WorldWideScience

Sample records for non-parametric deformable registrations

  1. A non-parametric 2D deformable template classifier

    DEFF Research Database (Denmark)

    Schultz, Nette; Nielsen, Allan Aasbjerg; Conradsen, Knut;

    2005-01-01

    We introduce an interactive segmentation method for a sea floor survey. The method is based on a deformable template classifier and is developed to segment data from an echo sounder post-processor called RoxAnn. RoxAnn collects two different measures for each observation point, and in this 2D...... feature space the ship-master will be able to interactively define a segmentation map, which is refined and optimized by the deformable template algorithms. The deformable templates are defined as two-dimensional vector-cycles. Local random transformations are applied to the vector-cycles, and stochastic...... relaxation in a Bayesian scheme is used. In the Bayesian likelihood a class density function and its estimate hereof is introduced, which is designed to separate the feature space. The method is verified on data collected in Øresund, Scandinavia. The data come from four geographically different areas. Two...

  2. Deformable Registration of Digital Images

    Institute of Scientific and Technical Information of China (English)

    管伟光; 解林; 等

    1998-01-01

    is paper proposes a novel elastic model and presents a deformable registration method based on the model.The method registers images without the need to extract reatures from the images,and therefore works directly on grey-level images.A new similarity metric is given on which the formation of external forces is based.The registration method,taking the coarse-to-fine strategy,constructs external forces in larger scales for the first few iterations to rely more on global evidence,and ther in smaller scales for later iterations to allow local refinements.The stiffness of the elastic body decreases as the process proceeds.To make it widely applicable,the method is not restricted to any type of transformation.The variations between images are thought as general free-form deformations.Because the elastic model designed is linearized,it can be solved very efficiently with high accuracy.The method has been successfully tested on MRI images.It will certainly find other uses such as matching time-varying sequences of pictures for motion analysis,fitting templates into images for non-rigid object recognition,matching stereo images for shape recovery,etc.

  3. Mid-space-independent deformable image registration.

    Science.gov (United States)

    Aganj, Iman; Iglesias, Juan Eugenio; Reuter, Martin; Sabuncu, Mert Rory; Fischl, Bruce

    2017-02-24

    Aligning images in a mid-space is a common approach to ensuring that deformable image registration is symmetric - that it does not depend on the arbitrary ordering of the input images. The results are, however, generally dependent on the mathematical definition of the mid-space. In particular, the set of possible solutions is typically restricted by the constraints that are enforced on the transformations to prevent the mid-space from drifting too far from the native image spaces. The use of an implicit atlas has been proposed as an approach to mid-space image registration. In this work, we show that when the atlas is aligned to each image in the native image space, the data term of implicit-atlas-based deformable registration is inherently independent of the mid-space. In addition, we show that the regularization term can be reformulated independently of the mid-space as well. We derive a new symmetric cost function that only depends on the transformation morphing the images to each other, rather than to the atlas. This eliminates the need for anti-drift constraints, thereby expanding the space of allowable deformations. We provide an implementation scheme for the proposed framework, and validate it through diffeomorphic registration experiments on brain magnetic resonance images.

  4. Canny edge-based deformable image registration

    Science.gov (United States)

    Kearney, Vasant; Huang, Yihui; Mao, Weihua; Yuan, Baohong; Tang, Liping

    2017-02-01

    This work focuses on developing a 2D Canny edge-based deformable image registration (Canny DIR) algorithm to register in vivo white light images taken at various time points. This method uses a sparse interpolation deformation algorithm to sparsely register regions of the image with strong edge information. A stability criterion is enforced which removes regions of edges that do not deform in a smooth uniform manner. Using a synthetic mouse surface ground truth model, the accuracy of the Canny DIR algorithm was evaluated under axial rotation in the presence of deformation. The accuracy was also tested using fluorescent dye injections, which were then used for gamma analysis to establish a second ground truth. The results indicate that the Canny DIR algorithm performs better than rigid registration, intensity corrected Demons, and distinctive features for all evaluation matrices and ground truth scenarios. In conclusion Canny DIR performs well in the presence of the unique lighting and shading variations associated with white-light-based image registration.

  5. Deformable image registration with geometric changes

    Institute of Scientific and Technical Information of China (English)

    Yu LIU; Bo ZHU

    2015-01-01

    Geometric changes present a number of difficulties in deformable image registration. In this paper, we propose a global deformation framework to model geometric changes whilst promoting a smooth transformation between source and target images. To achieve this, we have developed an innovative model which significantly reduces the side effects of geometric changes in image registration, and thus improves the registration accuracy. Our key contribution is the introduction of a sparsity-inducing norm, which is typically L1 norm regularization targeting regions where geometric changes occur. This preserves the smoothness of global transformation by eliminating local transformation under different conditions. Numerical solutions are discussed and analyzed to guarantee the stability and fast convergence of our algorithm. To demonstrate the effectiveness and utility of this method, we evaluate it on both synthetic data and real data from traumatic brain injury (TBI). We show that the transformation estimated from our model is able to reconstruct the target image with lower instances of error than a standard elastic registration model.

  6. Automated landmark-guided deformable image registration

    Science.gov (United States)

    Kearney, Vasant; Chen, Susie; Gu, Xuejun; Chiu, Tsuicheng; Liu, Honghuan; Jiang, Lan; Wang, Jing; Yordy, John; Nedzi, Lucien; Mao, Weihua

    2015-01-01

    The purpose of this work is to develop an automated landmark-guided deformable image registration (LDIR) algorithm between the planning CT and daily cone-beam CT (CBCT) with low image quality. This method uses an automated landmark generation algorithm in conjunction with a local small volume gradient matching search engine to map corresponding landmarks between the CBCT and the planning CT. The landmarks act as stabilizing control points in the following Demons deformable image registration. LDIR is implemented on graphics processing units (GPUs) for parallel computation to achieve ultra fast calculation. The accuracy of the LDIR algorithm has been evaluated on a synthetic case in the presence of different noise levels and data of six head and neck cancer patients. The results indicate that LDIR performed better than rigid registration, Demons, and intensity corrected Demons for all similarity metrics used. In conclusion, LDIR achieves high accuracy in the presence of multimodality intensity mismatch and CBCT noise contamination, while simultaneously preserving high computational efficiency.

  7. Symmetry in Image Registration and Deformation Modeling

    DEFF Research Database (Denmark)

    Sommer, Stefan; Jacobs, Henry O.

    We survey the role of symmetry in diffeomorphic registration of landmarks, curves, surfaces, images and higher-order data. The infinite dimensional problem of finding correspondences between objects can for a range of concrete data types be reduced resulting in compact representations of shape...... and spatial structure. This reduction is possible because the available data is incomplete in encoding the full deformation model. Using reduction by symmetry, we describe the reduced models in a common theoretical framework that draws on links between the registration problem and geometric mechanics....... Symmetry also arises in reduction to the Lie algebra using particle relabeling symmetry allowing the equations of motion to be written purely in terms of Eulerian velocity field. Reduction by symmetry has recently been applied for jet-matching and higher-order discrete approximations of the image matching...

  8. Wavelet based free-form deformations for nonrigid registration

    NARCIS (Netherlands)

    W. Sun (William); W.J. Niessen (Wiro); S.K. Klein (Stefan)

    2014-01-01

    textabstractIn nonrigid registration, deformations may take place on the coarse and fine scales. For the conventional B-splines based free-form deformation (FFD) registration, these coarse- and fine-scale deformations are all represented by basis functions of a single scale. Meanwhile, wavelets have

  9. Deformable image registration in radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seung Jong; Kim, Si Yong [Dept. of Radiation Oncology, Virginia Commonwealth University, Richmond (United States)

    2017-06-15

    The number of imaging data sets has significantly increased during radiation treatment after introducing a diverse range of advanced techniques into the field of radiation oncology. As a consequence, there have been many studies proposing meaningful applications of imaging data set use. These applications commonly require a method to align the data sets at a reference. Deformable image registration (DIR) is a process which satisfies this requirement by locally registering image data sets into a reference image set. DIR identifies the spatial correspondence in order to minimize the differences between two or among multiple sets of images. This article describes clinical applications, validation, and algorithms of DIR techniques. Applications of DIR in radiation treatment include dose accumulation, mathematical modeling, automatic segmentation, and functional imaging. Validation methods discussed are based on anatomical landmarks, physical phantoms, digital phantoms, and per application purpose. DIR algorithms are also briefly reviewed with respect to two algorithmic components: similarity index and deformation models.

  10. High performance deformable image registration algorithms for manycore processors

    CERN Document Server

    Shackleford, James; Sharp, Gregory

    2013-01-01

    High Performance Deformable Image Registration Algorithms for Manycore Processors develops highly data-parallel image registration algorithms suitable for use on modern multi-core architectures, including graphics processing units (GPUs). Focusing on deformable registration, we show how to develop data-parallel versions of the registration algorithm suitable for execution on the GPU. Image registration is the process of aligning two or more images into a common coordinate frame and is a fundamental step to be able to compare or fuse data obtained from different sensor measurements. E

  11. Efficient Variational Approaches for Deformable Registration of Images

    Directory of Open Access Journals (Sweden)

    Mehmet Ali Akinlar

    2012-01-01

    Full Text Available Dirichlet, anisotropic, and Huber regularization terms are presented for efficient registration of deformable images. Image registration, an ill-posed optimization problem, is solved using a gradient-descent-based method and some fundamental theorems in calculus of variations. Euler-Lagrange equations with homogeneous Neumann boundary conditions are obtained. These equations are discretized by multigrid and finite difference numerical techniques. The method is applied to the registration of brain MR images of size 65×65. Computational results indicate that the presented method is quite fast and efficient in the registration of deformable medical images.

  12. Regional manifold learning for deformable registration of brain MR images.

    Science.gov (United States)

    Ye, Dong Hye; Hamm, Jihun; Kwon, Dongjin; Davatzikos, Christos; Pohl, Kilian M

    2012-01-01

    We propose a method for deformable registration based on learning the manifolds of individual brain regions. Recent publications on registration of medical images advocate the use of manifold learning in order to confine the search space to anatomically plausible deformations. Existing methods construct manifolds based on a single metric over the entire image domain thus frequently miss regional brain variations. We address this issue by first learning manifolds for specific regions and then computing region-specific deformations from these manifolds. We then determine deformations for the entire image domain by learning the global manifold in such a way that it preserves the region-specific deformations. We evaluate the accuracy of our method by applying it to the LPBA40 dataset and measuring the overlap of the deformed segmentations. The result shows significant improvement in registration accuracy on cortex regions compared to other state of the art methods.

  13. Learning-Based Approaches to Deformable Image Registration

    NARCIS (Netherlands)

    Munzing, S.E.A.

    2014-01-01

    Accurate registration of images is an important and often crucial step in many areas of image processing and analysis, yet it is only used in a small percentage of possible applications. Automated registration methods are not considered to be sufficiently robust to handle complex deformations and lo

  14. A framework for shape matching in deformable image registration

    DEFF Research Database (Denmark)

    Noe, Karsten Østergaard; Mosegaard, Jesper; Tanderup, Kari

    2008-01-01

    Many existing image registration methods have difficulties in accurately describing significant rotation and bending of entities (e.g. organs) between two datasets. A common problem in this case is to ensure that the resulting registration is physically plausible, i.e. that the registration...... describes the actual bending/rotation occurring rather than just introducing expansion in some areas and shrinkage in others. In this work we developed a general framework for deformable image registration of two 3D datasets that alleviates this problem. To ensure that only physically feasible and plausible...

  15. Hierarchical Non-linear Image Registration Integrating Deformable Segmentation

    Institute of Scientific and Technical Information of China (English)

    RAN Xin; QI Fei-hu

    2005-01-01

    A hierarchical non-linear method for image registration was presented, which integrates image segmentation and registration under a variational framework. An improved deformable model is used to simultaneously segment and register feature from multiple images. The objects in the image pair are segmented by evolving a single contour and meanwhile the parameters of affine registration transformation are found out. After that, a contour-constrained elastic registration is applied to register the images correctly. The experimental results indicate that the proposed approach is effective to segment and register medical images.

  16. Deformable image registration for image guided prostate radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Cassetta, Roberto; Riboldi, Marco; Baroni, Guido [DEIB, Politecnico di Milano, Milano (Italy); Leandro, Kleber; Novaes, Paulo Eduardo [Hospital Vitoria, Santos, SP (Brazil); Goncalves, Vinicius; Sakuraba, Roberto [Hospital Israelita Albert Einstein, Sao Paulo, SP (Brazil); Fattori, Giovanni [Paul Scherrer Institute, Center for Proton Therapy, Villigen (Switzerland)

    2016-07-01

    In this study, we present a CT to CBCT deformable registration method based on the ITK library. An algorithm was developed in order to explore the soft tissue information of the CT-CBCT images to perform deformable image registration (DIR), making efforts to overcome the poor signal-to-noise ratio and HU calibration issues that limits CBCT use for treatment planning purposes. Warped CT images and contours were generated and their impact in adaptive radiotherapy was evaluated by DVH analysis for photon and proton treatments. Considerable discrepancies, related to the treatment planning dose distribution, might be found due to changes in patient’s anatomy. (author)

  17. Nonrigid Medical Image Registration Based on Mesh Deformation Constraints

    Directory of Open Access Journals (Sweden)

    XiangBo Lin

    2013-01-01

    Full Text Available Regularizing the deformation field is an important aspect in nonrigid medical image registration. By covering the template image with a triangular mesh, this paper proposes a new regularization constraint in terms of connections between mesh vertices. The connection relationship is preserved by the spring analogy method. The method is evaluated by registering cerebral magnetic resonance imaging (MRI image data obtained from different individuals. Experimental results show that the proposed method has good deformation ability and topology-preserving ability, providing a new way to the nonrigid medical image registration.

  18. Non-Parametric Inference in Astrophysics

    CERN Document Server

    Wasserman, L H; Nichol, R C; Genovese, C; Jang, W; Connolly, A J; Moore, A W; Schneider, J; Wasserman, Larry; Miller, Christopher J.; Nichol, Robert C.; Genovese, Chris; Jang, Woncheol; Connolly, Andrew J.; Moore, Andrew W.; Schneider, Jeff; group, the PICA

    2001-01-01

    We discuss non-parametric density estimation and regression for astrophysics problems. In particular, we show how to compute non-parametric confidence intervals for the location and size of peaks of a function. We illustrate these ideas with recent data on the Cosmic Microwave Background. We also briefly discuss non-parametric Bayesian inference.

  19. Collocation for Diffeomorphic Deformations in Medical Image Registration

    DEFF Research Database (Denmark)

    Darkner, Sune; Pai, Akshay Sadananda Uppinakudru; Liptrot, Matthew George

    2017-01-01

    Diffeomorphic deformation is a popular choice in medical image registration. A fundamental property of diffeomorphisms is in vertibility, implying that once the relation between two points A to B is found, then the relation B to A is given per definition. Consistency is a measure of a numerical...

  20. Deformable registration of multi-modal data including rigid structures

    Energy Technology Data Exchange (ETDEWEB)

    Huesman, Ronald H.; Klein, Gregory J.; Kimdon, Joey A.; Kuo, Chaincy; Majumdar, Sharmila

    2003-05-02

    Multi-modality imaging studies are becoming more widely utilized in the analysis of medical data. Anatomical data from CT and MRI are useful for analyzing or further processing functional data from techniques such as PET and SPECT. When data are not acquired simultaneously, even when these data are acquired on a dual-imaging device using the same bed, motion can occur that requires registration between the reconstructed image volumes. As the human torso can allow non-rigid motion, this type of motion should be estimated and corrected. We report a deformation registration technique that utilizes rigid registration for bony structures, while allowing elastic transformation of soft tissue to more accurately register the entire image volume. The technique is applied to the registration of CT and MR images of the lumbar spine. First a global rigid registration is performed to approximately align features. Bony structures are then segmented from the CT data using semi-automated process, and bounding boxes for each vertebra are established. Each CT subvolume is then individually registered to the MRI data using a piece-wise rigid registration algorithm and a mutual information image similarity measure. The resulting set of rigid transformations allows for accurate registration of the parts of the CT and MRI data representing the vertebrae, but not the adjacent soft tissue. To align the soft tissue, a smoothly-varying deformation is computed using a thin platespline(TPS) algorithm. The TPS technique requires a sparse set of landmarks that are to be brought into correspondence. These landmarks are automatically obtained from the segmented data using simple edge-detection techniques and random sampling from the edge candidates. A smoothness parameter is also included in the TPS formulation for characterization of the stiffness of the soft tissue. Estimation of an appropriate stiffness factor is obtained iteratively by using the mutual information cost function on the result

  1. Personalized heterogeneous deformable model for fast volumetric registration.

    Science.gov (United States)

    Si, Weixin; Liao, Xiangyun; Wang, Qiong; Heng, Pheng Ann

    2017-02-20

    Biomechanical deformable volumetric registration can help improve safety of surgical interventions by ensuring the operations are extremely precise. However, this technique has been limited by the accuracy and the computational efficiency of patient-specific modeling. This study presents a tissue-tissue coupling strategy based on penalty method to model the heterogeneous behavior of deformable body, and estimate the personalized tissue-tissue coupling parameters in a data-driven way. Moreover, considering that the computational efficiency of biomechanical model is highly dependent on the mechanical resolution, a practical coarse-to-fine scheme is proposed to increase runtime efficiency. Particularly, a detail enrichment database is established in an offline fashion to represent the mapping relationship between the deformation results of high-resolution hexahedral mesh extracted from the raw medical data and a newly constructed low-resolution hexahedral mesh. At runtime, the mechanical behavior of human organ under interactions is simulated with this low-resolution hexahedral mesh, then the microstructures are synthesized in virtue of the detail enrichment database. The proposed method is validated by volumetric registration in an abdominal phantom compression experiments. Our personalized heterogeneous deformable model can well describe the coupling effects between different tissues of the phantom. Compared with high-resolution heterogeneous deformable model, the low-resolution deformable model with our detail enrichment database can achieve 9.4× faster, and the average target registration error is 3.42 mm, which demonstrates that the proposed method shows better volumetric registration performance than state-of-the-art. Our framework can well balance the precision and efficiency, and has great potential to be adopted in the practical augmented reality image-guided robotic systems.

  2. Parametric and Non-Parametric System Modelling

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg

    1999-01-01

    considered. It is shown that adaptive estimation in conditional parametric models can be performed by combining the well known methods of local polynomial regression and recursive least squares with exponential forgetting. The approach used for estimation in conditional parametric models also highlights how....... For this purpose non-parametric methods together with additive models are suggested. Also, a new approach specifically designed to detect non-linearities is introduced. Confidence intervals are constructed by use of bootstrapping. As a link between non-parametric and parametric methods a paper dealing with neural...... the focus is on combinations of parametric and non-parametric methods of regression. This combination can be in terms of additive models where e.g. one or more non-parametric term is added to a linear regression model. It can also be in terms of conditional parametric models where the coefficients...

  3. An automated deformable image registration evaluation of confidence tool

    Science.gov (United States)

    Kirby, Neil; Chen, Josephine; Kim, Hojin; Morin, Olivier; Nie, Ke; Pouliot, Jean

    2016-04-01

    Deformable image registration (DIR) is a powerful tool for radiation oncology, but it can produce errors. Beyond this, DIR accuracy is not a fixed quantity and varies on a case-by-case basis. The purpose of this study is to explore the possibility of an automated program to create a patient- and voxel-specific evaluation of DIR accuracy. AUTODIRECT is a software tool that was developed to perform this evaluation for the application of a clinical DIR algorithm to a set of patient images. In brief, AUTODIRECT uses algorithms to generate deformations and applies them to these images (along with processing) to generate sets of test images, with known deformations that are similar to the actual ones and with realistic noise properties. The clinical DIR algorithm is applied to these test image sets (currently 4). From these tests, AUTODIRECT generates spatial and dose uncertainty estimates for each image voxel based on a Student’s t distribution. In this study, four commercially available DIR algorithms were used to deform a dose distribution associated with a virtual pelvic phantom image set, and AUTODIRECT was used to generate dose uncertainty estimates for each deformation. The virtual phantom image set has a known ground-truth deformation, so the true dose-warping errors of the DIR algorithms were also known. AUTODIRECT predicted error patterns that closely matched the actual error spatial distribution. On average AUTODIRECT overestimated the magnitude of the dose errors, but tuning the AUTODIRECT algorithms should improve agreement. This proof-of-principle test demonstrates the potential for the AUTODIRECT algorithm as an empirical method to predict DIR errors.

  4. Feasibility of Multimodal Deformable Registration for Head and Neck Tumor Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Fortunati, Valerio, E-mail: v.fortunati@erasmusmc.nl [Biomedical Imaging Group Rotterdam, Department of Medical Informatics and Radiology, Erasmus MC University Medical Center, Rotterdam (Netherlands); Verhaart, René F. [Hyperthermia Unit, Department of Radiation Oncology, Erasmus MC University Medical Center Cancer Institute, Rotterdam (Netherlands); Angeloni, Francesco [Istituto di Ricovero e Cura a Carattere Scientifico Foundation SDN for Research and High Education in Nuclear Diagnostics, Naples (Italy); Lugt, Aad van der [Department of Radiology, Erasmus MC University Medical Center, Rotterdam (Netherlands); Niessen, Wiro J. [Biomedical Imaging Group Rotterdam, Department of Medical Informatics and Radiology, Erasmus MC University Medical Center, Rotterdam (Netherlands); Faculty of Applied Sciences, Delft University of Technology, Delft (Netherlands); Veenland, Jifke F. [Biomedical Imaging Group Rotterdam, Department of Medical Informatics and Radiology, Erasmus MC University Medical Center, Rotterdam (Netherlands); Paulides, Margarethus M. [Hyperthermia Unit, Department of Radiation Oncology, Erasmus MC University Medical Center Cancer Institute, Rotterdam (Netherlands); Walsum, Theo van [Biomedical Imaging Group Rotterdam, Department of Medical Informatics and Radiology, Erasmus MC University Medical Center, Rotterdam (Netherlands)

    2014-09-01

    Purpose: To investigate the feasibility of using deformable registration in clinical practice to fuse MR and CT images of the head and neck for treatment planning. Method and Materials: A state-of-the-art deformable registration algorithm was optimized, evaluated, and compared with rigid registration. The evaluation was based on manually annotated anatomic landmarks and regions of interest in both modalities. We also developed a multiparametric registration approach, which simultaneously aligns T1- and T2-weighted MR sequences to CT. This was evaluated and compared with single-parametric approaches. Results: Our results show that deformable registration yielded a better accuracy than rigid registration, without introducing unrealistic deformations. For deformable registration, an average landmark alignment of approximatively 1.7 mm was obtained. For all the regions of interest excluding the cerebellum and the parotids, deformable registration provided a median modified Hausdorff distance of approximatively 1 mm. Similar accuracies were obtained for the single-parameter and multiparameter approaches. Conclusions: This study demonstrates that deformable registration of head-and-neck CT and MR images is feasible, with overall a significanlty higher accuracy than for rigid registration.

  5. Accelerated Deformable Registration of Repetitive MRI during Radiotherapy in Cervical Cancer

    DEFF Research Database (Denmark)

    Noe, Karsten Østergaard; Tanderup, Kari; Kiritsis, Christian;

    2006-01-01

    Tumour regression and organ deformations during radiotherapy (RT) of cervical cancer represent major challenges regarding accurate conformation and calculation of dose when using image-guided adaptive radiotherapy. Deformable registration algorithms are able to handle organ deformations, which can...... be useful with advanced tools such as auto segmentation of organs and dynamic adaptation of radiotherapy. The aim of this study was to accelerate and validate deformable registration in MRI-based image-guided radiotherapy of cervical cancer.    ...

  6. Inter and intra-modal deformable registration: continuous deformations meet efficient optimal linear programming.

    Science.gov (United States)

    Glocker, Ben; Paragios, Nikos; Komodakis, Nikos; Tziritas, Georgios; Navab, Nassir

    2007-01-01

    In this paper we propose a novel non-rigid volume registration based on discrete labeling and linear programming. The proposed framework reformulates registration as a minimal path extraction in a weighted graph. The space of solutions is represented using a set of a labels which are assigned to predefined displacements. The graph topology corresponds to a superimposed regular grid onto the volume. Links between neighborhood control points introduce smoothness, while links between the graph nodes and the labels (end-nodes) measure the cost induced to the objective function through the selection of a particular deformation for a given control point once projected to the entire volume domain, Higher order polynomials are used to express the volume deformation from the ones of the control points. Efficient linear programming that can guarantee the optimal solution up to (a user-defined) bound is considered to recover the optimal registration parameters. Therefore, the method is gradient free, can encode various similarity metrics (simple changes on the graph construction), can guarantee a globally sub-optimal solution and is computational tractable. Experimental validation using simulated data with known deformation, as well as manually segmented data demonstrate the extreme potentials of our approach.

  7. Evaluation of various Deformable Image Registrations for Point and Volume Variations

    CERN Document Server

    Han, Su Chul; Park, Seungwoo; Lee, Soon Sung; Jung, Haijo; Kim, Mi-Sook; Yoo, Hyung Jun; Ji, Young Hoon; Yi, Chul Young; Kim, Kum Bae

    2015-01-01

    The accuracy of deformable image registration (DIR) has a significant dosimetric impact in radiation treatment planning. We evaluated accuracy of various DIR algorithms using variations of the deformation point and volume. The reference image (Iref) and volume (Vref) was first generated with virtual deformation QA software (ImSimQA, Oncology System Limited, UK). We deformed Iref with axial movement of deformation point and Vref depending on the types of deformation that are the deformation1 is to increase the Vref (relaxation) and the deformation 2 is to decrease . The deformed image (Idef) and volume (Vdef) acquired by ImSimQA software were inversely deformed to Iref and Vref using DIR algorithms. As a result, we acquired deformed image (Iid) from Idef and volume (Vid) from Vdef. The DIR algorithms were the Horn Schunk optical flow (HS), Iterative Optical Flow (IOF), Modified Demons (MD) and Fast Demons (FD) with the Deformable Image Registration and Adaptive Radiotherapy Toolkit (DIRART) of MATLAB. The imag...

  8. Deformable image registration for multimodal lung-cancer staging

    Science.gov (United States)

    Cheirsilp, Ronnarit; Zang, Xiaonan; Bascom, Rebecca; Allen, Thomas W.; Mahraj, Rickhesvar P. M.; Higgins, William E.

    2016-03-01

    Positron emission tomography (PET) and X-ray computed tomography (CT) serve as major diagnostic imaging modalities in the lung-cancer staging process. Modern scanners provide co-registered whole-body PET/CT studies, collected while the patient breathes freely, and high-resolution chest CT scans, collected under a brief patient breath hold. Unfortunately, no method exists for registering a PET/CT study into the space of a high-resolution chest CT scan. If this could be done, vital diagnostic information offered by the PET/CT study could be brought seamlessly into the procedure plan used during live cancer-staging bronchoscopy. We propose a method for the deformable registration of whole-body PET/CT data into the space of a high-resolution chest CT study. We then demonstrate its potential for procedure planning and subsequent use in multimodal image-guided bronchoscopy.

  9. Spinal pedicle screw planning using deformable atlas registration

    Science.gov (United States)

    Goerres, J.; Uneri, A.; De Silva, T.; Ketcha, M.; Reaungamornrat, S.; Jacobson, M.; Vogt, S.; Kleinszig, G.; Osgood, G.; Wolinsky, J.-P.; Siewerdsen, J. H.

    2017-04-01

    Spinal screw placement is a challenging task due to small bone corridors and high risk of neurological or vascular complications, benefiting from precision guidance/navigation and quality assurance (QA). Implicit to both guidance and QA is the definition of a surgical plan—i.e. the desired trajectories and device selection for target vertebrae—conventionally requiring time-consuming manual annotations by a skilled surgeon. We propose automation of such planning by deriving the pedicle trajectory and device selection from a patient’s preoperative CT or MRI. An atlas of vertebrae surfaces was created to provide the underlying basis for automatic planning—in this work, comprising 40 exemplary vertebrae at three levels of the spine (T7, T8, and L3). The atlas was enriched with ideal trajectory annotations for 60 pedicles in total. To define trajectories for a given patient, sparse deformation fields from the atlas surfaces to the input (CT or MR image) are applied on the annotated trajectories. Mean value coordinates are used to interpolate dense deformation fields. The pose of a straight trajectory is optimized by image-based registration to an accumulated volume of the deformed annotations. For evaluation, input deformation fields were created using coherent point drift (CPD) to perform a leave-one-out analysis over the atlas surfaces. CPD registration demonstrated surface error of 0.89  ±  0.10 mm (median  ±  interquartile range) for T7/T8 and 1.29  ±  0.15 mm for L3. At the pedicle center, registered trajectories deviated from the expert reference by 0.56  ±  0.63 mm (T7/T8) and 1.12  ±  0.67 mm (L3). The predicted maximum screw diameter differed by 0.45  ±  0.62 mm (T7/T8), and 1.26  ±  1.19 mm (L3). The automated planning method avoided screw collisions in all cases and demonstrated close agreement overall with expert reference plans, offering a potentially valuable tool in support

  10. Evaluation of whole-body MR to CT deformable image registration

    NARCIS (Netherlands)

    Akbarzadeh, A.; Gutierrez, D.; Baskin, A.; Ay, M. R.; Ahmadian, A.; Alam, N. Riahi; Loevblad, K. O.; Zaidi, H.

    2013-01-01

    Multimodality image registration plays a crucial role in various clinical and research applications. The aim of this study is to present an optimized MR to CT whole-body deformable image registration algorithm and its validation using clinical studies. A 3D intermodality registration technique based

  11. Deformable image and dose registration evaluation using two commercial programs

    Directory of Open Access Journals (Sweden)

    Rachel Tuohy

    2014-03-01

    Full Text Available Purpose: To evaluate the daily dose delivered to the patients using daily imaging.Methods: Thirty (n = 30 patients that were previously treated in our clinic (10 prostate, 10 SBRT lung and 10 abdomen were used in this study. The patients’ plans were optimized and calculated using the Pinnacle treatment planning system. The daily CBCT scans were retrieved and imported into the Velocity and RayStation software along with the corresponding planning CTs, structure sets and 3D dose distributions. In addition, the critical structures were contoured on each CBCT by the prescribing physician and were included in the evaluation of the daily delivered dose. After registering each CBCT scan to the planning CT using deformable registration, the dose volume histograms (DVH for the organs at risk (OAR and the respective planning target volumes (PTV were calculated in Velocity and Raystation.Results: For the prostate patients, we observed daily volume changes for the bladder, rectum and sigmoid. The DVH analysis for those patients showed variation in the sparing of the critical structures while PTV coverage showed no significant changes. Similar results were observed for patients with abdominal targets. In contrast, in SBRT lung patients, the DVH for the critical structures and the PTV were comparable to those from the initial treatment plan. By using daily CBCT dose reconstruction, we proved PTV coverage for prostate and abdominal targets is adequate. However, there is significant dosimetric change for the OAR. These changes were random with no apparent trending. For lung SBRT patients, the delivered daily dose for both PTV and OAR is comparable to the planned dose with no significant differences.Conclusion: Daily tracking of the delivered dose is feasible. The doses can be evaluated only if the OARs have been segmented taken into account any daily anatomical changes and not by deformation of the structures along.-------------------Cite this article as

  12. Parametric versus non-parametric simulation

    OpenAIRE

    Dupeux, Bérénice; Buysse, Jeroen

    2014-01-01

    Most of ex-ante impact assessment policy models have been based on a parametric approach. We develop a novel non-parametric approach, called Inverse DEA. We use non parametric efficiency analysis for determining the farm’s technology and behaviour. Then, we compare the parametric approach and the Inverse DEA models to a known data generating process. We use a bio-economic model as a data generating process reflecting a real world situation where often non-linear relationships exist. Results s...

  13. MIND Demons for MR-to-CT deformable image registration in image-guided spine surgery

    Science.gov (United States)

    Reaungamornrat, S.; De Silva, T.; Uneri, A.; Wolinsky, J.-P.; Khanna, A. J.; Kleinszig, G.; Vogt, S.; Prince, J. L.; Siewerdsen, J. H.

    2016-03-01

    Purpose: Localization of target anatomy and critical structures defined in preoperative MR images can be achieved by means of multi-modality deformable registration to intraoperative CT. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. Method: The method, called MIND Demons, solves for the deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the velocity fields and the diffeomorphisms, a modality-insensitive similarity function suitable to multi-modality images, and constraints on geodesics in Lagrangian coordinates. Direct optimization (without relying on an exponential map of stationary velocity fields used in conventional diffeomorphic Demons) is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, in phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to conventional mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, and normalized MI (NMI) Demons. Result: The method yielded sub-voxel invertibility (0.006 mm) and nonsingular spatial Jacobians with capability to preserve local orientation and topology. It demonstrated improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.5 mm compared to 10.9, 2.3, and 4.6 mm for MI FFD, LMI FFD, and NMI Demons methods, respectively. Validation in clinical studies demonstrated realistic deformation with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine. Conclusions: A modality-independent deformable registration method has been developed to estimate a viscoelastic diffeomorphic map between preoperative MR and intraoperative CT

  14. Non-rigid registration of medical images based on estimation of deformation states

    Science.gov (United States)

    Marami, Bahram; Sirouspour, Shahin; Capson, David W.

    2014-11-01

    A unified framework for automatic non-rigid 3D-3D and 3D-2D registration of medical images with static and dynamic deformations is proposed in this paper. The problem of non-rigid image registration is approached as a classical state estimation problem using a generic deformation model for the soft tissue. The registration technique employs a dynamic linear elastic continuum mechanics model of the tissue deformation, which is discretized using the finite element method. In the proposed method, the registration is achieved through a Kalman-like filtering process, which incorporates information from the deformation model and a vector of observation prediction errors computed from an intensity-based similarity/distance metric between images. With this formulation, single and multiple-modality, 3D-3D and 3D-2D image registration problems can all be treated within the same framework. The performance of the proposed registration technique was evaluated in a number of different registration scenarios. First, 3D magnetic resonance (MR) images of uncompressed and compressed breast tissue were co-registered. 3D MR images of the uncompressed breast tissue were also registered to a sequence of simulated 2D interventional MR images of the compressed breast. Finally, the registration algorithm was employed to dynamically track a target sub-volume inside the breast tissue during the process of the biopsy needle insertion based on registering pre-insertion 3D MR images to a sequence of real-time simulated 2D interventional MR images. Registration results indicate that the proposed method can be effectively employed for the registration of medical images in image-guided procedures, such as breast biopsy in which the tissue undergoes static and dynamic deformations.

  15. Non-Parametric Estimation of Correlation Functions

    DEFF Research Database (Denmark)

    Brincker, Rune; Rytter, Anders; Krenk, Steen

    In this paper three methods of non-parametric correlation function estimation are reviewed and evaluated: the direct method, estimation by the Fast Fourier Transform and finally estimation by the Random Decrement technique. The basic ideas of the techniques are reviewed, sources of bias are pointed...... out, and methods to prevent bias are presented. The techniques are evaluated by comparing their speed and accuracy on the simple case of estimating auto-correlation functions for the response of a single degree-of-freedom system loaded with white noise....

  16. Lottery spending: a non-parametric analysis.

    Science.gov (United States)

    Garibaldi, Skip; Frisoli, Kayla; Ke, Li; Lim, Melody

    2015-01-01

    We analyze the spending of individuals in the United States on lottery tickets in an average month, as reported in surveys. We view these surveys as sampling from an unknown distribution, and we use non-parametric methods to compare properties of this distribution for various demographic groups, as well as claims that some properties of this distribution are constant across surveys. We find that the observed higher spending by Hispanic lottery players can be attributed to differences in education levels, and we dispute previous claims that the top 10% of lottery players consistently account for 50% of lottery sales.

  17. Lottery spending: a non-parametric analysis.

    Directory of Open Access Journals (Sweden)

    Skip Garibaldi

    Full Text Available We analyze the spending of individuals in the United States on lottery tickets in an average month, as reported in surveys. We view these surveys as sampling from an unknown distribution, and we use non-parametric methods to compare properties of this distribution for various demographic groups, as well as claims that some properties of this distribution are constant across surveys. We find that the observed higher spending by Hispanic lottery players can be attributed to differences in education levels, and we dispute previous claims that the top 10% of lottery players consistently account for 50% of lottery sales.

  18. Non-rigid registration of 3D point clouds under isometric deformation

    Science.gov (United States)

    Ge, Xuming

    2016-11-01

    An algorithm for pairwise non-rigid registration of 3D point clouds is presented in the specific context of isometric deformations. The critical step is registration of point clouds at different epochs captured from an isometric deformation surface within overlapping regions. Based on characteristics invariant under isometric deformation, a variant of the four-point congruent sets algorithm is applied to generate correspondences between two deformed point clouds, and subsequently a RANSAC framework is used to complete cluster extraction in preparation for global optimal alignment. Examples are presented and the results compared with existing approaches to demonstrate the two main contributions of the technique: a success rate for generating true correspondences of 90% and a root mean square error after final registration of 2-3 mm.

  19. Myocardial deformation from tagged MRI in hypertrophic cardiomyopathy using an efficient registration strategy

    Science.gov (United States)

    Piella, G.; De Craene, M.; Oubel, E.; Larrabide, I.; Huguet, M.; Bijnens, B. H.; Frangi, A. F.

    2009-02-01

    This paper combines different parallelization strategies for speeding up motion and deformation computation by non-rigid registration of a sequence of images. The registration is performed in a two-level acceleration approach: (1) parallelization of each registration process using MPI and/or threads, and (2) distribution of the sequential registrations over a cluster. On a 24-node double quad-core Intel Xeon (2.66 GHz CPU, 16 GB RAM) cluster, the method is demonstrated to efficiently compute the deformation of a cardiac sequence reducing the computation time from more than 3 hours to a couple of minutes (for low downsampled images). It is shown that the distribution of the sequential registrations over the cluster together with the parallelization of each pairwise registration by multithreading lowers the computation time towards values compatible with clinical requirements (a few minutes per patient). The combination of MPI and multithreading is only advantageous for large input data sizes. Performances are assessed for the specific scenario of aligning cardiac sequences of taggedMagnetic Resonance (tMR) images, with the aim of comparing strain in healthy subjects and hypertrophic cardiomyopathy (HCM) patients. In particular, we compared the distribution of systolic strain in both populations. On average, HCM patients showed lower average values of strain with larger deviation due to the coexistence of regions with impaired deformation and regions with normal deformation.

  20. SU-E-J-104: Evaluation of Accuracy for Various Deformable Image Registrations with Virtual Deformation QA Software

    Energy Technology Data Exchange (ETDEWEB)

    Han, S; Kim, K; Kim, M; Jung, H; Ji, Y [University of Science and Technology, Daejeon (Korea, Republic of); Korea institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Choi, S; Park, S [Korea institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2015-06-15

    Purpose: The accuracy of deformable image registration (DIR) has a significant dosimetric impact in radiation treatment planning. We evaluated accuracy of various DIR algorithms using virtual deformation QA software (ImSimQA, Oncology System Limited, UK). Methods: The reference image (Iref) and volume (Vref) was first generated with IMSIMQA software. We deformed Iref with axial movement of deformation point and Vref depending on the type of deformation that are the deformation1 is to increase the Vref (relaxation) and the deformation 2 is to decrease the Vref (contraction) .The deformed image (Idef) and volume (Vdef) were inversely deformed to Iref and Vref using DIR algorithms. As a Result, we acquired deformed image (Iid) and volume (Vid). The DIR algorithms were optical flow (HS, IOF) and demons (MD, FD) of the DIRART. The image similarity evaluation between Iref and Iid was calculated by Normalized Mutual Information (NMI) and Normalized Cross Correlation (NCC). The value of Dice Similarity Coefficient (DSC) was used for evaluation of volume similarity. Results: When moving distance of deformation point was 4 mm, the value of NMI was above 1.81 and NCC was above 0.99 in all DIR algorithms. Since the degree of deformation was increased, the degree of image similarity was decreased. When the Vref increased or decreased about 12%, the difference between Vref and Vid was within ±5% regardless of the type of deformation. The value of DSC was above 0.95 in deformation1 except for the MD algorithm. In case of deformation 2, that of DSC was above 0.95 in all DIR algorithms. Conclusion: The Idef and Vdef have not been completely restored to Iref and Vref and the accuracy of DIR algorithms was different depending on the degree of deformation. Hence, the performance of DIR algorithms should be verified for the desired applications.

  1. Validation of the deformable image registration system elastix in the head and neck region

    DEFF Research Database (Denmark)

    Zukauskaite, R.; Brink, C.; Hansen, C. R.

    2015-01-01

    evaluates the accuracy of the open source deformable registration tool elastix when used for registration of different organ structures on planning CT and relapse CT scans of head and neck patients. Materials and Methods: Twenty patients treated with definitive IMRT for oral cavity, oropharynx...... cord, mandible, right/left parotid and submandibular glands, thyroid gland and vertebrae C3-5) on planning CT (pCT), relapse CT (rCT) and re-delineated again on the planning CT (reCT). The contouring on the relapse CT was mapped to the planning CT using elastix (http://elastix.isi.uu.nl/). Spatial...... delineation. Significant correlations within single organs were not found. Conclusions: Deformable registration of head and neck CT images using elastix resulted in a combined delineation and deformation uncertainty of approximately twice the uncertainty related to the manual delineation performed on one CT...

  2. A Contour-Guided Deformable Image Registration Algorithm for Adaptive Radiotherapy

    CERN Document Server

    Gu, Xuejun; Wang, Jing; Yordy, John; Mell, Loren; Jia, Xun; Jiang, Steve B

    2013-01-01

    In adaptive radiotherapy, deformable image registration is often conducted between the planning CT and treatment CT (or cone beam CT) to generate a deformation vector field (DVF) for dose accumulation and contour propagation. The auto propagated contours on the treatment CT may contain relatively large errors, especially in low contrast regions. A clinician inspection and editing of the propagated contours are frequently needed. The edited contours are able to meet the clinical requirement for adaptive therapy; however, the DVF is still inaccurate and inconsistent with the edited contours. The purpose of this work is to develop a contour-guided deformable image registration (CG-DIR) algorithm to improve the accuracy and consistency of the DVF for adaptive radiotherapy. Incorporation of the edited contours into the registration algorithm is realized by regularizing the objective function of the original demons algorithm with a term of intensity matching between the delineated structures set pairs. The CG-DIR a...

  3. Multi-modality image registration using the decomposition model

    Science.gov (United States)

    Ibrahim, Mazlinda; Chen, Ke

    2017-04-01

    In medical image analysis, image registration is one of the crucial steps required to facilitate automatic segmentation, treatment planning and other application involving imaging machines. Image registration, also known as image matching, aims to align two or more images so that information obtained can be compared and combined. Different imaging modalities and their characteristics make the task more challenging. We propose a decomposition model combining parametric and non-parametric deformation for multi-modality image registration. Numerical results show that the normalised gradient field perform better than the mutual information with the decomposition model.

  4. Deformable registration of abdominal kilovoltage treatment planning CT and tomotherapy daily megavoltage CT for treatment adaptation

    Science.gov (United States)

    Yang, Deshan; Chaudhari, Summer R.; Goddu, S. Murty; Pratt, David; Khullar, Divya; Deasy, Joseph O.; El Naqa, Issam

    2009-01-01

    In adaptive radiation therapy the treatment planning kilovoltage CT (kVCT) images need to be registered with daily CT images. Daily megavoltage CT (MVCT) images are generally noisier than the kVCT images. In addition, in the abdomen, low image contrast, differences in bladder filling, differences in bowel, and rectum filling degrade image usefulness and make deformable image registration very difficult. The authors have developed a procedure to overcome these difficulties for better deformable registration between the abdominal kVCT and MVCT images. The procedure includes multiple image preprocessing steps and a two deformable registration steps. The image preprocessing steps include MVCT noise reduction, bowel gas pockets detection and painting, contrast enhancement, and intensity manipulation for critical organs. The first registration step is carried out in the local region of the critical organs (bladder, prostate, and rectum). It requires structure contours of these critical organs on both kVCT and MVCT to obtain good registration accuracy on these critical organs. The second registration step uses the first step results and registers the entire image with less intensive computational requirement. The two-step approach improves the overall computation speed and works together with these image preprocessing steps to achieve better registration accuracy than a regular single step registration. The authors evaluated the procedure on multiple image datasets from prostate cancer patients and gynecological cancer patients. Compared to rigid alignment, the proposed method improves volume matching by over 60% for the critical organs and reduces the prostate landmark registration errors by 50%. PMID:19291972

  5. Deformable mesh registration for the validation of automatic target localization algorithms

    Science.gov (United States)

    Robertson, Scott; Weiss, Elisabeth; Hugo, Geoffrey D.

    2013-01-01

    Purpose: To evaluate deformable mesh registration (DMR) as a tool for validating automatic target registration algorithms used during image-guided radiation therapy. Methods: DMR was implemented in a hierarchical model, with rigid, affine, and B-spline transforms optimized in succession to register a pair of surface meshes. The gross tumor volumes (primary tumor and involved lymph nodes) were contoured by a physician on weekly CT scans in a cohort of lung cancer patients and converted to surface meshes. The meshes from weekly CT images were registered to the mesh from the planning CT, and the resulting registered meshes were compared with the delineated surfaces. Known deformations were also applied to the meshes, followed by mesh registration to recover the known deformation. Mesh registration accuracy was assessed at the mesh surface by computing the symmetric surface distance (SSD) between vertices of each registered mesh pair. Mesh registration quality in regions within 5 mm of the mesh surface was evaluated with respect to a high quality deformable image registration. Results: For 18 patients presenting with a total of 19 primary lung tumors and 24 lymph node targets, the SSD averaged 1.3 ± 0.5 and 0.8 ± 0.2 mm, respectively. Vertex registration errors (VRE) relative to the applied known deformation were 0.8 ± 0.7 and 0.2 ± 0.3 mm for the primary tumor and lymph nodes, respectively. Inside the mesh surface, corresponding average VRE ranged from 0.6 to 0.9 and 0.2 to 0.9 mm, respectively. Outside the mesh surface, average VRE ranged from 0.7 to 1.8 and 0.2 to 1.4 mm. The magnitude of errors generally increased with increasing distance away from the mesh. Conclusions: Provided that delineated surfaces are available, deformable mesh registration is an accurate and reliable method for obtaining a reference registration to validate automatic target registration algorithms for image-guided radiation therapy, specifically in regions on or near the target surfaces

  6. Non-parametric partitioning of SAR images

    Science.gov (United States)

    Delyon, G.; Galland, F.; Réfrégier, Ph.

    2006-09-01

    We describe and analyse a generalization of a parametric segmentation technique adapted to Gamma distributed SAR images to a simple non parametric noise model. The partition is obtained by minimizing the stochastic complexity of a quantized version on Q levels of the SAR image and lead to a criterion without parameters to be tuned by the user. We analyse the reliability of the proposed approach on synthetic images. The quality of the obtained partition will be studied for different possible strategies. In particular, one will discuss the reliability of the proposed optimization procedure. Finally, we will precisely study the performance of the proposed approach in comparison with the statistical parametric technique adapted to Gamma noise. These studies will be led by analyzing the number of misclassified pixels, the standard Hausdorff distance and the number of estimated regions.

  7. On Parametric (and Non-Parametric Variation

    Directory of Open Access Journals (Sweden)

    Neil Smith

    2009-11-01

    Full Text Available This article raises the issue of the correct characterization of ‘Parametric Variation’ in syntax and phonology. After specifying their theoretical commitments, the authors outline the relevant parts of the Principles–and–Parameters framework, and draw a three-way distinction among Universal Principles, Parameters, and Accidents. The core of the contribution then consists of an attempt to provide identity criteria for parametric, as opposed to non-parametric, variation. Parametric choices must be antecedently known, and it is suggested that they must also satisfy seven individually necessary and jointly sufficient criteria. These are that they be cognitively represented, systematic, dependent on the input, deterministic, discrete, mutually exclusive, and irreversible.

  8. The role of regularization in deformable image registration for head and neck adaptive radiotherapy.

    Science.gov (United States)

    Ciardo, D; Peroni, M; Riboldi, M; Alterio, D; Baroni, G; Orecchia, R

    2013-08-01

    Deformable image registration provides a robust mathematical framework to quantify morphological changes that occur along the course of external beam radiotherapy treatments. As clinical reliability of deformable image registration is not always guaranteed, algorithm regularization is commonly introduced to prevent sharp discontinuities in the quantified deformation and achieve anatomically consistent results. In this work we analyzed the influence of regularization on two different registration methods, i.e. B-Splines and Log Domain Diffeomorphic Demons, implemented in an open-source platform. We retrospectively analyzed the simulation computed tomography (CTsim) and the corresponding re-planning computed tomography (CTrepl) scans in 30 head and neck cancer patients. First, we investigated the influence of regularization levels on hounsfield units (HU) information in 10 test patients for each considered method. Then, we compared the registration results of the open-source implementation at selected best performing regularization levels with a clinical commercial software on the remaining 20 patients in terms of mean volume overlap, surface and center of mass distances between manual outlines and propagated structures. The regularized B-Splines method was not statistically different from the commercial software. The tuning of the regularization parameters allowed open-source algorithms to achieve better results in deformable image registration for head and neck patients, with the additional benefit of a framework where regularization can be tuned on a patient specific basis.

  9. Advances and challenges in deformable image registration: From image fusion to complex motion modelling.

    Science.gov (United States)

    Schnabel, Julia A; Heinrich, Mattias P; Papież, Bartłomiej W; Brady, Sir J Michael

    2016-10-01

    Over the past 20 years, the field of medical image registration has significantly advanced from multi-modal image fusion to highly non-linear, deformable image registration for a wide range of medical applications and imaging modalities, involving the compensation and analysis of physiological organ motion or of tissue changes due to growth or disease patterns. While the original focus of image registration has predominantly been on correcting for rigid-body motion of brain image volumes acquired at different scanning sessions, often with different modalities, the advent of dedicated longitudinal and cross-sectional brain studies soon necessitated the development of more sophisticated methods that are able to detect and measure local structural or functional changes, or group differences. Moving outside of the brain, cine imaging and dynamic imaging required the development of deformable image registration to directly measure or compensate for local tissue motion. Since then, deformable image registration has become a general enabling technology. In this work we will present our own contributions to the state-of-the-art in deformable multi-modal fusion and complex motion modelling, and then discuss remaining challenges and provide future perspectives to the field.

  10. Deep Adaptive Log-Demons: Diffeomorphic Image Registration with Very Large Deformations

    Directory of Open Access Journals (Sweden)

    Liya Zhao

    2015-01-01

    Full Text Available This paper proposes a new framework for capturing large and complex deformation in image registration. Traditionally, this challenging problem relies firstly on a preregistration, usually an affine matrix containing rotation, scale, and translation and afterwards on a nonrigid transformation. According to preregistration, the directly calculated affine matrix, which is obtained by limited pixel information, may misregistrate when large biases exist, thus misleading following registration subversively. To address this problem, for two-dimensional (2D images, the two-layer deep adaptive registration framework proposed in this paper firstly accurately classifies the rotation parameter through multilayer convolutional neural networks (CNNs and then identifies scale and translation parameters separately. For three-dimensional (3D images, affine matrix is located through feature correspondences by a triplanar 2D CNNs. Then deformation removal is done iteratively through preregistration and demons registration. By comparison with the state-of-the-art registration framework, our method gains more accurate registration results on both synthetic and real datasets. Besides, principal component analysis (PCA is combined with correlation like Pearson and Spearman to form new similarity standards in 2D and 3D registration. Experiment results also show faster convergence speed.

  11. Automated analysis of small animal PET studies through deformable registration to an atlas

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, Daniel F. [Geneva University Hospital, Division of Nuclear Medicine and Molecular Imaging, Geneva 4 (Switzerland); Zaidi, Habib [Geneva University Hospital, Division of Nuclear Medicine and Molecular Imaging, Geneva 4 (Switzerland); Geneva University, Geneva Neuroscience Center, Geneva (Switzerland); University of Groningen, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen (Netherlands)

    2012-11-15

    This work aims to develop a methodology for automated atlas-guided analysis of small animal positron emission tomography (PET) data through deformable registration to an anatomical mouse model. A non-rigid registration technique is used to put into correspondence relevant anatomical regions of rodent CT images from combined PET/CT studies to corresponding CT images of the Digimouse anatomical mouse model. The latter provides a pre-segmented atlas consisting of 21 anatomical regions suitable for automated quantitative analysis. Image registration is performed using a package based on the Insight Toolkit allowing the implementation of various image registration algorithms. The optimal parameters obtained for deformable registration were applied to simulated and experimental mouse PET/CT studies. The accuracy of the image registration procedure was assessed by segmenting mouse CT images into seven regions: brain, lungs, heart, kidneys, bladder, skeleton and the rest of the body. This was accomplished prior to image registration using a semi-automated algorithm. Each mouse segmentation was transformed using the parameters obtained during CT to CT image registration. The resulting segmentation was compared with the original Digimouse atlas to quantify image registration accuracy using established metrics such as the Dice coefficient and Hausdorff distance. PET images were then transformed using the same technique and automated quantitative analysis of tracer uptake performed. The Dice coefficient and Hausdorff distance show fair to excellent agreement and a mean registration mismatch distance of about 6 mm. The results demonstrate good quantification accuracy in most of the regions, especially the brain, but not in the bladder, as expected. Normalized mean activity estimates were preserved between the reference and automated quantification techniques with relative errors below 10 % in most of the organs considered. The proposed automated quantification technique is

  12. Nonrigid registration with tissue-dependent filtering of the deformation field

    Energy Technology Data Exchange (ETDEWEB)

    Staring, Marius; Klein, Stefan; Pluim, Josien P W [Image Sciences Institute, University Medical Center Utrecht, PO Box 85500, 3508 GA, Room Q0S.459, Utrecht (Netherlands)

    2007-12-07

    In present-day medical practice it is often necessary to nonrigidly align image data. Current registration algorithms do not generally take the characteristics of tissue into account. Consequently, rigid tissue, such as bone, can be deformed elastically, growth of tumours may be concealed, and contrast-enhanced structures may be reduced in volume. We propose a method to locally adapt the deformation field at structures that must be kept rigid, using a tissue-dependent filtering technique. This adaptive filtering of the deformation field results in locally linear transformations without scaling or shearing. The degree of filtering is related to tissue stiffness: more filtering is applied at stiff tissue locations, less at parts of the image containing nonrigid tissue. The tissue-dependent filter is incorporated in a commonly used registration algorithm, using mutual information as a similarity measure and cubic B-splines to model the deformation field. The new registration algorithm is compared with this popular method. Evaluation of the proposed tissue-dependent filtering is performed on 3D computed tomography (CT) data of the thorax and on 2D digital subtraction angiography (DSA) images. The results show that tissue-dependent filtering of the deformation field leads to improved registration results: tumour volumes and vessel widths are preserved rather than affected.

  13. Biomechanical deformable image registration of longitudinal lung CT images using vessel information

    Science.gov (United States)

    Cazoulat, Guillaume; Owen, Dawn; Matuszak, Martha M.; Balter, James M.; Brock, Kristy K.

    2016-07-01

    Spatial correlation of lung tissue across longitudinal images, as the patient responds to treatment, is a critical step in adaptive radiotherapy. The goal of this work is to expand a biomechanical model-based deformable registration algorithm (Morfeus) to achieve accurate registration in the presence of significant anatomical changes. Six lung cancer patients previously treated with conventionally fractionated radiotherapy were retrospectively evaluated. Exhale CT scans were obtained at treatment planning and following three weeks of treatment. For each patient, the planning CT was registered to the follow-up CT using Morfeus, a biomechanical model-based deformable registration algorithm. To model the complex response of the lung, an extension to Morfeus has been developed: an initial deformation was estimated with Morfeus consisting of boundary conditions on the chest wall and incorporating a sliding interface with the lungs. It was hypothesized that the addition of boundary conditions based on vessel tree matching would provide a robust reduction of the residual registration error. To achieve this, the vessel trees were segmented on the two images by thresholding a vesselness image based on the Hessian matrix’s eigenvalues. For each point on the reference vessel tree centerline, the displacement vector was estimated by applying a variant of the Demons registration algorithm between the planning CT and the deformed follow-up CT. An expert independently identified corresponding landmarks well distributed in the lung to compute target registration errors (TRE). The TRE was: 5.8+/- 2.9 , 3.4+/- 2.3 and 1.6+/- 1.3 mm after rigid registration, Morfeus and Morfeus with boundary conditions on the vessel tree, respectively. In conclusion, the addition of boundary conditions on the vessels significantly improved the accuracy in modeling the response of the lung and tumor over the course of radiotherapy. Minimizing and modeling these geometrical uncertainties will enable

  14. A strategy for multimodal deformable image registration to integrate PET/MR into radiotherapy treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Leibfarth, Sara; Moennich, David; Thorwarth, Daniela [Section for Biomedical Physics, Dept. of Radiation Oncology, Univ. Hospital Tuebingen, Tuebingen (Germany)], e-mail: Sara.Leibfarth@med.uni-tuebingen.de; Welz, Stefan; Siegel, Christine; Zips, Daniel [Dept. of Radiation Oncology, Univ. Hospital Tuebingen, Tuebingen (Germany); Schwenzer, Nina [Dept. of Diagnostic and Interventional Radiology, Univ. Hospital Tuebingen, Tuebingen (Germany); Holger Schmidt, Holger [Dept. of Diagnostic and Interventional Radiology, Univ. Hospital Tuebingen, Tuebingen (Germany); Lab. for Preclinical Imaging and Imaging Technology of the Werner Siemens Foundation, Dept. of Preclinical Imaging and Radiopharmacy, Tuebingen (Germany)

    2013-10-15

    Background: Combined positron emission tomography (PET)/magnetic resonance imaging (MRI) is highly promising for biologically individualized radiotherapy (RT). Hence, the purpose of this work was to develop an accurate and robust registration strategy to integrate combined PET/MR data into RT treatment planning. Material and methods: Eight patient datasets consisting of an FDG PET/computed tomography (CT) and a subsequently acquired PET/MR of the head and neck (HN) region were available. Registration strategies were developed based on CT and MR data only, whereas the PET components were fused with the resulting deformation field. Following a rigid registration, deformable registration was performed with a transform parametrized by B-splines. Three different optimization metrics were investigated: global mutual information (GMI), GMI combined with a bending energy penalty (BEP) for regularization (GMI + BEP) and localized mutual information with BEP (LMI + BEP). Different quantitative registration quality measures were developed, including volumetric overlap and mean distance measures for structures segmented on CT and MR as well as anatomical landmark distances. Moreover, the local registration quality in the tumor region was assessed by the normalized cross correlation (NCC) of the two PET datasets. Results: LMI + BEP yielded the most robust and accurate registration results. For GMI, GMI + BEP and LMI + BEP, mean landmark distances (standard deviations) were 23.9 mm (15.5 mm), 4.8 mm (4.0 mm) and 3.0 mm (1.0 mm), and mean NCC values (standard deviations) were 0.29 (0.29), 0.84 (0.14) and 0.88 (0.06), respectively. Conclusion: Accurate and robust multimodal deformable image registration of CT and MR in the HN region can be performed using a B-spline parametrized transform and LMI + BEP as optimization metric. With this strategy, biologically individualized RT based on combined PET/MRI in terms of dose painting is possible.

  15. Validation of an accelerated 'demons' algorithm for deformable image registration in radiation therapy

    Science.gov (United States)

    Wang, He; Dong, Lei; O'Daniel, Jennifer; Mohan, Radhe; Garden, Adam S.; Kian Ang, K.; Kuban, Deborah A.; Bonnen, Mark; Chang, Joe Y.; Cheung, Rex

    2005-06-01

    A greyscale-based fully automatic deformable image registration algorithm, originally known as the 'demons' algorithm, was implemented for CT image-guided radiotherapy. We accelerated the algorithm by introducing an 'active force' along with an adaptive force strength adjustment during the iterative process. These improvements led to a 40% speed improvement over the original algorithm and a high tolerance of large organ deformations. We used three methods to evaluate the accuracy of the algorithm. First, we created a set of mathematical transformations for a series of patient's CT images. This provides a 'ground truth' solution for quantitatively validating the deformable image registration algorithm. Second, we used a physically deformable pelvic phantom, which can measure deformed objects under different conditions. The results of these two tests allowed us to quantify the accuracy of the deformable registration. Validation results showed that more than 96% of the voxels were within 2 mm of their intended shifts for a prostate and a head-and-neck patient case. The mean errors and standard deviations were 0.5 mm ± 1.5 mm and 0.2 mm ± 0.6 mm, respectively. Using the deformable pelvis phantom, the result showed a tracking accuracy of better than 1.5 mm for 23 seeds implanted in a phantom prostate that was deformed by inflation of a rectal balloon. Third, physician-drawn contours outlining the tumour volumes and certain anatomical structures in the original CT images were deformed along with the CT images acquired during subsequent treatments or during a different respiratory phase for a lung cancer case. Visual inspection of the positions and shapes of these deformed contours agreed well with human judgment. Together, these results suggest that the accelerated demons algorithm has significant potential for delineating and tracking doses in targets and critical structures during CT-guided radiotherapy.

