviour relationships were similar across diagnostic groups, increased cortical thickness in ventrolateral prefrontal and parietal cortical regions was associated with better declarative memory only in bipolar disorder subjects, and not in non-bipolar disorder family

  3. Brain differences between persistent and remitted attention deficit hyperactivity disorder.

    Science.gov (United States)

    Mattfeld, Aaron T; Gabrieli, John D E; Biederman, Joseph; Spencer, Thomas; Brown, Ariel; Kotte, Amelia; Kagan, Elana; Whitfield-Gabrieli, Susan

    2014-09-01

    Previous resting state studies examining the brain basis of attention deficit hyperactivity disorder have not distinguished between patients who persist versus those who remit from the diagnosis as adults. To characterize the neurobiological differences and similarities of persistence and remittance, we performed resting state functional magnetic resonance imaging in individuals who had been longitudinally and uniformly characterized as having or not having attention deficit hyperactivity disorder in childhood and again in adulthood (16 years after baseline assessment). Intrinsic functional brain organization was measured in patients who had a persistent diagnosis in childhood and adulthood (n = 13), in patients who met diagnosis in childhood but not in adulthood (n = 22), and in control participants who never had attention deficit hyperactivity disorder (n = 17). A positive functional correlation between posterior cingulate and medial prefrontal cortices, major components of the default-mode network, was reduced only in patients whose diagnosis persisted into adulthood. A negative functional correlation between medial and dorsolateral prefrontal cortices was reduced in both persistent and remitted patients. The neurobiological dissociation between the persistence and remittance of attention deficit hyperactivity disorder may provide a framework for the relation between the clinical diagnosis, which indicates the need for treatment, and additional deficits that are common, such as executive dysfunctions. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Brain Age in Early Stages of Bipolar Disorders or Schizophrenia.

    Science.gov (United States)

    Hajek, Tomas; Franke, Katja; Kolenic, Marian; Capkova, Jana; Matejka, Martin; Propper, Lukas; Uher, Rudolf; Stopkova, Pavla; Novak, Tomas; Paus, Tomas; Kopecek, Miloslav; Spaniel, Filip; Alda, Martin

    2017-12-20

    The greater presence of neurodevelopmental antecedants may differentiate schizophrenia from bipolar disorders (BD). Machine learning/pattern recognition allows us to estimate the biological age of the brain from structural magnetic resonance imaging scans (MRI). The discrepancy between brain and chronological age could contribute to early detection and differentiation of BD and schizophrenia. We estimated brain age in 2 studies focusing on early stages of schizophrenia or BD. In the first study, we recruited 43 participants with first episode of schizophrenia-spectrum disorders (FES) and 43 controls. In the second study, we included 96 offspring of bipolar parents (48 unaffected, 48 affected) and 60 controls. We used relevance vector regression trained on an independent sample of 504 controls to estimate the brain age of study participants from structural MRI. We calculated the brain-age gap estimate (BrainAGE) score by subtracting the chronological age from the brain age. Participants with FES had higher BrainAGE scores than controls (F(1, 83) = 8.79, corrected P = .008, Cohen's d = 0.64). Their brain age was on average 2.64 ± 4.15 years greater than their chronological age (matched t(42) = 4.36, P stages of BD showed comparable BrainAGE scores to controls (F(2,149) = 1.04, corrected P = .70, η2 = 0.01) and comparable brain and chronological age. Early stages of schizophrenia, but not early stages of BD, were associated with advanced BrainAGE scores. Participants with FES showed neurostructural alterations, which made their brains appear 2.64 years older than their chronological age. BrainAGE scores could aid in early differential diagnosis between BD and schizophrenia. © The Author(s) 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com

  5. Recent Advances in Non-invasive Brain Stimulation for Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Shui Liu

    2017-11-01

    Full Text Available Non-invasive brain stimulation (NBS is a promising treatment for major depressive disorder (MDD, which is an affective processing disorder involving abnormal emotional processing. Many studies have shown that repetitive transcranial magnetic stimulation (rTMS and transcranial direct current stimulation (tDCS over the prefrontal cortex can play a regulatory role in affective processing. Although the clinical efficacy of NBS in MDD has been demonstrated clinically, the precise mechanism of action remains unclear. Therefore, this review article summarizes the current status of NBS methods, including rTMS and tDCS, in the treatment of MDD. The article explores possible correlations between depressive symptoms and affective processing, highlighting the relevant affective processing mechanisms. Our review provides a reference for the safety and efficacy of NBS methods in the clinical treatment of MDD.

  6. Contrasting amino acid profiles among permissive and non-permissive hosts of Candidatus Liberibacter asiaticus, putative causal agent of Huanglongbing.

    Directory of Open Access Journals (Sweden)

    Mamoudou Sétamou

    Full Text Available Huanglongbing is a devastating disease of citrus. In this study, a comprehensive profile of phloem sap amino acids (AA in four permissive host plants of Candidatus Liberibacter asiaticus (CLas and three non-permissive Rutaceae plants was conducted to gain a better understanding of host factors that may promote or suppress the bacterium. The AA profiles of Diaphorina citri nymphs and adults were similarly analyzed. A total of 38 unique AAs were detected in phloem sap of the various plants and D. citri samples, with phloem sap of young shoots containing more AAs and at higher concentrations than their mature counterparts. All AAs detected in phloem sap of non-permissive plants were also present in CLas -permissive hosts plus additional AAs in the latter class of plants. However, the relative composition of 18 commonly shared AAs varied between CLas -permissive hosts and non-permissive plants. Multivariate analysis with a partial least square discriminant methodology revealed a total of 12 AAs as major factors affecting CLas host status, of which seven were positively related to CLas tolerance/resistance and five positively associated with CLas susceptibility. Most of the AAs positively associated with CLas susceptibility were predominantly of the glutamate family, notably stressed-induced AAs such as arginine, GABA and proline. In contrast, AAs positively correlated with CLas tolerance/resistance were mainly of the serine family. Further analysis revealed that whereas the relative proportions of AAs positively associated with CLas susceptibility did not vary with host developmental stages, those associated with CLas tolerance/resistance increased with flush shoot maturity. Significantly, the proline-to-glycine ratio was determined to be an important discriminating factor for CLas permissivity with higher values characteristic of CLas -permissive hosts. This ratio could be exploited as a biomarker in HLB-resistance breeding programs.

  7. Organic and Non-Organic Language Disorders after Awake Brain Surgery

    Directory of Open Access Journals (Sweden)

    Elke De Witte

    2014-04-01

    Full Text Available INTRODUCTION: Awake surgery with Direct Electrical Stimulation (DES is considered the ‘gold standard’ to resect brain tumours in the language dominant hemisphere (De Witte & Mariën, 2013. Although transient language impairments are common in the immediate postoperative phase, permanent postoperative language deficits seem to be rare (Duffau, 2007. Milian et al. (2014 stated that most patients tolerate the awake procedure well and would undergo a similar procedure again. However, postoperative psychological symptoms including recurrent distressing dreams and persistent avoidance of stimuli have been recorded following awake surgery (Goebel, Nabavi, Schubert, & Mehdorn, 2010; Milian et al., 2014. To the best of our knowledge, psychogenic language disturbances have never been described after awake surgery. In general, only a handful of non-organic, psychogenic language disorders have been reported in the literature (De Letter et al., 2012. We report three patients with left brain tumours (see table 1 who presented linguistic symptoms after awake surgery that were incompatible with the lesion location, suggesting a psychogenic origin. METHODS: Neurocognitive (language, memory, executive functions investigations were carried out before, during and after awake surgery (6 weeks, 6 months postsurgery on the basis of standardised tests. Pre- and postoperative (fMRI images, DTI results and intraoperative DES findings were analysed. A selection of tasks was used to map language intraoperatively (De Witte et al., 2013. In the postoperative phase spontaneous speech and behavioural phenomena to errors were video-recorded. RESULTS: Preoperative language tests did not reveal any speech or language problems. Intraoperatively, eloquent sites were mapped and preserved enabling good language skills at the end of the awake procedure. However, assessments in the first weeks postsurgery disclosed language and behavioural symptoms that support the hypothesis of a

  8. Permissive hypercapnia and risk for brain injury and developmental impairment.

    Science.gov (United States)

    Hagen, Erika W; Sadek-Badawi, Mona; Carlton, David P; Palta, Mari

    2008-09-01

    Permissive hypercapnia is a respiratory-care strategy that is used to reduce the risk for lung injury. The goal of this study was to evaluate whether permissive hypercapnia is associated with higher risk for intraventricular hemorrhage and early childhood behavioral and functional problems than normocapnia among very low birth weight infants. Very low birth weight infants from a statewide cohort were eligible for this study when they were born at <32 weeks' gestational age and survived at least 24 hours. Infants were classified as receiving a permissive hypercapnia, normocapnia, or unclassifiable respiratory strategy during the first 24 hours after birth according to an algorithm based on Pco(2) values and respiratory-treatment decisions that were abstracted from medical charts. Intraventricular hemorrhage diagnosis was also abstracted from the medical chart. Behavioral and functional outcomes were assessed by parent interview at 2 to 3 years. Logistic regression was used to evaluate the relationship between intraventricular hemorrhage and respiratory strategy; ordinary linear regression was used to evaluate differences in behavior and function scores between children by respiratory strategy. Infants who received a permissive hypercapnia strategy were not more likely to have intraventricular hemorrhage than those with normocapnia. There were no differences in any of the behavioral or functional scores among children according to respiratory strategy. There was a significant interaction between care strategy and 1-minute Apgar score, indicating that infants with lower Apgar scores may be at higher risk for intraventricular hemorrhage with permissive hypercapnia. This study suggests that permissive hypercapnia does not increase risk for brain injury and impairment among very low birth weight children. The interaction between respiratory strategy and Apgar score is a potential worrisome exception to this conclusion. Future research should further evaluate the effect

  9. Targeting neural endophenotypes of eating disorders with non-invasive brain stimulation

    Directory of Open Access Journals (Sweden)

    Katharine A Dunlop

    2016-02-01

    Full Text Available The term eating disorders (ED encompasses a wide variety of disordered eating and compensatory behaviors, and so the term is associated with considerable clinical and phenotypic heterogeneity. This heterogeneity makes optimizing treatment techniques difficult. One class of treatments is non-invasive brain stimulation (NIBS. NIBS, including repetitive transcranial magnetic stimulation (rTMS and transcranial direct current stimulation (tDCS are accessible forms of neuromodulation that alter the cortical excitability of a target brain region. It is crucial for NIBS to be successful that the target is well selected for the patient population in question. Targets may best be selected by stepping back from conventional DSM-5 diagnostic criteria to identify neural substrates of more basic phenotypes, including behavior related rewards and punishment cognitive control, and social processes. These phenotypic dimensions have been recently laid out by the Research Domain Criteria (RDoC initiative. Consequently, this review is intended to identify potential dimensions as outlined by the RDoC and their underlying behavioral and neurobiological targets associated with ED as potential candidates for NIBS and review the available literature on rTMS and tDCS in ED. This review systematically reviews abnormal neural circuitry in ED within the RDoC framework, and also systematically reviews the available literature investigating NIBS as a treatment for ED.

  10. COST OF DISORDERS OF THE BRAIN IN SLOVENIA*

    Directory of Open Access Journals (Sweden)

    David B.Vodušek

    2008-05-01

    Full Text Available Whereas there are many publications on disorders of, for instance, heart or kidney function, there are few, if any, on brain disorders, which are traditionally viewed separately asmental, neurological or neurosurgical disorders. There are, however, marked similaritiesand shared interests between the fields and, most importantly, basic neuroscience is equally relevant for all clinical problems. The European Brain Council has analysed the burdenand the cost of brain disorders in Europe. The aim of the present text is to report data forSlovenia.Twelve different disorders (or groups of disorders of brain believed to have the highestcost (addiction, affective disorders, anxiety disorders, brain tumours, dementia, epilepsy,migraine and other headaches, multiple sclerosis, Parkinson’s disease, psychotic disorders,stroke, and trauma were analysed. Epidemiology data for Europe were collected as12-month prevalence data for disorders by country and stratified according to age,gender, and disorder severity. Because little original data were available for Slovenia,extrapolated data were used. Health economic data (representing direct medical costs,direct non-medical costs, and indirect costs being transformed into euros for the year2004 were entered into a health economic model.The total number of brain disorders in Slovenia amounted to 570,000 in 2004, and whencorrected for co-morbidity, 1/5 of the Slovenian population have a brain disorder. Inparticular, this is 39,000 alcohol dependents and illicit drug dependants, 105.000 affectivedisorders, 195,000 anxiety disorders, 178,000 migraine, etc. The total cost of all includedbrain disorders in Slovenia was estimated at 833 million euros, the most costly beingaffective disorders, dementia, and addiction. It should be mentioned that both the epidemiological data and the resulting cost are significantly underestimated for several disorders,particularly stroke. Direct health care cost mounted to 403 million

  11. Genetic Brain Disorders

    Science.gov (United States)

    A genetic brain disorder is caused by a variation or a mutation in a gene. A variation is a different form ... mutation is a change in a gene. Genetic brain disorders affect the development and function of the ...

  12. Cost of disorders of the brain in Luxembourg.

    Science.gov (United States)

    Bisdorff, A; Sobocki, P; Cloos, J M; Andrée, C; Graziano, M E

    2006-01-01

    Brain disorders (psychiatric, neurological and neurosurgical diseases) are leading causes of disease and disability. According to WHO data they cause 35% of the burden of all diseases in Europe. The present study aims to estimate the cost of defined brain disorders and adds all selected disorders to arrive at the total cost for Luxembourg. A model combining published economic and epidemiological data retrieved from the OECD (Organization for Economic Co-operation and Development) and Eurostat databases on brain disorders in Europe (EU member countries, Iceland, Norway and Switzerland) was used. We transformed and converted data for a defined period into the same currency (Euro 2004) and adjusted country specific economic data for purchasing power and relative size of economy and imputed data where no local data were available. There are an estimated 123000 people in Luxembourg currently living with a brain disorder. The total annual cost of brain disorders is estimated at Euro 500 million in 2004 or an average of Euro 1100 per inhabitant. Mental disorders constitute 62% of the total cost (excluding dementia), followed by neurological diseases (excluding dementia) 22%, neurosurgical diseases excluding herniated discs 2.2%. Direct medical expenditures (outpatient care, hospitalization, drugs) have a share of 32%, direct non-medical costs (social services, informal care, adaptation, transportation) 18% and indirect costs (sick leave, early retirement and premature death) 51%.

  13. MR spectroscopy in metabolic disorders of the brain

    International Nuclear Information System (INIS)

    Yilmaz, U.

    2017-01-01

    Metabolic disorders of the brain often present a particular challenge for the neuroradiologist, since the disorders are rare, changes on conventional MR are often non-specific and there are numerous differential diagnoses for the white substance lesions. As a complementary method to conventional brain MRI, MR spectroscopy may help to reduce the scope of the differential diagnosis. Entities with specific MR spectroscopy patterns are Canavan disease, maple syrup urine disease, nonketotic hyperglycinemia and creatine deficiency. (orig.) [de

  14. Obsessive-compulsive disorder: advances in brain imaging

    International Nuclear Information System (INIS)

    Galli, Enrique

    2000-01-01

    In the past twenty years functional brain imaging has advanced to the point of tackling the differential diagnosis, prognosis and therapeutic response in Neurology and Psychiatry. Psychiatric disorders were rendered 'functional' a century ago; however nowadays they can be seen by means of brain imaging. Functional images in positron emission tomography (PET) and single photon emission tomography (NEUROSPET) show in non-invasive fashion the state of brain functioning. PET does this assessing glucose metabolism and NEUROSPET by putting cerebral blood flow in images. Prevalence of OCD is clearly low (2 to 3%), but comorbidity with depression, psychoses, bipolar disorder and schizophrenia is high. Furthermore, it is not infrequent with autism, attention disorder, tichotillomany, borderline personality disorders, in pathological compulsive spending, sexual compulsion and in pathological gambling, in tics, and in Gilles de la Tourette disorder, NEUROSPET and PET show hypoperfusion in both frontal lobes, in their prefrontal dorsolateral aspects, in their inferior zone and premotor cortex, with hyperperfusion in the posterior cingulum and hypoperfusion in basal ganglia (caudate nucleus). Cummings states that hyperactivity of the limbic system might be involved in OCD. Thus, brain imaging in OCD is a diagnostic aid, allows us to see clinical imagenological evolution and therapeutic response and, possibly, it is useful predict therapeutic response (Au)

  15. Aging Effects on Whole-Brain Functional Connectivity in Adults Free of Cognitive and Psychiatric Disorders.

    Science.gov (United States)

    Ferreira, Luiz Kobuti; Regina, Ana Carolina Brocanello; Kovacevic, Natasa; Martin, Maria da Graça Morais; Santos, Pedro Paim; Carneiro, Camila de Godoi; Kerr, Daniel Shikanai; Amaro, Edson; McIntosh, Anthony Randal; Busatto, Geraldo F

    2016-09-01

    Aging is associated with decreased resting-state functional connectivity (RSFC) within the default mode network (DMN), but most functional imaging studies have restricted the analysis to specific brain regions or networks, a strategy not appropriate to describe system-wide changes. Moreover, few investigations have employed operational psychiatric interviewing procedures to select participants; this is an important limitation since mental disorders are prevalent and underdiagnosed and can be associated with RSFC abnormalities. In this study, resting-state fMRI was acquired from 59 adults free of cognitive and psychiatric disorders according to standardized criteria and based on extensive neuropsychological and clinical assessments. We tested for associations between age and whole-brain RSFC using Partial Least Squares, a multivariate technique. We found that normal aging is not only characterized by decreased RSFC within the DMN but also by ubiquitous increases in internetwork positive correlations and focal internetwork losses of anticorrelations (involving mainly connections between the DMN and the attentional networks). Our results reinforce the notion that the aging brain undergoes a dedifferentiation processes with loss of functional diversity. These findings advance the characterization of healthy aging effects on RSFC and highlight the importance of adopting a broad, system-wide perspective to analyze brain connectivity. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Brain monoamine oxidase B and A in human parkinsonian dopamine deficiency disorders.

    Science.gov (United States)

    Tong, Junchao; Rathitharan, Gausiha; Meyer, Jeffrey H; Furukawa, Yoshiaki; Ang, Lee-Cyn; Boileau, Isabelle; Guttman, Mark; Hornykiewicz, Oleh; Kish, Stephen J

    2017-09-01

    See Jellinger (doi:10.1093/awx190) for a scientific commentary on this article. The enzyme monoamine oxidases (B and A subtypes, encoded by MAOB and MAOA, respectively) are drug targets in the treatment of Parkinson's disease. Inhibitors of MAOB are used clinically in Parkinson's disease for symptomatic purposes whereas the potential disease-modifying effect of monoamine oxidase inhibitors is debated. As astroglial cells express high levels of MAOB, the enzyme has been proposed as a brain imaging marker of astrogliosis, a cellular process possibly involved in Parkinson's disease pathogenesis as elevation of MAOB in astrocytes might be harmful. Since brain monoamine oxidase status in Parkinson's disease is uncertain, our objective was to measure, by quantitative immunoblotting in autopsied brain homogenates, protein levels of both monoamine oxidases in three different degenerative parkinsonian disorders: Parkinson's disease (n = 11), multiple system atrophy (n = 11), and progressive supranuclear palsy (n = 16) and in matched controls (n = 16). We hypothesized that if MAOB is 'substantially' localized to astroglial cells, MAOB levels should be generally associated with standard astroglial protein measures (e.g. glial fibrillary acidic protein). MAOB levels were increased in degenerating putamen (+83%) and substantia nigra (+10%, non-significant) in multiple system atrophy; in caudate (+26%), putamen (+27%), frontal cortex (+31%) and substantia nigra (+23%) of progressive supranuclear palsy; and in frontal cortex (+33%), but not in substantia nigra of Parkinson's disease, a region we previously reported no increase in astrocyte protein markers. Although the magnitude of MAOB increase was less than those of standard astrocytic markers, significant positive correlations were observed amongst the astrocyte proteins and MAOB. Despite suggestions that MAOA (versus MAOB) is primarily responsible for metabolism of dopamine in dopamine neurons, there was no loss of the

  17. Genomic and Epigenomic Insights into Nutrition and Brain Disorders

    Directory of Open Access Journals (Sweden)

    Margaret Joy Dauncey

    2013-03-01

    Full Text Available Considerable evidence links many neuropsychiatric, neurodevelopmental and neurodegenerative disorders with multiple complex interactions between genetics and environmental factors such as nutrition. Mental health problems, autism, eating disorders, Alzheimer’s disease, schizophrenia, Parkinson’s disease and brain tumours are related to individual variability in numerous protein-coding and non-coding regions of the genome. However, genotype does not necessarily determine neurological phenotype because the epigenome modulates gene expression in response to endogenous and exogenous regulators, throughout the life-cycle. Studies using both genome-wide analysis of multiple genes and comprehensive analysis of specific genes are providing new insights into genetic and epigenetic mechanisms underlying nutrition and neuroscience. This review provides a critical evaluation of the following related areas: (1 recent advances in genomic and epigenomic technologies, and their relevance to brain disorders; (2 the emerging role of non-coding RNAs as key regulators of transcription, epigenetic processes and gene silencing; (3 novel approaches to nutrition, epigenetics and neuroscience; (4 gene-environment interactions, especially in the serotonergic system, as a paradigm of the multiple signalling pathways affected in neuropsychiatric and neurological disorders. Current and future advances in these four areas should contribute significantly to the prevention, amelioration and treatment of multiple devastating brain disorders.

  18. Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders.

    Science.gov (United States)

    Zhang, Jie; Cheng, Wei; Liu, Zhaowen; Zhang, Kai; Lei, Xu; Yao, Ye; Becker, Benjamin; Liu, Yicen; Kendrick, Keith M; Lu, Guangming; Feng, Jianfeng

    2016-08-01

    ratio of intra- to inter-community structural connectivity. Application of the mesoscale variability measure to multicentre datasets of three mental disorders and matched controls involving 1180 subjects reveals that those regions demonstrating extreme, i.e. highest/lowest variability in controls are most liable to change in mental disorders. Specifically, we draw attention to the identification of diametrically opposing patterns of variability changes between schizophrenia and attention deficit hyperactivity disorder/autism. Regions of the default-mode network demonstrate lower variability in patients with schizophrenia, but high variability in patients with autism/attention deficit hyperactivity disorder, compared with respective controls. In contrast, subcortical regions, especially the thalamus, show higher variability in schizophrenia patients, but lower variability in patients with attention deficit hyperactivity disorder. The changes in variability of these regions are also closely related to symptom scores. Our work provides insights into the dynamic organization of the resting brain and how it changes in brain disorders. The nodal variability measure may also be potentially useful as a predictor for learning and neural rehabilitation. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Basal ganglia, movement disorders and deep brain stimulation: advances made through non-human primate research.

    Science.gov (United States)

    Wichmann, Thomas; Bergman, Hagai; DeLong, Mahlon R

    2018-03-01

    Studies in non-human primates (NHPs) have led to major advances in our understanding of the function of the basal ganglia and of the pathophysiologic mechanisms of hypokinetic movement disorders such as Parkinson's disease and hyperkinetic disorders such as chorea and dystonia. Since the brains of NHPs are anatomically very close to those of humans, disease states and the effects of medical and surgical approaches, such as deep brain stimulation (DBS), can be more faithfully modeled in NHPs than in other species. According to the current model of the basal ganglia circuitry, which was strongly influenced by studies in NHPs, the basal ganglia are viewed as components of segregated networks that emanate from specific cortical areas, traverse the basal ganglia, and ventral thalamus, and return to the frontal cortex. Based on the presumed functional domains of the different cortical areas involved, these networks are designated as 'motor', 'oculomotor', 'associative' and 'limbic' circuits. The functions of these networks are strongly modulated by the release of dopamine in the striatum. Striatal dopamine release alters the activity of striatal projection neurons which, in turn, influences the (inhibitory) basal ganglia output. In parkinsonism, the loss of striatal dopamine results in the emergence of oscillatory burst patterns of firing of basal ganglia output neurons, increased synchrony of the discharge of neighboring basal ganglia neurons, and an overall increase in basal ganglia output. The relevance of these findings is supported by the demonstration, in NHP models of parkinsonism, of the antiparkinsonian effects of inactivation of the motor circuit at the level of the subthalamic nucleus, one of the major components of the basal ganglia. This finding also contributed strongly to the revival of the use of surgical interventions to treat patients with Parkinson's disease. While ablative procedures were first used for this purpose, they have now been largely

  20. [Non-pharmacological treatment of neurobehavioural disorders following severe traumatic brain injury. A commented literature review].

    Science.gov (United States)

    Fayol, P

    2003-03-01

    Neurobehavioural disorders are a major public health problem and a daily challenge for neurological rehabilitation. This review presents the state of art in the field of traumatic brain injury regarding non-pharmacological treatments of neurobehavioral disorders. Medline data base and main reference books going back for 15 years were searched. Prevention is based on information and counselling for a better coherence in the care and a better understanding of behaviour problems. Prevention of complications is based on adaptation of units and management (one-on-one care for example). Non-pharmacological treatment can be classified according to 3 approaches: (1) Behavioural approaches: with well-established procedures for each patient; (2) Holistic approaches: addressing both lesional and psychopathological as well as environmental features; (3) Psychotherapeutic approaches: either integrated to holistic programs, or adapted from classical psychotherapy, or systemic therapy. Practices trend to a convergence through a comprehensive approach: behaviour analysis and management of its neuropsychological, psychopathological and environmental components. Everybody will be able to pick out elements adaptable for his own practice.

  1. Valnoctamide, which reduces rat brain arachidonic acid turnover, is a potential non-teratogenic valproate substitute to treat bipolar disorder.

    Science.gov (United States)

    Modi, Hiren R; Ma, Kaizong; Chang, Lisa; Chen, Mei; Rapoport, Stanley I

    2017-08-01

    Valproic acid (VPA), used for treating bipolar disorder (BD), is teratogenic by inhibiting histone deacetylase. In unanaesthetized rats, chronic VPA, like other mood stabilizers, reduces arachidonic acid (AA) turnover in brain phospholipids, and inhibits AA activation to AA-CoA by recombinant acyl-CoA synthetase-4 (Acsl-4) in vitro. Valnoctamide (VCD), a non-teratogenic constitutional isomer of VPA amide, reported effective in BD, also inhibits recombinant Acsl-4 in vitro. VCD like VPA will reduce brain AA turnover in unanaesthetized rats. A therapeutically relevant (50mg/kg i.p.) dose of VCD or vehicle was administered daily for 30 days to male rats. AA turnover and related parameters were determined using our kinetic model, following intravenous [1- 14 C]AA in unanaesthetized rats for 10min, and measuring labeled and unlabeled lipids in plasma and high-energy microwaved brain. VCD, compared with vehicle, increased λ, the ratio of brain AA-CoA to unesterified plasma AA specific activities; and decreased turnover of AA in individual and total brain phospholipids. VCD's ability like VPA to reduce rat brain AA turnover and inhibit recombinant Acsl-4, and its efficacy in BD, suggest that VCD be further considered as a non-teratogenic VPA substitute for treating BD. Published by Elsevier B.V.

  2. Introduction to the Special Issue on Clinical Neuropsychology of Movement Disorders.

    Science.gov (United States)

    Tröster, Alexander I

    2017-11-01

    The special issue on the clinical neuropsychology of movement disorders provides an overview for the non-subspecialist clinical neuropsychologist and other clinical neuroscientists of the neuropsychological features, assessment and treatment of Parkinson's disease and Lewy body dementias, atypical parkinsonian disorders (corticobasal syndrome, progressive supranuclear palsy, and multiple system atrophy), Huntington's disease, dystonia, and amyotrophic lateral sclerosis. Additionally, articles provide overviews of neuropsychological and ethical issues related to deep brain stimulation and a discussion of non-pharamcologic and non-invasive treatment of cognitive dysfunction in Parkinson's disease. A search of PubMed using neuropsycholog* and parkinson* as search terms indicates that the number of articles dealing with neuropsychology of parkinsonian disorders has more than doubled in each of the past three decades (1990-99:269 entries, 2000-09:575 entries, 2010-17:967 entries). This rapid growth of research makes a special issue on the topic very timely. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. The size, burden and cost of disorders of the brain in the UK

    Science.gov (United States)

    Haddad, Peter M; Carpenter, Lewis; Gannon, Brenda; Sharpe, Rachel; Young, Allan H; Joyce, Eileen; Rowe, James; Wellsted, David; Nutt, David J; Sahakian, Barbara J

    2013-01-01

    Aim: The aim of this paper is to increase awareness of the prevalence and cost of psychiatric and neurological disorders (brain disorders) in the UK. Method: UK data for 18 brain disorders were extracted from a systematic review of European epidemiological data and prevalence rates and the costs of each disorder were summarized (2010 values). Results: There were approximately 45 million cases of brain disorders in the UK, with a cost of €134 billion per annum. The most prevalent were headache, anxiety disorders, sleep disorders, mood disorders and somatoform disorders. However, the five most costly disorders (€ million) were: dementia: €22,164; psychotic disorders: €16,717; mood disorders: €19,238; addiction: €11,719; anxiety disorders: €11,687. Apart from psychosis, these five disorders ranked amongst those with the lowest direct medical expenditure per subject (<€3000). The approximate breakdown of costs was: 50% indirect costs, 25% direct non-medical and 25% direct healthcare costs. Discussion: The prevalence and cost of UK brain disorders is likely to increase given the ageing population. Translational neurosciences research has the potential to develop more effective treatments but is underfunded. Addressing the clinical and economic challenges posed by brain disorders requires a coordinated effort at an EU and national level to transform the current scientific, healthcare and educational agenda. PMID:23884863

  4. [Non-medical applications for brain MRI: Ethical considerations].

    Science.gov (United States)

    Sarrazin, S; Fagot-Largeault, A; Leboyer, M; Houenou, J

    2015-04-01

    The recent neuroimaging techniques offer the possibility to better understand complex cognitive processes that are involved in mental disorders and thus have become cornerstone tools for research in psychiatry. The performances of functional magnetic resonance imaging are not limited to medical research and are used in non-medical fields. These recent applications represent new challenges for bioethics. In this article we aim at discussing the new ethical issues raised by the applications of the latest neuroimaging technologies to non-medical fields. We included a selection of peer-reviewed English medical articles after a search on NCBI Pubmed database and Google scholar from 2000 to 2013. We screened bibliographical tables for supplementary references. Websites of governmental French institutions implicated in ethical questions were also screened for governmental reports. Findings of brain areas supporting emotional responses and regulation have been used for marketing research, also called neuromarketing. The discovery of different brain activation patterns in antisocial disorder has led to changes in forensic psychiatry with the use of imaging techniques with unproven validity. Automated classification algorithms and multivariate statistical analyses of brain images have been applied to brain-reading techniques, aiming at predicting unconscious neural processes in humans. We finally report the current position of the French legislation recently revised and discuss the technical limits of such techniques. In the near future, brain imaging could find clinical applications in psychiatry as diagnostic or predictive tools. However, the latest advances in brain imaging are also used in non-scientific fields raising key ethical questions. Involvement of neuroscientists, psychiatrists, physicians but also of citizens in neuroethics discussions is crucial to challenge the risk of unregulated uses of brain imaging. Copyright © 2014 L’Encéphale, Paris. Published by

  5. [Schizophrenia: neurodevelopmental disorder or degenerative brain process?].

    Science.gov (United States)

    Gross, G; Huber, G

    2008-05-01

    of an irreversible pure dynamic-cognitive deficiency can be correlated with distinct brain imaging changes. There are associations between brain imaging and psychopathological findings and also between the progression of neuroradiological and psychopathological changes. The investigation of the long-term course of schizophrenia with progression to different residual syndromes has shown some hints that schizophrenia certainly is not a neurodegenerative process in the usual sense, but may be a special neuroregressive illness in the majority of cases. Data, relevant for this assumption are, that the disorder in 78% shows no full remitting courses; that the progression concerns only 5 until 10 years after onset; that chronic defect psychoses can remit still after decades of course to non-psychotic pure deficiency syndromes; that some cases (15%) can progress even after years and decades of remitting course and, finally, that altogether no correlation exists between the duration of course and outcome. The data prove that schizophrenia is not an illness progressing continuously over the whole lifelong course in the sense of a primary neurodegenerative process, but rather a disorder, progressing transiently in brief stages and afterwards coming to a standstill. That schizophrenia is not neurodegenerative in the traditional sense, does not mean that it is a ND disorder. This applies only to a small subgroup, while the assumption of a non-ND subgroup with an only transitory, in short periods advancing special regressive brain process seems to be plausible. There are analogies to organic brain disorders . Hence ensues the interpretation of the brain findings in a subgroup of schizophrenia as "premature, locally accentuated involution of advanced age". The argument that at time of the first psychotic episode the brain changes already have developed without progressing in the further course, can be refuted by neuropsychiatric observations in brain atrophic processes and the

  6. The aging brain and neurodegenerative disorders

    International Nuclear Information System (INIS)

    Braffman, B.H.; Trojanowski, J.Q.; Atlas, S.W.

    1991-01-01

    Both the aging brain and neurodegenerative disorders are characterized by a lack of vital endurance of affected neurons resulting in their premature death. Neuronal shrinkage or atrophy and death are normal and inevitable aspects of normal or successful aging; this is unexpected, excessive, and premature in neurodegenerative disorders. These histologic changes result in the neuroimaging findings of focal and/or diffuse atrophy with consequent enlargement of cerebrospinal fluid (CSF) spaces. The aging brain and neurodegenerative disorders share other magnetic resonance (MR) changes, i.e., markedly hypointense extrapyramidal nuclei and hyperintense white matter foci. The sequelae of senescent vascular changes result in additional characteristic features of the aging brain. This paper presents the MR and neuropathologic manifestations of both the normal aging brain and the brain affected by neurodegenerative disorders

  7. Disorders of brain development and phakomatosis

    International Nuclear Information System (INIS)

    Merhemis, Z.

    2006-01-01

    Full text: Disorders of brain development and phakomatosis are resulting from disturbed embryonic-foetal development One third of all major embryological anomalies involve CNS, and over 2000 different anomalies have been described. Anomalies of the brain often cause foetal and neonatal death, and mental and physical retardation in pediatric group. The majority of disorders of brain development and phakomatosis are idiopathic, and most of them are not hereditary or familial. Ultrasonography plays the important role in screening foetal and neonatal brain, but after closure of fontanels it is difficult to find the acoustic window. CT has limited contrast resolution, and disadvantage exposing infant to ionizing radiation. It is helpful to demonstrate the presence of calcifications. MR imaging has proved to be a diagnostic tool of major importance in children with disorders of brain development and phakomatosis. The excellent grey/white matter differentiation and multiplanar imaging capabilities of MR allow a systematic analysis of the brain. Disorders occurring in the first 4 weeks of gestation: Disorders of neural tube closure; Chiari malformation; Cephaloceles; Dermoid/Epidermoid. Disorders occurring between 5 and 10 weeks of gestation: Holoprosencephaly; Septo-optic dysplasia; Diencephalic cyst; Dandy Walker complex; Mega cistern magna. Disorders occurring between 2 and 5 months of gestation: Disorders of sulcation and cellular migration; Lissencephaly; Pachigyria; Schizencephaly; Heterotopias; Megaencephaly; Polymicrogyria; Porencephaly; Arachnoid cyst. Corpus callosum anomalies. Phakomatosis: Neurocutaneous Syndromes Neurofibromatosis Type 1 and 2; Tuberous Sclerosis; von Hippel-Lindau disease; Studge-Weber sy; Osler-Weber- Rendu sy

  8. Cost of disorders of the brain in Europe 2010.

    Science.gov (United States)

    Gustavsson, Anders; Svensson, Mikael; Jacobi, Frank; Allgulander, Christer; Alonso, Jordi; Beghi, Ettore; Dodel, Richard; Ekman, Mattias; Faravelli, Carlo; Fratiglioni, Laura; Gannon, Brenda; Jones, David Hilton; Jennum, Poul; Jordanova, Albena; Jönsson, Linus; Karampampa, Korinna; Knapp, Martin; Kobelt, Gisela; Kurth, Tobias; Lieb, Roselind; Linde, Mattias; Ljungcrantz, Christina; Maercker, Andreas; Melin, Beatrice; Moscarelli, Massimo; Musayev, Amir; Norwood, Fiona; Preisig, Martin; Pugliatti, Maura; Rehm, Juergen; Salvador-Carulla, Luis; Schlehofer, Brigitte; Simon, Roland; Steinhausen, Hans-Christoph; Stovner, Lars Jacob; Vallat, Jean-Michel; Van den Bergh, Peter; den Bergh, Peter Van; van Os, Jim; Vos, Pieter; Xu, Weili; Wittchen, Hans-Ulrich; Jönsson, Bengt; Olesen, Jes

    2011-10-01

    sclerosis, neuromuscular disorders, Parkinson's disease, personality disorders, psychotic disorders, sleep disorders, somatoform disorders, stroke, and traumatic brain injury. Epidemiologic panels were charged to complete the literature review for each disorder in order to estimate the 12-month prevalence, and health economic panels were charged to estimate best cost-estimates. A cost model was developed to combine the epidemiologic and economic data and estimate the total cost of each disorder in each of 30 European countries (EU27+Iceland, Norway and Switzerland). The cost model was populated with national statistics from Eurostat to adjust all costs to 2010 values, converting all local currencies to Euro, imputing costs for countries where no data were available, and aggregating country estimates to purchasing power parity adjusted estimates for the total cost of disorders of the brain in Europe 2010. The total cost of disorders of the brain was estimated at €798 billion in 2010. Direct costs constitute the majority of costs (37% direct healthcare costs and 23% direct non-medical costs) whereas the remaining 40% were indirect costs associated with patients' production losses. On average, the estimated cost per person with a disorder of the brain in Europe ranged between €285 for headache and €30,000 for neuromuscular disorders. The European per capita cost of disorders of the brain was €1550 on average but varied by country. The cost (in billion €PPP 2010) of the disorders of the brain included in this study was as follows: addiction: €65.7; anxiety disorders: €74.4; brain tumor: €5.2; child/adolescent disorders: €21.3; dementia: €105.2; eating disorders: €0.8; epilepsy: €13.8; headache: €43.5; mental retardation: €43.3; mood disorders: €113.4; multiple sclerosis: €14.6; neuromuscular disorders: €7.7; Parkinson's disease: €13.9; personality disorders: €27.3; psychotic disorders: €93.9; sleep disorders: €35.4; somatoform disorder

  9. Sleep disorders of Whipple's disease of the brain.

    Science.gov (United States)

    Panegyres, P K; Goh, J

    2015-02-01

    To understand the effects of Whipple's disease (WD) of the brain on sleep function. Clinical and polysomnographic studies of two patients with severe disruption of sleep due to WD: a 48-year-old female with primary WD of the brain and a 41-year-old male with secondary WD of the brain. The patient with primary WD had hypersomnolence with severe obstructive sleep apnoea, reduced sleep efficiency, frequent waking and sleep fragmentation. The patient with secondary WD was also hypersomnolent with oculomastictory myorhythmia. He was shown to have severe sleep initiation insomnia with poor sleep efficiency, severe obstructive sleep apnoea/hypopnoea and oculomasticatory myorhythmia at sleep-wake transitions. WD of the brain may affect sleep biology in its primary and secondary forms leading to hypersomnolence from obstructive sleep apnoea, sleep fragmentation, reduced sleep efficiency, sleep initiation insomnia and intrusive oculomasticatory myorhythmia. © The Author 2014. Published by Oxford University Press on behalf of the Association of Physicians. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Detection of RNA in the Plasma of Patients with Sporadic Creutzfeldt–Jakob Disease, Gerstmann–Straüssler Syndrome and Other Non-Transmissible Spongiform Encephalopathy Brain Disorders

    Directory of Open Access Journals (Sweden)

    Kazuo Tsukui

    2010-01-01

    Full Text Available The infectious agent of transmissible spongiform encephalopathy (TSE was assumed to be the aggregate of abnormal prion protein isoform (PrPsc. We observed that lowering the pH of 3% SDS-inoculated plasma or brain homogenate after PK digestion to 4.5 (acidic SDS condition enabled to precipitate proteinase K-resistant prion protein (PrPres in plasma as well as PrPres in the brain with synthetic poly-A RNA as affinity aggregate. Therefore, we determined if RNA molecules could be used for discriminating TSE patients from healthy individuals. We also examined the plasma of patients with classical Creutzfeldt–Jakob disease (CJD and other brain disorders who were not diagnosed with TSE. The results indicated that RNA approximately 1.5–2.0 kb in length was commonly observed in the plasma of patients with brain disorders but was not detected in the plasma of healthy volunteers. Enhanced expression of RNA and its protection from endogenous nucleases might occur in the former group of patients. Moreover, we speculate that the non-transmissible neuronal disorders overlap with prion diseases.

  11. Neurocomputational models of brain disorders

    NARCIS (Netherlands)

    Cutsuridis, Vassilis; Heida, Tjitske; Duch, Wlodek; Doya, Kenji

    2011-01-01

    Recent decades have witnessed dramatic accumulation of knowledge about the genetic, molecular, pharmacological, neurophysiological, anatomical, imaging and psychological characteristics of brain disorders. Despite these advances, however, experimental brain science has offered very little insight

  12. Prenatal irradiation and developmental disorders of the brain

    International Nuclear Information System (INIS)

    Kameyama, Yoshiro

    1987-01-01

    The radiation sensitivity of the brain of a growing fetus is higher than that of other organs and tissues. Of the various organs in the human body, the brain has the most complicated structure. The major features of developmental disorders of the brain, which are produced rather easily by external causes, are: (a) the sensitive period for developmental disorders is long, (b) undifferentiated nerve cells are sensitive to external causes and (c) such disorders leads to irreversible functional failures after birth. The malformation of the brain and its relations with the sensitivity are briefly described. Experiments with prenatal animals have shown that major developmental disorders of brain tissue include death of undifferentiated cells, lack of constituent neurons and disturbance in structure of the cortex, and that typical developmental abnormalities include dysgenetic hydrocephaly, microcephalia, etc. Teratological features of histogenetic disorders of the brain are then briefly outlined. Various experimental results on these and other disorders caused by radiations are presented and discussed. Data on fetuses exposed to radiations at Hiroshima and Nagasaki are also given and discussed. The last section of the report deals with risk evaluation. (Nogami, K.)

  13. Cost of disorders of the brain in Denmark

    DEFF Research Database (Denmark)

    Olesen, J.; Sobocki, P.; Truelsen, T.

    2008-01-01

    The cost of brain disorders in Denmark is unknown and such information is important to decision makers. The aims of the study were to estimate the total number of subjects with brain diseases, and the associated direct and indirect expenses in Denmark. This was part of a larger pan-European study...... drug consumption was used for treatment of brain diseases. Expenses to brain diseases constituted 3% of the gross domestic product. Brain disorders are very prevalent in Denmark and they cause high societal and personal cost Udgivelsesdato: 2008......The cost of brain disorders in Denmark is unknown and such information is important to decision makers. The aims of the study were to estimate the total number of subjects with brain diseases, and the associated direct and indirect expenses in Denmark. This was part of a larger pan-European study......,000 and 340,000 patients, respectively. The total expenses for all selected brain diseases were 37.3 billion DKR. Affective disorders, dependency, dementia and stroke were the most costly diseases. An estimated 12% of all direct costs in the Danish health system were spent on brain diseases; 9% of the total...

  14. Maternal Brain-Reactive Antibodies and Autism Spectrum Disorder

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0369 TITLE: Maternal Brain-Reactive Antibodies and Autism Spectrum Disorder PRINCIPAL INVESTIGATOR: Betty Diamond...Sep 2015 4. TITLE AND SUBTITLE Maternal Brain-Reactive Antibodies and Autism Spectrum 5a. CONTRACT NUMBER Disorder 5b. GRANT NUMBER W81XWH-14-1...to approximately 5% of cases of ASD. 15. SUBJECT TERMS Fetal brain; Autism spectrum disorder ; antibody; B cells; Caspr2 16. SECURITY CLASSIFICATION

  15. Moving the brain: Neuroimaging motivational changes of deep brain stimulation in obsessive-compulsive disorder

    NARCIS (Netherlands)

    Figee, M.

    2013-01-01

    Deep brain stimulation (DBS) is a neurosurgical technique that involves the implantation of electrodes in the brain. DBS enables electrical modulation of abnormal brain activity for treatment of neuropsychiatric disorders such as obsessive-compulsive disorder (OCD). Mrs. D. has been suffering from

  16. Obsessive-compulsive disorder: advances in brain imaging; Trastornos obsesivos compulsivos (TOC): avances imagenologicos

    Energy Technology Data Exchange (ETDEWEB)

    Galli, Enrique [Departamento de Psiquiatria de la Univeversidad Peruana Cayetano Heredia, San Isidro, Lima (Peru)

    2000-07-01

    In the past twenty years functional brain imaging has advanced to the point of tackling the differential diagnosis, prognosis and therapeutic response in Neurology and Psychiatry. Psychiatric disorders were rendered 'functional' a century ago; however nowadays they can be seen by means of brain imaging. Functional images in positron emission tomography (PET) and single photon emission tomography (NEUROSPET) show in non-invasive fashion the state of brain functioning. PET does this assessing glucose metabolism and NEUROSPET by putting cerebral blood flow in images. Prevalence of OCD is clearly low (2 to 3%), but comorbidity with depression, psychoses, bipolar disorder and schizophrenia is high. Furthermore, it is not infrequent with autism, attention disorder, tichotillomany, borderline personality disorders, in pathological compulsive spending, sexual compulsion and in pathological gambling, in tics, and in Gilles de la Tourette disorder, NEUROSPET and PET show hypoperfusion in both frontal lobes, in their prefrontal dorsolateral aspects, in their inferior zone and premotor cortex, with hyperperfusion in the posterior cingulum and hypoperfusion in basal ganglia (caudate nucleus). Cummings states that hyperactivity of the limbic system might be involved in OCD. Thus, brain imaging in OCD is a diagnostic aid, allows us to see clinical imagenological evolution and therapeutic response and, possibly, it is useful predict therapeutic response (Au)

  17. Combining non-pharmacological treatments with pharmacotherapies for neurological disorders: a unique interface of the brain, drug-device, and intellectual property.

    Science.gov (United States)

    Bulaj, Grzegorz

    2014-01-01

    Mobile medical applications (mHealth), music, and video games are being developed and tested for their ability to improve pharmacotherapy outcomes and medication adherence. Pleiotropic mechanism of music and gamification engages an intrinsic motivation and the brain reward system, supporting therapies in patients with neurological disorders, including neuropathic pain, depression, anxiety, or neurodegenerative disorders. Based on accumulating results from clinical trials, an innovative combination treatment of epilepsy seizures, comorbidities, and the medication non-adherence can be designed, consisting of antiepileptic drugs and disease self-management software delivering clinically beneficial music. Since creative elements and art expressed in games, music, and software are copyrighted, therefore clinical and regulatory challenges in developing copyrighted, drug-device therapies may be offset by a value proposition of the exclusivity due to the patent-independent protection, which can last for over 70 years. Taken together, development of copyrighted non-pharmacological treatments (e-therapies), and their combinations with pharmacotherapies, offer incentives to chronically ill patients and outcome-driven health care industries.

  18. Combining Non-pharmacological Treatments with Pharmacotherapies for Neurological Disorders: a Unique Interface of the Brain, Drug-Device and Intellectual Property

    Directory of Open Access Journals (Sweden)

    Grzegorz eBulaj

    2014-07-01

    Full Text Available Mobile medical applications (mHealth, music and video games are being developed and tested for their ability to improve pharmacotherapy outcomes and medication adherence. Pleiotropic mechanism of music and gamification engage an intrinsic motivation and the brain reward system, supporting therapies in patients with neurological disorders, including neuropathic pain, depression, anxiety, or neurodegenerative disorders. Based on accumulating results from clinical trials, an innovative combination treatment of epilepsy seizures, comorbidities and the medication non-adherence can be designed, consisting of antiepileptic drugs and disease self-management software delivering clinically beneficial music. Since creative elements and art expressed in games, music and software are copyrighted, therefore clinical and regulatory challenges in developing copyrighted, drug-device therapies may be offset by a value proposition of the exclusivity due to the patent-independent protection which can last for over 70 years. Taken together, development of copyrighted non-pharmacological treatments (e-therapies, and their combinations with pharmacotherapies, offers incentives to chronically-ill patients and outcome-driven health care industries.

  19. Combining Non-Pharmacological Treatments with Pharmacotherapies for Neurological Disorders: A Unique Interface of the Brain, Drug–Device, and Intellectual Property

    Science.gov (United States)

    Bulaj, Grzegorz

    2014-01-01

    Mobile medical applications (mHealth), music, and video games are being developed and tested for their ability to improve pharmacotherapy outcomes and medication adherence. Pleiotropic mechanism of music and gamification engages an intrinsic motivation and the brain reward system, supporting therapies in patients with neurological disorders, including neuropathic pain, depression, anxiety, or neurodegenerative disorders. Based on accumulating results from clinical trials, an innovative combination treatment of epilepsy seizures, comorbidities, and the medication non-adherence can be designed, consisting of antiepileptic drugs and disease self-management software delivering clinically beneficial music. Since creative elements and art expressed in games, music, and software are copyrighted, therefore clinical and regulatory challenges in developing copyrighted, drug–device therapies may be offset by a value proposition of the exclusivity due to the patent–independent protection, which can last for over 70 years. Taken together, development of copyrighted non-pharmacological treatments (e-therapies), and their combinations with pharmacotherapies, offer incentives to chronically ill patients and outcome-driven health care industries. PMID:25071711

  20. Storm in My Brain: Kids and Mood Disorders (Bipolar Disorder and Depression)

    Science.gov (United States)

    ... Brain Kids and Mood Disorders (Bipolar Disorder and Depression) What is a mood disorder? Everyone feels sad, ... one part of bipolar disorder, also called manic depression. In bipolar disorder, moods change between mania (excited ...

  1. BrainAGE score indicates accelerated brain aging in schizophrenia, but not bipolar disorder.

    Science.gov (United States)

    Nenadić, Igor; Dietzek, Maren; Langbein, Kerstin; Sauer, Heinrich; Gaser, Christian

    2017-08-30

    BrainAGE (brain age gap estimation) is a novel morphometric parameter providing a univariate score derived from multivariate voxel-wise analyses. It uses a machine learning approach and can be used to analyse deviation from physiological developmental or aging-related trajectories. Using structural MRI data and BrainAGE quantification of acceleration or deceleration of in individual aging, we analysed data from 45 schizophrenia patients, 22 bipolar I disorder patients (mostly with previous psychotic symptoms / episodes), and 70 healthy controls. We found significantly higher BrainAGE scores in schizophrenia, but not bipolar disorder patients. Our findings indicate significantly accelerated brain structural aging in schizophrenia. This suggests, that despite the conceptualisation of schizophrenia as a neurodevelopmental disorder, there might be an additional progressive pathogenic component. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  2. Urea cycle disorders: brain MRI and neurological outcome.

    Science.gov (United States)

    Bireley, William R; Van Hove, Johan L K; Gallagher, Renata C; Fenton, Laura Z

    2012-04-01

    Urea cycle disorders encompass several enzyme deficiencies that can result in cerebral damage, with a wide clinical spectrum from asymptomatic to severe. The goal of this study was to correlate brain MRI abnormalities in urea cycle disorders with clinical neurological sequelae to evaluate whether MRI abnormalities can assist in guiding difficult treatment decisions. We performed a retrospective chart review of patients with urea cycle disorders and symptomatic hyperammonemia. Brain MRI images were reviewed for abnormalities that correlated with severity of clinical neurological sequelae. Our case series comprises six urea cycle disorder patients, five with ornithine transcarbamylase deficiency and one with citrullinemia type 1. The observed trend in distribution of brain MRI abnormalities as the severity of neurological sequelae increased was the peri-insular region first, extending into the frontal, parietal, temporal and, finally, the occipital lobes. There was thalamic restricted diffusion in three children with prolonged hyperammonemia. Prior to death, this site is typically reported to be spared in urea cycle disorders. The pattern and extent of brain MRI abnormalities correlate with clinical neurological outcome in our case series. This suggests that brain MRI abnormalities may assist in determining prognosis and helping clinicians with subsequent treatment decisions.

  3. Urea cycle disorders: brain MRI and neurological outcome

    Energy Technology Data Exchange (ETDEWEB)

    Bireley, William R. [University of Colorado, Department of Radiology, Aurora, CO (United States); Van Hove, Johan L.K. [University of Colorado, Department of Genetics and Inherited Metabolic Diseases, Aurora, CO (United States); Gallagher, Renata C. [Children' s Hospital Colorado, Department of Genetics and Inherited Metabolic Diseases, Aurora, CO (United States); Fenton, Laura Z. [Children' s Hospital Colorado, Department of Pediatric Radiology, Aurora, CO (United States)

    2012-04-15

    Urea cycle disorders encompass several enzyme deficiencies that can result in cerebral damage, with a wide clinical spectrum from asymptomatic to severe. The goal of this study was to correlate brain MRI abnormalities in urea cycle disorders with clinical neurological sequelae to evaluate whether MRI abnormalities can assist in guiding difficult treatment decisions. We performed a retrospective chart review of patients with urea cycle disorders and symptomatic hyperammonemia. Brain MRI images were reviewed for abnormalities that correlated with severity of clinical neurological sequelae. Our case series comprises six urea cycle disorder patients, five with ornithine transcarbamylase deficiency and one with citrullinemia type 1. The observed trend in distribution of brain MRI abnormalities as the severity of neurological sequelae increased was the peri-insular region first, extending into the frontal, parietal, temporal and, finally, the occipital lobes. There was thalamic restricted diffusion in three children with prolonged hyperammonemia. Prior to death, this site is typically reported to be spared in urea cycle disorders. The pattern and extent of brain MRI abnormalities correlate with clinical neurological outcome in our case series. This suggests that brain MRI abnormalities may assist in determining prognosis and helping clinicians with subsequent treatment decisions. (orig.)

  4. Urea cycle disorders: brain MRI and neurological outcome

    International Nuclear Information System (INIS)

    Bireley, William R.; Van Hove, Johan L.K.; Gallagher, Renata C.; Fenton, Laura Z.

    2012-01-01

    Urea cycle disorders encompass several enzyme deficiencies that can result in cerebral damage, with a wide clinical spectrum from asymptomatic to severe. The goal of this study was to correlate brain MRI abnormalities in urea cycle disorders with clinical neurological sequelae to evaluate whether MRI abnormalities can assist in guiding difficult treatment decisions. We performed a retrospective chart review of patients with urea cycle disorders and symptomatic hyperammonemia. Brain MRI images were reviewed for abnormalities that correlated with severity of clinical neurological sequelae. Our case series comprises six urea cycle disorder patients, five with ornithine transcarbamylase deficiency and one with citrullinemia type 1. The observed trend in distribution of brain MRI abnormalities as the severity of neurological sequelae increased was the peri-insular region first, extending into the frontal, parietal, temporal and, finally, the occipital lobes. There was thalamic restricted diffusion in three children with prolonged hyperammonemia. Prior to death, this site is typically reported to be spared in urea cycle disorders. The pattern and extent of brain MRI abnormalities correlate with clinical neurological outcome in our case series. This suggests that brain MRI abnormalities may assist in determining prognosis and helping clinicians with subsequent treatment decisions. (orig.)

  5. The economic cost of brain disorders in Europe

    DEFF Research Database (Denmark)

    Olesen, J; Gustavsson, A; Svensson, M

    2012-01-01

    In 2005, we presented for the first time overall estimates of annual costs for brain disorders (mental and neurologic disorders) in Europe. This new report presents updated, more accurate, and comprehensive 2010 estimates for 30 European countries.......In 2005, we presented for the first time overall estimates of annual costs for brain disorders (mental and neurologic disorders) in Europe. This new report presents updated, more accurate, and comprehensive 2010 estimates for 30 European countries....

  6. Declarative and Non-declarative Memory Consolidation in Children with Sleep Disorder.

    Science.gov (United States)

    Csábi, Eszter; Benedek, Pálma; Janacsek, Karolina; Zavecz, Zsófia; Katona, Gábor; Nemeth, Dezso

    2015-01-01

    Healthy sleep is essential in children's cognitive, behavioral, and emotional development. However, remarkably little is known about the influence of sleep disorders on different memory processes in childhood. Such data could give us a deeper insight into the effect of sleep on the developing brain and memory functions and how the relationship between sleep and memory changes from childhood to adulthood. In the present study we examined the effect of sleep disorder on declarative and non-declarative memory consolidation by testing children with sleep-disordered breathing (SDB) which is characterized by disrupted sleep structure. We used a story recall task to measure declarative memory and Alternating Serial Reaction time (ASRT) task to assess non-declarative memory. This task enables us to measure two aspects of non-declarative memory, namely general motor skill learning and sequence-specific learning. There were two sessions: a learning phase and a testing phase, separated by a 12 h offline period with sleep. Our data showed that children with SDB exhibited a generally lower declarative memory performance both in the learning and testing phase; however, both the SDB and control groups exhibited retention of the previously recalled items after the offline period. Here we showed intact non-declarative consolidation in SDB group in both sequence-specific and general motor skill. These findings suggest that sleep disorders in childhood have a differential effect on different memory processes (online vs. offline) and give us insight into how sleep disturbances affects developing brain.

  7. Brain disorders and the biological role of music.

    Science.gov (United States)

    Clark, Camilla N; Downey, Laura E; Warren, Jason D

    2015-03-01

    Despite its evident universality and high social value, the ultimate biological role of music and its connection to brain disorders remain poorly understood. Recent findings from basic neuroscience have shed fresh light on these old problems. New insights provided by clinical neuroscience concerning the effects of brain disorders promise to be particularly valuable in uncovering the underlying cognitive and neural architecture of music and for assessing candidate accounts of the biological role of music. Here we advance a new model of the biological role of music in human evolution and the link to brain disorders, drawing on diverse lines of evidence derived from comparative ethology, cognitive neuropsychology and neuroimaging studies in the normal and the disordered brain. We propose that music evolved from the call signals of our hominid ancestors as a means mentally to rehearse and predict potentially costly, affectively laden social routines in surrogate, coded, low-cost form: essentially, a mechanism for transforming emotional mental states efficiently and adaptively into social signals. This biological role of music has its legacy today in the disordered processing of music and mental states that characterizes certain developmental and acquired clinical syndromes of brain network disintegration. © The Author (2014). Published by Oxford University Press.

  8. Devastating metabolic brain disorders of newborns and young infants.

    Science.gov (United States)

    Yoon, Hyun Jung; Kim, Ji Hye; Jeon, Tae Yeon; Yoo, So-Young; Eo, Hong

    2014-01-01

    Metabolic disorders of the brain that manifest in the neonatal or early infantile period are usually associated with acute and severe illness and are thus referred to as devastating metabolic disorders. Most of these disorders may be classified as organic acid disorders, amino acid metabolism disorders, primary lactic acidosis, or fatty acid oxidation disorders. Each disorder has distinctive clinical, biochemical, and radiologic features. Early diagnosis is important both for prompt treatment to prevent death or serious sequelae and for genetic counseling. However, diagnosis is often challenging because many findings overlap and may mimic those of more common neonatal conditions, such as hypoxic-ischemic encephalopathy and infection. Ultrasonography (US) may be an initial screening method for the neonatal brain, and magnetic resonance (MR) imaging is the modality of choice for evaluating metabolic brain disorders. Although nonspecific imaging findings are common in early-onset metabolic disorders, characteristic patterns of brain involvement have been described for several disorders. In addition, diffusion-weighted images may be used to characterize edema during an acute episode of encephalopathy, and MR spectroscopy depicts changes in metabolites that may help diagnose metabolic disorders and assess response to treatment. Imaging findings, including those of advanced MR imaging techniques, must be closely reviewed. If one of these rare disorders is suspected, the appropriate biochemical test or analysis of the specific gene should be performed to confirm the diagnosis. ©RSNA, 2014.

  9. Visual field examination in children with brain disorders

    NARCIS (Netherlands)

    Koenraads, Y

    2016-01-01

    The aim of this thesis is to gain more insight in the diagnostic and prognostic implications of visual field (VF) examination in children with brain disorders. Several aspects of VF examination in children with brain disorders were evaluated: All VF examinations that were performed with the

  10. Right brain, left brain in depressive disorders: Clinical and theoretical implications of behavioral, electrophysiological and neuroimaging findings.

    Science.gov (United States)

    Bruder, Gerard E; Stewart, Jonathan W; McGrath, Patrick J

    2017-07-01

    The right and left side of the brain are asymmetric in anatomy and function. We review electrophysiological (EEG and event-related potential), behavioral (dichotic and visual perceptual asymmetry), and neuroimaging (PET, MRI, NIRS) evidence of right-left asymmetry in depressive disorders. Recent electrophysiological and fMRI studies of emotional processing have provided new evidence of altered laterality in depressive disorders. EEG alpha asymmetry and neuroimaging findings at rest and during cognitive or emotional tasks are consistent with reduced left prefrontal activity in depressed patients, which may impair downregulation of amygdala response to negative emotional information. Dichotic listening and visual hemifield findings for non-verbal or emotional processing have revealed abnormal perceptual asymmetry in depressive disorders, and electrophysiological findings have shown reduced right-lateralized responsivity to emotional stimuli in occipitotemporal or parietotemporal cortex. We discuss models of neural networks underlying these alterations. Of clinical relevance, individual differences among depressed patients on measures of right-left brain function are related to diagnostic subtype of depression, comorbidity with anxiety disorders, and clinical response to antidepressants or cognitive behavioral therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Declarative and non-declarative memory consolidation in children with sleep disorder

    Directory of Open Access Journals (Sweden)

    Eszter eCsabi

    2016-01-01

    Full Text Available Healthy sleep is essential in children’s cognitive, behavioral, and emotional development. However, remarkably little is known about the influence of sleep disorders on different memory processes in childhood. Such data could give us a deeper insight into the effect of sleep on the developing brain and memory functions and how the relationship between sleep and memory changes from childhood to adulthood. In the present study we examined the effect of sleep disorder on declarative and non-declarative memory consolidation by testing children with sleep-disordered breathing (SDB which is characterized by disrupted sleep structure. We used a story recall task to measure declarative memory and Alternating Serial Reaction Time (ASRT task to assess non-declarative memory. This task enables us to measure two aspects of non-declarative memory, namely general motor skill learning and sequence-specific learning. There were two sessions: a learning phase and a testing phase, separated by a 12-hour offline period with sleep. Our data showed that children with SDB exhibited a generally lower declarative memory performance both in the learning and testing phase; however, both the SDB and control groups exhibited retention of the previously recalled items after the offline period. Here we showed intact non-declarative consolidation in SDB group in both sequence-specific and general motor skill. These findings suggest that sleep disorders in childhood have a differential effect on different memory processes (online vs. offline and give us insight into how sleep disturbances affects developing brain.

  12. Analysis of shared heritability in common disorders of the brain.

    Science.gov (United States)

    Anttila, Verneri; Bulik-Sullivan, Brendan; Finucane, Hilary K; Walters, Raymond K; Bras, Jose; Duncan, Laramie; Escott-Price, Valentina; Falcone, Guido J; Gormley, Padhraig; Malik, Rainer; Patsopoulos, Nikolaos A; Ripke, Stephan; Wei, Zhi; Yu, Dongmei; Lee, Phil H; Turley, Patrick; Grenier-Boley, Benjamin; Chouraki, Vincent; Kamatani, Yoichiro; Berr, Claudine; Letenneur, Luc; Hannequin, Didier; Amouyel, Philippe; Boland, Anne; Deleuze, Jean-François; Duron, Emmanuelle; Vardarajan, Badri N; Reitz, Christiane; Goate, Alison M; Huentelman, Matthew J; Kamboh, M Ilyas; Larson, Eric B; Rogaeva, Ekaterina; St George-Hyslop, Peter; Hakonarson, Hakon; Kukull, Walter A; Farrer, Lindsay A; Barnes, Lisa L; Beach, Thomas G; Demirci, F Yesim; Head, Elizabeth; Hulette, Christine M; Jicha, Gregory A; Kauwe, John S K; Kaye, Jeffrey A; Leverenz, James B; Levey, Allan I; Lieberman, Andrew P; Pankratz, Vernon S; Poon, Wayne W; Quinn, Joseph F; Saykin, Andrew J; Schneider, Lon S; Smith, Amanda G; Sonnen, Joshua A; Stern, Robert A; Van Deerlin, Vivianna M; Van Eldik, Linda J; Harold, Denise; Russo, Giancarlo; Rubinsztein, David C; Bayer, Anthony; Tsolaki, Magda; Proitsi, Petra; Fox, Nick C; Hampel, Harald; Owen, Michael J; Mead, Simon; Passmore, Peter; Morgan, Kevin; Nöthen, Markus M; Rossor, Martin; Lupton, Michelle K; Hoffmann, Per; Kornhuber, Johannes; Lawlor, Brian; McQuillin, Andrew; Al-Chalabi, Ammar; Bis, Joshua C; Ruiz, Agustin; Boada, Mercè; Seshadri, Sudha; Beiser, Alexa; Rice, Kenneth; van der Lee, Sven J; De Jager, Philip L; Geschwind, Daniel H; Riemenschneider, Matthias; Riedel-Heller, Steffi; Rotter, Jerome I; Ransmayr, Gerhard; Hyman, Bradley T; Cruchaga, Carlos; Alegret, Montserrat; Winsvold, Bendik; Palta, Priit; Farh, Kai-How; Cuenca-Leon, Ester; Furlotte, Nicholas; Kurth, Tobias; Ligthart, Lannie; Terwindt, Gisela M; Freilinger, Tobias; Ran, Caroline; Gordon, Scott D; Borck, Guntram; Adams, Hieab H H; Lehtimäki, Terho; Wedenoja, Juho; Buring, Julie E; Schürks, Markus; Hrafnsdottir, Maria; Hottenga, Jouke-Jan; Penninx, Brenda; Artto, Ville; Kaunisto, Mari; Vepsäläinen, Salli; Martin, Nicholas G; Montgomery, Grant W; Kurki, Mitja I; Hämäläinen, Eija; Huang, Hailiang; Huang, Jie; Sandor, Cynthia; Webber, Caleb; Muller-Myhsok, Bertram; Schreiber, Stefan; Salomaa, Veikko; Loehrer, Elizabeth; Göbel, Hartmut; Macaya, Alfons; Pozo-Rosich, Patricia; Hansen, Thomas; Werge, Thomas; Kaprio, Jaakko; Metspalu, Andres; Kubisch, Christian; Ferrari, Michel D; Belin, Andrea C; van den Maagdenberg, Arn M J M; Zwart, John-Anker; Boomsma, Dorret; Eriksson, Nicholas; Olesen, Jes; Chasman, Daniel I; Nyholt, Dale R; Avbersek, Andreja; Baum, Larry; Berkovic, Samuel; Bradfield, Jonathan; Buono, Russell; Catarino, Claudia B; Cossette, Patrick; De Jonghe, Peter; Depondt, Chantal; Dlugos, Dennis; Ferraro, Thomas N; French, Jacqueline; Hjalgrim, Helle; Jamnadas-Khoda, Jennifer; Kälviäinen, Reetta; Kunz, Wolfram S; Lerche, Holger; Leu, Costin; Lindhout, Dick; Lo, Warren; Lowenstein, Daniel; McCormack, Mark; Møller, Rikke S; Molloy, Anne; Ng, Ping-Wing; Oliver, Karen; Privitera, Michael; Radtke, Rodney; Ruppert, Ann-Kathrin; Sander, Thomas; Schachter, Steven; Schankin, Christoph; Scheffer, Ingrid; Schoch, Susanne; Sisodiya, Sanjay M; Smith, Philip; Sperling, Michael; Striano, Pasquale; Surges, Rainer; Thomas, G Neil; Visscher, Frank; Whelan, Christopher D; Zara, Federico; Heinzen, Erin L; Marson, Anthony; Becker, Felicitas; Stroink, Hans; Zimprich, Fritz; Gasser, Thomas; Gibbs, Raphael; Heutink, Peter; Martinez, Maria; Morris, Huw R; Sharma, Manu; Ryten, Mina; Mok, Kin Y; Pulit, Sara; Bevan, Steve; Holliday, Elizabeth; Attia, John; Battey, Thomas; Boncoraglio, Giorgio; Thijs, Vincent; Chen, Wei-Min; Mitchell, Braxton; Rothwell, Peter; Sharma, Pankaj; Sudlow, Cathie; Vicente, Astrid; Markus, Hugh; Kourkoulis, Christina; Pera, Joana; Raffeld, Miriam; Silliman, Scott; Boraska Perica, Vesna; Thornton, Laura M; Huckins, Laura M; William Rayner, N; Lewis, Cathryn M; Gratacos, Monica; Rybakowski, Filip; Keski-Rahkonen, Anna; Raevuori, Anu; Hudson, James I; Reichborn-Kjennerud, Ted; Monteleone, Palmiero; Karwautz, Andreas; Mannik, Katrin; Baker, Jessica H; O'Toole, Julie K; Trace, Sara E; Davis, Oliver S P; Helder, Sietske G; Ehrlich, Stefan; Herpertz-Dahlmann, Beate; Danner, Unna N; van Elburg, Annemarie A; Clementi, Maurizio; Forzan, Monica; Docampo, Elisa; Lissowska, Jolanta; Hauser, Joanna; Tortorella, Alfonso; Maj, Mario; Gonidakis, Fragiskos; Tziouvas, Konstantinos; Papezova, Hana; Yilmaz, Zeynep; Wagner, Gudrun; Cohen-Woods, Sarah; Herms, Stefan; Julià, Antonio; Rabionet, Raquel; Dick, Danielle M; Ripatti, Samuli; Andreassen, Ole A; Espeseth, Thomas; Lundervold, Astri J; Steen, Vidar M; Pinto, Dalila; Scherer, Stephen W; Aschauer, Harald; Schosser, Alexandra; Alfredsson, Lars; Padyukov, Leonid; Halmi, Katherine A; Mitchell, James; Strober, Michael; Bergen, Andrew W; Kaye, Walter; Szatkiewicz, Jin Peng; Cormand, Bru; Ramos-Quiroga, Josep Antoni; Sánchez-Mora, Cristina; Ribasés, Marta; Casas, Miguel; Hervas, Amaia; Arranz, Maria Jesús; Haavik, Jan; Zayats, Tetyana; Johansson, Stefan; Williams, Nigel; Dempfle, Astrid; Rothenberger, Aribert; Kuntsi, Jonna; Oades, Robert D; Banaschewski, Tobias; Franke, Barbara; Buitelaar, Jan K; Arias Vasquez, Alejandro; Doyle, Alysa E; Reif, Andreas; Lesch, Klaus-Peter; Freitag, Christine; Rivero, Olga; Palmason, Haukur; Romanos, Marcel; Langley, Kate; Rietschel, Marcella; Witt, Stephanie H; Dalsgaard, Soeren; Børglum, Anders D; Waldman, Irwin; Wilmot, Beth; Molly, Nikolas; Bau, Claiton H D; Crosbie, Jennifer; Schachar, Russell; Loo, Sandra K; McGough, James J; Grevet, Eugenio H; Medland, Sarah E; Robinson, Elise; Weiss, Lauren A; Bacchelli, Elena; Bailey, Anthony; Bal, Vanessa; Battaglia, Agatino; Betancur, Catalina; Bolton, Patrick; Cantor, Rita; Celestino-Soper, Patrícia; Dawson, Geraldine; De Rubeis, Silvia; Duque, Frederico; Green, Andrew; Klauck, Sabine M; Leboyer, Marion; Levitt, Pat; Maestrini, Elena; Mane, Shrikant; De-Luca, Daniel Moreno-; Parr, Jeremy; Regan, Regina; Reichenberg, Abraham; Sandin, Sven; Vorstman, Jacob; Wassink, Thomas; Wijsman, Ellen; Cook, Edwin; Santangelo, Susan; Delorme, Richard; Rogé, Bernadette; Magalhaes, Tiago; Arking, Dan; Schulze, Thomas G; Thompson, Robert C; Strohmaier, Jana; Matthews, Keith; Melle, Ingrid; Morris, Derek; Blackwood, Douglas; McIntosh, Andrew; Bergen, Sarah E; Schalling, Martin; Jamain, Stéphane; Maaser, Anna; Fischer, Sascha B; Reinbold, Céline S; Fullerton, Janice M; Guzman-Parra, José; Mayoral, Fermin; Schofield, Peter R; Cichon, Sven; Mühleisen, Thomas W; Degenhardt, Franziska; Schumacher, Johannes; Bauer, Michael; Mitchell, Philip B; Gershon, Elliot S; Rice, John; Potash, James B; Zandi, Peter P; Craddock, Nick; Ferrier, I Nicol; Alda, Martin; Rouleau, Guy A; Turecki, Gustavo; Ophoff, Roel; Pato, Carlos; Anjorin, Adebayo; Stahl, Eli; Leber, Markus; Czerski, Piotr M; Cruceanu, Cristiana; Jones, Ian R; Posthuma, Danielle; Andlauer, Till F M; Forstner, Andreas J; Streit, Fabian; Baune, Bernhard T; Air, Tracy; Sinnamon, Grant; Wray, Naomi R; MacIntyre, Donald J; Porteous, David; Homuth, Georg; Rivera, Margarita; Grove, Jakob; Middeldorp, Christel M; Hickie, Ian; Pergadia, Michele; Mehta, Divya; Smit, Johannes H; Jansen, Rick; de Geus, Eco; Dunn, Erin; Li, Qingqin S; Nauck, Matthias; Schoevers, Robert A; Beekman, Aartjan Tf; Knowles, James A; Viktorin, Alexander; Arnold, Paul; Barr, Cathy L; Bedoya-Berrio, Gabriel; Bienvenu, O Joseph; Brentani, Helena; Burton, Christie; Camarena, Beatriz; Cappi, Carolina; Cath, Danielle; Cavallini, Maria; Cusi, Daniele; Darrow, Sabrina; Denys, Damiaan; Derks, Eske M; Dietrich, Andrea; Fernandez, Thomas; Figee, Martijn; Freimer, Nelson; Gerber, Gloria; Grados, Marco; Greenberg, Erica; Hanna, Gregory L; Hartmann, Andreas; Hirschtritt, Matthew E; Hoekstra, Pieter J; Huang, Alden; Huyser, Chaim; Illmann, Cornelia; Jenike, Michael; Kuperman, Samuel; Leventhal, Bennett; Lochner, Christine; Lyon, Gholson J; Macciardi, Fabio; Madruga-Garrido, Marcos; Malaty, Irene A; Maras, Athanasios; McGrath, Lauren; Miguel, Eurípedes C; Mir, Pablo; Nestadt, Gerald; Nicolini, Humberto; Okun, Michael S; Pakstis, Andrew; Paschou, Peristera; Piacentini, John; Pittenger, Christopher; Plessen, Kerstin; Ramensky, Vasily; Ramos, Eliana M; Reus, Victor; Richter, Margaret A; Riddle, Mark A; Robertson, Mary M; Roessner, Veit; Rosário, Maria; Samuels, Jack F; Sandor, Paul; Stein, Dan J; Tsetsos, Fotis; Van Nieuwerburgh, Filip; Weatherall, Sarah; Wendland, Jens R; Wolanczyk, Tomasz; Worbe, Yulia; Zai, Gwyneth; Goes, Fernando S; McLaughlin, Nicole; Nestadt, Paul S; Grabe, Hans-Jorgen; Depienne, Christel; Konkashbaev, Anuar; Lanzagorta, Nuria; Valencia-Duarte, Ana; Bramon, Elvira; Buccola, Nancy; Cahn, Wiepke; Cairns, Murray; Chong, Siow A; Cohen, David; Crespo-Facorro, Benedicto; Crowley, James; Davidson, Michael; DeLisi, Lynn; Dinan, Timothy; Donohoe, Gary; Drapeau, Elodie; Duan, Jubao; Haan, Lieuwe; Hougaard, David; Karachanak-Yankova, Sena; Khrunin, Andrey; Klovins, Janis; Kučinskas, Vaidutis; Lee Chee Keong, Jimmy; Limborska, Svetlana; Loughland, Carmel; Lönnqvist, Jouko; Maher, Brion; Mattheisen, Manuel; McDonald, Colm; Murphy, Kieran C; Nenadic, Igor; van Os, Jim; Pantelis, Christos; Pato, Michele; Petryshen, Tracey; Quested, Digby; Roussos, Panos; Sanders, Alan R; Schall, Ulrich; Schwab, Sibylle G; Sim, Kang; So, Hon-Cheong; Stögmann, Elisabeth; Subramaniam, Mythily; Toncheva, Draga; Waddington, John; Walters, James; Weiser, Mark; Cheng, Wei; Cloninger, Robert; Curtis, David; Gejman, Pablo V; Henskens, Frans; Mattingsdal, Morten; Oh, Sang-Yun; Scott, Rodney; Webb, Bradley; Breen, Gerome; Churchhouse, Claire; Bulik, Cynthia M; Daly, Mark; Dichgans, Martin; Faraone, Stephen V; Guerreiro, Rita; Holmans, Peter; Kendler, Kenneth S; Koeleman, Bobby; Mathews, Carol A; Price, Alkes; Scharf, Jeremiah; Sklar, Pamela; Williams, Julie; Wood, Nicholas W; Cotsapas, Chris; Palotie, Aarno; Smoller, Jordan W; Sullivan, Patrick; Rosand, Jonathan; Corvin, Aiden; Neale, Benjamin M

    2018-06-22

    Disorders of the brain can exhibit considerable epidemiological comorbidity and often share symptoms, provoking debate about their etiologic overlap. We quantified the genetic sharing of 25 brain disorders from genome-wide association studies of 265,218 patients and 784,643 control participants and assessed their relationship to 17 phenotypes from 1,191,588 individuals. Psychiatric disorders share common variant risk, whereas neurological disorders appear more distinct from one another and from the psychiatric disorders. We also identified significant sharing between disorders and a number of brain phenotypes, including cognitive measures. Further, we conducted simulations to explore how statistical power, diagnostic misclassification, and phenotypic heterogeneity affect genetic correlations. These results highlight the importance of common genetic variation as a risk factor for brain disorders and the value of heritability-based methods in understanding their etiology. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  13. Brain stimulation in posttraumatic stress disorder

    Directory of Open Access Journals (Sweden)

    Vladan Novakovic

    2011-10-01

    Full Text Available Posttraumatic stress disorder (PTSD is a complex, heterogeneous disorder that develops following trauma and often includes perceptual, cognitive, affective, physiological, and psychological features. PTSD is characterized by hyperarousal, intrusive thoughts, exaggerated startle response, flashbacks, nightmares, sleep disturbances, emotional numbness, and persistent avoidance of trauma-associated stimuli. The efficacy of available treatments for PTSD may result in part from relief of associated depressive and anxiety-related symptoms in addition to treatment of core symptoms that derive from reexperiencing, numbing, and hyperarousal. Diverse, heterogeneous mechanisms of action and the ability to act broadly or very locally may enable brain stimulation devices to address PTSD core symptoms in more targeted ways. To achieve this goal, specific theoretical bases derived from novel, well-designed research protocols will be necessary. Brain stimulation devices include both long-used and new electrical and magnetic devices. Electroconvulsive therapy (ECT and Cranial electrotherapy stimulation (CES have both been in use for decades; transcranial magnetic stimulation (TMS, magnetic seizure therapy (MST, deep brain stimulation (DBS, transcranial Direct Current Stimulation (tDCS, and vagus nerve stimulation (VNS have been developed recently, over approximately the past twenty years. The efficacy of brain stimulation has been demonstrated as a treatment for psychiatric and neurological disorders such as anxiety (CES, depression (ECT, CES, rTMS, VNS, DBS, obsessive-compulsive disorder (OCD (DBS, essential tremor, dystonia (DBS, epilepsy (DBS, VNS, Parkinson Disease (DBS, pain (CES, and insomnia (CES. To date, limited data on brain stimulation for PTSD offer only modest guidance. ECT has shown some efficacy in reducing comorbid depression in PTSD patients but has not been demonstrated to improve most core PTSD symptoms. CES and VNS have shown some efficacy in

  14. Cortical Auditory Disorders: A Case of Non-Verbal Disturbances Assessed with Event-Related Brain Potentials

    Directory of Open Access Journals (Sweden)

    Sönke Johannes

    1998-01-01

    Full Text Available In the auditory modality, there has been a considerable debate about some aspects of cortical disorders, especially about auditory forms of agnosia. Agnosia refers to an impaired comprehension of sensory information in the absence of deficits in primary sensory processes. In the non-verbal domain, sound agnosia and amusia have been reported but are frequently accompanied by language deficits whereas pure deficits are rare. Absolute pitch and musicians’ musical abilities have been associated with left hemispheric functions. We report the case of a right handed sound engineer with the absolute pitch who developed sound agnosia and amusia in the absence of verbal deficits after a right perisylvian stroke. His disabilities were assessed with the Seashore Test of Musical Functions, the tests of Wertheim and Botez (Wertheim and Botez, Brain 84, 1961, 19–30 and by event-related potentials (ERP recorded in a modified 'oddball paradigm’. Auditory ERP revealed a dissociation between the amplitudes of the P3a and P3b subcomponents with the P3b being reduced in amplitude while the P3a was undisturbed. This is interpreted as reflecting disturbances in target detection processes as indexed by the P3b. The findings that contradict some aspects of current knowledge about left/right hemispheric specialization in musical processing are discussed and related to the literature concerning cortical auditory disorders.

  15. Cortical auditory disorders: a case of non-verbal disturbances assessed with event-related brain potentials.

    Science.gov (United States)

    Johannes, Sönke; Jöbges, Michael E.; Dengler, Reinhard; Münte, Thomas F.

