STATCAT, Statistical Analysis of Parametric and Non-Parametric Data
International Nuclear Information System (INIS)
David, Hugh
1990-01-01
1 - Description of program or function: A suite of 26 programs designed to facilitate the appropriate statistical analysis and data handling of parametric and non-parametric data, using classical and modern univariate and multivariate methods. 2 - Method of solution: Data is read entry by entry, using a choice of input formats, and the resultant data bank is checked for out-of- range, rare, extreme or missing data. The completed STATCAT data bank can be treated by a variety of descriptive and inferential statistical methods, and modified, using other standard programs as required
The application of non-parametric statistical method for an ALARA implementation
International Nuclear Information System (INIS)
Cho, Young Ho; Herr, Young Hoi
2003-01-01
The cost-effective reduction of Occupational Radiation Dose (ORD) at a nuclear power plant could not be achieved without going through an extensive analysis of accumulated ORD data of existing plants. Through the data analysis, it is required to identify what are the jobs of repetitive high ORD at the nuclear power plant. In this study, Percentile Rank Sum Method (PRSM) is proposed to identify repetitive high ORD jobs, which is based on non-parametric statistical theory. As a case study, the method is applied to ORD data of maintenance and repair jobs at Kori units 3 and 4 that are pressurized water reactors with 950 MWe capacity and have been operated since 1986 and 1987, respectively in Korea. The results was verified and validated, and PRSM has been demonstrated to be an efficient method of analyzing the data
Non-parametric order statistics method applied to uncertainty propagation in fuel rod calculations
International Nuclear Information System (INIS)
Arimescu, V.E.; Heins, L.
2001-01-01
Advances in modeling fuel rod behavior and accumulations of adequate experimental data have made possible the introduction of quantitative methods to estimate the uncertainty of predictions made with best-estimate fuel rod codes. The uncertainty range of the input variables is characterized by a truncated distribution which is typically a normal, lognormal, or uniform distribution. While the distribution for fabrication parameters is defined to cover the design or fabrication tolerances, the distribution of modeling parameters is inferred from the experimental database consisting of separate effects tests and global tests. The final step of the methodology uses a Monte Carlo type of random sampling of all relevant input variables and performs best-estimate code calculations to propagate these uncertainties in order to evaluate the uncertainty range of outputs of interest for design analysis, such as internal rod pressure and fuel centerline temperature. The statistical method underlying this Monte Carlo sampling is non-parametric order statistics, which is perfectly suited to evaluate quantiles of populations with unknown distribution. The application of this method is straightforward in the case of one single fuel rod, when a 95/95 statement is applicable: 'with a probability of 95% and confidence level of 95% the values of output of interest are below a certain value'. Therefore, the 0.95-quantile is estimated for the distribution of all possible values of one fuel rod with a statistical confidence of 95%. On the other hand, a more elaborate procedure is required if all the fuel rods in the core are being analyzed. In this case, the aim is to evaluate the following global statement: with 95% confidence level, the expected number of fuel rods which are not exceeding a certain value is all the fuel rods in the core except only a few fuel rods. In both cases, the thresholds determined by the analysis should be below the safety acceptable design limit. An indirect
Directory of Open Access Journals (Sweden)
Elias Chaibub Neto
Full Text Available In this paper we propose a vectorized implementation of the non-parametric bootstrap for statistics based on sample moments. Basically, we adopt the multinomial sampling formulation of the non-parametric bootstrap, and compute bootstrap replications of sample moment statistics by simply weighting the observed data according to multinomial counts instead of evaluating the statistic on a resampled version of the observed data. Using this formulation we can generate a matrix of bootstrap weights and compute the entire vector of bootstrap replications with a few matrix multiplications. Vectorization is particularly important for matrix-oriented programming languages such as R, where matrix/vector calculations tend to be faster than scalar operations implemented in a loop. We illustrate the application of the vectorized implementation in real and simulated data sets, when bootstrapping Pearson's sample correlation coefficient, and compared its performance against two state-of-the-art R implementations of the non-parametric bootstrap, as well as a straightforward one based on a for loop. Our investigations spanned varying sample sizes and number of bootstrap replications. The vectorized bootstrap compared favorably against the state-of-the-art implementations in all cases tested, and was remarkably/considerably faster for small/moderate sample sizes. The same results were observed in the comparison with the straightforward implementation, except for large sample sizes, where the vectorized bootstrap was slightly slower than the straightforward implementation due to increased time expenditures in the generation of weight matrices via multinomial sampling.
International Nuclear Information System (INIS)
Frepoli, Cesare; Oriani, Luca
2006-01-01
In recent years, non-parametric or order statistics methods have been widely used to assess the impact of the uncertainties within Best-Estimate LOCA evaluation models. The bounding of the uncertainties is achieved with a direct Monte Carlo sampling of the uncertainty attributes, with the minimum trial number selected to 'stabilize' the estimation of the critical output values (peak cladding temperature (PCT), local maximum oxidation (LMO), and core-wide oxidation (CWO A non-parametric order statistics uncertainty analysis was recently implemented within the Westinghouse Realistic Large Break LOCA evaluation model, also referred to as 'Automated Statistical Treatment of Uncertainty Method' (ASTRUM). The implementation or interpretation of order statistics in safety analysis is not fully consistent within the industry. This has led to an extensive public debate among regulators and researchers which can be found in the open literature. The USNRC-approved Westinghouse method follows a rigorous implementation of the order statistics theory, which leads to the execution of 124 simulations within a Large Break LOCA analysis. This is a solid approach which guarantees that a bounding value (at 95% probability) of the 95 th percentile for each of the three 10 CFR 50.46 ECCS design acceptance criteria (PCT, LMO and CWO) is obtained. The objective of this paper is to provide additional insights on the ASTRUM statistical approach, with a more in-depth analysis of pros and cons of the order statistics and of the Westinghouse approach in the implementation of this statistical methodology. (authors)
Performances of non-parametric statistics in sensitivity analysis and parameter ranking
International Nuclear Information System (INIS)
Saltelli, A.
1987-01-01
Twelve parametric and non-parametric sensitivity analysis techniques are compared in the case of non-linear model responses. The test models used are taken from the long-term risk analysis for the disposal of high level radioactive waste in a geological formation. They describe the transport of radionuclides through a set of engineered and natural barriers from the repository to the biosphere and to man. The output data from these models are the dose rates affecting the maximum exposed individual of a critical group at a given point in time. All the techniques are applied to the output from the same Monte Carlo simulations, where a modified version of Latin Hypercube method is used for the sample selection. Hypothesis testing is systematically applied to quantify the degree of confidence in the results given by the various sensitivity estimators. The estimators are ranked according to their robustness and stability, on the basis of two test cases. The conclusions are that no estimator can be considered the best from all points of view and recommend the use of more than just one estimator in sensitivity analysis
Inferential, non-parametric statistics to assess the quality of probabilistic forecast systems
Maia, A.H.N.; Meinke, H.B.; Lennox, S.; Stone, R.C.
2007-01-01
Many statistical forecast systems are available to interested users. To be useful for decision making, these systems must be based on evidence of underlying mechanisms. Once causal connections between the mechanism and its statistical manifestation have been firmly established, the forecasts must
2016-05-31
Distribution Unlimited UU UU UU UU 31-05-2016 15-Apr-2014 14-Jan-2015 Final Report: Technical Topic 3.2.2.d Bayesian and Non- parametric Statistics...of Papers published in non peer-reviewed journals: Final Report: Technical Topic 3.2.2.d Bayesian and Non- parametric Statistics: Integration of Neural...Transfer N/A Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale ): Number of graduating undergraduates funded by a DoD funded
International Nuclear Information System (INIS)
Weathers, J.B.; Luck, R.; Weathers, J.W.
2009-01-01
The complexity of mathematical models used by practicing engineers is increasing due to the growing availability of sophisticated mathematical modeling tools and ever-improving computational power. For this reason, the need to define a well-structured process for validating these models against experimental results has become a pressing issue in the engineering community. This validation process is partially characterized by the uncertainties associated with the modeling effort as well as the experimental results. The net impact of the uncertainties on the validation effort is assessed through the 'noise level of the validation procedure', which can be defined as an estimate of the 95% confidence uncertainty bounds for the comparison error between actual experimental results and model-based predictions of the same quantities of interest. Although general descriptions associated with the construction of the noise level using multivariate statistics exists in the literature, a detailed procedure outlining how to account for the systematic and random uncertainties is not available. In this paper, the methodology used to derive the covariance matrix associated with the multivariate normal pdf based on random and systematic uncertainties is examined, and a procedure used to estimate this covariance matrix using Monte Carlo analysis is presented. The covariance matrices are then used to construct approximate 95% confidence constant probability contours associated with comparison error results for a practical example. In addition, the example is used to show the drawbacks of using a first-order sensitivity analysis when nonlinear local sensitivity coefficients exist. Finally, the example is used to show the connection between the noise level of the validation exercise calculated using multivariate and univariate statistics.
Energy Technology Data Exchange (ETDEWEB)
Weathers, J.B. [Shock, Noise, and Vibration Group, Northrop Grumman Shipbuilding, P.O. Box 149, Pascagoula, MS 39568 (United States)], E-mail: James.Weathers@ngc.com; Luck, R. [Department of Mechanical Engineering, Mississippi State University, 210 Carpenter Engineering Building, P.O. Box ME, Mississippi State, MS 39762-5925 (United States)], E-mail: Luck@me.msstate.edu; Weathers, J.W. [Structural Analysis Group, Northrop Grumman Shipbuilding, P.O. Box 149, Pascagoula, MS 39568 (United States)], E-mail: Jeffrey.Weathers@ngc.com
2009-11-15
The complexity of mathematical models used by practicing engineers is increasing due to the growing availability of sophisticated mathematical modeling tools and ever-improving computational power. For this reason, the need to define a well-structured process for validating these models against experimental results has become a pressing issue in the engineering community. This validation process is partially characterized by the uncertainties associated with the modeling effort as well as the experimental results. The net impact of the uncertainties on the validation effort is assessed through the 'noise level of the validation procedure', which can be defined as an estimate of the 95% confidence uncertainty bounds for the comparison error between actual experimental results and model-based predictions of the same quantities of interest. Although general descriptions associated with the construction of the noise level using multivariate statistics exists in the literature, a detailed procedure outlining how to account for the systematic and random uncertainties is not available. In this paper, the methodology used to derive the covariance matrix associated with the multivariate normal pdf based on random and systematic uncertainties is examined, and a procedure used to estimate this covariance matrix using Monte Carlo analysis is presented. The covariance matrices are then used to construct approximate 95% confidence constant probability contours associated with comparison error results for a practical example. In addition, the example is used to show the drawbacks of using a first-order sensitivity analysis when nonlinear local sensitivity coefficients exist. Finally, the example is used to show the connection between the noise level of the validation exercise calculated using multivariate and univariate statistics.
A Guideline to Univariate Statistical Analysis for LC/MS-Based Untargeted Metabolomics-Derived Data
Directory of Open Access Journals (Sweden)
Maria Vinaixa
2012-10-01
Full Text Available Several metabolomic software programs provide methods for peak picking, retention time alignment and quantification of metabolite features in LC/MS-based metabolomics. Statistical analysis, however, is needed in order to discover those features significantly altered between samples. By comparing the retention time and MS/MS data of a model compound to that from the altered feature of interest in the research sample, metabolites can be then unequivocally identified. This paper reports on a comprehensive overview of a workflow for statistical analysis to rank relevant metabolite features that will be selected for further MS/MS experiments. We focus on univariate data analysis applied in parallel on all detected features. Characteristics and challenges of this analysis are discussed and illustrated using four different real LC/MS untargeted metabolomic datasets. We demonstrate the influence of considering or violating mathematical assumptions on which univariate statistical test rely, using high-dimensional LC/MS datasets. Issues in data analysis such as determination of sample size, analytical variation, assumption of normality and homocedasticity, or correction for multiple testing are discussed and illustrated in the context of our four untargeted LC/MS working examples.
Hohn, M. Ed; Nuhfer, E.B.; Vinopal, R.J.; Klanderman, D.S.
1980-01-01
Classifying very fine-grained rocks through fabric elements provides information about depositional environments, but is subject to the biases of visual taxonomy. To evaluate the statistical significance of an empirical classification of very fine-grained rocks, samples from Devonian shales in four cored wells in West Virginia and Virginia were measured for 15 variables: quartz, illite, pyrite and expandable clays determined by X-ray diffraction; total sulfur, organic content, inorganic carbon, matrix density, bulk density, porosity, silt, as well as density, sonic travel time, resistivity, and ??-ray response measured from well logs. The four lithologic types comprised: (1) sharply banded shale, (2) thinly laminated shale, (3) lenticularly laminated shale, and (4) nonbanded shale. Univariate and multivariate analyses of variance showed that the lithologic classification reflects significant differences for the variables measured, difference that can be detected independently of stratigraphic effects. Little-known statistical methods found useful in this work included: the multivariate analysis of variance with more than one effect, simultaneous plotting of samples and variables on canonical variates, and the use of parametric ANOVA and MANOVA on ranked data. ?? 1980 Plenum Publishing Corporation.
Comparison of multivariate and univariate statistical process control and monitoring methods
International Nuclear Information System (INIS)
Leger, R.P.; Garland, WM.J.; Macgregor, J.F.
1996-01-01
Work in recent years has lead to the development of multivariate process monitoring schemes which use Principal Component Analysis (PCA). This research compares the performance of a univariate scheme and a multivariate PCA scheme used for monitoring a simple process with 11 measured variables. The multivariate PCA scheme was able to adequately represent the process using two principal components. This resulted in a PCA monitoring scheme which used two charts as opposed to 11 charts for the univariate scheme and therefore had distinct advantages in terms of both data representation, presentation, and fault diagnosis capabilities. (author)
DEFF Research Database (Denmark)
Linnet, Kristian
2005-01-01
Bootstrap, HPLC, limit of blank, limit of detection, non-parametric statistics, type I and II errors......Bootstrap, HPLC, limit of blank, limit of detection, non-parametric statistics, type I and II errors...
Directory of Open Access Journals (Sweden)
John E. Lavery
2012-10-01
Full Text Available We present evidence that one can calculate generically combinatorially expensive Lp and lp averages, 0 < p < 1, in polynomial time by restricting the data to come from a wide class of statistical distributions. Our approach differs from the approaches in the previous literature, which are based on a priori sparsity requirements or on accepting a local minimum as a replacement for a global minimum. The functionals by which Lp averages are calculated are not convex but are radially monotonic and the functionals by which lp averages are calculated are nearly so, which are the keys to solvability in polynomial time. Analytical results for symmetric, radially monotonic univariate distributions are presented. An algorithm for univariate lp averaging is presented. Computational results for a Gaussian distribution, a class of symmetric heavy-tailed distributions and a class of asymmetric heavy-tailed distributions are presented. Many phenomena in human-based areas are increasingly known to be represented by data that have large numbers of outliers and belong to very heavy-tailed distributions. When tails of distributions are so heavy that even medians (L1 and l1 averages do not exist, one needs to consider using lp minimization principles with 0 < p < 1.
Speaker Linking and Applications using Non-Parametric Hashing Methods
2016-09-08
nonparametric estimate of a multivariate density function,” The Annals of Math- ematical Statistics , vol. 36, no. 3, pp. 1049–1051, 1965. [9] E. A. Patrick...Speaker Linking and Applications using Non-Parametric Hashing Methods† Douglas Sturim and William M. Campbell MIT Lincoln Laboratory, Lexington, MA...with many approaches [1, 2]. For this paper, we focus on using i-vectors [2], but the methods apply to any embedding. For the task of speaker QBE and
Takayama, Motoharu; Terui, Keita; Oiwa, Yoshitsugu
2012-10-01
Chronic subdural hematoma is common in elderly individuals and surgical procedures are simple. The recurrence rate of chronic subdural hematoma, however, varies from 9.2 to 26.5% after surgery. The authors studied factors of the recurrence using univariate and multivariate analyses in patients with chronic subdural hematoma We retrospectively reviewed 239 consecutive cases of chronic subdural hematoma who received burr-hole surgery with irrigation and closed-system drainage. We analyzed the relationships between recurrence of chronic subdural hematoma and factors such as sex, age, laterality, bleeding tendency, other complicated diseases, density on CT, volume of the hematoma, residual air in the hematoma cavity, use of artificial cerebrospinal fluid. Twenty-one patients (8.8%) experienced a recurrence of chronic subdural hematoma. Multiple logistic regression found that the recurrence rate was higher in patients with a large volume of the residual air, and was lower in patients using artificial cerebrospinal fluid. No statistical differences were found in bleeding tendency. Techniques to reduce the air in the hematoma cavity are important for good outcome in surgery of chronic subdural hematoma. Also, the use of artificial cerebrospinal fluid reduces recurrence of chronic subdural hematoma. The surgical procedures can be the same for patients with bleeding tendencies.
Bayesian non parametric modelling of Higgs pair production
Directory of Open Access Journals (Sweden)
Scarpa Bruno
2017-01-01
Full Text Available Statistical classification models are commonly used to separate a signal from a background. In this talk we face the problem of isolating the signal of Higgs pair production using the decay channel in which each boson decays into a pair of b-quarks. Typically in this context non parametric methods are used, such as Random Forests or different types of boosting tools. We remain in the same non-parametric framework, but we propose to face the problem following a Bayesian approach. A Dirichlet process is used as prior for the random effects in a logit model which is fitted by leveraging the Polya-Gamma data augmentation. Refinements of the model include the insertion in the simple model of P-splines to relate explanatory variables with the response and the use of Bayesian trees (BART to describe the atoms in the Dirichlet process.
Non-Parametric Estimation of Correlation Functions
DEFF Research Database (Denmark)
Brincker, Rune; Rytter, Anders; Krenk, Steen
In this paper three methods of non-parametric correlation function estimation are reviewed and evaluated: the direct method, estimation by the Fast Fourier Transform and finally estimation by the Random Decrement technique. The basic ideas of the techniques are reviewed, sources of bias are point...
Parametric and Non-Parametric System Modelling
DEFF Research Database (Denmark)
Nielsen, Henrik Aalborg
1999-01-01
the focus is on combinations of parametric and non-parametric methods of regression. This combination can be in terms of additive models where e.g. one or more non-parametric term is added to a linear regression model. It can also be in terms of conditional parametric models where the coefficients...... considered. It is shown that adaptive estimation in conditional parametric models can be performed by combining the well known methods of local polynomial regression and recursive least squares with exponential forgetting. The approach used for estimation in conditional parametric models also highlights how...... networks is included. In this paper, neural networks are used for predicting the electricity production of a wind farm. The results are compared with results obtained using an adaptively estimated ARX-model. Finally, two papers on stochastic differential equations are included. In the first paper, among...
Directory of Open Access Journals (Sweden)
Maria João Nunes
2005-03-01
Full Text Available In atmospheric aerosol sampling, it is inevitable that the air that carries particles is in motion, as a result of both externally driven wind and the sucking action of the sampler itself. High or low air flow sampling speeds may lead to significant particle size bias. The objective of this work is the validation of measurements enabling the comparison of species concentration from both air flow sampling techniques. The presence of several outliers and increase of residuals with concentration becomes obvious, requiring non-parametric methods, recommended for the handling of data which may not be normally distributed. This way, conversion factors are obtained for each of the various species under study using Kendall regression.
Non-parametric smoothing of experimental data
International Nuclear Information System (INIS)
Kuketayev, A.T.; Pen'kov, F.M.
2007-01-01
Full text: Rapid processing of experimental data samples in nuclear physics often requires differentiation in order to find extrema. Therefore, even at the preliminary stage of data analysis, a range of noise reduction methods are used to smooth experimental data. There are many non-parametric smoothing techniques: interval averages, moving averages, exponential smoothing, etc. Nevertheless, it is more common to use a priori information about the behavior of the experimental curve in order to construct smoothing schemes based on the least squares techniques. The latter methodology's advantage is that the area under the curve can be preserved, which is equivalent to conservation of total speed of counting. The disadvantages of this approach include the lack of a priori information. For example, very often the sums of undifferentiated (by a detector) peaks are replaced with one peak during the processing of data, introducing uncontrolled errors in the determination of the physical quantities. The problem is solvable only by having experienced personnel, whose skills are much greater than the challenge. We propose a set of non-parametric techniques, which allows the use of any additional information on the nature of experimental dependence. The method is based on a construction of a functional, which includes both experimental data and a priori information. Minimum of this functional is reached on a non-parametric smoothed curve. Euler (Lagrange) differential equations are constructed for these curves; then their solutions are obtained analytically or numerically. The proposed approach allows for automated processing of nuclear physics data, eliminating the need for highly skilled laboratory personnel. Pursuant to the proposed approach is the possibility to obtain smoothing curves in a given confidence interval, e.g. according to the χ 2 distribution. This approach is applicable when constructing smooth solutions of ill-posed problems, in particular when solving
Non-parametric early seizure detection in an animal model of temporal lobe epilepsy
Talathi, Sachin S.; Hwang, Dong-Uk; Spano, Mark L.; Simonotto, Jennifer; Furman, Michael D.; Myers, Stephen M.; Winters, Jason T.; Ditto, William L.; Carney, Paul R.
2008-03-01
The performance of five non-parametric, univariate seizure detection schemes (embedding delay, Hurst scale, wavelet scale, nonlinear autocorrelation and variance energy) were evaluated as a function of the sampling rate of EEG recordings, the electrode types used for EEG acquisition, and the spatial location of the EEG electrodes in order to determine the applicability of the measures in real-time closed-loop seizure intervention. The criteria chosen for evaluating the performance were high statistical robustness (as determined through the sensitivity and the specificity of a given measure in detecting a seizure) and the lag in seizure detection with respect to the seizure onset time (as determined by visual inspection of the EEG signal by a trained epileptologist). An optimality index was designed to evaluate the overall performance of each measure. For the EEG data recorded with microwire electrode array at a sampling rate of 12 kHz, the wavelet scale measure exhibited better overall performance in terms of its ability to detect a seizure with high optimality index value and high statistics in terms of sensitivity and specificity.
Yuan, Ke-Hai
2008-01-01
In the literature of mean and covariance structure analysis, noncentral chi-square distribution is commonly used to describe the behavior of the likelihood ratio (LR) statistic under alternative hypothesis. Due to the inaccessibility of the rather technical literature for the distribution of the LR statistic, it is widely believed that the…
Trottini, Mario; Vigo, Isabel; Belda, Santiago
2015-01-01
Given a time series, running trends analysis (RTA) involves evaluating least squares trends over overlapping time windows of L consecutive time points, with overlap by all but one observation. This produces a new series called the “running trends series,” which is used as summary statistics of the original series for further analysis. In recent years, RTA has been widely used in climate applied research as summary statistics for time series and time series association. There is no doubt that ...
On Parametric (and Non-Parametric Variation
Directory of Open Access Journals (Sweden)
Neil Smith
2009-11-01
Full Text Available This article raises the issue of the correct characterization of ‘Parametric Variation’ in syntax and phonology. After specifying their theoretical commitments, the authors outline the relevant parts of the Principles–and–Parameters framework, and draw a three-way distinction among Universal Principles, Parameters, and Accidents. The core of the contribution then consists of an attempt to provide identity criteria for parametric, as opposed to non-parametric, variation. Parametric choices must be antecedently known, and it is suggested that they must also satisfy seven individually necessary and jointly sufficient criteria. These are that they be cognitively represented, systematic, dependent on the input, deterministic, discrete, mutually exclusive, and irreversible.
Feng, Jinchao; Lansford, Joshua; Mironenko, Alexander; Pourkargar, Davood Babaei; Vlachos, Dionisios G.; Katsoulakis, Markos A.
2018-03-01
We propose non-parametric methods for both local and global sensitivity analysis of chemical reaction models with correlated parameter dependencies. The developed mathematical and statistical tools are applied to a benchmark Langmuir competitive adsorption model on a close packed platinum surface, whose parameters, estimated from quantum-scale computations, are correlated and are limited in size (small data). The proposed mathematical methodology employs gradient-based methods to compute sensitivity indices. We observe that ranking influential parameters depends critically on whether or not correlations between parameters are taken into account. The impact of uncertainty in the correlation and the necessity of the proposed non-parametric perspective are demonstrated.
Directory of Open Access Journals (Sweden)
Jinchao Feng
2018-03-01
Full Text Available We propose non-parametric methods for both local and global sensitivity analysis of chemical reaction models with correlated parameter dependencies. The developed mathematical and statistical tools are applied to a benchmark Langmuir competitive adsorption model on a close packed platinum surface, whose parameters, estimated from quantum-scale computations, are correlated and are limited in size (small data. The proposed mathematical methodology employs gradient-based methods to compute sensitivity indices. We observe that ranking influential parameters depends critically on whether or not correlations between parameters are taken into account. The impact of uncertainty in the correlation and the necessity of the proposed non-parametric perspective are demonstrated.
A non-parametric method for correction of global radiation observations
DEFF Research Database (Denmark)
Bacher, Peder; Madsen, Henrik; Perers, Bengt
2013-01-01
in the observations are corrected. These are errors such as: tilt in the leveling of the sensor, shadowing from surrounding objects, clipping and saturation in the signal processing, and errors from dirt and wear. The method is based on a statistical non-parametric clear-sky model which is applied to both...
Maric, Marija; de Haan, Else; Hogendoorn, Sanne M; Wolters, Lidewij H; Huizenga, Hilde M
2015-03-01
Single-case experimental designs are useful methods in clinical research practice to investigate individual client progress. Their proliferation might have been hampered by methodological challenges such as the difficulty applying existing statistical procedures. In this article, we describe a data-analytic method to analyze univariate (i.e., one symptom) single-case data using the common package SPSS. This method can help the clinical researcher to investigate whether an intervention works as compared with a baseline period or another intervention type, and to determine whether symptom improvement is clinically significant. First, we describe the statistical method in a conceptual way and show how it can be implemented in SPSS. Simulation studies were performed to determine the number of observation points required per intervention phase. Second, to illustrate this method and its implications, we present a case study of an adolescent with anxiety disorders treated with cognitive-behavioral therapy techniques in an outpatient psychotherapy clinic, whose symptoms were regularly assessed before each session. We provide a description of the data analyses and results of this case study. Finally, we discuss the advantages and shortcomings of the proposed method. Copyright © 2014. Published by Elsevier Ltd.
Non-Parametric Analysis of Rating Transition and Default Data
DEFF Research Database (Denmark)
Fledelius, Peter; Lando, David; Perch Nielsen, Jens
2004-01-01
We demonstrate the use of non-parametric intensity estimation - including construction of pointwise confidence sets - for analyzing rating transition data. We find that transition intensities away from the class studied here for illustration strongly depend on the direction of the previous move b...
Non-parametric analysis of production efficiency of poultry egg ...
African Journals Online (AJOL)
Non-parametric analysis of production efficiency of poultry egg farmers in Delta ... analysis of factors affecting the output of poultry farmers showed that stock ... should be put in place for farmers to learn the best farm practices carried out on the ...
Using non-parametric methods in econometric production analysis
DEFF Research Database (Denmark)
Czekaj, Tomasz Gerard; Henningsen, Arne
2012-01-01
by investigating the relationship between the elasticity of scale and the farm size. We use a balanced panel data set of 371~specialised crop farms for the years 2004-2007. A non-parametric specification test shows that neither the Cobb-Douglas function nor the Translog function are consistent with the "true......Econometric estimation of production functions is one of the most common methods in applied economic production analysis. These studies usually apply parametric estimation techniques, which obligate the researcher to specify a functional form of the production function of which the Cobb...... parameter estimates, but also in biased measures which are derived from the parameters, such as elasticities. Therefore, we propose to use non-parametric econometric methods. First, these can be applied to verify the functional form used in parametric production analysis. Second, they can be directly used...
Non-parametric estimation of the individual's utility map
Noguchi, Takao; Sanborn, Adam N.; Stewart, Neil
2013-01-01
Models of risky choice have attracted much attention in behavioural economics. Previous research has repeatedly demonstrated that individuals' choices are not well explained by expected utility theory, and a number of alternative models have been examined using carefully selected sets of choice alternatives. The model performance however, can depend on which choice alternatives are being tested. Here we develop a non-parametric method for estimating the utility map over the wide range of choi...
Digital spectral analysis parametric, non-parametric and advanced methods
Castanié, Francis
2013-01-01
Digital Spectral Analysis provides a single source that offers complete coverage of the spectral analysis domain. This self-contained work includes details on advanced topics that are usually presented in scattered sources throughout the literature.The theoretical principles necessary for the understanding of spectral analysis are discussed in the first four chapters: fundamentals, digital signal processing, estimation in spectral analysis, and time-series models.An entire chapter is devoted to the non-parametric methods most widely used in industry.High resolution methods a
Maric, M.; de Haan, M.; Hogendoorn, S.M.; Wolters, L.H.; Huizenga, H.M.
2015-01-01
Single-case experimental designs are useful methods in clinical research practice to investigate individual client progress. Their proliferation might have been hampered by methodological challenges such as the difficulty applying existing statistical procedures. In this article, we describe a
Maric, Marija; de Haan, Else; Hogendoorn, Sanne M.; Wolters, Lidewij H.; Huizenga, Hilde M.
2015-01-01
Single-case experimental designs are useful methods in clinical research practice to investigate individual client progress. Their proliferation might have been hampered by methodological challenges such as the difficulty applying existing statistical procedures. In this article, we describe a
kruX: matrix-based non-parametric eQTL discovery.
Qi, Jianlong; Asl, Hassan Foroughi; Björkegren, Johan; Michoel, Tom
2014-01-14
The Kruskal-Wallis test is a popular non-parametric statistical test for identifying expression quantitative trait loci (eQTLs) from genome-wide data due to its robustness against variations in the underlying genetic model and expression trait distribution, but testing billions of marker-trait combinations one-by-one can become computationally prohibitive. We developed kruX, an algorithm implemented in Matlab, Python and R that uses matrix multiplications to simultaneously calculate the Kruskal-Wallis test statistic for several millions of marker-trait combinations at once. KruX is more than ten thousand times faster than computing associations one-by-one on a typical human dataset. We used kruX and a dataset of more than 500k SNPs and 20k expression traits measured in 102 human blood samples to compare eQTLs detected by the Kruskal-Wallis test to eQTLs detected by the parametric ANOVA and linear model methods. We found that the Kruskal-Wallis test is more robust against data outliers and heterogeneous genotype group sizes and detects a higher proportion of non-linear associations, but is more conservative for calling additive linear associations. kruX enables the use of robust non-parametric methods for massive eQTL mapping without the need for a high-performance computing infrastructure and is freely available from http://krux.googlecode.com.
A non-parametric framework for estimating threshold limit values
Directory of Open Access Journals (Sweden)
Ulm Kurt
2005-11-01
Full Text Available Abstract Background To estimate a threshold limit value for a compound known to have harmful health effects, an 'elbow' threshold model is usually applied. We are interested on non-parametric flexible alternatives. Methods We describe how a step function model fitted by isotonic regression can be used to estimate threshold limit values. This method returns a set of candidate locations, and we discuss two algorithms to select the threshold among them: the reduced isotonic regression and an algorithm considering the closed family of hypotheses. We assess the performance of these two alternative approaches under different scenarios in a simulation study. We illustrate the framework by analysing the data from a study conducted by the German Research Foundation aiming to set a threshold limit value in the exposure to total dust at workplace, as a causal agent for developing chronic bronchitis. Results In the paper we demonstrate the use and the properties of the proposed methodology along with the results from an application. The method appears to detect the threshold with satisfactory success. However, its performance can be compromised by the low power to reject the constant risk assumption when the true dose-response relationship is weak. Conclusion The estimation of thresholds based on isotonic framework is conceptually simple and sufficiently powerful. Given that in threshold value estimation context there is not a gold standard method, the proposed model provides a useful non-parametric alternative to the standard approaches and can corroborate or challenge their findings.
Spurious Seasonality Detection: A Non-Parametric Test Proposal
Directory of Open Access Journals (Sweden)
Aurelio F. Bariviera
2018-01-01
Full Text Available This paper offers a general and comprehensive definition of the day-of-the-week effect. Using symbolic dynamics, we develop a unique test based on ordinal patterns in order to detect it. This test uncovers the fact that the so-called “day-of-the-week” effect is partly an artifact of the hidden correlation structure of the data. We present simulations based on artificial time series as well. While time series generated with long memory are prone to exhibit daily seasonality, pure white noise signals exhibit no pattern preference. Since ours is a non-parametric test, it requires no assumptions about the distribution of returns, so that it could be a practical alternative to conventional econometric tests. We also made an exhaustive application of the here-proposed technique to 83 stock indexes around the world. Finally, the paper highlights the relevance of symbolic analysis in economic time series studies.
Debt and growth: A non-parametric approach
Brida, Juan Gabriel; Gómez, David Matesanz; Seijas, Maria Nela
2017-11-01
In this study, we explore the dynamic relationship between public debt and economic growth by using a non-parametric approach based on data symbolization and clustering methods. The study uses annual data of general government consolidated gross debt-to-GDP ratio and gross domestic product for sixteen countries between 1977 and 2015. Using symbolic sequences, we introduce a notion of distance between the dynamical paths of different countries. Then, a Minimal Spanning Tree and a Hierarchical Tree are constructed from time series to help detecting the existence of groups of countries sharing similar economic performance. The main finding of the study appears for the period 2008-2016 when several countries surpassed the 90% debt-to-GDP threshold. During this period, three groups (clubs) of countries are obtained: high, mid and low indebted countries, suggesting that the employed debt-to-GDP threshold drives economic dynamics for the selected countries.
Multi-Directional Non-Parametric Analysis of Agricultural Efficiency
DEFF Research Database (Denmark)
Balezentis, Tomas
This thesis seeks to develop methodologies for assessment of agricultural efficiency and employ them to Lithuanian family farms. In particular, we focus on three particular objectives throughout the research: (i) to perform a fully non-parametric analysis of efficiency effects, (ii) to extend...... to the Multi-Directional Efficiency Analysis approach when the proposed models were employed to analyse empirical data of Lithuanian family farm performance, we saw substantial differences in efficiencies associated with different inputs. In particular, assets appeared to be the least efficiently used input...... relative to labour, intermediate consumption and land (in some cases land was not treated as a discretionary input). These findings call for further research on relationships among financial structure, investment decisions, and efficiency in Lithuanian family farms. Application of different techniques...
Hastuti, S.; Harijono; Murtini, E. S.; Fibrianto, K.
2018-03-01
This current study is aimed to investigate the use of parametric and non-parametric approach for sensory RATA (Rate-All-That-Apply) method. Ledre as Bojonegoro unique local food product was used as point of interest, in which 319 panelists were involved in the study. The result showed that ledre is characterized as easy-crushed texture, sticky in mouth, stingy sensation and easy to swallow. It has also strong banana flavour with brown in colour. Compared to eggroll and semprong, ledre has more variances in terms of taste as well the roll length. As RATA questionnaire is designed to collect categorical data, non-parametric approach is the common statistical procedure. However, similar results were also obtained as parametric approach, regardless the fact of non-normal distributed data. Thus, it suggests that parametric approach can be applicable for consumer study with large number of respondents, even though it may not satisfy the assumption of ANOVA (Analysis of Variances).
Assessing T cell clonal size distribution: a non-parametric approach.
Directory of Open Access Journals (Sweden)
Olesya V Bolkhovskaya
Full Text Available Clonal structure of the human peripheral T-cell repertoire is shaped by a number of homeostatic mechanisms, including antigen presentation, cytokine and cell regulation. Its accurate tuning leads to a remarkable ability to combat pathogens in all their variety, while systemic failures may lead to severe consequences like autoimmune diseases. Here we develop and make use of a non-parametric statistical approach to assess T cell clonal size distributions from recent next generation sequencing data. For 41 healthy individuals and a patient with ankylosing spondylitis, who undergone treatment, we invariably find power law scaling over several decades and for the first time calculate quantitatively meaningful values of decay exponent. It has proved to be much the same among healthy donors, significantly different for an autoimmune patient before the therapy, and converging towards a typical value afterwards. We discuss implications of the findings for theoretical understanding and mathematical modeling of adaptive immunity.
Assessing T cell clonal size distribution: a non-parametric approach.
Bolkhovskaya, Olesya V; Zorin, Daniil Yu; Ivanchenko, Mikhail V
2014-01-01
Clonal structure of the human peripheral T-cell repertoire is shaped by a number of homeostatic mechanisms, including antigen presentation, cytokine and cell regulation. Its accurate tuning leads to a remarkable ability to combat pathogens in all their variety, while systemic failures may lead to severe consequences like autoimmune diseases. Here we develop and make use of a non-parametric statistical approach to assess T cell clonal size distributions from recent next generation sequencing data. For 41 healthy individuals and a patient with ankylosing spondylitis, who undergone treatment, we invariably find power law scaling over several decades and for the first time calculate quantitatively meaningful values of decay exponent. It has proved to be much the same among healthy donors, significantly different for an autoimmune patient before the therapy, and converging towards a typical value afterwards. We discuss implications of the findings for theoretical understanding and mathematical modeling of adaptive immunity.
A local non-parametric model for trade sign inference
Blazejewski, Adam; Coggins, Richard
2005-03-01
We investigate a regularity in market order submission strategies for 12 stocks with large market capitalization on the Australian Stock Exchange. The regularity is evidenced by a predictable relationship between the trade sign (trade initiator), size of the trade, and the contents of the limit order book before the trade. We demonstrate this predictability by developing an empirical inference model to classify trades into buyer-initiated and seller-initiated. The model employs a local non-parametric method, k-nearest neighbor, which in the past was used successfully for chaotic time series prediction. The k-nearest neighbor with three predictor variables achieves an average out-of-sample classification accuracy of 71.40%, compared to 63.32% for the linear logistic regression with seven predictor variables. The result suggests that a non-linear approach may produce a more parsimonious trade sign inference model with a higher out-of-sample classification accuracy. Furthermore, for most of our stocks the observed regularity in market order submissions seems to have a memory of at least 30 trading days.
Non-parametric Bayesian networks: Improving theory and reviewing applications
International Nuclear Information System (INIS)
Hanea, Anca; Morales Napoles, Oswaldo; Ababei, Dan
2015-01-01
Applications in various domains often lead to high dimensional dependence modelling. A Bayesian network (BN) is a probabilistic graphical model that provides an elegant way of expressing the joint distribution of a large number of interrelated variables. BNs have been successfully used to represent uncertain knowledge in a variety of fields. The majority of applications use discrete BNs, i.e. BNs whose nodes represent discrete variables. Integrating continuous variables in BNs is an area fraught with difficulty. Several methods that handle discrete-continuous BNs have been proposed in the literature. This paper concentrates only on one method called non-parametric BNs (NPBNs). NPBNs were introduced in 2004 and they have been or are currently being used in at least twelve professional applications. This paper provides a short introduction to NPBNs, a couple of theoretical advances, and an overview of applications. The aim of the paper is twofold: one is to present the latest improvements of the theory underlying NPBNs, and the other is to complement the existing overviews of BNs applications with the NPNBs applications. The latter opens the opportunity to discuss some difficulties that applications pose to the theoretical framework and in this way offers some NPBN modelling guidance to practitioners. - Highlights: • The paper gives an overview of the current NPBNs methodology. • We extend the NPBN methodology by relaxing the conditions of one of its fundamental theorems. • We propose improvements of the data mining algorithm for the NPBNs. • We review the professional applications of the NPBNs.
Discrete non-parametric kernel estimation for global sensitivity analysis
International Nuclear Information System (INIS)
Senga Kiessé, Tristan; Ventura, Anne
2016-01-01
This work investigates the discrete kernel approach for evaluating the contribution of the variance of discrete input variables to the variance of model output, via analysis of variance (ANOVA) decomposition. Until recently only the continuous kernel approach has been applied as a metamodeling approach within sensitivity analysis framework, for both discrete and continuous input variables. Now the discrete kernel estimation is known to be suitable for smoothing discrete functions. We present a discrete non-parametric kernel estimator of ANOVA decomposition of a given model. An estimator of sensitivity indices is also presented with its asymtotic convergence rate. Some simulations on a test function analysis and a real case study from agricultural have shown that the discrete kernel approach outperforms the continuous kernel one for evaluating the contribution of moderate or most influential discrete parameters to the model output. - Highlights: • We study a discrete kernel estimation for sensitivity analysis of a model. • A discrete kernel estimator of ANOVA decomposition of the model is presented. • Sensitivity indices are calculated for discrete input parameters. • An estimator of sensitivity indices is also presented with its convergence rate. • An application is realized for improving the reliability of environmental models.
Directory of Open Access Journals (Sweden)
Sergio A. Alvarado
2010-12-01
Full Text Available Objetivo: Evaluar la eficiencia predictiva de modelos estadísticos paramétricos y no paramétricos para predecir episodios críticos de contaminación por material particulado PM10 del día siguiente, que superen en Santiago de Chile la norma de calidad diaria. Una predicción adecuada de tales episodios permite a la autoridad decretar medidas restrictivas que aminoren la gravedad del episodio, y consecuentemente proteger la salud de la comunidad. Método: Se trabajó con las concentraciones de material particulado PM10 registradas en una estación asociada a la red de monitorización de la calidad del aire MACAM-2, considerando 152 observaciones diarias de 14 variables, y con información meteorológica registrada durante los años 2001 a 2004. Se ajustaron modelos estadísticos paramétricos Gamma usando el paquete estadístico STATA v11, y no paramétricos usando una demo del software estadístico MARS v 2.0 distribuida por Salford-Systems. Resultados: Ambos métodos de modelación presentan una alta correlación entre los valores observados y los predichos. Los modelos Gamma presentan mejores aciertos que MARS para las concentraciones de PM10 con valores Objective: To evaluate the predictive efficiency of two statistical models (one parametric and the other non-parametric to predict critical episodes of air pollution exceeding daily air quality standards in Santiago, Chile by using the next day PM10 maximum 24h value. Accurate prediction of such episodes would allow restrictive measures to be applied by health authorities to reduce their seriousness and protect the community´s health. Methods: We used the PM10 concentrations registered by a station of the Air Quality Monitoring Network (152 daily observations of 14 variables and meteorological information gathered from 2001 to 2004. To construct predictive models, we fitted a parametric Gamma model using STATA v11 software and a non-parametric MARS model by using a demo version of Salford
Rank-based permutation approaches for non-parametric factorial designs.
Umlauft, Maria; Konietschke, Frank; Pauly, Markus
2017-11-01
Inference methods for null hypotheses formulated in terms of distribution functions in general non-parametric factorial designs are studied. The methods can be applied to continuous, ordinal or even ordered categorical data in a unified way, and are based only on ranks. In this set-up Wald-type statistics and ANOVA-type statistics are the current state of the art. The first method is asymptotically exact but a rather liberal statistical testing procedure for small to moderate sample size, while the latter is only an approximation which does not possess the correct asymptotic α level under the null. To bridge these gaps, a novel permutation approach is proposed which can be seen as a flexible generalization of the Kruskal-Wallis test to all kinds of factorial designs with independent observations. It is proven that the permutation principle is asymptotically correct while keeping its finite exactness property when data are exchangeable. The results of extensive simulation studies foster these theoretical findings. A real data set exemplifies its applicability. © 2017 The British Psychological Society.
Continuous/discrete non parametric Bayesian belief nets with UNICORN and UNINET
Cooke, R.M.; Kurowicka, D.; Hanea, A.M.; Morales Napoles, O.; Ababei, D.A.; Ale, B.J.M.; Roelen, A.
2007-01-01
Hanea et al. (2006) presented a method for quantifying and computing continuous/discrete non parametric Bayesian Belief Nets (BBN). Influences are represented as conditional rank correlations, and the joint normal copula enables rapid sampling and conditionalization. Further mathematical background
Kernel bandwidth estimation for non-parametric density estimation: a comparative study
CSIR Research Space (South Africa)
Van der Walt, CM
2013-12-01
Full Text Available We investigate the performance of conventional bandwidth estimators for non-parametric kernel density estimation on a number of representative pattern-recognition tasks, to gain a better understanding of the behaviour of these estimators in high...
A NON-PARAMETRIC APPROACH TO CONSTRAIN THE TRANSFER FUNCTION IN REVERBERATION MAPPING
International Nuclear Information System (INIS)
Li, Yan-Rong; Wang, Jian-Min; Bai, Jin-Ming
2016-01-01
Broad emission lines of active galactic nuclei stem from a spatially extended region (broad-line region, BLR) that is composed of discrete clouds and photoionized by the central ionizing continuum. The temporal behaviors of these emission lines are blurred echoes of continuum variations (i.e., reverberation mapping, RM) and directly reflect the structures and kinematic information of BLRs through the so-called transfer function (also known as the velocity-delay map). Based on the previous works of Rybicki and Press and Zu et al., we develop an extended, non-parametric approach to determine the transfer function for RM data, in which the transfer function is expressed as a sum of a family of relatively displaced Gaussian response functions. Therefore, arbitrary shapes of transfer functions associated with complicated BLR geometry can be seamlessly included, enabling us to relax the presumption of a specified transfer function frequently adopted in previous studies and to let it be determined by observation data. We formulate our approach in a previously well-established framework that incorporates the statistical modeling of continuum variations as a damped random walk process and takes into account long-term secular variations which are irrelevant to RM signals. The application to RM data shows the fidelity of our approach.
A NON-PARAMETRIC APPROACH TO CONSTRAIN THE TRANSFER FUNCTION IN REVERBERATION MAPPING
Energy Technology Data Exchange (ETDEWEB)
Li, Yan-Rong; Wang, Jian-Min [Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100049 (China); Bai, Jin-Ming, E-mail: liyanrong@mail.ihep.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)
2016-11-10
Broad emission lines of active galactic nuclei stem from a spatially extended region (broad-line region, BLR) that is composed of discrete clouds and photoionized by the central ionizing continuum. The temporal behaviors of these emission lines are blurred echoes of continuum variations (i.e., reverberation mapping, RM) and directly reflect the structures and kinematic information of BLRs through the so-called transfer function (also known as the velocity-delay map). Based on the previous works of Rybicki and Press and Zu et al., we develop an extended, non-parametric approach to determine the transfer function for RM data, in which the transfer function is expressed as a sum of a family of relatively displaced Gaussian response functions. Therefore, arbitrary shapes of transfer functions associated with complicated BLR geometry can be seamlessly included, enabling us to relax the presumption of a specified transfer function frequently adopted in previous studies and to let it be determined by observation data. We formulate our approach in a previously well-established framework that incorporates the statistical modeling of continuum variations as a damped random walk process and takes into account long-term secular variations which are irrelevant to RM signals. The application to RM data shows the fidelity of our approach.
Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne
2012-12-01
In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models.
Impulse response identification with deterministic inputs using non-parametric methods
International Nuclear Information System (INIS)
Bhargava, U.K.; Kashyap, R.L.; Goodman, D.M.
1985-01-01
This paper addresses the problem of impulse response identification using non-parametric methods. Although the techniques developed herein apply to the truncated, untruncated, and the circulant models, we focus on the truncated model which is useful in certain applications. Two methods of impulse response identification will be presented. The first is based on the minimization of the C/sub L/ Statistic, which is an estimate of the mean-square prediction error; the second is a Bayesian approach. For both of these methods, we consider the effects of using both the identity matrix and the Laplacian matrix as weights on the energy in the impulse response. In addition, we present a method for estimating the effective length of the impulse response. Estimating the length is particularly important in the truncated case. Finally, we develop a method for estimating the noise variance at the output. Often, prior information on the noise variance is not available, and a good estimate is crucial to the success of estimating the impulse response with a nonparametric technique
Pataky, Todd C; Vanrenterghem, Jos; Robinson, Mark A
2015-05-01
Biomechanical processes are often manifested as one-dimensional (1D) trajectories. It has been shown that 1D confidence intervals (CIs) are biased when based on 0D statistical procedures, and the non-parametric 1D bootstrap CI has emerged in the Biomechanics literature as a viable solution. The primary purpose of this paper was to clarify that, for 1D biomechanics datasets, the distinction between 0D and 1D methods is much more important than the distinction between parametric and non-parametric procedures. A secondary purpose was to demonstrate that a parametric equivalent to the 1D bootstrap exists in the form of a random field theory (RFT) correction for multiple comparisons. To emphasize these points we analyzed six datasets consisting of force and kinematic trajectories in one-sample, paired, two-sample and regression designs. Results showed, first, that the 1D bootstrap and other 1D non-parametric CIs were qualitatively identical to RFT CIs, and all were very different from 0D CIs. Second, 1D parametric and 1D non-parametric hypothesis testing results were qualitatively identical for all six datasets. Last, we highlight the limitations of 1D CIs by demonstrating that they are complex, design-dependent, and thus non-generalizable. These results suggest that (i) analyses of 1D data based on 0D models of randomness are generally biased unless one explicitly identifies 0D variables before the experiment, and (ii) parametric and non-parametric 1D hypothesis testing provide an unambiguous framework for analysis when one׳s hypothesis explicitly or implicitly pertains to whole 1D trajectories. Copyright © 2015 Elsevier Ltd. All rights reserved.