  16. A first step toward uncovering the truth about weight tuning in deformable image registration

    Science.gov (United States)

    Pirpinia, Kleopatra; Bosman, Peter A. N.; Sonke, Jan-Jakob; van Herk, Marcel; Alderliesten, Tanja

    2016-03-01

    Deformable image registration is currently predominantly solved by optimizing a weighted linear combination of objectives. Successfully tuning the weights associated with these objectives is not trivial, leading to trial-and-error approaches. Such an approach assumes an intuitive interplay between weights, optimization objectives, and target registration errors. However, it is not known whether this always holds for existing registration methods. To investigate the interplay between weights, optimization objectives, and registration errors, we employ multi-objective optimization. Here, objectives of interest are optimized simultaneously, causing a set of multiple optimal solutions to exist, called the optimal Pareto front. Our medical application is in breast cancer and includes the challenging prone-supine registration problem. In total, we studied the interplay in three different ways. First, we ran many random linear combinations of objectives using the well-known registration software elastix. Second, since the optimization algorithms used in registration are typically of a local-search nature, final solutions may not always form a Pareto front. We therefore employed a multi-objective evolutionary algorithm that finds weights that correspond to registration outcomes that do form a Pareto front. Third, we examined how the interplay differs if a true multi-objective (i.e., weight-free) image registration method is used. Results indicate that a trial-and-error weight-adaptation approach can be successful for the easy prone to prone breast image registration case, due to the absence of many local optima. With increasing problem difficulty the use of more advanced approaches can be of value in finding and selecting the optimal registration outcomes.

  17. Deformable registration of CT and cone-beam CT with local intensity matching

    Science.gov (United States)

    Park, Seyoun; Plishker, William; Quon, Harry; Wong, John; Shekhar, Raj; Lee, Junghoon

    2017-02-01

    Cone-beam CT (CBCT) is a widely used intra-operative imaging modality in image-guided radiotherapy and surgery. A short scan followed by a filtered-backprojection is typically used for CBCT reconstruction. While data on the mid-plane (plane of source-detector rotation) is complete, off-mid-planes undergo different information deficiency and the computed reconstructions are approximate. This causes different reconstruction artifacts at off-mid-planes depending on slice locations, and therefore impedes accurate registration between CT and CBCT. In this paper, we propose a method to accurately register CT and CBCT by iteratively matching local CT and CBCT intensities. We correct CBCT intensities by matching local intensity histograms slice by slice in conjunction with intensity-based deformable registration. The correction-registration steps are repeated in an alternating way until the result image converges. We integrate the intensity matching into three different deformable registration methods, B-spline, demons, and optical flow that are widely used for CT-CBCT registration. All three registration methods were implemented on a graphics processing unit for efficient parallel computation. We tested the proposed methods on twenty five head and neck cancer cases and compared the performance with state-of-the-art registration methods. Normalized cross correlation (NCC), structural similarity index (SSIM), and target registration error (TRE) were computed to evaluate the registration performance. Our method produced overall NCC of 0.96, SSIM of 0.94, and TRE of 2.26 → 2.27 mm, outperforming existing methods by 9%, 12%, and 27%, respectively. Experimental results also show that our method performs consistently and is more accurate than existing algorithms, and also computationally efficient.

  18. The level of detail required in a deformable phantom to accurately perform quality assurance of deformable image registration

    Science.gov (United States)

    Saenz, Daniel L.; Kim, Hojin; Chen, Josephine; Stathakis, Sotirios; Kirby, Neil

    2016-09-01

    The primary purpose of the study was to determine how detailed deformable image registration (DIR) phantoms need to adequately simulate human anatomy and accurately assess the quality of DIR algorithms. In particular, how many distinct tissues are required in a phantom to simulate complex human anatomy? Pelvis and head-and-neck patient CT images were used for this study as virtual phantoms. Two data sets from each site were analyzed. The virtual phantoms were warped to create two pairs consisting of undeformed and deformed images. Otsu’s method was employed to create additional segmented image pairs of n distinct soft tissue CT number ranges (fat, muscle, etc). A realistic noise image was added to each image. Deformations were applied in MIM Software (MIM) and Velocity deformable multi-pass (DMP) and compared with the known warping. Images with more simulated tissue levels exhibit more contrast, enabling more accurate results. Deformation error (magnitude of the vector difference between known and predicted deformation) was used as a metric to evaluate how many CT number gray levels are needed for a phantom to serve as a realistic patient proxy. Stabilization of the mean deformation error was reached by three soft tissue levels for Velocity DMP and MIM, though MIM exhibited a persisting difference in accuracy between the discrete images and the unprocessed image pair. A minimum detail of three levels allows a realistic patient proxy for use with Velocity and MIM deformation algorithms.

  19. A Practical Approach Based on Analytic Deformable Algorithm for Scenic Image Registration.

    Directory of Open Access Journals (Sweden)

    Wei-Yen Hsu

    Full Text Available Image registration is to produce an entire scene by aligning all the acquired image sequences. A registration algorithm is necessary to tolerance as much as possible for intensity and geometric variation among images. However, captured image views of real scene usually produce unexpected distortions. They are generally derived from the optic characteristics of image sensors or caused by the specific scenes and objects.An analytic registration algorithm considering the deformation is proposed for scenic image applications in this study. After extracting important features by the wavelet-based edge correlation method, an analytic registration approach is then proposed to achieve deformable and accurate matching of point sets. Finally, the registration accuracy is further refined to obtain subpixel precision by a feature-based Levenberg-Marquardt (FLM method. It converges evidently faster than most other methods because of its feature-based characteristic.We validate the performance of proposed method by testing with synthetic and real image sequences acquired by a hand-held digital still camera (DSC and in comparison with an optical flow-based motion technique in terms of the squared sum of intensity differences (SSD and correlation coefficient (CC. The results indicate that the proposed method is satisfactory in the registration accuracy and quality of DSC images.

  20. A first step toward uncovering the truth about weight tuning in deformable image registration

    NARCIS (Netherlands)

    K. Pirpinia (Kleopatra); P.A.N. Bosman (Peter); J.-J. Sonke (Jan-Jakob); M. van Herk (Marcel); T. Alderliesten (Tanja)

    2016-01-01

    textabstractDeformable image registration is currently predominantly solved by optimizing a weighted linear combination of objectives. Successfully tuning the weights associated with these objectives is not trivial, leading to trial-and-error approaches. Such an approach assumes an intuitive

  1. Non-rigid image registration under non-deterministic deformation bounds

    Science.gov (United States)

    Ge, Qian; Lokare, Namita; Lobaton, Edgar

    2015-01-01

    Image registration aims to identify the mapping between corresponding locations in an anatomic structure. Most traditional approaches solve this problem by minimizing some error metric. However, they do not quantify the uncertainty behind their estimates and the feasibility of other solutions. In this work, it is assumed that two images of the same anatomic structure are related via a Lipschitz non-rigid deformation (the registration map). An approach for identifying point correspondences with zero false-negative rate and high precision is introduced under this assumption. This methodology is then extended to registration of regions in an image which is posed as a graph matching problem with geometric constraints. The outcome of this approach is a homeomorphism with uncertainty bounds characterizing its accuracy over the entire image domain. The method is tested by applying deformation maps to the LPBA40 dataset.

  2. Adaptive radiotherapy for bladder cancer using deformable image registration of empty and full bladder

    DEFF Research Database (Denmark)

    Juneja, Prabhjot; Caine, H.; Hunt, P.;

    2015-01-01

    A common objective of various adaptive radiotherapy (ART) strategies for bladder cancer is to reduce irradiation of normal tissue, thereby reduce the risk of radiation induced toxicity, and maintain or improve the target coverage. Bladder radiotherapy, typically involves generous margins (up to 20...... that incorporates the extreme deformations of the bladder, and is applicable from the first day of treatment. Deformation vector fields (DVFs), measured from the deformable image registration between empty and full bladder CTs, were scaled and constrained to construct the a-PTVs. For each patient, four a-PTVs were...

  3. GPU-accelerated Block Matching Algorithm for Deformable Registration of Lung CT Images.

    Science.gov (United States)

    Li, Min; Xiang, Zhikang; Xiao, Liang; Castillo, Edward; Castillo, Richard; Guerrero, Thomas

    2015-12-01

    Deformable registration (DR) is a key technology in the medical field. However, many of the existing DR methods are time-consuming and the registration accuracy needs to be improved, which prevents their clinical applications. In this study, we propose a parallel block matching algorithm for lung CT image registration, in which the sum of squared difference metric is modified as the cost function and the moving least squares approach is used to generate the full displacement field. The algorithm is implemented on Graphic Processing Unit (GPU) with the Compute Unified Device Architecture (CUDA). Results show that the proposed parallel block matching method achieves a fast runtime while maintaining an average registration error (standard deviation) of 1.08 (0.69) mm.

  4. Biological parametric mapping with robust and non-parametric statistics.

    Science.gov (United States)

    Yang, Xue; Beason-Held, Lori; Resnick, Susan M; Landman, Bennett A

    2011-07-15

    Mapping the quantitative relationship between structure and function in the human brain is an important and challenging problem. Numerous volumetric, surface, regions of interest and voxelwise image processing techniques have been developed to statistically assess potential correlations between imaging and non-imaging metrices. Recently, biological parametric mapping has extended the widely popular statistical parametric mapping approach to enable application of the general linear model to multiple image modalities (both for regressors and regressands) along with scalar valued observations. This approach offers great promise for direct, voxelwise assessment of structural and functional relationships with multiple imaging modalities. However, as presented, the biological parametric mapping approach is not robust to outliers and may lead to invalid inferences (e.g., artifactual low p-values) due to slight mis-registration or variation in anatomy between subjects. To enable widespread application of this approach, we introduce robust regression and non-parametric regression in the neuroimaging context of application of the general linear model. Through simulation and empirical studies, we demonstrate that our robust approach reduces sensitivity to outliers without substantial degradation in power. The robust approach and associated software package provide a reliable way to quantitatively assess voxelwise correlations between structural and functional neuroimaging modalities. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Demons deformable registration of CT and cone-beam CT using an iterative intensity matching approach

    Energy Technology Data Exchange (ETDEWEB)

    Nithiananthan, Sajendra; Schafer, Sebastian; Uneri, Ali [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); and others

    2011-04-15

    Purpose: A method of intensity-based deformable registration of CT and cone-beam CT (CBCT) images is described, in which intensity correction occurs simultaneously within the iterative registration process. The method preserves the speed and simplicity of the popular Demons algorithm while providing robustness and accuracy in the presence of large mismatch between CT and CBCT voxel values (''intensity''). Methods: A variant of the Demons algorithm was developed in which an estimate of the relationship between CT and CBCT intensity values for specific materials in the image is computed at each iteration based on the set of currently overlapping voxels. This tissue-specific intensity correction is then used to estimate the registration output for that iteration and the process is repeated. The robustness of the method was tested in CBCT images of a cadaveric head exhibiting a broad range of simulated intensity variations associated with x-ray scatter, object truncation, and/or errors in the reconstruction algorithm. The accuracy of CT-CBCT registration was also measured in six real cases, exhibiting deformations ranging from simple to complex during surgery or radiotherapy guided by a CBCT-capable C-arm or linear accelerator, respectively. Results: The iterative intensity matching approach was robust against all levels of intensity variation examined, including spatially varying errors in voxel value of a factor of 2 or more, as can be encountered in cases of high x-ray scatter. Registration accuracy without intensity matching degraded severely with increasing magnitude of intensity error and introduced image distortion. A single histogram match performed prior to registration alleviated some of these effects but was also prone to image distortion and was quantifiably less robust and accurate than the iterative approach. Within the six case registration accuracy study, iterative intensity matching Demons reduced mean TRE to (2.5{+-}2.8) mm

  6. Deformable image registration for geometrical evaluation of DIBH radiotherapy treatment of lung cancer patients

    DEFF Research Database (Denmark)

    Ottosson, Wiviann; Lykkegaard Andersen, J. A.; Borrisova, S.

    2014-01-01

    Respiration and anatomical variation during radiotherapy (RT) of lung cancer yield dosimetric uncertainties of the delivered dose, possibly affecting the clinical outcome if not corrected for. Adaptive radiotherapy (ART), based on deformable image registration (DIR) and Deep-Inspiration-Breath-Ho......Respiration and anatomical variation during radiotherapy (RT) of lung cancer yield dosimetric uncertainties of the delivered dose, possibly affecting the clinical outcome if not corrected for. Adaptive radiotherapy (ART), based on deformable image registration (DIR) and Deep....... Delineations of anatomical structures were performed on each image set. The CT images were retrospective rigidly and deformable registered to all obtained images using the Varian Smart Adapt v. 11.0. The registered images were analysed for volume change and Dice Similarity Coefficient (DSC). Result...

  7. Deformable image registration for cone-beam CT guided transoral robotic base-of-tongue surgery

    Science.gov (United States)

    Reaungamornrat, S.; Liu, W. P.; Wang, A. S.; Otake, Y.; Nithiananthan, S.; Uneri, A.; Schafer, S.; Tryggestad, E.; Richmon, J.; Sorger, J. M.; Siewerdsen, J. H.; Taylor, R. H.

    2013-07-01

    Transoral robotic surgery (TORS) offers a minimally invasive approach to resection of base-of-tongue tumors. However, precise localization of the surgical target and adjacent critical structures can be challenged by the highly deformed intraoperative setup. We propose a deformable registration method using intraoperative cone-beam computed tomography (CBCT) to accurately align preoperative CT or MR images with the intraoperative scene. The registration method combines a Gaussian mixture (GM) model followed by a variation of the Demons algorithm. First, following segmentation of the volume of interest (i.e. volume of the tongue extending to the hyoid), a GM model is applied to surface point clouds for rigid initialization (GM rigid) followed by nonrigid deformation (GM nonrigid). Second, the registration is refined using the Demons algorithm applied to distance map transforms of the (GM-registered) preoperative image and intraoperative CBCT. Performance was evaluated in repeat cadaver studies (25 image pairs) in terms of target registration error (TRE), entropy correlation coefficient (ECC) and normalized pointwise mutual information (NPMI). Retraction of the tongue in the TORS operative setup induced gross deformation >30 mm. The mean TRE following the GM rigid, GM nonrigid and Demons steps was 4.6, 2.1 and 1.7 mm, respectively. The respective ECC was 0.57, 0.70 and 0.73, and NPMI was 0.46, 0.57 and 0.60. Registration accuracy was best across the superior aspect of the tongue and in proximity to the hyoid (by virtue of GM registration of surface points on these structures). The Demons step refined registration primarily in deeper portions of the tongue further from the surface and hyoid bone. Since the method does not use image intensities directly, it is suitable to multi-modality registration of preoperative CT or MR with intraoperative CBCT. Extending the 3D image registration to the fusion of image and planning data in stereo-endoscopic video is anticipated to

  8. Free Form Deformation-Based Image Registration Improves Accuracy of Traction Force Microscopy.

    Directory of Open Access Journals (Sweden)

    Alvaro Jorge-Peñas

    Full Text Available Traction Force Microscopy (TFM is a widespread method used to recover cellular tractions from the deformation that they cause in their surrounding substrate. Particle Image Velocimetry (PIV is commonly used to quantify the substrate's deformations, due to its simplicity and efficiency. However, PIV relies on a block-matching scheme that easily underestimates the deformations. This is especially relevant in the case of large, locally non-uniform deformations as those usually found in the vicinity of a cell's adhesions to the substrate. To overcome these limitations, we formulate the calculation of the deformation of the substrate in TFM as a non-rigid image registration process that warps the image of the unstressed material to match the image of the stressed one. In particular, we propose to use a B-spline -based Free Form Deformation (FFD algorithm that uses a connected deformable mesh to model a wide range of flexible deformations caused by cellular tractions. Our FFD approach is validated in 3D fields using synthetic (simulated data as well as with experimental data obtained using isolated endothelial cells lying on a deformable, polyacrylamide substrate. Our results show that FFD outperforms PIV providing a deformation field that allows a better recovery of the magnitude and orientation of tractions. Together, these results demonstrate the added value of the FFD algorithm for improving the accuracy of traction recovery.

  9. Deformable image registration with local rigidity constraints for cone-beam CT-guided spine surgery.

    Science.gov (United States)

    Reaungamornrat, S; Wang, A S; Uneri, A; Otake, Y; Khanna, A J; Siewerdsen, J H

    2014-07-21

    Image-guided spine surgery (IGSS) is associated with reduced co-morbidity and improved surgical outcome. However, precise localization of target anatomy and adjacent nerves and vessels relative to planning information (e.g., device trajectories) can be challenged by anatomical deformation. Rigid registration alone fails to account for deformation associated with changes in spine curvature, and conventional deformable registration fails to account for rigidity of the vertebrae, causing unrealistic distortions in the registered image that can confound high-precision surgery. We developed and evaluated a deformable registration method capable of preserving rigidity of bones while resolving the deformation of surrounding soft tissue. The method aligns preoperative CT to intraoperative cone-beam CT (CBCT) using free-form deformation (FFD) with constraints on rigid body motion imposed according to a simple intensity threshold of bone intensities. The constraints enforced three properties of a rigid transformation-namely, constraints on affinity (AC), orthogonality (OC), and properness (PC). The method also incorporated an injectivity constraint (IC) to preserve topology. Physical experiments involving phantoms, an ovine spine, and a human cadaver as well as digital simulations were performed to evaluate the sensitivity to registration parameters, preservation of rigid body morphology, and overall registration accuracy of constrained FFD in comparison to conventional unconstrained FFD (uFFD) and Demons registration. FFD with orthogonality and injectivity constraints (denoted FFD+OC+IC) demonstrated improved performance compared to uFFD and Demons. Affinity and properness constraints offered little or no additional improvement. The FFD+OC+IC method preserved rigid body morphology at near-ideal values of zero dilatation (D = 0.05, compared to 0.39 and 0.56 for uFFD and Demons, respectively) and shear (S = 0.08, compared to 0.36 and 0.44 for uFFD and Demons, respectively

  10. Deformable image registration with local rigidity constraints for cone-beam CT-guided spine surgery

    Science.gov (United States)

    Reaungamornrat, S.; Wang, A. S.; Uneri, A.; Otake, Y.; Khanna, A. J.; Siewerdsen, J. H.

    2014-07-01

    Image-guided spine surgery (IGSS) is associated with reduced co-morbidity and improved surgical outcome. However, precise localization of target anatomy and adjacent nerves and vessels relative to planning information (e.g., device trajectories) can be challenged by anatomical deformation. Rigid registration alone fails to account for deformation associated with changes in spine curvature, and conventional deformable registration fails to account for rigidity of the vertebrae, causing unrealistic distortions in the registered image that can confound high-precision surgery. We developed and evaluated a deformable registration method capable of preserving rigidity of bones while resolving the deformation of surrounding soft tissue. The method aligns preoperative CT to intraoperative cone-beam CT (CBCT) using free-form deformation (FFD) with constraints on rigid body motion imposed according to a simple intensity threshold of bone intensities. The constraints enforced three properties of a rigid transformation—namely, constraints on affinity (AC), orthogonality (OC), and properness (PC). The method also incorporated an injectivity constraint (IC) to preserve topology. Physical experiments involving phantoms, an ovine spine, and a human cadaver as well as digital simulations were performed to evaluate the sensitivity to registration parameters, preservation of rigid body morphology, and overall registration accuracy of constrained FFD in comparison to conventional unconstrained FFD (uFFD) and Demons registration. FFD with orthogonality and injectivity constraints (denoted FFD+OC+IC) demonstrated improved performance compared to uFFD and Demons. Affinity and properness constraints offered little or no additional improvement. The FFD+OC+IC method preserved rigid body morphology at near-ideal values of zero dilatation ({ D} = 0.05, compared to 0.39 and 0.56 for uFFD and Demons, respectively) and shear ({ S} = 0.08, compared to 0.36 and 0.44 for uFFD and Demons

  11. Deformable 3D-2D registration for CT and its application to low dose tomographic fluoroscopy

    Science.gov (United States)

    Flach, Barbara; Brehm, Marcus; Sawall, Stefan; Kachelrieß, Marc

    2014-12-01

    Many applications in medical imaging include image registration for matching of images from the same or different modalities. In the case of full data sampling, the respective reconstructed images are usually of such a good image quality that standard deformable volume-to-volume (3D-3D) registration approaches can be applied. But research in temporal-correlated image reconstruction and dose reductions increases the number of cases where rawdata are available from only few projection angles. Here, deteriorated image quality leads to non-acceptable deformable volume-to-volume registration results. Therefore a registration approach is required that is robust against a decreasing number of projections defining the target position. We propose a deformable volume-to-rawdata (3D-2D) registration method that aims at finding a displacement vector field maximizing the alignment of a CT volume and the acquired rawdata based on the sum of squared differences in rawdata domain. The registration is constrained by a regularization term in accordance with a fluid-based diffusion. Both cost function components, the rawdata fidelity and the regularization term, are optimized in an alternating manner. The matching criterion is optimized by a conjugate gradient descent for nonlinear functions, while the regularization is realized by convolution of the vector fields with Gaussian kernels. We validate the proposed method and compare it to the demons algorithm, a well-known 3D-3D registration method. The comparison is done for a range of 4-60 target projections using datasets from low dose tomographic fluoroscopy as an application example. The results show a high correlation to the ground truth target position without introducing artifacts even in the case of very few projections. In particular the matching in the rawdata domain is improved compared to the 3D-3D registration for the investigated range. The proposed volume-to-rawdata registration increases the robustness regarding sparse

  12. Validation of a deformable image registration technique for cone beam CT-based dose verification

    Energy Technology Data Exchange (ETDEWEB)

    Moteabbed, M., E-mail: mmoteabbed@partners.org; Sharp, G. C.; Wang, Y.; Trofimov, A.; Efstathiou, J. A.; Lu, H.-M. [Massachusetts General Hospital, Boston, Massachusetts 02114 and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2015-01-15

    Purpose: As radiation therapy evolves toward more adaptive techniques, image guidance plays an increasingly important role, not only in patient setup but also in monitoring the delivered dose and adapting the treatment to patient changes. This study aimed to validate a method for evaluation of delivered intensity modulated radiotherapy (IMRT) dose based on multimodal deformable image registration (DIR) for prostate treatments. Methods: A pelvic phantom was scanned with CT and cone-beam computed tomography (CBCT). Both images were digitally deformed using two realistic patient-based deformation fields. The original CT was then registered to the deformed CBCT resulting in a secondary deformed CT. The registration quality was assessed as the ability of the DIR method to recover the artificially induced deformations. The primary and secondary deformed CT images as well as vector fields were compared to evaluate the efficacy of the registration method and it’s suitability to be used for dose calculation. PLASTIMATCH, a free and open source software was used for deformable image registration. A B-spline algorithm with optimized parameters was used to achieve the best registration quality. Geometric image evaluation was performed through voxel-based Hounsfield unit (HU) and vector field comparison. For dosimetric evaluation, IMRT treatment plans were created and optimized on the original CT image and recomputed on the two warped images to be compared. The dose volume histograms were compared for the warped structures that were identical in both warped images. This procedure was repeated for the phantom with full, half full, and empty bladder. Results: The results indicated mean HU differences of up to 120 between registered and ground-truth deformed CT images. However, when the CBCT intensities were calibrated using a region of interest (ROI)-based calibration curve, these differences were reduced by up to 60%. Similarly, the mean differences in average vector field

  13. Automated registration of large deformations for adaptive radiation therapy of prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Godley, Andrew; Ahunbay, Ergun; Peng Cheng; Li, X. Allen [Department of Radiation Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226 (United States)

    2009-04-15

    Available deformable registration methods are often inaccurate over large organ variation encountered, for example, in the rectum and bladder. The authors developed a novel approach to accurately and effectively register large deformations in the prostate region for adaptive radiation therapy. A software tool combining a fast symmetric demons algorithm and the use of masks was developed in C++ based on ITK libraries to register CT images acquired at planning and before treatment fractions. The deformation field determined was subsequently used to deform the delivered dose to match the anatomy of the planning CT. The large deformations involved required that the bladder and rectum volume be masked with uniform intensities of -1000 and 1000 HU, respectively, in both the planning and treatment CTs. The tool was tested for five prostate IGRT patients. The average rectum planning to treatment contour overlap improved from 67% to 93%, the lowest initial overlap is 43%. The average bladder overlap improved from 83% to 98%, with a lowest initial overlap of 60%. Registration regions were set to include a volume receiving 4% of the maximum dose. The average region was 320x210x63, taking approximately 9 min to register on a dual 2.8 GHz Linux system. The prostate and seminal vesicles were correctly placed even though they are not masked. The accumulated doses for multiple fractions with large deformation were computed and verified. The tool developed can effectively supply the previously delivered dose for adaptive planning to correct for interfractional changes.

  14. A fast inverse consistent deformable image registration method based on symmetric optical flow computation

    Science.gov (United States)

    Yang, Deshan; Li, Hua; Low, Daniel A.; Deasy, Joseph O.; El Naqa, Issam

    2008-11-01

    Deformable image registration is widely used in various radiation therapy applications including daily treatment planning adaptation to map planned tissue or dose to changing anatomy. In this work, a simple and efficient inverse consistency deformable registration method is proposed with aims of higher registration accuracy and faster convergence speed. Instead of registering image I to a second image J, the two images are symmetrically deformed toward one another in multiple passes, until both deformed images are matched and correct registration is therefore achieved. In each pass, a delta motion field is computed by minimizing a symmetric optical flow system cost function using modified optical flow algorithms. The images are then further deformed with the delta motion field in the positive and negative directions respectively, and then used for the next pass. The magnitude of the delta motion field is forced to be less than 0.4 voxel for every pass in order to guarantee smoothness and invertibility for the two overall motion fields that are accumulating the delta motion fields in both positive and negative directions, respectively. The final motion fields to register the original images I and J, in either direction, are calculated by inverting one overall motion field and combining the inversion result with the other overall motion field. The final motion fields are inversely consistent and this is ensured by the symmetric way that registration is carried out. The proposed method is demonstrated with phantom images, artificially deformed patient images and 4D-CT images. Our results suggest that the proposed method is able to improve the overall accuracy (reducing registration error by 30% or more, compared to the original and inversely inconsistent optical flow algorithms), reduce the inverse consistency error (by 95% or more) and increase the convergence rate (by 100% or more). The overall computation speed may slightly decrease, or increase in most cases

  15. A fast inverse consistent deformable image registration method based on symmetric optical flow computation

    Energy Technology Data Exchange (ETDEWEB)

    Yang Deshan; Li Hua; Low, Daniel A; Deasy, Joseph O; Naqa, Issam El [Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, 4921 Parkview Place, LL, St. Louis, MO 63110 (United States)

    2008-11-07

    Deformable image registration is widely used in various radiation therapy applications including daily treatment planning adaptation to map planned tissue or dose to changing anatomy. In this work, a simple and efficient inverse consistency deformable registration method is proposed with aims of higher registration accuracy and faster convergence speed. Instead of registering image I to a second image J, the two images are symmetrically deformed toward one another in multiple passes, until both deformed images are matched and correct registration is therefore achieved. In each pass, a delta motion field is computed by minimizing a symmetric optical flow system cost function using modified optical flow algorithms. The images are then further deformed with the delta motion field in the positive and negative directions respectively, and then used for the next pass. The magnitude of the delta motion field is forced to be less than 0.4 voxel for every pass in order to guarantee smoothness and invertibility for the two overall motion fields that are accumulating the delta motion fields in both positive and negative directions, respectively. The final motion fields to register the original images I and J, in either direction, are calculated by inverting one overall motion field and combining the inversion result with the other overall motion field. The final motion fields are inversely consistent and this is ensured by the symmetric way that registration is carried out. The proposed method is demonstrated with phantom images, artificially deformed patient images and 4D-CT images. Our results suggest that the proposed method is able to improve the overall accuracy (reducing registration error by 30% or more, compared to the original and inversely inconsistent optical flow algorithms), reduce the inverse consistency error (by 95% or more) and increase the convergence rate (by 100% or more). The overall computation speed may slightly decrease, or increase in most cases

  16. SU-E-J-87: Lung Deformable Image Registration Using Surface Mesh Deformation for Dose Distribution Combination

    Energy Technology Data Exchange (ETDEWEB)

    Labine, A; Carrier, J; Bedwani, S [CHUM - Notre-Dame, Montreal, Quebec (Canada); Chav, R [Laboratoire de recherche en imagerie et orthopedie (LIO), Montreal, Quebec (Canada); Ecole de technologie superieure, Montreal, Quebec (Canada); DeGuise, J [Laboratoire de recherche en imagerie et orthopedie (LIO), Montreal, Quebec (Canada)

    2014-06-01

    Purpose: To allow a reliable deformable image registration (DIR) method for dose calculation in radiation therapy. This work proposes a performance assessment of a morphological segmentation algorithm that generates a deformation field from lung surface displacements with 4DCT datasets. Methods: From the 4DCT scans of 15 selected patients, the deep exhale phase of the breathing cycle is identified as the reference scan. Varian TPS EclipseTM is used to draw lung contours, which are given as input to the morphological segmentation algorithm. Voxelized contours are smoothed by a Gaussian filter and then transformed into a surface mesh representation. Such mesh is adapted by rigid and elastic deformations to match each subsequent lung volumes. The segmentation efficiency is assessed by comparing the segmented lung contour and the TPS contour considering two volume metrics, defined as Volumetric Overlap Error (VOE) [%] and Relative Volume Difference (RVD) [%] and three surface metrics, defined as Average Symmetric Surface Distance (ASSD) [mm], Root Mean Square Symmetric Surface Distance (RMSSD) [mm] and Maximum Symmetric Surface Distance (MSSD) [mm]. Then, the surface deformation between two breathing phases is determined by the displacement of corresponding vertices in each deformed surface. The lung surface deformation is linearly propagated in the lung volume to generate 3D deformation fields for each breathing phase. Results: The metrics were averaged over the 15 patients and calculated with the same segmentation parameters. The volume metrics obtained are a VOE of 5.2% and a RVD of 2.6%. The surface metrics computed are an ASSD of 0.5 mm, a RMSSD of 0.8 mm and a MSSD of 6.9 mm. Conclusion: This study shows that the morphological segmentation algorithm can provide an automatic method to capture an organ motion from 4DCT scans and translate it into a volume deformation grid needed by DIR method for dose distribution combination.

  17. Elastic registration of prostate MR images based on estimation of deformation states.

    Science.gov (United States)

    Marami, Bahram; Sirouspour, Shahin; Ghoul, Suha; Cepek, Jeremy; Davidson, Sean R H; Capson, David W; Trachtenberg, John; Fenster, Aaron

    2015-04-01

    Magnetic resonance imaging (MRI) is being used increasingly for image-guided targeted biopsy and focal therapy of prostate cancer. In this paper, a combined rigid and deformable registration technique is proposed to register pre-treatment diagnostic 3T magnetic resonance (MR) images of the prostate, with the identified target tumor(s), to intra-treatment 1.5T MR images. The pre-treatment T2-weighted MR images were acquired with patients in a supine position using an endorectal coil in a 3T scanner, while the intra-treatment T2-weighted MR images were acquired in a 1.5T scanner before insertion of the needle with patients in the semi-lithotomy position. Both the rigid and deformable registration algorithms employ an intensity-based distance metric defined based on the modality independent neighborhood descriptors (MIND) between images. The optimization routine for estimating the rigid transformation parameters is initialized using four pairs of manually selected approximate corresponding points on the boundaries of the prostate. In this paper, the problem of deformable image registration is approached from the perspective of state estimation for dynamical systems. The registration algorithm employs a rather generic dynamic linear elastic model of the tissue deformation discretized by the finite element method (FEM). We use the model in a classical state estimation framework to estimate the deformation of the prostate based on the distance metric between pre- and intra-treatment images. Our deformable registration results using 17 sets of prostate MR images showed that the proposed method yielded a target registration error (TRE) of 1.87 ± 0.94 mm,2.03 ± 0.94 mm, and 1.70 ± 0.93 mm for the whole gland (WG), central gland (CG), and peripheral zone (PZ), respectively, using 76 manually-identified fiducial points. This was an improvement over the 2.67 ± 1.31 mm, 2.95 ± 1.43 mm, and 2.34 ± 1.11 mm, respectively for the WG, CG, and PZ after rigid registration alone

  18. Reduction by Lie Group Symmetries in Diffeomorphic Image Registration and Deformation Modelling

    Directory of Open Access Journals (Sweden)

    Stefan Sommer

    2015-05-01

    Full Text Available We survey the role of reduction by symmetry in the large deformation diffeomorphic metric mapping framework for registration of a variety of data types (landmarks, curves, surfaces, images and higher-order derivative data. Particle relabelling symmetry allows the equations of motion to be reduced to the Lie algebra allowing the equations to be written purely in terms of the Eulerian velocity field. As a second use of symmetry, the infinite dimensional problem of finding correspondences between objects can be reduced for a range of concrete data types, resulting in compact representations of shape and spatial structure. Using reduction by symmetry, we describe these models in a common theoretical framework that draws on links between the registration problem and geometric mechanics. We outline these constructions and further cases where reduction by symmetry promises new approaches to the registration of complex data types.

  19. Using patient-specific phantoms to evaluate deformable image registration algorithms for adaptive radiation therapy.

    Science.gov (United States)

    Stanley, Nick; Glide-Hurst, Carri; Kim, Jinkoo; Adams, Jeffrey; Li, Shunshan; Wen, Ning; Chetty, Indrin J; Zhong, Hualiang

    2013-11-04

    The quality of adaptive treatment planning depends on the accuracy of its underlying deformable image registration (DIR). The purpose of this study is to evaluate the performance of two DIR algorithms, B-spline-based deformable multipass (DMP) and deformable demons (Demons), implemented in a commercial software package. Evaluations were conducted using both computational and physical deformable phantoms. Based on a finite element method (FEM), a total of 11 computational models were developed from a set of CT images acquired from four lung and one prostate cancer patients. FEM generated displacement vector fields (DVF) were used to construct the lung and prostate image phantoms. Based on a fast-Fourier transform technique, image noise power spectrum was incorporated into the prostate image phantoms to create simulated CBCT images. The FEM-DVF served as a gold standard for verification of the two registration algorithms performed on these phantoms. The registration algorithms were also evaluated at the homologous points quantified in the CT images of a physical lung phantom. The results indicated that the mean errors of the DMP algorithm were in the range of 1.0 ~ 3.1 mm for the computational phantoms and 1.9 mm for the physical lung phantom. For the computational prostate phantoms, the corresponding mean error was 1.0-1.9 mm in the prostate, 1.9-2.4mm in the rectum, and 1.8-2.1 mm over the entire patient body. Sinusoidal errors induced by B-spline interpolations were observed in all the displacement profiles of the DMP registrations. Regions of large displacements were observed to have more registration errors. Patient-specific FEM models have been developed to evaluate the DIR algorithms implemented in the commercial software package. It has been found that the accuracy of these algorithms is patient dependent and related to various factors including tissue deformation magnitudes and image intensity gradients across the regions of interest. This may suggest that

  20. Accelerated gradient-based free form deformable registration for online adaptive radiotherapy

    Science.gov (United States)

    Yu, Gang; Liang, Yueqiang; Yang, Guanyu; Shu, Huazhong; Li, Baosheng; Yin, Yong; Li, Dengwang

    2015-04-01

    The registration of planning fan-beam computed tomography (FBCT) and daily cone-beam CT (CBCT) is a crucial step in adaptive radiation therapy. The current intensity-based registration algorithms, such as Demons, may fail when they are used to register FBCT and CBCT, because the CT numbers in CBCT cannot exactly correspond to the electron densities. In this paper, we investigated the effects of CBCT intensity inaccuracy on the registration accuracy and developed an accurate gradient-based free form deformation algorithm (GFFD). GFFD distinguishes itself from other free form deformable registration algorithms by (a) measuring the similarity using the 3D gradient vector fields to avoid the effect of inconsistent intensities between the two modalities; (b) accommodating image sampling anisotropy using the local polynomial approximation-intersection of confidence intervals (LPA-ICI) algorithm to ensure a smooth and continuous displacement field; and (c) introducing a ‘bi-directional’ force along with an adaptive force strength adjustment to accelerate the convergence process. It is expected that such a strategy can decrease the effect of the inconsistent intensities between the two modalities, thus improving the registration accuracy and robustness. Moreover, for clinical application, the algorithm was implemented by graphics processing units (GPU) through OpenCL framework. The registration time of the GFFD algorithm for each set of CT data ranges from 8 to 13 s. The applications of on-line adaptive image-guided radiation therapy, including auto-propagation of contours, aperture-optimization and dose volume histogram (DVH) in the course of radiation therapy were also studied by in-house-developed software.

  1. Evaluation of whole-body MR to CT deformable image registration.

    Science.gov (United States)

    Akbarzadeh, A; Gutierrez, D; Baskin, A; Ay, M R; Ahmadian, A; Riahi Alam, N; Lövblad, K O; Zaidi, H

    2013-07-08

    Multimodality image registration plays a crucial role in various clinical and research applications. The aim of this study is to present an optimized MR to CT whole-body deformable image registration algorithm and its validation using clinical studies. A 3D intermodality registration technique based on B-spline transformation was performed using optimized parameters of the elastix package based on the Insight Toolkit (ITK) framework. Twenty-eight (17 male and 11 female) clinical studies were used in this work. The registration was evaluated using anatomical landmarks and segmented organs. In addition to 16 anatomical landmarks, three key organs (brain, lungs, and kidneys) and the entire body volume were segmented for evaluation. Several parameters--such as the Euclidean distance between anatomical landmarks, target overlap, Dice and Jaccard coefficients, false positives and false negatives, volume similarity, distance error, and Hausdorff distance--were calculated to quantify the quality of the registration algorithm. Dice coefficients for the majority of patients (> 75%) were in the 0.8-1 range for the whole body, brain, and lungs, which satisfies the criteria to achieve excellent alignment. On the other hand, for kidneys, Dice coefficients for volumes of 25% of the patients meet excellent volume agreement requirement, while the majority of patients satisfy good agreement criteria (> 0.6). For all patients, the distance error was in 0-10 mm range for all segmented organs. In summary, we optimized and evaluated the accuracy of an MR to CT deformable registration algorithm. The registered images constitute a useful 3D whole-body MR-CT atlas suitable for the development and evaluation of novel MR-guided attenuation correction procedures on hybrid PET-MR systems.

  2. A non-parametric approach to investigating fish population dynamics

    National Research Council Canada - National Science Library

    Cook, R.M; Fryer, R.J

    2001-01-01

    .... Using a non-parametric model for the stock-recruitment relationship it is possible to avoid defining specific functions relating recruitment to stock size while also providing a natural framework to model process error...

  3. Non-parametric approach to the study of phenotypic stability.

    Science.gov (United States)

    Ferreira, D F; Fernandes, S B; Bruzi, A T; Ramalho, M A P

    2016-02-19

    The aim of this study was to undertake the theoretical derivations of non-parametric methods, which use linear regressions based on rank order, for stability analyses. These methods were extension different parametric methods used for stability analyses and the result was compared with a standard non-parametric method. Intensive computational methods (e.g., bootstrap and permutation) were applied, and data from the plant-breeding program of the Biology Department of UFLA (Minas Gerais, Brazil) were used to illustrate and compare the tests. The non-parametric stability methods were effective for the evaluation of phenotypic stability. In the presence of variance heterogeneity, the non-parametric methods exhibited greater power of discrimination when determining the phenotypic stability of genotypes.

  4. Dynamic lung modeling and tumor tracking using deformable image registration and geometric smoothing.

    Science.gov (United States)

    Zhang, Yongjie; Jing, Yiming; Liang, Xinghua; Xu, Guoliang; Dong, Lei

    2012-09-01

    A greyscale-based fully automatic deformable image registration algorithm, based on an optical flow method together with geometric smoothing, is developed for dynamic lung modeling and tumor tracking. In our computational processing pipeline, the input data is a set of 4D CT images with 10 phases. The triangle mesh of the lung model is directly extracted from the more stable exhale phase (Phase 5). In addition, we represent the lung surface model in 3D volumetric format by applying a signed distance function and then generate tetrahedral meshes. Our registration algorithm works for both triangle and tetrahedral meshes. In CT images, the intensity value reflects the local tissue density. For each grid point, we calculate the displacement from the static image (phase 5) to match with the moving image (other phases) by using merely intensity values of the CT images. The optical flow computation is followed by a regularization of the deformation field using geometric smoothing. Lung volume change and the maximum lung tissue movement are used to evaluate the accuracy of the application. Our testing results suggest that the application of deformable registration algorithm is an effective way for delineating and tracking tumor motion in image-guided radiotherapy.

  5. Contour Propagation Using Feature-Based Deformable Registration for Lung Cancer

    Directory of Open Access Journals (Sweden)

    Yuhan Yang

    2013-01-01

    Full Text Available Accurate target delineation of CT image is a critical step in radiotherapy treatment planning. This paper describes a novel strategy for automatic contour propagation, based on deformable registration, for CT images of lung cancer. The proposed strategy starts with a manual-delineated contour in one slice of a 3D CT image. By means of feature-based deformable registration, the initial contour in other slices of the image can be propagated automatically, and then refined by active contour approach. Three algorithms are employed in the strategy: the Speeded-Up Robust Features (SURF, Thin-Plate Spline (TPS, and an adapted active contour (Snake, used to refine and modify the initial contours. Five pulmonary cancer cases with about 400 slices and 1000 contours have been used to verify the proposed strategy. Experiments demonstrate that the proposed strategy can improve the segmentation performance in the pulmonary CT images. Jaccard similarity (JS mean is about 0.88 and the maximum of Hausdorff distance (HD is about 90%. In addition, delineation time has been considerably reduced. The proposed feature-based deformable registration method in the automatic contour propagation improves the delineation efficiency significantly.

  6. Evaluation of accuracy of B-spline transformation-based deformable image registration with different parameter settings for thoracic images

    OpenAIRE

    Kanai, Takayuki; Kadoya, Noriyuki; Ito, Kengo; Onozato, Yusuke; Cho, Sang Yong; Kishi, Kazuma; Dobashi, Suguru; Umezawa, Rei; Matsushita, Haruo; Takeda, Ken; Jingu, Keiichi

    2014-01-01

    Deformable image registration (DIR) is fundamental technique for adaptive radiotherapy and image-guided radiotherapy. However, further improvement of DIR is still needed. We evaluated the accuracy of B-spline transformation-based DIR implemented in elastix. This registration package is largely based on the Insight Segmentation and Registration Toolkit (ITK), and several new functions were implemented to achieve high DIR accuracy. The purpose of this study was to clarify whether new functions ...

  7. On the Need for Comprehensive Validation of Deformable Image Registration, Investigated With a Novel 3-Dimensional Deformable Dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Juang, Titania [Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina (United States); Department of Radiation Oncology Physics, Duke University Medical Center, Durham, North Carolina (United States); Das, Shiva [Department of Radiation Oncology Physics, Duke University Medical Center, Durham, North Carolina (United States); Adamovics, John; Benning, Ron [Department of Chemistry and Biology, Rider University, Lawrenceville, New Jersey (United States); Oldham, Mark, E-mail: mark.oldham@duke.edu [Department of Radiation Oncology Physics, Duke University Medical Center, Durham, North Carolina (United States)

    2013-10-01

    Purpose: To introduce and evaluate a novel deformable 3-dimensional (3D) dosimetry system (Presage-Def/Optical-CT) and its application toward investigating the accuracy of dose deformation in a commercial deformable image registration (DIR) package. Methods and Materials: Presage-Def is a new dosimetry material consisting of an elastic polyurethane matrix doped with radiochromic leuco dye. Radiologic and mechanical properties were characterized using standard techniques. Dose-tracking feasibility was evaluated by comparing dose distributions between dosimeters irradiated with and without 27% lateral compression. A checkerboard plan of 5-mm square fields enabled precise measurement of true deformation using 3D dosimetry. Predicted deformation was determined from a commercial DIR algorithm. Results: Presage-Def exhibited a linear dose response with sensitivity of 0.0032 ΔOD/(Gy∙cm). Mass density is 1.02 g/cm{sup 3}, and effective atomic number is within 1.5% of water over a broad (0.03-10 MeV) energy range, indicating good water-equivalence. Elastic characteristics were close to that of liver tissue, with Young's modulus of 13.5-887 kPa over a stress range of 0.233-303 kPa, and Poisson's ratio of 0.475 (SE, 0.036). The Presage-Def/Optical-CT system successfully imaged the nondeformed and deformed dose distributions, with isotropic resolution of 1 mm. Comparison with the predicted deformed 3D dose distribution identified inaccuracies in the commercial DIR algorithm. Although external contours were accurately deformed (submillimeter accuracy), volumetric dose deformation was poor. Checkerboard field positioning and dimension errors of up to 9 and 14 mm, respectively, were identified, and the 3D DIR-deformed dose γ passing rate was only γ{sub 3%/3} {sub mm} = 60.0%. Conclusions: The Presage-Def/Optical-CT system shows strong potential for comprehensive investigation of DIR algorithm accuracy. Substantial errors in a commercial DIR were found in the

  8. A novel scheme for automatic nonrigid image registration using deformation invariant feature and geometric constraint

    Science.gov (United States)

    Deng, Zhipeng; Lei, Lin; Zhou, Shilin

    2015-10-01

    Automatic image registration is a vital yet challenging task, particularly for non-rigid deformation images which are more complicated and common in remote sensing images, such as distorted UAV (unmanned aerial vehicle) images or scanning imaging images caused by flutter. Traditional non-rigid image registration methods are based on the correctly matched corresponding landmarks, which usually needs artificial markers. It is a rather challenging task to locate the accurate position of the points and get accurate homonymy point sets. In this paper, we proposed an automatic non-rigid image registration algorithm which mainly consists of three steps: To begin with, we introduce an automatic feature point extraction method based on non-linear scale space and uniform distribution strategy to extract the points which are uniform distributed along the edge of the image. Next, we propose a hybrid point matching algorithm using DaLI (Deformation and Light Invariant) descriptor and local affine invariant geometric constraint based on triangulation which is constructed by K-nearest neighbor algorithm. Based on the accurate homonymy point sets, the two images are registrated by the model of TPS (Thin Plate Spline). Our method is demonstrated by three deliberately designed experiments. The first two experiments are designed to evaluate the distribution of point set and the correctly matching rate on synthetic data and real data respectively. The last experiment is designed on the non-rigid deformation remote sensing images and the three experimental results demonstrate the accuracy, robustness, and efficiency of the proposed algorithm compared with other traditional methods.

  9. Model-based registration for assessment of spinal deformities in idiopathic scoliosis

    Science.gov (United States)

    Forsberg, Daniel; Lundström, Claes; Andersson, Mats; Knutsson, Hans

    2014-01-01

    Detailed analysis of spinal deformity is important within orthopaedic healthcare, in particular for assessment of idiopathic scoliosis. This paper addresses this challenge by proposing an image analysis method, capable of providing a full three-dimensional spine characterization. The proposed method is based on the registration of a highly detailed spine model to image data from computed tomography. The registration process provides an accurate segmentation of each individual vertebra and the ability to derive various measures describing the spinal deformity. The derived measures are estimated from landmarks attached to the spine model and transferred to the patient data according to the registration result. Evaluation of the method provides an average point-to-surface error of 0.9 mm ± 0.9 (comparing segmentations), and an average target registration error of 2.3 mm ± 1.7 (comparing landmarks). Comparing automatic and manual measurements of axial vertebral rotation provides a mean absolute difference of 2.5° ± 1.8, which is on a par with other computerized methods for assessing axial vertebral rotation. A significant advantage of our method, compared to other computerized methods for rotational measurements, is that it does not rely on vertebral symmetry for computing the rotational measures. The proposed method is fully automatic and computationally efficient, only requiring three to four minutes to process an entire image volume covering vertebrae L5 to T1. Given the use of landmarks, the method can be readily adapted to estimate other measures describing a spinal deformity by changing the set of employed landmarks. In addition, the method has the potential to be utilized for accurate segmentations of the vertebrae in routine computed tomography examinations, given the relatively low point-to-surface error.

  10. Deformable 3D-2D registration for guiding K-wire placement in pelvic trauma surgery

    Science.gov (United States)

    Goerres, J.; Jacobson, M.; Uneri, A.; de Silva, T.; Ketcha, M.; Reaungamornrat, S.; Vogt, S.; Kleinszig, G.; Wolinsky, J.-P.; Osgood, G.; Siewerdsen, J. H.

    2017-03-01

    Pelvic Kirschner wire (K-wire) insertion is a challenging surgical task requiring interpretation of complex 3D anatomical shape from 2D projections (fluoroscopy) and delivery of device trajectories within fairly narrow bone corridors in proximity to adjacent nerves and vessels. Over long trajectories ( 10-25 cm), K-wires tend to curve (deform), making conventional rigid navigation inaccurate at the tip location. A system is presented that provides accurate 3D localization and guidance of rigid or deformable surgical devices ("components" - e.g., K-wires) based on 3D-2D registration. The patient is registered to a preoperative CT image by virtually projecting digitally reconstructed radiographs (DRRs) and matching to two or more intraoperative x-ray projections. The K-wire is localized using an analogous procedure matching DRRs of a deformably parametrized model for the device component (deformable known-component registration, or dKC-Reg). A cadaver study was performed in which a K-wire trajectory was delivered in the pelvis. The system demonstrated target registration error (TRE) of 2.1 ± 0.3 mm in location of the K-wire tip (median ± interquartile range, IQR) and 0.8 ± 1.4º in orientation at the tip (median ± IQR), providing functionality analogous to surgical tracking / navigation using imaging systems already in the surgical arsenal without reliance on a surgical tracker. The method offers quantitative 3D guidance using images (e.g., inlet / outlet views) already acquired in the standard of care, potentially extending the advantages of navigation to broader utilization in trauma surgery to improve surgical precision and safety.

  11. A novel approach for establishing benchmark CBCT/CT deformable image registrations in prostate cancer radiotherapy.

    Science.gov (United States)

    Kim, Jinkoo; Kumar, Sanath; Liu, Chang; Zhong, Hualiang; Pradhan, Deepak; Shah, Mira; Cattaneo, Richard; Yechieli, Raphael; Robbins, Jared R; Elshaikh, Mohamed A; Chetty, Indrin J

    2013-11-21

    Deformable image registration (DIR) is an integral component for adaptive radiation therapy. However, accurate registration between daily cone-beam computed tomography (CBCT) and treatment planning CT is challenging, due to significant daily variations in rectal and bladder fillings as well as the increased noise levels in CBCT images. Another significant challenge is the lack of 'ground-truth' registrations in the clinical setting, which is necessary for quantitative evaluation of various registration algorithms. The aim of this study is to establish benchmark registrations of clinical patient data. Three pairs of CT/CBCT datasets were chosen for this institutional review board approved retrospective study. On each image, in order to reduce the contouring uncertainty, ten independent sets of organs were manually delineated by five physicians. The mean contour set for each image was derived from the ten contours. A set of distinctive points (round natural calcifications and three implanted prostate fiducial markers) were also manually identified. The mean contours and point features were then incorporated as constraints into a B-spline based DIR algorithm. Further, a rigidity penalty was imposed on the femurs and pelvic bones to preserve their rigidity. A piecewise-rigid registration approach was adapted to account for the differences in femur pose and the sliding motion between bones. For each registration, the magnitude of the spatial Jacobian (|JAC|) was calculated to quantify the tissue compression and expansion. Deformation grids and finite-element-model-based unbalanced energy maps were also reviewed visually to evaluate the physical soundness of the resultant deformations. Organ DICE indices (indicating the degree of overlap between registered organs) and residual misalignments of the fiducial landmarks were quantified. Manual organ delineation on CBCT images varied significantly among physicians with overall mean DICE index of only 0.7 among redundant

  12. A novel approach for establishing benchmark CBCT/CT deformable image registrations in prostate cancer radiotherapy

    Science.gov (United States)

    Kim, Jinkoo; Kumar, Sanath; Liu, Chang; Zhong, Hualiang; Pradhan, Deepak; Shah, Mira; Cattaneo, Richard; Yechieli, Raphael; Robbins, Jared R.; Elshaikh, Mohamed A.; Chetty, Indrin J.

    2013-11-01

    Deformable image registration (DIR) is an integral component for adaptive radiation therapy. However, accurate registration between daily cone-beam computed tomography (CBCT) and treatment planning CT is challenging, due to significant daily variations in rectal and bladder fillings as well as the increased noise levels in CBCT images. Another significant challenge is the lack of ‘ground-truth’ registrations in the clinical setting, which is necessary for quantitative evaluation of various registration algorithms. The aim of this study is to establish benchmark registrations of clinical patient data. Three pairs of CT/CBCT datasets were chosen for this institutional review board approved retrospective study. On each image, in order to reduce the contouring uncertainty, ten independent sets of organs were manually delineated by five physicians. The mean contour set for each image was derived from the ten contours. A set of distinctive points (round natural calcifications and three implanted prostate fiducial markers) were also manually identified. The mean contours and point features were then incorporated as constraints into a B-spline based DIR algorithm. Further, a rigidity penalty was imposed on the femurs and pelvic bones to preserve their rigidity. A piecewise-rigid registration approach was adapted to account for the differences in femur pose and the sliding motion between bones. For each registration, the magnitude of the spatial Jacobian (|JAC|) was calculated to quantify the tissue compression and expansion. Deformation grids and finite-element-model-based unbalanced energy maps were also reviewed visually to evaluate the physical soundness of the resultant deformations. Organ DICE indices (indicating the degree of overlap between registered organs) and residual misalignments of the fiducial landmarks were quantified. Manual organ delineation on CBCT images varied significantly among physicians with overall mean DICE index of only 0.7 among redundant

  13. Performance evaluation of MIND demons deformable registration of MR and CT images in spinal interventions

    Science.gov (United States)

    Reaungamornrat, S.; De Silva, T.; Uneri, A.; Goerres, J.; Jacobson, M.; Ketcha, M.; Vogt, S.; Kleinszig, G.; Khanna, A. J.; Wolinsky, J.-P.; Prince, J. L.; Siewerdsen, J. H.

    2016-12-01

    Accurate intraoperative localization of target anatomy and adjacent nervous and vascular tissue is essential to safe, effective surgery, and multimodality deformable registration can be used to identify such anatomy by fusing preoperative CT or MR images with intraoperative images. A deformable image registration method has been developed to estimate viscoelastic diffeomorphisms between preoperative MR and intraoperative CT using modality-independent neighborhood descriptors (MIND) and a Huber metric for robust registration. The method, called MIND Demons, optimizes a constrained symmetric energy functional incorporating priors on smoothness, geodesics, and invertibility by alternating between Gauss-Newton optimization and Tikhonov regularization in a multiresolution scheme. Registration performance was evaluated for the MIND Demons method with a symmetric energy formulation in comparison to an asymmetric form, and sensitivity to anisotropic MR voxel-size was analyzed in phantom experiments emulating image-guided spine-surgery in comparison to a free-form deformation (FFD) method using local mutual information (LMI). Performance was validated in a clinical study involving 15 patients undergoing intervention of the cervical, thoracic, and lumbar spine. The target registration error (TRE) for the symmetric MIND Demons formulation (1.3  ±  0.8 mm (median  ±  interquartile)) outperformed the asymmetric form (3.6  ±  4.4 mm). The method demonstrated fairly minor sensitivity to anisotropic MR voxel size, with median TRE ranging 1.3-2.9 mm for MR slice thickness ranging 0.9-9.9 mm, compared to TRE  =  3.2-4.1 mm for LMI FFD over the same range. Evaluation in clinical data demonstrated sub-voxel TRE (preserved topology with sub-voxel invertibility (0.001 mm) and positive-determinant spatial Jacobians. The approach therefore appears robust against realistic anisotropic resolution characteristics in MR and yields registration

  14. CT to Cone-beam CT Deformable Registration With Simultaneous Intensity Correction

    CERN Document Server

    Zhen, Xin; Yan, Hao; Zhou, Linghong; Jia, Xun; Jiang, Steve B

    2012-01-01

    Computed tomography (CT) to cone-beam computed tomography (CBCT) deformable image registration (DIR) is a crucial step in adaptive radiation therapy. Current intensity-based registration algorithms, such as demons, may fail in the context of CT-CBCT DIR because of inconsistent intensities between the two modalities. In this paper, we propose a variant of demons, called Deformation with Intensity Simultaneously Corrected (DISC), to deal with CT-CBCT DIR. DISC distinguishes itself from the original demons algorithm by performing an adaptive intensity correction step on the CBCT image at every iteration step of the demons registration. Specifically, the intensity correction of a voxel in CBCT is achieved by matching the first and the second moments of the voxel intensities inside a patch around the voxel with those on the CT image. It is expected that such a strategy can remove artifacts in the CBCT image, as well as ensuring the intensity consistency between the two modalities. DISC is implemented on computer g...

  15. Optical flow based deformable volume registration using a novel second-order regularization prior

    Science.gov (United States)

    Grbić, Saša; Urschler, Martin; Pock, Thomas; Bischof, Horst

    2010-03-01

    Nonlinear image registration is an initial step for a large number of medical image analysis applications. Optical flow based intensity registration is often used for dealing with intra-modality applications involving motion differences. In this work we present an energy functional which uses a novel, second-order regularization prior of the displacement field. Compared to other methods our scheme is robust to non-Gaussian noise and does not penalize locally affine deformation fields in homogeneous areas. We propose an efficient and stable numerical scheme to find the minimizer of the presented energy. We implemented our algorithm using modern consumer graphics processing units and thereby increased the execution performance dramatically. We further show experimental evaluations on clinical CT thorax data sets at different breathing states and on dynamic 4D CT cardiac data sets.

  16. Deformable prostate registration from MR and TRUS images using surface error driven FEM models

    Science.gov (United States)

    Taquee, Farheen; Goksel, Orcun; Mahdavi, S. Sara; Keyes, Mira; Morris, W. James; Spadinger, Ingrid; Salcudean, Septimiu

    2012-02-01

    The fusion of TransRectal Ultrasound (TRUS) and Magnetic Resonance (MR) images of the prostate can aid diagnosis and treatment planning for prostate cancer. Surface segmentations of the prostate are available in both modalities. Our goal is to develop a 3D deformable registration method based on these segmentations and a biomechanical model. The segmented source volume is meshed and a linear finite element model is created for it. This volume is deformed to the target image volume by applying surface forces computed by assuming a negative relative pressure between the non-overlapping regions of the volumes and the overlapping ones. This pressure drives the model to increase the volume overlap until the surfaces are aligned. We tested our algorithm on prostate surfaces extracted from post-operative MR and TRUS images for 14 patients, using a model with elasticity parameters in the range reported in the literature for the prostate. We used three evaluation metrics for validating our technique: the Dice Similarity Coefficient (DSC) (ideally equal to 1.0), which is a measure of volume alignment, the volume change in source surface during registration, which is a measure of volume preservation, and the distance between the urethras to assess the anatomical correctness of the method. We obtained a DSC of 0.96+/-0.02 and a mean distance between the urethras of 1.5+/-1.4 mm. The change in the volume of the source surface was 1.5+/-1.4%. Our results show that this method is a promising tool for physicallybased deformable surface registration.

  17. Dosimetric- and Geometric Evaluation of Adaptive H&N IMRT Using Deformable Image Registration

    DEFF Research Database (Denmark)

    Eiland, R.B.; Behrens, C. F.; Sjöström, D.

    2012-01-01

    Purpose/Objective: Anatomical changes can occur during RT treatment of H&N cancer patients. This can lead to a difference between planned- and delivered dose. Adaptive RT has the potential to overcome this, utilizing deformable image registration (DIR). The purpose of this study was to evaluate...... to the ReCT in four of seven patients with regard to the target. Larger geometrical variations were observed for organs at risk (OAR). OAR contours obtained with the DIR were for nearly all patients estimated smaller than in the ReCT whereas target contours were estimated larger. The dosimetric results...

  18. Deformable registration of CT and cone-beam CT by local CBCT intensity correction

    Science.gov (United States)

    Park, Seyoun; Plishker, William; Shekhar, Raj; Quon, Harry; Wong, John; Lee, Junghoon

    2015-03-01

    In this paper, we propose a method to accurately register CT to cone-beam CT (CBCT) by iteratively correcting local CBCT intensity. CBCT is a widely used intra-operative imaging modality in image-guided radiotherapy and surgery. A short scan followed by a filtered-backprojection is typically used for CBCT reconstruction. While data on the mid-plane (plane of source-detector rotation) is complete, off-mid-planes undergo different information deficiency and the computed reconstructions are approximate. This causes different reconstruction artifacts at off-mid-planes depending on slice locations, and therefore impedes accurate registration between CT and CBCT. To address this issue, we correct CBCT intensities by matching local intensity histograms slice by slice in conjunction with intensity-based deformable registration. This correction-registration step is repeated until the result image converges. We tested the proposed method on eight head-and-neck cancer cases and compared its performance with state-of-the-art registration methods, Bspline, demons, and optical flow, which are widely used for CT-CBCT registration. Normalized mutual-information (NMI), normalized cross-correlation (NCC), and structural similarity (SSIM) were computed as similarity measures for the performance evaluation. Our method produced overall NMI of 0.59, NCC of 0.96, and SSIM of 0.93, outperforming existing methods by 3.6%, 2.4%, and 2.8% in terms of NMI, NCC, and SSIM scores, respectively. Experimental results show that our method is more consistent and roust than existing algorithms, and also computationally efficient with faster convergence.