    1998-01-01

    In the auditory modality, there has been a considerable debate about some aspects of cortical disorders, especially about auditory forms of agnosia. Agnosia refers to an impaired comprehension of sensory information in the absence of deficits in primary sensory processes. In the non-verbal domain, sound agnosia and amusia have been reported but are frequently accompanied by language deficits whereas pure deficits are rare. Absolute pitch and musicians' musical abilities have been associated with left hemispheric functions. We report the case of a right handed sound engineer with the absolute pitch who developed sound agnosia and amusia in the absence of verbal deficits after a right perisylvian stroke. His disabilities were assessed with the Seashore Test of Musical Functions, the tests of Wertheim and Botez (Wertheim and Botez, Brain 84, 1961, 19-30) and by event-related potentials (ERP) recorded in a modified 'oddball paradigm'. Auditory ERP revealed a dissociation between the amplitudes of the P3a and P3b subcomponents with the P3b being reduced in amplitude while the P3a was undisturbed. This is interpreted as reflecting disturbances in target detection processes as indexed by the P3b. The findings that contradict some aspects of current knowledge about left/right hemispheric specialization in musical processing are discussed and related to the literature concerning cortical auditory disorders.

  16. Brain/MINDS: brain-mapping project in Japan

    Science.gov (United States)

    Okano, Hideyuki; Miyawaki, Atsushi; Kasai, Kiyoto

    2015-01-01

    There is an emerging interest in brain-mapping projects in countries across the world, including the USA, Europe, Australia and China. In 2014, Japan started a brain-mapping project called Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS). Brain/MINDS aims to map the structure and function of neuronal circuits to ultimately understand the vast complexity of the human brain, and takes advantage of a unique non-human primate animal model, the common marmoset (Callithrix jacchus). In Brain/MINDS, the RIKEN Brain Science Institute acts as a central institute. The objectives of Brain/MINDS can be categorized into the following three major subject areas: (i) structure and functional mapping of a non-human primate brain (the marmoset brain); (ii) development of innovative neurotechnologies for brain mapping; and (iii) human brain mapping; and clinical research. Brain/MINDS researchers are highly motivated to identify the neuronal circuits responsible for the phenotype of neurological and psychiatric disorders, and to understand the development of these devastating disorders through the integration of these three subject areas. PMID:25823872

  17. Brain/MINDS: brain-mapping project in Japan.

    Science.gov (United States)

    Okano, Hideyuki; Miyawaki, Atsushi; Kasai, Kiyoto

    2015-05-19

    There is an emerging interest in brain-mapping projects in countries across the world, including the USA, Europe, Australia and China. In 2014, Japan started a brain-mapping project called Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS). Brain/MINDS aims to map the structure and function of neuronal circuits to ultimately understand the vast complexity of the human brain, and takes advantage of a unique non-human primate animal model, the common marmoset (Callithrix jacchus). In Brain/MINDS, the RIKEN Brain Science Institute acts as a central institute. The objectives of Brain/MINDS can be categorized into the following three major subject areas: (i) structure and functional mapping of a non-human primate brain (the marmoset brain); (ii) development of innovative neurotechnologies for brain mapping; and (iii) human brain mapping; and clinical research. Brain/MINDS researchers are highly motivated to identify the neuronal circuits responsible for the phenotype of neurological and psychiatric disorders, and to understand the development of these devastating disorders through the integration of these three subject areas.

  18. [Roles of Aquaporins in Brain Disorders].

    Science.gov (United States)

    Yasui, Masato

    2015-06-01

    Aquaporin (AQP) is a water channel protein that is expressed in the cell membranes. AQPs are related to several kinds of human diseases such as cataract. In the mammalian central nervous system (CNS), AQP4 is specifically expressed in the astrocyte membranes lining the perivascular and periventricular structures. AQP4 plays a role in the development of brain edema associated with certain brain disorders. Neuromyelitis optica (NMO) is a demyelinating disorder, and patients with NMO develop autoimmune antibodies against AQP4 in their serum. Therefore, AQP4 is involved in NMO pathogenesis. A new concept referred to as "glymphatic pathway" has been recently proposed to explain the lymphatic system in the CNS. Dysfunction of the "glymphatic pathway" may cause several neurodegenerative diseases and mood disorders. Importantly, AQP4 may play a role in the "glymphatic pathway". Further investigation of AQP4 in CNS disorders is necessary, and a new drug against AQP4 is expected.

  19. Cost of disorders of the brain in Europe 2010

    DEFF Research Database (Denmark)

    Gustavsson, Anders; Svensson, Mikael; Jacobi, Frank

    2011-01-01

    The spectrum of disorders of the brain is large, covering hundreds of disorders that are listed in either the mental or neurological disorder chapters of the established international diagnostic classification systems. These disorders have a high prevalence as well as short- and long-term impairm......The spectrum of disorders of the brain is large, covering hundreds of disorders that are listed in either the mental or neurological disorder chapters of the established international diagnostic classification systems. These disorders have a high prevalence as well as short- and long......-term impairments and disabilities. Therefore they are an emotional, financial and social burden to the patients, their families and their social network. In a 2005 landmark study, we estimated for the first time the annual cost of 12 major groups of disorders of the brain in Europe and gave a conservative estimate...... report we cover 19 major groups of disorders, 7 more than previously, of an increased range of age groups and more cost items. We therefore present much improved cost estimates. Our revised estimates also now include the new EU member states, and hence a population of 514 million people....

  20. The impact of glucose disorders on cognition and brain volumes in the elderly: the Sydney Memory and Ageing Study.

    Science.gov (United States)

    Samaras, Katherine; Lutgers, Helen L; Kochan, Nicole A; Crawford, John D; Campbell, Lesley V; Wen, Wei; Slavin, Melissa J; Baune, Bernard T; Lipnicki, Darren M; Brodaty, Henry; Trollor, Julian N; Sachdev, Perminder S

    2014-04-01

    Type 2 diabetes predicts accelerated cognitive decline and brain atrophy. We hypothesized that impaired fasting glucose (IFG) and incident glucose disorders have detrimental effects on global cognition and brain volume. We further hypothesized that metabolic and inflammatory derangements accompanying hyperglycaemia contribute to change in brain structure and function. This was a longitudinal study of a community-dwelling elderly cohort with neuropsychological testing (n = 880) and brain volumes by magnetic resonance imaging (n = 312) measured at baseline and 2 years. Primary outcomes were global cognition and total brain volume. Secondary outcomes were cognitive domains (processing speed, memory, language, visuospatial and executive function) and brain volumes (hippocampal, parahippocampal, precuneus and frontal lobe). Participants were categorised as normal, impaired fasting glucose at both assessments (stable IFG), baseline diabetes or incident glucose disorders (incident diabetes or IFG at 2 years). Measures included inflammatory cytokines and oxidative metabolites. Covariates were age, sex, education, non-English speaking background, smoking, blood pressure, lipid-lowering or antihypertensive medications, mood score, apolipoprotein E genotype and baseline cognition or brain volume. Participants with incident glucose disorders had greater decline in global cognition and visuospatial function compared to normal, similar to that observed in baseline diabetes. Homocysteine was independently associated with the observed effect of diabetes on executive function. Apolipoprotein E genotype did not influence the observed effects of diabetes on cognition. Incident glucose disorders and diabetes were also associated with greater 2-year decline in total brain volume, compared to normal (40.0 ± 4.2 vs. 46.7 ± 5.7 mm(3) vs. 18.1 ± 6.2, respectively, p cognition or brain volumes compared to normal. Incident glucose disorders, like diabetes, are

  1. Declarative and Non-declarative Memory Consolidation in Children with Sleep Disorder

    OpenAIRE

    Cs?bi, Eszter; Benedek, P?lma; Janacsek, Karolina; Zavecz, Zs?fia; Katona, G?bor; Nemeth, Dezso

    2016-01-01

    Healthy sleep is essential in children’s cognitive, behavioral, and emotional development. However, remarkably little is known about the influence of sleep disorders on different memory processes in childhood. Such data could give us a deeper insight into the effect of sleep on the developing brain and memory functions and how the relationship between sleep and memory changes from childhood to adulthood. In the present study we examined the effect of sleep disorder on declarative and non-decl...

  2. Stem Cell Technology for (Epi)genetic Brain Disorders.

    Science.gov (United States)

    Riemens, Renzo J M; Soares, Edilene S; Esteller, Manel; Delgado-Morales, Raul

    2017-01-01

    Despite the enormous efforts of the scientific community over the years, effective therapeutics for many (epi)genetic brain disorders remain unidentified. The common and persistent failures to translate preclinical findings into clinical success are partially attributed to the limited efficiency of current disease models. Although animal and cellular models have substantially improved our knowledge of the pathological processes involved in these disorders, human brain research has generally been hampered by a lack of satisfactory humanized model systems. This, together with our incomplete knowledge of the multifactorial causes in the majority of these disorders, as well as a thorough understanding of associated (epi)genetic alterations, has been impeding progress in gaining more mechanistic insights from translational studies. Over the last years, however, stem cell technology has been offering an alternative approach to study and treat human brain disorders. Owing to this technology, we are now able to obtain a theoretically inexhaustible source of human neural cells and precursors in vitro that offer a platform for disease modeling and the establishment of therapeutic interventions. In addition to the potential to increase our general understanding of how (epi)genetic alterations contribute to the pathology of brain disorders, stem cells and derivatives allow for high-throughput drugs and toxicity testing, and provide a cell source for transplant therapies in regenerative medicine. In the current chapter, we will demonstrate the validity of human stem cell-based models and address the utility of other stem cell-based applications for several human brain disorders with multifactorial and (epi)genetic bases, including Parkinson's disease (PD), Alzheimer's disease (AD), fragile X syndrome (FXS), Angelman syndrome (AS), Prader-Willi syndrome (PWS), and Rett syndrome (RTT).

  3. Specificity of abnormal brain volume in major depressive disorder: a comparison with borderline personality disorder.

    Science.gov (United States)

    Depping, Malte S; Wolf, Nadine D; Vasic, Nenad; Sambataro, Fabio; Thomann, Philipp A; Christian Wolf, R

    2015-03-15

    Abnormal brain volume has been frequently demonstrated in major depressive disorder (MDD). It is unclear if these findings are specific for MDD since aberrant brain structure is also present in disorders with depressive comorbidity and affective dysregulation, such as borderline personality disorder (BPD). In this transdiagnostic study, we aimed to investigate if regional brain volume loss differentiates between MDD and BPD. Further, we tested for associations between brain volume and clinical variables within and between diagnostic groups. 22 Females with a DSM-IV diagnosis of MDD, 17 females with a DSM-IV diagnosis of BPD and without comorbid posttraumatic stress disorder, and 22 age-matched female healthy controls (HC) were investigated using magnetic resonance imaging. High-resolution structural data were analyzed using voxel-based morphometry. A significant (pdisorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Lifetime Prevalence and Correlates of Schizophrenia-Spectrum, Affective, and Other Non-affective Psychotic Disorders in the Chinese Adult Population.

    Science.gov (United States)

    Chang, Wing Chung; Wong, Corine Sau Man; Chen, Eric Yu Hai; Lam, Linda Chiu Wa; Chan, Wai Chi; Ng, Roger Man Kin; Hung, Se Fong; Cheung, Eric Fuk Chi; Sham, Pak Chung; Chiu, Helen Fung Kum; Lam, Ming; Lee, Edwin Ho Ming; Chiang, Tin Po; Chan, Lap Kei; Lau, Gary Kar Wai; Lee, Allen Ting Chun; Leung, Grace Tak Yu; Leung, Joey Shuk Yan; Lau, Joseph Tak Fai; van Os, Jim; Lewis, Glyn; Bebbington, Paul

    2017-10-21

    Lifetime prevalence of psychotic disorders varies widely across studies. Epidemiological surveys have rarely examined prevalences of specific psychotic disorders other than schizophrenia, and the majority used a single-phase design without employing clinical reappraisal interview for diagnostic verification. The current study investigated lifetime prevalence, correlates and service utilization of schizophrenia-spectrum, affective, and other non-affective psychotic disorders in a representative sample of community-dwelling Chinese adult population aged 16-75 years (N = 5719) based on a territory-wide, population-based household survey for mental disorders in Hong Kong. The survey adopted a 2-phase design comprising first-phase psychosis screening and second-phase diagnostic verification incorporating clinical information from psychiatrist-administered semi-structured interview and medical record review to ascertain DSM-IV lifetime diagnosis for psychotic disorders. Data on sociodemographics, psychosocial characteristics and service utilization were collected. Our results showed that lifetime prevalence was 2.47% for psychotic disorder overall, 1.25% for schizophrenia, 0.15% for delusional disorder, 0.38% for psychotic disorder not otherwise specified, 0.31% for bipolar disorder with psychosis, and 0.33% for depressive disorder with psychosis. Schizophrenia-spectrum disorder was associated with family history of psychosis, cigarette smoking and variables indicating socioeconomic disadvantage. Victimization experiences were significantly related to affective psychoses and other non-affective psychoses. Around 80% of participants with any psychotic disorder sought some kind of professional help for mental health problems in the past year. Using comprehensive diagnostic assessment involving interview and record data, our results indicate that approximately 2.5% of Chinese adult population had lifetime psychotic disorder which represents a major public health concern.

  5. Rethinking Permissioned Blockchains

    OpenAIRE

    Vukolic, Marko

    2017-01-01

    Current blockchain platforms, especially the recent permissioned systems, have architectural limitations: smart contracts run sequentially, all node executes all smart contracts, consensus protocols are hard-coded, the trust model is static and not exible, and non-determinism in smart-contract execution poses serious problems. Overcoming these limitations is critical for improving both functional properties of blockchains, such as con dentiality and consistency, as well as their non-functiona...

  6. Spatiotemporal dissociation of brain activity underlying threat and reward in social anxiety disorder.

    Science.gov (United States)

    A Richey, John; Ghane, Merage; Valdespino, Andrew; Coffman, Marika C; Strege, Marlene V; White, Susan W; Ollendick, Thomas H

    2017-01-01

    Social anxiety disorder (SAD) involves abnormalities in social motivation, which may be independent of well-documented differences in fear and arousal systems. Yet, the neurobiology underlying motivational difficulties in SAD is not well understood. The aim of the current study was to spatiotemporally dissociate reward circuitry dysfunction from alterations in fear and arousal-related neural activity during anticipation and notification of social and non-social reward and punishment. During fMRI acquisition, non-depressed adults with social anxiety disorder (SAD; N = 21) and age-, sex- and IQ-matched control subjects (N = 22) completed eight runs of an incentive delay task, alternating between social and monetary outcomes and interleaved in alternating order between gain and loss outcomes. Adults with SAD demonstrated significantly reduced neural activity in ventral striatum during the anticipation of positive but not negative social outcomes. No differences between the SAD and control groups were observed during anticipation of monetary gain or loss outcomes or during anticipation of negative social images. However, consistent with previous work, the SAD group demonstrated amygdala hyper-activity upon notification of negative social outcomes. Degraded anticipatory processing in bilateral ventral striatum in SAD was constrained exclusively to anticipation of positive social information and dissociable from the effects of negative social outcomes previously observed in the amygdala. Alterations in anticipation-related neural signals may represent a promising target for treatment that is not addressed by available evidence-based interventions, which focus primarily on fear extinction and habituation processes. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  7. Deep-Brain Stimulation for Basal Ganglia Disorders.

    Science.gov (United States)

    Wichmann, Thomas; Delong, Mahlon R

    2011-07-01

    The realization that medications used to treat movement disorders and psychiatric conditions of basal ganglia origin have significant shortcomings, as well as advances in the understanding of the functional organization of the brain, has led to a renaissance in functional neurosurgery, and particularly the use of deep brain stimulation (DBS). Movement disorders are now routinely being treated with DBS of 'motor' portions of the basal ganglia output nuclei, specifically the subthalamic nucleus and the internal pallidal segment. These procedures are highly effective and generally safe. Use of DBS is also being explored in the treatment of neuropsychiatric disorders, with targeting of the 'limbic' basal ganglia-thalamocortical circuitry. The results of these procedures are also encouraging, but many unanswered questions remain in this emerging field. This review summarizes the scientific rationale and practical aspects of using DBS for neurologic and neuropsychiatric disorders.

  8. Brain structural changes in schizoaffective disorder compared to schizophrenia and bipolar disorder.

    Science.gov (United States)

    Amann, B L; Canales-Rodríguez, E J; Madre, M; Radua, J; Monte, G; Alonso-Lana, S; Landin-Romero, R; Moreno-Alcázar, A; Bonnin, C M; Sarró, S; Ortiz-Gil, J; Gomar, J J; Moro, N; Fernandez-Corcuera, P; Goikolea, J M; Blanch, J; Salvador, R; Vieta, E; McKenna, P J; Pomarol-Clotet, E

    2016-01-01

    Brain structural changes in schizoaffective disorder, and how far they resemble those seen in schizophrenia and bipolar disorder, have only been studied to a limited extent. Forty-five patients meeting DSM-IV and RDC criteria for schizoaffective disorder, groups of patients with 45 matched schizophrenia and bipolar disorder, and 45 matched healthy controls were examined using voxel-based morphometry (VBM). Analyses comparing each patient group with the healthy control subjects found that the patients with schizoaffective disorder and the patients with schizophrenia showed widespread and overlapping areas of significant volume reduction, but the patients with bipolar disorder did not. A subsequent analysis compared the combined group of patients with the controls followed by extraction of clusters. In regions where the patients differed significantly from the controls, no significant differences in mean volume between patients with schizoaffective disorder and patients with schizophrenia in any of five regions of volume reduction were found, but mean volumes in the patients with bipolar disorder were significantly smaller in three of five. The findings provide evidence that, in terms of structural gray matter brain abnormality, schizoaffective disorder resembles schizophrenia more than bipolar disorder. © 2015 The Authors. Acta Psychiatrica Scandinavica Published by John Wiley & Sons Ltd.

  9. Shining light on the head: Photobiomodulation for brain disorders

    Directory of Open Access Journals (Sweden)

    Michael R. Hamblin

    2016-12-01

    Full Text Available Photobiomodulation (PBM describes the use of red or near-infrared light to stimulate, heal, regenerate, and protect tissue that has either been injured, is degenerating, or else is at risk of dying. One of the organ systems of the human body that is most necessary to life, and whose optimum functioning is most worried about by humankind in general, is the brain. The brain suffers from many different disorders that can be classified into three broad groupings: traumatic events (stroke, traumatic brain injury, and global ischemia, degenerative diseases (dementia, Alzheimer's and Parkinson's, and psychiatric disorders (depression, anxiety, post traumatic stress disorder. There is some evidence that all these seemingly diverse conditions can be beneficially affected by applying light to the head. There is even the possibility that PBM could be used for cognitive enhancement in normal healthy people. In this transcranial PBM (tPBM application, near-infrared (NIR light is often applied to the forehead because of the better penetration (no hair, longer wavelength. Some workers have used lasers, but recently the introduction of inexpensive light emitting diode (LED arrays has allowed the development of light emitting helmets or “brain caps”. This review will cover the mechanisms of action of photobiomodulation to the brain, and summarize some of the key pre-clinical studies and clinical trials that have been undertaken for diverse brain disorders.

  10. Non-Invasive Brain Stimulation for Children with Autism Spectrum Disorders: A Short-Term Outcome Study

    Directory of Open Access Journals (Sweden)

    Lázaro Gómez

    2017-09-01

    Full Text Available Non-Invasive Brain Stimulation (NIBS is a relatively new therapeutic approach that has shown beneficial effects in Autism Spectrum Disorder (ASD. One question to be answered is how enduring its neuromodulatory effect could be. Twenty-four patients with ASD (mean age: 12.2 years received 20 sessions of NIBS over the left dorsolateral prefrontal cortex (L-DLPFC. They were randomized into two groups with two (G1 or three (G2 clinical evaluations before NIBS. Both groups had a complete follow-up at six months after the intervention, with the aim of determining the short-term outcome using the total score on the Autism Behavior Checklist, Autism Treatment Evaluation Checklist, and the Autism Diagnostic Interview. Transcranial Direct Current Stimulation (tDCS was used in ASD patients aged <11 years, and repetitive Transcranial Magnetic Stimulation (rTMS for 11–13-year-olds. Observation points were at one, three, and six months after completing all the sessions of NIBS. A significant reduction in the total score on the three clinical scales was observed and maintained during the first six months after treatment, with a slight and non-significant tendency to increase the scores in the last evaluation. Twenty sessions of NIBS over the L-DLPFC improves autistic symptoms in ASD children, with a lasting effect of six months.

  11. Brain functional connectivity in stimulant drug dependence and obsessive-compulsive disorder.

    Science.gov (United States)

    Meunier, David; Ersche, Karen D; Craig, Kevin J; Fornito, Alex; Merlo-Pich, Emilio; Fineberg, Naomi A; Shabbir, Shaila S; Robbins, Trevor W; Bullmore, Edward T

    2012-01-16

    There are reasons for thinking that obsessive-compulsive disorder (OCD) and drug dependence, although conventionally distinct diagnostic categories, might share important cognitive and neurobiological substrates. We tested this hypothesis directly by comparing brain functional connectivity measures between patients with OCD, stimulant dependent individuals (SDIs; many of whom were non-dependent users of other recreational drugs) and healthy volunteers. We measured functional connectivity between each possible pair of 506 brain regional functional MRI time series representing low frequency (0.03-0.06 Hz) spontaneous brain hemodynamics in healthy volunteers (N=18), patients with OCD (N=18) and SDIs (N=18). We used permutation tests to identify i) brain regions where strength of connectivity was significantly different in both patient groups compared to healthy volunteers; and ii) brain regions and connections which had significantly different functional connectivity between patient groups. We found that functional connectivity of right inferior and superior orbitofrontal cortex (OFC) was abnormally reduced in both disorders. Whether diagnosed as OCD or SDI, patients with higher scores on measures of compulsive symptom severity showed greater reductions of right orbitofrontal connectivity. Functional connections specifically between OFC and dorsal medial pre-motor and cingulate cortex were attenuated in both patient groups. However, patients with OCD demonstrated more severe and extensive reductions of functional connectivity compared to SDIs. OCD and stimulant dependence are not identical at the level of brain functional systems but they have some important abnormalities in common compared with healthy volunteers. Orbitofrontal connectivity may serve as a human brain systems biomarker for compulsivity across diagnostic categories. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Correlations between brain structure and symptom dimensions of psychosis in schizophrenia, schizoaffective, and psychotic bipolar I disorders.

    Science.gov (United States)

    Padmanabhan, Jaya L; Tandon, Neeraj; Haller, Chiara S; Mathew, Ian T; Eack, Shaun M; Clementz, Brett A; Pearlson, Godfrey D; Sweeney, John A; Tamminga, Carol A; Keshavan, Matcheri S

    2015-01-01

    Structural alterations may correlate with symptom severity in psychotic disorders, but the existing literature on this issue is heterogeneous. In addition, it is not known how cortical thickness and cortical surface area correlate with symptom dimensions of psychosis. Subjects included 455 individuals with schizophrenia, schizoaffective, or bipolar I disorders. Data were obtained as part of the Bipolar Schizophrenia Network for Intermediate Phenotypes study. Diagnosis was made through the Structured Clinical Interview for DSM-IV. Positive and negative symptom subscales were assessed using the Positive and Negative Syndrome Scale. Structural brain measurements were extracted from T1-weight structural MRIs using FreeSurfer v5.1 and were correlated with symptom subscales using partial correlations. Exploratory factor analysis was also used to identify factors among those regions correlating with symptom subscales. The positive symptom subscale correlated inversely with gray matter volume (GMV) and cortical thickness in frontal and temporal regions, whereas the negative symptom subscale correlated inversely with right frontal cortical surface area. Among regions correlating with the positive subscale, factor analysis identified four factors, including a temporal cortical thickness factor and frontal GMV factor. Among regions correlating with the negative subscale, factor analysis identified a frontal GMV-cortical surface area factor. There was no significant diagnosis by structure interactions with symptom severity. Structural measures correlate with positive and negative symptom severity in psychotic disorders. Cortical thickness demonstrated more associations with psychopathology than cortical surface area. © The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Cost of disorders of the brain in Europe 2010.

    NARCIS (Netherlands)

    Gustavsson, A.; Svensson, M.; Jacobi, F.; Allgulander, C.; Alonso, J.; Beghi, E.; Dodel, R.; Faravelli, C.; Fratiglioni, L.; Gannon, B.; Jones, D.H.; Jennum, P.; Jordanova, A.; Jonsson, L.; Karampampa, K.; Knapp, M.; Kobelt, G.; Kurth, T.; Lieb, R.; Linde, M.; Ljungcrantz, C.; Maercker, A.; Melin, B.; Moscarelli, M.; Musayev, A.; Norwood, F.; Preisig, M.; Pugliatti, M.; Rehm, J.; Salvador-Carulla, L.; Schlehofer, B.; Simon, R.; Steinhausen, H.C.; Stovner, L.J.; Vallat, J.M.; Bergh, P.V. den; Os, J. van; Vos, P.E.; Xu, W.; Wittchen, H.U.; Jonsson, B.; Olesen, J.

    2011-01-01

    BACKGROUND: The spectrum of disorders of the brain is large, covering hundreds of disorders that are listed in either the mental or neurological disorder chapters of the established international diagnostic classification systems. These disorders have a high prevalence as well as short- and

  14. Hippotherapy in Adult Patients with Chronic Brain Disorders: A Pilot Study

    OpenAIRE

    Sunwoo, Hyuk; Chang, Won Hyuk; Kwon, Jeong-Yi; Kim, Tae-Won; Lee, Ji-Young; Kim, Yun-Hee

    2012-01-01

    Objective To investigate the effects of hippotherapy for adult patients with brain disorders. Method Eight chronic brain disorder patients (7 males, mean age 42.4?16.6 years) were recruited. The mean duration from injury was 7.9?7.7 years. The diagnoses were stroke (n=5), traumatic brain disorder (n=2), and cerebral palsy (n=1). Hippotherapy sessions were conducted twice a week for eight consecutive weeks in an indoor riding arena. Each hippotherapy session lasted 30 minutes. All participants...

  15. Neurofeedback Tunes Scale-Free Dynamics in Spontaneous Brain Activity.

    Science.gov (United States)

    Ros, T; Frewen, P; Théberge, J; Michela, A; Kluetsch, R; Mueller, A; Candrian, G; Jetly, R; Vuilleumier, P; Lanius, R A

    2017-10-01

    Brain oscillations exhibit long-range temporal correlations (LRTCs), which reflect the regularity of their fluctuations: low values representing more random (decorrelated) while high values more persistent (correlated) dynamics. LRTCs constitute supporting evidence that the brain operates near criticality, a state where neuronal activities are balanced between order and randomness. Here, healthy adults used closed-loop brain training (neurofeedback, NFB) to reduce the amplitude of alpha oscillations, producing a significant increase in spontaneous LRTCs post-training. This effect was reproduced in patients with post-traumatic stress disorder, where abnormally random dynamics were reversed by NFB, correlating with significant improvements in hyperarousal. Notably, regions manifesting abnormally low LRTCs (i.e., excessive randomness) normalized toward healthy population levels, consistent with theoretical predictions about self-organized criticality. Hence, when exposed to appropriate training, spontaneous cortical activity reveals a residual capacity for "self-tuning" its own temporal complexity, despite manifesting the abnormal dynamics seen in individuals with psychiatric disorder. Lastly, we observed an inverse-U relationship between strength of LRTC and oscillation amplitude, suggesting a breakdown of long-range dependence at high/low synchronization extremes, in line with recent computational models. Together, our findings offer a broader mechanistic framework for motivating research and clinical applications of NFB, encompassing disorders with perturbed LRTCs. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Metallothionein in Brain Disorders

    Directory of Open Access Journals (Sweden)

    Daniel Juárez-Rebollar

    2017-01-01

    Full Text Available Metallothioneins are a family of proteins which are able to bind metals intracellularly, so their main function is to regulate the cellular metabolism of essential metals. There are 4 major isoforms of MTs (I–IV, three of which have been localized in the central nervous system. MT-I and MT-II have been localized in the spinal cord and brain, mainly in astrocytes, whereas MT-III has been found mainly in neurons. MT-I and MT-II have been considered polyvalent proteins whose main function is to maintain cellular homeostasis of essential metals such as zinc and copper, but other functions have also been considered: detoxification of heavy metals, regulation of gene expression, processes of inflammation, and protection against free radicals generated by oxidative stress. On the other hand, the MT-III has been related in events of pathogenesis of neurodegenerative diseases such as Parkinson and Alzheimer. Likewise, the participation of MTs in other neurological disorders has also been reported. This review shows recent evidence about the role of MT in the central nervous system and its possible role in neurodegenerative diseases as well as in brain disorders.

  17. Cost of disorders of the brain in Slovenia in 2010

    Directory of Open Access Journals (Sweden)

    Jurij Bon

    2013-02-01

    Conclusion: This EBC study is based on the best currently available data in Europe and the model enables extrapolation to countries where no data could be found. Still, the scarcity of data is an important source of uncertainty in estimates and may imply over- or underestimations in some disorders and countries, including Slovenia, where there are still no reliable epidemiological and health-economic data on brain disorders. Even though this review included many disorders, diagnoses, age groups and cost items that were omitted in 2004, there are still remaining disorders that could not be included due to limitations in the available data. The estimate of the total cost of brain disorders in Europe and Slovenia is therefore considered to be conservative. In terms of the health economic burden outlined in the EBC report and here, disorders of the brain likely constitute the number one economic challenge for health care in all European countries, now and in the future. The results are consistent with administrative data on the health care expenditure in Europe, and comparable to previous studies on the cost of specific disorders in Europe, while being lower than analogous estimates from the US. The reported results should be considered by all stakeholders, including policy makers, industry and patient advocacy groups, to reconsider the current science, research and public health agenda and shape a coordinated national action-plan to address the imminent challenges posed by disorders of the brain.

  18. Connecting Malfunctioning Glial Cells and Brain Degenerative Disorders.

    Science.gov (United States)

    Kaminsky, Natalie; Bihari, Ofer; Kanner, Sivan; Barzilai, Ari

    2016-06-01

    The DNA damage response (DDR) is a complex biological system activated by different types of DNA damage. Mutations in certain components of the DDR machinery can lead to genomic instability disorders that culminate in tissue degeneration, premature aging, and various types of cancers. Intriguingly, malfunctioning DDR plays a role in the etiology of late onset brain degenerative disorders such as Parkinson's, Alzheimer's, and Huntington's diseases. For many years, brain degenerative disorders were thought to result from aberrant neural death. Here we discuss the evidence that supports our novel hypothesis that brain degenerative diseases involve dysfunction of glial cells (astrocytes, microglia, and oligodendrocytes). Impairment in the functionality of glial cells results in pathological neuro-glial interactions that, in turn, generate a "hostile" environment that impairs the functionality of neuronal cells. These events can lead to systematic neural demise on a scale that appears to be proportional to the severity of the neurological deficit. Copyright © 2016 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  19. Connecting Malfunctioning Glial Cells and Brain Degenerative Disorders

    Directory of Open Access Journals (Sweden)

    Natalie Kaminsky

    2016-06-01

    Full Text Available The DNA damage response (DDR is a complex biological system activated by different types of DNA damage. Mutations in certain components of the DDR machinery can lead to genomic instability disorders that culminate in tissue degeneration, premature aging, and various types of cancers. Intriguingly, malfunctioning DDR plays a role in the etiology of late onset brain degenerative disorders such as Parkinson’s, Alzheimer’s, and Huntington’s diseases. For many years, brain degenerative disorders were thought to result from aberrant neural death. Here we discuss the evidence that supports our novel hypothesis that brain degenerative diseases involve dysfunction of glial cells (astrocytes, microglia, and oligodendrocytes. Impairment in the functionality of glial cells results in pathological neuro-glial interactions that, in turn, generate a “hostile” environment that impairs the functionality of neuronal cells. These events can lead to systematic neural demise on a scale that appears to be proportional to the severity of the neurological deficit.

  20. Functional magnetic resonance imaging in disorders of consciousness: preliminary results of an innovative analysis of brain connectivity.

    Science.gov (United States)

    De Pasquale, Francesco; Caravasso, Chiara Falletta; Péran, Patrice; Catani, Sheila; Tuovinen, Noora; Sabatini, Umberto; Formisano, Rita

    2015-01-01

    The aim of this preliminary study was to present a new approach for connectivity analysis in patients with severe acquired brain injury (ABI) that overcomes some of the difficulties created by anatomical abnormalities due to the brain injury. Using a data-driven approach, resting-state structural MRI (sMRI) and functional MRI (fMRI) data from three severe ABI patients - two with disorders of consciousness (DOC) and one who had recovered consciousness (non-DOC) - were integrated and analyzed. Parameters extracted from the distribution of the connectivity values, such as mean, standard deviation and skeweness, were considered. The distribution parameters estimated seem to provide an accurate multivariate classification of the considered cases that can be summarized as follows: connectivity in the severe ABI patients with DOC was on average lower than in the severe ABI non-DOC patient and healthy subjects. The dispersion of connectivity values of the severe ABI patients, non-DOC and DOC, was comparable, however the shape of the distribution was different in the non-DOC patient. Eventually, seed-based connectivity maps of the default mode Functional magnetic resonance imaging in disorders of consciousness: preliminary results of an innovative analysis of brain connectivity network show a pattern of increasing disruption of this network from the healthy subjects to non-DOC and DOC patients. Consistent results are obtained using an ICA-based approach..

  1. Whole-brain diffusion-tensor changes in parkinsonian patients with impulse control disorders.

    Science.gov (United States)

    Yoo, Hye Bin; Lee, Jee-Young; Lee, Jae Sung; Kang, Hyejin; Kim, Yu Kyeong; Song, In Chan; Lee, Dong Soo; Jeon, Beom Seok

    2015-01-01

    The aim of this study was to determine the changes in diffusion-tensor images associated with medication-related impulse control disorder (ICD) in Parkinson's disease (PD) patients undergoing chronic dopamine-replacement therapy. Nineteen PD patients, comprising 10 with ICD (PD-ICD) and 9 without ICD (PD-nonICD), and 18 age-matched healthy controls (HCs) with no cognitive or other psychiatric disorders were analyzed. All subjects underwent 3-T magnetic resonance diffusion-tensor imaging. For all PD patients, clinical data on PD duration, antiparkinsonian medication dosages, Unified Parkinson's Disease Rating Scale and Mini-Mental State Examination were collected. Whole-brain voxel-based measures of fractional anisotropy (FA) and mean diffusivity (MD) were analyzed. In comparison with HCs, the PD-nonICD subjects had low FA at the bilateral orbitofrontal areas. While the PD-ICD subjects exhibited no such difference, their FA was significantly elevated at the anterior corpus callosum. Analysis of FA between the two PD groups revealed that FA in the anterior corpus callosum, right internal capsule posterior limbs, right posterior cingulum, and right thalamic radiations were significantly higher (corrected p<0.05) in the PD-ICD than in the PD-nonICD patients. MD did not differ between the PD-ICD and PD-nonICD groups in any brain regions. The PD-ICD patients appear to have relatively preserved white-matter integrity in the regions involved in reward-related behaviors compared to PD-nonICD patients. Further investigation is required to determine whether the difference in FA between PD-ICD and PD-nonICD patients reflects microstructural differences in the pathological progression of PD or is secondary to ICD.

  2. Psychiatric disorders and traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Marcelo Schwarzbold

    2008-09-01

    Full Text Available Marcelo Schwarzbold1, Alexandre Diaz1, Evandro Tostes Martins2, Armanda Rufino1, Lúcia Nazareth Amante1,3, Maria Emília Thais1, João Quevedo4, Alexandre Hohl1, Marcelo Neves Linhares1,5,6, Roger Walz1,61Núcleo de Pesquisas em Neurologia Clínica e Experimental (NUPNEC, Departamento de Clínica Médica, Hospital Universitário, UFSC, Florianópolis, SC, Brazil; 2Unidade de Terapia Intensiva, Hospital Governador Celso Ramos, Florianópolis, SC, Brazil; 3Departamento de Enfermagem, UFSC, Florianópolis, SC, Brazil; 4Laboratório de Neurociências, UNESC, Criciúma, SC, Brazil; 5Departamento de Cirurgia, Hospital Universitário, UFSC, Florianópolis, SC, Brazil; 6Centro de Cirurgia de Epilepsia de Santa Catarina (CEPESC, Hospital Governador Celso Ramos, Florianópolis, SC, BrazilAbstract: Psychiatric disorders after traumatic brain injury (TBI are frequent. Researches in this area are important for the patients’ care and they may provide hints for the comprehension of primary psychiatric disorders. Here we approach epidemiology, diagnosis, associated factors and treatment of the main psychiatric disorders after TBI. Finally, the present situation of the knowledge in this field is discussed.Keywords: psychiatric disorders, traumatic brain injury, neuropsychiatry, diagnostic, epidemiology, pathophysiology

  3. The economic cost of brain disorders in Europe

    NARCIS (Netherlands)

    Olesen, J.; Gustavsson, A.; Svensson, M.; Wittchen, H.U.; Jonsson, B.; Vos, P.E.; et al.,

    2012-01-01

    BACKGROUND AND PURPOSE: In 2005, we presented for the first time overall estimates of annual costs for brain disorders (mental and neurologic disorders) in Europe. This new report presents updated, more accurate, and comprehensive 2010 estimates for 30 European countries. METHODS: One-year

  4. Eating disorder symptoms and parenting styles.

    Science.gov (United States)

    Haycraft, Emma; Blissett, Jackie

    2010-02-01

    This study aimed to examine associations between symptoms of eating disorders and parenting style, in a non-clinical sample. One hundred and five mothers completed self-report measures of eating disorder symptoms and parenting style. Higher levels of eating disorder symptoms were associated with more authoritarian and permissive parenting styles. Authoritative parenting was not significantly related to eating disorder symptoms. The findings demonstrate that eating disorder symptoms in non-clinical individuals are related to less adaptive parenting styles. These findings have potential implications for clinicians working with mothers with eating disorders. 2009 Elsevier Ltd. All rights reserved.

  5. Functional brain imaging study in patients with anxiety disorders using SPECT

    International Nuclear Information System (INIS)

    Sun Da; Zhan Hongwei; Liu Hongbiao; Li Huichun

    2005-01-01

    Objective: To evaluate the changes of brain function in patients with anxiety disorders. Methods: Regional cerebral perfusion was investigated using SPECT in 65 patients with anxiety disorders dragnosed according to the fourth edition of the diagnostic and statistical manual of mental disorder (DSMTD) criteria and in a matched control group of 21 healthy volunteers. 65 cases of the patients were further divided into: drug treated group (31 patients) and non-drug treated group (34 patients). The mean ages of the patients and the controls were (39.2±26.1) and (34.4±9.7) years, respectively. The severity of the anxiety was assessed using the 17-item Hamilton Anxiety scale (mean: 24.8±5.5 and 24.7±7.5, respectively). After administration of 740-925 MBq 99 Tc m -ethylene cysteinate direct (ECD) brain SPECT image study was performed. For the semi- quantitative analysis of the data, the ratios of the mean counts/pixel in the different cerebral regions of interest (ROI) to that of cerebellum were calculated respectively as a regional perfusion index (RPI). Some patients had a repeated SPECT after three months of treatment. Results: 93.8% (61/65) patients had relative hypoperfusions in some cerebral regions. Compared with the control group, the patients had a significant decrease of regional cerebral blood flow (rCBF) in the bilateral frontal lobes, paralimbic system, temporal lobes and basal ganglia. The course of disease had negatively correlated with the changes of rCBF in both groups of patients. Follow-up SPECT study demonstrated increased rCBF related with the symptomatic improvement. Conclusions: Patients with anxiety disorders had profound dysfunction of the frontal and temporal cortices, and was closely related to the symptom and therapy. 99 Tc m -ECD brain SPECT may offer the most accurate assessment of response to therapy. . (authors)

  6. Binge eating disorder and morbid obesity are associated with lowered mu-opioid receptor availability in the brain.

    Science.gov (United States)

    Joutsa, Juho; Karlsson, Henry K; Majuri, Joonas; Nuutila, Pirjo; Helin, Semi; Kaasinen, Valtteri; Nummenmaa, Lauri

    2018-03-09

    Both morbid obesity and binge eating disorder (BED) have previously been linked with aberrant brain opioid function. Behaviorally these two conditions are however different suggesting also differences in neurotransmitter function. Here we directly compared mu-opioid receptor (MOR) availability between morbidly obese and BED subjects. Seven BED and nineteen morbidly obese (non-BED) patients, and thirty matched control subjects underwent positron emission tomography (PET) with MOR-specific ligand [ 11 C]carfentanil. Both subjects with morbid obesity and BED had widespread reduction in [ 11 C]carfentanil binding compared to control subjects. However, there was no significant difference in brain MOR binding between subjects with morbid obesity and BED. Thus, our results indicate that there is common brain opioid abnormality in behaviorally different eating disorders involving obesity. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Non-neoplastic disorders of the esophagus

    International Nuclear Information System (INIS)

    Hong, Min Ji; Kim, Young Tong

    2013-01-01

    Non-neoplastic disorders of the esophagus include esophagitis, esophageal diverticulum, esophageal injury, foreign body, fistulous formation between the esophagus and the surrounding structures and mucocele. Since these disorders have variable symptoms and radiologic findings, it needs to differentiated from other disorders other than esophageal diseases. Being knowledgeable of CT findings suggest that these disorders can help diagnose non-neoplastic disorders of the esophagus. The purpose of this pictorial essay is to review the CT appearance of non-neoplastic disorders of the esophagus.

  8. Imaging functional and structural brain connectomics in attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Cao, Miao; Shu, Ni; Cao, Qingjiu; Wang, Yufeng; He, Yong

    2014-12-01

    Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopment disorders in childhood. Clinically, the core symptoms of this disorder include inattention, hyperactivity, and impulsivity. Previous studies have documented that these behavior deficits in ADHD children are associated with not only regional brain abnormalities but also changes in functional and structural connectivity among regions. In the past several years, our understanding of how ADHD affects the brain's connectivity has been greatly advanced by mapping topological alterations of large-scale brain networks (i.e., connectomes) using noninvasive neurophysiological and neuroimaging techniques (e.g., electroencephalograph, functional MRI, and diffusion MRI) in combination with graph theoretical approaches. In this review, we summarize the recent progresses of functional and structural brain connectomics in ADHD, focusing on graphic analysis of large-scale brain systems. Convergent evidence suggests that children with ADHD had abnormal small-world properties in both functional and structural brain networks characterized by higher local clustering and lower global integrity, suggesting a disorder-related shift of network topology toward regular configurations. Moreover, ADHD children showed the redistribution of regional nodes and connectivity involving the default-mode, attention, and sensorimotor systems. Importantly, these ADHD-associated alterations significantly correlated with behavior disturbances (e.g., inattention and hyperactivity/impulsivity symptoms) and exhibited differential patterns between clinical subtypes. Together, these connectome-based studies highlight brain network dysfunction in ADHD, thus opening up a new window into our understanding of the pathophysiological mechanisms of this disorder. These works might also have important implications on the development of imaging-based biomarkers for clinical diagnosis and treatment evaluation in ADHD.

  9. Morphometric Brain Abnormalities in Boys with Conduct Disorder

    Science.gov (United States)

    Huebner, Thomas; Vloet, Timo D.; Marx, Ivo; Konrad, Kerstin; Fink, Gereon R.; Herpertz, Sabine C.; Herpertz-Dahlmann, Beate

    2008-01-01

    Conduct disorder (CD) is associated with antisocial personality behavior that violates the basic rights of others. Results, on examining the structural brain aberrations in boys' CD, show that boys with CD and cormobid attention-deficit/hyperactivity disorder showed abnormalities in frontolimbic areas that could contribute to antisocial…

  10. Cannabis use disorders and brain morphology

    NARCIS (Netherlands)

    Lorenzetti, V.; Cousijn, J.; Preedy, V.R.

    2016-01-01

    Cannabis use disorders (CUDs) affect 13.1. million individuals worldwide and represent the most vulnerable portion of regular cannabis users. Neuroanatomical alterations in the brain may mediate the adverse outcomes of CUDs. We reviewed findings from 16 structural neuroimaging studies of gray matter

  11. Narratives reflecting the lived experiences of people with brain disorders: common psychosocial difficulties and determinants.

    Science.gov (United States)

    Hartley, Sally; McArthur, Maggie; Coenen, Michaela; Cabello, Maria; Covelli, Venusia; Roszczynska-Michta, Joanna; Pitkänen, Tuuli; Bickenbach, Jerome; Cieza, Alarcos

    2014-01-01

    People with brain disorders - defined as both, mental disorders and neurological disorders experience a wide range of psychosocial difficulties (PSDs) (e.g., concentrating, maintaining energy levels, and maintaining relationships). Research evidence is required to show that these PSDs are common across brain disorders. To explore and gain deeper understanding of the experiences of people with seven brain disorders (alcohol dependency, depression, epilepsy, multiple sclerosis, Parkinson's disease, schizophrenia, stroke). It examines the common PSDs and their influencing factors. Seventy seven qualitative studies identified in a systematic literature review and qualitative data derived from six focus groups are used to generate first-person narratives representing seven brain disorders. A theory-driven thematic analysis of these narratives identifies the PSDs and their influencing factors for comparison between the seven disorders. First-person narratives illustrate realities for people with brain disorders facilitating a deeper understanding of their every-day life experiences. Thematic analysis serves to highlight the commonalities, both of PSDs, such as loneliness, anger, uncertainty about the future and problems with work activities, and their determinants, such as work opportunities, trusting relationships and access to self-help groups. The strength of the methodology and the narratives is that they provide the opportunity for the reader to empathise with people with brain disorders and facilitate deeper levels of understanding of the complexity of the relationship of PSDs, determinants and facilitators. The latter reflect positive aspects of the lives of people with brain disorders. The result that many PSDs and their influencing factors are common to people with different brain disorders opens up the door to the possibility of using cross-cutting interventions involving different sectors. This strengthens the message that 'a great deal can be done' to improve

  12. Narratives reflecting the lived experiences of people with brain disorders: common psychosocial difficulties and determinants.

    Directory of Open Access Journals (Sweden)

    Sally Hartley

    Full Text Available BACKGROUND: People with brain disorders - defined as both, mental disorders and neurological disorders experience a wide range of psychosocial difficulties (PSDs (e.g., concentrating, maintaining energy levels, and maintaining relationships. Research evidence is required to show that these PSDs are common across brain disorders. OBJECTIVES: To explore and gain deeper understanding of the experiences of people with seven brain disorders (alcohol dependency, depression, epilepsy, multiple sclerosis, Parkinson's disease, schizophrenia, stroke. It examines the common PSDs and their influencing factors. METHODS: Seventy seven qualitative studies identified in a systematic literature review and qualitative data derived from six focus groups are used to generate first-person narratives representing seven brain disorders. A theory-driven thematic analysis of these narratives identifies the PSDs and their influencing factors for comparison between the seven disorders. RESULTS: First-person narratives illustrate realities for people with brain disorders facilitating a deeper understanding of their every-day life experiences. Thematic analysis serves to highlight the commonalities, both of PSDs, such as loneliness, anger, uncertainty about the future and problems with work activities, and their determinants, such as work opportunities, trusting relationships and access to self-help groups. CONCLUSIONS: The strength of the methodology and the narratives is that they provide the opportunity for the reader to empathise with people with brain disorders and facilitate deeper levels of understanding of the complexity of the relationship of PSDs, determinants and facilitators. The latter reflect positive aspects of the lives of people with brain disorders. The result that many PSDs and their influencing factors are common to people with different brain disorders opens up the door to the possibility of using cross-cutting interventions involving different sectors

  13. Altered blood-brain barrier transport in neuro-inflammatory disorders.

    Science.gov (United States)

    Schenk, Geert J; de Vries, Helga E

    2016-06-01

    During neurodegenerative and neuroinflammatory disorders of the central nervous system (CNS), such as Alzheimer's disease (AD) and multiple sclerosis (MS), the protective function of the blood-brain barrier (BBB) may be severely impaired. The general neuro-inflammatory response, ranging from activation of glial cells to immune cell infiltration that is frequently associated with such brain diseases may underlie the loss of the integrity and function of the BBB. Consequentially, the delivery and disposition of drugs to the brain will be altered and may influence the treatment efficiency of such diseases. Altered BBB transport of drugs into the CNS during diseases may be the result of changes in both specific transport and non-specific transport pathways. Potential alterations in transport routes like adsorptive mediated endocytosis and receptor-mediated endocytosis may affect drug delivery to the brain. As such, drugs that normally are unable to traverse the BBB may reach their target in the diseased brain due to increased permeability. In contrast, the delivery of (targeted) drugs could be hampered during inflammatory conditions due to disturbed transport mechanisms. Therefore, the inventory of the neuro-inflammatory status of the neurovasculature (or recovery thereof) is of utmost importance in choosing and designing an adequate drug targeting strategy under disease conditions. Within this review we will briefly discuss how the function of the BBB can be affected during disease and how this may influence the delivery of drugs into the diseased CNS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Comparisons of Korsakoff and Non-Korsakoff Alcoholics on Neuropsychological Tests of Prefrontal Brain Functioning

    Science.gov (United States)

    Oscar-Berman, Marlene; Kirkley, Shalene M.; Gansler, David A.; Couture, Ashley

    2014-01-01

    Background Evidence suggests that alcoholics exhibit particular deficits in brain systems involving the prefrontal cortex, but few studies have directly compared patients with and without Korsakoff’s syndrome on measures of prefrontal integrity. Methods Neuropsychological tasks sensitive to dysfunction of frontal brain systems were administered, along with standard tests of memory, intelligence, and visuospatial abilities, to 50 healthy, abstinent, nonamnesic alcoholics, 6 patients with alcohol-induced persisting amnestic disorder (Korsakoff’s syndrome), 6 brain-damaged controls with right hemisphere lesions, and 82 healthy nonalcoholic controls. Results Korsakoff patients were impaired on tests of memory, fluency, cognitive flexibility, and perseveration. Non-Korsakoff alcoholics showed some frontal system deficits as well, but these were mild. Cognitive deficits in non-Korsakoff alcoholics were related to age, duration of abstinence (less than 5 years), duration of abuse (more than 20 years), and amount of alcohol intake. Conclusions Abnormalities of frontal system functioning are most apparent in alcoholics with Korsakoff’s syndrome. In non-Korsakoff alcoholics, factors contributing to cognitive performance are age, duration of abstinence, duration of alcoholism, and amount of alcohol consumed. PMID:15100620

  15. Non-FDG PET imaging of brain tumors

    Institute of Scientific and Technical Information of China (English)

    HUANG Zemin; GUAN Yihui; ZUO Chuantao; ZHANG Zhengwei; XUE Fangping; LIN Xiangtong

    2007-01-01

    Due to relatively high uptake of glucose in the brain cortex, the use of FDG PET imaging is greatly limited in brain tumor imaging, especially for low-grade gliomas and some metastatic tumours. More and more tracers with higher specificity were developed lately for brain tumor imaging. There are 3 main types of non-FDG PET tracers:amino acid tracers, choline tracers and nucleic acid tracers. These tracers are now widely applied in many aspects of brain tumor imaging. This article summarized the general use of non-FDG PET in different aspects of brain tumor imaging.

  16. Altered brain structural networks in attention deficit/hyperactivity disorder children revealed by cortical thickness.

    Science.gov (United States)

    Liu, Tian; Chen, Yanni; Li, Chenxi; Li, Youjun; Wang, Jue

    2017-07-04

    This study investigated the cortical thickness and topological features of human brain anatomical networks related to attention deficit/hyperactivity disorder. Data were collected from 40 attention deficit/hyperactivity disorder children and 40 normal control children. Interregional correlation matrices were established by calculating the correlations of cortical thickness between all pairs of cortical regions (68 regions) of the whole brain. Further thresholds were applied to create binary matrices to construct a series of undirected and unweighted graphs, and global, local, and nodal efficiencies were computed as a function of the network cost. These experimental results revealed abnormal cortical thickness and correlations in attention deficit/hyperactivity disorder, and showed that the brain structural networks of attention deficit/hyperactivity disorder subjects had inefficient small-world topological features. Furthermore, their topological properties were altered abnormally. In particular, decreased global efficiency combined with increased local efficiency in attention deficit/hyperactivity disorder children led to a disorder-related shift of the network topological structure toward regular networks. In addition, nodal efficiency, cortical thickness, and correlation analyses revealed that several brain regions were altered in attention deficit/hyperactivity disorder patients. These findings are in accordance with a hypothesis of dysfunctional integration and segregation of the brain in patients with attention deficit/hyperactivity disorder and provide further evidence of brain dysfunction in attention deficit/hyperactivity disorder patients by observing cortical thickness on magnetic resonance imaging.

  17. Control over Permissible Short Emergency Overloads in Power Transformers

    Directory of Open Access Journals (Sweden)

    V. A. Anischenko

    2010-01-01

    Full Text Available The paper proposes a method for determination a permissible duration of short intermittent overloads of power transformers that permits to avoid non-permissible over-heating of winding insulation and fully utilize overloading transformer ability.

  18. Functional brain correlates of motor response inhibition in children with developmental coordination disorder and attention deficit/hyperactivity disorder.

    Science.gov (United States)

    Thornton, Siobhan; Bray, Signe; Langevin, Lisa Marie; Dewey, Deborah

    2018-06-01

    Motor impairment is associated with developmental coordination disorder (DCD), and to a lesser extent with attention-deficit/hyperactivity disorder (ADHD). Previous functional imaging studies investigated children with DCD or ADHD only; however, these two disorders co-occur in up to 50% of cases, suggesting that similar neural correlates are associated with these disorders. This study compared functional brain activation in children and adolescents (age range 8-17, M = 11.73, SD = 2.88) with DCD (n = 9), ADHD (n = 20), co-occurring DCD and ADHD (n = 18) and typically developing (TD) controls (n = 20). When compared to TD controls, children with co-occurring DCD/ADHD showed decreased activation during response inhibition in primary motor and sensory cortices. These findings suggest that children with co-occurring DCD and ADHD display significant functional changes in brain activation that could interfere with inhibition of erroneous motor responses. In contrast to previous studies, significant alterations in brain activation relative to TD controls, were not found in children with isolated DCD or ADHD. These findings highlight the importance of considering co-occurring disorders when investigating brain function in children with neurodevelopmental disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Systems Nutrigenomics Reveals Brain Gene Networks Linking Metabolic and Brain Disorders.

    Science.gov (United States)

    Meng, Qingying; Ying, Zhe; Noble, Emily; Zhao, Yuqi; Agrawal, Rahul; Mikhail, Andrew; Zhuang, Yumei; Tyagi, Ethika; Zhang, Qing; Lee, Jae-Hyung; Morselli, Marco; Orozco, Luz; Guo, Weilong; Kilts, Tina M; Zhu, Jun; Zhang, Bin; Pellegrini, Matteo; Xiao, Xinshu; Young, Marian F; Gomez-Pinilla, Fernando; Yang, Xia

    2016-05-01

    Nutrition plays a significant role in the increasing prevalence of metabolic and brain disorders. Here we employ systems nutrigenomics to scrutinize the genomic bases of nutrient-host interaction underlying disease predisposition or therapeutic potential. We conducted transcriptome and epigenome sequencing of hypothalamus (metabolic control) and hippocampus (cognitive processing) from a rodent model of fructose consumption, and identified significant reprogramming of DNA methylation, transcript abundance, alternative splicing, and gene networks governing cell metabolism, cell communication, inflammation, and neuronal signaling. These signals converged with genetic causal risks of metabolic, neurological, and psychiatric disorders revealed in humans. Gene network modeling uncovered the extracellular matrix genes Bgn and Fmod as main orchestrators of the effects of fructose, as validated using two knockout mouse models. We further demonstrate that an omega-3 fatty acid, DHA, reverses the genomic and network perturbations elicited by fructose, providing molecular support for nutritional interventions to counteract diet-induced metabolic and brain disorders. Our integrative approach complementing rodent and human studies supports the applicability of nutrigenomics principles to predict disease susceptibility and to guide personalized medicine. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. MR spectroscopy in metabolic disorders of the brain; MR-Spektroskopie bei Stoffwechselerkrankungen des Gehirns

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, U. [Universitaetsklinikum des Saarlandes, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Homburg/Saar (Germany)

    2017-06-15

    Metabolic disorders of the brain often present a particular challenge for the neuroradiologist, since the disorders are rare, changes on conventional MR are often non-specific and there are numerous differential diagnoses for the white substance lesions. As a complementary method to conventional brain MRI, MR spectroscopy may help to reduce the scope of the differential diagnosis. Entities with specific MR spectroscopy patterns are Canavan disease, maple syrup urine disease, nonketotic hyperglycinemia and creatine deficiency. (orig.) [German] Die Diagnostik metabolischer Erkrankungen des Gehirns stellt eine besondere Herausforderung in der Neuroradiologie dar, da die Erkrankungen insgesamt selten, die bildmorphologischen Befunde haeufig unspezifisch sind und es eine Vielzahl von Differenzialdiagnosen fuer die Veraenderungen der weissen Substanz gibt. Als zusaetzliche Technik kann die MR-Spektroskopie bei Stoffwechselerkrankungen helfen, die Diagnose einzugrenzen. Krankheitsentitaeten, die spezifische Veraenderungen in der Spektroskopie aufweisen, sind der Morbus Canavan, die Ahornsirupkrankheit, die nichtketotische Hyperglyzinaemie und Kreatinmangelsyndrome. (orig.)

  1. Neurodevelopmental disorders in children born to mothers with systemic lupus erythematosus.

    Science.gov (United States)

    Vinet, É; Pineau, C A; Clarke, A E; Fombonne, É; Platt, R W; Bernatsky, S

    2014-10-01

    Children born to women with systemic lupus erythematosus seem to have a potentially increased risk of neurodevelopmental disorders compared to children born to healthy women. Recent experimental data suggest in utero exposure to maternal antibodies and cytokines as important risk factors for neurodevelopmental disorders. Interestingly, women with systemic lupus erythematosus display high levels of autoantibodies and cytokines, which have been shown, in animal models, to alter fetal brain development and induce behavioral anomalies in offspring. Furthermore, subjects with systemic lupus erythematosus and neurodevelopmental disorders share a common genetic predisposition, which could impair the fetal immune response to in utero immunologic insults. Moreover, systemic lupus erythematosus pregnancies are at increased risk of adverse obstetrical outcomes and medication exposures, which have been implicated as potential risk factors for neurodevelopmental disorders. In this article, we review the current state of knowledge on neurodevelopmental disorders and their potential determinants in systemic lupus erythematosus offspring. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  2. Non-invasive brain-to-brain interface (BBI: establishing functional links between two brains.

    Directory of Open Access Journals (Sweden)

    Seung-Schik Yoo

    Full Text Available Transcranial focused ultrasound (FUS is capable of modulating the neural activity of specific brain regions, with a potential role as a non-invasive computer-to-brain interface (CBI. In conjunction with the use of brain-to-computer interface (BCI techniques that translate brain function to generate computer commands, we investigated the feasibility of using the FUS-based CBI to non-invasively establish a functional link between the brains of different species (i.e. human and Sprague-Dawley rat, thus creating a brain-to-brain interface (BBI. The implementation was aimed to non-invasively translate the human volunteer's intention to stimulate a rat's brain motor area that is responsible for the tail movement. The volunteer initiated the intention by looking at a strobe light flicker on a computer display, and the degree of synchronization in the electroencephalographic steady-state-visual-evoked-potentials (SSVEP with respect to the strobe frequency was analyzed using a computer. Increased signal amplitude in the SSVEP, indicating the volunteer's intention, triggered the delivery of a burst-mode FUS (350 kHz ultrasound frequency, tone burst duration of 0.5 ms, pulse repetition frequency of 1 kHz, given for 300 msec duration to excite the motor area of an anesthetized rat transcranially. The successful excitation subsequently elicited the tail movement, which was detected by a motion sensor. The interface was achieved at 94.0±3.0% accuracy, with a time delay of 1.59±1.07 sec from the thought-initiation to the creation of the tail movement. Our results demonstrate the feasibility of a computer-mediated BBI that links central neural functions between two biological entities, which may confer unexplored opportunities in the study of neuroscience with potential implications for therapeutic applications.

  3. Toward valid and reliable brain imaging results in eating disorders.

    Science.gov (United States)

    Frank, Guido K W; Favaro, Angela; Marsh, Rachel; Ehrlich, Stefan; Lawson, Elizabeth A

    2018-03-01

    Human brain imaging can help improve our understanding of mechanisms underlying brain function and how they drive behavior in health and disease. Such knowledge may eventually help us to devise better treatments for psychiatric disorders. However, the brain imaging literature in psychiatry and especially eating disorders has been inconsistent, and studies are often difficult to replicate. The extent or severity of extremes of eating and state of illness, which are often associated with differences in, for instance hormonal status, comorbidity, and medication use, commonly differ between studies and likely add to variation across study results. Those effects are in addition to the well-described problems arising from differences in task designs, data quality control procedures, image data preprocessing and analysis or statistical thresholds applied across studies. Which of those factors are most relevant to improve reproducibility is still a question for debate and further research. Here we propose guidelines for brain imaging research in eating disorders to acquire valid results that are more reliable and clinically useful. © 2018 Wiley Periodicals, Inc.

  4. Anticipation-related brain connectivity in bipolar and unipolar depression: a graph theory approach.

    Science.gov (United States)

    Manelis, Anna; Almeida, Jorge R C; Stiffler, Richelle; Lockovich, Jeanette C; Aslam, Haris A; Phillips, Mary L

    2016-09-01

    Bipolar disorder is often misdiagnosed as major depressive disorder, which leads to inadequate treatment. Depressed individuals versus healthy control subjects, show increased expectation of negative outcomes. Due to increased impulsivity and risk for mania, however, depressed individuals with bipolar disorder may differ from those with major depressive disorder in neural mechanisms underlying anticipation processes. Graph theory methods for neuroimaging data analysis allow the identification of connectivity between multiple brain regions without prior model specification, and may help to identify neurobiological markers differentiating these disorders, thereby facilitating development of better therapeutic interventions. This study aimed to compare brain connectivity among regions involved in win/loss anticipation in depressed individuals with bipolar disorder (BDD) versus depressed individuals with major depressive disorder (MDD) versus healthy control subjects using graph theory methods. The study was conducted at the University of Pittsburgh Medical Center and included 31 BDD, 39 MDD, and 36 healthy control subjects. Participants were scanned while performing a number guessing reward task that included the periods of win and loss anticipation. We first identified the anticipatory network across all 106 participants by contrasting brain activation during all anticipation periods (win anticipation + loss anticipation) versus baseline, and win anticipation versus loss anticipation. Brain connectivity within the identified network was determined using the Independent Multiple sample Greedy Equivalence Search (IMaGES) and Linear non-Gaussian Orientation, Fixed Structure (LOFS) algorithms. Density of connections (the number of connections in the network), path length, and the global connectivity direction ('top-down' versus 'bottom-up') were compared across groups (BDD/MDD/healthy control subjects) and conditions (win/loss anticipation). These analyses showed that

  5. Peripheral blood brain-derived neurotrophic factor in bipolar disorder

    DEFF Research Database (Denmark)

    Munkholm, K; Vinberg, M; Kessing, L V

    2016-01-01

    Peripheral blood brain-derived neurotrophic factor (BDNF) has been proposed as a potential biomarker related to disease activity and neuroprogression in bipolar disorder, speculated to mirror alterations in brain expression of BDNF. The research area is rapidly evolving; however, recent...... investigations have yielded conflicting results with substantial variation in outcomes, highlighting the need to critically assess the state of current evidence. The aims of the study were to investigate differences in peripheral blood BDNF concentrations between bipolar disorder patients and healthy control...... subjects and between affective states in bipolar disorder patients, including assessment of the effect of treatment of acute episodes on BDNF levels. A systematic review of English language studies without considering publication status was conducted in PubMed (January 1950-November 2014), Embase (1974...

  6. Diffusion Magnetic Resonance Imaging Patterns in Metabolic and Toxic Brain Disorders

    Energy Technology Data Exchange (ETDEWEB)

    Sener, R.N. [Ege Univ. Hospital, Bornova, Izmir (Turkey). Dept. of Radiology

    2004-08-01

    Purpose: To evaluate metabolic and toxic brain disorders that manifest with restricted, elevated, or both restricted and elevated diffusion patterns on diffusion magnetic resonance imaging (MRI). Material and Methods: Echo-planar diffusion MRI examinations were obtained in 34 pediatric patients with metabolic and toxic brain disorders proved by appropriate laboratory studies. The MRI unit operated at 1.5T with a gradient strength of 30 mT/meter, and a rise time of 600 s. b=1000 s/mm{sup 2} images and apparent diffusion coefficient (ADC) maps with ADC values were studied. Results: Three patterns were observed: 1. A restricted diffusion pattern (high signal on b=1000 s/mm{sup 2} images and low ADC values); 2. an elevated diffusion pattern (normal signal on b=1000 s/mm2 images and high ADC values); and 3. a mixed pattern (coexistent restricted and increased diffusion patterns in the same patient). Disorders manifesting with a restricted diffusion pattern included metachromatic leukodystrophy (n=2), phenylketonuria (n=3), maple syrup urine disease (intermediate form) (n=1), infantile neuroaxonal dystrophy (n=1), Leigh (n=2), Wilson (n=3), and Canavan disease (n=1). Disorders with an elevated diffusion pattern included phenylketonuria (n=1), adrenoleukodystrophy (n=1), merosin-deficient congenital muscular dystrophy (n=2), mucopolysaccharidosis (n=2), Lowe syndrome (n=1), Leigh (n=2), Alexander (n=1), Pelizaeus-Merzbacher (n=1), and Wilson (n=3) disease. Disorders with a mixed pattern included L-2 hydroxyglutaric aciduria (n=2), non-ketotic hyperglycinemia (n=1), infantile neuroaxonal dystrophy (n=2), maple syrup urine disease (n=1), and Leigh (n=1) disease. Conclusion: The findings suggested that the three different diffusion patterns reflect the histopathological changes associated with the disorders and different stages of a particular disorder. It is likely that the restricted diffusion pattern corresponds to abnormalities related to myelin, and the elevated

  7. Diffusion Magnetic Resonance Imaging Patterns in Metabolic and Toxic Brain Disorders

    International Nuclear Information System (INIS)

    Sener, R.N.

    2004-01-01

    Purpose: To evaluate metabolic and toxic brain disorders that manifest with restricted, elevated, or both restricted and elevated diffusion patterns on diffusion magnetic resonance imaging (MRI). Material and Methods: Echo-planar diffusion MRI examinations were obtained in 34 pediatric patients with metabolic and toxic brain disorders proved by appropriate laboratory studies. The MRI unit operated at 1.5T with a gradient strength of 30 mT/meter, and a rise time of 600 s. b=1000 s/mm 2 images and apparent diffusion coefficient (ADC) maps with ADC values were studied. Results: Three patterns were observed: 1. A restricted diffusion pattern (high signal on b=1000 s/mm 2 images and low ADC values); 2. an elevated diffusion pattern (normal signal on b=1000 s/mm2 images and high ADC values); and 3. a mixed pattern (coexistent restricted and increased diffusion patterns in the same patient). Disorders manifesting with a restricted diffusion pattern included metachromatic leukodystrophy (n=2), phenylketonuria (n=3), maple syrup urine disease (intermediate form) (n=1), infantile neuroaxonal dystrophy (n=1), Leigh (n=2), Wilson (n=3), and Canavan disease (n=1). Disorders with an elevated diffusion pattern included phenylketonuria (n=1), adrenoleukodystrophy (n=1), merosin-deficient congenital muscular dystrophy (n=2), mucopolysaccharidosis (n=2), Lowe syndrome (n=1), Leigh (n=2), Alexander (n=1), Pelizaeus-Merzbacher (n=1), and Wilson (n=3) disease. Disorders with a mixed pattern included L-2 hydroxyglutaric aciduria (n=2), non-ketotic hyperglycinemia (n=1), infantile neuroaxonal dystrophy (n=2), maple syrup urine disease (n=1), and Leigh (n=1) disease. Conclusion: The findings suggested that the three different diffusion patterns reflect the histopathological changes associated with the disorders and different stages of a particular disorder. It is likely that the restricted diffusion pattern corresponds to abnormalities related to myelin, and the elevated diffusion pattern

  8. Single Subject Prediction of Brain Disorders in Neuroimaging: Promises and Pitfalls

    Science.gov (United States)

    Arbabshirani, Mohammad R.; Plis, Sergey; Sui, Jing; Calhoun, Vince D.

    2016-01-01

    Neuroimaging-based single subject prediction of brain disorders has gained increasing attention in recent years. Using a variety of neuroimaging modalities such as structural, functional and diffusion MRI, along with machine learning techniques, hundreds of studies have been carried out for accurate classification of patients with heterogeneous mental and neurodegenerative disorders such as schizophrenia and Alzheimer's disease. More than 500 studies have been published during the past quarter century on single subject prediction focused on a multiple brain disorders. In the first part of this study, we provide a survey of more than 200 reports in this field with a focus on schizophrenia, mild cognitive impairment (MCI), Alzheimer's disease (AD), depressive disorders, autism spectrum disease (ASD) and attention-deficit hyperactivity disorder (ADHD). Detailed information about those studies such as sample size, type and number of extracted features and reported accuracy are summarized and discussed. To our knowledge, this is by far the most comprehensive review of neuroimaging-based single subject prediction of brain disorders. In the second part, we present our opinion on major pitfalls of those studies from a machine learning point of view. Common biases are discussed and suggestions are provided. Moreover, emerging trends such as decentralized data sharing, multimodal brain imaging, differential diagnosis, disease subtype classification and deep learning are also discussed. Based on this survey, there are extensive evidences showing the great potential of neuroimaging data for single subject prediction of various disorders. However, the main bottleneck of this exciting field is still the limited sample size, which could be potentially addressed by modern data sharing models such as the ones discussed in this paper. Emerging big data technologies and advanced data-intensive machine learning methodologies such as deep learning have coincided with an increasing need

  9. Abnormal early brain responses during visual search are evident in schizophrenia but not bipolar affective disorder.

    Science.gov (United States)

    VanMeerten, Nicolaas J; Dubke, Rachel E; Stanwyck, John J; Kang, Seung Suk; Sponheim, Scott R

    2016-01-01

    People with schizophrenia show deficits in processing visual stimuli but neural abnormalities underlying the deficits are unclear and it is unknown whether such functional brain abnormalities are present in other severe mental disorders or in individuals who carry genetic liability for schizophrenia. To better characterize brain responses underlying visual search deficits and test their specificity to schizophrenia we gathered behavioral and electrophysiological responses during visual search (i.e., Span of Apprehension [SOA] task) from 38 people with schizophrenia, 31 people with bipolar disorder, 58 biological relatives of people with schizophrenia, 37 biological relatives of people with bipolar disorder, and 65 non-psychiatric control participants. Through subtracting neural responses associated with purely sensory aspects of the stimuli we found that people with schizophrenia exhibited reduced early posterior task-related neural responses (i.e., Span Endogenous Negativity [SEN]) while other groups showed normative responses. People with schizophrenia exhibited longer reaction times than controls during visual search but nearly identical accuracy. Those individuals with schizophrenia who had larger SENs performed more efficiently (i.e., shorter reaction times) on the SOA task suggesting that modulation of early visual cortical responses facilitated their visual search. People with schizophrenia also exhibited a diminished P300 response compared to other groups. Unaffected first-degree relatives of people with bipolar disorder and schizophrenia showed an amplified N1 response over posterior brain regions in comparison to other groups. Diminished early posterior brain responses are associated with impaired visual search in schizophrenia and appear to be specifically associated with the neuropathology of schizophrenia. Published by Elsevier B.V.

  10. The size and burden of mental disorders and other disorders of the brain in Europe 2010.

    Science.gov (United States)

    Wittchen, H U; Jacobi, F; Rehm, J; Gustavsson, A; Svensson, M; Jönsson, B; Olesen, J; Allgulander, C; Alonso, J; Faravelli, C; Fratiglioni, L; Jennum, P; Lieb, R; Maercker, A; van Os, J; Preisig, M; Salvador-Carulla, L; Simon, R; Steinhausen, H-C

    2011-09-01

    , early retirement and treatment rates due to mental disorders, rates in the community have not increased with a few exceptions (i.e. dementia). There were also no consistent indications of improvements with regard to low treatment rates, delayed treatment provision and grossly inadequate treatment. Disability: Disorders of the brain and mental disorders in particular, contribute 26.6% of the total all cause burden, thus a greater proportion as compared to other regions of the world. The rank order of the most disabling diseases differs markedly by gender and age group; overall, the four most disabling single conditions were: depression, dementias, alcohol use disorders and stroke. In every year over a third of the total EU population suffers from mental disorders. The true size of "disorders of the brain" including neurological disorders is even considerably larger. Disorders of the brain are the largest contributor to the all cause morbidity burden as measured by DALY in the EU. No indications for increasing overall rates of mental disorders were found nor of improved care and treatment since 2005; less than one third of all cases receive any treatment, suggesting a considerable level of unmet needs. We conclude that the true size and burden of disorders of the brain in the EU was significantly underestimated in the past. Concerted priority action is needed at all levels, including substantially increased funding for basic, clinical and public health research in order to identify better strategies for improved prevention and treatment for disorders of the brain as the core health challenge of the 21st century. Copyright © 2011. Published by Elsevier B.V.

  11. Primary Human Placental Trophoblasts are Permissive for Zika Virus (ZIKV) Replication.

    Science.gov (United States)

    Aagaard, Kjersti M; Lahon, Anismrita; Suter, Melissa A; Arya, Ravi P; Seferovic, Maxim D; Vogt, Megan B; Hu, Min; Stossi, Fabio; Mancini, Michael A; Harris, R Alan; Kahr, Maike; Eppes, Catherine; Rac, Martha; Belfort, Michael A; Park, Chun Shik; Lacorazza, Daniel; Rico-Hesse, Rebecca

    2017-01-27

    Zika virus (ZIKV) is an emerging mosquito-borne (Aedes genus) arbovirus of the Flaviviridae family. Although ZIKV has been predominately associated with a mild or asymptomatic dengue-like disease, its appearance in the Americas has been accompanied by a multi-fold increase in reported incidence of fetal microcephaly and brain malformations. The source and mode of vertical transmission from mother to fetus is presumptively transplacental, although a causal link explaining the interval delay between maternal symptoms and observed fetal malformations following infection has been missing. In this study, we show that primary human placental trophoblasts from non-exposed donors (n = 20) can be infected by primary passage ZIKV-FLR isolate, and uniquely allowed for ZIKV viral RNA replication when compared to dengue virus (DENV). Consistent with their being permissive for ZIKV infection, primary trophoblasts expressed multiple putative ZIKV cell entry receptors, and cellular function and differentiation were preserved. These findings suggest that ZIKV-FLR strain can replicate in human placental trophoblasts without host cell destruction, thereby serving as a likely permissive reservoir and portal of fetal transmission with risk of latent microcephaly and malformations.

  12. Concepts and strategies for clinical management of blast-induced traumatic brain injury and posttraumatic stress disorder.

    Science.gov (United States)

    Chen, Yun; Huang, Wei; Constantini, Shlomi

    2013-01-01

    After exposure of the human body to blast, kinetic energy of the blast shock waves might be transferred into hydraulic energy in the cardiovascular system to cause a rapid physical movement or displacement of blood (a volumetric blood surge). The volumetric blood surge moves through blood vessels from the high-pressure body cavity to the low-pressure cranial cavity, causing damage to tiny cerebral blood vessels and the blood-brain barrier (BBB). Large-scale cerebrovascular insults and BBB damage that occur globally throughout the brain may be the main causes of non-impact, blast-induced brain injuries, including the spectrum of traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD). The volumetric blood surge may be a major contributor not only to blast-induced brain injuries resulting from physical trauma, but may also be the trigger to psychiatric disorders resulting from emotional and psychological trauma. Clinical imaging technologies, which are able to detect tiny cerebrovascular insults, changes in blood flow, and cerebral edema, may help diagnose both TBI and PTSD in the victims exposed to blasts. Potentially, prompt medical treatment aiming at prevention of secondary neuronal damage may slow down or even block the cascade of events that lead to progressive neuronal damage and subsequent long-term neurological and psychiatric impairment.

  13. Brain Abnormalities in Neuromyelitis Optica Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Woojun Kim

    2012-01-01

    Full Text Available Neuromyelitis optica (NMO is an idiopathic inflammatory syndrome of the central nervous system that is characterized by severe attacks of optic neuritis (ON and myelitis. Until recently, NMO was considered a disease without brain involvement. However, since the discovery of NMO-IgG/antiaqaporin-4 antibody, the concept of NMO was broadened to NMO spectrum disorder (NMOSD, and brain lesions are commonly recognized. Furthermore, some patients present with brain symptoms as their first manifestation and develop recurrent brain symptoms without ON or myelitis. Brain lesions with characteristic locations and configurations can be helpful in the diagnosis of NMOSD. Due to the growing recognition of brain abnormalities in NMOSD, these have been included in the NMO and NMOSD diagnostic criteria or guidelines. Recent technical developments such as diffusion tensor imaging, MR spectroscopy, and voxel-based morphometry reveal new findings related to brain abnormalities in NMOSD that were not identified using conventional MRI. This paper focuses on the incidence and characteristics of the brain lesions found in NMOSD and the symptoms that they cause. Recent studies using advanced imaging techniques are also introduced.

  14. [Brain imaging in autism spectrum disorders. A review].

    Science.gov (United States)

    Dziobek, I; Köhne, S

    2011-05-01

    In the past two decades, an increasing number of functional and structural brain imaging studies has provided insights into the neurobiological basis of autism spectrum disorders (ASD). This article summarizes pertinent functional brain imaging studies addressing the neuronal underpinnings of ASD symptomatology (impairments in social interaction and communication, repetitive and restrictive behavior) and associated neuropsychological deficits (theory of mind, executive functions, central coherence), complemented by relevant structural imaging findings. The results of these studies show that although cognitive functions in ASD are generally mediated by the same brain regions as in typically developed individuals, the degree and especially the patterns of brain activation often differ. Therefore, a hypothesis of aberrant network connectivity has increasingly been favored over one of focal brain dysfunction.

  15. Comparison of brain volume abnormalities between ADHD and conduct disorder in adolescence

    Science.gov (United States)

    Stevens, Michael C.; Haney-Caron, Emily

    2012-01-01

    Background Previous studies of brain structure abnormalities in conduct disorder and attention-deficit/hyperactivity disorder (ADHD) samples have been limited owing to cross-comorbidity, preventing clear understanding of which structural brain abnormalities might be specific to or shared by each disorder. To our knowledge, this study was the first direct comparison of grey and white matter volumes in diagnostically “pure” (i.e., no comorbidities) conduct disorder and ADHD samples. Methods Groups of adolescents with noncormobid conduct disorder and with noncomorbid, combined-subtype ADHD were compared with age- and sex-matched controls using DARTEL voxel-based analysis of T1-weighted brain structure images. Analysis of variance with post hoc analyses compared whole brain grey and white matter volumes among the groups. Results We included 24 adolescents in each study group. There was an overall 13% reduction in grey matter volume in adolescents with conduct disorder, reflecting numerous frontal, temporal, parietal and subcortical deficits. The same grey matter regions typically were not abnormal in those with ADHD. Deficits in frontal lobe regions previously identified in studies of patients with ADHD either were not detected, or group differences from controls were not as strong as those between the conduct disorder and control groups. White matter volume measurements did not differentiate conduct disorder and ADHD. Limitations Our modest sample sizes prevented meaningful examination of individual features of ADHD or conduct disorder, such as aggression, callousness, or hyperactive versus inattentive symptom subtypes. Conclusion The evidence supports theories of frontotemporal abnormalities in adolescents with conduct disorder, but raises questions about the prominence of frontal lobe and striatal structural abnormalities in those with noncomorbid, combined-subtype ADHD. The latter point is clinically important, given the widely held belief that ADHD is

  16. Sex differences in the brain, behavior, and neuropsychiatric disorders

    NARCIS (Netherlands)

    Bao, Ai-Min; Swaab, Dick F.