Harlander, Niklas; Rosenkranz, Tobias; Hohmann, Volker
2012-08-01
Single channel noise reduction has been well investigated and seems to have reached its limits in terms of speech intelligibility improvement, however, the quality of such schemes can still be advanced. This study tests to what extent novel model-based processing schemes might improve performance in particular for non-stationary noise conditions. Two prototype model-based algorithms, a speech-model-based, and a auditory-model-based algorithm were compared to a state-of-the-art non-parametric minimum statistics algorithm. A speech intelligibility test, preference rating, and listening effort scaling were performed. Additionally, three objective quality measures for the signal, background, and overall distortions were applied. For a better comparison of all algorithms, particular attention was given to the usage of the similar Wiener-based gain rule. The perceptual investigation was performed with fourteen hearing-impaired subjects. The results revealed that the non-parametric algorithm and the auditory model-based algorithm did not affect speech intelligibility, whereas the speech-model-based algorithm slightly decreased intelligibility. In terms of subjective quality, both model-based algorithms perform better than the unprocessed condition and the reference in particular for highly non-stationary noise environments. Data support the hypothesis that model-based algorithms are promising for improving performance in non-stationary noise conditions.
Energy Technology Data Exchange (ETDEWEB)
Gonzalez-Manteiga, W.; Prada-Sanchez, J.M.; Fiestras-Janeiro, M.G.; Garcia-Jurado, I. (Universidad de Santiago de Compostela, Santiago de Compostela (Spain). Dept. de Estadistica e Investigacion Operativa)
1990-11-01
A statistical study of the dependence between various critical fusion temperatures of a certain kind of coal and its chemical components is carried out. As well as using classical dependence techniques (multiple, stepwise and PLS regression, principal components, canonical correlation, etc.) together with the corresponding inference on the parameters of interest, non-parametric regression and bootstrap inference are also performed. 11 refs., 3 figs., 8 tabs.
A non-parametric peak calling algorithm for DamID-Seq.
Directory of Open Access Journals (Sweden)
Renhua Li
Full Text Available Protein-DNA interactions play a significant role in gene regulation and expression. In order to identify transcription factor binding sites (TFBS of double sex (DSX-an important transcription factor in sex determination, we applied the DNA adenine methylation identification (DamID technology to the fat body tissue of Drosophila, followed by deep sequencing (DamID-Seq. One feature of DamID-Seq data is that induced adenine methylation signals are not assured to be symmetrically distributed at TFBS, which renders the existing peak calling algorithms for ChIP-Seq, including SPP and MACS, inappropriate for DamID-Seq data. This challenged us to develop a new algorithm for peak calling. A challenge in peaking calling based on sequence data is estimating the averaged behavior of background signals. We applied a bootstrap resampling method to short sequence reads in the control (Dam only. After data quality check and mapping reads to a reference genome, the peaking calling procedure compromises the following steps: 1 reads resampling; 2 reads scaling (normalization and computing signal-to-noise fold changes; 3 filtering; 4 Calling peaks based on a statistically significant threshold. This is a non-parametric method for peak calling (NPPC. We also used irreproducible discovery rate (IDR analysis, as well as ChIP-Seq data to compare the peaks called by the NPPC. We identified approximately 6,000 peaks for DSX, which point to 1,225 genes related to the fat body tissue difference between female and male Drosophila. Statistical evidence from IDR analysis indicated that these peaks are reproducible across biological replicates. In addition, these peaks are comparable to those identified by use of ChIP-Seq on S2 cells, in terms of peak number, location, and peaks width.
A non-parametric peak calling algorithm for DamID-Seq.
Li, Renhua; Hempel, Leonie U; Jiang, Tingbo
2015-01-01
Protein-DNA interactions play a significant role in gene regulation and expression. In order to identify transcription factor binding sites (TFBS) of double sex (DSX)-an important transcription factor in sex determination, we applied the DNA adenine methylation identification (DamID) technology to the fat body tissue of Drosophila, followed by deep sequencing (DamID-Seq). One feature of DamID-Seq data is that induced adenine methylation signals are not assured to be symmetrically distributed at TFBS, which renders the existing peak calling algorithms for ChIP-Seq, including SPP and MACS, inappropriate for DamID-Seq data. This challenged us to develop a new algorithm for peak calling. A challenge in peaking calling based on sequence data is estimating the averaged behavior of background signals. We applied a bootstrap resampling method to short sequence reads in the control (Dam only). After data quality check and mapping reads to a reference genome, the peaking calling procedure compromises the following steps: 1) reads resampling; 2) reads scaling (normalization) and computing signal-to-noise fold changes; 3) filtering; 4) Calling peaks based on a statistically significant threshold. This is a non-parametric method for peak calling (NPPC). We also used irreproducible discovery rate (IDR) analysis, as well as ChIP-Seq data to compare the peaks called by the NPPC. We identified approximately 6,000 peaks for DSX, which point to 1,225 genes related to the fat body tissue difference between female and male Drosophila. Statistical evidence from IDR analysis indicated that these peaks are reproducible across biological replicates. In addition, these peaks are comparable to those identified by use of ChIP-Seq on S2 cells, in terms of peak number, location, and peaks width.
A Non-Parametric Surrogate-based Test of Significance for T-Wave Alternans Detection
Nemati, Shamim; Abdala, Omar; Bazán, Violeta; Yim-Yeh, Susie; Malhotra, Atul; Clifford, Gari
2010-01-01
We present a non-parametric adaptive surrogate test that allows for the differentiation of statistically significant T-Wave Alternans (TWA) from alternating patterns that can be solely explained by the statistics of noise. The proposed test is based on estimating the distribution of noise induced alternating patterns in a beat sequence from a set of surrogate data derived from repeated reshuffling of the original beat sequence. Thus, in assessing the significance of the observed alternating patterns in the data no assumptions are made about the underlying noise distribution. In addition, since the distribution of noise-induced alternans magnitudes is calculated separately for each sequence of beats within the analysis window, the method is robust to data non-stationarities in both noise and TWA. The proposed surrogate method for rejecting noise was compared to the standard noise rejection methods used with the Spectral Method (SM) and the Modified Moving Average (MMA) techniques. Using a previously described realistic multi-lead model of TWA, and real physiological noise, we demonstrate the proposed approach reduces false TWA detections, while maintaining a lower missed TWA detection compared with all the other methods tested. A simple averaging-based TWA estimation algorithm was coupled with the surrogate significance testing and was evaluated on three public databases; the Normal Sinus Rhythm Database (NRSDB), the Chronic Heart Failure Database (CHFDB) and the Sudden Cardiac Death Database (SCDDB). Differences in TWA amplitudes between each database were evaluated at matched heart rate (HR) intervals from 40 to 120 beats per minute (BPM). Using the two-sample Kolmogorov-Smirnov test, we found that significant differences in TWA levels exist between each patient group at all decades of heart rates. The most marked difference was generally found at higher heart rates, and the new technique resulted in a larger margin of separability between patient populations than
Directory of Open Access Journals (Sweden)
Archer Kellie J
2008-02-01
Full Text Available Abstract Background With the popularity of DNA microarray technology, multiple groups of researchers have studied the gene expression of similar biological conditions. Different methods have been developed to integrate the results from various microarray studies, though most of them rely on distributional assumptions, such as the t-statistic based, mixed-effects model, or Bayesian model methods. However, often the sample size for each individual microarray experiment is small. Therefore, in this paper we present a non-parametric meta-analysis approach for combining data from independent microarray studies, and illustrate its application on two independent Affymetrix GeneChip studies that compared the gene expression of biopsies from kidney transplant recipients with chronic allograft nephropathy (CAN to those with normal functioning allograft. Results The simulation study comparing the non-parametric meta-analysis approach to a commonly used t-statistic based approach shows that the non-parametric approach has better sensitivity and specificity. For the application on the two CAN studies, we identified 309 distinct genes that expressed differently in CAN. By applying Fisher's exact test to identify enriched KEGG pathways among those genes called differentially expressed, we found 6 KEGG pathways to be over-represented among the identified genes. We used the expression measurements of the identified genes as predictors to predict the class labels for 6 additional biopsy samples, and the predicted results all conformed to their pathologist diagnosed class labels. Conclusion We present a new approach for combining data from multiple independent microarray studies. This approach is non-parametric and does not rely on any distributional assumptions. The rationale behind the approach is logically intuitive and can be easily understood by researchers not having advanced training in statistics. Some of the identified genes and pathways have been
DEFF Research Database (Denmark)
Tan, Qihua; Zhao, J H; Iachine, I
2004-01-01
This report investigates the power issue in applying the non-parametric linkage analysis of affected sib-pairs (ASP) [Kruglyak and Lander, 1995: Am J Hum Genet 57:439-454] to localize genes that contribute to human longevity using long-lived sib-pairs. Data were simulated by introducing a recently...... developed statistical model for measuring marker-longevity associations [Yashin et al., 1999: Am J Hum Genet 65:1178-1193], enabling direct power comparison between linkage and association approaches. The non-parametric linkage (NPL) scores estimated in the region harboring the causal allele are evaluated...... in case of a dominant effect. Although the power issue may depend heavily on the true genetic nature in maintaining survival, our study suggests that results from small-scale sib-pair investigations should be referred with caution, given the complexity of human longevity....
Assessing pupil and school performance by non-parametric and parametric techniques
de Witte, K.; Thanassoulis, E.; Simpson, G.; Battisti, G.; Charlesworth-May, A.
2010-01-01
This paper discusses the use of the non-parametric free disposal hull (FDH) and the parametric multi-level model (MLM) as alternative methods for measuring pupil and school attainment where hierarchical structured data are available. Using robust FDH estimates, we show how to decompose the overall
Low default credit scoring using two-class non-parametric kernel density estimation
CSIR Research Space (South Africa)
Rademeyer, E
2016-12-01
Full Text Available This paper investigates the performance of two-class classification credit scoring data sets with low default ratios. The standard two-class parametric Gaussian and non-parametric Parzen classifiers are extended, using Bayes’ rule, to include either...
DEFF Research Database (Denmark)
Ramirez, José Rangel; Sørensen, John Dalsgaard
2011-01-01
This work illustrates the updating and incorporation of information in the assessment of fatigue reliability for offshore wind turbine. The new information, coming from external and condition monitoring can be used to direct updating of the stochastic variables through a non-parametric Bayesian u...
Non-parametric production analysis of pesticides use in the Netherlands
Oude Lansink, A.G.J.M.; Silva, E.
2004-01-01
Many previous empirical studies on the productivity of pesticides suggest that pesticides are under-utilized in agriculture despite the general held believe that these inputs are substantially over-utilized. This paper uses data envelopment analysis (DEA) to calculate non-parametric measures of the
The Support Reduction Algorithm for Computing Non-Parametric Function Estimates in Mixture Models
GROENEBOOM, PIET; JONGBLOED, GEURT; WELLNER, JON A.
2008-01-01
In this paper, we study an algorithm (which we call the support reduction algorithm) that can be used to compute non-parametric M-estimators in mixture models. The algorithm is compared with natural competitors in the context of convex regression and the ‘Aspect problem’ in quantum physics.
Non-parametric tests of productive efficiency with errors-in-variables
Kuosmanen, T.K.; Post, T.; Scholtes, S.
2007-01-01
We develop a non-parametric test of productive efficiency that accounts for errors-in-variables, following the approach of Varian. [1985. Nonparametric analysis of optimizing behavior with measurement error. Journal of Econometrics 30(1/2), 445-458]. The test is based on the general Pareto-Koopmans
Non-parametric Estimation of Diffusion-Paths Using Wavelet Scaling Methods
DEFF Research Database (Denmark)
Høg, Esben
In continuous time, diffusion processes have been used for modelling financial dynamics for a long time. For example the Ornstein-Uhlenbeck process (the simplest mean-reverting process) has been used to model non-speculative price processes. We discuss non--parametric estimation of these processes...
Non-Parametric Estimation of Diffusion-Paths Using Wavelet Scaling Methods
DEFF Research Database (Denmark)
Høg, Esben
2003-01-01
In continuous time, diffusion processes have been used for modelling financial dynamics for a long time. For example the Ornstein-Uhlenbeck process (the simplest mean--reverting process) has been used to model non-speculative price processes. We discuss non--parametric estimation of these processes...
A non-parametric Bayesian approach to decompounding from high frequency data
Gugushvili, Shota; van der Meulen, F.H.; Spreij, Peter
2016-01-01
Given a sample from a discretely observed compound Poisson process, we consider non-parametric estimation of the density f0 of its jump sizes, as well as of its intensity λ0. We take a Bayesian approach to the problem and specify the prior on f0 as the Dirichlet location mixture of normal densities.
A comparative study of non-parametric models for identification of ...
African Journals Online (AJOL)
However, the frequency response method using random binary signals was good for unpredicted white noise characteristics and considered the best method for non-parametric system identifica-tion. The autoregressive external input (ARX) model was very useful for system identification, but on applicati-on, few input ...
A non-parametric hierarchical model to discover behavior dynamics from tracks
Kooij, J.F.P.; Englebienne, G.; Gavrila, D.M.
2012-01-01
We present a novel non-parametric Bayesian model to jointly discover the dynamics of low-level actions and high-level behaviors of tracked people in open environments. Our model represents behaviors as Markov chains of actions which capture high-level temporal dynamics. Actions may be shared by
Verrelst, Jochem; Rivera, Juan Pablo; Veroustraete, Frank; Muñoz-Marí, Jordi; Clevers, J.G.P.W.; Camps-Valls, Gustau; Moreno, José
2015-01-01
Given the forthcoming availability of Sentinel-2 (S2) images, this paper provides a systematic comparison of retrieval accuracy and processing speed of a multitude of parametric, non-parametric and physically-based retrieval methods using simulated S2 data. An experimental field dataset (SPARC),
Directory of Open Access Journals (Sweden)
J Ghanbari
2017-06-01
Full Text Available Introduction Cumin is one of the most important medicinal plants in Iran and today, it is in the second level of popularity between spices in the world after black pepper. Cumin is an aromatic plant used as flavoring and seasoning agent in foods. Cumin seeds have been found to possess significant biological and have been used for treatment of toothache, dyspepsia, diarrhoea, epilepsy and jaundice. Knowledge of GEI is advantageous to have a cultivar that gives consistently high yield in a broad range of environments and to increase efficiency of breeding program and selection of best genotypes. A genotype that has stable trait expression across environments contributes little to GEI and its performance should be more predictable from the main several statistical methods have been proposed for stability analysis, with the aim of explaining the information contained in the GEI. Regression technique was proposed by Finlay and Wilkinson (1963 and was improved by Eberhart and Russell (1966. Generally, genotype stability was estimated by the slope of and deviation from the regression line for each of the genotypes. This is a popular method in stability analysis and has been applied in many crops. Non-parametric methods (rank mean (R, standard deviation rank (SDR and yield index ratio (YIR, environmental variance (S2i and genotypic variation coefficient (CVi Wricke's ecovalence and Shukla's stability variance (Shukla, 1972 have been used to determine genotype-by-environment interaction in many studies. This study was aimed to evaluate the ecotype × sowing date interaction in cumin and to evaluation of genotypic response of cumin to different sowing dates using univariate stability parameters. Materials and Methods In order to study of ecotype × sowing date interaction, different cumin ecotypes: Semnan, Fars, Yazd, Golestan, Khorasan-Razavi, Khorasan-Shomali, Khorasan-Jonoubi, Isfahan and Kerman in 5 different sowing dates (26th December, 10th January
Shi, Yang; Chinnaiyan, Arul M; Jiang, Hui
2015-07-01
High-throughput sequencing of transcriptomes (RNA-Seq) has become a powerful tool to study gene expression. Here we present an R package, rSeqNP, which implements a non-parametric approach to test for differential expression and splicing from RNA-Seq data. rSeqNP uses permutation tests to access statistical significance and can be applied to a variety of experimental designs. By combining information across isoforms, rSeqNP is able to detect more differentially expressed or spliced genes from RNA-Seq data. The R package with its source code and documentation are freely available at http://www-personal.umich.edu/∼jianghui/rseqnp/. jianghui@umich.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Parametric and Non-Parametric Vibration-Based Structural Identification Under Earthquake Excitation
Pentaris, Fragkiskos P.; Fouskitakis, George N.
2014-05-01
The problem of modal identification in civil structures is of crucial importance, and thus has been receiving increasing attention in recent years. Vibration-based methods are quite promising as they are capable of identifying the structure's global characteristics, they are relatively easy to implement and they tend to be time effective and less expensive than most alternatives [1]. This paper focuses on the off-line structural/modal identification of civil (concrete) structures subjected to low-level earthquake excitations, under which, they remain within their linear operating regime. Earthquakes and their details are recorded and provided by the seismological network of Crete [2], which 'monitors' the broad region of south Hellenic arc, an active seismic region which functions as a natural laboratory for earthquake engineering of this kind. A sufficient number of seismic events are analyzed in order to reveal the modal characteristics of the structures under study, that consist of the two concrete buildings of the School of Applied Sciences, Technological Education Institute of Crete, located in Chania, Crete, Hellas. Both buildings are equipped with high-sensitivity and accuracy seismographs - providing acceleration measurements - established at the basement (structure's foundation) presently considered as the ground's acceleration (excitation) and at all levels (ground floor, 1st floor, 2nd floor and terrace). Further details regarding the instrumentation setup and data acquisition may be found in [3]. The present study invokes stochastic, both non-parametric (frequency-based) and parametric methods for structural/modal identification (natural frequencies and/or damping ratios). Non-parametric methods include Welch-based spectrum and Frequency response Function (FrF) estimation, while parametric methods, include AutoRegressive (AR), AutoRegressive with eXogeneous input (ARX) and Autoregressive Moving-Average with eXogeneous input (ARMAX) models[4, 5
2014-10-02
defined by Eqs. (3)–(4) (Greenwell & Finch , 2004) (Kar & Mohanty, 2006). The p value provides the metric for novelty scoring. p = QKS(z) = 2 ∞∑ j=1 (−1...provides early detection of degradation and ability to score its significance in order to inform maintenance planning and consequently reduce disruption ...actionable information, sig- nals are typically processed from raw measurements into a reduced dimension novelty summary value that may be more easily
Hadron Energy Reconstruction for ATLAS Barrel Combined Calorimeter Using Non-Parametrical Method
Kulchitskii, Yu A
2000-01-01
Hadron energy reconstruction for the ATLAS barrel prototype combined calorimeter in the framework of the non-parametrical method is discussed. The non-parametrical method utilizes only the known e/h ratios and the electron calibration constants and does not require the determination of any parameters by a minimization technique. Thus, this technique lends itself to fast energy reconstruction in a first level trigger. The reconstructed mean values of the hadron energies are within \\pm1% of the true values and the fractional energy resolution is [(58\\pm 3)%{\\sqrt{GeV}}/\\sqrt{E}+(2.5\\pm0.3)%]\\bigoplus(1.7\\pm0.2) GeV/E. The value of the e/h ratio obtained for the electromagnetic compartment of the combined calorimeter is 1.74\\pm0.04. Results of a study of the longitudinal hadronic shower development are also presented.
DEFF Research Database (Denmark)
Carrao, Hugo; Sepulcre, Guadalupe; Horion, Stéphanie Marie Anne F
2013-01-01
This study evaluates the relationship between the frequency and duration of meteorological droughts and the subsequent temporal changes on the quantity of actively photosynthesizing biomass (greenness) estimated from satellite imagery on rainfed croplands in Latin America. An innovative non-parametric...... and non-supervised approach, based on the Fisher-Jenks optimal classification algorithm, is used to identify multi-scale meteorological droughts on the basis of empirical cumulative distributions of 1, 3, 6, and 12-monthly precipitation totals. As input data for the classifier, we use the gridded GPCC...... for the period between 1998 and 2010. The time-series analysis of vegetation greenness is performed during the growing season with a non-parametric method, namely the seasonal Relative Greenness (RG) of spatially accumulated fAPAR. The Global Land Cover map of 2000 and the GlobCover maps of 2005/2006 and 2009...
von Hirschhausen, Christian R.; Cullmann, Astrid
2005-01-01
Abstract This paper applies parametric and non-parametric and parametric tests to assess the efficiency of electricity distribution companies in Germany. We address traditional issues in electricity sector benchmarking, such as the role of scale effects and optimal utility size, as well as new evidence specific to the situation in Germany. We use labour, capital, and peak load capacity as inputs, and units sold and the number of customers as output. The data cover 307 (out of 553) ...
A simple non-parametric goodness-of-fit test for elliptical copulas
Directory of Open Access Journals (Sweden)
Jaser Miriam
2017-12-01
Full Text Available In this paper, we propose a simple non-parametric goodness-of-fit test for elliptical copulas of any dimension. It is based on the equality of Kendall’s tau and Blomqvist’s beta for all bivariate margins. Nominal level and power of the proposed test are investigated in a Monte Carlo study. An empirical application illustrates our goodness-of-fit test at work.
Bootstrapping the economy -- a non-parametric method of generating consistent future scenarios
Müller, Ulrich A; Bürgi, Roland; Dacorogna, Michel M
2004-01-01
The fortune and the risk of a business venture depends on the future course of the economy. There is a strong demand for economic forecasts and scenarios that can be applied to planning and modeling. While there is an ongoing debate on modeling economic scenarios, the bootstrapping (or resampling) approach presented here has several advantages. As a non-parametric method, it directly relies on past market behaviors rather than debatable assumptions on models and parameters. Simultaneous dep...
Generalized Correlation Coefficient for Non-Parametric Analysis of Microarray Time-Course Data
DEFF Research Database (Denmark)
Tan, Qihua; Thomassen, Mads; Burton, Mark
2017-01-01
the heterogeneous time-course gene expression patterns. Application of the method identified nonlinear time-course patterns in high agreement with parametric analysis. We conclude that the non-parametric nature in the generalized correlation analysis could be an useful and efficient tool for analyzing microarray...... time-course data and for exploring the complex relationships in the omics data for studying their association with disease and health....
Directory of Open Access Journals (Sweden)
Ibsen Chivatá Cárdenas
2008-05-01
Full Text Available This article presents a rainfall model constructed by applying non-parametric modelling and imprecise probabilities; these tools were used because there was not enough homogeneous information in the study area. The area’s hydro-logical information regarding rainfall was scarce and existing hydrological time series were not uniform. A distributed extended rainfall model was constructed from so-called probability boxes (p-boxes, multinomial probability distribu-tion and confidence intervals (a friendly algorithm was constructed for non-parametric modelling by combining the last two tools. This model confirmed the high level of uncertainty involved in local rainfall modelling. Uncertainty en-compassed the whole range (domain of probability values thereby showing the severe limitations on information, leading to the conclusion that a detailed estimation of probability would lead to significant error. Nevertheless, rele-vant information was extracted; it was estimated that maximum daily rainfall threshold (70 mm would be surpassed at least once every three years and the magnitude of uncertainty affecting hydrological parameter estimation. This paper’s conclusions may be of interest to non-parametric modellers and decisions-makers as such modelling and imprecise probability represents an alternative for hydrological variable assessment and maybe an obligatory proce-dure in the future. Its potential lies in treating scarce information and represents a robust modelling strategy for non-seasonal stochastic modelling conditions
Non-parametric Tuning of PID Controllers A Modified Relay-Feedback-Test Approach
Boiko, Igor
2013-01-01
The relay feedback test (RFT) has become a popular and efficient tool used in process identification and automatic controller tuning. Non-parametric Tuning of PID Controllers couples new modifications of classical RFT with application-specific optimal tuning rules to form a non-parametric method of test-and-tuning. Test and tuning are coordinated through a set of common parameters so that a PID controller can obtain the desired gain or phase margins in a system exactly, even with unknown process dynamics. The concept of process-specific optimal tuning rules in the nonparametric setup, with corresponding tuning rules for flow, level pressure, and temperature control loops is presented in the text. Common problems of tuning accuracy based on parametric and non-parametric approaches are addressed. In addition, the text treats the parametric approach to tuning based on the modified RFT approach and the exact model of oscillations in the system under test using the locus of a perturbedrelay system (LPRS) meth...
Pestman, Wiebe R
2009-01-01
This textbook provides a broad and solid introduction to mathematical statistics, including the classical subjects hypothesis testing, normal regression analysis, and normal analysis of variance. In addition, non-parametric statistics and vectorial statistics are considered, as well as applications of stochastic analysis in modern statistics, e.g., Kolmogorov-Smirnov testing, smoothing techniques, robustness and density estimation. For students with some elementary mathematical background. With many exercises. Prerequisites from measure theory and linear algebra are presented.
Martinez Manzanera, Octavio; Elting, Jan Willem; van der Hoeven, Johannes H.; Maurits, Natasha M.
2016-01-01
In the clinic, tremor is diagnosed during a time-limited process in which patients are observed and the characteristics of tremor are visually assessed. For some tremor disorders, a more detailed analysis of these characteristics is needed. Accelerometry and electromyography can be used to obtain a better insight into tremor. Typically, routine clinical assessment of accelerometry and electromyography data involves visual inspection by clinicians and occasionally computational analysis to obtain objective characteristics of tremor. However, for some tremor disorders these characteristics may be different during daily activity. This variability in presentation between the clinic and daily life makes a differential diagnosis more difficult. A long-term recording of tremor by accelerometry and/or electromyography in the home environment could help to give a better insight into the tremor disorder. However, an evaluation of such recordings using routine clinical standards would take too much time. We evaluated a range of techniques that automatically detect tremor segments in accelerometer data, as accelerometer data is more easily obtained in the home environment than electromyography data. Time can be saved if clinicians only have to evaluate the tremor characteristics of segments that have been automatically detected in longer daily activity recordings. We tested four non-parametric methods and five parametric methods on clinical accelerometer data from 14 patients with different tremor disorders. The consensus between two clinicians regarding the presence or absence of tremor on 3943 segments of accelerometer data was employed as reference. The nine methods were tested against this reference to identify their optimal parameters. Non-parametric methods generally performed better than parametric methods on our dataset when optimal parameters were used. However, one parametric method, employing the high frequency content of the tremor bandwidth under consideration
Comparative Study of Parametric and Non-parametric Approaches in Fault Detection and Isolation
DEFF Research Database (Denmark)
Katebi, S.D.; Blanke, M.; Katebi, M.R.
This report describes a comparative study between two approaches to fault detection and isolation in dynamic systems. The first approach uses a parametric model of the system. The main components of such techniques are residual and signature generation for processing and analyzing. The second...... approach is non-parametric in the sense that the signature analysis is only dependent on the frequency or time domain information extracted directly from the input-output signals. Based on these approaches, two different fault monitoring schemes are developed where the feature extraction and fault decision...
Kerschbamer, Rudolf
2015-05-01
This paper proposes a geometric delineation of distributional preference types and a non-parametric approach for their identification in a two-person context. It starts with a small set of assumptions on preferences and shows that this set (i) naturally results in a taxonomy of distributional archetypes that nests all empirically relevant types considered in previous work; and (ii) gives rise to a clean experimental identification procedure - the Equality Equivalence Test - that discriminates between archetypes according to core features of preferences rather than properties of specific modeling variants. As a by-product the test yields a two-dimensional index of preference intensity.
Generalized Correlation Coefficient for Non-Parametric Analysis of Microarray Time-Course Data.
Tan, Qihua; Thomassen, Mads; Burton, Mark; Mose, Kristian Fredløv; Andersen, Klaus Ejner; Hjelmborg, Jacob; Kruse, Torben
2017-06-06
Modeling complex time-course patterns is a challenging issue in microarray study due to complex gene expression patterns in response to the time-course experiment. We introduce the generalized correlation coefficient and propose a combinatory approach for detecting, testing and clustering the heterogeneous time-course gene expression patterns. Application of the method identified nonlinear time-course patterns in high agreement with parametric analysis. We conclude that the non-parametric nature in the generalized correlation analysis could be an useful and efficient tool for analyzing microarray time-course data and for exploring the complex relationships in the omics data for studying their association with disease and health.
Non-parametric system identification from non-linear stochastic response
DEFF Research Database (Denmark)
Rüdinger, Finn; Krenk, Steen
2001-01-01
An estimation method is proposed for identification of non-linear stiffness and damping of single-degree-of-freedom systems under stationary white noise excitation. Non-parametric estimates of the stiffness and damping along with an estimate of the white noise intensity are obtained by suitable...... of the energy at mean-level crossings, which yields the damping relative to white noise intensity. Finally, an estimate of the noise intensity is extracted by estimating the absolute damping from the autocovariance functions of a set of modified phase plane variables at different energy levels. The method...
Comparison of spectrum normalization techniques for univariate ...
Indian Academy of Sciences (India)
Laser-induced breakdown spectroscopy; univariate study; normalization models; stainless steel; standard error of prediction. Abstract. Analytical performance of six different spectrum normalization techniques, namelyinternal normalization, normalization with total light, normalization with background along with their ...
Measuring energy performance with sectoral heterogeneity: A non-parametric frontier approach
International Nuclear Information System (INIS)
Wang, H.; Ang, B.W.; Wang, Q.W.; Zhou, P.
2017-01-01
Evaluating economy-wide energy performance is an integral part of assessing the effectiveness of a country's energy efficiency policy. Non-parametric frontier approach has been widely used by researchers for such a purpose. This paper proposes an extended non-parametric frontier approach to studying economy-wide energy efficiency and productivity performances by accounting for sectoral heterogeneity. Relevant techniques in index number theory are incorporated to quantify the driving forces behind changes in the economy-wide energy productivity index. The proposed approach facilitates flexible modelling of different sectors' production processes, and helps to examine sectors' impact on the aggregate energy performance. A case study of China's economy-wide energy efficiency and productivity performances in its 11th five-year plan period (2006–2010) is presented. It is found that sectoral heterogeneities in terms of energy performance are significant in China. Meanwhile, China's economy-wide energy productivity increased slightly during the study period, mainly driven by the technical efficiency improvement. A number of other findings have also been reported. - Highlights: • We model economy-wide energy performance by considering sectoral heterogeneity. • The proposed approach can identify sectors' impact on the aggregate energy performance. • Obvious sectoral heterogeneities are identified in evaluating China's energy performance.
MEASURING DARK MATTER PROFILES NON-PARAMETRICALLY IN DWARF SPHEROIDALS: AN APPLICATION TO DRACO
International Nuclear Information System (INIS)
Jardel, John R.; Gebhardt, Karl; Fabricius, Maximilian H.; Williams, Michael J.; Drory, Niv
2013-01-01
We introduce a novel implementation of orbit-based (or Schwarzschild) modeling that allows dark matter density profiles to be calculated non-parametrically in nearby galaxies. Our models require no assumptions to be made about velocity anisotropy or the dark matter profile. The technique can be applied to any dispersion-supported stellar system, and we demonstrate its use by studying the Local Group dwarf spheroidal galaxy (dSph) Draco. We use existing kinematic data at larger radii and also present 12 new radial velocities within the central 13 pc obtained with the VIRUS-W integral field spectrograph on the 2.7 m telescope at McDonald Observatory. Our non-parametric Schwarzschild models find strong evidence that the dark matter profile in Draco is cuspy for 20 ≤ r ≤ 700 pc. The profile for r ≥ 20 pc is well fit by a power law with slope α = –1.0 ± 0.2, consistent with predictions from cold dark matter simulations. Our models confirm that, despite its low baryon content relative to other dSphs, Draco lives in a massive halo.
Robust non-parametric one-sample tests for the analysis of recurrent events.
Rebora, Paola; Galimberti, Stefania; Valsecchi, Maria Grazia
2010-12-30
One-sample non-parametric tests are proposed here for inference on recurring events. The focus is on the marginal mean function of events and the basis for inference is the standardized distance between the observed and the expected number of events under a specified reference rate. Different weights are considered in order to account for various types of alternative hypotheses on the mean function of the recurrent events process. A robust version and a stratified version of the test are also proposed. The performance of these tests was investigated through simulation studies under various underlying event generation processes, such as homogeneous and nonhomogeneous Poisson processes, autoregressive and renewal processes, with and without frailty effects. The robust versions of the test have been shown to be suitable in a wide variety of event generating processes. The motivating context is a study on gene therapy in a very rare immunodeficiency in children, where a major end-point is the recurrence of severe infections. Robust non-parametric one-sample tests for recurrent events can be useful to assess efficacy and especially safety in non-randomized studies or in epidemiological studies for comparison with a standard population. Copyright © 2010 John Wiley & Sons, Ltd.
Non-parametric transformation for data correlation and integration: From theory to practice
Energy Technology Data Exchange (ETDEWEB)
Datta-Gupta, A.; Xue, Guoping; Lee, Sang Heon [Texas A& M Univ., College Station, TX (United States)
1997-08-01
The purpose of this paper is two-fold. First, we introduce the use of non-parametric transformations for correlating petrophysical data during reservoir characterization. Such transformations are completely data driven and do not require a priori functional relationship between response and predictor variables which is the case with traditional multiple regression. The transformations are very general, computationally efficient and can easily handle mixed data types for example, continuous variables such as porosity, permeability and categorical variables such as rock type, lithofacies. The power of the non-parametric transformation techniques for data correlation has been illustrated through synthetic and field examples. Second, we utilize these transformations to propose a two-stage approach for data integration during heterogeneity characterization. The principal advantages of our approach over traditional cokriging or cosimulation methods are: (1) it does not require a linear relationship between primary and secondary data, (2) it exploits the secondary information to its fullest potential by maximizing the correlation between the primary and secondary data, (3) it can be easily applied to cases where several types of secondary or soft data are involved, and (4) it significantly reduces variance function calculations and thus, greatly facilitates non-Gaussian cosimulation. We demonstrate the data integration procedure using synthetic and field examples. The field example involves estimation of pore-footage distribution using well data and multiple seismic attributes.
Ferrarini, Luca; Veer, Ilya M; van Lew, Baldur; Oei, Nicole Y L; van Buchem, Mark A; Reiber, Johan H C; Rombouts, Serge A R B; Milles, J
2011-06-01
In recent years, graph theory has been successfully applied to study functional and anatomical connectivity networks in the human brain. Most of these networks have shown small-world topological characteristics: high efficiency in long distance communication between nodes, combined with highly interconnected local clusters of nodes. Moreover, functional studies performed at high resolutions have presented convincing evidence that resting-state functional connectivity networks exhibits (exponentially truncated) scale-free behavior. Such evidence, however, was mostly presented qualitatively, in terms of linear regressions of the degree distributions on log-log plots. Even when quantitative measures were given, these were usually limited to the r(2) correlation coefficient. However, the r(2) statistic is not an optimal estimator of explained variance, when dealing with (truncated) power-law models. Recent developments in statistics have introduced new non-parametric approaches, based on the Kolmogorov-Smirnov test, for the problem of model selection. In this work, we have built on this idea to statistically tackle the issue of model selection for the degree distribution of functional connectivity at rest. The analysis, performed at voxel level and in a subject-specific fashion, confirmed the superiority of a truncated power-law model, showing high consistency across subjects. Moreover, the most highly connected voxels were found to be consistently part of the default mode network. Our results provide statistically sound support to the evidence previously presented in literature for a truncated power-law model of resting-state functional connectivity. Copyright © 2010 Elsevier Inc. All rights reserved.
Cliff´s Delta Calculator: A non-parametric effect size program for two groups of observations
Directory of Open Access Journals (Sweden)
Guillermo Macbeth
2011-05-01
Full Text Available The Cliff´s Delta statistic is an effect size measure that quantifies the amount of difference between two non-parametric variables beyond p-values interpretation. This measure can be understood as a useful complementary analysis for the corresponding hypothesis testing. During the last two decades the use of effect size measures has been strongly encouraged by methodologists and leading institutions of behavioral sciences. The aim of this contribution is to introduce the Cliff´s Delta Calculator software that performs such analysis and offers some interpretation tips. Differences and similarities with the parametric case are analysed and illustrated. The implementation of this free program is fully described and compared with other calculators. Alternative algorithmic approaches are mathematically analysed and a basic linear algebra proof of its equivalence is formally presented. Two worked examples in cognitive psychology are commented. A visual interpretation of Cliff´s Delta is suggested. Availability, installation and applications of the program are presented and discussed.
Log-concave Probability Distributions: Theory and Statistical Testing
DEFF Research Database (Denmark)
An, Mark Yuing
1996-01-01
This paper studies the broad class of log-concave probability distributions that arise in economics of uncertainty and information. For univariate, continuous, and log-concave random variables we prove useful properties without imposing the differentiability of density functions. Discrete...... and multivariate distributions are also discussed. We propose simple non-parametric testing procedures for log-concavity. The test statistics are constructed to test one of the two implicati ons of log-concavity: increasing hazard rates and new-is-better-than-used (NBU) property. The test for increasing hazard...... rates are based on normalized spacing of the sample order statistics. The tests for NBU property fall into the category of Hoeffding's U-statistics...
Statistical Analysis of Data for Timber Strengths
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Hoffmeyer, P.
Statistical analyses are performed for material strength parameters from approximately 6700 specimens of structural timber. Non-parametric statistical analyses and fits to the following distributions types have been investigated: Normal, Lognormal, 2 parameter Weibull and 3-parameter Weibull...
VC-dimension of univariate decision trees.
Yildiz, Olcay Taner
2015-02-01
In this paper, we give and prove the lower bounds of the Vapnik-Chervonenkis (VC)-dimension of the univariate decision tree hypothesis class. The VC-dimension of the univariate decision tree depends on the VC-dimension values of its subtrees and the number of inputs. Via a search algorithm that calculates the VC-dimension of univariate decision trees exhaustively, we show that our VC-dimension bounds are tight for simple trees. To verify that the VC-dimension bounds are useful, we also use them to get VC-generalization bounds for complexity control using structural risk minimization in decision trees, i.e., pruning. Our simulation results show that structural risk minimization pruning using the VC-dimension bounds finds trees that are more accurate as those pruned using cross validation.
Bootstrap Prediction Intervals in Non-Parametric Regression with Applications to Anomaly Detection
Kumar, Sricharan; Srivistava, Ashok N.
2012-01-01
Prediction intervals provide a measure of the probable interval in which the outputs of a regression model can be expected to occur. Subsequently, these prediction intervals can be used to determine if the observed output is anomalous or not, conditioned on the input. In this paper, a procedure for determining prediction intervals for outputs of nonparametric regression models using bootstrap methods is proposed. Bootstrap methods allow for a non-parametric approach to computing prediction intervals with no specific assumptions about the sampling distribution of the noise or the data. The asymptotic fidelity of the proposed prediction intervals is theoretically proved. Subsequently, the validity of the bootstrap based prediction intervals is illustrated via simulations. Finally, the bootstrap prediction intervals are applied to the problem of anomaly detection on aviation data.
A non-parametric consistency test of the ΛCDM model with Planck CMB data
Energy Technology Data Exchange (ETDEWEB)
Aghamousa, Amir; Shafieloo, Arman [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Hamann, Jan, E-mail: amir@aghamousa.com, E-mail: jan.hamann@unsw.edu.au, E-mail: shafieloo@kasi.re.kr [School of Physics, The University of New South Wales, Sydney NSW 2052 (Australia)
2017-09-01
Non-parametric reconstruction methods, such as Gaussian process (GP) regression, provide a model-independent way of estimating an underlying function and its uncertainty from noisy data. We demonstrate how GP-reconstruction can be used as a consistency test between a given data set and a specific model by looking for structures in the residuals of the data with respect to the model's best-fit. Applying this formalism to the Planck temperature and polarisation power spectrum measurements, we test their global consistency with the predictions of the base ΛCDM model. Our results do not show any serious inconsistencies, lending further support to the interpretation of the base ΛCDM model as cosmology's gold standard.
International Nuclear Information System (INIS)
Morio, Jerome
2011-01-01
Importance sampling (IS) is a useful simulation technique to estimate critical probability with a better accuracy than Monte Carlo methods. It consists in generating random weighted samples from an auxiliary distribution rather than the distribution of interest. The crucial part of this algorithm is the choice of an efficient auxiliary PDF that has to be able to simulate more rare random events. The optimisation of this auxiliary distribution is often in practice very difficult. In this article, we propose to approach the IS optimal auxiliary density with non-parametric adaptive importance sampling (NAIS). We apply this technique for the probability estimation of spatial launcher impact position since it has currently become a more and more important issue in the field of aeronautics.
Acceleration techniques in the univariate Lipschitz global optimization
Sergeyev, Yaroslav D.; Kvasov, Dmitri E.; Mukhametzhanov, Marat S.; De Franco, Angela
2016-10-01
Univariate box-constrained Lipschitz global optimization problems are considered in this contribution. Geometric and information statistical approaches are presented. The novel powerful local tuning and local improvement techniques are described in the contribution as well as the traditional ways to estimate the Lipschitz constant. The advantages of the presented local tuning and local improvement techniques are demonstrated using the operational characteristics approach for comparing deterministic global optimization algorithms on the class of 100 widely used test functions.
Performance of non-parametric algorithms for spatial mapping of tropical forest structure
Directory of Open Access Journals (Sweden)
Liang Xu
2016-08-01
Full Text Available Abstract Background Mapping tropical forest structure is a critical requirement for accurate estimation of emissions and removals from land use activities. With the availability of a wide range of remote sensing imagery of vegetation characteristics from space, development of finer resolution and more accurate maps has advanced in recent years. However, the mapping accuracy relies heavily on the quality of input layers, the algorithm chosen, and the size and quality of inventory samples for calibration and validation. Results By using airborne lidar data as the “truth” and focusing on the mean canopy height (MCH as a key structural parameter, we test two commonly-used non-parametric techniques of maximum entropy (ME and random forest (RF for developing maps over a study site in Central Gabon. Results of mapping show that both approaches have improved accuracy with more input layers in mapping canopy height at 100 m (1-ha pixels. The bias-corrected spatial models further improve estimates for small and large trees across the tails of height distributions with a trade-off in increasing overall mean squared error that can be readily compensated by increasing the sample size. Conclusions A significant improvement in tropical forest mapping can be achieved by weighting the number of inventory samples against the choice of image layers and the non-parametric algorithms. Without future satellite observations with better sensitivity to forest biomass, the maps based on existing data will remain slightly biased towards the mean of the distribution and under and over estimating the upper and lower tails of the distribution.
Non-parametric PSF estimation from celestial transit solar images using blind deconvolution
Directory of Open Access Journals (Sweden)
González Adriana
2016-01-01
Full Text Available Context: Characterization of instrumental effects in astronomical imaging is important in order to extract accurate physical information from the observations. The measured image in a real optical instrument is usually represented by the convolution of an ideal image with a Point Spread Function (PSF. Additionally, the image acquisition process is also contaminated by other sources of noise (read-out, photon-counting. The problem of estimating both the PSF and a denoised image is called blind deconvolution and is ill-posed. Aims: We propose a blind deconvolution scheme that relies on image regularization. Contrarily to most methods presented in the literature, our method does not assume a parametric model of the PSF and can thus be applied to any telescope. Methods: Our scheme uses a wavelet analysis prior model on the image and weak assumptions on the PSF. We use observations from a celestial transit, where the occulting body can be assumed to be a black disk. These constraints allow us to retain meaningful solutions for the filter and the image, eliminating trivial, translated, and interchanged solutions. Under an additive Gaussian noise assumption, they also enforce noise canceling and avoid reconstruction artifacts by promoting the whiteness of the residual between the blurred observations and the cleaned data. Results: Our method is applied to synthetic and experimental data. The PSF is estimated for the SECCHI/EUVI instrument using the 2007 Lunar transit, and for SDO/AIA using the 2012 Venus transit. Results show that the proposed non-parametric blind deconvolution method is able to estimate the core of the PSF with a similar quality to parametric methods proposed in the literature. We also show that, if these parametric estimations are incorporated in the acquisition model, the resulting PSF outperforms both the parametric and non-parametric methods.
Univariate normalization of bispectrum using Hölder's inequality.
Shahbazi, Forooz; Ewald, Arne; Nolte, Guido
2014-08-15
Considering that many biological systems including the brain are complex non-linear systems, suitable methods capable of detecting these non-linearities are required to study the dynamical properties of these systems. One of these tools is the third order cummulant or cross-bispectrum, which is a measure of interfrequency interactions between three signals. For convenient interpretation, interaction measures are most commonly normalized to be independent of constant scales of the signals such that its absolute values are bounded by one, with this limit reflecting perfect coupling. Although many different normalization factors for cross-bispectra were suggested in the literature these either do not lead to bounded measures or are themselves dependent on the coupling and not only on the scale of the signals. In this paper we suggest a normalization factor which is univariate, i.e., dependent only on the amplitude of each signal and not on the interactions between signals. Using a generalization of Hölder's inequality it is proven that the absolute value of this univariate bicoherence is bounded by zero and one. We compared three widely used normalizations to the univariate normalization concerning the significance of bicoherence values gained from resampling tests. Bicoherence values are calculated from real EEG data recorded in an eyes closed experiment from 10 subjects. The results show slightly more significant values for the univariate normalization but in general, the differences are very small or even vanishing in some subjects. Therefore, we conclude that the normalization factor does not play an important role in the bicoherence values with regard to statistical power, although a univariate normalization is the only normalization factor which fulfills all the required conditions of a proper normalization. Copyright © 2014 Elsevier B.V. All rights reserved.
Handbook of univariate and multivariate data analysis with IBM SPSS
Ho, Robert
2013-01-01
Using the same accessible, hands-on approach as its best-selling predecessor, the Handbook of Univariate and Multivariate Data Analysis with IBM SPSS, Second Edition explains how to apply statistical tests to experimental findings, identify the assumptions underlying the tests, and interpret the findings. This second edition now covers more topics and has been updated with the SPSS statistical package for Windows.New to the Second EditionThree new chapters on multiple discriminant analysis, logistic regression, and canonical correlationNew section on how to deal with missing dataCoverage of te
Energy Technology Data Exchange (ETDEWEB)
Ford, Eric B.; /Florida U.; Fabrycky, Daniel C.; /Lick Observ.; Steffen, Jason H.; /Fermilab; Carter, Joshua A.; /Harvard-Smithsonian Ctr. Astrophys.; Fressin, Francois; /Harvard-Smithsonian Ctr. Astrophys.; Holman, Matthew J.; /Harvard-Smithsonian Ctr. Astrophys.; Lissauer, Jack J.; /NASA, Ames; Moorhead, Althea V.; /Florida U.; Morehead, Robert C.; /Florida U.; Ragozzine, Darin; /Harvard-Smithsonian Ctr. Astrophys.; Rowe, Jason F.; /NASA, Ames /SETI Inst., Mtn. View /San Diego State U., Astron. Dept.
2012-01-01
We present a new method for confirming transiting planets based on the combination of transit timing variations (TTVs) and dynamical stability. Correlated TTVs provide evidence that the pair of bodies are in the same physical system. Orbital stability provides upper limits for the masses of the transiting companions that are in the planetary regime. This paper describes a non-parametric technique for quantifying the statistical significance of TTVs based on the correlation of two TTV data sets. We apply this method to an analysis of the transit timing variations of two stars with multiple transiting planet candidates identified by Kepler. We confirm four transiting planets in two multiple planet systems based on their TTVs and the constraints imposed by dynamical stability. An additional three candidates in these same systems are not confirmed as planets, but are likely to be validated as real planets once further observations and analyses are possible. If all were confirmed, these systems would be near 4:6:9 and 2:4:6:9 period commensurabilities. Our results demonstrate that TTVs provide a powerful tool for confirming transiting planets, including low-mass planets and planets around faint stars for which Doppler follow-up is not practical with existing facilities. Continued Kepler observations will dramatically improve the constraints on the planet masses and orbits and provide sensitivity for detecting additional non-transiting planets. If Kepler observations were extended to eight years, then a similar analysis could likely confirm systems with multiple closely spaced, small transiting planets in or near the habitable zone of solar-type stars.
International Nuclear Information System (INIS)
Ford, Eric B.; Moorhead, Althea V.; Morehead, Robert C.; Fabrycky, Daniel C.; Steffen, Jason H.; Carter, Joshua A.; Fressin, Francois; Holman, Matthew J.; Ragozzine, Darin; Charbonneau, David; Lissauer, Jack J.; Rowe, Jason F.; Borucki, William J.; Bryson, Stephen T.; Burke, Christopher J.; Caldwell, Douglas A.; Welsh, William F.; Allen, Christopher; Batalha, Natalie M.; Buchhave, Lars A.
2012-01-01
We present a new method for confirming transiting planets based on the combination of transit timing variations (TTVs) and dynamical stability. Correlated TTVs provide evidence that the pair of bodies is in the same physical system. Orbital stability provides upper limits for the masses of the transiting companions that are in the planetary regime. This paper describes a non-parametric technique for quantifying the statistical significance of TTVs based on the correlation of two TTV data sets. We apply this method to an analysis of the TTVs of two stars with multiple transiting planet candidates identified by Kepler. We confirm four transiting planets in two multiple-planet systems based on their TTVs and the constraints imposed by dynamical stability. An additional three candidates in these same systems are not confirmed as planets, but are likely to be validated as real planets once further observations and analyses are possible. If all were confirmed, these systems would be near 4:6:9 and 2:4:6:9 period commensurabilities. Our results demonstrate that TTVs provide a powerful tool for confirming transiting planets, including low-mass planets and planets around faint stars for which Doppler follow-up is not practical with existing facilities. Continued Kepler observations will dramatically improve the constraints on the planet masses and orbits and provide sensitivity for detecting additional non-transiting planets. If Kepler observations were extended to eight years, then a similar analysis could likely confirm systems with multiple closely spaced, small transiting planets in or near the habitable zone of solar-type stars.