  19. Dynamic tracking of a deformable tissue based on 3D-2D MR-US image registration

    Science.gov (United States)

    Marami, Bahram; Sirouspour, Shahin; Fenster, Aaron; Capson, David W.

    2014-03-01

    Real-time registration of pre-operative magnetic resonance (MR) or computed tomography (CT) images with intra-operative Ultrasound (US) images can be a valuable tool in image-guided therapies and interventions. This paper presents an automatic method for dynamically tracking the deformation of a soft tissue based on registering pre-operative three-dimensional (3D) MR images to intra-operative two-dimensional (2D) US images. The registration algorithm is based on concepts in state estimation where a dynamic finite element (FE)- based linear elastic deformation model correlates the imaging data in the spatial and temporal domains. A Kalman-like filtering process estimates the unknown deformation states of the soft tissue using the deformation model and a measure of error between the predicted and the observed intra-operative imaging data. The error is computed based on an intensity-based distance metric, namely, modality independent neighborhood descriptor (MIND), and no segmentation or feature extraction from images is required. The performance of the proposed method is evaluated by dynamically deforming 3D pre-operative MR images of a breast phantom tissue based on real-time 2D images obtained from an US probe. Experimental results on different registration scenarios showed that deformation tracking converges in a few iterations. The average target registration error on the plane of 2D US images for manually selected fiducial points was between 0.3 and 1.5 mm depending on the size of deformation.

  20. WE-D-9A-01: A Novel Mesh-Based Deformable Surface-Contour Registration

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Z; Cai, Y; Guo, X [The University of Texas at Dallas, Richardson, TX (United States); Jia, X; Chiu, T; Kearney, V; Liu, H; Jiang, L; Chen, S; Yordy, J; Nedzi, L; Mao, W [The University of Texas Southwestern Medical Ctr, Dallas, TX (United States)

    2014-06-15

    Purpose: Initial guess is vital for 3D-2D deformable image registration (DIR) while dealing with large deformations for adaptive radiation therapy. A fast procedure has been developed to deform body surface to match 2D body contour on projections. This surface-contour DIR will provide an initial deformation for further complete 3D DIR or image reconstruction. Methods: Both planning CT images and come-beam CT (CBCT) projections are preprocessed to create 0–1 binary mask. Then the body surface and CBCT projection body contours are extracted by Canny edge detector. A finite element modeling system was developed to automatically generate adaptive meshes based on the image surface. After that, the projections of the CT surface voxels are computed and compared with corresponding 2D projection contours from CBCT scans. As a result, the displacement vector field (DVF) on mesh vertices around the surface was optimized iteratively until the shortest Euclidean distance between the pixels on the projections of the deformed CT surface and the corresponding CBCT projection contour is minimized. With the help of the tetrahedral meshes, we can smoothly diffuse the deformation from the surface into the interior of the volume. Finally, the deformed CT images are obtained by the optimal DVF applied on the original planning CT images. Results: The accuracy of the surface-contour registration is evaluated by 3D normalized cross correlation increased from 0.9176 to 0.9957 (sphere-ellipsoid phantom) and from 0.7627 to 0.7919 (H and N cancer patient data). Under the GPU-based implementation, our surface-contour-guided method on H and N cancer patient data takes 8 seconds/iteration, about 7.5 times faster than direct 3D method (60 seconds/iteration), and it needs fewer optimization iterations (30 iterations vs 50 iterations). Conclusion: The proposed surface-contour DIR method can substantially improve both the accuracy and the speed of reconstructing volumetric images, which is helpful

  1. A novel model-based evolutionary algorithm for multi-objective deformable image registration with content mismatch and large deformations: benchmarking efficiency and quality

    Science.gov (United States)

    Bouter, Anton; Alderliesten, Tanja; Bosman, Peter A. N.

    2017-02-01

    Taking a multi-objective optimization approach to deformable image registration has recently gained attention, because such an approach removes the requirement of manually tuning the weights of all the involved objectives. Especially for problems that require large complex deformations, this is a non-trivial task. From the resulting Pareto set of solutions one can then much more insightfully select a registration outcome that is most suitable for the problem at hand. To serve as an internal optimization engine, currently used multi-objective algorithms are competent, but rather inefficient. In this paper we largely improve upon this by introducing a multi-objective real-valued adaptation of the recently introduced Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) for discrete optimization. In this work, GOMEA is tailored specifically to the problem of deformable image registration to obtain substantially improved efficiency. This improvement is achieved by exploiting a key strength of GOMEA: iteratively improving small parts of solutions, allowing to faster exploit the impact of such updates on the objectives at hand through partial evaluations. We performed experiments on three registration problems. In particular, an artificial problem containing a disappearing structure, a pair of pre- and post-operative breast CT scans, and a pair of breast MRI scans acquired in prone and supine position were considered. Results show that compared to the previously used evolutionary algorithm, GOMEA obtains a speed-up of up to a factor of 1600 on the tested registration problems while achieving registration outcomes of similar quality.

  2. 3D-2D Deformable Image Registration Using Feature-Based Nonuniform Meshes.

    Science.gov (United States)

    Zhong, Zichun; Guo, Xiaohu; Cai, Yiqi; Yang, Yin; Wang, Jing; Jia, Xun; Mao, Weihua

    2016-01-01

    By using prior information of planning CT images and feature-based nonuniform meshes, this paper demonstrates that volumetric images can be efficiently registered with a very small portion of 2D projection images of a Cone-Beam Computed Tomography (CBCT) scan. After a density field is computed based on the extracted feature edges from planning CT images, nonuniform tetrahedral meshes will be automatically generated to better characterize the image features according to the density field; that is, finer meshes are generated for features. The displacement vector fields (DVFs) are specified at the mesh vertices to drive the deformation of original CT images. Digitally reconstructed radiographs (DRRs) of the deformed anatomy are generated and compared with corresponding 2D projections. DVFs are optimized to minimize the objective function including differences between DRRs and projections and the regularity. To further accelerate the above 3D-2D registration, a procedure to obtain good initial deformations by deforming the volume surface to match 2D body boundary on projections has been developed. This complete method is evaluated quantitatively by using several digital phantoms and data from head and neck cancer patients. The feature-based nonuniform meshing method leads to better results than either uniform orthogonal grid or uniform tetrahedral meshes.

  3. 3D-2D Deformable Image Registration Using Feature-Based Nonuniform Meshes

    Directory of Open Access Journals (Sweden)

    Zichun Zhong

    2016-01-01

    Full Text Available By using prior information of planning CT images and feature-based nonuniform meshes, this paper demonstrates that volumetric images can be efficiently registered with a very small portion of 2D projection images of a Cone-Beam Computed Tomography (CBCT scan. After a density field is computed based on the extracted feature edges from planning CT images, nonuniform tetrahedral meshes will be automatically generated to better characterize the image features according to the density field; that is, finer meshes are generated for features. The displacement vector fields (DVFs are specified at the mesh vertices to drive the deformation of original CT images. Digitally reconstructed radiographs (DRRs of the deformed anatomy are generated and compared with corresponding 2D projections. DVFs are optimized to minimize the objective function including differences between DRRs and projections and the regularity. To further accelerate the above 3D-2D registration, a procedure to obtain good initial deformations by deforming the volume surface to match 2D body boundary on projections has been developed. This complete method is evaluated quantitatively by using several digital phantoms and data from head and neck cancer patients. The feature-based nonuniform meshing method leads to better results than either uniform orthogonal grid or uniform tetrahedral meshes.

  4. Technical Note: DIRART- A software suite for deformable image registration and adaptive radiotherapy research

    Energy Technology Data Exchange (ETDEWEB)

    Yang Deshan; Brame, Scott; El Naqa, Issam; Aditya, Apte; Wu Yu; Murty Goddu, S.; Mutic, Sasa; Deasy, Joseph O.; Low, Daniel A. [Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, Missouri 63110 (United States)

    2011-01-15

    Purpose: Recent years have witnessed tremendous progress in image guide radiotherapy technology and a growing interest in the possibilities for adapting treatment planning and delivery over the course of treatment. One obstacle faced by the research community has been the lack of a comprehensive open-source software toolkit dedicated for adaptive radiotherapy (ART). To address this need, the authors have developed a software suite called the Deformable Image Registration and Adaptive Radiotherapy Toolkit (DIRART). Methods: DIRART is an open-source toolkit developed in MATLAB. It is designed in an object-oriented style with focus on user-friendliness, features, and flexibility. It contains four classes of DIR algorithms, including the newer inverse consistency algorithms to provide consistent displacement vector field in both directions. It also contains common ART functions, an integrated graphical user interface, a variety of visualization and image-processing features, dose metric analysis functions, and interface routines. These interface routines make DIRART a powerful complement to the Computational Environment for Radiotherapy Research (CERR) and popular image-processing toolkits such as ITK. Results: DIRART provides a set of image processing/registration algorithms and postprocessing functions to facilitate the development and testing of DIR algorithms. It also offers a good amount of options for DIR results visualization, evaluation, and validation. Conclusions: By exchanging data with treatment planning systems via DICOM-RT files and CERR, and by bringing image registration algorithms closer to radiotherapy applications, DIRART is potentially a convenient and flexible platform that may facilitate ART and DIR research.

  5. Automatic landmark generation for deformable image registration evaluation for 4D CT images of lung

    Science.gov (United States)

    Vickress, J.; Battista, J.; Barnett, R.; Morgan, J.; Yartsev, S.

    2016-10-01

    Deformable image registration (DIR) has become a common tool in medical imaging across both diagnostic and treatment specialties, but the methods used offer varying levels of accuracy. Evaluation of DIR is commonly performed using manually selected landmarks, which is subjective, tedious and time consuming. We propose a semi-automated method that saves time and provides accuracy comparable to manual selection. Three landmarking methods including manual (with two independent observers), scale invariant feature transform (SIFT), and SIFT with manual editing (SIFT-M) were tested on 10 thoracic 4DCT image studies corresponding to the 0% and 50% phases of respiration. Results of each method were evaluated against a gold standard (GS) landmark set comparing both mean and proximal landmark displacements. The proximal method compares the local deformation magnitude between a test landmark pair and the closest GS pair. Statistical analysis was done using an intra class correlation (ICC) between test and GS displacement values. The creation time per landmark pair was 22, 34, 2.3, and 4.3 s for observers 1 and 2, SIFT, and SIFT-M methods respectively. Across 20 lungs from the 10 CT studies, the ICC values between the GS and observer 1 and 2, SIFT, and SIFT-M methods were 0.85, 0.85, 0.84, and 0.82 for mean lung deformation, and 0.97, 0.98, 0.91, and 0.96 for proximal landmark deformation, respectively. SIFT and SIFT-M methods have an accuracy that is comparable to manual methods when tested against a GS landmark set while saving 90% of the time. The number and distribution of landmarks significantly affected the analysis as manifested by the different results for mean deformation and proximal landmark deformation methods. Automatic landmark methods offer a promising alternative to manual landmarking, if the quantity, quality and distribution of landmarks can be optimized for the intended application.

  6. Improving Dose Accuracy in Cancer Radiation Therapy Using Deformable Image Registration

    Institute of Scientific and Technical Information of China (English)

    Amy Liu; Yadin David; Fred Hosea; Richard Wu

    2016-01-01

    Objective To explore the differences in volume and doses to clinical target volumes (CTVs) and organs at risk (OARs) with and without adaptive treatment plans by using deformable image registration technology. Methods Ten patients with head and neck cancer were selected for this retrospective study. Each patient’s original treatment plan was generated using the Eclipse treatment planning system (Varian, Inc.). Verification CT scans were performed during the third week of treatment. The verification CT images were registered with the original CT images using the Eclipse rigid registration tool simulating daily patient treatment alignment. Then, deformable image registrations (Velocity, Inc.) were performed between the two CT image sets, and the CTVs and major OARs were transferred from the original CT images to the verification CT images. The original treatment plan was then copied into the verification CT image set to calculate the radiation dose reflecting the most recent anatomic changes. Verification plan doses were evaluated by a radiation oncologist, who determined whether an adaptive treatment plan was required. We compared the accumulated doses to CTVs and OARs between the original and adaptive plans, as well as between the adaptive and verification plans, to simulate the doses that would have been delivered if the adaptive plans were not used. All dosimetric data were extracted using the Eclipse Application Programming Interface tool, which was developed in house to access the Eclipse database. Results Body contours were different after 3 weeks of treatment. Mean volumes of all CTVs were reduced (P≤0.04), and the volumes of left and right parotid glands decreased (P≤0.004). There were no significant differences in the volumes of brainstem and oral cavity (P≥0.14) between the original and verification CT scans. The spinal cord had a mean 8.7% decrease in volume (P=0.04). Mean doses of CTVs were all decreased (P≤0.04), whereas the mean doses of the

  7. SU-E-J-266: A Pitfall of a Deformable Image Registration in Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, Y [The National Center for Global Health and Medicine, Shinjuku, Tokyo (Japan); Tachibana, H [The National Cancer Center Hospital East, Kashiwa, Chiba (Japan); Moriya, S [Komazawa University, Setagaya, Tokyo (Japan); Sawant, A [UT Southwestern Medical Center, Dallas, TX (United States)

    2014-06-01

    Purpose: For four-dimensional (4D) planning and adaptive radiotherapy, deformable image registration (DIR) is needed and the accuracy is essential. We evaluated the accuracy of one free-downloadable DIR software library package (NiftyReg) and one commercial DIR software (MIM) in lung SBRT cancer patients. Methods: A rigid and non-rigid registrations were implemented to our in-house software. The non-rigid registration algorithm of the NiftyReg and MIM was based on the free-form deformation. The accuracy of the two software was evaluated when contoured structures to peak-inhale and peak-exhale 4DCT image data sets were measured using the dice similarity coefficient (DSC). The evaluation was performed in 20 lung SBRT patients. Results: In our visual evaluation, the eighteen cases show good agreement between the deformed structures for the peak-inhale phase and the peak-exhale phase structures (more than 0.8 DSC value). In the evaluation of the DSC in-house software, averaged DSC values of GTV and lung, heart, spinal cord, stomach and body were 0.862 and 0.979, 0.932, 0.974, 0.860, 0.998, respectively. As the Resultof the registration using the MIM program in the two cases which had less than 0.7 DSC value when analyzed using the in-house software, the DSC value were improved to 0.8. The CT images in a case with low DSC value shows the tumor was surrounded by the structure with the similar CT values, which were the chest wall or the diaphragm. Conclusion: Not only a free-downloadable DIR software but also a commercial software may provide unexpected results and there is a possibility that the results would make us misjudge the treatment planning. Therefore, we recommend that a commissioning test of any DIR software should be performed before clinical use and we should understand the characteristics of the software.

  8. A hybrid biomechanical intensity based deformable image registration of lung 4DCT

    Science.gov (United States)

    Samavati, Navid; Velec, Michael; Brock, Kristy

    2015-04-01

    Deformable image registration (DIR) has been extensively studied over the past two decades due to its essential role in many image-guided interventions (IGI). IGI demands a highly accurate registration that maintains its accuracy across the entire region of interest. This work evaluates the improvement in accuracy and consistency by refining the results of Morfeus, a biomechanical model-based DIR algorithm. A hybrid DIR algorithm is proposed based on, a biomechanical model-based DIR algorithm and a refinement step based on a B-spline intensity-based algorithm. Inhale and exhale reconstructions of four-dimensional computed tomography (4DCT) lung images from 31 patients were initially registered using the biomechanical DIR by modeling contact surface between the lungs and the chest cavity. The resulting deformations were then refined using the intensity-based algorithm to reduce any residual uncertainties. Important parameters in the intensity-based algorithm, including grid spacing, number of pyramids, and regularization coefficient, were optimized on 10 randomly-chosen patients (out of 31). Target registration error (TRE) was calculated by measuring the Euclidean distance of common anatomical points on both images after registration. For each patient a minimum of 30 points/lung were used. Grid spacing of 8 mm, 5 levels of grid pyramids, and regularization coefficient of 3.0 were found to provide optimal results on 10 randomly chosen patients. Overall the entire patient population (n = 31), the hybrid method resulted in mean ± SD (90th%) TRE of 1.5 ± 1.4 (2.9) mm compared to 3.1 ± 1.9 (5.6) using biomechanical DIR and 2.6 ± 2.5 (6.1) using intensity-based DIR alone. The proposed hybrid biomechanical modeling intensity based algorithm is a promising DIR technique which could be used in various IGI procedures. The current investigation shows the efficacy of this approach for the registration of 4DCT images of the lungs with average accuracy of 1.5 mm.

  9. MO-F-BRA-04: Voxel-Based Statistical Analysis of Deformable Image Registration Error via a Finite Element Method.

    Science.gov (United States)

    Li, S; Lu, M; Kim, J; Glide-Hurst, C; Chetty, I; Zhong, H

    2012-06-01

    Purpose Clinical implementation of adaptive treatment planning is limited by the lack of quantitative tools to assess deformable image registration errors (R-ERR). The purpose of this study was to develop a method, using finite element modeling (FEM), to estimate registration errors based on mechanical changes resulting from them. Methods An experimental platform to quantify the correlation between registration errors and their mechanical consequences was developed as follows: diaphragm deformation was simulated on the CT images in patients with lung cancer using a finite element method (FEM). The simulated displacement vector fields (F-DVF) were used to warp each CT image to generate a FEM image. B-Spline based (Elastix) registrations were performed from reference to FEM images to generate a registration DVF (R-DVF). The F- DVF was subtracted from R-DVF. The magnitude of the difference vector was defined as the registration error, which is a consequence of mechanically unbalanced energy (UE), computed using 'in-house-developed' FEM software. A nonlinear regression model was used based on imaging voxel data and the analysis considered clustered voxel data within images. Results A regression model analysis showed that UE was significantly correlated with registration error, DVF and the product of registration error and DVF respectively with R̂2=0.73 (R=0.854). The association was verified independently using 40 tracked landmarks. A linear function between the means of UE values and R- DVF*R-ERR has been established. The mean registration error (N=8) was 0.9 mm. 85.4% of voxels fit this model within one standard deviation. Conclusions An encouraging relationship between UE and registration error has been found. These experimental results suggest the feasibility of UE as a valuable tool for evaluating registration errors, thus supporting 4D and adaptive radiotherapy. The research was supported by NIH/NCI R01CA140341. © 2012 American Association of Physicists in

  10. Non-parametric analysis of rating transition and default data

    DEFF Research Database (Denmark)

    Fledelius, Peter; Lando, David; Perch Nielsen, Jens

    2004-01-01

    We demonstrate the use of non-parametric intensity estimation - including construction of pointwise confidence sets - for analyzing rating transition data. We find that transition intensities away from the class studied here for illustration strongly depend on the direction of the previous move b...... but that this dependence vanishes after 2-3 years....

  11. A non-parametric model for the cosmic velocity field

    NARCIS (Netherlands)

    Branchini, E; Teodoro, L; Frenk, CS; Schmoldt, [No Value; Efstathiou, G; White, SDM; Saunders, W; Sutherland, W; Rowan-Robinson, M; Keeble, O; Tadros, H; Maddox, S; Oliver, S

    1999-01-01

    We present a self-consistent non-parametric model of the local cosmic velocity field derived from the distribution of IRAS galaxies in the PSCz redshift survey. The survey has been analysed using two independent methods, both based on the assumptions of gravitational instability and linear biasing.

  12. Non-parametric Bayesian inference for inhomogeneous Markov point processes

    DEFF Research Database (Denmark)

    Berthelsen, Kasper Klitgaard; Møller, Jesper

    With reference to a specific data set, we consider how to perform a flexible non-parametric Bayesian analysis of an inhomogeneous point pattern modelled by a Markov point process, with a location dependent first order term and pairwise interaction only. A priori we assume that the first order term...

  13. Non-parametric analysis of rating transition and default data

    DEFF Research Database (Denmark)

    Fledelius, Peter; Lando, David; Perch Nielsen, Jens

    2004-01-01

    We demonstrate the use of non-parametric intensity estimation - including construction of pointwise confidence sets - for analyzing rating transition data. We find that transition intensities away from the class studied here for illustration strongly depend on the direction of the previous move...

  14. SU-E-J-148: Evaluating Tumor Response with a Commercially Available Deformable Registration System

    Energy Technology Data Exchange (ETDEWEB)

    Bowling, J; Ramsey, C [Thompson Cancer Survival Center, Knoxville, TN (United States)

    2014-06-01

    Purpose: The purpose of this study is to present a method for evaluating the response to treatment using a commercially available deformable image registration software package (Velocity Medical Systems) and repeat PET/CT imaging. This technique can be used to identify volumes that are risk for tumor recurrence. Methods: Response to treatment was evaluated using PET/CT images acquired prior-to and post-treatment for radiation therapy patients treated with concurrent chemotherapy. Velocity (Version 3.0.1) was used to deform the initial PET/CT to the post treatment PET/CT. The post-treatment PET images were then subtracted from the pre-treatment PET images. The resulting re-sampled image is a three-dimensional SUV difference map that shows pixels with increasing SUV values. SUV values increases greater than 2.5 in the post treatment images were identified for additional follow-up. Results: A total of 5 Lung patients were analyzed as part of this study. One lung patient in the cohort had an SUV increase of +3.28 that was identified using the SUV difference map. This volume of increased uptake was located outside the treatment field and adjacent to the 35 Gy isodose line. The remaining four patients all had SUV decreases inside the planning target volume, and no unexpected areas of increase outside the irradiated volumes. All five patients were analyzed using standard tools inside the Velocity application. Conclusion: The response to treatment can easily be measured using serial PET/CT images and a commercially available deformable image registration. This provides both the radiation oncologists and medical oncologists with a quantitative assessment of their treatment to use in patient follow-up.

  15. SU-E-J-111: Finite Element-Based Deformable Image Registration of Pleural Cavity for Photodynamic Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Penjweini, R; Zhu, T [Univ Pennsylvania, Philadelphia, PA (United States)

    2015-06-15

    Purpose: The pleural volumes will deform during surgery portion of the pleural photodynamic therapy (PDT) of lung cancer when the pleural cavity is opened. This impact the delivered dose when using highly conformal treatment techniques. In this study, a finite element-based (FEM) deformable image registration is used to quantify the anatomical variation between the contours for the pleural cavities obtained in the operating room and those determined from pre-surgery computed tomography (CT) scans. Methods: An infrared camera-based navigation system (NDI) is used during PDT to track the anatomical changes and contour the lung and chest cavity. A series of CTs of the lungs, in the same patient, are also acquired before the surgery. The structure contour of lung and the CTs are processed and contoured in Matlab and MeshLab. Then, the contours are imported into COMSOL Multiphysics 5.0, where the FEM-based deformable image registration is obtained using the deformed mesh - moving mesh (ALE) model. The NDI acquired lung contour is considered as the reference contour, and the CT contour is used as the target one, which will be deformed. Results: The reconstructed three-dimensional contours from both NDI and CT can be converted to COMSOL so that a three-dimensional ALE model can be developed. The contours can be registered using COMSOL ALE moving mesh model, which takes into account the deformation along x, y and z-axes. The deformed contour has good matches to the reference contour after the dynamic matching process. The resulting 3D deformation map can be used to obtain the locations of other critical anatomic structures, e.g., heart, during surgery. Conclusion: Deformable image registration can fuse images acquired by different modalities. It provides insights into the development of phenomenon and variation in normal anatomical structures over time. The initial assessments of three-dimensional registration show good agreement.

  16. dPIRPLE: a joint estimation framework for deformable registration and penalized-likelihood CT image reconstruction using prior images

    Science.gov (United States)

    Dang, H.; Wang, A. S.; Sussman, Marc S.; Siewerdsen, J. H.; Stayman, J. W.

    2014-09-01

    Sequential imaging studies are conducted in many clinical scenarios. Prior images from previous studies contain a great deal of patient-specific anatomical information and can be used in conjunction with subsequent imaging acquisitions to maintain image quality while enabling radiation dose reduction (e.g., through sparse angular sampling, reduction in fluence, etc). However, patient motion between images in such sequences results in misregistration between the prior image and current anatomy. Existing prior-image-based approaches often include only a simple rigid registration step that can be insufficient for capturing complex anatomical motion, introducing detrimental effects in subsequent image reconstruction. In this work, we propose a joint framework that estimates the 3D deformation between an unregistered prior image and the current anatomy (based on a subsequent data acquisition) and reconstructs the current anatomical image using a model-based reconstruction approach that includes regularization based on the deformed prior image. This framework is referred to as deformable prior image registration, penalized-likelihood estimation (dPIRPLE). Central to this framework is the inclusion of a 3D B-spline-based free-form-deformation model into the joint registration-reconstruction objective function. The proposed framework is solved using a maximization strategy whereby alternating updates to the registration parameters and image estimates are applied allowing for improvements in both the registration and reconstruction throughout the optimization process. Cadaver experiments were conducted on a cone-beam CT testbench emulating a lung nodule surveillance scenario. Superior reconstruction accuracy and image quality were demonstrated using the dPIRPLE algorithm as compared to more traditional reconstruction methods including filtered backprojection, penalized-likelihood estimation (PLE), prior image penalized-likelihood estimation (PIPLE) without registration, and

  17. Non-parametric iterative model constraint graph min-cut for automatic kidney segmentation.

    Science.gov (United States)

    Freiman, M; Kronman, A; Esses, S J; Joskowicz, L; Sosna, J

    2010-01-01

    We present a new non-parametric model constraint graph min-cut algorithm for automatic kidney segmentation in CT images. The segmentation is formulated as a maximum a-posteriori estimation of a model-driven Markov random field. A non-parametric hybrid shape and intensity model is treated as a latent variable in the energy functional. The latent model and labeling map that minimize the energy functional are then simultaneously computed with an expectation maximization approach. The main advantages of our method are that it does not assume a fixed parametric prior model, which is subjective to inter-patient variability and registration errors, and that it combines both the model and the image information into a unified graph min-cut based segmentation framework. We evaluated our method on 20 kidneys from 10 CT datasets with and without contrast agent for which ground-truth segmentations were generated by averaging three manual segmentations. Our method yields an average volumetric overlap error of 10.95%, and average symmetric surface distance of 0.79 mm. These results indicate that our method is accurate and robust for kidney segmentation.

  18. Deformable Registration of Feature-Endowed Point Sets Based on Tensor Fields

    Science.gov (United States)

    Wassermann, Demian; Ross, James; Washko, George; Wells, William M.; San Jose-Estepar, Raul

    2014-01-01

    The main contribution of this work is a framework to register anatomical structures characterized as a point set where each point has an associated symmetric matrix. These matrices can represent problem-dependent characteristics of the registered structure. For example, in airways, matrices can represent the orientation and thickness of the structure. Our framework relies on a dense tensor field representation which we implement sparsely as a kernel mixture of tensor fields. We equip the space of tensor fields with a norm that serves as a similarity measure. To calculate the optimal transformation between two structures we minimize this measure using an analytical gradient for the similarity measure and the deformation field, which we restrict to be a diffeomorphism. We illustrate the value of our tensor field model by comparing our results with scalar and vector field based models. Finally, we evaluate our registration algorithm on synthetic data sets and validate our approach on manually annotated airway trees. PMID:25473253

  19. A reference dataset for deformable image registration spatial accuracy evaluation using the COPDgene study archive.

    Science.gov (United States)

    Castillo, Richard; Castillo, Edward; Fuentes, David; Ahmad, Moiz; Wood, Abbie M; Ludwig, Michelle S; Guerrero, Thomas

    2013-05-07

    Landmark point-pairs provide a strategy to assess deformable image registration (DIR) accuracy in terms of the spatial registration of the underlying anatomy depicted in medical images. In this study, we propose to augment a publicly available database (www.dir-lab.com) of medical images with large sets of manually identified anatomic feature pairs between breath-hold computed tomography (BH-CT) images for DIR spatial accuracy evaluation. Ten BH-CT image pairs were randomly selected from the COPDgene study cases. Each patient had received CT imaging of the entire thorax in the supine position at one-fourth dose normal expiration and maximum effort full dose inspiration. Using dedicated in-house software, an imaging expert manually identified large sets of anatomic feature pairs between images. Estimates of inter- and intra-observer spatial variation in feature localization were determined by repeat measurements of multiple observers over subsets of randomly selected features. 7298 anatomic landmark features were manually paired between the 10 sets of images. Quantity of feature pairs per case ranged from 447 to 1172. Average 3D Euclidean landmark displacements varied substantially among cases, ranging from 12.29 (SD: 6.39) to 30.90 (SD: 14.05) mm. Repeat registration of uniformly sampled subsets of 150 landmarks for each case yielded estimates of observer localization error, which ranged in average from 0.58 (SD: 0.87) to 1.06 (SD: 2.38) mm for each case. The additions to the online web database (www.dir-lab.com) described in this work will broaden the applicability of the reference data, providing a freely available common dataset for targeted critical evaluation of DIR spatial accuracy performance in multiple clinical settings. Estimates of observer variance in feature localization suggest consistent spatial accuracy for all observers across both four-dimensional CT and COPDgene patient cohorts.

  20. TU-E-BRB-00: Deformable Image Registration: Is It Right for Your Clinic

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    Deformable image registration (DIR) is developing rapidly and is poised to substantially improve dose fusion accuracy for adaptive and retreatment planning and motion management and PET fusion to enhance contour delineation for treatment planning. However, DIR dose warping accuracy is difficult to quantify, in general, and particularly difficult to do so on a patient-specific basis. As clinical DIR options become more widely available, there is an increased need to understand the implications of incorporating DIR into clinical workflow. Several groups have assessed DIR accuracy in clinically relevant scenarios, but no comprehensive review material is yet available. This session will also discuss aspects of the AAPM Task Group 132 on the Use of Image Registration and Data Fusion Algorithms and Techniques in Radiotherapy Treatment Planning official report, which provides recommendations for DIR clinical use. We will summarize and compare various commercial DIR software options, outline successful clinical techniques, show specific examples with discussion of appropriate and inappropriate applications of DIR, discuss the clinical implications of DIR, provide an overview of current DIR error analysis research, review QA options and research phantom development and present TG-132 recommendations. Learning Objectives: Compare/contrast commercial DIR software and QA options Overview clinical DIR workflow for retreatment To understand uncertainties introduced by DIR Review TG-132 proposed recommendations.

  1. Technical Note: Deformable image registration on partially matched images for radiotherapy applications

    Science.gov (United States)

    Yang, Deshan; Goddu, S. Murty; Lu, Wei; Pechenaya, Olga L.; Wu, Yu; Deasy, Joseph O.; El Naqa, Issam; Low, Daniel A.

    2010-01-01

    In radiation therapy applications, deformable image registrations (DIRs) are often carried out between two images that only partially match. Image mismatching could present as superior-inferior coverage differences, field-of-view (FOV) cutoffs, or motion crossing the image boundaries. In this study, the authors propose a method to improve the existing DIR algorithms so that DIR can be carried out in such situations. The basic idea is to extend the image volumes and define the extension voxels (outside the FOV or outside the original image volume) as NaN (not-a-number) values that are transparent to all floating-point computations in the DIR algorithms. Registrations are then carried out with one additional rule that NaN voxels can match any voxels. In this way, the matched sections of the images are registered properly, and the mismatched sections of the images are registered to NaN voxels. This method makes it possible to perform DIR on partially matched images that otherwise are difficult to register. It may also improve DIR accuracy, especially near or in the mismatched image regions. PMID:20175475

  2. Technical Note: Deformable image registration on partially matched images for radiotherapy applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang Deshan; Goddu, S. Murty; Lu Wei; Pechenaya, Olga L.; Wu Yu; Deasy, Joseph O.; El Naqa, Issam; Low, Daniel A. [Department of Radiation Oncology, Washington University in Saint Louis, Missouri 63110 (United States)

    2010-01-15

    In radiation therapy applications, deformable image registrations (DIRs) are often carried out between two images that only partially match. Image mismatching could present as superior-inferior coverage differences, field-of-view (FOV) cutoffs, or motion crossing the image boundaries. In this study, the authors propose a method to improve the existing DIR algorithms so that DIR can be carried out in such situations. The basic idea is to extend the image volumes and define the extension voxels (outside the FOV or outside the original image volume) as NaN (not-a-number) values that are transparent to all floating-point computations in the DIR algorithms. Registrations are then carried out with one additional rule that NaN voxels can match any voxels. In this way, the matched sections of the images are registered properly, and the mismatched sections of the images are registered to NaN voxels. This method makes it possible to perform DIR on partially matched images that otherwise are difficult to register. It may also improve DIR accuracy, especially near or in the mismatched image regions.

  3. Comparison of Two Deformable Registration Algorithms in the Presence of Radiologic Change Between Serial Lung CT Scans.

    Science.gov (United States)

    Cunliffe, Alexandra R; White, Bradley; Justusson, Julia; Straus, Christopher; Malik, Renuka; Al-Hallaq, Hania A; Armato, Samuel G

    2015-12-01

    We evaluated the image registration accuracy achieved using two deformable registration algorithms when radiation-induced normal tissue changes were present between serial computed tomography (CT) scans. Two thoracic CT scans were collected for each of 24 patients who underwent radiation therapy (RT) treatment for lung cancer, eight of whom experienced radiologically evident normal tissue damage between pre- and post-RT scan acquisition. For each patient, 100 landmark point pairs were manually placed in anatomically corresponding locations between each pre- and post-RT scan. Each post-RT scan was then registered to the pre-RT scan using (1) the Plastimatch demons algorithm and (2) the Fraunhofer MEVIS algorithm. The registration accuracy for each scan pair was evaluated by comparing the distance between landmark points that were manually placed in the post-RT scans and points that were automatically mapped from pre- to post-RT scans using the displacement vector fields output by the two registration algorithms. For both algorithms, the registration accuracy was significantly decreased when normal tissue damage was present in the post-RT scan. Using the Plastimatch algorithm, registration accuracy was 2.4 mm, on average, in the absence of radiation-induced damage and 4.6 mm, on average, in the presence of damage. When the Fraunhofer MEVIS algorithm was instead used, registration errors decreased to 1.3 mm, on average, in the absence of damage and 2.5 mm, on average, when damage was present. This work demonstrated that the presence of lung tissue changes introduced following RT treatment for lung cancer can significantly decrease the registration accuracy achieved using deformable registration.

  4. Bayesian non parametric modelling of Higgs pair production

    Science.gov (United States)

    Scarpa, Bruno; Dorigo, Tommaso

    2017-03-01

    Statistical classification models are commonly used to separate a signal from a background. In this talk we face the problem of isolating the signal of Higgs pair production using the decay channel in which each boson decays into a pair of b-quarks. Typically in this context non parametric methods are used, such as Random Forests or different types of boosting tools. We remain in the same non-parametric framework, but we propose to face the problem following a Bayesian approach. A Dirichlet process is used as prior for the random effects in a logit model which is fitted by leveraging the Polya-Gamma data augmentation. Refinements of the model include the insertion in the simple model of P-splines to relate explanatory variables with the response and the use of Bayesian trees (BART) to describe the atoms in the Dirichlet process.

  5. Bayesian non parametric modelling of Higgs pair production

    Directory of Open Access Journals (Sweden)

    Scarpa Bruno

    2017-01-01

    Full Text Available Statistical classification models are commonly used to separate a signal from a background. In this talk we face the problem of isolating the signal of Higgs pair production using the decay channel in which each boson decays into a pair of b-quarks. Typically in this context non parametric methods are used, such as Random Forests or different types of boosting tools. We remain in the same non-parametric framework, but we propose to face the problem following a Bayesian approach. A Dirichlet process is used as prior for the random effects in a logit model which is fitted by leveraging the Polya-Gamma data augmentation. Refinements of the model include the insertion in the simple model of P-splines to relate explanatory variables with the response and the use of Bayesian trees (BART to describe the atoms in the Dirichlet process.

  6. Using non-parametric methods in econometric production analysis

    DEFF Research Database (Denmark)

    Czekaj, Tomasz Gerard; Henningsen, Arne

    2012-01-01

    by investigating the relationship between the elasticity of scale and the farm size. We use a balanced panel data set of 371~specialised crop farms for the years 2004-2007. A non-parametric specification test shows that neither the Cobb-Douglas function nor the Translog function are consistent with the "true......Econometric estimation of production functions is one of the most common methods in applied economic production analysis. These studies usually apply parametric estimation techniques, which obligate the researcher to specify a functional form of the production function of which the Cobb...... parameter estimates, but also in biased measures which are derived from the parameters, such as elasticities. Therefore, we propose to use non-parametric econometric methods. First, these can be applied to verify the functional form used in parametric production analysis. Second, they can be directly used...

  7. ANALYSIS OF TIED DATA: AN ALTERNATIVE NON-PARAMETRIC APPROACH

    Directory of Open Access Journals (Sweden)

    I. C. A. OYEKA

    2012-02-01

    Full Text Available This paper presents a non-parametric statistical method of analyzing two-sample data that makes provision for the possibility of ties in the data. A test statistic is developed and shown to be free of the effect of any possible ties in the data. An illustrative example is provided and the method is shown to compare favourably with its competitor; the Mann-Whitney test and is more powerful than the latter when there are ties.

  8. Non-parametric versus parametric methods in environmental sciences

    Directory of Open Access Journals (Sweden)

    Muhammad Riaz

    2016-01-01

    Full Text Available This current report intends to highlight the importance of considering background assumptions required for the analysis of real datasets in different disciplines. We will provide comparative discussion of parametric methods (that depends on distributional assumptions (like normality relative to non-parametric methods (that are free from many distributional assumptions. We have chosen a real dataset from environmental sciences (one of the application areas. The findings may be extended to the other disciplines following the same spirit.

  9. Deformable registration for image-guided spine surgery: preserving rigid body vertebral morphology in free-form transformations

    Science.gov (United States)

    Reaungamornrat, S.; Wang, A. S.; Uneri, A.; Otake, Y.; Zhao, Z.; Khanna, A. J.; Siewerdsen, J. H.

    2014-03-01

    Purpose: Deformable registration of preoperative and intraoperative images facilitates accurate localization of target and critical anatomy in image-guided spine surgery. However, conventional deformable registration fails to preserve the morphology of rigid bone anatomy and can impart distortions that confound high-precision intervention. We propose a constrained registration method that preserves rigid morphology while allowing deformation of surrounding soft tissues. Method: The registration method aligns preoperative 3D CT to intraoperative cone-beam CT (CBCT) using free-form deformation (FFD) with penalties on rigid body motion imposed according to a simple intensity threshold. The penalties enforced 3 properties of a rigid transformation - namely, constraints on affinity (AC), orthogonality (OC), and properness (PC). The method also incorporated an injectivity constraint (IC) to preserve topology. Physical experiments (involving phantoms, an ovine spine, and a human cadaver) as well as digital simulations were performed to evaluate the sensitivity to registration parameters, preservation of rigid body morphology, and overall registration accuracy of constrained FFD in comparison to conventional unconstrained FFD (denoted uFFD) and Demons registration. Result: FFD with orthogonality and injectivity constraints (denoted FFD+OC+IC) demonstrated improved performance compared to uFFD and Demons. Affinity and properness constraints offered little or no additional improvement. The FFD+OC+IC method preserved rigid body morphology at near-ideal values of zero dilatation (D = 0.05, compared to 0.39 and 0.56 for uFFD and Demons, respectively) and shear (S = 0.08, compared to 0.36 and 0.44 for uFFD and Demons, respectively). Target registration error (TRE) was similarly improved for FFD+OC+IC (0.7 mm), compared to 1.4 and 1.8 mm for uFFD and Demons. Results were validated in human cadaver studies using CT and CBCT images, with FFD+OC+IC providing excellent preservation

  10. Non-parametric Morphologies of Mergers in the Illustris Simulation

    CERN Document Server

    Bignone, Lucas A; Sillero, Emanuel; Pedrosa, Susana E; Pellizza, Leonardo J; Lambas, Diego G

    2016-01-01

    We study non-parametric morphologies of mergers events in a cosmological context, using the Illustris project. We produce mock g-band images comparable to observational surveys from the publicly available Illustris simulation idealized mock images at $z=0$. We then measure non parametric indicators: asymmetry, Gini, $M_{20}$, clumpiness and concentration for a set of galaxies with $M_* >10^{10}$ M$_\\odot$. We correlate these automatic statistics with the recent merger history of galaxies and with the presence of close companions. Our main contribution is to assess in a cosmological framework, the empirically derived non-parametric demarcation line and average time-scales used to determine the merger rate observationally. We found that 98 per cent of galaxies above the demarcation line have a close companion or have experienced a recent merger event. On average, merger signatures obtained from the $G-M_{20}$ criteria anticorrelate clearly with the elapsing time to the last merger event. We also find that the a...

  11. The evaluation of composite dose using deformable image registration in adaptive radiotherapy for head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Chul Hwan; Ko, Seong Jin; Kim, Chang Soo; Kim, Jung Hoon; Kim, Dong Hyun; Choi, Seok Yoon; Ye, Soo Young; Kang, Se Sik [Dept. of Radiological Science, College of Health Sciences, Catholic University of Pusan, Pusan (Korea, Republic of)

    2013-09-15

    In adaptive radiotherapy(ART), generated composite dose of surrounding normal tissue on overall treatment course which is using deformable image registration from multistage images. Also, compared with doses summed by each treatment plan and clinical significance is considered. From the first of May, 2011 to the last of July, 2012. Patients who were given treatment and had the head and neck cancer with 3-dimension conformal radiotherapy or intensity modulated radiotherapy, those who were carried out adaptive radiotherapy cause of tumor shrinkage and weight loss. Generated composite dose of surrounding normal tissue using deformable image registration was been possible, statistically significant difference was showed to mandible(48.95±3.89 vs 49.10±3.55 Gy), oral cavity(36.93±4.03 vs 38.97±5.08 Gy), parotid gland(35.71±6.22 vs 36.12±6.70 Gy) and temporomandibular joint(18.41±9.60 vs 20.13±10.42 Gy) compared with doses summed by each treatment plan. The results of this study show significant difference between composite dose by deformable image registration and doses summed by each treatment plan, composite dose by deformable image registration may generate more exact evaluation to surrounding normal tissue in adaptive radiotherapy.

  12. A multi-resolution strategy for a multi-objective deformable image registration framework that accommodates large anatomical differences

    NARCIS (Netherlands)

    T. Alderliesten (Tanja); P.A.N. Bosman (Peter); J.-J. Sonke (Jan-Jakob); A. Bel (Arjan); B.R. Whiting; C. Hoeschen (Christoph)

    2014-01-01

    htmlabstractCurrently, two major challenges dominate the field of deformable image registration. The first challenge is related to the tuning of the developed methods to specific problems (i.e. how to best combine different objectives such as similarity measure and transformation effort). This is

  13. SU-F-BRF-04: Evaluation of Five Commercially-Available Algorithms for Deformable Image Registration

    Energy Technology Data Exchange (ETDEWEB)

    Shah, A; Pukala, J; Staton, R; Meeks, S [UF Health Cancer Center at Orlando Health, Orlando, FL (United States); Johnson, P [University of Miami, Miami, FL (United States)

    2014-06-15

    Purpose: Deformable image registration (DIR) is increasingly being used in various clinical applications. Although there are several DIR packages all making successful attempts at modeling complex anatomical changes using even more complex mathematical approximations, they are all subject to various uncertainties. Many studies have attempted to quantify the spatial uncertainty with DIR. This is the first study to compare the uncertainty for interfraction DIR for 5 different commercially-available algorithms. The aim of this study was to benchmark the performance of the most commonlyused DIR algorithms offered through these 5 software packages: Eclipse, MIM, Pinnacle, RaySearch, and Velocity. Methods: A set of 10 virtual H'N phantoms [Pukala et al. MedPhys. 40(11) 2013] with known deformations were used to determine the spatial errors that might be seen when performing DIR. The “ground-truth” deformation vector field (DVF) was compared to the DVF output of the 5 commercially-available algorithms in order to evaluate spatial errors for six regions of interest (ROIs): brainstem, cord, mandible, left parotid, right parotid, and the external body contour. Results: We found that each software package had varying uncertainties with the various ROIs, but were generally all comparable to one another – with mean spatial errors for each algorithm below 3.5 mm for each ROI (averaged across all phantoms). We also found that no single algorithm was the clear winner over the other 4 algorithms. However, at times, we found huge maximum errors in our results (e.g. phantom #9 maximum errors: right parotid = 22.9 mm, external contour = 30.5mm) with the varying DIR algorithms. Conclusion: Although our evaluation was limited to H'N patients, we show that our methods are a single-assessment analysis tool that could be used by any physicist, within any type of facility, to compare their DIR software before initiating widespread use within their daily radiotherapy practice.

  14. Effect of deformable registration on the dose calculated in radiation therapy planning CT scans of lung cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Cunliffe, Alexandra R.; Armato, Samuel G.; White, Bradley; Justusson, Julia [Department of Radiology, The University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois 60637 (United States); Contee, Clay; Malik, Renuka; Al-Hallaq, Hania A., E-mail: hal-hallaq@radonc.uchicago.edu [Department of Radiation and Cellular Oncology, The University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois 60637 (United States)

    2015-01-15

    Purpose: To characterize the effects of deformable image registration of serial computed tomography (CT) scans on the radiation dose calculated from a treatment planning scan. Methods: Eighteen patients who received curative doses (≥60 Gy, 2 Gy/fraction) of photon radiation therapy for lung cancer treatment were retrospectively identified. For each patient, a diagnostic-quality pretherapy (4–75 days) CT scan and a treatment planning scan with an associated dose map were collected. To establish correspondence between scan pairs, a researcher manually identified anatomically corresponding landmark point pairs between the two scans. Pretherapy scans then were coregistered with planning scans (and associated dose maps) using the demons deformable registration algorithm and two variants of the Fraunhofer MEVIS algorithm (“Fast” and “EMPIRE10”). Landmark points in each pretherapy scan were automatically mapped to the planning scan using the displacement vector field output from each of the three algorithms. The Euclidean distance between manually and automatically mapped landmark points (d{sub E}) and the absolute difference in planned dose (|ΔD|) were calculated. Using regression modeling, |ΔD| was modeled as a function of d{sub E}, dose (D), dose standard deviation (SD{sub dose}) in an eight-pixel neighborhood, and the registration algorithm used. Results: Over 1400 landmark point pairs were identified, with 58–93 (median: 84) points identified per patient. Average |ΔD| across patients was 3.5 Gy (range: 0.9–10.6 Gy). Registration accuracy was highest using the Fraunhofer MEVIS EMPIRE10 algorithm, with an average d{sub E} across patients of 5.2 mm (compared with >7 mm for the other two algorithms). Consequently, average |ΔD| was also lowest using the Fraunhofer MEVIS EMPIRE10 algorithm. |ΔD| increased significantly as a function of d{sub E} (0.42 Gy/mm), D (0.05 Gy/Gy), SD{sub dose} (1.4 Gy/Gy), and the algorithm used (≤1 Gy). Conclusions: An

  15. Control over structure-specific flexibility improves anatomical accuracy for point-based deformable registration in bladder cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Wognum, S.; Chai, X.; Hulshof, M. C. C. M.; Bel, A. [Department of Radiotherapy, Academic Medical Center, Meiberdreef 9, 1105 AZ Amsterdam (Netherlands); Bondar, L.; Zolnay, A. G.; Hoogeman, M. S. [Department of Radiation Oncology, Daniel den Hoed Cancer Center, Erasmus Medical Center, Groene Hilledijk 301, 3075 EA Rotterdam (Netherlands)

    2013-02-15

    Purpose: Future developments in image guided adaptive radiotherapy (IGART) for bladder cancer require accurate deformable image registration techniques for the precise assessment of tumor and bladder motion and deformation that occur as a result of large bladder volume changes during the course of radiotherapy treatment. The aim was to employ an extended version of a point-based deformable registration algorithm that allows control over tissue-specific flexibility in combination with the authors' unique patient dataset, in order to overcome two major challenges of bladder cancer registration, i.e., the difficulty in accounting for the difference in flexibility between the bladder wall and tumor and the lack of visible anatomical landmarks for validation. Methods: The registration algorithm used in the current study is an extension of the symmetric-thin plate splines-robust point matching (S-TPS-RPM) algorithm, a symmetric feature-based registration method. The S-TPS-RPM algorithm has been previously extended to allow control over the degree of flexibility of different structures via a weight parameter. The extended weighted S-TPS-RPM algorithm was tested and validated on CT data (planning- and four to five repeat-CTs) of five urinary bladder cancer patients who received lipiodol injections before radiotherapy. The performance of the weighted S-TPS-RPM method, applied to bladder and tumor structures simultaneously, was compared with a previous version of the S-TPS-RPM algorithm applied to bladder wall structure alone and with a simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. Performance was assessed in terms of anatomical and geometric accuracy. The anatomical accuracy was calculated as the residual distance error (RDE) of the lipiodol markers and the geometric accuracy was determined by the surface distance, surface coverage, and inverse consistency errors. Optimal parameter values for the flexibility and bladder weight

  16. Estimation of 3D cardiac deformation using spatio-temporal elastic registration of non-scanconverted ultrasound data

    Science.gov (United States)

    Elen, An; Loeckx, Dirk; Choi, Hon Fai; Gao, Hang; Claus, Piet; Maes, Frederik; Suetens, Paul; D'hooge, Jan

    2008-03-01

    Current ultrasound methods for measuring myocardial strain are often limited to measurements in one or two dimensions. Spatio-temporal elastic registration of 3D cardiac ultrasound data can however be used to estimate the 3D motion and full 3D strain tensor. In this work, the spatio-temporal elastic registration method was validated for both non-scanconverted and scanconverted images. This was done using simulated 3D pyramidal ultrasound data sets based on a thick-walled deforming ellipsoid and an adapted convolution model. A B-spline based frame-to-frame elastic registration method was applied to both the scanconverted and non-scanconverded data sets and the accuracy of the resulting deformation fields was quantified. The mean accuracy of the estimated displacement was very similar for the scanconverted and non-scanconverted data sets and thus, it was shown that 3D elastic registration to estimate the cardiac deformation from ultrasound images can be performed on non-scanconverted images, but that avoiding of the scanconversion step does not significantly improve the results of the displacement estimation.

  17. Digital spectral analysis parametric, non-parametric and advanced methods

    CERN Document Server

    Castanié, Francis

    2013-01-01

    Digital Spectral Analysis provides a single source that offers complete coverage of the spectral analysis domain. This self-contained work includes details on advanced topics that are usually presented in scattered sources throughout the literature.The theoretical principles necessary for the understanding of spectral analysis are discussed in the first four chapters: fundamentals, digital signal processing, estimation in spectral analysis, and time-series models.An entire chapter is devoted to the non-parametric methods most widely used in industry.High resolution methods a

  18. The feasibility of manual parameter tuning for deformable breast MR image registration from a multi-objective optimization perspective

    Science.gov (United States)

    Pirpinia, Kleopatra; Bosman, Peter A. N.; E Loo, Claudette; Winter-Warnars, Gonneke; Y Janssen, Natasja N.; Scholten, Astrid N.; Sonke, Jan-Jakob; van Herk, Marcel; Alderliesten, Tanja

    2017-07-01

    Deformable image registration is typically formulated as an optimization problem involving a linearly weighted combination of terms that correspond to objectives of interest (e.g. similarity, deformation magnitude). The weights, along with multiple other parameters, need to be manually tuned for each application, a task currently addressed mainly via trial-and-error approaches. Such approaches can only be successful if there is a sensible interplay between parameters, objectives, and desired registration outcome. This, however, is not well established. To study this interplay, we use multi-objective optimization, where multiple solutions exist that represent the optimal trade-offs between the objectives, forming a so-called Pareto front. Here, we focus on weight tuning. To study the space a user has to navigate during manual weight tuning, we randomly sample multiple linear combinations. To understand how these combinations relate to desirability of registration outcome, we associate with each outcome a mean target registration error (TRE) based on expert-defined anatomical landmarks. Further, we employ a multi-objective evolutionary algorithm that optimizes the weight combinations, yielding a Pareto front of solutions, which can be directly navigated by the user. To study how the complexity of manual weight tuning changes depending on the registration problem, we consider an easy problem, prone-to-prone breast MR image registration, and a hard problem, prone-to-supine breast MR image registration. Lastly, we investigate how guidance information as an additional objective influences the prone-to-supine registration outcome. Results show that the interplay between weights, objectives, and registration outcome makes manual weight tuning feasible for the prone-to-prone problem, but very challenging for the harder prone-to-supine problem. Here, patient-specific, multi-objective weight optimization is needed, obtaining a mean TRE of 13.6 mm without guidance

  19. Implementation and evaluation of various demons deformable image registration algorithms on GPU

    CERN Document Server

    Gu, Xuejun; Liang, Yun; Castillo, Richard; Yang, Deshan; Choi, Dongju; Castillo, Edward; Majumdar, Amitava; Guerrero, Thomas; Jiang, Steve B

    2009-01-01

    Online adaptive radiation therapy (ART) promises the ability to deliver an optimal treatment in response to daily patient anatomic variation. A major technical barrier for the clinical implementation of online ART is the requirement of rapid image segmentation. Deformable image registration (DIR) has been used as an automated segmentation method to transfer tumor/organ contours from the planning image to daily images. However, the current computational time of DIR is insufficient for online ART. In this work, this issue is addressed by using computer graphics processing units (GPUs). A grey-scale based DIR algorithm called demons and five of its variants were implemented on GPUs using the Compute Unified Device Architecture (CUDA) programming environment. The spatial accuracy of these algorithms was evaluated over five sets of pulmonary 4DCT images with an average size of 256x256x100 and more than 1,100 expert-determined landmark point pairs each. For all the testing scenarios presented in this paper, the GPU...

  20. SU-E-J-107: The Impact of the Tumor Location to Deformable Image Registration

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, Y [The National Center for Global Health and Medicine, Shinjuku-ku, Tokyo (Japan); Tohoku University School of Medicine, Sendai, Miyagi (Japan); Tachibana, H [National Cancer Center Hospital East, Kashiwa, Chiba (Japan); Kadoya, N; Jingu, K [Tohoku University School of Medicine, Sendai, Miyagi (Japan); Kitamura, N [The Cancer Institute Hospital, JPese Foundation for Cancer Research, Koutou-ku, Tokyo (Japan)

    2015-06-15

    Purpose: For four-dimensional planning and adaptive radiotherapy, the accuracy of deformable image registration (DIR) is essential. We evaluated the accuracy of an in-house program with the free-downloadable DIR software library package (NiftyReg) and two commercially available DIR software programs (MIM Maestro and Velocity AI) in lung SBRT cancer patients. In addition to it, the relationship between the tumor location and the accuracy of the DIRs was investigated. Methods: The free-form deformation was implemented in the in-house program and the MIM. The Velocity was based on the B-spline algorithm. The accuracy of the three programs was evaluated in comparison for the structures on 4DCT image datasets between at the peak-inhale and at the peak-exhale. The dice similarity coefficient (DSC) and normalized DSC (NDSC) were measured for the gross tumor volumes from 19 lung SBRT patients. Results: The DSC measurement showed the median values of the DSC were 0.885, 0.872 and 0.798 for the In-house program, the MIM and the Velocity, respectively. The Velocity showed significant difference compared to the others. The median NDSC values were 1.027, 1.005 and 0.946 for the In-house, the MIM and the Velocity, respectively. This indicated that the spatial overlap agreement between the reference and the deformed structure for the in-house and MIM was comparable with the accuracy within 1mm uncertainty. There was larger discrepancy within 1–2mm uncertainty for the Velocity. The In-house and the MIM showed the higher NDSC values than the median values when the GTV was not attached to the chest wall and diaphragm(p < 0.05). However, there is no relationship between the accuracy and the tumor location in the Velocity. Conclusion: The difference of the DIR program would affect different accuracy and the accuracy may be reduced when the tumor is located or attached to chest wall or diaphragm.

  1. Using Mathematica to build Non-parametric Statistical Tables

    Directory of Open Access Journals (Sweden)

    Gloria Perez Sainz de Rozas

    2003-01-01

    Full Text Available In this paper, I present computational procedures to obtian statistical tables. The tables of the asymptotic distribution and the exact distribution of Kolmogorov-Smirnov statistic Dn for one population, the table of the distribution of the runs R, the table of the distribution of Wilcoxon signed-rank statistic W+ and the table of the distribution of Mann-Whitney statistic Ux using Mathematica, Version 3.9 under Window98. I think that it is an interesting cuestion because many statistical packages give the asymptotic significance level in the statistical tests and with these porcedures one can easily calculate the exact significance levels and the left-tail and right-tail probabilities with non-parametric distributions. I have used mathematica to make these calculations because one can use symbolic language to solve recursion relations. It's very easy to generate the format of the tables, and it's possible to obtain any table of the mentioned non-parametric distributions with any precision, not only with the standard parameters more used in Statistics, and without transcription mistakes. Furthermore, using similar procedures, we can generate tables for the following distribution functions: Binomial, Poisson, Hypergeometric, Normal, x2 Chi-Square, T-Student, F-Snedecor, Geometric, Gamma and Beta.

  2. A non-parametric framework for estimating threshold limit values

    Directory of Open Access Journals (Sweden)

    Ulm Kurt

    2005-11-01

    Full Text Available Abstract Background To estimate a threshold limit value for a compound known to have harmful health effects, an 'elbow' threshold model is usually applied. We are interested on non-parametric flexible alternatives. Methods We describe how a step function model fitted by isotonic regression can be used to estimate threshold limit values. This method returns a set of candidate locations, and we discuss two algorithms to select the threshold among them: the reduced isotonic regression and an algorithm considering the closed family of hypotheses. We assess the performance of these two alternative approaches under different scenarios in a simulation study. We illustrate the framework by analysing the data from a study conducted by the German Research Foundation aiming to set a threshold limit value in the exposure to total dust at workplace, as a causal agent for developing chronic bronchitis. Results In the paper we demonstrate the use and the properties of the proposed methodology along with the results from an application. The method appears to detect the threshold with satisfactory success. However, its performance can be compromised by the low power to reject the constant risk assumption when the true dose-response relationship is weak. Conclusion The estimation of thresholds based on isotonic framework is conceptually simple and sufficiently powerful. Given that in threshold value estimation context there is not a gold standard method, the proposed model provides a useful non-parametric alternative to the standard approaches and can corroborate or challenge their findings.

  3. Using non-parametric methods in econometric production analysis

    DEFF Research Database (Denmark)

    Czekaj, Tomasz Gerard; Henningsen, Arne

    2012-01-01

    Econometric estimation of production functions is one of the most common methods in applied economic production analysis. These studies usually apply parametric estimation techniques, which obligate the researcher to specify a functional form of the production function of which the Cobb-Douglas a......Econometric estimation of production functions is one of the most common methods in applied economic production analysis. These studies usually apply parametric estimation techniques, which obligate the researcher to specify a functional form of the production function of which the Cobb...... parameter estimates, but also in biased measures which are derived from the parameters, such as elasticities. Therefore, we propose to use non-parametric econometric methods. First, these can be applied to verify the functional form used in parametric production analysis. Second, they can be directly used...... to estimate production functions without the specification of a functional form. Therefore, they avoid possible misspecification errors due to the use of an unsuitable functional form. In this paper, we use parametric and non-parametric methods to identify the optimal size of Polish crop farms...

  4. Robust 3D-2D image registration: application to spine interventions and vertebral labeling in the presence of anatomical deformation

    Science.gov (United States)

    Otake, Yoshito; Wang, Adam S.; Webster Stayman, J.; Uneri, Ali; Kleinszig, Gerhard; Vogt, Sebastian; Khanna, A. Jay; Gokaslan, Ziya L.; Siewerdsen, Jeffrey H.

    2013-12-01

    We present a framework for robustly estimating registration between a 3D volume image and a 2D projection image and evaluate its precision and robustness in spine interventions for vertebral localization in the presence of anatomical deformation. The framework employs a normalized gradient information similarity metric and multi-start covariance matrix adaptation evolution strategy optimization with local-restarts, which provided improved robustness against deformation and content mismatch. The parallelized implementation allowed orders-of-magnitude acceleration in computation time and improved the robustness of registration via multi-start global optimization. Experiments involved a cadaver specimen and two CT datasets (supine and prone) and 36 C-arm fluoroscopy images acquired with the specimen in four positions (supine, prone, supine with lordosis, prone with kyphosis), three regions (thoracic, abdominal, and lumbar), and three levels of geometric magnification (1.7, 2.0, 2.4). Registration accuracy was evaluated in terms of projection distance error (PDE) between the estimated and true target points in the projection image, including 14 400 random trials (200 trials on the 72 registration scenarios) with initialization error up to ±200 mm and ±10°. The resulting median PDE was better than 0.1 mm in all cases, depending somewhat on the resolution of input CT and fluoroscopy images. The cadaver experiments illustrated the tradeoff between robustness and computation time, yielding a success rate of 99.993% in vertebral labeling (with ‘success’ defined as PDE registration could be solved with 99.993% success in 6.3 s. The ability to register CT to fluoroscopy in a manner robust to patient deformation could be valuable in applications such as radiation therapy, interventional radiology, and an assistant to target localization (e.g., vertebral labeling) in image-guided spine surgery.