    2010-01-01

    Sex differences in the brain are reflected in behavior and in the risk for neuropsychiatric disorders. The fetal brain develops in the male direction due to a direct effect of testosterone on the developing neurons, or in the female direction due to the absence of such a testosterone surge. Because

  17. Healthy brain connectivity predicts atrophy progression in non-fluent variant of primary progressive aphasia.

    Science.gov (United States)

    Mandelli, Maria Luisa; Vilaplana, Eduard; Brown, Jesse A; Hubbard, H Isabel; Binney, Richard J; Attygalle, Suneth; Santos-Santos, Miguel A; Miller, Zachary A; Pakvasa, Mikhail; Henry, Maya L; Rosen, Howard J; Henry, Roland G; Rabinovici, Gil D; Miller, Bruce L; Seeley, William W; Gorno-Tempini, Maria Luisa

    2016-10-01

    longitudinal grey matter changes in the non-fluent/agrammatic variant of primary progressive aphasia. Graph theoretical analysis of the speech/language network showed that regions with shorter functional paths to the epicentre exhibited greater longitudinal atrophy. The network contained three modules, including a left inferior frontal gyrus/supplementary motor area, which was most strongly connected with the epicentre. The aslant tract was the white matter pathway connecting these two regions and showed the most significant correlation between fractional anisotropy and white matter longitudinal atrophy changes. This study showed that the pattern of longitudinal atrophy progression in the non-fluent/agrammatic variant of primary progressive aphasia relates to the strength of connectivity in pre-determined functional and structural large-scale speech production networks. These findings support the hypothesis that the spread of neurodegeneration occurs by following specific anatomical and functional neuronal network architectures. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Electroconvulsive therapy-induced brain plasticity determines therapeutic outcome in mood disorders

    Science.gov (United States)

    Dukart, Juergen; Regen, Francesca; Kherif, Ferath; Colla, Michael; Bajbouj, Malek; Heuser, Isabella; Frackowiak, Richard S.; Draganski, Bogdan

    2014-01-01

    There remains much scientific, clinical, and ethical controversy concerning the use of electroconvulsive therapy (ECT) for psychiatric disorders stemming from a lack of information and knowledge about how such treatment might work, given its nonspecific and spatially unfocused nature. The mode of action of ECT has even been ascribed to a “barbaric” form of placebo effect. Here we show differential, highly specific, spatially distributed effects of ECT on regional brain structure in two populations: patients with unipolar or bipolar disorder. Unipolar and bipolar disorders respond differentially to ECT and the associated local brain-volume changes, which occur in areas previously associated with these diseases, correlate with symptom severity and the therapeutic effect. Our unique evidence shows that electrophysical therapeutic effects, although applied generally, take on regional significance through interactions with brain pathophysiology. PMID:24379394

  19. Comparison of Regional Brain Perfusion Levels in Chronically Smoking and Non-Smoking Adults

    Directory of Open Access Journals (Sweden)

    Timothy C. Durazzo

    2015-07-01

    Full Text Available Chronic cigarette smoking is associated with numerous abnormalities in brain neurobiology, but few studies specifically investigated the chronic effects of smoking (compared to the acute effects of smoking, nicotine administration, or nicotine withdrawal on cerebral perfusion (i.e., blood flow. Predominately middle-aged male (47 ± 11 years of age smokers (n = 34 and non-smokers (n = 27 were compared on regional cortical perfusion measured by continuous arterial spin labeling magnetic resonance studies at 4 Tesla. Smokers showed significantly lower perfusion than non-smokers in the bilateral medial and lateral orbitofrontal cortices, bilateral inferior parietal lobules, bilateral superior temporal gyri, left posterior cingulate, right isthmus of cingulate, and right supramarginal gyrus. Greater lifetime duration of smoking (adjusted for age was related to lower perfusion in multiple brain regions. The results indicated smokers showed significant perfusion deficits in anterior cortical regions implicated in the development, progression, and maintenance of all addictive disorders. Smokers concurrently demonstrated reduced blood flow in posterior brain regions that show morphological and metabolic aberrations as well as elevated beta amyloid deposition demonstrated by those with early stage Alzheimer disease. The findings provide additional novel evidence of the adverse effects of cigarette smoking on the human brain.

  20. Beyond excitation/inhibition imbalance in multidimensional models of neural circuit changes in brain disorders

    OpenAIRE

    O'Donnell, Cian; Gonçalves, J Tiago; Portera-Cailliau, Carlos; Sejnowski, Terrence J

    2017-01-01

    eLife digest In many brain disorders, from autism to schizophrenia, the anatomy of the brain appears remarkably unchanged. This implies that the problem may reside in how neurons communicate with one another. Unfortunately, neuroscientists know little about how brain activity might differ from normal in these disorders, or how specific changes in activity give rise to symptoms. One leading theory, first proposed over a decade ago, is that these disorders reflect an imbalance in the activity o...

  1. Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults

    DEFF Research Database (Denmark)

    Hoogman, Martine; Bralten, Janita; Hibar, Derrek P

    2017-01-01

    BACKGROUND: Neuroimaging studies have shown structural alterations in several brain regions in children and adults with attention deficit hyperactivity disorder (ADHD). Through the formation of the international ENIGMA ADHD Working Group, we aimed to address weaknesses of previous imaging studies...... and adults for the pallidum (p=0·79) or thalamus (p=0·89). Case-control differences in adults were non-significant (all p>0·03). Psychostimulant medication use (all p>0·15) or symptom scores (all p>0·02) did not influence results, nor did the presence of comorbid psychiatric disorders (all p>0...

  2. Genetic disorders of thyroid metabolism and brain development

    Science.gov (United States)

    Kurian, Manju A; Jungbluth, Heinz

    2014-01-01

    Normal thyroid metabolism is essential for human development, including the formation and functioning of the central and peripheral nervous system. Disorders of thyroid metabolism are increasingly recognized within the spectrum of paediatric neurological disorders. Both hypothyroid and hyperthyroid disease states (resulting from genetic and acquired aetiologies) can lead to characteristic neurological syndromes, with cognitive delay, extrapyramidal movement disorders, neuropsychiatric symptoms, and neuromuscular manifestations. In this review, the neurological manifestations of genetic disorders of thyroid metabolism are outlined, with particular focus on Allan-Herndon-Dudley syndrome and benign hereditary chorea. We report in detail the clinical features, major neurological and neuropsychiatric manifestations, molecular genetic findings, disease mechanisms, and therapeutic strategies for these emerging genetic ‘brain-thyroid’ disorders. PMID:24665922

  3. Study of five novel non-synonymous polymorphisms in human brain-expressed genes in a Colombian sample.

    Science.gov (United States)

    Ojeda, Diego A; Forero, Diego A

    2014-10-01

    Non-synonymous single nucleotide polymorphisms (nsSNPs) in brain-expressed genes represent interesting candidates for genetic research in neuropsychiatric disorders. To study novel nsSNPs in brain-expressed genes in a sample of Colombian subjects. We applied an approach based on in silico mining of available genomic data to identify and select novel nsSNPs in brain-expressed genes. We developed novel genotyping assays, based in allele-specific PCR methods, for these nsSNPs and genotyped them in 171 Colombian subjects. Five common nsSNPs (rs6855837; p.Leu395Ile, rs2305160; p.Thr394Ala, rs10503929; p.Met289Thr, rs2270641; p.Thr4Pro and rs3822659; p.Ser735Ala) were studied, located in the CLOCK, NPAS2, NRG1, SLC18A1 and WWC1 genes. We reported allele and genotype frequencies in a sample of South American healthy subjects. There is previous experimental evidence, arising from genome-wide expression and association studies, for the involvement of these genes in several neuropsychiatric disorders and endophenotypes, such as schizophrenia, mood disorders or memory performance. Frequencies for these nsSNPSs in the Colombian samples varied in comparison to different HapMap populations. Future study of these nsSNPs in brain-expressed genes, a synaptogenomics approach, will be important for a better understanding of neuropsychiatric diseases and endophenotypes in different populations.

  4. Brain Structure Abnormalities in Adolescent Girls with Conduct Disorder

    Science.gov (United States)

    Fairchild, Graeme; Hagan, Cindy C.; Walsh, Nicholas D.; Passamonti, Luca; Calder, Andrew J.; Goodyer, Ian M.

    2013-01-01

    Background: Conduct disorder (CD) in female adolescents is associated with a range of negative outcomes, including teenage pregnancy and antisocial personality disorder. Although recent studies have documented changes in brain structure and function in male adolescents with CD, there have been no neuroimaging studies of female adolescents with CD.…

  5. HDAC4: a key factor underlying brain developmental alterations in CDKL5 disorder.

    Science.gov (United States)

    Trazzi, Stefania; Fuchs, Claudia; Viggiano, Rocchina; De Franceschi, Marianna; Valli, Emanuele; Jedynak, Paulina; Hansen, Finn K; Perini, Giovanni; Rimondini, Roberto; Kurz, Thomas; Bartesaghi, Renata; Ciani, Elisabetta

    2016-09-15

    Cyclin-dependent kinase-like 5 (CDKL5) is a Ser/Thr protein kinase predominantly expressed in the brain. Mutations of the CDKL5 gene lead to CDKL5 disorder, a neurodevelopmental pathology that shares several features with Rett Syndrome and is characterized by severe intellectual disability. The phosphorylation targets of CDKL5 are largely unknown, which hampers the discovery of therapeutic strategies for improving the neurological phenotype due to CDKL5 mutations. Here, we show that the histone deacetylase 4 (HDAC4) is a direct phosphorylation target of CDKL5 and that CDKL5-dependent phosphorylation promotes HDAC4 cytoplasmic retention. Nuclear HDAC4 binds to chromatin as well as to MEF2A transcription factor, leading to histone deacetylation and altered neuronal gene expression. By using a Cdkl5 knockout (Cdkl5 -/Y) mouse model, we found that hypophosphorylated HDAC4 translocates to the nucleus of neural precursor cells, thereby reducing histone 3 acetylation. This effect was reverted by re-expression of CDKL5 or by inhibition of HDAC4 activity through the HDAC4 inhibitor LMK235. In Cdkl5 -/Y mice treated with LMK235, defective survival and maturation of neuronal precursor cells and hippocampus-dependent memory were fully normalized. These results demonstrate a critical role of HDAC4 in the neurodevelopmental alterations due to CDKL5 mutations and suggest the possibility of HDAC4-targeted pharmacological interventions. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Cognitive disorder and changes in cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury

    Institute of Scientific and Technical Information of China (English)

    Weiliang Zhao; Dezhi Kang; Yuanxiang Lin

    2008-01-01

    BACKGROUND: Learning and memory damage is one of the most permanent and the severest symptoms of traumatic brain injury; it can seriously influence the normal life and work of patients. Some research has demonstrated that cognitive disorder is closely related to nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor. OBJECTIVE: To summarize the cognitive disorder and changes in nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury. RETRIEVAL STRATEGY: A computer-based online search was conducted in PUBMED for English language publications containing the key words "brain injured, cognitive handicap, acetylcholine, N-methyl-D aspartate receptors, neural cell adhesion molecule, brain-derived neurotrophic factor" from January 2000 to December 2007. There were 44 papers in total. Inclusion criteria: ① articles about changes in nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury; ② articles in the same researching circle published in authoritative journals or recently published. Exclusion criteria: duplicated articles.LITERATURE EVALUATION: References were mainly derived from research on changes in these four factors following brain injury. The 20 included papers were clinical or basic experimental studies. DATA SYNTHESIS: After craniocerebral injury, changes in these four factors in brain were similar to those during recovery from cognitive disorder, to a certain degree. Some data have indicated that activation of nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor could greatly improve cognitive disorder following brain injury. However, there are still a lot of questions remaining; for example, how do these

  7. Developmental origins of brain disorders: roles for dopamine

    Directory of Open Access Journals (Sweden)

    Kelli M Money

    2013-12-01

    Full Text Available Neurotransmitters and neuromodulators, such as dopamine, participate in a wide range of behavioral and cognitive functions in the adult brain, including movement, cognition, and reward. Dopamine-mediated signaling plays a fundamental neurodevelopmental role in forebrain differentiation and circuit formation. These developmental effects, such as modulation of neuronal migration and dendritic growth, occur before synaptogenesis and demonstrate novel roles for dopaminergic signaling beyond neuromodulation at the synapse. Pharmacologic and genetic disruptions demonstrate that these effects are brain region- and receptor subtype-specific. For example, the striatum and frontal cortex exhibit abnormal neuronal structure and function following prenatal disruption of dopamine receptor signaling. Alterations in these processes are implicated in the pathophysiology of neuropsychiatric disorders, and emerging studies of neurodevelopmental disruptions may shed light on the pathophysiology of abnormal neuronal circuitry in neuropsychiatric disorders.

  8. Non-invasive Brain Stimulation: A Paradigm Shift in Understanding Brain Oscillations

    Directory of Open Access Journals (Sweden)

    Johannes Vosskuhl

    2018-05-01

    Full Text Available Cognitive neuroscience set out to understand the neural mechanisms underlying cognition. One central question is how oscillatory brain activity relates to cognitive processes. Up to now, most of the evidence supporting this relationship was correlative in nature. This situation changed dramatically with the recent development of non-invasive brain stimulation (NIBS techniques, which open up new vistas for neuroscience by allowing researchers for the first time to validate their correlational theories by manipulating brain functioning directly. In this review, we focus on transcranial alternating current stimulation (tACS, an electrical brain stimulation method that applies sinusoidal currents to the intact scalp of human individuals to directly interfere with ongoing brain oscillations. We outline how tACS can impact human brain oscillations by employing different levels of observation from non-invasive tACS application in healthy volunteers and intracranial recordings in patients to animal studies demonstrating the effectiveness of alternating electric fields on neurons in vitro and in vivo. These findings likely translate to humans as comparable effects can be observed in human and animal studies. Neural entrainment and plasticity are suggested to mediate the behavioral effects of tACS. Furthermore, we focus on mechanistic theories about the relationship between certain cognitive functions and specific parameters of brain oscillaitons such as its amplitude, frequency, phase and phase coherence. For each of these parameters we present the current state of testing its functional relevance by means of tACS. Recent developments in the field of tACS are outlined which include the stimulation with physiologically inspired non-sinusoidal waveforms, stimulation protocols which allow for the observation of online-effects, and closed loop applications of tACS.

  9. The relationship between brain volumes and intelligence in bipolar disorder

    NARCIS (Netherlands)

    Vreeker, Annabel; Abramovic, Lucija; Boks, Marco P.M.; Verkooijen, Sanne; van Bergen, Annet H.; Ophoff, Roel A.; Kahn, René S.; van Haren, Neeltje E.M.

    2017-01-01

    Objectives Bipolar disorder type-I (BD-I) patients show a lower Intelligence Quotient (IQ) and smaller brain volumes as compared with healthy controls. Considering that in healthy individuals lower IQ is related to smaller total brain volume, it is of interest to investigate whether IQ deficits in

  10. Brain "fog," inflammation and obesity : key aspects of neuropsychiatric disorders improved by luteolin

    Directory of Open Access Journals (Sweden)

    Theoharis Constantin Theoharides

    2015-07-01

    Full Text Available Brain fog is a constellation of symptoms that include reduced cognition, inability to concentrate and multitask, as well as loss of short and long term memory. Brain fog characterizes patients with autism spectrum disorders (ASDs, celiac disease, chronic fatigue syndrome, fibromyalgia, mastocytosis and postural tachycardia syndrome (POTS, as well as minimal cognitive impairment, an early clinical presentation of Alzheimer’s disease (AD, and other neuropsychiatric disorders. Brain fog may be due to inflammatory molecules, including adipocytokines and histamine released from mast cells (MCs further stimulating microglia activation, and causing focal brain inflammation. Recent reviews have described the potential use of natural flavonoids for the treatment of neuropsychiatric and neurodegenerative diseases. The flavone luteolin has numerous useful actions that include: anti-oxidant, anti-inflammatory, microglia inhibition, neuroprotection, and memory increase. A liposomal luteolin formulation in olive fruit extract improved attention in children with ASDs and brain fog in mastocytosis patients. Methylated luteolin analogues with increased activity and better bioavailability could be developed into effective treatments for neuropsychiatric disorders and brain fog.

  11. Brain "fog," inflammation and obesity: key aspects of neuropsychiatric disorders improved by luteolin.

    Science.gov (United States)

    Theoharides, Theoharis C; Stewart, Julia M; Hatziagelaki, Erifili; Kolaitis, Gerasimos

    2015-01-01

    Brain "fog" is a constellation of symptoms that include reduced cognition, inability to concentrate and multitask, as well as loss of short and long term memory. Brain "fog" characterizes patients with autism spectrum disorders (ASDs), celiac disease, chronic fatigue syndrome, fibromyalgia, mastocytosis, and postural tachycardia syndrome (POTS), as well as "minimal cognitive impairment," an early clinical presentation of Alzheimer's disease (AD), and other neuropsychiatric disorders. Brain "fog" may be due to inflammatory molecules, including adipocytokines and histamine released from mast cells (MCs) further stimulating microglia activation, and causing focal brain inflammation. Recent reviews have described the potential use of natural flavonoids for the treatment of neuropsychiatric and neurodegenerative diseases. The flavone luteolin has numerous useful actions that include: anti-oxidant, anti-inflammatory, microglia inhibition, neuroprotection, and memory increase. A liposomal luteolin formulation in olive fruit extract improved attention in children with ASDs and brain "fog" in mastocytosis patients. Methylated luteolin analogs with increased activity and better bioavailability could be developed into effective treatments for neuropsychiatric disorders and brain "fog."

  12. Foetal Alcohol Spectrum Disorders and Alterations in Brain and Behaviour

    OpenAIRE

    Guerri, Consuelo; Bazinet, Alissa; Riley, Edward P.

    2009-01-01

    The term ‘Foetal Alcohol Spectrum Disorders (FASD)’ refers to the range of disabilities that may result from prenatal alcohol exposure. This article reviews the effects of ethanol on the developing brain and its long-term structural and neurobehavioural consequences. Brain imaging, neurobehavioural and experimental studies demonstrate the devastating consequences of prenatal alcohol exposure on the developing central nervous system (CNS), identifying specific brain regions affected, the range...

  13. Melatonin in Pregnancy: Effects on Brain Development and CNS Programming Disorders.

    Science.gov (United States)

    Sagrillo-Fagundes, Lucas; Assunção Salustiano, Eugênia Maria; Yen, Philippe Wong; Soliman, Ahmed; Vaillancourt, Cathy

    2016-01-01

    Melatonin is an important neuroprotective factor and its receptors are expressed in the fetal brain. During normal pregnancy, maternal melatonin level increases progressively until term and is highly transferred to the fetus, with an important role in brain formation and differentiation. Maternal melatonin provides the first circadian signal to the fetus. This indolamine is also produced de novo and plays a protective role in the human placenta. In pregnancy disorders, both maternal and placental melatonin levels are decreased. Alteration in maternal melatonin level has been associated with disrupted brain programming with long-term effects. Melatonin has strong antioxidant protective effects directly and indirectly via the activation of its receptors. The fetal brain is highly susceptible to oxygenation variation and oxidative stress that can lead to neuronal development disruption. Based on that, several approaches have been tested as a treatment in case of pregnancy disorders and melatonin, through its neuroprotective effect, has been recently accepted against fetal brain injury. This review provides an overview about the protective effects of melatonin during pregnancy and on fetal brain development.

  14. Dissociation and Alterations in Brain Function and Structure: Implications for Borderline Personality Disorder.

    Science.gov (United States)

    Krause-Utz, Annegret; Frost, Rachel; Winter, Dorina; Elzinga, Bernet M

    2017-01-01

    Dissociation involves disruptions of usually integrated functions of consciousness, perception, memory, identity, and affect (e.g., depersonalization, derealization, numbing, amnesia, and analgesia). While the precise neurobiological underpinnings of dissociation remain elusive, neuroimaging studies in disorders, characterized by high dissociation (e.g., depersonalization/derealization disorder (DDD), dissociative identity disorder (DID), dissociative subtype of posttraumatic stress disorder (D-PTSD)), have provided valuable insight into brain alterations possibly underlying dissociation. Neuroimaging studies in borderline personality disorder (BPD), investigating links between altered brain function/structure and dissociation, are still relatively rare. In this article, we provide an overview of neurobiological models of dissociation, primarily based on research in DDD, DID, and D-PTSD. Based on this background, we review recent neuroimaging studies on associations between dissociation and altered brain function and structure in BPD. These studies are discussed in the context of earlier findings regarding methodological differences and limitations and concerning possible implications for future research and the clinical setting.

  15. Conscious brain-to-brain communication in humans using non-invasive technologies.

    Science.gov (United States)

    Grau, Carles; Ginhoux, Romuald; Riera, Alejandro; Nguyen, Thanh Lam; Chauvat, Hubert; Berg, Michel; Amengual, Julià L; Pascual-Leone, Alvaro; Ruffini, Giulio

    2014-01-01

    Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI) has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI). These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B) communication between subjects (hyperinteraction). Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG) changes with a CBI inducing the conscious perception of phosphenes (light flashes) through neuronavigated, robotized transcranial magnetic stimulation (TMS), with special care taken to block sensory (tactile, visual or auditory) cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues.

  16. Conscious brain-to-brain communication in humans using non-invasive technologies.

    Directory of Open Access Journals (Sweden)

    Carles Grau

    Full Text Available Human sensory and motor systems provide the natural means for the exchange of information between individuals, and, hence, the basis for human civilization. The recent development of brain-computer interfaces (BCI has provided an important element for the creation of brain-to-brain communication systems, and precise brain stimulation techniques are now available for the realization of non-invasive computer-brain interfaces (CBI. These technologies, BCI and CBI, can be combined to realize the vision of non-invasive, computer-mediated brain-to-brain (B2B communication between subjects (hyperinteraction. Here we demonstrate the conscious transmission of information between human brains through the intact scalp and without intervention of motor or peripheral sensory systems. Pseudo-random binary streams encoding words were transmitted between the minds of emitter and receiver subjects separated by great distances, representing the realization of the first human brain-to-brain interface. In a series of experiments, we established internet-mediated B2B communication by combining a BCI based on voluntary motor imagery-controlled electroencephalographic (EEG changes with a CBI inducing the conscious perception of phosphenes (light flashes through neuronavigated, robotized transcranial magnetic stimulation (TMS, with special care taken to block sensory (tactile, visual or auditory cues. Our results provide a critical proof-of-principle demonstration for the development of conscious B2B communication technologies. More fully developed, related implementations will open new research venues in cognitive, social and clinical neuroscience and the scientific study of consciousness. We envision that hyperinteraction technologies will eventually have a profound impact on the social structure of our civilization and raise important ethical issues.

  17. Cortical brain structure and sexual orientation in adult females with bipolar disorder or attention deficit hyperactivity disorder.

    Science.gov (United States)

    Abé, Christoph; Rahman, Qazi; Långström, Niklas; Rydén, Eleonore; Ingvar, Martin; Landén, Mikael

    2018-05-29

    Nonheterosexual individuals have higher risk of psychiatric morbidity. Together with growing evidence for sexual orientation-related brain differences, this raises the concern that sexual orientation may be an important factor to control for in neuroimaging studies of neuropsychiatric disorders. We studied sexual orientation in adult psychiatric patients with bipolar disorder (BD) or ADHD in a large clinical cohort (N = 154). We compared cortical brain structure in exclusively heterosexual women (HEW, n = 29) with that of nonexclusively heterosexual women (nHEW, n = 37) using surface-based reconstruction techniques provided by FreeSurfer. The prevalence of nonheterosexual sexual orientation was tentatively higher than reported in general population samples. Consistent with previously reported cross-sex shifted brain patterns among homosexual individuals, nHEW patients showed significantly larger cortical volumes than HEW in medial occipital brain regions. We found evidence for a sex-reversed difference in cortical volume among nonheterosexual female patients, which provides insights into the neurobiology of sexual orientation, and may provide the first clues toward a better neurobiological understanding of the association between sexual orientation and mental health. We also suggest that sexual orientation is an important factor to consider in future neuroimaging studies of populations with certain mental health disorders. © 2018 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.

  18. Peptide carrier-mediated non-covalent delivery of unmodified cisplatin, methotrexate and other agents via intravenous route to the brain.

    Directory of Open Access Journals (Sweden)

    Gobinda Sarkar

    Full Text Available BACKGROUND: Rapid pre-clinical evaluation of chemotherapeutic agents against brain cancers and other neurological disorders remains largely unattained due to the presence of the blood-brain barrier (BBB, which limits transport of most therapeutic compounds to the brain. A synthetic peptide carrier, K16ApoE, was previously developed that enabled transport of target proteins to the brain by mimicking a ligand-receptor system. The peptide carrier was found to generate transient BBB permeability, which was utilized for non-covalent delivery of cisplatin, methotrexate and other compounds to the brain. APPROACH: Brain delivery of the chemotherapeutics and other agents was achieved either by injecting the carrier peptide and the drugs separately or as a mixture, to the femoral vein. A modification of the method comprised injection of K16ApoE pre-mixed with cetuximab, followed by injection of a 'small-molecule' drug. PRINCIPAL FINDINGS: Seven-of-seven different small molecules were successfully delivered to the brain via K16ApoE. Depending on the method, brain uptake with K16ApoE was 0.72-1.1% for cisplatin and 0.58-0.92% for methotrexate (34-50-fold and 54-92 fold greater for cisplatin and methotrexate, respectively, with K16ApoE than without. Visually intense brain-uptake of Evans Blue, Light Green SF and Crocein scarlet was also achieved. Direct intracranial injection of EB show locally restricted distribution of the dye in the brain, whereas K16ApoE-mediated intravenous injection of EB resulted in the distribution of the dye throughout the brain. Experiments with insulin suggest that ligand-receptor signaling intrinsic to the BBB provides a natural means for passive transport of some molecules across the BBB. SIGNIFICANCE: The results suggest that the carrier peptide can non-covalently transport various chemotherapeutic agents to the brain. Thus, the method offers an avenue for pre-clinical evaluation of various small and large therapeutic molecules

  19. Post-traumatic stress disorder risk and brain-derived neurotrophic factor Val66Met

    Science.gov (United States)

    Zhang, Lei; Li, Xiao-Xia; Hu, Xian-Zhang

    2016-01-01

    Brain-derived neurotrophic factor (BDNF), which regulates neuronal survival, growth differentiation, and synapse formation, is known to be associated with depression and post-traumatic stress disorder (PTSD). However, the molecular mechanism for those mental disorders remains unknown. Studies have shown that BDNF is associated with PTSD risk and exaggerated startle reaction (a major arousal manifestation of PTSD) in United States military service members who were deployed during the wars in Iraq and Afghanistan. The frequency of the Met/Met in BDNF gene was greater among those with PTSD than those without PTSD. Among individuals who experienced fewer lifetime stressful events, the Met carriers have significantly higher total and startle scores on the PTSD Checklist than the Val/Val carriers. In addition, subjects with PTSD showed higher levels of BDNF in their peripheral blood plasma than the non-probable-PTSD controls. Increased BDNF levels and startle response were observed in both blood plasma and brain hippocampus by inescapable tail shock in rats. In this paper, we reviewed these data to discuss BDNF as a potential biomarker for PTSD risk and its possible roles in the onset of PTSD. PMID:27014593

  20. PET imaging reveals brain functional changes in internet gaming disorder

    International Nuclear Information System (INIS)

    Tian, Mei; Zhang, Ying; Du, Fenglei; Hou, Haifeng; Chao, Fangfang; Zhang, Hong; Chen, Qiaozhen

    2014-01-01

    Internet gaming disorder is an increasing problem worldwide, resulting in critical academic, social, and occupational impairment. However, the neurobiological mechanism of internet gaming disorder remains unknown. The aim of this study is to assess brain dopamine D 2 (D 2 )/Serotonin 2A (5-HT 2A ) receptor function and glucose metabolism in the same subjects by positron emission tomography (PET) imaging approach, and investigate whether the correlation exists between D 2 receptor and glucose metabolism. Twelve drug-naive adult males who met criteria for internet gaming disorder and 14 matched controls were studied with PET and 11 C-N-methylspiperone ( 11 C-NMSP) to assess the availability of D 2 /5-HT 2A receptors and with 18 F-fluoro-D-glucose ( 18 F-FDG) to assess regional brain glucose metabolism, a marker of brain function. 11 C-NMSP and 18 F-FDG PET imaging data were acquired in the same individuals under both resting and internet gaming task states. In internet gaming disorder subjects, a significant decrease in glucose metabolism was observed in the prefrontal, temporal, and limbic systems. Dysregulation of D 2 receptors was observed in the striatum, and was correlated to years of overuse. A low level of D 2 receptors in the striatum was significantly associated with decreased glucose metabolism in the orbitofrontal cortex. For the first time, we report the evidence that D 2 receptor level is significantly associated with glucose metabolism in the same individuals with internet gaming disorder, which indicates that D 2 /5-HT 2A receptor-mediated dysregulation of the orbitofrontal cortex could underlie a mechanism for loss of control and compulsive behavior in internet gaming disorder subjects. (orig.)

  1. Evidence of Altered Brain Responses to Nicotine in an Animal Model of Attention Deficit/Hyperactivity Disorder.

    Science.gov (United States)

    Poirier, Guillaume L; Huang, Wei; Tam, Kelly; DiFranza, Joseph R; King, Jean A

    2017-09-01

    Individuals with attention deficit/hyperactivity disorder (ADHD) are susceptible to earlier and more severe nicotine addiction. To shed light on the relationship between nicotine and ADHD, we examined nicotine's effects on functional brain networks in an animal model of ADHD. Awake magnetic resonance imaging was used to compare functional connectivity in adolescent (post-natal day 44 ± 2) males of the spontaneously hypertensive rat (SHR) strain and two control strains, Wistar-Kyoto and Sprague-Dawley (n = 16 each). We analyzed functional connectivity immediately before and after nicotine exposure (0.4 mg/kg base) in naïve animals, using a region-of-interest approach focussing on 16 regions previously implicated in reward and addiction. Relative to the control groups, the SHR strain demonstrated increased functional connectivity between the ventral tegmental area (VTA) and retrosplenial cortex in response to nicotine, suggesting an aberrant response to nicotine. In contrast, increased VTA-substantia nigra connectivity in response to a saline injection in the SHR was absent following a nicotine injection, suggesting that nicotine normalized function in this circuit. In the SHR, nicotine triggered an atypical response in one VTA circuit while normalizing activity in another. The VTA has been widely implicated in drug reward. Our data suggest that increased susceptibility to nicotine addiction in individuals with ADHD may involve altered responses to nicotine involving VTA circuits. Nicotine addiction is more common among individuals with ADHD. We found that two circuits involving the VTA responded differently to nicotine in animals that model ADHD in comparison to two control strains. In one circuit, nicotine normalized activity that was abnormal in the ADHD animals, while in the other circuit nicotine caused an atypical brain response in the ADHD animals. The VTA has been implicated in drug reward. Our results would be consistent with an interpretation that

  2. Genetic and environmental influences on focal brain density in bipolar disorder

    NARCIS (Netherlands)

    van der Schot, Astrid C.; Vonk, Ronald; Brouwer, Rachel M.; van Baal, G. Caroline M.; Brans, Rachel G. H.; van Haren, Neeltje E. M.; Schnack, Hugo G.; Boomsma, Dorret I.; Nolen, Willem A.; Pol, Hilleke E. Hulshoff; Kahn, Rene S.

    2010-01-01

    Structural neuroimaging studies suggest the presence of subtle abnormalities in the brains of patients with bipolar disorder. The influence of genetic and/or environmental factors on these brain abnormalities is unknown. To investigate the contribution of genetic and environmental factors on grey

  3. Hippotherapy in adult patients with chronic brain disorders: a pilot study.

    Science.gov (United States)

    Sunwoo, Hyuk; Chang, Won Hyuk; Kwon, Jeong-Yi; Kim, Tae-Won; Lee, Ji-Young; Kim, Yun-Hee

    2012-12-01

    To investigate the effects of hippotherapy for adult patients with brain disorders. Eight chronic brain disorder patients (7 males, mean age 42.4±16.6 years) were recruited. The mean duration from injury was 7.9±7.7 years. The diagnoses were stroke (n=5), traumatic brain disorder (n=2), and cerebral palsy (n=1). Hippotherapy sessions were conducted twice a week for eight consecutive weeks in an indoor riding arena. Each hippotherapy session lasted 30 minutes. All participants were evaluated by the Berg balance scale, Tinetti Performance-Oriented Mobility Assessment, 10 Meter Walking Test, Functional Ambulatory Category, Korean Beck Depression Inventory, and Hamilton Depression Rating Scale. We performed baseline assessments twice just before starting hippotherapy. We also assessed the participants immediately after hippotherapy and at eight weeks after hippotherapy. All participants showed no difference in balance, gait function, and emotion between the two baseline assessments before hippotherapy. During the eight-week hippotherapy program, all participants showed neither adverse effects nor any accidents; all had good compliance. After hippotherapy, there were significant improvements in balance and gait speed in comparison with the baseline assessment (phippotherapy. However, there was no significant difference in emotion after hippotherapy. We could observe hippotherapy to be a safe and effective alternative therapy for adult patients with brain disorders in improving balance and gait function. Further future studies are warranted to delineate the benefits of hippotherapy on chronic stroke patients.

  4. Relationship between symptom dimensions and brain morphology in obsessive-compulsive disorder.

    Science.gov (United States)

    Hirose, Motohisa; Hirano, Yoshiyuki; Nemoto, Kiyotaka; Sutoh, Chihiro; Asano, Kenichi; Miyata, Haruko; Matsumoto, Junko; Nakazato, Michiko; Matsumoto, Koji; Masuda, Yoshitada; Iyo, Masaomi; Shimizu, Eiji; Nakagawa, Akiko

    2017-10-01

    Obsessive-compulsive disorder (OCD) is known as a clinically heterogeneous disorder characterized by symptom dimensions. Although substantial numbers of neuroimaging studies have demonstrated the presence of brain abnormalities in OCD, their results are controversial. The clinical heterogeneity of OCD could be one of the reasons for this. It has been hypothesized that certain brain regions contributed to the respective obsessive-compulsive dimensions. In this study, we investigated the relationship between symptom dimensions of OCD and brain morphology using voxel-based morphometry to discover the specific regions showing alterations in the respective dimensions of obsessive-compulsive symptoms. The severities of symptom dimensions in thirty-three patients with OCD were assessed using Obsessive-Compulsive Inventory-Revised (OCI-R). Along with numerous MRI studies pointing out brain abnormalities in autistic spectrum disorder (ASD) patients, a previous study reported a positive correlation between ASD traits and regional gray matter volume in the left dorsolateral prefrontal cortex and amygdala in OCD patients. We investigated the correlation between gray and white matter volumes at the whole brain level and each symptom dimension score, treating all remaining dimension scores, age, gender, and ASD traits as confounding covariates. Our results revealed a significant negative correlation between washing symptom dimension score and gray matter volume in the right thalamus and a significant negative correlation between hoarding symptom dimension score and white matter volume in the left angular gyrus. Although our result was preliminary, our findings indicated that there were specific brain regions in gray and white matter that contributed to symptom dimensions in OCD patients.

  5. Personality disorders in adopted versus non-adopted adults.

    Science.gov (United States)

    Westermeyer, Joseph; Yoon, Gihyun; Amundson, Carla; Warwick, Marion; Kuskowski, Michael A

    2015-04-30

    The goal of this epidemiological study was to investigate lifetime history and odds ratios of personality disorders in adopted and non-adopted adults using a nationally representative sample. Data, drawn from the National Epidemiological Survey on Alcohol and Related Conditions (NESARC), were compared in adopted (n=378) versus non-adopted (n=42,503) adults to estimate the odds of seven personality disorders using logistic regression analyses. The seven personality disorders were histrionic, antisocial, avoidant, paranoid, schizoid, obsessive-compulsive, and dependent personality disorder. Adoptees had a 1.81-fold increase in the odds of any personality disorder compared with non-adoptees. Adoptees had increased odds of histrionic, antisocial, avoidant, paranoid, schizoid, and obsessive-compulsive personality disorder compared with non-adoptees. Two risk factors associated with lifetime history of a personality disorder in adoptees compared to non-adoptees were (1) being in the age cohort 18-29 years (but no difference in the age 30-44 cohort), using the age 45 or older cohort as the reference and (2) having 12 years of education (but no difference in higher education groups), using the 0-11 years of education as the reference. These findings support the higher rates of personality disorders among adoptees compared to non-adoptees. Published by Elsevier Ireland Ltd.

  6. [Transsexualism: a Brain Disorder that Begins to Known].

    Science.gov (United States)

    López Moratalla, Natalia; Calleja Canela, Amparo

    2016-01-01

    Transsexualism describes the condition when a person's psychological gender differs from his or her biological sex. People with gender identity disorder suffer persistently from this incongruence and they search hormonal and surgical sex reassignment to the desired anatomical sex. This review, from an ethical perspective, intends to give an overview of structural and functional neurobiological correlations of transsexualism and their course under cross-sex hormonal administration. Several studies demonstrate an increased functional connectivity between cortex regions reaffirming psychosocial distress of psychologicalbiological sex incongruity. Such distress can be ascribed to a disharmonic body image due to changes in the functional connectivity of the key components of body representation network. These brain alterations seem to imply a strategic mechanism dissociating bodily emotions from bodily images. For a number of sexually dimorphic brain structures or processes, signs of feminization or masculinization are observable in transsexual individuals, who during hormonal administration seem to partly further adjust to characteristics of the desired sex. These changes allow a reduction of psychosocial distress. However, a model leading to a ″gender affirmation″ does not solve the problem, since brain disorders causing it are not corrected. This is a serious medical ethics issue. Prejudices should be left aside. To know what happens in the brain of transsexuals is a medical need, both to define what is and what is not, and so to choose an adequate treatment, and to decide and guide legal actions.

  7. PET imaging reveals brain functional changes in internet gaming disorder

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Mei; Zhang, Ying; Du, Fenglei; Hou, Haifeng; Chao, Fangfang; Zhang, Hong [The Second Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou (China); Chen, Qiaozhen [The Second Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); The Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Psychiatry, Hangzhou (China)

    2014-07-15

    Internet gaming disorder is an increasing problem worldwide, resulting in critical academic, social, and occupational impairment. However, the neurobiological mechanism of internet gaming disorder remains unknown. The aim of this study is to assess brain dopamine D{sub 2} (D{sub 2})/Serotonin 2A (5-HT{sub 2A}) receptor function and glucose metabolism in the same subjects by positron emission tomography (PET) imaging approach, and investigate whether the correlation exists between D{sub 2} receptor and glucose metabolism. Twelve drug-naive adult males who met criteria for internet gaming disorder and 14 matched controls were studied with PET and {sup 11}C-N-methylspiperone ({sup 11}C-NMSP) to assess the availability of D{sub 2}/5-HT{sub 2A} receptors and with {sup 18}F-fluoro-D-glucose ({sup 18}F-FDG) to assess regional brain glucose metabolism, a marker of brain function. {sup 11}C-NMSP and {sup 18}F-FDG PET imaging data were acquired in the same individuals under both resting and internet gaming task states. In internet gaming disorder subjects, a significant decrease in glucose metabolism was observed in the prefrontal, temporal, and limbic systems. Dysregulation of D{sub 2} receptors was observed in the striatum, and was correlated to years of overuse. A low level of D{sub 2} receptors in the striatum was significantly associated with decreased glucose metabolism in the orbitofrontal cortex. For the first time, we report the evidence that D{sub 2} receptor level is significantly associated with glucose metabolism in the same individuals with internet gaming disorder, which indicates that D{sub 2}/5-HT{sub 2A} receptor-mediated dysregulation of the orbitofrontal cortex could underlie a mechanism for loss of control and compulsive behavior in internet gaming disorder subjects. (orig.)

  8. [Non-speech oral motor treatment efficacy for children with developmental speech sound disorders].

    Science.gov (United States)

    Ygual-Fernandez, A; Cervera-Merida, J F

    2016-01-01

    In the treatment of speech disorders by means of speech therapy two antagonistic methodological approaches are applied: non-verbal ones, based on oral motor exercises (OME), and verbal ones, which are based on speech processing tasks with syllables, phonemes and words. In Spain, OME programmes are called 'programas de praxias', and are widely used and valued by speech therapists. To review the studies conducted on the effectiveness of OME-based treatments applied to children with speech disorders and the theoretical arguments that could justify, or not, their usefulness. Over the last few decades evidence has been gathered about the lack of efficacy of this approach to treat developmental speech disorders and pronunciation problems in populations without any neurological alteration of motor functioning. The American Speech-Language-Hearing Association has advised against its use taking into account the principles of evidence-based practice. The knowledge gathered to date on motor control shows that the pattern of mobility and its corresponding organisation in the brain are different in speech and other non-verbal functions linked to nutrition and breathing. Neither the studies on their effectiveness nor the arguments based on motor control studies recommend the use of OME-based programmes for the treatment of pronunciation problems in children with developmental language disorders.

  9. Association Between Traumatic Brain Injury and Risk of Posttraumatic Stress Disorder in Active-Duty Marines

    Science.gov (United States)

    2013-01-01

    traumatic brain injury (TBI) is a risk factor for posttraumatic stress disorder ( PTSD ) has been difficult to determine because of the prevalence of...Qualification Test; CAPS, Clinician-Administered PTSD Scale; PTSD , posttraumatic stress disorder ; TBI, traumatic brain injury. a For the zeromodel, base...New onset and persistent symptoms of post - traumatic stress disorder self reported after deployment and combat exposures. BMJ.

  10. Histaminergic system in brain disorders: lessons from the translational approach and future perspectives.

    Science.gov (United States)

    Baronio, Diego; Gonchoroski, Taylor; Castro, Kamila; Zanatta, Geancarlo; Gottfried, Carmem; Riesgo, Rudimar

    2014-01-01

    Histamine and its receptors were first described as part of immune and gastrointestinal systems, but their presence in the central nervous system and importance in behavior are gaining more attention. The histaminergic system modulates different processes including wakefulness, feeding, and learning and memory consolidation. Histamine receptors (H1R, H2R, H3R, and H4R) belong to the rhodopsin-like family of G protein-coupled receptors, present constitutive activity, and are subjected to inverse agonist action. The involvement of the histaminergic system in brain disorders, such as Alzheimer's disease, schizophrenia, sleep disorders, drug dependence, and Parkinson's disease, is largely studied. Data obtained from preclinical studies point antagonists of histamine receptors as promising alternatives to treat brain disorders. Thus, clinical trials are currently ongoing to assess the effects of these drugs on humans. This review summarizes the role of histaminergic system in brain disorders, as well as the effects of different histamine antagonists on animal models and humans.

  11. Seasonal affective disorder and non-seasonal affective disorders : Results from the NESDA study

    NARCIS (Netherlands)

    Winthorst, Wim H; Roest, Annelieke M; Bos, Elisabeth H; Meesters, Ybe; Penninx, Brenda W J H; Nolen, Willem A; de Jonge, Peter

    BACKGROUND: Seasonal affective disorder (SAD) is considered to be a subtype of depression. AIMS: To compare the clinical picture of SAD to non-seasonal affective disorders (non-SADs). METHOD: Diagnoses according to the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) were established

  12. Irritable bowel syndrome: A microbiome-gut-brain axis disorder?

    Science.gov (United States)

    Kennedy, Paul J; Cryan, John F; Dinan, Timothy G; Clarke, Gerard

    2014-01-01

    Irritable bowel syndrome (IBS) is an extremely prevalent but poorly understood gastrointestinal disorder. Consequently, there are no clear diagnostic markers to help diagnose the disorder and treatment options are limited to management of the symptoms. The concept of a dysregulated gut-brain axis has been adopted as a suitable model for the disorder. The gut microbiome may play an important role in the onset and exacerbation of symptoms in the disorder and has been extensively studied in this context. Although a causal role cannot yet be inferred from the clinical studies which have attempted to characterise the gut microbiota in IBS, they do confirm alterations in both community stability and diversity. Moreover, it has been reliably demonstrated that manipulation of the microbiota can influence the key symptoms, including abdominal pain and bowel habit, and other prominent features of IBS. A variety of strategies have been taken to study these interactions, including probiotics, antibiotics, faecal transplantations and the use of germ-free animals. There are clear mechanisms through which the microbiota can produce these effects, both humoral and neural. Taken together, these findings firmly establish the microbiota as a critical node in the gut-brain axis and one which is amenable to therapeutic interventions. PMID:25339800

  13. Brain structure and the relationship with neurocognitive functioning in schizophrenia and bipolar disorder : MRI studies

    OpenAIRE

    Hartberg, Cecilie Bhandari

    2011-01-01

    Brain structural abnormalities as well as neurocognitive dysfunction, are found in schizophrenia and in bipolar disorder. Based on the fact that both brain structure and neurocognitive functioning are significantly heritable and affected in both schizophrenia and bipolar disorder, relationships between them are expected. However, previous studies report inconsistent findings. Also, schizophrenia and bipolar disorder are classified as separate disease entities, but demonstrate overlap with reg...

  14. Clinical application of brain imaging for the diagnosis of mood disorders: the current state of play.

    Science.gov (United States)

    Savitz, J B; Rauch, S L; Drevets, W C

    2013-05-01

    In response to queries about whether brain imaging technology has reached the point where it is useful for making a clinical diagnosis and for helping to guide treatment selection, the American Psychiatric Association (APA) has recently written a position paper on the Clinical Application of Brain Imaging in Psychiatry. The following perspective piece is based on our contribution to this APA position paper, which specifically emphasized the application of neuroimaging in mood disorders. We present an introductory overview of the challenges faced by researchers in developing valid and reliable biomarkers for psychiatric disorders, followed by a synopsis of the extant neuroimaging findings in mood disorders, and an evidence-based review of the current research on brain imaging biomarkers in adult mood disorders. Although there are a number of promising results, by the standards proposed below, we argue that there are currently no brain imaging biomarkers that are clinically useful for establishing diagnosis or predicting treatment outcome in mood disorders.

  15. Clinical application of brain imaging for the diagnosis of mood disorders: the current state of play

    Science.gov (United States)

    Savitz, J B; Rauch, S L; Drevets, W C

    2013-01-01

    In response to queries about whether brain imaging technology has reached the point where it is useful for making a clinical diagnosis and for helping to guide treatment selection, the American Psychiatric Association (APA) has recently written a position paper on the Clinical Application of Brain Imaging in Psychiatry. The following perspective piece is based on our contribution to this APA position paper, which specifically emphasized the application of neuroimaging in mood disorders. We present an introductory overview of the challenges faced by researchers in developing valid and reliable biomarkers for psychiatric disorders, followed by a synopsis of the extant neuroimaging findings in mood disorders, and an evidence-based review of the current research on brain imaging biomarkers in adult mood disorders. Although there are a number of promising results, by the standards proposed below, we argue that there are currently no brain imaging biomarkers that are clinically useful for establishing diagnosis or predicting treatment outcome in mood disorders. PMID:23546169

  16. [Obsessive-compulsive disorder, a new model of basal ganglia dysfunction? Elements from deep brain stimulation studies].

    Science.gov (United States)

    Haynes, W I A; Millet, B; Mallet, L

    2012-01-01

    Deep brain stimulation was first developed for movement disorders but is now being offered as a therapeutic alternative in severe psychiatric disorders after the failure of conventional therapies. One of such pathologies is obsessive-compulsive disorder. This disorder which associates intrusive thoughts (obsessions) and repetitive irrepressible rituals (compulsions) is characterized by a dysfunction of a cortico-subcortical loop. After having reviewed the pathophysiological evidence to show why deep brain stimulation was an interesting path to take for severe and resistant cases of obsessive-compulsive disorder, we will present the results of the different clinical trials. Finally, we will provide possible mechanisms for the effects of deep brain stimulation in this pathology. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  17. Neuroendocrinology and brain imaging of reward in eating disorders: A possible key to the treatment of anorexia nervosa and bulimia nervosa.

    Science.gov (United States)

    Monteleone, Alessio Maria; Castellini, Giovanni; Volpe, Umberto; Ricca, Valdo; Lelli, Lorenzo; Monteleone, Palmiero; Maj, Mario

    2018-01-03

    Anorexia nervosa and bulimia nervosa are severe eating disorders whose etiopathogenesis is still unknown. Clinical features suggest that eating disorders may develop as reward-dependent syndromes, since eating less food is perceived as rewarding in anorexia nervosa while consumption of large amounts of food during binge episodes in bulimia nervosa aims at reducing the patient's negative emotional states. Therefore, brain reward mechanisms have been a major focus of research in the attempt to contribute to the comprehension of the pathophysiology of these disorders. Structural brain imaging data provided the evidence that brain reward circuits may be altered in patients with anorexia or bulimia nervosa. Similarly, functional brain imaging studies exploring the activation of brain reward circuits by food stimuli as well as by stimuli recognized to be potentially rewarding for eating disordered patients, such as body image cues or stimuli related to food deprivation and physical hyperactivity, showed several dysfunctions in ED patients. Moreover, very recently, it has been demonstrated that some of the biochemical homeostatic modulators of eating behavior are also implicated in the regulation of food-related and non-food-related reward, representing a possible link between the aberrant behaviors of ED subjects and their hypothesized deranged reward processes. In particular, changes in leptin and ghrelin occur in patients with anorexia or bulimia nervosa and have been suggested to represent not only homeostatic adaptations to an altered energy balance but to contribute also to the acquisition and/or maintenance of persistent starvation, binge eating and physical hyperactivity, which are potentially rewarding for ED patients. On the basis of such findings new pathogenetic models of EDs have been proposed, and these models may provide new theoretical basis for the development of innovative treatment strategies, either psychological and pharmacological, with the aim to

  18. Diminished social reward anticipation in the broad autism phenotype as revealed by event-related brain potentials.

    Science.gov (United States)

    Cox, Anthony; Kohls, Gregor; Naples, Adam J; Mukerji, Cora E; Coffman, Marika C; Rutherford, Helena J V; Mayes, Linda C; McPartland, James C

    2015-10-01

    Diminished responsivity to reward incentives is a key contributor to the social-communication problems seen in autism spectrum disorders (ASDs). Social motivation theories suggest that individuals with ASD do not experience social interactions as rewarding, leading to negative consequences for the development of brain circuitry subserving social information. In this study, we examined neural responses to social and non-social reward anticipation in 35 typically developing young adults, examining modulation of reward sensitivity by level of autistic traits. Using an Event-related potential incentive-delay task incorporating novel, more ecologically valid forms of reward, higher expression of autistic traits was associated with an attenuated P3 response to the anticipation of social (simulated real-time video feedback from an observer), but not non-social (candy), rewards. Exploratory analyses revealed that this was unrelated to mentalizing ability. The P3 component reflects motivated attention to reward signals, suggesting attenuated motivation allocation specific to social incentives. The study extends prior findings of atypical reward anticipation in ASD, demonstrating that attenuated social reward responsiveness extends to autistic traits in the range of typical functioning. Results support the development of innovative paradigms for investigating social and non-social reward responsiveness. Insight into vulnerabilities in reward processing is critical for understanding social function in ASD. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  19. Social Outcomes in Childhood Brain Disorder: A Heuristic Integration of Social Neuroscience and Developmental Psychology

    Science.gov (United States)

    Yeates, Keith Owen; Bigler, Erin D.; Dennis, Maureen; Gerhardt, Cynthia A.; Rubin, Kenneth H.; Stancin, Terry; Taylor, H. Gerry; Vannatta, Kathryn

    2010-01-01

    The authors propose a heuristic model of the social outcomes of childhood brain disorder that draws on models and methods from both the emerging field of social cognitive neuroscience and the study of social competence in developmental psychology/psychopathology. The heuristic model characterizes the relationships between social adjustment, peer interactions and relationships, social problem solving and communication, social-affective and cognitive-executive processes, and their neural substrates. The model is illustrated by research on a specific form of childhood brain disorder, traumatic brain injury. The heuristic model may promote research regarding the neural and cognitive-affective substrates of children’s social development. It also may engender more precise methods of measuring impairments and disabilities in children with brain disorder and suggest ways to promote their social adaptation. PMID:17469991

  20. Zinc in Gut-Brain Interaction in Autism and Neurological Disorders

    Science.gov (United States)

    Vela, Guillermo; Stark, Peter; Socha, Michael; Sauer, Ann Katrin; Hagmeyer, Simone; Grabrucker, Andreas M.

    2015-01-01

    A growing amount of research indicates that abnormalities in the gastrointestinal (GI) system during development might be a common factor in multiple neurological disorders and might be responsible for some of the shared comorbidities seen among these diseases. For example, many patients with Autism Spectrum Disorder (ASD) have symptoms associated with GI disorders. Maternal zinc status may be an important factor given the multifaceted effect of zinc on gut development and morphology in the offspring. Zinc status influences and is influenced by multiple factors and an interdependence of prenatal and early life stress, immune system abnormalities, impaired GI functions, and zinc deficiency can be hypothesized. In line with this, systemic inflammatory events and prenatal stress have been reported to increase the risk for ASD. Thus, here, we will review the current literature on the role of zinc in gut formation, a possible link between gut and brain development in ASD and other neurological disorders with shared comorbidities, and tie in possible effects on the immune system. Based on these data, we present a novel model outlining how alterations in the maternal zinc status might pathologically impact the offspring leading to impairments in brain functions later in life. PMID:25878905

  1. [Brain activitivation of euthymic patients with Type I bipolar disorder in resting state Default Mode Network].

    Science.gov (United States)

    Vargas, Cristian; Pineda, Julián; Calvo, Víctor; López-Jaramillo, Carlos

    2014-01-01

    As there are still doubts about brain connectivity in type I bipolar disorder (BID), resting-state functional magnetic resonance imaging (RS-fMRI) studies are necessary during euthymia for a better control of confounding factors. To evaluate the differences in brain activation between euthymic BID patients and control subjects using resting state- functional-magnetic resonance imaging (RS-fMRI), and to identify the lithium effect in these activations. A cross-sectional study was conducted on 21 BID patients (10 receiving lithium only, and 11 non-medicated) and 12 healthy control subjects, using RS fMRI and independent component analysis (ICA). Increased activation was found in the right hippocampus (P=.049) and posterior cingulate (P=.040) within the Default Mode Network (DMN) when BID and control group were compared. No statistically significant differences were identified between BID on lithium only therapy and non-medicated BID patients. The results suggest that there are changes in brain activation and connectivity in BID even during euthymic phase and mainly within the DMN network, which could be relevant in affect regulation. Copyright © 2013 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  2. Gender Differences In Premarital Sexual Permissiveness Among ...

    African Journals Online (AJOL)

    This paper examined the concept of premariatal sexual permissiveness among selected University undergraduates in a state owned university in Nigeria, believing that the policy of non-residential status of the University will facilitate premarital sexual activity among the students. Using a total of 400 purposively selected ...

  3. An Update Overview on Brain Imaging Studies of Internet Gaming Disorder

    Directory of Open Access Journals (Sweden)

    Aviv M. Weinstein

    2017-09-01

    Full Text Available There are a growing number of studies on structural and functional brain mechanisms underlying Internet gaming disorder (IGD. Recent functional magnetic resonance imaging studies showed that IGD adolescents and adults had reduced gray matter volume in regions associated with attention motor coordination executive function and perception. Adolescents with IGD showed lower white matter (WM integrity measures in several brain regions that are involved in decision-making, behavioral inhibition, and emotional regulation. IGD adolescents had also disruption in the functional connectivity in areas responsible for learning memory and executive function, processing of auditory, visual, and somatosensory stimuli and relay of sensory and motor signals. IGD adolescents also had decreased functional connectivity of PFC-striatal circuits, increased risk-taking choices, and impaired ability to control their impulses similar to other impulse control disorders. Recent studies indicated that altered executive control mechanisms in attention deficit hyperactivity disorder (ADHD would be a predisposition for developing IGD. Finally, patients with IGD have also shown an increased functional connectivity of several executive control brain regions that may related to comorbidity with ADHD and depression. The behavioral addiction model argues that IGD shows the features of excessive use despite adverse consequences, withdrawal phenomena, and tolerance that characterize substance use disorders. The evidence supports the behavioral addiction model of IGD by showing structural and functional changes in the mechanisms of reward and craving (but not withdrawal in IGD. Future studies need to investigate WM density and functional connectivity in IGD in order to validate these findings. Furthermore, more research is required about the similarity in neurochemical and neurocognitive brain circuits in IGD and comorbid conditions such as ADHD and depression.

  4. 99mTc-HMPAO Brain SPECT in Patients with Post-Traumatic Organic Mental Disorder

    International Nuclear Information System (INIS)

    Lee, Kang Wook; Lee, Dong Jin; Shong, Min Ho; Kang, Min Hee; Ghi, Ick Sung; Shin, Young Tai; Ro, Heung Kyu

    1994-01-01

    It is well known that 99m Tc-HMPAO brain SPECT can reflect the functional lesions better than X-ray computerized tomography(CT) and magnetic resonance imaging(MRI) in the cerebral disorders. In order to evaluate the clinical utilities of 99m Tc-HMPAO brain SPECT in patients with post-traumatic chronic organic mental disorder(OMD). We included 28 patients diagnosed as OMD in department of psychiatry after traumatic head injury. And we compared the results of 99m Tc-HMPAO SPECT with those of MRI, EEG and MINI mental status examination(MMSE). The results were as follows 1) All patients diagnosed as OMD showed diffuse or focal decreased cerebral perfusion on 99m Tc-HMPAO SPECT. 2) Most frequent lesion on brain 99m Tc-HMPAO SPECT was decreased perfusion on both frontal lobe. And most frequent lesion on brain 99m Tc-HMPAO SPECT was decreased perfusion on both frontal lobe. And most frequent lesion on brain 99m Tc-HMPAO SPECT showing normal brain MRI result was also decreased both frontal perfusion. 3) Eight of 28 patients showed focal brain MRI lesions(4 small frontal hygroma, 3 small cerebral infarction and 1 cerebellar encephalomalacia) which were not detected in brain 99m Tc-HMPAO SPECT. 4) The patients showing less than 20 points on MMSE disclosed abnormal results of EEG more frequently than those disclosing more than 20 points. In conclusion, we think that 99m Tc-HMPAO brain SPECT is sensitive method to detect functional lesions of the brains in patients with chronic post-traumatic organic mental disorder.

  5. Data on overlapping brain disorders and emerging drug targets in human Dopamine Receptors Interaction Network

    Directory of Open Access Journals (Sweden)

    Avijit Podder

    2017-06-01

    Full Text Available Intercommunication of Dopamine Receptors (DRs with their associate protein partners is crucial to maintain regular brain function in human. Majority of the brain disorders arise due to malfunctioning of such communication process. Hence, contributions of genetic factors, as well as phenotypic indications for various neurological and psychiatric disorders are often attributed as sharing in nature. In our earlier research article entitled “Human Dopamine Receptors Interaction Network (DRIN: a systems biology perspective on topology, stability and functionality of the network” (Podder et al., 2014 [1], we had depicted a holistic interaction map of human Dopamine Receptors. Given emphasis on the topological parameters, we had characterized the functionality along with the vulnerable properties of the network. In support of this, we hereby provide an additional data highlighting the genetic overlapping of various brain disorders in the network. The data indicates the sharing nature of disease genes for various neurological and psychiatric disorders in dopamine receptors connecting protein-protein interactions network. The data also indicates toward an alternative approach to prioritize proteins for overlapping brain disorders as valuable drug targets in the network.

  6. [Behavior of Orf virus in permissive and nonpermissive systems].

    Science.gov (United States)

    Büttner, M; Czerny, C P; Schumm, M

    1995-04-01

    Dogs were immunized i.m. with attenuated poxvirus vaccines (vaccinia virus, Orf-virus) and a bovine herpesvirus-1 (BHV-1) vaccine. After intradermal (i.d.) application of the vaccine viruses a specific delayed type hypersensitivity (DTH) reaction of the skin occurred only with vaccinia virus. The i.d. application of Orf-virus caused a short-term, non-specific inflammatory reaction of the skin, even in dogs not immunized with Orf-virus. Out of 30 sera from Orf-virus immunized beagles (n = 4) only eight were found reactive to Orf-virus in a competition ELISA. Three sera from dogs not Orf-virus immunized but skin-tested with the virus contained low antibody titers. Using indirect immunofluorescence (IIF) in flow cytometry, the existence of Orf-virus antigens was examined on the surface and in the cytoplasm of permissive (BFK and Vero)- and questionable permissive MDCK cells. The canine kidney MDCK cell line was found to be non-permissive for Orf-virus replication; the occurrence of an Orf-(ecthyma contagiosum) like disease in dogs is unlikely.

  7. Oral keratinocytes support non-replicative infection and transfer of harbored HIV-1 to permissive cells.

    Science.gov (United States)

    Vacharaksa, Anjalee; Asrani, Anil C; Gebhard, Kristin H; Fasching, Claudine E; Giacaman, Rodrigo A; Janoff, Edward N; Ross, Karen F; Herzberg, Mark C

    2008-07-17

    Oral keratinocytes on the mucosal surface are frequently exposed to HIV-1 through contact with infected sexual partners or nursing mothers. To determine the plausibility that oral keratinocytes are primary targets of HIV-1, we tested the hypothesis that HIV-1 infects oral keratinocytes in a restricted manner. To study the fate of HIV-1, immortalized oral keratinocytes (OKF6/TERT-2; TERT-2 cells) were characterized for the fate of HIV-specific RNA and DNA. At 6 h post inoculation with X4 or R5-tropic HIV-1, HIV-1gag RNA was detected maximally within TERT-2 cells. Reverse transcriptase activity in TERT-2 cells was confirmed by VSV-G-mediated infection with HIV-NL4-3Deltaenv-EGFP. AZT inhibited EGFP expression in a dose-dependent manner, suggesting that viral replication can be supported if receptors are bypassed. Within 3 h post inoculation, integrated HIV-1 DNA was detected in TERT-2 cell nuclei and persisted after subculture. Multiply spliced and unspliced HIV-1 mRNAs were not detectable up to 72 h post inoculation, suggesting that HIV replication may abort and that infection is non-productive. Within 48 h post inoculation, however, virus harbored by CD4 negative TERT-2 cells trans infected co-cultured peripheral blood mononuclear cells (PBMCs) or MOLT4 cells (CD4+ CCR5+) by direct cell-to-cell transfer or by releasing low levels of infectious virions. Primary tonsil epithelial cells also trans infected HIV-1 to permissive cells in a donor-specific manner. Oral keratinocytes appear, therefore, to support stable non-replicative integration, while harboring and transmitting infectious X4- or R5-tropic HIV-1 to permissive cells for up to 48 h.

  8. Oral keratinocytes support non-replicative infection and transfer of harbored HIV-1 to permissive cells

    Directory of Open Access Journals (Sweden)

    Giacaman Rodrigo A

    2008-07-01

    Full Text Available Abstract Background Oral keratinocytes on the mucosal surface are frequently exposed to HIV-1 through contact with infected sexual partners or nursing mothers. To determine the plausibility that oral keratinocytes are primary targets of HIV-1, we tested the hypothesis that HIV-1 infects oral keratinocytes in a restricted manner. Results To study the fate of HIV-1, immortalized oral keratinocytes (OKF6/TERT-2; TERT-2 cells were characterized for the fate of HIV-specific RNA and DNA. At 6 h post inoculation with X4 or R5-tropic HIV-1, HIV-1gag RNA was detected maximally within TERT-2 cells. Reverse transcriptase activity in TERT-2 cells was confirmed by VSV-G-mediated infection with HIV-NL4-3Δenv-EGFP. AZT inhibited EGFP expression in a dose-dependent manner, suggesting that viral replication can be supported if receptors are bypassed. Within 3 h post inoculation, integrated HIV-1 DNA was detected in TERT-2 cell nuclei and persisted after subculture. Multiply spliced and unspliced HIV-1 mRNAs were not detectable up to 72 h post inoculation, suggesting that HIV replication may abort and that infection is non-productive. Within 48 h post inoculation, however, virus harbored by CD4 negative TERT-2 cells trans infected co-cultured peripheral blood mononuclear cells (PBMCs or MOLT4 cells (CD4+ CCR5+ by direct cell-to-cell transfer or by releasing low levels of infectious virions. Primary tonsil epithelial cells also trans infected HIV-1 to permissive cells in a donor-specific manner. Conclusion Oral keratinocytes appear, therefore, to support stable non-replicative integration, while harboring and transmitting infectious X4- or R5-tropic HIV-1 to permissive cells for up to 48 h.

  9. Maximum permissible dose

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    This chapter presents a historic overview of the establishment of radiation guidelines by various national and international agencies. The use of maximum permissible dose and maximum permissible body burden limits to derive working standards is discussed

  10. A Whole-Brain Investigation of White Matter Microstructure in Adolescents with Conduct Disorder.

    Science.gov (United States)

    Sarkar, Sagari; Dell'Acqua, Flavio; Froudist Walsh, Seán; Blackwood, Nigel; Scott, Stephen; Craig, Michael C; Deeley, Quinton; Murphy, Declan G M

    2016-01-01

    The biological basis of severe antisocial behaviour in adolescents is poorly understood. We recently reported that adolescents with conduct disorder (CD) have significantly increased fractional anisotropy (FA) of the uncinate fasciculus (a white matter (WM) tract that connects the amygdala to the frontal lobe) compared to their non-CD peers. However, the extent of WM abnormality in other brain regions is currently unclear. We used tract-based spatial statistics to investigate whole brain WM microstructural organisation in 27 adolescent males with CD, and 21 non-CD controls. We also examined relationships between FA and behavioural measures. Groups did not differ significantly in age, ethnicity, or substance use history. The CD group, compared to controls, had clusters of significantly greater FA in 7 brain regions corresponding to: 1) the bilateral inferior and superior cerebellar peduncles, corticopontocerebellar tract, posterior limb of internal capsule, and corticospinal tract; 2) right superior longitudinal fasciculus; and 3) left cerebellar WM. Severity of antisocial behavior and callous-unemotional symptoms were significantly correlated with FA in several of these regions across the total sample, but not in the CD or control groups alone. Adolescents with CD have significantly greater FA than controls in WM regions corresponding predominantly to the fronto-cerebellar circuit. There is preliminary evidence that variation in WM microstructure may be dimensionally related to behaviour problems in youngsters. These findings are consistent with the hypothesis that antisocial behaviour in some young people is associated with abnormalities in WM 'connectivity'.

  11. A Whole-Brain Investigation of White Matter Microstructure in Adolescents with Conduct Disorder.

    Directory of Open Access Journals (Sweden)

    Sagari Sarkar

    Full Text Available The biological basis of severe antisocial behaviour in adolescents is poorly understood. We recently reported that adolescents with conduct disorder (CD have significantly increased fractional anisotropy (FA of the uncinate fasciculus (a white matter (WM tract that connects the amygdala to the frontal lobe compared to their non-CD peers. However, the extent of WM abnormality in other brain regions is currently unclear.We used tract-based spatial statistics to investigate whole brain WM microstructural organisation in 27 adolescent males with CD, and 21 non-CD controls. We also examined relationships between FA and behavioural measures. Groups did not differ significantly in age, ethnicity, or substance use history.The CD group, compared to controls, had clusters of significantly greater FA in 7 brain regions corresponding to: 1 the bilateral inferior and superior cerebellar peduncles, corticopontocerebellar tract, posterior limb of internal capsule, and corticospinal tract; 2 right superior longitudinal fasciculus; and 3 left cerebellar WM. Severity of antisocial behavior and callous-unemotional symptoms were significantly correlated with FA in several of these regions across the total sample, but not in the CD or control groups alone.Adolescents with CD have significantly greater FA than controls in WM regions corresponding predominantly to the fronto-cerebellar circuit. There is preliminary evidence that variation in WM microstructure may be dimensionally related to behaviour problems in youngsters. These findings are consistent with the hypothesis that antisocial behaviour in some young people is associated with abnormalities in WM 'connectivity'.

  12. Selfish brain and selfish immune system interplay: A theoretical framework for metabolic comorbidities of mood disorders.

    Science.gov (United States)

    Yamagata, Ana Sayuri; Mansur, Rodrigo Barbachan; Rizzo, Lucas Bortolotto; Rosenstock, Tatiana; McIntyre, Roger S; Brietzke, Elisa

    2017-01-01

    According to the "selfish brain" theory, the brain regulates its own energy supply influencing the peripheral metabolism and food intake according to its needs. The immune system has been likewise "selfish" due to independent energy consumption; and it may compete with the brain (another high energy-consumer) for glucose. In mood disorders, stress in mood episodes or physiological stress activate homeostasis mechanisms from the brain and the immune system to solve the imbalance. The interaction between the selfish brain and the selfish immune system may explain various conditions of medical impairment in mood disorders, such as Metabolic Syndrome (MetS), obesity, type 2 diabetes mellitus (T2DM) and immune dysregulation. The objective of this study is to comprehensively review the literature regarding the competition between the brain and the immune system for energy substrate. Targeting the energetic regulation of the brain and the immune system and their cross-talk open alternative treatments and a different approach in the study of general medical comorbidities in mood disorders, although more investigation is needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A network of genes, genetic disorders, and brain areas.

    Directory of Open Access Journals (Sweden)

    Satoru Hayasaka

    Full Text Available The network-based approach has been used to describe the relationship among genes and various phenotypes, producing a network describing complex biological relationships. Such networks can be constructed by aggregating previously reported associations in the literature from various databases. In this work, we applied the network-based approach to investigate how different brain areas are associated to genetic disorders and genes. In particular, a tripartite network with genes, genetic diseases, and brain areas was constructed based on the associations among them reported in the literature through text mining. In the resulting network, a disproportionately large number of gene-disease and disease-brain associations were attributed to a small subset of genes, diseases, and brain areas. Furthermore, a small number of brain areas were found to be associated with a large number of the same genes and diseases. These core brain regions encompassed the areas identified by the previous genome-wide association studies, and suggest potential areas of focus in the future imaging genetics research. The approach outlined in this work demonstrates the utility of the network-based approach in studying genetic effects on the brain.

  14. Brain connectivity and psychiatric comorbidity in adolescents with Internet gaming disorder.

    Science.gov (United States)

    Han, Doug Hyun; Kim, Sun Mi; Bae, Sujin; Renshaw, Perry F; Anderson, Jeffrey S

    2017-05-01

    Prolonged Internet video game play may have multiple and complex effects on human cognition and brain development in both negative and positive ways. There is not currently a consensus on the principle effects of video game play neither on brain development nor on the relationship to psychiatric comorbidity. In this study, 78 adolescents with Internet gaming disorder (IGD) and 73 comparison subjects without IGD, including subgroups with no other psychiatric comorbid disease, with major depressive disorder and with attention deficit hyperactivity disorder (ADHD), were included in a 3 T resting state functional magnetic resonance imaging analysis. The severity of Internet gaming disorder, depression, anxiety and ADHD symptoms were assessed with the Young Internet Addiction Scale, the Beck Depression Inventory, the Beck Anxiety Inventory and the Korean ADHD rating scales, respectively. Patients with IGD showed an increased functional correlation between seven pairs of regions, all satisfying q game play and suggest a risk or predisposition in game players for over-connectivity of the default mode and executive control networks that may relate to psychiatric comorbidity. © 2015 Society for the Study of Addiction.

  15. Primary Dystonia: Conceptualizing the Disorder through a Structural Brain Imaging Lens

    Directory of Open Access Journals (Sweden)

    Kristina Simonyan

    2013-06-01

    Full Text Available Background: Dystonia is a hyperkinetic movement disorder of involuntary, twisting repetitive movements. The anatomical structures and pathways implicated in its pathogenesis as well as their relationship to the neurophysiological paradigm of abnormal surround inhibition, maladaptive plasticity and impaired sensorimotor integration remain not well delineated. Objective: We review the use of high-resolution structural brain imaging using voxel-based morphometry (VBM and diffusion tensor imaging (DTI techniques for evaluation of brain changes in primary torsion dystonia and their relationships to the pathophysiology of this disorder. Methods: A search in PubMed was conducted to identify the relevant literature. Discussion: Structural imaging has enhanced our understanding of the pathophysiological mechanisms of dystonia. In particular, VBM and DTI data have revealed microstructural disturbances in the basal ganglia, sensorimotor cortices and cerebellum along with aberrations in the cortico-striato-pallido-thalamic and cerebello-thalamo-cortical pathways.  When combined with functional brain imaging and neurophysiological modalities, a structure-function relationship can be established in the dystonia brain network at the sensorimotor, plasticity, cortical disinhibition and cerebellar outflow connectivity levels. Structural imaging highlighted new anatomical substrates and, with a combined structural-functional approach, has offered new opportunities for investigation of the neurodevelopmental, environmental and/or genetic interplay in the brain networks of dystonia patients. 

  16. NON-INFECTIOUS DISORDERS OF WARMWATER FISHES

    Science.gov (United States)

    Compared with infectious diseases and disorders, few non-infectious diseases and disorders in cultured fish have severe biologic or economic impact. Culture practices, however, often establish environments that promote infectious disease by weakening the immune response or by pro...

  17. Brain activation predicts treatment improvement in patients with major depressive disorder.

    LENUS (Irish Health Repository)

    Samson, Andrea C

    2012-02-01

    Major depressive disorder (MDD) is associated with alterations in brain function that might be useful for therapy evaluation. The current study aimed to identify predictors for therapy improvement and to track functional brain changes during therapy. Twenty-one drug-free patients with MDD underwent functional MRI twice during performance of an emotional perception task: once before and once after 4 weeks of antidepressant treatment (mirtazapine or venlafaxine). Twelve healthy controls were investigated once with the same methods. A significant difference between groups was a relative greater activation of the right dorsolateral prefrontal cortex (dlPFC) in the patients vs. controls. Before treatment, patients responding better to pharmacological treatment showed greater activation in the dorsomedial PFC (dmPFC), posterior cingulate cortex (pCC) and superior frontal gyrus (SFG) when viewing of negative emotional pictures was compared with the resting condition. Activations in the caudate nucleus and insula contrasted for emotional compared to neutral stimuli were also associated with successful treatment. Responders had also significantly higher levels of activation, compared to non-responders, in a range of other brain regions. Brain activation related to treatment success might be related to altered self-referential processes and a differential response to external emotional stimuli, suggesting differences in the processing of emotionally salient stimuli between those who are likely to respond to pharmacological treatment and those who will not. The present investigation suggests the pCC, dmPFC, SFG, caudate nucleus and insula may have a key role as a biological marker for treatment response and predictor for therapeutic success.

  18. Neuron-specific regulation of class I PI3K catalytic subunits and their dysfunction in brain disorders

    Directory of Open Access Journals (Sweden)

    Christina eGross

    2014-02-01

    Full Text Available The PI3K complex plays important roles in virtually all cells of the body. The enzymatic activity of PI3K to phosphorylate phosphoinositides in the membrane is mediated by a group of catalytic and regulatory subunits. Among those, the class I catalytic subunits, p110α, p110β, p110γ and p110δ, have recently drawn attention in the neuroscience field due to their specific dysregulation in diverse brain disorders. While in non-neuronal cells these catalytic subunits may have partially redundant functions, there is increasing evidence that in neurons their roles are more specialized, and confined to distinct receptor-dependent pathways. This review will summarize the emerging role of class I PI3K catalytic subunits in neurotransmitter-regulated neuronal signaling, and their dysfunction in a variety of neurological diseases, including fragile X syndrome, schizophrenia and epilepsy. We will discuss recent literature describing the use of PI3K subunit-selective inhibitors to rescue brain disease-associated phenotypes in in vitro and animal models. These studies give rise to the exciting prospect that these drugs, originally designed for cancer treatment, may be repurposed as therapeutic drugs for brain disorders in the future.

  19. Permission Marketing and Privacy Concerns - Why Do Customers (Not) Grant Permissions?

    NARCIS (Netherlands)

    Krafft, Manfred; Arden, Christine M.; Verhoef, Peter C.

    Little is known about the influence of motivators that drive consumers to grant permission to be contacted via personalized communication. In this study, a framework is developed to investigate the effect of select drivers of consumers granting permission to receive personalized messages. The

  20. Abnormal Brain Connectivity Spectrum Disorders Following Thimerosal Administration

    Directory of Open Access Journals (Sweden)

    David A. Geier

    2017-03-01

    Full Text Available Background: Autism spectrum disorder (ASD, tic disorder (TD, and hyperkinetic syndrome of childhood (attention deficit disorder [ADD]/attention deficit hyperactivity disorder [ADHD] are disorders recently defined as abnormal connectivity spectrum disorders (ACSDs because they show a similar pattern of abnormal brain connectivity. This study examines whether these disorders are associated with exposure to thimerosal, a mercury (Hg-based preservative. Methods: A hypothesis testing case-control study evaluated the Vaccine Safety Datalink for the potential dose-dependent odds ratios (ORs for diagnoses of ASD, TD, and ADD/ADHD compared to controls, following exposure to Hg from thimerosal-containing Haemophilus influenzae type b vaccines administrated within the first 15 months of life. Febrile seizures, cerebral degeneration, and unspecified disorders of metabolism, which are not biologically plausibly linked to thimerosal, were examined as control outcomes. Results: On a per 25 μg Hg basis, cases diagnosed with ASD (OR = 1.493, TD (OR = 1.428, or ADD/ADHD (OR = 1.503 were significantly (P < .001 more likely than controls to have received increased Hg exposure. Similar relationships were observed when separated by gender. Cases diagnosed with control outcomes were no more likely than controls to have received increased Hg exposure. Conclusion: The results suggest that Hg exposure from thimerosal is significantly associated with the ACSDs of ASD, TD, and ADD/ADHD.

  1. The CT and MR evaluation of migrational disorders of the brain. Pt. 1

    International Nuclear Information System (INIS)

    Byrd, S.E.; Osborn, R.E.; Bohan, T.P.; Texas Univ., Houston; Naidich, T.P.

    1989-01-01

    The migrational disorders are a rare group of congenital malformations of the brain. They consist of the following entities - lissencephaly (agyria-pachygyria), pachygyria, schizencephaly, heterotopia and polymicrogyria. We studied 40 children with migrational disorders radiologically with CT and MR. This article (part I) deals with our patients with lissencephaly and pachygyria. It emphasizes their characteristic CT and MR findings along with their clinical presentation and course. These patients presented with one or a combination of the following symptoms, hypotonia, seizures, failure to thrive, microcephaly and occasionally hydrocephalus. These two groups of migrational disorders have abnormalities affecting the gyral-sulcal pattern of the cortex and gray-white matter distribution of the brain. MR provided better delineation of these disorders than CT. Because some forms of the migrational disorders can be inherited, it is extremely important for the radiologist to understand the characteristic findings for correct diagnosis which is essential for parental counseling. (orig.)

  2. DISC1 pathway in brain development: exploring therapeutic targets for major psychiatric disorders

    Directory of Open Access Journals (Sweden)

    Atsushi eKamiya

    2012-03-01

    Full Text Available Genetic risk factors for major psychiatric disorders play key roles in neurodevelopment. Thus, exploring the molecular pathways of risk genes is important not only for understanding the molecular mechanisms underlying brain development, but also to decipher how genetic disturbances affect brain maturation and functioning relevant to major mental illnesses. During the last decade, there has been significant progress in determining the mechanisms whereby risk genes impact brain development. Nonetheless, given that the majority of psychiatric disorders have etiological complexities encompassing multiple risk genes and environmental factors, the biological mechanisms of these diseases remain poorly understood. How can we move forward in our research for discovery of the biological markers and novel therapeutic targets for major mental disorders? Here we review recent progress in the neurobiology of Disrupted in schizophrenia 1 (DISC1, a major risk gene for major mental disorders, with a particular focus on its roles in cerebral cortex development. Convergent findings implicate DISC1 as part of a large, multi-step pathway implicated in various cellular processes and signal transduction. We discuss links between the DISC1 pathway and environmental factors, such as immune/inflammatory responses, which may suggest novel therapeutic targets. Existing treatments for major mental disorders are hampered by a limited number of pharmacological targets. Consequently, elucidation of the DISC1 pathway, and its association with neuropsychiatric disorders, may offer hope for novel treatment interventions.

  3. Surface-based brain morphometry and diffusion tensor imaging in schizoaffective disorder.

    Science.gov (United States)

    Landin-Romero, Ramón; Canales-Rodríguez, Erick J; Kumfor, Fiona; Moreno-Alcázar, Ana; Madre, Mercè; Maristany, Teresa; Pomarol-Clotet, Edith; Amann, Benedikt L

    2017-01-01

    The profile of grey matter abnormalities and related white-matter pathology in schizoaffective disorder has only been studied to a limited extent. The aim of this study was to identify grey- and white-matter abnormalities in patients with schizoaffective disorder using complementary structural imaging techniques. Forty-five patients meeting Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition criteria and Research Diagnostic Criteria for schizoaffective disorder and 45 matched healthy controls underwent structural-T1 and diffusion magnetic resonance imaging to enable surface-based brain morphometry and diffusion tensor imaging analyses. Analyses were conducted to determine group differences in cortical volume, cortical thickness and surface area, as well as in fractional anisotropy and mean diffusivity. At a threshold of p = 0.05 corrected, all measures revealed significant differences between patients and controls at the group level. Spatial overlap of abnormalities was observed across the various structural neuroimaging measures. In grey matter, patients with schizoaffective disorder showed abnormalities in the frontal and temporal lobes, striatum, fusiform, cuneus, precuneus, lingual and limbic regions. White-matter abnormalities were identified in tracts connecting these areas, including the corpus callosum, superior and inferior longitudinal fasciculi, anterior thalamic radiation, uncinate fasciculus and cingulum bundle. The spatial overlap of abnormalities across the different imaging techniques suggests widespread and consistent brain pathology in schizoaffective disorder. The abnormalities were mainly detected in areas that have commonly been reported to be abnormal in schizophrenia, and to some extent in bipolar disorder, which may explain the clinical and aetiological overlap in these disorders.

  4. Functional community analysis of brain: a new approach for EEG-based investigation of the brain pathology.

    Science.gov (United States)

    Ahmadlou, Mehran; Adeli, Hojjat

    2011-09-15

    Analysis of structure of the brain functional connectivity (SBFC) is a fundamental issue for understanding of the brain cognition as well as the pathology of brain disorders. Analysis of communities among sub-parts of a system is increasingly used for social, ecological, and other networks. This paper presents a new methodology for investigation of the SBFC and understanding of the brain based on graph theory and community pattern analysis of functional connectivity graph of the brain obtained from encephalograms (EEGs). The methodology consists of three main parts: fuzzy synchronization likelihood (FSL), community partitioning, and decisions based on partitions. As an example application, the methodology is applied to analysis of brain of patients with attention deficit/hyperactivity disorder (ADHD) and the problem of discrimination of ADHD EEGs from healthy (non-ADHD) EEGs. Copyright © 2011. Published by Elsevier Inc.

  5. [Neurological disorders and the blood-brain barrier. Strategies and limitations for drug delivery to the brain].