Energy Technology Data Exchange (ETDEWEB)
Ford, Eric B.; Moorhead, Althea V.; Morehead, Robert C. [Astronomy Department, University of Florida, 211 Bryant Space Sciences Center, Gainesville, FL 32611 (United States); Fabrycky, Daniel C. [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Steffen, Jason H. [Fermilab Center for Particle Astrophysics, P.O. Box 500, MS 127, Batavia, IL 60510 (United States); Carter, Joshua A.; Fressin, Francois; Holman, Matthew J.; Ragozzine, Darin; Charbonneau, David [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Lissauer, Jack J.; Rowe, Jason F.; Borucki, William J.; Bryson, Stephen T.; Burke, Christopher J.; Caldwell, Douglas A. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Welsh, William F. [Astronomy Department, San Diego State University, San Diego, CA 92182-1221 (United States); Allen, Christopher [Orbital Sciences Corporation/NASA Ames Research Center, Moffett Field, CA 94035 (United States); Batalha, Natalie M. [Department of Physics and Astronomy, San Jose State University, San Jose, CA 95192 (United States); Buchhave, Lars A., E-mail: eford@astro.ufl.edu [Niels Bohr Institute, Copenhagen University, DK-2100 Copenhagen (Denmark); Collaboration: Kepler Science Team; and others
2012-05-10
We present a new method for confirming transiting planets based on the combination of transit timing variations (TTVs) and dynamical stability. Correlated TTVs provide evidence that the pair of bodies is in the same physical system. Orbital stability provides upper limits for the masses of the transiting companions that are in the planetary regime. This paper describes a non-parametric technique for quantifying the statistical significance of TTVs based on the correlation of two TTV data sets. We apply this method to an analysis of the TTVs of two stars with multiple transiting planet candidates identified by Kepler. We confirm four transiting planets in two multiple-planet systems based on their TTVs and the constraints imposed by dynamical stability. An additional three candidates in these same systems are not confirmed as planets, but are likely to be validated as real planets once further observations and analyses are possible. If all were confirmed, these systems would be near 4:6:9 and 2:4:6:9 period commensurabilities. Our results demonstrate that TTVs provide a powerful tool for confirming transiting planets, including low-mass planets and planets around faint stars for which Doppler follow-up is not practical with existing facilities. Continued Kepler observations will dramatically improve the constraints on the planet masses and orbits and provide sensitivity for detecting additional non-transiting planets. If Kepler observations were extended to eight years, then a similar analysis could likely confirm systems with multiple closely spaced, small transiting planets in or near the habitable zone of solar-type stars.
Directory of Open Access Journals (Sweden)
Navid Haghighat
2017-12-01
Full Text Available This paper focuses on evaluating airline service quality from the perspective of passengers' view. Until now a lot of researches has been performed in airline service quality evaluation in the world but a little research has been conducted in Iran, yet. In this study, a framework for measuring airline service quality in Iran is proposed. After reviewing airline service quality criteria, SSQAI model was selected because of its comprehensiveness in covering airline service quality dimensions. SSQAI questionnaire items were redesigned to adopt with Iranian airlines requirements and environmental circumstances in the Iran's economic and cultural context. This study includes fuzzy decision-making theory, considering the possible fuzzy subjective judgment of the evaluators during airline service quality evaluation. Fuzzy TOPSIS have been applied for ranking airlines service quality performances. Three major Iranian airlines which have the most passenger transfer volumes in domestic and foreign flights were chosen for evaluation in this research. Results demonstrated Mahan airline has got the best service quality performance rank in gaining passengers' satisfaction with delivery of high-quality services to its passengers, among the three major Iranian airlines. IranAir and Aseman airlines placed in the second and third rank, respectively, according to passenger's evaluation. Statistical analysis has been used in analyzing passenger responses. Due to the abnormality of data, Non-parametric tests were applied. To demonstrate airline ranks in every criterion separately, Friedman test was performed. Variance analysis and Tukey test were applied to study the influence of increasing in age and educational level of passengers on degree of their satisfaction from airline's service quality. Results showed that age has no significant relation to passenger satisfaction of airlines, however, increasing in educational level demonstrated a negative impact on
Evaluation of droplet size distributions using univariate and multivariate approaches
DEFF Research Database (Denmark)
Gauno, M.H.; Larsen, C.C.; Vilhelmsen, T.
2013-01-01
of the distribution. The current study was aiming to compare univariate and multivariate approach in evaluating droplet size distributions. As a model system, the atomization of a coating solution from a two-fluid nozzle was investigated. The effect of three process parameters (concentration of ethyl cellulose...... in ethanol, atomizing air pressure, and flow rate of coating solution) on the droplet size and droplet size distribution using a full mixed factorial design was used. The droplet size produced by a two-fluid nozzle was measured by laser diffraction and reported as volume based size distribution....... Investigation of loading and score plots from principal component analysis (PCA) revealed additional information on the droplet size distributions and it was possible to identify univariate statistics (volume median droplet size), which were similar, however, originating from varying droplet size distributions...
Maydeu-Olivares, Albert
2005-01-01
Chernyshenko, Stark, Chan, Drasgow, and Williams (2001) investigated the fit of Samejima's logistic graded model and Levine's non-parametric MFS model to the scales of two personality questionnaires and found that the graded model did not fit well. We attribute the poor fit of the graded model to small amounts of multidimensionality present in…
Trend Analysis of Pahang River Using Non-Parametric Analysis: Mann Kendalls Trend Test
International Nuclear Information System (INIS)
Nur Hishaam Sulaiman; Mohd Khairul Amri Kamarudin; Mohd Khairul Amri Kamarudin; Ahmad Dasuki Mustafa; Muhammad Azizi Amran; Fazureen Azaman; Ismail Zainal Abidin; Norsyuhada Hairoma
2015-01-01
Flood is common in Pahang especially during northeast monsoon season from November to February. Three river cross station: Lubuk Paku, Sg. Yap and Temerloh were selected as area of this study. The stream flow and water level data were gathered from DID record. Data set for this study were analysed by using non-parametric analysis, Mann-Kendall Trend Test. The results that obtained from stream flow and water level analysis indicate that there are positively significant trend for Lubuk Paku (0.001) and Sg. Yap (<0.0001) from 1972-2011 with the p-value < 0.05. Temerloh (0.178) data from 1963-2011 recorded no trend for stream flow parameter but negative trend for water level parameter. Hydrological pattern and trend are extremely affected by outside factors such as north east monsoon season that occurred in South China Sea and affected Pahang during November to March. There are other factors such as development and management of the areas which can be considered as factors affected the data and results. Hydrological Pattern is important to indicate the river trend such as stream flow and water level. It can be used as flood mitigation by local authorities. (author)
Design Automation Using Script Languages. High-Level CAD Templates in Non-Parametric Programs
Moreno, R.; Bazán, A. M.
2017-10-01
The main purpose of this work is to study the advantages offered by the application of traditional techniques of technical drawing in processes for automation of the design, with non-parametric CAD programs, provided with scripting languages. Given that an example drawing can be solved with traditional step-by-step detailed procedures, is possible to do the same with CAD applications and to generalize it later, incorporating references. In today’s modern CAD applications, there are striking absences of solutions for building engineering: oblique projections (military and cavalier), 3D modelling of complex stairs, roofs, furniture, and so on. The use of geometric references (using variables in script languages) and their incorporation into high-level CAD templates allows the automation of processes. Instead of repeatedly creating similar designs or modifying their data, users should be able to use these templates to generate future variations of the same design. This paper presents the automation process of several complex drawing examples based on CAD script files aided with parametric geometry calculation tools. The proposed method allows us to solve complex geometry designs not currently incorporated in the current CAD applications and to subsequently create other new derivatives without user intervention. Automation in the generation of complex designs not only saves time but also increases the quality of the presentations and reduces the possibility of human errors.
A Non-Parametric Delphi Approach to Foster Innovation Policy Debate in Spain
Directory of Open Access Journals (Sweden)
Juan Carlos Salazar-Elena
2016-05-01
Full Text Available The aim of this paper is to identify some changes needed in Spain’s innovation policy to fill the gap between its innovation results and those of other European countries in lieu of sustainable leadership. To do this we apply the Delphi methodology to experts from academia, business, and government. To overcome the shortcomings of traditional descriptive methods, we develop an inferential analysis by following a non-parametric bootstrap method which enables us to identify important changes that should be implemented. Particularly interesting is the support found for improving the interconnections among the relevant agents of the innovation system (instead of focusing exclusively in the provision of knowledge and technological inputs through R and D activities, or the support found for “soft” policy instruments aimed at providing a homogeneous framework to assess the innovation capabilities of firms (e.g., for funding purposes. Attention to potential innovators among small and medium enterprises (SMEs and traditional industries is particularly encouraged by experts.
International Nuclear Information System (INIS)
Dimas, George; Iakovidis, Dimitris K; Karargyris, Alexandros; Ciuti, Gastone; Koulaouzidis, Anastasios
2017-01-01
Wireless capsule endoscopy is a non-invasive screening procedure of the gastrointestinal (GI) tract performed with an ingestible capsule endoscope (CE) of the size of a large vitamin pill. Such endoscopes are equipped with a usually low-frame-rate color camera which enables the visualization of the GI lumen and the detection of pathologies. The localization of the commercially available CEs is performed in the 3D abdominal space using radio-frequency (RF) triangulation from external sensor arrays, in combination with transit time estimation. State-of-the-art approaches, such as magnetic localization, which have been experimentally proved more accurate than the RF approach, are still at an early stage. Recently, we have demonstrated that CE localization is feasible using solely visual cues and geometric models. However, such approaches depend on camera parameters, many of which are unknown. In this paper the authors propose a novel non-parametric visual odometry (VO) approach to CE localization based on a feed-forward neural network architecture. The effectiveness of this approach in comparison to state-of-the-art geometric VO approaches is validated using a robotic-assisted in vitro experimental setup. (paper)
Dimas, George; Iakovidis, Dimitris K.; Karargyris, Alexandros; Ciuti, Gastone; Koulaouzidis, Anastasios
2017-09-01
Wireless capsule endoscopy is a non-invasive screening procedure of the gastrointestinal (GI) tract performed with an ingestible capsule endoscope (CE) of the size of a large vitamin pill. Such endoscopes are equipped with a usually low-frame-rate color camera which enables the visualization of the GI lumen and the detection of pathologies. The localization of the commercially available CEs is performed in the 3D abdominal space using radio-frequency (RF) triangulation from external sensor arrays, in combination with transit time estimation. State-of-the-art approaches, such as magnetic localization, which have been experimentally proved more accurate than the RF approach, are still at an early stage. Recently, we have demonstrated that CE localization is feasible using solely visual cues and geometric models. However, such approaches depend on camera parameters, many of which are unknown. In this paper the authors propose a novel non-parametric visual odometry (VO) approach to CE localization based on a feed-forward neural network architecture. The effectiveness of this approach in comparison to state-of-the-art geometric VO approaches is validated using a robotic-assisted in vitro experimental setup.
Galindo-Garre, Francisca; Hidalgo, María Dolores; Guilera, Georgina; Pino, Oscar; Rojo, J Emilio; Gómez-Benito, Juana
2015-03-01
The World Health Organization Disability Assessment Schedule II (WHO-DAS II) is a multidimensional instrument developed for measuring disability. It comprises six domains (getting around, self-care, getting along with others, life activities and participation in society). The main purpose of this paper is the evaluation of the psychometric properties for each domain of the WHO-DAS II with parametric and non-parametric Item Response Theory (IRT) models. A secondary objective is to assess whether the WHO-DAS II items within each domain form a hierarchy of invariantly ordered severity indicators of disability. A sample of 352 patients with a schizophrenia spectrum disorder is used in this study. The 36 items WHO-DAS II was administered during the consultation. Partial Credit and Mokken scale models are used to study the psychometric properties of the questionnaire. The psychometric properties of the WHO-DAS II scale are satisfactory for all the domains. However, we identify a few items that do not discriminate satisfactorily between different levels of disability and cannot be invariantly ordered in the scale. In conclusion the WHO-DAS II can be used to assess overall disability in patients with schizophrenia, but some domains are too general to assess functionality in these patients because they contain items that are not applicable to this pathology. Copyright © 2014 John Wiley & Sons, Ltd.
Two non-parametric methods for derivation of constraints from radiotherapy dose–histogram data
International Nuclear Information System (INIS)
Ebert, M A; Kennedy, A; Joseph, D J; Gulliford, S L; Buettner, F; Foo, K; Haworth, A; Denham, J W
2014-01-01
Dose constraints based on histograms provide a convenient and widely-used method for informing and guiding radiotherapy treatment planning. Methods of derivation of such constraints are often poorly described. Two non-parametric methods for derivation of constraints are described and investigated in the context of determination of dose-specific cut-points—values of the free parameter (e.g., percentage volume of the irradiated organ) which best reflect resulting changes in complication incidence. A method based on receiver operating characteristic (ROC) analysis and one based on a maximally-selected standardized rank sum are described and compared using rectal toxicity data from a prostate radiotherapy trial. Multiple test corrections are applied using a free step-down resampling algorithm, which accounts for the large number of tests undertaken to search for optimal cut-points and the inherent correlation between dose–histogram points. Both methods provide consistent significant cut-point values, with the rank sum method displaying some sensitivity to the underlying data. The ROC method is simple to implement and can utilize a complication atlas, though an advantage of the rank sum method is the ability to incorporate all complication grades without the need for grade dichotomization. (note)
Evaluation of droplet size distributions using univariate and multivariate approaches.
Gaunø, Mette Høg; Larsen, Crilles Casper; Vilhelmsen, Thomas; Møller-Sonnergaard, Jørn; Wittendorff, Jørgen; Rantanen, Jukka
2013-01-01
Pharmaceutically relevant material characteristics are often analyzed based on univariate descriptors instead of utilizing the whole information available in the full distribution. One example is droplet size distribution, which is often described by the median droplet size and the width of the distribution. The current study was aiming to compare univariate and multivariate approach in evaluating droplet size distributions. As a model system, the atomization of a coating solution from a two-fluid nozzle was investigated. The effect of three process parameters (concentration of ethyl cellulose in ethanol, atomizing air pressure, and flow rate of coating solution) on the droplet size and droplet size distribution using a full mixed factorial design was used. The droplet size produced by a two-fluid nozzle was measured by laser diffraction and reported as volume based size distribution. Investigation of loading and score plots from principal component analysis (PCA) revealed additional information on the droplet size distributions and it was possible to identify univariate statistics (volume median droplet size), which were similar, however, originating from varying droplet size distributions. The multivariate data analysis was proven to be an efficient tool for evaluating the full information contained in a distribution.
Non-Parametric Kinetic (NPK Analysis of Thermal Oxidation of Carbon Aerogels
Directory of Open Access Journals (Sweden)
Azadeh Seifi
2017-05-01
Full Text Available In recent years, much attention has been paid to aerogel materials (especially carbon aerogels due to their potential uses in energy-related applications, such as thermal energy storage and thermal protection systems. These open cell carbon-based porous materials (carbon aerogels can strongly react with oxygen at relatively low temperatures (~ 400°C. Therefore, it is necessary to evaluate the thermal performance of carbon aerogels in view of their energy-related applications at high temperatures and under thermal oxidation conditions. The objective of this paper is to study theoretically and experimentally the oxidation reaction kinetics of carbon aerogel using the non-parametric kinetic (NPK as a powerful method. For this purpose, a non-isothermal thermogravimetric analysis, at three different heating rates, was performed on three samples each with its specific pore structure, density and specific surface area. The most significant feature of this method, in comparison with the model-free isoconversional methods, is its ability to separate the functionality of the reaction rate with the degree of conversion and temperature by the direct use of thermogravimetric data. Using this method, it was observed that the Nomen-Sempere model could provide the best fit to the data, while the temperature dependence of the rate constant was best explained by a Vogel-Fulcher relationship, where the reference temperature was the onset temperature of oxidation. Moreover, it was found from the results of this work that the assumption of the Arrhenius relation for the temperature dependence of the rate constant led to over-estimation of the apparent activation energy (up to 160 kJ/mol that was considerably different from the values (up to 3.5 kJ/mol predicted by the Vogel-Fulcher relationship in isoconversional methods
A Non-Parametric Item Response Theory Evaluation of the CAGE Instrument Among Older Adults.
Abdin, Edimansyah; Sagayadevan, Vathsala; Vaingankar, Janhavi Ajit; Picco, Louisa; Chong, Siow Ann; Subramaniam, Mythily
2018-02-23
The validity of the CAGE using item response theory (IRT) has not yet been examined in older adult population. This study aims to investigate the psychometric properties of the CAGE using both non-parametric and parametric IRT models, assess whether there is any differential item functioning (DIF) by age, gender and ethnicity and examine the measurement precision at the cut-off scores. We used data from the Well-being of the Singapore Elderly study to conduct Mokken scaling analysis (MSA), dichotomous Rasch and 2-parameter logistic IRT models. The measurement precision at the cut-off scores were evaluated using classification accuracy (CA) and classification consistency (CC). The MSA showed the overall scalability H index was 0.459, indicating a medium performing instrument. All items were found to be homogenous, measuring the same construct and able to discriminate well between respondents with high levels of the construct and the ones with lower levels. The item discrimination ranged from 1.07 to 6.73 while the item difficulty ranged from 0.33 to 2.80. Significant DIF was found for 2-item across ethnic group. More than 90% (CC and CA ranged from 92.5% to 94.3%) of the respondents were consistently and accurately classified by the CAGE cut-off scores of 2 and 3. The current study provides new evidence on the validity of the CAGE from the IRT perspective. This study provides valuable information of each item in the assessment of the overall severity of alcohol problem and the precision of the cut-off scores in older adult population.
Van Steenbergen, N.; Willems, P.
2012-04-01
Reliable flood forecasts are the most important non-structural measures to reduce the impact of floods. However flood forecasting systems are subject to uncertainty originating from the input data, model structure and model parameters of the different hydraulic and hydrological submodels. To quantify this uncertainty a non-parametric data-based approach has been developed. This approach analyses the historical forecast residuals (differences between the predictions and the observations at river gauging stations) without using a predefined statistical error distribution. Because the residuals are correlated with the value of the forecasted water level and the lead time, the residuals are split up into discrete classes of simulated water levels and lead times. For each class, percentile values are calculated of the model residuals and stored in a 'three dimensional error' matrix. By 3D interpolation in this error matrix, the uncertainty in new forecasted water levels can be quantified. In addition to the quantification of the uncertainty, the communication of this uncertainty is equally important. The communication has to be done in a consistent way, reducing the chance of misinterpretation. Also, the communication needs to be adapted to the audience; the majority of the larger public is not interested in in-depth information on the uncertainty on the predicted water levels, but only is interested in information on the likelihood of exceedance of certain alarm levels. Water managers need more information, e.g. time dependent uncertainty information, because they rely on this information to undertake the appropriate flood mitigation action. There are various ways in presenting uncertainty information (numerical, linguistic, graphical, time (in)dependent, etc.) each with their advantages and disadvantages for a specific audience. A useful method to communicate uncertainty of flood forecasts is by probabilistic flood mapping. These maps give a representation of the
de-Graft Acquah, Henry
2014-01-01
This paper highlights the sensitivity of technical efficiency estimates to estimation approaches using empirical data. Firm specific technical efficiency and mean technical efficiency are estimated using the non parametric Data Envelope Analysis (DEA) and the parametric Corrected Ordinary Least Squares (COLS) and Stochastic Frontier Analysis (SFA) approaches. Mean technical efficiency is found to be sensitive to the choice of estimation technique. Analysis of variance and Tukeyâ€™s test sugge...
Siciliani, Luigi
2006-01-01
Policy makers are increasingly interested in developing performance indicators that measure hospital efficiency. These indicators may give the purchasers of health services an additional regulatory tool to contain health expenditure. Using panel data, this study compares different parametric (econometric) and non-parametric (linear programming) techniques for the measurement of a hospital's technical efficiency. This comparison was made using a sample of 17 Italian hospitals in the years 1996-9. Highest correlations are found in the efficiency scores between the non-parametric data envelopment analysis under the constant returns to scale assumption (DEA-CRS) and several parametric models. Correlation reduces markedly when using more flexible non-parametric specifications such as data envelopment analysis under the variable returns to scale assumption (DEA-VRS) and the free disposal hull (FDH) model. Correlation also generally reduces when moving from one output to two-output specifications. This analysis suggests that there is scope for developing performance indicators at hospital level using panel data, but it is important that extensive sensitivity analysis is carried out if purchasers wish to make use of these indicators in practice.
Evaluation of world's largest social welfare scheme: An assessment using non-parametric approach.
Singh, Sanjeet
2016-08-01
Mahatma Gandhi National Rural Employment Guarantee Act (MGNREGA) is the world's largest social welfare scheme in India for the poverty alleviation through rural employment generation. This paper aims to evaluate and rank the performance of the states in India under MGNREGA scheme. A non-parametric approach, Data Envelopment Analysis (DEA) is used to calculate the overall technical, pure technical, and scale efficiencies of states in India. The sample data is drawn from the annual official reports published by the Ministry of Rural Development, Government of India. Based on three selected input parameters (expenditure indicators) and five output parameters (employment generation indicators), I apply both input and output oriented DEA models to estimate how well the states utilize their resources and generate outputs during the financial year 2013-14. The relative performance evaluation has been made under the assumption of constant returns and also under variable returns to scale to assess the impact of scale on performance. The results indicate that the main source of inefficiency is both technical and managerial practices adopted. 11 states are overall technically efficient and operate at the optimum scale whereas 18 states are pure technical or managerially efficient. It has been found that for some states it necessary to alter scheme size to perform at par with the best performing states. For inefficient states optimal input and output targets along with the resource savings and output gains are calculated. Analysis shows that if all inefficient states operate at optimal input and output levels, on an average 17.89% of total expenditure and a total amount of $780million could have been saved in a single year. Most of the inefficient states perform poorly when it comes to the participation of women and disadvantaged sections (SC&ST) in the scheme. In order to catch up with the performance of best performing states, inefficient states on an average need to enhance
Monitoring coastal marshes biomass with CASI: a comparison of parametric and non-parametric models
Mo, Y.; Kearney, M.
2017-12-01
Coastal marshes are important carbon sinks that face multiple natural and anthropogenic stresses. Optical remote sensing is a powerful tool for closely monitoring the biomass of coastal marshes. However, application of hyperspectral sensors on assessing the biomass of diverse coastal marsh ecosystems is limited. This study samples spectral and biophysical data from coastal freshwater, intermediate, brackish, and saline marshes in Louisiana, and develops parametric and non-parametric models for using the Compact Airborne Spectrographic Imager (CASI) to retrieve the marshes' biomass. Linear models and random forest models are developed from simulated CASI data (48 bands, 380-1050 nm, bandwidth 14 nm). Linear models are also developed using narrowband vegetation indices computed from all possible band combinations from the blue, red, and near infrared wavelengths. It is found that the linear models derived from the optimal narrowband vegetation indices provide strong predictions for the marshes' Leaf Area Index (LAI; R2 > 0.74 for ARVI), but not for their Aboveground Green Biomass (AGB; R2 > 0.25). The linear models derived from the simulated CASI data strongly predict the marshes' LAI (R2 = 0.93) and AGB (R2 = 0.71) and have 27 and 30 bands/variables in the final models through stepwise regression, respectively. The random forest models derived from the simulated CASI data also strongly predict the marshes' LAI and AGB (R2 = 0.91 and 0.84, respectively), where the most important variables for predicting LAI are near infrared bands at 784 and 756 nm and for predicting ABG are red bands at 684 and 670 nm. In sum, the random forest model is preferable for assessing coastal marsh biomass using CASI data as it offers high R2 for both LAI and AGB. The superior performance of the random forest model is likely to due to that it fully utilizes the full-spectrum data and makes no assumption of the approximate normality of the sampling population. This study offers solutions
International Nuclear Information System (INIS)
Khoshroo, Alireza; Mulwa, Richard; Emrouznejad, Ali; Arabi, Behrouz
2013-01-01
Grape is one of the world's largest fruit crops with approximately 67.5 million tonnes produced each year and energy is an important element in modern grape productions as it heavily depends on fossil and other energy resources. Efficient use of these energies is a necessary step toward reducing environmental hazards, preventing destruction of natural resources and ensuring agricultural sustainability. Hence, identifying excessive use of energy as well as reducing energy resources is the main focus of this paper to optimize energy consumption in grape production. In this study we use a two-stage methodology to find the association of energy efficiency and performance explained by farmers' specific characteristics. In the first stage a non-parametric Data Envelopment Analysis is used to model efficiencies as an explicit function of human labor, machinery, chemicals, FYM (farmyard manure), diesel fuel, electricity and water for irrigation energies. In the second step, farm specific variables such as farmers' age, gender, level of education and agricultural experience are used in a Tobit regression framework to explain how these factors influence efficiency of grape farming. The result of the first stage shows substantial inefficiency between the grape producers in the studied area while the second stage shows that the main difference between efficient and inefficient farmers was in the use of chemicals, diesel fuel and water for irrigation. The use of chemicals such as insecticides, herbicides and fungicides were considerably less than inefficient ones. The results revealed that the more educated farmers are more energy efficient in comparison with their less educated counterparts. - Highlights: • The focus of this paper is to identify excessive use of energy and optimize energy consumption in grape production. • We measure the efficiency as a function of labor/machinery/chemicals/farmyard manure/diesel-fuel/electricity/water. • Data were obtained from 41 grape
CADDIS Volume 4. Data Analysis: PECBO Appendix - R Scripts for Non-Parametric Regressions
Script for computing nonparametric regression analysis. Overview of using scripts to infer environmental conditions from biological observations, statistically estimating species-environment relationships, statistical scripts.
[A SAS marco program for batch processing of univariate Cox regression analysis for great database].
Yang, Rendong; Xiong, Jie; Peng, Yangqin; Peng, Xiaoning; Zeng, Xiaomin
2015-02-01
To realize batch processing of univariate Cox regression analysis for great database by SAS marco program. We wrote a SAS macro program, which can filter, integrate, and export P values to Excel by SAS9.2. The program was used for screening survival correlated RNA molecules of ovarian cancer. A SAS marco program could finish the batch processing of univariate Cox regression analysis, the selection and export of the results. The SAS macro program has potential applications in reducing the workload of statistical analysis and providing a basis for batch processing of univariate Cox regression analysis.
A new non-parametric stationarity test of time series in the time domain
Jin, Lei; Wang, Suojin; Wang, Haiyan
2014-01-01
© 2015 The Royal Statistical Society and Blackwell Publishing Ltd. We propose a new double-order selection test for checking second-order stationarity of a time series. To develop the test, a sequence of systematic samples is defined via Walsh
Comparing non-parametric methods for ungrouping coarsely aggregated age-specific distributions
DEFF Research Database (Denmark)
Rizzi, Silvia; Thinggaard, Mikael; Vaupel, James W.
2016-01-01
Demographers have often access to vital statistics that are less than ideal for the purpose of their research. In many instances demographic data are reported in coarse histograms, where the values given are only the summation of true latent values, thereby making detailed analysis troublesome. O...
Non-parametric probabilistic forecasts of wind power: required properties and evaluation
DEFF Research Database (Denmark)
Pinson, Pierre; Nielsen, Henrik Aalborg; Møller, Jan Kloppenborg
2007-01-01
of a single or a set of quantile forecasts. The required and desirable properties of such probabilistic forecasts are defined and a framework for their evaluation is proposed. This framework is applied for evaluating the quality of two statistical methods producing full predictive distributions from point...
DEFF Research Database (Denmark)
Petersen, Jørgen Holm
2009-01-01
A conceptually simple two-dimensional conditional reference curve is described. The curve gives a decision basis for determining whether a bivariate response from an individual is "normal" or "abnormal" when taking into account that a third (conditioning) variable may influence the bivariate...... response. The reference curve is not only characterized analytically but also by geometric properties that are easily communicated to medical doctors - the users of such curves. The reference curve estimator is completely non-parametric, so no distributional assumptions are needed about the two......-dimensional response. An example that will serve to motivate and illustrate the reference is the study of the height/weight distribution of 7-8-year-old Danish school girls born in 1930, 1950, or 1970....
Non-parametric Bayesian models of response function in dynamic image sequences
Czech Academy of Sciences Publication Activity Database
Tichý, Ondřej; Šmídl, Václav
2016-01-01
Roč. 151, č. 1 (2016), s. 90-100 ISSN 1077-3142 R&D Projects: GA ČR GA13-29225S Institutional support: RVO:67985556 Keywords : Response function * Blind source separation * Dynamic medical imaging * Probabilistic models * Bayesian methods Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.498, year: 2016 http://library.utia.cas.cz/separaty/2016/AS/tichy-0456983.pdf
Salameh , Farah; Picot , Antoine; Chabert , Marie; Maussion , Pascal
2017-01-01
International audience; This paper describes an original statistical approach for the lifespan modeling of electric machine insulation materials. The presented models aim to study the effect of three main stress factors (voltage, frequency and temperature) and their interactions on the insulation lifespan. The proposed methodology is applied to two different insulation materials tested in partial discharge regime. Accelerated ageing tests are organized according to experimental optimization m...
A new non-parametric stationarity test of time series in the time domain
Jin, Lei
2014-11-07
© 2015 The Royal Statistical Society and Blackwell Publishing Ltd. We propose a new double-order selection test for checking second-order stationarity of a time series. To develop the test, a sequence of systematic samples is defined via Walsh functions. Then the deviations of the autocovariances based on these systematic samples from the corresponding autocovariances of the whole time series are calculated and the uniform asymptotic joint normality of these deviations over different systematic samples is obtained. With a double-order selection scheme, our test statistic is constructed by combining the deviations at different lags in the systematic samples. The null asymptotic distribution of the statistic proposed is derived and the consistency of the test is shown under fixed and local alternatives. Simulation studies demonstrate well-behaved finite sample properties of the method proposed. Comparisons with some existing tests in terms of power are given both analytically and empirically. In addition, the method proposed is applied to check the stationarity assumption of a chemical process viscosity readings data set.
Automatic Image Segmentation Using Active Contours with Univariate Marginal Distribution
Directory of Open Access Journals (Sweden)
I. Cruz-Aceves
2013-01-01
Full Text Available This paper presents a novel automatic image segmentation method based on the theory of active contour models and estimation of distribution algorithms. The proposed method uses the univariate marginal distribution model to infer statistical dependencies between the control points on different active contours. These contours have been generated through an alignment process of reference shape priors, in order to increase the exploration and exploitation capabilities regarding different interactive segmentation techniques. This proposed method is applied in the segmentation of the hollow core in microscopic images of photonic crystal fibers and it is also used to segment the human heart and ventricular areas from datasets of computed tomography and magnetic resonance images, respectively. Moreover, to evaluate the performance of the medical image segmentations compared to regions outlined by experts, a set of similarity measures has been adopted. The experimental results suggest that the proposed image segmentation method outperforms the traditional active contour model and the interactive Tseng method in terms of segmentation accuracy and stability.
Non-parametric characterization of long-term rainfall time series
Tiwari, Harinarayan; Pandey, Brij Kishor
2018-03-01
The statistical study of rainfall time series is one of the approaches for efficient hydrological system design. Identifying, and characterizing long-term rainfall time series could aid in improving hydrological systems forecasting. In the present study, eventual statistics was applied for the long-term (1851-2006) rainfall time series under seven meteorological regions of India. Linear trend analysis was carried out using Mann-Kendall test for the observed rainfall series. The observed trend using the above-mentioned approach has been ascertained using the innovative trend analysis method. Innovative trend analysis has been found to be a strong tool to detect the general trend of rainfall time series. Sequential Mann-Kendall test has also been carried out to examine nonlinear trends of the series. The partial sum of cumulative deviation test is also found to be suitable to detect the nonlinear trend. Innovative trend analysis, sequential Mann-Kendall test and partial cumulative deviation test have potential to detect the general as well as nonlinear trend for the rainfall time series. Annual rainfall analysis suggests that the maximum changes in mean rainfall is 11.53% for West Peninsular India, whereas the maximum fall in mean rainfall is 7.8% for the North Mountainous Indian region. The innovative trend analysis method is also capable of finding the number of change point available in the time series. Additionally, we have performed von Neumann ratio test and cumulative deviation test to estimate the departure from homogeneity. Singular spectrum analysis has been applied in this study to evaluate the order of departure from homogeneity in the rainfall time series. Monsoon season (JS) of North Mountainous India and West Peninsular India zones has higher departure from homogeneity and singular spectrum analysis shows the results to be in coherence with the same.
A new measure for gene expression biclustering based on non-parametric correlation.
Flores, Jose L; Inza, Iñaki; Larrañaga, Pedro; Calvo, Borja
2013-12-01
One of the emerging techniques for performing the analysis of the DNA microarray data known as biclustering is the search of subsets of genes and conditions which are coherently expressed. These subgroups provide clues about the main biological processes. Until now, different approaches to this problem have been proposed. Most of them use the mean squared residue as quality measure but relevant and interesting patterns can not be detected such as shifting, or scaling patterns. Furthermore, recent papers show that there exist new coherence patterns involved in different kinds of cancer and tumors such as inverse relationships between genes which can not be captured. The proposed measure is called Spearman's biclustering measure (SBM) which performs an estimation of the quality of a bicluster based on the non-linear correlation among genes and conditions simultaneously. The search of biclusters is performed by using a evolutionary technique called estimation of distribution algorithms which uses the SBM measure as fitness function. This approach has been examined from different points of view by using artificial and real microarrays. The assessment process has involved the use of quality indexes, a set of bicluster patterns of reference including new patterns and a set of statistical tests. It has been also examined the performance using real microarrays and comparing to different algorithmic approaches such as Bimax, CC, OPSM, Plaid and xMotifs. SBM shows several advantages such as the ability to recognize more complex coherence patterns such as shifting, scaling and inversion and the capability to selectively marginalize genes and conditions depending on the statistical significance. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Non-parametric causality detection: An application to social media and financial data
Tsapeli, Fani; Musolesi, Mirco; Tino, Peter
2017-10-01
According to behavioral finance, stock market returns are influenced by emotional, social and psychological factors. Several recent works support this theory by providing evidence of correlation between stock market prices and collective sentiment indexes measured using social media data. However, a pure correlation analysis is not sufficient to prove that stock market returns are influenced by such emotional factors since both stock market prices and collective sentiment may be driven by a third unmeasured factor. Controlling for factors that could influence the study by applying multivariate regression models is challenging given the complexity of stock market data. False assumptions about the linearity or non-linearity of the model and inaccuracies on model specification may result in misleading conclusions. In this work, we propose a novel framework for causal inference that does not require any assumption about a particular parametric form of the model expressing statistical relationships among the variables of the study and can effectively control a large number of observed factors. We apply our method in order to estimate the causal impact that information posted in social media may have on stock market returns of four big companies. Our results indicate that social media data not only correlate with stock market returns but also influence them.
Cain, Meghan K; Zhang, Zhiyong; Yuan, Ke-Hai
2017-10-01
Nonnormality of univariate data has been extensively examined previously (Blanca et al., Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, 9(2), 78-84, 2013; Miceeri, Psychological Bulletin, 105(1), 156, 1989). However, less is known of the potential nonnormality of multivariate data although multivariate analysis is commonly used in psychological and educational research. Using univariate and multivariate skewness and kurtosis as measures of nonnormality, this study examined 1,567 univariate distriubtions and 254 multivariate distributions collected from authors of articles published in Psychological Science and the American Education Research Journal. We found that 74 % of univariate distributions and 68 % multivariate distributions deviated from normal distributions. In a simulation study using typical values of skewness and kurtosis that we collected, we found that the resulting type I error rates were 17 % in a t-test and 30 % in a factor analysis under some conditions. Hence, we argue that it is time to routinely report skewness and kurtosis along with other summary statistics such as means and variances. To facilitate future report of skewness and kurtosis, we provide a tutorial on how to compute univariate and multivariate skewness and kurtosis by SAS, SPSS, R and a newly developed Web application.
Hayslett, H T
1991-01-01
Statistics covers the basic principles of Statistics. The book starts by tackling the importance and the two kinds of statistics; the presentation of sample data; the definition, illustration and explanation of several measures of location; and the measures of variation. The text then discusses elementary probability, the normal distribution and the normal approximation to the binomial. Testing of statistical hypotheses and tests of hypotheses about the theoretical proportion of successes in a binomial population and about the theoretical mean of a normal population are explained. The text the
Romero, C.; McWilliam, M.; Macías-Pérez, J.-F.; Adam, R.; Ade, P.; André, P.; Aussel, H.; Beelen, A.; Benoît, A.; Bideaud, A.; Billot, N.; Bourrion, O.; Calvo, M.; Catalano, A.; Coiffard, G.; Comis, B.; de Petris, M.; Désert, F.-X.; Doyle, S.; Goupy, J.; Kramer, C.; Lagache, G.; Leclercq, S.; Lestrade, J.-F.; Mauskopf, P.; Mayet, F.; Monfardini, A.; Pascale, E.; Perotto, L.; Pisano, G.; Ponthieu, N.; Revéret, V.; Ritacco, A.; Roussel, H.; Ruppin, F.; Schuster, K.; Sievers, A.; Triqueneaux, S.; Tucker, C.; Zylka, R.
2018-04-01
Context. In the past decade, sensitive, resolved Sunyaev-Zel'dovich (SZ) studies of galaxy clusters have become common. Whereas many previous SZ studies have parameterized the pressure profiles of galaxy clusters, non-parametric reconstructions will provide insights into the thermodynamic state of the intracluster medium. Aim. We seek to recover the non-parametric pressure profiles of the high redshift (z = 0.89) galaxy cluster CLJ 1226.9+3332 as inferred from SZ data from the MUSTANG, NIKA, Bolocam, and Planck instruments, which all probe different angular scales. Methods: Our non-parametric algorithm makes use of logarithmic interpolation, which under the assumption of ellipsoidal symmetry is analytically integrable. For MUSTANG, NIKA, and Bolocam we derive a non-parametric pressure profile independently and find good agreement among the instruments. In particular, we find that the non-parametric profiles are consistent with a fitted generalized Navaro-Frenk-White (gNFW) profile. Given the ability of Planck to constrain the total signal, we include a prior on the integrated Compton Y parameter as determined by Planck. Results: For a given instrument, constraints on the pressure profile diminish rapidly beyond the field of view. The overlap in spatial scales probed by these four datasets is therefore critical in checking for consistency between instruments. By using multiple instruments, our analysis of CLJ 1226.9+3332 covers a large radial range, from the central regions to the cluster outskirts: 0.05 R500 generation of SZ instruments such as NIKA2 and MUSTANG2.
Directory of Open Access Journals (Sweden)
Shantanu Desai
2016-04-01
Full Text Available The coupling between spin and torsion in the Einstein–Cartan–Sciama–Kibble theory of gravity generates gravitational repulsion at very high densities, which prevents a singularity in a black hole and may create there a new universe. We show that quantum particle production in such a universe near the last bounce, which represents the Big Bang, gives the dynamics that solves the horizon, flatness, and homogeneity problems in cosmology. For a particular range of the particle production coefficient, we obtain a nearly constant Hubble parameter that gives an exponential expansion of the universe with more than 60 e-folds, which lasts about ∼10−42 s. This scenario can thus explain cosmic inflation without requiring a fundamental scalar field and reheating. From the obtained time dependence of the scale factor, we follow the prescription of Ellis and Madsen to reconstruct in a non-parametric way a scalar field potential which gives the same dynamics of the early universe. This potential gives the slow-roll parameters of cosmic inflation, from which we calculate the tensor-to-scalar ratio, the scalar spectral index of density perturbations, and its running as functions of the production coefficient. We find that these quantities do not significantly depend on the scale factor at the Big Bounce. Our predictions for these quantities are consistent with the Planck 2015 observations.
Directory of Open Access Journals (Sweden)
Mayr Andreas
2012-01-01
Full Text Available Abstract Background The construction of prediction intervals (PIs for future body mass index (BMI values of individual children based on a recent German birth cohort study with n = 2007 children is problematic for standard parametric approaches, as the BMI distribution in childhood is typically skewed depending on age. Methods We avoid distributional assumptions by directly modelling the borders of PIs by additive quantile regression, estimated by boosting. We point out the concept of conditional coverage to prove the accuracy of PIs. As conditional coverage can hardly be evaluated in practical applications, we conduct a simulation study before fitting child- and covariate-specific PIs for future BMI values and BMI patterns for the present data. Results The results of our simulation study suggest that PIs fitted by quantile boosting cover future observations with the predefined coverage probability and outperform the benchmark approach. For the prediction of future BMI values, quantile boosting automatically selects informative covariates and adapts to the age-specific skewness of the BMI distribution. The lengths of the estimated PIs are child-specific and increase, as expected, with the age of the child. Conclusions Quantile boosting is a promising approach to construct PIs with correct conditional coverage in a non-parametric way. It is in particular suitable for the prediction of BMI patterns depending on covariates, since it provides an interpretable predictor structure, inherent variable selection properties and can even account for longitudinal data structures.
Links to sources of cancer-related statistics, including the Surveillance, Epidemiology and End Results (SEER) Program, SEER-Medicare datasets, cancer survivor prevalence data, and the Cancer Trends Progress Report.
International Nuclear Information System (INIS)
2005-01-01
For the years 2004 and 2005 the figures shown in the tables of Energy Review are partly preliminary. The annual statistics published in Energy Review are presented in more detail in a publication called Energy Statistics that comes out yearly. Energy Statistics also includes historical time-series over a longer period of time (see e.g. Energy Statistics, Statistics Finland, Helsinki 2004.) The applied energy units and conversion coefficients are shown in the back cover of the Review. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in GDP, energy consumption and electricity consumption, Carbon dioxide emissions from fossile fuels use, Coal consumption, Consumption of natural gas, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices in heat production, Fuel prices in electricity production, Price of electricity by type of consumer, Average monthly spot prices at the Nord pool power exchange, Total energy consumption by source and CO 2 -emissions, Supplies and total consumption of electricity GWh, Energy imports by country of origin in January-June 2003, Energy exports by recipient country in January-June 2003, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Price of natural gas by type of consumer, Price of electricity by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes, precautionary stock fees and oil pollution fees
International Nuclear Information System (INIS)
2001-01-01
For the year 2000, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period (see e.g. Energiatilastot 1999, Statistics Finland, Helsinki 2000, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions from the use of fossil fuels, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in 2000, Energy exports by recipient country in 2000, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products
International Nuclear Information System (INIS)
2000-01-01
For the year 1999 and 2000, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period (see e.g., Energiatilastot 1998, Statistics Finland, Helsinki 1999, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in January-March 2000, Energy exports by recipient country in January-March 2000, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products
International Nuclear Information System (INIS)
1999-01-01
For the year 1998 and the year 1999, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period (see e.g. Energiatilastot 1998, Statistics Finland, Helsinki 1999, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in January-June 1999, Energy exports by recipient country in January-June 1999, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products
International Nuclear Information System (INIS)
Wei, Chu; Löschel, Andreas; Liu, Bing
2015-01-01
In the context of soaring demand for electricity, mitigating and controlling greenhouse gas emissions is a great challenge for China's power sector. Increasing attention has been placed on the evaluation of energy efficiency and CO 2 abatement potential in the power sector. However, studies at the micro-level are relatively rare due to serious data limitations. This study uses the 2004 and 2008 Census data of Zhejiang province to construct a non-parametric frontier in order to assess the abatement space of energy and associated CO 2 emission from China's coal-fired power enterprises. A Weighted Russell Directional Distance Function (WRDDF) is applied to construct an energy-saving potential index and a CO 2 emission-abatement potential index. Both indicators depict the inefficiency level in terms of energy utilization and CO 2 emissions of electric power plants. Our results show a substantial variation of energy-saving potential and CO 2 abatement potential among enterprises. We find that large power enterprises are less efficient in 2004, but become more efficient than smaller enterprises in 2008. State-owned enterprises (SOE) are not significantly different in 2008 from 2004, but perform better than their non-SOE counterparts in 2008. This change in performance for large enterprises and SOE might be driven by the “top-1000 Enterprise Energy Conservation Action” that was implemented in 2006. - Highlights: • Energy-saving potential and CO 2 abatement-potential for Chinese power enterprise are evaluated. • The potential to curb energy and emission shows great variation and dynamic changes. • Large enterprise is less efficient than small enterprise in 2004, but more efficient in 2008. • The state-owned enterprise performs better than non-state-owned enterprise in 2008
Non-parametric trend analysis of the aridity index for three large arid and semi-arid basins in Iran
Ahani, Hossien; Kherad, Mehrzad; Kousari, Mohammad Reza; van Roosmalen, Lieke; Aryanfar, Ramin; Hosseini, Seyyed Mashaallah
2013-05-01
Currently, an important scientific challenge that researchers are facing is to gain a better understanding of climate change at the regional scale, which can be especially challenging in an area with low and highly variable precipitation amounts such as Iran. Trend analysis of the medium-term change using ground station observations of meteorological variables can enhance our knowledge of the dominant processes in an area and contribute to the analysis of future climate projections. Generally, studies focus on the long-term variability of temperature and precipitation and to a lesser extent on other important parameters such as moisture indices. In this study the recent 50-year trends (1955-2005) of precipitation (P), potential evapotranspiration (PET), and aridity index (AI) in monthly time scale were studied over 14 synoptic stations in three large Iran basins using the Mann-Kendall non-parametric test. Additionally, an analysis of the monthly, seasonal and annual trend of each parameter was performed. Results showed no significant trends in the monthly time series. However, PET showed significant, mostly decreasing trends, for the seasonal values, which resulted in a significant negative trend in annual PET at five stations. Significant negative trends in seasonal P values were only found at a number of stations in spring and summer and no station showed significant negative trends in annual P. Due to the varied positive and negative trends in annual P and to a lesser extent PET, almost as many stations with negative as positive trends in annual AI were found, indicating that both drying and wetting trends occurred in Iran. Overall, the northern part of the study area showed an increasing trend in annual AI which meant that the region became wetter, while the south showed decreasing trends in AI.
International Nuclear Information System (INIS)
2003-01-01
For the year 2002, part of the figures shown in the tables of the Energy Review are partly preliminary. The annual statistics of the Energy Review also includes historical time-series over a longer period (see e.g. Energiatilastot 2001, Statistics Finland, Helsinki 2002). The applied energy units and conversion coefficients are shown in the inside back cover of the Review. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in GDP, energy consumption and electricity consumption, Carbon dioxide emissions from fossile fuels use, Coal consumption, Consumption of natural gas, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices in heat production, Fuel prices in electricity production, Price of electricity by type of consumer, Average monthly spot prices at the Nord pool power exchange, Total energy consumption by source and CO 2 -emissions, Supply and total consumption of electricity GWh, Energy imports by country of origin in January-June 2003, Energy exports by recipient country in January-June 2003, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Price of natural gas by type of consumer, Price of electricity by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Excise taxes, precautionary stock fees on oil pollution fees on energy products
International Nuclear Information System (INIS)
2004-01-01
For the year 2003 and 2004, the figures shown in the tables of the Energy Review are partly preliminary. The annual statistics of the Energy Review also includes historical time-series over a longer period (see e.g. Energiatilastot, Statistics Finland, Helsinki 2003, ISSN 0785-3165). The applied energy units and conversion coefficients are shown in the inside back cover of the Review. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in GDP, energy consumption and electricity consumption, Carbon dioxide emissions from fossile fuels use, Coal consumption, Consumption of natural gas, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices in heat production, Fuel prices in electricity production, Price of electricity by type of consumer, Average monthly spot prices at the Nord pool power exchange, Total energy consumption by source and CO 2 -emissions, Supplies and total consumption of electricity GWh, Energy imports by country of origin in January-March 2004, Energy exports by recipient country in January-March 2004, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Price of natural gas by type of consumer, Price of electricity by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Excise taxes, precautionary stock fees on oil pollution fees
International Nuclear Information System (INIS)
2000-01-01
For the year 1999 and 2000, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy also includes historical time series over a longer period (see e.g., Energiatilastot 1999, Statistics Finland, Helsinki 2000, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in January-June 2000, Energy exports by recipient country in January-June 2000, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products
Univariate characterization of the German business cycle 1955-1994
Weihs, Claus; Garczarek, Ursula
2002-01-01
We present a descriptive analysis of stylized facts for the German business cycle. We demonstrate that simple ad-hoc instructions for identifying univariate rules characterizing the German business cycle 1955-1994 lead to an error rate comparable to standard multivariate methods.
New Riemannian Priors on the Univariate Normal Model
Directory of Open Access Journals (Sweden)
Salem Said
2014-07-01
Full Text Available The current paper introduces new prior distributions on the univariate normal model, with the aim of applying them to the classification of univariate normal populations. These new prior distributions are entirely based on the Riemannian geometry of the univariate normal model, so that they can be thought of as “Riemannian priors”. Precisely, if {pθ ; θ ∈ Θ} is any parametrization of the univariate normal model, the paper considers prior distributions G( θ - , γ with hyperparameters θ - ∈ Θ and γ > 0, whose density with respect to Riemannian volume is proportional to exp(−d2(θ, θ - /2γ2, where d2(θ, θ - is the square of Rao’s Riemannian distance. The distributions G( θ - , γ are termed Gaussian distributions on the univariate normal model. The motivation for considering a distribution G( θ - , γ is that this distribution gives a geometric representation of a class or cluster of univariate normal populations. Indeed, G( θ - , γ has a unique mode θ - (precisely, θ - is the unique Riemannian center of mass of G( θ - , γ, as shown in the paper, and its dispersion away from θ - is given by γ. Therefore, one thinks of members of the class represented by G( θ - , γ as being centered around θ - and lying within a typical distance determined by γ. The paper defines rigorously the Gaussian distributions G( θ - , γ and describes an algorithm for computing maximum likelihood estimates of their hyperparameters. Based on this algorithm and on the Laplace approximation, it describes how the distributions G( θ - , γ can be used as prior distributions for Bayesian classification of large univariate normal populations. In a concrete application to texture image classification, it is shown that this leads to an improvement in performance over the use of conjugate priors.