  5. High performance computing for deformable image registration: towards a new paradigm in adaptive radiotherapy.

    Science.gov (United States)

    Samant, Sanjiv S; Xia, Junyi; Muyan-Ozcelik, Pinar; Owens, John D

    2008-08-01

    The advent of readily available temporal imaging or time series volumetric (4D) imaging has become an indispensable component of treatment planning and adaptive radiotherapy (ART) at many radiotherapy centers. Deformable image registration (DIR) is also used in other areas of medical imaging, including motion corrected image reconstruction. Due to long computation time, clinical applications of DIR in radiation therapy and elsewhere have been limited and consequently relegated to offline analysis. With the recent advances in hardware and software, graphics processing unit (GPU) based computing is an emerging technology for general purpose computation, including DIR, and is suitable for highly parallelized computing. However, traditional general purpose computation on the GPU is limited because the constraints of the available programming platforms. As well, compared to CPU programming, the GPU currently has reduced dedicated processor memory, which can limit the useful working data set for parallelized processing. We present an implementation of the demons algorithm using the NVIDIA 8800 GTX GPU and the new CUDA programming language. The GPU performance will be compared with single threading and multithreading CPU implementations on an Intel dual core 2.4 GHz CPU using the C programming language. CUDA provides a C-like language programming interface, and allows for direct access to the highly parallel compute units in the GPU. Comparisons for volumetric clinical lung images acquired using 4DCT were carried out. Computation time for 100 iterations in the range of 1.8-13.5 s was observed for the GPU with image size ranging from 2.0 x 10(6) to 14.2 x 10(6) pixels. The GPU registration was 55-61 times faster than the CPU for the single threading implementation, and 34-39 times faster for the multithreading implementation. For CPU based computing, the computational time generally has a linear dependence on image size for medical imaging data. Computational efficiency is

  6. An adaptive patient specific deformable registration for breast images of positron emission tomography and magnetic resonance imaging using finite element approach

    Science.gov (United States)

    Xue, Cheng; Tang, Fuk-Hay

    2014-03-01

    A patient specific registration model based on finite element method was investigated in this study. Image registration of Positron Emission Tomography (PET) and Magnetic Resonance imaging (MRI) has been studied a lot. Surface-based registration is extensively applied in medical imaging. We develop and evaluate a registration method combine surface-based registration with biomechanical modeling. .Four sample cases of patients with PET and MRI breast scans performed within 30 days were collected from hospital. K-means clustering algorithm was used to segment images into two parts, which is fat tissue and neoplasm [2]. Instead of placing extrinsic landmarks on patients' body which may be invasive, we proposed a new boundary condition to simulate breast deformation during two screening. Then a three dimensional model with meshes was built. Material properties were assigned to this model according to previous studies. The whole registration was based on a biomechanical finite element model, which could simulate deformation of breast under pressure.

  7. Multi-stage 3D-2D registration for correction of anatomical deformation in image-guided spine surgery

    Science.gov (United States)

    Ketcha, M. D.; De Silva, T.; Uneri, A.; Jacobson, M. W.; Goerres, J.; Kleinszig, G.; Vogt, S.; Wolinsky, J.-P.; Siewerdsen, J. H.

    2017-06-01

    A multi-stage image-based 3D-2D registration method is presented that maps annotations in a 3D image (e.g. point labels annotating individual vertebrae in preoperative CT) to an intraoperative radiograph in which the patient has undergone non-rigid anatomical deformation due to changes in patient positioning or due to the intervention itself. The proposed method (termed msLevelCheck) extends a previous rigid registration solution (LevelCheck) to provide an accurate mapping of vertebral labels in the presence of spinal deformation. The method employs a multi-stage series of rigid 3D-2D registrations performed on sets of automatically determined and increasingly localized sub-images, with the final stage achieving a rigid mapping for each label to yield a locally rigid yet globally deformable solution. The method was evaluated first in a phantom study in which a CT image of the spine was acquired followed by a series of 7 mobile radiographs with increasing degree of deformation applied. Second, the method was validated using a clinical data set of patients exhibiting strong spinal deformation during thoracolumbar spine surgery. Registration accuracy was assessed using projection distance error (PDE) and failure rate (PDE  >  20 mm—i.e. label registered outside vertebra). The msLevelCheck method was able to register all vertebrae accurately for all cases of deformation in the phantom study, improving the maximum PDE of the rigid method from 22.4 mm to 3.9 mm. The clinical study demonstrated the feasibility of the approach in real patient data by accurately registering all vertebral labels in each case, eliminating all instances of failure encountered in the conventional rigid method. The multi-stage approach demonstrated accurate mapping of vertebral labels in the presence of strong spinal deformation. The msLevelCheck method maintains other advantageous aspects of the original LevelCheck method (e.g. compatibility with standard clinical workflow, large

  8. SU-E-J-27: Appropriateness Criteria for Deformable Image Registration and Dose Propagation

    Energy Technology Data Exchange (ETDEWEB)

    Papanikolaou, P; Tuohy, Rachel; Mavroidis, P; Eng, T; Gutierrez, A; Stathakis, S [University of Texas HSC SA, San Antonio, TX (United States)

    2014-06-01

    Purpose: Several commercial software packages have been recently released that allow the user to apply deformable registration algorithms (DRA) for image fusion and dose propagation. Although the idea of anatomically tracking the daily patient dose in the context of adaptive radiotherapy or merely adding the dose from prior treatment to the current one is very intuitive, the accuracy and applicability of such algorithms needs to be investigated as it remains somewhat subjective. In our study, we used true anatomical data where we introduced changes in the density, volume and location of segmented structures to test the DRA for its sensitivity and accuracy. Methods: The CT scan of a prostate patient was selected for this study. The CT images were first segmented to define structure such as the PTV, bladder, rectum, intestines and pelvic bone anatomy. To perform our study, we introduced anatomical changes in the reference patient image set in three different ways: (i) we kept the segmented volumes constant and changed the density of rectum and bladder in increments of 5% (ii) we changed the volume of rectum and bladder in increments of 5% and (iii) we kept the segmented volumes constant but changed their location by moving their COM in increments of 3mm. Using the Velocity software, we evaluated the accuracy of the DRA for each incremental change in all three scenarios. Results: The DRA performs reasonably well when the differential density difference against the background is more than 5%. For the volume change study, the DRA results became unreliable for relative volume changes greater than 10%. Finally for the location study, the DRA performance was acceptable for shifts below 9mm. Conclusion: Site specific and patient specific QA for DRA is an important step to evaluate such algorithms prior to their use for dose propagation.

  9. Joint CT/CBCT deformable registration and CBCT enhancement for cancer radiotherapy

    OpenAIRE

    Lou, Yifei; Niu, Tianye; Jia, Xun; Vela, Patricio A.; Zhu, Lei; Tannenbaum, Allen R.

    2013-01-01

    This paper details an algorithm to simultaneously perform registration of computed tomography (CT) and cone-beam computed (CBCT) images, and image enhancement of CBCT. The algorithm employs a viscous fluid model which naturally incorporates two components: a similarity measure for registration and an intensity correction term for image enhancement. Incorporating an intensity correction term improves the registration results. Furthermore, applying the image enhancement term to CBCT imagery lea...

  10. Non-parametric estimation of Fisher information from real data

    CERN Document Server

    Shemesh, Omri Har; Miñano, Borja; Hoekstra, Alfons G; Sloot, Peter M A

    2015-01-01

    The Fisher Information matrix is a widely used measure for applications ranging from statistical inference, information geometry, experiment design, to the study of criticality in biological systems. Yet there is no commonly accepted non-parametric algorithm to estimate it from real data. In this rapid communication we show how to accurately estimate the Fisher information in a nonparametric way. We also develop a numerical procedure to minimize the errors by choosing the interval of the finite difference scheme necessary to compute the derivatives in the definition of the Fisher information. Our method uses the recently published "Density Estimation using Field Theory" algorithm to compute the probability density functions for continuous densities. We use the Fisher information of the normal distribution to validate our method and as an example we compute the temperature component of the Fisher Information Matrix in the two dimensional Ising model and show that it obeys the expected relation to the heat capa...

  11. A Non-Parametric Spatial Independence Test Using Symbolic Entropy

    Directory of Open Access Journals (Sweden)

    López Hernández, Fernando

    2008-01-01

    Full Text Available In the present paper, we construct a new, simple, consistent and powerful test forspatial independence, called the SG test, by using symbolic dynamics and symbolic entropyas a measure of spatial dependence. We also give a standard asymptotic distribution of anaffine transformation of the symbolic entropy under the null hypothesis of independencein the spatial process. The test statistic and its standard limit distribution, with theproposed symbolization, are invariant to any monotonuous transformation of the data.The test applies to discrete or continuous distributions. Given that the test is based onentropy measures, it avoids smoothed nonparametric estimation. We include a MonteCarlo study of our test, together with the well-known Moran’s I, the SBDS (de Graaffet al, 2001 and (Brett and Pinkse, 1997 non parametric test, in order to illustrate ourapproach.

  12. Multi-Directional Non-Parametric Analysis of Agricultural Efficiency

    DEFF Research Database (Denmark)

    Balezentis, Tomas

    This thesis seeks to develop methodologies for assessment of agricultural efficiency and employ them to Lithuanian family farms. In particular, we focus on three particular objectives throughout the research: (i) to perform a fully non-parametric analysis of efficiency effects, (ii) to extend...... relative to labour, intermediate consumption and land (in some cases land was not treated as a discretionary input). These findings call for further research on relationships among financial structure, investment decisions, and efficiency in Lithuanian family farms. Application of different techniques...... of stochasticity associated with Lithuanian family farm performance. The former technique showed that the farms differed in terms of the mean values and variance of the efficiency scores over time with some clear patterns prevailing throughout the whole research period. The fuzzy Free Disposal Hull showed...

  13. Binary Classifier Calibration Using a Bayesian Non-Parametric Approach.

    Science.gov (United States)

    Naeini, Mahdi Pakdaman; Cooper, Gregory F; Hauskrecht, Milos

    Learning probabilistic predictive models that are well calibrated is critical for many prediction and decision-making tasks in Data mining. This paper presents two new non-parametric methods for calibrating outputs of binary classification models: a method based on the Bayes optimal selection and a method based on the Bayesian model averaging. The advantage of these methods is that they are independent of the algorithm used to learn a predictive model, and they can be applied in a post-processing step, after the model is learned. This makes them applicable to a wide variety of machine learning models and methods. These calibration methods, as well as other methods, are tested on a variety of datasets in terms of both discrimination and calibration performance. The results show the methods either outperform or are comparable in performance to the state-of-the-art calibration methods.

  14. Using non-parametric methods in econometric production analysis

    DEFF Research Database (Denmark)

    Czekaj, Tomasz Gerard; Henningsen, Arne

    -Douglas function nor the Translog function are consistent with the “true” relationship between the inputs and the output in our data set. We solve this problem by using non-parametric regression. This approach delivers reasonable results, which are on average not too different from the results of the parametric......Econometric estimation of production functions is one of the most common methods in applied economic production analysis. These studies usually apply parametric estimation techniques, which obligate the researcher to specify the functional form of the production function. Most often, the Cobb...... results—including measures that are of interest of applied economists, such as elasticities. Therefore, we propose to use nonparametric econometric methods. First, they can be applied to verify the functional form used in parametric estimations of production functions. Second, they can be directly used...

  15. Large deformation diffeomorphic metric mapping registration of reconstructed 3D histological section images and in vivo MR images

    Directory of Open Access Journals (Sweden)

    Can Ceritoglu

    2010-05-01

    Full Text Available Our current understanding of neuroanatomical abnormalities in neuropsychiatric diseases is based largely on magnetic resonance imaging (MRI and post mortem histological analyses of the brain. Further advances in elucidating altered brain structure in these human conditions might emerge from combining MRI and histological methods. We propose a multistage method for registering 3D volumes reconstructed from histological sections to corresponding in vivo MRI volumes from the same subjects: (1 manual segmentation of white matter (WM, gray matter (GM and cerebrospinal fluid (CSF compartments in histological sections, (2 alignment of consecutive histological sections using 2D rigid transformation to construct a 3D histological image volume from the aligned sections, (3 registration of reconstructed 3D histological volumes to the corresponding 3D MRI volumes using 3D affine transformation, (4 intensity normalization of images via histogram matching and (5 registration of the volumes via intensity based Large Deformation Diffeomorphic Metric (LDDMM image matching algorithm. Here we demonstrate the utility of our method in the transfer of cytoarchitectonic information from histological sections to identify regions of interest in MRI scans of nine adult macaque brains for morphometric analyses. LDDMM improved the accuracy of the registration via decreased distances between GM/CSF surfaces after LDDMM (0.39±0.13 mm compared to distances after affine registration (0.76±0.41 mm. Similarly, WM/GM distances decreased to 0.28±0.16 mm after LDDMM compared to 0.54±0.39 mm after affine registration. The multistage registration method may find broad application for mapping histologically based information, e.g., receptor distributions, gene expression, onto MRI volumes.

  16. A review of segmentation and deformable registration methods applied to adaptive cervical cancer radiation therapy treatment planning.

    Science.gov (United States)

    Ghose, Soumya; Holloway, Lois; Lim, Karen; Chan, Philip; Veera, Jacqueline; Vinod, Shalini K; Liney, Gary; Greer, Peter B; Dowling, Jason

    2015-06-01

    Manual contouring and registration for radiotherapy treatment planning and online adaptation for cervical cancer radiation therapy in computed tomography (CT) and magnetic resonance images (MRI) are often necessary. However manual intervention is time consuming and may suffer from inter or intra-rater variability. In recent years a number of computer-guided automatic or semi-automatic segmentation and registration methods have been proposed. Segmentation and registration in CT and MRI for this purpose is a challenging task due to soft tissue deformation, inter-patient shape and appearance variation and anatomical changes over the course of treatment. The objective of this work is to provide a state-of-the-art review of computer-aided methods developed for adaptive treatment planning and radiation therapy planning for cervical cancer radiation therapy. Segmentation and registration methods published with the goal of cervical cancer treatment planning and adaptation have been identified from the literature (PubMed and Google Scholar). A comprehensive description of each method is provided. Similarities and differences of these methods are highlighted and the strengths and weaknesses of these methods are discussed. A discussion about choice of an appropriate method for a given modality is provided. In the reviewed papers a Dice similarity coefficient of around 0.85 along with mean absolute surface distance of 2-4mm for the clinically treated volume were reported for transfer of contours from planning day to the treatment day. Most segmentation and non-rigid registration methods have been primarily designed for adaptive re-planning for the transfer of contours from planning day to the treatment day. The use of shape priors significantly improved segmentation and registration accuracy compared to other models. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. SU-E-J-222: Evaluation of Deformable Registration of PET/CT Images for Cervical Cancer Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Y; Turian, J; Templeton, A; Kiel, K; Chu, J [Rush University Medical Center, Chicago, IL (United States); Kadir, T [Mirada Medical Ltd., Oxford, Oxfordshire (United Kingdom)

    2014-06-01

    Purpose: PET/CT provides important functional information for radiotherapy targeting of cervical cancer. However, repeated PET/CT procedures for external beam and subsequent brachytherapy expose patients to additional radiation and are not cost effective. Our goal is to investigate the possibility of propagating PET-active volumes for brachytherapy procedures through deformable image registration (DIR) of earlier PET/CT and ultimately to minimize the number of PET/CT image sessions required. Methods: Nine cervical cancer patients each received their brachytherapy preplanning PET/CT at the end of EBRT with a Syed template in place. The planning PET/CT was acquired on the day of brachytherapy treatment with the actual applicator (Syed or Tandem and Ring) and rigidly registered. The PET/CT images were then deformably registered creating a third (deformed) image set for target prediction. Regions of interest with standardized uptake values (SUV) greater than 65% of maximum SUV were contoured as target volumes in all three sets of PET images. The predictive value of the registered images was evaluated by comparing the preplanning and deformed PET volumes with the planning PET volume using Dice's coefficient (DC) and center-of-mass (COM) displacement. Results: The average DCs were 0.12±0.14 and 0.19±0.16 for rigid and deformable predicted target volumes, respectively. The average COM displacements were 1.9±0.9 cm and 1.7±0.7 cm for rigid and deformable registration, respectively. The DCs were improved by deformable registration, however, both were lower than published data for DIR in other modalities and clinical sites. Anatomical changes caused by different brachytherapy applicators could have posed a challenge to the DIR algorithm. The physiological change from interstitial needle placement may also contribute to lower DC. Conclusion: The clinical use of DIR in PET/CT for cervical cancer brachytherapy appears to be limited by applicator choice and requires

  18. Four-dimensional dose evaluation using deformable image registration in radiotherapy for liver cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hoon Jung, Sang; Min Yoon, Sang; Ho Park, Sung; Cho, Byungchul; Won Park, Jae; Jung, Jinhong; Park, Jin-hong; Hoon Kim, Jong; Do Ahn, Seung [Departments of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 138-736 (Korea, Republic of)

    2013-01-15

    Purpose: In order to evaluate the dosimetric impact of respiratory motion on the dose delivered to the target volume and critical organs during free-breathing radiotherapy, a four-dimensional dose was evaluated using deformable image registration (DIR). Methods: Four-dimensional computed tomography (4DCT) images were acquired for 11 patients who were treated for liver cancer. Internal target volume-based treatment planning and dose calculation (3D dose) were performed using the end-exhalation phase images. The four-dimensional dose (4D dose) was calculated based on DIR of all phase images from 4DCT to the planned image. Dosimetric parameters from the 4D dose, were calculated and compared with those from the 3D dose. Results: There was no significant change of the dosimetric parameters for gross tumor volume (p > 0.05). The increase D{sub mean} and generalized equivalent uniform dose (gEUD) for liver were by 3.1%{+-} 3.3% (p= 0.003) and 2.8%{+-} 3.3% (p= 0.008), respectively, and for duodenum, they were decreased by 15.7%{+-} 11.2% (p= 0.003) and 15.1%{+-} 11.0% (p= 0.003), respectively. The D{sub max} and gEUD for stomach was decreased by 5.3%{+-} 5.8% (p= 0.003) and 9.7%{+-} 8.7% (p= 0.003), respectively. The D{sub max} and gEUD for right kidney was decreased by 11.2%{+-} 16.2% (p= 0.003) and 14.9%{+-} 16.8% (p= 0.005), respectively. For left kidney, D{sub max} and gEUD were decreased by 11.4%{+-} 11.0% (p= 0.003) and 12.8%{+-} 12.1% (p= 0.005), respectively. The NTCP values for duodenum and stomach were decreased by 8.4%{+-} 5.8% (p= 0.003) and 17.2%{+-} 13.7% (p= 0.003), respectively. Conclusions: The four-dimensional dose with a more realistic dose calculation accounting for respiratory motion revealed no significant difference in target coverage and potentially significant change in the physical and biological dosimetric parameters in normal organs during free-breathing treatment.

  19. Learning-based deformable image registration for infant MR images in the first year of life.

    Science.gov (United States)

    Hu, Shunbo; Wei, Lifang; Gao, Yaozong; Guo, Yanrong; Wu, Guorong; Shen, Dinggang

    2017-01-01

    Many brain development studies have been devoted to investigate dynamic structural and functional changes in the first year of life. To quantitatively measure brain development in such a dynamic period, accurate image registration for different infant subjects with possible large age gap is of high demand. Although many state-of-the-art image registration methods have been proposed for young and elderly brain images, very few registration methods work for infant brain images acquired in the first year of life, because of (a) large anatomical changes due to fast brain development and (b) dynamic appearance changes due to white-matter myelination. To address these two difficulties, we propose a learning-based registration method to not only align the anatomical structures but also alleviate the appearance differences between two arbitrary infant MR images (with large age gap) by leveraging the regression forest to predict both the initial displacement vector and appearance changes. Specifically, in the training stage, two regression models are trained separately, with (a) one model learning the relationship between local image appearance (of one development phase) and its displacement toward the template (of another development phase) and (b) another model learning the local appearance changes between the two brain development phases. Then, in the testing stage, to register a new infant image to the template, we first predict both its voxel-wise displacement and appearance changes by the two learned regression models. Since such initializations can alleviate significant appearance and shape differences between new infant image and the template, it is easy to just use a conventional registration method to refine the remaining registration. We apply our proposed registration method to align 24 infant subjects at five different time points (i.e., 2-week-old, 3-month-old, 6-month-old, 9-month-old, and 12-month-old), and achieve more accurate and robust registration

  20. Poster — Thur Eve — 70: Automatic lung bronchial and vessel bifurcations detection algorithm for deformable image registration assessment

    Energy Technology Data Exchange (ETDEWEB)

    Labine, Alexandre; Carrier, Jean-François; Bedwani, Stéphane [Centre hospitalier de l' Université de Montréal (Canada); Chav, Ramnada; De Guise, Jacques [Laboratoire de recherche en imagerie et d' orthopédie-CRCHUM, École de technologie supérieure (Canada)

    2014-08-15

    Purpose: To investigate an automatic bronchial and vessel bifurcations detection algorithm for deformable image registration (DIR) assessment to improve lung cancer radiation treatment. Methods: 4DCT datasets were acquired and exported to Varian treatment planning system (TPS) EclipseTM for contouring. The lungs TPS contour was used as the prior shape for a segmentation algorithm based on hierarchical surface deformation that identifies the deformed lungs volumes of the 10 breathing phases. Hounsfield unit (HU) threshold filter was applied within the segmented lung volumes to identify blood vessels and airways. Segmented blood vessels and airways were skeletonised using a hierarchical curve-skeleton algorithm based on a generalized potential field approach. A graph representation of the computed skeleton was generated to assign one of three labels to each node: the termination node, the continuation node or the branching node. Results: 320 ± 51 bifurcations were detected in the right lung of a patient for the 10 breathing phases. The bifurcations were visually analyzed. 92 ± 10 bifurcations were found in the upper half of the lung and 228 ± 45 bifurcations were found in the lower half of the lung. Discrepancies between ten vessel trees were mainly ascribed to large deformation and in regions where the HU varies. Conclusions: We established an automatic method for DIR assessment using the morphological information of the patient anatomy. This approach allows a description of the lung's internal structure movement, which is needed to validate the DIR deformation fields for accurate 4D cancer treatment planning.

  1. Simple DVH parameter addition as compared to deformable registration for bladder dose accumulation in cervix cancer brachytherapy

    DEFF Research Database (Denmark)

    Andersen, Else Stougård; Noe, Karsten Østergaaard; Sørensen, Thomas Sangild

    2013-01-01

    called "the worst case assumption") in fractionated BT. Materials and methods: Forty-seven patients treated for locally advanced cervical cancer were included. All patients received EBRT combined with two individually planned 3D image-guided adaptive BT fractions. D2 and D0.1 were estimated by DVH...... parameter addition and compared to dose accumulations based on an in-house developed biomechanical deformable image registration (DIR) algorithm. Results: DIR-based DVH analysis was possible in 42/47 patients. DVH parameter addition resulted in mean dose deviations relative to DIR of 0.4 ± 0.3 Gy (1.5 ± 1...

  2. Evaluation of accuracy of B-spline transformation-based deformable image registration with different parameter settings for thoracic images.

    Science.gov (United States)

    Kanai, Takayuki; Kadoya, Noriyuki; Ito, Kengo; Onozato, Yusuke; Cho, Sang Yong; Kishi, Kazuma; Dobashi, Suguru; Umezawa, Rei; Matsushita, Haruo; Takeda, Ken; Jingu, Keiichi

    2014-11-01

    Deformable image registration (DIR) is fundamental technique for adaptive radiotherapy and image-guided radiotherapy. However, further improvement of DIR is still needed. We evaluated the accuracy of B-spline transformation-based DIR implemented in elastix. This registration package is largely based on the Insight Segmentation and Registration Toolkit (ITK), and several new functions were implemented to achieve high DIR accuracy. The purpose of this study was to clarify whether new functions implemented in elastix are useful for improving DIR accuracy. Thoracic 4D computed tomography images of ten patients with esophageal or lung cancer were studied. Datasets for these patients were provided by DIR-lab (dir-lab.com) and included a coordinate list of anatomical landmarks that had been manually identified. DIR between peak-inhale and peak-exhale images was performed with four types of parameter settings. The first one represents original ITK (Parameter 1). The second employs the new function of elastix (Parameter 2), and the third was created to verify whether new functions improve DIR accuracy while keeping computational time (Parameter 3). The last one partially employs a new function (Parameter 4). Registration errors for these parameter settings were calculated using the manually determined landmark pairs. 3D registration errors with standard deviation over all cases were 1.78 (1.57), 1.28 (1.10), 1.44 (1.09) and 1.36 (1.35) mm for Parameter 1, 2, 3 and 4, respectively, indicating that the new functions are useful for improving DIR accuracy, even while maintaining the computational time, and this B-spline-based DIR could be used clinically to achieve high-accuracy adaptive radiotherapy. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  3. A GPU based high-resolution multilevel biomechanical head and neck model for validating deformable image registration

    Energy Technology Data Exchange (ETDEWEB)

    Neylon, J., E-mail: jneylon@mednet.ucla.edu; Qi, X.; Sheng, K.; Low, D. A.; Kupelian, P.; Santhanam, A. [Department of Radiation Oncology, University of California Los Angeles, 200 Medical Plaza, #B265, Los Angeles, California 90095 (United States); Staton, R.; Pukala, J.; Manon, R. [Department of Radiation Oncology, M.D. Anderson Cancer Center, Orlando, 1440 South Orange Avenue, Orlando, Florida 32808 (United States)

    2015-01-15

    Purpose: Validating the usage of deformable image registration (DIR) for daily patient positioning is critical for adaptive radiotherapy (RT) applications pertaining to head and neck (HN) radiotherapy. The authors present a methodology for generating biomechanically realistic ground-truth data for validating DIR algorithms for HN anatomy by (a) developing a high-resolution deformable biomechanical HN model from a planning CT, (b) simulating deformations for a range of interfraction posture changes and physiological regression, and (c) generating subsequent CT images representing the deformed anatomy. Methods: The biomechanical model was developed using HN kVCT datasets and the corresponding structure contours. The voxels inside a given 3D contour boundary were clustered using a graphics processing unit (GPU) based algorithm that accounted for inconsistencies and gaps in the boundary to form a volumetric structure. While the bony anatomy was modeled as rigid body, the muscle and soft tissue structures were modeled as mass–spring-damper models with elastic material properties that corresponded to the underlying contoured anatomies. Within a given muscle structure, the voxels were classified using a uniform grid and a normalized mass was assigned to each voxel based on its Hounsfield number. The soft tissue deformation for a given skeletal actuation was performed using an implicit Euler integration with each iteration split into two substeps: one for the muscle structures and the other for the remaining soft tissues. Posture changes were simulated by articulating the skeletal structure and enabling the soft structures to deform accordingly. Physiological changes representing tumor regression were simulated by reducing the target volume and enabling the surrounding soft structures to deform accordingly. Finally, the authors also discuss a new approach to generate kVCT images representing the deformed anatomy that accounts for gaps and antialiasing artifacts that may

  4. A New Non-Parametric Approach to Galaxy Morphological Classification

    CERN Document Server

    Lotz, J M; Madau, P; Lotz, Jennifer M.; Primack, Joel; Madau, Piero

    2003-01-01

    We present two new non-parametric methods for quantifying galaxy morphology: the relative distribution of the galaxy pixel flux values (the Gini coefficient or G) and the second-order moment of the brightest 20% of the galaxy's flux (M20). We test the robustness of G and M20 to decreasing signal-to-noise and spatial resolution, and find that both measures are reliable to within 10% at average signal-to-noise per pixel greater than 3 and resolutions better than 1000 pc and 500 pc, respectively. We have measured G and M20, as well as concentration (C), asymmetry (A), and clumpiness (S) in the rest-frame near-ultraviolet/optical wavelengths for 150 bright local "normal" Hubble type galaxies (E-Sd) galaxies and 104 0.05 < z < 0.25 ultra-luminous infrared galaxies (ULIRGs).We find that most local galaxies follow a tight sequence in G-M20-C, where early-types have high G and C and low M20 and late-type spirals have lower G and C and higher M20. The majority of ULIRGs lie above the normal galaxy G-M20 sequence...

  5. Non-parametric and least squares Langley plot methods

    Directory of Open Access Journals (Sweden)

    P. W. Kiedron

    2015-04-01

    Full Text Available Langley plots are used to calibrate sun radiometers primarily for the measurement of the aerosol component of the atmosphere that attenuates (scatters and absorbs incoming direct solar radiation. In principle, the calibration of a sun radiometer is a straightforward application of the Bouguer–Lambert–Beer law V=V>/i>0e−τ ·m, where a plot of ln (V voltage vs. m air mass yields a straight line with intercept ln (V0. This ln (V0 subsequently can be used to solve for τ for any measurement of V and calculation of m. This calibration works well on some high mountain sites, but the application of the Langley plot calibration technique is more complicated at other, more interesting, locales. This paper is concerned with ferreting out calibrations at difficult sites and examining and comparing a number of conventional and non-conventional methods for obtaining successful Langley plots. The eleven techniques discussed indicate that both least squares and various non-parametric techniques produce satisfactory calibrations with no significant differences among them when the time series of ln (V0's are smoothed and interpolated with median and mean moving window filters.

  6. Parametric and non-parametric modeling of short-term synaptic plasticity. Part II: Experimental study.

    Science.gov (United States)

    Song, Dong; Wang, Zhuo; Marmarelis, Vasilis Z; Berger, Theodore W

    2009-02-01

    This paper presents a synergistic parametric and non-parametric modeling study of short-term plasticity (STP) in the Schaffer collateral to hippocampal CA1 pyramidal neuron (SC) synapse. Parametric models in the form of sets of differential and algebraic equations have been proposed on the basis of the current understanding of biological mechanisms active within the system. Non-parametric Poisson-Volterra models are obtained herein from broadband experimental input-output data. The non-parametric model is shown to provide better prediction of the experimental output than a parametric model with a single set of facilitation/depression (FD) process. The parametric model is then validated in terms of its input-output transformational properties using the non-parametric model since the latter constitutes a canonical and more complete representation of the synaptic nonlinear dynamics. Furthermore, discrepancies between the experimentally-derived non-parametric model and the equivalent non-parametric model of the parametric model suggest the presence of multiple FD processes in the SC synapses. Inclusion of an additional set of FD process in the parametric model makes it replicate better the characteristics of the experimentally-derived non-parametric model. This improved parametric model in turn provides the requisite biological interpretability that the non-parametric model lacks.

  7. SU-E-T-237: Deformable Image Registration and Deformed Dose Composite for Volumetric Evaluation of Multimodal Gynecological Cancer Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Albani, D; Sherertz, T; Ellis, R; Podder, T [Seidman Cancer Center University Hospitals Case Medical Center, Cleveland, OH (United States); Cantley, J [Case Western Reserve University, Cleveland, OH (United States); Herrmann, K [University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH (United States)

    2015-06-15

    Purpose: Radiotherapy plans for patients with cervical cancer treated with EBRT followed by HDR brachytherapy are optimized by constraining dose to organs at risk (OARs). Risk of treatment related toxicities is estimated based on the dose received to the hottest 2cc (D2cc) of the bladder, bowel, rectum, and sigmoid. To account for intrafractional variation in OAR volume and positioning, a dose deformation method is proposed for more accurate evaluation of dose distribution for these patients. Methods: Radiotherapy plans from five patients who received 50.4Gy pelvic EBRT followed by 30Gy in five fractions of HDR brachytherapy, using split-ring and tandem applicators, were retrospectively evaluated using MIM Software version 6.0. Dose accumulation workflows were used for initial deformation of EBRT and HDR planning CTs onto a common HDR planning CT. The Reg Refine tool was applied with user-specified local alignments to refine the deformation. Doses from the deformed images were transferred to the common planning CT. Deformed doses were scaled to the EQD2, following the linear-quadratic BED model (considered α/β ratio for tumor as 10, and 3 for rest of the tissues), and then combined to create the dose composite. MIM composite doses were compared to the clinically-reported plan assessments based upon the American Brachytherapy Society (ABS) guidelines for cervical HDR brachytherapy treatment. Results: Bladder D2cc exhibited significant reduction (−11.4%±3.85%, p< 0.02) when evaluated using MIM deformable dose composition. Differences observed for bowel, rectum, and sigmoid D2cc were not significant (−0.58±7.37%, −4.13%±13.7%, and 8.58%±4.71%, respectively and p>0.05 for all) relative to the calculated values used clinically. Conclusion: Application of deformable dose composite techniques may lead to more accurate total dose reporting and can allow for elevated dose to target structures with the assurance of not exceeding dose to OARs. Further study into

  8. A three-dimensional head-and-neck phantom for validation of multimodality deformable image registration for adaptive radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Singhrao, Kamal; Kirby, Neil; Pouliot, Jean, E-mail: jpouliot@radonc.ucsf.edu [Department of Radiation Oncology, University of California San Francisco, San Francisco, California 94143-1708 (United States)

    2014-12-15

    Purpose: To develop a three-dimensional (3D) deformable head-and-neck (H and N) phantom with realistic tissue contrast for both kilovoltage (kV) and megavoltage (MV) imaging modalities and use it to objectively evaluate deformable image registration (DIR) algorithms. Methods: The phantom represents H and N patient anatomy. It is constructed from thermoplastic, which becomes pliable in boiling water, and hardened epoxy resin. Using a system of additives, the Hounsfield unit (HU) values of these materials were tuned to mimic anatomy for both kV and MV imaging. The phantom opens along a sagittal midsection to reveal radiotransparent markers, which were used to characterize the phantom deformation. The deformed and undeformed phantoms were scanned with kV and MV imaging modalities. Additionally, a calibration curve was created to change the HUs of the MV scans to be similar to kV HUs, (MC). The extracted ground-truth deformation was then compared to the results of two commercially available DIR algorithms, from Velocity Medical Solutions and MIM software. Results: The phantom produced a 3D deformation, representing neck flexion, with a magnitude of up to 8 mm and was able to represent tissue HUs for both kV and MV imaging modalities. The two tested deformation algorithms yielded vastly different results. For kV–kV registration, MIM produced mean and maximum errors of 1.8 and 11.5 mm, respectively. These same numbers for Velocity were 2.4 and 7.1 mm, respectively. For MV–MV, kV–MV, and kV–MC Velocity produced similar mean and maximum error values. MIM, however, produced gross errors for all three of these scenarios, with maximum errors ranging from 33.4 to 41.6 mm. Conclusions: The application of DIR across different imaging modalities is particularly difficult, due to differences in tissue HUs and the presence of imaging artifacts. For this reason, DIR algorithms must be validated specifically for this purpose. The developed H and N phantom is an effective tool

  9. A Comparative Evaluation of 3 Different Free-Form Deformable Image Registration and Contour Propagation Methods for Head and Neck MRI: The Case of Parotid Changes During Radiotherapy.

    Science.gov (United States)

    Broggi, Sara; Scalco, Elisa; Belli, Maria Luisa; Logghe, Gerlinde; Verellen, Dirk; Moriconi, Stefano; Chiara, Anna; Palmisano, Anna; Mellone, Renata; Fiorino, Claudio; Rizzo, Giovanna

    2017-06-01

    To validate and compare the deformable image registration and parotid contour propagation process for head and neck magnetic resonance imaging in patients treated with radiotherapy using 3 different approaches-the commercial MIM, the open-source Elastix software, and an optimized version of it. Twelve patients with head and neck cancer previously treated with radiotherapy were considered. Deformable image registration and parotid contour propagation were evaluated by considering the magnetic resonance images acquired before and after the end of the treatment. Deformable image registration, based on free-form deformation method, and contour propagation available on MIM were compared to Elastix. Two different contour propagation approaches were implemented for Elastix software, a conventional one (DIR_Trx) and an optimized homemade version, based on mesh deformation (DIR_Mesh). The accuracy of these 3 approaches was estimated by comparing propagated to manual contours in terms of average symmetric distance, maximum symmetric distance, Dice similarity coefficient, sensitivity, and inclusiveness. A good agreement was generally found between the manual contours and the propagated ones, without differences among the 3 methods; in few critical cases with complex deformations, DIR_Mesh proved to be more accurate, having the lowest values of average symmetric distance and maximum symmetric distance and the highest value of Dice similarity coefficient, although nonsignificant. The average propagation errors with respect to the reference contours are lower than the voxel diagonal (2 mm), and Dice similarity coefficient is around 0.8 for all 3 methods. The 3 free-form deformation approaches were not significantly different in terms of deformable image registration accuracy and can be safely adopted for the registration and parotid contour propagation during radiotherapy on magnetic resonance imaging. More optimized approaches (as DIR_Mesh) could be preferable for critical

  10. WE-D-9A-02: Automated Landmark-Guided CT to Cone-Beam CT Deformable Image Registration

    Energy Technology Data Exchange (ETDEWEB)

    Kearney, V; Gu, X; Chen, S; Jiang, L; Liu, H; Chiu, T; Yordy, J; Nedzi, L; Mao, W [UT Southwestern Medical Center, Dallas, TX (United States)

    2014-06-15

    Purpose: The anatomical changes that occur between the simulation CT and daily cone-beam CT (CBCT) are investigated using an automated landmark-guided deformable image registration (LDIR) algorithm with simultaneous intensity correction. LDIR was designed to be accurate in the presence of tissue intensity mismatch and heavy noise contamination. Method: An auto-landmark generation algorithm was used in conjunction with a local small volume (LSV) gradient matching search engine to map corresponding landmarks between the CBCT and planning CT. The LSVs offsets were used to perform an initial deformation, generate landmarks, and correct local intensity mismatch. The landmarks act as stabilizing controlpoints in the Demons objective function. The accuracy of the LDIR algorithm was evaluated on one synthetic case with ground truth and data of ten head and neck cancer patients. The deformation vector field (DVF) accuracy was accessed using a synthetic case. The Root mean square error of the 3D canny edge (RMSECE), mutual information (MI), and feature similarity index metric (FSIM) were used to access the accuracy of LDIR on the patient data. The quality of the corresponding deformed contours was verified by an attending physician. Results: The resulting 90 percentile DVF error for the synthetic case was within 5.63mm for the original demons algorithm, 2.84mm for intensity correction alone, 2.45mm using controlpoints without intensity correction, and 1.48 mm for the LDIR algorithm. For the five patients the mean RMSECE of the original CT, Demons deformed CT, intensity corrected Demons CT, control-point stabilized deformed CT, and LDIR CT was 0.24, 0.26, 0.20, 0.20, and 0.16 respectively. Conclusion: LDIR is accurate in the presence of multimodal intensity mismatch and CBCT noise contamination. Since LDIR is GPU based it can be implemented with minimal additional strain on clinical resources. This project has been supported by a CPRIT individual investigator award RP11032.

  11. MO-C-17A-13: Uncertainty Evaluation of CT Image Deformable Registration for H and N Cancer Adaptive Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Qin, A; Yan, D [William Beaumont Hospital, Royal Oak, MI (United States)

    2014-06-15

    Purpose: To evaluate uncertainties of organ specific Deformable Image Registration (DIR) for H and N cancer Adaptive Radiation Therapy (ART). Methods: A commercial DIR evaluation tool, which includes a digital phantom library of 8 patients, and the corresponding “Ground truth Deformable Vector Field” (GT-DVF), was used in the study. Each patient in the phantom library includes the GT-DVF created from a pair of CT images acquired prior to and at the end of the treatment course. Five DIR tools, including 2 commercial tools (CMT1, CMT2), 2 in-house (IH-FFD1, IH-FFD2), and a classic DEMON algorithms, were applied on the patient images. The resulting DVF was compared to the GT-DVF voxel by voxel. Organ specific DVF uncertainty was calculated for 10 ROIs: Whole Body, Brain, Brain Stem, Cord, Lips, Mandible, Parotid, Esophagus and Submandibular Gland. Registration error-volume histogram was constructed for comparison. Results: The uncertainty is relatively small for brain stem, cord and lips, while large in parotid and submandibular gland. CMT1 achieved best overall accuracy (on whole body, mean vector error of 8 patients: 0.98±0.29 mm). For brain, mandible, parotid right, parotid left and submandibular glad, the classic Demon algorithm got the lowest uncertainty (0.49±0.09, 0.51±0.16, 0.46±0.11, 0.50±0.11 and 0.69±0.47 mm respectively). For brain stem, cord and lips, the DVF from CMT1 has the best accuracy (0.28±0.07, 0.22±0.08 and 0.27±0.12 mm respectively). All algorithms have largest right parotid uncertainty on patient #7, which has image artifact caused by tooth implantation. Conclusion: Uncertainty of deformable CT image registration highly depends on the registration algorithm, and organ specific. Large uncertainty most likely appears at the location of soft-tissue organs far from the bony structures. Among all 5 DIR methods, the classic DEMON and CMT1 seem to be the best to limit the uncertainty within 2mm for all OARs. Partially supported by

  12. SU-E-J-95: Towards Optimum Boundary Conditions for Biomechanical Model Based Deformable Registration Using Intensity Based Image Matching for Prostate Correlative Pathology.

    Science.gov (United States)

    Samavati, N; McGrath, D M; Lee, J; van der Kwast, T; Jewett, M; Mã Nard, C; Pluim, J P W; Brock, K K

    2012-06-01

    Deformable registration of histology to MRI is an essential tool to validate in vivo prostate cancer imaging. However, direct registration of histology to in vivo MR is prone to error due to geometric differences between the tissue sections and the in vivo imaging planes. To increase the accuracy of registration, an ex vivo high resolution MRI is acquired to compensate for the direct registration difficulties. A novel intensity-based deformable registration algorithm based on local variation in image intensities is proposed to register the histology to ex vivo MRI of prostatectomy specimens. Four sets of ex vivo MR and whole mount pathology images from four patients were used to investigate and validate the technique. In addition, 9 synthetically deformed ex vivo MR images were used. The standard deviation in local windows within the images was calculated to generate intermediate images based on both MR and histology. The intermediate images were registered using the Drop package (Munich, Germany). To further increase the accuracy, a final refinement of the registration was performed using Drop with a finer B-spline rid. The registration parameters were tuned to achieve a visually acceptable registration. Magnitude of Differences (MOD) and Angular Error (AE) were used to validate the synthetic data, and the Target Registration Error (TRE) of manually indicated landmarks was used for the clinical data. MOD of 0.6mm and AE of 8.3 degrees showed the efficacy of using intermediate images, compared to 0.8mm and 10.0 degrees achieved with Drop without the intermediate images. The average mean±std TRE among the four patients was 1.0±0.6 mm using the proposed method compared to 1.6±1.1 mm using Elastix (Utrecht, The Netherlands). An intensity-based deformable registration algorithm which uses intermediate images was evaluated on prostatectomy specimens and synthetically deformed clinical data, indicating improvement in overall accuracy and robustness. OICR, Terry Fox

  13. Non-parametric combination and related permutation tests for neuroimaging.

    Science.gov (United States)

    Winkler, Anderson M; Webster, Matthew A; Brooks, Jonathan C; Tracey, Irene; Smith, Stephen M; Nichols, Thomas E

    2016-04-01

    In this work, we show how permutation methods can be applied to combination analyses such as those that include multiple imaging modalities, multiple data acquisitions of the same modality, or simply multiple hypotheses on the same data. Using the well-known definition of union-intersection tests and closed testing procedures, we use synchronized permutations to correct for such multiplicity of tests, allowing flexibility to integrate imaging data with different spatial resolutions, surface and/or volume-based representations of the brain, including non-imaging data. For the problem of joint inference, we propose and evaluate a modification of the recently introduced non-parametric combination (NPC) methodology, such that instead of a two-phase algorithm and large data storage requirements, the inference can be performed in a single phase, with reasonable computational demands. The method compares favorably to classical multivariate tests (such as MANCOVA), even when the latter is assessed using permutations. We also evaluate, in the context of permutation tests, various combining methods that have been proposed in the past decades, and identify those that provide the best control over error rate and power across a range of situations. We show that one of these, the method of Tippett, provides a link between correction for the multiplicity of tests and their combination. Finally, we discuss how the correction can solve certain problems of multiple comparisons in one-way ANOVA designs, and how the combination is distinguished from conjunctions, even though both can be assessed using permutation tests. We also provide a common algorithm that accommodates combination and correction.

  14. The utility of deformable image registration for small artery visualisation in contrast-enhanced whole body MR angiography.

    Science.gov (United States)

    Foley, Daniel; Browne, Jacinta E; Zhuang, Xiahai; Sheane, Barry; O'Driscoll, Dearbhail; Cannon, Daniel; Sheehy, Niall; Meaney, James F; Fagan, Andrew J

    2014-12-01

    An investigation was carried out into the effect of three image registration techniques on the diagnostic image quality of contrast-enhanced magnetic resonance angiography (CE-MRA) images. Whole-body CE-MRA data from the lower legs of 27 patients recruited onto a study of asymptomatic atherosclerosis were processed using three deformable image registration algorithms. The resultant diagnostic image quality was evaluated qualitatively in a clinical evaluation by four expert observers, and quantitatively by measuring contrast-to-noise ratios and volumes of blood vessels, and assessing the techniques' ability to correct for varying degrees of motion. The first registration algorithm ('AIR') introduced significant stenosis-mimicking artefacts into the blood vessels' appearance, observed both qualitatively (clinical evaluation) and quantitatively (vessel volume measurements). The two other algorithms ('Slicer' and 'SEMI'), based on the normalised mutual information (NMI) concept and designed specifically to deal with variations in signal intensity as found in contrast-enhanced image data, did not suffer from this serious issue but were rather found to significantly improve the diagnostic image quality both qualitatively and quantitatively, and demonstrated a significantly improved ability to deal with the common problem of patient motion. This work highlights both the significant benefits to be gained through the use of suitable registration algorithms and the deleterious effects of an inappropriate choice of algorithm for contrast-enhanced MRI data. The maximum benefit was found in the lower legs, where the small arterial vessel diameters and propensity for leg movement during image acquisitions posed considerable problems in making accurate diagnoses from the un-registered images. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  15. SU-E-J-226: Propagation of Pancreas Target Contours On Respiratory Correlated CT Images Using Deformable Image Registration

    Energy Technology Data Exchange (ETDEWEB)

    Liu, F [Rhode Island Hospital / Brown University, Providence, RI (United States); Yorke, E; Mageras, G; Goodman, K [Memorial Sloan-Kettering Cancer Center, NY, NY (United States)

    2014-06-01

    Purpose: Respiratory Correlated CT (RCCT) scans to assess intra-fraction motion among pancreatic cancer patients undergoing radiotherapy allow for dose sparing of normal tissues, in particular for the duodenum. Contour propagation of the gross tumor volume (GTV) from one reference respiratory phase to 9 other phases is time consuming. Deformable image registration (DIR) has been successfully used for high contrast disease sites but lower contrast for pancreatic tumors may compromise accuracy. This study evaluates the accuracy of Fast Free Form (FFF) registration-based contour propagation of the GTV on RCCT scans of pancreas cancer patients. Methods: Twenty-four pancreatic cancer patients were retrospectively studied; 20 had tumors in the pancreatic head/neck, 4 in the body/tail. Patients were simulated with RCCT and images were sorted into 10 respiratory phases. A radiation oncologist manually delineated the GTV for 5 phases (0%, 30%, 50%, 70% and 90%). The FFF algorithm was used to map deformations between the EE (50%) phase and each of the other 4 phases. The resultant deformation fields served to propagate GTV contours from EE to the other phases. The Dice Similarity Coefficient (DSC), which measures agreement between the DIR-propagated and manually-delineated GTVs, was used to quantitatively examine DIR accuracy. Results: Average DSC over all scans and patients is 0.82 and standard deviation is 0.09 (DSC range 0.97–0.57). For GTV volumes above and below the median volume of 20.2 cc, a Wilcoxon rank-sum test shows significantly different DSC (p=0.0000002). For the GTVs above the median volume, average +/− SD is 0.85 +/− 0.07; and for the GTVs below, the average +/− SD is 0.75 +/−0.08. Conclusion: For pancreatic tumors, the FFF DIR algorithm accurately propagated the GTV between the images in different phases of RCCT, with improved performance for larger tumors.

  16. SU-E-J-254: Utility of Pinnacle Dynamic Planning Module Utilizing Deformable Image Registration in Adaptive Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Jani, S [Sharp Memorial Hospital, San Diego, CA (United States)

    2014-06-01

    Purpose For certain highly conformal treatment techniques, changes in patient anatomy due to weight loss and/or tumor shrinkage can result in significant changes in dose distribution. Recently, the Pinnacle treatment planning system added a Dynamic Planning module utilizing Deformable Image Registration (DIR). The objective of this study was to evaluate the effectiveness of this software in adapting to altered anatomy and adjusting treatment plans to account for it. Methods We simulated significant tumor response by changing patient thickness and altered chin positions using a commercially-available head and neck (H and N) phantom. In addition, we studied 23 CT image sets of fifteen (15) patients with H and N tumors and eight (8) patients with prostate cancer. In each case, we applied deformable image registration through Dynamic Planning module of our Pinnacle Treatment Planning System. The dose distribution of the original CT image set was compared to the newly computed dose without altering any treatment parameter. Result was a dose if we did not adjust the plan to reflect anatomical changes. Results For the H and N phantom, a tumor response of up to 3.5 cm was correctly deformed by the Pinnacle Dynamic module. Recomputed isodose contours on new anatomies were within 1 mm of the expected distribution. The Pinnacle system configuration allowed dose computations resulting from original plans on new anatomies without leaving the planning system. Original and new doses were available side-by-side with both CT image sets. Based on DIR, about 75% of H and N patients (11/15) required a re-plan using new anatomy. Among prostate patients, the DIR predicted near-correct bladder volume in 62% of the patients (5/8). Conclusions The Dynamic Planning module of the Pinnacle system proved to be an accurate and useful tool in our ability to adapt to changes in patient anatomy during a course of radiotherapy.

  17. Validation of deformable image registration algorithms on CT images of ex vivo porcine bladders with fiducial markers.

    Science.gov (United States)

    Wognum, S; Heethuis, S E; Rosario, T; Hoogeman, M S; Bel, A

    2014-07-01

    The spatial accuracy of deformable image registration (DIR) is important in the implementation of image guided adaptive radiotherapy techniques for cancer in the pelvic region. Validation of algorithms is best performed on phantoms with fiducial markers undergoing controlled large deformations. Excised porcine bladders, exhibiting similar filling and voiding behavior as human bladders, provide such an environment. The aim of this study was to determine the spatial accuracy of different DIR algorithms on CT images of ex vivo porcine bladders with radiopaque fiducial markers applied to the outer surface, for a range of bladder volumes, using various accuracy metrics. Five excised porcine bladders with a grid of 30-40 radiopaque fiducial markers attached to the outer wall were suspended inside a water-filled phantom. The bladder was filled with a controlled amount of water with added contrast medium for a range of filling volumes (100-400 ml in steps of 50 ml) using a luer lock syringe, and CT scans were acquired at each filling volume. DIR was performed for each data set, with the 100 ml bladder as the reference image. Six intensity-based algorithms (optical flow or demons-based) implemented in theMATLAB platform DIRART, a b-spline algorithm implemented in the commercial software package VelocityAI, and a structure-based algorithm (Symmetric Thin Plate Spline Robust Point Matching) were validated, using adequate parameter settings according to values previously published. The resulting deformation vector field from each registration was applied to the contoured bladder structures and to the marker coordinates for spatial error calculation. The quality of the algorithms was assessed by comparing the different error metrics across the different algorithms, and by comparing the effect of deformation magnitude (bladder volume difference) per algorithm, using the Independent Samples Kruskal-Wallis test. The authors found good structure accuracy without dependency on

  18. A multiple-image-based method to evaluate the performance of deformable image registration in the pelvis

    Science.gov (United States)

    Saleh, Ziad; Thor, Maria; Apte, Aditya P.; Sharp, Gregory; Tang, Xiaoli; Veeraraghavan, Harini; Muren, Ludvig; Deasy, Joseph

    2016-08-01

    Deformable image registration (DIR) is essential for adaptive radiotherapy (RT) for tumor sites subject to motion, changes in tumor volume, as well as changes in patient normal anatomy due to weight loss. Several methods have been published to evaluate DIR-related uncertainties but they are not widely adopted. The aim of this study was, therefore, to evaluate intra-patient DIR for two highly deformable organs—the bladder and the rectum—in prostate cancer RT using a quantitative metric based on multiple image registration, the distance discordance metric (DDM). Voxel-by-voxel DIR uncertainties of the bladder and rectum were evaluated using DDM on weekly CT scans of 38 subjects previously treated with RT for prostate cancer (six scans/subject). The DDM was obtained from group-wise B-spline registration of each patient’s collection of repeat CT scans. For each structure, registration uncertainties were derived from DDM-related metrics. In addition, five other quantitative measures, including inverse consistency error (ICE), transitivity error (TE), Dice similarity (DSC) and volume ratios between corresponding structures from pre- and post- registered images were computed and compared with the DDM. The DDM varied across subjects and structures; DDMmean of the bladder ranged from 2 to 13 mm and from 1 to 11 mm for the rectum. There was a high correlation between DDMmean of the bladder and the rectum (Pearson’s correlation coefficient, R p  =  0.62). The correlation between DDMmean and the volume ratios post-DIR was stronger (R p  =  0.51 0.68) than the correlation with the TE (bladder: R p  =  0.46 rectum: R p  =  0.47), or the ICE (bladder: R p  =  0.34 rectum: R p  =  0.37). There was a negative correlation between DSC and DDMmean of both the bladder (R p  =  -0.23) and the rectum (R p  =  -0.63). The DDM uncertainty metric indicated considerable DIR variability across subjects and structures

  19. Continuous/discrete non parametric Bayesian belief nets with UNICORN and UNINET

    NARCIS (Netherlands)

    Cooke, R.M.; Kurowicka, D.; Hanea, A.M.; Morales Napoles, O.; Ababei, D.A.; Ale, B.J.M.; Roelen, A.

    2007-01-01

    Hanea et al. (2006) presented a method for quantifying and computing continuous/discrete non parametric Bayesian Belief Nets (BBN). Influences are represented as conditional rank correlations, and the joint normal copula enables rapid sampling and conditionalization. Further mathematical background

  20. Kernel bandwidth estimation for non-parametric density estimation: a comparative study

    CSIR Research Space (South Africa)

    Van der Walt, CM

    2013-12-01

    Full Text Available We investigate the performance of conventional bandwidth estimators for non-parametric kernel density estimation on a number of representative pattern-recognition tasks, to gain a better understanding of the behaviour of these estimators in high...

  1. Objective assessment of deformable image registration in radiotherapy: A multi-institution study

    Energy Technology Data Exchange (ETDEWEB)

    Kashani, Rojano; Hub, Martina; Balter, James M.; Kessler, Marc L.; Dong Lei; Zhang Lifei; Xing Lei; Xie Yaoqin; Hawkes, David; Schnabel, Julia A.; McClelland, Jamie; Joshi, Sarang; Chen Quan; Lu Weiguo [Department of Radiation Oncology, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, Michigan 48109-0010 (United States); Department of Radiation Oncology, Deutsches Krebsforschungszentrum, Heidelberg (Germany); Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109 (United States); Department of Radiation Oncology, UT MD Anderson Cancer Center, Houston, Texas 77030 (United States); Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305 (United States); Centre for Medical Image Computing, University College London, London (United Kingdom); Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah 84112 (United States); TomoTherapy Inc., Madison, Wisconsin 53717 (United States)

    2008-12-15

    The looming potential of deformable alignment tools to play an integral role in adaptive radiotherapy suggests a need for objective assessment of these complex algorithms. Previous studies in this area are based on the ability of alignment to reproduce analytically generated deformations applied to sample image data, or use of contours or bifurcations as ground truth for evaluation of alignment accuracy. In this study, a deformable phantom was embedded with 48 small plastic markers, placed in regions varying from high contrast to roughly uniform regional intensity, and small to large regional discontinuities in movement. CT volumes of this phantom were acquired at different deformation states. After manual localization of marker coordinates, images were edited to remove the markers. The resulting image volumes were sent to five collaborating institutions, each of which has developed previously published deformable alignment tools routinely in use. Alignments were done, and applied to the list of reference coordinates at the inhale state. The transformed coordinates were compared to the actual marker locations at exhale. A total of eight alignment techniques were tested from the six institutions. All algorithms performed generally well, as compared to previous publications. Average errors in predicted location ranged from 1.5 to 3.9 mm, depending on technique. No algorithm was uniformly accurate across all regions of the phantom, with maximum errors ranging from 5.1 to 15.4 mm. Larger errors were seen in regions near significant shape changes, as well as areas with uniform contrast but large local motion discontinuity. Although reasonable accuracy was achieved overall, the variation of error in different regions suggests caution in globally accepting the results from deformable alignment.

  2. Open source deformable image registration system for treatment planning and recurrence CT scans : Validation in the head and neck region.

    Science.gov (United States)

    Zukauskaite, Ruta; Brink, Carsten; Hansen, Christian Rønn; Bertelsen, Anders; Johansen, Jørgen; Grau, Cai; Eriksen, Jesper Grau

    2016-08-01

    Clinical application of deformable registration (DIR) of medical images remains limited due to sparse validation of DIR methods in specific situations, e. g. in case of cancer recurrences. In this study the accuracy of DIR for registration of planning CT (pCT) and recurrence CT (rCT) images of head and neck squamous cell carcinoma (HNSCC) patients was evaluated. Twenty patients treated with definitive IMRT for HNSCC in 2010-2012 were included. For each patient, a pCT and an rCT scan were used. Median interval between the scans was 8.5 months. One observer manually contoured eight anatomical regions-of-interest (ROI) twice on pCT and once on rCT. pCT and rCT images were deformably registered using the open source software elastix. Mean surface distance (MSD) and Dice similarity coefficient (DSC) between contours were used for validation of DIR. A measure for delineation uncertainty was estimated by assessing MSD from the re-delineations of the same ROI on pCT. DIR and manual contouring uncertainties were correlated with tissue volume and rigidity. MSD varied 1-3 mm for different ROIs for DIR and 1-1.5 mm for re-delineated ROIs performed on pCT. DSC for DIR varied between 0.58 and 0.79 for soft tissues and was 0.79 or higher for bony structures, and correlated with the volumes of ROIs (r = 0.5, p elastix in HNSCC on planning and recurrence CT scans is feasible; an uncertainty of the method is close to the voxel size length of the planning CT images.

  3. Deformable image registration between pathological images and MR image via an optical macro image.

    Science.gov (United States)

    Ohnishi, Takashi; Nakamura, Yuka; Tanaka, Toru; Tanaka, Takuya; Hashimoto, Noriaki; Haneishi, Hideaki; Batchelor, Tracy T; Gerstner, Elizabeth R; Taylor, Jennie W; Snuderl, Matija; Yagi, Yukako

    2016-10-01

    Computed tomography (CT) and magnetic resonance (MR) imaging have been widely used for visualizing the inside of the human body. However, in many cases, pathological diagnosis is conducted through a biopsy or resection of an organ to evaluate the condition of tissues as definitive diagnosis. To provide more advanced information onto CT or MR image, it is necessary to reveal the relationship between tissue information and image signals. We propose a registration scheme for a set of PT images of divided specimens and a 3D-MR image by reference to an optical macro image (OM image) captured by an optical camera. We conducted a fundamental study using a resected human brain after the death of a brain cancer patient. We constructed two kinds of registration processes using the OM image as the base for both registrations to make conversion parameters between the PT and MR images. The aligned PT images had shapes similar to the OM image. On the other hand, the extracted cross-sectional MR image was similar to the OM image. From these resultant conversion parameters, the corresponding region on the PT image could be searched and displayed when an arbitrary pixel on the MR image was selected. The relationship between the PT and MR images of the whole brain can be analyzed using the proposed method. We confirmed that same regions between the PT and MR images could be searched and displayed using resultant information obtained by the proposed method. In terms of the accuracy of proposed method, the TREs were 0.56±0.39mm and 0.87±0.42mm. We can analyze the relationship between tissue information and MR signals using the proposed method.

  4. Dosimetric and geometric evaluation of the use of deformable image registration in adaptive intensity-modulated radiotherapy for head-and-neck cancer

    DEFF Research Database (Denmark)

    Eiland, R B; Maare, Christian; Sjöström, D

    2014-01-01

    The aim of this study was to carry out geometric and dosimetric evaluation of the usefulness of a deformable image registration algorithm utilized for adaptive head-and-neck intensity-modulated radiotherapy. Data consisted of seven patients, each with a planning CT (pCT), a rescanning CT (Re...