    Science.gov (United States)

    Domínguez, Alazne; Álvarez, Antonia; Suárez-Merino, Blanca; Goñi-de-Cerio, Felipe

    2014-03-01

    The incidence in the central nervous system diseases has increased with a growing elderly population. Unfortunately, conventional treatments used to treat the mentioned diseases are frequently ineffective due to the presence of the blood brain barrier. To illustrate the blood-brain barrier properties that limit drug transport into the brain and the main strategies employed to treat neurologic disorders. The blood-brain barrier is mainly composed of a specialized microvascular endothelium and of glial cells. It constitutes a valuable tool to separate the central nervous system from the rest of the body. Nevertheless, it also represents an obstacle to the delivery of therapeutic drugs to the brain. To be effective, drugs must reach their target in the brain. On one hand, therapeutic agents could be designed to be able to cross the blood brain barrier. On the other hand, drug delivery systems could be employed to facilitate the therapeutic agents' entry into the central nervous system. In vivo models of neurological diseases, in addition to in vitro models of the blood brain barrier, have been widely employed for the evaluation of drugs utilized to treat central nervous system diseases.

  6. Neural correlates of apathy in patients with neurodegenerative disorders, acquired brain injury, and psychiatric disorders

    NARCIS (Netherlands)

    Kos, Claire; van Tol, Marie-Jose; Marsman, Jan-Bernard C.; Knegtering, Henderikus; Aleman, Andre

    2016-01-01

    Apathy can be described as a loss of goal-directed purposeful behavior and is common in a variety of neurological and psychiatric disorders. Although previous studies investigated associations between abnormal brain functioning and apathy, it is unclear whether the neural basis of apathy is similar

  7. Involvement of Neuroinflammation during Brain Development in Social Cognitive Deficits in Autism Spectrum Disorder and Schizophrenia.

    Science.gov (United States)

    Nakagawa, Yutaka; Chiba, Kenji

    2016-09-01

    Development of social cognition, a unique and high-order function, depends on brain maturation from childhood to adulthood in humans. Autism spectrum disorder (ASD) and schizophrenia have similar social cognitive deficits, although age of onset in each disorder is different. Pathogenesis of these disorders is complex and contains several features, including genetic risk factors, environmental risk factors, and sites of abnormalities in the brain. Although several hypotheses have been postulated, they seem to be insufficient to explain how brain alterations associated with symptoms in these disorders develop at distinct developmental stages. Development of ASD appears to be related to cerebellar dysfunction and subsequent thalamic hyperactivation in early childhood. By contrast, schizophrenia seems to be triggered by thalamic hyperactivation in late adolescence, whereas hippocampal aberration has been possibly initiated in childhood. One of the possible culprits is metal homeostasis disturbances that can induce dysfunction of blood-cerebrospinal fluid barrier. Thalamic hyperactivation is thought to be induced by microglia-mediated neuroinflammation and abnormalities of intracerebral environment. Consequently, it is likely that the thalamic hyperactivation triggers dysregulation of the dorsolateral prefrontal cortex for lower brain regions related to social cognition. In this review, we summarize the brain aberration in ASD and schizophrenia and provide a possible mechanism underlying social cognitive deficits in these disorders based on their distinct ages of onset. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  8. Nanoparticle transport across the blood brain barrier.

    Science.gov (United States)

    Grabrucker, Andreas M; Ruozi, Barbara; Belletti, Daniela; Pederzoli, Francesca; Forni, Flavio; Vandelli, Maria Angela; Tosi, Giovanni

    2016-01-01

    While the role of the blood-brain barrier (BBB) is increasingly recognized in the (development of treatments targeting neurodegenerative disorders, to date, few strategies exist that enable drug delivery of non-BBB crossing molecules directly to their site of action, the brain. However, the recent advent of Nanomedicines may provide a potent tool to implement CNS targeted delivery of active compounds. Approaches for BBB crossing are deeply investigated in relation to the pathology: among the main important diseases of the CNS, this review focuses on the application of nanomedicines to neurodegenerative disorders (Alzheimer, Parkinson and Huntington's Disease) and to other brain pathologies as epilepsy, infectious diseases, multiple sclerosis, lysosomal storage disorders, strokes.

  9. Deep brain stimulation for severe treatment-resistant obsessive-compulsive disorder: An open-label case series.

    Science.gov (United States)

    Farrand, Sarah; Evans, Andrew H; Mangelsdorf, Simone; Loi, Samantha M; Mocellin, Ramon; Borham, Adam; Bevilacqua, JoAnne; Blair-West, Scott; Walterfang, Mark A; Bittar, Richard G; Velakoulis, Dennis

    2017-09-01

    Deep brain stimulation can be of benefit in carefully selected patients with severe intractable obsessive-compulsive disorder. The aim of this paper is to describe the outcomes of the first seven deep brain stimulation procedures for obsessive-compulsive disorder undertaken at the Neuropsychiatry Unit, Royal Melbourne Hospital. The primary objective was to assess the response to deep brain stimulation treatment utilising the Yale-Brown Obsessive Compulsive Scale as a measure of symptom severity. Secondary objectives include assessment of depression and anxiety, as well as socio-occupational functioning. Patients with severe obsessive-compulsive disorder were referred by their treating psychiatrist for assessment of their suitability for deep brain stimulation. Following successful application to the Psychosurgery Review Board, patients proceeded to have deep brain stimulation electrodes implanted in either bilateral nucleus accumbens or bed nucleus of stria terminalis. Clinical assessment and symptom rating scales were undertaken pre- and post-operatively at 6- to 8-week intervals. Rating scales used included the Yale-Brown Obsessive Compulsive Scale, Obsessive Compulsive Inventory, Depression Anxiety Stress Scale and Social and Occupational Functioning Assessment Scale. Seven patients referred from four states across Australia underwent deep brain stimulation surgery and were followed for a mean of 31 months (range, 8-54 months). The sample included four females and three males, with a mean age of 46 years (range, 37-59 years) and mean duration of obsessive-compulsive disorder of 25 years (range, 15-38 years) at the time of surgery. The time from first assessment to surgery was on average 18 months. All patients showed improvement on symptom severity rating scales. Three patients showed a full response, defined as greater than 35% improvement in Yale-Brown Obsessive Compulsive Scale score, with the remaining showing responses between 7% and 20%. Deep

  10. Determinants of Psychosocial Difficulties Experienced by Persons with Brain Disorders: Towards a 'Horizontal Epidemiology' Approach.

    Directory of Open Access Journals (Sweden)

    Carla Sabariego

    Full Text Available Persons with brain disorders experience significant psychosocial difficulties (PSD in daily life, e.g. problems with managing daily routine or emotional lability, and the level of the PSD depends on social, physical and political environments, and psychologic-personal determinants. Our objective is to determine a brief set of environmental and psychologic-personal factors that are shared determinants of PSD among persons with different brain disorders.Cross-sectional study, convenience sample of persons with either dementia, stroke, multiple sclerosis, epilepsy, migraine, depression, schizophrenia, substance dependence or Parkinson's disease. Random forest regression and classical linear regression were used in the analyses.722 subjects were interviewed in four European countries. The brief set of determinants encompasses presence of comorbidities, health status appraisal, stressful life events, personality changes, adaptation, self-esteem, self-worth, built environment, weather, and health problems in the family.The identified brief set of common determinants of PSD can be used to support the implementation of cross-cutting interventions, social actions and policy tools to lower PSD experienced by persons with brain disorders. This set complements a recently proposed reliable and valid direct metric of PSD for brain disorders called PARADISE24.

  11. Vitamin D and the brain: Genomic and non-genomic actions.

    Science.gov (United States)

    Cui, Xiaoying; Gooch, Helen; Petty, Alice; McGrath, John J; Eyles, Darryl

    2017-09-15

    1,25(OH) 2 D 3 (vitamin D) is well-recognized as a neurosteroid that modulates multiple brain functions. A growing body of evidence indicates that vitamin D plays a pivotal role in brain development, neurotransmission, neuroprotection and immunomodulation. However, the precise molecular mechanisms by which vitamin D exerts these functions in the brain are still unclear. Vitamin D signalling occurs via the vitamin D receptor (VDR), a zinc-finger protein in the nuclear receptor superfamily. Like other nuclear steroids, vitamin D has both genomic and non-genomic actions. The transcriptional activity of vitamin D occurs via the nuclear VDR. Its faster, non-genomic actions can occur when the VDR is distributed outside the nucleus. The VDR is present in the developing and adult brain where it mediates the effects of vitamin D on brain development and function. The purpose of this review is to summarise the in vitro and in vivo work that has been conducted to characterise the genomic and non-genomic actions of vitamin D in the brain. Additionally we link these processes to functional neurochemical and behavioural outcomes. Elucidation of the precise molecular mechanisms underpinning vitamin D signalling in the brain may prove useful in understanding the role this steroid plays in brain ontogeny and function. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Altered expression of BDNF, BDNF pro-peptide and their precursor proBDNF in brain and liver tissues from psychiatric disorders: rethinking the brain?liver axis

    OpenAIRE

    Yang, B; Ren, Q; Zhang, J-c; Chen, Q-X; Hashimoto, K

    2017-01-01

    Brain-derived neurotrophic factor (BDNF) has a role in the pathophysiology of psychiatric disorders. The precursor proBDNF is converted to mature BDNF and BDNF pro-peptide, the N-terminal fragment of proBDNF; however, the precise function of these proteins in psychiatric disorders is unknown. We sought to determine whether expression of these proteins is altered in the brain and peripheral tissues from patients with psychiatric disorders. We measured protein expression of proBDNF, mature BDNF...

  13. Early brain enlargement and elevated extra-axial fluid in infants who develop autism spectrum disorder.

    Science.gov (United States)

    Shen, Mark D; Nordahl, Christine W; Young, Gregory S; Wootton-Gorges, Sandra L; Lee, Aaron; Liston, Sarah E; Harrington, Kayla R; Ozonoff, Sally; Amaral, David G

    2013-09-01

    Prospective studies of infants at risk for autism spectrum disorder have provided important clues about the early behavioural symptoms of autism spectrum disorder. Diagnosis of autism spectrum disorder, however, is not currently made until at least 18 months of age. There is substantially less research on potential brain-based differences in the period between 6 and 12 months of age. Our objective in the current study was to use magnetic resonance imaging to identify any consistently observable brain anomalies in 6-9 month old infants who would later develop autism spectrum disorder. We conducted a prospective infant sibling study with longitudinal magnetic resonance imaging scans at three time points (6-9, 12-15, and 18-24 months of age), in conjunction with intensive behavioural assessments. Fifty-five infants (33 'high-risk' infants having an older sibling with autism spectrum disorder and 22 'low-risk' infants having no relatives with autism spectrum disorder) were imaged at 6-9 months; 43 of these (27 high-risk and 16 low-risk) were imaged at 12-15 months; and 42 (26 high-risk and 16 low-risk) were imaged again at 18-24 months. Infants were classified as meeting criteria for autism spectrum disorder, other developmental delays, or typical development at 24 months or later (mean age at outcome: 32.5 months). Compared with the other two groups, infants who developed autism spectrum disorder (n = 10) had significantly greater extra-axial fluid at 6-9 months, which persisted and remained elevated at 12-15 and 18-24 months. Extra-axial fluid is characterized by excessive cerebrospinal fluid in the subarachnoid space, particularly over the frontal lobes. The amount of extra-axial fluid detected as early as 6 months was predictive of more severe autism spectrum disorder symptoms at the time of outcome. Infants who developed autism spectrum disorder also had significantly larger total cerebral volumes at both 12-15 and 18-24 months of age. This is the first magnetic

  14. Progress and roadblocks in the search for brain-based biomarkers of autism and attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Uddin, L Q; Dajani, D R; Voorhies, W; Bednarz, H; Kana, R K

    2017-08-22

    Children with neurodevelopmental disorders benefit most from early interventions and treatments. The development and validation of brain-based biomarkers to aid in objective diagnosis can facilitate this important clinical aim. The objective of this review is to provide an overview of current progress in the use of neuroimaging to identify brain-based biomarkers for autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD), two prevalent neurodevelopmental disorders. We summarize empirical work that has laid the foundation for using neuroimaging to objectively quantify brain structure and function in ways that are beginning to be used in biomarker development, noting limitations of the data currently available. The most successful machine learning methods that have been developed and applied to date are discussed. Overall, there is increasing evidence that specific features (for example, functional connectivity, gray matter volume) of brain regions comprising the salience and default mode networks can be used to discriminate ASD from typical development. Brain regions contributing to successful discrimination of ADHD from typical development appear to be more widespread, however there is initial evidence that features derived from frontal and cerebellar regions are most informative for classification. The identification of brain-based biomarkers for ASD and ADHD could potentially assist in objective diagnosis, monitoring of treatment response and prediction of outcomes for children with these neurodevelopmental disorders. At present, however, the field has yet to identify reliable and reproducible biomarkers for these disorders, and must address issues related to clinical heterogeneity, methodological standardization and cross-site validation before further progress can be achieved.

  15. Computed tomography in the evaluation of migrational disorders of the brain. 1

    International Nuclear Information System (INIS)

    Byrd, S.E.; Bohan, T.P.; Osborn, R.E.

    1988-01-01

    The migrational disorders are a rare group of congenital malformations of the brain which are almost exclusively seen in children. They are comprised of four types, lissencephaly, schizencephaly, heterotopia and polymicrogyria. They have received little attention in the radiology literature because until recently the radiographic modalities to evaluate these disorders (which are primarily abnormalities of the cortex of the brain (gyri and sulci) and gray matter) were not available. Advanced CT scanners have allowed better resolution of the pediatric brain, and in turn better delineation of this group of congenital malformations. The development of the neocortex of the brain is reviewed and the entity of lissencephaly is emphasized. The characteristic CT appearance of lissencephaly is discussed with a delineation of the major findings of (1) agyric-pachygyric cortex (2) shallow sylvian grooves producing a 'figure of eight' appearance and (3) thickened cortical gray matter with loss of the gray-white matter interdigitations. A classification of lissencephaly is proposed, based on the 13 patients of this study and the patients' reviews in the medical literature. 24 refs.; 8 figs.; 3 tabs

  16. Network efficiency in autism spectrum disorder and its relation to brain overgrowth

    Directory of Open Access Journals (Sweden)

    John D Lewis

    2013-12-01

    Full Text Available A substantial body of evidence links differences in brain size to differences in brain organization. We have hypothesized that the developmental aspect of this relation plays a role in autism spectrum disorder (ASD, a neurodevelopmental disorder which involves abnormalities in brain growth. Children with ASD have abnormally large brains by the second year of life, and for several years thereafter their brain size can be multiple standard deviations above the norm. The greater conduction delays and cellular costs presumably associated with the longer long-distance connections in these larger brains is thought to influence developmental processes, giving rise to an altered brain organization with less communication between spatially distant regions. This has been supported by computational models and by findings linking greater intra-cranial volume, an index of maximum brain-size during development, to reduced inter-hemispheric connectivity in individuals with ASD. In this paper, we further assess this hypothesis via a whole-brain analysis of network efficiency. We utilize diffusion tractography to estimate the strength and length of the connections between all pairs of cortical regions. We compute the efficiency of communication between each network node and all others, and within local neighborhoods; we then assess the relation of these measures to intra-cranial volume, and the differences in these measures between adults with autism and typical controls. Intra-cranial volume is shown to be inversely related to efficiency for wide-spread regions of cortex. Moreover, the spatial patterns of reductions in efficiency in autism bear a striking resemblance to the regional relationships between efficiency and intra-cranial volume, particularly for local efficiency. The results thus provide further support for the hypothesized link between brain overgrowth in children with autism and the efficiency of the organization of the brain in adults with autism.

  17. The Role of Intrinsic Brain Functional Connectivity in Vulnerability and Resilience to Bipolar Disorder.

    Science.gov (United States)

    Doucet, Gaelle E; Bassett, Danielle S; Yao, Nailin; Glahn, David C; Frangou, Sophia

    2017-12-01

    Bipolar disorder is a heritable disorder characterized by mood dysregulation associated with brain functional dysconnectivity. Previous research has focused on the detection of risk- and disease-associated dysconnectivity in individuals with bipolar disorder and their first-degree relatives. The present study seeks to identify adaptive brain connectivity features associated with resilience, defined here as avoidance of illness or delayed illness onset in unaffected siblings of patients with bipolar disorder. Graph theoretical methods were used to examine global and regional brain network topology in head-motion-corrected resting-state functional MRI data acquired from 78 patients with bipolar disorder, 64 unaffected siblings, and 41 healthy volunteers. Global network properties were preserved in patients and their siblings while both groups showed reductions in the cohesiveness of the sensorimotor network. In the patient group, these sensorimotor network abnormalities were coupled with reduced integration of core default mode network regions in the ventromedial cortex and hippocampus. Conversely, integration of the default mode network was increased in the sibling group compared with both the patient group and the healthy volunteer group. The authors found that trait-related vulnerability to bipolar disorder was associated with reduced resting-state cohesiveness of the sensorimotor network in patients with bipolar disorder. However, integration of the default mode network emerged as a key feature differentiating disease expression and resilience between the patients and their siblings. This is indicative of the presence of neural mechanisms that may promote resilience, or at least delay illness onset.

  18. Subcortical brain alterations in major depressive disorder : findings from the ENIGMA Major Depressive Disorder working group

    NARCIS (Netherlands)

    Schmaal, L.; Veltman, D. J.; van Erp, T. G. M.; Saemann, P. G.; Frodl, T.; Jahanshad, N.; Loehrer, E.; Tiemeier, H.; Hofman, A.; Niessen, W. J.; Vernooij, M. W.; Ikram, M. A.; Wittfeld, K.; Grabe, H. J.; Block, A.; Hegenscheid, K.; Voelzke, H.; Hoehn, D.; Czisch, M.; Lagopoulos, J.; Hatton, S. N.; Hickie, I. B.; Goya-Maldonado, R.; Kraemer, B.; Gruber, O.; Couvy-Duchesne, B.; Renteria, M. E.; Strike, L. T.; Mills, N. T.; de Zubicaray, G. I.; McMahon, K. L.; Medland, S. E.; Martin, N. G.; Gillespie, N. A.; Wright, M. J.; Hall, G.B.; MacQueen, G. M.; Frey, E. M.; Carballedo, A.; van Velzen, L. S.; van Tol, M. J.; van der Wee, N. J.; Veer, I. M.; Walter, H.; Schnell, K.; Schramm, E.; Normann, C.; Schoepf, D.; Konrad, C.; Penninx, B. W. J. H.

    The pattern of structural brain alterations associated with major depressive disorder (MDD) remains unresolved. This is in part due to small sample sizes of neuroimaging studies resulting in limited statistical power, disease heterogeneity and the complex interactions between clinical

  19. Traumatic Brain Injury Induces Genome-Wide Transcriptomic, Methylomic, and Network Perturbations in Brain and Blood Predicting Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Qingying Meng

    2017-02-01

    Full Text Available The complexity of the traumatic brain injury (TBI pathology, particularly concussive injury, is a serious obstacle for diagnosis, treatment, and long-term prognosis. Here we utilize modern systems biology in a rodent model of concussive injury to gain a thorough view of the impact of TBI on fundamental aspects of gene regulation, which have the potential to drive or alter the course of the TBI pathology. TBI perturbed epigenomic programming, transcriptional activities (expression level and alternative splicing, and the organization of genes in networks centered around genes such as Anax2, Ogn, and Fmod. Transcriptomic signatures in the hippocampus are involved in neuronal signaling, metabolism, inflammation, and blood function, and they overlap with those in leukocytes from peripheral blood. The homology between genomic signatures from blood and brain elicited by TBI provides proof of concept information for development of biomarkers of TBI based on composite genomic patterns. By intersecting with human genome-wide association studies, many TBI signature genes and network regulators identified in our rodent model were causally associated with brain disorders with relevant link to TBI. The overall results show that concussive brain injury reprograms genes which could lead to predisposition to neurological and psychiatric disorders, and that genomic information from peripheral leukocytes has the potential to predict TBI pathogenesis in the brain.

  20. Postdeployment Symptom Changes and Traumatic Brain Injury and/or Posttraumatic Stress Disorder in Men

    Science.gov (United States)

    2012-01-01

    Post - Deployment Health Assessment, according to traumatic brain injury (TBI) and posttraumatic stress disorder ( PTSD ...Key words: blasts, deployment, males, military, odds ratio, percent change, Post -Deployment Health Assessment, post - traumatic stress disorder ...Care Posttraumatic Stress Disorder Screen, PDHA = Post -Deployment Health Assessment, PDHRA = Post - Deployment Health Reassessment, PTSD =

  1. Cross-sensory gating in schizophrenia and autism spectrum disorder: EEG evidence for impaired brain connectivity?

    DEFF Research Database (Denmark)

    Magnée, Maurice J C M; Oranje, Bob; van Engeland, Herman

    2009-01-01

    activation, which provides crucial information about functional integrity of connections between brain areas involved in cross-sensory processing in both disorders. Thirteen high functioning adult males with ASD, 13 high functioning adult males with schizophrenia, and 16 healthy adult males participated...... with the notion that filtering deficits may be secondary to earlier sensory dysfunction. Also, atypical cross-sensory suppression was found, which implies that the cognitive impairments seen in schizophrenia may be due to deficits in the integrity of connections between brain areas involved in low-level cross-sensory......Autism spectrum disorders (ASD) and schizophrenia are both neurodevelopmental disorders that have extensively been associated with impairments in functional brain connectivity. Using a cross-sensory P50 suppression paradigm, this study investigated low-level audiovisual interactions on cortical EEG...

  2. Take control of permissions in Leopard

    CERN Document Server

    Tanaka, Brian

    2009-01-01

    Permissions problems got you down? Turn to Unix expert Brian Tanaka's unique guide to the permissions in Mac OS X 10.5 Leopard that control access to your files, folders, and disks. You'll learn how to keep files private, when to set Ignore Permissions, what happens when you repair permissions, how to delete stuck files, and the best ways to solve permissions-related problems. Advanced concepts include the sticky bit, Leopard's more-important access control lists, bit masks, and symbolic versus absolute ways to set permissions. The book covers how to take control of permissions via the Finder

  3. Elevated levels of plasma brain derived neurotrophic factor in rapid cycling bipolar disorder patients

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Pedersen, Bente Klarlund; Kessing, Lars Vedel

    2014-01-01

    Impaired neuroplasticity may be implicated in the pathophysiology of bipolar disorder, involving peripheral alterations of the neurotrophins brain derived neurotrophic factor (BDNF) and neurotrophin 3 (NT-3). Evidence is limited by methodological issues and is based primarily on case-control desi......Impaired neuroplasticity may be implicated in the pathophysiology of bipolar disorder, involving peripheral alterations of the neurotrophins brain derived neurotrophic factor (BDNF) and neurotrophin 3 (NT-3). Evidence is limited by methodological issues and is based primarily on case......-control designs. The aim of this study was to investigate whether BDNF and NT-3 levels differ between patients with rapid cycling bipolar disorder and healthy control subjects and whether BDNF and NT-3 levels alter with affective states in rapid cycling bipolar disorder patients. Plasma levels of BDNF and NT-3......, levels of BDNF were significantly elevated in bipolar disorder patients in euthymic- (pdifference in BDNF levels...

  4. Application of machine learning classification for structural brain MRI in mood disorders: Critical review from a clinical perspective.

    Science.gov (United States)

    Kim, Yong-Ku; Na, Kyoung-Sae

    2018-01-03

    Mood disorders are a highly prevalent group of mental disorders causing substantial socioeconomic burden. There are various methodological approaches for identifying the underlying mechanisms of the etiology, symptomatology, and therapeutics of mood disorders; however, neuroimaging studies have provided the most direct evidence for mood disorder neural substrates by visualizing the brains of living individuals. The prefrontal cortex, hippocampus, amygdala, thalamus, ventral striatum, and corpus callosum are associated with depression and bipolar disorder. Identifying the distinct and common contributions of these anatomical regions to depression and bipolar disorder have broadened and deepened our understanding of mood disorders. However, the extent to which neuroimaging research findings contribute to clinical practice in the real-world setting is unclear. As traditional or non-machine learning MRI studies have analyzed group-level differences, it is not possible to directly translate findings from research to clinical practice; the knowledge gained pertains to the disorder, but not to individuals. On the other hand, a machine learning approach makes it possible to provide individual-level classifications. For the past two decades, many studies have reported on the classification accuracy of machine learning-based neuroimaging studies from the perspective of diagnosis and treatment response. However, for the application of a machine learning-based brain MRI approach in real world clinical settings, several major issues should be considered. Secondary changes due to illness duration and medication, clinical subtypes and heterogeneity, comorbidities, and cost-effectiveness restrict the generalization of the current machine learning findings. Sophisticated classification of clinical and diagnostic subtypes is needed. Additionally, as the approach is inevitably limited by sample size, multi-site participation and data-sharing are needed in the future. Copyright

  5. Molecular Imaging of the Brain Using Multi-Quantum Coherence and Diagnostics of Brain Disorders

    CERN Document Server

    Kaila, M M

    2013-01-01

    This book examines multi-quantum magnetic resonance imaging methods and the diagnostics of brain disorders. It consists of two Parts. The part I is initially devoted towards the basic concepts of the conventional single quantum MRI techniques. It is supplemented by the basic knowledge required to understand multi-quantum MRI. Practical illustrations are included both on recent developments in conventional MRI and the MQ-MRI. This is to illustrate the connection between theoretical concepts and their scope in the clinical applications. The Part II initially sets out the basic details about quadrupole charge distribution present in certain nuclei and their importance about the functions they perform in our brain. Some simplified final mathematical expressions are included to illustrate facts about the basic concepts of the quantum level interactions between magnetic dipole and the electric quadrupole behavior of useful nuclei present in the brain. Selected practical illustrations, from research and clinical pra...

  6. Clinical Application of Neuroplastic Brain Research in Eating Disorder Treatment

    Directory of Open Access Journals (Sweden)

    Abigail H. Natenshon

    2016-12-01

    Neurophysiological and psychophysiological treatment interventions, by carving new neuronal pathways and creating connectivity that augments brain circuitry, carry the potential to remediate body image and self-image distortions, reintegrating the fragmented eating disordered core self. To date, intentional partnering between therapist, ED patient, and neuroplastic brain has been rarely applied in the clinical milieu and minimally referenced in the treatment literature. By bringing current neuroplasticity research into frontline practice, ED practitioners not only bridge the research/practice gap, but redefine new directions for future ED research.

  7. Connectomic disturbances in attention-deficit/hyperactivity disorder: a whole-brain tractography analysis.

    Science.gov (United States)

    Hong, Soon-Beom; Zalesky, Andrew; Fornito, Alex; Park, Subin; Yang, Young-Hui; Park, Min-Hyeon; Song, In-Chan; Sohn, Chul-Ho; Shin, Min-Sup; Kim, Bung-Nyun; Cho, Soo-Churl; Han, Doug Hyun; Cheong, Jae Hoon; Kim, Jae-Won

    2014-10-15

    Few studies have sought to identify, in a regionally unbiased way, the precise cortical and subcortical regions that are affected by white matter abnormalities in attention-deficit/hyperactivity disorder (ADHD). This study aimed to derive a comprehensive, whole-brain characterization of connectomic disturbances in ADHD. Using diffusion tensor imaging, whole-brain tractography, and an imaging connectomics approach, we characterized altered white matter connectivity in 71 children and adolescents with ADHD compared with 26 healthy control subjects. White matter differences were further delineated between patients with (n = 40) and without (n = 26) the predominantly hyperactive/impulsive subtype of ADHD. A significant network comprising 25 distinct fiber bundles linking 23 different brain regions spanning frontal, striatal, and cerebellar brain regions showed altered white matter structure in ADHD patients (p attentional disturbances. Attention-deficit/hyperactivity disorder subtypes were differentiated by a right-lateralized network (p attentional performance underscore the functional importance of these connectomic disturbances for the clinical phenotype of ADHD. A distributed pattern of white matter microstructural integrity separately involving frontal, striatal, and cerebellar brain regions, rather than direct frontostriatal connectivity, appears to be disrupted in children and adolescents with ADHD. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Mitochondrial mutations in subjects with psychiatric disorders.

    Directory of Open Access Journals (Sweden)

    Adolfo Sequeira

    Full Text Available A considerable body of evidence supports the role of mitochondrial dysfunction in psychiatric disorders and mitochondrial DNA (mtDNA mutations are known to alter brain energy metabolism, neurotransmission, and cause neurodegenerative disorders. Genetic studies focusing on common nuclear genome variants associated with these disorders have produced genome wide significant results but those studies have not directly studied mtDNA variants. The purpose of this study is to investigate, using next generation sequencing, the involvement of mtDNA variation in bipolar disorder, schizophrenia, major depressive disorder, and methamphetamine use. MtDNA extracted from multiple brain regions and blood were sequenced (121 mtDNA samples with an average of 8,800x coverage and compared to an electronic database containing 26,850 mtDNA genomes. We confirmed novel and rare variants, and confirmed next generation sequencing error hotspots by traditional sequencing and genotyping methods. We observed a significant increase of non-synonymous mutations found in individuals with schizophrenia. Novel and rare non-synonymous mutations were found in psychiatric cases in mtDNA genes: ND6, ATP6, CYTB, and ND2. We also observed mtDNA heteroplasmy in brain at a locus previously associated with schizophrenia (T16519C. Large differences in heteroplasmy levels across brain regions within subjects suggest that somatic mutations accumulate differentially in brain regions. Finally, multiplasmy, a heteroplasmic measure of repeat length, was observed in brain from selective cases at a higher frequency than controls. These results offer support for increased rates of mtDNA substitutions in schizophrenia shown in our prior results. The variable levels of heteroplasmic/multiplasmic somatic mutations that occur in brain may be indicators of genetic instability in mtDNA.

  9. Implication of neuro-genesis during brain development in behavior disorders caused by depleted uranium

    International Nuclear Information System (INIS)

    Legrand, Marie

    2016-01-01

    Humans are continuously exposed to neurotoxic compounds in the environment. The developing brain is more susceptible to neurotoxic compounds and modifications in its growth could lead to disorders in adulthood. Uranium (U) is an environmental heavy metal and induces behavioral disorders as well as affects neurochemistry. The aim of my thesis was to investigate whether depleted uranium (DU) exposure affects neuro-genesis processes, which are implicated in brain development and in synaptic plasticity in adults. While DU increased cell proliferation in the hippocampal neuro-epithelium and decreased cell death at prenatal stages, DU lead to opposite effects in the dentate gyrus at postnatal stages. Moreover, DU had an inhibitory effect on the transition toward neuronal differentiation pathway during development. At adult stage, DU induced a decrease in neuronal differentiation but has no impact in cell proliferation. Finally, DU exposure during brain development caused depressive like behavior at late postnatal and adult stage, and decreased spatial memory at adult stage. Consequently, DU exposure during brain development caused modification in neuro-genesis processes associated to cognitive and emotional disorders at adult age. U could present a threat to human health, especially in pregnant women and children. (author)

  10. Analysis of Brain Recurrence

    Science.gov (United States)

    Frilot, Clifton; Kim, Paul Y.; Carrubba, Simona; McCarty, David E.; Chesson, Andrew L.; Marino, Andrew A.

    Analysis of Brain Recurrence (ABR) is a method for extracting physiologically significant information from the electroencephalogram (EEG), a non-stationary electrical output of the brain, the ultimate complex dynamical system. ABR permits quantification of temporal patterns in the EEG produced by the non-autonomous differential laws that govern brain metabolism. In the context of appropriate experimental and statistical designs, ABR is ideally suited to the task of interpreting the EEG. Present applications of ABR include discovery of a human magnetic sense, increased mechanistic understanding of neuronal membrane processes, diagnosis of degenerative neurological disease, detection of changes in brain metabolism caused by weak environmental electromagnetic fields, objective characterization of the quality of human sleep, and evaluation of sleep disorders. ABR has important beneficial implications for the development of clinical and experimental neuroscience.

  11. Adrenal Disorders and the Paediatric Brain: Pathophysiological Considerations and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Vincenzo Salpietro

    2014-01-01

    Full Text Available Various neurological and psychiatric manifestations have been recorded in children with adrenal disorders. Based on literature review and on personal case-studies and case-series we focused on the pathophysiological and clinical implications of glucocorticoid-related, mineralcorticoid-related, and catecholamine-related paediatric nervous system involvement. Childhood Cushing syndrome can be associated with long-lasting cognitive deficits and abnormal behaviour, even after resolution of the hypercortisolism. Exposure to excessive replacement of exogenous glucocorticoids in the paediatric age group (e.g., during treatments for adrenal insufficiency has been reported with neurological and magnetic resonance imaging (MRI abnormalities (e.g., delayed myelination and brain atrophy due to potential corticosteroid-related myelin damage in the developing brain and the possible impairment of limbic system ontogenesis. Idiopathic intracranial hypertension (IIH, a disorder of unclear pathophysiology characterised by increased cerebrospinal fluid (CSF pressure, has been described in children with hypercortisolism, adrenal insufficiency, and hyperaldosteronism, reflecting the potential underlying involvement of the adrenal-brain axis in the regulation of CSF pressure homeostasis. Arterial hypertension caused by paediatric adenomas or tumours of the adrenal cortex or medulla has been associated with various hypertension-related neurological manifestations. The development and maturation of the central nervous system (CNS through childhood is tightly regulated by intrinsic, paracrine, endocrine, and external modulators, and perturbations in any of these factors, including those related to adrenal hormone imbalance, could result in consequences that affect the structure and function of the paediatric brain. Animal experiments and clinical studies demonstrated that the developing (i.e., paediatric CNS seems to be particularly vulnerable to alterations induced by

  12. Cost of disorders of the brain in Europe 2010

    DEFF Research Database (Denmark)

    Gustavsson, Anders; Svensson, Mikael; Jacobi, Frank

    2011-01-01

    -term impairments and disabilities. Therefore they are an emotional, financial and social burden to the patients, their families and their social network. In a 2005 landmark study, we estimated for the first time the annual cost of 12 major groups of disorders of the brain in Europe and gave a conservative estimate...... report we cover 19 major groups of disorders, 7 more than previously, of an increased range of age groups and more cost items. We therefore present much improved cost estimates. Our revised estimates also now include the new EU member states, and hence a population of 514 million people....

  13. Unusual developmental pattern of brain lateralization in young boys with autism spectrum disorder: Power analysis with child-sized magnetoencephalography.

    Science.gov (United States)

    Hiraishi, Hirotoshi; Kikuchi, Mitsuru; Yoshimura, Yuko; Kitagawa, Sachiko; Hasegawa, Chiaki; Munesue, Toshio; Takesaki, Natsumi; Ono, Yasuki; Takahashi, Tsutomu; Suzuki, Michio; Higashida, Haruhiro; Asada, Minoru; Minabe, Yoshio

    2015-03-01

    Autism spectrum disorder (ASD) is often described as comprising an unusual brain growth pattern and aberrant brain lateralization. Although it is important to study the pathophysiology of the developing ASD cortex, examples of physiological brain lateralization in young children with ASD have yet to be well examined. Thirty-eight boys with ASD (aged 3-7 years) and 38 typically developing (TD) boys (aged 3-8 years) concentrated on video programs and their brain activities were measured non-invasively. We employed a customized child-sized magnetoencephalography system in which the sensors were located as close to the brain as possible for optimal recording in young children. To produce a credible laterality index of the brain oscillations, we defined two clusters of sensors corresponding to the right and left hemispheres. We focused on the laterality index ([left - right]/[left+right]) of the relative power band in seven frequency bands. The TD group displayed significantly rightward lateralized brain oscillations in the theta-1 frequency bands compared to the ASD group. This is the first study to demonstrate unusual brain lateralization of brain oscillations measured by magnetoencephalography in young children with ASD. © 2014 The Authors. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.

  14. Defense Health Care: Research on Hyperbaric Oxygen Therapy to Treat Traumatic Brain Injury and Post-Traumatic Stress Disorder

    Science.gov (United States)

    2015-12-01

    Traumatic Brain Injury and Post - Traumatic Stress Disorder Why GAO Did This Study TBI and PTSD are signature...injury (TBI) and post - traumatic stress disorder ( PTSD ), most of which were focused solely on TBI (29 articles). The 32 articles consisted of 7 case...Case Report Articles on Hyperbaric Oxygen Therapy to Treat Traumatic Brain Injury (TBI) or Post - Traumatic Stress Disorder ( PTSD ),

  15. Brain structure in post-traumatic stress disorder: A voxel-based morphometry analysis.

    Science.gov (United States)

    Tan, Liwen; Zhang, Li; Qi, Rongfeng; Lu, Guangming; Li, Lingjiang; Liu, Jun; Li, Weihui

    2013-09-15

    This study compared the difference in brain structure in 12 mine disaster survivors with chronic post-traumatic stress disorder, 7 cases of improved post-traumatic stress disorder symptoms, and 14 controls who experienced the same mine disaster but did not suffer post-traumatic stress disorder, using the voxel-based morphometry method. The correlation between differences in brain structure and post-traumatic stress disorder symptoms was also investigated. Results showed that the gray matter volume was the highest in the trauma control group, followed by the symptoms-improved group, and the lowest in the chronic post-traumatic stress disorder group. Compared with the symptoms-improved group, the gray matter volume in the lingual gyrus of the right occipital lobe was reduced in the chronic post-traumatic stress disorder group. Compared with the trauma control group, the gray matter volume in the right middle occipital gyrus and left middle frontal gyrus was reduced in the symptoms-improved group. Compared with the trauma control group, the gray matter volume in the left superior parietal lobule and right superior frontal gyrus was reduced in the chronic post-traumatic stress disorder group. The gray matter volume in the left superior parietal lobule was significantly positively correlated with the State-Trait Anxiety Inventory subscale score in the symptoms-improved group and chronic post-traumatic stress disorder group (r = 0.477, P = 0.039). Our findings indicate that (1) chronic post-traumatic stress disorder patients have gray matter structural damage in the prefrontal lobe, occipital lobe, and parietal lobe, (2) after post-traumatic stress, the disorder symptoms are improved and gray matter structural damage is reduced, but cannot recover to the trauma-control level, and (3) the superior parietal lobule is possibly associated with chronic post-traumatic stress disorder. Post-traumatic stress disorder patients exhibit gray matter abnormalities.

  16. Brain structure in post-traumatic stress disorder: A voxel-based morphometry analysis

    Science.gov (United States)

    Tan, Liwen; Zhang, Li; Qi, Rongfeng; Lu, Guangming; Li, Lingjiang; Liu, Jun; Li, Weihui

    2013-01-01

    This study compared the difference in brain structure in 12 mine disaster survivors with chronic post-traumatic stress disorder, 7 cases of improved post-traumatic stress disorder symptoms, and 14 controls who experienced the same mine disaster but did not suffer post-traumatic stress disorder, using the voxel-based morphometry method. The correlation between differences in brain structure and post-traumatic stress disorder symptoms was also investigated. Results showed that the gray matter volume was the highest in the trauma control group, followed by the symptoms-improved group, and the lowest in the chronic post-traumatic stress disorder group. Compared with the symptoms-improved group, the gray matter volume in the lingual gyrus of the right occipital lobe was reduced in the chronic post-traumatic stress disorder group. Compared with the trauma control group, the gray matter volume in the right middle occipital gyrus and left middle frontal gyrus was reduced in the symptoms-improved group. Compared with the trauma control group, the gray matter volume in the left superior parietal lobule and right superior frontal gyrus was reduced in the chronic post-traumatic stress disorder group. The gray matter volume in the left superior parietal lobule was significantly positively correlated with the State-Trait Anxiety Inventory subscale score in the symptoms-improved group and chronic post-traumatic stress disorder group (r = 0.477, P = 0.039). Our findings indicate that (1) chronic post-traumatic stress disorder patients have gray matter structural damage in the prefrontal lobe, occipital lobe, and parietal lobe, (2) after post-traumatic stress, the disorder symptoms are improved and gray matter structural damage is reduced, but cannot recover to the trauma-control level, and (3) the superior parietal lobule is possibly associated with chronic post-traumatic stress disorder. Post-traumatic stress disorder patients exhibit gray matter abnormalities. PMID:25206550

  17. Differences in Brain Structure and Function in Older Adults with Self-Reported Disabling and Non-Disabling Chronic Low Back Pain

    Science.gov (United States)

    Buckalew, Neilly; Haut, Marc W.; Aizenstein, Howard; Morrow, Lisa; Perera, Subashan; Kuwabara, Hiroto; Weiner, Debra K.

    2010-01-01

    Objective The primary aim of this pilot study was to identify structural and functional brain differences in older adults with self-reported disabling chronic low back pain (CLBP) compared with those who reported non-disabling CLBP. Design Cross-sectional. Participants Sixteen cognitively intact older adults, eight with disabling CLBP and eight with non-disabling. Exclusions were psychiatric or neurological disorders, substance abuse, opioid use, or diabetes mellitus. Methods Participants underwent: structural and functional brain MRI; neuropsychological assessment using the Repeatable Battery for the Assessment of Neuropsychological Status, Trail Making Tests A and B; and physical performance assessment using the Short Physical Performance Battery. Results In the disabled group there was significantly lower white matter (WM) integrity (P < 0.05) of the splenium of the corpus callosum. This group also demonstrated activation of the right medial prefrontal cortex at rest whereas the non-disabled demonstrated activation of the left lateral prefrontal cortex. Combined groups analysis revealed a strong positive correlation (rs = 0.80, P < 0.0002) between WM integrity of the left centrum semiovale with gait-speed. Secondary analysis revealed a strong negative correlation between total months of CLBP and WM integrity of the SCC (rs = −0.59, P < 0.02). Conclusions Brain structure and function is different in older adults with disabling CLBP compared to those with non-disabling CLBP. Deficits in brain morphology combining groups are associated with pain duration and poor physical function. Our findings suggest brain structure and function may play a key role in chronic-pain-related-disability and may be important treatment targets. PMID:20609128

  18. Neuromodulation for the treatment of eating disorders and obesity.

    Science.gov (United States)

    Lee, Darrin J; Elias, Gavin J B; Lozano, Andres M

    2018-02-01

    Eating disorders and obesity adversely affect individuals both medically and psychologically, leading to reduced life expectancy and poor quality of life. While there exist a number of treatments for anorexia, morbid obesity and bulimia, many patients do not respond favorably to current behavioral, medical or bariatric surgical management. Neuromodulation has been postulated as a potential treatment for eating disorders and obesity. In particular, deep brain stimulation and transcranial non-invasive brain stimulation have been studied for these indications across a variety of brain targets. Here, we review the neurobiology behind eating and eating disorders as well as the current status of preclinical and clinical neuromodulation trials for eating disorders and obesity.

  19. Gut-Microbiota-Brain Axis and Its Effect on Neuropsychiatric Disorders With Suspected Immune Dysregulation.

    Science.gov (United States)

    Petra, Anastasia I; Panagiotidou, Smaro; Hatziagelaki, Erifili; Stewart, Julia M; Conti, Pio; Theoharides, Theoharis C

    2015-05-01

    Gut microbiota regulate intestinal function and health. However, mounting evidence indicates that they can also influence the immune and nervous systems and vice versa. This article reviews the bidirectional relationship between the gut microbiota and the brain, termed the microbiota-gut-brain (MGB) axis, and discusses how it contributes to the pathogenesis of certain disorders that may involve brain inflammation. Articles were identified with a search of Medline (starting in 1980) by using the key words anxiety, attention-deficit hypersensitivity disorder (ADHD), autism, cytokines, depression, gut, hypothalamic-pituitary-adrenal (HPA) axis, inflammation, immune system, microbiota, nervous system, neurologic, neurotransmitters, neuroimmune conditions, psychiatric, and stress. Various afferent or efferent pathways are involved in the MGB axis. Antibiotics, environmental and infectious agents, intestinal neurotransmitters/neuromodulators, sensory vagal fibers, cytokines, and essential metabolites all convey information to the central nervous system about the intestinal state. Conversely, the hypothalamic-pituitary-adrenal axis, the central nervous system regulatory areas of satiety, and neuropeptides released from sensory nerve fibers affect the gut microbiota composition directly or through nutrient availability. Such interactions seem to influence the pathogenesis of a number of disorders in which inflammation is implicated, such as mood disorder, autism-spectrum disorders, attention-deficit hypersensitivity disorder, multiple sclerosis, and obesity. Recognition of the relationship between the MGB axis and the neuroimmune systems provides a novel approach for better understanding and management of these disorders. Appropriate preventive measures early in life or corrective measures such as use of psychobiotics, fecal microbiota transplantation, and flavonoids are discussed. Copyright © 2015 Elsevier HS Journals, Inc. All rights reserved.

  20. Early behavioral intervention, brain plasticity, and the prevention of autism spectrum disorder.

    Science.gov (United States)

    Dawson, Geraldine

    2008-01-01

    Advances in the fields of cognitive and affective developmental neuroscience, developmental psychopathology, neurobiology, genetics, and applied behavior analysis have contributed to a more optimistic outcome for individuals with autism spectrum disorder (ASD). These advances have led to new methods for early detection and more effective treatments. For the first time, prevention of ASD is plausible. Prevention will entail detecting infants at risk before the full syndrome is present and implementing treatments designed to alter the course of early behavioral and brain development. This article describes a developmental model of risk, risk processes, symptom emergence, and adaptation in ASD that offers a framework for understanding early brain plasticity in ASD and its role in prevention of the disorder.

  1. Random matrix theory for analyzing the brain functional network in attention deficit hyperactivity disorder

    Science.gov (United States)

    Wang, Rong; Wang, Li; Yang, Yong; Li, Jiajia; Wu, Ying; Lin, Pan

    2016-11-01

    Attention deficit hyperactivity disorder (ADHD) is the most common childhood neuropsychiatric disorder and affects approximately 6 -7 % of children worldwide. Here, we investigate the statistical properties of undirected and directed brain functional networks in ADHD patients based on random matrix theory (RMT), in which the undirected functional connectivity is constructed based on correlation coefficient and the directed functional connectivity is measured based on cross-correlation coefficient and mutual information. We first analyze the functional connectivity and the eigenvalues of the brain functional network. We find that ADHD patients have increased undirected functional connectivity, reflecting a higher degree of linear dependence between regions, and increased directed functional connectivity, indicating stronger causality and more transmission of information among brain regions. More importantly, we explore the randomness of the undirected and directed functional networks using RMT. We find that for ADHD patients, the undirected functional network is more orderly than that for normal subjects, which indicates an abnormal increase in undirected functional connectivity. In addition, we find that the directed functional networks are more random, which reveals greater disorder in causality and more chaotic information flow among brain regions in ADHD patients. Our results not only further confirm the efficacy of RMT in characterizing the intrinsic properties of brain functional networks but also provide insights into the possibilities RMT offers for improving clinical diagnoses and treatment evaluations for ADHD patients.

  2. Non-verbal emotion communication training induces specific changes in brain function and structure.

    Science.gov (United States)

    Kreifelts, Benjamin; Jacob, Heike; Brück, Carolin; Erb, Michael; Ethofer, Thomas; Wildgruber, Dirk

    2013-01-01

    The perception of emotional cues from voice and face is essential for social interaction. However, this process is altered in various psychiatric conditions along with impaired social functioning. Emotion communication trainings have been demonstrated to improve social interaction in healthy individuals and to reduce emotional communication deficits in psychiatric patients. Here, we investigated the impact of a non-verbal emotion communication training (NECT) on cerebral activation and brain structure in a controlled and combined functional magnetic resonance imaging (fMRI) and voxel-based morphometry study. NECT-specific reductions in brain activity occurred in a distributed set of brain regions including face and voice processing regions as well as emotion processing- and motor-related regions presumably reflecting training-induced familiarization with the evaluation of face/voice stimuli. Training-induced changes in non-verbal emotion sensitivity at the behavioral level and the respective cerebral activation patterns were correlated in the face-selective cortical areas in the posterior superior temporal sulcus and fusiform gyrus for valence ratings and in the temporal pole, lateral prefrontal cortex and midbrain/thalamus for the response times. A NECT-induced increase in gray matter (GM) volume was observed in the fusiform face area. Thus, NECT induces both functional and structural plasticity in the face processing system as well as functional plasticity in the emotion perception and evaluation system. We propose that functional alterations are presumably related to changes in sensory tuning in the decoding of emotional expressions. Taken together, these findings highlight that the present experimental design may serve as a valuable tool to investigate the altered behavioral and neuronal processing of emotional cues in psychiatric disorders as well as the impact of therapeutic interventions on brain function and structure.

  3. rCBF change in the brain of patients with major depressive disorder

    International Nuclear Information System (INIS)

    Sun Da; Xu Wei; Zhan Hongwei; Liu Hongbiao

    2010-01-01

    Purpose Major depressive disorder is a frequent emotional mood disorder. To evaluate the changes of brain blood flow in patients with depressive disorder and the correlation between rCBF and clinical feature is very important to diagnosis and treatment of this decease. Methods: Regional cerebral perfusion was investigated using SPECT in 75 patients with depressive disorders. The mean ages of the patients were 41.9 (17-74) Years old. The course of disease was different from several days to over 20 years. Results: 97.3 per cent of patients (73/75) had relative hypoperfusions in some cerebral regions. The patients had a significant decrease of rCBF in the frontal lobesbilaterally, and temporal lobes, basal ganglia, thalamus and parietal lobe. The course of disease and age of the patients had a negative correlation with the changes of rCBF. Conclusion: According to the results of our study, patients with depressive disorders had profound dysfunction of the frontal lobes bilaterally. The temporal cortices and basal ganglia were involved in most patients too. It is coincident with the results of other studies. The function of frontal lobes and temporal lobes is close relation close with affective action, attention, memory, thinking, abstraction, and other brain cognitive function. The clinical symptom of depressive disorder may be relevant with hypoperfusions of frontal lobes and temporal lobes. (authors)

  4. Brain structure–function associations in multi-generational families genetically enriched for bipolar disorder

    Science.gov (United States)

    Schür, Remmelt; Sjouwerman, Rachel; Service, Susan K.; Araya, Carmen; Araya, Xinia; Bejarano, Julio; Knowles, Emma; Gomez-Makhinson, Juliana; Lopez, Maria C.; Aldana, Ileana; Teshiba, Terri M.; Abaryan, Zvart; Al-Sharif, Noor B.; Navarro, Linda; Tishler, Todd A.; Altshuler, Lori; Bartzokis, George; Escobar, Javier I.; Glahn, David C.; Thompson, Paul M.; Lopez-Jaramillo, Carlos; Macaya, Gabriel; Molina, Julio; Reus, Victor I.; Sabatti, Chiara; Cantor, Rita M.; Freimer, Nelson B.; Bearden, Carrie E.

    2015-01-01

    Recent theories regarding the pathophysiology of bipolar disorder suggest contributions of both neurodevelopmental and neurodegenerative processes. While structural neuroimaging studies indicate disease-associated neuroanatomical alterations, the behavioural correlates of these alterations have not been well characterized. Here, we investigated multi-generational families genetically enriched for bipolar disorder to: (i) characterize neurobehavioural correlates of neuroanatomical measures implicated in the pathophysiology of bipolar disorder; (ii) identify brain–behaviour associations that differ between diagnostic groups; (iii) identify neurocognitive traits that show evidence of accelerated ageing specifically in subjects with bipolar disorder; and (iv) identify brain–behaviour correlations that differ across the age span. Structural neuroimages and multi-dimensional assessments of temperament and neurocognition were acquired from 527 (153 bipolar disorder and 374 non-bipolar disorder) adults aged 18–87 years in 26 families with heavy genetic loading for bipolar disorder. We used linear regression models to identify significant brain–behaviour associations and test whether brain–behaviour relationships differed: (i) between diagnostic groups; and (ii) as a function of age. We found that total cortical and ventricular volume had the greatest number of significant behavioural associations, and included correlations with measures from multiple cognitive domains, particularly declarative and working memory and executive function. Cortical thickness measures, in contrast, showed more specific associations with declarative memory, letter fluency and processing speed tasks. While the majority of brain–behaviour relationships were similar across diagnostic groups, increased cortical thickness in ventrolateral prefrontal and parietal cortical regions was associated with better declarative memory only in bipolar disorder subjects, and not in non

  5. The Gut Microbiome Feelings of the Brain: A Perspective for Non-Microbiologists

    Directory of Open Access Journals (Sweden)

    Aaron Lerner

    2017-10-01

    Full Text Available Objectives: To comprehensively review the scientific knowledge on the gut–brain axis. Methods: Various publications on the gut–brain axis, until 31 July 2017, were screened using the Medline, Google, and Cochrane Library databases. The search was performed using the following keywords: “gut-brain axis”, “gut-microbiota-brain axis”, “nutrition microbiome/microbiota”, “enteric nervous system”, “enteric glial cells/network”, “gut-brain pathways”, “microbiome immune system”, “microbiome neuroendocrine system” and “intestinal/gut/enteric neuropeptides”. Relevant articles were selected and reviewed. Results: Tremendous progress has been made in exploring the interactions between nutrients, the microbiome, and the intestinal, epithelium–enteric nervous, endocrine and immune systems and the brain. The basis of the gut–brain axis comprises of an array of multichannel sensing and trafficking pathways that are suggested to convey the enteric signals to the brain. These are mediated by neuroanatomy (represented by the vagal and spinal afferent neurons, the neuroendocrine–hypothalamic–pituitary–adrenal (HPA axis (represented by the gut hormones, immune routes (represented by multiple cytokines, microbially-derived neurotransmitters, and finally the gate keepers of the intestinal and brain barriers. Their mutual and harmonious but intricate interaction is essential for human life and brain performance. However, a failure in the interaction leads to a number of inflammatory-, autoimmune-, neurodegenerative-, metabolic-, mood-, behavioral-, cognitive-, autism-spectrum-, stress- and pain-related disorders. The limited availability of information on the mechanisms, pathways and cause-and-effect relationships hinders us from translating and implementing the knowledge from the bench to the clinic. Implications: Further understanding of this intricate field might potentially shed light on novel preventive and

  6. Role of brain orexin in the pathophysiology of functional gastrointestinal disorders.

    Science.gov (United States)

    Okumura, Toshikatsu; Nozu, Tsukasa

    2011-04-01

    Orexins are neuropeptides that are localized in neurons within the lateral hypothalamic area and regulate feeding behavior. The lateral hypothalamic area plays an important role in not only feeding but the central regulation of other functions including gut physiology. Accumulating evidence have shown that orexins acts in the brain to regulate a wide variety of body functions including gastrointestinal functions. The purpose of this review is to summarize relevant findings on brain orexins and a digestive system, and discuss the pathophysiological roles of the peptides with special reference to functional gastrointestinal disorders. Exogenously administered orexin or endogenously released orexin in the brain potently stimulates gastric acid secretion in pylorus-ligated conscious rats. The vagal cholinergic pathway is involved in the orexin-induced stimulation of acid secretion, suggesting that orexin-containing neurons in lateral hypothalamic area activates neurons in the dorsal motor nucleus in medulla oblongata, followed by increasing vagal outflow, thereby stimulating gastric acid secretion. In addition, brain orexin stimulates gastric motility, pancreatic secretion and induce gastroprotective action. On the other hand, brain orexin is involved in a number of physiological functions other than gut physiology, such as control of sleep/awake cycle and anti-depressive action in addition to increase in appetite. From these evidence, we would like to make a hypothesis that decreased orexin signaling in the brain may play a role in the pathophysiology in a part of patients with functional gastrointestinal disorders who are frequently accompanied with appetite loss, sleep disturbance, depressive state and the inhibition of gut function. © 2011 Journal of Gastroenterology and Hepatology Foundation and Blackwell Publishing Asia Pty Ltd.

  7. Non-Gaussian diffusion in static disordered media

    Science.gov (United States)

    Luo, Liang; Yi, Ming

    2018-04-01

    Non-Gaussian diffusion is commonly considered as a result of fluctuating diffusivity, which is correlated in time or in space or both. In this work, we investigate the non-Gaussian diffusion in static disordered media via a quenched trap model, where the diffusivity is spatially correlated. Several unique effects due to quenched disorder are reported. We analytically estimate the diffusion coefficient Ddis and its fluctuation over samples of finite size. We show a mechanism of population splitting in the non-Gaussian diffusion. It results in a sharp peak in the distribution of displacement P (x ,t ) around x =0 , that has frequently been observed in experiments. We examine the fidelity of the coarse-grained diffusion map, which is reconstructed from particle trajectories. Finally, we propose a procedure to estimate the correlation length in static disordered environments, where the information stored in the sample-to-sample fluctuation has been utilized.

  8. Deep brain stimulation and treatment-resistant obsessive-compulsive disorder: A systematic review.

    Science.gov (United States)

    Vázquez-Bourgon, Javier; Martino, Juan; Sierra Peña, María; Infante Ceberio, Jon; Martínez Martínez, M Ángeles; Ocón, Roberto; Menchón, José Manuel; Crespo Facorro, Benedicto; Vázquez-Barquero, Alfonso

    2017-07-01

    At least 10% of patients with Obsessive-compulsive Disorder (OCD) are refractory to psychopharmacological treatment. The emergence of new technologies for the modulation of altered neuronal activity in Neurosurgery, deep brain stimulation (DBS), has enabled its use in severe and refractory OCD cases. The objective of this article is to review the current scientific evidence on the effectiveness and applicability of this technique to refractory OCD. We systematically reviewed the literature to identify the main characteristics of deep brain stimulation, its use and applicability as treatment for obsessive-compulsive disorder. Therefore, we reviewed PubMed/Medline, Embase and PsycINFO databases, combining the key-words 'Deep brain stimulation', 'DBS' and 'Obsessive-compulsive disorder' 'OCS'. The articles were selected by two of the authors independently, based on the abstracts, and if they described any of the main characteristics of the therapy referring to OCD: applicability; mechanism of action; brain therapeutic targets; efficacy; side-effects; co-therapies. All the information was subsequently extracted and analysed. The critical analysis of the evidence shows that the use of DBS in treatment-resistant OCD is providing satisfactory results regarding efficacy, with assumable side-effects. However, there is insufficient evidence to support the use of any single brain target over another. Patient selection has to be done following analyses of risks/benefits, being advisable to individualize the decision of continuing with concomitant psychopharmacological and psychological treatments. The use of DBS is still considered to be in the field of research, although it is increasingly used in refractory-OCD, producing in the majority of studies significant improvements in symptomatology, and in functionality and quality of life. It is essential to implement random and controlled studies regarding its long-term efficacy, cost-risk analyses and cost/benefit. Copyright

  9. Non-Invasive Brain Stimulation: A New Strategy in Mild Cognitive Impairment?

    Science.gov (United States)

    Birba, Agustina; Ibáñez, Agustín; Sedeño, Lucas; Ferrari, Jesica; García, Adolfo M.; Zimerman, Máximo

    2017-01-01

    Non-invasive brain stimulation (NIBS) techniques can significantly modulate cognitive functions in healthy subjects and patients with neuropsychiatric disorders. Recently, they have been applied in patients with mild cognitive impairment (MCI) and subjective cognitive impairment (SCI) to prevent or delay the development of Alzheimer’s disease (AD). Here we review this emerging empirical corpus and discuss therapeutic effects of NIBS on several target functions (e.g., memory for face-name associations and non-verbal recognition, attention, psychomotor speed, everyday memory). Available studies have yielded mixed results, possibly due to differences among their tasks, designs, and samples, let alone the latter’s small sizes. Thus, the impact of NIBS on cognitive performance in MCI and SCI remains to be determined. To foster progress in this direction, we outline methodological approaches that could improve the efficacy and specificity of NIBS in both conditions. Furthermore, we discuss the need for multicenter studies, accurate diagnosis, and longitudinal approaches combining NIBS with specific training regimes. These tenets could cement biomedical developments supporting new treatments for MCI and preventive therapies for AD. PMID:28243198

  10. From One Extreme to the Other: Negative Evaluation Anxiety and Disordered Eating as Candidates for the Extreme Female Brain

    Directory of Open Access Journals (Sweden)

    Jennifer A. Bremser

    2012-07-01

    Full Text Available Simon Baron-Cohen pioneered the idea that different brain types evolved to process information in gender specific ways. Here we expand this approach to looking at eating disorders as a byproduct of the extreme female brain. The incidence of eating disorders is higher among females, and recent findings show that hormones may play a role in eating disorders. We present new evidence from four studies that both an empathizing bias and hyper-mentalizing (as measures of the extreme female brain; EFB are related to disordered eating and negative evaluation anxiety in women. We also advance the novel hypothesis that concerns about animal welfare (a unique expression of the EFB may account for the relationship between vegetarianism and eating disorders.

  11. Scientific and ethical issues related to deep brain stimulation for disorders of mood, behavior, and thought.

    Science.gov (United States)

    Rabins, Peter; Appleby, Brian S; Brandt, Jason; DeLong, Mahlon R; Dunn, Laura B; Gabriëls, Loes; Greenberg, Benjamin D; Haber, Suzanne N; Holtzheimer, Paul E; Mari, Zoltan; Mayberg, Helen S; McCann, Evelyn; Mink, Sallie P; Rasmussen, Steven; Schlaepfer, Thomas E; Vawter, Dorothy E; Vitek, Jerrold L; Walkup, John; Mathews, Debra J H

    2009-09-01

    A 2-day consensus conference was held to examine scientific and ethical issues in the application of deep brain stimulation for treating mood and behavioral disorders, such as major depression, obsessive-compulsive disorder, and Tourette syndrome. The primary objectives of the conference were to (1) establish consensus among participants about the design of future clinical trials of deep brain stimulation for disorders of mood, behavior, and thought and (2) develop standards for the protection of human subjects participating in such studies. Conference participants identified 16 key points for guiding research in this growing field. The adoption of the described guidelines would help to protect the safety and rights of research subjects who participate in clinical trials of deep brain stimulation for disorders of mood, behavior, and thought and have further potential to benefit other stakeholders in the research process, including clinical researchers and device manufactures. That said, the adoption of the guidelines will require broad and substantial commitment from many of these same stakeholders.

  12. Using real-time fMRI brain-computer interfacing to treat eating disorders.

    Science.gov (United States)

    Sokunbi, Moses O

    2018-05-15

    Real-time functional magnetic resonance imaging based brain-computer interfacing (fMRI neurofeedback) has shown encouraging outcomes in the treatment of psychiatric and behavioural disorders. However, its use in the treatment of eating disorders is very limited. Here, we give a brief overview of how to design and implement fMRI neurofeedback intervention for the treatment of eating disorders, considering the basic and essential components. We also attempt to develop potential adaptations of fMRI neurofeedback intervention for the treatment of anorexia nervosa, bulimia nervosa and binge eating disorder. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Traveling Slow Oscillations During Sleep: A Marker of Brain Connectivity in Childhood.

    Science.gov (United States)

    Kurth, Salome; Riedner, Brady A; Dean, Douglas C; O'Muircheartaigh, Jonathan; Huber, Reto; Jenni, Oskar G; Deoni, Sean C L; LeBourgeois, Monique K

    2017-09-01

    Slow oscillations, a defining characteristic of the nonrapid eye movement sleep electroencephalogram (EEG), proliferate across the scalp in highly reproducible patterns. In adults, the propagation of slow oscillations is a recognized fingerprint of brain connectivity and excitability. In this study, we (1) describe for the first time maturational features of sleep slow oscillation propagation in children (n = 23; 2-13 years) using high-density (hd) EEG and (2) examine associations between sleep slow oscillatory propagation characteristics (ie, distance, traveling speed, cortical involvement) and white matter myelin microstructure as measured with multicomponent Driven Equilibrium Single Pulse Observation of T1 and T2-magnetic resonance imaging (mcDESPOT-MRI). Results showed that with increasing age, slow oscillations propagated across longer distances (average growth of 0.2 cm per year; R(21) = 0.50, p sleep and the anatomical connectivity of white matter microstructure. Our findings make an important contribution to knowledge of the brain connectome using a noninvasive and novel analytic approach. These data also have implications for understanding the emergence of neurodevelopmental disorders and the role of sleep in brain maturation trajectories. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  14. The relationship between brain volumes and intelligence in bipolar disorder.

    Science.gov (United States)

    Vreeker, Annabel; Abramovic, Lucija; Boks, Marco P M; Verkooijen, Sanne; van Bergen, Annet H; Ophoff, Roel A; Kahn, René S; van Haren, Neeltje E M

    2017-12-01

    Bipolar disorder type-I (BD-I) patients show a lower Intelligence Quotient (IQ) and smaller brain volumes as compared with healthy controls. Considering that in healthy individuals lower IQ is related to smaller total brain volume, it is of interest to investigate whether IQ deficits in BD-I patients are related to smaller brain volumes and to what extent smaller brain volumes can explain differences between premorbid IQ estimates and IQ after a diagnosis of BD-I. Magnetic resonance imaging brain scans, IQ and premorbid IQ scores were obtained from 195 BDI patients and 160 controls. We studied the relationship of (global, cortical and subcortical) brain volumes with IQ and IQ change. Additionally, we investigated the relationship between childhood trauma, lithium- and antipsychotic use and IQ. Total brain volume and IQ were positively correlated in the entire sample. This correlation did not differ between patients and controls. Although brain volumes mediated the relationship between BD-I and IQ in part, the direct relationship between the diagnosis and IQ remained significant. Childhood trauma and use of lithium and antipsychotic medication did not affect the relationship between brain volumes and IQ. However, current lithium use was related to lower IQ in patients. Our data suggest a similar relationship between brain volume and IQ in BD-I patients and controls. Smaller brain volumes only partially explain IQ deficits in patients. Therefore, our findings indicate that in addition to brain volumes and lithium use other disease factors play a role in IQ deficits in BD-I patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Neural correlates of apathy in patients with neurodegenerative disorders, acquired brain injury, and psychiatric disorders.

    Science.gov (United States)

    Kos, Claire; van Tol, Marie-José; Marsman, Jan-Bernard C; Knegtering, Henderikus; Aleman, André

    2016-10-01

    Apathy can be described as a loss of goal-directed purposeful behavior and is common in a variety of neurological and psychiatric disorders. Although previous studies investigated associations between abnormal brain functioning and apathy, it is unclear whether the neural basis of apathy is similar across different pathological conditions. The purpose of this systematic review was to provide an extensive overview of the neuroimaging literature on apathy including studies of various patient populations, and evaluate whether the current state of affairs suggest disorder specific or shared neural correlates of apathy. Results suggest that abnormalities within fronto-striatal circuits are most consistently associated with apathy across the different pathological conditions. Of note, abnormalities within the inferior parietal cortex were also linked to apathy, a region previously not included in neuroanatomical models of apathy. The variance in brain regions implicated in apathy may suggest that different routes towards apathy are possible. Future research should investigate possible alterations in different processes underlying goal-directed behavior, ranging from intention and goal-selection to action planning and execution. Copyright © 2016. Published by Elsevier Ltd.

  16. Bipolar I disorder and major depressive disorder show similar brain activation during depression.

    Science.gov (United States)

    Cerullo, Michael A; Eliassen, James C; Smith, Christopher T; Fleck, David E; Nelson, Erik B; Strawn, Jeffrey R; Lamy, Martine; DelBello, Melissa P; Adler, Caleb M; Strakowski, Stephen M

    2014-11-01

    Despite different treatments and courses of illness, depressive symptoms appear similar in major depressive disorder (MDD) and bipolar I disorder (BP-I). This similarity of depressive symptoms suggests significant overlap in brain pathways underlying neurovegetative, mood, and cognitive symptoms of depression. These shared brain regions might be expected to exhibit similar activation in individuals with MDD and BP-I during functional magnetic resonance imaging (fMRI). fMRI was used to compare regional brain activation in participants with BP-I (n = 25) and MDD (n = 25) during a depressive episode as well as 25 healthy comparison (HC) participants. During the scans, participants performed an attentional task that incorporated emotional pictures. During the viewing of emotional images, subjects with BP-I showed decreased activation in the middle occipital gyrus, lingual gyrus, and middle temporal gyrus compared to both subjects with MDD and HC participants. During attentional processing, participants with MDD had increased activation in the parahippocampus, parietal lobe, and postcentral gyrus. However, among these regions, only the postcentral gyrus also showed differences between MDD and HC participants. No differences in cortico-limbic regions were found between participants with BP-I and MDD during depression. Instead, the major differences occurred in primary and secondary visual processing regions, with decreased activation in these regions in BP-I compared to major depression. These differences were driven by abnormal decreases in activation seen in the participants with BP-I. Posterior activation changes are a common finding in studies across mood states in participants with BP-I. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. A SYSTEMATIC REVIEW OF NON-INVASIVE BRAIN STIMULATION THERAPIES AND CARDIOVASCULAR RISK: IMPLICATIONS FOR THE TREATMENT OF MAJOR DEPRESSIVE DISORDER.

    Directory of Open Access Journals (Sweden)

    Leonardo Augusto Negreiros Parente Capela Sampaio

    2012-10-01

    Full Text Available Major depressive disorder (MDD and cardiovascular diseases are intimately associated. Depression is an independent risk factor for mortality in cardiovascular samples. Neuroendocrine dysfunctions in MDD are related to an overactive hypothalamus-pituitary-adrenal (HPA axis and increased sympathetic activity. Novel intervention strategies for MDD include the non-invasive brain stimulation (NIBS techniques such as repetitive transcranial magnetic stimulation (rTMS and transcranial direct current stimulation (tDCS. In fact, although these techniques have being increasingly used as a treatment for MDD, their cardiovascular effects were not sufficiently investigated, which would be important considering the dyad MDD/cardiovascular disorders. We investigated this issue through a systematic review for published articles from the first date available to May 2012 in MEDLINE and other databases, looking for main risk factors and surrogate markers for cardiovascular disease such as: cortisol, heart rate variability, alcohol, smoking, obesity, hypertension, glucose. We identified 37 articles (981 subjects according to our eligibility criteria. Our main findings were that NIBS techniques might be effective strategies for down-regulating HPA activity and regulating food, alcohol and cigarette consumption. NIBS’s effects on HRV and blood pressure presented mixed findings, with studies suggesting that HRV values can decrease or remain unchanged after NIBS, while one study found that rTMS increased blood pressure levels. Also, a single study showed that glucose levels decrease after tDCS. However, most studies tested the acute effects after one single session of rTMS/tDCS; therefore further studies are necessary to investigate whether NIBS modifies cardiovascular risk factors in the long-term. In fact, considering the burden of cardiac disease, further trials in cardiovascular, depressed and nondepressed samples using NIBS should be performed.

  18. The effectiveness of non-invasive brain stimulation in improving clinical signs of hyperkinetic movement disorders

    Directory of Open Access Journals (Sweden)

    Ignacio eObeso

    2016-01-01

    Full Text Available Repetitive transcranial magnetic stimulation (rTMS is a safe and non-invasive method for stimulating cortical neurons. In neurological realm, rTMS has prevalently been applied to understand pathophysiological mechanisms underlying movement disorders. However, this tool has also the potential to be translated into a clinically applicable therapeutic use. Several available studies supported this hypothesis, but differences in protocols, clinical enrollment and variability of rTMS effects across individuals complicate better understanding of efficient clinical protocols.The aim of this present review is to discuss to what extent the evidence provided by the therapeutic use of rTMS may be generalized. In particular, we attempted to define optimal cortical regions and stimulation protocols that have been demonstrated to maximize the effectiveness seen in the actual literature for the three most prevalent hyperkinetic movement disorders: Parkinson´s disease with levodopa-induced dyskinesias, essential tremor and dystonia. A total of 28 rTMS studies met our search criteria. Despite clinical and methodological differences, overall these studies demonstrated that therapeutic applications of rTMS to normalize pathologically decreased or increased levels of cortical activity have given moderate progress in patient´s quality of life. Moreover, the present literature suggests that altered pathophysiology in hyperkinetic movement disorders establishes motor, premotor or cerebellar structures as candidate regions to reset cortico-subcortical pathways back to normal. Although rTMS has the potential to become a powerful tool for ameliorating the clinical outcome of hyperkinetic neurological patients, until now there is not a clear consensus on optimal protocols for these motor disorders. Well-controlled multicenter randomized clinical trials with high numbers of patients are urgently required.

  19. Human cytomegalovirus renders cells non-permissive for replication of herpes simplex viruses

    International Nuclear Information System (INIS)

    Cockley, K.D.

    1988-01-01

    The herpes simplex virus (HSV) genome during production infection in vitro may be subject to negative regulation which results in modification of the cascade of expression of herpes virus macromolecular synthesis leading to establishment of HSV latency. In the present study, human embryonic lung (HEL) cells infected with human cytomegalovirus (HCMV) restricted the replication of HSV type-1 (HSV-1). A delay in HSV replication of 15 hr as well as a consistent, almost 1000-fold inhibition of HSV replication in HCMV-infected cell cultures harvested 24 to 72 hr after superinfection were observed compared with controls infected with HSV alone. HSV type-2 (HSV-2) replication was similarly inhibited in HCMV-infected HEL cells. Prior ultraviolet-irradiation (UV) of HCMV removed the block to HSV replication, demonstrating the requirement for an active HCMV genome. HCMV deoxyribonucleic acid (DNA) negative temperature-sensitive (ts) mutants inhibited HSV replications as efficiently as wild-type (wt) HCMV at the non-permissive temperature. Evidence for penetration and replication of superinfecting HSV into HCMV-infected cells was provided by blot hybridization of HSV DNA synthesized in HSV-superinfected cell cultures and by cesium chloride density gradient analysis of [ 3 H]-labeled HSV-1-superinfected cells

  20. Patient Characterization Protocols for Psychophysiological Studies of Traumatic Brain Injury and Post-TBI Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Paul E. Rapp

    2013-07-01

    Full Text Available Psychophysiological investigations of traumatic brain injury (TBI are being conducted for several reasons, including the objective of learning more about the underlying physiological mechanisms of the pathological processes that can be initiated by a head injury. Additional goals include the development of objective physiologically based measures that can be used to monitor the response to treatment and to identify minimally symptomatic individuals who are at risk of delayed onset neuropsychiatric disorders following injury. Research programs studying TBI search for relationships between psychophysiological measures, particularly ERP component properties (e.g. timing, amplitude, scalp distribution, and a participant’s clinical condition. Moreover, the complex relationships between brain injury and psychiatric disorders are receiving increased research attention, and ERP technologies are making contributions to this effort. This review has two objectives supporting such research efforts. The first is to review evidence indicating that traumatic brain injury is a significant risk factor for post-injury neuropsychiatric disorders. The second objective is to introduce ERP researchers who are not familiar with neuropsychiatric assessment to the instruments that are available for characterizing traumatic brain injury, post-concussion syndrome, and psychiatric disorders. Specific recommendations within this very large literature are made. We have proceeded on the assumption that, as is typically the case in an ERP laboratory, the investigators are not clinically qualified and that they will not have access to participant medical records.

  1. Flowers for Algernon: steroid dysgenesis, epigenetics and brain disorders.

    Science.gov (United States)

    Sanders, Bryan K

    2012-01-01

    While a recent study has reported that early citalopram exposure alters cortical network function and produces autistic-like behaviors in male rats, when evaluating antidepressant animal models of autism spectrum disorder (ASD) it is important to note that some selective serotonin (5-HT) reuptake inhibitors alter 3α-hydroxysteroid dehydrogenase activity, and thus steroidogenesis. At least one study has examined the effect of repeated citalopram administration on the serum and brain concentration of testosterone (T) and its metabolites and shown that citalopram increases serum T. Several in vitro studies also suggest that sex steroid can alter 5-HT homeostasis. While research efforts have demonstrated that transgenic mice expressing the most common of multiple gain-of-function 5-HT reuptake transporter (SERT) coding variants, SERT Ala56, previously identified in children with ASD, exhibit autistic-like behaviors, elevated p38 MAPK-dependent transporter phosphorylation, enhanced 5-HT clearance rates and hyperserotonemia, a few studies provide some evidence that 5-HT may alter gonadal steroidogenesis. T, 17β-estradiol and synthetic estrogens are known inhibitors of AKR1C21 (BRENDA, E.C. 1.1.1.209), the epitestosterone (epiT) producing enzyme in rodents. EpiT is a naturally occurring steroid in mammals, including man. An analysis of the literature suggests that epiT may be the central mediator in the epigenetic regulation of gene expression. Over thirty years ago, it was shown that rat brain epiT production is higher in females than in males. A similar finding in humans could explain the sex differences in the incidence of autism and other brain disorders. Despite this, the role of epiT in brain development remains a long neglected area of research.

  2. CT and MR evaluation of migrational disorders of the brain. Pt. 1. Lissencephaly and pachygyria

    Energy Technology Data Exchange (ETDEWEB)

    Byrd, S E; Osborn, R E; Bohan, T P; Naidich, T P

    1989-03-01

    The migrational disorders are a rare group of congenital malformations of the brain. They consist of the following entities - lissencephaly (agyria-pachygyria), pachygyria, schizencephaly, heterotopia and polymicrogyria. We studied 40 children with migrational disorders radiologically with CT and MR. This article (part I) deals with our patients with lissencephaly and pachygyria. It emphasizes their characteristic CT and MR findings along with their clinical presentation and course. These patients presented with one or a combination of the following symptoms, hypotonia, seizures, failure to thrive, microcephaly and occasionally hydrocephalus. These two groups of migrational disorders have abnormalities affecting the gyral-sulcal pattern of the cortex and gray-white matter distribution of the brain. MR provided better delineation of these disorders than CT. Because some forms of the migrational disorders can be inherited, it is extremely important for the radiologist to understand the characteristic findings for correct diagnosis which is essential for parental counseling.

  3. Neuromodulation for the treatment of eating disorders and obesity

    Science.gov (United States)

    Lee, Darrin J.; Elias, Gavin J.B.; Lozano, Andres M.

    2017-01-01

    Eating disorders and obesity adversely affect individuals both medically and psychologically, leading to reduced life expectancy and poor quality of life. While there exist a number of treatments for anorexia, morbid obesity and bulimia, many patients do not respond favorably to current behavioral, medical or bariatric surgical management. Neuromodulation has been postulated as a potential treatment for eating disorders and obesity. In particular, deep brain stimulation and transcranial non-invasive brain stimulation have been studied for these indications across a variety of brain targets. Here, we review the neurobiology behind eating and eating disorders as well as the current status of preclinical and clinical neuromodulation trials for eating disorders and obesity. PMID:29399320

  4. Blood and Brain Glutamate Levels in Children with Autistic Disorder

    Science.gov (United States)

    Hassan, Tamer H.; Abdelrahman, Hadeel M.; Fattah, Nelly R. Abdel; El-Masry, Nagda M.; Hashim, Haitham M.; El-Gerby, Khaled M.; Fattah, Nermin R. Abdel

    2013-01-01

    Despite of the great efforts that move forward to clarify the pathophysiologic mechanisms in autism, the cause of this disorder, however, remains largely unknown. There is an increasing body of literature concerning neurochemical contributions to the pathophysiology of autism. We aimed to determine blood and brain levels of glutamate in children…

  5. The Developmental Brain Disorders Database (DBDB): a curated neurogenetics knowledge base with clinical and research applications.

    Science.gov (United States)

    Mirzaa, Ghayda M; Millen, Kathleen J; Barkovich, A James; Dobyns, William B; Paciorkowski, Alex R

    2014-06-01

    The number of single genes associated with neurodevelopmental disorders has increased dramatically over the past decade. The identification of causative genes for these disorders is important to clinical outcome as it allows for accurate assessment of prognosis, genetic counseling, delineation of natural history, inclusion in clinical trials, and in some cases determines therapy. Clinicians face the challenge of correctly identifying neurodevelopmental phenotypes, recognizing syndromes, and prioritizing the best candidate genes for testing. However, there is no central repository of definitions for many phenotypes, leading to errors of diagnosis. Additionally, there is no system of levels of evidence linking genes to phenotypes, making it difficult for clinicians to know which genes are most strongly associated with a given condition. We have developed the Developmental Brain Disorders Database (DBDB: https://www.dbdb.urmc.rochester.edu/home), a publicly available, online-curated repository of genes, phenotypes, and syndromes associated with neurodevelopmental disorders. DBDB contains the first referenced ontology of developmental brain phenotypes, and uses a novel system of levels of evidence for gene-phenotype associations. It is intended to assist clinicians in arriving at the correct diagnosis, select the most appropriate genetic test for that phenotype, and improve the care of patients with developmental brain disorders. For researchers interested in the discovery of novel genes for developmental brain disorders, DBDB provides a well-curated source of important genes against which research sequencing results can be compared. Finally, DBDB allows novel observations about the landscape of the neurogenetics knowledge base. © 2014 Wiley Periodicals, Inc.

  6. Brain imaging and brain function

    International Nuclear Information System (INIS)

    Sokoloff, L.

    1985-01-01

    This book is a survey of the applications of imaging studies of regional cerebral blood flow and metabolism to the investigation of neurological and psychiatric disorders. Contributors review imaging techniques and strategies for measuring regional cerebral blood flow and metabolism, for mapping functional neural systems, and for imaging normal brain functions. They then examine the applications of brain imaging techniques to the study of such neurological and psychiatric disorders as: cerebral ischemia; convulsive disorders; cerebral tumors; Huntington's disease; Alzheimer's disease; depression and other mood disorders. A state-of-the-art report on magnetic resonance imaging of the brain and central nervous system rounds out the book's coverage

  7. Late-onset social anxiety disorder following traumatic brain injury.

    Science.gov (United States)

    Chaves, Cristiano; Trzesniak, Clarissa; Derenusson, Guilherme Nogueira; Araújo, David; Wichert-Ana, Lauro; Machado-de-Sousa, João Paulo; Carlotti, Carlos Gilberto; Nardi, Antonio E; Zuardi, Antônio W; de S Crippa, José Alexandre; Hallak, Jaime E C

    2012-01-01

    Neuropsychiatric sequelae are the predominant long-term disability after traumatic brain injury (TBI). This study reports a case of late-onset social anxiety disorder (SAD) following TBI. A patient that was spontaneous and extroverted up to 18-years-old started to exhibit significant social anxiety symptoms. These symptoms became progressively worse and he sought treatment at age 21. He had a previous history of traumatic brain injury (TBI) at age 17. Neuroimaging investigations (CT, SPECT and MRI) showed a bony protuberance on the left frontal bone, with mass effect on the left frontal lobe. He had no neurological signs or symptoms. The patient underwent neurosurgery with gross total resection of the lesion and the pathological examination was compatible with intradiploic haematoma. Psychiatric symptoms may be the only findings in the initial manifestation of slowly growing extra-axial space-occupying lesions that compress the frontal lobe from the outside. Focal neurological symptoms may occur only when the lesion becomes large. This case report underscores the need for careful exclusion of general medical conditions and TBI history in cases of late-onset SAD and may also contribute to the elucidation of the neurobiology of this disorder.