FUNSTAT and statistical image representations
Parzen, E.
1983-01-01
General ideas of functional statistical inference analysis of one sample and two samples, univariate and bivariate are outlined. ONESAM program is applied to analyze the univariate probability distributions of multi-spectral image data.
Mura, Maria Chiara; De Felice, Marco; Morlino, Roberta; Fuselli, Sergio
2010-01-01
In step with the need to develop statistical procedures to manage small-size environmental samples, in this work we have used concentration values of benzene (C6H6), concurrently detected by seven outdoor and indoor monitoring stations over 12 000 minutes, in order to assess the representativeness of collected data and the impact of the pollutant on indoor environment. Clearly, the former issue is strictly connected to sampling-site geometry, which proves critical to correctly retrieving information from analysis of pollutants of sanitary interest. Therefore, according to current criteria for network-planning, single stations have been interpreted as nodes of a set of adjoining triangles; then, a) node pairs have been taken into account in order to estimate pollutant stationarity on triangle sides, as well as b) node triplets, to statistically associate data from air-monitoring with the corresponding territory area, and c) node sextuplets, to assess the impact probability of the outdoor pollutant on indoor environment for each area. Distributions from the various node combinations are all non-Gaussian, in the consequently, Kruskal-Wallis (KW) non-parametric statistics has been exploited to test variability on continuous density function from each pair, triplet and sextuplet. Results from the above-mentioned statistical analysis have shown randomness of site selection, which has not allowed a reliable generalization of monitoring data to the entire selected territory, except for a single "forced" case (70%); most important, they suggest a possible procedure to optimize network design.
Directory of Open Access Journals (Sweden)
Maria Chiara Mura
2010-12-01
Full Text Available In step with the need to develop statistical procedures to manage small-size environmental samples, in this work we have used concentration values of benzene (C6H6, concurrently detected by seven outdoor and indoor monitoring stations over 12 000 minutes, in order to assess the representativeness of collected data and the impact of the pollutant on indoor environment. Clearly, the former issue is strictly connected to sampling-site geometry, which proves critical to correctly retrieving information from analysis of pollutants of sanitary interest. Therefore, according to current criteria for network-planning, single stations have been interpreted as nodes of a set of adjoining triangles; then, a node pairs have been taken into account in order to estimate pollutant stationarity on triangle sides, as well as b node triplets, to statistically associate data from air-monitoring with the corresponding territory area, and c node sextuplets, to assess the impact probability of the outdoor pollutant on indoor environment for each area. Distributions from the various node combinations are all non-Gaussian, in the consequently, Kruskal-Wallis (KW non-parametric statistics has been exploited to test variability on continuous density function from each pair, triplet and sextuplet. Results from the above-mentioned statistical analysis have shown randomness of site selection, which has not allowed a reliable generalization of monitoring data to the entire selected territory, except for a single "forced" case (70%; most important, they suggest a possible procedure to optimize network design.
Which DTW Method Applied to Marine Univariate Time Series Imputation
Phan , Thi-Thu-Hong; Caillault , Émilie; Lefebvre , Alain; Bigand , André
2017-01-01
International audience; Missing data are ubiquitous in any domains of applied sciences. Processing datasets containing missing values can lead to a loss of efficiency and unreliable results, especially for large missing sub-sequence(s). Therefore, the aim of this paper is to build a framework for filling missing values in univariate time series and to perform a comparison of different similarity metrics used for the imputation task. This allows to suggest the most suitable methods for the imp...
Univariate decision tree induction using maximum margin classification
Yıldız, Olcay Taner
2012-01-01
In many pattern recognition applications, first decision trees are used due to their simplicity and easily interpretable nature. In this paper, we propose a new decision tree learning algorithm called univariate margin tree where, for each continuous attribute, the best split is found using convex optimization. Our simulation results on 47 data sets show that the novel margin tree classifier performs at least as good as C4.5 and linear discriminant tree (LDT) with a similar time complexity. F...
Statistical concepts a second course
Lomax, Richard G
2012-01-01
Statistical Concepts consists of the last 9 chapters of An Introduction to Statistical Concepts, 3rd ed. Designed for the second course in statistics, it is one of the few texts that focuses just on intermediate statistics. The book highlights how statistics work and what they mean to better prepare students to analyze their own data and interpret SPSS and research results. As such it offers more coverage of non-parametric procedures used when standard assumptions are violated since these methods are more frequently encountered when working with real data. Determining appropriate sample sizes
Mathematical statistics and stochastic processes
Bosq, Denis
2013-01-01
Generally, books on mathematical statistics are restricted to the case of independent identically distributed random variables. In this book however, both this case AND the case of dependent variables, i.e. statistics for discrete and continuous time processes, are studied. This second case is very important for today's practitioners.Mathematical Statistics and Stochastic Processes is based on decision theory and asymptotic statistics and contains up-to-date information on the relevant topics of theory of probability, estimation, confidence intervals, non-parametric statistics and rob
Univaried models in the series of temperature of the air
International Nuclear Information System (INIS)
Leon Aristizabal Gloria esperanza
2000-01-01
The theoretical framework for the study of the air's temperature time series is the theory of stochastic processes, particularly those known as ARIMA, that make it possible to carry out a univaried analysis. ARIMA models are built in order to explain the structure of the monthly temperatures corresponding to the mean, the absolute maximum, absolute minimum, maximum mean and minimum mean temperatures, for four stations in Colombia. By means of those models, the possible evolution of the latter variables is estimated with predictive aims in mind. The application and utility of the models is discussed
Effect Sizes for Research Univariate and Multivariate Applications
Grissom, Robert J
2011-01-01
Noted for its comprehensive coverage, this greatly expanded new edition now covers the use of univariate and multivariate effect sizes. Many measures and estimators are reviewed along with their application, interpretation, and limitations. Noted for its practical approach, the book features numerous examples using real data for a variety of variables and designs, to help readers apply the material to their own data. Tips on the use of SPSS, SAS, R, and S-Plus are provided. The book's broad disciplinary appeal results from its inclusion of a variety of examples from psychology, medicine, educa
Riad, Safaa M.; Salem, Hesham; Elbalkiny, Heba T.; Khattab, Fatma I.
2015-04-01
Five, accurate, precise, and sensitive univariate and multivariate spectrophotometric methods were developed for the simultaneous determination of a ternary mixture containing Trimethoprim (TMP), Sulphamethoxazole (SMZ) and Oxytetracycline (OTC) in waste water samples collected from different cites either production wastewater or livestock wastewater after their solid phase extraction using OASIS HLB cartridges. In univariate methods OTC was determined at its λmax 355.7 nm (0D), while (TMP) and (SMZ) were determined by three different univariate methods. Method (A) is based on successive spectrophotometric resolution technique (SSRT). The technique starts with the ratio subtraction method followed by ratio difference method for determination of TMP and SMZ. Method (B) is successive derivative ratio technique (SDR). Method (C) is mean centering of the ratio spectra (MCR). The developed multivariate methods are principle component regression (PCR) and partial least squares (PLS). The specificity of the developed methods is investigated by analyzing laboratory prepared mixtures containing different ratios of the three drugs. The obtained results are statistically compared with those obtained by the official methods, showing no significant difference with respect to accuracy and precision at p = 0.05.
The pathways for intelligible speech: multivariate and univariate perspectives.
Evans, S; Kyong, J S; Rosen, S; Golestani, N; Warren, J E; McGettigan, C; Mourão-Miranda, J; Wise, R J S; Scott, S K
2014-09-01
An anterior pathway, concerned with extracting meaning from sound, has been identified in nonhuman primates. An analogous pathway has been suggested in humans, but controversy exists concerning the degree of lateralization and the precise location where responses to intelligible speech emerge. We have demonstrated that the left anterior superior temporal sulcus (STS) responds preferentially to intelligible speech (Scott SK, Blank CC, Rosen S, Wise RJS. 2000. Identification of a pathway for intelligible speech in the left temporal lobe. Brain. 123:2400-2406.). A functional magnetic resonance imaging study in Cerebral Cortex used equivalent stimuli and univariate and multivariate analyses to argue for the greater importance of bilateral posterior when compared with the left anterior STS in responding to intelligible speech (Okada K, Rong F, Venezia J, Matchin W, Hsieh IH, Saberi K, Serences JT,Hickok G. 2010. Hierarchical organization of human auditory cortex: evidence from acoustic invariance in the response to intelligible speech. 20: 2486-2495.). Here, we also replicate our original study, demonstrating that the left anterior STS exhibits the strongest univariate response and, in decoding using the bilateral temporal cortex, contains the most informative voxels showing an increased response to intelligible speech. In contrast, in classifications using local "searchlights" and a whole brain analysis, we find greater classification accuracy in posterior rather than anterior temporal regions. Thus, we show that the precise nature of the multivariate analysis used will emphasize different response profiles associated with complex sound to speech processing. © The Author 2013. Published by Oxford University Press.
Directory of Open Access Journals (Sweden)
Charles Onyutha
2017-10-01
Full Text Available Some of the problems in drought assessments are that: analyses tend to focus on coarse temporal scales, many of the methods yield skewed indices, a few terminologies are ambiguously used, and analyses comprise an implicit assumption that the observations come from a stationary process. To solve these problems, this paper introduces non-stationary frequency analyses of quantiles. How to use non-parametric rescaling to obtain robust indices that are not (or minimally skewed is also introduced. To avoid ambiguity, some concepts on, e.g., incidence, extremity, etc., were revisited through shift from monthly to daily time scale. Demonstrations on the introduced methods were made using daily flow and precipitation insufficiency (precipitation minus potential evapotranspiration from the Blue Nile basin in Africa. Results show that, when a significant trend exists in extreme events, stationarity-based quantiles can be far different from those when non-stationarity is considered. The introduced non-parametric indices were found to closely agree with the well-known standardized precipitation evapotranspiration indices in many aspects but skewness. Apart from revisiting some concepts, the advantages of the use of fine instead of coarse time scales in drought assessment were given. The links for obtaining freely downloadable tools on how to implement the introduced methods were provided.
Rights, Jason D; Sterba, Sonya K
2016-11-01
Multilevel data structures are common in the social sciences. Often, such nested data are analysed with multilevel models (MLMs) in which heterogeneity between clusters is modelled by continuously distributed random intercepts and/or slopes. Alternatively, the non-parametric multilevel regression mixture model (NPMM) can accommodate the same nested data structures through discrete latent class variation. The purpose of this article is to delineate analytic relationships between NPMM and MLM parameters that are useful for understanding the indirect interpretation of the NPMM as a non-parametric approximation of the MLM, with relaxed distributional assumptions. We define how seven standard and non-standard MLM specifications can be indirectly approximated by particular NPMM specifications. We provide formulas showing how the NPMM can serve as an approximation of the MLM in terms of intraclass correlation, random coefficient means and (co)variances, heteroscedasticity of residuals at level 1, and heteroscedasticity of residuals at level 2. Further, we discuss how these relationships can be useful in practice. The specific relationships are illustrated with simulated graphical demonstrations, and direct and indirect interpretations of NPMM classes are contrasted. We provide an R function to aid in implementing and visualizing an indirect interpretation of NPMM classes. An empirical example is presented and future directions are discussed. © 2016 The British Psychological Society.
A comparison of bivariate and univariate QTL mapping in livestock populations
Directory of Open Access Journals (Sweden)
Sorensen Daniel
2003-11-01
Full Text Available Abstract This study presents a multivariate, variance component-based QTL mapping model implemented via restricted maximum likelihood (REML. The method was applied to investigate bivariate and univariate QTL mapping analyses, using simulated data. Specifically, we report results on the statistical power to detect a QTL and on the precision of parameter estimates using univariate and bivariate approaches. The model and methodology were also applied to study the effectiveness of partitioning the overall genetic correlation between two traits into a component due to many genes of small effect, and one due to the QTL. It is shown that when the QTL has a pleiotropic effect on two traits, a bivariate analysis leads to a higher statistical power of detecting the QTL and to a more precise estimate of the QTL's map position, in particular in the case when the QTL has a small effect on the trait. The increase in power is most marked in cases where the contributions of the QTL and of the polygenic components to the genetic correlation have opposite signs. The bivariate REML analysis can successfully partition the two components contributing to the genetic correlation between traits.
International Nuclear Information System (INIS)
Fouque, A.L.; Ciuciu, Ph.; Risser, L.; Fouque, A.L.; Ciuciu, Ph.; Risser, L.
2009-01-01
In this paper, a novel statistical parcellation of intra-subject functional MRI (fMRI) data is proposed. The key idea is to identify functionally homogenous regions of interest from their hemodynamic parameters. To this end, a non-parametric voxel-based estimation of hemodynamic response function is performed as a prerequisite. Then, the extracted hemodynamic features are entered as the input data of a Multivariate Spatial Gaussian Mixture Model (MSGMM) to be fitted. The goal of the spatial aspect is to favor the recovery of connected components in the mixture. Our statistical clustering approach is original in the sense that it extends existing works done on univariate spatially regularized Gaussian mixtures. A specific Gibbs sampler is derived to account for different covariance structures in the feature space. On realistic artificial fMRI datasets, it is shown that our algorithm is helpful for identifying a parsimonious functional parcellation required in the context of joint detection estimation of brain activity. This allows us to overcome the classical assumption of spatial stationarity of the BOLD signal model. (authors)
Compounding approach for univariate time series with nonstationary variances
Schäfer, Rudi; Barkhofen, Sonja; Guhr, Thomas; Stöckmann, Hans-Jürgen; Kuhl, Ulrich
2015-12-01
A defining feature of nonstationary systems is the time dependence of their statistical parameters. Measured time series may exhibit Gaussian statistics on short time horizons, due to the central limit theorem. The sample statistics for long time horizons, however, averages over the time-dependent variances. To model the long-term statistical behavior, we compound the local distribution with the distribution of its parameters. Here, we consider two concrete, but diverse, examples of such nonstationary systems: the turbulent air flow of a fan and a time series of foreign exchange rates. Our main focus is to empirically determine the appropriate parameter distribution for the compounding approach. To this end, we extract the relevant time scales by decomposing the time signals into windows and determine the distribution function of the thus obtained local variances.
International Nuclear Information System (INIS)
Buccheri, R.; Coffaro, P.; Di Gesu, V.; Salemi, S.; Colomba, G.
1975-01-01
Preliminary results are given of the application of a direct non parametric pattern recognition method to the classification of the pictures of a multiwire spark chamber. The method, developed in an earlier work for an optical spark chamber, looks promising. The picture sample used has with respect to the previous one, the following characteristis: a) the event pictures have a more complicated structure; b) the amount of background sparks in an event is greater; c) there exists a kind of noise which is almost always present in some structured way (double sparkling, bursts...). New features have been used to characterize the event pictures; the results show that the method could be also used as a super filter to reduce the cost of further analysis. (Auth.)
Directory of Open Access Journals (Sweden)
Lei Zhang
2009-08-01
Full Text Available As genome-wide association studies (GWAS are becoming more popular, two approaches, among others, could be considered in order to improve statistical power for identifying genes contributing subtle to moderate effects to human diseases. The first approach is to increase sample size, which could be achieved by combining both unrelated and familial subjects together. The second approach is to jointly analyze multiple correlated traits. In this study, by extending generalized estimating equations (GEEs, we propose a simple approach for performing univariate or multivariate association tests for the combined data of unrelated subjects and nuclear families. In particular, we correct for population stratification by integrating principal component analysis and transmission disequilibrium test strategies. The proposed method allows for multiple siblings as well as missing parental information. Simulation studies show that the proposed test has improved power compared to two popular methods, EIGENSTRAT and FBAT, by analyzing the combined data, while correcting for population stratification. In addition, joint analysis of bivariate traits has improved power over univariate analysis when pleiotropic effects are present. Application to the Genetic Analysis Workshop 16 (GAW16 data sets attests to the feasibility and applicability of the proposed method.
Zhang, Yong; Zhong, Miner; Geng, Nana; Jiang, Yunjian
2017-01-01
The market demand for electric vehicles (EVs) has increased in recent years. Suitable models are necessary to understand and forecast EV sales. This study presents a singular spectrum analysis (SSA) as a univariate time-series model and vector autoregressive model (VAR) as a multivariate model. Empirical results suggest that SSA satisfactorily indicates the evolving trend and provides reasonable results. The VAR model, which comprised exogenous parameters related to the market on a monthly basis, can significantly improve the prediction accuracy. The EV sales in China, which are categorized into battery and plug-in EVs, are predicted in both short term (up to December 2017) and long term (up to 2020), as statistical proofs of the growth of the Chinese EV industry.
Vecchiato, G; De Vico Fallani, F; Astolfi, L; Toppi, J; Cincotti, F; Mattia, D; Salinari, S; Babiloni, F
2010-08-30
This paper presents some considerations about the use of adequate statistical techniques in the framework of the neuroelectromagnetic brain mapping. With the use of advanced EEG/MEG recording setup involving hundred of sensors, the issue of the protection against the type I errors that could occur during the execution of hundred of univariate statistical tests, has gained interest. In the present experiment, we investigated the EEG signals from a mannequin acting as an experimental subject. Data have been collected while performing a neuromarketing experiment and analyzed with state of the art computational tools adopted in specialized literature. Results showed that electric data from the mannequin's head presents statistical significant differences in power spectra during the visualization of a commercial advertising when compared to the power spectra gathered during a documentary, when no adjustments were made on the alpha level of the multiple univariate tests performed. The use of the Bonferroni or Bonferroni-Holm adjustments returned correctly no differences between the signals gathered from the mannequin in the two experimental conditions. An partial sample of recently published literature on different neuroscience journals suggested that at least the 30% of the papers do not use statistical protection for the type I errors. While the occurrence of type I errors could be easily managed with appropriate statistical techniques, the use of such techniques is still not so largely adopted in the literature. Copyright (c) 2010 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Behringer, K.; Spiekerman, G.
1984-01-01
Piety (1977) proposed an automated signature analysis of power spectral density data. Eight statistical decision discriminants are introduced. For nearly all the discriminants, improved confidence statements can be made. The statistical characteristics of the last three discriminants, which are applications of non-parametric tests, are considered. (author)
International Nuclear Information System (INIS)
Mohammadi, Hassan; Ram, Rati
2017-01-01
Noting the paucity of studies of convergence in energy consumption across the US states, and the usefulness of a study that shares the spirit of the enormous research on convergence in energy-related variables in cross-country contexts, this paper explores convergence in per-capita energy consumption across the US states over the 44-year period 1970–2013. Several well-known parametric and non-parametric approaches are explored partly to shed light on the substantive question and partly to provide a comparative methodological perspective on these approaches. Several statements summarize the outcome of our explorations. First, the widely-used Barro-type regressions do not indicate beta-convergence during the entire period or any of several sub-periods. Second, lack of sigma-convergence is also noted in terms of standard deviation of logarithms and coefficient of variation which do not show a decline between 1970 and 2013, but show slight upward trends. Third, kernel density function plots indicate some flattening of the distribution which is consistent with the results from sigma-convergence scenario. Fourth, intra-distribution mobility (“gamma convergence”) in terms of an index of rank concordance suggests a slow decline in the index. Fifth, the general impression from several types of panel and time-series unit-root tests is that of non-stationarity of the series and thus the lack of stochastic convergence during the period. Sixth, therefore, the overall impression seems to be that of the lack of convergence across states in per-capita energy consumption. The present interstate inequality in per-capita energy consumption may, therefore, reflect variations in structural factors and might not be expected to diminish.
2011-01-01
Background Nonparametric item response theory (IRT) was used to examine (a) the performance of the 30 Positive and Negative Syndrome Scale (PANSS) items and their options ((levels of severity), (b) the effectiveness of various subscales to discriminate among differences in symptom severity, and (c) the development of an abbreviated PANSS (Mini-PANSS) based on IRT and a method to link scores to the original PANSS. Methods Baseline PANSS scores from 7,187 patients with Schizophrenia or Schizoaffective disorder who were enrolled between 1995 and 2005 in psychopharmacology trials were obtained. Option characteristic curves (OCCs) and Item Characteristic Curves (ICCs) were constructed to examine the probability of rating each of seven options within each of 30 PANSS items as a function of subscale severity, and summed-score linking was applied to items selected for the Mini-PANSS. Results The majority of items forming the Positive and Negative subscales (i.e. 19 items) performed very well and discriminate better along symptom severity compared to the General Psychopathology subscale. Six of the seven Positive Symptom items, six of the seven Negative Symptom items, and seven out of the 16 General Psychopathology items were retained for inclusion in the Mini-PANSS. Summed score linking and linear interpolation was able to produce a translation table for comparing total subscale scores of the Mini-PANSS to total subscale scores on the original PANSS. Results show scores on the subscales of the Mini-PANSS can be linked to scores on the original PANSS subscales, with very little bias. Conclusions The study demonstrated the utility of non-parametric IRT in examining the item properties of the PANSS and to allow selection of items for an abbreviated PANSS scale. The comparisons between the 30-item PANSS and the Mini-PANSS revealed that the shorter version is comparable to the 30-item PANSS, but when applying IRT, the Mini-PANSS is also a good indicator of illness severity
Khan, Anzalee; Lewis, Charles; Lindenmayer, Jean-Pierre
2011-11-16
Nonparametric item response theory (IRT) was used to examine (a) the performance of the 30 Positive and Negative Syndrome Scale (PANSS) items and their options ((levels of severity), (b) the effectiveness of various subscales to discriminate among differences in symptom severity, and (c) the development of an abbreviated PANSS (Mini-PANSS) based on IRT and a method to link scores to the original PANSS. Baseline PANSS scores from 7,187 patients with Schizophrenia or Schizoaffective disorder who were enrolled between 1995 and 2005 in psychopharmacology trials were obtained. Option characteristic curves (OCCs) and Item Characteristic Curves (ICCs) were constructed to examine the probability of rating each of seven options within each of 30 PANSS items as a function of subscale severity, and summed-score linking was applied to items selected for the Mini-PANSS. The majority of items forming the Positive and Negative subscales (i.e. 19 items) performed very well and discriminate better along symptom severity compared to the General Psychopathology subscale. Six of the seven Positive Symptom items, six of the seven Negative Symptom items, and seven out of the 16 General Psychopathology items were retained for inclusion in the Mini-PANSS. Summed score linking and linear interpolation was able to produce a translation table for comparing total subscale scores of the Mini-PANSS to total subscale scores on the original PANSS. Results show scores on the subscales of the Mini-PANSS can be linked to scores on the original PANSS subscales, with very little bias. The study demonstrated the utility of non-parametric IRT in examining the item properties of the PANSS and to allow selection of items for an abbreviated PANSS scale. The comparisons between the 30-item PANSS and the Mini-PANSS revealed that the shorter version is comparable to the 30-item PANSS, but when applying IRT, the Mini-PANSS is also a good indicator of illness severity.
Energy Technology Data Exchange (ETDEWEB)
Constantinescu, C C; Yoder, K K; Normandin, M D; Morris, E D [Department of Radiology, Indiana University School of Medicine, Indianapolis, IN (United States); Kareken, D A [Department of Neurology, Indiana University School of Medicine, Indianapolis, IN (United States); Bouman, C A [Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN (United States); O' Connor, S J [Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN (United States)], E-mail: emorris@iupui.edu
2008-03-07
We previously developed a model-independent technique (non-parametric ntPET) for extracting the transient changes in neurotransmitter concentration from paired (rest and activation) PET studies with a receptor ligand. To provide support for our method, we introduced three hypotheses of validation based on work by Endres and Carson (1998 J. Cereb. Blood Flow Metab. 18 1196-210) and Yoder et al (2004 J. Nucl. Med. 45 903-11), and tested them on experimental data. All three hypotheses describe relationships between the estimated free (synaptic) dopamine curves (F{sup DA}(t)) and the change in binding potential ({delta}BP). The veracity of the F{sup DA}(t) curves recovered by nonparametric ntPET is supported when the data adhere to the following hypothesized behaviors: (1) {delta}BP should decline with increasing DA peak time, (2) {delta}BP should increase as the strength of the temporal correlation between F{sup DA}(t) and the free raclopride (F{sup RAC}(t)) curve increases, (3) {delta}BP should decline linearly with the effective weighted availability of the receptor sites. We analyzed regional brain data from 8 healthy subjects who received two [{sup 11}C]raclopride scans: one at rest, and one during which unanticipated IV alcohol was administered to stimulate dopamine release. For several striatal regions, nonparametric ntPET was applied to recover F{sup DA}(t), and binding potential values were determined. Kendall rank-correlation analysis confirmed that the F{sup DA}(t) data followed the expected trends for all three validation hypotheses. Our findings lend credence to our model-independent estimates of F{sup DA}(t). Application of nonparametric ntPET may yield important insights into how alterations in timing of dopaminergic neurotransmission are involved in the pathologies of addiction and other psychiatric disorders.
CSIR Research Space (South Africa)
Ntaka, L
2013-08-01
Full Text Available . In this work, statistical inference approach specifically the non-parametric bootstrapping and linear model were applied. Data used to develop the model were sourced from the literature. 104 data points with information on aggregation, natural organic matter...
Statistical Analysis of Data for Timber Strengths
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard
2003-01-01
Statistical analyses are performed for material strength parameters from a large number of specimens of structural timber. Non-parametric statistical analysis and fits have been investigated for the following distribution types: Normal, Lognormal, 2 parameter Weibull and 3-parameter Weibull...... fits to the data available, especially if tail fits are used whereas the Log Normal distribution generally gives a poor fit and larger coefficients of variation, especially if tail fits are used. The implications on the reliability level of typical structural elements and on partial safety factors...... for timber are investigated....
Couvy-Duchesne, Baptiste; Davenport, Tracey A; Martin, Nicholas G; Wright, Margaret J; Hickie, Ian B
2017-08-01
The Somatic and Psychological HEalth REport (SPHERE) is a 34-item self-report questionnaire that assesses symptoms of mental distress and persistent fatigue. As it was developed as a screening instrument for use mainly in primary care-based clinical settings, its validity and psychometric properties have not been studied extensively in population-based samples. We used non-parametric Item Response Theory to assess scale validity and item properties of the SPHERE-34 scales, collected through four waves of the Brisbane Longitudinal Twin Study (N = 1707, mean age = 12, 51% females; N = 1273, mean age = 14, 50% females; N = 1513, mean age = 16, 54% females, N = 1263, mean age = 18, 56% females). We estimated the heritability of the new scores, their genetic correlation, and their predictive ability in a sub-sample (N = 1993) who completed the Composite International Diagnostic Interview. After excluding items most responsible for noise, sex or wave bias, the SPHERE-34 questionnaire was reduced to 21 items (SPHERE-21), comprising a 14-item scale for anxiety-depression and a 10-item scale for chronic fatigue (3 items overlapping). These new scores showed high internal consistency (alpha > 0.78), moderate three months reliability (ICC = 0.47-0.58) and item scalability (Hi > 0.23), and were positively correlated (phenotypic correlations r = 0.57-0.70; rG = 0.77-1.00). Heritability estimates ranged from 0.27 to 0.51. In addition, both scores were associated with later DSM-IV diagnoses of MDD, social anxiety and alcohol dependence (OR in 1.23-1.47). Finally, a post-hoc comparison showed that several psychometric properties of the SPHERE-21 were similar to those of the Beck Depression Inventory. The scales of SPHERE-21 measure valid and comparable constructs across sex and age groups (from 9 to 28 years). SPHERE-21 scores are heritable, genetically correlated and show good predictive ability of mental health in an Australian-based population
Directory of Open Access Journals (Sweden)
Stochl Jan
2012-06-01
Full Text Available Abstract Background Mokken scaling techniques are a useful tool for researchers who wish to construct unidimensional tests or use questionnaires that comprise multiple binary or polytomous items. The stochastic cumulative scaling model offered by this approach is ideally suited when the intention is to score an underlying latent trait by simple addition of the item response values. In our experience, the Mokken model appears to be less well-known than for example the (related Rasch model, but is seeing increasing use in contemporary clinical research and public health. Mokken's method is a generalisation of Guttman scaling that can assist in the determination of the dimensionality of tests or scales, and enables consideration of reliability, without reliance on Cronbach's alpha. This paper provides a practical guide to the application and interpretation of this non-parametric item response theory method in empirical research with health and well-being questionnaires. Methods Scalability of data from 1 a cross-sectional health survey (the Scottish Health Education Population Survey and 2 a general population birth cohort study (the National Child Development Study illustrate the method and modeling steps for dichotomous and polytomous items respectively. The questionnaire data analyzed comprise responses to the 12 item General Health Questionnaire, under the binary recoding recommended for screening applications, and the ordinal/polytomous responses to the Warwick-Edinburgh Mental Well-being Scale. Results and conclusions After an initial analysis example in which we select items by phrasing (six positive versus six negatively worded items we show that all items from the 12-item General Health Questionnaire (GHQ-12 – when binary scored – were scalable according to the double monotonicity model, in two short scales comprising six items each (Bech’s “well-being” and “distress” clinical scales. An illustration of ordinal item analysis
Stochl, Jan; Jones, Peter B; Croudace, Tim J
2012-06-11
Mokken scaling techniques are a useful tool for researchers who wish to construct unidimensional tests or use questionnaires that comprise multiple binary or polytomous items. The stochastic cumulative scaling model offered by this approach is ideally suited when the intention is to score an underlying latent trait by simple addition of the item response values. In our experience, the Mokken model appears to be less well-known than for example the (related) Rasch model, but is seeing increasing use in contemporary clinical research and public health. Mokken's method is a generalisation of Guttman scaling that can assist in the determination of the dimensionality of tests or scales, and enables consideration of reliability, without reliance on Cronbach's alpha. This paper provides a practical guide to the application and interpretation of this non-parametric item response theory method in empirical research with health and well-being questionnaires. Scalability of data from 1) a cross-sectional health survey (the Scottish Health Education Population Survey) and 2) a general population birth cohort study (the National Child Development Study) illustrate the method and modeling steps for dichotomous and polytomous items respectively. The questionnaire data analyzed comprise responses to the 12 item General Health Questionnaire, under the binary recoding recommended for screening applications, and the ordinal/polytomous responses to the Warwick-Edinburgh Mental Well-being Scale. After an initial analysis example in which we select items by phrasing (six positive versus six negatively worded items) we show that all items from the 12-item General Health Questionnaire (GHQ-12)--when binary scored--were scalable according to the double monotonicity model, in two short scales comprising six items each (Bech's "well-being" and "distress" clinical scales). An illustration of ordinal item analysis confirmed that all 14 positively worded items of the Warwick-Edinburgh Mental
Combinatorial bounds on the α-divergence of univariate mixture models
Nielsen, Frank; Sun, Ke
2017-01-01
We derive lower- and upper-bounds of α-divergence between univariate mixture models with components in the exponential family. Three pairs of bounds are presented in order with increasing quality and increasing computational cost. They are verified
Comparison of different Methods for Univariate Time Series Imputation in R
Moritz, Steffen; Sardá, Alexis; Bartz-Beielstein, Thomas; Zaefferer, Martin; Stork, Jörg
2015-01-01
Missing values in datasets are a well-known problem and there are quite a lot of R packages offering imputation functions. But while imputation in general is well covered within R, it is hard to find functions for imputation of univariate time series. The problem is, most standard imputation techniques can not be applied directly. Most algorithms rely on inter-attribute correlations, while univariate time series imputation needs to employ time dependencies. This paper provides an overview of ...
Practical statistics a handbook for business projects
Buglear, John
2013-01-01
Practical Statistics is a hands-on guide to statistics, progressing by complexity of data (univariate, bivariate, multivariate) and analysis (portray, summarise, generalise) in order to give the reader a solid understanding of the fundamentals and how to apply them.
Directory of Open Access Journals (Sweden)
Abdelfattah M. Selim
2018-03-01
Full Text Available Aim: The present cross-sectional study was conducted to determine the seroprevalence and potential risk factors associated with Bovine viral diarrhea virus (BVDV disease in cattle and buffaloes in Egypt, to model the potential risk factors associated with the disease using logistic regression (LR models, and to fit the best predictive model for the current data. Materials and Methods: A total of 740 blood samples were collected within November 2012-March 2013 from animals aged between 6 months and 3 years. The potential risk factors studied were species, age, sex, and herd location. All serum samples were examined with indirect ELIZA test for antibody detection. Data were analyzed with different statistical approaches such as Chi-square test, odds ratios (OR, univariable, and multivariable LR models. Results: Results revealed a non-significant association between being seropositive with BVDV and all risk factors, except for species of animal. Seroprevalence percentages were 40% and 23% for cattle and buffaloes, respectively. OR for all categories were close to one with the highest OR for cattle relative to buffaloes, which was 2.237. Likelihood ratio tests showed a significant drop of the -2LL from univariable LR to multivariable LR models. Conclusion: There was an evidence of high seroprevalence of BVDV among cattle as compared with buffaloes with the possibility of infection in different age groups of animals. In addition, multivariable LR model was proved to provide more information for association and prediction purposes relative to univariable LR models and Chi-square tests if we have more than one predictor.
Directory of Open Access Journals (Sweden)
Steven M Carr
-stepping-stone biogeographic models, but not a simple 1-step trans-Atlantic model. Plots of the cumulative pairwise sequence difference curves among seals in each of the four populations provide continuous proxies for phylogenetic diversification within each. Non-parametric Kolmogorov-Smirnov (K-S tests of maximum pairwise differences between these curves indicates that the Greenland Sea population has a markedly younger phylogenetic structure than either the White Sea population or the two Northwest Atlantic populations, which are of intermediate age and homogeneous structure. The Monte Carlo and K-S assessments provide sensitive quantitative tests of within-species mitogenomic phylogeography. This is the first study to indicate that the White Sea and Greenland Sea populations have different population genetic histories. The analysis supports the hypothesis that Harp Seals comprises three genetically distinguishable breeding populations, in the White Sea, Greenland Sea, and Northwest Atlantic. Implications for an ice-dependent species during ongoing climate change are discussed.
Statistical trend analysis methods for temporal phenomena
International Nuclear Information System (INIS)
Lehtinen, E.; Pulkkinen, U.; Poern, K.
1997-04-01
We consider point events occurring in a random way in time. In many applications the pattern of occurrence is of intrinsic interest as indicating a trend or some other systematic feature in the rate of occurrence. The purpose of this report is to survey briefly different statistical trend analysis methods and illustrate their applicability to temporal phenomena in particular. The trend testing of point events is usually seen as the testing of the hypotheses concerning the intensity of the occurrence of events. When the intensity function is parametrized, the testing of trend is a typical parametric testing problem. In industrial applications the operational experience generally does not suggest any specified model and method in advance. Therefore, and particularly, if the Poisson process assumption is very questionable, it is desirable to apply tests that are valid for a wide variety of possible processes. The alternative approach for trend testing is to use some non-parametric procedure. In this report we have presented four non-parametric tests: The Cox-Stuart test, the Wilcoxon signed ranks test, the Mann test, and the exponential ordered scores test. In addition to the classical parametric and non-parametric approaches we have also considered the Bayesian trend analysis. First we discuss a Bayesian model, which is based on a power law intensity model. The Bayesian statistical inferences are based on the analysis of the posterior distribution of the trend parameters, and the probability of trend is immediately seen from these distributions. We applied some of the methods discussed in an example case. It should be noted, that this report is a feasibility study rather than a scientific evaluation of statistical methods, and the examples can only be seen as demonstrations of the methods
Statistical trend analysis methods for temporal phenomena
Energy Technology Data Exchange (ETDEWEB)
Lehtinen, E.; Pulkkinen, U. [VTT Automation, (Finland); Poern, K. [Poern Consulting, Nykoeping (Sweden)
1997-04-01
We consider point events occurring in a random way in time. In many applications the pattern of occurrence is of intrinsic interest as indicating a trend or some other systematic feature in the rate of occurrence. The purpose of this report is to survey briefly different statistical trend analysis methods and illustrate their applicability to temporal phenomena in particular. The trend testing of point events is usually seen as the testing of the hypotheses concerning the intensity of the occurrence of events. When the intensity function is parametrized, the testing of trend is a typical parametric testing problem. In industrial applications the operational experience generally does not suggest any specified model and method in advance. Therefore, and particularly, if the Poisson process assumption is very questionable, it is desirable to apply tests that are valid for a wide variety of possible processes. The alternative approach for trend testing is to use some non-parametric procedure. In this report we have presented four non-parametric tests: The Cox-Stuart test, the Wilcoxon signed ranks test, the Mann test, and the exponential ordered scores test. In addition to the classical parametric and non-parametric approaches we have also considered the Bayesian trend analysis. First we discuss a Bayesian model, which is based on a power law intensity model. The Bayesian statistical inferences are based on the analysis of the posterior distribution of the trend parameters, and the probability of trend is immediately seen from these distributions. We applied some of the methods discussed in an example case. It should be noted, that this report is a feasibility study rather than a scientific evaluation of statistical methods, and the examples can only be seen as demonstrations of the methods. 14 refs, 10 figs.
Practical statistics in pain research.
Kim, Tae Kyun
2017-10-01
Pain is subjective, while statistics related to pain research are objective. This review was written to help researchers involved in pain research make statistical decisions. The main issues are related with the level of scales that are often used in pain research, the choice of statistical methods between parametric or nonparametric statistics, and problems which arise from repeated measurements. In the field of pain research, parametric statistics used to be applied in an erroneous way. This is closely related with the scales of data and repeated measurements. The level of scales includes nominal, ordinal, interval, and ratio scales. The level of scales affects the choice of statistics between parametric or non-parametric methods. In the field of pain research, the most frequently used pain assessment scale is the ordinal scale, which would include the visual analogue scale (VAS). There used to be another view, however, which considered the VAS to be an interval or ratio scale, so that the usage of parametric statistics would be accepted practically in some cases. Repeated measurements of the same subjects always complicates statistics. It means that measurements inevitably have correlations between each other, and would preclude the application of one-way ANOVA in which independence between the measurements is necessary. Repeated measures of ANOVA (RMANOVA), however, would permit the comparison between the correlated measurements as long as the condition of sphericity assumption is satisfied. Conclusively, parametric statistical methods should be used only when the assumptions of parametric statistics, such as normality and sphericity, are established.
Forecasting electricity spot-prices using linear univariate time-series models
International Nuclear Information System (INIS)
Cuaresma, Jesus Crespo; Hlouskova, Jaroslava; Kossmeier, Stephan; Obersteiner, Michael
2004-01-01
This paper studies the forecasting abilities of a battery of univariate models on hourly electricity spot prices, using data from the Leipzig Power Exchange. The specifications studied include autoregressive models, autoregressive-moving average models and unobserved component models. The results show that specifications, where each hour of the day is modelled separately present uniformly better forecasting properties than specifications for the whole time-series, and that the inclusion of simple probabilistic processes for the arrival of extreme price events can lead to improvements in the forecasting abilities of univariate models for electricity spot prices. (Author)
ASURV: Astronomical SURVival Statistics
Feigelson, E. D.; Nelson, P. I.; Isobe, T.; LaValley, M.
2014-06-01
ASURV (Astronomical SURVival Statistics) provides astronomy survival analysis for right- and left-censored data including the maximum-likelihood Kaplan-Meier estimator and several univariate two-sample tests, bivariate correlation measures, and linear regressions. ASURV is written in FORTRAN 77, and is stand-alone and does not call any specialized libraries.
Statistical reliability analyses of two wood plastic composite extrusion processes
International Nuclear Information System (INIS)
Crookston, Kevin A.; Mark Young, Timothy; Harper, David; Guess, Frank M.
2011-01-01
Estimates of the reliability of wood plastic composites (WPC) are explored for two industrial extrusion lines. The goal of the paper is to use parametric and non-parametric analyses to examine potential differences in the WPC metrics of reliability for the two extrusion lines that may be helpful for use by the practitioner. A parametric analysis of the extrusion lines reveals some similarities and disparities in the best models; however, a non-parametric analysis reveals unique and insightful differences between Kaplan-Meier survival curves for the modulus of elasticity (MOE) and modulus of rupture (MOR) of the WPC industrial data. The distinctive non-parametric comparisons indicate the source of the differences in strength between the 10.2% and 48.0% fractiles [3,183-3,517 MPa] for MOE and for MOR between the 2.0% and 95.1% fractiles [18.9-25.7 MPa]. Distribution fitting as related to selection of the proper statistical methods is discussed with relevance to estimating the reliability of WPC. The ability to detect statistical differences in the product reliability of WPC between extrusion processes may benefit WPC producers in improving product reliability and safety of this widely used house-decking product. The approach can be applied to many other safety and complex system lifetime comparisons.
Kryklywy, James H; Macpherson, Ewan A; Mitchell, Derek G V
2018-04-01
Emotion can have diverse effects on behaviour and perception, modulating function in some circumstances, and sometimes having little effect. Recently, it was identified that part of the heterogeneity of emotional effects could be due to a dissociable representation of emotion in dual pathway models of sensory processing. Our previous fMRI experiment using traditional univariate analyses showed that emotion modulated processing in the auditory 'what' but not 'where' processing pathway. The current study aims to further investigate this dissociation using a more recently emerging multi-voxel pattern analysis searchlight approach. While undergoing fMRI, participants localized sounds of varying emotional content. A searchlight multi-voxel pattern analysis was conducted to identify activity patterns predictive of sound location and/or emotion. Relative to the prior univariate analysis, MVPA indicated larger overlapping spatial and emotional representations of sound within early secondary regions associated with auditory localization. However, consistent with the univariate analysis, these two dimensions were increasingly segregated in late secondary and tertiary regions of the auditory processing streams. These results, while complimentary to our original univariate analyses, highlight the utility of multiple analytic approaches for neuroimaging, particularly for neural processes with known representations dependent on population coding.
Umesh P. Agarwal; Richard S. Reiner; Sally A. Ralph
2010-01-01
Two new methods based on FTâRaman spectroscopy, one simple, based on band intensity ratio, and the other using a partial least squares (PLS) regression model, are proposed to determine cellulose I crystallinity. In the simple method, crystallinity in cellulose I samples was determined based on univariate regression that was first developed using the Raman band...
Regression Is a Univariate General Linear Model Subsuming Other Parametric Methods as Special Cases.
Vidal, Sherry
Although the concept of the general linear model (GLM) has existed since the 1960s, other univariate analyses such as the t-test and the analysis of variance models have remained popular. The GLM produces an equation that minimizes the mean differences of independent variables as they are related to a dependent variable. From a computer printout…
Combinatorial bounds on the α-divergence of univariate mixture models
Nielsen, Frank
2017-06-20
We derive lower- and upper-bounds of α-divergence between univariate mixture models with components in the exponential family. Three pairs of bounds are presented in order with increasing quality and increasing computational cost. They are verified empirically through simulated Gaussian mixture models. The presented methodology generalizes to other divergence families relying on Hellinger-type integrals.
Some statistical issues important to future developments in human radiation research
International Nuclear Information System (INIS)
Vaeth, Michael
1991-01-01
Using his two years experience at the Radiation Effects Research Foundation at Hiroshima, the author tries to outline some of the areas of statistics where methodologies relevant to the future developments in human radiation research are likely to be found. Problems related to statistical analysis of existing data are discussed, together with methodological developments in non-parametric and semi-parametric regression modelling, and interpretation and presentation of results. (Author)
Kovačević, Strahinja; Karadžić, Milica; Podunavac-Kuzmanović, Sanja; Jevrić, Lidija
2018-01-01
The present study is based on the quantitative structure-activity relationship (QSAR) analysis of binding affinity toward human prion protein (huPrP C ) of quinacrine, pyridine dicarbonitrile, diphenylthiazole and diphenyloxazole analogs applying different linear and non-linear chemometric regression techniques, including univariate linear regression, multiple linear regression, partial least squares regression and artificial neural networks. The QSAR analysis distinguished molecular lipophilicity as an important factor that contributes to the binding affinity. Principal component analysis was used in order to reveal similarities or dissimilarities among the studied compounds. The analysis of in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) parameters was conducted. The ranking of the studied analogs on the basis of their ADMET parameters was done applying the sum of ranking differences, as a relatively new chemometric method. The main aim of the study was to reveal the most important molecular features whose changes lead to the changes in the binding affinities of the studied compounds. Another point of view on the binding affinity of the most promising analogs was established by application of molecular docking analysis. The results of the molecular docking were proven to be in agreement with the experimental outcome. Copyright © 2017 Elsevier B.V. All rights reserved.
Statistical analysis applied to safety culture self-assessment
International Nuclear Information System (INIS)
Macedo Soares, P.P.
2002-01-01
Interviews and opinion surveys are instruments used to assess the safety culture in an organization as part of the Safety Culture Enhancement Programme. Specific statistical tools are used to analyse the survey results. This paper presents an example of an opinion survey with the corresponding application of the statistical analysis and the conclusions obtained. Survey validation, Frequency statistics, Kolmogorov-Smirnov non-parametric test, Student (T-test) and ANOVA means comparison tests and LSD post-hoc multiple comparison test, are discussed. (author)
Energy Technology Data Exchange (ETDEWEB)
Conroy, Charlie [Department of Astronomy, Harvard University, Cambridge, MA, 02138 (United States); Van Dokkum, Pieter G. [Department of Astronomy, Yale University, New Haven, CT, 06511 (United States); Villaume, Alexa [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)
2017-03-10
It is now well-established that the stellar initial mass function (IMF) can be determined from the absorption line spectra of old stellar systems, and this has been used to measure the IMF and its variation across the early-type galaxy population. Previous work focused on measuring the slope of the IMF over one or more stellar mass intervals, implicitly assuming that this is a good description of the IMF and that the IMF has a universal low-mass cutoff. In this work we consider more flexible IMFs, including two-component power laws with a variable low-mass cutoff and a general non-parametric model. We demonstrate with mock spectra that the detailed shape of the IMF can be accurately recovered as long as the data quality is high (S/N ≳ 300 Å{sup −1}) and cover a wide wavelength range (0.4–1.0 μ m). We apply these flexible IMF models to a high S/N spectrum of the center of the massive elliptical galaxy NGC 1407. Fitting the spectrum with non-parametric IMFs, we find that the IMF in the center shows a continuous rise extending toward the hydrogen-burning limit, with a behavior that is well-approximated by a power law with an index of −2.7. These results provide strong evidence for the existence of extreme (super-Salpeter) IMFs in the cores of massive galaxies.
Statistical Analysis Of Reconnaissance Geochemical Data From ...
African Journals Online (AJOL)
, Co, Mo, Hg, Sb, Tl, Sc, Cr, Ni, La, W, V, U, Th, Bi, Sr and Ga in 56 stream sediment samples collected from Orle drainage system were subjected to univariate and multivariate statistical analyses. The univariate methods used include ...
R package imputeTestbench to compare imputations methods for univariate time series
Bokde, Neeraj; Kulat, Kishore; Beck, Marcus W; Asencio-Cortés, Gualberto
2016-01-01
This paper describes the R package imputeTestbench that provides a testbench for comparing imputation methods for missing data in univariate time series. The imputeTestbench package can be used to simulate the amount and type of missing data in a complete dataset and compare filled data using different imputation methods. The user has the option to simulate missing data by removing observations completely at random or in blocks of different sizes. Several default imputation methods are includ...
Chek, Mohd Zaki Awang; Ahmad, Abu Bakar; Ridzwan, Ahmad Nur Azam Ahmad; Jelas, Imran Md.; Jamal, Nur Faezah; Ismail, Isma Liana; Zulkifli, Faiz; Noor, Syamsul Ikram Mohd
2012-09-01
The main objective of this study is to forecast the future claims amount of Invalidity Pension Scheme (IPS). All data were derived from SOCSO annual reports from year 1972 - 2010. These claims consist of all claims amount from 7 benefits offered by SOCSO such as Invalidity Pension, Invalidity Grant, Survivors Pension, Constant Attendance Allowance, Rehabilitation, Funeral and Education. Prediction of future claims of Invalidity Pension Scheme will be made using Univariate Forecasting Models to predict the future claims among workforce in Malaysia.
Shi, Weiwei; Bugrim, Andrej; Nikolsky, Yuri; Nikolskya, Tatiana; Brennan, Richard J
2008-01-01
ABSTRACT The ideal toxicity biomarker is composed of the properties of prediction (is detected prior to traditional pathological signs of injury), accuracy (high sensitivity and specificity), and mechanistic relationships to the endpoint measured (biological relevance). Gene expression-based toxicity biomarkers ("signatures") have shown good predictive power and accuracy, but are difficult to interpret biologically. We have compared different statistical methods of feature selection with knowledge-based approaches, using GeneGo's database of canonical pathway maps, to generate gene sets for the classification of renal tubule toxicity. The gene set selection algorithms include four univariate analyses: t-statistics, fold-change, B-statistics, and RankProd, and their combination and overlap for the identification of differentially expressed probes. Enrichment analysis following the results of the four univariate analyses, Hotelling T-square test, and, finally out-of-bag selection, a variant of cross-validation, were used to identify canonical pathway maps-sets of genes coordinately involved in key biological processes-with classification power. Differentially expressed genes identified by the different statistical univariate analyses all generated reasonably performing classifiers of tubule toxicity. Maps identified by enrichment analysis or Hotelling T-square had lower classification power, but highlighted perturbed lipid homeostasis as a common discriminator of nephrotoxic treatments. The out-of-bag method yielded the best functionally integrated classifier. The map "ephrins signaling" performed comparably to a classifier derived using sparse linear programming, a machine learning algorithm, and represents a signaling network specifically involved in renal tubule development and integrity. Such functional descriptors of toxicity promise to better integrate predictive toxicogenomics with mechanistic analysis, facilitating the interpretation and risk assessment of
Energy Technology Data Exchange (ETDEWEB)
Schlink, U.