  5. MO-G-18C-03: Evaluation of Deformable Image Registration for Lung Motion Estimation Using Hyperpolarized Gas Tagging MRI

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Q; Zhang, Y [Duke University, Durham, NC (United States); Liu, Y [Duke University (United States); Hu, L; Yin, F; Cai, J [Duke University Medical Center, Durham, NC (United States); Miller, W [University of Virginia, Charlottesville, VA (United States)

    2014-06-15

    Purpose: Hyperpolarized gas (HP) tagging MRI is a novel imaging technique for direct measurement of lung motion during breathing. This study aims to quantitatively evaluate the accuracy of deformable image registration (DIR) in lung motion estimation using HP tagging MRI as references. Methods: Three healthy subjects were imaged using the HP MR tagging, as well as a high-resolution 3D proton MR sequence (TrueFISP) at the end-of-inhalation (EOI) and the end-of-exhalation (EOE). Ground truth of lung motion and corresponding displacement vector field (tDVF) was derived from HP tagging MRI by manually tracking the displacement of tagging grids between EOI and EOE. Seven different DIR methods were applied to the high-resolution TrueFISP MR images (EOI and EOE) to generate the DIR-based DVFs (dDVF). The DIR methods include Velocity (VEL), MIM, Mirada, multi-grid B-spline from Elastix (MGB) and 3 other algorithms from DIRART toolbox (Double Force Demons (DFD), Improved Lucas-Kanade (ILK), and Iterative Optical Flow (IOF)). All registrations were performed by independent experts. Target registration error (TRE) was calculated as tDVF – dDVF. Analysis was performed for the entire lungs, and separately for the upper and lower lungs. Results: Significant differences between tDVF and dDVF were observed. Besides the DFD and IOF algorithms, all other dDVFs showed similarity in deformation magnitude distribution but away from the ground truth. The average TRE for entire lung ranged 2.5−23.7mm (mean=8.8mm), depending on the DIR method and subject's breathing amplitude. Larger TRE (13.3–23.7mm) was found in subject with larger breathing amplitude of 45.6mm. TRE was greater in lower lung (2.5−33.9 mm, mean=12.4mm) than that in upper lung (2.5−11.9 mm, mean=5.8mm). Conclusion: Significant differences were observed in lung motion estimation between the HP gas tagging MRI method and the DIR methods, especially when lung motion is large. Large variation among different

  6. Measurement of Strain in the Left Ventricle during Diastole withcine-MRI and Deformable Image Registration

    Energy Technology Data Exchange (ETDEWEB)

    Veress, Alexander I.; Gullberg, Grant T.; Weiss, Jeffrey A.

    2005-07-20

    The assessment of regional heart wall motion (local strain) can localize ischemic myocardial disease, evaluate myocardial viability and identify impaired cardiac function due to hypertrophic or dilated cardiomyopathies. The objectives of this research were to develop and validate a technique known as Hyperelastic Warping for the measurement of local strains in the left ventricle from clinical cine-MRI image datasets. The technique uses differences in image intensities between template (reference) and target (loaded) image datasets to generate a body force that deforms a finite element (FE) representation of the template so that it registers with the target image. To validate the technique, MRI image datasets representing two deformation states of a left ventricle were created such that the deformation map between the states represented in the images was known. A beginning diastoliccine-MRI image dataset from a normal human subject was defined as the template. A second image dataset (target) was created by mapping the template image using the deformation results obtained from a forward FE model of diastolic filling. Fiber stretch and strain predictions from Hyperelastic Warping showed good agreement with those of the forward solution. The technique had low sensitivity to changes in material parameters, with the exception of changes in bulk modulus of the material. The use of an isotropic hyperelastic constitutive model in the Warping analyses degraded the predictions of fiber stretch. Results were unaffected by simulated noise down to an SNR of 4.0. This study demonstrates that Warping in conjunction with cine-MRI imaging can be used to determine local ventricular strains during diastole.

  7. Simultaneous multi-scale registration using large deformation diffeomorphic metric mapping.

    Science.gov (United States)

    Risser, Laurent; Vialard, François-Xavier; Wolz, Robin; Murgasova, Maria; Holm, Darryl D; Rueckert, Daniel

    2011-10-01

    In the framework of large deformation diffeomorphic metric mapping (LDDMM), we present a practical methodology to integrate prior knowledge about the registered shapes in the regularizing metric. Our goal is to perform rich anatomical shape comparisons from volumetric images with the mathematical properties offered by the LDDMM framework. We first present the notion of characteristic scale at which image features are deformed. We then propose a methodology to compare anatomical shape variations in a multi-scale fashion, i.e., at several characteristic scales simultaneously. In this context, we propose a strategy to quantitatively measure the feature differences observed at each characteristic scale separately. After describing our methodology, we illustrate the performance of the method on phantom data. We then compare the ability of our method to segregate a group of subjects having Alzheimer's disease and a group of controls with a classical coarse to fine approach, on standard 3D MR longitudinal brain images. We finally apply the approach to quantify the anatomical development of the human brain from 3D MR longitudinal images of pre-term babies. Results show that our method registers accurately volumetric images containing feature differences at several scales simultaneously with smooth deformations.

  8. Validating Dual Fluoroscopy System Capabilities for Determining In-Vivo Knee Joint Soft Tissue Deformation: A Strategy for Registration Error Management.

    Science.gov (United States)

    Sharma, Gulshan B; Kuntze, Gregor; Kukulski, Diane; Ronsky, Janet L

    2015-07-16

    Knee osteoarthritis (OA) causes structural and mechanical changes within tibiofemoral (TF) cartilage affecting tissue load deformation behavior. Quantifying in-vivo TF soft tissue deformations in healthy and early OA may provide a novel biomechanical marker, sensitive to alterations occurring prior to radiographic change. Dual Fluoroscopy (DF) allows accurate in-vivo TF soft tissue deformation assessment but requires validation. In-vivo healthy and early OA TF cartilage deforms 0.3-1.2mm during static standing full body-weight loading. Our aim was to establish minimum detectable displacement (MDD) for femoral translation in a DF system using a marker-based and markerless approach with variable image intensifier magnifications. An instrumented frame allowed controlled femur specimen translations. Bone positions were reconstructed from DF data using centroids of affixed steel beads (marker-based) and 2D-3D bone feature registration (markerless). Statistical analyses included independent samples t-tests and reliability analysis. Markerless measurements by three trained operators had large variations making it prudent to have an appropriate error management strategy when performing 2D-3D registration. Marker-based MDD improved with image resolution and was 0.05 mm at 3.2 LP/mm (LP: line pairs). Markerless MDD at 3.2 LP/mm was 0.08 mm. Average femur and tibia 2D-3D registrations yielded excellent reliability (84.4%). Therefore, DF images acquired at resolution greater than 3.2 LP/mm would be capable for determining accurate and reliable in-vivo healthy and early OA TF soft tissue deformation. This study provides a registration error management strategy for in-vivo TF soft tissue deformation assessment that could be applied for future clinical applications to establish non-invasive biomechanical markers for early OA diagnosis.

  9. Open source deformable image registration system for treatment planning and recurrence CT scans

    DEFF Research Database (Denmark)

    Zukauskaite, Ruta; Brink, Carsten; Hansen, Christian Rønn

    2016-01-01

    manually contoured eight anatomical regions-of-interest (ROI) twice on pCT and once on rCT. METHODS: pCT and rCT images were deformably registered using the open source software elastix. Mean surface distance (MSD) and Dice similarity coefficient (DSC) between contours were used for validation of DIR...... on pCT. DSC for DIR varied between 0.58 and 0.79 for soft tissues and was 0.79 or higher for bony structures, and correlated with the volumes of ROIs (r = 0.5, p elastix in HNSCC on planning and recurrence CT scans is feasible...

  10. 4D-CT motion estimation using deformable image registration and 5D respiratory motion modeling

    OpenAIRE

    2008-01-01

    Four-dimensional computed tomography (4D-CT) imaging technology has been developed for radiation therapy to provide tumor and organ images at the different breathing phases. In this work, a procedure is proposed for estimating and modeling the respiratory motion field from acquired 4D-CT imaging data and predicting tissue motion at the different breathing phases. The 4D-CT image data consist of series of multislice CT volume segments acquired in ciné mode. A modified optical flow deformable i...

  11. Impact on four dimensional dose accumulation using deformable image registration in liver stereotactic body radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Seong Hee; Kim, Tae Ho; Kim, Dong Su; Seong, Cheon Keum; Cho, Min Seok; Kim, Kyeong Hyeon; Suh, Tae Suk [Dept of. Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of); Park, So Hyun [Dept. of Radiation Oncology, Uijeongbu ST Mary' s Hospital, the Catholic University of Korea, Uijeongbu (Korea, Republic of); Kim, Si Yong [Dept. of Radiation Oncology, Virginia Commonwealth University, Richmond (United States)

    2014-11-15

    This study aims to evaluate the dosimetric effect of four-dimensional dose accumulation (4D dose) compared to 3D dose in liver stereotactic body radiotherapy (SBRT). Currently, SBRTT has been widely used to deliver highly conformal dose to target while sparing normal tissue. So, SBRT need accurate target delineation, dose calculation and motion management techniques such as breath-hold or abdominal compressor. In spite of the benefits about these techniques, there are still deformation and movement which could lead to reduce the probability for tumor control, imprecise prediction of normal tissue complication. 4D dose accumulation which can consider dosimetric effect of respiratory motion has a possibility to predict the more accurate delivered dose to target and normal organs and improve treatment accuracy.

  12. Toward adaptive radiotherapy for head and neck patients: Uncertainties in dose warping due to the choice of deformable registration algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Veiga, Catarina, E-mail: catarina.veiga.11@ucl.ac.uk; Royle, Gary [Radiation Physics Group, Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT (United Kingdom); Lourenço, Ana Mónica [Radiation Physics Group, Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom and Acoustics and Ionizing Radiation Team, National Physical Laboratory, Teddington TW11 0LW (United Kingdom); Mouinuddin, Syed [Department of Radiotherapy, University College London Hospital, London NW1 2BU (United Kingdom); Herk, Marcel van [Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam 1066 CX (Netherlands); Modat, Marc; Ourselin, Sébastien; McClelland, Jamie R. [Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT (United Kingdom)

    2015-02-15

    Purpose: The aims of this work were to evaluate the performance of several deformable image registration (DIR) algorithms implemented in our in-house software (NiftyReg) and the uncertainties inherent to using different algorithms for dose warping. Methods: The authors describe a DIR based adaptive radiotherapy workflow, using CT and cone-beam CT (CBCT) imaging. The transformations that mapped the anatomy between the two time points were obtained using four different DIR approaches available in NiftyReg. These included a standard unidirectional algorithm and more sophisticated bidirectional ones that encourage or ensure inverse consistency. The forward (CT-to-CBCT) deformation vector fields (DVFs) were used to propagate the CT Hounsfield units and structures to the daily geometry for “dose of the day” calculations, while the backward (CBCT-to-CT) DVFs were used to remap the dose of the day onto the planning CT (pCT). Data from five head and neck patients were used to evaluate the performance of each implementation based on geometrical matching, physical properties of the DVFs, and similarity between warped dose distributions. Geometrical matching was verified in terms of dice similarity coefficient (DSC), distance transform, false positives, and false negatives. The physical properties of the DVFs were assessed calculating the harmonic energy, determinant of the Jacobian, and inverse consistency error of the transformations. Dose distributions were displayed on the pCT dose space and compared using dose difference (DD), distance to dose difference, and dose volume histograms. Results: All the DIR algorithms gave similar results in terms of geometrical matching, with an average DSC of 0.85 ± 0.08, but the underlying properties of the DVFs varied in terms of smoothness and inverse consistency. When comparing the doses warped by different algorithms, we found a root mean square DD of 1.9% ± 0.8% of the prescribed dose (pD) and that an average of 9% ± 4% of

  13. Fast simulated annealing and adaptive Monte Carlo sampling based parameter optimization for dense optical-flow deformable image registration of 4DCT lung anatomy

    Science.gov (United States)

    Dou, Tai H.; Min, Yugang; Neylon, John; Thomas, David; Kupelian, Patrick; Santhanam, Anand P.

    2016-03-01

    Deformable image registration (DIR) is an important step in radiotherapy treatment planning. An optimal input registration parameter set is critical to achieve the best registration performance with the specific algorithm. Methods In this paper, we investigated a parameter optimization strategy for Optical-flow based DIR of the 4DCT lung anatomy. A novel fast simulated annealing with adaptive Monte Carlo sampling algorithm (FSA-AMC) was investigated for solving the complex non-convex parameter optimization problem. The metric for registration error for a given parameter set was computed using landmark-based mean target registration error (mTRE) between a given volumetric image pair. To reduce the computational time in the parameter optimization process, a GPU based 3D dense optical-flow algorithm was employed for registering the lung volumes. Numerical analyses on the parameter optimization for the DIR were performed using 4DCT datasets generated with breathing motion models and open-source 4DCT datasets. Results showed that the proposed method efficiently estimated the optimum parameters for optical-flow and closely matched the best registration parameters obtained using an exhaustive parameter search method.

  14. Non-Parametric Bayesian Updating within the Assessment of Reliability for Offshore Wind Turbine Support Structures

    DEFF Research Database (Denmark)

    Ramirez, José Rangel; Sørensen, John Dalsgaard

    2011-01-01

    This work illustrates the updating and incorporation of information in the assessment of fatigue reliability for offshore wind turbine. The new information, coming from external and condition monitoring can be used to direct updating of the stochastic variables through a non-parametric Bayesian...... updating approach and be integrated in the reliability analysis by a third-order polynomial chaos expansion approximation. Although Classical Bayesian updating approaches are often used because of its parametric formulation, non-parametric approaches are better alternatives for multi-parametric updating...... with a non-conjugating formulation. The results in this paper show the influence on the time dependent updated reliability when non-parametric and classical Bayesian approaches are used. Further, the influence on the reliability of the number of updated parameters is illustrated....

  15. Non-parametric seismic hazard analysis in the presence of incomplete data

    Science.gov (United States)

    Yazdani, Azad; Mirzaei, Sajjad; Dadkhah, Koroush

    2017-01-01

    The distribution of earthquake magnitudes plays a crucial role in the estimation of seismic hazard parameters. Due to the complexity of earthquake magnitude distribution, non-parametric approaches are recommended over classical parametric methods. The main deficiency of the non-parametric approach is the lack of complete magnitude data in almost all cases. This study aims to introduce an imputation procedure for completing earthquake catalog data that will allow the catalog to be used for non-parametric density estimation. Using a Monte Carlo simulation, the efficiency of introduced approach is investigated. This study indicates that when a magnitude catalog is incomplete, the imputation procedure can provide an appropriate tool for seismic hazard assessment. As an illustration, the imputation procedure was applied to estimate earthquake magnitude distribution in Tehran, the capital city of Iran.

  16. Toward adaptive radiotherapy for head and neck patients: Feasibility study on using CT-to-CBCT deformable registration for “dose of the day” calculations

    Energy Technology Data Exchange (ETDEWEB)

    Veiga, Catarina, E-mail: catarina.veiga.11@ucl.ac.uk; Lourenço, Ana; Ricketts, Kate; Annkah, James; Royle, Gary [Radiation Physics Group, Department of Medical Physics and Bioengineering, University College London, London WC1E 6BT (United Kingdom); McClelland, Jamie; Modat, Marc; Ourselin, Sébastien [Centre for Medical Image Computing, Department of Medical Physics and Bioengineering, University College London, London WC1E 6BT (United Kingdom); Moinuddin, Syed [Department of Radiotherapy, University College London Hospital, London NW1 2BU (United Kingdom); D’Souza, Derek [Department of Radiotherapy Physics, University College London Hospital, London NW1 2PG (United Kingdom)

    2014-03-15

    Purpose: The aim of this study was to evaluate the appropriateness of using computed tomography (CT) to cone-beam CT (CBCT) deformable image registration (DIR) for the application of calculating the “dose of the day” received by a head and neck patient. Methods: NiftyReg is an open-source registration package implemented in our institution. The affine registration uses a Block Matching-based approach, while the deformable registration is a GPU implementation of the popular B-spline Free Form Deformation algorithm. Two independent tests were performed to assess the suitability of our registrations methodology for “dose of the day” calculations in a deformed CT. A geometric evaluation was performed to assess the ability of the DIR method to map identical structures between the CT and CBCT datasets. Features delineated in the planning CT were warped and compared with features manually drawn on the CBCT. The authors computed the dice similarity coefficient (DSC), distance transformation, and centre of mass distance between features. A dosimetric evaluation was performed to evaluate the clinical significance of the registrations errors in the application proposed and to identify the limitations of the approximations used. Dose calculations for the same intensity-modulated radiation therapy plan on the deformed CT and replan CT were compared. Dose distributions were compared in terms of dose differences (DD), gamma analysis, target coverage, and dose volume histograms (DVHs). Doses calculated in a rigidly aligned CT and directly in an extended CBCT were also evaluated. Results: A mean value of 0.850 in DSC was achieved in overlap between manually delineated and warped features, with the distance between surfaces being less than 2 mm on over 90% of the pixels. Deformable registration was clearly superior to rigid registration in mapping identical structures between the two datasets. The dose recalculated in the deformed CT is a good match to the dose calculated on

  17. Registering prostate external beam radiotherapy with a boost from high-dose-rate brachytherapy: a comparative evaluation of deformable registration algorithms.

    Science.gov (United States)

    Moulton, Calyn R; House, Michael J; Lye, Victoria; Tang, Colin I; Krawiec, Michele; Joseph, David J; Denham, James W; Ebert, Martin A

    2015-12-14

    Registering CTs for patients receiving external beam radiotherapy (EBRT) with a boost dose from high-dose-rate brachytherapy (HDR) can be challenging due to considerable image discrepancies (e.g. rectal fillings, HDR needles, HDR artefacts and HDR rectal packing materials). This study is the first to comparatively evaluate image processing and registration methods used to register the rectums in EBRT and HDR CTs of prostate cancer patients. The focus is on the rectum due to planned future analysis of rectal dose-volume response. For 64 patients, the EBRT CT was retrospectively registered to the HDR CT with rigid registration and non-rigid registration methods in VelocityAI. Image processing was undertaken on the HDR CT and the rigidly-registered EBRT CT to reduce the impact of discriminating features on alternative non-rigid registration methods applied in the software suite for Deformable Image Registration and Adaptive Radiotherapy Research (DIRART) using the Horn-Schunck optical flow and Demons algorithms. The propagated EBRT-rectum structures were compared with the HDR structure using the Dice similarity coefficient (DSC), Hausdorff distance (HD) and average surface distance (ASD). The image similarity was compared using mutual information (MI) and root mean squared error (MSE). The displacement vector field was assessed via the Jacobian determinant (JAC). The post-registration alignments of rectums for 21 patients were visually assessed. The greatest improvement in the median DSC relative to the rigid registration result was 35 % for the Horn-Schunck algorithm with image processing. This algorithm also provided the best ASD results. The VelocityAI algorithms provided superior HD, MI, MSE and JAC results. The visual assessment indicated that the rigid plus deformable multi-pass method within VelocityAI resulted in the best rectum alignment. The DSC, ASD and HD improved significantly relative to the rigid registration result if image processing was applied prior

  18. SU-C-17A-03: Evaluation of Deformable Image Registration Methods Between MRI and CT for Prostate Cancer Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Wen, N; Glide-Hurst, C; Zhong, H; Chin, K; Kumarasiri, A; Liu, C; Liu, M; Siddiqui, S [I Chetty, Henry Ford Health System, Detroit, MI (United States)

    2014-06-15

    Purpose: We evaluated the performance of two commercially available and one open source B-Spline deformable image registration (DIR) algorithms between T2-weighted MRI and treatment planning CT using the DICE indices. Methods: CT simulation (CT-SIM) and MR simulation (MR-SIM) for four prostate cancer patients were conducted on the same day using the same setup and immobilization devices. CT images (120 kVp, 500 mAs, voxel size = 1.1x1.1x3.0 mm3) were acquired using an open-bore CT scanner. T2-weighted Turbo Spine Echo (T2W-TSE) images (TE/TR/α = 80/4560 ms/90°, voxel size = 0.7×0.7×2.5 mm3) were scanned on a 1.0T high field open MR-SIM. Prostates, seminal vesicles, rectum and bladders were delineated on both T2W-TSE and CT images by the attending physician. T2W-TSE images were registered to CT images using three DIR algorithms, SmartAdapt (Varian), Velocity AI (Velocity) and Elastix (Klein et al 2010) and contours were propagated. DIR results were evaluated quantitatively or qualitatively by image comparison and calculating organ DICE indices. Results: Significant differences in the contours of prostate and seminal vesicles were observed between MR and CT. On average, volume changes of the propagated contours were 5%, 2%, 160% and 8% for the prostate, seminal vesicles, bladder and rectum respectively. Corresponding mean DICE indices were 0.7, 0.5, 0.8, and 0.7. The intraclass correlation coefficient (ICC) was 0.9 among three algorithms for the Dice indices. Conclusion: Three DIR algorithms for CT/MR registration yielded similar results for organ propagation. Due to the different soft tissue contrasts between MRI and CT, organ delineation of prostate and SVs varied significantly, thus efforts to develop other DIR evaluation metrics are warranted. Conflict of interest: Submitting institution has research agreements with Varian Medical System and Philips Healthcare.

  19. A non-parametric peak finder algorithm and its application in searches for new physics

    CERN Document Server

    Chekanov, S

    2011-01-01

    We have developed an algorithm for non-parametric fitting and extraction of statistically significant peaks in the presence of statistical and systematic uncertainties. Applications of this algorithm for analysis of high-energy collision data are discussed. In particular, we illustrate how to use this algorithm in general searches for new physics in invariant-mass spectra using pp Monte Carlo simulations.

  20. Non-parametric Estimation of Diffusion-Paths Using Wavelet Scaling Methods

    DEFF Research Database (Denmark)

    Høg, Esben

    In continuous time, diffusion processes have been used for modelling financial dynamics for a long time. For example the Ornstein-Uhlenbeck process (the simplest mean-reverting process) has been used to model non-speculative price processes. We discuss non--parametric estimation of these processes...

  1. Non-parametric system identification from non-linear stochastic response

    DEFF Research Database (Denmark)

    Rüdinger, Finn; Krenk, Steen

    2001-01-01

    An estimation method is proposed for identification of non-linear stiffness and damping of single-degree-of-freedom systems under stationary white noise excitation. Non-parametric estimates of the stiffness and damping along with an estimate of the white noise intensity are obtained by suitable p...

  2. Non-parametric tests of productive efficiency with errors-in-variables

    NARCIS (Netherlands)

    Kuosmanen, T.K.; Post, T.; Scholtes, S.

    2007-01-01

    We develop a non-parametric test of productive efficiency that accounts for errors-in-variables, following the approach of Varian. [1985. Nonparametric analysis of optimizing behavior with measurement error. Journal of Econometrics 30(1/2), 445-458]. The test is based on the general Pareto-Koopmans

  3. Non-Parametric Bayesian Updating within the Assessment of Reliability for Offshore Wind Turbine Support Structures

    DEFF Research Database (Denmark)

    Ramirez, José Rangel; Sørensen, John Dalsgaard

    2011-01-01

    This work illustrates the updating and incorporation of information in the assessment of fatigue reliability for offshore wind turbine. The new information, coming from external and condition monitoring can be used to direct updating of the stochastic variables through a non-parametric Bayesian u...

  4. Comparison of reliability techniques of parametric and non-parametric method

    Directory of Open Access Journals (Sweden)

    C. Kalaiselvan

    2016-06-01

    Full Text Available Reliability of a product or system is the probability that the product performs adequately its intended function for the stated period of time under stated operating conditions. It is function of time. The most widely used nano ceramic capacitor C0G and X7R is used in this reliability study to generate the Time-to failure (TTF data. The time to failure data are identified by Accelerated Life Test (ALT and Highly Accelerated Life Testing (HALT. The test is conducted at high stress level to generate more failure rate within the short interval of time. The reliability method used to convert accelerated to actual condition is Parametric method and Non-Parametric method. In this paper, comparative study has been done for Parametric and Non-Parametric methods to identify the failure data. The Weibull distribution is identified for parametric method; Kaplan–Meier and Simple Actuarial Method are identified for non-parametric method. The time taken to identify the mean time to failure (MTTF in accelerating condition is the same for parametric and non-parametric method with relative deviation.

  5. Non-Parametric Estimation of Diffusion-Paths Using Wavelet Scaling Methods

    DEFF Research Database (Denmark)

    Høg, Esben

    2003-01-01

    In continuous time, diffusion processes have been used for modelling financial dynamics for a long time. For example the Ornstein-Uhlenbeck process (the simplest mean--reverting process) has been used to model non-speculative price processes. We discuss non--parametric estimation of these processes...

  6. A non-parametric method for correction of global radiation observations

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Perers, Bengt;

    2013-01-01

    in the observations are corrected. These are errors such as: tilt in the leveling of the sensor, shadowing from surrounding objects, clipping and saturation in the signal processing, and errors from dirt and wear. The method is based on a statistical non-parametric clear-sky model which is applied to both...

  7. Non-parametric production analysis of pesticides use in the Netherlands

    NARCIS (Netherlands)

    Oude Lansink, A.G.J.M.; Silva, E.

    2004-01-01

    Many previous empirical studies on the productivity of pesticides suggest that pesticides are under-utilized in agriculture despite the general held believe that these inputs are substantially over-utilized. This paper uses data envelopment analysis (DEA) to calculate non-parametric measures of the

  8. Performances and Spending Efficiency in Higher Education: A European Comparison through Non-Parametric Approaches

    Science.gov (United States)

    Agasisti, Tommaso

    2011-01-01

    The objective of this paper is an efficiency analysis concerning higher education systems in European countries. Data have been extracted from OECD data-sets (Education at a Glance, several years), using a non-parametric technique--data envelopment analysis--to calculate efficiency scores. This paper represents the first attempt to conduct such an…

  9. Low default credit scoring using two-class non-parametric kernel density estimation

    CSIR Research Space (South Africa)

    Rademeyer, E

    2016-12-01

    Full Text Available This paper investigates the performance of two-class classification credit scoring data sets with low default ratios. The standard two-class parametric Gaussian and non-parametric Parzen classifiers are extended, using Bayes’ rule, to include either...

  10. Measuring the influence of networks on transaction costs using a non-parametric regression technique

    DEFF Research Database (Denmark)

    Henningsen, Géraldine; Henningsen, Arne; Henning, Christian H.C.A.

    . We empirically analyse the effect of networks on productivity using a cross-validated local linear non-parametric regression technique and a data set of 384 farms in Poland. Our empirical study generally supports our hypothesis that networks affect productivity. Large and dense trading networks...

  11. Non-Parametric Estimation of Diffusion-Paths Using Wavelet Scaling Methods

    DEFF Research Database (Denmark)

    Høg, Esben

    2003-01-01

    In continuous time, diffusion processes have been used for modelling financial dynamics for a long time. For example the Ornstein-Uhlenbeck process (the simplest mean--reverting process) has been used to model non-speculative price processes. We discuss non--parametric estimation of these processes...

  12. Non-parametric Estimation of Diffusion-Paths Using Wavelet Scaling Methods

    DEFF Research Database (Denmark)

    Høg, Esben

    In continuous time, diffusion processes have been used for modelling financial dynamics for a long time. For example the Ornstein-Uhlenbeck process (the simplest mean-reverting process) has been used to model non-speculative price processes. We discuss non--parametric estimation of these processes...

  13. MO-C-17A-05: A Three-Dimensional Head-And-Neck Phantom for Validation of Kilovoltage- and Megavoltage-Based Deformable Image Registration

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, N; Singhrao, K; Pouliot, J [UC San Francisco, San Francisco, CA (United States)

    2014-06-15

    Purpose: To develop a three-dimensional (3D) deformable head-and-neck (H and N) phantom with realistic tissue contrast for both kilovoltage and megavoltage computed tomography and use it to objectively evaluate deformable image registration (DIR) algorithms. Methods: The phantom represents H and N patient anatomy. It is constructed from thermoplastic, which becomes pliable in boiling water, and hardened epoxy resin. Using a system of additives, the Hounsfield unit (HU) values of these materials were tuned to mimic anatomy for both kilovoltage (kV) and megavoltage (MV) imaging. The phantom opened along a sagittal midsection to reveal nonradiopaque markers, which were used to characterize the phantom deformation. The deformed and undeformed phantom was scanned with kV and MV computed tomography. Additionally, a calibration curve was created to change the HUs of the MV scans to be similar to kV HUs, (MC). The extracted ground-truth deformation was then compared to the results of two commercially available DIR algorithms, from Velocity Medical Solutions and MIM Software. Results: The phantom produced a 3D deformation, representing neck flexion, with a magnitude of up to 8 mm and was able represent tissue HUs for both kV and MV imaging modalities. The two tested deformation algorithms yielded vastly different results. For kV-kV registration, MIM made the lowest mean error, and Velocity made the lowest maximum error. For MV-MV, kV-MV, and kV-MC Velocity produced both the lowest mean and lowest maximum errors. Conclusion: The application of DIR across different imaging modalities is particularly difficult, due to differences in tissue HUs and the presence of imaging artifacts. For this reason, DIR algorithms must be validated specifically for this purpose. The developed H and N phantom is an effective tool for this purpose.

  14. SU-E-J-154: Deformable Image Registration Based Delivered Dose Estimation for Head and Neck Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kumarasiri, A; Liu, C; Chetvertkov, M; Gordon, J; Siddiqui, F; Chetty, I; Kim, J [Henry Ford Health System, Detroit, MI (United States)

    2014-06-01

    Purpose: To estimate the accumulated dose to targets and organs at risk (OAR) for head and neck (H'N) radiotherapy using 3 deformable image registration (DIR) algorithms. Methods: Five H'N patients, who had daily CBCTs taken during the course of treatment, were retrospectively studied. All plans had 5 mm CTV-to-PTV expansions. To overcome the small field of view (FOV) limitations and HU uncertainties of CBCTs, CT images were deformably registered using a parameter-optimized B-spline DIR algorithm (Elastix, elastix.isi.uu.nl) and resampled onto each CBCT with a 4 cm uniform FOV expansion. The dose of the day was calculated on these resampled CT images. Calculated daily dose matrices were warped and accumulated to the planning CT using 3 DIR algorithms; SmartAdapt (Eclipse/Varian), Velocity (Velocity Medical Solutions), and Elastix. Dosimetric indices for targets and OARs were determined from the DVHs and compared with corresponding planned quantities. Results: The cumulative dose deviation was less than 2%, on average, for PTVs from the corresponding plan dose, for all algorithms/patients. However, the parotids show as much as a 37% deviation from the intended dose, possibly due to significant patient weight loss during the first 3 weeks of treatment (15.3 lbs in this case). The mean(±SD) cumulative dose deviations of the 5 patients estimated using the 3 algorithms (SmartAdapt, Velocity, and Elastix) were (0.8±0.9%, 0.5±0.9%, 0.6±1.3%) for PTVs, (1.6±1.9%, 1.4±2.0%, 1.7±1.9%) for GTVs, (10.4±12.1%, 10.7±10.6%, 6.5±10.1%) for parotid glands, and (4.5±4.6%, 3.4±5.7%, 3.9±5.7%) for mucosa, respectively. The differences among the three DIR algorithms in the estimated cumulative mean doses (1SD (in Gy)) were: 0.1 for PTVs, 0.1 for GTVs, 1.9 for parotid glands, and 0.4 for mucosa. Conclusion: Results of this study are suggestive that more frequent plan adaptation for organs, such as the parotid glands, might be beneficial during the course of H

  15. On the usefulness of gradient information in multi-objective deformable image registration using a B-spline-based dual-dynamic transformation model: comparison of three optimization algorithms

    NARCIS (Netherlands)

    Pirpinia, K.; Bosman, P.A.N.; Sonke, J.-J.; van Herk, M.; Alderliesten, T.

    2015-01-01

    The use of gradient information is well-known to be highly useful in single-objective optimization-based image registration methods. However, its usefulness has not yet been investigated for deformable image registration from a multi-objective optimization perspective. To this end, within a previous

  16. SU-E-J-159: Intra-Patient Deformable Image Registration Uncertainties Quantified Using the Distance Discordance Metric

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Z; Thor, M; Apte, A; Deasy, J [Memorial Sloan Kettering Cancer Center, NY City, NY (United States); Sharp, G [Massachusetts General Hospital, Boston, MA (United States); Muren, L [Aarhus University Hospital, Aarhus (Denmark)

    2014-06-01

    Purpose: The quantitative evaluation of deformable image registration (DIR) is currently challenging due to lack of a ground truth. In this study we test a new method proposed for quantifying multiple-image based DIRrelated uncertainties, for DIR of pelvic images. Methods: 19 patients were analyzed, each with 6 CT scans, who previously had radiotherapy for prostate cancer. Manually delineated structures for rectum and bladder, which served as ground truth structures, were delineated on the planning CT and each subsequent scan. For each patient, voxel-by-voxel DIR-related uncertainties were evaluated, following B-spline based DIR, by applying a previously developed metric, the distance discordance metric (DDM; Saleh et al., PMB (2014) 59:733). The DDM map was superimposed on the first acquired CT scan and DDM statistics were assessed, also relative to two metrics estimating the agreement between the propagated and the manually delineated structures. Results: The highest DDM values which correspond to greatest spatial uncertainties were observed near the body surface and in the bowel due to the presence of gas. The mean rectal and bladder DDM values ranged from 1.1–11.1 mm and 1.5–12.7 mm, respectively. There was a strong correlation in the DDMs between the rectum and bladder (Pearson R = 0.68 for the max DDM). For both structures, DDM was correlated with the ratio between the DIR-propagated and manually delineated volumes (R = 0.74 for the max rectal DDM). The maximum rectal DDM was negatively correlated with the Dice Similarity Coefficient between the propagated and the manually delineated volumes (R= −0.52). Conclusion: The multipleimage based DDM map quantified considerable DIR variability across different structures and among patients. Besides using the DDM for quantifying DIR-related uncertainties it could potentially be used to adjust for uncertainties in DIR-based accumulated dose distributions.

  17. Accuracy and Utility of Deformable Image Registration in {sup 68}Ga 4D PET/CT Assessment of Pulmonary Perfusion Changes During and After Lung Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hardcastle, Nicholas, E-mail: nick.hardcastle@gmail.com [Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne (Australia); Centre for Medical Radiation Physics, University of Wollongong, Wollongong (Australia); Hofman, Michael S. [Molecular Imaging, Centre for Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne (Australia); Hicks, Rodney J. [Molecular Imaging, Centre for Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne (Australia); Department of Medicine, University of Melbourne, Melbourne (Australia); Callahan, Jason [Molecular Imaging, Centre for Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne (Australia); Kron, Tomas [Department of Medical Imaging and Radiation Sciences, Monash University, Clayton (Australia); The Sir Peter MacCallum Department of Oncology, Melbourne University, Victoria (Australia); MacManus, Michael P.; Ball, David L. [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne (Australia); The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne (Australia); Jackson, Price [Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne (Australia); Siva, Shankar [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne (Australia)

    2015-09-01

    Purpose: Measuring changes in lung perfusion resulting from radiation therapy dose requires registration of the functional imaging to the radiation therapy treatment planning scan. This study investigates registration accuracy and utility for positron emission tomography (PET)/computed tomography (CT) perfusion imaging in radiation therapy for non–small cell lung cancer. Methods: {sup 68}Ga 4-dimensional PET/CT ventilation-perfusion imaging was performed before, during, and after radiation therapy for 5 patients. Rigid registration and deformable image registration (DIR) using B-splines and Demons algorithms was performed with the CT data to obtain a deformation map between the functional images and planning CT. Contour propagation accuracy and correspondence of anatomic features were used to assess registration accuracy. Wilcoxon signed-rank test was used to determine statistical significance. Changes in lung perfusion resulting from radiation therapy dose were calculated for each registration method for each patient and averaged over all patients. Results: With B-splines/Demons DIR, median distance to agreement between lung contours reduced modestly by 0.9/1.1 mm, 1.3/1.6 mm, and 1.3/1.6 mm for pretreatment, midtreatment, and posttreatment (P<.01 for all), and median Dice score between lung contours improved by 0.04/0.04, 0.05/0.05, and 0.05/0.05 for pretreatment, midtreatment, and posttreatment (P<.001 for all). Distance between anatomic features reduced with DIR by median 2.5 mm and 2.8 for pretreatment and midtreatment time points, respectively (P=.001) and 1.4 mm for posttreatment (P>.2). Poorer posttreatment results were likely caused by posttreatment pneumonitis and tumor regression. Up to 80% standardized uptake value loss in perfusion scans was observed. There was limited change in the loss in lung perfusion between registration methods; however, Demons resulted in larger interpatient variation compared with rigid and B-splines registration

  18. SU-F-BRF-14: Increasing the Accuracy of Dose Calculation On Cone-Beam Imaging Using Deformable Image Registration in the Case of Prostate Translation

    Energy Technology Data Exchange (ETDEWEB)

    Fillion, O; Gingras, L [Departement de radiooncologie, CHU de Quebec - Hotel-Dieu de Quebec, Quebec, Quebec (Canada); Departement de physique, de genie physique et d' optique, Universite Laval, Quebec, Quebec (Canada); Archambault, L [Departement de radiooncologie, CHU de Quebec - Hotel-Dieu de Quebec, Quebec, Quebec (Canada); Departement de physique, de genie physique et d' optique, Universite Laval, Quebec, Quebec (Canada); Centre de recherche sur le cancer, Universite Laval, Quebec, Quebec (Canada)

    2014-06-15

    Purpose: Artifacts can reduce the quality of dose re-calculations on CBCT scans during a treatment. The aim of this project is to correct the CBCT images in order to allow for more accurate and exact dose calculations in the case of a translation of the tumor in prostate cancer. Methods: Our approach is to develop strategies based on deformable image registration algorithms using the elastix software (Klein et al., 2010) to register the treatment planning CT on a daily CBCT scan taken during treatment. Sets of images are provided by a 3D deformable phantom and comprise two CT and two CBCT scans: one of both with the reference anatomy and the others with known deformations (i.e. translations of the prostate). The reference CT is registered onto the deformed CBCT and the deformed CT serves as the control for dose calculation accuracy. The planned treatment used for the evaluation of dose calculation is a 2-Gy fraction prescribed at the location of the reference prostate and assigned to 7 rectangular fields. Results: For a realistic 0.5-cm translation of the prostate, the relative dose discrepancy between the CBCT and the CT control scan at the prostate's centroid is 8.9 ± 0.8 % while dose discrepancy between the registered CT and the control scan lessens to −2.4 ± 0.8 %. For a 2-cm translation, clinical indices like the V90 and the D100 are more accurate by 0.7 ± 0.3 % and 8.0 ± 0.5 cGy respectively when using registered CT than when using CBCT for dose calculation. Conclusion: The results show that this strategy gives doses in agreement within a few percents with those from calculations on actual CT scans. In the future, various deformations of the phantom anatomy will allow a thorough characterization of the registration strategies needed for more complex anatomies.

  19. A study of the anatomic changes and dosimetric consequences in adaptive CRT of non-small-cell lung cancer using deformable CT and CBCT image registration.

    Science.gov (United States)

    Ma, Changsheng; Hou, Yong; Li, Hongsheng; Li, Dengwang; Zhang, Yingjie; Chen, Siye; Yin, Yong

    2014-04-01

    The aim of this study is to evaluate anatomic lung tumor changes and dosimetric consequences utilizing the deformable daily kilovolt (KV) cone-beam computer tomography (CBCT) image registration. Five patients diagnosed with NSCLC were treated with three-dimensional conformal radiotherapy (3D CRT) and 10 daily KV CBCT image sets were acquired for each patient. Each CBCT image and plan CT were imported into the deformable image registration (DIR) system. The plan CT image was deformed by the DIR system and a new contour on CBCT was obtained by using the auto-contouring function of the DIR. These contours were individually marked as CBCT f1, CBCT f2,..., and CBCT f10, and imported into a treatment planning system (TPS). The daily CBCT plan was individually generated with the same planning criteria based on new contours. These plans were individually marked as CBCTp1, CBCTp2,..., and CBCTp10, followed by generating a dose accumulation plan (DA plan) in original pCT image contour sets by adding all CBCT plans using Varian Eclipse TPS. The maximum, minimum and mean doses to the plan target volume (PTV) in the 5 DA plans were the same with the CT plans. However, the volume of radiation 5, 10, 20, 30, and 50 Gy of the total lungs in DA plans were less than those of the CT plans. The maximum dose of the spinal cord in the DA plans were average 27.96% less than the CT plans. The mean dose for the left, right, and total lungs in the DA plans were reduced by 13.80%, 23.65%, and 12.96%, respectively. The adaptive 3D CRT based on the deformable registration can reduce the dose to the lung and the spinal cord with the same PTV dose coverage. Moreover, it provides a method for further adaptive radiotherapy exploration.

  20. Non-parametric Bayesian human motion recognition using a single MEMS tri-axial accelerometer.

    Science.gov (United States)

    Ahmed, M Ejaz; Song, Ju Bin

    2012-09-27

    In this paper, we propose a non-parametric clustering method to recognize the number of human motions using features which are obtained from a single microelectromechanical system (MEMS) accelerometer. Since the number of human motions under consideration is not known a priori and because of the unsupervised nature of the proposed technique, there is no need to collect training data for the human motions. The infinite Gaussian mixture model (IGMM) and collapsed Gibbs sampler are adopted to cluster the human motions using extracted features. From the experimental results, we show that the unanticipated human motions are detected and recognized with significant accuracy, as compared with the parametric Fuzzy C-Mean (FCM) technique, the unsupervised K-means algorithm, and the non-parametric mean-shift method.

  1. Non-Parametric Bayesian Human Motion Recognition Using a Single MEMS Tri-Axial Accelerometer

    Directory of Open Access Journals (Sweden)

    M. Ejaz Ahmed

    2012-09-01

    Full Text Available In this paper, we propose a non-parametric clustering method to recognize the number of human motions using features which are obtained from a single microelectromechanical system (MEMS accelerometer. Since the number of human motions under consideration is not known a priori and because of the unsupervised nature of the proposed technique, there is no need to collect training data for the human motions. The infinite Gaussian mixture model (IGMM and collapsed Gibbs sampler are adopted to cluster the human motions using extracted features. From the experimental results, we show that the unanticipated human motions are detected and recognized with significant accuracy, as compared with the parametric Fuzzy C-Mean (FCM technique, the unsupervised K-means algorithm, and the non-parametric mean-shift method.

  2. Non-Parametric Tests of Structure for High Angular Resolution Diffusion Imaging in Q-Space

    CERN Document Server

    Olhede, Sofia C

    2010-01-01

    High angular resolution diffusion imaging data is the observed characteristic function for the local diffusion of water molecules in tissue. This data is used to infer structural information in brain imaging. Non-parametric scalar measures are proposed to summarize such data, and to locally characterize spatial features of the diffusion probability density function (PDF), relying on the geometry of the characteristic function. Summary statistics are defined so that their distributions are, to first order, both independent of nuisance parameters and also analytically tractable. The dominant direction of the diffusion at a spatial location (voxel) is determined, and a new set of axes are introduced in Fourier space. Variation quantified in these axes determines the local spatial properties of the diffusion density. Non-parametric hypothesis tests for determining whether the diffusion is unimodal, isotropic or multi-modal are proposed. More subtle characteristics of white-matter microstructure, such as the degre...

  3. TU-G-BRA-02: Can We Extract Lung Function Directly From 4D-CT Without Deformable Image Registration?

    Energy Technology Data Exchange (ETDEWEB)

    Kipritidis, J; Woodruff, H; Counter, W; Keall, P [University of Sydney, Sydney, NSW (Australia); Hofman, M; Siva, S; Callahan, J; Le Roux, P [Peter MacCallum Cancer Centre, Melbourne, VIC (Australia); Hardcastle, N [Royal North Shore Hospital, Sydney, NSW (Australia)

    2015-06-15

    Purpose: Dynamic CT ventilation imaging (CT-VI) visualizes air volume changes in the lung by evaluating breathing-induced lung motion using deformable image registration (DIR). Dynamic CT-VI could enable functionally adaptive lung cancer radiation therapy, but its sensitivity to DIR parameters poses challenges for validation. We hypothesize that a direct metric using CT parameters derived from Hounsfield units (HU) alone can provide similar ventilation images without DIR. We compare the accuracy of Direct and Dynamic CT-VIs versus positron emission tomography (PET) images of inhaled {sup 68}Ga-labelled nanoparticles (‘Galligas’). Methods: 25 patients with lung cancer underwent Galligas 4D-PET/CT scans prior to radiation therapy. For each patient we produced three CT- VIs. (i) Our novel method, Direct CT-VI, models blood-gas exchange as the product of air and tissue density at each lung voxel based on time-averaged 4D-CT HU values. Dynamic CT-VIs were produced by evaluating: (ii) regional HU changes, and (iii) regional volume changes between the exhale and inhale 4D-CT phase images using a validated B-spline DIR method. We assessed the accuracy of each CT-VI by computing the voxel-wise Spearman correlation with free-breathing Galligas PET, and also performed a visual analysis. Results: Surprisingly, Direct CT-VIs exhibited better global correlation with Galligas PET than either of the dynamic CT-VIs. The (mean ± SD) correlations were (0.55 ± 0.16), (0.41 ± 0.22) and (0.29 ± 0.27) for Direct, Dynamic HU-based and Dynamic volume-based CT-VIs respectively. Visual comparison of Direct CT-VI to PET demonstrated similarity for emphysema defects and ventral-to-dorsal gradients, but inability to identify decreased ventilation distal to tumor-obstruction. Conclusion: Our data supports the hypothesis that Direct CT-VIs are as accurate as Dynamic CT-VIs in terms of global correlation with Galligas PET. Visual analysis, however, demonstrated that different CT

  4. Variable selection in identification of a high dimensional nonlinear non-parametric system

    Institute of Scientific and Technical Information of China (English)

    Er-Wei BAI; Wenxiao ZHAO; Weixing ZHENG

    2015-01-01

    The problem of variable selection in system identification of a high dimensional nonlinear non-parametric system is described. The inherent difficulty, the curse of dimensionality, is introduced. Then its connections to various topics and research areas are briefly discussed, including order determination, pattern recognition, data mining, machine learning, statistical regression and manifold embedding. Finally, some results of variable selection in system identification in the recent literature are presented.

  5. Estimating Financial Risk Measures for Futures Positions:A Non-Parametric Approach

    OpenAIRE

    Cotter, John; dowd, kevin

    2011-01-01

    This paper presents non-parametric estimates of spectral risk measures applied to long and short positions in 5 prominent equity futures contracts. It also compares these to estimates of two popular alternative measures, the Value-at-Risk (VaR) and Expected Shortfall (ES). The spectral risk measures are conditioned on the coefficient of absolute risk aversion, and the latter two are conditioned on the confidence level. Our findings indicate that all risk measures increase dramatically and the...

  6. Measuring the influence of information networks on transaction costs using a non-parametric regression technique

    DEFF Research Database (Denmark)

    Henningsen, Geraldine; Henningsen, Arne; Henning, Christian H. C. A.

    All business transactions as well as achieving innovations take up resources, subsumed under the concept of transaction costs (TAC). One of the major factors in TAC theory is information. Information networks can catalyse the interpersonal information exchange and hence, increase the access to no...... are unveiled by reduced productivity. A cross-validated local linear non-parametric regression shows that good information networks increase the productivity of farms. A bootstrapping procedure confirms that this result is statistically significant....

  7. A Non Parametric Study of the Volatility of the Economy as a Country Risk Predictor

    CERN Document Server

    Costanzo, Sabatino; Dominguez, Ramses; Moreno, William

    2007-01-01

    This paper intends to explain Venezuela's country spread behavior through the Neural Networks analysis of a monthly economic activity general index of economic indicators constructed by the Central Bank of Venezuela, a measure of the shocks affecting country risk of emerging markets and the U.S. short term interest rate. The use of non parametric methods allowed the finding of non linear relationship between these inputs and the country risk. The networks performance was evaluated using the method of excess predictability.

  8. t-tests, non-parametric tests, and large studies—a paradox of statistical practice?

    Directory of Open Access Journals (Sweden)

    Fagerland Morten W

    2012-06-01

    Full Text Available Abstract Background During the last 30 years, the median sample size of research studies published in high-impact medical journals has increased manyfold, while the use of non-parametric tests has increased at the expense of t-tests. This paper explores this paradoxical practice and illustrates its consequences. Methods A simulation study is used to compare the rejection rates of the Wilcoxon-Mann-Whitney (WMW test and the two-sample t-test for increasing sample size. Samples are drawn from skewed distributions with equal means and medians but with a small difference in spread. A hypothetical case study is used for illustration and motivation. Results The WMW test produces, on average, smaller p-values than the t-test. This discrepancy increases with increasing sample size, skewness, and difference in spread. For heavily skewed data, the proportion of p Conclusions Non-parametric tests are most useful for small studies. Using non-parametric tests in large studies may provide answers to the wrong question, thus confusing readers. For studies with a large sample size, t-tests and their corresponding confidence intervals can and should be used even for heavily skewed data.

  9. A Comparison of Parametric and Non-Parametric Methods Applied to a Likert Scale.

    Science.gov (United States)

    Mircioiu, Constantin; Atkinson, Jeffrey

    2017-05-10

    A trenchant and passionate dispute over the use of parametric versus non-parametric methods for the analysis of Likert scale ordinal data has raged for the past eight decades. The answer is not a simple "yes" or "no" but is related to hypotheses, objectives, risks, and paradigms. In this paper, we took a pragmatic approach. We applied both types of methods to the analysis of actual Likert data on responses from different professional subgroups of European pharmacists regarding competencies for practice. Results obtained show that with "large" (>15) numbers of responses and similar (but clearly not normal) distributions from different subgroups, parametric and non-parametric analyses give in almost all cases the same significant or non-significant results for inter-subgroup comparisons. Parametric methods were more discriminant in the cases of non-similar conclusions. Considering that the largest differences in opinions occurred in the upper part of the 4-point Likert scale (ranks 3 "very important" and 4 "essential"), a "score analysis" based on this part of the data was undertaken. This transformation of the ordinal Likert data into binary scores produced a graphical representation that was visually easier to understand as differences were accentuated. In conclusion, in this case of Likert ordinal data with high response rates, restraining the analysis to non-parametric methods leads to a loss of information. The addition of parametric methods, graphical analysis, analysis of subsets, and transformation of data leads to more in-depth analyses.

  10. Non-parametric foreground subtraction for 21cm epoch of reionization experiments

    CERN Document Server

    Harker, Geraint; Bernardi, Gianni; Brentjens, Michiel A; De Bruyn, A G; Ciardi, Benedetta; Jelic, Vibor; Koopmans, Leon V E; Labropoulos, Panagiotis; Mellema, Garrelt; Offringa, Andre; Pandey, V N; Schaye, Joop; Thomas, Rajat M; Yatawatta, Sarod

    2009-01-01

    An obstacle to the detection of redshifted 21cm emission from the epoch of reionization (EoR) is the presence of foregrounds which exceed the cosmological signal in intensity by orders of magnitude. We argue that in principle it would be better to fit the foregrounds non-parametrically - allowing the data to determine their shape - rather than selecting some functional form in advance and then fitting its parameters. Non-parametric fits often suffer from other problems, however. We discuss these before suggesting a non-parametric method, Wp smoothing, which seems to avoid some of them. After outlining the principles of Wp smoothing we describe an algorithm used to implement it. We then apply Wp smoothing to a synthetic data cube for the LOFAR EoR experiment. The performance of Wp smoothing, measured by the extent to which it is able to recover the variance of the cosmological signal and to which it avoids leakage of power from the foregrounds, is compared to that of a parametric fit, and to another non-parame...

  11. Non-parametric Tuning of PID Controllers A Modified Relay-Feedback-Test Approach

    CERN Document Server

    Boiko, Igor

    2013-01-01

    The relay feedback test (RFT) has become a popular and efficient  tool used in process identification and automatic controller tuning. Non-parametric Tuning of PID Controllers couples new modifications of classical RFT with application-specific optimal tuning rules to form a non-parametric method of test-and-tuning. Test and tuning are coordinated through a set of common parameters so that a PID controller can obtain the desired gain or phase margins in a system exactly, even with unknown process dynamics. The concept of process-specific optimal tuning rules in the nonparametric setup, with corresponding tuning rules for flow, level pressure, and temperature control loops is presented in the text.   Common problems of tuning accuracy based on parametric and non-parametric approaches are addressed. In addition, the text treats the parametric approach to tuning based on the modified RFT approach and the exact model of oscillations in the system under test using the locus of a perturbedrelay system (LPRS) meth...

  12. Estimation of the limit of detection with a bootstrap-derived standard error by a partly non-parametric approach. Application to HPLC drug assays

    DEFF Research Database (Denmark)

    Linnet, Kristian

    2005-01-01

    Bootstrap, HPLC, limit of blank, limit of detection, non-parametric statistics, type I and II errors......Bootstrap, HPLC, limit of blank, limit of detection, non-parametric statistics, type I and II errors...

  13. SU-E-J-113: Effects of Deformable Registration On First-Order Texture Maps Calculated From Thoracic Lung CT Scans

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C; Cunliffe, A; Al-Hallaq, H; Armato, S [The University of Chicago, Chicago, IL (United States)

    2015-06-15

    Purpose: To determine the stability of eight first-order texture features following the deformable registration of serial computed tomography (CT) scans. Methods: CT scans at two different time points from 10 patients deemed to have no lung abnormalities by a radiologist were collected. Following lung segmentation using an in-house program, texture maps were calculated from 32×32-pixel regions of interest centered at every pixel in the lungs. The texture feature value of the ROI was assigned to the center pixel of the ROI in the corresponding location of the texture map. Pixels in the square ROI not contained within the segmented lung were not included in the calculation. To quantify the agreement between ROI texture features in corresponding pixels of the baseline and follow-up texture maps, the Fraunhofer MEVIS EMPIRE10 deformable registration algorithm was used to register the baseline and follow-up scans. Bland-Altman analysis was used to compare registered scan pairs by computing normalized bias (nBias), defined as the feature value change normalized to the mean feature value, and normalized range of agreement (nRoA), defined as the range spanned by the 95% limits of agreement normalized to the mean feature value. Results: Each patient’s scans contained between 6.8–15.4 million ROIs. All of the first-order features investigated were found to have an nBias value less than 0.04% and an nRoA less than 19%, indicating that the variability introduced by deformable registration was low. Conclusion: The eight first-order features investigated were found to be registration stable. Changes in CT texture maps could allow for temporal-spatial evaluation of the evolution of lung abnormalities relating to a variety of diseases on a patient-by-patient basis. SGA and HA receives royalties and licensing fees through the University of Chicago for computer-aided diagnosis technology. Research reported in this publication was supported by the National Institute Of General

  14. A comparison of three Deformable Image Registration Algorithms in 4DCT using conventional contour based methods and voxel-by-voxel comparison methods.

    Directory of Open Access Journals (Sweden)

    Mirek eFatyga

    2015-02-01

    Full Text Available Background: Commonly used methods of assessing the accuracy of Deformable Image Registration (DIR rely on image segmentation or landmark selection. These methods are very labor intensive and thus limited to relatively small number of image pairs. The direct voxel-by-voxel comparison can be automated to examine fluctuations in DIR quality on a long series of image pairs.Methods: A voxel-by-voxel comparison of three DIR algorithms applied to lung patients is presented. Registrations are compared by comparing volume histograms formed both with individual DIR maps and with a voxel-by-voxel subtraction of the two maps. When two DIR maps agree one concludes that both maps are interchangeable in treatment planning applications, though one cannot conclude that either one agrees with the ground truth. If two DIR maps significantly disagree one concludes that at least one of the maps deviates from the ground truth. We use the method to compare three DIR algorithms applied to peak inhale-peak exhale registrations of 4DFBCT data obtained from thirteen patients. Results: All three algorithms appear to be nearly equivalent when compared using DICE similarity coefficients. A comparison based on Jacobian Volume Histograms shows that all three algorithms measure changes in total volume of the lungs with reasonable accuracy, but show large differences in the variance of Jacobian distribution on all contoured structures. Analysis of voxel-by-voxel subtraction of DIR maps shows that the three algorithms differ to a degree which is sufficient to create a potential for dosimetric discrepancy during dose accumulation.Conclusions: DIR algorithms can perform well in some clinical applications, while potentially fail in others. These algorithms are best treated as potentially useful approximations of tissue deformation that need to be separately validated for every intended clinical application.

  15. Automatic contour propagation using deformable image registration to determine delivered dose to spinal cord in head-and-neck cancer radiotherapy

    Science.gov (United States)

    Yeap, P. L.; Noble, D. J.; Harrison, K.; Bates, A. M.; Burnet, N. G.; Jena, R.; Romanchikova, M.; Sutcliffe, M. P. F.; Thomas, S. J.; Barnett, G. C.; Benson, R. J.; Jefferies, S. J.; Parker, M. A.

    2017-08-01

    To determine delivered dose to the spinal cord, a technique has been developed to propagate manual contours from kilovoltage computed-tomography (kVCT) scans for treatment planning to megavoltage computed-tomography (MVCT) guidance scans. The technique uses the Elastix software to perform intensity-based deformable image registration of each kVCT scan to the associated MVCT scans. The registration transform is then applied to contours of the spinal cord drawn manually on the kVCT scan, to obtain contour positions on the MVCT scans. Different registration strategies have been investigated, with performance evaluated by comparing the resulting auto-contours with manual contours, drawn by oncologists. The comparison metrics include the conformity index (CI), and the distance between centres (DBC). With optimised registration, auto-contours generally agree well with manual contours. Considering all 30 MVCT scans for each of three patients, the median CI is 0.759 +/- 0.003 , and the median DBC is (0.87 +/- 0.01 ) mm. An intra-observer comparison for the same scans gives a median CI of 0.820 +/- 0.002 and a DBC of (0.64 +/- 0.01 ) mm. Good levels of conformity are also obtained when auto-contours are compared with manual contours from one observer for a single MVCT scan for each of 30 patients, and when they are compared with manual contours from six observers for two MVCT scans for each of three patients. Using the auto-contours to estimate organ position at treatment time, a preliminary study of 33 patients who underwent radiotherapy for head-and-neck cancers indicates good agreement between planned and delivered dose to the spinal cord.

  16. Non-parametric change-point method for differential gene expression detection.

    Directory of Open Access Journals (Sweden)

    Yao Wang

    Full Text Available BACKGROUND: We proposed a non-parametric method, named Non-Parametric Change Point Statistic (NPCPS for short, by using a single equation for detecting differential gene expression (DGE in microarray data. NPCPS is based on the change point theory to provide effective DGE detecting ability. METHODOLOGY: NPCPS used the data distribution of the normal samples as input, and detects DGE in the cancer samples by locating the change point of gene expression profile. An estimate of the change point position generated by NPCPS enables the identification of the samples containing DGE. Monte Carlo simulation and ROC study were applied to examine the detecting accuracy of NPCPS, and the experiment on real microarray data of breast cancer was carried out to compare NPCPS with other methods. CONCLUSIONS: Simulation study indicated that NPCPS was more effective for detecting DGE in cancer subset compared with five parametric methods and one non-parametric method. When there were more than 8 cancer samples containing DGE, the type I error of NPCPS was below 0.01. Experiment results showed both good accuracy and reliability of NPCPS. Out of the 30 top genes ranked by using NPCPS, 16 genes were reported as relevant to cancer. Correlations between the detecting result of NPCPS and the compared methods were less than 0.05, while between the other methods the values were from 0.20 to 0.84. This indicates that NPCPS is working on different features and thus provides DGE identification from a distinct perspective comparing with the other mean or median based methods.

  17. Two new non-parametric tests to the distance duality relation with galaxy clusters

    CERN Document Server

    Costa, S S; Holanda, R F L

    2015-01-01

    The cosmic distance duality relation is a milestone of cosmology involving the luminosity and angular diameter distances. Any departure of the relation points to new physics or systematic errors in the observations, therefore tests of the relation are extremely important to build a consistent cosmological framework. Here, two new tests are proposed based on galaxy clusters observations (angular diameter distance and gas mass fraction) and $H(z)$ measurements. By applying Gaussian Processes, a non-parametric method, we are able to derive constraints on departures of the relation where no evidence of deviation is found in both methods, reinforcing the cosmological and astrophysical hypotheses adopted so far.

  18. Generalized Correlation Coefficient for Non-Parametric Analysis of Microarray Time-Course Data.

    Science.gov (United States)

    Tan, Qihua; Thomassen, Mads; Burton, Mark; Mose, Kristian Fredløv; Andersen, Klaus Ejner; Hjelmborg, Jacob; Kruse, Torben

    2017-06-06

    Modeling complex time-course patterns is a challenging issue in microarray study due to complex gene expression patterns in response to the time-course experiment. We introduce the generalized correlation coefficient and propose a combinatory approach for detecting, testing and clustering the heterogeneous time-course gene expression patterns. Application of the method identified nonlinear time-course patterns in high agreement with parametric analysis. We conclude that the non-parametric nature in the generalized correlation analysis could be an useful and efficient tool for analyzing microarray time-course data and for exploring the complex relationships in the omics data for studying their association with disease and health.

  19. Generalized Correlation Coefficient for Non-Parametric Analysis of Microarray Time-Course Data

    DEFF Research Database (Denmark)

    Tan, Qihua; Thomassen, Mads; Burton, Mark

    2017-01-01

    Modeling complex time-course patterns is a challenging issue in microarray study due to complex gene expression patterns in response to the time-course experiment. We introduce the generalized correlation coefficient and propose a combinatory approach for detecting, testing and clustering...... the heterogeneous time-course gene expression patterns. Application of the method identified nonlinear time-course patterns in high agreement with parametric analysis. We conclude that the non-parametric nature in the generalized correlation analysis could be an useful and efficient tool for analyzing microarray...... time-course data and for exploring the complex relationships in the omics data for studying their association with disease and health....