  8. Structural and functional brain changes in posttraumatic stress disorder.

    Science.gov (United States)

    Nutt, David J; Malizia, Andrea L

    2004-01-01

    Posttraumatic stress disorder (PTSD) is a highly disabling condition that is associated with intrusive recollections of a traumatic event, hyperarousal, avoidance of clues associated with the trauma, and psychological numbing. The field of neuroimaging has made tremendous advances in the past decade and has contributed greatly to our understanding of the physiology of fear and the pathophysiology of PTSD. Neuroimaging studies have demonstrated significant neurobiologic changes in PTSD. There appear to be 3 areas of the brain that are different in patients with PTSD compared with those in control subjects: the hippocampus, the amygdala, and the medial frontal cortex. The amygdala appears to be hyperreactive to trauma-related stimuli. The hallmark symptoms of PTSD, including exaggerated startle response and flashbacks, may be related to a failure of higher brain regions (i.e., the hippocampus and the medial frontal cortex) to dampen the exaggerated symptoms of arousal and distress that are mediated through the amygdala in response to reminders of the traumatic event. The findings of structural and functional neuroimaging studies of PTSD are reviewed as they relate to our current understanding of the pathophysiology of this disorder.

  9. Volumetric analysis of the hypothalamus, amygdala and hippocampus in non-suicidal and suicidal mood disorder patients--a post-mortem study.

    Science.gov (United States)

    Bielau, Hendrik; Brisch, Ralf; Gos, Tomasz; Dobrowolny, Henrik; Baumann, Bruno; Mawrin, Christian; Kreutzmann, Peter; Bernstein, Hans-Gert; Bogerts, Bernhard; Steiner, Johann

    2013-11-01

    In recent years, the hypothalamus, amygdala and hippocampus have attracted increased interest with regard to the effects of stress on neurobiological systems in individuals with depression and suicidal behaviour. A large body of evidence indicates that these subcortical regions are involved in the pathogenetic mechanisms of mood disorders and suicide. The current neuroimaging techniques inadequately resolve the structural components of small and complex brain structures. In previous studies, our group was able to demonstrate a structural and neuronal pathology in mood disorders. However, the impact of suicide remains unclear. In the current study we used volumetric measurements of serial postmortem sections with combined Nissl-myelin staining to investigate the hypothalamus, amygdala and hippocampus in suicide victims with mood disorders (n = 11), non-suicidal mood disorder patients (n = 9) and control subjects (n = 23). Comparisons between the groups by using an ANCOVA showed a significant overall difference for the hypothalamus (p = 0.001) with reduced volumes in non-suicidal patients compared to suicide victims (p = 0.018) and controls (p = 0.006). To our surprise, the volumes between the suicide victims and controls did not differ significantly. For the amygdala and hippocampus no volume changes between the groups could be detected (all p values were n. s.). In conclusion our data suggest a structural hypothalamic pathology in non-suicidal mood disorder patients. The detected differences between suicidal and non-suicidal patients suggest that suicidal performances might be related to the degree of structural deficits.

  10. Brain volume in male patients with recent onset schizophrenia with and without cannabis use disorders

    NARCIS (Netherlands)

    Koenders, L.; Machielsen, M.W.; van der Meer, F.J.; van Gasselt, A.C.; Meijer, C.J.; van den Brink, W.; Koeter, M.W.; Caan, M.W.; Cousijn, J.; den Braber, A.; van 't Ent, D.; Rive, M.M.; Schene, A.H.; van de Giessen, E.; Huyser, C.; de Kwaasteniet, B.P.; Veltman, D.J.; de Haan, L.

    2014-01-01

    BACKGROUND: Schizophrenia is highly comorbid with cannabis use disorders (CUDs), and this comorbidity is associated with an unfavourable course. Early onset or frequent cannabis use may influence brain structure. A key question is whether comorbid CUDs modulate brain morphology alterations

  11. A subcutaneous cellular implant for passive immunization against amyloid-β reduces brain amyloid and tau pathologies.

    Science.gov (United States)

    Lathuilière, Aurélien; Laversenne, Vanessa; Astolfo, Alberto; Kopetzki, Erhard; Jacobsen, Helmut; Stampanoni, Marco; Bohrmann, Bernd; Schneider, Bernard L; Aebischer, Patrick

    2016-05-01

    Passive immunization against misfolded toxic proteins is a promising approach to treat neurodegenerative disorders. For effective immunotherapy against Alzheimer's disease, recent clinical data indicate that monoclonal antibodies directed against the amyloid-β peptide should be administered before the onset of symptoms associated with irreversible brain damage. It is therefore critical to develop technologies for continuous antibody delivery applicable to disease prevention. Here, we addressed this question using a bioactive cellular implant to deliver recombinant anti-amyloid-β antibodies in the subcutaneous tissue. An encapsulating device permeable to macromolecules supports the long-term survival of myogenic cells over more than 10 months in immunocompetent allogeneic recipients. The encapsulated cells are genetically engineered to secrete high levels of anti-amyloid-β antibodies. Peripheral implantation leads to continuous antibody delivery to reach plasma levels that exceed 50 µg/ml. In a proof-of-concept study, we show that the recombinant antibodies produced by this system penetrate the brain and bind amyloid plaques in two mouse models of the Alzheimer's pathology. When encapsulated cells are implanted before the onset of amyloid plaque deposition in TauPS2APP mice, chronic exposure to anti-amyloid-β antibodies dramatically reduces amyloid-β40 and amyloid-β42 levels in the brain, decreases amyloid plaque burden, and most notably, prevents phospho-tau pathology in the hippocampus. These results support the use of encapsulated cell implants for passive immunotherapy against the misfolded proteins, which accumulate in Alzheimer's disease and other neurodegenerative disorders. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. PET Imaging of Mild Traumatic Brain Injury and Whiplash Associated Disorder

    OpenAIRE

    Vállez García, David

    2015-01-01

    Traumatic brain injury is the leading cause of brain injury in our society with 235 per 100,000 inhabitants per year in the European Union and about 500 per 100,000 inhabitants per year in the United States. About 80% of all these events are accounted for as mild cases. At the same time, whiplash-associated disorder is one of the most frequent consequences of motor vehicle related accidents affecting about 300 per 100,000 inhabitants per year in the United States and Western European countrie...

  13. Invisible Bleeding: The Command Team’s Role in the Identification, Understanding, and Treatment of Traumatic Brain Injury and Post Traumatic Stress Disorder

    Science.gov (United States)

    2013-04-11

    Traumatic Brain Injury, Post Traumatic Stress Disorder , TBI, PTSD , Wounded...Brain Injury (TBI) and Post Traumatic Stress Disorder ( PTSD ). Command teams must leverage the existing programs and infrastructure while demonstrating a...subsequent struggle with Traumatic Brain Injury (TBI) and Post Traumatic Stress Disorder ( PTSD ) have given me the unique insight to tackle

  14. Structural Brain Abnormalities of Attention-Deficit/Hyperactivity Disorder With Oppositional Defiant Disorder.

    Science.gov (United States)

    Noordermeer, Siri D S; Luman, Marjolein; Greven, Corina U; Veroude, Kim; Faraone, Stephen V; Hartman, Catharina A; Hoekstra, Pieter J; Franke, Barbara; Buitelaar, Jan K; Heslenfeld, Dirk J; Oosterlaan, Jaap

    2017-11-01

    Attention-deficit/hyperactivity disorder (ADHD) is associated with structural abnormalities in total gray matter, basal ganglia, and cerebellum. Findings of structural abnormalities in frontal and temporal lobes, amygdala, and insula are less consistent. Remarkably, the impact of comorbid oppositional defiant disorder (ODD) (comorbidity rates up to 60%) on these neuroanatomical differences is scarcely studied, while ODD (in combination with conduct disorder) has been associated with structural abnormalities of the frontal lobe, amygdala, and insula. The aim of this study was to investigate the effect of comorbid ODD on cerebral volume and cortical thickness in ADHD. Three groups, 16 ± 3.5 years of age (mean ± SD; range 7-29 years), were studied on volumetric and cortical thickness characteristics using structural magnetic resonance imaging (surface-based morphometry): ADHD+ODD (n = 67), ADHD-only (n = 243), and control subjects (n = 233). Analyses included the moderators age, gender, IQ, and scan site. ADHD+ODD and ADHD-only showed volumetric reductions in total gray matter and (mainly) frontal brain areas. Stepwise volumetric reductions (ADHD+ODD attention, (working) memory, and decision-making. Volumetric reductions of frontal lobes were largest in the ADHD+ODD group, possibly underlying observed larger impairments in neurocognitive functions. Previously reported striatal abnormalities in ADHD may be caused by comorbid conduct disorder rather than ODD. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. Enhanced Delivery of Gold Nanoparticles with Therapeutic Potential for Targeting Human Brain Tumors

    Science.gov (United States)

    Etame, Arnold B.

    The blood brain barrier (BBB) remains a major challenge to the advancement and application of systemic anti-cancer therapeutics into the central nervous system. The structural and physiological delivery constraints of the BBB significantly limit the effectiveness of conventional chemotherapy, thereby making systemic administration a non-viable option for the vast majority of chemotherapy agents. Furthermore, the lack of specificity of conventional systemic chemotherapy when applied towards malignant brain tumors remains a major shortcoming. Hence novel therapeutic strategies that focus both on targeted and enhanced delivery across the BBB are warranted. In recent years nanoparticles (NPs) have emerged as attractive vehicles for efficient delivery of targeted anti-cancer therapeutics. In particular, gold nanoparticles (AuNPs) have gained prominence in several targeting applications involving systemic cancers. Their enhanced permeation and retention within permissive tumor microvasculature provide a selective advantage for targeting. Malignant brain tumors also exhibit transport-permissive microvasculature secondary to blood brain barrier disruption. Hence AuNPs may have potential relevance for brain tumor targeting. However, the permeation of AuNPs across the BBB has not been well characterized, and hence is a potential limitation for successful application of AuNP-based therapeutics within the central nervous system (CNS). In this dissertation, we designed and characterized AuNPs and assessed the role of polyethylene glycol (PEG) on the physical and biological properties of AuNPs. We established a size-dependent permeation profile with respect to core size as well as PEG length when AuNPs were assessed through a transport-permissive in-vitro BBB. This study was the first of its kind to systematically examine the influence of design on permeation of AuNPs through transport-permissive BBB. Given the significant delivery limitations through the non

  16. Correlation of auditory brain stem response and the MRI measurements in neuro-degenerative disorders

    International Nuclear Information System (INIS)

    Kamei, Hidekazu

    1989-01-01

    The purpose of this study is to elucidate correlations of several MRI measurements of the cranium and brain, functioning as a volume conductor, to the auditory brain stem response (ABR) in neuro-degenerative disorders. The subjects included forty-seven patients with spinocerebellar degeneration (SCD) and sixteen of amyotrophic lateral sclerosis (ALS). Statistically significant positive correlations were found between I-V and III-V interpeak latencies (IPLs) and the area of cranium and brain in the longitudinal section of SCD patients, and between I-III and III-V IPLs and the area in the longitudinal section of those with ALS. And, also there were statistically significant correlations between the amplitude of the V wave and the area of brain stem as well as that of the cranium in the longitudinal section of SCD patients, and between the amplitude of the V wave and the area of the cerebrum in the longitudinal section of ALS. In conclusion, in the ABR, the IPLs were prolonged and the amplitude of the V wave was decreased while the MRI size of the cranium and brain increased. When the ABR is applied to neuro-degenerative disorders, it might be important to consider not only the conduction of the auditory tracts in the brain stem, but also the correlations of the size of the cranium and brain which act as a volume conductor. (author)

  17. Correlation of auditory brain stem response and the MRI measurements in neuro-degenerative disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, Hidekazu (Tokyo Women' s Medical Coll. (Japan))

    1989-06-01

    The purpose of this study is to elucidate correlations of several MRI measurements of the cranium and brain, functioning as a volume conductor, to the auditory brain stem response (ABR) in neuro-degenerative disorders. The subjects included forty-seven patients with spinocerebellar degeneration (SCD) and sixteen of amyotrophic lateral sclerosis (ALS). Statistically significant positive correlations were found between I-V and III-V interpeak latencies (IPLs) and the area of cranium and brain in the longitudinal section of SCD patients, and between I-III and III-V IPLs and the area in the longitudinal section of those with ALS. And, also there were statistically significant correlations between the amplitude of the V wave and the area of brain stem as well as that of the cranium in the longitudinal section of SCD patients, and between the amplitude of the V wave and the area of the cerebrum in the longitudinal section of ALS. In conclusion, in the ABR, the IPLs were prolonged and the amplitude of the V wave was decreased while the MRI size of the cranium and brain increased. When the ABR is applied to neuro-degenerative disorders, it might be important to consider not only the conduction of the auditory tracts in the brain stem, but also the correlations of the size of the cranium and brain which act as a volume conductor. (author).

  18. Sleep Disorders Associated With Mild Traumatic Brain Injury Using Sport Concussion Assessment Tool 3.

    Science.gov (United States)

    Tkachenko, Nataliya; Singh, Kanwaljit; Hasanaj, Lisena; Serrano, Liliana; Kothare, Sanjeev V

    2016-04-01

    Sleep problems affect 30% to 80% of patients with mild traumatic brain injury. We assessed the prevalence of sleep disorders after mild traumatic brain injury and its correlation with other symptoms. Individuals with mild traumatic brain injury were assessed at the New York University Concussion Center during 2013-2014 with the Sports Concussion Assessment Tool, third edition, data following mild traumatic brain injury. The relationship between sleep problems (drowsiness, difficulty falling asleep, fatigue or low energy), psychiatric symptoms (sadness, nervousness or anxiousness), headache, and dizziness were analyzed by Spearman correlation and logistic regression using moderate to severe versus none to mild categorization. Ninety-three patients were retrospectively considered. The most common injury causes were falls (34.4%) and motor vehicle accidents (21.5%). There was a positive correlation between dizziness, headache, psychiatric problems (sadness, anxiety, irritability), and sleep problems (fatigue, drowsiness, and difficulty falling asleep) (P sleep symptoms (P Sleep symptoms became more severe with increased time interval from mild traumatic brain injury to Sport Concussion Assessment Tool 3 administration (odds ratio = 1.005, 1.006, and 1.008, P sleep disorders following mild traumatic brain injury and should be counseled and initiated with early interventions. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Feasibility of studying brain morphology in major depressive disorder with structural magnetic resonance imaging and clinical data from the electronic medical record: A pilot study

    Science.gov (United States)

    Hoogenboom, Wouter S.; Perlis, Roy H.; Smoller, Jordan W.; Zeng-Treitler, Qing; Gainer, Vivian S.; Murphy, Shawn N.; Churchill, Susanne E.; Kohane, Isaac S.; Shenton, Martha E.; Iosifescu, Dan V.

    2012-01-01

    For certain research questions related to long-term outcomes or to rare disorders, designing prospective studies is impractical or prohibitively expensive. Such studies could instead utilize clinical and magnetic resonance imaging data (MRI) collected as part of routine clinical care, stored in the electronic medical record (EMR). Using major depressive disorder (MDD) as a disease model, we examined the feasibility of studying brain morphology and associations with remission using clinical and MRI data exclusively drawn from the EMR. Advanced automated tools were used to select MDD patients and controls from the EMR who had brain MRI data, but no diagnosed brain pathology. MDD patients were further assessed for remission status by review of clinical charts. Twenty MDD patients (eight full-remitters, six partial-remitters, and six non-remitters), and fifteen healthy control subjects met all study criteria for advanced morphometric analyses. Compared to controls, MDD patients had significantly smaller right rostral-anterior cingulate volume, and level of non-remission was associated with smaller left hippocampus and left rostral-middle frontal gyrus volume. The use of EMR data for psychiatric research may provide a timely and cost-effective approach with the potential to generate large study samples reflective of the real population with the illness studied. PMID:23149041

  20. Association of obesity with cognitive function and brain structure in patients with major depressive disorder.

    Science.gov (United States)

    Hidese, Shinsuke; Ota, Miho; Matsuo, Junko; Ishida, Ikki; Hiraishi, Moeko; Yoshida, Sumiko; Noda, Takamasa; Sato, Noriko; Teraishi, Toshiya; Hattori, Kotaro; Kunugi, Hiroshi

    2018-01-01

    Obesity has been implicated in the pathophysiology of major depressive disorder (MDD), which prompted us to examine the possible association of obesity with cognitive function and brain structure in patients with MDD. Three hundred and seven patients with MDD and 294 healthy participants, matched for age, sex, ethnicity (Japanese), and handedness (right) were recruited for the study. Cognitive function was assessed using the Brief Assessment of Cognition in Schizophrenia (BACS). Gray and white matter structures were analyzed using voxel-based morphometry and diffusion tensor imaging in a subsample of patients (n = 114) whose magnetic resonance imaging (MRI) data were obtained using a 1.5 T MRI system. Verbal memory, working memory, motor speed, attention, executive function, and BACS composite scores were lower for the MDD patients than for the healthy participants (p function, and BACS composite scores were lower in obese patients (body mass index ≥ 30, n = 17) than in non-obese patients (n = 290, p left optic radiation were reduced in obese patients (n = 7) compared with non-obese patients (n = 107, p function, reduced gray matter volume, and impaired white matter integrity in cognition-related brain areas in patients with MDD. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Cross-sensory gating in schizophrenia and autism spectrum disorder : EEG evidence for impaired brain connectivity?

    NARCIS (Netherlands)

    Magnee, Maurice J. C. M.; Oranje, Bob; van Engeland, Herman; Kahn, Rene S.; Kemner, Chantal

    Autism spectrum disorders (ASD) and schizophrenia are both neurodevelopmental disorders that have extensively been associated with impairments in functional brain connectivity. Using a cross-sensory P50 suppression paradigm, this study investigated low-level audiovisual interactions on cortical EEG

  2. Cannabis Use Disorders and Altered Brain Morphology : Where is the evidence?

    NARCIS (Netherlands)

    Lorenzetti, V; Batalla, A.; Cousijn, J.

    2016-01-01

    Cannabis use disorders (CUDs) affect 13.1 million individuals worldwide. Brain morphology specific to CUDs may mediate the adverse behavioral outcomes of CUDs. We reviewed findings from 20 human neuroimaging studies on grey and white matter morphology in cannabis users that specifically included CUD

  3. Brain reward region responsivity of adolescents with and without parental substance use disorders.

    Science.gov (United States)

    Stice, Eric; Yokum, Sonja

    2014-09-01

    The present study tested the competing hypotheses that adolescents at risk for future substance abuse and dependence by virtue of parental substance use disorders show either weaker or stronger responsivity of brain regions implicated in reward relative to youth without parental history of substance use disorders. Adolescents (n = 52) matched on demographics with and without parental substance use disorders, as determined by diagnostic interviews, who denied substance use in the past year were compared on functional MRI (fMRI) paradigms assessing neural response to receipt and anticipated receipt of monetary and food reward. Parental-history-positive versus -negative adolescents showed greater activation in the left dorsolateral prefrontal cortex and bilateral putamen, and less activation in the fusiform gyrus and inferior temporal gyrus in response to anticipating winning money, as well as greater activation in the left midbrain and right paracentral lobule, and less activation in the right middle frontal gyrus in response to milkshake receipt. Results indicate that adolescents at risk for future onset of substance use disorders show elevated responsivity of brain regions implicated in reward, extending results from 2 smaller prior studies that found that individuals with versus without parental alcohol use disorders showed greater reward region response to anticipated monetary reward and pictures of alcohol. Collectively, results provide support for the reward surfeit model of substance use disorders, rather than the reward deficit model.

  4. Radiation-induced brain disorders in patients with pituitary tumours

    International Nuclear Information System (INIS)

    Bhansali, A.; Chanda, A.; Dash, R.J.; Banerjee, A.K.; Singh, P.; Sharma, S.C.; Mathuriya, S.N.

    2004-01-01

    Radiation-induced brain disorders (RIBD) are uncommon and they are grave sequelae of conventional radiotherapy. In the present report, we describe the clinical spectrum of RIBD in 11 patients who received post-surgery conventional megavoltage irradiation for residual pituitary tumours. Of these 11 patients (nine men, two women), seven had been treated for non-functioning pituitary tumours and four for somatotropinomas. At the time of irradiation the age of these patients ranged from 30 to 59 years (mean, 39.4 ± 8.3; median, 36) with a follow-up period of 696 months (mean, 18.3 ± 26.4; median, 11). The dose of radiation ranged from 45 to 90 Gy (mean, 51.3 ± 13.4; median, 45), which was given in 1530 fractions (mean, 18.6 ± 5.0; median, 15) with 2.8 ± 0.3 Gy (median, 3) per fraction. The biological effective dose calculated for late complications in these patients ranged from 78.7 to 180 Gy (mean, 99.1 ± 27.5; median, 90). The lag time between tumour irradiation and the onset of symptoms ranged from 6 to 168 months (mean, 46.3 ± 57.0; median, 57). The clinical spectrum of RIBD included new-onset visual abnormalities in five, cerebral radionecrosis in the form of altered sensorium in four, generalized seizures in four, cognitive dysfunction in five, dementia in three and motor deficits in two patients. Magnetic resonance imaging (MRI)/CT of the brain was suggestive of radionecrosis in eight, cerebral oedema in three, cerebral atrophy in two and second neoplasia in one patient. Associated hormone deficiencies at presentation were hypogonadism in eight, hypoadrenalism in six, hypothyroidism in four and diabetes insipidus in one patient. Autopsy in two patients showed primitive neuroectodermal tumour (PNET) and brainstem radionecrosis in one, and a cystic lesion in the left frontal lobe following radionecrosis in the other. We conclude that RIBD have distinctive but varying clinical and radiological presentations. Diabetes insipidus and PNET as a second neoplastic

  5. Non-self-averaging nucleation rate due to quenched disorder

    International Nuclear Information System (INIS)

    Sear, Richard P

    2012-01-01

    We study the nucleation of a new thermodynamic phase in the presence of quenched disorder. The quenched disorder is a generic model of both impurities and disordered porous media; both are known to have large effects on nucleation. We find that the nucleation rate is non-self-averaging. This is in a simple Ising model with clusters of quenched spins. We also show that non-self-averaging behaviour is straightforward to detect in experiments, and may be rather common. (fast track communication)

  6. Upregulation of Haploinsufficient Gene Expression in the Brain by Targeting a Long Non-coding RNA Improves Seizure Phenotype in a Model of Dravet Syndrome.

    Science.gov (United States)

    Hsiao, J; Yuan, T Y; Tsai, M S; Lu, C Y; Lin, Y C; Lee, M L; Lin, S W; Chang, F C; Liu Pimentel, H; Olive, C; Coito, C; Shen, G; Young, M; Thorne, T; Lawrence, M; Magistri, M; Faghihi, M A; Khorkova, O; Wahlestedt, C

    2016-07-01

    Dravet syndrome is a devastating genetic brain disorder caused by heterozygous loss-of-function mutation in the voltage-gated sodium channel gene SCN1A. There are currently no treatments, but the upregulation of SCN1A healthy allele represents an appealing therapeutic strategy. In this study we identified a novel, evolutionary conserved mechanism controlling the expression of SCN1A that is mediated by an antisense non-coding RNA (SCN1ANAT). Using oligonucleotide-based compounds (AntagoNATs) targeting SCN1ANAT we were able to induce specific upregulation of SCN1A both in vitro and in vivo, in the brain of Dravet knock-in mouse model and a non-human primate. AntagoNAT-mediated upregulation of Scn1a in postnatal Dravet mice led to significant improvements in seizure phenotype and excitability of hippocampal interneurons. These results further elucidate the pathophysiology of Dravet syndrome and outline a possible new approach for the treatment of this and other genetic disorders with similar etiology. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Upregulation of Haploinsufficient Gene Expression in the Brain by Targeting a Long Non-coding RNA Improves Seizure Phenotype in a Model of Dravet Syndrome

    Directory of Open Access Journals (Sweden)

    J. Hsiao

    2016-07-01

    Full Text Available Dravet syndrome is a devastating genetic brain disorder caused by heterozygous loss-of-function mutation in the voltage-gated sodium channel gene SCN1A. There are currently no treatments, but the upregulation of SCN1A healthy allele represents an appealing therapeutic strategy. In this study we identified a novel, evolutionary conserved mechanism controlling the expression of SCN1A that is mediated by an antisense non-coding RNA (SCN1ANAT. Using oligonucleotide-based compounds (AntagoNATs targeting SCN1ANAT we were able to induce specific upregulation of SCN1A both in vitro and in vivo, in the brain of Dravet knock-in mouse model and a non-human primate. AntagoNAT-mediated upregulation of Scn1a in postnatal Dravet mice led to significant improvements in seizure phenotype and excitability of hippocampal interneurons. These results further elucidate the pathophysiology of Dravet syndrome and outline a possible new approach for the treatment of this and other genetic disorders with similar etiology.

  8. PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron

    Science.gov (United States)

    Morgan, Neil V; Westaway, Shawn K; Morton, Jenny E V; Gregory, Allison; Gissen, Paul; Sonek, Scott; Cangul, Hakan; Coryell, Jason; Canham, Natalie; Nardocci, Nardo; Zorzi, Giovanna; Pasha, Shanaz; Rodriguez, Diana; Desguerre, Isabelle; Mubaidin, Amar; Bertini, Enrico; Trembath, Richard C; Simonati, Alessandro; Schanen, Carolyn; Johnson, Colin A; Levinson, Barbara; Woods, C Geoffrey; Wilmot, Beth; Kramer, Patricia; Gitschier, Jane; Maher, Eamonn R; Hayflick, Susan J

    2007-01-01

    Neurodegenerative disorders with high brain iron include Parkinson disease, Alzheimer disease and several childhood genetic disorders categorized as neuroaxonal dystrophies. We mapped a locus for infantile neuroaxonal dystrophy (INAD) and neurodegeneration with brain iron accumulation (NBIA) to chromosome 22q12-q13 and identified mutations in PLA2G6, encoding a calcium-independent group VI phospholipase A2, in NBIA, INAD and the related Karak syndrome. This discovery implicates phospholipases in the pathogenesis of neurodegenerative disorders with iron dyshomeostasis. PMID:16783378

  9. Brain Structural Effects of Psychopharmacological Treatment in Bipolar Disorder

    Science.gov (United States)

    McDonald, Colm

    2015-01-01

    Bipolar disorder is associated with subtle neuroanatomical deficits including lateral ventricular enlargement, grey matter deficits incorporating limbic system structures, and distributed white matter pathophysiology. Substantial heterogeneity has been identified by structural neuroimaging studies to date and differential psychotropic medication use is potentially a substantial contributor to this. This selective review of structural neuroimaging and diffusion tensor imaging studies considers evidence that lithium, mood stabilisers, antipsychotic medication and antidepressant medications are associated with neuroanatomical variation. Most studies are negative and suffer from methodological weaknesses in terms of directly assessing medication effects on neuroanatomy, since they commonly comprise posthoc assessments of medication associations with neuroimaging metrics in small heterogenous patient groups. However the studies which report positive findings tend to form a relatively consistent picture whereby lithium and antiepileptic mood stabiliser use is associated with increased regional grey matter volume, especially in limbic structures. These findings are further supported by the more methodologically robust studies which include large numbers of patients or repeated intra-individual scanning in longitudinal designs. Some similar findings of an apparently ameliorative effect of lithium on white matter microstructure are also emerging. There is less support for an effect of antipsychotic or antidepressant medication on brain structure in bipolar disorder, but these studies are further limited by methodological difficulties. In general the literature to date supports a normalising effect of lithium and mood stabilisers on brain structure in bipolar disorder, which is consistent with the neuroprotective characteristics of these medications identified by preclinical studies. PMID:26412064

  10. Movement disorders

    International Nuclear Information System (INIS)

    Leenders, K.L.

    1986-01-01

    This thesis describes the measurement of brain-tissue functions in patients with movement disorders using positron emission tomography (PET). This scanning technique is a method for direct in vivo quantitation of the regional tissue content of positron emitting radionuclides in brain (or other organs) in an essentially non-invasive way. Ch. 2 outlines some general features of PET and describes the scanner which has been used for the studies in this thesis. Also the tracer methodology, as applied to data investigations of movement disorders, are discussed. Ch. 3 contains the results of the PET investigations which were performed in the study of movement disorders. The results are presented in the form of 12 papers. The main goals of these studies were the understanding of the pathophysiology of Parkinson's disease, Huntington's chorea, Steele-Richardson-Olzewski syndrome and special case reports. Ch. 4 summarizes the results of these publications and Ch. 5 concludes the main part of this thesis with a general discussion of movement disorders in relation to PET investigations. 697 refs.; 60 figs.; 31 tabs

  11. EPIDEMIOLOGY OF THE MOST COMMON MENTAL DISORDERS IN PATIENTS WITH DIABETES MELLITUS

    Directory of Open Access Journals (Sweden)

    E. G. Starostina

    2014-01-01

    Full Text Available Background: Non-psychotic mental disorders including non-severe depressive, anxiety and organic disorders can have an impact on the course and prognosis of the underlying disease in patients with diabetes mellitus (DM. Therefore, assessment of their epidemiologic aspects is extremely important. Aim:  Investigation of the types and prevalence of the major mental disorders among both type 1 DM (T1DM and type 2 DM (T2DM in-patients, determination of possible etiology of the organic involvement of the brain in T1DM patients as well as of the rate of diagnostics and management of mental disorders in DM patients in routine medical practice. Materials and methods: Part 1 was a cross-sectional study in 228 consecutive DM patients aged from 18 to 75 years, aimed at detection of current mental disorders. Part 2 was a cross-sectional study in 72 consecutive T1DM patients with in-depth assessment of signs of organic brain involvement. All patients underwent cognitive function tests. Mental disorders were diagnosed by a psychiatrist according to ICD-10 diagnostic criteria. Results: Mental disorders were  found  in 80.3% of patients, being significantly more prevalent in patients with T2DM (87.9% than in T1DM patients (57.4%, р<0.0001. Anxiety disorders as a whole were diagnosed as frequently as depressive ones (39.5% and 40.0%, respectively, being the most prevalent both in T1DM (35% and T2DM (60%. Within the class of anxiety disorders, diabetes-specific phobias of injections and hypoglycemia were noted 8-fold more often (р<0.01 in T1DM than in T2DM patients. Generalized (22.4 versus 9.3% and organic (18 versus 0% anxiety disorders as well as unipolar depressive episodes and dysthymia (40.2 versus 25.9%, р<0.05 occurred considerably more often in T2DM than in T1DM patients. In total, signs of organic brain involvement were found in 37% of T1DM patients. Possible etiologic factors of organic brain disorders were as follows: craniocerebral injury

  12. Interpersonal brain synchronization in the right temporo-parietal junction during face-to-face economic exchange.

    Science.gov (United States)

    Tang, Honghong; Mai, Xiaoqin; Wang, Shun; Zhu, Chaozhe; Krueger, Frank; Liu, Chao

    2016-01-01

    In daily life, interpersonal interactions are influenced by uncertainty about other people's intentions. Face-to-face (FF) interaction reduces such uncertainty by providing external visible cues such as facial expression or body gestures and facilitates shared intentionality to promote belief of cooperative decisions and actual cooperative behaviors in interaction. However, so far little is known about interpersonal brain synchronization between two people engaged in naturally occurring FF interactions. In this study, we combined an adapted ultimatum game with functional near-infrared spectroscopy (fNIRS) hyperscanning to investigate how FF interaction impacts interpersonal brain synchronization during economic exchange. Pairs of strangers interacted repeatedly either FF or face-blocked (FB), while their activation was simultaneously measured in the right temporo-parietal junction (rTPJ) and the control region, right dorsolateral prefrontal cortex (rDLPFC). Behaviorally, FF interactions increased shared intentionality between strangers, leading more positive belief of cooperative decisions and more actual gains in the game. FNIRS results indicated increased interpersonal brain synchronizations during FF interactions in rTPJ (but not in rDLPFC) with greater shared intentionality between partners. These results highlighted the importance of rTPJ in collaborative social interactions during FF economic exchange and warrant future research that combines FF interactions with fNIRS hyperscanning to study social brain disorders such as autism. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  13. Brain structural anomalies in borderline and avoidant personality disorder patients and their associations with disorder-specific symptoms.

    Science.gov (United States)

    Denny, Bryan T; Fan, Jin; Liu, Xun; Guerreri, Stephanie; Mayson, Sarah Jo; Rimsky, Liza; McMaster, Antonia; Alexander, Heather; New, Antonia S; Goodman, Marianne; Perez-Rodriguez, Mercedes; Siever, Larry J; Koenigsberg, Harold W

    2016-08-01

    Borderline personality disorder (BPD) and avoidant personality disorder (AvPD) are characterized by hyper-reactivity to negatively-perceived interpersonal cues, yet they differ in degree of affective instability. Recent work has begun to elucidate the neural (structural and functional) and cognitive-behavioral underpinnings of BPD, although some initial studies of brain structure have reached divergent conclusions. AvPD, however, has been almost unexamined in the cognitive neuroscience literature. In the present study we investigated group differences among 29 BPD patients, 27 AvPD patients, and 29 healthy controls (HC) in structural brain volumes using voxel-based morphometry (VBM) in five anatomically-defined regions of interest: amygdala, hippocampus, medial prefrontal cortex (MPFC), dorsolateral prefrontal cortex (DLPFC), and anterior cingulate cortex (ACC). We also examined the relationship between individual differences in brain structure and self-reported anxiety and affective instability in each group. We observed reductions in MPFC and ACC volume in BPD relative to HC, with no significant difference among patient groups. No group differences in amygdala volume were found. However, BPD and AvPD patients each showed a positive relationship between right amygdala volume and state-related anxiety. By contrast, in HC there was an inverse relationship between MPFC volume and state and trait-related anxiety as well as between bilateral DLPFC volume and affective instability. Current sample sizes did not permit examination of gender effects upon structure-symptom correlations. These results shed light on potentially protective, or compensatory, aspects of brain structure in these populations-namely, relatively reduced amygdala volume or relatively enhanced MPFC and DLPFC volume. Published by Elsevier B.V.

  14. Role of Non-neuronal Cells in Tauopathies After Brain Injury

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0422 TITLE: Role of Nonneuronal Cells in Tauopathies After Brain Injury PRINCIPAL INVESTIGATOR: Sally A. Frautschy...AND SUBTITLE 5a. CONTRACT NUMBER Role of Non-neuronal Cells in Tauopathies After Brain Injury 5b. GRANT NUMBER W81XWH-15-1-0422 5c. PROGRAM...traumatic brain injury (TBI), specific inflammatory factors (complement proteins) elevated during long asymptomatic prodromal period are responsible

  15. Ceramide and Its Related Neurochemical Networks as Targets for Some Brain Disorder Therapies.

    Science.gov (United States)

    Brodowicz, Justyna; Przegaliński, Edmund; Müller, Christian P; Filip, Malgorzata

    2018-02-01

    Correlational and causal comparative research link ceramide (Cer), the precursor of complex sphingolipids, to some psychiatric (e.g., depression, schizophrenia (SZ), alcohol use disorder, and morphine antinociceptive tolerance) and neurological (e.g., Alzheimer's disease (AD), Parkinson disease (PD)) disorders. Cer generation can occur through the de novo synthesis pathway, the sphingomyelinase pathways, and the salvage pathway. The discoveries that plasma Cer concentration increase during depressive episodes in patients and that tricyclic and tetracyclic antidepressants functionally inhibit acid sphingomyelinase (ASM), the enzyme that catalyzes the degradation of sphingomyelin to Cer, have initiated a series of studies on the role of the ASM-Cer system in depressive disorder. Disturbances in the metabolism of Cer or SM are associated with the occurrence of SZ and PD. In both PD and SZ patients, the elevated levels of Cer or SM in the brain regions were associated with the disease. AD patients showed also an abnormal metabolism of brain Cer at early stages of the disease which may suggest Cer as an AD biomarker. In plasma of AD patients and in AD transgenic mice, ASM activity was increased. In contrast, partial ASM inhibition of Aβ deposition improved memory deficits. Furthermore, in clinical and preclinical research, ethanol enhanced activation of ASM followed by Cer production. Limited data have shown that Cer plays an important role in the development of morphine antinociceptive tolerance. In summary, clinical and preclinical findings provide evidence that targeting the Cer system should be considered as an innovative translational strategy for some brain disorders.

  16. Brain GABA levels across psychiatric disorders: A systematic literature review and meta-analysis of (1) H-MRS studies.

    Science.gov (United States)

    Schür, Remmelt R; Draisma, Luc W R; Wijnen, Jannie P; Boks, Marco P; Koevoets, Martijn G J C; Joëls, Marian; Klomp, Dennis W; Kahn, René S; Vinkers, Christiaan H

    2016-09-01

    The inhibitory gamma-aminobutyric acid (GABA) system is involved in the etiology of most psychiatric disorders, including schizophrenia, autism spectrum disorder (ASD) and major depressive disorder (MDD). It is therefore not surprising that proton magnetic resonance spectroscopy ((1) H-MRS) is increasingly used to investigate in vivo brain GABA levels. However, integration of the evidence for altered in vivo GABA levels across psychiatric disorders is lacking. We therefore systematically searched the clinical (1) H-MRS literature and performed a meta-analysis. A total of 40 studies (N = 1,591) in seven different psychiatric disorders were included in the meta-analysis: MDD (N = 437), schizophrenia (N = 517), ASD (N = 150), bipolar disorder (N = 129), panic disorder (N = 81), posttraumatic stress disorder (PTSD) (N = 104), and attention deficit/hyperactivity disorder (ADHD) (N = 173). Brain GABA levels were lower in ASD (standardized mean difference [SMD] = -0.74, P = 0.001) and in depressed MDD patients (SMD = -0.52, P = 0.005), but not in remitted MDD patients (SMD = -0.24, P = 0.310) compared with controls. In schizophrenia this finding did not reach statistical significance (SMD = -0.23, P = 0.089). No significant differences in GABA levels were found in bipolar disorder, panic disorder, PTSD, and ADHD compared with controls. In conclusion, this meta-analysis provided evidence for lower brain GABA levels in ASD and in depressed (but not remitted) MDD patients compared with healthy controls. Findings in schizophrenia were more equivocal. Even though future (1) H-MRS studies could greatly benefit from a longitudinal design and consensus on the preferred analytical approach, it is apparent that (1) H-MRS studies have great potential in advancing our understanding of the role of the GABA system in the pathogenesis of psychiatric disorders. Hum Brain Mapp 37:3337-3352, 2016. © 2016 Wiley Periodicals

  17. Common and distinct brain networks underlying panic and social anxiety disorders.

    Science.gov (United States)

    Kim, Yong-Ku; Yoon, Ho-Kyoung

    2018-01-03

    Although panic disorder (PD) and phobic disorders are independent anxiety disorders with distinct sets of diagnostic criteria, there is a high level of overlap between them in terms of pathogenesis and neural underpinnings. Functional connectivity research using resting-state functional magnetic resonance imaging (rsfMRI) shows great potential in identifying the similarities and differences between PD and phobias. Understanding common and distinct networks between PD and phobic disorders is critical for identifying both specific and general neural characteristics of these disorders. We review recent rsfMRI studies and explore the clinical relevance of resting-state functional connectivity (rsFC) in PD and phobias. Although findings differ between studies, there are some meaningful, consistent findings. Social anxiety disorder (SAD) and PD share common default mode network alterations. Alterations within the sensorimotor network are observed primarily in PD. Increased connectivity in the salience network is consistently reported in SAD. This review supports hypotheses that PD and phobic disorders share common rsFC abnormalities and that the different clinical phenotypes between the disorders come from distinct brain functional network alterations. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Brain-computer interfaces in neurological rehabilitation.

    Science.gov (United States)

    Daly, Janis J; Wolpaw, Jonathan R

    2008-11-01

    Recent advances in analysis of brain signals, training patients to control these signals, and improved computing capabilities have enabled people with severe motor disabilities to use their brain signals for communication and control of objects in their environment, thereby bypassing their impaired neuromuscular system. Non-invasive, electroencephalogram (EEG)-based brain-computer interface (BCI) technologies can be used to control a computer cursor or a limb orthosis, for word processing and accessing the internet, and for other functions such as environmental control or entertainment. By re-establishing some independence, BCI technologies can substantially improve the lives of people with devastating neurological disorders such as advanced amyotrophic lateral sclerosis. BCI technology might also restore more effective motor control to people after stroke or other traumatic brain disorders by helping to guide activity-dependent brain plasticity by use of EEG brain signals to indicate to the patient the current state of brain activity and to enable the user to subsequently lower abnormal activity. Alternatively, by use of brain signals to supplement impaired muscle control, BCIs might increase the efficacy of a rehabilitation protocol and thus improve muscle control for the patient.

  19. Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking Sarm1.

    Science.gov (United States)

    Henninger, Nils; Bouley, James; Sikoglu, Elif M; An, Jiyan; Moore, Constance M; King, Jean A; Bowser, Robert; Freeman, Marc R; Brown, Robert H

    2016-04-01

    Axonal degeneration is a critical, early event in many acute and chronic neurological disorders. It has been consistently observed after traumatic brain injury, but whether axon degeneration is a driver of traumatic brain injury remains unclear. Molecular pathways underlying the pathology of traumatic brain injury have not been defined, and there is no efficacious treatment for traumatic brain injury. Here we show that mice lacking the mouse Toll receptor adaptor Sarm1 (sterile α/Armadillo/Toll-Interleukin receptor homology domain protein) gene, a key mediator of Wallerian degeneration, demonstrate multiple improved traumatic brain injury-associated phenotypes after injury in a closed-head mild traumatic brain injury model. Sarm1(-/-) mice developed fewer β-amyloid precursor protein aggregates in axons of the corpus callosum after traumatic brain injury as compared to Sarm1(+/+) mice. Furthermore, mice lacking Sarm1 had reduced plasma concentrations of the phophorylated axonal neurofilament subunit H, indicating that axonal integrity is maintained after traumatic brain injury. Strikingly, whereas wild-type mice exibited a number of behavioural deficits after traumatic brain injury, we observed a strong, early preservation of neurological function in Sarm1(-/-) animals. Finally, using in vivo proton magnetic resonance spectroscopy we found tissue signatures consistent with substantially preserved neuronal energy metabolism in Sarm1(-/-) mice compared to controls immediately following traumatic brain injury. Our results indicate that the SARM1-mediated prodegenerative pathway promotes pathogenesis in traumatic brain injury and suggest that anti-SARM1 therapeutics are a viable approach for preserving neurological function after traumatic brain injury. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Beyond Neural Cubism: Promoting a Multidimensional View of Brain Disorders by Enhancing the Integration of Neurology and Psychiatry in Education

    Science.gov (United States)

    Taylor, Joseph J.; Williams, Nolan R.; George, Mark S.

    2014-01-01

    Cubism was an influential early 20th century art movement characterized by angular, disjointed imagery. The two-dimensional appearance of Cubist figures and objects is created through juxtaposition of angles. The authors posit that the constrained perspectives found in Cubism may also be found in the clinical classification of brain disorders. Neurological disorders are often separated from psychiatric disorders as if they stem from different organ systems. Maintaining two isolated clinical disciplines fractionalizes the brain in the same way that Pablo Picasso fractionalized figures and objects in his Cubist art. This Neural Cubism perpetuates a clinical divide that does not reflect the scope and depth of neuroscience. All brain disorders are complex and multidimensional, with aberrant circuitry and resultant psychopharmacology manifesting as altered behavior, affect, mood or cognition. Trainees should receive a multidimensional education based on modern neuroscience, not a partial education based on clinical precedent. The authors briefly outline the rationale for increasing the integration of neurology and psychiatry and discuss a nested model with which clinical neuroscientists (neurologists and psychiatrists) can approach and treat brain disorders. PMID:25340364

  1. Evaluation of dysthymic disorder with technetium-99 m hexamethylpropylene amine oxime brain single-photon emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sarikaya, A.; Cermik, T.F. [Department of Nuclear Medicine, Trakya University, Faculty of Medicine, Edirne (Turkey); Karasin, E.; Abay, E. [Department of Psychiatry, Trakya University, Faculty of Medicine, Edirne (Turkey); Berkarda, S.

    1999-03-01

    Dysthymic disorder is a chronic disorder characterised by the presence of a depressed mood and is classified as a distinct category in DSM-IV, separately from major depression. Although brain imaging studies have been performed in major depressive disease, there have to date been no reports of such studies in dysthymic disorder. In this study 36 patients with dysthymic disorder were compared with 16 normal subjects using technetium-99m hexamethylpropylene amine oxime brain single-photon emission tomography. A relative blood flow ratio was calculated for each region of interest using the average tissue activity in the region divided by activity in the cerebellum. There were significant differences in the bilateral inferior frontal, bilateral parietal, right superior frontal and left posterior temporal regions in the patients with dysthymic disorder compared with the healthy controls. These findings support the hypothesis that the biological bases for dysthymic disorder and major depression are similar. Recognition of these regional abnormalities may have clinical utility in both the diagnosis and the treatment of dysthymic disorder. Further studies are needed to confirm our results and to assess the influence of treatment in patients with dysthymic disorder. (orig.) With 1 fig., 1 tab., 26 refs.

  2. Evaluation of dysthymic disorder with technetium-99 m hexamethylpropylene amine oxime brain single-photon emission tomography

    International Nuclear Information System (INIS)

    Sarikaya, A.; Cermik, T.F.; Karasin, E.; Abay, E.; Berkarda, S.

    1999-01-01

    Dysthymic disorder is a chronic disorder characterised by the presence of a depressed mood and is classified as a distinct category in DSM-IV, separately from major depression. Although brain imaging studies have been performed in major depressive disease, there have to date been no reports of such studies in dysthymic disorder. In this study 36 patients with dysthymic disorder were compared with 16 normal subjects using technetium-99m hexamethylpropylene amine oxime brain single-photon emission tomography. A relative blood flow ratio was calculated for each region of interest using the average tissue activity in the region divided by activity in the cerebellum. There were significant differences in the bilateral inferior frontal, bilateral parietal, right superior frontal and left posterior temporal regions in the patients with dysthymic disorder compared with the healthy controls. These findings support the hypothesis that the biological bases for dysthymic disorder and major depression are similar. Recognition of these regional abnormalities may have clinical utility in both the diagnosis and the treatment of dysthymic disorder. Further studies are needed to confirm our results and to assess the influence of treatment in patients with dysthymic disorder. (orig.)

  3. Exploring the brain

    International Nuclear Information System (INIS)

    Bloch, G.; Vernier, P.; Le Bihan, D.; Comtat, C.; Van Wassenhove, V.; Texier, I.; Planat-Chretien, A.; Poher, V.; Dinten, J.M.; Pannetier-lecoeur, M.; Trebossen, R.; Lethimonnier, F.; Eger, E.; Thirion, B.; Dehaene-Lambertz, G.; Piazza, M.; Mangin, J.F.; Dehaene, S.; Pallier, C.; Marti, S.; Klein, E.; Martinot, J.L.; Paillere, M.L.; Artiges, E.; Lemaitre, H.; Karila, L.; Houenou, J.; Sarrazin, S.; Hantraye, P.; Aron Badin, R.; Mergui, S.; Palfi, S.; Bemelmans, A.; Berger, F.; Frouin, V.; Pinel, J.F.; Crivello, F.; Mazoyer, B.; Flury-Herard, A.

    2014-01-01

    CEA (French Alternative Energies and Atomic Energy Commission) has been involved in brain research for over 50 years and this 62. issue of 'Clefs CEA' is the best occasion to come back on the latest advances in this wide field. The purpose is to show how neuroimaging combined with neuro sciences and computational sciences has shed light on various aspects of the brain life and experience such as for instance learning (with highlights on dyslexia and dyscalculia), vision, the feeling of time, consciousness, addictions, ageing, and neuro-degenerative diseases. This document is divided into 6 parts: 1) non-invasive exploration of the brain, 2) development, learning and plasticity of the brain, 3) cognitive architecture and the brain, 4) mental health and vulnerability, 5) neuro-degenerative diseases, and 6) identifying bio-markers for cerebral disorders. (A.C.)

  4. Structural brain abnormalities in early onset first-episode psychosis

    DEFF Research Database (Denmark)

    Pagsberg, A K; Baaré, W F C; Raabjerg Christensen, A M

    2007-01-01

    BACKGROUND: Brain morphometry in children and adolescents with first-episode psychosis offer a unique opportunity for pathogenetic investigations. METHODS: We compared high-resolution 3D T1-weighted magnetic resonance images of the brain in 29 patients (schizophrenia, schizotypal disorder......, delusional disorder or other non-organic psychosis), aged 10-18 to those of 29 matched controls, using optimized voxel-based morphometry. RESULTS: Psychotic patients had frontal white matter abnormalities, but expected (regional) gray matter reductions were not observed. Post hoc analyses revealed...

  5. State-Dependent Changes of Connectivity Patterns and Functional Brain Network Topology in Autism Spectrum Disorder

    Science.gov (United States)

    Barttfeld, Pablo; Wicker, Bruno; Cukier, Sebastian; Navarta, Silvana; Lew, Sergio; Leiguarda, Ramon; Sigman, Mariano

    2012-01-01

    Anatomical and functional brain studies have converged to the hypothesis that autism spectrum disorders (ASD) are associated with atypical connectivity. Using a modified resting-state paradigm to drive subjects' attention, we provide evidence of a very marked interaction between ASD brain functional connectivity and cognitive state. We show that…

  6. Treatment of developmental stress disorder: mind, body and brain - analysis and pharmacology coupled.

    Science.gov (United States)

    McFadden, Joseph

    2017-11-01

    The schism between psychiatry, psychology and analysis, while long present, has widened even more in the past half-century with the advances in psychopharmacology. With the advances in electronic brain imaging, particularly in developmental and post-traumatic stress disorders, there has emerged both an understanding of brain changes resulting from severe, chronic stress and an ability to target brain chemistry in ways that can relieve clinical symptomatology. The use of alpha-1 adrenergic brain receptor antagonists decreases many of the manifestations of PTSD. Additionally, this paper discusses the ways in which dreaming, thinking and the analytic process are facilitated with this concomitant treatment and hypervigilence and hyper-arousal states are signficiantly decreased. © 2017, The Society of Analytical Psychology.

  7. A mouse model for creatine transporter deficiency reveals early onset cognitive impairment and neuropathology associated with brain aging.

    Science.gov (United States)

    Baroncelli, Laura; Molinaro, Angelo; Cacciante, Francesco; Alessandrì, Maria Grazia; Napoli, Debora; Putignano, Elena; Tola, Jonida; Leuzzi, Vincenzo; Cioni, Giovanni; Pizzorusso, Tommaso

    2016-10-01

    Mutations in the creatine (Cr) transporter (CrT) gene lead to cerebral creatine deficiency syndrome-1 (CCDS1), an X-linked metabolic disorder characterized by cerebral Cr deficiency causing intellectual disability, seizures, movement and autistic-like behavioural disturbances, language and speech impairment. Since no data are available about the neural and molecular underpinnings of this disease, we performed a longitudinal analysis of behavioural and pathological alterations associated with CrT deficiency in a CCDS1 mouse model. We found precocious cognitive and autistic-like defects, mimicking the early key features of human CCDS1. Moreover, mutant mice displayed a progressive impairment of short and long-term declarative memory denoting an early brain aging. Pathological examination showed a prominent loss of GABAergic synapses, marked activation of microglia, reduction of hippocampal neurogenesis and the accumulation of autofluorescent lipofuscin. Our data suggest that brain Cr depletion causes both early intellectual disability and late progressive cognitive decline, and identify novel targets to design intervention strategies aimed at overcoming brain CCDS1 alterations. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Nucleus accumbens deep brain stimulation as treatment option for binge eating disorder?

    NARCIS (Netherlands)

    Lok, R.; Verhagen, M.; Staal, L.; Van Dijk, J.; Van Beek, A.; Temel, Y.; Jahanshahi, A.; Staal, M.; Van Dijk, G.

    2014-01-01

    Introduction: Binge eating disorder (BED) has been postulated to arise from mesolimbic dopaminergic system changes, presumably homologous to those seen in drug addiction. Deep Brain Stimulation (DBS) is regarded as a relatively novel but promising surgical treatment of addiction. Because of

  9. Structural brain network analysis in families multiply affected with bipolar I disorder

    NARCIS (Netherlands)

    Forde, Natalie J.; O'Donoghue, Stefani; Scanlon, Cathy; Emsell, Louise; Chaddock, Chris; Leemans, Alexander; Jeurissen, Ben; Barker, Gareth J.; Cannon, Dara M.; Murray, Robin M.; McDonald, Colm

    2015-01-01

    Disrupted structural connectivity is associated with psychiatric illnesses including bipolar disorder (BP). Here we use structural brain network analysis to investigate connectivity abnormalities in multiply affected BP type I families, to assess the utility of dysconnectivity as a biomarker and its

  10. Uremic anorexia: a consequence of persistently high brain serotonin levels? The tryptophan/serotonin disorder hypothesis.

    Science.gov (United States)

    Aguilera, A; Selgas, R; Codoceo, R; Bajo, A

    2000-01-01

    Anorexia is a frequent part of uremic syndrome, contributing to malnutrition in dialysis patients. Many factors have been suggested as responsible for uremic anorexia. In this paper we formulate a new hypothesis to explain the appetite disorders in dialysis patients: "the tryptophan/serotonin disorder hypothesis." We review current knowledge of normal hunger-satiety cycle control and the disorders described in uremic patients. There are four phases in food intake regulation: (1) the gastric phase, during which food induces satiety through gastric distention and satiety peptide release; (2) the post absorptive phase, during which circulating compounds, including glucose and amino acids, cause satiety by hepatic receptors via the vagus nerve; (3) the hepatic phase, during which adenosine triphosphate (ATP) concentration is the main stimulus inducing hunger or satiety, with cytokines inhibiting ATP production; and (4) the central phase, during which appetite is regulated through peripheral (circulating plasma substances and neurotransmitters) and brain stimuli. Brain serotonin is the final target for peripheral mechanisms controlling appetite. High brain serotonin levels and a lower serotonin/dopamine ratio cause anorexia. Plasma and brain amino acid concentrations are recognized factors involved in neurotransmitter synthesis and appetite control. Tryptophan is the substrate of serotonin synthesis. High plasma levels of anorectics such as tryptophan (plasma and brain), cholecystokinin, tumor necrosis factor alpha, interleukin-1, and leptin, and deficiencies of nitric oxide and neuropeptide Y have been described in uremia; all increase intracerebral serotonin. We suggest that brain serotonin hyperproduction due to a uremic-dependent excess of tryptophan may be the final common pathway involved in the genesis of uremic anorexia. Various methods of ameliorating anorexia by decreasing the central effects of serotonin are proposed.

  11. Permissible Delay in Payments

    Directory of Open Access Journals (Sweden)

    Yung-Fu Huang

    2007-01-01

    Full Text Available The main purpose of this paper wants to investigate the optimal retailer's lot-sizing policy with two warehouses under partially permissible delay in payments within the economic order quantity (EOQ framework. In this paper, we want to extend that fully permissible delay in payments to the supplier would offer the retailer partially permissible delay in payments. That is, the retailer must make a partial payment to the supplier when the order is received. Then the retailer must pay off the remaining balance at the end of the permissible delay period. In addition, we want to add the assumption that the retailer's storage space is limited. That is, the retailer will rent the warehouse to store these exceeding items when the order quantity is larger than retailer's storage space. Under these conditions, we model the retailer's inventory system as a cost minimization problem to determine the retailer's optimal cycle time and optimal order quantity. Three theorems are developed to efficiently determine the optimal replenishment policy for the retailer. Finally, numerical examples are given to illustrate these theorems and obtained a lot of managerial insights.

  12. X marks the spot : structural and functional brain mapping in a genetically defined group at high risk of autism symptoms (47,XXY), and a comparison with idiopathic autism spectrum disorder

    NARCIS (Netherlands)

    Goddard, Marcia Naomi

    2015-01-01

    Klinefelter syndrome (47,XXY) is associated with a wide range of behavioral problems, including autism symptomatology. In the current thesis, brain structure and function were assesed in boys with 47,XXY, boys with idiopathic autism spectrum disorder, and non-clinical controls, using multiple

  13. Brain studies may alter long-held concepts about likely causes of some voice disorders

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Two voice disorders long considered to be psychological problems, stuttering and spasmodic dysphonia, have been shown in many persons to have a neurophysiological basis. Investigators at the 155th national meeting of the American Association for the Advancement of Science, in San Francisco, described their findings, which are based on new analytic techniques. The research is being done at the Dallas Center for Vocal Motor Control, Callier Center for Communication Disorders, University of Texas at Dallas Health Science Center. The technology employed to learn what's wrong with the brains, rather than the psyches, of persons with certain speech disorders includes magnetic resonance imaging (MRI), brain electrical activity mapping (BEAM), and single photon emission computerized tomography (SPECT). The results of applying these techniques are combined with quantitative behavioral measures of vocal and nonvocal motor control, language performance, and cognition to arrive at a better understanding of the problem

  14. Brain studies may alter long-held concepts about likely causes of some voice disorders

    Energy Technology Data Exchange (ETDEWEB)

    1989-02-17

    Two voice disorders long considered to be psychological problems, stuttering and spasmodic dysphonia, have been shown in many persons to have a neurophysiological basis. Investigators at the 155th national meeting of the American Association for the Advancement of Science, in San Francisco, described their findings, which are based on new analytic techniques. The research is being done at the Dallas Center for Vocal Motor Control, Callier Center for Communication Disorders, University of Texas at Dallas Health Science Center. The technology employed to learn what's wrong with the brains, rather than the psyches, of persons with certain speech disorders includes magnetic resonance imaging (MRI), brain electrical activity mapping (BEAM), and single photon emission computerized tomography (SPECT). The results of applying these techniques are combined with quantitative behavioral measures of vocal and nonvocal motor control, language performance, and cognition to arrive at a better understanding of the problem.

  15. Restless 'rest': intrinsic sensory hyperactivity and disinhibition in post-traumatic stress disorder.

    Science.gov (United States)

    Clancy, Kevin; Ding, Mingzhou; Bernat, Edward; Schmidt, Norman B; Li, Wen

    2017-07-01

    deficits, respectively). Therefore, sensory aberrations help construct a vicious cycle in post-traumatic stress disorder that is in action even at rest, implicating dysregulated triangular sensory-prefrontal-cortex-amygdala circuitry: intrinsic sensory hyperactivity and disinhibition give rise to frontal overload and disrupt executive control, fuelling and perpetuating post-traumatic stress disorder symptoms. Absent in generalized anxiety disorder, these aberrations highlight a unique sensory pathology of post-traumatic stress disorder (ruling out effects merely reflecting anxious hyperarousal), motivating new interventions targeting sensory processing and the sensory brain in these patients. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Brain volume reduction after whole-brain radiotherapy: quantification and prognostic relevance.

    Science.gov (United States)

    Hoffmann, Christian; Distel, Luitpold; Knippen, Stefan; Gryc, Thomas; Schmidt, Manuel Alexander; Fietkau, Rainer; Putz, Florian

    2018-01-22

    Recent studies have questioned the value of adding whole-brain radiotherapy (WBRT) to stereotactic radiosurgery (SRS) for brain metastasis treatment. Neurotoxicity, including radiation-induced brain volume reduction, could be one reason why not all patients benefit from the addition of WBRT. In this study, we quantified brain volume reduction after WBRT and assessed its prognostic significance. Brain volumes of 91 patients with cerebral metastases were measured during a 150-day period after commencing WBRT and were compared with their pretreatment volumes. The average daily relative change in brain volume of each patient, referred to as the "brain volume reduction rate," was calculated. Univariate and multivariate Cox regression analyses were performed to assess the prognostic significance of the brain volume reduction rate, as well as of 3 treatment-related and 9 pretreatment factors. A one-way analysis of variance was used to compare the brain volume reduction rate across recursive partitioning analysis (RPA) classes. On multivariate Cox regression analysis, the brain volume reduction rate was a significant predictor of overall survival after WBRT (P < 0.001), as well as the number of brain metastases (P = 0.002) and age (P = 0.008). Patients with a relatively favorable prognosis (RPA classes 1 and 2) experienced significantly less brain volume decrease after WBRT than patients with a poor prognosis (RPA class 3) (P = 0.001). There was no significant correlation between delivered radiation dose and brain volume reduction rate (P = 0.147). In this retrospective study, a smaller decrease in brain volume after WBRT was an independent predictor of longer overall survival. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  17. Lymphoproliferative disorders in non-AIDS associated Kaposi's ...

    African Journals Online (AJOL)

    The association of the non-AIDS-related, classic fonn of Kaposi's sarcoma (KS) with secondary malignancies, especially Iymphoproliferative disorders, has frequently been noted. However, in endemic: African-type KS, such an association has been reported only rarely. A review of 62 non-AIDS-related cases of KS treated ...

  18. Prenatal Exposure to Autism-Specific Maternal Autoantibodies Alters Proliferation of Cortical Neural Precursor Cells, Enlarges Brain, and Increases Neuronal Size in Adult Animals.

    Science.gov (United States)

    Martínez-Cerdeño, Verónica; Camacho, Jasmin; Fox, Elizabeth; Miller, Elaine; Ariza, Jeanelle; Kienzle, Devon; Plank, Kaela; Noctor, Stephen C; Van de Water, Judy

    2016-01-01

    Autism spectrum disorders (ASDs) affect up to 1 in 68 children. Autism-specific autoantibodies directed against fetal brain proteins have been found exclusively in a subpopulation of mothers whose children were diagnosed with ASD or maternal autoantibody-related autism. We tested the impact of autoantibodies on brain development in mice by transferring human antigen-specific IgG directly into the cerebral ventricles of embryonic mice during cortical neurogenesis. We show that autoantibodies recognize radial glial cells during development. We also show that prenatal exposure to autism-specific maternal autoantibodies increased stem cell proliferation in the subventricular zone (SVZ) of the embryonic neocortex, increased adult brain size and weight, and increased the size of adult cortical neurons. We propose that prenatal exposure to autism-specific maternal autoantibodies directly affects radial glial cell development and presents a viable pathologic mechanism for the maternal autoantibody-related prenatal ASD risk factor. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Neuroimaging Correlates of Novel Psychiatric Disorders after Pediatric Traumatic Brain Injury

    Science.gov (United States)

    Max, Jeffrey E.; Wilde, Elisabeth A.; Bigler, Erin D.; Thompson, Wesley K.; MacLeod, Marianne; Vasquez, Ana C.; Merkley, Tricia L.; Hunter, Jill V.; Chu, Zili D.; Yallampalli, Ragini; Hotz, Gillian; Chapman, Sandra B.; Yang, Tony T.; Levin, Harvey S.

    2012-01-01

    Objective: To study magnetic resonance imaging (MRI) correlates of novel (new-onset) psychiatric disorders (NPD) after traumatic brain injury (TBI) and orthopedic injury (OI). Method: Participants were 7 to 17 years of age at the time of hospitalization for either TBI or OI. The study used a prospective, longitudinal, controlled design with…

  20. Further Validation of the Conner's Adult Attention Deficit/Hyperactivity Rating Scale Infrequency Index (CII) for Detection of Non-Credible Report of Attention Deficit/Hyperactivity Disorder Symptoms.

    Science.gov (United States)

    Cook, Carolyn M; Bolinger, Elizabeth; Suhr, Julie

    2016-06-01

    Attention deficit/hyperactivity disorder (ADHD) can be easily presented in a non-credible manner, through non-credible report of ADHD symptoms and/or by non-credible performance on neuropsychological tests. While most studies have focused on detection of non-credible performance using performance validity tests, there are few studies examining the ability to detect non-credible report of ADHD symptoms. We provide further validation data for a recently developed measure of non-credible ADHD symptom report, the Conner's Adult ADHD Rating Scales (CAARS) Infrequency Index (CII). Using archival data from 86 adults referred for concerns about ADHD, we examined the accuracy of the CII in detecting extreme scores on the CAARS and invalid reporting on validity indices of the Minnesota Multiphasic Personality Inventory-2 Restructured Format (MMPI-2-RF). We also examined the accuracy of the CII in detecting non-credible performance on standalone and embedded performance validity tests. The CII was 52% sensitive to extreme scores on CAARS DSM symptom subscales (with 97% specificity) and 20%-36% sensitive to invalid responding on MMPI-2-RF validity scales (with near 90% specificity), providing further evidence for the interpretation of the CII as an indicator of non-credible ADHD symptom report. However, the CII detected only 18% of individuals who failed a standalone performance validity test (Word Memory Test), with 87.8% specificity, and was not accurate in detecting non-credible performance using embedded digit span cutoffs. Future studies should continue to examine how best to assess for non-credible symptom report in ADHD referrals. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Insulin and the brain.

    Science.gov (United States)

    Derakhshan, Fatemeh; Toth, Cory

    2013-03-01

    Mainly known for its role in peripheral glucose homeostasis, insulin has also significant impact within the brain, functioning as a key neuromodulator in behavioral, cellular, biochemical and molecular studies. The brain is now regarded as an insulin-sensitive organ with widespread, yet selective, expression of the insulin receptor in the olfactory bulb, hypothalamus, hippocampus, cerebellum, amygdala and cerebral cortex. Insulin receptor signaling in the brain is important for neuronal development, glucoregulation, feeding behavior, body weight, and cognitive processes such as with attention, executive functioning, learning and memory. Emerging evidence has demonstrated insulin receptor signaling to be impaired in several neurological disorders. Moreover, insulin receptor signaling is recognized as important for dendritic outgrowth, neuronal survival, circuit development, synaptic plasticity and postsynaptic neurotransmitter receptor trafficking. We review the multiple roles of insulin in the brain, as well as its endogenous trafficking to the brain or its exogenous intervention. Although insulin can be directly targeted to the brain via intracerebroventricular (ICV) or intraparenchymal delivery, these invasive techniques are with significant risk, necessitating repeated surgical intervention and providing potential for systemic hypoglycemia. Another method, intranasal delivery, is a non-invasive, safe, and alternative approach which rapidly targets delivery of molecules to the brain while minimizing systemic exposure. Over the last decades, the delivery of intranasal insulin in animal models and human patients has evolved and expanded, permitting new hope for associated neurodegenerative and neurovascular disorders.

  2. Changes in brain activity of somatoform disorder patients during emotional empathy after multimodal psychodynamic psychotherapy

    Science.gov (United States)

    de Greck, Moritz; Bölter, Annette F.; Lehmann, Lisa; Ulrich, Cornelia; Stockum, Eva; Enzi, Björn; Hoffmann, Thilo; Tempelmann, Claus; Beutel, Manfred; Frommer, Jörg; Northoff, Georg

    2013-01-01

    Somatoform disorder patients show a variety of emotional disturbances including impaired emotion recognition and increased empathic distress. In a previous paper, our group showed that several brain regions involved in emotional processing, such as the parahippocampal gyrus and other regions, were less activated in pre-treatment somatoform disorder patients (compared to healthy controls) during an empathy task. Since the parahippocampal gyrus is involved in emotional memory, its decreased activation might reflect the repression of emotional memories (which—according to psychoanalytical concepts—plays an important role in somatoform disorder). Psychodynamic psychotherapy aims at increasing the understanding of emotional conflicts as well as uncovering repressed emotions. We were interested, whether brain activity in the parahippocampal gyrus normalized after (inpatient) multimodal psychodynamic psychotherapy. Using fMRI, subjects were scanned while they shared the emotional states of presented facial stimuli expressing anger, disgust, joy, and a neutral expression; distorted stimuli with unrecognizable content served as control condition. 15 somatoform disorder patients were scanned twice, pre and post multimodal psychodynamic psychotherapy; in addition, 15 age-matched healthy control subjects were investigated. Effects of psychotherapy on hemodynamic responses were analyzed implementing two approaches: (1) an a priori region of interest approach and (2) a voxelwise whole brain analysis. Both analyses revealed increased hemodynamic responses in the left and right parahippocampal gyrus (and other regions) after multimodal psychotherapy in the contrast “empathy with anger”—“control.” Our results are in line with psychoanalytical concepts about somatoform disorder. They suggest the parahippocampal gyrus is crucially involved in the neurobiological mechanisms which underly the emotional deficits of somatoform disorder patients. PMID:23966922

  3. Beyond excitation/inhibition imbalance in multidimensional models of neural circuit changes in brain disorders.

    Science.gov (United States)

    O'Donnell, Cian; Gonçalves, J Tiago; Portera-Cailliau, Carlos; Sejnowski, Terrence J

    2017-10-11

    A leading theory holds that neurodevelopmental brain disorders arise from imbalances in excitatory and inhibitory (E/I) brain circuitry. However, it is unclear whether this one-dimensional model is rich enough to capture the multiple neural circuit alterations underlying brain disorders. Here, we combined computational simulations with analysis of in vivo two-photon Ca 2+ imaging data from somatosensory cortex of Fmr1 knock-out (KO) mice, a model of Fragile-X Syndrome, to test the E/I imbalance theory. We found that: (1) The E/I imbalance model cannot account for joint alterations in the observed neural firing rates and correlations; (2) Neural circuit function is vastly more sensitive to changes in some cellular components over others; (3) The direction of circuit alterations in Fmr1 KO mice changes across development. These findings suggest that the basic E/I imbalance model should be updated to higher dimensional models that can better capture the multidimensional computational functions of neural circuits.

  4. Brain imaging research in autism spectrum disorders: in search of neuropathology and health across the lifespan.

    Science.gov (United States)

    Lainhart, Janet E

    2015-03-01

    Advances in brain imaging research in autism spectrum disorders (ASD) are rapidly occurring, and the amount of neuroimaging research has dramatically increased over the past 5 years. In this review, advances during the past 12 months and longitudinal studies are highlighted. Cross-sectional neuroimaging research provides evidence that the neural underpinnings of the behavioral signs of ASD involve not only dysfunctional integration of information across distributed brain networks but also basic dysfunction in primary cortices.Longitudinal studies of ASD show abnormally enlarged brain volumes and increased rates of brain growth during early childhood in only a small minority of ASD children. There is evidence of disordered development of white matter microstructure and amygdala growth, and at 2 years of age, network inefficiencies in posterior cerebral regions.From older childhood into adulthood, atypical age-variant and age-invariant changes in the trajectories of total and regional brain volumes and cortical thickness are apparent at the group level. There is evidence of abnormalities in posterior lobes and posterior brain networks during the first 2 years of life in ASD and, even in older children and adults, dysfunction in primary cortical areas.

  5. Disruption in the Blood-Brain Barrier: The Missing Link between Brain and Body Inflammation in Bipolar Disorder?

    Directory of Open Access Journals (Sweden)

    Jay P. Patel

    2015-01-01

    Full Text Available The blood-brain barrier (BBB regulates the transport of micro- and macromolecules between the peripheral blood and the central nervous system (CNS in order to maintain optimal levels of essential nutrients and neurotransmitters in the brain. In addition, the BBB plays a critical role protecting the CNS against neurotoxins. There has been growing evidence that BBB disruption is associated with brain inflammatory conditions such as Alzheimer’s disease and multiple sclerosis. Considering the increasing role of inflammation and oxidative stress in the pathophysiology of bipolar disorder (BD, here we propose a novel model wherein transient or persistent disruption of BBB integrity is associated with decreased CNS protection and increased permeability of proinflammatory (e.g., cytokines, reactive oxygen species substances from the peripheral blood into the brain. These events would trigger the activation of microglial cells and promote localized damage to oligodendrocytes and the myelin sheath, ultimately compromising myelination and the integrity of neural circuits. The potential implications for research in this area and directions for future studies are discussed.

  6. Perceived live interaction modulates the developing social brain.

    Science.gov (United States)

    Rice, Katherine; Moraczewski, Dustin; Redcay, Elizabeth

    2016-09-01

    Although children's social development is embedded in social interaction, most developmental neuroscience studies have examined responses to non-interactive social stimuli (e.g. photographs of faces). The neural mechanisms of real-world social behavior are of special interest during middle childhood (roughly ages 7-13), a time of increased social complexity and competence coinciding with structural and functional social brain development. Evidence from adult neuroscience studies suggests that social interaction may alter neural processing, but no neuroimaging studies in children have directly examined the effects of live social-interactive context on social cognition. In the current study of middle childhood, we compare the processing of two types of speech: speech that children believed was presented over a real-time audio-feed by a social partner and speech that they believed was recorded. Although in reality all speech was prerecorded, perceived live speech resulted in significantly greater neural activation in regions associated with social cognitive processing. These findings underscore the importance of using ecologically-valid and interactive methods to understand the developing social brain. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  7. Heart rate variability: a tool to explore the sleeping brain?

    Directory of Open Access Journals (Sweden)

    Florian eChouchou

    2014-12-01

    Full Text Available Sleep is divided into two main sleep stages: 1 non-rapid eye movement sleep (non-REMS, characterized among others by reduced global brain activity; and 2 rapid eye movement sleep (REMS, characterized by global brain activity similar to that of wakefulness. Results of heart rate variability (HRV analysis, which is widely used to explore autonomic modulation, have revealed higher parasympathetic tone during normal non-REMS and a shift toward sympathetic predominance during normal REMS. Moreover, HRV analysis combined with brain imaging has identified close connectivity between autonomic cardiac modulation and activity in brain areas such as the amygdala and insular cortex during REMS, but no connectivity between brain and cardiac activity during non-REMS. There is also some evidence for an association between HRV and dream intensity and emotionality. Following some technical considerations, this review addresses how brain activity during sleep contributes to changes in autonomic cardiac activity, organized into three parts: 1 the knowledge on autonomic cardiac control, 2 differences in brain and autonomic activity between non-REMS and REMS, and 3 the potential of HRV analysis to explore the sleeping brain, and the implications for psychiatric disorders.

  8. Recent Developments in Understanding Brain Aging: Implications for Alzheimer's Disease and Vascular Cognitive Impairment.

    Science.gov (United States)

    Deak, Ferenc; Freeman, Willard M; Ungvari, Zoltan; Csiszar, Anna; Sonntag, William E

    2016-01-01

    As the population of the Western world is aging, there is increasing awareness of age-related impairments in cognitive function and a rising interest in finding novel approaches to preserve cerebral health. A special collection of articles in The Journals of Gerontology: Biological Sciences and Medical Sciences brings together information of different aspects of brain aging, from latest developments in the field of neurodegenerative disorders to cerebral microvascular mechanisms of cognitive decline. It is emphasized that although the cellular changes that occur within aging neurons have been widely studied, more research is required as new signaling pathways are discovered that can potentially protect cells. New avenues for research targeting cellular senescence, epigenetics, and endocrine mechanisms of brain aging are also discussed. Based on the current literature it is clear that understanding brain aging and reducing risk for neurological disease with age requires searching for mechanisms and treatment options beyond the age-related changes in neuronal function. Thus, comprehensive approaches need to be developed that address the multiple, interrelated mechanisms of brain aging. Attention is brought to the importance of maintenance of cerebromicrovascular health, restoring neuroendocrine balance, and the pressing need for funding more innovative research into the interactions of neuronal, neuroendocrine, inflammatory and microvascular mechanisms of cognitive impairment, and Alzheimer's disease. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. An examination of the relationships between psychiatric disorders and traumatic brain injury: a prospective study

    OpenAIRE

    Gould, Kate Rachel

    2017-01-01

    Psychiatric disorders are commonly associated with traumatic brain injury (TBI). However, pre- and post-injury frequencies of disorders are variable, and their course, associated risk factors and relationship with psychosocial outcome are poorly understood due to methodological inconsistencies. No studies have prospectively examined the full range of Axis I psychiatric disorders using semi-structured clinical interview. Accordingly, the main aims of the current study were to (a) investigate t...

  10. The application of deep brain stimulation in the treatment of psychiatric disorders

    NARCIS (Netherlands)

    Graat, Ilse; Figee, Martijn; Denys, D.

    2017-01-01

    Deep brain stimulation (DBS) is a last-resort treatment for neurological and psychiatric disorders that are refractory to standard treatment. Over the last decades, the progress of DBS in psychiatry has been slower than in neurology, in part owing to the heterogenic symptomatology and complex

  11. Uptake of iodine-123-α-methyl tyrosine by gliomas and non-neoplastic brain lesions

    International Nuclear Information System (INIS)

    Kuwert, T.; Morgenroth, C.; Woesler, B.; Matheja, P.; Palkovic, S.; Vollet, B.; Samnick, S.; Maasjosthusmann, U.; Lerch, H.; Gildehaus, F.J.; Wassmann, H.; Schober, O.

    1996-01-01

    Using single-photon emission tomography (SPET), the radiopharmaceutical L-3-iodine-123-α-methyl tyrosine (IMT) has been applied to the imaging of amino acid transport into brain tumours. It was the aim of this study to investigate whether IMT SPET is capable of differentiating between high-grade gliomas, low-grade gliomas and non-neoplastic brain lesions. To this end, IMT uptake was determined in 53 patients using the triple-headed SPET camera MULTISPECT 3. Twenty-eight of these subjects suffered from high-grade gliomas (WHO grade III or IV), 12 from low-grade gliomas (WHO grade II), and 13 from non-neoplastic brain lesions, including lesions after effective therapy of a glioma (five cases), infarctions (four cases), inflammatory lesions (three cases), infarctions (four cases), inflammatory lesions (three cases) and traumatic haematoma (one case). IMT uptake was significantly higher in high-grade gliomas than in low-grade gliomas and non-neoplastic lesions. IMT uptake by low-grade gliomas was not significantly different from that by non-neoplastic lesions. Diagnostic sensitivity and specificity were 71% and 83% for differentiating high-grade from low-grade gliomas, 82% and 100% for distinguishing high-grade gliomas from non-neoplastic lesions, and 50% and 100% for discriminating low-grade gliomas from non-neoplastic lesions. Analogously to positron emission tomography with radioactively labelled amino acids and fluorine-18 deoxyglucose, IMT SPET may aid in differentiating higc-grade gliomas from histologically benign brain tumours and non-neoplastic brain lesions; it is of only limited value in differentiating between non-neoplastic lesions and histologically benign brain tumours. (orig.)

  12. Specialist inpatient treatment for severe motor conversion disorder: a retrospective comparative study.

    Science.gov (United States)

    McCormack, Ruaidhri; Moriarty, John; Mellers, John D; Shotbolt, Paul; Pastena, Rosa; Landes, Nadine; Goldstein, Laura; Fleminger, Simon; David, Anthony S

    2014-08-01

    Gold standard protocols have yet to be established for the treatment of motor conversion disorder (MCD). There is limited evidence to support inpatient, multidisciplinary intervention in chronic, severe cases. To evaluate the characteristics and outcomes of MCD patients admitted to a specialist neuropsychiatric inpatient unit. All patients admitted to the Lishman Unit (years 2007-2011) with a diagnosis of MCD were included. Data relevant to characteristics and status with regard to mobility, activities of daily living (ADLs) and Modified Rankin Scale (MRS) score at admission and discharge were extracted. Thirty-three cases (78.8% female) were included; the median duration of illness was 48 months. In comparison with brain injury patients admitted to the same unit, more cases had histories of childhood sexual abuse (36.4%, n=12), premorbid non-dissociative mental illness (81.1%, n=27) and employment as a healthcare/social-care worker (45.5%, n=15). Cases showed significant improvements in MRS scores (p<0.001), mobility (p<0.001) and ADL (p=0.002) following inpatient treatment. Patients with severe, long-standing MCD can achieve significant improvements in functioning after admission to a neuropsychiatry unit. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  13. Deconstructing the Brain Disconnection-Brain Death Analogy and Clarifying the Rationale for the Neurological Criterion of Death.

    Science.gov (United States)

    Moschella, Melissa

    2016-06-01

    This article explains the problems with Alan Shewmon's critique of brain death as a valid sign of human death, beginning with a critical examination of his analogy between brain death and severe spinal cord injury. The article then goes on to assess his broader argument against the necessity of the brain for adult human organismal integration, arguing that he fails to translate correctly from biological to metaphysical claims. Finally, on the basis of a deeper metaphysical analysis, I offer a revised rationale for the validity of the neurological criterion of human death. © The Author 2016. Published by Oxford University Press, on behalf of the Journal of Medicine and Philosophy Inc. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Treating autism spectrum disorder with gluten-free and casein-free diet: the underlying microbiota-gut-brain axis mechanisms

    NARCIS (Netherlands)

    Ciéslińska, Anna; Kostyra, Elzbieta; Savelkoul, H.F.J.

    2017-01-01

    There is a rising interest in the use of dietary interventions to
    ameliorate prevalent brain diseases, including Autism Spectrum
    Disorder (ASD). Nowadays, the existence of communication between
    gut and brain is well accepted and thus diet can influence
    brain functioning. A well-known

  15. Android Multi-Level System Permission Management Approach

    OpenAIRE

    Luo, Yang; Zhang, Qixun; Shen, Qingni; Liu, Hongzhi; Wu, Zhonghai

    2017-01-01

    With the expansion of the market share occupied by the Android platform, security issues (especially application security) have become attention focus of researchers. In fact, the existing methods lack the capabilities to manage application permissions without root privilege. This study proposes a dynamic management mechanism of Android application permissions based on security policies. The paper first describes the permissions by security policies, then implementes permission checking code ...