1996-12-31
The work evaluates specifically the nuisance data provided by the measuring station in the centre of Leipig during the period from 1980 to 1993, with the aim to develop an algorithm for making very short-term forecasts of excessive nuisances. Forecasting was to be univariate, i.e., based exclusively on the half-hourly readings of SO{sub 2} concentrations taken in the past. As shown by Fourier analysis, there exist three main and mutually independent spectral regions: the high-frequency sector (period < 12 hours) of unstable irregularities, the seasonal sector with the periods of 24 and 12 hours, and the low-frequency sector (period > 24 hours). After breaking the measuring series up into components, the low-frequency sector is termed trend component, or trend for short. For obtaining the components, a Kalman filter is used. It was found that smog episodes are most adequately described by the trend component. This is therefore more closely investigated. The phase representation then shows characteristic trajectories of the trends. (orig./KW) [Deutsch] In der vorliegende Arbeit wurden speziell die Immissionsdaten der Messstation Leipzig-Mitte des Zeitraumes 1980-1993 mit dem Ziel der Erstellung eines Algorithmus fuer die Kuerzestfristprognose von Ueberschreitungssituationen untersucht. Die Prognosestellung sollte allein anhand der in der Vergangenheit registrierten Halbstundenwerte der SO{sub 2}-Konzentration, also univariat erfolgen. Wie die Fourieranalyse zeigt, gibt es drei wesentliche und voneinander unabhaengige Spektralbereiche: Den hochfrequenten Bereich (Periode <12 Stunden) der instabilen Irregularitaeten, den saisonalen Anteil mit den Perioden von 24 und 12 Stunden und den niedrigfrequenten Bereich (Periode >24 Stunden). Letzterer wird nach einer Zerlegung der Messreihe in Komponenten als Trendkomponente (oder kurz Trend) bezeichnet. Fuer die Komponentenzerlegung wird ein Kalman-Filter verwendet. Es stellt sich heraus, dass Smogepisoden am deutlichsten
Díaz, Zuleyka; Segovia, María Jesús; Fernández, José
2005-01-01
Prediction of insurance companies insolvency has arisen as an important problem in the field of financial research. Most methods applied in the past to tackle this issue are traditional statistical techniques which use financial ratios as explicative variables. However, these variables often do not satisfy statistical assumptions, which complicates the application of the mentioned methods. In this paper, a comparative study of the performance of two non-parametric machine learning techniques ...
QRS complex detection based on continuous density hidden Markov models using univariate observations
Sotelo, S.; Arenas, W.; Altuve, M.
2018-04-01
In the electrocardiogram (ECG), the detection of QRS complexes is a fundamental step in the ECG signal processing chain since it allows the determination of other characteristics waves of the ECG and provides information about heart rate variability. In this work, an automatic QRS complex detector based on continuous density hidden Markov models (HMM) is proposed. HMM were trained using univariate observation sequences taken either from QRS complexes or their derivatives. The detection approach is based on the log-likelihood comparison of the observation sequence with a fixed threshold. A sliding window was used to obtain the observation sequence to be evaluated by the model. The threshold was optimized by receiver operating characteristic curves. Sensitivity (Sen), specificity (Spc) and F1 score were used to evaluate the detection performance. The approach was validated using ECG recordings from the MIT-BIH Arrhythmia database. A 6-fold cross-validation shows that the best detection performance was achieved with 2 states HMM trained with QRS complexes sequences (Sen = 0.668, Spc = 0.360 and F1 = 0.309). We concluded that these univariate sequences provide enough information to characterize the QRS complex dynamics from HMM. Future works are directed to the use of multivariate observations to increase the detection performance.
Wind Speed Prediction Using a Univariate ARIMA Model and a Multivariate NARX Model
Directory of Open Access Journals (Sweden)
Erasmo Cadenas
2016-02-01
Full Text Available Two on step ahead wind speed forecasting models were compared. A univariate model was developed using a linear autoregressive integrated moving average (ARIMA. This method’s performance is well studied for a large number of prediction problems. The other is a multivariate model developed using a nonlinear autoregressive exogenous artificial neural network (NARX. This uses the variables: barometric pressure, air temperature, wind direction and solar radiation or relative humidity, as well as delayed wind speed. Both models were developed from two databases from two sites: an hourly average measurements database from La Mata, Oaxaca, Mexico, and a ten minute average measurements database from Metepec, Hidalgo, Mexico. The main objective was to compare the impact of the various meteorological variables on the performance of the multivariate model of wind speed prediction with respect to the high performance univariate linear model. The NARX model gave better results with improvements on the ARIMA model of between 5.5% and 10. 6% for the hourly database and of between 2.3% and 12.8% for the ten minute database for mean absolute error and mean squared error, respectively.
Fernández-Llamazares, Álvaro; Belmonte, Jordina; Delgado, Rosario; De Linares, Concepción
2014-04-01
Airborne pollen records are a suitable indicator for the study of climate change. The present work focuses on the role of annual pollen indices for the detection of bioclimatic trends through the analysis of the aerobiological spectra of 11 taxa of great biogeographical relevance in Catalonia over an 18-year period (1994-2011), by means of different parametric and non-parametric statistical methods. Among others, two non-parametric rank-based statistical tests were performed for detecting monotonic trends in time series data of the selected airborne pollen types and we have observed that they have similar power in detecting trends. Except for those cases in which the pollen data can be well-modeled by a normal distribution, it is better to apply non-parametric statistical methods to aerobiological studies. Our results provide a reliable representation of the pollen trends in the region and suggest that greater pollen quantities are being liberated to the atmosphere in the last years, specially by Mediterranean taxa such as Pinus, Total Quercus and Evergreen Quercus, although the trends may differ geographically. Longer aerobiological monitoring periods are required to corroborate these results and survey the increasing levels of certain pollen types that could exert an impact in terms of public health.
International Nuclear Information System (INIS)
Lauss, Martin; Frigyesi, Attila; Ryden, Tobias; Höglund, Mattias
2010-01-01
Genome wide gene expression data is a rich source for the identification of gene signatures suitable for clinical purposes and a number of statistical algorithms have been described for both identification and evaluation of such signatures. Some employed algorithms are fairly complex and hence sensitive to over-fitting whereas others are more simple and straight forward. Here we present a new type of simple algorithm based on ROC analysis and the use of metagenes that we believe will be a good complement to existing algorithms. The basis for the proposed approach is the use of metagenes, instead of collections of individual genes, and a feature selection using AUC values obtained by ROC analysis. Each gene in a data set is assigned an AUC value relative to the tumor class under investigation and the genes are ranked according to these values. Metagenes are then formed by calculating the mean expression level for an increasing number of ranked genes, and the metagene expression value that optimally discriminates tumor classes in the training set is used for classification of new samples. The performance of the metagene is then evaluated using LOOCV and balanced accuracies. We show that the simple uni-variate gene expression average algorithm performs as well as several alternative algorithms such as discriminant analysis and the more complex approaches such as SVM and neural networks. The R package rocc is freely available at http://cran.r-project.org/web/packages/rocc/index.html
Soliman, Essam S; Moawed, Sherif A; Hassan, Rania A
2017-08-01
Birds litter contains unutilized nitrogen in the form of uric acid that is converted into ammonia; a fact that does not only affect poultry performance but also has a negative effect on people's health around the farm and contributes in the environmental degradation. The influence of microclimatic ammonia emissions on Ross and Hubbard broilers reared in different housing systems at two consecutive seasons (fall and winter) was evaluated using a discriminant function analysis to differentiate between Ross and Hubbard breeds. A total number of 400 air samples were collected and analyzed for ammonia levels during the experimental period. Data were analyzed using univariate and multivariate statistical methods. Ammonia levels were significantly higher (p0.05) were found between the two farms in body weight, body weight gain, feed intake, feed conversion ratio, and performance index (PI) of broilers. Body weight; weight gain and PI had increased values (pbroiler breed. Ammonia emissions were positively (although weekly) correlated with the ambient relative humidity (r=0.383; p0.05). Test of significance of discriminant function analysis did not show a classification based on the studied traits suggesting that they cannot been used as predictor variables. The percentage of correct classification was 52% and it was improved after deletion of highly correlated traits to 57%. The study revealed that broiler's growth was negatively affected by increased microclimatic ammonia concentrations and recommended the analysis of broilers' growth performance parameters data using multivariate discriminant function analysis.
Ytsma, Cai R.; Dyar, M. Darby
2018-01-01
Hydrogen (H) is a critical element to measure on the surface of Mars because its presence in mineral structures is indicative of past hydrous conditions. The Curiosity rover uses the laser-induced breakdown spectrometer (LIBS) on the ChemCam instrument to analyze rocks for their H emission signal at 656.6 nm, from which H can be quantified. Previous LIBS calibrations for H used small data sets measured on standards and/or manufactured mixtures of hydrous minerals and rocks and applied univariate regression to spectra normalized in a variety of ways. However, matrix effects common to LIBS make these calibrations of limited usefulness when applied to the broad range of compositions on the Martian surface. In this study, 198 naturally-occurring hydrous geological samples covering a broad range of bulk compositions with directly-measured H content are used to create more robust prediction models for measuring H in LIBS data acquired under Mars conditions. Both univariate and multivariate prediction models, including partial least square (PLS) and the least absolute shrinkage and selection operator (Lasso), are compared using several different methods for normalization of H peak intensities. Data from the ChemLIBS Mars-analog spectrometer at Mount Holyoke College are compared against spectra from the same samples acquired using a ChemCam-like instrument at Los Alamos National Laboratory and the ChemCam instrument on Mars. Results show that all current normalization and data preprocessing variations for quantifying H result in models with statistically indistinguishable prediction errors (accuracies) ca. ± 1.5 weight percent (wt%) H2O, limiting the applications of LIBS in these implementations for geological studies. This error is too large to allow distinctions among the most common hydrous phases (basalts, amphiboles, micas) to be made, though some clays (e.g., chlorites with ≈ 12 wt% H2O, smectites with 15-20 wt% H2O) and hydrated phases (e.g., gypsum with ≈ 20
Ismail, A.; Hassan, Noor I.
2013-09-01
Cancer is one of the principal causes of death in Malaysia. This study was performed to determine the pattern of rate of cancer deaths at a public hospital in Malaysia over an 11 year period from year 2001 to 2011, to determine the best fitted model of forecasting the rate of cancer deaths using Univariate Modeling and to forecast the rates for the next two years (2012 to 2013). The medical records of the death of patients with cancer admitted at this Hospital over 11 year's period were reviewed, with a total of 663 cases. The cancers were classified according to 10th Revision International Classification of Diseases (ICD-10). Data collected include socio-demographic background of patients such as registration number, age, gender, ethnicity, ward and diagnosis. Data entry and analysis was accomplished using SPSS 19.0 and Minitab 16.0. The five Univariate Models used were Naïve with Trend Model, Average Percent Change Model (ACPM), Single Exponential Smoothing, Double Exponential Smoothing and Holt's Method. The overall 11 years rate of cancer deaths showed that at this hospital, Malay patients have the highest percentage (88.10%) compared to other ethnic groups with males (51.30%) higher than females. Lung and breast cancer have the most number of cancer deaths among gender. About 29.60% of the patients who died due to cancer were aged 61 years old and above. The best Univariate Model used for forecasting the rate of cancer deaths is Single Exponential Smoothing Technique with alpha of 0.10. The forecast for the rate of cancer deaths shows a horizontally or flat value. The forecasted mortality trend remains at 6.84% from January 2012 to December 2013. All the government and private sectors and non-governmental organizations need to highlight issues on cancer especially lung and breast cancers to the public through campaigns using mass media, media electronics, posters and pamphlets in the attempt to decrease the rate of cancer deaths in Malaysia.
Applications of quantum entropy to statistics
International Nuclear Information System (INIS)
Silver, R.N.; Martz, H.F.
1994-01-01
This paper develops two generalizations of the maximum entropy (ME) principle. First, Shannon classical entropy is replaced by von Neumann quantum entropy to yield a broader class of information divergences (or penalty functions) for statistics applications. Negative relative quantum entropy enforces convexity, positivity, non-local extensivity and prior correlations such as smoothness. This enables the extension of ME methods from their traditional domain of ill-posed in-verse problems to new applications such as non-parametric density estimation. Second, given a choice of information divergence, a combination of ME and Bayes rule is used to assign both prior and posterior probabilities. Hyperparameters are interpreted as Lagrange multipliers enforcing constraints. Conservation principles are proposed to act statistical regularization and other hyperparameters, such as conservation of information and smoothness. ME provides an alternative to heirarchical Bayes methods
Energy Technology Data Exchange (ETDEWEB)
Sfetsos, A. [7 Pirsou Str., Athens (Greece); Coonick, A.H. [Imperial Coll. of Science Technology and Medicine, Dept. of Electrical and Electronic Engineering, London (United Kingdom)
2000-07-01
This paper introduces a new approach for the forecasting of mean hourly global solar radiation received by a horizontal surface. In addition to the traditional linear methods, several artificial-intelligence-based techniques are studied. These include linear, feed-forward, recurrent Elman and Radial Basis neural networks alongside the adaptive neuro-fuzzy inference scheme. The problem is examined initially for the univariate case, and is extended to include additional meteorological parameters in the process of estimating the optimum model. The results indicate that the developed artificial intelligence models predict the solar radiation time series more effectively compared to the conventional procedures based on the clearness index. The forecasting ability of some models can be further enhanced with the use of additional meteorological parameters. (Author)
Lower bounds on the run time of the univariate marginal distribution algorithm on OneMax
DEFF Research Database (Denmark)
Krejca, Martin S.; Witt, Carsten
2017-01-01
The Univariate Marginal Distribution Algorithm (UMDA), a popular estimation of distribution algorithm, is studied from a run time perspective. On the classical OneMax benchmark function, a lower bound of Ω(μ√n + n log n), where μ is the population size, on its expected run time is proved...... values maintained by the algorithm, including carefully designed potential functions. These techniques may prove useful in advancing the field of run time analysis for estimation of distribution algorithms in general........ This is the first direct lower bound on the run time of the UMDA. It is stronger than the bounds that follow from general black-box complexity theory and is matched by the run time of many evolutionary algorithms. The results are obtained through advanced analyses of the stochastic change of the frequencies of bit...
Directory of Open Access Journals (Sweden)
Abdel Samee Nagwan M
2012-08-01
Full Text Available Abstract Background Discovering new biomarkers has a great role in improving early diagnosis of Hepatocellular carcinoma (HCC. The experimental determination of biomarkers needs a lot of time and money. This motivates this work to use in-silico prediction of biomarkers to reduce the number of experiments required for detecting new ones. This is achieved by extracting the most representative genes in microarrays of HCC. Results In this work, we provide a method for extracting the differential expressed genes, up regulated ones, that can be considered candidate biomarkers in high throughput microarrays of HCC. We examine the power of several gene selection methods (such as Pearson’s correlation coefficient, Cosine coefficient, Euclidean distance, Mutual information and Entropy with different estimators in selecting informative genes. A biological interpretation of the highly ranked genes is done using KEGG (Kyoto Encyclopedia of Genes and Genomes pathways, ENTREZ and DAVID (Database for Annotation, Visualization, and Integrated Discovery databases. The top ten genes selected using Pearson’s correlation coefficient and Cosine coefficient contained six genes that have been implicated in cancer (often multiple cancers genesis in previous studies. A fewer number of genes were obtained by the other methods (4 genes using Mutual information, 3genes using Euclidean distance and only one gene using Entropy. A better result was obtained by the utilization of a hybrid approach based on intersecting the highly ranked genes in the output of all investigated methods. This hybrid combination yielded seven genes (2 genes for HCC and 5 genes in different types of cancer in the top ten genes of the list of intersected genes. Conclusions To strengthen the effectiveness of the univariate selection methods, we propose a hybrid approach by intersecting several of these methods in a cascaded manner. This approach surpasses all of univariate selection methods when
Baradez, Marc-Olivier; Biziato, Daniela; Hassan, Enas; Marshall, Damian
2018-01-01
Cell therapies offer unquestionable promises for the treatment, and in some cases even the cure, of complex diseases. As we start to see more of these therapies gaining market authorization, attention is turning to the bioprocesses used for their manufacture, in particular the challenge of gaining higher levels of process control to help regulate cell behavior, manage process variability, and deliver product of a consistent quality. Many processes already incorporate the measurement of key markers such as nutrient consumption, metabolite production, and cell concentration, but these are often performed off-line and only at set time points in the process. Having the ability to monitor these markers in real-time using in-line sensors would offer significant advantages, allowing faster decision-making and a finer level of process control. In this study, we use Raman spectroscopy as an in-line optical sensor for bioprocess monitoring of an autologous T-cell immunotherapy model produced in a stirred tank bioreactor system. Using reference datasets generated on a standard bioanalyzer, we develop chemometric models from the Raman spectra for glucose, glutamine, lactate, and ammonia. These chemometric models can accurately monitor donor-specific increases in nutrient consumption and metabolite production as the primary T-cell transition from a recovery phase and begin proliferating. Using a univariate modeling approach, we then show how changes in peak intensity within the Raman spectra can be correlated with cell concentration and viability. These models, which act as surrogate markers, can be used to monitor cell behavior including cell proliferation rates, proliferative capacity, and transition of the cells to a quiescent phenotype. Finally, using the univariate models, we also demonstrate how Raman spectroscopy can be applied for real-time monitoring. The ability to measure these key parameters using an in-line Raman optical sensor makes it possible to have immediate
Baradez, Marc-Olivier; Biziato, Daniela; Hassan, Enas; Marshall, Damian
2018-01-01
Cell therapies offer unquestionable promises for the treatment, and in some cases even the cure, of complex diseases. As we start to see more of these therapies gaining market authorization, attention is turning to the bioprocesses used for their manufacture, in particular the challenge of gaining higher levels of process control to help regulate cell behavior, manage process variability, and deliver product of a consistent quality. Many processes already incorporate the measurement of key markers such as nutrient consumption, metabolite production, and cell concentration, but these are often performed off-line and only at set time points in the process. Having the ability to monitor these markers in real-time using in-line sensors would offer significant advantages, allowing faster decision-making and a finer level of process control. In this study, we use Raman spectroscopy as an in-line optical sensor for bioprocess monitoring of an autologous T-cell immunotherapy model produced in a stirred tank bioreactor system. Using reference datasets generated on a standard bioanalyzer, we develop chemometric models from the Raman spectra for glucose, glutamine, lactate, and ammonia. These chemometric models can accurately monitor donor-specific increases in nutrient consumption and metabolite production as the primary T-cell transition from a recovery phase and begin proliferating. Using a univariate modeling approach, we then show how changes in peak intensity within the Raman spectra can be correlated with cell concentration and viability. These models, which act as surrogate markers, can be used to monitor cell behavior including cell proliferation rates, proliferative capacity, and transition of the cells to a quiescent phenotype. Finally, using the univariate models, we also demonstrate how Raman spectroscopy can be applied for real-time monitoring. The ability to measure these key parameters using an in-line Raman optical sensor makes it possible to have immediate
Directory of Open Access Journals (Sweden)
Marc-Olivier Baradez
2018-03-01
Full Text Available Cell therapies offer unquestionable promises for the treatment, and in some cases even the cure, of complex diseases. As we start to see more of these therapies gaining market authorization, attention is turning to the bioprocesses used for their manufacture, in particular the challenge of gaining higher levels of process control to help regulate cell behavior, manage process variability, and deliver product of a consistent quality. Many processes already incorporate the measurement of key markers such as nutrient consumption, metabolite production, and cell concentration, but these are often performed off-line and only at set time points in the process. Having the ability to monitor these markers in real-time using in-line sensors would offer significant advantages, allowing faster decision-making and a finer level of process control. In this study, we use Raman spectroscopy as an in-line optical sensor for bioprocess monitoring of an autologous T-cell immunotherapy model produced in a stirred tank bioreactor system. Using reference datasets generated on a standard bioanalyzer, we develop chemometric models from the Raman spectra for glucose, glutamine, lactate, and ammonia. These chemometric models can accurately monitor donor-specific increases in nutrient consumption and metabolite production as the primary T-cell transition from a recovery phase and begin proliferating. Using a univariate modeling approach, we then show how changes in peak intensity within the Raman spectra can be correlated with cell concentration and viability. These models, which act as surrogate markers, can be used to monitor cell behavior including cell proliferation rates, proliferative capacity, and transition of the cells to a quiescent phenotype. Finally, using the univariate models, we also demonstrate how Raman spectroscopy can be applied for real-time monitoring. The ability to measure these key parameters using an in-line Raman optical sensor makes it possible
Handbook of univariate and multivariate data analysis and interpretation with SPSS
Ho, Robert
2006-01-01
Many statistics texts tend to focus more on the theory and mathematics underlying statistical tests than on their applications and interpretation. This can leave readers with little understanding of how to apply statistical tests or how to interpret their findings. While the SPSS statistical software has done much to alleviate the frustrations of social science professionals and students who must analyze data, they still face daunting challenges in selecting the proper tests, executing the tests, and interpreting the test results.With emphasis firmly on such practical matters, this handbook se
Soliman, Essam S.; Moawed, Sherif A.; Hassan, Rania A.
2017-01-01
Background and Aim: Birds litter contains unutilized nitrogen in the form of uric acid that is converted into ammonia; a fact that does not only affect poultry performance but also has a negative effect on people’s health around the farm and contributes in the environmental degradation. The influence of microclimatic ammonia emissions on Ross and Hubbard broilers reared in different housing systems at two consecutive seasons (fall and winter) was evaluated using a discriminant function analysis to differentiate between Ross and Hubbard breeds. Materials and Methods: A total number of 400 air samples were collected and analyzed for ammonia levels during the experimental period. Data were analyzed using univariate and multivariate statistical methods. Results: Ammonia levels were significantly higher (p0.05) were found between the two farms in body weight, body weight gain, feed intake, feed conversion ratio, and performance index (PI) of broilers. Body weight; weight gain and PI had increased values (pbroiler breed. Ammonia emissions were positively (although weekly) correlated with the ambient relative humidity (r=0.383; p0.05). Test of significance of discriminant function analysis did not show a classification based on the studied traits suggesting that they cannot been used as predictor variables. The percentage of correct classification was 52% and it was improved after deletion of highly correlated traits to 57%. Conclusion: The study revealed that broiler’s growth was negatively affected by increased microclimatic ammonia concentrations and recommended the analysis of broilers’ growth performance parameters data using multivariate discriminant function analysis. PMID:28919677
Stress assessment based on EEG univariate features and functional connectivity measures.
Alonso, J F; Romero, S; Ballester, M R; Antonijoan, R M; Mañanas, M A
2015-07-01
The biological response to stress originates in the brain but involves different biochemical and physiological effects. Many common clinical methods to assess stress are based on the presence of specific hormones and on features extracted from different signals, including electrocardiogram, blood pressure, skin temperature, or galvanic skin response. The aim of this paper was to assess stress using EEG-based variables obtained from univariate analysis and functional connectivity evaluation. Two different stressors, the Stroop test and sleep deprivation, were applied to 30 volunteers to find common EEG patterns related to stress effects. Results showed a decrease of the high alpha power (11 to 12 Hz), an increase in the high beta band (23 to 36 Hz, considered a busy brain indicator), and a decrease in the approximate entropy. Moreover, connectivity showed that the high beta coherence and the interhemispheric nonlinear couplings, measured by the cross mutual information function, increased significantly for both stressors, suggesting that useful stress indexes may be obtained from EEG-based features.
Improving the performance of univariate control charts for abnormal detection and classification
Yiakopoulos, Christos; Koutsoudaki, Maria; Gryllias, Konstantinos; Antoniadis, Ioannis
2017-03-01
Bearing failures in rotating machinery can cause machine breakdown and economical loss, if no effective actions are taken on time. Therefore, it is of prime importance to detect accurately the presence of faults, especially at their early stage, to prevent sequent damage and reduce costly downtime. The machinery fault diagnosis follows a roadmap of data acquisition, feature extraction and diagnostic decision making, in which mechanical vibration fault feature extraction is the foundation and the key to obtain an accurate diagnostic result. A challenge in this area is the selection of the most sensitive features for various types of fault, especially when the characteristics of failures are difficult to be extracted. Thus, a plethora of complex data-driven fault diagnosis methods are fed by prominent features, which are extracted and reduced through traditional or modern algorithms. Since most of the available datasets are captured during normal operating conditions, the last decade a number of novelty detection methods, able to work when only normal data are available, have been developed. In this study, a hybrid method combining univariate control charts and a feature extraction scheme is introduced focusing towards an abnormal change detection and classification, under the assumption that measurements under normal operating conditions of the machinery are available. The feature extraction method integrates the morphological operators and the Morlet wavelets. The effectiveness of the proposed methodology is validated on two different experimental cases with bearing faults, demonstrating that the proposed approach can improve the fault detection and classification performance of conventional control charts.
Directory of Open Access Journals (Sweden)
Fernando Cervantes-Sanchez
2016-01-01
Full Text Available This paper presents a novel method for improving the training step of the single-scale Gabor filters by using the Boltzmann univariate marginal distribution algorithm (BUMDA in X-ray angiograms. Since the single-scale Gabor filters (SSG are governed by three parameters, the optimal selection of the SSG parameters is highly desirable in order to maximize the detection performance of coronary arteries while reducing the computational time. To obtain the best set of parameters for the SSG, the area (Az under the receiver operating characteristic curve is used as fitness function. Moreover, to classify vessel and nonvessel pixels from the Gabor filter response, the interclass variance thresholding method has been adopted. The experimental results using the proposed method obtained the highest detection rate with Az=0.9502 over a training set of 40 images and Az=0.9583 with a test set of 40 images. In addition, the experimental results of vessel segmentation provided an accuracy of 0.944 with the test set of angiograms.
Univariate and multivariate analysis on processing tomato quality under different mulches
Directory of Open Access Journals (Sweden)
Carmen Moreno
2014-04-01
Full Text Available The use of eco-friendly mulch materials as alternatives to the standard polyethylene (PE has become increasingly prevalent worldwide. Consequently, a comparison of mulch materials from different origins is necessary to evaluate their feasibility. Several researchers have compared the effects of mulch materials on each crop variable through univariate analysis (ANOVA. However, it is important to focus on the effect of these materials on fruit quality, because this factor decisively influences the acceptance of the final product by consumers and the industrial sector. This study aimed to analyze the information supplied by a randomized complete block experiment combined over two seasons, a principal component analysis (PCA and a cluster analysis (CA when studying the effects of mulch materials on the quality of processing tomato (Lycopersicon esculentum Mill.. The study focused on the variability in the quality measurements and on the determination of mulch materials with a similar response to them. A comparison of the results from both types of analysis yielded complementary information. ANOVA showed the similarity of certain materials. However, considering the totality of the variables analyzed, the final interpretation was slightly complicated. PCA indicated that the juice color, the fruit firmness and the soluble solid content were the most influential factors in the total variability of a set of 12 juice and fruit variables, and CA allowed us to establish four categories of treatment: plastics (polyethylene - PE, oxo- and biodegradable materials, papers, manual weeding and barley (Hordeum vulgare L. straw. Oxobiodegradable and PE were most closely related based on CA.
Understanding Statistics - Cancer Statistics
Annual reports of U.S. cancer statistics including new cases, deaths, trends, survival, prevalence, lifetime risk, and progress toward Healthy People targets, plus statistical summaries for a number of common cancer types.
Non-Parametric Model Drift Detection
2016-07-01
framework on two tasks in NLP domain, topic modeling, and machine translation. Our main findings are summarized as follows: • We can measure important...thank,us,me,hope,today Group num: 4, TC(X;Y_j): 0.407 4:republic,palestinian,israel, arab ,israeli,democratic,congo,mr,president,occupied Group num: 5...support,change,lessons,partnerships,l earned Group num: 35, TC(X;Y_j): 0.094 35:russian,federation,spoke,you,french,spanish, arabic ,your,chinese,sir
Directory of Open Access Journals (Sweden)
Mostafa Nejadhadad
2017-11-01
Full Text Available A geochemical exploration program was applied to recognize the anomalous geochemical haloes at the Ravanj lead mine, Delijan, Iran. Sampling of unweathered rocks were undertaken across rock exposures on a 10 × 10 meter grid (n = 302 as well as the accessible parts of underground mine A (n = 42. First, the threshold values of all elements were determined using the cut-off values used in the exploratory data analysis (EDA method. Then, for further studies, elements with lognormal distributions (Pb, Zn, Ag, As, Cd, Co, Cu, Sb, S, Sr, Th, Ba, Bi, Fe, Ni and Mn were selected. Robustness against outliers is achieved by application of central log ratio transformation to address the closure problems with compositional data prior to principle components analysis (PCA. Results of these analyses show that, in the Ravanj deposit, Pb mineralization is characterized by a Pb-Ba-Ag-Sb ± Zn ± Cd association. The supra-mineralization haloes are characterized by barite and tetrahedrite in a Ba- Th- Ag- Cu- Sb- As- Sr association and sub-mineralization haloes are comprised of pyrite and tetrahedrite, probably reflecting a Fe-Cu-As-Bi-Ni-Co-Mo-Mn association. Using univariate and multivariate geostatistical analyses (e.g., EDA and robust PCA, four anomalies were detected and mapped in Block A of the Ravanj deposit. Anomalies 1 and 2 are around the ancient orebodies. Anomaly 3 is located in a thin bedded limestone-shale intercalation unit that does not show significant mineralization. Drilling of the fourth anomaly suggested a low grade, non-economic Pb mineralization.
Computational statistics handbook with Matlab
Martinez, Wendy L
2007-01-01
Prefaces Introduction What Is Computational Statistics? An Overview of the Book Probability Concepts Introduction Probability Conditional Probability and Independence Expectation Common Distributions Sampling Concepts Introduction Sampling Terminology and Concepts Sampling Distributions Parameter Estimation Empirical Distribution Function Generating Random Variables Introduction General Techniques for Generating Random Variables Generating Continuous Random Variables Generating Discrete Random Variables Exploratory Data Analysis Introduction Exploring Univariate Data Exploring Bivariate and Trivariate Data Exploring Multidimensional Data Finding Structure Introduction Projecting Data Principal Component Analysis Projection Pursuit EDA Independent Component Analysis Grand Tour Nonlinear Dimensionality Reduction Monte Carlo Methods for Inferential Statistics Introduction Classical Inferential Statistics Monte Carlo Methods for Inferential Statist...
Basic statistical tools in research and data analysis
Directory of Open Access Journals (Sweden)
Zulfiqar Ali
2016-01-01
Full Text Available Statistical methods involved in carrying out a study include planning, designing, collecting data, analysing, drawing meaningful interpretation and reporting of the research findings. The statistical analysis gives meaning to the meaningless numbers, thereby breathing life into a lifeless data. The results and inferences are precise only if proper statistical tests are used. This article will try to acquaint the reader with the basic research tools that are utilised while conducting various studies. The article covers a brief outline of the variables, an understanding of quantitative and qualitative variables and the measures of central tendency. An idea of the sample size estimation, power analysis and the statistical errors is given. Finally, there is a summary of parametric and non-parametric tests used for data analysis.
Functional summary statistics for the Johnson-Mehl model
DEFF Research Database (Denmark)
Møller, Jesper; Ghorbani, Mohammad
The Johnson-Mehl germination-growth model is a spatio-temporal point process model which among other things have been used for the description of neurotransmitters datasets. However, for such datasets parametric Johnson-Mehl models fitted by maximum likelihood have yet not been evaluated by means...... of functional summary statistics. This paper therefore invents four functional summary statistics adapted to the Johnson-Mehl model, with two of them based on the second-order properties and the other two on the nuclei-boundary distances for the associated Johnson-Mehl tessellation. The functional summary...... statistics theoretical properties are investigated, non-parametric estimators are suggested, and their usefulness for model checking is examined in a simulation study. The functional summary statistics are also used for checking fitted parametric Johnson-Mehl models for a neurotransmitters dataset....
Grootes, M. W.; Tuffs, R. J.; Popescu, C. C.; Robotham, A. S. G.; Seibert, M.; Kelvin, L. S.
2014-02-01
We present a non-parametric cell-based method of selecting highly pure and largely complete samples of spiral galaxies using photometric and structural parameters as provided by standard photometric pipelines and simple shape fitting algorithms. The performance of the method is quantified for different parameter combinations, using purely human-based classifications as a benchmark. The discretization of the parameter space allows a markedly superior selection than commonly used proxies relying on a fixed curve or surface of separation. Moreover, we find structural parameters derived using passbands longwards of the g band and linked to older stellar populations, especially the stellar mass surface density μ* and the r-band effective radius re, to perform at least equally well as parameters more traditionally linked to the identification of spirals by means of their young stellar populations, e.g. UV/optical colours. In particular, the distinct bimodality in the parameter μ*, consistent with expectations of different evolutionary paths for spirals and ellipticals, represents an often overlooked yet powerful parameter in differentiating between spiral and non-spiral/elliptical galaxies. We use the cell-based method for the optical parameter set including re in combination with the Sérsic index n and the i-band magnitude to investigate the intrinsic specific star formation rate-stellar mass relation (ψ*-M*) for a morphologically defined volume-limited sample of local Universe spiral galaxies. The relation is found to be well described by ψ _* ∝ M_*^{-0.5} over the range of 109.5 ≤ M* ≤ 1011 M⊙ with a mean interquartile range of 0.4 dex. This is somewhat steeper than previous determinations based on colour-selected samples of star-forming galaxies, primarily due to the inclusion in the sample of red quiescent discs.
The use of principal components and univariate charts to control multivariate processes
Directory of Open Access Journals (Sweden)
Marcela A. G. Machado
2008-04-01
Full Text Available In this article, we evaluate the performance of the T² chart based on the principal components (PC X chart and the simultaneous univariate control charts based on the original variables (SU charts or based on the principal components (SUPC charts. The main reason to consider the PC chart lies on the dimensionality reduction. However, depending on the disturbance and on the way the original variables are related, the chart is very slow in signaling, except when all variables are negatively correlated and the principal component is wisely selected. Comparing the SU , the SUPC and the T² charts we conclude that the SU X charts (SUPC charts have a better overall performance when the variables are positively (negatively correlated. We also develop the expression to obtain the power of two S² charts designed for monitoring the covariance matrix. These joint S² charts are, in the majority of the cases, more efficient than the generalized variance chart.Neste artigo, avaliamos o desempenho do gráfico de T² baseado em componentes principais (gráfico PC e dos gráficos de controle simultâneos univariados baseados nas variáveis originais (gráfico SU X ou baseados em componentes principais (gráfico SUPC. A principal razão para o uso do gráfico PC é a redução de dimensionalidade. Entretanto, dependendo da perturbação e da correlação entre as variáveis originais, o gráfico é lento em sinalizar, exceto quando todas as variáveis são negativamente correlacionadas e a componente principal é adequadamente escolhida. Comparando os gráficos SU X, SUPC e T² concluímos que o gráfico SU X (gráfico SUPC tem um melhor desempenho global quando as variáveis são positivamente (negativamente correlacionadas. Desenvolvemos também uma expressão para obter o poder de detecção de dois gráficos de S² projetados para controlar a matriz de covariâncias. Os gráficos conjuntos de S² são, na maioria dos casos, mais eficientes que o gr
Univariate and Cross Tabulation Analysis of Construction Accidents in the Aegean Region
BARADAN, Selim; AKBOĞA, Özge; ÇETİNKAYA, Ufuk; USMEN, Mümtaz A.
2016-01-01
It is crucial toinvestigate case studies and analyze accident statistics to establish safetyand health culture in the construction industry, which exhibits high fatalityrates. However, it is difficult to find reliable and accurate constructionaccidents data in Turkeydue to inadequate accident reporting and recordkeeping system, which hindersstatistical safety research. Therefore, an independent database was generatedby using inspection reports in this research study. Data mining was performed...
Packham, B; Barnes, G; Dos Santos, G Sato; Aristovich, K; Gilad, O; Ghosh, A; Oh, T; Holder, D
2016-06-01
Electrical impedance tomography (EIT) allows for the reconstruction of internal conductivity from surface measurements. A change in conductivity occurs as ion channels open during neural activity, making EIT a potential tool for functional brain imaging. EIT images can have >10 000 voxels, which means statistical analysis of such images presents a substantial multiple testing problem. One way to optimally correct for these issues and still maintain the flexibility of complicated experimental designs is to use random field theory. This parametric method estimates the distribution of peaks one would expect by chance in a smooth random field of a given size. Random field theory has been used in several other neuroimaging techniques but never validated for EIT images of fast neural activity, such validation can be achieved using non-parametric techniques. Both parametric and non-parametric techniques were used to analyze a set of 22 images collected from 8 rats. Significant group activations were detected using both techniques (corrected p < 0.05). Both parametric and non-parametric analyses yielded similar results, although the latter was less conservative. These results demonstrate the first statistical analysis of such an image set and indicate that such an analysis is an approach for EIT images of neural activity.
Directory of Open Access Journals (Sweden)
Kеnan Аsani
2013-07-01
Full Text Available The aim is to establish intergroup multivariant and univariant investigated differences in specific motor space between respondents juniors and seniors members of the Macedonian karate team. The sample of 30 male karate respondents covers juniors on 16,17 and seniors over 18 years.In the research were applied 20 specific motor tests. Based on Graph 1 where it is presented multivariant analysis of variance Manova and Anova can be noted that respondents juniors and seniors, although not belonging to the same population are not different in multivariant understudied area.W. lambda of .19, Rao-wool R - Approximation of 1.91 degrees of freedom df 1 = 20 and df 2 = 9 provides the level of significance of p =, 16. Based on univariant analysis for each variable separately can be seen that has been around intergroup statistically significant difference in seven SMAEGERI (kick in the sack with favoritism leg mae geri for 10 sec., SMAVASI (kick in the sack with favoritism foot mavashi geri by 10 sec., SUSIRO (kick in the sack with favoritism leg ushiro geri for 10 sec., SKIZAME (kick in the sack with favoritism hand kizame cuki for 10 sec., STAPNSR (taping with foot in sagital plane for 15 sec. SUDMNR (hitting a moving target with weaker hand and SUDMPN (hitting a moving target with favoritism foot of twenty applied manifest variables. There are no intergroup differences in multivariant investigated specific - motor space among the respondents juniors and seniors members of the Macedonian karate team. Based on univariant analysis for each variable separately can be seen that has been around intergroup statistically significant difference in seven SMAEGERI (kick in the sack with favoritism leg mae geri for 10 sec., SMAVASI (kick in the sack with favoritism foot mavashi geri by 10 sec., SUSIRO (kick in the sack with favoritism leg ushiro geri for 10 sec., SKIZAME (kick in the sack with favoritism hand kizame cuki for 10 sec., STAPNSR (taping with foot in
Computing Confidence Bounds for Power and Sample Size of the General Linear Univariate Model
Taylor, Douglas J.; Muller, Keith E.
1995-01-01
The power of a test, the probability of rejecting the null hypothesis in favor of an alternative, may be computed using estimates of one or more distributional parameters. Statisticians frequently fix mean values and calculate power or sample size using a variance estimate from an existing study. Hence computed power becomes a random variable for a fixed sample size. Likewise, the sample size necessary to achieve a fixed power varies randomly. Standard statistical practice requires reporting ...
Piedrahita, Ricardo A.
The Denver Aerosol Sources and Health study (DASH) was a long-term study of the relationship between the variability in fine particulate mass and chemical constituents (PM2.5, particulate matter less than 2.5mum) and adverse health effects such as cardio-respiratory illnesses and mortality. Daily filter samples were chemically analyzed for multiple species. We present findings based on 2.8 years of DASH data, from 2003 to 2005. Multilinear Engine 2 (ME-2), a receptor-based source apportionment model was applied to the data to estimate source contributions to PM2.5 mass concentrations. This study relied on two different ME-2 models: (1) a 2-way model that closely reflects PMF-2; and (2) an enhanced model with meteorological data that used additional temporal and meteorological factors. The Coarse Rural Urban Sources and Health study (CRUSH) is a long-term study of the relationship between the variability in coarse particulate mass (PMcoarse, particulate matter between 2.5 and 10mum) and adverse health effects such as cardio-respiratory illnesses, pre-term births, and mortality. Hourly mass concentrations of PMcoarse and fine particulate matter (PM2.5) are measured using tapered element oscillating microbalances (TEOMs) with Filter Dynamics Measurement Systems (FDMS), at two rural and two urban sites. We present findings based on nine months of mass concentration data, including temporal trends, and non-parametric regressions (NPR) results, which were used to characterize the wind speed and wind direction relationships that might point to sources. As part of CRUSH, 1-year coarse and fine mode particulate matter filter sampling network, will allow us to characterize the chemical composition of the particulate matter collected and perform spatial comparisons. This work describes the construction and validation testing of four dichotomous filter samplers for this purpose. The use of dichotomous splitters with an approximate 2.5mum cut point, coupled with a 10mum cut
Statistical Analysis of Environmental Tritium around Wolsong Site
Energy Technology Data Exchange (ETDEWEB)
Kim, Ju Youl [FNC Technology Co., Yongin (Korea, Republic of)
2010-04-15
To find the relationship among airborne tritium, tritium in rainwater, TFWT (Tissue Free Water Tritium) and TBT (Tissue Bound Tritium), statistical analysis is conducted based on tritium data measured at KHNP employees' house around Wolsong nuclear power plants during 10 years from 1999 to 2008. The results show that tritium in such media exhibits a strong seasonal and annual periodicity. Tritium concentration in rainwater is observed to be highly correlated with TFWT and directly transmitted to TFWT without delay. The response of environmental radioactivity of tritium around Wolsong site is analyzed using time-series technique and non-parametric trend analysis. Tritium in the atmosphere and rainwater is strongly auto-correlated by seasonal and annual periodicity. TFWT concentration in pine needle is proven to be more sensitive to rainfall phenomenon than other weather variables. Non-parametric trend analysis of TFWT concentration within pine needle shows a increasing slope in terms of confidence level of 95%. This study demonstrates a usefulness of time-series and trend analysis for the interpretation of environmental radioactivity relationship with various environmental media.
Basic elements of computational statistics
Härdle, Wolfgang Karl; Okhrin, Yarema
2017-01-01
This textbook on computational statistics presents tools and concepts of univariate and multivariate statistical data analysis with a strong focus on applications and implementations in the statistical software R. It covers mathematical, statistical as well as programming problems in computational statistics and contains a wide variety of practical examples. In addition to the numerous R sniplets presented in the text, all computer programs (quantlets) and data sets to the book are available on GitHub and referred to in the book. This enables the reader to fully reproduce as well as modify and adjust all examples to their needs. The book is intended for advanced undergraduate and first-year graduate students as well as for data analysts new to the job who would like a tour of the various statistical tools in a data analysis workshop. The experienced reader with a good knowledge of statistics and programming might skip some sections on univariate models and enjoy the various mathematical roots of multivariate ...
Rossi, M.; Apuani, T.; Felletti, F.
2009-04-01
The aim of this paper is to compare the results of two statistical methods for landslide susceptibility analysis: 1) univariate probabilistic method based on landslide susceptibility index, 2) multivariate method (logistic regression). The study area is the Febbraro valley, located in the central Italian Alps, where different types of metamorphic rocks croup out. On the eastern part of the studied basin a quaternary cover represented by colluvial and secondarily, by glacial deposits, is dominant. In this study 110 earth flows, mainly located toward NE portion of the catchment, were analyzed. They involve only the colluvial deposits and their extension mainly ranges from 36 to 3173 m2. Both statistical methods require to establish a spatial database, in which each landslide is described by several parameters that can be assigned using a main scarp central point of landslide. The spatial database is constructed using a Geographical Information System (GIS). Each landslide is described by several parameters corresponding to the value of main scarp central point of the landslide. Based on bibliographic review a total of 15 predisposing factors were utilized. The width of the intervals, in which the maps of the predisposing factors have to be reclassified, has been defined assuming constant intervals to: elevation (100 m), slope (5 °), solar radiation (0.1 MJ/cm2/year), profile curvature (1.2 1/m), tangential curvature (2.2 1/m), drainage density (0.5), lineament density (0.00126). For the other parameters have been used the results of the probability-probability plots analysis and the statistical indexes of landslides site. In particular slope length (0 ÷ 2, 2 ÷ 5, 5 ÷ 10, 10 ÷ 20, 20 ÷ 35, 35 ÷ 260), accumulation flow (0 ÷ 1, 1 ÷ 2, 2 ÷ 5, 5 ÷ 12, 12 ÷ 60, 60 ÷27265), Topographic Wetness Index 0 ÷ 0.74, 0.74 ÷ 1.94, 1.94 ÷ 2.62, 2.62 ÷ 3.48, 3.48 ÷ 6,00, 6.00 ÷ 9.44), Stream Power Index (0 ÷ 0.64, 0.64 ÷ 1.28, 1.28 ÷ 1.81, 1.81 ÷ 4.20, 4.20 ÷ 9
Probability theory for 3-layer remote sensing radiative transfer model: univariate case.
Ben-David, Avishai; Davidson, Charles E
2012-04-23
A probability model for a 3-layer radiative transfer model (foreground layer, cloud layer, background layer, and an external source at the end of line of sight) has been developed. The 3-layer model is fundamentally important as the primary physical model in passive infrared remote sensing. The probability model is described by the Johnson family of distributions that are used as a fit for theoretically computed moments of the radiative transfer model. From the Johnson family we use the SU distribution that can address a wide range of skewness and kurtosis values (in addition to addressing the first two moments, mean and variance). In the limit, SU can also describe lognormal and normal distributions. With the probability model one can evaluate the potential for detecting a target (vapor cloud layer), the probability of observing thermal contrast, and evaluate performance (receiver operating characteristics curves) in clutter-noise limited scenarios. This is (to our knowledge) the first probability model for the 3-layer remote sensing geometry that treats all parameters as random variables and includes higher-order statistics. © 2012 Optical Society of America
International Nuclear Information System (INIS)
Lim, Gyeong Hui
2008-03-01
This book consists of 15 chapters, which are basic conception and meaning of statistical thermodynamics, Maxwell-Boltzmann's statistics, ensemble, thermodynamics function and fluctuation, statistical dynamics with independent particle system, ideal molecular system, chemical equilibrium and chemical reaction rate in ideal gas mixture, classical statistical thermodynamics, ideal lattice model, lattice statistics and nonideal lattice model, imperfect gas theory on liquid, theory on solution, statistical thermodynamics of interface, statistical thermodynamics of a high molecule system and quantum statistics
Statistical significance of trends in monthly heavy precipitation over the US
Mahajan, Salil
2011-05-11
Trends in monthly heavy precipitation, defined by a return period of one year, are assessed for statistical significance in observations and Global Climate Model (GCM) simulations over the contiguous United States using Monte Carlo non-parametric and parametric bootstrapping techniques. The results from the two Monte Carlo approaches are found to be similar to each other, and also to the traditional non-parametric Kendall\\'s τ test, implying the robustness of the approach. Two different observational data-sets are employed to test for trends in monthly heavy precipitation and are found to exhibit consistent results. Both data-sets demonstrate upward trends, one of which is found to be statistically significant at the 95% confidence level. Upward trends similar to observations are observed in some climate model simulations of the twentieth century, but their statistical significance is marginal. For projections of the twenty-first century, a statistically significant upwards trend is observed in most of the climate models analyzed. The change in the simulated precipitation variance appears to be more important in the twenty-first century projections than changes in the mean precipitation. Stochastic fluctuations of the climate-system are found to be dominate monthly heavy precipitation as some GCM simulations show a downwards trend even in the twenty-first century projections when the greenhouse gas forcings are strong. © 2011 Springer-Verlag.
Statistical studies of powerful extragalactic radio sources
Energy Technology Data Exchange (ETDEWEB)
Macklin, J T
1981-01-01
This dissertation is mainly about the use of efficient statistical tests to study the properties of powerful extragalactic radio sources. Most of the analysis is based on subsets of a sample of 166 bright (3CR) sources selected at 178 MHz. The first chapter is introductory and it is followed by three on the misalignment and symmetry of double radio sources. The properties of nuclear components in extragalactic sources are discussed in the next chapter, using statistical tests which make efficient use of upper limits, often the only available information on the flux density from the nuclear component. Multifrequency observations of four 3CR sources are presented in the next chapter. The penultimate chapter is about the analysis of correlations involving more than two variables. The Spearman partial rank correlation coefficient is shown to be the most powerful test available which is based on non-parametric statistics. It is therefore used to study the dependences of the properties of sources on their size at constant redshift, and the results are interpreted in terms of source evolution. Correlations of source properties with luminosity and redshift are then examined.
International Nuclear Information System (INIS)
Sharma, P.; Khare, M.