  20. Non-parametric trend analysis of water quality data of rivers in Kansas

    Science.gov (United States)

    Yu, Y.-S.; Zou, S.; Whittemore, D.

    1993-01-01

    Surface water quality data for 15 sampling stations in the Arkansas, Verdigris, Neosho, and Walnut river basins inside the state of Kansas were analyzed to detect trends (or lack of trends) in 17 major constituents by using four different non-parametric methods. The results show that concentrations of specific conductance, total dissolved solids, calcium, total hardness, sodium, potassium, alkalinity, sulfate, chloride, total phosphorus, ammonia plus organic nitrogen, and suspended sediment generally have downward trends. Some of the downward trends are related to increases in discharge, while others could be caused by decreases in pollution sources. Homogeneity tests show that both station-wide trends and basinwide trends are non-homogeneous. ?? 1993.

  1. Generalized Correlation Coefficient for Non-Parametric Analysis of Microarray Time-Course Data

    DEFF Research Database (Denmark)

    Tan, Qihua; Thomassen, Mads; Burton, Mark

    2017-01-01

    Modeling complex time-course patterns is a challenging issue in microarray study due to complex gene expression patterns in response to the time-course experiment. We introduce the generalized correlation coefficient and propose a combinatory approach for detecting, testing and clustering...... the heterogeneous time-course gene expression patterns. Application of the method identified nonlinear time-course patterns in high agreement with parametric analysis. We conclude that the non-parametric nature in the generalized correlation analysis could be an useful and efficient tool for analyzing microarray...

  2. The geometry of distributional preferences and a non-parametric identification approach: The Equality Equivalence Test.

    Science.gov (United States)

    Kerschbamer, Rudolf

    2015-05-01

    This paper proposes a geometric delineation of distributional preference types and a non-parametric approach for their identification in a two-person context. It starts with a small set of assumptions on preferences and shows that this set (i) naturally results in a taxonomy of distributional archetypes that nests all empirically relevant types considered in previous work; and (ii) gives rise to a clean experimental identification procedure - the Equality Equivalence Test - that discriminates between archetypes according to core features of preferences rather than properties of specific modeling variants. As a by-product the test yields a two-dimensional index of preference intensity.

  3. Fractal analysis of INSAR and correlation with graph-cut based image registration for coastline deformation analysis: post seismic hazard assessment of the 2011 Tohoku earthquake region

    Directory of Open Access Journals (Sweden)

    P. K. Dutta

    2012-04-01

    Full Text Available Satellite imagery for 2011 earthquake off the Pacific coast of Tohoku has provided an opportunity to conduct image transformation analyses by employing multi-temporal images retrieval techniques. In this study, we used a new image segmentation algorithm to image coastline deformation by adopting graph cut energy minimization framework. Comprehensive analysis of available INSAR images using coastline deformation analysis helped extract disaster information of the affected region of the 2011 Tohoku tsunamigenic earthquake source zone. We attempted to correlate fractal analysis of seismic clustering behavior with image processing analogies and our observations suggest that increase in fractal dimension distribution is associated with clustering of events that may determine the level of devastation of the region. The implementation of graph cut based image registration technique helps us to detect the devastation across the coastline of Tohoku through change of intensity of pixels that carries out regional segmentation for the change in coastal boundary after the tsunami. The study applies transformation parameters on remotely sensed images by manually segmenting the image to recovering translation parameter from two images that differ by rotation. Based on the satellite image analysis through image segmentation, it is found that the area of 0.997 sq km for the Honshu region was a maximum damage zone localized in the coastal belt of NE Japan forearc region. The analysis helps infer using matlab that the proposed graph cut algorithm is robust and more accurate than other image registration methods. The analysis shows that the method can give a realistic estimate for recovered deformation fields in pixels corresponding to coastline change which may help formulate the strategy for assessment during post disaster need assessment scenario for the coastal belts associated with damages due to strong shaking and tsunamis in the world under disaster risk

  4. WE-E-213CD-11: A New Automatically Generated Metric for Evaluating the Spatial Precision of Deformable Image Registrations: The Distance Discordance Metric.

    Science.gov (United States)

    Saleh, Z; Apte, A; Sharp, G; Deasy, J

    2012-06-01

    We propose a new metric called Distance Discordance (DD), which is defined as the distance between two anatomic points from two moving images, which are co-located on some reference image, when deformed onto another reference image. To demonstrate the concept of DD, we created a reference software phantom which contains two objects. The first object (1) consists of a hollow box with a fixed size core and variable wall thickness. The second object (2) consists of a solid box of fixed size and arbitrary location. 7 different variations of the fixed phantom were created. Each phantom was deformed onto every other phantom using two B-Spline DIR algorithms available in Elastix and Plastimatch. Voxels were sampled from the reference phantom [1], which were also deformed from moving phantoms [2…6], and we find the differences in their corresponding location on phantom [7]. Each voxel results in a distribution of DD values, which we call distance discordance histogram (DDH). We also demonstrate this concept in 8 Head & Neck patients. The two image registration algorithms produced two different DD results for the same phantom image set. The mean values of the DDH were slightly lower for Elastix (0-1.28 cm) as compared to the values produced by Plastimatch (0-1.43 cm). The combined DDH for the H&N patients followed a lognormal distribution with a mean of 0.45 cm and std. deviation of 0.42 cm. The proposed distance discordance (DD) metric is an easily interpretable, quantitative tool that can be used to evaluate the effect of inter-patient variability on the goodness of the registration in different parts of the patient anatomy. Therefore, it can be utilized to exclude certain images based on their DDH characteristics. In addition, this metric does not rely on 'ground truth' or the presence of contoured structures. Partially supported by NIH grant R01 CA85181. © 2012 American Association of Physicists in Medicine.

  5. Performance evaluation of an automatic anatomy segmentation algorithm on repeat or four-dimensional CT images using a deformable image registration method

    Science.gov (United States)

    Wang, He; Garden, Adam S.; Zhang, Lifei; Wei, Xiong; Ahamad, Anesa; Kuban, Deborah A.; Komaki, Ritsuko; O’Daniel, Jennifer; Zhang, Yongbin; Mohan, Radhe; Dong, Lei

    2008-01-01

    Purpose Auto-propagation of anatomical region-of-interests (ROIs) from the planning CT to daily CT is an essential step in image-guided adaptive radiotherapy. The goal of this study was to quantitatively evaluate the performance of the algorithm in typical clinical applications. Method and Materials We previously adopted an image intensity-based deformable registration algorithm to find the correspondence between two images. In this study, the ROIs delineated on the planning CT image were mapped onto daily CT or four-dimentional (4D) CT images using the same transformation. Post-processing methods, such as boundary smoothing and modification, were used to enhance the robustness of the algorithm. Auto-propagated contours for eight head-and-neck patients with a total of 100 repeat CTs, one prostate patient with 24 repeat CTs, and nine lung cancer patients with a total of 90 4D-CT images were evaluated against physician-drawn contours and physician-modified deformed contours using the volume-overlap-index (VOI) and mean absolute surface-to-surface distance (ASSD). Results The deformed contours were reasonably well matched with daily anatomy on repeat CT images. The VOI and mean ASSD were 83% and 1.3 mm when compared to the independently drawn contours. A better agreement (greater than 97% and less than 0.4 mm) was achieved if the physician was only asked to correct the deformed contours. The algorithm was robust in the presence of random noise in the image. Conclusion The deformable algorithm may be an effective method to propagate the planning ROIs to subsequent CT images of changed anatomy, although a final review by physicians is highly recommended. PMID:18722272

  6. SU-E-J-92: Validating Dose Uncertainty Estimates Produced by AUTODIRECT, An Automated Program to Evaluate Deformable Image Registration Accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H; Chen, J; Pouliot, J [University of California San Francisco, San Francisco, CA (United States); Pukala, J [UF Health Cancer Center at Orlando Health, Orlando, FL (United States); Kirby, N [University of Texas Health Science Center at San Antonio, San Antonio, TX (United States)

    2015-06-15

    Purpose: Deformable image registration (DIR) is a powerful tool with the potential to deformably map dose from one computed-tomography (CT) image to another. Errors in the DIR, however, will produce errors in the transferred dose distribution. We have proposed a software tool, called AUTODIRECT (automated DIR evaluation of confidence tool), which predicts voxel-specific dose mapping errors on a patient-by-patient basis. This work validates the effectiveness of AUTODIRECT to predict dose mapping errors with virtual and physical phantom datasets. Methods: AUTODIRECT requires 4 inputs: moving and fixed CT images and two noise scans of a water phantom (for noise characterization). Then, AUTODIRECT uses algorithms to generate test deformations and applies them to the moving and fixed images (along with processing) to digitally create sets of test images, with known ground-truth deformations that are similar to the actual one. The clinical DIR algorithm is then applied to these test image sets (currently 4) . From these tests, AUTODIRECT generates spatial and dose uncertainty estimates for each image voxel based on a Student’s t distribution. This work compares these uncertainty estimates to the actual errors made by the Velocity Deformable Multi Pass algorithm on 11 virtual and 1 physical phantom datasets. Results: For 11 of the 12 tests, the predicted dose error distributions from AUTODIRECT are well matched to the actual error distributions within 1–6% for 10 virtual phantoms, and 9% for the physical phantom. For one of the cases though, the predictions underestimated the errors in the tail of the distribution. Conclusion: Overall, the AUTODIRECT algorithm performed well on the 12 phantom cases for Velocity and was shown to generate accurate estimates of dose warping uncertainty. AUTODIRECT is able to automatically generate patient-, organ- , and voxel-specific DIR uncertainty estimates. This ability would be useful for patient-specific DIR quality assurance.

  7. Intelligent Material Systems and Structures (IMSS). Part 5: Fiber optic registration of deformation in carbon laminates 91/92

    Science.gov (United States)

    Oedman, Svante; Bengtsson, Jan-Peter; Danilsons, Markus; Dickman, Ola; Gruffman, Stig; Lindersson, Kjell; Tanriverdi, Timor

    1993-02-01

    Mechanical deformations induced by stretching optical fibers and epoxy-carbon laminates with embedded optical fibers were studied with fiber optic measurement technology: intensity measurements, reflectometry, and interferometry. The results from the measurements were compared in order to judge which method could be further developed for strain measurement in a laboratory. The conclusion is that the interferometry can be developed into a laboratory method for measuring deformations in carbon laminates.

  8. A web application for evaluating Phase I methods using a non-parametric optimal benchmark.

    Science.gov (United States)

    Wages, Nolan A; Varhegyi, Nikole

    2017-06-01

    In evaluating the performance of Phase I dose-finding designs, simulation studies are typically conducted to assess how often a method correctly selects the true maximum tolerated dose under a set of assumed dose-toxicity curves. A necessary component of the evaluation process is to have some concept for how well a design can possibly perform. The notion of an upper bound on the accuracy of maximum tolerated dose selection is often omitted from the simulation study, and the aim of this work is to provide researchers with accessible software to quickly evaluate the operating characteristics of Phase I methods using a benchmark. The non-parametric optimal benchmark is a useful theoretical tool for simulations that can serve as an upper limit for the accuracy of maximum tolerated dose identification based on a binary toxicity endpoint. It offers researchers a sense of the plausibility of a Phase I method's operating characteristics in simulation. We have developed an R shiny web application for simulating the benchmark. The web application has the ability to quickly provide simulation results for the benchmark and requires no programming knowledge. The application is free to access and use on any device with an Internet browser. The application provides the percentage of correct selection of the maximum tolerated dose and an accuracy index, operating characteristics typically used in evaluating the accuracy of dose-finding designs. We hope this software will facilitate the use of the non-parametric optimal benchmark as an evaluation tool in dose-finding simulation.

  9. Application of the LSQR algorithm in non-parametric estimation of aerosol size distribution

    Science.gov (United States)

    He, Zhenzong; Qi, Hong; Lew, Zhongyuan; Ruan, Liming; Tan, Heping; Luo, Kun

    2016-05-01

    Based on the Least Squares QR decomposition (LSQR) algorithm, the aerosol size distribution (ASD) is retrieved in non-parametric approach. The direct problem is solved by the Anomalous Diffraction Approximation (ADA) and the Lambert-Beer Law. An optimal wavelength selection method is developed to improve the retrieval accuracy of the ASD. The proposed optimal wavelength set is selected by the method which can make the measurement signals sensitive to wavelength and decrease the degree of the ill-condition of coefficient matrix of linear systems effectively to enhance the anti-interference ability of retrieval results. Two common kinds of monomodal and bimodal ASDs, log-normal (L-N) and Gamma distributions, are estimated, respectively. Numerical tests show that the LSQR algorithm can be successfully applied to retrieve the ASD with high stability in the presence of random noise and low susceptibility to the shape of distributions. Finally, the experimental measurement ASD over Harbin in China is recovered reasonably. All the results confirm that the LSQR algorithm combined with the optimal wavelength selection method is an effective and reliable technique in non-parametric estimation of ASD.

  10. Non-parametric transformation for data correlation and integration: From theory to practice

    Energy Technology Data Exchange (ETDEWEB)

    Datta-Gupta, A.; Xue, Guoping; Lee, Sang Heon [Texas A& M Univ., College Station, TX (United States)

    1997-08-01

    The purpose of this paper is two-fold. First, we introduce the use of non-parametric transformations for correlating petrophysical data during reservoir characterization. Such transformations are completely data driven and do not require a priori functional relationship between response and predictor variables which is the case with traditional multiple regression. The transformations are very general, computationally efficient and can easily handle mixed data types for example, continuous variables such as porosity, permeability and categorical variables such as rock type, lithofacies. The power of the non-parametric transformation techniques for data correlation has been illustrated through synthetic and field examples. Second, we utilize these transformations to propose a two-stage approach for data integration during heterogeneity characterization. The principal advantages of our approach over traditional cokriging or cosimulation methods are: (1) it does not require a linear relationship between primary and secondary data, (2) it exploits the secondary information to its fullest potential by maximizing the correlation between the primary and secondary data, (3) it can be easily applied to cases where several types of secondary or soft data are involved, and (4) it significantly reduces variance function calculations and thus, greatly facilitates non-Gaussian cosimulation. We demonstrate the data integration procedure using synthetic and field examples. The field example involves estimation of pore-footage distribution using well data and multiple seismic attributes.

  11. Robust non-parametric one-sample tests for the analysis of recurrent events.

    Science.gov (United States)

    Rebora, Paola; Galimberti, Stefania; Valsecchi, Maria Grazia

    2010-12-30

    One-sample non-parametric tests are proposed here for inference on recurring events. The focus is on the marginal mean function of events and the basis for inference is the standardized distance between the observed and the expected number of events under a specified reference rate. Different weights are considered in order to account for various types of alternative hypotheses on the mean function of the recurrent events process. A robust version and a stratified version of the test are also proposed. The performance of these tests was investigated through simulation studies under various underlying event generation processes, such as homogeneous and nonhomogeneous Poisson processes, autoregressive and renewal processes, with and without frailty effects. The robust versions of the test have been shown to be suitable in a wide variety of event generating processes. The motivating context is a study on gene therapy in a very rare immunodeficiency in children, where a major end-point is the recurrence of severe infections. Robust non-parametric one-sample tests for recurrent events can be useful to assess efficacy and especially safety in non-randomized studies or in epidemiological studies for comparison with a standard population.

  12. A non-parametric approach to estimate the total deviation index for non-normal data.

    Science.gov (United States)

    Perez-Jaume, Sara; Carrasco, Josep L

    2015-11-10

    Concordance indices are used to assess the degree of agreement between different methods that measure the same characteristic. In this context, the total deviation index (TDI) is an unscaled concordance measure that quantifies to which extent the readings from the same subject obtained by different methods may differ with a certain probability. Common approaches to estimate the TDI assume data are normally distributed and linearity between response and effects (subjects, methods and random error). Here, we introduce a new non-parametric methodology for estimation and inference of the TDI that can deal with any kind of quantitative data. The present study introduces this non-parametric approach and compares it with the already established methods in two real case examples that represent situations of non-normal data (more specifically, skewed data and count data). The performance of the already established methodologies and our approach in these contexts is assessed by means of a simulation study. Copyright © 2015 John Wiley & Sons, Ltd.

  13. A non-parametric Bayesian approach for clustering and tracking non-stationarities of neural spikes.

    Science.gov (United States)

    Shalchyan, Vahid; Farina, Dario

    2014-02-15

    Neural spikes from multiple neurons recorded in a multi-unit signal are usually separated by clustering. Drifts in the position of the recording electrode relative to the neurons over time cause gradual changes in the position and shapes of the clusters, challenging the clustering task. By dividing the data into short time intervals, Bayesian tracking of the clusters based on Gaussian cluster model has been previously proposed. However, the Gaussian cluster model is often not verified for neural spikes. We present a Bayesian clustering approach that makes no assumptions on the distribution of the clusters and use kernel-based density estimation of the clusters in every time interval as a prior for Bayesian classification of the data in the subsequent time interval. The proposed method was tested and compared to Gaussian model-based approach for cluster tracking by using both simulated and experimental datasets. The results showed that the proposed non-parametric kernel-based density estimation of the clusters outperformed the sequential Gaussian model fitting in both simulated and experimental data tests. Using non-parametric kernel density-based clustering that makes no assumptions on the distribution of the clusters enhances the ability of tracking cluster non-stationarity over time with respect to the Gaussian cluster modeling approach. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. MEASURING DARK MATTER PROFILES NON-PARAMETRICALLY IN DWARF SPHEROIDALS: AN APPLICATION TO DRACO

    Energy Technology Data Exchange (ETDEWEB)

    Jardel, John R.; Gebhardt, Karl [Department of Astronomy, The University of Texas, 2515 Speedway, Stop C1400, Austin, TX 78712-1205 (United States); Fabricius, Maximilian H.; Williams, Michael J. [Max-Planck Institut fuer extraterrestrische Physik, Giessenbachstrasse, D-85741 Garching bei Muenchen (Germany); Drory, Niv, E-mail: jardel@astro.as.utexas.edu [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Avenida Universidad 3000, Ciudad Universitaria, C.P. 04510 Mexico D.F. (Mexico)

    2013-02-15

    We introduce a novel implementation of orbit-based (or Schwarzschild) modeling that allows dark matter density profiles to be calculated non-parametrically in nearby galaxies. Our models require no assumptions to be made about velocity anisotropy or the dark matter profile. The technique can be applied to any dispersion-supported stellar system, and we demonstrate its use by studying the Local Group dwarf spheroidal galaxy (dSph) Draco. We use existing kinematic data at larger radii and also present 12 new radial velocities within the central 13 pc obtained with the VIRUS-W integral field spectrograph on the 2.7 m telescope at McDonald Observatory. Our non-parametric Schwarzschild models find strong evidence that the dark matter profile in Draco is cuspy for 20 {<=} r {<=} 700 pc. The profile for r {>=} 20 pc is well fit by a power law with slope {alpha} = -1.0 {+-} 0.2, consistent with predictions from cold dark matter simulations. Our models confirm that, despite its low baryon content relative to other dSphs, Draco lives in a massive halo.

  15. A Bayesian non-parametric Potts model with application to pre-surgical FMRI data.

    Science.gov (United States)

    Johnson, Timothy D; Liu, Zhuqing; Bartsch, Andreas J; Nichols, Thomas E

    2013-08-01

    The Potts model has enjoyed much success as a prior model for image segmentation. Given the individual classes in the model, the data are typically modeled as Gaussian random variates or as random variates from some other parametric distribution. In this article, we present a non-parametric Potts model and apply it to a functional magnetic resonance imaging study for the pre-surgical assessment of peritumoral brain activation. In our model, we assume that the Z-score image from a patient can be segmented into activated, deactivated, and null classes, or states. Conditional on the class, or state, the Z-scores are assumed to come from some generic distribution which we model non-parametrically using a mixture of Dirichlet process priors within the Bayesian framework. The posterior distribution of the model parameters is estimated with a Markov chain Monte Carlo algorithm, and Bayesian decision theory is used to make the final classifications. Our Potts prior model includes two parameters, the standard spatial regularization parameter and a parameter that can be interpreted as the a priori probability that each voxel belongs to the null, or background state, conditional on the lack of spatial regularization. We assume that both of these parameters are unknown, and jointly estimate them along with other model parameters. We show through simulation studies that our model performs on par, in terms of posterior expected loss, with parametric Potts models when the parametric model is correctly specified and outperforms parametric models when the parametric model in misspecified.

  16. Air breath control radiotherapy in severe insufficiency respiratory patients with N.S.C.L.: application for deformable registration method in thoracic radiotherapy; Radiotherapie avec blocage respiratoire pour les grands insuffisants respiratoires atteints d'un carcinome pulmonaire non a petites cellules (Protocole RESPI 2000): application a la modelisation des deformations d'organes par recalage deformable

    Energy Technology Data Exchange (ETDEWEB)

    Sarrut, D.; Pommier, P.; Carrie, C. [Centre Leon-Berard, Dept. de Radiotherapie, CREATIS, Unite CNRS 5515, Inserm 630, 69 - Lyon (France); Perol, D. [Centre Leon-Berard, Dept. de Biostatistique, 69 - Lyon (France)

    2006-11-15

    Purpose. Using deformable registration methods from a phase two clinical study of air breath control during radiotherapy in patients suffering from severe respiratory insufficiency and non-small cell lung carcinoma. Patients and methods, Between April 2002 and November 2005, 22 patients with severe respiratory insufficiency were treated with curative intent by conformal therapy combined with active breathing control. Results. After a mean of follow-up of 22 months, the local control rate is 28% and the method is feasible despite the severe respiratory insufficiency. However the overall survival is still poor due to metastatic widespread. For the second part of the study, the clinical protocol was also used for two studies using deformable registration methods. In the first study, a deformable registration method has been developed in order to register several breath-hold 3D CT of the same patient acquired at several days of interval. It allowed quantifying the inter-fraction breath-hold reproducibility by analysing the resulting displacement field. For 6 patients, the breath-hold was effective, while for 2 patients, motion greater than 10 mm were detected. The second study aimed to simulate 4D images from 3D breath-hold images. Developing an ad-hoc methodology based on the interpolation of 3D dense deformation fields performed it. The approach has been validated with expert selected landmarks, with accuracy lower than 3 mm. Conclusion. ABC is feasible, even in case of severe insufficiency respiratory syndrome but metastatic widespread disease is still a major challenge even with an acceptable local control rate without serious side effects: regarding the deformable registration method. Such artificial 4D images could allow decreasing the dose need to acquire a full 4D image, to simulate irregular breathing pattern and to be used for 4D dosimetry planning. (author)

  17. Deformable Image Registration for Adaptive Radiation Therapy of Head and Neck Cancer: Accuracy and Precision in the Presence of Tumor Changes

    Energy Technology Data Exchange (ETDEWEB)

    Mencarelli, Angelo, E-mail: a.mencarelli@nki.nl [Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam (Netherlands); Kranen, Simon Robert van; Hamming-Vrieze, Olga; Beek, Suzanne van [Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam (Netherlands); Nico Rasch, Coenraad Robert [Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam (Netherlands); Department of Radiation Oncology, Amsterdam Medical Centre, Amsterdam (Netherlands); Herk, Marcel van; Sonke, Jan-Jakob [Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam (Netherlands)

    2014-11-01

    Purpose: To compare deformable image registration (DIR) accuracy and precision for normal and tumor tissues in head and neck cancer patients during the course of radiation therapy (RT). Methods and Materials: Thirteen patients with oropharyngeal tumors, who underwent submucosal implantation of small gold markers (average 6, range 4-10) around the tumor and were treated with RT were retrospectively selected. Two observers identified 15 anatomical features (landmarks) representative of normal tissues in the planning computed tomography (pCT) scan and in weekly cone beam CTs (CBCTs). Gold markers were digitally removed after semiautomatic identification in pCTs and CBCTs. Subsequently, landmarks and gold markers on pCT were propagated to CBCTs, using a b-spline-based DIR and, for comparison, rigid registration (RR). To account for observer variability, the pair-wise difference analysis of variance method was applied. DIR accuracy (systematic error) and precision (random error) for landmarks and gold markers were quantified. Time trend of the precisions for RR and DIR over the weekly CBCTs were evaluated. Results: DIR accuracies were submillimeter and similar for normal and tumor tissue. DIR precision (1 SD) on the other hand was significantly different (P<.01), with 2.2 mm vector length in normal tissue versus 3.3 mm in tumor tissue. No significant time trend in DIR precision was found for normal tissue, whereas in tumor, DIR precision was significantly (P<.009) degraded during the course of treatment by 0.21 mm/week. Conclusions: DIR for tumor registration proved to be less precise than that for normal tissues due to limited contrast and complex non-elastic tumor response. Caution should therefore be exercised when applying DIR for tumor changes in adaptive procedures.

  18. Evaluation of deformable image registration between external beam radiotherapy and HDR brachytherapy for cervical cancer with a 3D-printed deformable pelvis phantom.

    Science.gov (United States)

    Kadoya, Noriyuki; Miyasaka, Yuya; Nakajima, Yujiro; Kuroda, Yoshihiro; Ito, Kengo; Chiba, Mizuki; Sato, Kiyokazu; Dobashi, Suguru; Yamamoto, Takaya; Takahashi, Noriyoshi; Kubozono, Masaki; Takeda, Ken; Jingu, Keiichi

    2017-04-01

    In this study, we developed a 3D-printed deformable pelvis phantom for evaluating spatial DIR accuracy. We then evaluated the spatial DIR accuracies of various DIR settings for cervical cancer. A deformable female pelvis phantom was created based on patient CT data using 3D printing. To create the deformable uterus phantom, we first 3D printed both a model of uterus and a model of the internal cavities of the vagina and uterus. We then made a mold using the 3D printed uterus phantom. Finally, urethane was poured into the mold with the model of the internal cavities in place, creating the deformable uterus phantom with a cavity into which an applicator could be inserted. To create the deformable bladder phantom, we first 3D printed models of the bladder and of the same bladder scaled down by 2 mm. We then made a mold using the larger bladder model. Finally, silicone was poured into the mold with the smaller bladder model in place to create the deformable bladder phantom with a wall thickness of 2 mm. To emulate the anatomical bladder, water was poured into the created bladder. We acquired phantom image without applicator for EBRT. Then, we inserted the applicator into the phantom to simulate BT. In this situation, we scanned the phantom again to obtain the phantom image for BT. We performed DIR using the two phantom images in two cases: Case A, with full bladder (170 ml) in both EBRT and BT images; and Case B with full bladder in the BT image and half-full bladder (100 ml) in the EBRT image. DIR was evaluated using Dice similarity coefficients (DSCs) and 31 landmarks for the uterus and 25 landmarks for the bladder. A hybrid intensity and structure DIR algorithm implemented in RayStation with four DIR settings was evaluated. On visual inspection, reasonable agreement in shape of the uterus between the phantom and patient CT images was observed for both EBRT and BT, although some regional disagreements in shape of the bladder and rectum were apparent. The created

  19. Rural-urban Migration and Dynamics of Income Distribution in China: A Non-parametric Approach%Rural-urban Migration and Dynamics of Income Distribution in China: A Non-parametric Approach

    Institute of Scientific and Technical Information of China (English)

    Yong Liu,; Wei Zou

    2011-01-01

    Extending the income dynamics approach in Quah (2003), the present paper studies the enlarging income inequality in China over the past three decades from the viewpoint of rural-urban migration and economic transition. We establish non-parametric estimations of rural and urban income distribution functions in China, and aggregate a population- weighted, nationwide income distribution function taking into account rural-urban differences in technological progress and price indexes. We calculate 12 inequality indexes through non-parametric estimation to overcome the biases in existingparametric estimation and, therefore, provide more accurate measurement of income inequalitY. Policy implications have been drawn based on our research.

  20. Non-parametric star formation histories for 5 dwarf spheroidal galaxies of the local group

    CERN Document Server

    Hernández, X; Valls-Gabaud, D; Gilmore, Gerard; Valls-Gabaud, David

    2000-01-01

    We use recent HST colour-magnitude diagrams of the resolved stellar populations of a sample of local dSph galaxies (Carina, LeoI, LeoII, Ursa Minor and Draco) to infer the star formation histories of these systems, $SFR(t)$. Applying a new variational calculus maximum likelihood method which includes a full Bayesian analysis and allows a non-parametric estimate of the function one is solving for, we infer the star formation histories of the systems studied. This method has the advantage of yielding an objective answer, as one need not assume {\\it a priori} the form of the function one is trying to recover. The results are checked independently using Saha's $W$ statistic. The total luminosities of the systems are used to normalize the results into physical units and derive SN type II rates. We derive the luminosity weighted mean star formation history of this sample of galaxies.

  1. Non-parametric co-clustering of large scale sparse bipartite networks on the GPU

    DEFF Research Database (Denmark)

    Hansen, Toke Jansen; Mørup, Morten; Hansen, Lars Kai

    2011-01-01

    Co-clustering is a problem of both theoretical and practical importance, e.g., market basket analysis and collaborative filtering, and in web scale text processing. We state the co-clustering problem in terms of non-parametric generative models which can address the issue of estimating the number...... of row and column clusters from a hypothesis space of an infinite number of clusters. To reach large scale applications of co-clustering we exploit that parameter inference for co-clustering is well suited for parallel computing. We develop a generic GPU framework for efficient inference on large scale......-life large scale collaborative filtering data and web scale text corpora, demonstrating that latent mesoscale structures extracted by the co-clustering problem as formulated by the Infinite Relational Model (IRM) are consistent across consecutive runs with different initializations and also relevant...

  2. Assessing T cell clonal size distribution: a non-parametric approach.

    Science.gov (United States)

    Bolkhovskaya, Olesya V; Zorin, Daniil Yu; Ivanchenko, Mikhail V

    2014-01-01

    Clonal structure of the human peripheral T-cell repertoire is shaped by a number of homeostatic mechanisms, including antigen presentation, cytokine and cell regulation. Its accurate tuning leads to a remarkable ability to combat pathogens in all their variety, while systemic failures may lead to severe consequences like autoimmune diseases. Here we develop and make use of a non-parametric statistical approach to assess T cell clonal size distributions from recent next generation sequencing data. For 41 healthy individuals and a patient with ankylosing spondylitis, who undergone treatment, we invariably find power law scaling over several decades and for the first time calculate quantitatively meaningful values of decay exponent. It has proved to be much the same among healthy donors, significantly different for an autoimmune patient before the therapy, and converging towards a typical value afterwards. We discuss implications of the findings for theoretical understanding and mathematical modeling of adaptive immunity.

  3. Assessing T cell clonal size distribution: a non-parametric approach.

    Directory of Open Access Journals (Sweden)

    Olesya V Bolkhovskaya

    Full Text Available Clonal structure of the human peripheral T-cell repertoire is shaped by a number of homeostatic mechanisms, including antigen presentation, cytokine and cell regulation. Its accurate tuning leads to a remarkable ability to combat pathogens in all their variety, while systemic failures may lead to severe consequences like autoimmune diseases. Here we develop and make use of a non-parametric statistical approach to assess T cell clonal size distributions from recent next generation sequencing data. For 41 healthy individuals and a patient with ankylosing spondylitis, who undergone treatment, we invariably find power law scaling over several decades and for the first time calculate quantitatively meaningful values of decay exponent. It has proved to be much the same among healthy donors, significantly different for an autoimmune patient before the therapy, and converging towards a typical value afterwards. We discuss implications of the findings for theoretical understanding and mathematical modeling of adaptive immunity.

  4. A non-parametric method for correction of global radiation observations

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Perers, Bengt;

    2013-01-01

    This paper presents a method for correction and alignment of global radiation observations based on information obtained from calculated global radiation, in the present study one-hour forecast of global radiation from a numerical weather prediction (NWP) model is used. Systematical errors detected...... in the observations are corrected. These are errors such as: tilt in the leveling of the sensor, shadowing from surrounding objects, clipping and saturation in the signal processing, and errors from dirt and wear. The method is based on a statistical non-parametric clear-sky model which is applied to both...... University. The method can be useful for optimized use of solar radiation observations for forecasting, monitoring, and modeling of energy production and load which are affected by solar radiation....

  5. Non-parametric Reconstruction of Cluster Mass Distribution from Strong Lensing Modelling Abell 370

    CERN Document Server

    Abdel-Salam, H M; Williams, L L R

    1997-01-01

    We describe a new non-parametric technique for reconstructing the mass distribution in galaxy clusters with strong lensing, i.e., from multiple images of background galaxies. The observed positions and redshifts of the images are considered as rigid constraints and through the lens (ray-trace) equation they provide us with linear constraint equations. These constraints confine the mass distribution to some allowed region, which is then found by linear programming. Within this allowed region we study in detail the mass distribution with minimum mass-to-light variation; also some others, such as the smoothest mass distribution. The method is applied to the extensively studied cluster Abell 370, which hosts a giant luminous arc and several other multiply imaged background galaxies. Our mass maps are constrained by the observed positions and redshifts (spectroscopic or model-inferred by previous authors) of the giant arc and multiple image systems. The reconstructed maps obtained for A370 reveal a detailed mass d...

  6. Measuring the influence of information networks on transaction costs using a non-parametric regression technique

    DEFF Research Database (Denmark)

    Henningsen, Geraldine; Henningsen, Arne; Henning, Christian H. C. A.

    All business transactions as well as achieving innovations take up resources, subsumed under the concept of transaction costs (TAC). One of the major factors in TAC theory is information. Information networks can catalyse the interpersonal information exchange and hence, increase the access...... to nonpublic information. Our analysis shows that information networks have an impact on the level of TAC. Many resources that are sacrificed for TAC are inputs that also enter the technical production process. As most production data do not separate between these two usages of inputs, high transaction costs...... are unveiled by reduced productivity. A cross-validated local linear non-parametric regression shows that good information networks increase the productivity of farms. A bootstrapping procedure confirms that this result is statistically significant....

  7. Depth Transfer: Depth Extraction from Video Using Non-Parametric Sampling.

    Science.gov (United States)

    Karsch, Kevin; Liu, Ce; Kang, Sing Bing

    2014-11-01

    We describe a technique that automatically generates plausible depth maps from videos using non-parametric depth sampling. We demonstrate our technique in cases where past methods fail (non-translating cameras and dynamic scenes). Our technique is applicable to single images as well as videos. For videos, we use local motion cues to improve the inferred depth maps, while optical flow is used to ensure temporal depth consistency. For training and evaluation, we use a Kinect-based system to collect a large data set containing stereoscopic videos with known depths. We show that our depth estimation technique outperforms the state-of-the-art on benchmark databases. Our technique can be used to automatically convert a monoscopic video into stereo for 3D visualization, and we demonstrate this through a variety of visually pleasing results for indoor and outdoor scenes, including results from the feature film Charade.

  8. The application of non-parametric statistical techniques to an ALARA programme.

    Science.gov (United States)

    Moon, J H; Cho, Y H; Kang, C S

    2001-01-01

    For the cost-effective reduction of occupational radiation dose (ORD) at nuclear power plants, it is necessary to identify what are the processes of repetitive high ORD during maintenance and repair operations. To identify the processes, the point values such as mean and median are generally used, but they sometimes lead to misjudgment since they cannot show other important characteristics such as dose distributions and frequencies of radiation jobs. As an alternative, the non-parametric analysis method is proposed, which effectively identifies the processes of repetitive high ORD. As a case study, the method is applied to ORD data of maintenance and repair processes at Kori Units 3 and 4 that are pressurised water reactors with 950 MWe capacity and have been operating since 1986 and 1987 respectively, in Korea and the method is demonstrated to be an efficient way of analysing the data.

  9. A multitemporal and non-parametric approach for assessing the impacts of drought on vegetation greenness

    DEFF Research Database (Denmark)

    Carrao, Hugo; Sepulcre, Guadalupe; Horion, Stéphanie Marie Anne F;

    2013-01-01

    for the period between 1998 and 2010. The time-series analysis of vegetation greenness is performed during the growing season with a non-parametric method, namely the seasonal Relative Greenness (RG) of spatially accumulated fAPAR. The Global Land Cover map of 2000 and the GlobCover maps of 2005/2006 and 2009......This study evaluates the relationship between the frequency and duration of meteorological droughts and the subsequent temporal changes on the quantity of actively photosynthesizing biomass (greenness) estimated from satellite imagery on rainfed croplands in Latin America. An innovative non...... Full Data Reanalysis precipitation time-series product, which ranges from January 1901 to December 2010 and is interpolated at the spatial resolution of 1° (decimal degree, DD). Vegetation greenness composites are derived from 10-daily SPOT-VEGETATION images at the spatial resolution of 1/112° DD...

  10. Comparison of non-parametric methods for ungrouping coarsely aggregated data

    DEFF Research Database (Denmark)

    Rizzi, Silvia; Thinggaard, Mikael; Engholm, Gerda

    2016-01-01

    Background Histograms are a common tool to estimate densities non-parametrically. They are extensively encountered in health sciences to summarize data in a compact format. Examples are age-specific distributions of death or onset of diseases grouped in 5-years age classes with an open-ended age...... methods for ungrouping count data. We compare the performance of two spline interpolation methods, two kernel density estimators and a penalized composite link model first via a simulation study and then with empirical data obtained from the NORDCAN Database. All methods analyzed can be used to estimate...... composite link model performs the best. Conclusion We give an overview and test different methods to estimate detailed distributions from grouped count data. Health researchers can benefit from these versatile methods, which are ready for use in the statistical software R. We recommend using the penalized...

  11. Comparative Study of Parametric and Non-parametric Approaches in Fault Detection and Isolation

    DEFF Research Database (Denmark)

    Katebi, S.D.; Blanke, M.; Katebi, M.R.

    This report describes a comparative study between two approaches to fault detection and isolation in dynamic systems. The first approach uses a parametric model of the system. The main components of such techniques are residual and signature generation for processing and analyzing. The second...... approach is non-parametric in the sense that the signature analysis is only dependent on the frequency or time domain information extracted directly from the input-output signals. Based on these approaches, two different fault monitoring schemes are developed where the feature extraction and fault decision...... algorithms employed are adopted from the template matching in pattern recognition. Extensive simulation studies are performed to demonstrate satisfactory performance of the proposed techniques. The advantages and disadvantages of each approach are discussed and analyzed....

  12. Developing two non-parametric performance models for higher learning institutions

    Science.gov (United States)

    Kasim, Maznah Mat; Kashim, Rosmaini; Rahim, Rahela Abdul; Khan, Sahubar Ali Muhamed Nadhar

    2016-08-01

    Measuring the performance of higher learning Institutions (HLIs) is a must for these institutions to improve their excellence. This paper focuses on formation of two performance models: efficiency and effectiveness models by utilizing a non-parametric method, Data Envelopment Analysis (DEA). The proposed models are validated by measuring the performance of 16 public universities in Malaysia for year 2008. However, since data for one of the variables is unavailable, an estimate was used as a proxy to represent the real data. The results show that average efficiency and effectiveness scores were 0.817 and 0.900 respectively, while six universities were fully efficient and eight universities were fully effective. A total of six universities were both efficient and effective. It is suggested that the two proposed performance models would work as complementary methods to the existing performance appraisal method or as alternative methods in monitoring the performance of HLIs especially in Malaysia.

  13. Factors associated with malnutrition among tribal children in India: a non-parametric approach.

    Science.gov (United States)

    Debnath, Avijit; Bhattacharjee, Nairita

    2014-06-01

    The purpose of this study is to identify the determinants of malnutrition among the tribal children in India. The investigation is based on secondary data compiled from the National Family Health Survey-3. We used a classification and regression tree model, a non-parametric approach, to address the objective. Our analysis shows that breastfeeding practice, economic status, antenatal care of mother and women's decision-making autonomy are negatively associated with malnutrition among tribal children. We identify maternal malnutrition and urban concentration of household as the two risk factors for child malnutrition. The identified associated factors may be used for designing and targeting preventive programmes for malnourished tribal children. © The Author [2014]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Non-parametric Estimation approach in statistical investigation of nuclear spectra

    CERN Document Server

    Jafarizadeh, M A; Sabri, H; Maleki, B Rashidian

    2011-01-01

    In this paper, Kernel Density Estimation (KDE) as a non-parametric estimation method is used to investigate statistical properties of nuclear spectra. The deviation to regular or chaotic dynamics, is exhibited by closer distances to Poisson or Wigner limits respectively which evaluated by Kullback-Leibler Divergence (KLD) measure. Spectral statistics of different sequences prepared by nuclei corresponds to three dynamical symmetry limits of Interaction Boson Model(IBM), oblate and prolate nuclei and also the pairing effect on nuclear level statistics are analyzed (with pure experimental data). KD-based estimated density function, confirm previous predictions with minimum uncertainty (evaluated with Integrate Absolute Error (IAE)) in compare to Maximum Likelihood (ML)-based method. Also, the increasing of regularity degrees of spectra due to pairing effect is reveal.

  15. Non-parametric method for separating domestic hot water heating spikes and space heating

    DEFF Research Database (Denmark)

    Bacher, Peder; de Saint-Aubain, Philip Anton; Christiansen, Lasse Engbo;

    2016-01-01

    In this paper a method for separating spikes from a noisy data series, where the data change and evolve over time, is presented. The method is applied on measurements of the total heat load for a single family house. It relies on the fact that the domestic hot water heating is a process generating...... short-lived spikes in the time series, while the space heating changes in slower patterns during the day dependent on the climate and user behavior. The challenge is to separate the domestic hot water heating spikes from the space heating without affecting the natural noise in the space heating...... measurements. The assumption behind the developed method is that the space heating can be estimated by a non-parametric kernel smoother, such that every value significantly above this kernel smoother estimate is identified as a domestic hot water heating spike. First, it is showed how a basic kernel smoothing...

  16. LICORS: Light Cone Reconstruction of States for Non-parametric Forecasting of Spatio-Temporal Systems

    CERN Document Server

    Goerg, Georg M

    2012-01-01

    We present a new, non-parametric forecasting method for data where continuous values are observed discretely in space and time. Our method, "light-cone reconstruction of states" (LICORS), uses physical principles to identify predictive states which are local properties of the system, both in space and time. LICORS discovers the number of predictive states and their predictive distributions automatically, and consistently, under mild assumptions on the data source. We provide an algorithm to implement our method, along with a cross-validation scheme to pick control settings. Simulations show that CV-tuned LICORS outperforms standard methods in forecasting challenging spatio-temporal dynamics. Our work provides applied researchers with a new, highly automatic method to analyze and forecast spatio-temporal data.

  17. Non-parametric frequency analysis of extreme values for integrated disaster management considering probable maximum events

    Science.gov (United States)

    Takara, K. T.

    2015-12-01

    This paper describes a non-parametric frequency analysis method for hydrological extreme-value samples with a size larger than 100, verifying the estimation accuracy with a computer intensive statistics (CIS) resampling such as the bootstrap. Probable maximum values are also incorporated into the analysis for extreme events larger than a design level of flood control. Traditional parametric frequency analysis methods of extreme values include the following steps: Step 1: Collecting and checking extreme-value data; Step 2: Enumerating probability distributions that would be fitted well to the data; Step 3: Parameter estimation; Step 4: Testing goodness of fit; Step 5: Checking the variability of quantile (T-year event) estimates by the jackknife resampling method; and Step_6: Selection of the best distribution (final model). The non-parametric method (NPM) proposed here can skip Steps 2, 3, 4 and 6. Comparing traditional parameter methods (PM) with the NPM, this paper shows that PM often underestimates 100-year quantiles for annual maximum rainfall samples with records of more than 100 years. Overestimation examples are also demonstrated. The bootstrap resampling can do bias correction for the NPM and can also give the estimation accuracy as the bootstrap standard error. This NPM has advantages to avoid various difficulties in above-mentioned steps in the traditional PM. Probable maximum events are also incorporated into the NPM as an upper bound of the hydrological variable. Probable maximum precipitation (PMP) and probable maximum flood (PMF) can be a new parameter value combined with the NPM. An idea how to incorporate these values into frequency analysis is proposed for better management of disasters that exceed the design level. The idea stimulates more integrated approach by geoscientists and statisticians as well as encourages practitioners to consider the worst cases of disasters in their disaster management planning and practices.

  18. Non-parametric PSF estimation from celestial transit solar images using blind deconvolution

    Science.gov (United States)

    González, Adriana; Delouille, Véronique; Jacques, Laurent

    2016-01-01

    Context: Characterization of instrumental effects in astronomical imaging is important in order to extract accurate physical information from the observations. The measured image in a real optical instrument is usually represented by the convolution of an ideal image with a Point Spread Function (PSF). Additionally, the image acquisition process is also contaminated by other sources of noise (read-out, photon-counting). The problem of estimating both the PSF and a denoised image is called blind deconvolution and is ill-posed. Aims: We propose a blind deconvolution scheme that relies on image regularization. Contrarily to most methods presented in the literature, our method does not assume a parametric model of the PSF and can thus be applied to any telescope. Methods: Our scheme uses a wavelet analysis prior model on the image and weak assumptions on the PSF. We use observations from a celestial transit, where the occulting body can be assumed to be a black disk. These constraints allow us to retain meaningful solutions for the filter and the image, eliminating trivial, translated, and interchanged solutions. Under an additive Gaussian noise assumption, they also enforce noise canceling and avoid reconstruction artifacts by promoting the whiteness of the residual between the blurred observations and the cleaned data. Results: Our method is applied to synthetic and experimental data. The PSF is estimated for the SECCHI/EUVI instrument using the 2007 Lunar transit, and for SDO/AIA using the 2012 Venus transit. Results show that the proposed non-parametric blind deconvolution method is able to estimate the core of the PSF with a similar quality to parametric methods proposed in the literature. We also show that, if these parametric estimations are incorporated in the acquisition model, the resulting PSF outperforms both the parametric and non-parametric methods.

  19. Non-parametric PSF estimation from celestial transit solar images using blind deconvolution

    Directory of Open Access Journals (Sweden)

    González Adriana

    2016-01-01

    Full Text Available Context: Characterization of instrumental effects in astronomical imaging is important in order to extract accurate physical information from the observations. The measured image in a real optical instrument is usually represented by the convolution of an ideal image with a Point Spread Function (PSF. Additionally, the image acquisition process is also contaminated by other sources of noise (read-out, photon-counting. The problem of estimating both the PSF and a denoised image is called blind deconvolution and is ill-posed. Aims: We propose a blind deconvolution scheme that relies on image regularization. Contrarily to most methods presented in the literature, our method does not assume a parametric model of the PSF and can thus be applied to any telescope. Methods: Our scheme uses a wavelet analysis prior model on the image and weak assumptions on the PSF. We use observations from a celestial transit, where the occulting body can be assumed to be a black disk. These constraints allow us to retain meaningful solutions for the filter and the image, eliminating trivial, translated, and interchanged solutions. Under an additive Gaussian noise assumption, they also enforce noise canceling and avoid reconstruction artifacts by promoting the whiteness of the residual between the blurred observations and the cleaned data. Results: Our method is applied to synthetic and experimental data. The PSF is estimated for the SECCHI/EUVI instrument using the 2007 Lunar transit, and for SDO/AIA using the 2012 Venus transit. Results show that the proposed non-parametric blind deconvolution method is able to estimate the core of the PSF with a similar quality to parametric methods proposed in the literature. We also show that, if these parametric estimations are incorporated in the acquisition model, the resulting PSF outperforms both the parametric and non-parametric methods.

  20. A Non-parametric Approach to Measuring the $k^{-}\\pi^{+}$ Amplitudes in $D^{+} \\to K^{-}K^{+}\\pi{+}$ Decay

    CERN Document Server

    Link, J M; Alimonti, G; Anjos, J C; Arena, V; Barberis, S; Bediaga, I; Benussi, L; Bianco, S; Boca, G; Bonomi, G; Boschini, M; Butler, J N; Carrillo, S; Casimiro, E; Castromonte, C; Cawlfield, C; Cerutti, A; Cheung, H W K; Chiodini, G; Cho, K; Chung, Y S; Cinquini, L; Cuautle, E; Cumalat, J P; D'Angelo, P; Davenport, T F; De Miranda, J M; Di Corato, M; Dini, P; Dos Reis, A C; Edera, L; Engh, D; Erba, S; Fabbri, F L; Frisullo, V; Gaines, I; Garbincius, P H; Gardner, R; Garren, L A; Gianini, G; Gottschalk, E; Göbel, C; Handler, T; Hernández, H; Hosack, M; Inzani, P; Johns, W E; Kang, J S; Kasper, P H; Kim, D Y; Ko, B R; Kreymer, A E; Kryemadhi, A; Kutschke, R; Kwak, J W; Lee, K B; Leveraro, F; Liguori, G; Lopes-Pegna, D; Luiggi, E; López, A M; Machado, A A; Magnin, J; Malvezzi, S; Massafferri, A; Menasce, D; Merlo, M M; Mezzadri, M; Mitchell, R; Moroni, L; Méndez, H; Nehring, M; O'Reilly, B; Otalora, J; Pantea, D; Paris, A; Park, H; Pedrini, D; Pepe, I M; Polycarpo, E; Pontoglio, C; Prelz, F; Quinones, J; Rahimi, A; Ramírez, J E; Ratti, S P; Reyes, M; Riccardi, C; Rovere, M; Sala, S; Segoni, I; Sheaff, M; Sheldon, P D; Stenson, K; Sánchez-Hernández, A; Uribe, C; Vaandering, E W; Vitulo, P; Vázquez, F; Wang, M; Webster, M; Wilson, J R; Wiss, J; Yager, P M; Zallo, A; Zhang, Y

    2007-01-01

    Using a large sample of \\dpkkpi{} decays collected by the FOCUS photoproduction experiment at Fermilab, we present the first non-parametric analysis of the \\kpi{} amplitudes in \\dpkkpi{} decay. The technique is similar to the technique used for our non-parametric measurements of the \\krzmndk{} form factors. Although these results are in rough agreement with those of E687, we observe a wider S-wave contribution for the \\ksw{} contribution than the standard, PDG \\cite{pdg} Breit-Wigner parameterization. We have some weaker evidence for the existence of a new, D-wave component at low values of the $K^- \\pi^+$ mass.

  1. The impact of image-guided radiation therapy on the dose distribution in prostate cancer using deformable registration

    Science.gov (United States)

    Schaly, Bryan

    Dosimetric uncertainties due to variable anatomy and beam setup variability pose a significant limitation in modern precision radiotherapy. These uncertainties may lead to discrepancies between the planned and actual dose distribution delivered to the patient. This may have an adverse impact on the treatment outcome in terms of recurrent tumour growth and/or causing complications in normal tissues. This work investigates the hypothesis that image-guided radiation therapy is needed to reduce the detrimental effects of changes in anatomy on the delivered dose distribution in cancer patients. To test this hypothesis, a deformable model is developed to enable the quantification of dose differences due to patient repositioning and variable anatomy. The deformable model is based on contour-driven thin-plate splines to track the position of tissue elements within the patient. This is combined with recalculation of the treatment plan using frequent computed tomography (CT) image data acquired at different times during treatment. It is demonstrated using a clinical prostate case that dose differences in the rectum and bladder are significant (˜25%) after a multiple fraction treatment. The deformable model is validated using phantom and clinical prostate CT data. A mathematical phantom is used to demonstrate that the accuracy in tracking the dose delivered to a tissue element is 3--4% in high dose gradient regions. Ten prostate cancer patients with radio-opaque markers implanted in the prostate and seminal vesicles are used to demonstrate that the deformable model is accurate (˜2.5 mm) to within the intra-observer contouring variability. The impact of correcting for setup uncertainty and inter-fraction tumour motion is explored by comparing treatment scenarios that would employ current image guidance technology to conventional treatment (i.e., alignment to external markers). This work demonstrates that geographic tumour miss is remedied using image-guided treatment and day

  2. WE-AB-BRA-09: Sensitivity of Plan Re-Optimization to Errors in Deformable Image Registration in Online Adaptive Image-Guided Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    McClain, B; Olsen, J; Green, O; Yang, D; Santanam, L; Olsen, L; Zhao, T; Rodriguez, V; Wooten, H; Mutic, S; Kashani, R [Washington University School of Medicine, St. Louis, Missouri (United States); Victoria, J; Dempsey, J [ViewRay Incorporated, Oakwood Village, OH (United States)

    2015-06-15

    Purpose: Online adaptive therapy (ART) relies on auto-contouring using deformable image registration (DIR). DIR’s inherent uncertainties require user intervention and manual edits while the patient is on the table. We investigated the dosimetric impact of DIR errors on the quality of re-optimized plans, and used the findings to establish regions for focusing manual edits to where DIR errors can Result in clinically relevant dose differences. Methods: Our clinical implementation of online adaptive MR-IGRT involves using DIR to transfer contours from CT to daily MR, followed by a physicians’ edits. The plan is then re-optimized to meet the organs at risk (OARs) constraints. Re-optimized abdomen and pelvis plans generated based on physician edited OARs were selected as the baseline for evaluation. Plans were then re-optimized on auto-deformed contours with manual edits limited to pre-defined uniform rings (0 to 5cm) around the PTV. A 0cm ring indicates that the auto-deformed OARs were used without editing. The magnitude of the variations caused by the non-deterministic optimizer was quantified by repeat re-optimizations on the same geometry to determine the mean and standard deviation (STD). For each re-optimized plan, various volumetric parameters for the PTV, the OARs were extracted along with DVH and isodose evaluation. A plan was deemed acceptable if the variation from the baseline plan was within one STD. Results: Initial results show that for abdomen and pancreas cases, a minimum of 5cm margin around the PTV is required for contour corrections, while for pelvic and liver cases a 2–3 cm margin is sufficient. Conclusion: Focusing manual contour edits to regions of dosimetric relevance can reduce contouring time in the online ART process while maintaining a clinically comparable plan. Future work will further refine the contouring region by evaluating the path along the beams, dose gradients near the target and OAR dose metrics.

  3. WE-AB-BRA-08: Results of a Multi-Institutional Study for the Evaluation of Deformable Image Registration Algorithms for Structure Delineation Via Computational Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Loi, G; Fusella, M [University Hospital “Maggiore della Carita”, Novara (Italy); Fiandra, C [University of Torino, Turin (Italy); Lanzi, E [G. Mazzini Hospital, Teramo (Italy); Rosica, A [Regina Elena National Cancer Institute, Rome (Italy); Strigari, L [Centro Oncologico Fiorentino, Florence (Italy); Orlandini, L [A.O. Ordine Mauriziano di Torino, Turin (Italy); Gino, E [Istituto Oncologico Veneto IOV, Padova (Italy); Roggio, A [Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola (Italy); Marcocci, F [ARNAS Civico - Di Cristina - Benfratelli, Palermo (Italy); Iacovello, G; Miceli, R [Tor Vergata University General Hospital, Rome (Italy)

    2015-06-15

    Purpose: To investigate the accuracy of various algorithms for deformable image registration (DIR), to propagate regions of interest (ROIs) in computational phantoms based on patient images using different commercial systems. This work is part of an Italian multi-institutional study to test on common datasets the accuracy, reproducibility and safety of DIR applications in Adaptive Radiotherapy. Methods: Eleven institutions with three available commercial solutions provided data to assess the agreement of DIR-propagated ROIs with automatically drown ROIs considered as ground-truth for the comparison. The DIR algorithms were tested on real patient data from three different anatomical districts: head and neck, thorax and pelvis. For every dataset two specific Deformation Vector Fields (DVFs) provided by ImSimQA software were applied to the reference data set. Three different commercial software were used in this study: RayStation, Velocity and Mirada. The DIR-mapped ROIs were then compared with the reference ROIs using the Jaccard Conformity Index (JCI). Results: More than 600 DIR-mapped ROIs were analyzed. Putting together all JCI data of all institutions for the first DVF, the mean JCI was 0.87 ± 0.7 (1 SD) while for the second DVF JCI was 0.8 ± 0.13 (1 SD). Several considerations on different structures are available from collected data: the standard deviation among different institutions on specific structure raise as the larger is the applied DVF. The higher value is 10% for bladder. Conclusion: Although the complexity of deformation of human body is very difficult to model, this work illustrates some clinical scenarios with well-known DVFs provided by specific software. CI parameter gives the inter-user variability and may put in evidence the need of improving the working protocol in order to reduce the inter-institution JCI variability.

  4. SU-E-J-115: Correlation of Displacement Vector Fields Calculated by Deformable Image Registration Algorithms with Motion Parameters of CT Images with Well-Defined Targets and Controlled-Motion

    Energy Technology Data Exchange (ETDEWEB)

    Jaskowiak, J; Ahmad, S; Ali, I [University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Alsbou, N [Ohio Northern University, Ada, OH (United States)

    2015-06-15

    Purpose: To investigate correlation of displacement vector fields (DVF) calculated by deformable image registration algorithms with motion parameters in helical axial and cone-beam CT images with motion artifacts. Methods: A mobile thorax phantom with well-known targets with different sizes that were made from water-equivalent material and inserted in foam to simulate lung lesions. The thorax phantom was imaged with helical, axial and cone-beam CT. The phantom was moved with a cyclic motion with different motion amplitudes and frequencies along the superior-inferior direction. Different deformable image registration algorithms including demons, fast demons, Horn-Shunck and iterative-optical-flow from the DIRART software were used to deform CT images for the phantom with different motion patterns. The CT images of the mobile phantom were deformed to CT images of the stationary phantom. Results: The values of displacement vectors calculated by deformable image registration algorithm correlated strongly with motion amplitude where large displacement vectors were calculated for CT images with large motion amplitudes. For example, the maximal displacement vectors were nearly equal to the motion amplitudes (5mm, 10mm or 20mm) at interfaces between the mobile targets lung tissue, while the minimal displacement vectors were nearly equal to negative the motion amplitudes. The maximal and minimal displacement vectors matched with edges of the blurred targets along the Z-axis (motion-direction), while DVF’s were small in the other directions. This indicates that the blurred edges by phantom motion were shifted largely to match with the actual target edge. These shifts were nearly equal to the motion amplitude. Conclusions: The DVF from deformable-image registration algorithms correlated well with motion amplitude of well-defined mobile targets. This can be used to extract motion parameters such as amplitude. However, as motion amplitudes increased, image artifacts increased

  5. TU-F-12A-03: Using 18F-FDG-PET-CT and Deformable Registration During Head-And-Neck Cancer (HNC) Intensity Modulated Radiotherapy (IMRT) to Predict Treatment Response

    Energy Technology Data Exchange (ETDEWEB)

    Vergalasova, I; Mowery, Y; Yoo, D; Brizel, D; Das, S [Duke University Medical Center, Durham, NC (United States)

    2014-06-15

    Purpose: To evaluate the effect of deformable vs. rigid registration of pre-treatment 18F-FDG-PET-CT to intra-treatment 18F-FDG-PET-CT on different standardized uptake value (SUV) parameters and investigate which parameters correlate best with post-treatment response in patients undergoing IMRT for HNC. Methods: Pre-treatment and intra-treatment PET-CT (after 20Gy) scans were acquired, in addition to a 12 week post-treatment PET-CT to assess treatment response. Primary and lymph node gross tumor volumes (GTV-PRI and GTV-LN) were contoured on the pre-treatment CT. These contours were then mapped to intra-treatment PET images via rigid and deformable registration. Absolute changes from pre- to intra-treatment scans for rigid and deformable registration were extracted for the following parameters: SUV-MAX, SUV-MEAN, SUV-20%, SUV-40%, and SUV-60% (SUV-X% is the minimum SUV to the highest-intensity X% volume). Results: Thirty-eight patients were evaluated, with 27 available for classification as complete or incomplete response (CR/ICR). The pre-treatment average tumor volumes for the patients were 24.05cm{sup 3} for GTV-PRI and 23.4cm{sup 3} for GTV-LN. For GTV-PRI, there was no statistically significant difference between rigid vs. deformable registration across all ΔSUV parameters. For GTV-LN contours, all parameters were significantly different except for ΔSUV-MAX. For deformably-registered GTV-PRI, changes in the following metrics were significantly different for CR vs. ICR: SUV-MEAN(p=0.003), SUV-20%(p=0.02), SUV-40%(p=0.02), and SUV-60%(p=0.008). The following cutoff values separated CR from ICR with high sensitivity and specificity: ΔSUV-MEAN=1.49, ΔSUV-20%=2.39, ΔSUV-40%=1.80 and ΔSUV-60%=1.31. Corresponding areas under the Receiver Operating Characteristics curve were 0.90, 0.81, 0.81, and 0.85, respectively. Conclusion: Rigidly and deformably registered contours yielded statistically similar SUV parameters for GTV-PRI, but not GTV-LN. This implies that

  6. Posterior contraction rate for non-parametric Bayesian estimation of the dispersion coefficient of a stochastic differential equation

    NARCIS (Netherlands)

    Gugushvili, S.; Spreij, P.