  16. Proteasome-independent degradation of HIV-1 in naturally non-permissive human placental trophoblast cells

    Directory of Open Access Journals (Sweden)

    Barré-Sinoussi Françoise

    2009-05-01

    Full Text Available Abstract Background The human placenta-derived cell line BeWo has been demonstrated to be restrictive to cell-free HIV-1 infection. BeWo cells are however permissive to infection by VSV-G pseudotyped HIV-1, which enters cells by a receptor-independent mechanism, and to infection by HIV-1 via a cell-to-cell route. Results Here we analysed viral entry in wild type BeWo (CCR5+, CXCR4+ and BeWo-CD4+ (CD4+, CCR5+, CXCR4+ cells. We report that HIV-1 internalisation is not restricted in either cell line. Levels of internalised p24 antigen between VSV-G HIV-1 pseudotypes and R5 or X4 virions were comparable. We next analysed the fate of internalised virions; X4 and R5 HIV-1 virions were less stable over time in BeWo cells than VSV-G HIV-1 pseudotypes. We then investigated the role of the proteasome in restricting cell-free HIV-1 infection in BeWo cells using proteasome inhibitors. We observed an increase in the levels of VSV-G pseudotyped HIV-1 infection in proteasome-inhibitor treated cells, but the infection by R5-Env or X4-Env pseudotyped virions remains restricted. Conclusion Collectively these results suggest that cell-free HIV-1 infection encounters a surface block leading to a non-productive entry route, which either actively targets incoming virions for non-proteasomal degradation, and impedes their release into the cytoplasm, or causes the inactivation of mechanisms essential for viral replication.

  17. Permissive weight bearing in trauma patients with fracture of the lower extremities: prospective multicenter comparative cohort study.

    Science.gov (United States)

    Kalmet, Pishtiwan H S; Meys, Guido; V Horn, Yvette Y; Evers, Silvia M A A; Seelen, Henk A M; Hustinx, Paul; Janzing, Heinrich; Vd Veen, Alexander; Jaspars, Coen; Sintenie, Jan Bernard; Blokhuis, Taco J; Poeze, Martijn; Brink, Peter R G

    2018-02-02

    The standard aftercare treatment in surgically treated trauma patients with fractures around or in a joint, known as (peri)- or intra-articular fractures of the lower extremities, is either non-weight bearing or partial weight bearing. We have developed an early permissive weight bearing post-surgery rehabilitation protocol in surgically treated patients with fractures of the lower extremities. In this proposal we want to compare our early permissive weight bearing protocol to the existing current non-weight bearing guidelines in a prospective comparative cohort study. The study is a prospective multicenter comparative cohort study in which two rehabilitation aftercare treatments will be contrasted, i.e. permissive weight bearing and non-weight bearing according to the AO-guideline. The study population consists of patients with a surgically treated fracture of the pelvis/acetabulum or a surgically treated (peri)- or intra-articular fracture of the lower extremities. The inclusion period is 12 months. The duration of follow up is 6 months, with measurements taken at baseline, 2,6,12 and 26 weeks post-surgery. ADL with Lower Extremity Functional Scale. Outcome variables for compliance, as measured with an insole pressure measurement system, encompass peak load and step duration. This study will investigate the (cost-) effectiveness of a permissive weight bearing aftercare protocol. The results will provide evidence whether a permissive weight bearing protocol is more effective than the current non-weight bearing protocol. The study is registered in the Dutch Trial Register ( NTR6077 ). Date of registration: 01-09-2016.

  18. Brain oscillations as biomarkers in neuropsychiatric disorders: following an interactive panel discussion and synopsis.

    Science.gov (United States)

    Yener, Görsev G; Başar, Erol

    2013-01-01

    This survey covers the potential use of neurophysiological changes as a biomarker in four neuropsychiatric diseases (attention deficit hyperactivity disorder (ADHD), Alzheimer's disease (AD), bipolar disorder (BD), and schizophrenia (SZ)). Great developments have been made in the search of biomarkers in these disorders, especially in AD. Nevertheless, there is a tremendous need to develop an efficient, low-cost, potentially portable, non-invasive biomarker in the diagnosis, course, or treatment of the above-mentioned disorders. Electrophysiological methods would provide a tool that would reflect functional brain dynamic changes within milliseconds and also may be used as an ensemble of biomarkers that is greatly needed in the evaluation of cognitive changes seen in these disorders. The strategies for measuring cognitive changes include spontaneous electroencephalography (EEG), sensory evoked oscillation (SEO), and event-related oscillations (ERO). Further selective connectivity deficit in sensory or cognitive networks is reflected by coherence measurements. Possible candidate biomarkers discussed in an interactive panel can be summarized as follows: for ADHD: (a) elevation of delta and theta, (b) diminished alpha and beta responses in spontaneous EEG; for SZ: (a) decrease of ERO gamma responses, (b) decreased ERO in all other frequency ranges, (c) invariant ERO gamma response in relation to working memory demand; for euthymic BD: (a) decreased event-related gamma coherence, (b) decreased alpha in ERO and in spontaneous EEG; for manic BD: (a) lower alpha and higher beta in ERO, (b) decreased event-related gamma coherence, (c) lower alpha and beta in ERO after valproate; and for AD: (a) decreased alpha and beta, and increased theta and delta in spontaneous EEG, (b) hyperexcitability of motor cortices as shown by transcortical magnetic stimulation, (c) hyperexcitability of visual sensory cortex as indicated by increased SEO theta responses, (d) lower delta ERO, (e

  19. [Negative symptoms in patients with non schizophrenic psychiatric disorders].

    Science.gov (United States)

    Donnoli, Vicente F; Moroni, María V; Cohen, Diego; Chisari Rocha, Liliana; Marleta, María; Sepich Dalmeida, Tomás; Bonani, Matías; D'Alessio, Luciana

    2011-01-01

    The presence of negative symptoms (NS) in different clinical entities other than schizophrenia, with a dimensional approach of negative symptoms, was considered in this work. Determine the presence and distribution of NS, in a population of patients with non schizophrenic psychiatric disorders attending ambulatory treatment at public hospitals. Patients with define DSM IV diagnosis criteria for different disorders; affective, alimentary, substance abuse, anxiety, personality disorders and patients with ILAE diagnoses criteria for temporal lobe epilepsy were included. All patients underwent the subscale PANNS for negative symptoms of schizophrenia. Student T test was calculated to determine the differences of frequency for NS among psychiatric disorders. 106 patients were included; 60 women, 46 men, 38 years +/- 12.1. The 90% of patients have a low score of NS. Media 11.6, Max/min 9.38 -14.29. Emotional withdrawal and passive social withdrawal were more frequent in alimentary disorders than in affective disorder and than in epilepsy. Emotional withdrawal was more frequent in substance disorders than epilepsy. According this study, negative symptoms are present in a low to moderate intensity in non schizophrenic psychiatry entities and in the temporal lobe epilepsy.

  20. Expression weighted cell type enrichments reveal genetic and cellular nature of major brain disorders

    Directory of Open Access Journals (Sweden)

    Nathan Gerald Skene

    2016-01-01

    Full Text Available The cell types that trigger the primary pathology in many brain diseases remain largely unknown. One route to understanding the primary pathological cell type for a particular disease is to identify the cells expressing susceptibility genes. Although this is straightforward for monogenic conditions where the causative mutation may alter expression of a cell type specific marker, methods are required for the common polygenic disorders. We developed the Expression Weighted Cell Type Enrichment (EWCE method that uses single cell transcriptomes to generate the probability distribution associated with a gene list having an average level of expression within a cell type. Following validation, we applied EWCE to human genetic data from cases of epilepsy, Schizophrenia, Autism, Intellectual Disability, Alzheimer’s disease, Multiple Sclerosis and anxiety disorders. Genetic susceptibility primarily affected microglia in Alzheimer’s and Multiple Sclerosis; was shared between interneurons and pyramidal neurons in Autism and Schizophrenia; while intellectual disabilities and epilepsy were attributable to a range of cell-types, with the strongest enrichment in interneurons. We hypothesised that the primary cell type pathology could trigger secondary changes in other cell types and these could be detected by applying EWCE to transcriptome data from diseased tissue. In Autism, Schizophrenia and Alzheimer’s disease we find evidence of pathological changes in all of the major brain cell types. These findings give novel insight into the cellular origins and progression in common brain disorders. The methods can be applied to any tissue and disorder and have applications in validating mouse models.

  1. Smoking and the Developing Brain : Altered White Matter Microstructure in Attention-Deficit/Hyperactivity Disorder and Healthy Controls

    NARCIS (Netherlands)

    van Ewijk, Hanneke; Groenman, Annabeth P.; Zwiers, Marcel P.; Heslenfeld, Dirk J.; Faraone, Stephen V.; Hartman, Catharina A.; Luman, Marjolein; Greven, Corina U.; Hoekstra, Pieter J.; Franke, Barbara; Buitelaar, Jan; Oosterlaan, Jaap

    Brain white matter (WM) tracts, playing a vital role in the communication between brain regions, undergo important maturational changes during adolescence and young adulthood, a critical period for the development of nicotine dependence. Attention-deficit/hyperactivity disorder (ADHD) is associated

  2. Growth of Malignant Non-CNS Tumors Alters Brain Metabolome

    Science.gov (United States)

    Kovalchuk, Anna; Nersisyan, Lilit; Mandal, Rupasri; Wishart, David; Mancini, Maria; Sidransky, David; Kolb, Bryan; Kovalchuk, Olga

    2018-01-01

    Cancer survivors experience numerous treatment side effects that negatively affect their quality of life. Cognitive side effects are especially insidious, as they affect memory, cognition, and learning. Neurocognitive deficits occur prior to cancer treatment, arising even before cancer diagnosis, and we refer to them as “tumor brain.” Metabolomics is a new area of research that focuses on metabolome profiles and provides important mechanistic insights into various human diseases, including cancer, neurodegenerative diseases, and aging. Many neurological diseases and conditions affect metabolic processes in the brain. However, the tumor brain metabolome has never been analyzed. In our study we used direct flow injection/mass spectrometry (DI-MS) analysis to establish the effects of the growth of lung cancer, pancreatic cancer, and sarcoma on the brain metabolome of TumorGraft™ mice. We found that the growth of malignant non-CNS tumors impacted metabolic processes in the brain, affecting protein biosynthesis, and amino acid and sphingolipid metabolism. The observed metabolic changes were similar to those reported for neurodegenerative diseases and brain aging, and may have potential mechanistic value for future analysis of the tumor brain phenomenon. PMID:29515623

  3. Medial reward and lateral non-reward orbitofrontal cortex circuits change in opposite directions in depression.

    Science.gov (United States)

    Cheng, Wei; Rolls, Edmund T; Qiu, Jiang; Liu, Wei; Tang, Yanqing; Huang, Chu-Chung; Wang, XinFa; Zhang, Jie; Lin, Wei; Zheng, Lirong; Pu, JunCai; Tsai, Shih-Jen; Yang, Albert C; Lin, Ching-Po; Wang, Fei; Xie, Peng; Feng, Jianfeng

    2016-12-01

    The first brain-wide voxel-level resting state functional connectivity neuroimaging analysis of depression is reported, with 421 patients with major depressive disorder and 488 control subjects. Resting state functional connectivity between different voxels reflects correlations of activity between those voxels and is a fundamental tool in helping to understand the brain regions with altered connectivity and function in depression. One major circuit with altered functional connectivity involved the medial orbitofrontal cortex Brodmann area 13, which is implicated in reward, and which had reduced functional connectivity in depression with memory systems in the parahippocampal gyrus and medial temporal lobe, especially involving the perirhinal cortex Brodmann area 36 and entorhinal cortex Brodmann area 28. The Hamilton Depression Rating Scale scores were correlated with weakened functional connectivity of the medial orbitofrontal cortex Brodmann area 13. Thus in depression there is decreased reward-related and memory system functional connectivity, and this is related to the depressed symptoms. The lateral orbitofrontal cortex Brodmann area 47/12, involved in non-reward and punishing events, did not have this reduced functional connectivity with memory systems. Second, the lateral orbitofrontal cortex Brodmann area 47/12 had increased functional connectivity with the precuneus, the angular gyrus, and the temporal visual cortex Brodmann area 21. This enhanced functional connectivity of the non-reward/punishment system (Brodmann area 47/12) with the precuneus (involved in the sense of self and agency), and the angular gyrus (involved in language) is thus related to the explicit affectively negative sense of the self, and of self-esteem, in depression. A comparison of the functional connectivity in 185 depressed patients not receiving medication and 182 patients receiving medication showed that the functional connectivity of the lateral orbitofrontal cortex Brodmann

  4. Temporal, Diagnostic, and Tissue-Specific Regulation of NRG3 Isoform Expression in Human Brain Development and Affective Disorders

    Science.gov (United States)

    Paterson, Clare; Wang, Yanhong; Hyde, Thomas M.; Weinberger, Daniel R.; Kleinman, Joel E.; Law, Amanda J.

    2018-01-01

    Objective Genes implicated in schizophrenia are enriched in networks differentially regulated during human CNS development. Neuregulin 3 (NRG3), a brain-enriched neurotrophin, undergoes alternative splicing and is implicated in several neurological disorders with developmental origins. Isoform-specific increases in NRG3 are observed in schizophrenia and associated with rs10748842, a NRG3 risk polymorphism, suggesting NRG3 transcriptional dysregulation as a molecular mechanism of risk. The authors quantitatively mapped the temporal trajectories of NRG3 isoforms (classes I–IV) in the neocortex throughout the human lifespan, examined whether tissue-specific regulation of NRG3 occurs in humans, and determined if abnormalities in NRG3 transcriptomics occur in mood disorders and are genetically determined. Method NRG3 isoform classes I–IV were quantified using quantitative real-time polymerase chain reaction in human postmortem dorsolateral prefrontal cortex from 286 nonpsychiatric control individuals, from gestational week 14 to 85 years old, and individuals diagnosed with either bipolar disorder (N=34) or major depressive disorder (N=69). Tissue-specific mapping was investigated in several human tissues. rs10748842 was genotyped in individuals with mood disorders, and association with NRG3 isoform expression examined. Results NRG3 classes displayed individually specific expression trajectories across human neocortical development and aging; classes I, II, and IV were significantly associated with developmental stage. NRG3 class I was increased in bipolar and major depressive disorder, consistent with observations in schizophrenia. NRG3 class II was increased in bipolar disorder, and class III was increased in major depression. The rs10748842 risk genotype predicted elevated class II and III expression, consistent with previous reports in the brain, with tissue-specific analyses suggesting that classes II and III are brain-specific isoforms of NRG3. Conclusions

  5. Brain Insulin Resistance at the Crossroads of Metabolic and Cognitive Disorders in Humans.

    Science.gov (United States)

    Kullmann, Stephanie; Heni, Martin; Hallschmid, Manfred; Fritsche, Andreas; Preissl, Hubert; Häring, Hans-Ulrich

    2016-10-01

    Ever since the brain was identified as an insulin-sensitive organ, evidence has rapidly accumulated that insulin action in the brain produces multiple behavioral and metabolic effects, influencing eating behavior, peripheral metabolism, and cognition. Disturbances in brain insulin action can be observed in obesity and type 2 diabetes (T2D), as well as in aging and dementia. Decreases in insulin sensitivity of central nervous pathways, i.e., brain insulin resistance, may therefore constitute a joint pathological feature of metabolic and cognitive dysfunctions. Modern neuroimaging methods have provided new means of probing brain insulin action, revealing the influence of insulin on both global and regional brain function. In this review, we highlight recent findings on brain insulin action in humans and its impact on metabolism and cognition. Furthermore, we elaborate on the most prominent factors associated with brain insulin resistance, i.e., obesity, T2D, genes, maternal metabolism, normal aging, inflammation, and dementia, and on their roles regarding causes and consequences of brain insulin resistance. We also describe the beneficial effects of enhanced brain insulin signaling on human eating behavior and cognition and discuss potential applications in the treatment of metabolic and cognitive disorders. Copyright © 2016 the American Physiological Society.

  6. MRI Findings in 77 Children with Non-Syndromic Autistic Disorder

    Science.gov (United States)

    Boddaert, Nathalie; Zilbovicius, Mônica; Philipe, Anne; Robel, Laurence; Bourgeois, Marie; Barthélemy, Catherine; Seidenwurm, David; Meresse, Isabelle; Laurier, Laurence; Desguerre, Isabelle; Bahi-Buisson, Nadia; Brunelle, Francis; Munnich, Arnold; Samson, Yves; Mouren, Marie-Christine; Chabane, Nadia

    2009-01-01

    Background The clinical relevance of MR scanning in children with autism is still an open question and must be considered in light of the evolution of this technology. MRI was judged to be of insufficient value to be included in the standard clinical evaluation of autism according to the guidelines of the American Academy of Neurology and Child Neurology Society in 2000 [1]. However, this statement was based on results obtained from small samples of patients and, more importantly, included mostly insufficient MRI sequences. Our main objective was to evaluate the prevalence of brain abnormalities in a large group of children with a non-syndromic autistic disorder (AD) using T1, T2 and FLAIR MRI sequences. Methodology MRI inspection of 77 children and adolescents with non-syndromic AD (mean age 7.4±3.6) was performed. All met the DSM-IV and ADI –R criteria for autism. Based on recommended clinical and biological screenings, we excluded patients with infectious, metabolic or genetic diseases, seizures or any other neurological symptoms. Identical MRI inspections of 77 children (mean age 7.0±4.2) without AD, developmental or neurological disorders were also performed. All MRIs were acquired with a 1.5-T Signa GE (3-D T1-FSPGR, T2, FLAIR coronal and axial sequences). Two neuroradiologists independently inspected cortical and sub-cortical regions. MRIs were reported to be normal, abnormal or uninterpretable. Principal Findings MRIs were judged as uninterpretable in 10% (8/77) of the cases. In 48% of the children (33/69 patients), abnormalities were reported. Three predominant abnormalities were observed, including white matter signal abnormalities (19/69), major dilated Virchow–Robin spaces (12/69) and temporal lobe abnormalities (20/69). In all, 52% of the MRIs were interpreted as normal (36/69 patients). Conclusions An unexpectedly high rate of MRI abnormalities was found in the first large series of clinical MRI investigations in non-syndromic autism. These

  7. [The blood-brain barrier in ageing persons].

    Science.gov (United States)

    Haaning, Nina; Damsgaard, Else Marie; Moos, Torben

    2018-03-26

    Brain capillary endothelial cells (BECs) form the ultra-tight blood-brain barrier (BBB). The permeability of the BBB increases with increasing age and neurovascular and neurodegenerative diseases. Major defects of the BBB can be initiated by increased permeability to plasma proteins in small arteriosclerotic arteries and release of proteins from degenerating neurons into the brain extracellular space. These proteins deposit in perivascular spaces, and subsequently negatively influence the BECs leading to decreased expression of barrier proteins. Detection of BBB defects by the use of non-invasive techniques is relevant for clinical use in settings with advanced age and severe brain disorders.

  8. Modeling Structural Brain Connectivity

    DEFF Research Database (Denmark)

    Ambrosen, Karen Marie Sandø

    The human brain consists of a gigantic complex network of interconnected neurons. Together all these connections determine who we are, how we react and how we interpret the world. Knowledge about how the brain is connected can further our understanding of the brain’s structural organization, help...... improve diagnosis, and potentially allow better treatment of a wide range of neurological disorders. Tractography based on diffusion magnetic resonance imaging is a unique tool to estimate this “structural connectivity” of the brain non-invasively and in vivo. During the last decade, brain connectivity...... has increasingly been analyzed using graph theoretic measures adopted from network science and this characterization of the brain’s structural connectivity has been shown to be useful for the classification of populations, such as healthy and diseased subjects. The structural connectivity of the brain...

  9. Brain imaging and autism

    International Nuclear Information System (INIS)

    Zilbovicius, M.

    2006-01-01

    Autism is a neuro-developmental disorder with a range of clinical presentations, from mild to severe, referred to as autism spectrum disorders (ASD). The most common clinical ASD sign is social interaction impairment, which is associated with verbal and non-verbal communication deficits and stereotyped and obsessive behaviors. Thanks to recent brain imaging studies, scientists are getting a better idea of the neural circuits involved in ASD. Indeed, functional brain imaging, such as positron emission tomography (PET), single positron emission tomograph y (SPECT) and functional MRI (fMRI) have opened a new perspective to study normal and pathological brain functions. Three independent studies have found anatomical and rest functional temporal abnormalities. These anomalies are localized in the superior temporal sulcus bilaterally which are critical for perception of key social stimuli. In addition, functional studies have shown hypo-activation of most areas implicated in social perception (face and voice perception) and social cognition (theory of mind). These data suggest an abnormal functioning of the social brain network. The understanding of such crucial abnormal mechanism may drive the elaboration of new and more adequate social re-educative strategies in autism. (author)

  10. Brain imaging and autism

    Energy Technology Data Exchange (ETDEWEB)

    Zilbovicius, M [Service Hospitalier Frederic Joliot (CEA/DSV/DRM), INSERM CEA 0205, 91 - Orsay (France)

    2006-07-01

    Autism is a neuro-developmental disorder with a range of clinical presentations, from mild to severe, referred to as autism spectrum disorders (ASD). The most common clinical ASD sign is social interaction impairment, which is associated with verbal and non-verbal communication deficits and stereotyped and obsessive behaviors. Thanks to recent brain imaging studies, scientists are getting a better idea of the neural circuits involved in ASD. Indeed, functional brain imaging, such as positron emission tomography (PET), single positron emission tomograph y (SPECT) and functional MRI (fMRI) have opened a new perspective to study normal and pathological brain functions. Three independent studies have found anatomical and rest functional temporal abnormalities. These anomalies are localized in the superior temporal sulcus bilaterally which are critical for perception of key social stimuli. In addition, functional studies have shown hypo-activation of most areas implicated in social perception (face and voice perception) and social cognition (theory of mind). These data suggest an abnormal functioning of the social brain network. The understanding of such crucial abnormal mechanism may drive the elaboration of new and more adequate social re-educative strategies in autism. (author)

  11. Consciousness in Non-Epileptic Attack Disorder

    OpenAIRE

    Reuber, M.; Kurthen, M.

    2011-01-01

    Non-epileptic attack disorder (NEAD) is one of the most important differential diagnoses of epilepsy. Impairment of\\ud consciousness is the key feature of non-epileptic attacks (NEAs). The first half of this review summarises the clinical research\\ud literature featuring observations relating to consciousness in NEAD. The second half places this evidence in the wider context\\ud of the recent discourse on consciousness in neuroscience and the philosophy of mind. We argue that studies of consci...

  12. Challenges to obtaining parental permission for child participation in a school-based waterpipe tobacco smoking prevention intervention in Qatar.

    Science.gov (United States)

    Nakkash, Rima T; Al Mulla, Ahmad; Torossian, Lena; Karhily, Roubina; Shuayb, Lama; Mahfoud, Ziyad R; Janahi, Ibrahim; Al Ansari, Al Anoud; Afifi, Rema A

    2014-09-30

    Involving children in research studies requires obtaining parental permission. A school-based intervention to delay/prevent waterpipe use for 7th and 8th graders in Qatar was developed, and parental permission requested. Fifty three percent (2308/4314) of the parents returned permission forms; of those 19.5% of the total (840/4314) granted permission. This paper describes the challenges to obtaining parental permission. No research to date has described such challenges in the Arab world. A random sample of 40 schools in Doha, Qatar was selected for inclusion in the original intervention. Permission forms were distributed to parents for approval of their child's participation. The permission forms requested that parents indicate their reasons for non-permission if they declined. These were categorized into themes. In order to understand reasons for non-permission, interviews with parents were conducted. Phone numbers of parents were requested from the school administration; 12 of the 40 schools (30%) agreed to provide the contact information. A random sample of 28 parents from 12 schools was interviewed to reach data saturation. Thematic analysis was used to analyze their responses. Reasons for non-permission documented in both the forms and interviews included: poor timing; lack of interest; the child not wanting to participate; and the child living in a smoke-free environment. Interviews provided information on important topics to include in the consent forms, parents' decision-making processes regarding their child's participation, and considerations for communicating with parents. Many parents also indicated that this was the first time they had been asked to give an informed consent for their child's participation in a study. Results indicate that more attention needs to be given to the informed parental consent process. Researchers should consider enhancing both the methods of communicating information as well the specific information provided. Before

  13. Brain function in carriers of a genome-wide supported bipolar disorder variant.

    Science.gov (United States)

    Erk, Susanne; Meyer-Lindenberg, Andreas; Schnell, Knut; Opitz von Boberfeld, Carola; Esslinger, Christine; Kirsch, Peter; Grimm, Oliver; Arnold, Claudia; Haddad, Leila; Witt, Stephanie H; Cichon, Sven; Nöthen, Markus M; Rietschel, Marcella; Walter, Henrik

    2010-08-01

    The neural abnormalities underlying genetic risk for bipolar disorder, a severe, common, and highly heritable psychiatric condition, are largely unknown. An opportunity to define these mechanisms is provided by the recent discovery, through genome-wide association, of a single-nucleotide polymorphism (rs1006737) strongly associated with bipolar disorder within the CACNA1C gene, encoding the alpha subunit of the L-type voltage-dependent calcium channel Ca(v)1.2. To determine whether the genetic risk associated with rs1006737 is mediated through hippocampal function. Functional magnetic resonance imaging study. University hospital. A total of 110 healthy volunteers of both sexes and of German descent in the Hardy-Weinberg equilibrium for rs1006737. Blood oxygen level-dependent signal during an episodic memory task and behavioral and psychopathological measures. Using an intermediate phenotype approach, we show that healthy carriers of the CACNA1C risk variant exhibit a pronounced reduction of bilateral hippocampal activation during episodic memory recall and diminished functional coupling between left and right hippocampal regions. Furthermore, risk allele carriers exhibit activation deficits of the subgenual anterior cingulate cortex, a region repeatedly associated with affective disorders and the mediation of adaptive stress-related responses. The relevance of these findings for affective disorders is supported by significantly higher psychopathology scores for depression, anxiety, obsessive-compulsive thoughts, interpersonal sensitivity, and neuroticism in risk allele carriers, correlating negatively with the observed regional brain activation. Our data demonstrate that rs1006737 or genetic variants in linkage disequilibrium with it are functional in the human brain and provide a neurogenetic risk mechanism for bipolar disorder backed by genome-wide evidence.

  14. Genetic Differences in the Immediate Transcriptome Response to Stress Predict Risk-Related Brain Function and Psychiatric Disorders

    Science.gov (United States)

    Arloth, Janine; Bogdan, Ryan; Weber, Peter; Frishman, Goar; Menke, Andreas; Wagner, Klaus V.; Balsevich, Georgia; Schmidt, Mathias V.; Karbalai, Nazanin; Czamara, Darina; Altmann, Andre; Trümbach, Dietrich; Wurst, Wolfgang; Mehta, Divya; Uhr, Manfred; Klengel, Torsten; Erhardt, Angelika; Carey, Caitlin E.; Conley, Emily Drabant; Ripke, Stephan; Wray, Naomi R.; Lewis, Cathryn M.; Hamilton, Steven P.; Weissman, Myrna M.; Breen, Gerome; Byrne, Enda M.; Blackwood, Douglas H.R.; Boomsma, Dorret I.; Cichon, Sven; Heath, Andrew C.; Holsboer, Florian; Lucae, Susanne; Madden, Pamela A.F.; Martin, Nicholas G.; McGuffin, Peter; Muglia, Pierandrea; Noethen, Markus M.; Penninx, Brenda P.; Pergadia, Michele L.; Potash, James B.; Rietschel, Marcella; Lin, Danyu; Müller-Myhsok, Bertram; Shi, Jianxin; Steinberg, Stacy; Grabe, Hans J.; Lichtenstein, Paul; Magnusson, Patrik; Perlis, Roy H.; Preisig, Martin; Smoller, Jordan W.; Stefansson, Kari; Uher, Rudolf; Kutalik, Zoltan; Tansey, Katherine E.; Teumer, Alexander; Viktorin, Alexander; Barnes, Michael R.; Bettecken, Thomas; Binder, Elisabeth B.; Breuer, René; Castro, Victor M.; Churchill, Susanne E.; Coryell, William H.; Craddock, Nick; Craig, Ian W.; Czamara, Darina; De Geus, Eco J.; Degenhardt, Franziska; Farmer, Anne E.; Fava, Maurizio; Frank, Josef; Gainer, Vivian S.; Gallagher, Patience J.; Gordon, Scott D.; Goryachev, Sergey; Gross, Magdalena; Guipponi, Michel; Henders, Anjali K.; Herms, Stefan; Hickie, Ian B.; Hoefels, Susanne; Hoogendijk, Witte; Hottenga, Jouke Jan; Iosifescu, Dan V.; Ising, Marcus; Jones, Ian; Jones, Lisa; Jung-Ying, Tzeng; Knowles, James A.; Kohane, Isaac S.; Kohli, Martin A.; Korszun, Ania; Landen, Mikael; Lawson, William B.; Lewis, Glyn; MacIntyre, Donald; Maier, Wolfgang; Mattheisen, Manuel; McGrath, Patrick J.; McIntosh, Andrew; McLean, Alan; Middeldorp, Christel M.; Middleton, Lefkos; Montgomery, Grant M.; Murphy, Shawn N.; Nauck, Matthias; Nolen, Willem A.; Nyholt, Dale R.; O’Donovan, Michael; Oskarsson, Högni; Pedersen, Nancy; Scheftner, William A.; Schulz, Andrea; Schulze, Thomas G.; Shyn, Stanley I.; Sigurdsson, Engilbert; Slager, Susan L.; Smit, Johannes H.; Stefansson, Hreinn; Steffens, Michael; Thorgeirsson, Thorgeir; Tozzi, Federica; Treutlein, Jens; Uhr, Manfred; van den Oord, Edwin J.C.G.; Van Grootheest, Gerard; Völzke, Henry; Weilburg, Jeffrey B.; Willemsen, Gonneke; Zitman, Frans G.; Neale, Benjamin; Daly, Mark; Levinson, Douglas F.; Sullivan, Patrick F.; Ruepp, Andreas; Müller-Myhsok, Bertram; Hariri, Ahmad R.; Binder, Elisabeth B.

    2015-01-01

    Summary Depression risk is exacerbated by genetic factors and stress exposure; however, the biological mechanisms through which these factors interact to confer depression risk are poorly understood. One putative biological mechanism implicates variability in the ability of cortisol, released in response to stress, to trigger a cascade of adaptive genomic and non-genomic processes through glucocorticoid receptor (GR) activation. Here, we demonstrate that common genetic variants in long-range enhancer elements modulate the immediate transcriptional response to GR activation in human blood cells. These functional genetic variants increase risk for depression and co-heritable psychiatric disorders. Moreover, these risk variants are associated with inappropriate amygdala reactivity, a transdiagnostic psychiatric endophenotype and an important stress hormone response trigger. Network modeling and animal experiments suggest that these genetic differences in GR-induced transcriptional activation may mediate the risk for depression and other psychiatric disorders by altering a network of functionally related stress-sensitive genes in blood and brain. Video Abstract PMID:26050039

  15. Brain intra- and extracellular sodium concentration in multiple sclerosis: a 7 T MRI study.

    Science.gov (United States)

    Petracca, Maria; Vancea, Roxana O; Fleysher, Lazar; Jonkman, Laura E; Oesingmann, Niels; Inglese, Matilde

    2016-03-01

    Intra-axonal accumulation of sodium ions is one of the key mechanisms of delayed neuro-axonal degeneration that contributes to disability accrual in multiple sclerosis. In vivo sodium magnetic resonance imaging studies have demonstrated an increase of brain total sodium concentration in patients with multiple sclerosis, especially in patients with greater disability. However, total sodium concentration is a weighted average of intra- and extra-cellular sodium concentration whose changes reflect different tissue pathophysiological processes. The in vivo, non-invasive measurement of intracellular sodium concentration is quite challenging and the few applications in patients with neurological diseases are limited to case reports and qualitative assessments. In the present study we provide first evidence of the feasibility of triple quantum filtered (23)Na magnetic resonance imaging at 7 T, and provide in vivo quantification of global and regional brain intra- and extra-cellular sodium concentration in 19 relapsing-remitting multiple sclerosis patients and 17 heathy controls. Global grey matter and white matter total sodium concentration (respectively P brain regional level, clusters of increased total sodium concentration and intracellular sodium concentration and decreased intracellular sodium volume fraction were found in several cortical, subcortical and white matter regions when patients were compared with healthy controls (P Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. The Multidimensional Therapeutic Potential of Targeting the Brain Oxytocin System for the Treatment of Substance Use Disorders.

    Science.gov (United States)

    Bowen, Michael T; Neumann, Inga D

    2017-09-24

    The neuropeptide oxytocin is released both into the blood and within the brain in response to reproductive stimuli, such as birth, suckling and sex, but also in response to social interaction and stressors. Substance use disorders, or addictions, are chronic, relapsing brain disorders and are one of the major causes of global burden of disease. Unfortunately, current treatment options for substance use disorders are extremely limited and a treatment breakthrough is sorely needed. There is mounting preclinical evidence that targeting the brain oxytocin system may provide that breakthrough. Substance use disorders are characterised by a viscous cycle of bingeing and intoxication, followed by withdrawal and negative affect, and finally preoccupation and anticipation that triggers relapse and further consumption. Administration of oxytocin has been shown to have a potential therapeutic benefit at each stage of this addiction cycle for numerous drugs of abuse. This multidimensional therapeutic utility is likely due to oxytocin's interactions with key biological systems that underlie the development and maintenance of addiction. Only a few human trials of oxytocin in addicted populations have been completed with the results thus far being mixed. There are numerous other trials underway, and the results are eagerly awaited. However, the ability to fully harness the potential therapeutic benefit of targeting the brain oxytocin system may depend on the development of molecules that selectively stimulate the oxytocin system, but that have superior pharmacokinetic properties to oxytocin itself.

  17. Maximum permissible voltage of YBCO coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Wen, J.; Lin, B.; Sheng, J.; Xu, J.; Jin, Z. [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Hong, Z., E-mail: zhiyong.hong@sjtu.edu.cn [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Wang, D.; Zhou, H.; Shen, X.; Shen, C. [Qingpu Power Supply Company, State Grid Shanghai Municipal Electric Power Company, Shanghai (China)

    2014-06-15

    Highlights: • We examine three kinds of tapes’ maximum permissible voltage. • We examine the relationship between quenching duration and maximum permissible voltage. • Continuous I{sub c} degradations under repetitive quenching where tapes reaching maximum permissible voltage. • The relationship between maximum permissible voltage and resistance, temperature. - Abstract: Superconducting fault current limiter (SFCL) could reduce short circuit currents in electrical power system. One of the most important thing in developing SFCL is to find out the maximum permissible voltage of each limiting element. The maximum permissible voltage is defined as the maximum voltage per unit length at which the YBCO coated conductors (CC) do not suffer from critical current (I{sub c}) degradation or burnout. In this research, the time of quenching process is changed and voltage is raised until the I{sub c} degradation or burnout happens. YBCO coated conductors test in the experiment are from American superconductor (AMSC) and Shanghai Jiao Tong University (SJTU). Along with the quenching duration increasing, the maximum permissible voltage of CC decreases. When quenching duration is 100 ms, the maximum permissible of SJTU CC, 12 mm AMSC CC and 4 mm AMSC CC are 0.72 V/cm, 0.52 V/cm and 1.2 V/cm respectively. Based on the results of samples, the whole length of CCs used in the design of a SFCL can be determined.

  18. Prevalence of and Risk Factors for Anxiety and Depressive Disorders after Traumatic Brain Injury: A Systematic Review

    NARCIS (Netherlands)

    Scholten, Annemieke C.; Haagsma, Juanita A.; Cnossen, Maryse C.; Olff, Miranda; van Beeck, Ed F.; Polinder, Suzanne

    2016-01-01

    This review examined pre- and post-injury prevalence of, and risk factors for, anxiety disorders and depressive disorders after traumatic brain injury (TBI), based on evidence from structured diagnostic interviews. A systematic literature search was conducted in EMBASE, MEDLINE, Cochrane Central,

  19. What Does the Sleeping Brain Say? Syntax and Semantics of Sleep Talking in Healthy Subjects and in Parasomnia Patients.

    Science.gov (United States)

    Arnulf, Isabelle; Uguccioni, Ginevra; Gay, Frederick; Baldayrou, Etienne; Golmard, Jean-Louis; Gayraud, Frederique; Devevey, Alain

    2017-11-01

    Speech is a complex function in humans, but the linguistic characteristics of sleep talking are unknown. We analyzed sleep-associated speech in adults, mostly (92%) during parasomnias. The utterances recorded during night-time video-polysomnography were analyzed for number of words, propositions and speech episodes, frequency, gaps and pauses (denoting turn-taking in the conversation), lemmatization, verbosity, negative/imperative/interrogative tone, first/second person, politeness, and abuse. Two hundred thirty-two subjects (aged 49.5 ± 20 years old; 41% women; 129 with rapid eye movement [REM] sleep behavior disorder and 87 with sleepwalking/sleep terrors, 15 healthy subjects, and 1 patient with sleep apnea speaking in non-REM sleep) uttered 883 speech episodes, containing 59% nonverbal utterance (mumbles, shouts, whispers, and laughs) and 3349 understandable words. The most frequent word was "No": negations represented 21.4% of clauses (more in non-REM sleep). Interrogations were found in 26% of speech episodes (more in non-REM sleep), and subordinate clauses were found in 12.9% of speech episodes. As many as 9.7% of clauses contained profanities (more in non-REM sleep). Verbal abuse lasted longer in REM sleep and was mostly directed toward insulting or condemning someone, whereas swearing predominated in non-REM sleep. Men sleep-talked more than women and used a higher proportion of profanities. Apparent turn-taking in the conversation respected the usual language gaps. Sleep talking parallels awake talking for syntax, semantics, and turn-taking in conversation, suggesting that the sleeping brain can function at a high level. Language during sleep is mostly a familiar, tensed conversation with inaudible others, suggestive of conflicts. © Sleep Research Society 2017. Published by Oxford University Press [on behalf of the Sleep Research Society]. All rights reserved. For permissions, please email: journals.permissions@oup.com

  20. Evidence of native α-synuclein conformers in the human brain.

    Science.gov (United States)

    Gould, Neal; Mor, Danielle E; Lightfoot, Richard; Malkus, Kristen; Giasson, Benoit; Ischiropoulos, Harry

    2014-03-14

    α-Synuclein aggregation is central to the pathogenesis of several brain disorders. However, the native conformations and functions of this protein in the human brain are not precisely known. The native state of α-synuclein was probed by gel filtration coupled with native gradient gel separation, an array of antibodies with non-overlapping epitopes, and mass spectrometry. The existence of metastable conformers and stable monomer was revealed in the human brain.

  1. Effects of sleep disorders on the non-motor symptoms of Parkinson disease.

    Science.gov (United States)

    Neikrug, Ariel B; Maglione, Jeanne E; Liu, Lianqi; Natarajan, Loki; Avanzino, Julie A; Corey-Bloom, Jody; Palmer, Barton W; Loredo, Jose S; Ancoli-Israel, Sonia

    2013-11-15

    To evaluate the impact of sleep disorders on non-motor symptoms in patients with Parkinson disease (PD). This was a cross-sectional study. Patients with PD were evaluated for obstructive sleep apnea (OSA), restless legs syndrome (RLS), periodic limb movement syndrome (PLMS), and REM sleep behavior disorder (RBD). Cognition was assessed with the Montreal Cognitive Assessment and patients completed self-reported questionnaires assessing non-motor symptoms including depressive symptoms, fatigue, sleep complaints, daytime sleepiness, and quality of life. Sleep laboratory. 86 patients with PD (mean age = 67.4 ± 8.8 years; range: 47-89; 29 women). N/A. Having sleep disorders was a predictor of overall non-motor symptoms in PD (R(2) = 0.33, p sleep disorder significantly predicted sleep complaints (ΔR(2) = 0.13, p = 0.006), depressive symptoms (ΔR(2) = 0.01, p = 0.03), fatigue (ΔR(2) = 0.12, p = 0.007), poor quality of life (ΔR(2) = 0.13, p = 0.002), and cognitive decline (ΔR(2) = 0.09, p = 0.036). Additionally, increasing number of sleep disorders (0, 1, or ≥ 2 sleep disorders) was a significant contributor to non-motor symptom impairment (R(2) = 0.28, p sleep disorders predicted more non-motor symptoms including increased sleep complaints, more depressive symptoms, lower quality of life, poorer cognition, and more fatigue. RBD and RLS were factors of overall increased non-motor symptoms, but OSA was not.

  2. Brain fag: New perspectives from case observations.

    Science.gov (United States)

    Ebigbo, Peter O; Lekwas, Elekwachi Chimezie; Chukwunenyem, Nweze Felix

    2015-06-01

    Brain fag was originally described as a culture-bound syndrome among West African students. The term "brain fag" literally means "brain fatigue." Available literature indicates that brain fag symptoms usually present in formal academic settings when African students are required to transit to a reliance on written literature (as opposed to more traditional oral forms of information transmission) and to adapt to westernized, individualistic systems of education that, at times, oppose the values of relatively collectivistic African societies. Based on detailed observation of two typical and two nontypical cases of brain fag, the authors suggest that the syndrome may not be solely related to tensions in the academic sphere, but may function more generally as an expression of psychological distress that results from societal pressures that exceed the coping capacity of the individual. The brain fag symptoms, including lack of concentration, sensations of internal heat in the head and body, heaviness, and multiple somatic complaints, may constitute a defensive process which helps prevent a full-fledged decompensation. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  3. The effects of lithium and anticonvulsants on brain structure in bipolar disorder.

    Science.gov (United States)

    Germaná, C; Kempton, M J; Sarnicola, A; Christodoulou, T; Haldane, M; Hadjulis, M; Girardi, P; Tatarelli, R; Frangou, S

    2010-12-01

    To investigate the effect of lithium, anticonvulsants and antipsychotics on brain structure in bipolar disorder (BD). A cross-sectional structural brain magnetic resonance imaging study of 74 remitted patients with BD, aged 18-65, who were receiving long-term prophylactic treatment with lithium or anticonvulsants or antipsychotics. Global and regional grey matter, white matter, and cerebrospinal fluid volumes were compared between treatment groups. Grey matter in the subgenual anterior cingulate gyrus on the right (extending into the hypothalamus) and in the postcentral gyrus, the hippocampus/amygdale complex and the insula on the left was greater in BD patients on lithium treatment compared to all other treatment groups. Lithium treatment in BD has a significant effect on brain structure particularly in limbic/paralimbic regions associated with emotional processing. © 2010 John Wiley & Sons A/S.

  4. Functional brain imaging of gastrointestinal sensation in health and disease

    Institute of Scientific and Technical Information of China (English)

    Lukas Van Oudenhove; Steven J Coen; Qasim Aziz

    2007-01-01

    It has since long been known, from everyday experience as well as from animal and human studies, that psychological processes-both affective and cognitiveexert an influence on gastrointestinal sensorimotor function. More specifically, a link between psychological factors and visceral hypersensitivity has been suggested,mainly based on research in functional gastrointestinal disorder patients. However, until recently, the exact nature of this putative relationship remained unclear,mainly due to a lack of non-invasive methods to study the (neurobiological) mechanisms underlying this relationship in non-sleeping humans. As functional brain imaging, introduced in visceral sensory neuroscience some 10 years ago, does provide a method for in vivo study of brain-gut interactions, insight into the neurobiological mechanisms underlying visceral sensation in general and the influence of psychological factors more particularly,has rapidly grown. In this article, an overview of brain imaging evidence on gastrointestinal sensation will be given, with special emphasis on the brain mechanisms underlying the interaction between affective & cognitive processes and visceral sensation. First, the reciprocal neural pathways between the brain and the gut (braingut axis) will be briefly outlined, including brain imaging evidence in healthy volunteers. Second, functional brain imaging studies assessing the influence of psychological factors on brain processing of visceral sensation in healthy humans will be discussed in more detail.Finally, brain imaging work investigating differences in brain responses to visceral distension between healthy volunteers and functional gastrointestinal disorder patients will be highlighted.

  5. Lymphoproliferative disorders in non-AIDS- associated Kaposi's ...

    African Journals Online (AJOL)

    proliferative disorders are mostly of B-cell origin and include non-Hodgkin's lymphoma, chronic lymphatic leukaemia and multiple .... Bone marrow trephine biopsy revealed ... transplants, patients with auto-immune diseases and patients with ...

  6. Alterations of Brain Functional Architecture Associated with Psychopathic Traits in Male Adolescents with Conduct Disorder.

    Science.gov (United States)

    Pu, Weidan; Luo, Qiang; Jiang, Yali; Gao, Yidian; Ming, Qingsen; Yao, Shuqiao

    2017-09-12

    Psychopathic traits of conduct disorder (CD) have a core callous-unemotional (CU) component and an impulsive-antisocial component. Previous task-driven fMRI studies have suggested that psychopathic traits are associated with dysfunction of several brain areas involved in different cognitive functions (e.g., empathy, reward, and response inhibition etc.), but the relationship between psychopathic traits and intrinsic brain functional architecture has not yet been explored in CD. Using a holistic brain-wide functional connectivity analysis, this study delineated the alterations in brain functional networks in patients with conduct disorder. Compared with matched healthy controls, we found decreased anti-synchronization between the fronto-parietal network (FPN) and default mode network (DMN), and increased intra-network synchronization within the frontothalamic-basal ganglia, right frontoparietal, and temporal/limbic/visual networks in CD patients. Correlation analysis showed that the weakened FPN-DMN interaction was associated with CU traits, while the heightened intra-network functional connectivity was related to impulsivity traits in CD patients. Our findings suggest that decoupling of cognitive control (FPN) with social understanding of others (DMN) is associated with the CU traits, and hyper-functions of the reward and motor inhibition systems elevate impulsiveness in CD.

  7. Altered behavior and neural activity in conspecific cagemates co-housed with mouse models of brain disorders.

    Science.gov (United States)

    Yang, Hyunwoo; Jung, Seungmoon; Seo, Jinsoo; Khalid, Arshi; Yoo, Jung-Seok; Park, Jihyun; Kim, Soyun; Moon, Jangsup; Lee, Soon-Tae; Jung, Keun-Hwa; Chu, Kon; Lee, Sang Kun; Jeon, Daejong

    2016-09-01

    The psychosocial environment is one of the major contributors of social stress. Family members or caregivers who consistently communicate with individuals with brain disorders are considered at risk for physical and mental health deterioration, possibly leading to mental disorders. However, the underlying neural mechanisms of this phenomenon remain poorly understood. To address this, we developed a social stress paradigm in which a mouse model of epilepsy or depression was housed long-term (>4weeks) with normal conspecifics. We characterized the behavioral phenotypes and electrophysiologically investigated the neural activity of conspecific cagemate mice. The cagemates exhibited deficits in behavioral tasks assessing anxiety, locomotion, learning/memory, and depression-like behavior. Furthermore, they showed severe social impairment in social behavioral tasks involving social interaction or aggression. Strikingly, behavioral dysfunction remained in the cagemates 4weeks following co-housing cessation with the mouse models. In an electrophysiological study, the cagemates showed an increased number of spikes in medial prefrontal cortex (mPFC) neurons. Our results demonstrate that conspecifics co-housed with mouse models of brain disorders develop chronic behavioral dysfunctions, and suggest a possible association between abnormal mPFC neural activity and their behavioral pathogenesis. These findings contribute to the understanding of the psychosocial and psychiatric symptoms frequently present in families or caregivers of patients with brain disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Treatment with selective serotonin reuptake inhibitors and mirtapazine results in differential brain activation by visual erotic stimuli in patients with major depressive disorder.

    Science.gov (United States)

    Kim, Won; Jin, Bo-Ra; Yang, Wan-Seok; Lee, Kyuong-Uk; Juh, Ra-Hyung; Ahn, Kook-Jin; Chung, Yong-An; Chae, Jeong-Ho

    2009-06-01

    The objective of this study was to identify patterns of brain activation elicited by erotic visual stimuli in patients treated with either Selective Serotonin Reuptake Inhibitors (SSRIs) or mirtazipine. Nine middle-aged men with major depressive disorder treated with an SSRI and ten middle-aged men with major depressive disorder treated with mirtazapine completed the trial. Ten subjects with no psychiatric illness were included as a control group. We conducted functional brain magnetic resonance imaging (fMRI) while a film alternatively played erotic and non-erotic contents for 14 minutes and 9 seconds. The control group showed activation in the occipitotemporal area, anterior cingulate gyrus, insula, orbitofrontal cortex, and caudate nucleus. For subjects treated with SSRIs, the intensity of activity in these regions was much lower compared to the control group. Intensity of activation in the group treated with mirtazapine was less than the control group but grea-ter than those treated with SSRIs. Using subtraction analysis, the SSRI group showed significantly lower activation than the mirtazapine group in the anterior cingulate gyrus and the caudate nucleus. Our study suggests that the different rates of sexual side effects between the patients in the SSRI-treated group and the mirtazapine-treated group may be due to different effects on brain activation.

  9. Brain Death in Islamic Jurisprudence

    Directory of Open Access Journals (Sweden)

    A Nikzad

    2016-07-01

    Full Text Available BACKGROUND AND OBJECTIVE: In today's world, Islamic jurisprudence encounters  new issues. One of the areas where jurisprudence gets involved is the issues concerned with brain death, whether brain death in jurisprudence and Islamic law is considered the end of life. In this study, brain death was discussed from the Shiite jurisprudence perspective and also the opinions of the specialists are taken into account. METHODS: This study is designed based on library collection and review of the literature in the field of brain death. Also, Quranic verses, hadiths and fatwas (religious opinions of the scholars are used. Some of the articles which were centered around Islamic jurisprudence, particularly Shiite jurisprudence that explain and deal with brain death were given special consideration. FINDINGS: Brain death from religious and jurisprudence perspective is considered the termination of life and removing the vital organs from the body is not viewed as committing manslaughter. A person with brain death is not a normally known injured man who is still alive. The brain death patinets have no life and getting rid of the body does not constitute a case of manslaughter. Amputation of the organs of brain death patients for donation and transplantation amounts to the amputation of a dead body. If the life of a Muslim is subject to transplant of organs from the body of a brain death patient, it will be permissible. CONCLUSION: In principle, if the life of a Muslim entails transplant of organs of brain death patients, it will be permissible 

  10. Brain substrates of social decision-making in dual diagnosis: cocaine dependence and personality disorders.

    Science.gov (United States)

    Verdejo-Garcia, Antonio; Verdejo-Román, Juan; Albein-Urios, Natalia; Martínez-González, José M; Soriano-Mas, Carles

    2017-03-01

    Cocaine dependence frequently co-occurs with personality disorders, leading to increased interpersonal problems and greater burden of disease. Personality disorders are characterised by patterns of thinking and feeling that divert from social expectations. However, the comorbidity between cocaine dependence and personality disorders has not been substantiated by measures of brain activation during social decision-making. We applied functional magnetic resonance imaging to compare brain activations evoked by a social decision-making task-the Ultimatum Game-in 24 cocaine dependents with personality disorders (CDPD), 19 cocaine dependents without comorbidities and 19 healthy controls. In the Ultimatum Game participants had to accept or reject bids made by another player to split monetary stakes. Offers varied in fairness (in fair offers the proposer shares ~50 percent of the money; in unfair offers the proposer shares <30 percent of the money), and participants were told that if they accept both players get the money, and if they reject both players lose it. We contrasted brain activations during unfair versus fair offers and accept versus reject choices. During evaluation of unfair offers CDPD displayed lower activation in the insula and the anterior cingulate cortex and higher activation in the lateral orbitofrontal cortex and superior frontal and temporal gyri. Frontal activations negatively correlated with emotion recognition. During rejection of offers CDPD displayed lower activation in the anterior cingulate cortex, striatum and midbrain. Dual diagnosis is linked to hypo-activation of the insula and anterior cingulate cortex and hyper-activation of frontal-temporal regions during social decision-making, which associates with poorer emotion recognition. © 2015 Society for the Study of Addiction.

  11. Histological Architecture Underlying Brain-Immune Cell-Cell Interactions and the Cerebral Response to Systemic Inflammation.

    Science.gov (United States)

    Shimada, Atsuyoshi; Hasegawa-Ishii, Sanae

    2017-01-01

    Although the brain is now known to actively interact with the immune system under non-inflammatory conditions, the site of cell-cell interactions between brain parenchymal cells and immune cells has been an open question until recently. Studies by our and other groups have indicated that brain structures such as the leptomeninges, choroid plexus stroma and epithelium, attachments of choroid plexus, vascular endothelial cells, cells of the perivascular space, circumventricular organs, and astrocytic endfeet construct the histological architecture that provides a location for intercellular interactions between bone marrow-derived myeloid lineage cells and brain parenchymal cells under non-inflammatory conditions. This architecture also functions as the interface between the brain and the immune system, through which systemic inflammation-induced molecular events can be relayed to the brain parenchyma at early stages of systemic inflammation during which the blood-brain barrier is relatively preserved. Although brain microglia are well known to be activated by systemic inflammation, the mechanism by which systemic inflammatory challenge and microglial activation are connected has not been well documented. Perturbed brain-immune interaction underlies a wide variety of neurological and psychiatric disorders including ischemic brain injury, status epilepticus, repeated social defeat, and neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Proinflammatory status associated with cytokine imbalance is involved in autism spectrum disorders, schizophrenia, and depression. In this article, we propose a mechanism connecting systemic inflammation, brain-immune interface cells, and brain parenchymal cells and discuss the relevance of basic studies of the mechanism to neurological disorders with a special emphasis on sepsis-associated encephalopathy and preterm brain injury.

  12. 30 CFR 62.130 - Permissible exposure level.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Permissible exposure level. 62.130 Section 62... REGULATIONS OCCUPATIONAL NOISE EXPOSURE § 62.130 Permissible exposure level. (a) The mine operator must assure that no miner is exposed during any work shift to noise that exceeds the permissible exposure level. If...

  13. Somatoform disorders in the family doctor's practice

    Directory of Open Access Journals (Sweden)

    Prykhodko V.

    2013-10-01

    Full Text Available Somatoform disorders – psychogenic diseases are characterized by pathological physical symptoms that resemble somatic illness. Thus, any organic manifestations, which can be attributed to known diseases are not detected, but there are non-specific functional impairments. Somatoform disorders include somatization disorder, undifferentiated somatoform disorder, hypocho¬n¬driacal disorder, somatoform dysfunction of the autonomic nervous system and stable somatoform pain disorder. The first part of the article reviewes features of the clinical manifestations of somatization disorder and undifferentiated somatoform disorder. Role of non-benzodiazepine tranquilizers (ADAPTOL and metabolic drugs (VASONAT in the treatment of patients with somatoform disorders is discussed. In review article data of neurologists and cardiologists on the effectiveness of anxiolytic drug ADAPTOL and metabolic drug VASONAT in different clinical groups of patients (coronary artery disease, chronic ischemia of the brain, which can significantly improve quality of life, increase exercise tolerance, improve cognitive function and correct mental and emotional disorders are presented.

  14. Non-invasive measurement of brain glycogen by NMR spectroscopy and its application to the study of brain metabolism

    Science.gov (United States)

    Tesfaye, Nolawit; Seaquist, Elizabeth R.; Öz, Gülin

    2011-01-01

    Glycogen is the reservoir for glucose in the brain. Beyond the general agreement that glycogen serves as an energy source in the central nervous system, its exact role in brain energy metabolism has yet to be elucidated. Experiments performed in cell and tissue culture and animals have shown that glycogen content is affected by several factors including glucose, insulin, neurotransmitters, and neuronal activation. The study of in vivo glycogen metabolism has been hindered by the inability to measure glycogen non-invasively, but in the past several years, the development of a non-invasive localized 13C nuclear magnetic resonance (NMR) spectroscopy method has enabled the study of glycogen metabolism in the conscious human. With this technique, 13C-glucose is administered intravenously and its incorporation into and wash-out from brain glycogen is tracked. One application of this method has been to the study of brain glycogen metabolism in humans during hypoglycemia: data have shown that mobilization of brain glycogen is augmented during hypoglycemia and, after a single episode of hypoglycemia, glycogen synthesis rate is increased, suggesting that glycogen stores rebound to levels greater than baseline. Such studies suggest glycogen may serve as a potential energy reservoir in hypoglycemia and may participate in the brain's adaptation to recurrent hypoglycemia and eventual development of hypoglycemia unawareness. Beyond this focused area of study, 13C NMR spectroscopy has a broad potential for application in the study of brain glycogen metabolism and carries the promise of a better understanding of the role of brain glycogen in diabetes and other conditions. PMID:21732401

  15. Distinct multivariate brain morphological patterns and their added predictive value with cognitive and polygenic risk scores in mental disorders

    Directory of Open Access Journals (Sweden)

    Nhat Trung Doan

    2017-01-01

    Full Text Available The brain underpinnings of schizophrenia and bipolar disorders are multidimensional, reflecting complex pathological processes and causal pathways, requiring multivariate techniques to disentangle. Furthermore, little is known about the complementary clinical value of brain structural phenotypes when combined with data on cognitive performance and genetic risk. Using data-driven fusion of cortical thickness, surface area, and gray matter density maps (GMD, we found six biologically meaningful patterns showing strong group effects, including four statistically independent multimodal patterns reflecting co-occurring alterations in thickness and GMD in patients, over and above two other independent patterns of widespread thickness and area reduction. Case-control classification using cognitive scores alone revealed high accuracy, and adding imaging features or polygenic risk scores increased performance, suggesting their complementary predictive value with cognitive scores being the most sensitive features. Multivariate pattern analyses reveal distinct patterns of brain morphology in mental disorders, provide insights on the relative importance between brain structure, cognitive and polygenetic risk score in classification of patients, and demonstrate the importance of multivariate approaches in studying the pathophysiological substrate of these complex disorders.

  16. Perspectives on creating clinically relevant blast models for mild traumatic brain injury and post traumatic stress disorder symptoms

    Directory of Open Access Journals (Sweden)

    Lisa eBrenner

    2012-03-01

    Full Text Available Military personnel are returning from Iraq and Afghanistan and reporting non-specific physical (somatic, behavioral, psychological, and cognitive symptoms. Many of these symptoms are frequently associated with mild traumatic brain injury (mTBI and/or post traumatic stress disorder (PTSD. Despite significant attention and advances in assessment and intervention for these two conditions, challenges persist. To address this, clinically relevant blast models are essential in the full characterization of this type of injury, as well as in the testing and identification of potential treatment strategies. In this publication, existing diagnostic challenges and current treatment practices for mTBI and/or PTSD will be summarized, along with suggestions regarding how what has been learned from existing models of PTSD and traditional mechanism (e.g., non-blast TBI can be used to facilitate the development of clinically relevant blast models.

  17. Functional near infrared spectroscopy as a probe of brain function in people with prolonged disorders of consciousness.

    Science.gov (United States)

    Kempny, Agnieszka M; James, Leon; Yelden, Kudret; Duport, Sophie; Farmer, Simon; Playford, E Diane; Leff, Alexander P

    2016-01-01

    Near infrared spectroscopy (NIRS) is a non-invasive technique which measures changes in brain tissue oxygenation. NIRS has been used for continuous monitoring of brain oxygenation during medical procedures carrying high risk of iatrogenic brain ischemia and also has been adopted by cognitive neuroscience for studies on executive and cognitive functions. Until now, NIRS has not been used to detect residual cognitive functions in patients with prolonged disorders of consciousness (pDOC). In this study we aimed to evaluate the brain function of patients with pDOC by using a motor imagery task while recording NIRS. We also collected data from a group of age and gender matched healthy controls while they carried out both real and imagined motor movements to command. We studied 16 pDOC patients in total, split into two groups: five had a diagnosis of Vegetative state/Unresponsive Wakefulness State, and eleven had a diagnosis of Minimally Conscious State. In the control subjects we found a greater oxy-haemoglobin (oxyHb) response during real movement compared with imagined movement. For the between group comparison, we found a main effect of hemisphere, with greater depression of oxyHb signal in the right > left hemisphere compared with rest period for all three groups. A post-hoc analysis including only the two pDOC patient groups was also significant suggesting that this effect was not just being driven by the control subjects. This study demonstrates for the first time the feasibility of using NIRS for the assessment of brain function in pDOC patients using a motor imagery task.

  18. Rehabilitative interventions and brain plasticity in autism spectrum disorders: focus on MRI-based studies

    Directory of Open Access Journals (Sweden)

    Sara eCalderoni

    2016-03-01

    Full Text Available Clinical and research evidence supports the efficacy of rehabilitative intervention for improving targeted skills or global outcomes in individuals with autism spectrum disorder (ASD. However, putative mechanisms of structural and functional brain changes are poorly understood. This review aims to investigate the research literature on the neural circuit modifications after non-pharmacological intervention. For this purpose, longitudinal studies that used magnetic resonance imaging (MRI-based techniques at the start and at the end of the trial to evaluate the neural effects of rehabilitative treatment in subjects with ASD were identified. The six included studies involved a limited number of patients in the active group (from 2 to 16, and differed by acquisition method (task-related and resting-state functional MRI as well as by functional MRI tasks. Overall, the results produced by the selected investigations demonstrated brain plasticity during the treatment interval that results in an activation/functional connectivity more similar to those of subjects with typical development. Repeated MRI evaluation may represent a promising tool for the detection of neural changes in response to treatment in patients with ASD. However, large-scale randomized controlled trials after standardized rehabilitative intervention are required before translating these preliminary results into clinical use.

  19. A cash flow oriented EOQ model under permissible delay in payments

    African Journals Online (AJOL)

    A cash flow oriented EOQ model under permissible delay in payments. RP Tripathi, SS Misra, HS Shukla. Abstract. This study presents an inventory model to determine an optimal ordering policy for non-deteriorating items and timedependent demand rate with delay in payments permitted by the supplier under inflation and ...

  20. The CT and MR evaluation of migrational disorders of the brain. Pt. 2

    International Nuclear Information System (INIS)

    Byrd, S.E.; Osborn, R.E.; Bohan, T.P.; Naidich, T.P.

    1989-01-01

    The migrational disorders are a rare group of congenital malformations of the brain. They consist of the following entities - lissencephaly (agyria - pachygyria), pachygyria, schizencephaly, heterotopia and polymicrogyria. We studied 40 children with migrational disorders radiologically with CT and MR. This article (Part II) deals with our patients with schizencephaly, heterotopia and polymicrogyria. These patients presented clinically with a variety of symptoms. The most common were seizures, delayed development, failure to thrive and hydrocephalus. CT and MR both demonstrated the characteristic findings in all of our patients except the polymicrogyria group. The gray matter and cleft abnormalities seen in these disorders were demonstrated with CT and MR. However, MR provided better delineation of these disorders than CT. Because some forms of migrational disorders can be inherited, it is extremely important for the radiologist to understand the characteristic findings for correct diagnosis which is essential for parental counseling. (orig.)

  1. Low-grade astrocytoma: surgical outcomes in eloquent versus non-eloquent brain areas

    Directory of Open Access Journals (Sweden)

    André de Macedo Bianco

    2013-01-01

    Full Text Available A retrospective study of 81 patients with low-grade astrocytoma (LGA comparing the efficacy of aggressive versus less aggressive surgery in eloquent and non-eloquent brain areas was conducted. Extent of surgical resection was analyzed to assess overall survival (OS and progression- free survival (PFS. Degree of tumor resection was classified as gross total resection (GTR, subtotal resection (STR or biopsy. GTR, STR and biopsy in patients with tumors in non-eloquent areas were performed in 31, 48 and 21% subjects, whereas in patients with tumors in eloquent areas resections were 22.5, 35 and 42.5%. Overall survival was 4.7 and 1.9 years in patients with tumors in non-eloquent brain areas submitted to GTR/STR and biopsy (p=0.013, whereas overall survival among patients with tumors in eloquent area was 4.5 and 2.1 years (p=0.33. Improved outcome for adult patients with LGA is predicted by more aggressive surgery in both eloquent and non-eloquent brain areas.

  2. Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain.

    Science.gov (United States)

    Mattsson, Karin; Johnson, Elyse V; Malmendal, Anders; Linse, Sara; Hansson, Lars-Anders; Cedervall, Tommy

    2017-09-13

    The tremendous increases in production of plastic materials has led to an accumulation of plastic pollution worldwide. Many studies have addressed the physical effects of large-sized plastics on organisms, whereas few have focused on plastic nanoparticles, despite their distinct chemical, physical and mechanical properties. Hence our understanding of their effects on ecosystem function, behaviour and metabolism of organisms remains elusive. Here we demonstrate that plastic nanoparticles reduce survival of aquatic zooplankton and penetrate the blood-to-brain barrier in fish and cause behavioural disorders. Hence, for the first time, we uncover direct interactions between plastic nanoparticles and brain tissue, which is the likely mechanism behind the observed behavioural disorders in the top consumer. In a broader perspective, our findings demonstrate that plastic nanoparticles are transferred up through a food chain, enter the brain of the top consumer and affect its behaviour, thereby severely disrupting the function of natural ecosystems.

  3. Effects of maternal separation on dynamics of urocortin 1 and brain-derived neurotrophic factor in the rat non-preganglionic Edinger-Westphal nucleus.

    Science.gov (United States)

    Gaszner, Balázs; Jensen, Kai-Ole; Farkas, József; Reglodi, Dóra; Csernus, Valér; Roubos, Eric W; Kozicz, Tamás

    2009-08-01

    Although mood disorders are frequently genetically determined and to some degree gender-dependent, the concept of early life 'programming', implying a relation between perinatal environmental events and adult mood disorders, has recently gained considerable attention. In particular, maternal separation (MS) markedly affects various stress-sensitive brain centers. Therefore, MS is considered as a suitable experimental paradigm to study how early life events affect brain plasticity and, hence, cause psychopathologies like major depression. In adult mammals, the classical hypothalamo-pituitary-adrenal (HPA-) axis and the urocortin 1 (Ucn1)-containing non-preganglionic Edinger-Westphal nucleus (npEW) respond in opposite ways to chronic stressors. This raises the hypothesis that MS, which is known to increase vulnerability for adult mood disorders via the dysregulation of the HPA-axis, will affect npEW dynamics as well. We have tested this hypothesis and, moreover, studied a possible role of brain-derived neurotrophic factor (BDNF) in such npEW plasticity. By triple immunocytochemistry we show that BDNF and Ucn1 coexist in rat npEW-neurons that are c-Fos-positive upon acute stress. Quantitative immunocytochemistry revealed that MS increases the contents of Ucn1 and BDNF in these cells. Furthermore, in males and females, the c-Fos response of npEW-Ucn1 neurons upon restraint stress was blunted in animals with MS history, a phenomenon that was concomitant with dampening of the HPA corticosterone response in females but not in males. Based on these data we suggest that the BDNF-containing npEW-Ucn1 system might be affected by MS in a sex-specific manner. This supports the idea that the npEW would play a role in the appearance of sex differences in the pathogenesis of stress-induced mood disorders.

  4. Intrinsic brain connectivity predicts impulse control disorders in patients with Parkinson's disease.

    Science.gov (United States)

    Tessitore, Alessandro; De Micco, Rosa; Giordano, Alfonso; di Nardo, Federica; Caiazzo, Giuseppina; Siciliano, Mattia; De Stefano, Manuela; Russo, Antonio; Esposito, Fabrizio; Tedeschi, Gioacchino

    2017-12-01

    Impulse control disorders can be triggered by dopamine replacement therapies in patients with PD. Using resting-state functional MRI, we investigated the intrinsic brain network connectivity at baseline in a cohort of drug-naive PD patients who successively developed impulse control disorders over a 36-month follow-up period compared with patients who did not. Baseline 3-Tesla MRI images of 30 drug-naive PD patients and 20 matched healthy controls were analyzed. The impulse control disorders' presence and severity at follow-up were assessed by the Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease Rating Scale. Single-subject and group-level independent component analysis was used to investigate functional connectivity differences within the major resting-state networks. We also compared internetwork connectivity between patients. Finally, a multivariate Cox regression model was used to investigate baseline predictors of impulse control disorder development. At baseline, decreased connectivity in the default-mode and right central executive networks and increased connectivity in the salience network were detected in PD patients with impulse control disorders at follow-up compared with those without. Increased default-mode/central executive internetwork connectivity was significantly associated with impulse control disorders development (P impulse control disorders while on dopaminergic treatment. We hypothesize that these divergent cognitive and limbic network connectivity changes could represent a potential biomarker and an additional risk factor for the emergence of impulse control disorders. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  5. Untended Wounds: Non-Suicidal Self-Injury in Adults with Autism Spectrum Disorder

    Science.gov (United States)

    Maddox, Brenna B.; Trubanova, Andrea; White, Susan W.

    2017-01-01

    Recent studies have examined non-suicidal self-injury in community and clinical samples, but there is no published research on non-suicidal self-injury in individuals with autism spectrum disorder. This lack of research is surprising, since individuals with autism spectrum disorder have high rates of risk factors for non-suicidal self-injury,…

  6. [Deep brain stimulation in movement disorders: evidence and therapy standards].

    Science.gov (United States)

    Parpaley, Yaroslav; Skodda, Sabine

    2017-07-01

    The deep brain stimulation (DBS) in movement disorders is well established and in many aspects evidence-based procedure. The treatment indications are very heterogeneous and very specific in their course and therapy. The deep brain stimulation plays very important, but usually not the central role in this conditions. The success in the application of DBS is essentially associated with the correct, appropriate and timely indication of the therapy in the course of these diseases. Thanks to the good standardization of the DBS procedure and sufficient published data, the recommendations for indication, diagnosis and operative procedures can be generated. The following article attempts to summarize the most important decision-making criteria and current therapy standards in this fairly comprehensive subject and to present them in close proximity to practice. Georg Thieme Verlag KG Stuttgart · New York.

  7. Network analysis of functional brain connectivity in borderline personality disorder using resting-state fMRI

    OpenAIRE

    Tingting Xu; Kathryn R. Cullen; Bryon Mueller; Mindy W. Schreiner; Kelvin O. Lim; S. Charles Schulz; Keshab K. Parhi

    2016-01-01

    Borderline personality disorder (BPD) is associated with symptoms such as affect dysregulation, impaired sense of self, and self-harm behaviors. Neuroimaging research on BPD has revealed structural and functional abnormalities in specific brain regions and connections. However, little is known about the topological organizations of brain networks in BPD. We collected resting-state functional magnetic resonance imaging (fMRI) data from 20 patients with BPD and 10 healthy controls, and construc...

  8. Alterations of Brain Functional Architecture Associated with Psychopathic Traits in Male Adolescents with Conduct Disorder

    OpenAIRE

    Pu, Weidan; Luo, Qiang; Jiang, Yali; Gao, Yidian; Ming, Qingsen; Yao, Shuqiao

    2017-01-01

    Psychopathic traits of conduct disorder (CD) have a core callous-unemotional (CU) component and an impulsive-antisocial component. Previous task-driven fMRI studies have suggested that psychopathic traits are associated with dysfunction of several brain areas involved in different cognitive functions (e.g., empathy, reward, and response inhibition etc.), but the relationship between psychopathic traits and intrinsic brain functional architecture has not yet been explored in CD. Using a holist...

  9. Reduced Predictable Information in Brain Signals in Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Carlos eGomez

    2014-02-01

    Full Text Available Autism spectrum disorder (ASD is a common developmental disorder characterized by communication difficulties and impaired social interaction. Recent results suggest altered brain dynamics as a potential cause of symptoms in ASD. Here, we aim to describe potential information-processing consequences of these alterations by measuring active information storage (AIS – a key quantity in the theory of distributed computation in biological networks. AIS is defined as the mutual information between the semi-infinite past of a process and its next state. It measures the amount of stored information that is used for computation of the next time step of a process. AIS is high for rich but predictable dynamics. We recorded magnetoencephalography (MEG signals in 13 ASD patients and 14 matched control subjects in a visual task. After a beamformer source analysis, twelve task-relevant sources were obtained. For these sources, stationary baseline activity was analyzed using AIS. Our results showed a decrease of AIS values in the hippocampus of ASD patients in comparison with controls, meaning that brain signals in ASD were either less predictable, reduced in their dynamic richness or both. Our study suggests the usefulness of AIS to detect an abnormal type of dynamics in ASD. The observed changes in AIS are compatible with Bayesian theories of reduced use or precision of priors in ASD.

  10. Enteroclysis of non-neoplastic disorders of the small intestine

    International Nuclear Information System (INIS)

    Nolan, D.J.

    2000-01-01

    Enteroclysis is now widely used for examining the jejunum and ileum. The technique is ideal for demonstrating the extent and severity of disorders that cause morphological changes to the small intestine. In this review many non-neoplastic small intestinal disorders as demonstrated by enteroclysis are described and illustrated. (orig.)

  11. [Eating disorders].

    Science.gov (United States)

    Miyake, Yoshie; Okamoto, Yuri; Jinnin, Ran; Shishida, Kazuhiro; Okamoto, Yasumasa

    2015-02-01

    Eating disorders are characterized by aberrant patterns of eating behavior, including such symptoms as extreme restriction of food intake or binge eating, and severe disturbances in the perception of body shape and weight, as well as a drive for thinness and obsessive fears of becoming fat. Eating disorder is an important cause for physical and psychosocial morbidity in young women. Patients with eating disorders have a deficit in the cognitive process and functional abnormalities in the brain system. Recently, brain-imaging techniques have been used to identify specific brain areas that function abnormally in patients with eating disorders. We have discussed the clinical and cognitive aspects of eating disorders and summarized neuroimaging studies of eating disorders.

  12. Economic burden of non-malignant blood disorders across Europe: a population-based cost study.

    Science.gov (United States)

    Luengo-Fernandez, Ramon; Burns, Richeal; Leal, Jose

    2016-08-01

    Blood disorders comprise a wide range of diseases including anaemia, malignant blood disorders, and haemorrhagic disorders. Although they are a common cause of disease, no systematic cost-of-illness studies have been done to assess the economic effect of non-malignant blood disorders in Europe. We aimed to assess the economic burden of non-malignant blood disorders across the 28 countries of the European Union (EU), Iceland, Norway, and Switzerland. Non-malignant blood disorder-related costs (WHO International Classification of Diseases, 10th revision [ICD] D50-89) were estimated for 28 EU countries, Iceland, Norway, and Switzerland for 2012. Country-specific costs were estimated with aggregate data on morbidity, mortality, and health-care resource use obtained from international and national sources. Health-care costs were estimated from expenditure on primary care, outpatient care, emergency care, hospital inpatient care, and drugs. Costs of informal care and productivity losses due to morbidity and early death were also included. To these costs we added those due to malignant blood disorders (ICD-10 C81-96 and D47) as estimated in a Burns and colleagues' companion Article to obtain the total costs of blood disorders. Non-malignant disorders of the blood cost the 31 European countries €11 billion in 2012. Health-care costs accounted for €8 billion (75% of total costs), productivity losses for €2 billion (19%), and informal care for less than €1 billion (6%). Averaged across the European population studied, non-malignant disorders of the blood represented an annual health-care cost of €159 per ten citizens. Combining malignant and non-malignant blood disorders, the total cost of blood disorders was €23 billion in 2012. Our study highlights the economic burden that non-malignant blood disorders place on European health-care systems and societies. Our study also shows that blood disorder costs were evenly distributed between malignant and non

  13. Network analysis of functional brain connectivity in borderline personality disorder using resting-state fMRI.

    Science.gov (United States)

    Xu, Tingting; Cullen, Kathryn R; Mueller, Bryon; Schreiner, Mindy W; Lim, Kelvin O; Schulz, S Charles; Parhi, Keshab K

    2016-01-01

    Borderline personality disorder (BPD) is associated with symptoms such as affect dysregulation, impaired sense of self, and self-harm behaviors. Neuroimaging research on BPD has revealed structural and functional abnormalities in specific brain regions and connections. However, little is known about the topological organizations of brain networks in BPD. We collected resting-state functional magnetic resonance imaging (fMRI) data from 20 patients with BPD and 10 healthy controls, and constructed frequency-specific functional brain networks by correlating wavelet-filtered fMRI signals from 82 cortical and subcortical regions. We employed graph-theory based complex network analysis to investigate the topological properties of the brain networks, and employed network-based statistic to identify functional dysconnections in patients. In the 0.03-0.06 Hz frequency band, compared to controls, patients with BPD showed significantly larger measures of global network topology, including the size of largest connected graph component, clustering coefficient, small-worldness, and local efficiency, indicating increased local cliquishness of the functional brain network. Compared to controls, patients showed lower nodal centrality at several hub nodes but greater centrality at several non-hub nodes in the network. Furthermore, an interconnected subnetwork in 0.03-0.06 Hz frequency band was identified that showed significantly lower connectivity in patients. The links in the subnetwork were mainly long-distance connections between regions located at different lobes; and the mean connectivity of this subnetwork was negatively correlated with the increased global topology measures. Lastly, the key network measures showed high correlations with several clinical symptom scores, and classified BPD patients against healthy controls with high accuracy based on linear discriminant analysis. The abnormal topological properties and connectivity found in this study may add new knowledge

  14. Network analysis of functional brain connectivity in borderline personality disorder using resting-state fMRI

    Directory of Open Access Journals (Sweden)

    Tingting Xu

    2016-01-01

    Full Text Available Borderline personality disorder (BPD is associated with symptoms such as affect dysregulation, impaired sense of self, and self-harm behaviors. Neuroimaging research on BPD has revealed structural and functional abnormalities in specific brain regions and connections. However, little is known about the topological organizations of brain networks in BPD. We collected resting-state functional magnetic resonance imaging (fMRI data from 20 patients with BPD and 10 healthy controls, and constructed frequency-specific functional brain networks by correlating wavelet-filtered fMRI signals from 82 cortical and subcortical regions. We employed graph-theory based complex network analysis to investigate the topological properties of the brain networks, and employed network-based statistic to identify functional dysconnections in patients. In the 0.03–0.06 Hz frequency band, compared to controls, patients with BPD showed significantly larger measures of global network topology, including the size of largest connected graph component, clustering coefficient, small-worldness, and local efficiency, indicating increased local cliquishness of the functional brain network. Compared to controls, patients showed lower nodal centrality at several hub nodes but greater centrality at several non-hub nodes in the network. Furthermore, an interconnected subnetwork in 0.03–0.06 Hz frequency band was identified that showed significantly lower connectivity in patients. The links in the subnetwork were mainly long-distance connections between regions located at different lobes; and the mean connectivity of this subnetwork was negatively correlated with the increased global topology measures. Lastly, the key network measures showed high correlations with several clinical symptom scores, and classified BPD patients against healthy controls with high accuracy based on linear discriminant analysis. The abnormal topological properties and connectivity found in this study

  15. The Role of Pleasure Neurobiology and Dopamine in Mental Health Disorders.

    Science.gov (United States)

    Worley, Julie

    2017-09-01

    Recent evidence and research has demonstrated that the pleasure response and associated neurotransmitters and brain circuits play a significant role in substance use disorders (SUDs). It was thought that negative behaviors associated with SUDs resulted from negative choices, but it is now known that chemical changes in the brain drive those behaviors. Several mental health disorders (e.g., eating disorders, non-suicidal self-injury, compulsive sex behaviors, internet gaming, gambling) are also thought to involve those same pleasure responses, neurotransmitters, and brain regions. Studies have shown that the use of naltrexone, a dopamine antagonist, can reduce symptoms of these disorders. It is important for nurses to understand the underlying physiology of mental health disorders that are thought to have an addictive or craving component. This understanding can help reduce stigma. Educating patients about likely neurobiological causes for their disorders can also help reduce guilt and shame. Nurses should educate patients about these disorders and evidence-based treatments, including off-label use of naltrexone. [Journal of Psychosocial Nursing and Mental Health Services, 55(9), 17-21.]. Copyright 2017, SLACK Incorporated.

  16. Childhood adversity is linked to differential brain volumes in adolescents with alcohol use disorder: a voxel-based morphometry study.

    Science.gov (United States)

    Brooks, Samantha J; Dalvie, Shareefa; Cuzen, Natalie L; Cardenas, Valerie; Fein, George; Stein, Dan J

    2014-06-01

    Previous neuroimaging studies link both alcohol use disorder (AUD) and early adversity to neurobiological differences in the adult brain. However, the association between AUD and childhood adversity and effects on the developing adolescent brain are less clear, due in part to the confound of psychiatric comorbidity. Here we examine early life adversity and its association with brain volume in a unique sample of 116 South African adolescents (aged 12-16) with AUD but without psychiatric comorbidity. Participants were 58 adolescents with DSM-IV alcohol dependence and with no other psychiatric comorbidities, and 58 age-, gender- and protocol-matched light/non-drinking controls (HC). Assessments included the Childhood Trauma Questionnaire (CTQ). MR images were acquired on a 3T Siemens Magnetom Allegra scanner. Volumes of global and regional structures were estimated using SPM8 Voxel Based Morphometry (VBM), with analysis of covariance (ANCOVA) and regression analyses. In whole brain ANCOVA analyses, a main effect of group when examining the AUD effect after covarying out CTQ was observed on brain volume in bilateral superior temporal gyrus. Subsequent regression analyses to examine how childhood trauma scores are linked to brain volumes in the total cohort revealed a negative correlation in the left hippocampus and right precentral gyrus. Furthermore, bilateral (but most significantly left) hippocampal volume was negatively associated with sub-scores on the CTQ in the total cohort. These findings support our view that some alterations found in brain volumes in studies of adolescent AUD may reflect the impact of confounding factors such as psychiatric comorbidity rather than the effects of alcohol per se. In particular, early life adversity may influence the developing adolescent brain in specific brain regions, such as the hippocampus.

  17. [Neuropsychological evaluation of a case of organic personality disorder due to penetrating brain injury].