2000-01-01
Historical data of the time-series of carbon monoxide (CO) concentration was analysed using Box-Jenkins modelling approach. Univariate Linear Stochastic Models (ULSMs) were developed to examine the degree of prediction possible for situations where only a limited data set, restricted only to the past record of pollutant data are available. The developed models can be used to provide short-term, real-time forecast of extreme CO concentrations for an Air Quality Control Region (AQCR), comprising a major traffic intersection in a Central Business District of Delhi City, India. (author)
Multivariate Statistical Process Control Charts: An Overview
Bersimis, Sotiris; Psarakis, Stelios; Panaretos, John
2006-01-01
In this paper we discuss the basic procedures for the implementation of multivariate statistical process control via control charting. Furthermore, we review multivariate extensions for all kinds of univariate control charts, such as multivariate Shewhart-type control charts, multivariate CUSUM control charts and multivariate EWMA control charts. In addition, we review unique procedures for the construction of multivariate control charts, based on multivariate statistical techniques such as p...
Aboagye-Sarfo, Patrick; Mai, Qun; Sanfilippo, Frank M; Preen, David B; Stewart, Louise M; Fatovich, Daniel M
2015-10-01
To develop multivariate vector-ARMA (VARMA) forecast models for predicting emergency department (ED) demand in Western Australia (WA) and compare them to the benchmark univariate autoregressive moving average (ARMA) and Winters' models. Seven-year monthly WA state-wide public hospital ED presentation data from 2006/07 to 2012/13 were modelled. Graphical and VARMA modelling methods were used for descriptive analysis and model fitting. The VARMA models were compared to the benchmark univariate ARMA and Winters' models to determine their accuracy to predict ED demand. The best models were evaluated by using error correction methods for accuracy. Descriptive analysis of all the dependent variables showed an increasing pattern of ED use with seasonal trends over time. The VARMA models provided a more precise and accurate forecast with smaller confidence intervals and better measures of accuracy in predicting ED demand in WA than the ARMA and Winters' method. VARMA models are a reliable forecasting method to predict ED demand for strategic planning and resource allocation. While the ARMA models are a closely competing alternative, they under-estimated future ED demand. Copyright © 2015 Elsevier Inc. All rights reserved.
SOCR Analyses: Implementation and Demonstration of a New Graphical Statistics Educational Toolkit
Directory of Open Access Journals (Sweden)
Annie Chu
2009-04-01
Full Text Available The web-based, Java-written SOCR (Statistical Online Computational Resource toolshave been utilized in many undergraduate and graduate level statistics courses for sevenyears now (Dinov 2006; Dinov et al. 2008b. It has been proven that these resourcescan successfully improve students' learning (Dinov et al. 2008b. Being rst publishedonline in 2005, SOCR Analyses is a somewhat new component and it concentrate on datamodeling for both parametric and non-parametric data analyses with graphical modeldiagnostics. One of the main purposes of SOCR Analyses is to facilitate statistical learn-ing for high school and undergraduate students. As we have already implemented SOCRDistributions and Experiments, SOCR Analyses and Charts fulll the rest of a standardstatistics curricula. Currently, there are four core components of SOCR Analyses. Linearmodels included in SOCR Analyses are simple linear regression, multiple linear regression,one-way and two-way ANOVA. Tests for sample comparisons include t-test in the para-metric category. Some examples of SOCR Analyses' in the non-parametric category areWilcoxon rank sum test, Kruskal-Wallis test, Friedman's test, Kolmogorov-Smirno testand Fligner-Killeen test. Hypothesis testing models include contingency table, Friedman'stest and Fisher's exact test. The last component of Analyses is a utility for computingsample sizes for normal distribution. In this article, we present the design framework,computational implementation and the utilization of SOCR Analyses.
... What Is Cancer? Cancer Statistics Cancer Disparities Cancer Statistics Cancer has a major impact on society in ... success of efforts to control and manage cancer. Statistics at a Glance: The Burden of Cancer in ...
An introduction to inferential statistics: A review and practical guide
Energy Technology Data Exchange (ETDEWEB)
Marshall, Gill, E-mail: gill.marshall@cumbria.ac.u [Faculty of Health, Medical Sciences and Social Care, University of Cumbria, Lancaster LA1 3JD (United Kingdom); Jonker, Leon [Faculty of Health, Medical Sciences and Social Care, University of Cumbria, Lancaster LA1 3JD (United Kingdom)
2011-02-15
Building on the first part of this series regarding descriptive statistics, this paper demonstrates why it is advantageous for radiographers to understand the role of inferential statistics in deducing conclusions from a sample and their application to a wider population. This is necessary so radiographers can understand the work of others, can undertake their own research and evidence base their practice. This article explains p values and confidence intervals. It introduces the common statistical tests that comprise inferential statistics, and explains the use of parametric and non-parametric statistics. To do this, the paper reviews relevant literature, and provides a checklist of points to consider before and after applying statistical tests to a data set. The paper provides a glossary of relevant terms and the reader is advised to refer to this when any unfamiliar terms are used in the text. Together with the information provided on descriptive statistics in an earlier article, it can be used as a starting point for applying statistics in radiography practice and research.
An introduction to inferential statistics: A review and practical guide
International Nuclear Information System (INIS)
Marshall, Gill; Jonker, Leon
2011-01-01
Building on the first part of this series regarding descriptive statistics, this paper demonstrates why it is advantageous for radiographers to understand the role of inferential statistics in deducing conclusions from a sample and their application to a wider population. This is necessary so radiographers can understand the work of others, can undertake their own research and evidence base their practice. This article explains p values and confidence intervals. It introduces the common statistical tests that comprise inferential statistics, and explains the use of parametric and non-parametric statistics. To do this, the paper reviews relevant literature, and provides a checklist of points to consider before and after applying statistical tests to a data set. The paper provides a glossary of relevant terms and the reader is advised to refer to this when any unfamiliar terms are used in the text. Together with the information provided on descriptive statistics in an earlier article, it can be used as a starting point for applying statistics in radiography practice and research.
Fayez, Yasmin Mohammed; Tawakkol, Shereen Mostafa; Fahmy, Nesma Mahmoud; Lotfy, Hayam Mahmoud; Shehata, Mostafa Abdel-Aty
2018-04-01
Three methods of analysis are conducted that need computational procedures by the Matlab® software. The first is the univariate mean centering method which eliminates the interfering signal of the one component at a selected wave length leaving the amplitude measured to represent the component of interest only. The other two multivariate methods named PLS and PCR depend on a large number of variables that lead to extraction of the maximum amount of information required to determine the component of interest in the presence of the other. Good accurate and precise results are obtained from the three methods for determining clotrimazole in the linearity range 1-12 μg/mL and 75-550 μg/mL with dexamethasone acetate 2-20 μg/mL in synthetic mixtures and pharmaceutical formulation using two different spectral regions 205-240 nm and 233-278 nm. The results obtained are compared statistically to each other and to the official methods.
Statistical approach for selection of regression model during validation of bioanalytical method
Directory of Open Access Journals (Sweden)
Natalija Nakov
2014-06-01
Full Text Available The selection of an adequate regression model is the basis for obtaining accurate and reproducible results during the bionalytical method validation. Given the wide concentration range, frequently present in bioanalytical assays, heteroscedasticity of the data may be expected. Several weighted linear and quadratic regression models were evaluated during the selection of the adequate curve fit using nonparametric statistical tests: One sample rank test and Wilcoxon signed rank test for two independent groups of samples. The results obtained with One sample rank test could not give statistical justification for the selection of linear vs. quadratic regression models because slight differences between the error (presented through the relative residuals were obtained. Estimation of the significance of the differences in the RR was achieved using Wilcoxon signed rank test, where linear and quadratic regression models were treated as two independent groups. The application of this simple non-parametric statistical test provides statistical confirmation of the choice of an adequate regression model.
International Nuclear Information System (INIS)
Lean, Hooi Hooi; Smyth, Russell
2014-01-01
This paper examines whether initiatives to promote hydroelectricity consumption are likely to be effective by applying univariate and panel Lagrange Multiplier (LM) unit root tests to hydroelectricity consumption in 55 countries over the period 1965–2011. We find that for the panel, as well as about four-fifths of individual countries, that hydroelectricity consumption is stationary. This result implies that shocks to hydroelectricity consumption in most countries will only result in temporary deviations from the long-run growth path. An important consequence of this finding is that initiatives designed to have permanent positive effects on hydroelectricity consumption, such as large-scale dam construction, are unlikely to be effective in increasing the share of hydroelectricity, relative to consumption of fossil fuels. - Highlights: • Applies unit root tests to hydroelectricity consumption. • Hydroelectricity consumption is stationary. • Shocks to hydroelectricity consumption result in temporary deviations from the long-run growth path
Nielsen, Frank
2016-12-09
Information-theoreticmeasures, such as the entropy, the cross-entropy and the Kullback-Leibler divergence between two mixture models, are core primitives in many signal processing tasks. Since the Kullback-Leibler divergence of mixtures provably does not admit a closed-form formula, it is in practice either estimated using costly Monte Carlo stochastic integration, approximated or bounded using various techniques. We present a fast and generic method that builds algorithmically closed-form lower and upper bounds on the entropy, the cross-entropy, the Kullback-Leibler and the α-divergences of mixtures. We illustrate the versatile method by reporting our experiments for approximating the Kullback-Leibler and the α-divergences between univariate exponential mixtures, Gaussian mixtures, Rayleigh mixtures and Gamma mixtures.
An appraisal of statistical procedures used in derivation of reference intervals.
Ichihara, Kiyoshi; Boyd, James C
2010-11-01
When conducting studies to derive reference intervals (RIs), various statistical procedures are commonly applied at each step, from the planning stages to final computation of RIs. Determination of the necessary sample size is an important consideration, and evaluation of at least 400 individuals in each subgroup has been recommended to establish reliable common RIs in multicenter studies. Multiple regression analysis allows identification of the most important factors contributing to variation in test results, while accounting for possible confounding relationships among these factors. Of the various approaches proposed for judging the necessity of partitioning reference values, nested analysis of variance (ANOVA) is the likely method of choice owing to its ability to handle multiple groups and being able to adjust for multiple factors. Box-Cox power transformation often has been used to transform data to a Gaussian distribution for parametric computation of RIs. However, this transformation occasionally fails. Therefore, the non-parametric method based on determination of the 2.5 and 97.5 percentiles following sorting of the data, has been recommended for general use. The performance of the Box-Cox transformation can be improved by introducing an additional parameter representing the origin of transformation. In simulations, the confidence intervals (CIs) of reference limits (RLs) calculated by the parametric method were narrower than those calculated by the non-parametric approach. However, the margin of difference was rather small owing to additional variability in parametrically-determined RLs introduced by estimation of parameters for the Box-Cox transformation. The parametric calculation method may have an advantage over the non-parametric method in allowing identification and exclusion of extreme values during RI computation.
Bugała, Artur; Bednarek, Karol; Kasprzyk, Leszek; Tomczewski, Andrzej
2017-10-01
The paper presents the most representative - from the three-year measurement time period - characteristics of daily and monthly electricity production from a photovoltaic conversion using modules installed in a fixed and 2-axis tracking construction. Results are presented for selected summer, autumn, spring and winter days. Analyzed measuring stand is located on the roof of the Faculty of Electrical Engineering Poznan University of Technology building. The basic parameters of the statistical analysis like mean value, standard deviation, skewness, kurtosis, median, range, or coefficient of variation were used. It was found that the asymmetry factor can be useful in the analysis of the daily electricity production from a photovoltaic conversion. In order to determine the repeatability of monthly electricity production, occurring between the summer, and summer and winter months, a non-parametric Mann-Whitney U test was used as a statistical solution. In order to analyze the repeatability of daily peak hours, describing the largest value of the hourly electricity production, a non-parametric Kruskal-Wallis test was applied as an extension of the Mann-Whitney U test. Based on the analysis of the electric energy distribution from a prepared monitoring system it was found that traditional forecasting methods of the electricity production from a photovoltaic conversion, like multiple regression models, should not be the preferred methods of the analysis.
Applied multivariate statistics with R
Zelterman, Daniel
2015-01-01
This book brings the power of multivariate statistics to graduate-level practitioners, making these analytical methods accessible without lengthy mathematical derivations. Using the open source, shareware program R, Professor Zelterman demonstrates the process and outcomes for a wide array of multivariate statistical applications. Chapters cover graphical displays, linear algebra, univariate, bivariate and multivariate normal distributions, factor methods, linear regression, discrimination and classification, clustering, time series models, and additional methods. Zelterman uses practical examples from diverse disciplines to welcome readers from a variety of academic specialties. Those with backgrounds in statistics will learn new methods while they review more familiar topics. Chapters include exercises, real data sets, and R implementations. The data are interesting, real-world topics, particularly from health and biology-related contexts. As an example of the approach, the text examines a sample from the B...
... this page: https://medlineplus.gov/usestatistics.html MedlinePlus Statistics To use the sharing features on this page, ... By Quarter View image full size Quarterly User Statistics Quarter Page Views Unique Visitors Oct-Dec-98 ...
Whole Frog Project and Virtual Frog Dissection Statistics wwwstats output for January 1 through duplicate or extraneous accesses. For example, in these statistics, while a POST requesting an image is as well. Note that this under-represents the bytes requested. Starting date for following statistics
Zhang, Jing; Liang, Lichen; Anderson, Jon R; Gatewood, Lael; Rottenberg, David A; Strother, Stephen C
2008-01-01
As functional magnetic resonance imaging (fMRI) becomes widely used, the demands for evaluation of fMRI processing pipelines and validation of fMRI analysis results is increasing rapidly. The current NPAIRS package, an IDL-based fMRI processing pipeline evaluation framework, lacks system interoperability and the ability to evaluate general linear model (GLM)-based pipelines using prediction metrics. Thus, it can not fully evaluate fMRI analytical software modules such as FSL.FEAT and NPAIRS.GLM. In order to overcome these limitations, a Java-based fMRI processing pipeline evaluation system was developed. It integrated YALE (a machine learning environment) into Fiswidgets (a fMRI software environment) to obtain system interoperability and applied an algorithm to measure GLM prediction accuracy. The results demonstrated that the system can evaluate fMRI processing pipelines with univariate GLM and multivariate canonical variates analysis (CVA)-based models on real fMRI data based on prediction accuracy (classification accuracy) and statistical parametric image (SPI) reproducibility. In addition, a preliminary study was performed where four fMRI processing pipelines with GLM and CVA modules such as FSL.FEAT and NPAIRS.CVA were evaluated with the system. The results indicated that (1) the system can compare different fMRI processing pipelines with heterogeneous models (NPAIRS.GLM, NPAIRS.CVA and FSL.FEAT) and rank their performance by automatic performance scoring, and (2) the rank of pipeline performance is highly dependent on the preprocessing operations. These results suggest that the system will be of value for the comparison, validation, standardization and optimization of functional neuroimaging software packages and fMRI processing pipelines.
Statistical Analysis for High-Dimensional Data : The Abel Symposium 2014
Bühlmann, Peter; Glad, Ingrid; Langaas, Mette; Richardson, Sylvia; Vannucci, Marina
2016-01-01
This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyvågar, Lofoten, Norway, in May 2014. The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in “big data” situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection. Highlighting cutting-edge research and casting light on...
Efficient bootstrap estimates for tail statistics
Breivik, Øyvind; Aarnes, Ole Johan
2017-03-01
Bootstrap resamples can be used to investigate the tail of empirical distributions as well as return value estimates from the extremal behaviour of the sample. Specifically, the confidence intervals on return value estimates or bounds on in-sample tail statistics can be obtained using bootstrap techniques. However, non-parametric bootstrapping from the entire sample is expensive. It is shown here that it suffices to bootstrap from a small subset consisting of the highest entries in the sequence to make estimates that are essentially identical to bootstraps from the entire sample. Similarly, bootstrap estimates of confidence intervals of threshold return estimates are found to be well approximated by using a subset consisting of the highest entries. This has practical consequences in fields such as meteorology, oceanography and hydrology where return values are calculated from very large gridded model integrations spanning decades at high temporal resolution or from large ensembles of independent and identically distributed model fields. In such cases the computational savings are substantial.
International Nuclear Information System (INIS)
Soto, R; Wu, Ch. H; Bubela, A M
1999-01-01
This work introduces a novel methodology to improve reservoir characterization models. In this methodology we integrated multivariate statistical analyses, and neural network models for forecasting the infill drilling ultimate oil recovery from reservoirs in San Andres and Clearfork carbonate formations in west Texas. Development of the oil recovery forecast models help us to understand the relative importance of dominant reservoir characteristics and operational variables, reproduce recoveries for units included in the database, forecast recoveries for possible new units in similar geological setting, and make operational (infill drilling) decisions. The variety of applications demands the creation of multiple recovery forecast models. We have developed intelligent software (Soto, 1998), oilfield intelligence (01), as an engineering tool to improve the characterization of oil and gas reservoirs. 01 integrates neural networks and multivariate statistical analysis. It is composed of five main subsystems: data input, preprocessing, architecture design, graphic design, and inference engine modules. One of the challenges in this research was to identify the dominant and the optimum number of independent variables. The variables include porosity, permeability, water saturation, depth, area, net thickness, gross thickness, formation volume factor, pressure, viscosity, API gravity, number of wells in initial water flooding, number of wells for primary recovery, number of infill wells over the initial water flooding, PRUR, IWUR, and IDUR. Multivariate principal component analysis is used to identify the dominant and the optimum number of independent variables. We compared the results from neural network models with the non-parametric approach. The advantage of the non-parametric regression is that it is easy to use. The disadvantage is that it retains a large variance of forecast results for a particular data set. We also used neural network concepts to develop recovery
Sadovskii, Michael V
2012-01-01
This volume provides a compact presentation of modern statistical physics at an advanced level. Beginning with questions on the foundations of statistical mechanics all important aspects of statistical physics are included, such as applications to ideal gases, the theory of quantum liquids and superconductivity and the modern theory of critical phenomena. Beyond that attention is given to new approaches, such as quantum field theory methods and non-equilibrium problems.
Goodman, Joseph W
2015-01-01
This book discusses statistical methods that are useful for treating problems in modern optics, and the application of these methods to solving a variety of such problems This book covers a variety of statistical problems in optics, including both theory and applications. The text covers the necessary background in statistics, statistical properties of light waves of various types, the theory of partial coherence and its applications, imaging with partially coherent light, atmospheric degradations of images, and noise limitations in the detection of light. New topics have been introduced i
Energy Technology Data Exchange (ETDEWEB)
Eliazar, Iddo, E-mail: eliazar@post.tau.ac.il
2017-05-15
The exponential, the normal, and the Poisson statistical laws are of major importance due to their universality. Harmonic statistics are as universal as the three aforementioned laws, but yet they fall short in their ‘public relations’ for the following reason: the full scope of harmonic statistics cannot be described in terms of a statistical law. In this paper we describe harmonic statistics, in their full scope, via an object termed harmonic Poisson process: a Poisson process, over the positive half-line, with a harmonic intensity. The paper reviews the harmonic Poisson process, investigates its properties, and presents the connections of this object to an assortment of topics: uniform statistics, scale invariance, random multiplicative perturbations, Pareto and inverse-Pareto statistics, exponential growth and exponential decay, power-law renormalization, convergence and domains of attraction, the Langevin equation, diffusions, Benford’s law, and 1/f noise. - Highlights: • Harmonic statistics are described and reviewed in detail. • Connections to various statistical laws are established. • Connections to perturbation, renormalization and dynamics are established.
International Nuclear Information System (INIS)
Eliazar, Iddo
2017-01-01
The exponential, the normal, and the Poisson statistical laws are of major importance due to their universality. Harmonic statistics are as universal as the three aforementioned laws, but yet they fall short in their ‘public relations’ for the following reason: the full scope of harmonic statistics cannot be described in terms of a statistical law. In this paper we describe harmonic statistics, in their full scope, via an object termed harmonic Poisson process: a Poisson process, over the positive half-line, with a harmonic intensity. The paper reviews the harmonic Poisson process, investigates its properties, and presents the connections of this object to an assortment of topics: uniform statistics, scale invariance, random multiplicative perturbations, Pareto and inverse-Pareto statistics, exponential growth and exponential decay, power-law renormalization, convergence and domains of attraction, the Langevin equation, diffusions, Benford’s law, and 1/f noise. - Highlights: • Harmonic statistics are described and reviewed in detail. • Connections to various statistical laws are established. • Connections to perturbation, renormalization and dynamics are established.
Szulc, Stefan
1965-01-01
Statistical Methods provides a discussion of the principles of the organization and technique of research, with emphasis on its application to the problems in social statistics. This book discusses branch statistics, which aims to develop practical ways of collecting and processing numerical data and to adapt general statistical methods to the objectives in a given field.Organized into five parts encompassing 22 chapters, this book begins with an overview of how to organize the collection of such information on individual units, primarily as accomplished by government agencies. This text then
... Testing Treatment & Outcomes Health Professionals Statistics More Resources Candidiasis Candida infections of the mouth, throat, and esophagus Vaginal candidiasis Invasive candidiasis Definition Symptoms Risk & Prevention Sources Diagnosis ...
Davis, Tyler; LaRocque, Karen F; Mumford, Jeanette A; Norman, Kenneth A; Wagner, Anthony D; Poldrack, Russell A
2014-08-15
Multi-voxel pattern analysis (MVPA) has led to major changes in how fMRI data are analyzed and interpreted. Many studies now report both MVPA results and results from standard univariate voxel-wise analysis, often with the goal of drawing different conclusions from each. Because MVPA results can be sensitive to latent multidimensional representations and processes whereas univariate voxel-wise analysis cannot, one conclusion that is often drawn when MVPA and univariate results differ is that the activation patterns underlying MVPA results contain a multidimensional code. In the current study, we conducted simulations to formally test this assumption. Our findings reveal that MVPA tests are sensitive to the magnitude of voxel-level variability in the effect of a condition within subjects, even when the same linear relationship is coded in all voxels. We also find that MVPA is insensitive to subject-level variability in mean activation across an ROI, which is the primary variance component of interest in many standard univariate tests. Together, these results illustrate that differences between MVPA and univariate tests do not afford conclusions about the nature or dimensionality of the neural code. Instead, targeted tests of the informational content and/or dimensionality of activation patterns are critical for drawing strong conclusions about the representational codes that are indicated by significant MVPA results. Copyright © 2014 Elsevier Inc. All rights reserved.
Petocz, Peter; Sowey, Eric
2012-01-01
The term "data snooping" refers to the practice of choosing which statistical analyses to apply to a set of data after having first looked at those data. Data snooping contradicts a fundamental precept of applied statistics, that the scheme of analysis is to be planned in advance. In this column, the authors shall elucidate the…
Petocz, Peter; Sowey, Eric
2008-01-01
In this article, the authors focus on hypothesis testing--that peculiarly statistical way of deciding things. Statistical methods for testing hypotheses were developed in the 1920s and 1930s by some of the most famous statisticians, in particular Ronald Fisher, Jerzy Neyman and Egon Pearson, who laid the foundations of almost all modern methods of…
Glaz, Joseph
2009-01-01
Suitable for graduate students and researchers in applied probability and statistics, as well as for scientists in biology, computer science, pharmaceutical science and medicine, this title brings together a collection of chapters illustrating the depth and diversity of theory, methods and applications in the area of scan statistics.
Lyons, L.
2016-01-01
Accelerators and detectors are expensive, both in terms of money and human effort. It is thus important to invest effort in performing a good statistical anal- ysis of the data, in order to extract the best information from it. This series of five lectures deals with practical aspects of statistical issues that arise in typical High Energy Physics analyses.
Nick, Todd G
2007-01-01
Statistics is defined by the Medical Subject Headings (MeSH) thesaurus as the science and art of collecting, summarizing, and analyzing data that are subject to random variation. The two broad categories of summarizing and analyzing data are referred to as descriptive and inferential statistics. This chapter considers the science and art of summarizing data where descriptive statistics and graphics are used to display data. In this chapter, we discuss the fundamentals of descriptive statistics, including describing qualitative and quantitative variables. For describing quantitative variables, measures of location and spread, for example the standard deviation, are presented along with graphical presentations. We also discuss distributions of statistics, for example the variance, as well as the use of transformations. The concepts in this chapter are useful for uncovering patterns within the data and for effectively presenting the results of a project.
SOCR Analyses - an Instructional Java Web-based Statistical Analysis Toolkit.
Chu, Annie; Cui, Jenny; Dinov, Ivo D
2009-03-01
The Statistical Online Computational Resource (SOCR) designs web-based tools for educational use in a variety of undergraduate courses (Dinov 2006). Several studies have demonstrated that these resources significantly improve students' motivation and learning experiences (Dinov et al. 2008). SOCR Analyses is a new component that concentrates on data modeling and analysis using parametric and non-parametric techniques supported with graphical model diagnostics. Currently implemented analyses include commonly used models in undergraduate statistics courses like linear models (Simple Linear Regression, Multiple Linear Regression, One-Way and Two-Way ANOVA). In addition, we implemented tests for sample comparisons, such as t-test in the parametric category; and Wilcoxon rank sum test, Kruskal-Wallis test, Friedman's test, in the non-parametric category. SOCR Analyses also include several hypothesis test models, such as Contingency tables, Friedman's test and Fisher's exact test.The code itself is open source (http://socr.googlecode.com/), hoping to contribute to the efforts of the statistical computing community. The code includes functionality for each specific analysis model and it has general utilities that can be applied in various statistical computing tasks. For example, concrete methods with API (Application Programming Interface) have been implemented in statistical summary, least square solutions of general linear models, rank calculations, etc. HTML interfaces, tutorials, source code, activities, and data are freely available via the web (www.SOCR.ucla.edu). Code examples for developers and demos for educators are provided on the SOCR Wiki website.In this article, the pedagogical utilization of the SOCR Analyses is discussed, as well as the underlying design framework. As the SOCR project is on-going and more functions and tools are being added to it, these resources are constantly improved. The reader is strongly encouraged to check the SOCR site for most
Blakemore, J S
1962-01-01
Semiconductor Statistics presents statistics aimed at complementing existing books on the relationships between carrier densities and transport effects. The book is divided into two parts. Part I provides introductory material on the electron theory of solids, and then discusses carrier statistics for semiconductors in thermal equilibrium. Of course a solid cannot be in true thermodynamic equilibrium if any electrical current is passed; but when currents are reasonably small the distribution function is but little perturbed, and the carrier distribution for such a """"quasi-equilibrium"""" co
Wannier, Gregory Hugh
1966-01-01
Until recently, the field of statistical physics was traditionally taught as three separate subjects: thermodynamics, statistical mechanics, and kinetic theory. This text, a forerunner in its field and now a classic, was the first to recognize the outdated reasons for their separation and to combine the essentials of the three subjects into one unified presentation of thermal physics. It has been widely adopted in graduate and advanced undergraduate courses, and is recommended throughout the field as an indispensable aid to the independent study and research of statistical physics.Designed for
Feiveson, Alan H.; Foy, Millennia; Ploutz-Snyder, Robert; Fiedler, James
2014-01-01
Do you have elevated p-values? Is the data analysis process getting you down? Do you experience anxiety when you need to respond to criticism of statistical methods in your manuscript? You may be suffering from Insufficient Statistical Support Syndrome (ISSS). For symptomatic relief of ISSS, come for a free consultation with JSC biostatisticians at our help desk during the poster sessions at the HRP Investigators Workshop. Get answers to common questions about sample size, missing data, multiple testing, when to trust the results of your analyses and more. Side effects may include sudden loss of statistics anxiety, improved interpretation of your data, and increased confidence in your results.
Energy Technology Data Exchange (ETDEWEB)
Wendelberger, Laura Jean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-08-08
In large datasets, it is time consuming or even impossible to pick out interesting images. Our proposed solution is to find statistics to quantify the information in each image and use those to identify and pick out images of interest.
Department of Homeland Security — Accident statistics available on the Coast Guard’s website by state, year, and one variable to obtain tables and/or graphs. Data from reports has been loaded for...
U.S. Department of Health & Human Services — The CMS Center for Strategic Planning produces an annual CMS Statistics reference booklet that provides a quick reference for summary information about health...
Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Data about the usage of the WPRDC site and its various datasets, obtained by combining Google Analytics statistics with information from the WPRDC's data portal.
Serdobolskii, Vadim Ivanovich
2007-01-01
This monograph presents mathematical theory of statistical models described by the essentially large number of unknown parameters, comparable with sample size but can also be much larger. In this meaning, the proposed theory can be called "essentially multiparametric". It is developed on the basis of the Kolmogorov asymptotic approach in which sample size increases along with the number of unknown parameters.This theory opens a way for solution of central problems of multivariate statistics, which up until now have not been solved. Traditional statistical methods based on the idea of an infinite sampling often break down in the solution of real problems, and, dependent on data, can be inefficient, unstable and even not applicable. In this situation, practical statisticians are forced to use various heuristic methods in the hope the will find a satisfactory solution.Mathematical theory developed in this book presents a regular technique for implementing new, more efficient versions of statistical procedures. ...
... Search Form Controls Cancel Submit Search the CDC Gonorrhea Note: Javascript is disabled or is not supported ... Twitter STD on Facebook Sexually Transmitted Diseases (STDs) Gonorrhea Statistics Recommend on Facebook Tweet Share Compartir Gonorrhea ...
DEFF Research Database (Denmark)
Tryggestad, Kjell
2004-01-01
The study aims is to describe how the inclusion and exclusion of materials and calculative devices construct the boundaries and distinctions between statistical facts and artifacts in economics. My methodological approach is inspired by John Graunt's (1667) Political arithmetic and more recent work...... within constructivism and the field of Science and Technology Studies (STS). The result of this approach is here termed reversible statistics, reconstructing the findings of a statistical study within economics in three different ways. It is argued that all three accounts are quite normal, albeit...... in different ways. The presence and absence of diverse materials, both natural and political, is what distinguishes them from each other. Arguments are presented for a more symmetric relation between the scientific statistical text and the reader. I will argue that a more symmetric relation can be achieved...
MacKenzie, Dana
2004-01-01
The drawbacks of using 19th-century mathematics in physics and astronomy are illustrated. To continue with the expansion of the knowledge about the cosmos, the scientists will have to come in terms with modern statistics. Some researchers have deliberately started importing techniques that are used in medical research. However, the physicists need to identify the brand of statistics that will be suitable for them, and make a choice between the Bayesian and the frequentists approach. (Edited abstract).
Steve P. Verrill; James W. Evans; David E. Kretschmann; Cherilyn A. Hatfield
2014-01-01
Two important wood properties are the modulus of elasticity (MOE) and the modulus of rupture (MOR). In the past, the statistical distribution of the MOE has often been modeled as Gaussian, and that of the MOR as lognormal or as a two- or three-parameter Weibull distribution. It is well known that MOE and MOR are positively correlated. To model the simultaneous behavior...
International Nuclear Information System (INIS)
Veglia, A.
1981-08-01
In cases where sets of data are obviously not normally distributed, the application of a nonparametric method for the estimation of a confidence interval for the mean seems to be more suitable than some other methods because such a method requires few assumptions about the population of data. A two-step statistical method is proposed which can be applied to any set of analytical results: elimination of outliers by a nonparametric method based on Tchebycheff's inequality, and determination of a confidence interval for the mean by a non-parametric method based on binominal distribution. The method is appropriate only for samples of size n>=10
Statistical methods in personality assessment research.
Schinka, J A; LaLone, L; Broeckel, J A
1997-06-01
Emerging models of personality structure and advances in the measurement of personality and psychopathology suggest that research in personality and personality assessment has entered a stage of advanced development, in this article we examine whether researchers in these areas have taken advantage of new and evolving statistical procedures. We conducted a review of articles published in the Journal of Personality, Assessment during the past 5 years. Of the 449 articles that included some form of data analysis, 12.7% used only descriptive statistics, most employed only univariate statistics, and fewer than 10% used multivariate methods of data analysis. We discuss the cost of using limited statistical methods, the possible reasons for the apparent reluctance to employ advanced statistical procedures, and potential solutions to this technical shortcoming.
Goodman, J. W.
This book is based on the thesis that some training in the area of statistical optics should be included as a standard part of any advanced optics curriculum. Random variables are discussed, taking into account definitions of probability and random variables, distribution functions and density functions, an extension to two or more random variables, statistical averages, transformations of random variables, sums of real random variables, Gaussian random variables, complex-valued random variables, and random phasor sums. Other subjects examined are related to random processes, some first-order properties of light waves, the coherence of optical waves, some problems involving high-order coherence, effects of partial coherence on imaging systems, imaging in the presence of randomly inhomogeneous media, and fundamental limits in photoelectric detection of light. Attention is given to deterministic versus statistical phenomena and models, the Fourier transform, and the fourth-order moment of the spectrum of a detected speckle image.
Schwabl, Franz
2006-01-01
The completely revised new edition of the classical book on Statistical Mechanics covers the basic concepts of equilibrium and non-equilibrium statistical physics. In addition to a deductive approach to equilibrium statistics and thermodynamics based on a single hypothesis - the form of the microcanonical density matrix - this book treats the most important elements of non-equilibrium phenomena. Intermediate calculations are presented in complete detail. Problems at the end of each chapter help students to consolidate their understanding of the material. Beyond the fundamentals, this text demonstrates the breadth of the field and its great variety of applications. Modern areas such as renormalization group theory, percolation, stochastic equations of motion and their applications to critical dynamics, kinetic theories, as well as fundamental considerations of irreversibility, are discussed. The text will be useful for advanced students of physics and other natural sciences; a basic knowledge of quantum mechan...
Jana, Madhusudan
2015-01-01
Statistical mechanics is self sufficient, written in a lucid manner, keeping in mind the exam system of the universities. Need of study this subject and its relation to Thermodynamics is discussed in detail. Starting from Liouville theorem gradually, the Statistical Mechanics is developed thoroughly. All three types of Statistical distribution functions are derived separately with their periphery of applications and limitations. Non-interacting ideal Bose gas and Fermi gas are discussed thoroughly. Properties of Liquid He-II and the corresponding models have been depicted. White dwarfs and condensed matter physics, transport phenomenon - thermal and electrical conductivity, Hall effect, Magneto resistance, viscosity, diffusion, etc. are discussed. Basic understanding of Ising model is given to explain the phase transition. The book ends with a detailed coverage to the method of ensembles (namely Microcanonical, canonical and grand canonical) and their applications. Various numerical and conceptual problems ar...
Guénault, Tony
2007-01-01
In this revised and enlarged second edition of an established text Tony Guénault provides a clear and refreshingly readable introduction to statistical physics, an essential component of any first degree in physics. The treatment itself is self-contained and concentrates on an understanding of the physical ideas, without requiring a high level of mathematical sophistication. A straightforward quantum approach to statistical averaging is adopted from the outset (easier, the author believes, than the classical approach). The initial part of the book is geared towards explaining the equilibrium properties of a simple isolated assembly of particles. Thus, several important topics, for example an ideal spin-½ solid, can be discussed at an early stage. The treatment of gases gives full coverage to Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein statistics. Towards the end of the book the student is introduced to a wider viewpoint and new chapters are included on chemical thermodynamics, interactions in, for exam...
Mandl, Franz
1988-01-01
The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition E. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw The Physics of Stars Second Edition A. C. Phillips Computing for Scient
Rohatgi, Vijay K
2003-01-01
Unified treatment of probability and statistics examines and analyzes the relationship between the two fields, exploring inferential issues. Numerous problems, examples, and diagrams--some with solutions--plus clear-cut, highlighted summaries of results. Advanced undergraduate to graduate level. Contents: 1. Introduction. 2. Probability Model. 3. Probability Distributions. 4. Introduction to Statistical Inference. 5. More on Mathematical Expectation. 6. Some Discrete Models. 7. Some Continuous Models. 8. Functions of Random Variables and Random Vectors. 9. Large-Sample Theory. 10. General Meth
Levine-Wissing, Robin
2012-01-01
All Access for the AP® Statistics Exam Book + Web + Mobile Everything you need to prepare for the Advanced Placement® exam, in a study system built around you! There are many different ways to prepare for an Advanced Placement® exam. What's best for you depends on how much time you have to study and how comfortable you are with the subject matter. To score your highest, you need a system that can be customized to fit you: your schedule, your learning style, and your current level of knowledge. This book, and the online tools that come with it, will help you personalize your AP® Statistics prep
Davidson, Norman
2003-01-01
Clear and readable, this fine text assists students in achieving a grasp of the techniques and limitations of statistical mechanics. The treatment follows a logical progression from elementary to advanced theories, with careful attention to detail and mathematical development, and is sufficiently rigorous for introductory or intermediate graduate courses.Beginning with a study of the statistical mechanics of ideal gases and other systems of non-interacting particles, the text develops the theory in detail and applies it to the study of chemical equilibrium and the calculation of the thermody
Statistical Analysis of Research Data | Center for Cancer Research
Recent advances in cancer biology have resulted in the need for increased statistical analysis of research data. The Statistical Analysis of Research Data (SARD) course will be held on April 5-6, 2018 from 9 a.m.-5 p.m. at the National Institutes of Health's Natcher Conference Center, Balcony C on the Bethesda Campus. SARD is designed to provide an overview on the general principles of statistical analysis of research data. The first day will feature univariate data analysis, including descriptive statistics, probability distributions, one- and two-sample inferential statistics.
Generalized t-statistic for two-group classification.
Komori, Osamu; Eguchi, Shinto; Copas, John B
2015-06-01
In the classic discriminant model of two multivariate normal distributions with equal variance matrices, the linear discriminant function is optimal both in terms of the log likelihood ratio and in terms of maximizing the standardized difference (the t-statistic) between the means of the two distributions. In a typical case-control study, normality may be sensible for the control sample but heterogeneity and uncertainty in diagnosis may suggest that a more flexible model is needed for the cases. We generalize the t-statistic approach by finding the linear function which maximizes a standardized difference but with data from one of the groups (the cases) filtered by a possibly nonlinear function U. We study conditions for consistency of the method and find the function U which is optimal in the sense of asymptotic efficiency. Optimality may also extend to other measures of discriminatory efficiency such as the area under the receiver operating characteristic curve. The optimal function U depends on a scalar probability density function which can be estimated non-parametrically using a standard numerical algorithm. A lasso-like version for variable selection is implemented by adding L1-regularization to the generalized t-statistic. Two microarray data sets in the study of asthma and various cancers are used as motivating examples. © 2014, The International Biometric Society.
Indian Academy of Sciences (India)
inference and finite population sampling. Sudhakar Kunte. Elements of statistical computing are discussed in this series. ... which captain gets an option to decide whether to field first or bat first ... may of course not be fair, in the sense that the team which wins ... describe two methods of drawing a random number between 0.
Schrödinger, Erwin
1952-01-01
Nobel Laureate's brilliant attempt to develop a simple, unified standard method of dealing with all cases of statistical thermodynamics - classical, quantum, Bose-Einstein, Fermi-Dirac, and more.The work also includes discussions of Nernst theorem, Planck's oscillator, fluctuations, the n-particle problem, problem of radiation, much more.
International Nuclear Information System (INIS)
Anon.
1994-01-01
For the years 1992 and 1993, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period. The tables and figures shown in this publication are: Changes in the volume of GNP and energy consumption; Coal consumption; Natural gas consumption; Peat consumption; Domestic oil deliveries; Import prices of oil; Price development of principal oil products; Fuel prices for power production; Total energy consumption by source; Electricity supply; Energy imports by country of origin in 1993; Energy exports by recipient country in 1993; Consumer prices of liquid fuels; Consumer prices of hard coal and natural gas, prices of indigenous fuels; Average electricity price by type of consumer; Price of district heating by type of consumer and Excise taxes and turnover taxes included in consumer prices of some energy sources
Goodman, Joseph W.
2000-07-01
The Wiley Classics Library consists of selected books that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: T. W. Anderson The Statistical Analysis of Time Series T. S. Arthanari & Yadolah Dodge Mathematical Programming in Statistics Emil Artin Geometric Algebra Norman T. J. Bailey The Elements of Stochastic Processes with Applications to the Natural Sciences Robert G. Bartle The Elements of Integration and Lebesgue Measure George E. P. Box & Norman R. Draper Evolutionary Operation: A Statistical Method for Process Improvement George E. P. Box & George C. Tiao Bayesian Inference in Statistical Analysis R. W. Carter Finite Groups of Lie Type: Conjugacy Classes and Complex Characters R. W. Carter Simple Groups of Lie Type William G. Cochran & Gertrude M. Cox Experimental Designs, Second Edition Richard Courant Differential and Integral Calculus, Volume I RIchard Courant Differential and Integral Calculus, Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume II D. R. Cox Planning of Experiments Harold S. M. Coxeter Introduction to Geometry, Second Edition Charles W. Curtis & Irving Reiner Representation Theory of Finite Groups and Associative Algebras Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume I Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume II Cuthbert Daniel Fitting Equations to Data: Computer Analysis of Multifactor Data, Second Edition Bruno de Finetti Theory of Probability, Volume I Bruno de Finetti Theory of Probability, Volume 2 W. Edwards Deming Sample Design in Business Research
Pivato, Marcus
2013-01-01
We show that, in a sufficiently large population satisfying certain statistical regularities, it is often possible to accurately estimate the utilitarian social welfare function, even if we only have very noisy data about individual utility functions and interpersonal utility comparisons. In particular, we show that it is often possible to identify an optimal or close-to-optimal utilitarian social choice using voting rules such as the Borda rule, approval voting, relative utilitarianism, or a...
Natrella, Mary Gibbons
1963-01-01
Formulated to assist scientists and engineers engaged in army ordnance research and development programs, this well-known and highly regarded handbook is a ready reference for advanced undergraduate and graduate students as well as for professionals seeking engineering information and quantitative data for designing, developing, constructing, and testing equipment. Topics include characterizing and comparing the measured performance of a material, product, or process; general considerations in planning experiments; statistical techniques for analyzing extreme-value data; use of transformations
Parametric statistical change point analysis
Chen, Jie
2000-01-01
This work is an in-depth study of the change point problem from a general point of view and a further examination of change point analysis of the most commonly used statistical models Change point problems are encountered in such disciplines as economics, finance, medicine, psychology, signal processing, and geology, to mention only several The exposition is clear and systematic, with a great deal of introductory material included Different models are presented in each chapter, including gamma and exponential models, rarely examined thus far in the literature Other models covered in detail are the multivariate normal, univariate normal, regression, and discrete models Extensive examples throughout the text emphasize key concepts and different methodologies are used, namely the likelihood ratio criterion, and the Bayesian and information criterion approaches A comprehensive bibliography and two indices complete the study
Directory of Open Access Journals (Sweden)
James R. Moeller
2006-01-01
Full Text Available In brain mapping studies of sensory, cognitive, and motor operations, specific waveforms of dynamic neural activity are predicted based on theoretical models of human information processing. For example in event-related functional MRI (fMRI, the general linear model (GLM is employed in mass-univariate analyses to identify the regions whose dynamic activity closely matches the expected waveforms. By comparison multivariate analyses based on PCA or ICA provide greater flexibility in detecting spatiotemporal properties of experimental data that may strongly support alternative neuroscientific explanations. We investigated conjoint multivariate and mass-univariate analyses that combine the capabilities to (1 verify activation of neural machinery we already understand and (2 discover reliable signatures of new neural machinery. We examined combinations of GLM and PCA that recover latent neural signals (waveforms and footprints with greater accuracy than either method alone. Comparative results are illustrated with analyses of real fMRI data, adding to Monte Carlo simulation support.
International Nuclear Information System (INIS)
Baath, Magnus; Hansson, Jonny
2016-01-01
Visual grading characteristics (VGC) analysis is a non-parametric rank-invariant method for analysis of visual grading data. In VGC analysis, image quality ratings for two different conditions are compared by producing a VGC curve, similar to how the ratings for normal and abnormal cases in receiver operating characteristic (ROC) analysis are used to create an ROC curve. The use of established ROC software for the analysis of VGC data has therefore previously been proposed. However, the ROC analysis is based on the assumption of independence between normal and abnormal cases. In VGC analysis, this independence cannot always be assumed, e.g. if the ratings are based on the same patients imaged under both conditions. A dedicated software intended for analysis of VGC studies, which takes possible dependencies between ratings into account in the statistical analysis of a VGC study, has therefore been developed. The software-VGC Analyzer-determines the area under the VGC curve and its uncertainty using non-parametric re-sampling techniques. This article gives an introduction to VGC Analyzer, describes the types of analyses that can be performed and instructs the user about the input and output data. (authors)
International Nuclear Information System (INIS)
Anon.
1989-01-01
World data from the United Nation's latest Energy Statistics Yearbook, first published in our last issue, are completed here. The 1984-86 data were revised and 1987 data added for world commercial energy production and consumption, world natural gas plant liquids production, world LP-gas production, imports, exports, and consumption, world residual fuel oil production, imports, exports, and consumption, world lignite production, imports, exports, and consumption, world peat production and consumption, world electricity production, imports, exports, and consumption (Table 80), and world nuclear electric power production
1st Conference of the International Society for Nonparametric Statistics
Lahiri, S; Politis, Dimitris
2014-01-01
This volume is composed of peer-reviewed papers that have developed from the First Conference of the International Society for NonParametric Statistics (ISNPS). This inaugural conference took place in Chalkidiki, Greece, June 15-19, 2012. It was organized with the co-sponsorship of the IMS, the ISI, and other organizations. M.G. Akritas, S.N. Lahiri, and D.N. Politis are the first executive committee members of ISNPS, and the editors of this volume. ISNPS has a distinguished Advisory Committee that includes Professors R.Beran, P.Bickel, R. Carroll, D. Cook, P. Hall, R. Johnson, B. Lindsay, E. Parzen, P. Robinson, M. Rosenblatt, G. Roussas, T. SubbaRao, and G. Wahba. The Charting Committee of ISNPS consists of more than 50 prominent researchers from all over the world. The chapters in this volume bring forth recent advances and trends in several areas of nonparametric statistics. In this way, the volume facilitates the exchange of research ideas, promotes collaboration among researchers from all over the wo...
(AJST) RELATIVE EFFICIENCY OF NON-PARAMETRIC ERROR ...
African Journals Online (AJOL)
NORBERT OPIYO AKECH
on 100 bootstrap samples, a sample of size n being taken with replacement in each initial sample of size n. .... the overlap (or optimal error rate) of the populations. However, the expression (2.3) for the computation of ..... Analysis and Machine Intelligence, 9, 628-633. Lachenbruch P. A. (1967). An almost unbiased method ...
Using non-parametric methods in econometric production analysis
DEFF Research Database (Denmark)
Czekaj, Tomasz Gerard; Henningsen, Arne
Econometric estimation of production functions is one of the most common methods in applied economic production analysis. These studies usually apply parametric estimation techniques, which obligate the researcher to specify the functional form of the production function. Most often, the Cobb...... results—including measures that are of interest of applied economists, such as elasticities. Therefore, we propose to use nonparametric econometric methods. First, they can be applied to verify the functional form used in parametric estimations of production functions. Second, they can be directly used...
Non-parametric Bayesian inference for inhomogeneous Markov point processes
DEFF Research Database (Denmark)
Berthelsen, Kasper Klitgaard; Møller, Jesper; Johansen, Per Michael
is a shot noise process, and the interaction function for a pair of points depends only on the distance between the two points and is a piecewise linear function modelled by a marked Poisson process. Simulation of the resulting posterior using a Metropolis-Hastings algorithm in the "conventional" way...
A non-parametric 2D deformable template classifier
DEFF Research Database (Denmark)
Schultz, Nette; Nielsen, Allan Aasbjerg; Conradsen, Knut
2005-01-01
feature space the ship-master will be able to interactively define a segmentation map, which is refined and optimized by the deformable template algorithms. The deformable templates are defined as two-dimensional vector-cycles. Local random transformations are applied to the vector-cycles, and stochastic...
Active learning and adaptive sampling for non-parametric inference
Castro, R.M.
2007-01-01
This thesis presents a general discussion of active learning and adaptive sampling. In many practical scenarios it is possible to use information gleaned from previous observations to focus the sampling process, in the spirit of the "twenty-questions" game. As more samples are collected one can
Jeffrey P. Prestemon
2009-01-01
Timber product markets are subject to large shocks deriving from natural disturbances and policy shifts. Statistical modeling of shocks is often done to assess their economic importance. In this article, I simulate the statistical power of univariate and bivariate methods of shock detection using time series intervention models. Simulations show that bivariate methods...
Directory of Open Access Journals (Sweden)
Zhang Xiaohua
2003-11-01
Full Text Available Abstract In the search for genetic determinants of complex disease, two approaches to association analysis are most often employed, testing single loci or testing a small group of loci jointly via haplotypes for their relationship to disease status. It is still debatable which of these approaches is more favourable, and under what conditions. The former has the advantage of simplicity but suffers severely when alleles at the tested loci are not in linkage disequilibrium (LD with liability alleles; the latter should capture more of the signal encoded in LD, but is far from simple. The complexity of haplotype analysis could be especially troublesome for association scans over large genomic regions, which, in fact, is becoming the standard design. For these reasons, the authors have been evaluating statistical methods that bridge the gap between single-locus and haplotype-based tests. In this article, they present one such method, which uses non-parametric regression techniques embodied by Bayesian adaptive regression splines (BARS. For a set of markers falling within a common genomic region and a corresponding set of single-locus association statistics, the BARS procedure integrates these results into a single test by examining the class of smooth curves consistent with the data. The non-parametric BARS procedure generally finds no signal when no liability allele exists in the tested region (ie it achieves the specified size of the test and it is sensitive enough to pick up signals when a liability allele is present. The BARS procedure provides a robust and potentially powerful alternative to classical tests of association, diminishes the multiple testing problem inherent in those tests and can be applied to a wide range of data types, including genotype frequencies estimated from pooled samples.