    2016-01-01

    We consider the problem of non-parametric estimation of the deterministic dispersion coefficient of a linear stochastic differential equation based on discrete time observations on its solution. We take a Bayesian approach to the problem and under suitable regularity assumptions derive the posteror

  7. Further Empirical Results on Parametric Versus Non-Parametric IRT Modeling of Likert-Type Personality Data

    Science.gov (United States)

    Maydeu-Olivares, Albert

    2005-01-01

    Chernyshenko, Stark, Chan, Drasgow, and Williams (2001) investigated the fit of Samejima's logistic graded model and Levine's non-parametric MFS model to the scales of two personality questionnaires and found that the graded model did not fit well. We attribute the poor fit of the graded model to small amounts of multidimensionality present in…

  8. SU-E-J-103: Propagation of Rectum and Bladder Contours for Tandem and Ring (T&R) HDR Treatment Using Deformable Image Registration

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Y; Chao, M; Sheu, R; Dumane, V; Gupta, V; Lo, Y [Mount Sinai Medical Center, New York, NY (United States)

    2015-06-15

    Purpose: To investigate the feasibility of using DIR to propagate the manually contoured rectum and bladder from the 1st insertion to the new CT images on subsequent insertions and evaluate the segmentation performance. Methods: Ten cervical cancer patients, who were treated by T&R brachytherapy in 3–4 insertions, were retrospectively collected. In each insertion, rectum and bladder were manually delineated on the planning CT by a physicist and verified by a radiation oncologist. Using VelocityAI (Velocity Medical Solutions, Atlanta, GA), a rigid registration was firstly employed to match the bony structures between the first insertion and each of the following insertions, then a multi-pass B-spine DIR was carried out to further map the sub volume that encompasses rectum and bladder. The resultant deformation fields propagated contours, and dice similarity coefficient (DSC) was used to quantitatively evaluate the agreement between the propagated contours and the manually-delineated organs. For the 3rd insertion, we also evaluated if the segmentation performance could be improved by propagating the contours from the most recent insertion, i.e., the 2nd insertion. Results: On average, the contour propagation took about 1 minute. The average and standard deviation of DSC over all insertions and patients was 0.67±0.10 (range: 0.44–0.81) for rectum, and 0.78±0.07 (range: 0.63–0.87) for bladder. For the 3rd insertion, propagating contours from the 2nd insertion could improve the segmentation performance in terms of DSC from 0.63±0.10 to 0.72±0.08 for rectum, and from 0.77±0.07 to 0.79±0.06 for bladder. A Wilcoxon signed rank test indicated that the improvement was statistically significant for rectum (p = 0.004). Conclusion: The preliminary results demonstrate that deformable image registration could efficiently and accurately propagate rectum and bladder contours between CT images in different T&R brachytherapy fractions. We are incorporating the propagated

  9. Structuring feature space: a non-parametric method for volumetric transfer function generation.

    Science.gov (United States)

    Maciejewski, Ross; Woo, Insoo; Chen, Wei; Ebert, David S

    2009-01-01

    The use of multi-dimensional transfer functions for direct volume rendering has been shown to be an effective means of extracting materials and their boundaries for both scalar and multivariate data. The most common multi-dimensional transfer function consists of a two-dimensional (2D) histogram with axes representing a subset of the feature space (e.g., value vs. value gradient magnitude), with each entry in the 2D histogram being the number of voxels at a given feature space pair. Users then assign color and opacity to the voxel distributions within the given feature space through the use of interactive widgets (e.g., box, circular, triangular selection). Unfortunately, such tools lead users through a trial-and-error approach as they assess which data values within the feature space map to a given area of interest within the volumetric space. In this work, we propose the addition of non-parametric clustering within the transfer function feature space in order to extract patterns and guide transfer function generation. We apply a non-parametric kernel density estimation to group voxels of similar features within the 2D histogram. These groups are then binned and colored based on their estimated density, and the user may interactively grow and shrink the binned regions to explore feature boundaries and extract regions of interest. We also extend this scheme to temporal volumetric data in which time steps of 2D histograms are composited into a histogram volume. A three-dimensional (3D) density estimation is then applied, and users can explore regions within the feature space across time without adjusting the transfer function at each time step. Our work enables users to effectively explore the structures found within a feature space of the volume and provide a context in which the user can understand how these structures relate to their volumetric data. We provide tools for enhanced exploration and manipulation of the transfer function, and we show that the initial

  10. Quantification of global myocardial function by cine MRI deformable registration-based analysis: Comparison with MR feature tracking and speckle-tracking echocardiography

    Energy Technology Data Exchange (ETDEWEB)

    Lamacie, Mariana M. [University Health Network, Department of Medical Imaging, Toronto, Ontario (Canada); Thavendiranathan, Paaladinesh [University Health Network, Department of Medical Imaging, Toronto, Ontario (Canada); University of Toronto, Department of Medicine, Division of Cardiology, Toronto, Ontario (Canada); Hanneman, Kate [University Health Network, Department of Medical Imaging, Toronto, Ontario (Canada); University of Toronto, Department of Medical Imaging, Toronto, Ontario (Canada); Greiser, Andreas [Siemens Healthcare, Erlangen (Germany); Jolly, Marie-Pierre [Medical Imaging Technologies, Siemens Healthcare, Princeton, NJ (United States); Ward, Richard [University of Toronto, Department of Medicine, Division of Cardiology, Toronto, Ontario (Canada); Wintersperger, Bernd J. [University Health Network, Department of Medical Imaging, Toronto, Ontario (Canada); University of Toronto, Department of Medical Imaging, Toronto, Ontario (Canada); Toronto General Hospital, Department of Medical Imaging, Toronto, Ontario (Canada)

    2017-04-15

    To evaluate deformable registration algorithms (DRA)-based quantification of cine steady-state free-precession (SSFP) for myocardial strain assessment in comparison with feature-tracking (FT) and speckle-tracking echocardiography (STE). Data sets of 28 patients/10 volunteers, undergoing same-day 1.5T cardiac MRI and echocardiography were included. LV global longitudinal (GLS), circumferential (GCS) and radial (GRS) peak systolic strain were assessed on cine SSFP data using commercially available FT algorithms and prototype DRA-based algorithms. STE was applied as standard of reference for accuracy, precision and intra-/interobserver reproducibility testing. DRA showed narrower limits of agreement compared to STE for GLS (-4.0 [-0.9,-7.9]) and GCS (-5.1 [1.1,-11.2]) than FT (3.2 [11.2,-4.9]; 3.8 [13.9,-6.3], respectively). While both DRA and FT demonstrated significant differences to STE for GLS and GCS (all p<0.001), only DRA correlated significantly to STE for GLS (r=0.47; p=0.006). However, good correlation was demonstrated between MR techniques (GLS:r=0.74; GCS:r=0.80; GRS:r=0.45, all p<0.05). Comparing DRA with FT, intra-/interobserver coefficient of variance was lower (1.6 %/3.2 % vs. 6.4 %/5.7 %) and intraclass-correlation coefficient was higher. DRA GCS and GRS data presented zero variability for repeated observations. DRA is an automated method that allows myocardial deformation assessment with superior reproducibility compared to FT. (orig.)

  11. SU-E-J-102: Performance Variations Among Clinically Available Deformable Image Registration Tools in Adaptive Radiotherapy: How Should We Evaluate and Interpret the Result?

    Energy Technology Data Exchange (ETDEWEB)

    Nie, K [Rutgers Cancer Institute of New Jersey, New Brunswick, NJ (United States); Pouliot, J; Smith, E; Chuang, C [University of California, San Francisco, San Francisco, CA (United States)

    2015-06-15

    Purpose: To evaluate the performance variations in commercial deformable image registration (DIR) tools for adaptive radiation therapy. Methods: Representative plans from three different anatomical sites, prostate, head-and-neck (HN) and cranial spinal irradiation (CSI) with L-spine boost, were included. Computerized deformed CT images were first generated using virtual DIR QA software (ImSimQA) for each case. The corresponding transformations served as the “reference”. Three commercial software packages MIMVista v5.5 and MIMMaestro v6.0, VelocityAI v2.6.2, and OnQ rts v2.1.15 were tested. The warped contours and doses were compared with the “reference” and among each other. Results: The performance in transferring contours was comparable among all three tools with an average DICE coefficient of 0.81 for all the organs. However, the performance of dose warping accuracy appeared to rely on the evaluation end points. Volume based DVH comparisons were not sensitive enough to illustrate all the detailed variations while isodose assessment on a slice-by-slice basis could be tedious. Point-based evaluation was over-sensitive by having up to 30% hot/cold-spot differences. If adapting the 3mm/3% gamma analysis into the evaluation of dose warping, all three algorithms presented a reasonable level of equivalency. One algorithm had over 10% of the voxels not meeting this criterion for the HN case while another showed disagreement for the CSI case. Conclusion: Overall, our results demonstrated that evaluation based only on the performance of contour transformation could not guarantee the accuracy in dose warping. However, the performance of dose warping accuracy relied on the evaluation methodologies. Nevertheless, as more DIR tools are available for clinical use, the performance could vary at certain degrees. A standard quality assurance criterion with clinical meaning should be established for DIR QA, similar to the gamma index concept, in the near future.

  12. Trend Analysis of Golestan's Rivers Discharges Using Parametric and Non-parametric Methods

    Science.gov (United States)

    Mosaedi, Abolfazl; Kouhestani, Nasrin

    2010-05-01

    One of the major problems in human life is climate changes and its problems. Climate changes will cause changes in rivers discharges. The aim of this research is to investigate the trend analysis of seasonal and yearly rivers discharges of Golestan province (Iran). In this research four trend analysis method including, conjunction point, linear regression, Wald-Wolfowitz and Mann-Kendall, for analyzing of river discharges in seasonal and annual periods in significant level of 95% and 99% were applied. First, daily discharge data of 12 hydrometrics stations with a length of 42 years (1965-2007) were selected, after some common statistical tests such as, homogeneity test (by applying G-B and M-W tests), the four mentioned trends analysis tests were applied. Results show that in all stations, for summer data time series, there are decreasing trends with a significant level of 99% according to Mann-Kendall (M-K) test. For autumn time series data, all four methods have similar results. For other periods, the results of these four tests were more or less similar together. While, for some stations the results of tests were different. Keywords: Trend Analysis, Discharge, Non-parametric methods, Wald-Wolfowitz, The Mann-Kendall test, Golestan Province.

  13. Non-parametric determination of H and He IS fluxes from cosmic-ray data

    CERN Document Server

    Ghelfi, A; Derome, L; Maurin, D

    2015-01-01

    Top-of-atmosphere (TOA) cosmic-ray (CR) fluxes from satellites and balloon-borne experiments are snapshots of the solar activity imprinted on the interstellar (IS) fluxes. Given a series of snapshots, the unknown IS flux shape and the level of modulation (for each snapshot) can be recovered. We wish (i) to provide the most accurate determination of the IS H and He fluxes from TOA data only, (ii) to obtain the associated modulation levels (and uncertainties) fully accounting for the correlations with the IS flux uncertainties, and (iii) to inspect whether the minimal Force-Field approximation is sufficient to explain all the data at hand. Using H and He TOA measurements, including the recent high precision AMS, BESS-Polar and PAMELA data, we perform a non-parametric fit of the IS fluxes $J^{\\rm IS}_{\\rm H,~He}$ and modulation level $\\phi_i$ for each data taking period. We rely on a Markov Chain Monte Carlo (MCMC) engine to extract the PDF and correlations (hence the credible intervals) of the sought parameters...

  14. THE DARK MATTER PROFILE OF THE MILKY WAY: A NON-PARAMETRIC RECONSTRUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Pato, Miguel [The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Iocco, Fabio [ICTP South American Institute for Fundamental Research, and Instituto de Física Teórica—Universidade Estadual Paulista (UNESP), Rua Dr. Bento Teobaldo Ferraz 271, 01140-070 São Paulo, SP (Brazil)

    2015-04-10

    We present the results of a new, non-parametric method to reconstruct the Galactic dark matter profile directly from observations. Using the latest kinematic data to track the total gravitational potential and the observed distribution of stars and gas to set the baryonic component, we infer the dark matter contribution to the circular velocity across the Galaxy. The radial derivative of this dynamical contribution is then estimated to extract the dark matter profile. The innovative feature of our approach is that it makes no assumption on the functional form or shape of the profile, thus allowing for a clean determination with no theoretical bias. We illustrate the power of the method by constraining the spherical dark matter profile between 2.5 and 25 kpc away from the Galactic center. The results show that the proposed method, free of widely used assumptions, can already be applied to pinpoint the dark matter distribution in the Milky Way with competitive accuracy, and paves the way for future developments.

  15. Comparison of non-parametric methods for ungrouping coarsely aggregated data

    Directory of Open Access Journals (Sweden)

    Silvia Rizzi

    2016-05-01

    Full Text Available Abstract Background Histograms are a common tool to estimate densities non-parametrically. They are extensively encountered in health sciences to summarize data in a compact format. Examples are age-specific distributions of death or onset of diseases grouped in 5-years age classes with an open-ended age group at the highest ages. When histogram intervals are too coarse, information is lost and comparison between histograms with different boundaries is arduous. In these cases it is useful to estimate detailed distributions from grouped data. Methods From an extensive literature search we identify five methods for ungrouping count data. We compare the performance of two spline interpolation methods, two kernel density estimators and a penalized composite link model first via a simulation study and then with empirical data obtained from the NORDCAN Database. All methods analyzed can be used to estimate differently shaped distributions; can handle unequal interval length; and allow stretches of 0 counts. Results The methods show similar performance when the grouping scheme is relatively narrow, i.e. 5-years age classes. With coarser age intervals, i.e. in the presence of open-ended age groups, the penalized composite link model performs the best. Conclusion We give an overview and test different methods to estimate detailed distributions from grouped count data. Health researchers can benefit from these versatile methods, which are ready for use in the statistical software R. We recommend using the penalized composite link model when data are grouped in wide age classes.

  16. Non-parametric method for measuring gas inhomogeneities from X-ray observations of galaxy clusters

    CERN Document Server

    Morandi, Andrea; Cui, Wei

    2013-01-01

    We present a non-parametric method to measure inhomogeneities in the intracluster medium (ICM) from X-ray observations of galaxy clusters. Analyzing mock Chandra X-ray observations of simulated clusters, we show that our new method enables the accurate recovery of the 3D gas density and gas clumping factor profiles out to large radii of galaxy clusters. We then apply this method to Chandra X-ray observations of Abell 1835 and present the first determination of the gas clumping factor from the X-ray cluster data. We find that the gas clumping factor in Abell 1835 increases with radius and reaches ~2-3 at r=R_{200}. This is in good agreement with the predictions of hydrodynamical simulations, but it is significantly below the values inferred from recent Suzaku observations. We further show that the radially increasing gas clumping factor causes flattening of the derived entropy profile of the ICM and affects physical interpretation of the cluster gas structure, especially at the large cluster-centric radii. Our...

  17. Non-parametric three-way mixed ANOVA with aligned rank tests.

    Science.gov (United States)

    Oliver-Rodríguez, Juan C; Wang, X T

    2015-02-01

    Research problems that require a non-parametric analysis of multifactor designs with repeated measures arise in the behavioural sciences. There is, however, a lack of available procedures in commonly used statistical packages. In the present study, a generalization of the aligned rank test for the two-way interaction is proposed for the analysis of the typical sources of variation in a three-way analysis of variance (ANOVA) with repeated measures. It can be implemented in the usual statistical packages. Its statistical properties are tested by using simulation methods with two sample sizes (n = 30 and n = 10) and three distributions (normal, exponential and double exponential). Results indicate substantial increases in power for non-normal distributions in comparison with the usual parametric tests. Similar levels of Type I error for both parametric and aligned rank ANOVA were obtained with non-normal distributions and large sample sizes. Degrees-of-freedom adjustments for Type I error control in small samples are proposed. The procedure is applied to a case study with 30 participants per group where it detects gender differences in linguistic abilities in blind children not shown previously by other methods.

  18. Modeling the World Health Organization Disability Assessment Schedule II using non-parametric item response models.

    Science.gov (United States)

    Galindo-Garre, Francisca; Hidalgo, María Dolores; Guilera, Georgina; Pino, Oscar; Rojo, J Emilio; Gómez-Benito, Juana

    2015-03-01

    The World Health Organization Disability Assessment Schedule II (WHO-DAS II) is a multidimensional instrument developed for measuring disability. It comprises six domains (getting around, self-care, getting along with others, life activities and participation in society). The main purpose of this paper is the evaluation of the psychometric properties for each domain of the WHO-DAS II with parametric and non-parametric Item Response Theory (IRT) models. A secondary objective is to assess whether the WHO-DAS II items within each domain form a hierarchy of invariantly ordered severity indicators of disability. A sample of 352 patients with a schizophrenia spectrum disorder is used in this study. The 36 items WHO-DAS II was administered during the consultation. Partial Credit and Mokken scale models are used to study the psychometric properties of the questionnaire. The psychometric properties of the WHO-DAS II scale are satisfactory for all the domains. However, we identify a few items that do not discriminate satisfactorily between different levels of disability and cannot be invariantly ordered in the scale. In conclusion the WHO-DAS II can be used to assess overall disability in patients with schizophrenia, but some domains are too general to assess functionality in these patients because they contain items that are not applicable to this pathology.

  19. Non-parametric reconstruction of the galaxy-lens in PG1115+080

    CERN Document Server

    Saha, P; Saha, Prasenjit; Williams, Liliya L. R.

    1997-01-01

    We describe a new, non-parametric, method for reconstructing lensing mass distributions in multiple-image systems, and apply it to PG1115, for which time delays have recently been measured. It turns out that the image positions and the ratio of time delays between different pairs of images constrain the mass distribution in a linear fashion. Since observational errors on image positions and time delay ratios are constantly improving, we use these data as a rigid constraint in our modelling. In addition, we require the projected mass distributions to be inversion-symmetric and to have inward-pointing density gradients. With these realistic yet non-restrictive conditions it is very easy to produce mass distributions that fit the data precisely. We then present models, for $H_0=42$, 63 and 84 \\kmsmpc, that in each case minimize mass-to-light variations while strictly obeying the lensing constraints. (Only a very rough light distribution is available at present.) All three values of $H_0$ are consistent with the ...

  20. Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat.

    Science.gov (United States)

    Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne

    2012-12-01

    In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models.

  1. Decision making in coal mine planning using a non-parametric technique of indicator kriging

    Energy Technology Data Exchange (ETDEWEB)

    Mamurekli, D. [Hacettepe University, Ankara (Turkey). Mining Engineering Dept.

    1997-03-01

    In countries where low calorific value coal reserves are abundant and oil reserves are short or none, the requirement of energy production is mainly supported by coal-fired power stations. Consequently, planning to mine the low calorific value coal deposits gains much importance considering the technical and environmental restrictions. Such a mine in Kangal Town of Sivas City is the one that delivers run of mine coal directly to the power station built in the region. In case the calorific value and the ash content of the extracted coal are lower and higher than the required limits, 1300 kcal/kg and 21%, respectively, the power station may apply penalties to the coal producing company. Since the delivery is continuous and made by relying on in situ determination of pre-estimated values these assessments without defining any confidence levels are inevitably subject to inaccuracy. Thus, the company should be aware of uncertainties in making decisions and avoid conceivable risks. In this study, valuable information is provided in the form of conditional distribution to be used during planning process. It maps the indicator variogram corresponding to calorific value of 1300 kcal/kg and the ash content of 21% estimating the conditional probabilities that the true ash contents are less and calorific values are higher than the critical limits by the application of non-parametric technique, indicator kriging. In addition, it outlines the areas that are most uncertain for decision making. 4 refs., 8 figs., 3 tabs.

  2. Patterns of trunk muscle activation during walking and pole walking using statistical non-parametric mapping.

    Science.gov (United States)

    Zoffoli, Luca; Ditroilo, Massimiliano; Federici, Ario; Lucertini, Francesco

    2017-09-09

    This study used surface electromyography (EMG) to investigate the regions and patterns of activity of the external oblique (EO), erector spinae longissimus (ES), multifidus (MU) and rectus abdominis (RA) muscles during walking (W) and pole walking (PW) performed at different speeds and grades. Eighteen healthy adults undertook W and PW on a motorized treadmill at 60% and 100% of their walk-to-run preferred transition speed at 0% and 7% treadmill grade. The Teager-Kaiser energy operator was employed to improve the muscle activity detection and statistical non-parametric mapping based on paired t-tests was used to highlight statistical differences in the EMG patterns corresponding to different trials. The activation amplitude of all trunk muscles increased at high speed, while no differences were recorded at 7% treadmill grade. ES and MU appeared to support the upper body at the heel-strike during both W and PW, with the latter resulting in elevated recruitment of EO and RA as required to control for the longer stride and the push of the pole. Accordingly, the greater activity of the abdominal muscles and the comparable intervention of the spine extensors supports the use of poles by walkers seeking higher engagement of the lower trunk region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Non-parametric Deprojection of Surface Brightness Profiles of Galaxies in Generalised Geometries

    CERN Document Server

    Chakrabarty, Dalia

    2009-01-01

    We present a new Bayesian non-parametric deprojection algorithm DOPING (Deprojection of Observed Photometry using and INverse Gambit), that is designed to extract 3-D luminosity density distributions $\\rho$ from observed surface brightness maps $I$, in generalised geometries, while taking into account changes in intrinsic shape with radius, using a penalised likelihood approach and an MCMC optimiser. We provide the most likely solution to the integral equation that represents deprojection of the measured $I$ to $\\rho$. In order to keep the solution modular, we choose to express $\\rho$ as a function of the line-of-sight (LOS) coordinate $z$. We calculate the extent of the system along the ${\\bf z}$-axis, for a given point on the image that lies within an identified isophotal annulus. The extent along the LOS is binned and density is held a constant over each such $z$-bin. The code begins with a seed density and at the beginning of an iterative step, the trial $\\rho$ is updated. Comparison of the projection of ...

  4. Spectral decompositions of multiple time series: a Bayesian non-parametric approach.

    Science.gov (United States)

    Macaro, Christian; Prado, Raquel

    2014-01-01

    We consider spectral decompositions of multiple time series that arise in studies where the interest lies in assessing the influence of two or more factors. We write the spectral density of each time series as a sum of the spectral densities associated to the different levels of the factors. We then use Whittle's approximation to the likelihood function and follow a Bayesian non-parametric approach to obtain posterior inference on the spectral densities based on Bernstein-Dirichlet prior distributions. The prior is strategically important as it carries identifiability conditions for the models and allows us to quantify our degree of confidence in such conditions. A Markov chain Monte Carlo (MCMC) algorithm for posterior inference within this class of frequency-domain models is presented.We illustrate the approach by analyzing simulated and real data via spectral one-way and two-way models. In particular, we present an analysis of functional magnetic resonance imaging (fMRI) brain responses measured in individuals who participated in a designed experiment to study pain perception in humans.

  5. A Non-parametric Approach to the Overall Estimate of Cognitive Load Using NIRS Time Series.

    Science.gov (United States)

    Keshmiri, Soheil; Sumioka, Hidenobu; Yamazaki, Ryuji; Ishiguro, Hiroshi

    2017-01-01

    We present a non-parametric approach to prediction of the n-back n ∈ {1, 2} task as a proxy measure of mental workload using Near Infrared Spectroscopy (NIRS) data. In particular, we focus on measuring the mental workload through hemodynamic responses in the brain induced by these tasks, thereby realizing the potential that they can offer for their detection in real world scenarios (e.g., difficulty of a conversation). Our approach takes advantage of intrinsic linearity that is inherent in the components of the NIRS time series to adopt a one-step regression strategy. We demonstrate the correctness of our approach through its mathematical analysis. Furthermore, we study the performance of our model in an inter-subject setting in contrast with state-of-the-art techniques in the literature to show a significant improvement on prediction of these tasks (82.50 and 86.40% for female and male participants, respectively). Moreover, our empirical analysis suggest a gender difference effect on the performance of the classifiers (with male data exhibiting a higher non-linearity) along with the left-lateralized activation in both genders with higher specificity in females.

  6. A Non-Parametric Delphi Approach to Foster Innovation Policy Debate in Spain

    Directory of Open Access Journals (Sweden)

    Juan Carlos Salazar-Elena

    2016-05-01

    Full Text Available The aim of this paper is to identify some changes needed in Spain’s innovation policy to fill the gap between its innovation results and those of other European countries in lieu of sustainable leadership. To do this we apply the Delphi methodology to experts from academia, business, and government. To overcome the shortcomings of traditional descriptive methods, we develop an inferential analysis by following a non-parametric bootstrap method which enables us to identify important changes that should be implemented. Particularly interesting is the support found for improving the interconnections among the relevant agents of the innovation system (instead of focusing exclusively in the provision of knowledge and technological inputs through R and D activities, or the support found for “soft” policy instruments aimed at providing a homogeneous framework to assess the innovation capabilities of firms (e.g., for funding purposes. Attention to potential innovators among small and medium enterprises (SMEs and traditional industries is particularly encouraged by experts.

  7. COLOR IMAGE RETRIEVAL BASED ON NON-PARAMETRIC STATISTICAL TESTS OF HYPOTHESIS

    Directory of Open Access Journals (Sweden)

    R. Shekhar

    2016-09-01

    Full Text Available A novel method for color image retrieval, based on statistical non-parametric tests such as twosample Wald Test for equality of variance and Man-Whitney U test, is proposed in this paper. The proposed method tests the deviation, i.e. distance in terms of variance between the query and target images; if the images pass the test, then it is proceeded to test the spectrum of energy, i.e. distance between the mean values of the two images; otherwise, the test is dropped. If the query and target images pass the tests then it is inferred that the two images belong to the same class, i.e. both the images are same; otherwise, it is assumed that the images belong to different classes, i.e. both images are different. The proposed method is robust for scaling and rotation, since it adjusts itself and treats either the query image or the target image is the sample of other.

  8. Non-Parametric Evolutionary Algorithm for Estimating Root Zone Soil Moisture

    Science.gov (United States)

    Mohanty, B.; Shin, Y.; Ines, A. M.

    2013-12-01

    Prediction of root zone soil moisture is critical for water resources management. In this study, we explored a non-parametric evolutionary algorithm for estimating root zone soil moisture from a time series of spatially-distributed rainfall across multiple weather locations under two different hydro-climatic regions. A new genetic algorithm-based hidden Markov model (HMMGA) was developed to estimate long-term root zone soil moisture dynamics at different soil depths. Also, we analyzed rainfall occurrence probabilities and dry/wet spell lengths reproduced by this approach. The HMMGA was used to estimate the optimal state sequences (weather states) based on the precipitation history. Historical root zone soil moisture statistics were then determined based on the weather state conditions. To test the new approach, we selected two different soil moisture fields, Oklahoma (130 km x 130 km) and Illinois (300 km x 500 km), during 1995 to 2009 and 1994 to 2010, respectively. We found that the newly developed framework performed well in predicting root zone soil moisture dynamics at both the spatial scales. Also, the reproduced rainfall occurrence probabilities and dry/wet spell lengths matched well with the observations at the spatio-temporal scales. Since the proposed algorithm requires only precipitation and historical soil moisture data from existing, established weather stations, it can serve an attractive alternative for predicting root zone soil moisture in the future using climate change scenarios and root zone soil moisture history.

  9. An artificial neural network architecture for non-parametric visual odometry in wireless capsule endoscopy

    Science.gov (United States)

    Dimas, George; Iakovidis, Dimitris K.; Karargyris, Alexandros; Ciuti, Gastone; Koulaouzidis, Anastasios

    2017-09-01

    Wireless capsule endoscopy is a non-invasive screening procedure of the gastrointestinal (GI) tract performed with an ingestible capsule endoscope (CE) of the size of a large vitamin pill. Such endoscopes are equipped with a usually low-frame-rate color camera which enables the visualization of the GI lumen and the detection of pathologies. The localization of the commercially available CEs is performed in the 3D abdominal space using radio-frequency (RF) triangulation from external sensor arrays, in combination with transit time estimation. State-of-the-art approaches, such as magnetic localization, which have been experimentally proved more accurate than the RF approach, are still at an early stage. Recently, we have demonstrated that CE localization is feasible using solely visual cues and geometric models. However, such approaches depend on camera parameters, many of which are unknown. In this paper the authors propose a novel non-parametric visual odometry (VO) approach to CE localization based on a feed-forward neural network architecture. The effectiveness of this approach in comparison to state-of-the-art geometric VO approaches is validated using a robotic-assisted in vitro experimental setup.

  10. Non-parametric mass reconstruction of A1689 from strong lensing data with SLAP

    CERN Document Server

    Diego-Rodriguez, J M; Protopapas, P; Tegmark, M; Benítez, N; Broadhurst, T J

    2004-01-01

    We present the mass distribution in the central area of the cluster A1689 by fitting over 100 multiply lensed images with the non-parametric Strong Lensing Analysis Package (SLAP, Diego et al. 2004). The surface mass distribution is obtained in a robust way finding a total mass of 0.25E15 M_sun/h within a 70'' circle radius from the central peak. Our reconstructed density profile fits well an NFW profile with small perturbations due to substructure and is compatible with the more model dependent analysis of Broadhurst et al. (2004a) based on the same data. Our estimated mass does not rely on any prior information about the distribution of dark matter in the cluster. The peak of the mass distribution falls very close to the central cD and there is substructure near the center suggesting that the cluster is not fully relaxed. We also examine the effect on the recovered mass when we include the uncertainties in the redshift of the sources and in the original shape of the sources. Using simulations designed to mi...

  11. A Non-parametric Approach to Constrain the Transfer Function in Reverberation Mapping

    Science.gov (United States)

    Li, Yan-Rong; Wang, Jian-Min; Bai, Jin-Ming

    2016-11-01

    Broad emission lines of active galactic nuclei stem from a spatially extended region (broad-line region, BLR) that is composed of discrete clouds and photoionized by the central ionizing continuum. The temporal behaviors of these emission lines are blurred echoes of continuum variations (i.e., reverberation mapping, RM) and directly reflect the structures and kinematic information of BLRs through the so-called transfer function (also known as the velocity-delay map). Based on the previous works of Rybicki and Press and Zu et al., we develop an extended, non-parametric approach to determine the transfer function for RM data, in which the transfer function is expressed as a sum of a family of relatively displaced Gaussian response functions. Therefore, arbitrary shapes of transfer functions associated with complicated BLR geometry can be seamlessly included, enabling us to relax the presumption of a specified transfer function frequently adopted in previous studies and to let it be determined by observation data. We formulate our approach in a previously well-established framework that incorporates the statistical modeling of continuum variations as a damped random walk process and takes into account long-term secular variations which are irrelevant to RM signals. The application to RM data shows the fidelity of our approach.

  12. A Non-parametric Approach to Constrain the Transfer Function in Reverberation Mapping

    CERN Document Server

    Li, Yan-Rong; Bai, Jin-Ming

    2016-01-01

    Broad emission lines of active galactic nuclei stem from a spatially extended region (broad-line region; BLR) that are composed of discrete clouds and photoionized by the central ionizing continuum. The temporal behaviors of these emission lines are blurred echoes of the continuum variations (i.e., reverberation mapping; RM) and directly reflect structures and kinematics information of BLRs through the so-called transfer function (also known as velocity-delay map). Based on the previous works of Rybicki & Press (1992) and Zu et al. (2011), we develop an extended, non-parametric approach to determine the transfer function for RM data, in which the transfer function is expressed as a sum of a family of relatively-displaced Gaussian response functions. As such, arbitrary shapes of transfer functions associated with complicated BLR geometry can be seamlessly included, enabling us to relax the presumption of a specified transfer function frequently adopted in previous studies and to let it be determined by obs...

  13. Quantification of global myocardial function by cine MRI deformable registration-based analysis: Comparison with MR feature tracking and speckle-tracking echocardiography.

    Science.gov (United States)

    Lamacie, Mariana M; Thavendiranathan, Paaladinesh; Hanneman, Kate; Greiser, Andreas; Jolly, Marie-Pierre; Ward, Richard; Wintersperger, Bernd J

    2017-04-01

    To evaluate deformable registration algorithms (DRA)-based quantification of cine steady-state free-precession (SSFP) for myocardial strain assessment in comparison with feature-tracking (FT) and speckle-tracking echocardiography (STE). Data sets of 28 patients/10 volunteers, undergoing same-day 1.5T cardiac MRI and echocardiography were included. LV global longitudinal (GLS), circumferential (GCS) and radial (GRS) peak systolic strain were assessed on cine SSFP data using commercially available FT algorithms and prototype DRA-based algorithms. STE was applied as standard of reference for accuracy, precision and intra-/interobserver reproducibility testing. DRA showed narrower limits of agreement compared to STE for GLS (-4.0 [-0.9,-7.9]) and GCS (-5.1 [1.1,-11.2]) than FT (3.2 [11.2,-4.9]; 3.8 [13.9,-6.3], respectively). While both DRA and FT demonstrated significant differences to STE for GLS and GCS (all ptracking (FT) methods. • Cine MR DRA and FT analysis demonstrate differences to speckle-tracking echocardiography • DRA demonstrated better correlation with STE than FT for MR-derived global strain data.

  14. SU-F-19A-09: Propagation of Organ at Risk Contours for High Dose Rate Brachytherapy Planning for Cervical Cancer: A Deformable Image Registration Comparison

    Energy Technology Data Exchange (ETDEWEB)

    Bellon, M; Kumarasiri, A; Kim, J; Shah, M; Elshaikh, M; Chetty, I [Henry Ford Health System, Detroit, MI (United States)

    2014-06-15

    Purpose: To compare the performance of two deformable image registration (DIR) algorithms for contour propagation and to evaluate the accuracy of DIR for use with high dose rate (HDR) brachytherapy planning for cervical cancer. Methods: Five patients undergoing HDR ring and tandem brachytherapy were included in this retrospective study. All patients underwent CT simulation and replanning prior to each fraction (3–5 fractions total). CT-to-CT DIR was performed using two commercially available software platforms: SmartAdapt, Varian Medical Systems (Demons) and Velocity AI, Velocity Medical Solutions (B-spline). Fraction 1 contours were deformed and propagated to each subsequent image set and compared to contours manually drawn by an expert clinician. Dice similarity coefficients (DSC), defined as, DSC(A,B)=2(AandB)/(A+B) were calculated to quantify spatial overlap between manual (A) and deformed (B) contours. Additionally, clinician-assigned visual scores were used to describe and compare the performance of each DIR method and ultimately evaluate which was more clinically acceptable. Scoring was based on a 1–5 scale—with 1 meaning, “clinically acceptable with no contour changes” and 5 meaning, “clinically unacceptable”. Results: Statistically significant differences were not observed between the two DIR algorithms. The average DSC for the bladder, rectum and rectosigmoid were 0.82±0.08, 0.67±0.13 and 0.48±0.18, respectively. The poorest contour agreement was observed for the rectosigmoid due to limited soft tissue contrast and drastic anatomical changes, i.e., organ shape/filling. Two clinicians gave nearly equivalent average scores of 2.75±0.91 for SmartAdapt and 2.75±0.94 for Velocity AI—indicating that for a majority of the cases, more than one of the three contours evaluated required major modifications. Conclusion: Limitations of both DIR algorithms resulted in inaccuracies in contour propagation in the pelvic region, thus hampering the

  15. SU-E-J-94: Geometric and Dosimetric Evaluation of Deformation Image Registration Algorithms Using Virtual Phantoms Generated From Patients with Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Z; Greskovich, J; Xia, P [The Cleveland Clinic, Cleveland, OH (United States); Bzdusek, K [Philips, Fitchburg, WI (United States)

    2015-06-15

    Purpose: To generate virtual phantoms with clinically relevant deformation and use them to objectively evaluate geometric and dosimetric uncertainties of deformable image registration (DIR) algorithms. Methods: Ten lung cancer patients undergoing adaptive 3DCRT planning were selected. For each patient, a pair of planning CT (pCT) and replanning CT (rCT) were used as the basis for virtual phantom generation. Manually adjusted meshes were created for selected ROIs (e.g. PTV, lungs, spinal cord, esophagus, and heart) on pCT and rCT. The mesh vertices were input into a thin-plate spline algorithm to generate a reference displacement vector field (DVF). The reference DVF was used to deform pCT to generate a simulated replanning CT (srCT) that was closely matched to rCT. Three DIR algorithms (Demons, B-Spline, and intensity-based) were applied to these ten virtual phantoms. The images, ROIs, and doses were mapped from pCT to srCT using the DVFs computed by these three DIRs and compared to those mapped using the reference DVF. Results: The average Dice coefficients for selected ROIs were from 0.85 to 0.96 for Demons, from 0.86 to 0.97 for intensity-based, and from 0.76 to 0.95 for B-Spline. The average Hausdorff distances for selected ROIs were from 2.2 to 5.4 mm for Demons, from 2.3 to 6.8 mm for intensity-based, and from 2.4 to 11.4 mm for B-Spline. The average absolute dose errors for selected ROIs were from 0.2 to 0.6 Gy for Demons, from 0.1 to 0.5 Gy for intensity-based, and from 0.5 to 1.5 Gy for B-Spline. Conclusion: Virtual phantoms were modeled after patients with lung cancer and were clinically relevant for adaptive radiotherapy treatment replanning. Virtual phantoms with known DVFs serve as references and can provide a fair comparison when evaluating different DIRs. Demons and intensity-based DIRs were shown to have smaller geometric and dosimetric uncertainties than B-Spline. Z Shen: None; K Bzdusek: an employee of Philips Healthcare; J Greskovich: None; P Xia

  16. Parametric and Non-Parametric Vibration-Based Structural Identification Under Earthquake Excitation

    Science.gov (United States)

    Pentaris, Fragkiskos P.; Fouskitakis, George N.

    2014-05-01

    The problem of modal identification in civil structures is of crucial importance, and thus has been receiving increasing attention in recent years. Vibration-based methods are quite promising as they are capable of identifying the structure's global characteristics, they are relatively easy to implement and they tend to be time effective and less expensive than most alternatives [1]. This paper focuses on the off-line structural/modal identification of civil (concrete) structures subjected to low-level earthquake excitations, under which, they remain within their linear operating regime. Earthquakes and their details are recorded and provided by the seismological network of Crete [2], which 'monitors' the broad region of south Hellenic arc, an active seismic region which functions as a natural laboratory for earthquake engineering of this kind. A sufficient number of seismic events are analyzed in order to reveal the modal characteristics of the structures under study, that consist of the two concrete buildings of the School of Applied Sciences, Technological Education Institute of Crete, located in Chania, Crete, Hellas. Both buildings are equipped with high-sensitivity and accuracy seismographs - providing acceleration measurements - established at the basement (structure's foundation) presently considered as the ground's acceleration (excitation) and at all levels (ground floor, 1st floor, 2nd floor and terrace). Further details regarding the instrumentation setup and data acquisition may be found in [3]. The present study invokes stochastic, both non-parametric (frequency-based) and parametric methods for structural/modal identification (natural frequencies and/or damping ratios). Non-parametric methods include Welch-based spectrum and Frequency response Function (FrF) estimation, while parametric methods, include AutoRegressive (AR), AutoRegressive with eXogeneous input (ARX) and Autoregressive Moving-Average with eXogeneous input (ARMAX) models[4, 5

  17. Revisiting the Distance Duality Relation using a non-parametric regression method

    Science.gov (United States)

    Rana, Akshay; Jain, Deepak; Mahajan, Shobhit; Mukherjee, Amitabha

    2016-07-01

    The interdependence of luminosity distance, DL and angular diameter distance, DA given by the distance duality relation (DDR) is very significant in observational cosmology. It is very closely tied with the temperature-redshift relation of Cosmic Microwave Background (CMB) radiation. Any deviation from η(z)≡ DL/DA (1+z)2 =1 indicates a possible emergence of new physics. Our aim in this work is to check the consistency of these relations using a non-parametric regression method namely, LOESS with SIMEX. This technique avoids dependency on the cosmological model and works with a minimal set of assumptions. Further, to analyze the efficiency of the methodology, we simulate a dataset of 020 points of η (z) data based on a phenomenological model η(z)= (1+z)epsilon. The error on the simulated data points is obtained by using the temperature of CMB radiation at various redshifts. For testing the distance duality relation, we use the JLA SNe Ia data for luminosity distances, while the angular diameter distances are obtained from radio galaxies datasets. Since the DDR is linked with CMB temperature-redshift relation, therefore we also use the CMB temperature data to reconstruct η (z). It is important to note that with CMB data, we are able to study the evolution of DDR upto a very high redshift z = 2.418. In this analysis, we find no evidence of deviation from η=1 within a 1σ region in the entire redshift range used in this analysis (0 < z <= 2.418).

  18. A non-parametric peak calling algorithm for DamID-Seq.

    Directory of Open Access Journals (Sweden)

    Renhua Li

    Full Text Available Protein-DNA interactions play a significant role in gene regulation and expression. In order to identify transcription factor binding sites (TFBS of double sex (DSX-an important transcription factor in sex determination, we applied the DNA adenine methylation identification (DamID technology to the fat body tissue of Drosophila, followed by deep sequencing (DamID-Seq. One feature of DamID-Seq data is that induced adenine methylation signals are not assured to be symmetrically distributed at TFBS, which renders the existing peak calling algorithms for ChIP-Seq, including SPP and MACS, inappropriate for DamID-Seq data. This challenged us to develop a new algorithm for peak calling. A challenge in peaking calling based on sequence data is estimating the averaged behavior of background signals. We applied a bootstrap resampling method to short sequence reads in the control (Dam only. After data quality check and mapping reads to a reference genome, the peaking calling procedure compromises the following steps: 1 reads resampling; 2 reads scaling (normalization and computing signal-to-noise fold changes; 3 filtering; 4 Calling peaks based on a statistically significant threshold. This is a non-parametric method for peak calling (NPPC. We also used irreproducible discovery rate (IDR analysis, as well as ChIP-Seq data to compare the peaks called by the NPPC. We identified approximately 6,000 peaks for DSX, which point to 1,225 genes related to the fat body tissue difference between female and male Drosophila. Statistical evidence from IDR analysis indicated that these peaks are reproducible across biological replicates. In addition, these peaks are comparable to those identified by use of ChIP-Seq on S2 cells, in terms of peak number, location, and peaks width.

  19. A non-parametric peak calling algorithm for DamID-Seq.

    Science.gov (United States)

    Li, Renhua; Hempel, Leonie U; Jiang, Tingbo

    2015-01-01

    Protein-DNA interactions play a significant role in gene regulation and expression. In order to identify transcription factor binding sites (TFBS) of double sex (DSX)-an important transcription factor in sex determination, we applied the DNA adenine methylation identification (DamID) technology to the fat body tissue of Drosophila, followed by deep sequencing (DamID-Seq). One feature of DamID-Seq data is that induced adenine methylation signals are not assured to be symmetrically distributed at TFBS, which renders the existing peak calling algorithms for ChIP-Seq, including SPP and MACS, inappropriate for DamID-Seq data. This challenged us to develop a new algorithm for peak calling. A challenge in peaking calling based on sequence data is estimating the averaged behavior of background signals. We applied a bootstrap resampling method to short sequence reads in the control (Dam only). After data quality check and mapping reads to a reference genome, the peaking calling procedure compromises the following steps: 1) reads resampling; 2) reads scaling (normalization) and computing signal-to-noise fold changes; 3) filtering; 4) Calling peaks based on a statistically significant threshold. This is a non-parametric method for peak calling (NPPC). We also used irreproducible discovery rate (IDR) analysis, as well as ChIP-Seq data to compare the peaks called by the NPPC. We identified approximately 6,000 peaks for DSX, which point to 1,225 genes related to the fat body tissue difference between female and male Drosophila. Statistical evidence from IDR analysis indicated that these peaks are reproducible across biological replicates. In addition, these peaks are comparable to those identified by use of ChIP-Seq on S2 cells, in terms of peak number, location, and peaks width.

  20. Does sunspot numbers cause global temperatures? A reconsideration using non-parametric causality tests

    Science.gov (United States)

    Hassani, Hossein; Huang, Xu; Gupta, Rangan; Ghodsi, Mansi

    2016-10-01

    In a recent paper, Gupta et al., (2015), analyzed whether sunspot numbers cause global temperatures based on monthly data covering the period 1880:1-2013:9. The authors find that standard time domain Granger causality test fails to reject the null hypothesis that sunspot numbers do not cause global temperatures for both full and sub-samples, namely 1880:1-1936:2, ​1936:3-1986:11 and 1986:12-2013:9 (identified based on tests of structural breaks). However, frequency domain causality test detects predictability for the full-sample at short (2-2.6 months) cycle lengths, but not the sub-samples. But since, full-sample causality cannot be relied upon due to structural breaks, Gupta et al., (2015) conclude that the evidence of causality running from sunspot numbers to global temperatures is weak and inconclusive. Given the importance of the issue of global warming, our current paper aims to revisit this issue of whether sunspot numbers cause global temperatures, using the same data set and sub-samples used by Gupta et al., (2015), based on an nonparametric Singular Spectrum Analysis (SSA)-based causality test. Based on this test, we however, show that sunspot numbers have predictive ability for global temperatures for the three sub-samples, over and above the full-sample. Thus, generally speaking, our non-parametric SSA-based causality test outperformed both time domain and frequency domain causality tests and highlighted that sunspot numbers have always been important in predicting global temperatures.

  1. Bayesian Semi- and Non-Parametric Models for Longitudinal Data with Multiple Membership Effects in R

    Directory of Open Access Journals (Sweden)

    Terrance Savitsky

    2014-03-01

    Full Text Available We introduce growcurves for R that performs analysis of repeated measures multiple membership (MM data. This data structure arises in studies under which an intervention is delivered to each subject through the subjects participation in a set of multiple elements that characterize the intervention. In our motivating study design under which subjects receive a group cognitive behavioral therapy (CBT treatment, an element is a group CBT session and each subject attends multiple sessions that, together, comprise the treatment. The sets of elements, or group CBT sessions, attended by subjects will partly overlap with some of those from other subjects to induce a dependence in their responses. The growcurves package offers two alternative sets of hierarchical models: 1. Separate terms are specified for multivariate subject and MM element random effects, where the subject effects are modeled under a Dirichlet process prior to produce a semi-parametric construction; 2. A single term is employed to model joint subject-by-MM effects. A fully non-parametric dependent Dirichlet process formulation allows exploration of differences in subject responses across different MM elements. This model allows for borrowing information among subjects who express similar longitudinal trajectories for flexible estimation. growcurves deploys estimation functions to perform posterior sampling under a suite of prior options. An accompanying set of plot functions allows the user to readily extract by-subject growth curves. The design approach intends to anticipate inferential goals with tools that fully extract information from repeated measures data. Computational efficiency is achieved by performing the sampling for estimation functions using compiled C++ code.

  2. Population pharmacokinetics of nevirapine in Malaysian HIV patients: a non-parametric approach.

    Science.gov (United States)

    Mustafa, Suzana; Yusuf, Wan Nazirah Wan; Woillard, Jean Baptiste; Choon, Tan Soo; Hassan, Norul Badriah

    2016-07-01

    Nevirapine is the first non-nucleoside reverse-transcriptase inhibitor approved and is widely used in combination therapy to treat HIV-1 infection. The pharmacokinetics of nevirapine was extensively studied in various populations with a parametric approach. Hence, this study was aimed to determine population pharmacokinetic parameters in Malaysian HIV-infected patients with a non-parametric approach which allows detection of outliers or non-normal distribution contrary to the parametric approach. Nevirapine population pharmacokinetics was modelled with Pmetrics. A total of 708 observations from 112 patients were included in the model building and validation analysis. Evaluation of the model was based on a visual inspection of observed versus predicted (population and individual) concentrations and plots weighted residual error versus concentrations. Accuracy and robustness of the model were evaluated by visual predictive check (VPC). The median parameters' estimates obtained from the final model were used to predict individual nevirapine plasma area-under-curve (AUC) in the validation dataset. The Bland-Altman plot was used to compare the AUC predicted with trapezoidal AUC. The median nevirapine clearance was of 2.92 L/h, the median rate of absorption was 2.55/h and the volume of distribution was 78.23 L. Nevirapine pharmacokinetics were best described by one-compartmental with first-order absorption model and a lag-time. Weighted residuals for the model selected were homogenously distributed over the concentration and time range. The developed model adequately estimated AUC. In conclusion, a model to describe the pharmacokinetics of nevirapine was developed. The developed model adequately describes nevirapine population pharmacokinetics in HIV-infected patients in Malaysia.

  3. Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework.

    Science.gov (United States)

    Yang, Hai; Wei, Qiang; Zhong, Xue; Yang, Hushan; Li, Bingshan

    2017-02-15

    Comprehensive catalogue of genes that drive tumor initiation and progression in cancer is key to advancing diagnostics, therapeutics and treatment. Given the complexity of cancer, the catalogue is far from complete yet. Increasing evidence shows that driver genes exhibit consistent aberration patterns across multiple-omics in tumors. In this study, we aim to leverage complementary information encoded in each of the omics data to identify novel driver genes through an integrative framework. Specifically, we integrated mutations, gene expression, DNA copy numbers, DNA methylation and protein abundance, all available in The Cancer Genome Atlas (TCGA) and developed iDriver, a non-parametric Bayesian framework based on multivariate statistical modeling to identify driver genes in an unsupervised fashion. iDriver captures the inherent clusters of gene aberrations and constructs the background distribution that is used to assess and calibrate the confidence of driver genes identified through multi-dimensional genomic data. We applied the method to 4 cancer types in TCGA and identified candidate driver genes that are highly enriched with known drivers. (e.g.: P < 3.40 × 10 -36 for breast cancer). We are particularly interested in novel genes and observed multiple lines of supporting evidence. Using systematic evaluation from multiple independent aspects, we identified 45 candidate driver genes that were not previously known across these 4 cancer types. The finding has important implications that integrating additional genomic data with multivariate statistics can help identify cancer drivers and guide the next stage of cancer genomics research. The C ++ source code is freely available at https://medschool.vanderbilt.edu/cgg/ . hai.yang@vanderbilt.edu or bingshan.li@Vanderbilt.Edu. Supplementary data are available at Bioinformatics online.

  4. Assessment of water quality trends in the Minnesota River using non-parametric and parametric methods

    Science.gov (United States)

    Johnson, H.O.; Gupta, S.C.; Vecchia, A.V.; Zvomuya, F.

    2009-01-01

    Excessive loading of sediment and nutrients to rivers is a major problem in many parts of the United States. In this study, we tested the non-parametric Seasonal Kendall (SEAKEN) trend model and the parametric USGS Quality of Water trend program (QWTREND) to quantify trends in water quality of the Minnesota River at Fort Snelling from 1976 to 2003. Both methods indicated decreasing trends in flow-adjusted concentrations of total suspended solids (TSS), total phosphorus (TP), and orthophosphorus (OP) and a generally increasing trend in flow-adjusted nitrate plus nitrite-nitrogen (NO3-N) concentration. The SEAKEN results were strongly influenced by the length of the record as well as extreme years (dry or wet) earlier in the record. The QWTREND results, though influenced somewhat by the same factors, were more stable. The magnitudes of trends between the two methods were somewhat different and appeared to be associated with conceptual differences between the flow-adjustment processes used and with data processing methods. The decreasing trends in TSS, TP, and OP concentrations are likely related to conservation measures implemented in the basin. However, dilution effects from wet climate or additional tile drainage cannot be ruled out. The increasing trend in NO3-N concentrations was likely due to increased drainage in the basin. Since the Minnesota River is the main source of sediments to the Mississippi River, this study also addressed the rapid filling of Lake Pepin on the Mississippi River and found the likely cause to be increased flow due to recent wet climate in the region. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  5. A Non-Parametric Item Response Theory Evaluation of the CAGE Instrument Among Older Adults.

    Science.gov (United States)

    Abdin, Edimansyah; Sagayadevan, Vathsala; Vaingankar, Janhavi Ajit; Picco, Louisa; Chong, Siow Ann; Subramaniam, Mythily

    2017-08-04

    The validity of the CAGE using item response theory (IRT) has not yet been examined in older adult population. This study aims to investigate the psychometric properties of the CAGE using both non-parametric and parametric IRT models, assess whether there is any differential item functioning (DIF) by age, gender and ethnicity and examine the measurement precision at the cut-off scores. We used data from the Well-being of the Singapore Elderly study to conduct Mokken scaling analysis (MSA), dichotomous Rasch and 2-parameter logistic IRT models. The measurement precision at the cut-off scores were evaluated using classification accuracy (CA) and classification consistency (CC). The MSA showed the overall scalability H index was 0.459, indicating a medium performing instrument. All items were found to be homogenous, measuring the same construct and able to discriminate well between respondents with high levels of the construct and the ones with lower levels. The item discrimination ranged from 1.07 to 6.73 while the item difficulty ranged from 0.33 to 2.80. Significant DIF was found for 2-item across ethnic group. More than 90% (CC and CA ranged from 92.5% to 94.3%) of the respondents were consistently and accurately classified by the CAGE cut-off scores of 2 and 3. The current study provides new evidence on the validity of the CAGE from the IRT perspective. This study provides valuable information of each item in the assessment of the overall severity of alcohol problem and the precision of the cut-off scores in older adult population.

  6. APPLICATION OF PARAMETRIC AND NON-PARAMETRIC BENCHMARKING METHODS IN COST EFFICIENCY ANALYSIS OF THE ELECTRICITY DISTRIBUTION SECTOR

    Directory of Open Access Journals (Sweden)

    Andrea Furková

    2007-06-01

    Full Text Available This paper explores the aplication of parametric and non-parametric benchmarking methods in measuring cost efficiency of Slovak and Czech electricity distribution companies. We compare the relative cost efficiency of Slovak and Czech distribution companies using two benchmarking methods: the non-parametric Data Envelopment Analysis (DEA and the Stochastic Frontier Analysis (SFA as the parametric approach. The first part of analysis was based on DEA models. Traditional cross-section CCR and BCC model were modified to cost efficiency estimation. In further analysis we focus on two versions of stochastic frontier cost functioin using panel data: MLE model and GLS model. These models have been applied to an unbalanced panel of 11 (Slovakia 3 and Czech Republic 8 regional electricity distribution utilities over a period from 2000 to 2004. The differences in estimated scores, parameters and ranking of utilities were analyzed. We observed significant differences between parametric methods and DEA approach.

  7. Transit Timing Observations From Kepler: Ii. Confirmation of Two Multiplanet Systems via a Non-Parametric Correlation Analysis

    OpenAIRE

    Ford, Eric B.; Fabrycky, Daniel C.; Steffen, Jason H.; Carter, Joshua A.; Fressin, Francois; Holman, Matthew Jon; Lissauer, Jack J.; Moorhead, Althea V.; Morehead, Robert C.; Ragozzine, Darin; Rowe, Jason F.; Welsh, William F.; Allen, Christopher; Batalha, Natalie M.; Borucki, William J.

    2012-01-01

    We present a new method for confirming transiting planets based on the combination of transit timingn variations (TTVs) and dynamical stability. Correlated TTVs provide evidence that the pair of bodies are in the same physical system. Orbital stability provides upper limits for the masses of the transiting companions that are in the planetary regime. This paper describes a non-parametric technique for quantifying the statistical significance of TTVs based on the correlation of two TTV data se...

  8. Statistic Non-Parametric Methods of Measurement and Interpretation of Existing Statistic Connections within Seaside Hydro Tourism

    OpenAIRE

    MIRELA SECARĂ

    2008-01-01

    Tourism represents an important field of economic and social life in our country, and the main sector of the economy of Constanta County is the balneary touristic capitalization of Romanian seaside. In order to statistically analyze hydro tourism on Romanian seaside, we have applied non-parametric methods of measuring and interpretation of existing statistic connections within seaside hydro tourism. Major objective of this research is represented by hydro tourism re-establishment on Romanian ...

  9. Parametric modeling of DSC-MRI data with stochastic filtration and optimal input design versus non-parametric modeling.

    Science.gov (United States)

    Kalicka, Renata; Pietrenko-Dabrowska, Anna

    2007-03-01

    In the paper MRI measurements are used for assessment of brain tissue perfusion and other features and functions of the brain (cerebral blood flow - CBF, cerebral blood volume - CBV, mean transit time - MTT). Perfusion is an important indicator of tissue viability and functioning as in pathological tissue blood flow, vascular and tissue structure are altered with respect to normal tissue. MRI enables diagnosing diseases at an early stage of their course. The parametric and non-parametric approaches to the identification of MRI models are presented and compared. The non-parametric modeling adopts gamma variate functions. The parametric three-compartmental catenary model, based on the general kinetic model, is also proposed. The parameters of the models are estimated on the basis of experimental data. The goodness of fit of the gamma variate and the three-compartmental models to the data and the accuracy of the parameter estimates are compared. Kalman filtering, smoothing the measurements, was adopted to improve the estimate accuracy of the parametric model. Parametric modeling gives a better fit and better parameter estimates than non-parametric and allows an insight into the functioning of the system. To improve the accuracy optimal experiment design related to the input signal was performed.

  10. Non-parametric kernel density estimation of species sensitivity distributions in developing water quality criteria of metals.

    Science.gov (United States)

    Wang, Ying; Wu, Fengchang; Giesy, John P; Feng, Chenglian; Liu, Yuedan; Qin, Ning; Zhao, Yujie

    2015-09-01

    Due to use of different parametric models for establishing species sensitivity distributions (SSDs), comparison of water quality criteria (WQC) for metals of the same group or period in the periodic table is uncertain and results can be biased. To address this inadequacy, a new probabilistic model, based on non-parametric kernel density estimation was developed and optimal bandwidths and testing methods are proposed. Zinc (Zn), cadmium (Cd), and mercury (Hg) of group IIB of the periodic table are widespread in aquatic environments, mostly at small concentrations, but can exert detrimental effects on aquatic life and human health. With these metals as target compounds, the non-parametric kernel density estimation method and several conventional parametric density estimation methods were used to derive acute WQC of metals for protection of aquatic species in China that were compared and contrasted with WQC for other jurisdictions. HC5 values for protection of different types of species were derived for three metals by use of non-parametric kernel density estimation. The newly developed probabilistic model was superior to conventional parametric density estimations for constructing SSDs and for deriving WQC for these metals. HC5 values for the three metals were inversely proportional to atomic number, which means that the heavier atoms were more potent toxicants. The proposed method provides a novel alternative approach for developing SSDs that could have wide application prospects in deriving WQC and use in assessment of risks to ecosystems.

  11. Deformable image registration based automatic CT-to-CT contour propagation for head and neck adaptive radiotherapy in the routine clinical setting

    Energy Technology Data Exchange (ETDEWEB)

    Kumarasiri, Akila, E-mail: akumara1@hfhs.org; Siddiqui, Farzan; Liu, Chang; Yechieli, Raphael; Shah, Mira; Pradhan, Deepak; Zhong, Hualiang; Chetty, Indrin J.; Kim, Jinkoo [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan 48202 (United States)

    2014-12-15

    Purpose: To evaluate the clinical potential of deformable image registration (DIR)-based automatic propagation of physician-drawn contours from a planning CT to midtreatment CT images for head and neck (H and N) adaptive radiotherapy. Methods: Ten H and N patients, each with a planning CT (CT1) and a subsequent CT (CT2) taken approximately 3–4 week into treatment, were considered retrospectively. Clinically relevant organs and targets were manually delineated by a radiation oncologist on both sets of images. Four commercial DIR algorithms, two B-spline-based and two Demons-based, were used to deform CT1 and the relevant contour sets onto corresponding CT2 images. Agreement of the propagated contours with manually drawn contours on CT2 was visually rated by four radiation oncologists in a scale from 1 to 5, the volume overlap was quantified using Dice coefficients, and a distance analysis was done using center of mass (CoM) displacements and Hausdorff distances (HDs). Performance of these four commercial algorithms was validated using a parameter-optimized Elastix DIR algorithm. Results: All algorithms attained Dice coefficients of >0.85 for organs with clear boundaries and those with volumes >9 cm{sup 3}. Organs with volumes <3 cm{sup 3} and/or those with poorly defined boundaries showed Dice coefficients of ∼0.5–0.6. For the propagation of small organs (<3 cm{sup 3}), the B-spline-based algorithms showed higher mean Dice values (Dice = 0.60) than the Demons-based algorithms (Dice = 0.54). For the gross and planning target volumes, the respective mean Dice coefficients were 0.8 and 0.9. There was no statistically significant difference in the Dice coefficients, CoM, or HD among investigated DIR algorithms. The mean radiation oncologist visual scores of the four algorithms ranged from 3.2 to 3.8, which indicated that the quality of transferred contours was “clinically acceptable with minor modification or major modification in a small number of contours

  12. SU-E-J-106: The Use of Deformable Image Registration with Cone-Beam CT for a Better Evaluation of Cumulative Dose to Organs

    Energy Technology Data Exchange (ETDEWEB)

    Fillion, O; Gingras, L; Archambault, L [Universite Laval, Quebec, Quebec (Canada); Centre de recherche du CHU de Quebec, Quebec, Quebec (Canada); Centre de recherche sur le cancer, Quebec, Quebec (Canada)

    2015-06-15

    Purpose: The knowledge of dose accumulation in the patient tissues in radiotherapy helps in determining the treatment outcomes. This project aims at providing a workflow to map cumulative doses that takes into account interfraction organ motion without the need for manual re-contouring. Methods: Five prostate cancer patients were studied. Each patient had a planning CT (pCT) and 5 to 13 CBCT scans. On each series, a physician contoured the prostate, rectum, bladder, seminal vesicles and the intestine. First, a deformable image registration (DIR) of the pCTs onto the daily CBCTs yielded registered CTs (rCT) . This rCT combined the accurate CT numbers of the pCT with the daily anatomy of the CBCT. Second, the original plans (220 cGy per fraction for 25 fractions) were copied on the rCT for dose re-calculation. Third, the DIR software Elastix was used to find the inverse transform from the rCT to the pCT. This transformation was then applied to the rCT dose grid to map the dose voxels back to their pCT location. Finally, the sum of these deformed dose grids for each patient was applied on the pCT to calculate the actual dose delivered to organs. Results: The discrepancy between the planned D98 and D2 and these indices re-calculated on the rCT, are, on average, of −1 ± 1 cGy and 1 ± 2 cGy per fraction, respectively. For fractions with large anatomical motion, the D98 discrepancy on the re-calculated dose grid mapped onto the pCT can raise to −17 ± 4 cGy. The obtained cumulative dose distributions illustrate the same behavior. Conclusion: This approach allowed the evaluation of cumulative doses to organs with the help of uncontoured daily CBCT scans. With this workflow, the easy evaluation of doses delivered for EBRT treatments could ultimately lead to a better follow-up of prostate cancer patients.