    Science.gov (United States)

    Sanz de la Torre, J C; Pérez-Ríos, M

    1996-06-01

    In this paper, an organic personality disorder case by penetrating brain injury, predominantly localized in the right frontal lobe, is presented. Neuropsychological and neuroimaging (CT scan studies) were performed. We assessed the main cognitive aspect: orientation, attention, memory, intelligence, language, visual-spatial functioning, motor functioning, executive functioning and personality. The results obtained, point out disorders in the patient's behavior and in the executive functions. Likewise, other cognitive functions as: attention, memory, language and visual-spatial functioning, show specific deficits.

  18. 12 CFR 703.14 - Permissible investments.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Permissible investments. 703.14 Section 703.14 Banks and Banking NATIONAL CREDIT UNION ADMINISTRATION REGULATIONS AFFECTING CREDIT UNIONS INVESTMENT AND DEPOSIT ACTIVITIES § 703.14 Permissible investments. (a) Variable rate investment. A Federal...

  19. Potential effect of skull thickening on the associations between cognition and brain atrophy in ageing.

    Science.gov (United States)

    Aribisala, Benjamin Segun; Royle, Natalie A; Valdés Hernández, Maria C; Murray, Catherine; Penke, Lars; Gow, Alan; Maniega, Susana Muñoz; Starr, John M; Bastin, Mark; Deary, Ian; Wardlaw, Joanna

    2014-09-01

    intracranial volume (ICV) is commonly used as a marker of premorbid brain size in neuroimaging studies as it is thought to remain fixed throughout adulthood. However, inner skull table thickening would encroach on ICV and could mask actual brain atrophy. we investigated the effect that thickening might have on the associations between brain atrophy and cognition. the sample comprised 57 non-demented older adults who underwent structural brain MRI at mean age 72.7 ± 0.7 years and were assessed on cognitive ability at mean age 11 and 73 years. Principal component analysis was used to derive factors of general cognitive ability (g), information processing speed and memory from the recorded cognitive ability data. The total brain tissue volume and ICV with (estimated original ICV) and without (current ICV) adjusting for the effects of inner table skull thickening were measured. General linear modelling was used to test for associations. all cognitive ability variables were significantly (P skull thickening (g: η(2) = 0.177, speed: η(2) = 0.264 and memory: η(2) = 0.132). After accounting for skull thickening, only speed was significantly associated with percentage total brain volume in ICV (η(2) = 0.085, P = 0.034), not g or memory. not accounting for skull thickening when computing ICV can distort the association between brain atrophy and cognitive ability in old age. Larger samples are required to determine the true effect. © The Author 2014. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Brain activation during self- and other-reflection in bipolar disorder with a history of psychosis : Comparison to schizophrenia

    NARCIS (Netherlands)

    Zhang, Liwen; Opmeer, Esther M.; Ruhe, Henricus G.; Aleman, Andre; van der Meer, Lisette

    2015-01-01

    Objectives: Reflecting on the self and on others activates specific brain areas and contributes to metacognition and social cognition. The aim of the current study is to investigate brain activation during self-and other-reflection in patients with bipolar disorder (BD). In addition, we examined

  1. Deep-brain magnetic stimulation promotes adult hippocampal neurogenesis and alleviates stress-related behaviors in mouse models for neuropsychiatric disorders

    Science.gov (United States)

    2014-01-01

    Background Repetitive Transcranial Magnetic Stimulation (rTMS)/ Deep-brain Magnetic Stimulation (DMS) is an effective therapy for various neuropsychiatric disorders including major depression disorder. The molecular and cellular mechanisms underlying the impacts of rTMS/DMS on the brain are not yet fully understood. Results Here we studied the effects of deep-brain magnetic stimulation to brain on the molecular and cellular level. We examined the adult hippocampal neurogenesis and hippocampal synaptic plasticity of rodent under stress conditions with deep-brain magnetic stimulation treatment. We found that DMS promotes adult hippocampal neurogenesis significantly and facilitates the development of adult new-born neurons. Remarkably, DMS exerts anti-depression effects in the learned helplessness mouse model and rescues hippocampal long-term plasticity impaired by restraint stress in rats. Moreover, DMS alleviates the stress response in a mouse model for Rett syndrome and prolongs the life span of these animals dramatically. Conclusions Deep-brain magnetic stimulation greatly facilitates adult hippocampal neurogenesis and maturation, also alleviates depression and stress-related responses in animal models. PMID:24512669

  2. When thoughts become action: an fMRI paradigm to study volitional brain activity in non-communicative brain injured patients.

    Science.gov (United States)

    Boly, M; Coleman, M R; Davis, M H; Hampshire, A; Bor, D; Moonen, G; Maquet, P A; Pickard, J D; Laureys, S; Owen, A M

    2007-07-01

    The assessment of voluntary behavior in non-communicative brain injured patients is often challenging due to the existence of profound motor impairment. In the absence of a full understanding of the neural correlates of consciousness, even a normal activation in response to passive sensory stimulation cannot be considered as proof of the presence of awareness in these patients. In contrast, predicted activation in response to the instruction to perform a mental imagery task would provide evidence of voluntary task-dependent brain activity, and hence of consciousness, in non-communicative patients. However, no data yet exist to indicate which imagery instructions would yield reliable single subject activation. The aim of the present study was to establish such a paradigm in healthy volunteers. Two exploratory experiments evaluated the reproducibility of individual brain activation elicited by four distinct mental imagery tasks. The two most robust mental imagery tasks were found to be spatial navigation and motor imagery. In a third experiment, where these two tasks were directly compared, differentiation of each task from one another and from rest periods was assessed blindly using a priori criteria and was correct for every volunteer. The spatial navigation and motor imagery tasks described here permit the identification of volitional brain activation at the single subject level, without a motor response. Volunteer as well as patient data [Owen, A.M., Coleman, M.R., Boly, M., Davis, M.H., Laureys, S., Pickard J.D., 2006. Detecting awareness in the vegetative state. Science 313, 1402] strongly suggest that this paradigm may provide a method for assessing the presence of volitional brain activity, and thus of consciousness, in non-communicative brain-injured patients.

  3. Ictal SPECT in patients with rapid eye movement sleep behaviour disorder.

    Science.gov (United States)

    Mayer, Geert; Bitterlich, Marion; Kuwert, Torsten; Ritt, Philipp; Stefan, Hermann

    2015-05-01

    -the neural activity generating movement during episodes of rapid eye movement sleep behaviour disorder bypasses the basal ganglia, a mechanism that is shared by patients with idiopathic rapid eye movement sleep behaviour disorder and narcolepsy patients with rapid eye movement sleep behaviour disorder. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. A concept of dynamic permission mechanism on android

    Science.gov (United States)

    Aron, Lukas; Hanacek, Petr

    2016-02-01

    This paper discuss the main security topic in mobile security area and this topic is protect user against the leakage of data. This work primarily contains the proposal of concept of dynamic permission mechanism for Android operating system. This mechanism deals with assignment or enforcement permissions to the application according to files that the application works with. Application has set of permissions that can use, but if the user opens confident files the application permissions should change its permission set and there should not be possible leakage of this secret data. The permissions set should be stricter according to opened confidential file or more open (without restriction) if the file is not secret file. The concept proposes the solution for protecting this data leakage. Idea covers rule that user should be avoided of change this permissions himself, but this behavior should be dynamic, automatic and independent. This proposal is mainly aimed to Android operating system, but the concept can be applied to other mobile platforms with some implementation changes.

  5. Non medical factors associated with psychological disorders in cancer patients

    International Nuclear Information System (INIS)

    Iqbal, A.; Intikhab, K.; Saeed, K.

    2002-01-01

    Objective: To find out major non-medial factors associated with psychological disorders in cancer patients. Design: An observational study conducted on adult cancer patients. Place and Duration of Study: The study was conducted at Shaukat Khanum Memorial Cancer Hospital and Research Center Lahore Pakistan from January 1999. Patients and Methods: Two hundred and twenty-four newly-diagnosed adult cancer patients were interviewed by the clinical psychologist and data was collected regarding non-medical causal factors, patients age, gender family support system, general home atmosphere and marital status. Collected data was analyzed by utilizing. SPSS for windows version 10.0. Results: Of the 224 patients 142 (63.4%) reported non-medical factors causing psychological distress and 82 (36.6%) reported that medical sources are the most distressing. Ten most common non-medical sources of developing psychological disorders were identified. It was observed that family support system and general home atmosphere were significantly associated with the development of psychological disorders whereas the other variables such as age, gender and marital status had no significant relationship with the non Medical factors. Conclusion: It was concluded that non-medical factors causing psychological problems are significant in cancer patients. The results suggest that we should identify these factors and target psychosocial intervention for those patients most at risk. (author)

  6. Brain imaging studies of sleep disorder

    International Nuclear Information System (INIS)

    Nakamura, Masaki; Inoue, Yuichi

    2014-01-01

    Brain imaging studies of narcolepsy (NA)/cataplexy (CA), a typical sleep disorder, are summarized together with techniques of functional and structural imaging means. single photon emission CT (SPECT) is based on the distribution of tracers labeled by single photon emitters like 99m Tc and 123 I for seeing the blood flow and receptors. PET using positron emitters like 15 O and 18 F for blood flow and for glucose metabolism, respectively, is of higher resolution and more quantitative than SPECT. Functional MRI (fMRI) depicts the cerebral activity through signal difference by blood oxygenation level dependence (BOLD) effect, and MR spectroscopy (MRS) depicts and quantifies biomaterials through the difference of their nuclear chemical shifts in the magnetic field. Morphologic imaging studies involve the measurement of the volume of the region of interest by comparison with the reference region such as the whole brain volume. Voxel-based morphometry (VBM) has changed to its more advanced surface-based analysis (SBA) of T1-enhanced image. Diffusion tensor imaging (DTI) is based on the tissue water diffusion. Functional SPECT/PET studies have suggested the decrease of blood flow and metabolic activity in the hypothalamus (HT) and other related regions at the conscious resting state, and locally increased blood flow in cingulate gyrus (CG) and amygdaloid complex (AC) at affective CA/PA seizure. fMRI has suggested the hypoactivity of HT and hyperactivity of AC at the seizure. VBM-based studies have not given the consistent results, but DTI studies have suggested an important participation of AC at the seizure. (T.T.)

  7. Fear across the senses: brain responses to music, vocalizations and facial expressions.

    Science.gov (United States)

    Aubé, William; Angulo-Perkins, Arafat; Peretz, Isabelle; Concha, Luis; Armony, Jorge L

    2015-03-01

    Intrinsic emotional expressions such as those communicated by faces and vocalizations have been shown to engage specific brain regions, such as the amygdala. Although music constitutes another powerful means to express emotions, the neural substrates involved in its processing remain poorly understood. In particular, it is unknown whether brain regions typically associated with processing 'biologically relevant' emotional expressions are also recruited by emotional music. To address this question, we conducted an event-related functional magnetic resonance imaging study in 47 healthy volunteers in which we directly compared responses to basic emotions (fear, sadness and happiness, as well as neutral) expressed through faces, non-linguistic vocalizations and short novel musical excerpts. Our results confirmed the importance of fear in emotional communication, as revealed by significant blood oxygen level-dependent signal increased in a cluster within the posterior amygdala and anterior hippocampus, as well as in the posterior insula across all three domains. Moreover, subject-specific amygdala responses to fearful music and vocalizations were correlated, consistent with the proposal that the brain circuitry involved in the processing of musical emotions might be shared with the one that have evolved for vocalizations. Overall, our results show that processing of fear expressed through music, engages some of the same brain areas known to be crucial for detecting and evaluating threat-related information. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  8. X-ray diffraction evidence for myelin disorder in brain from humans with Alzheimer's disease.

    Science.gov (United States)

    Chia, L S; Thompson, J E; Moscarello, M A

    1984-09-05

    Wide-angle X-ray diffraction studies revealed that the lipid phase transition temperature of myelin from brain tissue of humans with Alzheimer's disease was about 12 degrees C lower than that of normal age-matched controls, indicating differences in the physical organization of the myelin lipid bilayer. Elevated levels of malondialdehyde and conjugated diene were found in brain tissue from humans with Alzheimer's disease, indicating an increased amount of lipid peroxidation over the controls. An increase in myelin disorder and in lipid peroxidation can both be correlated with aging in human brain, but the changes in myelin from humans with Alzheimer's disease are more pronounced than in normal aging. These changes might represent severe or accelerated aging.

  9. Recombinant pestivirus E2 glycoproteins prevent viral attachment to permissive and non permissive cells with different efficiency.

    Science.gov (United States)

    Asfor, A S; Wakeley, P R; Drew, T W; Paton, D J

    2014-08-30

    Bovine viral diarrhoea virus (BVDV) is an economically important animal pathogen, which like other pestiviruses has similar molecular biological features to hepaciviruses, including human Hepatitis C virus. The pestivirus E2 glycoproteins are the major target for virus-neutralising antibodies, as well as playing a role in receptor binding and host range restriction. In this study, recombinant E2 glycoproteins (rE2) derived from three different pestivirus species were examined for their inhibitory effects on pestivirus infectivity in cell culture. Histidine-tagged rE2 glycoproteins of BVDV type 2 strain 178003, BVDV type 1 strain Oregon C24V and CSFV strain Alfort 187 were produced in Spodoptera frugiperda insect cells and purified under native conditions. The ability of rE2 glycoprotein to inhibit the infection of permissive cells by both homologous and heterologous virus was compared, revealing that the inhibitory effects of rE2 glycoproteins correlated with the predicted similarity of the E2 structures in the recombinant protein and the test virus. This result suggests that the sequence and structure of E2 are likely to be involved in the host specificity of pestiviruses at their point of uptake into cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Mixed acid-base disorder secondary to topiramate use in traumatic brain injury

    Directory of Open Access Journals (Sweden)

    S Golla

    2016-01-01

    Full Text Available We report a case of a man with traumatic brain injury. He was started on to prophylactic topiramate which led to a mixed acid-base disorder. He had severe metabolic acidosis secondary to renal tubular acidification defect and respiratory alkalosis secondary to hyperventilation. Withdrawal of the offending drug led to the prompt resolution of the acid-base disturbance.

  11. Tourette syndrome: a disorder of the social decision-making network.

    Science.gov (United States)

    Albin, Roger L

    2018-02-01

    Tourette syndrome is a common neurodevelopmental disorder defined by characteristic involuntary movements, tics, with both motor and phonic components. Tourette syndrome is usually conceptualized as a basal ganglia disorder, with an emphasis on striatal dysfunction. While considerable evidence is consistent with these concepts, imaging data suggest diffuse functional and structural abnormalities in Tourette syndrome brain. Tourette syndrome exhibits features that are difficult to explain solely based on basal ganglia circuit dysfunctions. These features include the natural history of tic expression, with typical onset of tics around ages 5 to 7 years and exacerbation during the peri-pubertal years, marked sex disparity with higher male prevalence, and the characteristic distribution of tics. The latter are usually repetitive, somewhat stereotyped involuntary eye, facial and head movements, and phonations. A major functional role of eye, face, and head movements is social signalling. Prior work in social neuroscience identified a phylogenetically conserved network of sexually dimorphic subcortical nuclei, the Social Behaviour Network, mediating many social behaviours. Social behaviour network function is modulated developmentally by gonadal steroids and social behaviour network outputs are stereotyped sex and species specific behaviours. In 2011 O'Connell and Hofmann proposed that the social behaviour network interdigitates with the basal ganglia to form a greater network, the social decision-making network. The social decision-making network may have two functionally complementary limbs: the basal ganglia component responsible for evaluation of socially relevant stimuli and actions with the social behaviour network component responsible for the performance of social acts. Social decision-making network dysfunction can explain major features of the neurobiology of Tourette syndrome. Tourette syndrome may be a disorder of social communication resulting from

  12. Early brain development in infants at high risk for autism spectrum disorder.

    Science.gov (United States)

    Hazlett, Heather Cody; Gu, Hongbin; Munsell, Brent C; Kim, Sun Hyung; Styner, Martin; Wolff, Jason J; Elison, Jed T; Swanson, Meghan R; Zhu, Hongtu; Botteron, Kelly N; Collins, D Louis; Constantino, John N; Dager, Stephen R; Estes, Annette M; Evans, Alan C; Fonov, Vladimir S; Gerig, Guido; Kostopoulos, Penelope; McKinstry, Robert C; Pandey, Juhi; Paterson, Sarah; Pruett, John R; Schultz, Robert T; Shaw, Dennis W; Zwaigenbaum, Lonnie; Piven, Joseph

    2017-02-15

    Brain enlargement has been observed in children with autism spectrum disorder (ASD), but the timing of this phenomenon, and the relationship between ASD and the appearance of behavioural symptoms, are unknown. Retrospective head circumference and longitudinal brain volume studies of two-year olds followed up at four years of age have provided evidence that increased brain volume may emerge early in development. Studies of infants at high familial risk of autism can provide insight into the early development of autism and have shown that characteristic social deficits in ASD emerge during the latter part of the first and in the second year of life. These observations suggest that prospective brain-imaging studies of infants at high familial risk of ASD might identify early postnatal changes in brain volume that occur before an ASD diagnosis. In this prospective neuroimaging study of 106 infants at high familial risk of ASD and 42 low-risk infants, we show that hyperexpansion of the cortical surface area between 6 and 12 months of age precedes brain volume overgrowth observed between 12 and 24 months in 15 high-risk infants who were diagnosed with autism at 24 months. Brain volume overgrowth was linked to the emergence and severity of autistic social deficits. A deep-learning algorithm that primarily uses surface area information from magnetic resonance imaging of the brain of 6-12-month-old individuals predicted the diagnosis of autism in individual high-risk children at 24 months (with a positive predictive value of 81% and a sensitivity of 88%). These findings demonstrate that early brain changes occur during the period in which autistic behaviours are first emerging.

  13. Predictive and associated factors of psychiatric disorders after traumatic brain injury: a prospective study.

    Science.gov (United States)

    Gould, Kate Rachel; Ponsford, Jennie Louise; Johnston, Lisa; Schönberger, Michael

    2011-07-01

    Psychiatric disorders are common and often debilitating following traumatic brain injury (TBI). However, there is little consensus within the literature regarding the risk factors for post-injury psychiatric disorders. A 1-year prospective study was conducted to examine which pre-injury, injury-related, and concurrent factors were associated with experiencing a psychiatric disorder, diagnosed using the Structured Clinical Interview for DSM-IV-TR Axis I Disorders, at 1 year post-injury. Participants were 122 adults with TBI and 88 proxy informants. Psychiatric disorders were common both pre-injury (54.1%) and at 12 months post-injury (45.9%). Results of regression analyses indicated individuals without a pre-injury psychiatric disorder or psychiatric symptomatology in the acute post-injury period were less likely to have a psychiatric disorder at 12 months post-injury. These findings confirm the importance of pre-injury history for the prediction of post-injury psychiatric disorders. Limb injury also emerged as a useful early indicator of later psychiatric disorder. Post-injury psychiatric disorders were associated with concurrent unemployment, pain, poor quality of life, and use of unproductive coping skills. The clinical implications of these findings are discussed.

  14. Reduced long-range functional connectivity in young children with autism spectrum disorder

    OpenAIRE

    Kikuchi, Mitsuru; Yoshimura, Yuko; Hiraishi, Hirotoshi; Munesue, Toshio; Hashimoto, Takanori; Tsubokawa, Tsunehisa; Takahashi, Tsutomu; Suzuki, Michio; Higashida, Haruhiro; Minabe, Yoshio

    2014-01-01

    Autism spectrum disorder (ASD) is often described as a disorder of aberrant neural connectivity. Although it is important to study the pathophysiology of ASD in the developing cortex, the functional connectivity in the brains of young children with ASD has not been well studied. In this study, brain activity was measured non-invasively during consciousness in 50 young human children with ASD and 50 age- and gender-matched typically developing human (TD) children. We employed a custom child-si...

  15. Functional near infrared spectroscopy as a probe of brain function in people with prolonged disorders of consciousness

    Directory of Open Access Journals (Sweden)

    Agnieszka M. Kempny

    2016-01-01

    Full Text Available Near infrared spectroscopy (NIRS is a non-invasive technique which measures changes in brain tissue oxygenation. NIRS has been used for continuous monitoring of brain oxygenation during medical procedures carrying high risk of iatrogenic brain ischemia and also has been adopted by cognitive neuroscience for studies on executive and cognitive functions. Until now, NIRS has not been used to detect residual cognitive functions in patients with prolonged disorders of consciousness (pDOC. In this study we aimed to evaluate the brain function of patients with pDOC by using a motor imagery task while recording NIRS. We also collected data from a group of age and gender matched healthy controls while they carried out both real and imagined motor movements to command. We studied 16 pDOC patients in total, split into two groups: five had a diagnosis of Vegetative state/Unresponsive Wakefulness State, and eleven had a diagnosis of Minimally Conscious State. In the control subjects we found a greater oxy-haemoglobin (oxyHb response during real movement compared with imagined movement. For the between group comparison, we found a main effect of hemisphere, with greater depression of oxyHb signal in the right > left hemisphere compared with rest period for all three groups. A post-hoc analysis including only the two pDOC patient groups was also significant suggesting that this effect was not just being driven by the control subjects. This study demonstrates for the first time the feasibility of using NIRS for the assessment of brain function in pDOC patients using a motor imagery task.

  16. Frontal brain dysfunction in alcoholism with and without antisocial personality disorder

    Directory of Open Access Journals (Sweden)

    Marlene Oscar-Berman

    2009-05-01

    Full Text Available Marlene Oscar-Berman1,2, Mary M Valmas1,2, Kayle s Sawyer1,2, Shalene M Kirkley1, David A Gansler3, Diane Merritt1,2, Ashley Couture11Department of Veterans Affairs Healthcare System, Boston Campus, Boston, MA, USA; 2Boston University School of Medicine, Boston, MA, USA; 3Suffolk University, Boston, MA, USAAbstract: Alcoholism and antisocial personality disorder (ASPD often are comorbid conditions. Alcoholics, as well as nonalcoholic individuals with ASPD, exhibit behaviors associated with prefrontal brain dysfunction such as increased impulsivity and emotional dysregulation. These behaviors can influence drinking motives and patterns of consumption. Because few studies have investigated the combined association between ASPD and alcoholism on neuropsychological functioning, this study examined the influence of ASPD symptoms and alcoholism on tests sensitive to frontal brain deficits. The participants were 345 men and women. Of them, 144 were abstinent alcoholics (66 with ASPD symptoms, and 201 were nonalcoholic control participants (24 with ASPD symptoms. Performances among the groups were examined with Trails A and B tests, the Wisconsin Card Sorting Test, the Controlled Oral Word Association Test, the Ruff Figural Fluency Test, and Performance subtests of the Wechsler Adult Intelligence Scale. Measures of affect also were obtained. Multiple regression analyses showed that alcoholism, specific drinking variables (amount and duration of heavy drinking, and ASPD were significant predictors of frontal system and affective abnormalities. These effects were different for men and women. The findings suggested that the combination of alcoholism and ASPD leads to greater deficits than the sum of each.  Keywords: alcoholism, antisocial personality disorder (ASPD, frontal brain system, neuropsychological deficits, reward system

  17. Imaging blood-brain barrier dysfunction as a biomarker for epileptogenesis.

    Science.gov (United States)

    Bar-Klein, Guy; Lublinsky, Svetlana; Kamintsky, Lyn; Noyman, Iris; Veksler, Ronel; Dalipaj, Hotjensa; Senatorov, Vladimir V; Swissa, Evyatar; Rosenbach, Dror; Elazary, Netta; Milikovsky, Dan Z; Milk, Nadav; Kassirer, Michael; Rosman, Yossi; Serlin, Yonatan; Eisenkraft, Arik; Chassidim, Yoash; Parmet, Yisrael; Kaufer, Daniela; Friedman, Alon

    2017-06-01

    A biomarker that will enable the identification of patients at high-risk for developing post-injury epilepsy is critically required. Microvascular pathology and related blood-brain barrier dysfunction and neuroinflammation were shown to be associated with epileptogenesis after injury. Here we used prospective, longitudinal magnetic resonance imaging to quantitatively follow blood-brain barrier pathology in rats following status epilepticus, late electrocorticography to identify epileptic animals and post-mortem immunohistochemistry to confirm blood-brain barrier dysfunction and neuroinflammation. Finally, to test the pharmacodynamic relevance of the proposed biomarker, two anti-epileptogenic interventions were used; isoflurane anaesthesia and losartan. Our results show that early blood-brain barrier pathology in the piriform network is a sensitive and specific predictor (area under the curve of 0.96, P brain barrier pathology as a clinically relevant predictive, diagnostic and pharmaco!dynamics biomarker for acquired epilepsy. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Brain parenchymal damage in neuromyelitis optica spectrum disorder - A multimodal MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Pache, F.; Paul, F. [Max Delbrueck Center for Molecular Medicine and Charite Universitaetsmedizin Berlin, NeuroCure Clinical Research Center and Experimental and Clinical Research Center, Berlin (Germany); Charite Universitaetsmedizin Berlin, Department of Neurology, Berlin (Germany); Zimmermann, H.; Lacheta, A.; Papazoglou, S.; Kuchling, J.; Wuerfel, J.; Brandt, A.U. [Max Delbrueck Center for Molecular Medicine and Charite Universitaetsmedizin Berlin, NeuroCure Clinical Research Center and Experimental and Clinical Research Center, Berlin (Germany); Finke, C. [Charite Universitaetsmedizin Berlin, Department of Neurology, Berlin (Germany); Humboldt-Universitaet zu Berlin, Berlin School of Mind and Brain, Berlin (Germany); Hamm, B. [Charite Universitaetsmedizin Berlin, Department of Radiology, Berlin (Germany); Ruprecht, K. [Charite Universitaetsmedizin Berlin, Department of Neurology, Berlin (Germany); Scheel, M. [Max Delbrueck Center for Molecular Medicine and Charite Universitaetsmedizin Berlin, NeuroCure Clinical Research Center and Experimental and Clinical Research Center, Berlin (Germany); Charite Universitaetsmedizin Berlin, Department of Radiology, Berlin (Germany)

    2016-12-15

    To investigate different brain regions for grey (GM) and white matter (WM) damage in a well-defined cohort of neuromyelitis optica spectrum disorder (NMOSD) patients and compare advanced MRI techniques (VBM, Subcortical and cortical analyses (Freesurfer), and DTI) for their ability to detect damage in NMOSD. We analyzed 21 NMOSD patients and 21 age and gender matched control subjects. VBM (GW/WM) and DTI whole brain (TBSS) analyses were performed at different statistical thresholds to reflect different statistical approaches in previous studies. In an automated atlas-based approach, Freesurfer and DTI results were compared between NMOSD and controls. DTI TBSS and DTI atlas based analysis demonstrated microstructural impairment only within the optic radiation or in regions associated with the optic radiation (posterior thalamic radiation p < 0.001, 6.9 % reduction of fractional anisotropy). VBM demonstrated widespread brain GM and WM reduction, but only at exploratory statistical thresholds, with no differences remaining after correction for multiple comparisons. Freesurfer analysis demonstrated no group differences. NMOSD specific parenchymal brain damage is predominantly located in the optic radiation, likely due to a secondary degeneration caused by ON. In comparison, DTI appears to be the most reliable and sensitive technique for brain damage detection in NMOSD. (orig.)

  19. Brain parenchymal damage in neuromyelitis optica spectrum disorder - A multimodal MRI study

    International Nuclear Information System (INIS)

    Pache, F.; Paul, F.; Zimmermann, H.; Lacheta, A.; Papazoglou, S.; Kuchling, J.; Wuerfel, J.; Brandt, A.U.; Finke, C.; Hamm, B.; Ruprecht, K.; Scheel, M.

    2016-01-01

    To investigate different brain regions for grey (GM) and white matter (WM) damage in a well-defined cohort of neuromyelitis optica spectrum disorder (NMOSD) patients and compare advanced MRI techniques (VBM, Subcortical and cortical analyses (Freesurfer), and DTI) for their ability to detect damage in NMOSD. We analyzed 21 NMOSD patients and 21 age and gender matched control subjects. VBM (GW/WM) and DTI whole brain (TBSS) analyses were performed at different statistical thresholds to reflect different statistical approaches in previous studies. In an automated atlas-based approach, Freesurfer and DTI results were compared between NMOSD and controls. DTI TBSS and DTI atlas based analysis demonstrated microstructural impairment only within the optic radiation or in regions associated with the optic radiation (posterior thalamic radiation p < 0.001, 6.9 % reduction of fractional anisotropy). VBM demonstrated widespread brain GM and WM reduction, but only at exploratory statistical thresholds, with no differences remaining after correction for multiple comparisons. Freesurfer analysis demonstrated no group differences. NMOSD specific parenchymal brain damage is predominantly located in the optic radiation, likely due to a secondary degeneration caused by ON. In comparison, DTI appears to be the most reliable and sensitive technique for brain damage detection in NMOSD. (orig.)

  20. Neural mechanisms of reinforcement learning in unmedicated patients with major depressive disorder.

    Science.gov (United States)

    Rothkirch, Marcus; Tonn, Jonas; Köhler, Stephan; Sterzer, Philipp

    2017-04-01

    University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Respiratory sinus arrhythmia as a non-invasive index of ′brain-heart′ interaction in stress

    Directory of Open Access Journals (Sweden)

    Ingrid Tonhajzerova

    2016-01-01

    Full Text Available Respiratory sinus arrhythmia (RSA is accepted as a peripheral marker of cardiac-linked parasympathetic regulation. According to polyvagal theory, the RSA is also considered as the index of emotion regulation. The neurovisceral integration model posits that parasympathetic modulation of the heart marked by RSA is related to complex nervous regulation associated with emotional and cognitive processing. From this perspective, high resting RSA amplitude associated with a greater withdrawal during stressors and subsequent recovery could represent a flexible and adaptive physiological response system to a challenge. Conversely, low resting RSA accompanied by an inadequate reactivity to stress might reflect maladaptive regulatory mechanisms. The RSA reactivity is different with various types of stressors: while the RSA decreases to cognitive tasks indicating a vagal withdrawal, the RSA magnitude increases to emotional challenge indicating an effective cognitive processing of emotional stimuli. The RSA reactivity to stress could have important implications for several mental disorders, e.g. depressive or anxiety disorder. It seems that the study of the RSA, as a non-invasive index of ′brain-heart′ communication, could provide important information on the pathway linked to mental and physical health.

  2. Comparing attentional control and intrusive thoughts in obsessive-compulsive disorder, generalized anxiety disorder and non clinical population.

    Directory of Open Access Journals (Sweden)

    Mehri Moradi

    2014-06-01

    Full Text Available Attention is an important factor in information processing; obsessive- compulsive disorder (OCD and generalized anxiety disorder (GAD are two main emotional disorders with a chronic course. This research examined the relationship among attentional control and intrusive thoughts (worry, rumination and obsession in these disorders. It was hypothesized that attentional control is a common factor in OCD and GAD. In addition, we compared worry, rumination and obsession among OCD, GAD and non- clinical participants.The research sample included three groups: OCD (n = 25, GAD (n = 30 and non- clinical samples (n = 56. Data were collected using the Attentional Control Scale (ACS, Rumination Response Scale (RRS, Pennsylvania State Worry Questionnaire (PSWQ, Beck Depression Inventory (BDI, Beck Anxiety Inventory (BAI, Obsessive-Compulsive Inventory-Revised (OCI-R and General Health Questionnaire (GHQ-28. Data were analyzed using MANOVA and MANCOVA by SPSS-17.Multivariate Analysis of Variance revealed that the OCD and GAD groups reported greater deficits in attentional control, higher obsessive-compulsive symptoms, rumination, worry, anxiety and depression compared to the control group.This research indicated a great attentional deficit in obsessive- compulsive disorder and generalized anxiety disorder. However, no significant difference was found between these two disorders.

  3. Detecting number processing and mental calculation in patients with disorders of consciousness using a hybrid brain-computer interface system.

    Science.gov (United States)

    Li, Yuanqing; Pan, Jiahui; He, Yanbin; Wang, Fei; Laureys, Steven; Xie, Qiuyou; Yu, Ronghao

    2015-12-15

    For patients with disorders of consciousness such as coma, a vegetative state or a minimally conscious state, one challenge is to detect and assess the residual cognitive functions in their brains. Number processing and mental calculation are important brain functions but are difficult to detect in patients with disorders of consciousness using motor response-based clinical assessment scales such as the Coma Recovery Scale-Revised due to the patients' motor impairments and inability to provide sufficient motor responses for number- and calculation-based communication. In this study, we presented a hybrid brain-computer interface that combines P300 and steady state visual evoked potentials to detect number processing and mental calculation in Han Chinese patients with disorders of consciousness. Eleven patients with disorders of consciousness who were in a vegetative state (n = 6) or in a minimally conscious state (n = 3) or who emerged from a minimally conscious state (n = 2) participated in the brain-computer interface-based experiment. During the experiment, the patients with disorders of consciousness were instructed to perform three tasks, i.e., number recognition, number comparison, and mental calculation, including addition and subtraction. In each experimental trial, an arithmetic problem was first presented. Next, two number buttons, only one of which was the correct answer to the problem, flickered at different frequencies to evoke steady state visual evoked potentials, while the frames of the two buttons flashed in a random order to evoke P300 potentials. The patients needed to focus on the target number button (the correct answer). Finally, the brain-computer interface system detected P300 and steady state visual evoked potentials to determine the button to which the patients attended, further presenting the results as feedback. Two of the six patients who were in a vegetative state, one of the three patients who were in a minimally conscious state, and

  4. Decreased somatosensory activity to non-threatening touch in combat veterans with posttraumatic stress disorder.

    Science.gov (United States)

    Badura-Brack, Amy S; Becker, Katherine M; McDermott, Timothy J; Ryan, Tara J; Becker, Madelyn M; Hearley, Allison R; Heinrichs-Graham, Elizabeth; Wilson, Tony W

    2015-08-30

    Posttraumatic stress disorder (PTSD) is a severe psychiatric disorder prevalent in combat veterans. Previous neuroimaging studies have demonstrated that patients with PTSD exhibit abnormal responses to non-threatening visual and auditory stimuli, but have not examined somatosensory processing. Thirty male combat veterans, 16 with PTSD and 14 without, completed a tactile stimulation task during a 306-sensor magnetoencephalography (MEG) recording. Significant oscillatory neural responses were imaged using a beamforming approach. Participants also completed clinical assessments of PTSD, combat exposure, and depression. We found that veterans with PTSD exhibited significantly reduced activity during early (0-125 ms) tactile processing compared with combat controls. Specifically, veterans with PTSD had weaker activity in the left postcentral gyrus, left superior parietal area, and right prefrontal cortex in response to nonthreatening tactile stimulation relative to veterans without PTSD. The magnitude of activity in these brain regions was inversely correlated with symptom severity, indicating that those with the most severe PTSD had the most abnormal neural responses. Our findings are consistent with a resource allocation view of perceptual processing in PTSD, which directs attention away from nonthreatening sensory information. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Reducing proactive aggression through non-invasive brain stimulation

    Science.gov (United States)

    Schuhmann, Teresa; Lobbestael, Jill; Arntz, Arnoud; Brugman, Suzanne; Sack, Alexander T.

    2015-01-01

    Aggressive behavior poses a threat to human collaboration and social safety. It is of utmost importance to identify the functional mechanisms underlying aggression and to develop potential interventions capable of reducing dysfunctional aggressive behavior already at a brain level. We here experimentally shifted fronto-cortical asymmetry to manipulate the underlying motivational emotional states in both male and female participants while assessing the behavioral effects on proactive and reactive aggression. Thirty-two healthy volunteers received either anodal transcranial direct current stimulation to increase neural activity within right dorsolateral prefrontal cortex, or sham stimulation. Aggressive behavior was measured with the Taylor Aggression Paradigm. We revealed a general gender effect, showing that men displayed more behavioral aggression than women. After the induction of right fronto-hemispheric dominance, proactive aggression was reduced in men. This study demonstrates that non-invasive brain stimulation can reduce aggression in men. This is a relevant and promising step to better understand how cortical brain states connect to impulsive actions and to examine the causal role of the prefrontal cortex in aggression. Ultimately, such findings could help to examine whether the brain can be a direct target for potential supportive interventions in clinical settings dealing with overly aggressive patients and/or violent offenders. PMID:25680991

  6. Closed-loop brain-machine-body interfaces for noninvasive rehabilitation of movement disorders.

    Science.gov (United States)

    Broccard, Frédéric D; Mullen, Tim; Chi, Yu Mike; Peterson, David; Iversen, John R; Arnold, Mike; Kreutz-Delgado, Kenneth; Jung, Tzyy-Ping; Makeig, Scott; Poizner, Howard; Sejnowski, Terrence; Cauwenberghs, Gert

    2014-08-01

    Traditional approaches for neurological rehabilitation of patients affected with movement disorders, such as Parkinson's disease (PD), dystonia, and essential tremor (ET) consist mainly of oral medication, physical therapy, and botulinum toxin injections. Recently, the more invasive method of deep brain stimulation (DBS) showed significant improvement of the physical symptoms associated with these disorders. In the past several years, the adoption of feedback control theory helped DBS protocols to take into account the progressive and dynamic nature of these neurological movement disorders that had largely been ignored so far. As a result, a more efficient and effective management of PD cardinal symptoms has emerged. In this paper, we review closed-loop systems for rehabilitation of movement disorders, focusing on PD, for which several invasive and noninvasive methods have been developed during the last decade, reducing the complications and side effects associated with traditional rehabilitation approaches and paving the way for tailored individual therapeutics. We then present a novel, transformative, noninvasive closed-loop framework based on force neurofeedback and discuss several future developments of closed-loop systems that might bring us closer to individualized solutions for neurological rehabilitation of movement disorders.

  7. Differences in 99mTc-HMPAO brain SPET perfusion imaging between Tourette's syndrome and chronic tic disorder in children

    International Nuclear Information System (INIS)

    Chiu, N.-T.; Lee, B.-F.; Chang, Y.-C.; Huang, C.-C.; Wang, S.-T.

    2001-01-01

    Early differential diagnosis between Tourette's syndrome and chronic tic disorder is difficult but important because both the outcome and the treatment of these two childhood-onset diseases are distinct. We assessed the sensitivity and specificity of brain single-photon emission tomography (SPET) perfusion imaging in distinguishing the two diseases, and characterized their different cerebral perfusion patterns. Twenty-seven children with Tourette's syndrome and 11 with chronic tic disorder (mean age 9.5 and 8.6 years, respectively) underwent brain SPET with technetium-99m hexamethylpropylene amine oxime (HMPAO). Visual interpretation and semi-quantitative analysis of SPET images were performed. On visual interpretation, 22 of 27 (82%) of the Tourette's syndrome group had lesions characterized by decreased perfusion. The left hemisphere was more frequently involved. None of the children with chronic tic disorder had a visible abnormality. Semi-quantitative analysis showed that, compared with children with chronic tic disorder, children with Tourette's syndrome had significantly lower perfusion in the left lateral temporal area and asymmetric perfusion in the dorsolateral frontal, lateral and medial temporal areas. In conclusion, using the visual approach, brain SPET perfusion imaging is sensitive and specific in differentiating Tourette's syndrome and chronic tic disorder. The perfusion difference between the two groups, demonstrated by semi-quantitative analysis, may be related more to the co-morbidity in Tourette's syndrome than to tics per se. (orig.)

  8. Delineating SPTAN1 associated phenotypes: from isolated epilepsy to encephalopathy with progressive brain atrophy.

    Science.gov (United States)

    Syrbe, Steffen; Harms, Frederike L; Parrini, Elena; Montomoli, Martino; Mütze, Ulrike; Helbig, Katherine L; Polster, Tilman; Albrecht, Beate; Bernbeck, Ulrich; van Binsbergen, Ellen; Biskup, Saskia; Burglen, Lydie; Denecke, Jonas; Heron, Bénédicte; Heyne, Henrike O; Hoffmann, Georg F; Hornemann, Frauke; Matsushige, Takeshi; Matsuura, Ryuki; Kato, Mitsuhiro; Korenke, G Christoph; Kuechler, Alma; Lämmer, Constanze; Merkenschlager, Andreas; Mignot, Cyril; Ruf, Susanne; Nakashima, Mitsuko; Saitsu, Hirotomo; Stamberger, Hannah; Pisano, Tiziana; Tohyama, Jun; Weckhuysen, Sarah; Werckx, Wendy; Wickert, Julia; Mari, Francesco; Verbeek, Nienke E; Møller, Rikke S; Koeleman, Bobby; Matsumoto, Naomichi; Dobyns, William B; Battaglia, Domenica; Lemke, Johannes R; Kutsche, Kerstin; Guerrini, Renzo

    2017-09-01

    De novo in-frame deletions and duplications in the SPTAN1 gene, encoding the non-erythrocyte αII spectrin, have been associated with severe West syndrome with hypomyelination and pontocerebellar atrophy. We aimed at comprehensively delineating the phenotypic spectrum associated with SPTAN1 mutations. Using different molecular genetic techniques, we identified 20 patients with a pathogenic or likely pathogenic SPTAN1 variant and reviewed their clinical, genetic and imaging data. SPTAN1 de novo alterations included seven unique missense variants and nine in-frame deletions/duplications of which 12 were novel. The recurrent three-amino acid duplication p.(Asp2303_Leu2305dup) occurred in five patients. Our patient cohort exhibited a broad spectrum of neurodevelopmental phenotypes, comprising six patients with mild to moderate intellectual disability, with or without epilepsy and behavioural disorders, and 14 patients with infantile epileptic encephalopathy, of which 13 had severe neurodevelopmental impairment and four died in early childhood. Imaging studies suggested that the severity of neurological impairment and epilepsy correlates with that of structural abnormalities as well as the mutation type and location. Out of seven patients harbouring mutations outside the α/β spectrin heterodimerization domain, four had normal brain imaging and three exhibited moderately progressive brain and/or cerebellar atrophy. Twelve of 13 patients with mutations located within the spectrin heterodimer contact site exhibited severe and progressive brain, brainstem and cerebellar atrophy, with hypomyelination in most. We used fibroblasts from five patients to study spectrin aggregate formation by Triton-X extraction and immunocytochemistry followed by fluorescence microscopy. αII/βII aggregates and αII spectrin in the insoluble protein fraction were observed in fibroblasts derived from patients with the mutations p.(Glu2207del), p.(Asp2303_Leu2305dup) and p.(Arg2308_Met2309dup

  9. Evidence that non-dreamers do dream: a REM sleep behaviour disorder model.

    Science.gov (United States)

    Herlin, Bastien; Leu-Semenescu, Smaranda; Chaumereuil, Charlotte; Arnulf, Isabelle

    2015-12-01

    To determine whether non-dreamers do not produce dreams or do not recall them, subjects were identified with no dream recall with dreamlike behaviours during rapid eye movement sleep behaviour disorder, which is typically characterised by dream-enacting behaviours congruent with sleep mentation. All consecutive patients with idiopathic rapid eye movement sleep behaviour disorder or rapid eye movement sleep behaviour disorder associated with Parkinson's disease who underwent a video-polysomnography were interviewed regarding the presence or absence of dream recall, retrospectively or upon spontaneous arousals. The patients with no dream recall for at least 10 years, and never-ever recallers were compared with dream recallers with rapid eye movement sleep behaviour disorder regarding their clinical, cognitive and sleep features. Of the 289 patients with rapid eye movement sleep behaviour disorder, eight (2.8%) patients had no dream recall, including four (1.4%) patients who had never ever recalled dreams, and four patients who had no dream recall for 10-56 years. All non-recallers exhibited, daily or almost nightly, several complex, scenic and dreamlike behaviours and speeches, which were also observed during rapid eye movement sleep on video-polysomnography (arguing, fighting and speaking). They did not recall a dream following sudden awakenings from rapid eye movement sleep. These eight non-recallers with rapid eye movement sleep behaviour disorder did not differ in terms of cognition, clinical, treatment or sleep measures from the 17 dreamers with rapid eye movement sleep behaviour disorder matched for age, sex and disease. The scenic dreamlike behaviours reported and observed during rapid eye movement sleep in the rare non-recallers with rapid eye movement sleep behaviour disorder (even in the never-ever recallers) provide strong evidence that non-recallers produce dreams, but do not recall them. Rapid eye movement sleep behaviour disorder provides a new model to

  10. Machine learning classifier using abnormal brain network topological metrics in major depressive disorder.

    Science.gov (United States)

    Guo, Hao; Cao, Xiaohua; Liu, Zhifen; Li, Haifang; Chen, Junjie; Zhang, Kerang

    2012-12-05

    Resting state functional brain networks have been widely studied in brain disease research. However, it is currently unclear whether abnormal resting state functional brain network metrics can be used with machine learning for the classification of brain diseases. Resting state functional brain networks were constructed for 28 healthy controls and 38 major depressive disorder patients by thresholding partial correlation matrices of 90 regions. Three nodal metrics were calculated using graph theory-based approaches. Nonparametric permutation tests were then used for group comparisons of topological metrics, which were used as classified features in six different algorithms. We used statistical significance as the threshold for selecting features and measured the accuracies of six classifiers with different number of features. A sensitivity analysis method was used to evaluate the importance of different features. The result indicated that some of the regions exhibited significantly abnormal nodal centralities, including the limbic system, basal ganglia, medial temporal, and prefrontal regions. Support vector machine with radial basis kernel function algorithm and neural network algorithm exhibited the highest average accuracy (79.27 and 78.22%, respectively) with 28 features (Pdisorder is associated with abnormal functional brain network topological metrics and statistically significant nodal metrics can be successfully used for feature selection in classification algorithms.

  11. Mast Cell Activation in Brain Injury, Stress, and Post-traumatic Stress Disorder and Alzheimer's Disease Pathogenesis.

    Science.gov (United States)

    Kempuraj, Duraisamy; Selvakumar, Govindhasamy P; Thangavel, Ramasamy; Ahmed, Mohammad E; Zaheer, Smita; Raikwar, Sudhanshu P; Iyer, Shankar S; Bhagavan, Sachin M; Beladakere-Ramaswamy, Swathi; Zaheer, Asgar

    2017-01-01

    Mast cells are localized throughout the body and mediate allergic, immune, and inflammatory reactions. They are heterogeneous, tissue-resident, long-lived, and granulated cells. Mast cells increase their numbers in specific site in the body by proliferation, increased recruitment, increased survival, and increased rate of maturation from its progenitors. Mast cells are implicated in brain injuries, neuropsychiatric disorders, stress, neuroinflammation, and neurodegeneration. Brain mast cells are the first responders before microglia in the brain injuries since mast cells can release prestored mediators. Mast cells also can detect amyloid plaque formation during Alzheimer's disease (AD) pathogenesis. Stress conditions activate mast cells to release prestored and newly synthesized inflammatory mediators and induce increased blood-brain barrier permeability, recruitment of immune and inflammatory cells into the brain and neuroinflammation. Stress induces the release of corticotropin-releasing hormone (CRH) from paraventricular nucleus of hypothalamus and mast cells. CRH activates glial cells and mast cells through CRH receptors and releases neuroinflammatory mediators. Stress also increases proinflammatory mediator release in the peripheral systems that can induce and augment neuroinflammation. Post-traumatic stress disorder (PTSD) is a traumatic-chronic stress related mental dysfunction. Currently there is no specific therapy to treat PTSD since its disease mechanisms are not yet clearly understood. Moreover, recent reports indicate that PTSD could induce and augment neuroinflammation and neurodegeneration in the pathogenesis of neurodegenerative diseases. Mast cells play a crucial role in the peripheral inflammation as well as in neuroinflammation due to brain injuries, stress, depression, and PTSD. Therefore, mast cells activation in brain injury, stress, and PTSD may accelerate the pathogenesis of neuroinflammatory and neurodegenerative diseases including AD. This

  12. Mast Cell Activation in Brain Injury, Stress, and Post-traumatic Stress Disorder and Alzheimer's Disease Pathogenesis

    Directory of Open Access Journals (Sweden)

    Duraisamy Kempuraj

    2017-12-01

    Full Text Available Mast cells are localized throughout the body and mediate allergic, immune, and inflammatory reactions. They are heterogeneous, tissue-resident, long-lived, and granulated cells. Mast cells increase their numbers in specific site in the body by proliferation, increased recruitment, increased survival, and increased rate of maturation from its progenitors. Mast cells are implicated in brain injuries, neuropsychiatric disorders, stress, neuroinflammation, and neurodegeneration. Brain mast cells are the first responders before microglia in the brain injuries since mast cells can release prestored mediators. Mast cells also can detect amyloid plaque formation during Alzheimer's disease (AD pathogenesis. Stress conditions activate mast cells to release prestored and newly synthesized inflammatory mediators and induce increased blood-brain barrier permeability, recruitment of immune and inflammatory cells into the brain and neuroinflammation. Stress induces the release of corticotropin-releasing hormone (CRH from paraventricular nucleus of hypothalamus and mast cells. CRH activates glial cells and mast cells through CRH receptors and releases neuroinflammatory mediators. Stress also increases proinflammatory mediator release in the peripheral systems that can induce and augment neuroinflammation. Post-traumatic stress disorder (PTSD is a traumatic-chronic stress related mental dysfunction. Currently there is no specific therapy to treat PTSD since its disease mechanisms are not yet clearly understood. Moreover, recent reports indicate that PTSD could induce and augment neuroinflammation and neurodegeneration in the pathogenesis of neurodegenerative diseases. Mast cells play a crucial role in the peripheral inflammation as well as in neuroinflammation due to brain injuries, stress, depression, and PTSD. Therefore, mast cells activation in brain injury, stress, and PTSD may accelerate the pathogenesis of neuroinflammatory and neurodegenerative diseases

  13. Brain 99Tcm-ECD SPECT imaging in patients with obsessive-compulsive disorder

    International Nuclear Information System (INIS)

    Sun Da; Zhan Hongwei; Ye Xiaojuan; He Gangqiang

    2010-01-01

    Purpose Obsessive-compulsive disorder (OCD) is a chronic anxiety disorder of unknown aetiology. The purpose of the study is to evaluate the changes of brain function in patients with OCD. Methods: Regional cerebral perfusion was investigated using SPECT in 25 patients with OCD. The mean ages of the patients were 29.04 (1 8-46) years old. The clinical symptom consists of repeating thinking (suspect, worry, nervous) and repeating action (checking, washing, counting, making telephone calls) principally. After administration of 740-925 MBq (20-25 mCi) 99mTc-ECD a single photon emission tomography study was performed and then transaxial, sagittal and coronal slices were obtained. For the semiquantitative analysis of the data Results: 92 per cent of patients (23125) had relative hypoperfusions in some cerebral regions. The patients had a significant decrease of rCBF in the frontal lobes, temporal lobes, basal ganglia, thalamus, and cingulate gyrus. There were no correlation between the change of rCBF and age of age or course of disease. But there were some correlation with clinical symptom. Conclusion: Obsessive-compulsive disorder (OCD) has been linked to a dysfunction of brain orbitofrontal-striatum-pallidum-thalamus networks that were confirmed by PET SPECT functional imaging studies. These study indicated hypoperfusion in frontal lobes, basal ganglion, thalamus in OCD patients, and suggests a reduced serotonergic input into the fronto-subcortical circuits in OCD, thereby diminishing the inhibitory regulation of serotonin on these circuits. According to our results, patients with OCD had profound dysfunction of the frontal and temporal cortices, and basal ganglia. These may reflect a fundamental feature of clinical neuropathophysiology in OCD, and support previous findings about dysfunction of frontal-subcortical circuits in this disorder. (authors)

  14. What are the disruptive symptoms of behavioral disorders after traumatic brain injury? A systematic review leading to recommendations for good practices.

    Science.gov (United States)

    Stéfan, Angélique; Mathé, Jean-François

    2016-02-01

    Behavioral disorders are major sequelae of severe traumatic brain injury. Before considering care management of these disorders, and in the absence of a precise definition for TBI-related behavioral disorder, it is essential to refine, according to the data from the literature, incidence, prevalence, predictive factors of commonly admitted disruptive symptoms. Systematic review of the literature targeting epidemiological data related to behavioral disorders after traumatic brain injury in order to elaborate good practice recommendations according to the methodology established by the French High Authority for Health. Two hundred and ninety-nine articles were identified. The responsibility of traumatic brain injury (TBI) in the onset of behavioral disorders is unequivocal. Globally, behavioral disorders are twice more frequent after TBI than orthopedic trauma without TBI (Masson et al., 1996). These disorders are classified into disruptive primary behaviors by excess (agitation 11-70%, aggression 25-39%, irritability 29-71%, alcohol abuse 7-26% drug abuse 2-20%), disruptive primary behaviors by default (apathy 20-71%), affective disorders - anxiety - psychosis (depression 12-76%, anxiety 0.8-24,5%, posttraumatic stress 11-18%, obsessive-compulsive disorders 1.2-30%, psychosis 0.7%), suicide attempts and suicide 1%. The improvement of care management for behavioral disorders goes through a first step of defining a common terminology. Four categories of posttraumatic behavioral clinical symptoms are defined: disruptive primary behaviors by excess, by default, affective disorders-psychosis-anxiety, suicide attempts and suicide. All these symptoms yield a higher prevalence than in the general population. They impact all of life's domains and are sustainable over time. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. Truncation of a P1 leader proteinase facilitates potyvirus replication in a non-permissive host.

    Science.gov (United States)

    Shan, Hongying; Pasin, Fabio; Tzanetakis, Ioannis E; Simón-Mateo, Carmen; García, Juan Antonio; Rodamilans, Bernardo

    2017-11-08

    The Potyviridae family is a major group of plant viruses that includes c. 200 species, most of which have narrow host ranges. The potyvirid P1 leader proteinase self-cleaves from the remainder of the viral polyprotein and shows large sequence variability linked to host adaptation. P1 proteins can be classified as Type A or Type B on the basis, amongst other things, of their dependence or not on a host factor to develop their protease activity. In this work, we studied Type A proteases from the Potyviridae family, characterizing their host factor requirements. Our in vitro cleavage analyses of potyvirid P1 proteases showed that the N-terminal domain is relevant for host factor interaction and suggested that the C-terminal domain is also involved. In the absence of plant factors, the N-terminal end of Plum pox virus P1 antagonizes protease self-processing. We performed extended deletion mutagenesis analysis to define the N-terminal antagonistic domain of P1. In viral infections, removal of the P1 protease antagonistic domain led to a gain-of-function phenotype, strongly increasing local infection in a non-permissive host. Altogether, our results shed new insights into the adaptation and evolution of potyvirids. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  16. Plasma non-esterified docosahexaenoic acid is the major pool supplying the brain.

    Science.gov (United States)

    Chen, Chuck T; Kitson, Alex P; Hopperton, Kathryn E; Domenichiello, Anthony F; Trépanier, Marc-Olivier; Lin, Lauren E; Ermini, Leonardo; Post, Martin; Thies, Frank; Bazinet, Richard P

    2015-10-29

    Despite being critical for normal brain function, the pools that supply docosahexaenoic acid (DHA) to the brain are not agreed upon. Using multiple kinetic models in free-living adult rats, we first demonstrate that DHA uptake from the plasma non-esterified fatty acid (NEFA) pool predicts brain uptake of DHA upon oral administration, which enters the plasma NEFA pool as well as multiple plasma esterified pools. The rate of DHA loss by the brain is similar to the uptake from the plasma NEFA pool. Furthermore, upon acute iv administration, although more radiolabeled lysophosphatidylcholine (LPC)-DHA enters the brain than NEFA-DHA, this is due to the longer plasma half-life and exposure to the brain. Direct comparison of the uptake rate of LPC-DHA and NEFA-DHA demonstrates that uptake of NEFA-DHA into the brain is 10-fold greater than LPC-DHA. In conclusion, plasma NEFA-DHA is the major plasma pool supplying the brain.

  17. Brain activation during self- and other-reflection in bipolar disorder with a history of psychosis: Comparison to schizophrenia

    OpenAIRE

    Zhang, Liwen; Opmeer, Esther M.; Ruhe, Henricus G.; Aleman, Andre; van der Meer, Lisette

    2015-01-01

    Objectives: Reflecting on the self and on others activates specific brain areas and contributes to metacognition and social cognition. The aim of the current study is to investigate brain activation during self-and other-reflection in patients with bipolar disorder (BD). In addition, we examined whether potential abnormal brain activation in BD patients could distinguish BD from patients with schizophrenia (SZ). Methods: During functional magnetic resonance imaging (fMRI), 17 BD patients, 17 ...

  18. Quantitative analysis of diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) for brain disorders

    Science.gov (United States)

    Lee, Jae-Seung; Im, In-Chul; Kang, Su-Man; Goo, Eun-Hoe; Kwak, Byung-Joon

    2013-07-01

    This study aimed to quantitatively analyze data from diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) in patients with brain disorders and to assess its potential utility for analyzing brain function. DTI was obtained by performing 3.0-T magnetic resonance imaging for patients with Alzheimer's disease (AD) and vascular dementia (VD), and the data were analyzed using Matlab-based SPM software. The two-sample t-test was used for error analysis of the location of the activated pixels. We compared regions of white matter where the fractional anisotropy (FA) values were low and the apparent diffusion coefficients (ADCs) were increased. In the AD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right sub-lobar insula, and right occipital lingual gyrus whereas the ADCs were significantly increased in the right inferior frontal gyrus and right middle frontal gyrus. In the VD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right limbic cingulate gyrus, and right sub-lobar caudate tail whereas the ADCs were significantly increased in the left lateral globus pallidus and left medial globus pallidus. In conclusion by using DTI and SPM analysis, we were able to not only determine the structural state of the regions affected by brain disorders but also quantitatively analyze and assess brain function.

  19. Common brain activations for painful and non-painful aversive stimuli

    Directory of Open Access Journals (Sweden)

    Hayes Dave J

    2012-06-01

    Full Text Available Abstract Background Identification of potentially harmful stimuli is necessary for the well-being and self-preservation of all organisms. However, the neural substrates involved in the processing of aversive stimuli are not well understood. For instance, painful and non-painful aversive stimuli are largely thought to activate different neural networks. However, it is presently unclear whether there is a common aversion-related network of brain regions responsible for the basic processing of aversive stimuli. To help clarify this issue, this report used a cross-species translational approach in humans (i.e. meta-analysis and rodents (i.e. systematic review of functional neuroanatomy. Results Animal and human data combined to show a core aversion-related network, consisting of similar cortical (i.e. MCC, PCC, AI, DMPFC, RTG, SMA, VLOFC; see results section or abbreviation section for full names and subcortical (i.e. Amyg, BNST, DS, Hab, Hipp/Parahipp, Hyp, NAc, NTS, PAG, PBN, raphe, septal nuclei, Thal, LC, midbrain regions. In addition, a number of regions appeared to be more involved in pain-related (e.g. sensory cortex or non-pain-related (e.g. amygdala aversive processing. Conclusions This investigation suggests that aversive processing, at the most basic level, relies on similar neural substrates, and that differential responses may be due, in part, to the recruitment of additional structures as well as the spatio-temporal dynamic activity of the network. This network perspective may provide a clearer understanding of why components of this circuit appear dysfunctional in some psychiatric and pain-related disorders.

  20. Mapping the structural organization of the brain in conduct disorder: replication of findings in two independent samples.

    Science.gov (United States)

    Fairchild, Graeme; Toschi, Nicola; Sully, Kate; Sonuga-Barke, Edmund J S; Hagan, Cindy C; Diciotti, Stefano; Goodyer, Ian M; Calder, Andrew J; Passamonti, Luca

    2016-09-01

    Neuroimaging methods that allow researchers to investigate structural covariance between brain regions are increasingly being used to study psychiatric disorders. Structural covariance analyses are particularly well suited for studying disorders with putative neurodevelopmental origins as they appear sensitive to changes in the synchronized maturation of different brain regions. We assessed interregional correlations in cortical thickness as a measure of structural covariance, and applied this method to investigate the coordinated development of different brain regions in conduct disorder (CD). We also assessed whether structural covariance measures could differentiate between the childhood-onset (CO-CD) and adolescence-onset (AO-CD) subtypes of CD, which may differ in terms of etiology and adult outcomes. We examined interregional correlations in cortical thickness in male youths with CO-CD or AO-CD relative to healthy controls (HCs) in two independent datasets. The age range in the Cambridge sample was 16-21 years (mean: 18.0), whereas the age range of the Southampton sample was 13-18 years (mean: 16.7). We used FreeSurfer to perform segmentations and applied structural covariance methods to the resulting parcellations. In both samples, CO-CD participants displayed a strikingly higher number of significant cross-cortical correlations compared to HC or AO-CD participants, whereas AO-CD participants presented fewer significant correlations than HCs. Group differences in the strength of the interregional correlations were observed in both samples, and each set of results remained significant when controlling for IQ and comorbid attention-deficit/hyperactivity disorder symptoms. This study provides new evidence for quantitative differences in structural brain organization between the CO-CD and AO-CD subtypes, and supports the hypothesis that both subtypes of CD have neurodevelopmental origins. © 2016 The Authors. Journal of Child Psychology and Psychiatry

  1. Brain perfusion single photon emission computed tomography in major psychiatric disorders: From basics to clinical practice

    International Nuclear Information System (INIS)

    Santra, Amburanjan; Kumar, Rakesh

    2014-01-01

    Brain single photon emission computed tomography (SPECT) is a well-established and reliable method to assess brain function through measurement of regional cerebral blood flow (rCBF). It can be used to define a patient's pathophysiological status when neurological or psychiatric symptoms cannot be explained by anatomical neuroimaging findings. Though there is ample evidence validating brain SPECT as a technique to track human behavior and correlating psychiatric disorders with dysfunction of specific brain regions, only few psychiatrists have adopted brain SPECT in routine clinical practice. It can be utilized to evaluate the involvement of brain regions in a particular patient, to individualize treatment on basis of SPECT findings, to monitor the treatment response and modify treatment, if necessary. In this article, we have reviewed the available studies in this regard from existing literature and tried to present the evidence for establishing the clinical role of brain SPECT in major psychiatric illnesses

  2. Enhancing Brain Lesions during Acute Optic Neuritis and/or Longitudinally Extensive Transverse Myelitis May Portend a Higher Relapse Rate in Neuromyelitis Optica Spectrum Disorders.

    Science.gov (United States)

    Orman, G; Wang, K Y; Pekcevik, Y; Thompson, C B; Mealy, M; Levy, M; Izbudak, I

    2017-05-01

    Neuromyelitis optica spectrum disorders are inflammatory demyelinating disorders with optic neuritis and/or longitudinally extensive transverse myelitis episodes. We now know that neuromyelitis optica spectrum disorders are associated with antibodies to aquaporin-4, which are highly concentrated on astrocytic end-feet at the blood-brain barrier. Immune-mediated disruption of the blood-brain barrier may manifest as contrast enhancement on brain MR imaging. We aimed to delineate the extent and frequency of contrast enhancement on brain MR imaging within 1 month of optic neuritis and/or longitudinally extensive transverse myelitis attacks and to correlate contrast enhancement with outcome measures. Brain MRIs of patients with neuromyelitis optica spectrum disorders were evaluated for patterns of contrast enhancement (periependymal, cloudlike, leptomeningeal, and so forth). The Fisher exact test was used to evaluate differences between the proportion of contrast enhancement in patients who were seropositive and seronegative for aquaporin-4 antibodies. The Mann-Whitney test was used to compare the annualized relapse rate and disease duration between patients with and without contrast enhancement and with and without seropositivity. Brain MRIs of 77 patients were evaluated; 59 patients (10 males, 49 females) were scanned within 1 month of optic neuritis and/or longitudinally extensive transverse myelitis attacks and were included in the analysis. Forty-eight patients were seropositive, 9 were seronegative, and 2 were not tested for aquaporin-4 antibodies. Having brain contrast enhancement of any type during an acute attack was significantly associated with higher annualized relapse rates ( P = .03) and marginally associated with shorter disease duration ( P = .05). Having periependymal contrast enhancement was significantly associated with higher annualized relapse rates ( P = .03). Brain MRIs of patients with neuromyelitis optica spectrum disorders with contrast

  3. PET brain imaging in HIV-associated neurocognitive disorders (HAND) in the era of combination antiretroviral therapy

    Energy Technology Data Exchange (ETDEWEB)

    Vera, Jaime H. [Brighton and Sussex Medical School, Department of Infection and Global Health, Brighton (United Kingdom); Brighton and Sussex University Hospitals NHS Trust, HIV Department, Brighton (United Kingdom); Ridha, Basil [Brighton and Sussex University Hospitals NHS Trust, Neurology Department, Brighton (United Kingdom); Gilleece, Yvonne; Amlani, Aliza [Brighton and Sussex University Hospitals NHS Trust, HIV Department, Brighton (United Kingdom); Thorburn, Patrick; Dizdarevic, Sabina [Brighton and Sussex University Hospitals NHS Trust, Imaging and Nuclear Medicine Department, Brighton (United Kingdom); Brighton and Sussex Medical School, Clinical Imaging Science Centre, Brighton (United Kingdom)

    2017-05-15

    Effective combination antiretroviral therapy (cART) has lead to a significant reduction in the prevalence and incidence of central nervous system (CNS) HIV-associated brain disease, particularly CNS opportunistic infections and HIV encephalitis. Despite this, cognitive deficits in people living with HIV, also known as HIV-associated neurocognitive disorders (HAND) have become more prevalent in recent years. The pathogenesis of HAND is likely to be multifactorial, however recent evidence suggests that brain microglial activation is the most likely pathogenic mechanism. Recent developments in positron emission tomography (PET) brain neuroimaging using novel brain radioligands targeting a variety of physiological changes in the brains of HIV-positive individuals have improved our understanding of the mechanisms associated with the development of HAND. This review will highlight recent PET brain neuroimaging studies in the cART era, focusing on physiological and neurochemical changes associated with HAND in people living with HIV. (orig.)

  4. PET brain imaging in HIV-associated neurocognitive disorders (HAND) in the era of combination antiretroviral therapy

    International Nuclear Information System (INIS)

    Vera, Jaime H.; Ridha, Basil; Gilleece, Yvonne; Amlani, Aliza; Thorburn, Patrick; Dizdarevic, Sabina

    2017-01-01

    Effective combination antiretroviral therapy (cART) has lead to a significant reduction in the prevalence and incidence of central nervous system (CNS) HIV-associated brain disease, particularly CNS opportunistic infections and HIV encephalitis. Despite this, cognitive deficits in people living with HIV, also known as HIV-associated neurocognitive disorders (HAND) have become more prevalent in recent years. The pathogenesis of HAND is likely to be multifactorial, however recent evidence suggests that brain microglial activation is the most likely pathogenic mechanism. Recent developments in positron emission tomography (PET) brain neuroimaging using novel brain radioligands targeting a variety of physiological changes in the brains of HIV-positive individuals have improved our understanding of the mechanisms associated with the development of HAND. This review will highlight recent PET brain neuroimaging studies in the cART era, focusing on physiological and neurochemical changes associated with HAND in people living with HIV. (orig.)

  5. Two case study evaluations of an arts-based social skills intervention for adolescents with childhood brain disorder.

    Science.gov (United States)

    Agnihotri, Sabrina; Gray, Julia; Colantonio, Angela; Polatajko, Helene; Cameron, Debra; Wiseman-Hakes, Catherine; Rumney, Peter; Keightley, Michelle

    2012-01-01

    Arts-based programmes have been shown to be useful for individuals with disturbances in cognitive and behavioural functioning. The current case studies examined the feasibility and effectiveness of a theatre skills training programme to facilitate social skills and participation for adolescents with childhood brain disorder. A case study approach was used with two adolescent participants. Focus groups were conducted immediately post-intervention, while a battery of quantitative measures were administered pre- and post-treatment, as well as 8 months post-treatment. Perceived and documented improvements in social skills and participation were observed from pre- to post-intervention and at follow-up. Results support the use of an arts-based intervention for youth with brain injuries to facilitate social skills and participation. Findings also highlight the need for more sensitive measures of these skills for youth with childhood brain disorder, who may have impaired awareness of their abilities and/or impairments in memory and language comprehension.

  6. [Sleep disturbances in children with autistic spectrum disorders].

    Science.gov (United States)

    Kelmanson, I A

    2015-01-01

    An association between sleep disorders and autistic spectrum disorders in children is considered. Characteristic variants of sleep disorders, including resistance to going to bed, frequent night awakenings, parasomnias, changes in sleep structure, primarily, the decrease in the percentage of rapid eye movement sleep, are presented. Attention is focused on the possibility of the direct relationship between sleep disturbance and the pathogenesis of autistic spectrum disorders. A role of pathological alterations in the production of neuromediators and morphological changes in the brain structures characteristic of autistic spectrum disorders in the genesis of sleep disorders in children is discussed. Possible non-pharmacological and pharmacological approaches are suggested.

  7. Brain propagation of transduced α-synuclein involves non-fibrillar protein species and is enhanced in α-synuclein null mice.

    Science.gov (United States)

    Helwig, Michael; Klinkenberg, Michael; Rusconi, Raffaella; Musgrove, Ruth E; Majbour, Nour K; El-Agnaf, Omar M A; Ulusoy, Ayse; Di Monte, Donato A

    2016-03-01

    oligomeric, fibrillar and/or total (monomeric and aggregated) α-synuclein. Following viral vector transduction, monomeric, oligomeric and fibrillar protein was detected within donor neurons in the medulla oblongata. In contrast, recipient axons in the pons were devoid of immunoreactivity for fibrillar α-synuclein, indicating that non-fibrillar forms of α-synuclein were primarily transferred from one neuron to the other, diffused within the brain and led to initial neuronal injury. This study elucidates a paradigm of α-synuclein propagation that may play a particularly important role under pathophysiological conditions associated with enhanced α-synuclein expression. Rapid long-distance diffusion and accumulation of monomeric and oligomeric α-synuclein does not necessarily involve pathological seeding but could still result in a significant neuronal burden during the pathogenesis of neurodegenerative diseases. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Psychiatric disorders among war-abducted and non-abducted ...

    African Journals Online (AJOL)

    Psychiatric disorders among war-abducted and non-abducted adolescents in Gulu district, ... Log in or Register to get access to full text downloads. ... and the Mini International Neural-Psychiatric Interview for Children and Adolescents English ...

  9. Traumatic Brain Injury, Sleep Disorders, and Psychiatric Disorders: An Underrecognized Relationship

    Directory of Open Access Journals (Sweden)

    Anne M. Morse

    2018-02-01

    Full Text Available Traumatic brain injury (TBI is commonplace among pediatric patients and has a complex, but intimate relationship with psychiatric disease and disordered sleep. Understanding the factors that influence the risk for the development of TBI in pediatrics is a critical component of beginning to address the consequences of TBI. Features that may increase risk for experiencing TBI sometimes overlap with factors that influence the development of post-concussive syndrome (PCS and recovery course. Post-concussive syndrome includes physical, psychological, cognitive and sleep–wake dysfunction. The comorbid presence of sleep–wake dysfunction and psychiatric symptoms can lead to a more protracted recovery and deleterious outcomes. Therefore, a multidisciplinary evaluation following TBI is necessary. Treatment is generally symptom specific and mainly based on adult studies. Further research is necessary to enhance diagnostic and therapeutic approaches, as well as improve the understanding of contributing pathophysiology for the shared development of psychiatric disease and sleep–wake dysfunction following TBI.

  10. Improving protein disorder prediction by deep bidirectional long short-term memory recurrent neural networks.

    Science.gov (United States)

    Hanson, Jack; Yang, Yuedong; Paliwal, Kuldip; Zhou, Yaoqi

    2017-03-01

    Capturing long-range interactions between structural but not sequence neighbors of proteins is a long-standing challenging problem in bioinformatics. Recently, long short-term memory (LSTM) networks have significantly improved the accuracy of speech and image classification problems by remembering useful past information in long sequential events. Here, we have implemented deep bidirectional LSTM recurrent neural networks in the problem of protein intrinsic disorder prediction. The new method, named SPOT-Disorder, has steadily improved over a similar method using a traditional, window-based neural network (SPINE-D) in all datasets tested without separate training on short and long disordered regions. Independent tests on four other datasets including the datasets from critical assessment of structure prediction (CASP) techniques and >10 000 annotated proteins from MobiDB, confirmed SPOT-Disorder as one of the best methods in disorder prediction. Moreover, initial studies indicate that the method is more accurate in predicting functional sites in disordered regions. These results highlight the usefulness combining LSTM with deep bidirectional recurrent neural networks in capturing non-local, long-range interactions for bioinformatics applications. SPOT-disorder is available as a web server and as a standalone program at: http://sparks-lab.org/server/SPOT-disorder/index.php . j.hanson@griffith.edu.au or yuedong.yang@griffith.edu.au or yaoqi.zhou@griffith.edu.au. Supplementary data is available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  11. Longitudinal connectome-based predictive modeling for REM sleep behavior disorder from structural brain connectivity

    Science.gov (United States)

    Giancardo, Luca; Ellmore, Timothy M.; Suescun, Jessika; Ocasio, Laura; Kamali, Arash; Riascos-Castaneda, Roy; Schiess, Mya C.

    2018-02-01

    Methods to identify neuroplasticity patterns in human brains are of the utmost importance in understanding and potentially treating neurodegenerative diseases. Parkinson disease (PD) research will greatly benefit and advance from the discovery of biomarkers to quantify brain changes in the early stages of the disease, a prodromal period when subjects show no obvious clinical symptoms. Diffusion tensor imaging (DTI) allows for an in-vivo estimation of the structural connectome inside the brain and may serve to quantify the degenerative process before the appearance of clinical symptoms. In this work, we introduce a novel strategy to compute longitudinal structural connectomes in the context of a whole-brain data-driven pipeline. In these initial tests, we show that our predictive models are able to distinguish controls from asymptomatic subjects at high risk of developing PD (REM sleep behavior disorder, RBD) with an area under the receiving operating characteristic curve of 0.90 (pParkinson's Progression Markers Initiative. By analyzing the brain connections most relevant for the predictive ability of the best performing model, we find connections that are biologically relevant to the disease.

  12. Functional Neuroimaging Distinguishes Posttraumatic Stress Disorder from Traumatic Brain Injury in Focused and Large Community Datasets

    OpenAIRE

    Amen, Daniel G.; Raji, Cyrus A.; Willeumier, Kristen; Taylor, Derek; Tarzwell, Robert; Newberg, Andrew; Henderson, Theodore A.

    2015-01-01

    Background Traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD) are highly heterogeneous and often present with overlapping symptomology, providing challenges in reliable classification and treatment. Single photon emission computed tomography (SPECT) may be advantageous in the diagnostic separation of these disorders when comorbid or clinically indistinct. Methods Subjects were selected from a multisite database, where rest and on-task SPECT scans were obtained on a large gr...

  13. Sleep disorders and an increased risk of Parkinson's disease in individuals with non-apnea sleep disorders: a population-based cohort study.

    Science.gov (United States)

    Hsiao, Yi-Han; Chen, Yung-Tai; Tseng, Ching-Ming; Wu, Li-An; Perng, Diahn-Warng; Chen, Yuh-Min; Chen, Tzeng-Ji; Chang, Shi-Chuan; Chou, Kun-Ta

    2017-10-01

    Sleep disorders are common non-motor symptoms in patients with Parkinson's disease. Our study aims to explore the relationship between non-apnea sleep disorders and future Parkinson's disease. This is a cohort study using a nationwide database. The participants were recruited from the Taiwan National Health Insurance Research Database between 2000 and 2003. A total of 91 273 adult patients who had non-apnea sleep disorders without pre-existing Parkinson's disease were enrolled. An age-, gender-, income-, urbanization- and Charlson comorbidity index score-matched control cohort consisting of 91 273 participants was selected for comparison. The two cohorts were followed for the occurrence of Parkinson's disease, death or until the end of 2010, whichever came first. The Kaplan-Meier analyses revealed patients with non-apnea sleep disorders tended to develop Parkinson's disease (log-rank test, P sleep disorders was an independent risk factor for the development of Parkinson's disease [crude hazard ratio: 1.63, 95% confidence interval (CI): 1.54-1.73, P sleep disorders, especially chronic insomnia, are associated with a higher risk for future Parkinson's disease. © 2017 European Sleep Research Society.

  14. Radiological and clinical characterization of the lysosomal storage disorders: non-lipid disorders.

    Science.gov (United States)

    Parker, E I; Xing, M; Moreno-De-Luca, A; Harmouche, E; Terk, M R

    2014-01-01

    Lysosomal storage diseases (LSDs) are a large group of genetic metabolic disorders that result in the accumulation of abnormal material, such as mucopolysaccharides, glycoproteins, amino acids and lipids, within cells. Since many LSDs manifest during infancy or early childhood, with potentially devastating consequences if left untreated, timely identification is imperative to prevent irreversible damage and early death. In this review, the key imaging features of the non-lipid or extralipid LSDs are examined and correlated with salient clinical manifestations and genetic information. Disorders are stratified based on the type of excess material causing tissue or organ dysfunction, with descriptions of the mucopolysaccharidoses, mucolipidoses, alpha-mannosidosis, glycogen storage disorder II and cystinosis. In addition, similarities and differences in radiological findings between each of these LSDs are highlighted to facilitate further recognition. Given the rare and extensive nature of the LSDs, mastery of their multiple clinical and radiological traits may seem challenging. However, an understanding of the distinguishing imaging characteristics of LSDs and their clinical correlates may allow radiologists to play a key role in the early diagnosis of these progressive and potentially fatal disorders.

  15. State of the Art for Deep Brain Stimulation Therapy in Movement Disorders: A Clinical and Technological Perspective.

    Science.gov (United States)

    Wagle Shukla, Aparna; Okun, Michael S

    2016-01-01

    Deep brain stimulation (DBS) therapy is a widely used brain surgery that can be applied for many neurological and psychiatric disorders. DBS is American Food and Drug Administration approved for medication refractory Parkinson's disease, essential tremor and dystonia. Although DBS has shown consistent success in many clinical trials, the therapy has limitations and there are well-recognized complications. Thus, only carefully selected patients are ideal candidates for this surgery. Over the last two decades, there have been significant advances in clinical knowledge on DBS. In addition, the surgical techniques and technology related to DBS has been rapidly evolving. The goal of this review is to describe the current status of DBS in the context of movement disorders, outline the mechanisms of action for DBS in brief, discuss the standard surgical and imaging techniques, discuss the patient selection and clinical outcomes in each of the movement disorders, and finally, introduce the recent advancements from a clinical and technological perspective.

  16. Neural Mechanisms Underlying Affective Theory of Mind in Violent Antisocial Personality Disorder and/or Schizophrenia.

    Science.gov (United States)

    Schiffer, Boris; Pawliczek, Christina; Müller, Bernhard W; Wiltfang, Jens; Brüne, Martin; Forsting, Michael; Gizewski, Elke R; Leygraf, Norbert; Hodgins, Sheilagh

    2017-10-21

    Among violent offenders with schizophrenia, there are 2 sub-groups, one with and one without, conduct disorder (CD) and antisocial personality disorder (ASPD), who differ as to treatment response and alterations of brain structure. The present study aimed to determine whether the 2 groups also differ in Theory of Mind and neural activations subsuming this task. Five groups of men were compared: 3 groups of violent offenders-schizophrenia plus CD/ASPD, schizophrenia with no history of antisocial behavior prior to illness onset, and CD/ASPD with no severe mental illness-and 2 groups of non-offenders, one with schizophrenia and one without (H). Participants completed diagnostic interviews, the Psychopathy Checklist Screening Version Interview, the Interpersonal Reactivity Index, authorized access to clinical and criminal files, and underwent functional magnetic resonance imaging while completing an adapted version of the Reading-the-Mind-in-the-Eyes Task (RMET). Relative to H, nonviolent and violent men with schizophrenia and not CD/ASPD performed more poorly on the RMET, while violent offenders with CD/ASPD, both those with and without schizophrenia, performed similarly. The 2 groups of violent offenders with CD/ASPD, both those with and without schizophrenia, relative to the other groups, displayed higher levels of activation in a network of prefrontal and temporal-parietal regions and reduced activation in the amygdala. Relative to men without CD/ASPD, both groups of violent offenders with CD/ASPD displayed a distinct pattern of neural responses during emotional/mental state attribution pointing to distinct and comparatively successful processing of social information. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Clinical neurogenetics: autism spectrum disorders.

    Science.gov (United States)

    Mehta, Sunil Q; Golshani, Peyman

    2013-11-01

    Autism spectrum disorders are neurodevelopmental disorders characterized by deficits in social interactions, communication, and repetitive or restricted interests. There is strong evidence that de novo or inherited genetic alterations play a critical role in causing Autism Spectrum Disorders, but non-genetic causes, such as in utero infections, may also play a role. Magnetic resonance imaging based and autopsy studies indicate that early rapid increase in brain size during infancy could underlie the deficits in a large subset of subjects. Clinical studies show benefits for both behavioral and pharmacological treatment strategies. Genotype-specific treatments have the potential for improving outcome in the future. Published by Elsevier Inc.

  18. Sleep-related breathing disorders and non-invasive ventilation

    Directory of Open Access Journals (Sweden)

    Agata Lax

    2015-05-01

    Full Text Available Non-invasive mechanical ventilation (NPPV was originally used in patients with acute respiratory impairment or exacerbations of chronic respiratory diseases, as an alternative to the endotracheal tube. Over the last thirty years NPPV has been also used at night in patients with stable chronic lung disease such as obstructive sleep apnea, the overlap syndrome (chronic obstructive pulmonary disease and obstructive sleep apnea, neuromuscular disorders, obesity-hypoventilation syndrome, and in other conditions such as sleep disorders associated with congestive heart failure (Cheyne-Stokes respiration. In this no-systematic review we discuss the different types of NPPV, the specific conditions in which they can be used and the indications, recommendations and evidence supporting the efficacy of NPPV. Optimizing patient acceptance and adherence to non-invasive ventilation treatment is challenging. The treatment of sleep-related disorders is a life-threatening condition. The optimal level of treatment should be determined in a sleep laboratory. Side effects directly affecting the patient’s adherence to treatment are known. The most common are nasopharyngeal symptoms including increased congestion and rhinorrhea; these effects are related to reduced humidity of inspired gas. Humidification of delivered gas may improve these symptoms.