International Nuclear Information System (INIS)
Kopsaftopoulos, Fotis P; Fassois, Spilios D
2011-01-01
A comparative assessment of several vibration based statistical time series methods for Structural Health Monitoring (SHM) is presented via their application to a scale aircraft skeleton laboratory structure. A brief overview of the methods, which are either scalar or vector type, non-parametric or parametric, and pertain to either the response-only or excitation-response cases, is provided. Damage diagnosis, including both the detection and identification subproblems, is tackled via scalar or vector vibration signals. The methods' effectiveness is assessed via repeated experiments under various damage scenarios, with each scenario corresponding to the loosening of one or more selected bolts. The results of the study confirm the 'global' damage detection capability and effectiveness of statistical time series methods for SHM.
National Statistical Commission and Indian Official Statistics*
Indian Academy of Sciences (India)
IAS Admin
a good collection of official statistics of that time. With more .... statistical agencies and institutions to provide details of statistical activities .... ing several training programmes. .... ful completion of Indian Statistical Service examinations, the.
Tellinghuisen, Joel
2008-01-01
The method of least squares is probably the most powerful data analysis tool available to scientists. Toward a fuller appreciation of that power, this work begins with an elementary review of statistics fundamentals, and then progressively increases in sophistication as the coverage is extended to the theory and practice of linear and nonlinear least squares. The results are illustrated in application to data analysis problems important in the life sciences. The review of fundamentals includes the role of sampling and its connection to probability distributions, the Central Limit Theorem, and the importance of finite variance. Linear least squares are presented using matrix notation, and the significance of the key probability distributions-Gaussian, chi-square, and t-is illustrated with Monte Carlo calculations. The meaning of correlation is discussed, including its role in the propagation of error. When the data themselves are correlated, special methods are needed for the fitting, as they are also when fitting with constraints. Nonlinear fitting gives rise to nonnormal parameter distributions, but the 10% Rule of Thumb suggests that such problems will be insignificant when the parameter is sufficiently well determined. Illustrations include calibration with linear and nonlinear response functions, the dangers inherent in fitting inverted data (e.g., Lineweaver-Burk equation), an analysis of the reliability of the van't Hoff analysis, the problem of correlated data in the Guggenheim method, and the optimization of isothermal titration calorimetry procedures using the variance-covariance matrix for experiment design. The work concludes with illustrations on assessing and presenting results.
International Nuclear Information System (INIS)
Batista Braga, Jez Willian; Trevizan, Lilian Cristina; Nunes, Lidiane Cristina; Aparecida Rufini, Iolanda; Santos, Dario; Krug, Francisco Jose
2010-01-01
The application of laser induced breakdown spectrometry (LIBS) aiming the direct analysis of plant materials is a great challenge that still needs efforts for its development and validation. In this way, a series of experimental approaches has been carried out in order to show that LIBS can be used as an alternative method to wet acid digestions based methods for analysis of agricultural and environmental samples. The large amount of information provided by LIBS spectra for these complex samples increases the difficulties for selecting the most appropriated wavelengths for each analyte. Some applications have suggested that improvements in both accuracy and precision can be achieved by the application of multivariate calibration in LIBS data when compared to the univariate regression developed with line emission intensities. In the present work, the performance of univariate and multivariate calibration, based on partial least squares regression (PLSR), was compared for analysis of pellets of plant materials made from an appropriate mixture of cryogenically ground samples with cellulose as the binding agent. The development of a specific PLSR model for each analyte and the selection of spectral regions containing only lines of the analyte of interest were the best conditions for the analysis. In this particular application, these models showed a similar performance, but PLSR seemed to be more robust due to a lower occurrence of outliers in comparison to the univariate method. Data suggests that efforts dealing with sample presentation and fitness of standards for LIBS analysis must be done in order to fulfill the boundary conditions for matrix independent development and validation.
Confronting Passive and Active Sensors with Non-Gaussian Statistics
Directory of Open Access Journals (Sweden)
Pablo Rodríguez-Gonzálvez
2014-07-01
Full Text Available This paper has two motivations: firstly, to compare the Digital Surface Models (DSM derived by passive (digital camera and by active (terrestrial laser scanner remote sensing systems when applied to specific architectural objects, and secondly, to test how well the Gaussian classic statistics, with its Least Squares principle, adapts to data sets where asymmetrical gross errors may appear and whether this approach should be changed for a non-parametric one. The field of geomatic technology automation is immersed in a high demanding competition in which any innovation by one of the contenders immediately challenges the opponents to propose a better improvement. Nowadays, we seem to be witnessing an improvement of terrestrial photogrammetry and its integration with computer vision to overcome the performance limitations of laser scanning methods. Through this contribution some of the issues of this “technological race” are examined from the point of view of photogrammetry. A new software is introduced and an experimental test is designed, performed and assessed to try to cast some light on this thrilling match. For the case considered in this study, the results show good agreement between both sensors, despite considerable asymmetry. This asymmetry suggests that the standard Normal parameters are not adequate to assess this type of data, especially when accuracy is of importance. In this case, standard deviation fails to provide a good estimation of the results, whereas the results obtained for the Median Absolute Deviation and for the Biweight Midvariance are more appropriate measures.
Crossing statistic: reconstructing the expansion history of the universe
International Nuclear Information System (INIS)
Shafieloo, Arman
2012-01-01
We present that by combining Crossing Statistic [1,2] and Smoothing method [3-5] one can reconstruct the expansion history of the universe with a very high precision without considering any prior on the cosmological quantities such as the equation of state of dark energy. We show that the presented method performs very well in reconstruction of the expansion history of the universe independent of the underlying models and it works well even for non-trivial dark energy models with fast or slow changes in the equation of state of dark energy. Accuracy of the reconstructed quantities along with independence of the method to any prior or assumption gives the proposed method advantages to the other non-parametric methods proposed before in the literature. Applying on the Union 2.1 supernovae combined with WiggleZ BAO data we present the reconstructed results and test the consistency of the two data sets in a model independent manner. Results show that latest available supernovae and BAO data are in good agreement with each other and spatially flat ΛCDM model is in concordance with the current data
A handbook of statistical graphics using SAS ODS
Der, Geoff
2014-01-01
An Introduction to Graphics: Good Graphics, Bad Graphics, Catastrophic Graphics and Statistical GraphicsThe Challenger DisasterGraphical DisplaysA Little History and Some Early Graphical DisplaysGraphical DeceptionAn Introduction to ODS GraphicsGenerating ODS GraphsODS DestinationsStatistical Graphics ProceduresODS Graphs from Statistical ProceduresControlling ODS GraphicsControlling Labelling in GraphsODS Graphics EditorGraphs for Displaying the Characteristics of Univariate Data: Horse Racing, Mortality Rates, Forearm Lengths, Survival Times and Geyser EruptionsIntroductionPie Chart, Bar Cha
de Brito, Aila Riany; Santos Reis, Nadabe Dos; Silva, Tatielle Pereira; Ferreira Bonomo, Renata Cristina; Trovatti Uetanabaro, Ana Paula; de Assis, Sandra Aparecida; da Silva, Erik Galvão Paranhos; Aguiar-Oliveira, Elizama; Oliveira, Julieta Rangel; Franco, Marcelo
2017-11-26
Endoglucanase production by Aspergillus oryzae ATCC 10124 cultivated in rice husks or peanut shells was optimized by experimental design as a function of humidity, time, and temperature. The optimum temperature for the endoglucanase activity was estimated by a univariate analysis (one factor at the time) as 50°C (rice husks) and 60°C (peanut shells), however, by a multivariate analysis (synergism of factors), it was determined a different temperature (56°C) for endoglucanase from peanut shells. For the optimum pH, values determined by univariate and multivariate analysis were 5 and 5.2 (rice husk) and 5 and 7.6 (peanut shells). In addition, the best half-lives were observed at 50°C as 22.8 hr (rice husks) and 7.3 hr (peanut shells), also, 80% of residual activities was obtained between 30 and 50°C for both substrates, and the pH stability was improved at 5-7 (rice hulls) and 6-9 (peanut shells). Both endoglucanases obtained presented different characteristics as a result of the versatility of fungi in different substrates.
A statistical methodology for quantification of uncertainty in best estimate code physical models
International Nuclear Information System (INIS)
Vinai, Paolo; Macian-Juan, Rafael; Chawla, Rakesh
2007-01-01
A novel uncertainty assessment methodology, based on a statistical non-parametric approach, is presented in this paper. It achieves quantification of code physical model uncertainty by making use of model performance information obtained from studies of appropriate separate-effect tests. Uncertainties are quantified in the form of estimated probability density functions (pdf's), calculated with a newly developed non-parametric estimator. The new estimator objectively predicts the probability distribution of the model's 'error' (its uncertainty) from databases reflecting the model's accuracy on the basis of available experiments. The methodology is completed by applying a novel multi-dimensional clustering technique based on the comparison of model error samples with the Kruskall-Wallis test. This takes into account the fact that a model's uncertainty depends on system conditions, since a best estimate code can give predictions for which the accuracy is affected by the regions of the physical space in which the experiments occur. The final result is an objective, rigorous and accurate manner of assigning uncertainty to coded models, i.e. the input information needed by code uncertainty propagation methodologies used for assessing the accuracy of best estimate codes in nuclear systems analysis. The new methodology has been applied to the quantification of the uncertainty in the RETRAN-3D void model and then used in the analysis of an independent separate-effect experiment. This has clearly demonstrated the basic feasibility of the approach, as well as its advantages in yielding narrower uncertainty bands in quantifying the code's accuracy for void fraction predictions
New Graphical Methods and Test Statistics for Testing Composite Normality
Directory of Open Access Journals (Sweden)
Marc S. Paolella
2015-07-01
Full Text Available Several graphical methods for testing univariate composite normality from an i.i.d. sample are presented. They are endowed with correct simultaneous error bounds and yield size-correct tests. As all are based on the empirical CDF, they are also consistent for all alternatives. For one test, called the modified stabilized probability test, or MSP, a highly simplified computational method is derived, which delivers the test statistic and also a highly accurate p-value approximation, essentially instantaneously. The MSP test is demonstrated to have higher power against asymmetric alternatives than the well-known and powerful Jarque-Bera test. A further size-correct test, based on combining two test statistics, is shown to have yet higher power. The methodology employed is fully general and can be applied to any i.i.d. univariate continuous distribution setting.
Directory of Open Access Journals (Sweden)
Ibáñez Berta
2009-04-01
Full Text Available Abstract Background The importance of Small Area Variation Analysis for policy-making contrasts with the scarcity of work on the validity of the statistics used in these studies. Our study aims at 1 determining whether variation in utilization rates between health areas is higher than would be expected by chance, 2 estimating the statistical power of the variation statistics; and 3 evaluating the ability of different statistics to compare the variability among different procedures regardless of their rates. Methods Parametric bootstrap techniques were used to derive the empirical distribution for each statistic under the hypothesis of homogeneity across areas. Non-parametric procedures were used to analyze the empirical distribution for the observed statistics and compare the results in six situations (low/medium/high utilization rates and low/high variability. A small scale simulation study was conducted to assess the capacity of each statistic to discriminate between different scenarios with different degrees of variation. Results Bootstrap techniques proved to be good at quantifying the difference between the null hypothesis and the variation observed in each situation, and to construct reliable tests and confidence intervals for each of the variation statistics analyzed. Although the good performance of Systematic Component of Variation (SCV, Empirical Bayes (EB statistic shows better behaviour under the null hypothesis, it is able to detect variability if present, it is not influenced by the procedure rate and it is best able to discriminate between different degrees of heterogeneity. Conclusion The EB statistics seems to be a good alternative to more conventional statistics used in small-area variation analysis in health service research because of its robustness.
International Nuclear Information System (INIS)
Fabre, C.; Cousin, A.; Wiens, R.C.; Ollila, A.; Gasnault, O.; Maurice, S.; Sautter, V.; Forni, O.; Lasue, J.; Tokar, R.; Vaniman, D.; Melikechi, N.
2014-01-01
Curiosity rover landed on August 6th, 2012 in Gale Crater, Mars and it possesses unique analytical capabilities to investigate the chemistry and mineralogy of the Martian soil. In particular, the LIBS technique is being used for the first time on another planet with the ChemCam instrument, and more than 75,000 spectra have been returned in the first year on Mars. Curiosity carries body-mounted calibration targets specially designed for the ChemCam instrument, some of which are homgeneous glasses and others that are fine-grained glass-ceramics. We present direct calibrations, using these onboard standards to infer elements and element ratios by ratioing relative peak areas. As the laser spot size is around 300 μm, the LIBS technique provides measurements of the silicate glass compositions representing homogeneous material and measurements of the ceramic targets that are comparable to fine-grained rock or soil. The laser energy and the auto-focus are controlled for all sequences used for calibration. The univariate calibration curves present relatively to very good correlation coefficients with low RSDs for major and ratio calibrations. Trace element calibration curves (Li, Sr, and Mn), down to several ppm, can be used as a rapid tool to draw attention to remarkable rocks and soils along the traverse. First comparisons to alpha-particle X-ray spectroscopy (APXS) data, on selected targets, show good agreement for most elements and for Mg# and Al/Si estimates. SiO 2 estimates using univariate cannot be yet used. Na 2 O and K 2 O estimates are relevant for high alkali contents, but probably under estimated due to the CCCT initial compositions. Very good results for CaO and Al 2 O 3 estimates and satisfactory results for FeO are obtained. - Highlights: • In situ LIBS univariate calibrations are done using the Curiosity onboard standards. • Major and minor element contents can be rapidly obtained. • Trace element contents can be used as a rapid tool along the
Energy Technology Data Exchange (ETDEWEB)
Fabre, C. [GeoRessources lab, Université de Lorraine, Nancy (France); Cousin, A.; Wiens, R.C. [Los Alamos National Laboratory, Los Alamos, NM (United States); Ollila, A. [University of NM, Albuquerque (United States); Gasnault, O.; Maurice, S. [IRAP, Toulouse (France); Sautter, V. [Museum National d' Histoire Naturelle, Paris (France); Forni, O.; Lasue, J. [IRAP, Toulouse (France); Tokar, R.; Vaniman, D. [Planetary Science Institute, Tucson, AZ (United States); Melikechi, N. [Delaware State University (United States)
2014-09-01
Curiosity rover landed on August 6th, 2012 in Gale Crater, Mars and it possesses unique analytical capabilities to investigate the chemistry and mineralogy of the Martian soil. In particular, the LIBS technique is being used for the first time on another planet with the ChemCam instrument, and more than 75,000 spectra have been returned in the first year on Mars. Curiosity carries body-mounted calibration targets specially designed for the ChemCam instrument, some of which are homgeneous glasses and others that are fine-grained glass-ceramics. We present direct calibrations, using these onboard standards to infer elements and element ratios by ratioing relative peak areas. As the laser spot size is around 300 μm, the LIBS technique provides measurements of the silicate glass compositions representing homogeneous material and measurements of the ceramic targets that are comparable to fine-grained rock or soil. The laser energy and the auto-focus are controlled for all sequences used for calibration. The univariate calibration curves present relatively to very good correlation coefficients with low RSDs for major and ratio calibrations. Trace element calibration curves (Li, Sr, and Mn), down to several ppm, can be used as a rapid tool to draw attention to remarkable rocks and soils along the traverse. First comparisons to alpha-particle X-ray spectroscopy (APXS) data, on selected targets, show good agreement for most elements and for Mg# and Al/Si estimates. SiO{sub 2} estimates using univariate cannot be yet used. Na{sub 2}O and K{sub 2}O estimates are relevant for high alkali contents, but probably under estimated due to the CCCT initial compositions. Very good results for CaO and Al{sub 2}O{sub 3} estimates and satisfactory results for FeO are obtained. - Highlights: • In situ LIBS univariate calibrations are done using the Curiosity onboard standards. • Major and minor element contents can be rapidly obtained. • Trace element contents can be used as a
Lopes Antunes, Ana Carolina; Dórea, Fernanda; Halasa, Tariq; Toft, Nils
2016-05-01
Surveillance systems are critical for accurate, timely monitoring and effective disease control. In this study, we investigated the performance of univariate process monitoring control algorithms in detecting changes in seroprevalence for endemic diseases. We also assessed the effect of sample size (number of sentinel herds tested in the surveillance system) on the performance of the algorithms. Three univariate process monitoring control algorithms were compared: Shewart p Chart(1) (PSHEW), Cumulative Sum(2) (CUSUM) and Exponentially Weighted Moving Average(3) (EWMA). Increases in seroprevalence were simulated from 0.10 to 0.15 and 0.20 over 4, 8, 24, 52 and 104 weeks. Each epidemic scenario was run with 2000 iterations. The cumulative sensitivity(4) (CumSe) and timeliness were used to evaluate the algorithms' performance with a 1% false alarm rate. Using these performance evaluation criteria, it was possible to assess the accuracy and timeliness of the surveillance system working in real-time. The results showed that EWMA and PSHEW had higher CumSe (when compared with the CUSUM) from week 1 until the end of the period for all simulated scenarios. Changes in seroprevalence from 0.10 to 0.20 were more easily detected (higher CumSe) than changes from 0.10 to 0.15 for all three algorithms. Similar results were found with EWMA and PSHEW, based on the median time to detection. Changes in the seroprevalence were detected later with CUSUM, compared to EWMA and PSHEW for the different scenarios. Increasing the sample size 10 fold halved the time to detection (CumSe=1), whereas increasing the sample size 100 fold reduced the time to detection by a factor of 6. This study investigated the performance of three univariate process monitoring control algorithms in monitoring endemic diseases. It was shown that automated systems based on these detection methods identified changes in seroprevalence at different times. Increasing the number of tested herds would lead to faster
Wang, X; Jiao, Y; Tang, T; Wang, H; Lu, Z
2013-12-19
Intrinsic connectivity networks (ICNs) are composed of spatial components and time courses. The spatial components of ICNs were discovered with moderate-to-high reliability. So far as we know, few studies focused on the reliability of the temporal patterns for ICNs based their individual time courses. The goals of this study were twofold: to investigate the test-retest reliability of temporal patterns for ICNs, and to analyze these informative univariate metrics. Additionally, a correlation analysis was performed to enhance interpretability. Our study included three datasets: (a) short- and long-term scans, (b) multi-band echo-planar imaging (mEPI), and (c) eyes open or closed. Using dual regression, we obtained the time courses of ICNs for each subject. To produce temporal patterns for ICNs, we applied two categories of univariate metrics: network-wise complexity and network-wise low-frequency oscillation. Furthermore, we validated the test-retest reliability for each metric. The network-wise temporal patterns for most ICNs (especially for default mode network, DMN) exhibited moderate-to-high reliability and reproducibility under different scan conditions. Network-wise complexity for DMN exhibited fair reliability (ICC<0.5) based on eyes-closed sessions. Specially, our results supported that mEPI could be a useful method with high reliability and reproducibility. In addition, these temporal patterns were with physiological meanings, and certain temporal patterns were correlated to the node strength of the corresponding ICN. Overall, network-wise temporal patterns of ICNs were reliable and informative and could be complementary to spatial patterns of ICNs for further study. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Autonomic Differentiation Map: A Novel Statistical Tool for Interpretation of Heart Rate Variability
Directory of Open Access Journals (Sweden)
Daniela Lucini
2018-04-01
Full Text Available In spite of the large body of evidence suggesting Heart Rate Variability (HRV alone or combined with blood pressure variability (providing an estimate of baroreflex gain as a useful technique to assess the autonomic regulation of the cardiovascular system, there is still an ongoing debate about methodology, interpretation, and clinical applications. In the present investigation, we hypothesize that non-parametric and multivariate exploratory statistical manipulation of HRV data could provide a novel informational tool useful to differentiate normal controls from clinical groups, such as athletes, or subjects affected by obesity, hypertension, or stress. With a data-driven protocol in 1,352 ambulant subjects, we compute HRV and baroreflex indices from short-term data series as proxies of autonomic (ANS regulation. We apply a three-step statistical procedure, by first removing age and gender effects. Subsequently, by factor analysis, we extract four ANS latent domains that detain the large majority of information (86.94%, subdivided in oscillatory (40.84%, amplitude (18.04%, pressure (16.48%, and pulse domains (11.58%. Finally, we test the overall capacity to differentiate clinical groups vs. control. To give more practical value and improve readability, statistical results concerning individual discriminant ANS proxies and ANS differentiation profiles are displayed through peculiar graphical tools, i.e., significance diagram and ANS differentiation map, respectively. This approach, which simultaneously uses all available information about the system, shows what domains make up the difference in ANS discrimination. e.g., athletes differ from controls in all domains, but with a graded strength: maximal in the (normalized oscillatory and in the pulse domains, slightly less in the pressure domain and minimal in the amplitude domain. The application of multiple (non-parametric and exploratory statistical and graphical tools to ANS proxies defines
An Application of Multivariate Statistical Analysis for Query-Driven Visualization
Energy Technology Data Exchange (ETDEWEB)
Gosink, Luke J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Garth, Christoph [Univ. of California, Davis, CA (United States); Anderson, John C. [Univ. of California, Davis, CA (United States); Bethel, E. Wes [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Joy, Kenneth I. [Univ. of California, Davis, CA (United States)
2011-03-01
Driven by the ability to generate ever-larger, increasingly complex data, there is an urgent need in the scientific community for scalable analysis methods that can rapidly identify salient trends in scientific data. Query-Driven Visualization (QDV) strategies are among the small subset of techniques that can address both large and highly complex datasets. This paper extends the utility of QDV strategies with a statistics-based framework that integrates non-parametric distribution estimation techniques with a new segmentation strategy to visually identify statistically significant trends and features within the solution space of a query. In this framework, query distribution estimates help users to interactively explore their query's solution and visually identify the regions where the combined behavior of constrained variables is most important, statistically, to their inquiry. Our new segmentation strategy extends the distribution estimation analysis by visually conveying the individual importance of each variable to these regions of high statistical significance. We demonstrate the analysis benefits these two strategies provide and show how they may be used to facilitate the refinement of constraints over variables expressed in a user's query. We apply our method to datasets from two different scientific domains to demonstrate its broad applicability.
International Nuclear Information System (INIS)
Yamaoka, Naoto; Watanabe, Wataru; Hontani, Hidekata
2010-01-01
Most of the time when we construct statistical point cloud model, we need to calculate the corresponding points. Constructed statistical model will not be the same if we use different types of method to calculate the corresponding points. This article proposes the effect to statistical model of human organ made by different types of method to calculate the corresponding points. We validated the performance of statistical model by registering a surface of an organ in a 3D medical image. We compare two methods to calculate corresponding points. The first, the 'Generalized Multi-Dimensional Scaling (GMDS)', determines the corresponding points by the shapes of two curved surfaces. The second approach, the 'Entropy-based Particle system', chooses corresponding points by calculating a number of curved surfaces statistically. By these methods we construct the statistical models and using these models we conducted registration with the medical image. For the estimation, we use non-parametric belief propagation and this method estimates not only the position of the organ but also the probability density of the organ position. We evaluate how the two different types of method that calculates corresponding points affects the statistical model by change in probability density of each points. (author)
... Watchdog Ratings Feedback Contact Select Page Childhood Cancer Statistics Home > Cancer Resources > Childhood Cancer Statistics Childhood Cancer Statistics – Graphs and Infographics Number of Diagnoses Incidence Rates ...
... Standards Act and Program MQSA Insights MQSA National Statistics Share Tweet Linkedin Pin it More sharing options ... but should level off with time. Archived Scorecard Statistics 2018 Scorecard Statistics 2017 Scorecard Statistics 2016 Scorecard ...
State Transportation Statistics 2014
2014-12-15
The Bureau of Transportation Statistics (BTS) presents State Transportation Statistics 2014, a statistical profile of transportation in the 50 states and the District of Columbia. This is the 12th annual edition of State Transportation Statistics, a ...
Kleijnen, J.P.C.
2006-01-01
Classic linear regression models and their concomitant statistical designs assume a univariate response and white noise.By definition, white noise is normally, independently, and identically distributed with zero mean.This survey tries to answer the following questions: (i) How realistic are these
Renyi statistics in equilibrium statistical mechanics
International Nuclear Information System (INIS)
Parvan, A.S.; Biro, T.S.
2010-01-01
The Renyi statistics in the canonical and microcanonical ensembles is examined both in general and in particular for the ideal gas. In the microcanonical ensemble the Renyi statistics is equivalent to the Boltzmann-Gibbs statistics. By the exact analytical results for the ideal gas, it is shown that in the canonical ensemble, taking the thermodynamic limit, the Renyi statistics is also equivalent to the Boltzmann-Gibbs statistics. Furthermore it satisfies the requirements of the equilibrium thermodynamics, i.e. the thermodynamical potential of the statistical ensemble is a homogeneous function of first degree of its extensive variables of state. We conclude that the Renyi statistics arrives at the same thermodynamical relations, as those stemming from the Boltzmann-Gibbs statistics in this limit.
Sampling, Probability Models and Statistical Reasoning Statistical
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 5. Sampling, Probability Models and Statistical Reasoning Statistical Inference. Mohan Delampady V R Padmawar. General Article Volume 1 Issue 5 May 1996 pp 49-58 ...
Directory of Open Access Journals (Sweden)
Lauro Saraiva Lessa
2010-01-01
Full Text Available Objetivou-se selecionar híbridos diplóides (AA de bananeira com base em três índices não paramétricos, a fim de orientar a seleção e aumentar o aproveitamento da variabilidade existente no Banco de Germoplasma de Bananeira da Embrapa Mandioca e Fruticultura Tropical. Foram avaliados 11 híbridos, no delineamento de blocos ao acaso, com quatro repetições. As parcelas constituíram-se de seis plantas, espaçadas de 2,5 m x 2,5 m, tendo na bordadura plantas da cultivar Pacovan. Tomaram-se dados dos seguintes caracteres: altura da planta, diâmetro do pseudocaule, número de filhos na floração, número de folhas na floração, ciclo da planta do plantio à emissão do cacho, presença de pólen, número de pencas, número de frutos, comprimento do fruto e resistência à Sigatoka-amarela. As médias desses 10 caracteres foram empregadas no cálculo dos índices multiplicativos, de soma de classificação e da distância genótipo-ideótipo. Os dois híbridos de melhor desempenho geral, o SH3263 e o 1318-01, foram classificados, respectivamente, em primeiro e segundo lugares pelos índices multiplicativos e de soma de classificação, enquanto o índice da distância genótipo-ideótipo os classificou em primeiro e quarto lugares respectivamente. Embora os três índices tenham demonstrado uma boa correspondência entre o desempenho geral dos híbridos e a sua classificação, os índices multiplicativo e de soma de classificação propiciaram classificação mais adequada desses híbridos.The objective of the present study was to select diploids (AA hybrids of banana based on three non-parametric indices as to guide the selection and increase the use of the variability present in the Banana Germplasm Bank of Embrapa Cassava and Tropical Fruits. Eleven hybrids were evaluated in random blocks with four replicates. The plots consisted of six plants spaced 2.5 m x 2.5 m whereas the border rows were from the Pacovan cultivar. The following
Wang, Hui; Sui, Weiguo; Xue, Wen; Wu, Junyong; Chen, Jiejing; Dai, Yong
2014-09-01
Immunoglobulin A nephropathy (IgAN) is a complex trait regulated by the interaction among multiple physiologic regulatory systems and probably involving numerous genes, which leads to inconsistent findings in genetic studies. One possibility of failure to replicate some single-locus results is that the underlying genetics of IgAN nephropathy is based on multiple genes with minor effects. To learn the association between 23 single nucleotide polymorphisms (SNPs) in 14 genes predisposing to chronic glomerular diseases and IgAN in Han males, the 23 SNPs genotypes of 21 Han males were detected and analyzed with a BaiO gene chip, and their associations were analyzed with univariate analysis and multiple linear regression analysis. Analysis showed that CTLA4 rs231726 and CR2 rs1048971 revealed a significant association with IgAN. These findings support the multi-gene nature of the etiology of IgAN and propose a potential gene-gene interactive model for future studies.
Savage, Leonard J
1972-01-01
Classic analysis of the foundations of statistics and development of personal probability, one of the greatest controversies in modern statistical thought. Revised edition. Calculus, probability, statistics, and Boolean algebra are recommended.
State Transportation Statistics 2010
2011-09-14
The Bureau of Transportation Statistics (BTS), a part of DOTs Research and Innovative Technology Administration (RITA), presents State Transportation Statistics 2010, a statistical profile of transportation in the 50 states and the District of Col...
State Transportation Statistics 2012
2013-08-15
The Bureau of Transportation Statistics (BTS), a part of the U.S. Department of Transportation's (USDOT) Research and Innovative Technology Administration (RITA), presents State Transportation Statistics 2012, a statistical profile of transportation ...
Adrenal Gland Tumors: Statistics
... Gland Tumor: Statistics Request Permissions Adrenal Gland Tumor: Statistics Approved by the Cancer.Net Editorial Board , 03/ ... primary adrenal gland tumor is very uncommon. Exact statistics are not available for this type of tumor ...
State transportation statistics 2009
2009-01-01
The Bureau of Transportation Statistics (BTS), a part of DOTs Research and : Innovative Technology Administration (RITA), presents State Transportation : Statistics 2009, a statistical profile of transportation in the 50 states and the : District ...
State Transportation Statistics 2011
2012-08-08
The Bureau of Transportation Statistics (BTS), a part of DOTs Research and Innovative Technology Administration (RITA), presents State Transportation Statistics 2011, a statistical profile of transportation in the 50 states and the District of Col...
Neuroendocrine Tumor: Statistics
... Tumor > Neuroendocrine Tumor: Statistics Request Permissions Neuroendocrine Tumor: Statistics Approved by the Cancer.Net Editorial Board , 01/ ... the body. It is important to remember that statistics on the survival rates for people with a ...
State Transportation Statistics 2013
2014-09-19
The Bureau of Transportation Statistics (BTS), a part of the U.S. Department of Transportations (USDOT) Research and Innovative Technology Administration (RITA), presents State Transportation Statistics 2013, a statistical profile of transportatio...
BTS statistical standards manual
2005-10-01
The Bureau of Transportation Statistics (BTS), like other federal statistical agencies, establishes professional standards to guide the methods and procedures for the collection, processing, storage, and presentation of statistical data. Standards an...
International Nuclear Information System (INIS)
Gallaher, B.; Mercier, T.; Black, P.; Mullen, K.
2000-01-01
Four governmental agencies conducted a round of groundwater, surface water, and spring water sampling at the Los Alamos National Laboratory during 1998. Samples were split among the four parties and sent to independent analytical laboratories. Results from three of the agencies were available for this study. Comparisons of analytical results that were paired by location and date were made between the various analytical laboratories. The results for over 50 split samples analyzed for inorganic chemicals, metals, and radionuclides were compared. Statistical analyses included non-parametric (sign test and signed-ranks test) and parametric (paired t-test and linear regression) methods. The data pairs were tested for statistically significant differences, defined by an observed significance level, or p-value, less than 0.05. The main conclusion is that the laboratories' performances are similar across most of the analytes that were measured. In some 95% of the laboratory measurements there was agreement on whether contaminant levels exceeded regulatory limits. The most significant differences in performance were noted for the radioactive suite, particularly for gross alpha particle activity and Sr-90
Statistical modelling of networked human-automation performance using working memory capacity.
Ahmed, Nisar; de Visser, Ewart; Shaw, Tyler; Mohamed-Ameen, Amira; Campbell, Mark; Parasuraman, Raja
2014-01-01
This study examines the challenging problem of modelling the interaction between individual attentional limitations and decision-making performance in networked human-automation system tasks. Analysis of real experimental data from a task involving networked supervision of multiple unmanned aerial vehicles by human participants shows that both task load and network message quality affect performance, but that these effects are modulated by individual differences in working memory (WM) capacity. These insights were used to assess three statistical approaches for modelling and making predictions with real experimental networked supervisory performance data: classical linear regression, non-parametric Gaussian processes and probabilistic Bayesian networks. It is shown that each of these approaches can help designers of networked human-automated systems cope with various uncertainties in order to accommodate future users by linking expected operating conditions and performance from real experimental data to observable cognitive traits like WM capacity. Practitioner Summary: Working memory (WM) capacity helps account for inter-individual variability in operator performance in networked unmanned aerial vehicle supervisory tasks. This is useful for reliable performance prediction near experimental conditions via linear models; robust statistical prediction beyond experimental conditions via Gaussian process models and probabilistic inference about unknown task conditions/WM capacities via Bayesian network models.
Information Statistics in Schools Educate your students about the value and everyday use of statistics. The Statistics in Schools program provides resources for teaching and learning with real life data. Explore the site for standards-aligned, classroom-ready activities. Statistics in Schools Math Activities History
Transport Statistics - Transport - UNECE
Sustainable Energy Statistics Trade Transport Themes UNECE and the SDGs Climate Change Gender Ideas 4 Change UNECE Weekly Videos UNECE Transport Areas of Work Transport Statistics Transport Transport Statistics About us Terms of Reference Meetings and Events Meetings Working Party on Transport Statistics (WP.6
International Nuclear Information System (INIS)
Zhang, Jinzhao; Segurado, Jacobo; Schneidesch, Christophe
2013-01-01
Since 1980's, Tractebel Engineering (TE) has being developed and applied a multi-physical modelling and safety analyses capability, based on a code package consisting of the best estimate 3D neutronic (PANTHER), system thermal hydraulic (RELAP5), core sub-channel thermal hydraulic (COBRA-3C), and fuel thermal mechanic (FRAPCON/FRAPTRAN) codes. A series of methodologies have been developed to perform and to license the reactor safety analysis and core reload design, based on the deterministic bounding approach. Following the recent trends in research and development as well as in industrial applications, TE has been working since 2010 towards the application of the statistical sensitivity and uncertainty analysis methods to the multi-physical modelling and licensing safety analyses. In this paper, the TE multi-physical modelling and safety analyses capability is first described, followed by the proposed TE best estimate plus statistical uncertainty analysis method (BESUAM). The chosen statistical sensitivity and uncertainty analysis methods (non-parametric order statistic method or bootstrap) and tool (DAKOTA) are then presented, followed by some preliminary results of their applications to FRAPCON/FRAPTRAN simulation of OECD RIA fuel rod codes benchmark and RELAP5/MOD3.3 simulation of THTF tests. (authors)
International Nuclear Information System (INIS)
Fontolan, Juliana A.; Biral, Antonio Renato P.
2013-01-01
It is known that the distribution at time intervals of random and unrelated events leads to the Poisson distribution . This work aims to study the distribution in time intervals of events resulting from radioactive decay of atoms present in the UNICAMP where activities involving the use of ionizing radiation are performed environments . The proposal is that the distribution surveys at intervals of these events in different locations of the university are carried out through the use of a Geiger-Mueller tube . In a next step , the evaluation of distributions obtained by using non- parametric statistics (Chi- square and Kolmogorov Smirnoff) will be taken . For analyzes involving correlations we intend to use the ANOVA (Analysis of Variance) statistical tool . Measured in six different places within the Campinas , with the use of Geiger- Muller its count mode and a time window of 20 seconds was performed . Through statistical tools chi- square and Kolmogorov Smirnoff tests, using the EXCEL program , it was observed that the distributions actually refer to a Poisson distribution. Finally, the next step is to perform analyzes involving correlations using the statistical tool ANOVA
Generalized quantum statistics
International Nuclear Information System (INIS)
Chou, C.
1992-01-01
In the paper, a non-anyonic generalization of quantum statistics is presented, in which Fermi-Dirac statistics (FDS) and Bose-Einstein statistics (BES) appear as two special cases. The new quantum statistics, which is characterized by the dimension of its single particle Fock space, contains three consistent parts, namely the generalized bilinear quantization, the generalized quantum mechanical description and the corresponding statistical mechanics
A consistent framework for Horton regression statistics that leads to a modified Hack's law
Furey, P.R.; Troutman, B.M.
2008-01-01
A statistical framework is introduced that resolves important problems with the interpretation and use of traditional Horton regression statistics. The framework is based on a univariate regression model that leads to an alternative expression for Horton ratio, connects Horton regression statistics to distributional simple scaling, and improves the accuracy in estimating Horton plot parameters. The model is used to examine data for drainage area A and mainstream length L from two groups of basins located in different physiographic settings. Results show that confidence intervals for the Horton plot regression statistics are quite wide. Nonetheless, an analysis of covariance shows that regression intercepts, but not regression slopes, can be used to distinguish between basin groups. The univariate model is generalized to include n > 1 dependent variables. For the case where the dependent variables represent ln A and ln L, the generalized model performs somewhat better at distinguishing between basin groups than two separate univariate models. The generalized model leads to a modification of Hack's law where L depends on both A and Strahler order ??. Data show that ?? plays a statistically significant role in the modified Hack's law expression. ?? 2008 Elsevier B.V.
National Statistical Commission and Indian Official Statistics
Indian Academy of Sciences (India)
Author Affiliations. T J Rao1. C. R. Rao Advanced Institute of Mathematics, Statistics and Computer Science (AIMSCS) University of Hyderabad Campus Central University Post Office, Prof. C. R. Rao Road Hyderabad 500 046, AP, India.
The choice of statistical methods for comparisons of dosimetric data in radiotherapy.
Chaikh, Abdulhamid; Giraud, Jean-Yves; Perrin, Emmanuel; Bresciani, Jean-Pierre; Balosso, Jacques
2014-09-18
Novel irradiation techniques are continuously introduced in radiotherapy to optimize the accuracy, the security and the clinical outcome of treatments. These changes could raise the question of discontinuity in dosimetric presentation and the subsequent need for practice adjustments in case of significant modifications. This study proposes a comprehensive approach to compare different techniques and tests whether their respective dose calculation algorithms give rise to statistically significant differences in the treatment doses for the patient. Statistical investigation principles are presented in the framework of a clinical example based on 62 fields of radiotherapy for lung cancer. The delivered doses in monitor units were calculated using three different dose calculation methods: the reference method accounts the dose without tissues density corrections using Pencil Beam Convolution (PBC) algorithm, whereas new methods calculate the dose with tissues density correction for 1D and 3D using Modified Batho (MB) method and Equivalent Tissue air ratio (ETAR) method, respectively. The normality of the data and the homogeneity of variance between groups were tested using Shapiro-Wilks and Levene test, respectively, then non-parametric statistical tests were performed. Specifically, the dose means estimated by the different calculation methods were compared using Friedman's test and Wilcoxon signed-rank test. In addition, the correlation between the doses calculated by the three methods was assessed using Spearman's rank and Kendall's rank tests. The Friedman's test showed a significant effect on the calculation method for the delivered dose of lung cancer patients (p Wilcoxon signed-rank test of paired comparisons indicated that the delivered dose was significantly reduced using density-corrected methods as compared to the reference method. Spearman's and Kendall's rank tests indicated a positive correlation between the doses calculated with the different methods
Rumsey, Deborah
2011-01-01
The fun and easy way to get down to business with statistics Stymied by statistics? No fear ? this friendly guide offers clear, practical explanations of statistical ideas, techniques, formulas, and calculations, with lots of examples that show you how these concepts apply to your everyday life. Statistics For Dummies shows you how to interpret and critique graphs and charts, determine the odds with probability, guesstimate with confidence using confidence intervals, set up and carry out a hypothesis test, compute statistical formulas, and more.Tracks to a typical first semester statistics cou
Industrial statistics with Minitab
Cintas, Pere Grima; Llabres, Xavier Tort-Martorell
2012-01-01
Industrial Statistics with MINITAB demonstrates the use of MINITAB as a tool for performing statistical analysis in an industrial context. This book covers introductory industrial statistics, exploring the most commonly used techniques alongside those that serve to give an overview of more complex issues. A plethora of examples in MINITAB are featured along with case studies for each of the statistical techniques presented. Industrial Statistics with MINITAB: Provides comprehensive coverage of user-friendly practical guidance to the essential statistical methods applied in industry.Explores
Petersson, K M; Nichols, T E; Poline, J B; Holmes, A P
1999-01-01
Functional neuroimaging (FNI) provides experimental access to the intact living brain making it possible to study higher cognitive functions in humans. In this review and in a companion paper in this issue, we discuss some common methods used to analyse FNI data. The emphasis in both papers is on assumptions and limitations of the methods reviewed. There are several methods available to analyse FNI data indicating that none is optimal for all purposes. In order to make optimal use of the methods available it is important to know the limits of applicability. For the interpretation of FNI results it is also important to take into account the assumptions, approximations and inherent limitations of the methods used. This paper gives a brief overview over some non-inferential descriptive methods and common statistical models used in FNI. Issues relating to the complex problem of model selection are discussed. In general, proper model selection is a necessary prerequisite for the validity of the subsequent statistical inference. The non-inferential section describes methods that, combined with inspection of parameter estimates and other simple measures, can aid in the process of model selection and verification of assumptions. The section on statistical models covers approaches to global normalization and some aspects of univariate, multivariate, and Bayesian models. Finally, approaches to functional connectivity and effective connectivity are discussed. In the companion paper we review issues related to signal detection and statistical inference. PMID:10466149
Recreational Boating Statistics 2012
Department of Homeland Security — Every year, the USCG compiles statistics on reported recreational boating accidents. These statistics are derived from accident reports that are filed by the owners...
Recreational Boating Statistics 2013
Department of Homeland Security — Every year, the USCG compiles statistics on reported recreational boating accidents. These statistics are derived from accident reports that are filed by the owners...
Statistical data analysis handbook
National Research Council Canada - National Science Library
Wall, Francis J
1986-01-01
It must be emphasized that this is not a text book on statistics. Instead it is a working tool that presents data analysis in clear, concise terms which can be readily understood even by those without formal training in statistics...
U.S. Department of Health & Human Services — The CMS Office of Enterprise Data and Analytics has developed CMS Program Statistics, which includes detailed summary statistics on national health care, Medicare...
Recreational Boating Statistics 2011
Department of Homeland Security — Every year, the USCG compiles statistics on reported recreational boating accidents. These statistics are derived from accident reports that are filed by the owners...
... Doing AMIGAS Stay Informed Cancer Home Uterine Cancer Statistics Language: English (US) Español (Spanish) Recommend on Facebook ... the most commonly diagnosed gynecologic cancer. U.S. Cancer Statistics Data Visualizations Tool The Data Visualizations tool makes ...
Tuberculosis Data and Statistics
... Advisory Groups Federal TB Task Force Data and Statistics Language: English (US) Español (Spanish) Recommend on Facebook ... Set) Mortality and Morbidity Weekly Reports Data and Statistics Decrease in Reported Tuberculosis Cases MMWR 2010; 59 ( ...
National transportation statistics 2011
2011-04-01
Compiled and published by the U.S. Department of Transportation's Bureau of Transportation Statistics : (BTS), National Transportation Statistics presents information on the U.S. transportation system, including : its physical components, safety reco...
National Transportation Statistics 2008
2009-01-08
Compiled and published by the U.S. Department of Transportations Bureau of Transportation Statistics (BTS), National Transportation Statistics presents information on the U.S. transportation system, including its physical components, safety record...
... News & Events About Us Home > Health Information Share Statistics Research shows that mental illnesses are common in ... of mental illnesses, such as suicide and disability. Statistics Top ı cs Mental Illness Any Anxiety Disorder ...
School Violence: Data & Statistics
... Social Media Publications Injury Center School Violence: Data & Statistics Recommend on Facebook Tweet Share Compartir The first ... Vehicle Safety Traumatic Brain Injury Injury Response Data & Statistics (WISQARS) Funded Programs Press Room Social Media Publications ...
Caregiver Statistics: Demographics
... You are here Home Selected Long-Term Care Statistics Order this publication Printer-friendly version What is ... needs and services are wide-ranging and complex, statistics may vary from study to study. Sources for ...
... Summary Coverdell Program 2012-2015 State Summaries Data & Statistics Fact Sheets Heart Disease and Stroke Fact Sheets ... Roadmap for State Planning Other Data Resources Other Statistic Resources Grantee Information Cross-Program Information Online Tools ...
... Standard Drink? Drinking Levels Defined Alcohol Facts and Statistics Print version Alcohol Use in the United States: ... 1238–1245, 2004. PMID: 15010446 National Center for Statistics and Analysis. 2014 Crash Data Key Findings (Traffic ...
National Transportation Statistics 2009
2010-01-21
Compiled and published by the U.S. Department of Transportation's Bureau of Transportation Statistics (BTS), National Transportation Statistics presents information on the U.S. transportation system, including its physical components, safety record, ...
National transportation statistics 2010
2010-01-01
National Transportation Statistics presents statistics on the U.S. transportation system, including its physical components, safety record, economic performance, the human and natural environment, and national security. This is a large online documen...
DEFF Research Database (Denmark)
Lindström, Erik; Madsen, Henrik; Nielsen, Jan Nygaard
Statistics for Finance develops students’ professional skills in statistics with applications in finance. Developed from the authors’ courses at the Technical University of Denmark and Lund University, the text bridges the gap between classical, rigorous treatments of financial mathematics...
Principles of applied statistics
National Research Council Canada - National Science Library
Cox, D. R; Donnelly, Christl A
2011-01-01
.... David Cox and Christl Donnelly distil decades of scientific experience into usable principles for the successful application of statistics, showing how good statistical strategy shapes every stage of an investigation...
Directory of Open Access Journals (Sweden)
Santiago Ostengo
2011-12-01
considered in a breeding program. It is for that reason that in sugar cane breeding, multienvironmental trials (MET are conducted at the last stage of the selection process. There exist different approaches to study genotype-environment interaction. One of these is the non-parametric technique, a valid and useful tool which allows making an initial exploration that can be easily interpreted. The non-parametric technique called relative consistency of performance enables the classification of genotypes into the following four categories: (i consistently superior; (ii inconsistently superior; (iii inconsistently inferior and (iv consistently inferior. This work aims to evaluate the consistency of performance of TUC 95-10 variety across different agro-ecological environments in the province of Tucumán (Argentina, as regards the variable tons of sugar per hectare and considering different crop ages. Data were obtained from MET of the Sugarcane Breeding Program of Estación Experimental Agroindustrial Obispo Colombres (EEAOC from Tucumán (Argentina, conducted at six sites through four crop ages. Results showed that TUC 95-10, recently released by EEAOC, can be labeled as consistently superior at all ages, i.e. it held the top position in sugar production in all tested environments. Therefore, it can be concluded that TUC 95-10 shows an excellent performance and good adaptation to different agro-ecological environments in Tucumán, at all crop ages.
Applying contemporary statistical techniques
Wilcox, Rand R
2003-01-01
Applying Contemporary Statistical Techniques explains why traditional statistical methods are often inadequate or outdated when applied to modern problems. Wilcox demonstrates how new and more powerful techniques address these problems far more effectively, making these modern robust methods understandable, practical, and easily accessible.* Assumes no previous training in statistics * Explains how and why modern statistical methods provide more accurate results than conventional methods* Covers the latest developments on multiple comparisons * Includes recent advanc
Interactive statistics with ILLMO
Martens, J.B.O.S.
2014-01-01
Progress in empirical research relies on adequate statistical analysis and reporting. This article proposes an alternative approach to statistical modeling that is based on an old but mostly forgotten idea, namely Thurstone modeling. Traditional statistical methods assume that either the measured
Lenard, Christopher; McCarthy, Sally; Mills, Terence
2014-01-01
There are many different aspects of statistics. Statistics involves mathematics, computing, and applications to almost every field of endeavour. Each aspect provides an opportunity to spark someone's interest in the subject. In this paper we discuss some ethical aspects of statistics, and describe how an introduction to ethics has been…
Youth Sports Safety Statistics
... 6):794-799. 31 American Heart Association. CPR statistics. www.heart.org/HEARTORG/CPRAndECC/WhatisCPR/CPRFactsandStats/CPRpercent20Statistics_ ... Mental Health Services Administration, Center for Behavioral Health Statistics and Quality. (January 10, 2013). The DAWN Report: ...
Dowdy, Shirley; Chilko, Daniel
2011-01-01
Praise for the Second Edition "Statistics for Research has other fine qualities besides superior organization. The examples and the statistical methods are laid out with unusual clarity by the simple device of using special formats for each. The book was written with great care and is extremely user-friendly."-The UMAP Journal Although the goals and procedures of statistical research have changed little since the Second Edition of Statistics for Research was published, the almost universal availability of personal computers and statistical computing application packages have made it possible f
Boslaugh, Sarah
2013-01-01
Need to learn statistics for your job? Want help passing a statistics course? Statistics in a Nutshell is a clear and concise introduction and reference for anyone new to the subject. Thoroughly revised and expanded, this edition helps you gain a solid understanding of statistics without the numbing complexity of many college texts. Each chapter presents easy-to-follow descriptions, along with graphics, formulas, solved examples, and hands-on exercises. If you want to perform common statistical analyses and learn a wide range of techniques without getting in over your head, this is your book.