  19. Proton Magnetic Resonance Spectroscopy and MRI Reveal No Evidence for Brain Mitochondrial Dysfunction in Children with Autism Spectrum Disorder

    Science.gov (United States)

    Corrigan, Neva M.; Shaw, Dennis. W. W.; Richards, Todd L.; Estes, Annette M.; Friedman, Seth D.; Petropoulos, Helen; Artru, Alan A.; Dager, Stephen R.

    2012-01-01

    Brain mitochondrial dysfunction has been proposed as an etiologic factor in autism spectrum disorder (ASD). Proton magnetic resonance spectroscopic imaging ([superscript 1]HMRS) and MRI were used to assess for evidence of brain mitochondrial dysfunction in longitudinal samples of children with ASD or developmental delay (DD), and cross-sectionally…

  20. Brain signature characterizing the body-brain-mind axis of transsexuals.

    Directory of Open Access Journals (Sweden)

    Hsiao-Lun Ku

    Full Text Available Individuals with gender identity disorder (GID, who are commonly referred to as transsexuals (TXs, are afflicted by negative psychosocial stressors. Central to the psychological complex of TXs is the conviction of belonging to the opposite sex. Neuroanatomical and functional brain imaging studies have demonstrated that the GID is associated with brain alterations. In this study, we found that TXs identify, when viewing male-female couples in erotic or non-erotic ("neutral" interactions, with the couple member of the desired gender in both situations. By means of functional magnetic resonance imaging, we found that the TXs, as opposed to controls (CONs, displayed an increased functional connectivity between the ventral tegmental area, which is associated with dimorphic genital representation, and anterior cingulate cortex subregions, which play a key role in social exclusion, conflict monitoring and punishment adjustment. The neural connectivity pattern suggests a brain signature of the psychosocial distress for the gender-sex incongruity of TXs.

  1. Sexual differentiation of the human brain: relation to gender identity, sexual orientation and neuropsychiatric disorders.

    Science.gov (United States)

    Bao, Ai-Min; Swaab, Dick F

    2011-04-01

    During the intrauterine period a testosterone surge masculinizes the fetal brain, whereas the absence of such a surge results in a feminine brain. As sexual differentiation of the brain takes place at a much later stage in development than sexual differentiation of the genitals, these two processes can be influenced independently of each other. Sex differences in cognition, gender identity (an individual's perception of their own sexual identity), sexual orientation (heterosexuality, homosexuality or bisexuality), and the risks of developing neuropsychiatric disorders are programmed into our brain during early development. There is no evidence that one's postnatal social environment plays a crucial role in gender identity or sexual orientation. We discuss the relationships between structural and functional sex differences of various brain areas and the way they change along with any changes in the supply of sex hormones on the one hand and sex differences in behavior in health and disease on the other. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Classroom Strategies for Teaching Veterans with Post-Traumatic Stress Disorder and Traumatic Brain Injury

    Science.gov (United States)

    Sinski, Jennifer Blevins

    2012-01-01

    Postsecondary institutions currently face the largest influx of veteran students since World War II. As the number of veteran students who may experience learning problems caused by Post-Traumatic Stress Disorder and/or Traumatic Brain Injury continues to rise, the need for instructional strategies that address their needs increases. Educators may…

  3. Alternating Motion Rate as an Index of Speech Motor Disorder in Traumatic Brain Injury

    Science.gov (United States)

    Wang, Yu-Tsai; Kent, Ray D.; Duffy, Joseph R.; Thomas, Jack E.; Weismer, Gary

    2004-01-01

    The task of syllable alternating motion rate (AMR) (also called diadochokinesis) is suitable for examining speech disorders of varying degrees of severity and in individuals with varying levels of linguistic and cognitive ability. However, very limited information on this task has been published for subjects with traumatic brain injury (TBI). This…

  4. Mental disorders, brain disorders, neurodevelopmental disorders ...

    African Journals Online (AJOL)

    . Amongst DSM's most vocal 'insider' critics has been Thomas Insel, Director of the US National Institute of Mental Health. Insel has publicly criticised DSM's adherence to a symptom-based classification of mental disorder, and used the weight ...

  5. Non-invasive brain stimulation for Parkinson's disease: Current concepts and outlook 2015.

    Science.gov (United States)

    Benninger, David H; Hallett, Mark

    2015-01-01

    In advanced Parkinson's disease (PD), the emergence of symptoms refractory to conventional therapy poses a therapeutic challenge. The success of deep brain stimulation (DBS) and advances in the understanding of the pathophysiology of PD have raised interest in non-invasive brain stimulation as an alternative therapeutic tool. The rationale for its use draws from the concept that reversing abnormalities in brain activity and physiology thought to cause the clinical deficits may restore normal functioning. Currently the best evidence in support of this concept comes from DBS, which improves motor deficits, and modulates brain activity and motor cortex physiology, though whether a causal interaction exists remains largely undetermined. Most trials of non-invasive brain stimulation in PD have applied repetitive transcranial magnetic stimulation (rTMS) targeting the primary motor cortex and cortical areas of the motor circuit. Published studies suggest a possible therapeutic potential of rTMS and transcranial direct current stimulation (tDCS), but clinical effects so far have been small and negligible regarding functional independence and quality of life. Approaches to potentiate the efficacy of rTMS, including increasing stimulation intensity and novel stimulation parameters, derive their rationale from studies of brain physiology. These novel parameters simulate normal firing patterns or act on the hypothesized role of oscillatory activity in the motor cortex and basal ganglia in motor control. There may also be diagnostic potential of TMS in characterizing individual traits for personalized medicine.

  6. Prediction of treatment outcome in patients with obsessive-compulsive disorder with Low-Resolution Brain Electromagnetic Tomography: a prospective EEG study

    Directory of Open Access Journals (Sweden)

    Daniela eKrause

    2016-01-01

    Full Text Available The issue of predicting treatment response and identifying, in advance, which patient will profit from treating obsessive-compulsive disorder (OCD seems to be an elusive goal. This prospective study investigated brain electric activity (using Low-Resolution Brain Electromagnetic Tomography (LORETA for the purpose of predicting response to treatment. Forty-one unmedicated patients with a DSM-IV diagnosis of OCD were included. A resting 32-channel EEG was obtained from each participant before and after ten weeks of standardized treatment with sertraline and behavioral therapy. LORETA was used to localize the sources of brain electrical activity. At week ten, patients were divided into responders and non-responders (according to a reduction of symptom severity > 50% on the Y-BOCS. LORETA analysis revealed that at baseline responders showed compared to non-responders a significantly lower brain electric activity within the beta 1 (t=2.86, p<0.05, 2 (t=2.81, p<0.05 and 3 (t=2.76, p<0.05 frequency bands and ROI analysis confirmed a reduced activity in alpha 2 (t=2.06, p<0.05 in the anterior cingulate cortex (ACC. When baseline LORETA data were compared to follow-up data, the analysis showed in the responder group a significantly lower brain electrical resting activity in the beta 1 (t=3.17. p<0.05 and beta 3 (t=3.11. p<0.05 frequency bands and equally for the ROI analysis of the orbitofrontal cortex (OFC in the alpha 2 (t=2.15. p<0.05 frequency band. In the group of non-responders the opposite results were found. In addition, a positive correlation between frequency alpha 2 (rho=0.40, p=0.010, beta 3 (rho=0.42, p=0.006, delta (rho=0.33, p=0.038, theta (rho=0.34, p=0.031, alpha 1 (rho=0.38, p=0.015 and beta1 (rho=0.34, p=0.028 of the OFC and the bands delta (rho=0.33, p=0.035, alpha 1 (rho=0.36, p=0.019, alpha 2 (rho=0.34, p=0.031 and beta 3 (rho=0.38, p=0.015 of the ACC with a reduction of the Y-BOCS scores was identified.Our results suggest that

  7. Altered brain network modules induce helplessness in major depressive disorder.

    Science.gov (United States)

    Peng, Daihui; Shi, Feng; Shen, Ting; Peng, Ziwen; Zhang, Chen; Liu, Xiaohua; Qiu, Meihui; Liu, Jun; Jiang, Kaida; Fang, Yiru; Shen, Dinggang

    2014-10-01

    The abnormal brain functional connectivity (FC) has been assumed to be a pathophysiological aspect of major depressive disorder (MDD). However, it is poorly understood, regarding the underlying patterns of global FC network and their relationships with the clinical characteristics of MDD. Resting-state functional magnetic resonance imaging data were acquired from 16 first episode, medication-naïve MDD patients and 16 healthy control subjects. The global FC network was constructed using 90 brain regions. The global topological patterns, e.g., small-worldness and modularity, and their relationships with depressive characteristics were investigated. Furthermore, the participant coefficient and module degree of MDD patients were measured to reflect the regional roles in module network, and the impairment of FC was examined by network based statistic. Small-world property was not altered in MDD. However, MDD patients exhibited 5 atypically reorganized modules compared to the controls. A positive relationship was also found among MDD patients between the intra-module I and helplessness factor evaluated via the Hamilton Depression Scale. Specifically, eight regions exhibited the abnormal participant coefficient or module degree, e.g., left superior orbital frontal cortex and right amygdala. The decreased FC was identified among the sub-network of 24 brain regions, e.g., frontal cortex, supplementary motor area, amygdala, thalamus, and hippocampus. The limited size of MDD samples precluded meaningful study of distinct clinical characteristics in relation to aberrant FC. The results revealed altered patterns of brain module network at the global level in MDD patients, which might contribute to the feelings of helplessness. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Cognitive profile and disorders affecting higher brain functions in paediatric patients with neurofibromatosis type 1.

    Science.gov (United States)

    Vaucheret Paz, E; López Ballent, A; Puga, C; García Basalo, M J; Baliarda, F; Ekonen, C; Ilari, R; Agosta, G

    2017-04-18

    Neurofibromatosis type 1 (NF1) is a common neurocutaneous syndrome often associated with specific cognitive deficits that are rarely monitored during follow-up of these patients. The purpose of our study is two-fold. First, we aimed to describe the cognitive profile of patients with NF1 and detect disorders in higher brain functions associated with the disease. Second, we identified the reasons for consultation associated with school performance in these patients. We conducted a descriptive cross-sectional study of 24 paediatric patients (ages 5 to 16) with NF1 who underwent neuropsychological assessment. The most frequent reasons for consultation were attention deficits (58.33%), learning disorders (25%), poor motor coordination (25%), and language impairment (0.8%). Although 96% of the patients displayed impairments in at least one of the assessed areas, only 83.34% of the parents had reported such impairments. Attention-deficit/hyperactivity disorder was present in 58.33% of the patients, whereas 33.33% had nonverbal learning disabilities, 20.83% had expressive language disorder, 8.33% had borderline intellectual functioning, 4.16% had mental retardation, and only 4.16% showed no cognitive impairment. Higher brain functions are frequently impaired in paediatric patients with NF1. Although many parents report such disorders, they can go undetected in some cases. Neuropsychological assessment is recommended for all paediatric patients with NF1 to detect cognitive impairment and provide early, effective rehabilitation treatment. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Exploring difference and overlap between schizophrenia, schizoaffective and bipolar disorders using resting-state brain functional networks.

    Science.gov (United States)

    Du, Yuhui; Liu, Jingyu; Sui, Jing; He, Hao; Pearlson, Godfrey D; Calhoun, Vince D

    2014-01-01

    Schizophrenia, schizoaffective and bipolar disorders share some common symptoms. However, the biomarkers underlying those disorders remain unclear. In fact, there is still controversy about the schizoaffective disorder with respect to its validity of independent category and its relationship with schizophrenia and bipolar disorders. In this paper, based on brain functional networks extracted from resting-state fMRI using a recently proposed group information guided ICA (GIG-ICA) method, we explore the biomarkers for discriminating healthy controls, schizophrenia patients, bipolar patients, and patients with two symptom defined subsets of schizoaffective disorder, and then investigate the relationship between different groups. The results demonstrate that the discriminating regions mainly including frontal, parietal, precuneus, cingulate, supplementary motor, cerebellar, insular and supramarginal cortices perform well in distinguishing the different diagnostic groups. The results also suggest that schizoaffective disorder may be an independent disorder, although its subtype characterized by depressive episodes shares more similarity with schizophrenia.

  10. Network structure underlying resolution of conflicting non-verbal and verbal social information.

    Science.gov (United States)

    Watanabe, Takamitsu; Yahata, Noriaki; Kawakubo, Yuki; Inoue, Hideyuki; Takano, Yosuke; Iwashiro, Norichika; Natsubori, Tatsunobu; Takao, Hidemasa; Sasaki, Hiroki; Gonoi, Wataru; Murakami, Mizuho; Katsura, Masaki; Kunimatsu, Akira; Abe, Osamu; Kasai, Kiyoto; Yamasue, Hidenori

    2014-06-01

    Social judgments often require resolution of incongruity in communication contents. Although previous studies revealed that such conflict resolution recruits brain regions including the medial prefrontal cortex (mPFC) and posterior inferior frontal gyrus (pIFG), functional relationships and networks among these regions remain unclear. In this functional magnetic resonance imaging study, we investigated the functional dissociation and networks by measuring human brain activity during resolving incongruity between verbal and non-verbal emotional contents. First, we found that the conflict resolutions biased by the non-verbal contents activated the posterior dorsal mPFC (post-dmPFC), bilateral anterior insula (AI) and right dorsal pIFG, whereas the resolutions biased by the verbal contents activated the bilateral ventral pIFG. In contrast, the anterior dmPFC (ant-dmPFC), bilateral superior temporal sulcus and fusiform gyrus were commonly involved in both of the resolutions. Second, we found that the post-dmPFC and right ventral pIFG were hub regions in networks underlying the non-verbal- and verbal-content-biased resolutions, respectively. Finally, we revealed that these resolution-type-specific networks were bridged by the ant-dmPFC, which was recruited for the conflict resolutions earlier than the two hub regions. These findings suggest that, in social conflict resolutions, the ant-dmPFC selectively recruits one of the resolution-type-specific networks through its interaction with resolution-type-specific hub regions. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  11. Non-invasive brain-computer interface system: towards its application as assistive technology.

    Science.gov (United States)

    Cincotti, Febo; Mattia, Donatella; Aloise, Fabio; Bufalari, Simona; Schalk, Gerwin; Oriolo, Giuseppe; Cherubini, Andrea; Marciani, Maria Grazia; Babiloni, Fabio

    2008-04-15

    The quality of life of people suffering from severe motor disabilities can benefit from the use of current assistive technology capable of ameliorating communication, house-environment management and mobility, according to the user's residual motor abilities. Brain-computer interfaces (BCIs) are systems that can translate brain activity into signals that control external devices. Thus they can represent the only technology for severely paralyzed patients to increase or maintain their communication and control options. Here we report on a pilot study in which a system was implemented and validated to allow disabled persons to improve or recover their mobility (directly or by emulation) and communication within the surrounding environment. The system is based on a software controller that offers to the user a communication interface that is matched with the individual's residual motor abilities. Patients (n=14) with severe motor disabilities due to progressive neurodegenerative disorders were trained to use the system prototype under a rehabilitation program carried out in a house-like furnished space. All users utilized regular assistive control options (e.g., microswitches or head trackers). In addition, four subjects learned to operate the system by means of a non-invasive EEG-based BCI. This system was controlled by the subjects' voluntary modulations of EEG sensorimotor rhythms recorded on the scalp; this skill was learnt even though the subjects have not had control over their limbs for a long time. We conclude that such a prototype system, which integrates several different assistive technologies including a BCI system, can potentially facilitate the translation from pre-clinical demonstrations to a clinical useful BCI.

  12. Dysregulation of Brain Reward Systems in Eating Disorders: Neurochemical Information from Animal Models of Binge Eating, Bulimia Nervosa, and Anorexia Nervosa

    Science.gov (United States)

    Avena, Nicole M.; Bocarsly, Miriam E.

    2012-01-01

    Food intake is mediated, in part, through brain pathways for motivation and reinforcement. Dysregulation of these pathways may underlay some of the behaviors exhibited by patients with eating disorders. Research using animal models of eating disorders has greatly contributed to the detailed study of potential brain mechanisms that many underlie the causes or consequences of aberrant eating behaviors. This review focuses on neurochemical evidence of reward-related brain dysfunctions obtained through animal models of binge eating, bulimia nervosa, or anorexia nervosa. The findings suggest that alterations in dopamine (DA), acetylcholine (ACh) and opioid systems in reward-related brain areas occur in response to binge eating of palatable foods. Moreover, animal models of bulimia nervosa suggest that while bingeing on palatable food releases DA, purging attenuates the release of ACh that might otherwise signal satiety. Animal models of anorexia nervosa suggest that restricted access to food enhances the reinforcing effects of DA when the animal does eat. The activity-based anorexia model suggests alterations in mesolimbic DA and serotonin occur as a result of starvation coupled with excessive wheel running. These findings with animal models complement data obtained through neuroimaging and pharmacotherapy studies of clinical populations. Finally, information on the neurochemical consequences of the behaviors associated with these eating disorders will be useful in understanding these complex disorders and may inform future therapeutic approaches, as discussed here. PMID:22138162

  13. Fatigue in multiple sclerosis: neural correlates and the role of non-invasive brain stimulation

    Directory of Open Access Journals (Sweden)

    Moussa A. Chalah

    2015-11-01

    Full Text Available Multiple sclerosis (MS is a chronic progressive inflammatory disease of the central nervous system and the major cause of non-traumatic disability in young adults. Fatigue is a frequent symptom reported by the majority of MS patients during their disease course and drastically af-fects their quality of life. Despite its significant prevalence and impact, the underlying patho-physiological mechanisms are not well elucidated. MS fatigue is still considered the result of multifactorial and complex constellations, and is commonly classified into primary fatigue related to the pathological changes of the disease itself, and secondary fatigue attributed to mimicking symptoms, comorbid sleep and mood disorders, and medications side effects. Data from neuroimaging, neurophysiology, neuroendocrine and neuroimmune studies have raised hypotheses regarding the origin of this symptom, some of which have succeeded in identifying an association between MS fatigue and structural or functional abnormalities within various brain networks. Hence, the aim of this work is to reappraise the neural correlates of MS fatigue and to discuss the rationale for the emergent use of noninvasive brain stimulation (NIBS techniques as potential treatments. This will include a presentation of the various NIBS modalities and a proposition of their potential mechanisms of action in this context. Specific issues related to the value of transcranial direct current stimulation will be addressed.

  14. Research Review: Constraining Heterogeneity--The Social Brain and Its Development in Autism Spectrum Disorder

    Science.gov (United States)

    Pelphrey, Kevin A.; Shultz, Sarah; Hudac, Caitlin M.; Vander Wyk, Brent C.

    2011-01-01

    The expression of autism spectrum disorder (ASD) is highly heterogeneous, owing to the complex interactions between genes, the brain, and behavior throughout development. Here we present a model of ASD that implicates an early and initial failure to develop the specialized functions of one or more of the set of neuroanatomical structures involved…

  15. A Pilot Study of the Effects of Mindfulness-Based Stress Reduction on Post-traumatic Stress Disorder Symptoms and Brain Response to Traumatic Reminders of Combat in Operation Enduring Freedom/Operation Iraqi Freedom Combat Veterans with Post-traumatic Stress Disorder.

    Science.gov (United States)

    Bremner, James Douglas; Mishra, Sanskriti; Campanella, Carolina; Shah, Majid; Kasher, Nicole; Evans, Sarah; Fani, Negar; Shah, Amit Jasvant; Reiff, Collin; Davis, Lori L; Vaccarino, Viola; Carmody, James

    2017-01-01

    Brain imaging studies in patients with post-traumatic stress disorder (PTSD) have implicated a circuitry of brain regions including the medial prefrontal cortex, amygdala, hippocampus, parietal cortex, and insula. Pharmacological treatment studies have shown a reversal of medial prefrontal deficits in response to traumatic reminders. Mindfulness-based stress reduction (MBSR) is a promising non-pharmacologic approach to the treatment of anxiety and pain disorders. The purpose of this study was to assess the effects of MBSR on PTSD symptoms and brain response to traumatic reminders measured with positron-emission tomography (PET) in Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) combat veterans with PTSD. We hypothesized that MBSR would show increased prefrontal response to stress and improved PTSD symptoms in veterans with PTSD. Twenty-six OEF/OIF combat veterans with PTSD who had recently returned from a combat zone were block randomized to receive eight sessions of MBSR or present-centered group therapy (PCGT). PTSD patients underwent assessment of PTSD symptoms with the Clinician-Administered PTSD Scale (CAPS), mindfulness with the Five Factor Mindfulness Questionnaire (FFMQ) and brain imaging using PET in conjunction with exposure to neutral and Iraq combat-related slides and sound before and after treatment. Nine patients in the MBSR group and 8 in the PCGT group completed all study procedures. Post-traumatic stress disorder patients treated with MBSR (but not PCGT) had an improvement in PTSD symptoms measured with the CAPS that persisted for 6 months after treatment. MBSR also resulted in an increase in mindfulness measured with the FFMQ. MBSR-treated patients had increased anterior cingulate and inferior parietal lobule and decreased insula and precuneus function in response to traumatic reminders compared to the PCGT group. This study shows that MBSR is a safe and effective treatment for PTSD. Furthermore, MBSR treatment is associated with

  16. A Pilot Study of the Effects of Mindfulness-Based Stress Reduction on Post-traumatic Stress Disorder Symptoms and Brain Response to Traumatic Reminders of Combat in Operation Enduring Freedom/Operation Iraqi Freedom Combat Veterans with Post-traumatic Stress Disorder

    Directory of Open Access Journals (Sweden)

    James Douglas Bremner

    2017-08-01

    Full Text Available ObjectiveBrain imaging studies in patients with post-traumatic stress disorder (PTSD have implicated a circuitry of brain regions including the medial prefrontal cortex, amygdala, hippocampus, parietal cortex, and insula. Pharmacological treatment studies have shown a reversal of medial prefrontal deficits in response to traumatic reminders. Mindfulness-based stress reduction (MBSR is a promising non-pharmacologic approach to the treatment of anxiety and pain disorders. The purpose of this study was to assess the effects of MBSR on PTSD symptoms and brain response to traumatic reminders measured with positron-emission tomography (PET in Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF combat veterans with PTSD. We hypothesized that MBSR would show increased prefrontal response to stress and improved PTSD symptoms in veterans with PTSD.MethodTwenty-six OEF/OIF combat veterans with PTSD who had recently returned from a combat zone were block randomized to receive eight sessions of MBSR or present-centered group therapy (PCGT. PTSD patients underwent assessment of PTSD symptoms with the Clinician-Administered PTSD Scale (CAPS, mindfulness with the Five Factor Mindfulness Questionnaire (FFMQ and brain imaging using PET in conjunction with exposure to neutral and Iraq combat-related slides and sound before and after treatment. Nine patients in the MBSR group and 8 in the PCGT group completed all study procedures.ResultsPost-traumatic stress disorder patients treated with MBSR (but not PCGT had an improvement in PTSD symptoms measured with the CAPS that persisted for 6 months after treatment. MBSR also resulted in an increase in mindfulness measured with the FFMQ. MBSR-treated patients had increased anterior cingulate and inferior parietal lobule and decreased insula and precuneus function in response to traumatic reminders compared to the PCGT group.ConclusionThis study shows that MBSR is a safe and effective treatment for PTSD

  17. Transcranial magnetic stimulation and connectivity mapping: tools for studying the neural bases of brain disorders.

    Science.gov (United States)

    Hampson, M; Hoffman, R E

    2010-01-01

    There has been an increasing emphasis on characterizing pathophysiology underlying psychiatric and neurological disorders in terms of altered neural connectivity and network dynamics. Transcranial magnetic stimulation (TMS) provides a unique opportunity for investigating connectivity in the human brain. TMS allows researchers and clinicians to directly stimulate cortical regions accessible to electromagnetic coils positioned on the scalp. The induced activation can then propagate through long-range connections to other brain areas. Thus, by identifying distal regions activated during TMS, researchers can infer connectivity patterns in the healthy human brain and can examine how those patterns may be disrupted in patients with different brain disorders. Conversely, connectivity maps derived using neuroimaging methods can identify components of a dysfunctional network. Nodes in this dysfunctional network accessible as targets for TMS by virtue of their proximity to the scalp may then permit TMS-induced alterations of components of the network not directly accessible to TMS via propagated effects. Thus TMS can provide a portal for accessing and altering neural dynamics in networks that are widely distributed anatomically. Finally, when long-term modulation of network dynamics is induced by trains of repetitive TMS, changes in functional connectivity patterns can be studied in parallel with changes in patient symptoms. These correlational data can elucidate neural mechanisms underlying illness and recovery. In this review, we focus on the application of these approaches to the study of psychiatric and neurological illnesses.

  18. Transcranial magnetic stimulation and connectivity mapping: tools for studying the neural bases of brain disorders.

    Directory of Open Access Journals (Sweden)

    Michelle Hampson

    2010-08-01

    Full Text Available There has been an increasing emphasis on characterizing pathophysiology underlying psychiatric and neurological disorders in terms of altered neural connectivity and network dynamics. Transcranial magnetic stimulation (TMS provides a unique opportunity for investigating connectivity in the human brain. TMS allows researchers and clinicians to directly stimulate cortical regions accessible to electromagnetic coils positioned on the scalp. The induced activation can then propagate through long-range connections to other brain areas. Thus, by identifying distal regions activated during TMS, researchers can infer connectivity patterns in the healthy human brain and can examine how those patterns may be disrupted in patients with different brain disorders. Conversely, connectivity maps derived using neuroimaging methods can identify components of a dysfunctional network. Nodes in this dysfunctional network accessible as targets for TMS by virtue of their proximity to the scalp may then permit TMS-induced alterations of components of the network not directly accessible to TMS via propagated effects. Thus TMS can provide a portal for accessing and altering neural dynamics in networks that are widely distributed anatomically. Finally, when long-term modulation of network dynamics is induced by trains of repetitive TMS, changes in functional connectivity patterns can be studied in parallel with changes in patient symptoms. These correlational data can elucidate neural mechanisms underlying illness and recovery. In this review, we focus on the application of these approaches to the study of psychiatric and neurological illnesses.

  19. Mass spectrometry-based metabolomics: Targeting the crosstalk between gut microbiota and brain in neurodegenerative disorders.

    Science.gov (United States)

    Luan, Hemi; Wang, Xian; Cai, Zongwei

    2017-11-12

    Metabolomics seeks to take a "snapshot" in a time of the levels, activities, regulation and interactions of all small molecule metabolites in response to a biological system with genetic or environmental changes. The emerging development in mass spectrometry technologies has shown promise in the discovery and quantitation of neuroactive small molecule metabolites associated with gut microbiota and brain. Significant progress has been made recently in the characterization of intermediate role of small molecule metabolites linked to neural development and neurodegenerative disorder, showing its potential in understanding the crosstalk between gut microbiota and the host brain. More evidence reveals that small molecule metabolites may play a critical role in mediating microbial effects on neurotransmission and disease development. Mass spectrometry-based metabolomics is uniquely suitable for obtaining the metabolic signals in bidirectional communication between gut microbiota and brain. In this review, we summarized major mass spectrometry technologies including liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry, and imaging mass spectrometry for metabolomics studies of neurodegenerative disorders. We also reviewed the recent advances in the identification of new metabolites by mass spectrometry and metabolic pathways involved in the connection of intestinal microbiota and brain. These metabolic pathways allowed the microbiota to impact the regular function of the brain, which can in turn affect the composition of microbiota via the neurotransmitter substances. The dysfunctional interaction of this crosstalk connects neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease and Huntington's disease. The mass spectrometry-based metabolomics analysis provides information for targeting dysfunctional pathways of small molecule metabolites in the development of the neurodegenerative diseases, which may be valuable for the

  20. A Symbolic Approach to Permission Accounting for Concurrent Reasoning

    NARCIS (Netherlands)

    Huisman, Marieke; Mostowski, Wojciech

    2015-01-01

    Permission accounting is fundamental to modular, thread-local reasoning about concurrent programs. This paper presents a new, symbolic system for permission accounting. In existing systems, permissions are numeric value-based and refer to the current thread only. Our system is based on symbolic

  1. [Neurobiological aspects of personality disorders and emotional instability].

    Science.gov (United States)

    Petrovic, Predrag

    2016-12-06

    Neurobiological aspects of personality disorders and emotional instability ADHD and mental disorders encompassing emotional instability such as emotionally unstable personality disorder and antisocial personality disorder can potentially be explained by a suboptimal regulation of information processing in the brain. ADHD involves suboptimal function of non-emotional attentional regulatory processes and emotional instability involves suboptimal emotional regulation. A network including prefrontal areas, anterior cingulate cortex, basal ganglia and specific neuromodulatory systems such as the dopamine system are dysfunctional in both ADHD and emotional instability. One might suggest that a dimensional view better describes these mental states than categorical diagnoses.

  2. A comparison of two assessments of high level cognitive communication disorders in mild traumatic brain injury.

    Science.gov (United States)

    Blyth, Tanya; Scott, Amanda; Bond, Annabelle; Paul, Eldho

    2012-01-01

    Individuals with traumatic brain injury (TBI) frequently encounter cognitive communication disorders. Deficits can be subtle but can seriously influence an individual's ability to achieve life goals. Feedback from rehabilitation facilities indicated that high level cognitive communication disorders are not consistently identified in the acute setting. This study aimed to compare the cognitive communication results from two screening assessments, the Cognistat and the Cognitive Linguistic Quick Test (CLQT), in participants with a mild traumatic brain injury and to relate these findings to a range of prognostic indicators. Eighty-three adults post-TBI (16-81 years; 79.5% males) were recruited at an acute trauma centre. The language components of the two tests were analysed. The CLQT identified more participants with an impairment in language than the Cognistat, 19.3% compared to 1.2% (p communication deficits than the Cognistat in the acute setting.

  3. Neuroimaging in eating disorders

    Directory of Open Access Journals (Sweden)

    Jáuregui-Lobera I

    2011-09-01

    Full Text Available Ignacio Jáuregui-LoberaBehavioral Sciences Institute and Pablo de Olavide University, Seville, SpainAbstract: Neuroimaging techniques have been useful tools for accurate investigation of brain structure and function in eating disorders. Computed tomography, magnetic resonance imaging, positron emission tomography, single photon emission computed tomography, magnetic resonance spectroscopy, and voxel-based morphometry have been the most relevant technologies in this regard. The purpose of this review is to update the existing data on neuroimaging in eating disorders. The main brain changes seem to be reversible to some extent after adequate weight restoration. Brain changes in bulimia nervosa seem to be less pronounced than in anorexia nervosa and are mainly due to chronic dietary restrictions. Different subtypes of eating disorders might be correlated with specific brain functional changes. Moreover, anorectic patients who binge/purge may have different functional brain changes compared with those who do not binge/purge. Functional changes in the brain might have prognostic value, and different changes with respect to the binding potential of 5-HT1A, 5-HT2A, and D2/D3 receptors may be persistent after recovering from an eating disorder.Keywords: neuroimaging, brain changes, brain receptors, anorexia nervosa, bulimia nervosa, eating disorders

  4. Postural tachycardia syndrome (POTS) and other autonomic disorders in antiphospholipid (Hughes) syndrome (APS).

    Science.gov (United States)

    Schofield, J R; Blitshteyn, S; Shoenfeld, Y; Hughes, G R V

    2014-06-01

    Antiphospholipid syndrome (APS) is an autoimmune hypercoagulable disorder that has been shown to cause a large number of cardiac and neurological manifestations. Two recent studies have demonstrated abnormalities in cardiovascular autonomic function testing in APS patients without other cardiovascular or autoimmune disease. However, an association between autonomic disorders such as postural tachycardia syndrome and APS has not previously been described. Data were obtained by retrospective chart review. We identified 15 patients who have been diagnosed with APS and an autonomic disorder. The median age of the patients at the time of data analysis was 39 years. The autonomic disorders seen in these patients included postural tachycardia syndrome, neurocardiogenic syncope and orthostatic hypotension. The majority of patients (14/15) were female and the majority (14/15) had non-thrombotic neurological manifestations of APS, most commonly migraine, memory loss and balance disorder. Many also had livedo reticularis (11/15) and Raynaud's phenomenon (nine of 15). In some patients, the autonomic manifestations improved with anticoagulation and/or anti-platelet therapy; in others they did not. Two patients with postural tachycardia syndrome who failed to improve with the usual treatment of APS have been treated with intravenous immunoglobulin with significant improvement in their autonomic symptoms. We believe that autonomic disorders in APS may represent an important clinical association with significant implications for treatment. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  5. Attention deficit hyperactivity disorder and developmental coordination disorder: Two separate disorders or do they share a common etiology.

    Science.gov (United States)

    Goulardins, Juliana B; Rigoli, Daniela; Licari, Melissa; Piek, Jan P; Hasue, Renata H; Oosterlaan, Jaap; Oliveira, Jorge A

    2015-10-01

    Attention deficit hyperactivity disorder (ADHD) has been described as the most prevalent behavioral disorder in children. Developmental coordination disorder (DCD) is one of the most prevalent childhood movement disorders. The overlap between the two conditions is estimated to be around 50%, with both substantially interfering with functioning and development, and leading to poorer psychosocial outcomes. This review provides an overview of the relationship between ADHD and DCD, discussing the common presenting features, etiology, neural basis, as well as associated deficits in motor functioning, attention and executive functioning. It is currently unclear which specific motor and cognitive difficulties are intrinsic to each disorder as many studies of ADHD have not been screened for DCD and vice-versa. The evidence supporting common brain underpinnings is still very limited, but studies using well defined samples have pointed to non-shared underpinnings for ADHD and DCD. The current paper suggests that ADHD and DCD are separate disorders that may require different treatment approaches. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Vulnerability imposed by diet and brain trauma for anxiety-like phenotype: implications for post-traumatic stress disorders.

    Science.gov (United States)

    Tyagi, Ethika; Agrawal, Rahul; Zhuang, Yumei; Abad, Catalina; Waschek, James A; Gomez-Pinilla, Fernando

    2013-01-01

    Mild traumatic brain injury (mTBI, cerebral concussion) is a risk factor for the development of psychiatric illness such as posttraumatic stress disorder (PTSD). We sought to evaluate how omega-3 fatty acids during brain maturation can influence challenges incurred during adulthood (transitioning to unhealthy diet and mTBI) and predispose the brain to a PTSD-like pathobiology. Rats exposed to diets enriched or deficient in omega-3 fatty acids (n-3) during their brain maturation period, were transitioned to a western diet (WD) when becoming adult and then subjected to mTBI. TBI resulted in an increase in anxiety-like behavior and its molecular counterpart NPY1R, a hallmark of PTSD, but these effects were more pronounced in the animals exposed to n-3 deficient diet and switched to WD. The n-3 deficiency followed by WD disrupted BDNF signaling and the activation of elements of BDNF signaling pathway (TrkB, CaMKII, Akt and CREB) in frontal cortex. TBI worsened these effects and more prominently in combination with the n-3 deficiency condition. Moreover, the n-3 deficiency primed the immune system to the challenges imposed by the WD and brain trauma as evidenced by results showing that the WD or mTBI affected brain IL1β levels and peripheral Th17 and Treg subsets only in animals previously conditioned to the n-3 deficient diet. These results provide novel evidence for the capacity of maladaptive dietary habits to lower the threshold for neurological disorders in response to challenges.

  7. Perfusion impairments on brain SPECT in patients with infantile autism and nonautistic pervasive developmental disorders: comparison with MR findings

    International Nuclear Information System (INIS)

    Ryu, Young Hoon; Lee, Jong Doo; Yoon, Pyeong Ho; Kim, Dong Ik; Jeon, Tae Joo; Shin, Yee Jin; Lee, Byung Hee; Shin, Hyung Cheol

    1998-01-01

    Neuroimaging findings of autism has been the subjects of continuing investigation. Because previous study had not demonstrated consistent and specific neuroimaging findings of autism and most studies comprised adults and school-aged children, we performed a retrospective review in search of common functional and structural abnormalities in pre-school aged autistic children using Tc-99m ECD brain SPECT and MRI and compared them with age-matched children with nonautistic pervasive developmental disorders (PDD). 58 children between 3 and 8 years of age infantile autism (n=37) and non-autistic PDD (n=21) were performed Tc-99m ECD brain SPECT and MRI. Diagnosis of autism and non-autistic PDD was based on the criteria of DSM-IV and Childhood Autism Rating Scale (CARS). Of the 37 autistic patients, 32 revealed decreased perfusion of cerebellar hemisphere, followed by hypoperfusion of thalami (n=30), parietal cortex (n=16), temporal cortex (n=12). Of those 21 PDD patients, 14 patients showed hypoperfusion of the thalami and 10 patients showed temporal hypoperfusion. However, cerebellar hemispheric (n=8) and parietal (n=1) hypoperfusion was infrequently seen. All autistic and nonautistic PDD patients had normal MRI scan. Cerebellar hemispheric and parietal hypoperfusion on brain SPECT showed statistically significant correlation with CARS. Cerebellar hemispheric and parietal hypoperfusion is significantly frequently noted in autistic patients although they had normal MRI and SPECT may be useful and more sensitive modality in reflecting pathophysiology of autism as evidenced by previous MRI and postmortem studies. Thalamic and temporal hypoperfusion can be seen in both autistic and nonautistic patients and further studies are necessary to determine the significance of the thalamic hypoperfusion

  8. Perfusion impairments on brain SPECT in patients with infantile autism and nonautistic pervasive developmental disorders: comparison with MR findings

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Young Hoon; Lee, Jong Doo; Yoon, Pyeong Ho; Kim, Dong Ik; Jeon, Tae Joo; Shin, Yee Jin; Lee, Byung Hee; Shin, Hyung Cheol [College of Medecine, Soonchunhyang Univ., Chonan (Korea, Republic of)

    1998-07-01

    Neuroimaging findings of autism has been the subjects of continuing investigation. Because previous study had not demonstrated consistent and specific neuroimaging findings of autism and most studies comprised adults and school-aged children, we performed a retrospective review in search of common functional and structural abnormalities in pre-school aged autistic children using Tc-99m ECD brain SPECT and MRI and compared them with age-matched children with nonautistic pervasive developmental disorders (PDD). 58 children between 3 and 8 years of age infantile autism (n=37) and non-autistic PDD (n=21) were performed Tc-99m ECD brain SPECT and MRI. Diagnosis of autism and non-autistic PDD was based on the criteria of DSM-IV and Childhood Autism Rating Scale (CARS). Of the 37 autistic patients, 32 revealed decreased perfusion of cerebellar hemisphere, followed by hypoperfusion of thalami (n=30), parietal cortex (n=16), temporal cortex (n=12). Of those 21 PDD patients, 14 patients showed hypoperfusion of the thalami and 10 patients showed temporal hypoperfusion. However, cerebellar hemispheric (n=8) and parietal (n=1) hypoperfusion was infrequently seen. All autistic and nonautistic PDD patients had normal MRI scan. Cerebellar hemispheric and parietal hypoperfusion on brain SPECT showed statistically significant correlation with CARS. Cerebellar hemispheric and parietal hypoperfusion is significantly frequently noted in autistic patients although they had normal MRI and SPECT may be useful and more sensitive modality in reflecting pathophysiology of autism as evidenced by previous MRI and postmortem studies. Thalamic and temporal hypoperfusion can be seen in both autistic and nonautistic patients and further studies are necessary to determine the significance of the thalamic hypoperfusion.

  9. Brain docosahexaenoic acid uptake and metabolism.

    Science.gov (United States)

    Lacombe, R J Scott; Chouinard-Watkins, Raphaël; Bazinet, Richard P

    2018-02-08

    Docosahexaenoic acid (DHA) is the most abundant n-3 polyunsaturated fatty acid in the brain where it serves to regulate several important processes and, in addition, serves as a precursor to bioactive mediators. Given that the capacity of the brain to synthesize DHA locally is appreciably low, the uptake of DHA from circulating lipid pools is essential to maintaining homeostatic levels. Although, several plasma pools have been proposed to supply the brain with DHA, recent evidence suggests non-esterified-DHA and lysophosphatidylcholine-DHA are the primary sources. The uptake of DHA into the brain appears to be regulated by a number of complementary pathways associated with the activation and metabolism of DHA, and may provide mechanisms for enrichment of DHA within the brain. Following entry into the brain, DHA is esterified into and recycled amongst membrane phospholipids contributing the distribution of DHA in brain phospholipids. During neurotransmission and following brain injury, DHA is released from membrane phospholipids and converted to bioactive mediators which regulate signaling pathways important to synaptogenesis, cell survival, and neuroinflammation, and may be relevant to treating neurological diseases. In the present review, we provide a comprehensive overview of brain DHA metabolism, encompassing many of the pathways and key enzymatic regulators governing brain DHA uptake and metabolism. In addition, we focus on the release of non-esterified DHA and subsequent production of bioactive mediators and the evidence of their proposed activity within the brain. We also provide a brief review of the evidence from post-mortem brain analyses investigating DHA levels in the context of neurological disease and mood disorder, highlighting the current disparities within the field. Copyright © 2017. Published by Elsevier Ltd.

  10. 14 CFR 399.35 - Special tariff permission.

    Science.gov (United States)

    2010-01-01

    ... PROCEEDINGS) POLICY STATEMENTS STATEMENTS OF GENERAL POLICY Policies Relating to Rates and Tariffs § 399.35 Special tariff permission. (a) Definition. As used in this section, to grant STP means to approve a... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Special tariff permission. 399.35 Section...

  11. The relationship between brain reaction and English reading tests for non-native English speakers.

    Science.gov (United States)

    Cheng, Pei-Wen; Tian, Yu-Jie; Kuo, Ting-Hua; Sun, Koun-Tem

    2016-07-01

    This research analyzed the brain activity of non-native English speakers while engaged in English reading tests. The brain wave event-related potentials (ERPs) of participants were used to analyze the difference between making correct and incorrect choices on English reading test items. Three English reading tests of differing levels were designed and 20 participants, 10 males and 10 females whose ages ranged from 20 to 24, voluntarily participated in the experiment. Experimental results were analyzed by performing independent t-tests on the ERPs of participants for gender, difficulty level, and correct versus wrong options. Participants who chose incorrect options elicited a larger N600, verifying results found in the literature. Another interesting result was found: For incorrectly answered items, different areas of brain showing a significant difference in ERPs between the chosen and non-chosen options corresponded to gender differences; for males, this area was located in the right hemisphere whereas for females, it was located in the left. Experimental results imply that non-native English speaking males and females employ different areas of the brain to comprehend the meaning of difficult items. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Split brain: divided perception but undivided consciousness.

    Science.gov (United States)

    Pinto, Yair; Neville, David A; Otten, Marte; Corballis, Paul M; Lamme, Victor A F; de Haan, Edward H F; Foschi, Nicoletta; Fabri, Mara

    2017-05-01

    In extensive studies with two split-brain patients we replicate the standard finding that stimuli cannot be compared across visual half-fields, indicating that each hemisphere processes information independently of the other. Yet, crucially, we show that the canonical textbook findings that a split-brain patient can only respond to stimuli in the left visual half-field with the left hand, and to stimuli in the right visual half-field with the right hand and verbally, are not universally true. Across a wide variety of tasks, split-brain patients with a complete and radiologically confirmed transection of the corpus callosum showed full awareness of presence, and well above chance-level recognition of location, orientation and identity of stimuli throughout the entire visual field, irrespective of response type (left hand, right hand, or verbally). Crucially, we used confidence ratings to assess conscious awareness. This revealed that also on high confidence trials, indicative of conscious perception, response type did not affect performance. These findings suggest that severing the cortical connections between hemispheres splits visual perception, but does not create two independent conscious perceivers within one brain. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. The alexithymic brain: the neural pathways linking alexithymia to physical disorders

    Directory of Open Access Journals (Sweden)

    Kano Michiko

    2013-01-01

    Full Text Available Abstract Alexithymia is a personality trait characterized by difficulties in identifying and describing feelings and is associated with psychiatric and psychosomatic disorders. The mechanisms underlying the link between emotional dysregulation and psychosomatic disorders are unclear. Recent progress in neuroimaging has provided important information regarding emotional experience in alexithymia. We have conducted three brain imaging studies on alexithymia, which we describe herein. This article considers the role of emotion in the development of physical symptoms and discusses a possible pathway that we have identified in our neuroimaging studies linking alexithymia with psychosomatic disorders. In terms of socio-affective processing, alexithymics demonstrate lower reactivity in brain regions associated with emotion. Many studies have reported reduced activation in limbic areas (e.g., cingulate cortex, anterior insula, amygdala and the prefrontal cortex when alexithymics attempt to feel other people’s feelings or retrieve their own emotional episodes, compared to nonalexithymics. With respect to primitive emotional reactions such as the response to pain, alexithymics show amplified activity in areas considered to be involved in physical sensation. In addition to greater hormonal arousal responses in alexithymics during visceral pain, increased activity has been reported in the insula, anterior cingulate cortex, and midbrain. Moreover, in complex social situations, alexithymics may not be able to use feelings to guide their behavior appropriately. The Iowa gambling task (IGT was developed to assess decision-making processes based on emotion-guided evaluation. When alexithymics perform the IGT, they fail to learn an advantageous decision-making strategy and show reduced activity in the medial prefrontal cortex, a key area for successful performance of the IGT, and increased activity in the caudate, a region associated with impulsive choice. The

  14. Regional cerebral glucose metabolism in systemic lupus erythematosus patients with major depressive disorder.

    Science.gov (United States)

    Saito, Tomoyuki; Tamura, Maasa; Chiba, Yuhei; Katsuse, Omi; Suda, Akira; Kamada, Ayuko; Ikura, Takahiro; Abe, Kie; Ogawa, Matsuyoshi; Minegishi, Kaoru; Yoshimi, Ryusuke; Kirino, Yohei; Ihata, Atsushi; Hirayasu, Yoshio

    2017-08-15

    Depression is frequently observed in patients with systemic lupus erythematosus (SLE). Neuropsychiatric SLE (NPSLE) patients often exhibit cerebral hypometabolism, but the association between cerebral metabolism and depression remains unclear. To elucidate the features of cerebral metabolism in SLE patients with depression, we performed brain 18F-fluoro-d-glucose positron emission tomography (FDG-PET) on SLE patients with and without major depressive disorder. We performed brain FDG-PET on 20 SLE subjects (5 male, 15 female). The subjects were divided into two groups: subjects with major depressive disorder (DSLE) and subjects without major depressive disorder (non-DSLE). Cerebral glucose metabolism was analyzed using the three-dimensional stereotactic surface projection (3D-SSP) program. Regional metabolism was evaluated by stereotactic extraction estimation (SEE), in which the whole brain was divided into segments. Every SLE subject exhibited cerebral hypometabolism, in contrast to the normal healthy subjects. Regional analysis revealed a significantly lower ER in the left medial frontal gyrus (p=0.0055) and the right medial frontal gyrus (p=0.0022) in the DSLE group than in the non-DSLE group. Hypometabolism in the medial frontal gyrus may be related to major depressive disorder in SLE. Larger studies are needed to clarify this relationship. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Electroencephalographic neurofeedback: Level of evidence in mental and brain disorders and suggestions for good clinical practice.

    Science.gov (United States)

    Micoulaud-Franchi, J-A; McGonigal, A; Lopez, R; Daudet, C; Kotwas, I; Bartolomei, F

    2015-12-01

    The technique of electroencephalographic neurofeedback (EEG NF) emerged in the 1970s and is a technique that measures a subject's EEG signal, processes it in real time, extracts a parameter of interest and presents this information in visual or auditory form. The goal is to effectuate a behavioural modification by modulating brain activity. The EEG NF opens new therapeutic possibilities in the fields of psychiatry and neurology. However, the development of EEG NF in clinical practice requires (i) a good level of evidence of therapeutic efficacy of this technique, (ii) a good practice guide for this technique. Firstly, this article investigates selected trials with the following criteria: study design with controlled, randomized, and open or blind protocol, primary endpoint related to the mental and brain disorders treated and assessed with standardized measurement tools, identifiable EEG neurophysiological targets, underpinned by pathophysiological relevance. Trials were found for: epilepsies, migraine, stroke, chronic insomnia, attentional-deficit/hyperactivity disorder (ADHD), autism spectrum disorder, major depressive disorder, anxiety disorders, addictive disorders, psychotic disorders. Secondly, this article investigates the principles of neurofeedback therapy in line with learning theory. Different underlying therapeutic models are presented didactically between two continua: a continuum between implicit and explicit learning and a continuum between the biomedical model (centred on "the disease") and integrative biopsychosocial model of health (centred on "the illness"). The main relevant learning model is to link neurofeedback therapy with the field of cognitive remediation techniques. The methodological specificity of neurofeedback is to be guided by biologically relevant neurophysiological parameters. Guidelines for good clinical practice of EEG NF concerning technical issues of electrophysiology and of learning are suggested. These require validation by

  16. Brain lateralization and self-reported symptoms of ADHD in non-clinical adults : A dimensional approach

    NARCIS (Netherlands)

    Mohamed, Saleh M. H.; Borger, Norbertus; Geuze, Reint; van der Meere, Jacob

    2015-01-01

    Many clinical studies reported a compromised Brain Lateralization (BL) in patients with Attention-Deficit/Hyperactivity Disorder (ADHD). However, the question remains whether the deficit is in the left or right hemisphere. It is well-recognized that research on patients is vulnerable to

  17. Posttraumatic stress disorder in patients with traumatic brain injury and amnesia for the event?

    Science.gov (United States)

    Warden, D L; Labbate, L A; Salazar, A M; Nelson, R; Sheley, E; Staudenmeier, J; Martin, E

    1997-01-01

    Frequency of DSM-III-R posttraumatic stress disorder (PTSD) was studied in 47 active-duty service members (46 male, 1 female; mean age 27 = 7) with moderate traumatic brain injury and neurogenic amnesia for the event. Patients had attained "oriented and cooperative" recovery level. When evaluated with a modified Present State Examination and other questions at various points from study entry to 24-month follow-up, no patients met full criteria for PTSD or met criterion B (reexperience); 6 (13%) met both C (avoidance) and D (arousal) criteria. Five of these 6 also had organic mood disorder, depressed type, and/or organic anxiety disorder. Posttraumatic amnesia following moderate head injury may protect against recurring memories and the development of PTSD. Some patients with neurogenic amnesia may develop a form of PTSD without the reexperiencing symptoms.

  18. Brain-derived neurotrophic factor, impaired glucose metabolism, and bipolar disorder course

    DEFF Research Database (Denmark)

    Mansur, Rodrigo B; Santos, Camila M; Rizzo, Lucas B

    2016-01-01

    OBJECTIVES: The neurotrophin brain-derived neurotrophic factor (BDNF) has been proposed as a potential biomarker in bipolar disorder (BD). However, current evidence is limited and results have been highly heterogeneous. This study aimed to assess the moderating effect of impaired glucose metabolism......, alcohol use, and IGM (P=.046). There was no effect of IGM (P=.860) and no interaction between BD diagnosis and IGM (P=.893). Peripheral BDNF levels were positively correlated with lifetime depressive episodes (Psuicide attempts (P=.021). IGM moderated...... the association between BDNF and the number of previous mood episodes (P

  19. Mindfulness Moderates the Relationship Between Disordered Eating Cognitions and Disordered Eating Behaviors in a Non-Clinical College Sample

    OpenAIRE

    Masuda, Akihiko; Price, Matthew; Latzman, Robert D.

    2012-01-01

    Psychological flexibility and mindfulness are two related, but distinct, regulation processes that have been shown to be at the core of psychological wellbeing. The current study investigated whether these two processes independently moderated the association between disordered eating cognitions and psychological distress as well as the relation between disordered eating cognitions and disordered eating behaviors. Non-clinical, ethnically diverse college undergraduates completed a web-based s...

  20. Brain structure in schizophrenia vs. psychotic bipolar I disorder: A VBM study.

    Science.gov (United States)

    Nenadic, Igor; Maitra, Raka; Langbein, Kerstin; Dietzek, Maren; Lorenz, Carsten; Smesny, Stefan; Reichenbach, Jürgen R; Sauer, Heinrich; Gaser, Christian

    2015-07-01

    While schizophrenia and bipolar disorder have been assumed to share phenotypic and genotypic features, there is also evidence for overlapping brain structural correlates, although it is unclear whether these relate to shared psychotic features. In this study, we used voxel-based morphometry (VBM8) in 34 schizophrenia patients, 17 euthymic bipolar I disorder patients (with a history of psychotic symptoms), and 34 healthy controls. Our results indicate that compared to healthy controls schizophrenia patients show grey matter deficits (pright dorsolateral prefrontal, as well as bilaterally in ventrolateral prefrontal and insular cortical areas, thalamus (bilaterally), left superior temporal cortex, and minor medial parietal and parietooccipital areas. Comparing schizophrenia vs. bipolar I patients (pleft dorsolateral prefrontal cortex, and left cerebellum. Compared to healthy controls, the deficits in bipolar I patients only reached significance at prights reserved.

  1. Multivariate imaging-genetics study of MRI gray matter volume and SNPs reveals biological pathways correlated with brain structural differences in Attention Deficit Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Sabin Khadka

    2016-07-01

    Full Text Available Background: Attention Deficit Hyperactivity Disorder (ADHD is a prevalent neurodevelopmental disorder affecting children, adolescents, and adults. Its etiology is not well-understood, but it is increasingly believed to result from diverse pathophysiologies that affect the structure and function of specific brain circuits. Although one of the best-studied neurobiological abnormalities in ADHD is reduced fronto-striatal-cerebellar gray matter volume, its specific genetic correlates are largely unknown. Methods: In this study, T1-weighted MR images of brain structure were collected from 198 adolescents (63 ADHD-diagnosed. A multivariate parallel independent component analysis technique (Para-ICA identified imaging-genetic relationships between regional gray matter volume and single nucleotide polymorphism data. Results: Para-ICA analyses extracted 14 components from genetic data and 9 from MR data. An iterative cross-validation using randomly-chosen sub-samples indicated acceptable stability of these ICA solutions. A series of partial correlation analyses controlling for age, sex, and ethnicity revealed two genotype-phenotype component pairs significantly differed between ADHD and non-ADHD groups, after a Bonferroni correction for multiple comparisons. The brain phenotype component not only included structures frequently found to have abnormally low volume in previous ADHD studies, but was also significantly associated with ADHD differences in symptom severity and performance on cognitive tests frequently found to be impaired in patients diagnosed with the disorder. Pathway analysis of the genotype component identified several different biological pathways linked to these structural abnormalities in ADHD. Conclusions: Some of these pathways implicate well-known dopaminergic neurotransmission and neurodevelopment hypothesized to be abnormal in ADHD. Other more recently implicated pathways included glutamatergic and GABA-eric physiological systems

  2. Voice disorders in Nigerian primary school teachers.

    Science.gov (United States)

    Akinbode, R; Lam, K B H; Ayres, J G; Sadhra, S

    2014-07-01

    The prolonged use or abuse of voice may lead to vocal fatigue and vocal fold tissue damage. School teachers routinely use their voices intensively at work and are therefore at a higher risk of dysphonia. To determine the prevalence of voice disorders among primary school teachers in Lagos, Nigeria, and to explore associated risk factors. Teaching and non-teaching staff from 19 public and private primary schools completed a self-administered questionnaire to obtain information on personal lifestyles, work experience and environment, and voice disorder symptoms. Dysphonia was defined as the presence of at least one of the following: hoarseness, repetitive throat clearing, tired voice or straining to speak. A total of 341 teaching and 155 non-teaching staff participated. The prevalence of dysphonia in teachers was 42% compared with 18% in non-teaching staff. A significantly higher proportion of the teachers reported that voice symptoms had affected their ability to communicate effectively. School type (public/private) did not predict the presence of dysphonia. Statistically significant associations were found for regular caffeinated drink intake (odds ratio [OR] = 3.07; 95% confidence interval [CI]: 1.51-6.62), frequent upper respiratory tract infection (OR = 3.60; 95% CI: 1.39-9.33) and raised voice while teaching (OR = 10.1; 95% CI: 5.07-20.2). Nigerian primary school teachers were at risk for dysphonia. Important environment and personal factors were upper respiratory infection, the need to frequently raise the voice when teaching and regular intake of caffeinated drinks. Dysphonia was not associated with age or years of teaching. © The Author 2014. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Language Ability Predicts Cortical Structure and Covariance in Boys with Autism Spectrum Disorder.

    Science.gov (United States)

    Sharda, Megha; Foster, Nicholas E V; Tryfon, Ana; Doyle-Thomas, Krissy A R; Ouimet, Tia; Anagnostou, Evdokia; Evans, Alan C; Zwaigenbaum, Lonnie; Lerch, Jason P; Lewis, John D; Hyde, Krista L

    2017-03-01

    There is significant clinical heterogeneity in language and communication abilities of individuals with Autism Spectrum Disorders (ASD). However, no consistent pathology regarding the relationship of these abilities to brain structure has emerged. Recent developments in anatomical correlation-based approaches to map structural covariance networks (SCNs), combined with detailed behavioral characterization, offer an alternative for studying these relationships. In this study, such an approach was used to study the integrity of SCNs of cortical thickness and surface area associated with language and communication, in 46 high-functioning, school-age children with ASD compared with 50 matched, typically developing controls (all males) with IQ > 75. Findings showed that there was alteration of cortical structure and disruption of fronto-temporal cortical covariance in ASD compared with controls. Furthermore, in an analysis of a subset of ASD participants, alterations in both cortical structure and covariance were modulated by structural language ability of the participants, but not communicative function. These findings indicate that structural language abilities are related to altered fronto-temporal cortical covariance in ASD, much more than symptom severity or cognitive ability. They also support the importance of better characterizing ASD samples while studying brain structure and for better understanding individual differences in language and communication abilities in ASD. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Abnormalities of Object Visual Processing in Body Dysmorphic Disorder

    Science.gov (United States)

    Feusner, Jamie D.; Hembacher, Emily; Moller, Hayley; Moody, Teena D.

    2013-01-01

    Background Individuals with body dysmorphic disorder may have perceptual distortions for their appearance. Previous studies suggest imbalances in detailed relative to configural/holistic visual processing when viewing faces. No study has investigated the neural correlates of processing non-symptom-related stimuli. The objective of this study was to determine whether individuals with body dysmorphic disorder have abnormal patterns of brain activation when viewing non-face/non-body object stimuli. Methods Fourteen medication-free participants with DSM-IV body dysmorphic disorder and 14 healthy controls participated. We performed functional magnetic resonance imaging while participants matched photographs of houses that were unaltered, contained only high spatial frequency (high detail) information, or only low spatial frequency (low detail) information. The primary outcome was group differences in blood oxygen level-dependent signal changes. Results The body dysmorphic disorder group showed lesser activity in the parahippocampal gyrus, lingual gyrus, and precuneus for low spatial frequency images. There were greater activations in medial prefrontal regions for high spatial frequency images, although no significant differences when compared to a low-level baseline. Greater symptom severity was associated with lesser activity in dorsal occipital cortex and ventrolateral prefrontal cortex for normal and high spatial frequency images. Conclusions Individuals with body dysmorphic disorder have abnormal brain activation patterns when viewing objects. Hypoactivity in visual association areas for configural and holistic (low detail) elements and abnormal allocation of prefrontal systems for details is consistent with a model of imbalances in global vs. local processing. This may occur not only for appearance but also for general stimuli unrelated to their symptoms. PMID:21557897

  5. Synchronisation signatures in the listening brain: a perspective from non-invasive neuroelectrophysiology.

    Science.gov (United States)

    Weisz, Nathan; Obleser, Jonas

    2014-01-01

    Human magneto- and electroencephalography (M/EEG) are capable of tracking brain activity at millisecond temporal resolution in an entirely non-invasive manner, a feature that offers unique opportunities to uncover the spatiotemporal dynamics of the hearing brain. In general, precise synchronisation of neural activity within as well as across distributed regions is likely to subserve any cognitive process, with auditory cognition being no exception. Brain oscillations, in a range of frequencies, are a putative hallmark of this synchronisation process. Embedded in a larger effort to relate human cognition to brain oscillations, a field of research is emerging on how synchronisation within, as well as between, brain regions may shape auditory cognition. Combined with much improved source localisation and connectivity techniques, it has become possible to study directly the neural activity of auditory cortex with unprecedented spatio-temporal fidelity and to uncover frequency-specific long-range connectivities across the human cerebral cortex. In the present review, we will summarise recent contributions mainly of our laboratories to this emerging domain. We present (1) a more general introduction on how to study local as well as interareal synchronisation in human M/EEG; (2) how these networks may subserve and influence illusory auditory perception (clinical and non-clinical) and (3) auditory selective attention; and (4) how oscillatory networks further reflect and impact on speech comprehension. This article is part of a Special Issue entitled Human Auditory Neuroimaging. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. A brain-computer interface for potential non-verbal facial communication based on EEG signals related to specific emotions.

    Science.gov (United States)

    Kashihara, Koji

    2014-01-01

    Unlike assistive technology for verbal communication, the brain-machine or brain-computer interface (BMI/BCI) has not been established as a non-verbal communication tool for amyotrophic lateral sclerosis (ALS) patients. Face-to-face communication enables access to rich emotional information, but individuals suffering from neurological disorders, such as ALS and autism, may not express their emotions or communicate their negative feelings. Although emotions may be inferred by looking at facial expressions, emotional prediction for neutral faces necessitates advanced judgment. The process that underlies brain neuronal responses to neutral faces and causes emotional changes remains unknown. To address this problem, therefore, this study attempted to decode conditioned emotional reactions to neutral face stimuli. This direction was motivated by the assumption that if electroencephalogram (EEG) signals can be used to detect patients' emotional responses to specific inexpressive faces, the results could be incorporated into the design and development of BMI/BCI-based non-verbal communication tools. To these ends, this study investigated how a neutral face associated with a negative emotion modulates rapid central responses in face processing and then identified cortical activities. The conditioned neutral face-triggered event-related potentials that originated from the posterior temporal lobe statistically significantly changed during late face processing (600-700 ms) after stimulus, rather than in early face processing activities, such as P1 and N170 responses. Source localization revealed that the conditioned neutral faces increased activity in the right fusiform gyrus (FG). This study also developed an efficient method for detecting implicit negative emotional responses to specific faces by using EEG signals. A classification method based on a support vector machine enables the easy classification of neutral faces that trigger specific individual emotions. In

  7. Cognitive Reserve and Brain Maintenance: Orthogonal Concepts in Theory and Practice.

    Science.gov (United States)

    Habeck, C; Razlighi, Q; Gazes, Y; Barulli, D; Steffener, J; Stern, Y

    2017-08-01

    Cognitive Reserve and Brain Maintenance have traditionally been understood as complementary concepts: Brain Maintenance captures the processes underlying the structural preservation of the brain with age, and might be assessed relative to age-matched peers. Cognitive Reserve, on the other hand, refers to how cognitive processing can be performed regardless of how well brain structure has been maintained. Thus, Brain Maintenance concerns the "hardware," whereas Cognitive Reserve concerns "software," that is, brain functioning explained by factors beyond mere brain structure. We used structural brain data from 368 community-dwelling adults, age 20-80, to derive measures of Brain Maintenance and Cognitive Reserve. We found that Brain Maintenance and Cognitive were uncorrelated such that values on one measure did not imply anything about the other measure. Further, both measures were positively correlated with verbal intelligence and education, hinting at formative influences of the latter to both measures. We performed extensive split-half simulations to check our derived measures' statistical robustness. Our approach enables the out-of-sample quantification of Brain Maintenance and Cognitive Reserve for single subjects on the basis of chronological age, neuropsychological performance and structural brain measures. Future work will investigate the prognostic power of these measures with regard to future cognitive status. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Non-equilibrium Green's functions method: Non-trivial and disordered leads

    Science.gov (United States)

    He, Yu; Wang, Yu; Klimeck, Gerhard; Kubis, Tillmann

    2014-11-01

    The non-equilibrium Green's function algorithm requires contact self-energies to model charge injection and extraction. All existing approaches assume infinitely periodic leads attached to a possibly quite complex device. This contradicts today's realistic devices in which contacts are spatially inhomogeneous, chemically disordered, and impacting the overall device characteristics. This work extends the complex absorbing potentials method for arbitrary, ideal, or non-ideal leads in atomistic tight binding representation. The algorithm is demonstrated on a Si nanowire with periodic leads, a graphene nanoribbon with trumpet shape leads, and devices with leads of randomly alloyed Si0.5Ge0.5. It is found that alloy randomness in the leads can reduce the predicted ON-state current of Si0.5Ge0.5 transistors by 45% compared to conventional lead methods.

  9. Monoamine Oxidase A in Antisocial Personality Disorder and Borderline Personality Disorder.

    Science.gov (United States)

    Kolla, Nathan J; Vinette, Sarah A

    2017-01-01

    Variation in the monoamine oxidase A (MAO-A) gene and MAO-A enzyme levels have been linked to antisocial behavior and aggression in clinical and non-clinical populations. Here, we provide an overview of the genetic, epigenetic, and neuroimaging research that has examined MAO-A structure and function in antisocial personality disorder (ASPD) and borderline personality disorder (BPD). The low-activity MAO-A variable nucleotide tandem repeat genetic polymorphism has shown a robust association with large samples of violent and seriously violent offenders, many of whom had ASPD. A recent positron emission tomography (PET) study of ASPD similarly revealed low MAO-A density in brain regions thought to contribute to the psychopathology of the condition. By contrast, PET has also demonstrated that brain MAO-A levels are increased in BPD and that they relate to symptoms of low mood and suicidality. Candidate gene studies have produced the most compelling evidence connecting MAO-A genetic variants to both ASPD and BPD. Still, conflicting results abound in the literature, making it highly unlikely that ASPD or BPD is related to a specific MAO-A genetic variant. Future research should strive to examine how MAO-A genotypes interact with broad-spectrum environmental influences to produce brain endophenotypes that may ultimately become tractable targets for novel treatment strategies.

  10. Targeting myeloid cells to the brain using non-myeloablative conditioning.

    Directory of Open Access Journals (Sweden)

    Chotima Böttcher

    Full Text Available Bone marrow-derived cells (BMDCs are able to colonize the central nervous system (CNS at sites of damage. This ability makes BMDCs an ideal cellular vehicle for transferring therapeutic genes/molecules to the CNS. However, conditioning is required for bone marrow-derived myeloid cells to engraft in the brain, which so far has been achieved by total body irradiation (TBI and by chemotherapy (e.g. busulfan treatment. Unfortunately, both regimens massively disturb the host's hematopoietic compartment. Here, we established a conditioning protocol to target myeloid cells to sites of brain damage in mice using non-myeloablative focal head irradiation (HI. This treatment was associated with comparatively low inflammatory responses in the CNS despite cranial radiation doses which are identical to TBI, as revealed by gene expression analysis of cytokines/chemokines such as CCL2, CXCL10, TNF-α and CCL5. HI prior to bone marrow transplantation resulted in much lower levels of blood chimerism defined as the percentage of donor-derived cells in peripheral blood ( 95% or busulfan treatment (> 50%. Nevertheless, HI effectively recruited myeloid cells to the area of motoneuron degeneration in the brainstem within 7 days after facial nerve axotomy. In contrast, no donor-derived cells were detected in the lesioned facial nucleus of busulfan-treated animals up to 2 weeks after transplantation. Our findings suggest that myeloid cells can be targeted to sites of brain damage even in the presence of very low levels of peripheral blood chimerism. We established a novel non-myeloablative conditioning protocol with minimal disturbance of the host's hematopoietic system for targeting BMDCs specifically to areas of pathology in the brain.

  11. Brain Resuscitation in the Drowning Victim

    Science.gov (United States)

    Topjian, Alexis A.; Berg, Robert A.; Bierens, Joost J. L. M.; Branche, Christine M.; Clark, Robert S.; Friberg, Hans; Hoedemaekers, Cornelia W. E.; Holzer, Michael; Katz, Laurence M.; Knape, Johannes T. A.; Kochanek, Patrick M.; Nadkarni, Vinay; van der Hoeven, Johannes G.

    2013-01-01

    Drowning is a leading cause of accidental death. Survivors may sustain severe neurologic morbidity. There is negligible research specific to brain injury in drowning making current clinical management non-specific to this disorder. This review represents an evidence-based consensus effort to provide recommendations for management and investigation of the drowning victim. Epidemiology, brain-oriented prehospital and intensive care, therapeutic hypothermia, neuroimaging/monitoring, biomarkers, and neuroresuscitative pharmacology are addressed. When cardiac arrest is present, chest compressions with rescue breathing are recommended due to the asphyxial insult. In the comatose patient with restoration of spontaneous circulation, hypoxemia and hyperoxemia should be avoided, hyperthermia treated, and induced hypothermia (32–34 °C) considered. Arterial hypotension/hypertension should be recognized and treated. Prevent hypoglycemia and treat hyperglycemia. Treat clinical seizures and consider treating non-convulsive status epilepticus. Serial neurologic examinations should be provided. Brain imaging and serial biomarker measurement may aid prognostication. Continuous electroencephalography and N20 somatosensory evoked potential monitoring may be considered. Serial biomarker measurement (e.g., neuron specific enolase) may aid prognostication. There is insufficient evidence to recommend use of any specific brain-oriented neuroresuscitative pharmacologic therapy other than that required to restore and maintain normal physiology. Following initial stabilization, victims should be transferred to centers with expertise in age-specific post-resuscitation neurocritical care. Care should be documented, reviewed, and quality improvement assessment performed. Preclinical research should focus on models of asphyxial cardiac arrest. Clinical research should focus on improved cardiopulmonary resuscitation, re-oxygenation/reperfusion strategies, therapeutic hypothermia

  12. Mindfulness Moderates the Relationship Between Disordered Eating Cognitions and Disordered Eating Behaviors in a Non-Clinical College Sample.

    Science.gov (United States)

    Masuda, Akihiko; Price, Matthew; Latzman, Robert D

    2012-03-01

    Psychological flexibility and mindfulness are two related, but distinct, regulation processes that have been shown to be at the core of psychological wellbeing. The current study investigated whether these two processes independently moderated the association between disordered eating cognitions and psychological distress as well as the relation between disordered eating cognitions and disordered eating behaviors. Non-clinical, ethnically diverse college undergraduates completed a web-based survey. Of 278 participants (nfemale=208; nmale=70) aged 18-24 years old, disordered eating cognitions, mindfulness, and psychological flexibility were related to psychological distress after controlling for gender, ethnicity, and body mass index. Disordered eating cognitions and mindfulness accounted for unique variance in disordered eating behaviors. Finally, mindfulness was found to moderate the association between disordered eating cognitions and disordered eating behaviors.

  13. Failure of the Nemo trial: bumetanide is a promising agent to treat many brain disorders but not newborn seizures

    Directory of Open Access Journals (Sweden)

    Yehezkel eBen-Ari

    2016-04-01

    Full Text Available The diuretic bumetanide failed to treat acute seizures due to hypoxic ischemic encephalopathy (HIE in newborn babies and was associated with hearing loss (NEMO trial; 1. On the other hand, clinical and experimental observations suggest that the diuretic might provide novel therapy for many brain disorders including autistic spectrum disorder, schizophrenia, Rett syndrome and Parkinson disease. Here, we discuss the differences between the pathophysiology of severe recurrent seizures in the neonates and neurological and psychiatric disorders stressing the uniqueness of severe seizures in newborn in comparison to other disorders.

  14. Exploring Permission-Induced Risk in Android Applications for Malicious Application Detection

    KAUST Repository

    Wang, Wei

    2014-10-07

    Android has been a major target of malicious applications (malapps). How to detect and keep the malapps out of the app markets is an ongoing challenge. One of the central design points of Android security mechanism is permission control that restricts the access of apps to core facilities of devices. However, it imparts a significant responsibility to the app developers with regard to accurately specifying the requested permissions and to the users with regard to fully understanding the risk of granting certain combinations of permissions. Android permissions requested by an app depict the app\\'s behavioral patterns. In order to help understanding Android permissions, in this paper, we explore the permission-induced risk in Android apps on three levels in a systematic manner. First, we thoroughly analyze the risk of an individual permission and the risk of a group of collaborative permissions. We employ three feature ranking methods, namely, mutual information, correlation coefficient, and T-test to rank Android individual permissions with respect to their risk. We then use sequential forward selection as well as principal component analysis to identify risky permission subsets. Second, we evaluate the usefulness of risky permissions for malapp detection with support vector machine, decision trees, as well as random forest. Third, we in depth analyze the detection results and discuss the feasibility as well as the limitations of malapp detection based on permission requests. We evaluate our methods on a very large official app set consisting of 310 926 benign apps and 4868 real-world malapps and on a third-party app sets. The empirical results show that our malapp detectors built on risky permissions give satisfied performance (a detection rate as 94.62% with a false positive rate as 0.6%), catch the malapps\\' essential patterns on violating permission access regulations, and are universally applicable to unknown malapps (detection rate as 74.03%).

  15. Neuropsychological findings in personality disorders: A.R. Luria’s Approach.

    Directory of Open Access Journals (Sweden)

    Pluzhnikov I.V.

    2015-06-01

    Full Text Available There is a lack of information concerning the features of cognitive processes in personality disorders, as well as the brain mechanisms of the pathogenesis of these diseases. Luria’s neuropsychological approach demonstrated its heuristicity in estimating the cognitive status of patients with mental disorders and can be employed to identify the brain bases of non-psychotic mental disorders (including personality disorders. The objective of this research is to study the features of neurocognitive functioning in patients with schizoid personality disorder and schizotypal personality disorder (against the norm, employing Luria’s neuropsychological methodology. Hypotheses: 1 While both types of personality disorders are related to schizophrenia spectrum disorders, the specificity of the neurocognitive functioning of each personality disorder will be observed in addition to general neuropsychological signs. Specific neuropsychological symptoms point to different brain deficits, which allows conclusion to be drawn regarding differences in the pathogenesis of each personality disorder; and 2 Luria’s methodology neuropsychology is adequate for the study of neurocognitive functioning in personality disorders. The study was conducted using qualitative and quantitative analyses (according to Luria of neuropsychological testing data in a group of fifty male patients aged 19,2±3,7 years with pathocharacteristic domain disorders. The group consisted of 30 schizoid personality disorder patients and 20 schizotypal personality disorder patients. Statistically significant differences (p <0,005 in neurocognitive function (regulatory processes, memory, spatial function between the healthy controls and patients with personality disorders were observed. Specific cognitive disorders pointing to the dysfunction of front-thalamoparietal connections were characteristic of both groups. Lateral differences were discovered for both patient groups. The

  16. MR imaging of the effects of methylphenidate on brain structure and function in Attention-Deficit/Hyperactivity Disorder

    NARCIS (Netherlands)

    Schweren, Lizanne J. S.; de Zeeuw, Patrick; Durston, Sarah

    2013-01-01

    Methylphenidate is the first-choice pharmacological intervention for the treatment of Attention-Deficit/Hyperactivity Disorder (ADHD). The pharmacological and behavioral effects of methylphenidate are well described, but less is known about neurochemical brain changes induced by methylphenidate.

  17. Banking for the future: an Australian experience in brain banking.

    Science.gov (United States)

    Sarris, M; Garrick, T M; Sheedy, D; Harper, C G

    2002-06-01

    The New South Wales (NSW) Tissue Resource Centre (TRC) has been set up to provide Australian and international researchers with fixed and frozen brain tissue from cases that are well characterised, both clinically and pathologically, for projects related to neuropsychiatric and alcohol-related disorders. A daily review of the Department of Forensic Medicine provides initial information regarding a potential collection. If the case adheres to the strict inclusion criteria, the pathologist performing the postmortem examination is approached regarding retention of the brain tissue. The next of kin of the deceased is then contacted requesting permission to retain the brain for medical research. Cases are also obtained through donor programmes, where donors are assessed and consent to donate their brain during life. Once the brain is removed at autopsy, the brain is photographed, weighed and the volume determined, the brainstem and cerebellum are removed. The two hemispheres are divided, one hemisphere is fresh frozen and one fixed (randomised). Prior to freezing, the hemisphere is sliced into 1-cm coronal slices and a set of critical area blocks is taken. All frozen tissues are kept bagged at -80 degrees C. The other hemisphere is fixed in 15% buffered formalin for 2 weeks, embedded in agar and sliced at 3-mm intervals in the coronal plane. Tissue blocks from these slices are used for neuropathological analysis to exclude any other pathology. The TRC currently has 230 cases of both fixed and frozen material that has proven useful in a range of techniques in many research projects. These techniques include quantitative analyses of brain regions using neuropathological, neurochemical, neuropharmacological and gene expression assays.

  18. Neuromodulators for Functional Gastrointestinal Disorders (Disorders of Gut-Brain Interaction): A Rome Foundation Working Team Report.

    Science.gov (United States)

    Drossman, Douglas A; Tack, Jan; Ford, Alexander C; Szigethy, Eva; Törnblom, Hans; Van Oudenhove, Lukas

    2018-03-01

    Central neuromodulators (antidepressants, antipsychotics, and other central nervous system-targeted medications) are increasingly used for treatment of functional gastrointestinal disorders (FGIDs), now recognized as disorders of gut-brain interaction. However, the available evidence and guidance for the use of central neuromodulators in these conditions is scanty and incomplete. In this Rome Foundation Working Team report, a multidisciplinary team summarized available research evidence and clinical experience to provide guidance and treatment recommendations. The working team summarized the literature on the pharmacology of central neuromodulators and their effects on gastrointestinal sensorimotor function and conducted an evidence-based review on their use for treating FGID syndromes. Because of the paucity of data for FGIDs, we included data for non-gastrointestinal painful disorders and specific symptoms of pain, nausea, and vomiting. This information was combined into a final document comprising a synthesis of available evidence and recommendations for clinical use guided by the research and clinical experience of the experts on the committee. The evidence-based review on neuromodulators in FGID, restricted by the limited available controlled trials, was integrated with open-label studies and case series, along with the experience of experts to create recommendations using a consensus (Delphi) approach. Due to the diversity of conditions and complexity of treatment options, specific recommendations were generated for different FGIDs. However, some general recommendations include: (1) low to modest dosages of tricyclic antidepressants provide the most convincing evidence of benefit for treating chronic gastrointestinal pain and painful FGIDs and serotonin noradrenergic reuptake inhibitors can also be recommended, though further studies are needed; (2) augmentation, that is, adding a second treatment (adding quetiapine, aripiprazole, buspirone α2δ ligand

  19. Structural brain network analysis in families multiply affected with bipolar I disorder.

    Science.gov (United States)

    Forde, Natalie J; O'Donoghue, Stefani; Scanlon, Cathy; Emsell, Louise; Chaddock, Chris; Leemans, Alexander; Jeurissen, Ben; Barker, Gareth J; Cannon, Dara M; Murray, Robin M; McDonald, Colm

    2015-10-30

    Disrupted structural connectivity is associated with psychiatric illnesses including bipolar disorder (BP). Here we use structural brain network analysis to investigate connectivity abnormalities in multiply affected BP type I families, to assess the utility of dysconnectivity as a biomarker and its endophenotypic potential. Magnetic resonance diffusion images for 19 BP type I patients in remission, 21 of their first degree unaffected relatives, and 18 unrelated healthy controls underwent tractography. With the automated anatomical labelling atlas being used to define nodes, a connectivity matrix was generated for each subject. Network metrics were extracted with the Brain Connectivity Toolbox and then analysed for group differences, accounting for potential confounding effects of age, gender and familial association. Whole brain analysis revealed no differences between groups. Analysis of specific mainly frontal regions, previously implicated as potentially endophenotypic by functional magnetic resonance imaging analysis of the same cohort, revealed a significant effect of group in the right medial superior frontal gyrus and left middle frontal gyrus driven by reduced organisation in patients compared with controls. The organisation of whole brain networks of those affected with BP I does not differ from their unaffected relatives or healthy controls. In discreet frontal regions, however, anatomical connectivity is disrupted in patients but not in their unaffected relatives. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Comparison of brain connectivity between Internet gambling disorder and Internet gaming disorder: A preliminary study.

    Science.gov (United States)

    Bae, Sujin; Han, Doug Hyun; Jung, Jaebum; Nam, Ki Chun; Renshaw, Perry F

    2017-12-01

    Background and aims Given the similarities in clinical symptoms, Internet gaming disorder (IGD) is thought to be diagnostically similar to Internet-based gambling disorder (ibGD). However, cognitive enhancement and educational use of Internet gaming suggest that the two disorders derive from different neurobiological mechanisms. The goal of this study was to compare subjects with ibGD to those with IGD. Methods Fifteen patients with IGD, 14 patients with ibGD, and 15 healthy control subjects were included in this study. Resting-state functional magnetic resonance imaging data for all participants were acquired using a 3.0 Tesla MRI scanner (Philips, Eindhoven, The Netherlands). Seed-based analyses, the three brain networks of default mode, cognitive control, and reward circuitry, were performed. Results Both IGD and ibGD groups demonstrated decreased functional connectivity (FC) within the default-mode network (DMN) (family-wise error p < .001) compared with healthy control subjects. However, the IGD group demonstrated increased FC within the cognitive network compared with both the ibGD (p < .01) and healthy control groups (p < .01). In contrast, the ibGD group demonstrated increased FC within the reward circuitry compared with both IGD (p < .01) and healthy control subjects (p < .01). Discussion and conclusions The IGD and ibGD groups shared the characteristic of decreased FC in the DMN. However, the IGD group demonstrated increased FC within the cognitive network compared with both ibGD and healthy comparison groups.