Statistics & probaility for dummies
Rumsey, Deborah J
2013-01-01
Two complete eBooks for one low price! Created and compiled by the publisher, this Statistics I and Statistics II bundle brings together two math titles in one, e-only bundle. With this special bundle, you'll get the complete text of the following two titles: Statistics For Dummies, 2nd Edition Statistics For Dummies shows you how to interpret and critique graphs and charts, determine the odds with probability, guesstimate with confidence using confidence intervals, set up and carry out a hypothesis test, compute statistical formulas, and more. Tra
Nonparametric statistical inference
Gibbons, Jean Dickinson
2010-01-01
Overall, this remains a very fine book suitable for a graduate-level course in nonparametric statistics. I recommend it for all people interested in learning the basic ideas of nonparametric statistical inference.-Eugenia Stoimenova, Journal of Applied Statistics, June 2012… one of the best books available for a graduate (or advanced undergraduate) text for a theory course on nonparametric statistics. … a very well-written and organized book on nonparametric statistics, especially useful and recommended for teachers and graduate students.-Biometrics, 67, September 2011This excellently presente
Business statistics for dummies
Anderson, Alan
2013-01-01
Score higher in your business statistics course? Easy. Business statistics is a common course for business majors and MBA candidates. It examines common data sets and the proper way to use such information when conducting research and producing informational reports such as profit and loss statements, customer satisfaction surveys, and peer comparisons. Business Statistics For Dummies tracks to a typical business statistics course offered at the undergraduate and graduate levels and provides clear, practical explanations of business statistical ideas, techniques, formulas, and calculations, w
Griffiths, Dawn
2009-01-01
Wouldn't it be great if there were a statistics book that made histograms, probability distributions, and chi square analysis more enjoyable than going to the dentist? Head First Statistics brings this typically dry subject to life, teaching you everything you want and need to know about statistics through engaging, interactive, and thought-provoking material, full of puzzles, stories, quizzes, visual aids, and real-world examples. Whether you're a student, a professional, or just curious about statistical analysis, Head First's brain-friendly formula helps you get a firm grasp of statistics
Lectures on algebraic statistics
Drton, Mathias; Sullivant, Seth
2009-01-01
How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.
Naghshpour, Shahdad
2012-01-01
Statistics is the branch of mathematics that deals with real-life problems. As such, it is an essential tool for economists. Unfortunately, the way you and many other economists learn the concept of statistics is not compatible with the way economists think and learn. The problem is worsened by the use of mathematical jargon and complex derivations. Here's a book that proves none of this is necessary. All the examples and exercises in this book are constructed within the field of economics, thus eliminating the difficulty of learning statistics with examples from fields that have no relation to business, politics, or policy. Statistics is, in fact, not more difficult than economics. Anyone who can comprehend economics can understand and use statistics successfully within this field, including you! This book utilizes Microsoft Excel to obtain statistical results, as well as to perform additional necessary computations. Microsoft Excel is not the software of choice for performing sophisticated statistical analy...
Ceppi, Marcello; Gallo, Fabio; Bonassi, Stefano
2011-01-01
The most common study design performed in population studies based on the micronucleus (MN) assay, is the cross-sectional study, which is largely performed to evaluate the DNA damaging effects of exposure to genotoxic agents in the workplace, in the environment, as well as from diet or lifestyle factors. Sample size is still a critical issue in the design of MN studies since most recent studies considering gene-environment interaction, often require a sample size of several hundred subjects, which is in many cases difficult to achieve. The control of confounding is another major threat to the validity of causal inference. The most popular confounders considered in population studies using MN are age, gender and smoking habit. Extensive attention is given to the assessment of effect modification, given the increasing inclusion of biomarkers of genetic susceptibility in the study design. Selected issues concerning the statistical treatment of data have been addressed in this mini-review, starting from data description, which is a critical step of statistical analysis, since it allows to detect possible errors in the dataset to be analysed and to check the validity of assumptions required for more complex analyses. Basic issues dealing with statistical analysis of biomarkers are extensively evaluated, including methods to explore the dose-response relationship among two continuous variables and inferential analysis. A critical approach to the use of parametric and non-parametric methods is presented, before addressing the issue of most suitable multivariate models to fit MN data. In the last decade, the quality of statistical analysis of MN data has certainly evolved, although even nowadays only a small number of studies apply the Poisson model, which is the most suitable method for the analysis of MN data.
Baseline Statistics of Linked Statistical Data
Scharnhorst, Andrea; Meroño-Peñuela, Albert; Guéret, Christophe
2014-01-01
We are surrounded by an ever increasing ocean of information, everybody will agree to that. We build sophisticated strategies to govern this information: design data models, develop infrastructures for data sharing, building tool for data analysis. Statistical datasets curated by National
K2 and K2*: efficient alignment-free sequence similarity measurement based on Kendall statistics.
Lin, Jie; Adjeroh, Donald A; Jiang, Bing-Hua; Jiang, Yue
2018-05-15
Alignment-free sequence comparison methods can compute the pairwise similarity between a huge number of sequences much faster than sequence-alignment based methods. We propose a new non-parametric alignment-free sequence comparison method, called K2, based on the Kendall statistics. Comparing to the other state-of-the-art alignment-free comparison methods, K2 demonstrates competitive performance in generating the phylogenetic tree, in evaluating functionally related regulatory sequences, and in computing the edit distance (similarity/dissimilarity) between sequences. Furthermore, the K2 approach is much faster than the other methods. An improved method, K2*, is also proposed, which is able to determine the appropriate algorithmic parameter (length) automatically, without first considering different values. Comparative analysis with the state-of-the-art alignment-free sequence similarity methods demonstrates the superiority of the proposed approaches, especially with increasing sequence length, or increasing dataset sizes. The K2 and K2* approaches are implemented in the R language as a package and is freely available for open access (http://community.wvu.edu/daadjeroh/projects/K2/K2_1.0.tar.gz). yueljiang@163.com. Supplementary data are available at Bioinformatics online.
A Statistical Study of Serum Cholesterol Level by Gender and Race.
Tharu, Bhikhari Prasad; Tsokos, Chris P
2017-07-25
Cholesterol level (CL) is growing concerned as health issue in human health since it is considered one of the causes in heart diseases. A study of cholesterol level can provide insight about its nature and characteristics. A cross-sectional study. National Health and Nutrition Examination Survey (NHANS) II was conducted on a probability sample of approximately 28,000 persons in the USA and cholesterol level is obtained from laboratory results. Samples were selected so that certain population groups thought to be at high risk of malnutrition. Study included 11,864 persons for CL cases with 9,602 males and 2,262 females with races: whites, blacks, and others. Non-parametric statistical tests and goodness of fit test have been used to identify probability distributions. The study concludes that the cholesterol level exhibits significant racial and gender differences in terms of probability distributions. The study has concluded that white people are relatively higher at risk than black people to have risk line and high risk cholesterol. The study clearly indicates that black males normally have higher cholesterol. Females have lower variation in cholesterol than males. There exists gender and racial discrepancies in cholesterol which has been identified as lognormal and gamma probability distributions. White individuals seem to be at a higher risk of having high risk cholesterol level than blacks. Females tend to have higher variation in cholesterol level than males.
Krishnan, M. V. Ninu; Prasanna, M. V.; Vijith, H.
2018-05-01
Effect of climate change in a region can be characterised by the analysis of rainfall trends. In the present research, monthly rainfall trends at Limbang River Basin (LRB) in Sarawak, Malaysia for a period of 45 years (1970-2015) were characterised through the non-parametric Mann-Kendall and Spearman's Rho tests and relative seasonality index. Statistically processed monthly rainfall of 12 well distributed rain gauging stations in LRB shows almost equal amount of rainfall in all months. Mann-Kendall and Spearman's Rho tests revealed a specific pattern of rainfall trend with a definite boundary marked in the months of January and August with positive trends in all stations. Among the stations, Limbang DID, Long Napir and Ukong showed positive (increasing) trends in all months with a maximum increase of 4.06 mm/year (p = 0.01) in November. All other stations showed varying trends (both increasing and decreasing). Significant (p = 0.05) decreasing trend was noticed in Ulu Medalam and Setuan during September (- 1.67 and - 1.79 mm/year) and October (- 1.59 and - 1.68 mm/year) in Mann-Kendall and Spearman's Rho tests. Spatial pattern of monthly rainfall trends showed two clusters of increasing rainfalls (maximas) in upper and lower part of the river basin separated with a dominant decreasing rainfall corridor. The results indicate a generally increasing trend of rainfall in Sarawak, Borneo.
International Nuclear Information System (INIS)
Norman, S.
1992-04-01
The origin of this study was to find a good, or even the best, stochastic model for the hydraulic conductivity field at the Finnsjoe site. The conductivity field in question are regularized, that is upscaled. The reason for performing regularization of measurement data is primarily the need for long correlation scales. This is needed in order to model reasonably large domains that can be used when describing regional groundwater flow accurately. A theory of regularization is discussed in this report. In order to find the best model, jacknifing is employed to compare different stochastic models. The theory for this method is described. In the act of doing so we also take a look at linear predictor theory, so called kriging, and include a general discussion of stochastic functions and intrinsic random functions. The statistical inference methods for finding the models are also described, in particular regression, iterative generalized regression (IGLSE) and non-parametric variogram estimators. A large amount of results is presented for a regularization scale of 36 metre. (30 refs.) (au)
International Nuclear Information System (INIS)
Guha, S.; Taylor, J.H.
1996-01-01
It is critical that summary statistics on background data, or background levels, be computed based on standardized and defensible statistical methods because background levels are frequently used in subsequent analyses and comparisons performed by separate analysts over time. The final background for naturally occurring radionuclide concentrations in soil at a RCRA facility, and the associated statistical methods used to estimate these concentrations, are presented. The primary objective is to describe, via a case study, the statistical methods used to estimate 95% upper tolerance limits (UTL) on radionuclide background soil data sets. A 95% UTL on background samples can be used as a screening level concentration in the absence of definitive soil cleanup criteria for naturally occurring radionuclides. The statistical methods are based exclusively on EPA guidance. This paper includes an introduction, a discussion of the analytical results for the radionuclides and a detailed description of the statistical analyses leading to the determination of 95% UTLs. Soil concentrations reported are based on validated data. Data sets are categorized as surficial soil; samples collected at depths from zero to one-half foot; and deep soil, samples collected from 3 to 5 feet. These data sets were tested for statistical outliers and underlying distributions were determined by using the chi-squared test for goodness-of-fit. UTLs for the data sets were then computed based on the percentage of non-detects and the appropriate best-fit distribution (lognormal, normal, or non-parametric). For data sets containing greater than approximately 50% nondetects, nonparametric UTLs were computed
Statistical Physics An Introduction
Yoshioka, Daijiro
2007-01-01
This book provides a comprehensive presentation of the basics of statistical physics. The first part explains the essence of statistical physics and how it provides a bridge between microscopic and macroscopic phenomena, allowing one to derive quantities such as entropy. Here the author avoids going into details such as Liouville’s theorem or the ergodic theorem, which are difficult for beginners and unnecessary for the actual application of the statistical mechanics. In the second part, statistical mechanics is applied to various systems which, although they look different, share the same mathematical structure. In this way readers can deepen their understanding of statistical physics. The book also features applications to quantum dynamics, thermodynamics, the Ising model and the statistical dynamics of free spins.
Statistical symmetries in physics
International Nuclear Information System (INIS)
Green, H.S.; Adelaide Univ., SA
1994-01-01
Every law of physics is invariant under some group of transformations and is therefore the expression of some type of symmetry. Symmetries are classified as geometrical, dynamical or statistical. At the most fundamental level, statistical symmetries are expressed in the field theories of the elementary particles. This paper traces some of the developments from the discovery of Bose statistics, one of the two fundamental symmetries of physics. A series of generalizations of Bose statistics is described. A supersymmetric generalization accommodates fermions as well as bosons, and further generalizations, including parastatistics, modular statistics and graded statistics, accommodate particles with properties such as 'colour'. A factorization of elements of ggl(n b ,n f ) can be used to define truncated boson operators. A general construction is given for q-deformed boson operators, and explicit constructions of the same type are given for various 'deformed' algebras. A summary is given of some of the applications and potential applications. 39 refs., 2 figs
The statistical stability phenomenon
Gorban, Igor I
2017-01-01
This monograph investigates violations of statistical stability of physical events, variables, and processes and develops a new physical-mathematical theory taking into consideration such violations – the theory of hyper-random phenomena. There are five parts. The first describes the phenomenon of statistical stability and its features, and develops methods for detecting violations of statistical stability, in particular when data is limited. The second part presents several examples of real processes of different physical nature and demonstrates the violation of statistical stability over broad observation intervals. The third part outlines the mathematical foundations of the theory of hyper-random phenomena, while the fourth develops the foundations of the mathematical analysis of divergent and many-valued functions. The fifth part contains theoretical and experimental studies of statistical laws where there is violation of statistical stability. The monograph should be of particular interest to engineers...
Equilibrium statistical mechanics
Jackson, E Atlee
2000-01-01
Ideal as an elementary introduction to equilibrium statistical mechanics, this volume covers both classical and quantum methodology for open and closed systems. Introductory chapters familiarize readers with probability and microscopic models of systems, while additional chapters describe the general derivation of the fundamental statistical mechanics relationships. The final chapter contains 16 sections, each dealing with a different application, ordered according to complexity, from classical through degenerate quantum statistical mechanics. Key features include an elementary introduction t
Applied statistics for economists
Lewis, Margaret
2012-01-01
This book is an undergraduate text that introduces students to commonly-used statistical methods in economics. Using examples based on contemporary economic issues and readily-available data, it not only explains the mechanics of the various methods, it also guides students to connect statistical results to detailed economic interpretations. Because the goal is for students to be able to apply the statistical methods presented, online sources for economic data and directions for performing each task in Excel are also included.
Mineral industry statistics 1975
Energy Technology Data Exchange (ETDEWEB)
1978-01-01
Production, consumption and marketing statistics are given for solid fuels (coal, peat), liquid fuels and gases (oil, natural gas), iron ore, bauxite and other minerals quarried in France, in 1975. Also accident statistics are included. Production statistics are presented of the Overseas Departments and territories (French Guiana, New Caledonia, New Hebrides). An account of modifications in the mining field in 1975 is given. Concessions, exploitation permits, and permits solely for prospecting for mineral products are discussed. (In French)
Lectures on statistical mechanics
Bowler, M G
1982-01-01
Anyone dissatisfied with the almost ritual dullness of many 'standard' texts in statistical mechanics will be grateful for the lucid explanation and generally reassuring tone. Aimed at securing firm foundations for equilibrium statistical mechanics, topics of great subtlety are presented transparently and enthusiastically. Very little mathematical preparation is required beyond elementary calculus and prerequisites in physics are limited to some elementary classical thermodynamics. Suitable as a basis for a first course in statistical mechanics, the book is an ideal supplement to more convent
Directory of Open Access Journals (Sweden)
Mirjam Nielen
2017-01-01
Full Text Available Always wondered why research papers often present rather complicated statistical analyses? Or wondered how to properly analyse the results of a pragmatic trial from your own practice? This talk will give an overview of basic statistical principles and focus on the why of statistics, rather than on the how.This is a podcast of Mirjam's talk at the Veterinary Evidence Today conference, Edinburgh November 2, 2016.
Equilibrium statistical mechanics
Mayer, J E
1968-01-01
The International Encyclopedia of Physical Chemistry and Chemical Physics, Volume 1: Equilibrium Statistical Mechanics covers the fundamental principles and the development of theoretical aspects of equilibrium statistical mechanics. Statistical mechanical is the study of the connection between the macroscopic behavior of bulk matter and the microscopic properties of its constituent atoms and molecules. This book contains eight chapters, and begins with a presentation of the master equation used for the calculation of the fundamental thermodynamic functions. The succeeding chapters highlight t
Mahalanobis, P C
1965-01-01
Contributions to Statistics focuses on the processes, methodologies, and approaches involved in statistics. The book is presented to Professor P. C. Mahalanobis on the occasion of his 70th birthday. The selection first offers information on the recovery of ancillary information and combinatorial properties of partially balanced designs and association schemes. Discussions focus on combinatorial applications of the algebra of association matrices, sample size analogy, association matrices and the algebra of association schemes, and conceptual statistical experiments. The book then examines latt
Boslaugh, Sarah
2008-01-01
Need to learn statistics as part of your job, or want some help passing a statistics course? Statistics in a Nutshell is a clear and concise introduction and reference that's perfect for anyone with no previous background in the subject. This book gives you a solid understanding of statistics without being too simple, yet without the numbing complexity of most college texts. You get a firm grasp of the fundamentals and a hands-on understanding of how to apply them before moving on to the more advanced material that follows. Each chapter presents you with easy-to-follow descriptions illustrat
Understanding Computational Bayesian Statistics
Bolstad, William M
2011-01-01
A hands-on introduction to computational statistics from a Bayesian point of view Providing a solid grounding in statistics while uniquely covering the topics from a Bayesian perspective, Understanding Computational Bayesian Statistics successfully guides readers through this new, cutting-edge approach. With its hands-on treatment of the topic, the book shows how samples can be drawn from the posterior distribution when the formula giving its shape is all that is known, and how Bayesian inferences can be based on these samples from the posterior. These ideas are illustrated on common statistic
Annual Statistical Supplement, 2002
Social Security Administration — The Annual Statistical Supplement, 2002 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...
Annual Statistical Supplement, 2010
Social Security Administration — The Annual Statistical Supplement, 2010 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...
Annual Statistical Supplement, 2007
Social Security Administration — The Annual Statistical Supplement, 2007 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...
Annual Statistical Supplement, 2001
Social Security Administration — The Annual Statistical Supplement, 2001 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...
Annual Statistical Supplement, 2016
Social Security Administration — The Annual Statistical Supplement, 2016 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...
Annual Statistical Supplement, 2011
Social Security Administration — The Annual Statistical Supplement, 2011 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...
Annual Statistical Supplement, 2005
Social Security Administration — The Annual Statistical Supplement, 2005 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...
Annual Statistical Supplement, 2015
Social Security Administration — The Annual Statistical Supplement, 2015 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...
Annual Statistical Supplement, 2003
Social Security Administration — The Annual Statistical Supplement, 2003 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...
Annual Statistical Supplement, 2017
Social Security Administration — The Annual Statistical Supplement, 2017 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...
Annual Statistical Supplement, 2008
Social Security Administration — The Annual Statistical Supplement, 2008 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...
Annual Statistical Supplement, 2014
Social Security Administration — The Annual Statistical Supplement, 2014 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...
Annual Statistical Supplement, 2004
Social Security Administration — The Annual Statistical Supplement, 2004 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...
Annual Statistical Supplement, 2000
Social Security Administration — The Annual Statistical Supplement, 2000 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...
Annual Statistical Supplement, 2009
Social Security Administration — The Annual Statistical Supplement, 2009 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...
Annual Statistical Supplement, 2006
Social Security Administration — The Annual Statistical Supplement, 2006 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...
Bulmer, M G
1979-01-01
There are many textbooks which describe current methods of statistical analysis, while neglecting related theory. There are equally many advanced textbooks which delve into the far reaches of statistical theory, while bypassing practical applications. But between these two approaches is an unfilled gap, in which theory and practice merge at an intermediate level. Professor M. G. Bulmer's Principles of Statistics, originally published in 1965, was created to fill that need. The new, corrected Dover edition of Principles of Statistics makes this invaluable mid-level text available once again fo
Kanji, Gopal K
2006-01-01
This expanded and updated Third Edition of Gopal K. Kanji's best-selling resource on statistical tests covers all the most commonly used tests with information on how to calculate and interpret results with simple datasets. Each entry begins with a short summary statement about the test's purpose, and contains details of the test objective, the limitations (or assumptions) involved, a brief outline of the method, a worked example, and the numerical calculation. 100 Statistical Tests, Third Edition is the one indispensable guide for users of statistical materials and consumers of statistical information at all levels and across all disciplines.
Statistical distribution sampling
Johnson, E. S.
1975-01-01
Determining the distribution of statistics by sampling was investigated. Characteristic functions, the quadratic regression problem, and the differential equations for the characteristic functions are analyzed.
Hegazy, Maha A.; Lotfy, Hayam M.; Mowaka, Shereen; Mohamed, Ekram Hany
2016-07-01
Wavelets have been adapted for a vast number of signal-processing applications due to the amount of information that can be extracted from a signal. In this work, a comparative study on the efficiency of continuous wavelet transform (CWT) as a signal processing tool in univariate regression and a pre-processing tool in multivariate analysis using partial least square (CWT-PLS) was conducted. These were applied to complex spectral signals of ternary and quaternary mixtures. CWT-PLS method succeeded in the simultaneous determination of a quaternary mixture of drotaverine (DRO), caffeine (CAF), paracetamol (PAR) and p-aminophenol (PAP, the major impurity of paracetamol). While, the univariate CWT failed to simultaneously determine the quaternary mixture components and was able to determine only PAR and PAP, the ternary mixtures of DRO, CAF, and PAR and CAF, PAR, and PAP. During the calculations of CWT, different wavelet families were tested. The univariate CWT method was validated according to the ICH guidelines. While for the development of the CWT-PLS model a calibration set was prepared by means of an orthogonal experimental design and their absorption spectra were recorded and processed by CWT. The CWT-PLS model was constructed by regression between the wavelet coefficients and concentration matrices and validation was performed by both cross validation and external validation sets. Both methods were successfully applied for determination of the studied drugs in pharmaceutical formulations.
Indian Academy of Sciences (India)
IAS Admin
Pauli exclusion principle, Fermi–. Dirac statistics, identical and in- distinguishable particles, Fermi gas. Fermi–Dirac Statistics. Derivation and Consequences. S Chaturvedi and Shyamal Biswas. (left) Subhash Chaturvedi is at University of. Hyderabad. His current research interests include phase space descriptions.
Generalized interpolative quantum statistics
International Nuclear Information System (INIS)
Ramanathan, R.
1992-01-01
A generalized interpolative quantum statistics is presented by conjecturing a certain reordering of phase space due to the presence of possible exotic objects other than bosons and fermions. Such an interpolation achieved through a Bose-counting strategy predicts the existence of an infinite quantum Boltzmann-Gibbs statistics akin to the one discovered by Greenberg recently
Handbook of Spatial Statistics
Gelfand, Alan E
2010-01-01
Offers an introduction detailing the evolution of the field of spatial statistics. This title focuses on the three main branches of spatial statistics: continuous spatial variation (point referenced data); discrete spatial variation, including lattice and areal unit data; and, spatial point patterns.
Statistics 101 for Radiologists.
Anvari, Arash; Halpern, Elkan F; Samir, Anthony E
2015-10-01
Diagnostic tests have wide clinical applications, including screening, diagnosis, measuring treatment effect, and determining prognosis. Interpreting diagnostic test results requires an understanding of key statistical concepts used to evaluate test efficacy. This review explains descriptive statistics and discusses probability, including mutually exclusive and independent events and conditional probability. In the inferential statistics section, a statistical perspective on study design is provided, together with an explanation of how to select appropriate statistical tests. Key concepts in recruiting study samples are discussed, including representativeness and random sampling. Variable types are defined, including predictor, outcome, and covariate variables, and the relationship of these variables to one another. In the hypothesis testing section, we explain how to determine if observed differences between groups are likely to be due to chance. We explain type I and II errors, statistical significance, and study power, followed by an explanation of effect sizes and how confidence intervals can be used to generalize observed effect sizes to the larger population. Statistical tests are explained in four categories: t tests and analysis of variance, proportion analysis tests, nonparametric tests, and regression techniques. We discuss sensitivity, specificity, accuracy, receiver operating characteristic analysis, and likelihood ratios. Measures of reliability and agreement, including κ statistics, intraclass correlation coefficients, and Bland-Altman graphs and analysis, are introduced. © RSNA, 2015.
International Nuclear Information System (INIS)
2003-01-01
The energy statistical table is a selection of statistical data for energies and countries from 1997 to 2002. It concerns the petroleum, the natural gas, the coal, the electric power, the production, the external market, the consumption per sector, the energy accounting 2002 and graphs on the long-dated forecasting. (A.L.B.)
Bayesian statistical inference
Directory of Open Access Journals (Sweden)
Bruno De Finetti
2017-04-01
Full Text Available This work was translated into English and published in the volume: Bruno De Finetti, Induction and Probability, Biblioteca di Statistica, eds. P. Monari, D. Cocchi, Clueb, Bologna, 1993.Bayesian statistical Inference is one of the last fundamental philosophical papers in which we can find the essential De Finetti's approach to the statistical inference.
Practical statistics for educators
Ravid, Ruth
2014-01-01
Practical Statistics for Educators, Fifth Edition, is a clear and easy-to-follow text written specifically for education students in introductory statistics courses and in action research courses. It is also a valuable resource and guidebook for educational practitioners who wish to study their own settings.
DEFF Research Database (Denmark)
Lauritzen, Steffen Lilholt
This book studies the brilliant Danish 19th Century astronomer, T.N. Thiele who made important contributions to statistics, actuarial science, astronomy and mathematics. The most important of these contributions in statistics are translated into English for the first time, and the text includes...
Huizingh, Eelko K. R. E.
2007-01-01
Accessibly written and easy to use, "Applied Statistics Using SPSS" is an all-in-one self-study guide to SPSS and do-it-yourself guide to statistics. What is unique about Eelko Huizingh's approach is that this book is based around the needs of undergraduate students embarking on their own research project, and its self-help style is designed to…
This tool allows users to animate cancer trends over time by cancer site and cause of death, race, and sex. Provides access to incidence, mortality, and survival. Select the type of statistic, variables, format, and then extract the statistics in a delimited format for further analyses.
Energy statistics yearbook 2002
International Nuclear Information System (INIS)
2005-01-01
The Energy Statistics Yearbook 2002 is a comprehensive collection of international energy statistics prepared by the United Nations Statistics Division. It is the forty-sixth in a series of annual compilations which commenced under the title World Energy Supplies in Selected Years, 1929-1950. It updates the statistical series shown in the previous issue. Supplementary series of monthly and quarterly data on production of energy may be found in the Monthly Bulletin of Statistics. The principal objective of the Yearbook is to provide a global framework of comparable data on long-term trends in the supply of mainly commercial primary and secondary forms of energy. Data for each type of fuel and aggregate data for the total mix of commercial fuels are shown for individual countries and areas and are summarized into regional and world totals. The data are compiled primarily from the annual energy questionnaire distributed by the United Nations Statistics Division and supplemented by official national statistical publications. Where official data are not available or are inconsistent, estimates are made by the Statistics Division based on governmental, professional or commercial materials. Estimates include, but are not limited to, extrapolated data based on partial year information, use of annual trends, trade data based on partner country reports, breakdowns of aggregated data as well as analysis of current energy events and activities
Howard Stauffer; Nadav Nur
2005-01-01
The papers included in the Advances in Statistics section of the Partners in Flight (PIF) 2002 Proceedings represent a small sample of statistical topics of current importance to Partners In Flight research scientists: hierarchical modeling, estimation of detection probabilities, and Bayesian applications. Sauer et al. (this volume) examines a hierarchical model...
Energy statistics yearbook 2001
International Nuclear Information System (INIS)
2004-01-01
The Energy Statistics Yearbook 2001 is a comprehensive collection of international energy statistics prepared by the United Nations Statistics Division. It is the forty-fifth in a series of annual compilations which commenced under the title World Energy Supplies in Selected Years, 1929-1950. It updates the statistical series shown in the previous issue. Supplementary series of monthly and quarterly data on production of energy may be found in the Monthly Bulletin of Statistics. The principal objective of the Yearbook is to provide a global framework of comparable data on long-term trends in the supply of mainly commercial primary and secondary forms of energy. Data for each type of fuel and aggregate data for the total mix of commercial fuels are shown for individual countries and areas and are summarized into regional and world totals. The data are compiled primarily from the annual energy questionnaire distributed by the United Nations Statistics Division and supplemented by official national statistical publications. Where official data are not available or are inconsistent, estimates are made by the Statistics Division based on governmental, professional or commercial materials. Estimates include, but are not limited to, extrapolated data based on partial year information, use of annual trends, trade data based on partner country reports, breakdowns of aggregated data as well as analysis of current energy events and activities
Energy statistics yearbook 2000
International Nuclear Information System (INIS)
2002-01-01
The Energy Statistics Yearbook 2000 is a comprehensive collection of international energy statistics prepared by the United Nations Statistics Division. It is the forty-third in a series of annual compilations which commenced under the title World Energy Supplies in Selected Years, 1929-1950. It updates the statistical series shown in the previous issue. Supplementary series of monthly and quarterly data on production of energy may be found in the Monthly Bulletin of Statistics. The principal objective of the Yearbook is to provide a global framework of comparable data on long-term trends in the supply of mainly commercial primary and secondary forms of energy. Data for each type of fuel and aggregate data for the total mix of commercial fuels are shown for individual countries and areas and are summarized into regional and world totals. The data are compiled primarily from the annual energy questionnaire distributed by the United Nations Statistics Division and supplemented by official national statistical publications. Where official data are not available or are inconsistent, estimates are made by the Statistics Division based on governmental, professional or commercial materials. Estimates include, but are not limited to, extrapolated data based on partial year information, use of annual trends, trade data based on partner country reports, breakdowns of aggregated data as well as analysis of current energy events and activities
Temperature dependent anomalous statistics
International Nuclear Information System (INIS)
Das, A.; Panda, S.
1991-07-01
We show that the anomalous statistics which arises in 2 + 1 dimensional Chern-Simons gauge theories can become temperature dependent in the most natural way. We analyze and show that a statistic's changing phase transition can happen in these theories only as T → ∞. (author). 14 refs
Guidelines for the design and statistical analysis of experiments in papers submitted to ATLA.
Festing, M F
2001-01-01
In vitro experiments need to be well designed and correctly analysed if they are to achieve their full potential to replace the use of animals in research. An "experiment" is a procedure for collecting scientific data in order to answer a hypothesis, or to provide material for generating new hypotheses, and differs from a survey because the scientist has control over the treatments that can be applied. Most experiments can be classified into one of a few formal designs, the most common being completely randomised, and randomised block designs. These are quite common with in vitro experiments, which are often replicated in time. Some experiments involve a single independent (treatment) variable, while other "factorial" designs simultaneously vary two or more independent variables, such as drug treatment and cell line. Factorial designs often provide additional information at little extra cost. Experiments need to be carefully planned to avoid bias, be powerful yet simple, provide for a valid statistical analysis and, in some cases, have a wide range of applicability. Virtually all experiments need some sort of statistical analysis in order to take account of biological variation among the experimental subjects. Parametric methods using the t test or analysis of variance are usually more powerful than non-parametric methods, provided the underlying assumptions of normality of the residuals and equal variances are approximately valid. The statistical analyses of data from a completely randomised design, and from a randomised-block design are demonstrated in Appendices 1 and 2, and methods of determining sample size are discussed in Appendix 3. Appendix 4 gives a checklist for authors submitting papers to ATLA.
Statistical testing and power analysis for brain-wide association study.
Gong, Weikang; Wan, Lin; Lu, Wenlian; Ma, Liang; Cheng, Fan; Cheng, Wei; Grünewald, Stefan; Feng, Jianfeng
2018-04-05
The identification of connexel-wise associations, which involves examining functional connectivities between pairwise voxels across the whole brain, is both statistically and computationally challenging. Although such a connexel-wise methodology has recently been adopted by brain-wide association studies (BWAS) to identify connectivity changes in several mental disorders, such as schizophrenia, autism and depression, the multiple correction and power analysis methods designed specifically for connexel-wise analysis are still lacking. Therefore, we herein report the development of a rigorous statistical framework for connexel-wise significance testing based on the Gaussian random field theory. It includes controlling the family-wise error rate (FWER) of multiple hypothesis testings using topological inference methods, and calculating power and sample size for a connexel-wise study. Our theoretical framework can control the false-positive rate accurately, as validated empirically using two resting-state fMRI datasets. Compared with Bonferroni correction and false discovery rate (FDR), it can reduce false-positive rate and increase statistical power by appropriately utilizing the spatial information of fMRI data. Importantly, our method bypasses the need of non-parametric permutation to correct for multiple comparison, thus, it can efficiently tackle large datasets with high resolution fMRI images. The utility of our method is shown in a case-control study. Our approach can identify altered functional connectivities in a major depression disorder dataset, whereas existing methods fail. A software package is available at https://github.com/weikanggong/BWAS. Copyright © 2018 Elsevier B.V. All rights reserved.
Multivariate Statistical Analysis of Water Quality data in Indian River Lagoon, Florida
Sayemuzzaman, M.; Ye, M.
2015-12-01
The Indian River Lagoon, is part of the longest barrier island complex in the United States, is a region of particular concern to the environmental scientist because of the rapid rate of human development throughout the region and the geographical position in between the colder temperate zone and warmer sub-tropical zone. Thus, the surface water quality analysis in this region always brings the newer information. In this present study, multivariate statistical procedures were applied to analyze the spatial and temporal water quality in the Indian River Lagoon over the period 1998-2013. Twelve parameters have been analyzed on twelve key water monitoring stations in and beside the lagoon on monthly datasets (total of 27,648 observations). The dataset was treated using cluster analysis (CA), principle component analysis (PCA) and non-parametric trend analysis. The CA was used to cluster twelve monitoring stations into four groups, with stations on the similar surrounding characteristics being in the same group. The PCA was then applied to the similar groups to find the important water quality parameters. The principal components (PCs), PC1 to PC5 was considered based on the explained cumulative variances 75% to 85% in each cluster groups. Nutrient species (phosphorus and nitrogen), salinity, specific conductivity and erosion factors (TSS, Turbidity) were major variables involved in the construction of the PCs. Statistical significant positive or negative trends and the abrupt trend shift were detected applying Mann-Kendall trend test and Sequential Mann-Kendall (SQMK), for each individual stations for the important water quality parameters. Land use land cover change pattern, local anthropogenic activities and extreme climate such as drought might be associated with these trends. This study presents the multivariate statistical assessment in order to get better information about the quality of surface water. Thus, effective pollution control/management of the surface
Taylor, Sandra L; Ruhaak, L Renee; Weiss, Robert H; Kelly, Karen; Kim, Kyoungmi
2017-01-01
High through-put mass spectrometry (MS) is now being used to profile small molecular compounds across multiple biological sample types from the same subjects with the goal of leveraging information across biospecimens. Multivariate statistical methods that combine information from all biospecimens could be more powerful than the usual univariate analyses. However, missing values are common in MS data and imputation can impact between-biospecimen correlation and multivariate analysis results. We propose two multivariate two-part statistics that accommodate missing values and combine data from all biospecimens to identify differentially regulated compounds. Statistical significance is determined using a multivariate permutation null distribution. Relative to univariate tests, the multivariate procedures detected more significant compounds in three biological datasets. In a simulation study, we showed that multi-biospecimen testing procedures were more powerful than single-biospecimen methods when compounds are differentially regulated in multiple biospecimens but univariate methods can be more powerful if compounds are differentially regulated in only one biospecimen. We provide R functions to implement and illustrate our method as supplementary information CONTACT: sltaylor@ucdavis.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Introduction to Bayesian statistics
Bolstad, William M
2017-01-01
There is a strong upsurge in the use of Bayesian methods in applied statistical analysis, yet most introductory statistics texts only present frequentist methods. Bayesian statistics has many important advantages that students should learn about if they are going into fields where statistics will be used. In this Third Edition, four newly-added chapters address topics that reflect the rapid advances in the field of Bayesian staistics. The author continues to provide a Bayesian treatment of introductory statistical topics, such as scientific data gathering, discrete random variables, robust Bayesian methods, and Bayesian approaches to inferenfe cfor discrete random variables, bionomial proprotion, Poisson, normal mean, and simple linear regression. In addition, newly-developing topics in the field are presented in four new chapters: Bayesian inference with unknown mean and variance; Bayesian inference for Multivariate Normal mean vector; Bayesian inference for Multiple Linear RegressionModel; and Computati...
Understanding advanced statistical methods
Westfall, Peter
2013-01-01
Introduction: Probability, Statistics, and ScienceReality, Nature, Science, and ModelsStatistical Processes: Nature, Design and Measurement, and DataModelsDeterministic ModelsVariabilityParametersPurely Probabilistic Statistical ModelsStatistical Models with Both Deterministic and Probabilistic ComponentsStatistical InferenceGood and Bad ModelsUses of Probability ModelsRandom Variables and Their Probability DistributionsIntroductionTypes of Random Variables: Nominal, Ordinal, and ContinuousDiscrete Probability Distribution FunctionsContinuous Probability Distribution FunctionsSome Calculus-Derivatives and Least SquaresMore Calculus-Integrals and Cumulative Distribution FunctionsProbability Calculation and SimulationIntroductionAnalytic Calculations, Discrete and Continuous CasesSimulation-Based ApproximationGenerating Random NumbersIdentifying DistributionsIntroductionIdentifying Distributions from Theory AloneUsing Data: Estimating Distributions via the HistogramQuantiles: Theoretical and Data-Based Estimate...
International Nuclear Information System (INIS)
Lachet, Bernard.
1975-01-01
A statistical study was carried out on 208 survival curves for chlorella subjected to γ or particle radiations. The computing programmes used were written in Fortran. The different experimental causes contributing to the variance of a survival rate are analyzed and consequently the experiments can be planned. Each curve was fitted to four models by the weighted least squares method applied to non-linear functions. The validity of the fits obtained can be checked by the F test. It was possible to define the confidence and prediction zones around an adjusted curve by weighting of the residual variance, in spite of error on the doses delivered; the confidence limits can them be fixed for a dose estimated from an exact or measured survival. The four models adopted were compared for the precision of their fit (by a non-parametric simultaneous comparison test) and the scattering of their adjusted parameters: Wideroe's model gives a very good fit with the experimental points in return for a scattering of its parameters, which robs them of their presumed meaning. The principal component analysis showed the statistical equivalence of the 1 and 2 hit target models. Division of the irradiation into two doses, the first fixed by the investigator, leads to families of curves for which the equation was established from that of any basic model expressing the dose survival relationship in one-stage irradiation [fr
MIDAS: Regionally linear multivariate discriminative statistical mapping.
Varol, Erdem; Sotiras, Aristeidis; Davatzikos, Christos
2018-07-01
Statistical parametric maps formed via voxel-wise mass-univariate tests, such as the general linear model, are commonly used to test hypotheses about regionally specific effects in neuroimaging cross-sectional studies where each subject is represented by a single image. Despite being informative, these techniques remain limited as they ignore multivariate relationships in the data. Most importantly, the commonly employed local Gaussian smoothing, which is important for accounting for registration errors and making the data follow Gaussian distributions, is usually chosen in an ad hoc fashion. Thus, it is often suboptimal for the task of detecting group differences and correlations with non-imaging variables. Information mapping techniques, such as searchlight, which use pattern classifiers to exploit multivariate information and obtain more powerful statistical maps, have become increasingly popular in recent years. However, existing methods may lead to important interpretation errors in practice (i.e., misidentifying a cluster as informative, or failing to detect truly informative voxels), while often being computationally expensive. To address these issues, we introduce a novel efficient multivariate statistical framework for cross-sectional studies, termed MIDAS, seeking highly sensitive and specific voxel-wise brain maps, while leveraging the power of regional discriminant analysis. In MIDAS, locally linear discriminative learning is applied to estimate the pattern that best discriminates between two groups, or predicts a variable of interest. This pattern is equivalent to local filtering by an optimal kernel whose coefficients are the weights of the linear discriminant. By composing information from all neighborhoods that contain a given voxel, MIDAS produces a statistic that collectively reflects the contribution of the voxel to the regional classifiers as well as the discriminative power of the classifiers. Critically, MIDAS efficiently assesses the
Ector, Hugo
2010-12-01
I still remember my first book on statistics: "Elementary statistics with applications in medicine and the biological sciences" by Frederick E. Croxton. For me, it has been the start of pursuing understanding statistics in daily life and in medical practice. It was the first volume in a long row of books. In his introduction, Croxton pretends that"nearly everyone involved in any aspect of medicine needs to have some knowledge of statistics". The reality is that for many clinicians, statistics are limited to a "P statistical methods. They have never had the opportunity to learn concise and clear descriptions of the key features. I have experienced how some authors can describe difficult methods in a well understandable language. Others fail completely. As a teacher, I tell my students that life is impossible without a basic knowledge of statistics. This feeling has resulted in an annual seminar of 90 minutes. This tutorial is the summary of this seminar. It is a summary and a transcription of the best pages I have detected.
International Nuclear Information System (INIS)
Tonchev, N.; Shumovskij, A.S.
1986-01-01
The history of investigations, conducted at the JINR in the field of statistical mechanics, beginning with the fundamental works by Bogolyubov N.N. on superconductivity microscopic theory is presented. Ideas, introduced in these works and methods developed in them, have largely determined the ways for developing statistical mechanics in the JINR and Hartree-Fock-Bogolyubov variational principle has become an important method of the modern nucleus theory. A brief review of the main achievements, connected with the development of statistical mechanics methods and their application in different fields of physical science is given
Wallis, W Allen
2014-01-01
Focusing on everyday applications as well as those of scientific research, this classic of modern statistical methods requires little to no mathematical background. Readers develop basic skills for evaluating and using statistical data. Lively, relevant examples include applications to business, government, social and physical sciences, genetics, medicine, and public health. ""W. Allen Wallis and Harry V. Roberts have made statistics fascinating."" - The New York Times ""The authors have set out with considerable success, to write a text which would be of interest and value to the student who,
D'Alessio, Michael
2012-01-01
AP Statistics Crash Course - Gets You a Higher Advanced Placement Score in Less Time Crash Course is perfect for the time-crunched student, the last-minute studier, or anyone who wants a refresher on the subject. AP Statistics Crash Course gives you: Targeted, Focused Review - Study Only What You Need to Know Crash Course is based on an in-depth analysis of the AP Statistics course description outline and actual Advanced Placement test questions. It covers only the information tested on the exam, so you can make the most of your valuable study time. Our easy-to-read format covers: exploring da
Mauro, John
2013-01-01
Written to reveal statistical deceptions often thrust upon unsuspecting journalists, this book views the use of numbers from a public perspective. Illustrating how the statistical naivete of journalists often nourishes quantitative misinformation, the author's intent is to make journalists more critical appraisers of numerical data so that in reporting them they do not deceive the public. The book frequently uses actual reported examples of misused statistical data reported by mass media and describes how journalists can avoid being taken in by them. Because reports of survey findings seldom g
Liao, Tim Futing
2011-01-01
An incomparably useful examination of statistical methods for comparisonThe nature of doing science, be it natural or social, inevitably calls for comparison. Statistical methods are at the heart of such comparison, for they not only help us gain understanding of the world around us but often define how our research is to be carried out. The need to compare between groups is best exemplified by experiments, which have clearly defined statistical methods. However, true experiments are not always possible. What complicates the matter more is a great deal of diversity in factors that are not inde
Statistical Pattern Recognition
Webb, Andrew R
2011-01-01
Statistical pattern recognition relates to the use of statistical techniques for analysing data measurements in order to extract information and make justified decisions. It is a very active area of study and research, which has seen many advances in recent years. Applications such as data mining, web searching, multimedia data retrieval, face recognition, and cursive handwriting recognition, all require robust and efficient pattern recognition techniques. This third edition provides an introduction to statistical pattern theory and techniques, with material drawn from a wide range of fields,
Mineral statistics yearbook 1994
International Nuclear Information System (INIS)
1994-01-01
A summary of mineral production in Saskatchewan was compiled and presented as a reference manual. Statistical information on fuel minerals such as crude oil, natural gas, liquefied petroleum gas and coal, and of industrial and metallic minerals, such as potash, sodium sulphate, salt and uranium, was provided in all conceivable variety of tables. Production statistics, disposition and value of sales of industrial and metallic minerals were also made available. Statistical data on drilling of oil and gas reservoirs and crown land disposition were also included. figs., tabs
Evolutionary Statistical Procedures
Baragona, Roberto; Poli, Irene
2011-01-01
This proposed text appears to be a good introduction to evolutionary computation for use in applied statistics research. The authors draw from a vast base of knowledge about the current literature in both the design of evolutionary algorithms and statistical techniques. Modern statistical research is on the threshold of solving increasingly complex problems in high dimensions, and the generalization of its methodology to parameters whose estimators do not follow mathematically simple distributions is underway. Many of these challenges involve optimizing functions for which analytic solutions a
Methods of statistical physics
Akhiezer, Aleksandr I
1981-01-01
Methods of Statistical Physics is an exposition of the tools of statistical mechanics, which evaluates the kinetic equations of classical and quantized systems. The book also analyzes the equations of macroscopic physics, such as the equations of hydrodynamics for normal and superfluid liquids and macroscopic electrodynamics. The text gives particular attention to the study of quantum systems. This study begins with a discussion of problems of quantum statistics with a detailed description of the basics of quantum mechanics along with the theory of measurement. An analysis of the asymptotic be
Cancer Data and Statistics Tools
... Educational Campaigns Initiatives Stay Informed Cancer Data and Statistics Tools Recommend on Facebook Tweet Share Compartir Cancer Statistics Tools United States Cancer Statistics: Data Visualizations The ...
Statistical Approaches to Aerosol Dynamics for Climate Simulation
Energy Technology Data Exchange (ETDEWEB)
Zhu, Wei
2014-09-02
In this work, we introduce two general non-parametric regression analysis methods for errors-in-variable (EIV) models: the compound regression, and the constrained regression. It is shown that these approaches are equivalent to each other and, to the general parametric structural modeling approach. The advantages of these methods lie in their intuitive geometric representations, their distribution free nature, and their ability to offer a practical solution when the ratio of the error variances is unknown. Each includes the classic non-parametric regression methods of ordinary least squares, geometric mean regression, and orthogonal regression as special cases. Both methods can be readily generalized to multiple linear regression with two or more random regressors.
Elements of statistical thermodynamics
Nash, Leonard K
2006-01-01
Encompassing essentially all aspects of statistical mechanics that appear in undergraduate texts, this concise, elementary treatment shows how an atomic-molecular perspective yields new insights into macroscopic thermodynamics. 1974 edition.
Department of Veterans Affairs — National-level, VISN-level, and/or VAMC-level statistics on the numbers and percentages of users of VHA care form the Northeast Program Evaluation Center (NEPEC)....
International Nuclear Information System (INIS)
Hilaire, S.
2001-01-01
A review of the statistical model of nuclear reactions is presented. The main relations are described, together with the ingredients necessary to perform practical calculations. In addition, a substantial overview of the width fluctuation correction factor is given. (author)
... and Statistics Recommend on Facebook Tweet Share Compartir Plague in the United States Plague was first introduced ... them at higher risk. Reported Cases of Human Plague - United States, 1970-2016 Since the mid–20th ...
Statistical Measures of Marksmanship
National Research Council Canada - National Science Library
Johnson, Richard
2001-01-01
.... This report describes objective statistical procedures to measure both rifle marksmanship accuracy, the proximity of an array of shots to the center of mass of a target, and marksmanship precision...
Titanic: A Statistical Exploration.
Takis, Sandra L.
1999-01-01
Uses the available data about the Titanic's passengers to interest students in exploring categorical data and the chi-square distribution. Describes activities incorporated into a statistics class and gives additional resources for collecting information about the Titanic. (ASK)
... About Us Information For… Media Policy Makers Data & Statistics Recommend on Facebook Tweet Share Compartir Sickle cell ... 1999 through 2002. This drop coincided with the introduction in 2000 of a vaccine that protects against ...
U.S. Department of Health & Human Services — The United States Cancer Statistics (USCS) online databases in WONDER provide cancer incidence and mortality data for the United States for the years since 1999, by...
Probability and Statistical Inference
Prosper, Harrison B.
2006-01-01
These lectures introduce key concepts in probability and statistical inference at a level suitable for graduate students in particle physics. Our goal is to paint as vivid a picture as possible of the concepts covered.
On quantum statistical inference
Barndorff-Nielsen, O.E.; Gill, R.D.; Jupp, P.E.
2003-01-01
Interest in problems of statistical inference connected to measurements of quantum systems has recently increased substantially, in step with dramatic new developments in experimental techniques for studying small quantum systems. Furthermore, developments in the theory of quantum measurements have
CMS Statistics Reference Booklet
U.S. Department of Health & Human Services — The annual CMS Statistics reference booklet provides a quick reference for summary information about health expenditures and the Medicare and Medicaid health...
Statistical mechanics of superconductivity
Kita, Takafumi
2015-01-01
This book provides a theoretical, step-by-step comprehensive explanation of superconductivity for undergraduate and graduate students who have completed elementary courses on thermodynamics and quantum mechanics. To this end, it adopts the unique approach of starting with the statistical mechanics of quantum ideal gases and successively adding and clarifying elements and techniques indispensible for understanding it. They include the spin-statistics theorem, second quantization, density matrices, the Bloch–De Dominicis theorem, the variational principle in statistical mechanics, attractive interaction, and bound states. Ample examples of their usage are also provided in terms of topics from advanced statistical mechanics such as two-particle correlations of quantum ideal gases, derivation of the Hartree–Fock equations, and Landau’s Fermi-liquid theory, among others. With these preliminaries, the fundamental mean-field equations of superconductivity are derived with maximum mathematical clarity based on ...
Statistical electromagnetics: Complex cavities
Naus, H.W.L.
2008-01-01
A selection of the literature on the statistical description of electromagnetic fields and complex cavities is concisely reviewed. Some essential concepts, for example, the application of the central limit theorem and the maximum entropy principle, are scrutinized. Implicit assumptions, biased