  13. Deformable image registration based automatic CT-to-CT contour propagation for head and neck adaptive radiotherapy in the routine clinical setting.

    Science.gov (United States)

    Kumarasiri, Akila; Siddiqui, Farzan; Liu, Chang; Yechieli, Raphael; Shah, Mira; Pradhan, Deepak; Zhong, Hualiang; Chetty, Indrin J; Kim, Jinkoo

    2014-12-01

    To evaluate the clinical potential of deformable image registration (DIR)-based automatic propagation of physician-drawn contours from a planning CT to midtreatment CT images for head and neck (H&N) adaptive radiotherapy. Ten H&N patients, each with a planning CT (CT1) and a subsequent CT (CT2) taken approximately 3-4 week into treatment, were considered retrospectively. Clinically relevant organs and targets were manually delineated by a radiation oncologist on both sets of images. Four commercial DIR algorithms, two B-spline-based and two Demons-based, were used to deform CT1 and the relevant contour sets onto corresponding CT2 images. Agreement of the propagated contours with manually drawn contours on CT2 was visually rated by four radiation oncologists in a scale from 1 to 5, the volume overlap was quantified using Dice coefficients, and a distance analysis was done using center of mass (CoM) displacements and Hausdorff distances (HDs). Performance of these four commercial algorithms was validated using a parameter-optimized Elastix DIR algorithm. All algorithms attained Dice coefficients of >0.85 for organs with clear boundaries and those with volumes >9 cm(3). Organs with volumes <3 cm(3) and/or those with poorly defined boundaries showed Dice coefficients of ∼ 0.5-0.6. For the propagation of small organs (<3 cm(3)), the B-spline-based algorithms showed higher mean Dice values (Dice = 0.60) than the Demons-based algorithms (Dice = 0.54). For the gross and planning target volumes, the respective mean Dice coefficients were 0.8 and 0.9. There was no statistically significant difference in the Dice coefficients, CoM, or HD among investigated DIR algorithms. The mean radiation oncologist visual scores of the four algorithms ranged from 3.2 to 3.8, which indicated that the quality of transferred contours was "clinically acceptable with minor modification or major modification in a small number of contours." Use of DIR-based contour propagation in the routine

  14. Paired inspiratory/expiratory volumetric CT and deformable image registration for quantitative and qualitative evaluation of airflow limitation in smokers with or without copd.

    Science.gov (United States)

    Nishio, Mizuho; Matsumoto, Sumiaki; Tsubakimoto, Maho; Nishii, Tatsuya; Koyama, Hisanobu; Ohno, Yoshiharu; Sugimura, Kazuro

    2015-03-01

    To evaluate paired inspiratory/expiratory computed tomography (CT; iCT/eCT) and deformable image registration for quantitative and qualitative assessment of airflow limitation in smokers. Paired iCT/eCT images acquired from 35 smokers (30 men and 5 women) were coregistered and subtraction images (air trapping CT images [aCT]) generated. To evaluate emphysema quantitatively, the percentage of low-attenuation volume (LAV%) on iCT was calculated at -950 HU, as were mean and kurtosis on aCT for quantitative assessment of air trapping. Parametric response maps of emphysema (PRMe) and of functional small airways disease (PRMs) were also obtained. For qualitative evaluation of emphysema, low-attenuation areas on iCT were scored by consensus of two radiologists using Goddard classification. To assess air trapping qualitatively, the degree of air trapping on aCT was scored. For each quantitative and qualitative index, the Spearman rank correlation coefficient for forced expiratory flow in 1 second was calculated, and differences in correlation coefficients were statistically tested. The correlation coefficients for the indices were as follows: mean on aCT, 0.800; kurtosis on aCT, -0.726; LAV%, -0.472; PRMe, -0.570; PRMs, -0.565; addition of PRMe and PRMs, -0.653; emphysema score, -0.502; air trapping score, -0.793. The indices showing significant differences were as follows: mean on aCT and addition of PRMe and PRMs (P = 1.43 × 10(-8)); air trapping score and emphysema score (P = .0169). Air trapping images yielded more accurate quantitative and qualitative evaluation of airflow limitation than did LAV%, PRMe, PRMs, and Goddard classification. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  15. Distribution pattern of left-ventricular myocardial strain analyzed by a cine MRI based deformation registration algorithm in healthy Chinese volunteers

    Science.gov (United States)

    Liu, Hong; Yang, Dan; Wan, Ke; Luo, Yong; Sun, Jia-Yu; Zhang, Tian-Jing; Li, Wei-Hao; Greiser, Andreas; Jolly, Marie-Pierre; Zhang, Qing; Chen, Yu-Cheng

    2017-01-01

    The cine magnetic resonance imaging based technique feature tracking-cardiac magnetic resonance (FT-CMR) is emerging as a novel, simple and robust method to evaluate myocardial strain. We investigated the distribution characteristics of left-ventricular myocardial strain using a novel cine MRI based deformation registration algorithm (DRA) in a cohort of healthy Chinese subjects. A total of 130 healthy Chinese subjects were enrolled. Three components of orthogonal strain (radial, circumferential, longitudinal) of the left ventricle were analyzed using DRA on steady-state free precession cine sequence images. A distinct transmural circumferential strain gradient was observed in the left ventricle that showed universal increment from the epicardial to endocardial myocardial wall (epiwall: −15.4 ± 1.9%; midwall: −18.8 ± 2.0%; endowall: −22.3 ± 2.3%, P < 0.001). Longitudinal strain showed a similar trend from epicardial to endocardial layers (epiwall: −16.0 ± 2.9%; midwall: −15.6 ± 2.7%; endowall: −14.8 ± 2.4%, P < 0.001), but radial strain had a very heterogeneous distribution and variation. In the longitudinal direction from the base to the apex of the left ventricle, there was a trend of decreasing peak systolic longitudinal strain (basal: −23.3 ± 4.6%; mid: −13.7 ± 7.3%; apical: −13.2 ± 5.5%; P < 0.001). In conclusion, there are distinct distribution patterns of circumferential and longitudinal strain within the left ventricle in healthy Chinese subjects. These distribution patterns of strain may provide unique profiles for further study in different types of myocardial disease. PMID:28349989

  16. Distribution pattern of left-ventricular myocardial strain analyzed by a cine MRI based deformation registration algorithm in healthy Chinese volunteers.

    Science.gov (United States)

    Liu, Hong; Yang, Dan; Wan, Ke; Luo, Yong; Sun, Jia-Yu; Zhang, Tian-Jing; Li, Wei-Hao; Greiser, Andreas; Jolly, Marie-Pierre; Zhang, Qing; Chen, Yu-Cheng

    2017-03-28

    The cine magnetic resonance imaging based technique feature tracking-cardiac magnetic resonance (FT-CMR) is emerging as a novel, simple and robust method to evaluate myocardial strain. We investigated the distribution characteristics of left-ventricular myocardial strain using a novel cine MRI based deformation registration algorithm (DRA) in a cohort of healthy Chinese subjects. A total of 130 healthy Chinese subjects were enrolled. Three components of orthogonal strain (radial, circumferential, longitudinal) of the left ventricle were analyzed using DRA on steady-state free precession cine sequence images. A distinct transmural circumferential strain gradient was observed in the left ventricle that showed universal increment from the epicardial to endocardial myocardial wall (epiwall: -15.4 ± 1.9%; midwall: -18.8 ± 2.0%; endowall: -22.3 ± 2.3%, P < 0.001). Longitudinal strain showed a similar trend from epicardial to endocardial layers (epiwall: -16.0 ± 2.9%; midwall: -15.6 ± 2.7%; endowall: -14.8 ± 2.4%, P < 0.001), but radial strain had a very heterogeneous distribution and variation. In the longitudinal direction from the base to the apex of the left ventricle, there was a trend of decreasing peak systolic longitudinal strain (basal: -23.3 ± 4.6%; mid: -13.7 ± 7.3%; apical: -13.2 ± 5.5%; P < 0.001). In conclusion, there are distinct distribution patterns of circumferential and longitudinal strain within the left ventricle in healthy Chinese subjects. These distribution patterns of strain may provide unique profiles for further study in different types of myocardial disease.

  17. Non-parametric determination of H and He interstellar fluxes from cosmic-ray data

    Science.gov (United States)

    Ghelfi, A.; Barao, F.; Derome, L.; Maurin, D.

    2016-06-01

    Context. Top-of-atmosphere (TOA) cosmic-ray (CR) fluxes from satellites and balloon-borne experiments are snapshots of the solar activity imprinted on the interstellar (IS) fluxes. Given a series of snapshots, the unknown IS flux shape and the level of modulation (for each snapshot) can be recovered. Aims: We wish (i) to provide the most accurate determination of the IS H and He fluxes from TOA data alone; (ii) to obtain the associated modulation levels (and uncertainties) while fully accounting for the correlations with the IS flux uncertainties; and (iii) to inspect whether the minimal force-field approximation is sufficient to explain all the data at hand. Methods: Using H and He TOA measurements, including the recent high-precision AMS, BESS-Polar, and PAMELA data, we performed a non-parametric fit of the IS fluxes JISH,~He and modulation level φi for each data-taking period. We relied on a Markov chain Monte Carlo (MCMC) engine to extract the probability density function and correlations (hence the credible intervals) of the sought parameters. Results: Although H and He are the most abundant and best measured CR species, several datasets had to be excluded from the analysis because of inconsistencies with other measurements. From the subset of data passing our consistency cut, we provide ready-to-use best-fit and credible intervals for the H and He IS fluxes from MeV/n to PeV/n energy (with a relative precision in the range [ 2-10% ] at 1σ). Given the strong correlation between JIS and φi parameters, the uncertainties on JIS translate into Δφ ≈ ± 30 MV (at 1σ) for all experiments. We also find that the presence of 3He in He data biases φ towards higher φ values by ~30 MV. The force-field approximation, despite its limitation, gives an excellent (χ2/d.o.f. = 1.02) description of the recent high-precision TOA H and He fluxes. Conclusions: The analysis must be extended to different charge species and more realistic modulation models. It would benefit

  18. Evaluation of world's largest social welfare scheme: An assessment using non-parametric approach.

    Science.gov (United States)

    Singh, Sanjeet

    2016-08-01

    Mahatma Gandhi National Rural Employment Guarantee Act (MGNREGA) is the world's largest social welfare scheme in India for the poverty alleviation through rural employment generation. This paper aims to evaluate and rank the performance of the states in India under MGNREGA scheme. A non-parametric approach, Data Envelopment Analysis (DEA) is used to calculate the overall technical, pure technical, and scale efficiencies of states in India. The sample data is drawn from the annual official reports published by the Ministry of Rural Development, Government of India. Based on three selected input parameters (expenditure indicators) and five output parameters (employment generation indicators), I apply both input and output oriented DEA models to estimate how well the states utilize their resources and generate outputs during the financial year 2013-14. The relative performance evaluation has been made under the assumption of constant returns and also under variable returns to scale to assess the impact of scale on performance. The results indicate that the main source of inefficiency is both technical and managerial practices adopted. 11 states are overall technically efficient and operate at the optimum scale whereas 18 states are pure technical or managerially efficient. It has been found that for some states it necessary to alter scheme size to perform at par with the best performing states. For inefficient states optimal input and output targets along with the resource savings and output gains are calculated. Analysis shows that if all inefficient states operate at optimal input and output levels, on an average 17.89% of total expenditure and a total amount of $780million could have been saved in a single year. Most of the inefficient states perform poorly when it comes to the participation of women and disadvantaged sections (SC&ST) in the scheme. In order to catch up with the performance of best performing states, inefficient states on an average need to enhance

  19. Validation of two (parametric vs non-parametric) daily weather generators

    Science.gov (United States)

    Dubrovsky, M.; Skalak, P.

    2015-12-01

    As the climate models (GCMs and RCMs) fail to satisfactorily reproduce the real-world surface weather regime, various statistical methods are applied to downscale GCM/RCM outputs into site-specific weather series. The stochastic weather generators are among the most favourite downscaling methods capable to produce realistic (observed-like) meteorological inputs for agrological, hydrological and other impact models used in assessing sensitivity of various ecosystems to climate change/variability. To name their advantages, the generators may (i) produce arbitrarily long multi-variate synthetic weather series representing both present and changed climates (in the latter case, the generators are commonly modified by GCM/RCM-based climate change scenarios), (ii) be run in various time steps and for multiple weather variables (the generators reproduce the correlations among variables), (iii) be interpolated (and run also for sites where no weather data are available to calibrate the generator). This contribution will compare two stochastic daily weather generators in terms of their ability to reproduce various features of the daily weather series. M&Rfi is a parametric generator: Markov chain model is used to model precipitation occurrence, precipitation amount is modelled by the Gamma distribution, and the 1st order autoregressive model is used to generate non-precipitation surface weather variables. The non-parametric GoMeZ generator is based on the nearest neighbours resampling technique making no assumption on the distribution of the variables being generated. Various settings of both weather generators will be assumed in the present validation tests. The generators will be validated in terms of (a) extreme temperature and precipitation characteristics (annual and 30-years extremes and maxima of duration of hot/cold/dry/wet spells); (b) selected validation statistics developed within the frame of VALUE project. The tests will be based on observational weather series

  20. Continent-Wide 2-D Co-Seismic Deformation of the 2015 Mw 8.3 Illapel, Chile Earthquake Derived from Sentinel-1A Data: Correction of Azimuth Co-Registration Error

    Directory of Open Access Journals (Sweden)

    Bing Xu

    2016-05-01

    Full Text Available In this study, we mapped the co-seismic deformation of the 2015 Mw 8.3 Illapel, Chile earthquake with multiple Sentinel-1A TOPS data frames from both ascending and descending geometries. To meet the requirement of very high co-registration precision, an improved spectral diversity method was proposed to correct the co-registration slope error in the azimuth direction induced by multiple Sentinel-1A TOPS data frames. All phase jumps that appear in the conventional processing method have been corrected after applying the proposed method. The 2D deformation fields in the east-west and vertical directions are also resolved by combing D-InSAR and Offset Tracking measurements. The results reveal that the east-west component dominated the 2D displacement, where up to 2 m displacement towards the west was measured in the coastal area. Vertical deformations ranging between −0.25 and 0.25 m were found. The 2D displacements imply the collision of the Nazca plate squeezed the coast, which shows good accordance with the geological background of the region.

  1. Scaling of preferential flow in biopores by parametric or non parametric transfer functions

    Science.gov (United States)

    Zehe, E.; Hartmann, N.; Klaus, J.; Palm, J.; Schroeder, B.

    2009-04-01

    finally assign the measured hydraulic capacities to these pores. By combining this population of macropores with observed data on soil hydraulic properties we obtain a virtual reality. Flow and transport is simulated for different rainfall forcings comparing two models, Hydrus 3d and Catflow. The simulated cumulative travel depths distributions for different forcings will be linked to the cumulative depth distribution of connected flow paths. The latter describes the fraction of connected paths - where flow resistance is always below a selected threshold that links the surface to a certain critical depth. Systematic variation of the average number of macropores and their depth distributions will show whether a clear link between the simulated travel depths distributions and the depth distribution of connected paths may be identified. The third essential step is to derive a non parametric transfer function that predicts travel depth distributions of tracers and on the long term pesticides based on easy-to-assess subsurface characteristics (mainly density and depth distribution of worm burrows, soil matrix properties), initial conditions and rainfall forcing. Such a transfer function is independent of scale ? as long as we stay in the same ensemble i.e. worm population and soil properties stay the same. Shipitalo, M.J. and Butt, K.R. (1999): Occupancy and geometrical properties of Lumbricus terrestris L. burrows affecting infiltration. Pedobiologia 43:782-794 Zehe E, and Fluehler H. (2001b): Slope scale distribution of flow patterns in soil profiles. J. Hydrol. 247: 116-132.

  2. 污染线性模型的非参数估计%NON-PARAMETRIC ESTIMATION IN CONTAMINATED LINEAR MODEL

    Institute of Scientific and Technical Information of China (English)

    柴根象; 孙燕; 杨筱菡

    2001-01-01

    In this paper, the following contaminated linear model is considered: yi=(1-ε)xτiβ+zi, 1≤i≤n, where r.v.'s {yi} are contaminated with errors {zi}. To assume that the errors have the finite moment of order 2 only. The non-parametric estimation of contaminated coefficient ε and regression parameter β are established, and the strong consistency and convergence rate almost surely of the estimators are obtained. A simulated example is also given to show the visual performance of the estimations.

  3. On The Robustness of z=0-1 Galaxy Size Measurements Through Model and Non-Parametric Fits

    CERN Document Server

    Mosleh, Moein; Franx, Marijn

    2013-01-01

    We present the size-stellar mass relations of nearby (z=0.01-0.02) SDSS galaxies, for samples selected by color, morphology, Sersic index n, and specific star formation rate. Several commonly-employed size measurement techniques are used, including single Sersic fits, two-component Sersic models and a non-parametric method. Through simple simulations we show that the non-parametric and two-component Sersic methods provide the most robust effective radius measurements, while those based on single Sersic profiles are often overestimates, especially for massive red/early-type galaxies. Using our robust sizes, we show that for all sub-samples, the mass-size relations are shallow at low stellar masses and steepen above ~3-4 x 10^{10}\\Msun. The mass-size relations for galaxies classified as late-type, low-n, and star-forming are consistent with each other, while blue galaxies follow a somewhat steeper relation. The mass-size relations of early-type, high-n, red, and quiescent galaxies all agree with each other but ...

  4. Further Empirical Results on Parametric Versus Non-Parametric IRT Modeling of Likert-Type Personality Data.

    Science.gov (United States)

    Maydeu-Olivares, Albert

    2005-04-01

    Chernyshenko, Stark, Chan, Drasgow, and Williams (2001) investigated the fit of Samejima's logistic graded model and Levine's non-parametric MFS model to the scales of two personality questionnaires and found that the graded model did not fit well. We attribute the poor fit of the graded model to small amounts of multidimensionality present in their data. To verify this conjecture, we compare the fit of these models to the Social Problem Solving Inventory-Revised, whose scales were designed to be unidimensional. A calibration and a cross-validation sample of new observations were used. We also included the following parametric models in the comparison: Bock's nominal model, Masters' partial credit model, and Thissen and Steinberg's extension of the latter. All models were estimated using full information maximum likelihood. We also included in the comparison a normal ogive model version of Samejima's model estimated using limited information estimation. We found that for all scales Samejima's model outperformed all other parametric IRT models in both samples, regardless of the estimation method employed. The non-parametric model outperformed all parametric models in the calibration sample. However, the graded model outperformed MFS in the cross-validation sample in some of the scales. We advocate employing the graded model estimated using limited information methods in modeling Likert-type data, as these methods are more versatile than full information methods to capture the multidimensionality that is generally present in personality data.

  5. Climatic, parametric and non-parametric analysis of energy performance of double-glazed windows in different climates

    Directory of Open Access Journals (Sweden)

    Saeed Banihashemi

    2015-12-01

    Full Text Available In line with the growing global trend toward energy efficiency in buildings, this paper aims to first; investigate the energy performance of double-glazed windows in different climates and second; analyze the most dominant used parametric and non-parametric tests in dimension reduction for simulating this component. A four-story building representing the conventional type of residential apartments for four climates of cold, temperate, hot-arid and hot-humid was selected for simulation. 10 variables of U-factor, SHGC, emissivity, visible transmittance, monthly average dry bulb temperature, monthly average percent humidity, monthly average wind speed, monthly average direct solar radiation, monthly average diffuse solar radiation and orientation constituted the parameters considered in the calculation of cooling and heating loads of the case. Design of Experiment and Principal Component Analysis methods were applied to find the most significant factors and reduction dimension of initial variables. It was observed that in two climates of temperate and hot-arid, using double glazed windows was beneficial in both cold and hot months whereas in cold and hot-humid climates where heating and cooling loads are dominant respectively, they were advantageous in only those dominant months. Furthermore, an inconsistency was revealed between parametric and non-parametric tests in terms of identifying the most significant variables.

  6. Evaluation of model-based versus non-parametric monaural noise-reduction approaches for hearing aids.

    Science.gov (United States)

    Harlander, Niklas; Rosenkranz, Tobias; Hohmann, Volker

    2012-08-01

    Single channel noise reduction has been well investigated and seems to have reached its limits in terms of speech intelligibility improvement, however, the quality of such schemes can still be advanced. This study tests to what extent novel model-based processing schemes might improve performance in particular for non-stationary noise conditions. Two prototype model-based algorithms, a speech-model-based, and a auditory-model-based algorithm were compared to a state-of-the-art non-parametric minimum statistics algorithm. A speech intelligibility test, preference rating, and listening effort scaling were performed. Additionally, three objective quality measures for the signal, background, and overall distortions were applied. For a better comparison of all algorithms, particular attention was given to the usage of the similar Wiener-based gain rule. The perceptual investigation was performed with fourteen hearing-impaired subjects. The results revealed that the non-parametric algorithm and the auditory model-based algorithm did not affect speech intelligibility, whereas the speech-model-based algorithm slightly decreased intelligibility. In terms of subjective quality, both model-based algorithms perform better than the unprocessed condition and the reference in particular for highly non-stationary noise environments. Data support the hypothesis that model-based algorithms are promising for improving performance in non-stationary noise conditions.

  7. 'nparACT' package for R: A free software tool for the non-parametric analysis of actigraphy data.

    Science.gov (United States)

    Blume, Christine; Santhi, Nayantara; Schabus, Manuel

    2016-01-01

    For many studies, participants' sleep-wake patterns are monitored and recorded prior to, during and following an experimental or clinical intervention using actigraphy, i.e. the recording of data generated by movements. Often, these data are merely inspected visually without computation of descriptive parameters, in part due to the lack of user-friendly software. To address this deficit, we developed a package for R Core Team [6], that allows computing several non-parametric measures from actigraphy data. Specifically, it computes the interdaily stability (IS), intradaily variability (IV) and relative amplitude (RA) of activity and gives the start times and average activity values of M10 (i.e. the ten hours with maximal activity) and L5 (i.e. the five hours with least activity). Two functions compute these 'classical' parameters and handle either single or multiple files. Two other functions additionally allow computing an L-value (i.e. the least activity value) for a user-defined time span termed 'Lflex' value. A plotting option is included in all functions. The package can be downloaded from the Comprehensive R Archives Network (CRAN). •The package 'nparACT' for R serves the non-parametric analysis of actigraphy data.•Computed parameters include interdaily stability (IS), intradaily variability (IV) and relative amplitude (RA) as well as start times and average activity during the 10 h with maximal and the 5 h with minimal activity (i.e. M10 and L5).

  8. Registration Service

    CERN Multimedia

    GS Department

    2010-01-01

    Following a reorganization in Building 55, please note that the Registration Service is now organised as follows :  Ground floor: access cards (76903). 1st floor : registration of external firms’ personnel (76611 / 76622); car access stickers (76633); biometric registration (79710). Opening hours: 07-30 to 16-00 non-stop. GS-SEM Group General Infrastructure Services Department

  9. Solid Mesh Registration for Radiotherapy Treatment Planning

    DEFF Research Database (Denmark)

    Noe, Karsten Østergaard; Sørensen, Thomas Sangild

    2010-01-01

    We present an algorithm for solid organ registration of pre-segmented data represented as tetrahedral meshes. Registration of the organ surface is driven by force terms based on a distance field representation of the source and reference shapes. Registration of internal morphology is achieved usi...... to complete. The proposed method has many potential uses in image guided radiotherapy (IGRT) which relies on registration to account for organ deformation between treatment sessions....

  10. A note on the use of the non-parametric Wilcoxon-Mann-Whitney test in the analysis of medical studies

    Directory of Open Access Journals (Sweden)

    Kühnast, Corinna

    2008-04-01

    Full Text Available Background: Although non-normal data are widespread in biomedical research, parametric tests unnecessarily predominate in statistical analyses. Methods: We surveyed five biomedical journals and – for all studies which contain at least the unpaired t-test or the non-parametric Wilcoxon-Mann-Whitney test – investigated the relationship between the choice of a statistical test and other variables such as type of journal, sample size, randomization, sponsoring etc. Results: The non-parametric Wilcoxon-Mann-Whitney was used in 30% of the studies. In a multivariable logistic regression the type of journal, the test object, the scale of measurement and the statistical software were significant. The non-parametric test was more common in case of non-continuous data, in high-impact journals, in studies in humans, and when the statistical software is specified, in particular when SPSS was used.

  11. The Non-Parametric Model for Linking Galaxy Luminosity with Halo/Subhalo Mass: Are First Brightest Galaxies Special?

    CERN Document Server

    Vale, A

    2007-01-01

    We revisit the longstanding question of whether first brightest cluster galaxies are statistically drawn from the same distribution as other cluster galaxies or are "special", using the new non-parametric, empirically based model presented in Vale&Ostriker (2006) for associating galaxy luminosity with halo/subhalo masses. We introduce scatter in galaxy luminosity at fixed halo mass into this model, building a conditional luminosity function (CLF) by considering two possible models: a simple lognormal and a model based on the distribution of concentration in haloes of a given mass. We show that this model naturally allows an identification of halo/subhalo systems with groups and clusters of galaxies, giving rise to a clear central/satellite galaxy distinction. We then use these results to build up the dependence of brightest cluster galaxy (BCG) magnitudes on cluster luminosity, focusing on two statistical indicators, the dispersion in BCG magnitude and the magnitude difference between first and second bri...

  12. Singular Value Decomposition, Hessian Errors, and Linear Algebra of Non-parametric Extraction of Partons from DIS

    CERN Document Server

    Goshtasbpour, Mehrdad

    2014-01-01

    By singular value decomposition (SVD) of a numerically singular Hessian matrix and a numerically singular system of linear equations for the experimental data (accumulated in the respective ${\\chi ^2}$ function) and constraints, least square solutions and their propagated errors for the non-parametric extraction of Partons from $F_2$ are obtained. SVD and its physical application is phenomenologically described in the two cases. Among the subjects covered are: identification and properties of the boundary between the two subsets of ordered eigenvalues corresponding to range and null space, and the eigenvalue structure of the null space of the singular matrix, including a second boundary separating the smallest eigenvalues of essentially no information, in a particular case. The eigenvector-eigenvalue structure of "redundancy and smallness" of the errors of two pdf sets, in our simplified Hessian model, is described by a secondary manifestation of deeper null space, in the context of SVD.

  13. Detection of Bistability in Phase Space of a Real Galaxy, using a New Non-parametric Bayesian Test of Hypothesis

    CERN Document Server

    Chakrabarty, Dalia

    2013-01-01

    In lieu of direct detection of dark matter, estimation of the distribution of the gravitational mass in distant galaxies is of crucial importance in Astrophysics. Typically, such estimation is performed using small samples of noisy, partially missing measurements - only some of the three components of the velocity and location vectors of individual particles that live in the galaxy are measurable. Such limitations of the available data in turn demands that simplifying model assumptions be undertaken. Thus, assuming that the phase space of a galaxy manifests simple symmetries - such as isotropy - allows for the learning of the density of the gravitational mass in galaxies. This is equivalent to assuming that the phase space $pdf$ from which the velocity and location vectors of galactic particles are sampled from, is an isotropic function of these vectors. We present a new non-parametric test of hypothesis that tests for relative support in two or more measured data sets of disparate sizes, for the undertaken m...

  14. Transit Timing Observations from Kepler: II. Confirmation of Two Multiplanet Systems via a Non-parametric Correlation Analysis

    CERN Document Server

    Ford, Eric B; Steffen, Jason H; Carter, Joshua A; Fressin, Francois; Holman, Matthew J; Lissauer, Jack J; Moorhead, Althea V; Morehead, Robert C; Ragozzine, Darin; Rowe, Jason F; Welsh, William F; Allen, Christopher; Batalha, Natalie M; Borucki, William J; Bryson, Stephen T; Buchhave, Lars A; Burke, Christopher J; Caldwell, Douglas A; Charbonneau, David; Clarke, Bruce D; Cochran, William D; Désert, Jean-Michel; Endl, Michael; Everett, Mark E; Fischer, Debra A; Gautier, Thomas N; Gilliland, Ron L; Jenkins, Jon M; Haas, Michael R; Horch, Elliott; Howell, Steve B; Ibrahim, Khadeejah A; Isaacson, Howard; Koch, David G; Latham, David W; Li, Jie; Lucas, Philip; MacQueen, Phillip J; Marcy, Geoffrey W; McCauliff, Sean; Mullally, Fergal R; Quinn, Samuel N; Quintana, Elisa; Shporer, Avi; Still, Martin; Tenenbaum, Peter; Thompson, Susan E; Torres, Guillermo; Twicken, Joseph D; Wohler, Bill

    2012-01-01

    We present a new method for confirming transiting planets based on the combination of transit timingn variations (TTVs) and dynamical stability. Correlated TTVs provide evidence that the pair of bodies are in the same physical system. Orbital stability provides upper limits for the masses of the transiting companions that are in the planetary regime. This paper describes a non-parametric technique for quantifying the statistical significance of TTVs based on the correlation of two TTV data sets. We apply this method to an analysis of the transit timing variations of two stars with multiple transiting planet candidates identified by Kepler. We confirm four transiting planets in two multiple planet systems based on their TTVs and the constraints imposed by dynamical stability. An additional three candidates in these same systems are not confirmed as planets, but are likely to be validated as real planets once further observations and analyses are possible. If all were confirmed, these systems would be near 4:6:...

  15. rSeqNP: a non-parametric approach for detecting differential expression and splicing from RNA-Seq data.

    Science.gov (United States)

    Shi, Yang; Chinnaiyan, Arul M; Jiang, Hui

    2015-07-01

    High-throughput sequencing of transcriptomes (RNA-Seq) has become a powerful tool to study gene expression. Here we present an R package, rSeqNP, which implements a non-parametric approach to test for differential expression and splicing from RNA-Seq data. rSeqNP uses permutation tests to access statistical significance and can be applied to a variety of experimental designs. By combining information across isoforms, rSeqNP is able to detect more differentially expressed or spliced genes from RNA-Seq data. The R package with its source code and documentation are freely available at http://www-personal.umich.edu/∼jianghui/rseqnp/. jianghui@umich.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. A non-parametric conditional bivariate reference region with an application to height/weight measurements on normal girls

    DEFF Research Database (Denmark)

    Petersen, Jørgen Holm

    2009-01-01

    A conceptually simple two-dimensional conditional reference curve is described. The curve gives a decision basis for determining whether a bivariate response from an individual is "normal" or "abnormal" when taking into account that a third (conditioning) variable may influence the bivariate...... response. The reference curve is not only characterized analytically but also by geometric properties that are easily communicated to medical doctors - the users of such curves. The reference curve estimator is completely non-parametric, so no distributional assumptions are needed about the two......-dimensional response. An example that will serve to motivate and illustrate the reference is the study of the height/weight distribution of 7-8-year-old Danish school girls born in 1930, 1950, or 1970....

  17. Non-parametric frontier approach to modelling the relationships among population, GDP, energy consumption and CO{sub 2} emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lozano, Sebastian; Gutierrez, Ester [University of Seville, E.S.I., Department of Industrial Management, Camino de los Descubrimientos, s/n, 41092 Sevilla (Spain)

    2008-07-15

    In this paper, a non-parametric approach based in Data Envelopment Analysis (DEA) is proposed as an alternative to the Kaya identity (a.k.a ImPACT). This Frontier Method identifies and extends existing best practices. Population and GDP are considered as input and output, respectively. Both primary energy consumption and Greenhouse Gas (GHG) emissions are considered as undesirable outputs. Several Linear Programming models are formulated with different aims, namely: (a) determine efficiency levels, (b) estimate maximum GDP compatible with given levels of population, energy intensity and carbonization intensity, and (c) estimate the minimum level of GHG emissions compatible with given levels of population, GDP, energy intensity or carbonization index. The United States of America case is used as illustration of the proposed approach. (author)

  18. Adaptive ILC algorithms of nonlinear continuous systems with non-parametric uncertainties for non-repetitive trajectory tracking

    Science.gov (United States)

    Li, Xiao-Dong; Lv, Mang-Mang; Ho, John K. L.

    2016-07-01

    In this article, two adaptive iterative learning control (ILC) algorithms are presented for nonlinear continuous systems with non-parametric uncertainties. Unlike general ILC techniques, the proposed adaptive ILC algorithms allow that both the initial error at each iteration and the reference trajectory are iteration-varying in the ILC process, and can achieve non-repetitive trajectory tracking beyond a small initial time interval. Compared to the neural network or fuzzy system-based adaptive ILC schemes and the classical ILC methods, in which the number of iterative variables is generally larger than or equal to the number of control inputs, the first adaptive ILC algorithm proposed in this paper uses just two iterative variables, while the second even uses a single iterative variable provided that some bound information on system dynamics is known. As a result, the memory space in real-time ILC implementations is greatly reduced.

  19. Detrending the long-term stellar activity and the systematics of the Kepler data with a non-parametric approach

    CERN Document Server

    Danielski, C; Tinetti, G

    2013-01-01

    The NASA Kepler mission is delivering groundbreaking results, with an increasing number of Earth-sized and moon-sized objects been discovered. A high photometric precision can be reached only through a thorough removal of the stellar activity and the instrumental systematics. We have explored here the possibility of using non-parametric methods to analyse the Simple Aperture Photometry data observed by the Kepler mission. We focused on a sample of stellar light curves with different effective temperatures and flux modulations, and we found that Gaussian Processes-based techniques can very effectively correct the instrumental systematics along with the long-term stellar activity. Our method can disentangle astrophysical features (events), such as planetary transits, flares or general sudden variations in the intensity, from the star signal and it is very efficient as it requires only a few training iterations of the Gaussian Process model. The results obtained show the potential of our method to isolate the ma...

  20. A Non-Parametric and Entropy Based Analysis of the Relationship between the VIX and S&P 500

    Directory of Open Access Journals (Sweden)

    Abhay K. Singh

    2013-10-01

    Full Text Available This paper features an analysis of the relationship between the S&P 500 Index and the VIX using daily data obtained from the CBOE website and SIRCA (The Securities Industry Research Centre of the Asia Pacific. We explore the relationship between the S&P 500 daily return series and a similar series for the VIX in terms of a long sample drawn from the CBOE from 1990 to mid 2011 and a set of returns from SIRCA’s TRTH datasets from March 2005 to-date. This shorter sample, which captures the behavior of the new VIX, introduced in 2003, is divided into four sub-samples which permit the exploration of the impact of the Global Financial Crisis. We apply a series of non-parametric based tests utilizing entropy based metrics. These suggest that the PDFs and CDFs of these two return distributions change shape in various subsample periods. The entropy and MI statistics suggest that the degree of uncertainty attached to these distributions changes through time and using the S&P 500 return as the dependent variable, that the amount of information obtained from the VIX changes with time and reaches a relative maximum in the most recent period from 2011 to 2012. The entropy based non-parametric tests of the equivalence of the two distributions and their symmetry all strongly reject their respective nulls. The results suggest that parametric techniques do not adequately capture the complexities displayed in the behavior of these series. This has practical implications for hedging utilizing derivatives written on the VIX.

  1. 非参数项目反应理论回顾与展望%The Retrospect and Prospect of Non-parametric Item Response Theory

    Institute of Scientific and Technical Information of China (English)

    陈婧; 康春花; 钟晓玲

    2013-01-01

      相比参数项目反应理论,非参数项目反应理论提供了更吻合实践情境的理论框架。目前非参数项目反应理论研究主要关注参数估计方法及其比较、数据-模型拟合验证等方面,其应用研究则集中于量表修订及个性数据和项目功能差异分析,而在认知诊断理论基础上发展起来的非参数认知诊断理论更是凸显其应用优势。未来研究应更多侧重于非参数项目反应理论的实践应用,对非参数认知诊断理论的研究也值得关注,以充分发挥非参数方法在实践领域的应用优势。%  Compared to parametric item response theory, non-parametric item response theory provide a more appropriate theoretical framework of practice situations. Non-parametric item response theory research focuses on parameter estimation methods and its comparison, data- model fitting verify etc. currently.Its applied research concentrate on scale amendments, personalized data and differential item functioning analysis. Non-parametric cognitive diagnostic theory which based on the parametric cognitive diagnostic theory gives prominence to the advantages of its application.To give full play to the advantages of non-parametric methods in practice,future studies should emphasis on the application of non-parametric item response theory while cognitive diagnosis of the non-parametric study is also worth of attention.

  2. Technical Topic 3.2.2.d Bayesian and Non-Parametric Statistics: Integration of Neural Networks with Bayesian Networks for Data Fusion and Predictive Modeling

    Science.gov (United States)

    2016-05-31

    Distribution Unlimited UU UU UU UU 31-05-2016 15-Apr-2014 14-Jan-2015 Final Report: Technical Topic 3.2.2.d Bayesian and Non- parametric Statistics...of Papers published in non peer-reviewed journals: Final Report: Technical Topic 3.2.2.d Bayesian and Non- parametric Statistics: Integration of Neural...Transfer N/A Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale ): Number of graduating undergraduates funded by a DoD funded

  3. Fast fluid registration of medical images

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten; Gramkow, Claus

    1996-01-01

    This paper offers a new fast algorithm for non-rigid viscous fluid registration of medical images that is at least an order of magnitude faster than the previous method by (Christensen et al., 1994). The core algorithm in the fluid registration method is based on a linear elastic deformation...... of the velocity field of the fluid. Using the linearity of this deformation we derive a convolution filter which we use in a scale-space framework. We also demonstrate that the `demon'-based registration method of (Thirion, 1996) can be seen as an approximation to the fluid registration method and point...

  4. SU-E-J-100: The Combination of Deformable Image Registration and Regions-Of-Interest Mapping Technique to Accomplish Accurate Dose Calculation On Cone Beam Computed Tomography for Esophageal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Huang, B-T; Lu, J-Y [Cancer Hospital of Shantou University Medical College, Shantou (China)

    2015-06-15

    Purpose: We introduce a new method combined with the deformable image registration (DIR) and regions-of-interest mapping (ROIM) technique to accurately calculate dose on daily CBCT for esophageal cancer. Methods: Patients suffered from esophageal cancer were enrolled in the study. Prescription was set to 66 Gy/30 F and 54 Gy/30 F to the primary tumor (PTV66) and subclinical disease (PTV54) . Planning CT (pCT) were segmented into 8 substructures in terms of their differences in physical density, such as gross target volume (GTV), venae cava superior (SVC), aorta, heart, spinal cord, lung, muscle and bones. The pCT and its substructures were transferred to the MIM software to readout their mean HU values. Afterwards, a deformable planning CT to daily KV-CBCT image registration method was then utilized to acquire a new structure set on CBCT. The newly generated structures on CBCT were then transferred back to the treatment planning system (TPS) and its HU information were overridden manually with mean HU values obtained from pCT. Finally, the treatment plan was projected onto the CBCT images with the same beam arrangements and monitor units (MUs) to accomplish dose calculation. Planning target volume (PTV) and organs at risk (OARs) from both of the pCT and CBCT were compared to evaluate the dose calculation accuracy. Results: It was found that the dose distribution in the CBCT showed little differences compared to the pCT, regardless of whether PTV or OARs were concerned. Specifically, dose variation in GTV, PTV54, PTV66, SVC, lung and heart were within 0.1%. The maximum dose variation was presented in the spinal cord, which was up to 2.7% dose difference. Conclusion: The proposed method combined with DIR and ROIM technique to accurately calculate dose distribution on CBCT for esophageal cancer is feasible.

  5. 分布函数的非参数最小二乘估计%NON-PARAMETRIC LEAST SQUARE ESTIMATION OF DISTRIBUTION FUNCTION

    Institute of Scientific and Technical Information of China (English)

    柴根象; 花虹; 尚汉冀

    2002-01-01

    By using the non-parametric least square method, the strong consistent estimations of distribution function and failure function are established,where the distribution function F(x) after logist transformation is assumed to be approximated by a polynomial.The performance of simulation shows that the estimations are highly satisfactory.

  6. Zero- vs. one-dimensional, parametric vs. non-parametric, and confidence interval vs. hypothesis testing procedures in one-dimensional biomechanical trajectory analysis.

    Science.gov (United States)

    Pataky, Todd C; Vanrenterghem, Jos; Robinson, Mark A

    2015-05-01

    Biomechanical processes are often manifested as one-dimensional (1D) trajectories. It has been shown that 1D confidence intervals (CIs) are biased when based on 0D statistical procedures, and the non-parametric 1D bootstrap CI has emerged in the Biomechanics literature as a viable solution. The primary purpose of this paper was to clarify that, for 1D biomechanics datasets, the distinction between 0D and 1D methods is much more important than the distinction between parametric and non-parametric procedures. A secondary purpose was to demonstrate that a parametric equivalent to the 1D bootstrap exists in the form of a random field theory (RFT) correction for multiple comparisons. To emphasize these points we analyzed six datasets consisting of force and kinematic trajectories in one-sample, paired, two-sample and regression designs. Results showed, first, that the 1D bootstrap and other 1D non-parametric CIs were qualitatively identical to RFT CIs, and all were very different from 0D CIs. Second, 1D parametric and 1D non-parametric hypothesis testing results were qualitatively identical for all six datasets. Last, we highlight the limitations of 1D CIs by demonstrating that they are complex, design-dependent, and thus non-generalizable. These results suggest that (i) analyses of 1D data based on 0D models of randomness are generally biased unless one explicitly identifies 0D variables before the experiment, and (ii) parametric and non-parametric 1D hypothesis testing provide an unambiguous framework for analysis when one׳s hypothesis explicitly or implicitly pertains to whole 1D trajectories.

  7. Non-parametric reconstruction of an inflaton potential from Einstein–Cartan–Sciama–Kibble gravity with particle production

    Directory of Open Access Journals (Sweden)

    Shantanu Desai

    2016-04-01

    Full Text Available The coupling between spin and torsion in the Einstein–Cartan–Sciama–Kibble theory of gravity generates gravitational repulsion at very high densities, which prevents a singularity in a black hole and may create there a new universe. We show that quantum particle production in such a universe near the last bounce, which represents the Big Bang, gives the dynamics that solves the horizon, flatness, and homogeneity problems in cosmology. For a particular range of the particle production coefficient, we obtain a nearly constant Hubble parameter that gives an exponential expansion of the universe with more than 60 e-folds, which lasts about ∼10−42 s. This scenario can thus explain cosmic inflation without requiring a fundamental scalar field and reheating. From the obtained time dependence of the scale factor, we follow the prescription of Ellis and Madsen to reconstruct in a non-parametric way a scalar field potential which gives the same dynamics of the early universe. This potential gives the slow-roll parameters of cosmic inflation, from which we calculate the tensor-to-scalar ratio, the scalar spectral index of density perturbations, and its running as functions of the production coefficient. We find that these quantities do not significantly depend on the scale factor at the Big Bounce. Our predictions for these quantities are consistent with the Planck 2015 observations.

  8. Spatial Modeling of Rainfall Patterns over the Ebro River Basin Using Multifractality and Non-Parametric Statistical Techniques

    Directory of Open Access Journals (Sweden)

    José L. Valencia

    2015-11-01

    Full Text Available Rainfall, one of the most important climate variables, is commonly studied due to its great heterogeneity, which occasionally causes negative economic, social, and environmental consequences. Modeling the spatial distributions of rainfall patterns over watersheds has become a major challenge for water resources management. Multifractal analysis can be used to reproduce the scale invariance and intermittency of rainfall processes. To identify which factors are the most influential on the variability of multifractal parameters and, consequently, on the spatial distribution of rainfall patterns for different time scales in this study, universal multifractal (UM analysis—C1, α, and γs UM parameters—was combined with non-parametric statistical techniques that allow spatial-temporal comparisons of distributions by gradients. The proposed combined approach was applied to a daily rainfall dataset of 132 time-series from 1931 to 2009, homogeneously spatially-distributed across a 25 km × 25 km grid covering the Ebro River Basin. A homogeneous increase in C1 over the watershed and a decrease in α mainly in the western regions, were detected, suggesting an increase in the frequency of dry periods at different scales and an increase in the occurrence of rainfall process variability over the last decades.

  9. Non-parametric reconstruction of an inflaton potential from Einstein-Cartan-Sciama-Kibble gravity with particle production

    Science.gov (United States)

    Desai, Shantanu; Popławski, Nikodem J.

    2016-04-01

    The coupling between spin and torsion in the Einstein-Cartan-Sciama-Kibble theory of gravity generates gravitational repulsion at very high densities, which prevents a singularity in a black hole and may create there a new universe. We show that quantum particle production in such a universe near the last bounce, which represents the Big Bang, gives the dynamics that solves the horizon, flatness, and homogeneity problems in cosmology. For a particular range of the particle production coefficient, we obtain a nearly constant Hubble parameter that gives an exponential expansion of the universe with more than 60 e-folds, which lasts about ∼10-42 s. This scenario can thus explain cosmic inflation without requiring a fundamental scalar field and reheating. From the obtained time dependence of the scale factor, we follow the prescription of Ellis and Madsen to reconstruct in a non-parametric way a scalar field potential which gives the same dynamics of the early universe. This potential gives the slow-roll parameters of cosmic inflation, from which we calculate the tensor-to-scalar ratio, the scalar spectral index of density perturbations, and its running as functions of the production coefficient. We find that these quantities do not significantly depend on the scale factor at the Big Bounce. Our predictions for these quantities are consistent with the Planck 2015 observations.

  10. Non-parametric reconstruction of an inflaton potential from Einstein-Cartan-Sciama-Kibble gravity with particle production

    CERN Document Server

    Desai, Shantanu

    2015-01-01

    The coupling between spin and torsion in the Einstein-Cartan-Sciama-Kibble theory of gravity generates gravitational repulsion at very high densities, which prevents a singularity in a black hole and may create there a new universe. We show that quantum particle production in such a universe near the last bounce, which represents the Big Bang gives the dynamics that solves the horizon, flatness, and homogeneity problems in cosmology. For a particular range of the particle production coefficient, we obtain a nearly constant Hubble parameter that gives an exponential expansion of the universe with more than 60 $e$-folds, which lasts about $\\sim 10^{-42}$ s. This scenario can thus explain cosmic inflation without requiring a fundamental scalar field and reheating. From the obtained time dependence of the scale factor, we follow the prescription of Ellis and Madsen to reconstruct in a non-parametric way a scalar field potential which gives the same dynamics of the early universe. This potential gives the slow-rol...

  11. Inferring the three-dimensional distribution of dust in the Galaxy with a non-parametric method: Preparing for Gaia

    CERN Document Server

    Kh., S Rezaei; Hanson, R J; Fouesneau, M

    2016-01-01

    We present a non-parametric model for inferring the three-dimensional (3D) distribution of dust density in the Milky Way. Our approach uses the extinction measured towards stars at different locations in the Galaxy at approximately known distances. Each extinction measurement is proportional to the integrated dust density along its line-of-sight. Making simple assumptions about the spatial correlation of the dust density, we can infer the most probable 3D distribution of dust across the entire observed region, including along sight lines which were not observed. This is possible because our model employs a Gaussian Process to connect all lines-of-sight. We demonstrate the capability of our model to capture detailed dust density variations using mock data as well as simulated data from the Gaia Universe Model Snapshot. We then apply our method to a sample of giant stars observed by APOGEE and Kepler to construct a 3D dust map over a small region of the Galaxy. Due to our smoothness constraint and its isotropy,...

  12. Super-resolution non-parametric deconvolution in modelling the radial response function of a parallel plate ionization chamber.

    Science.gov (United States)

    Kulmala, A; Tenhunen, M

    2012-11-07

    The signal of the dosimetric detector is generally dependent on the shape and size of the sensitive volume of the detector. In order to optimize the performance of the detector and reliability of the output signal the effect of the detector size should be corrected or, at least, taken into account. The response of the detector can be modelled using the convolution theorem that connects the system input (actual dose), output (measured result) and the effect of the detector (response function) by a linear convolution operator. We have developed the super-resolution and non-parametric deconvolution method for determination of the cylinder symmetric ionization chamber radial response function. We have demonstrated that the presented deconvolution method is able to determine the radial response for the Roos parallel plate ionization chamber with a better than 0.5 mm correspondence with the physical measures of the chamber. In addition, the performance of the method was proved by the excellent agreement between the output factors of the stereotactic conical collimators (4-20 mm diameter) measured by the Roos chamber, where the detector size is larger than the measured field, and the reference detector (diode). The presented deconvolution method has a potential in providing reference data for more accurate physical models of the ionization chamber as well as for improving and enhancing the performance of the detectors in specific dosimetric problems.

  13. Cliff´s Delta Calculator: A non-parametric effect size program for two groups of observations

    Directory of Open Access Journals (Sweden)

    Guillermo Macbeth

    2011-05-01

    Full Text Available The Cliff´s Delta statistic is an effect size measure that quantifies the amount of difference between two non-parametric variables beyond p-values interpretation. This measure can be understood as a useful complementary analysis for the corresponding hypothesis testing. During the last two decades the use of effect size measures has been strongly encouraged by methodologists and leading institutions of behavioral sciences. The aim of this contribution is to introduce the Cliff´s Delta Calculator software that performs such analysis and offers some interpretation tips. Differences and similarities with the parametric case are analysed and illustrated. The implementation of this free program is fully described and compared with other calculators. Alternative algorithmic approaches are mathematically analysed and a basic linear algebra proof of its equivalence is formally presented. Two worked examples in cognitive psychology are commented. A visual interpretation of Cliff´s Delta is suggested. Availability, installation and applications of the program are presented and discussed.

  14. A sharper view of Pal 5's tails: Discovery of stream perturbations with a novel non-parametric technique

    CERN Document Server

    Erkal, Denis; Belokurov, Vasily

    2016-01-01

    Only in the Milky Way is it possible to conduct an experiment which uses stellar streams to detect low-mass dark matter subhaloes. In smooth and static host potentials, tidal tails of disrupting satellites appear highly symmetric. However, dark perturbers induce density fluctuations that destroy this symmetry. Motivated by the recent release of unprecedentedly deep and wide imaging data around the Pal 5 stellar stream, we develop a new probabilistic, adaptive and non-parametric technique which allows us to bring the cluster's tidal tails into clear focus. Strikingly, we uncover a stream whose density exhibits visible changes on a variety of angular scales. We detect significant bumps and dips, both narrow and broad: two peaks on either side of the progenitor, each only a fraction of a degree across, and two gaps, $\\sim2^{\\circ}$ and $\\sim9^{\\circ}$ wide, the latter accompanied by a gargantuan lump of debris. This largest density feature results in a pronounced inter-tail asymmetry which cannot be made consist...

  15. The merger fraction of active and inactive galaxies in the local Universe through an improved non-parametric classification

    CERN Document Server

    Cotini, Stefano; Caccianiga, Alessandro; Colpi, Monica; Della Ceca, Roberto; Mapelli, Michela; Severgnini, Paola; Segreto, Alberto; 10.1093/mnras/stt358

    2013-01-01

    We investigate the possible link between mergers and the enhanced activity of supermassive black holes (SMBHs) at the centre of galaxies, by comparing the merger fraction of a local sample (0.003 =< z < 0.03) of active galaxies - 59 active galactic nuclei (AGN) host galaxies selected from the all-sky Swift BAT (Burst Alert Telescope) survey - with an appropriate control sample (247 sources extracted from the Hyperleda catalogue) that has the same redshift distribution as the BAT sample. We detect the interacting systems in the two samples on the basis of non-parametric structural indexes of concentration (C), asymmetry (A), clumpiness (S), Gini coefficient (G) and second order momentum of light (M20). In particular, we propose a new morphological criterion, based on a combination of all these indexes, that improves the identification of interacting systems. We also present a new software - PyCASSo (Python CAS Software) - for the automatic computation of the structural indexes. After correcting for the c...

  16. Non-parametric analysis of infrared spectra for recognition of glass and glass ceramic fragments in recycling plants.

    Science.gov (United States)

    Farcomeni, Alessio; Serranti, Silvia; Bonifazi, Giuseppe

    2008-01-01

    Glass ceramic detection in glass recycling plants represents a still unsolved problem, as glass ceramic material looks like normal glass and is usually detected only by specialized personnel. The presence of glass-like contaminants inside waste glass products, resulting from both industrial and differentiated urban waste collection, increases process production costs and reduces final product quality. In this paper an innovative approach for glass ceramic recognition, based on the non-parametric analysis of infrared spectra, is proposed and investigated. The work was specifically addressed to the spectral classification of glass and glass ceramic fragments collected in an actual recycling plant from three different production lines: flat glass, colored container-glass and white container-glass. The analyses, carried out in the near and mid-infrared (NIR-MIR) spectral field (1280-4480 nm), show that glass ceramic and glass fragments can be recognized by applying a wavelet transform, with a small classification error. Moreover, a method for selecting only a small subset of relevant wavelength ratios is suggested, allowing the conduct of a fast recognition of the two classes of materials. The results show how the proposed approach can be utilized to develop a classification engine to be integrated inside a hardware and software sorting architecture for fast "on-line" ceramic glass recognition and separation.

  17. Prediction intervals for future BMI values of individual children: a non-parametric approach by quantile boosting.

    Science.gov (United States)

    Mayr, Andreas; Hothorn, Torsten; Fenske, Nora

    2012-01-25

    The construction of prediction intervals (PIs) for future body mass index (BMI) values of individual children based on a recent German birth cohort study with n = 2007 children is problematic for standard parametric approaches, as the BMI distribution in childhood is typically skewed depending on age. We avoid distributional assumptions by directly modelling the borders of PIs by additive quantile regression, estimated by boosting. We point out the concept of conditional coverage to prove the accuracy of PIs. As conditional coverage can hardly be evaluated in practical applications, we conduct a simulation study before fitting child- and covariate-specific PIs for future BMI values and BMI patterns for the present data. The results of our simulation study suggest that PIs fitted by quantile boosting cover future observations with the predefined coverage probability and outperform the benchmark approach. For the prediction of future BMI values, quantile boosting automatically selects informative covariates and adapts to the age-specific skewness of the BMI distribution. The lengths of the estimated PIs are child-specific and increase, as expected, with the age of the child. Quantile boosting is a promising approach to construct PIs with correct conditional coverage in a non-parametric way. It is in particular suitable for the prediction of BMI patterns depending on covariates, since it provides an interpretable predictor structure, inherent variable selection properties and can even account for longitudinal data structures.

  18. Non-parametric convolution based image-segmentation of ill-posed objects applying context window approach

    CERN Document Server

    Kumar, Upendra; Pal, Manoj Kumar

    2012-01-01

    Context-dependence in human cognition process is a well-established fact. Following this, we introduced the image segmentation method that can use context to classify a pixel on the basis of its membership to a particular object-class of the concerned image. In the broad methodological steps, each pixel was defined by its context window (CW) surrounding it the size of which was fixed heuristically. CW texture defined by the intensities of its pixels was convoluted with weights optimized through a non-parametric function supported by a backpropagation network. Result of convolution was used to classify them. The training data points (i.e., pixels) were carefully chosen to include all variety of contexts of types, i) points within the object, ii) points near the edge but inside the objects, iii) points at the border of the objects, iv) points near the edge but outside the objects, v) points near or at the edge of the image frame. Moreover the training data points were selected from all the images within image-d...

  19. Detecting correlation changes in multivariate time series: A comparison of four non-parametric change point detection methods.

    Science.gov (United States)

    Cabrieto, Jedelyn; Tuerlinckx, Francis; Kuppens, Peter; Grassmann, Mariel; Ceulemans, Eva

    2017-06-01

    Change point detection in multivariate time series is a complex task since next to the mean, the correlation structure of the monitored variables may also alter when change occurs. DeCon was recently developed to detect such changes in mean and\\or correlation by combining a moving windows approach and robust PCA. However, in the literature, several other methods have been proposed that employ other non-parametric tools: E-divisive, Multirank, and KCP. Since these methods use different statistical approaches, two issues need to be tackled. First, applied researchers may find it hard to appraise the differences between the methods. Second, a direct comparison of the relative performance of all these methods for capturing change points signaling correlation changes is still lacking. Therefore, we present the basic principles behind DeCon, E-divisive, Multirank, and KCP and the corresponding algorithms, to make them more accessible to readers. We further compared their performance through extensive simulations using the settings of Bulteel et al. (Biological Psychology, 98 (1), 29-42, 2014) implying changes in mean and in correlation structure and those of Matteson and James (Journal of the American Statistical Association, 109 (505), 334-345, 2014) implying different numbers of (noise) variables. KCP emerged as the best method in almost all settings. However, in case of more than two noise variables, only DeCon performed adequately in detecting correlation changes.

  20. CAUSALITY BETWEEN GDP, ENERGY AND COAL CONSUMPTION IN INDIA, 1970-2011: A NON-PARAMETRIC BOOTSTRAP APPROACH

    Directory of Open Access Journals (Sweden)

    Rohin Anhal

    2013-10-01

    Full Text Available The aim of this paper is to examine the direction of causality between real GDP on the one hand and final energy and coal consumption on the other in India, for the period from 1970 to 2011. The methodology adopted is the non-parametric bootstrap procedure, which is used to construct the critical values for the hypothesis of causality. The results of the bootstrap tests show that for total energy consumption, there exists no causal relationship in either direction with GDP of India. However, if coal consumption is considered, we find evidence in support of unidirectional causality running from coal consumption to GDP. This clearly has important implications for the Indian economy. The most important implication is that curbing coal consumption in order to reduce carbon emissions would in turn have a limiting effect on economic growth. Our analysis contributes to the literature in three distinct ways. First, this is the first paper to use the bootstrap method to examine the growth-energy connection for the Indian economy. Second, we analyze data for the time period 1970 to 2011, thereby utilizing recently available data that has not been used by others. Finally, in contrast to the recently done studies, we adopt a disaggregated approach for the analysis of the growth-energy nexus by considering not only aggregate energy consumption, but coal consumption as well.

  1. Efficient Hyperelastic Regularization for Registration

    DEFF Research Database (Denmark)

    Darkner, Sune; Hansen, Michael Sass; Larsen, Rasmus;

    2011-01-01

    For most image registration problems a smooth one-to-one mapping is desirable, a diffeomorphism. This can be obtained using priors such as volume preservation, certain kinds of elasticity or both. The key principle is to regularize the strain of the deformation which can be done through penalizat......For most image registration problems a smooth one-to-one mapping is desirable, a diffeomorphism. This can be obtained using priors such as volume preservation, certain kinds of elasticity or both. The key principle is to regularize the strain of the deformation which can be done through...... penalization of the eigen values of the stress tensor. We present a computational framework for regularization of image registration for isotropic hyper elasticity. We formulate an efficient and parallel scheme for computing the principal stain based for a given parameterization by decomposing the left Cauchy...

  2. A non-parametric statistical test to compare clusters with applications in functional magnetic resonance imaging data.

    Science.gov (United States)

    Fujita, André; Takahashi, Daniel Y; Patriota, Alexandre G; Sato, João R

    2014-12-10

    Statistical inference of functional magnetic resonance imaging (fMRI) data is an important tool in neuroscience investigation. One major hypothesis in neuroscience is that the presence or not of a psychiatric disorder can be explained by the differences in how neurons cluster in the brain. Therefore, it is of interest to verify whether the properties of the clusters change between groups of patients and controls. The usual method to show group differences in brain imaging is to carry out a voxel-wise univariate analysis for a difference between the mean group responses using an appropriate test and to assemble the resulting 'significantly different voxels' into clusters, testing again at cluster level. In this approach, of course, the primary voxel-level test is blind to any cluster structure. Direct assessments of differences between groups at the cluster level seem to be missing in brain imaging. For this reason, we introduce a novel non-parametric statistical test called analysis of cluster structure variability (ANOCVA), which statistically tests whether two or more populations are equally clustered. The proposed method allows us to compare the clustering structure of multiple groups simultaneously and also to identify features that contribute to the differential clustering. We illustrate the performance of ANOCVA through simulations and an application to an fMRI dataset composed of children with attention deficit hyperactivity disorder (ADHD) and controls. Results show that there are several differences in the clustering structure of the brain between them. Furthermore, we identify some brain regions previously not described to be involved in the ADHD pathophysiology, generating new hypotheses to be tested. The proposed method is general enough to be applied to other types of datasets, not limited to fMRI, where comparison of clustering structures is of interest. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Semi-automatic liver tumor segmentation with hidden Markov measure field model and non-parametric distribution estimation.

    Science.gov (United States)

    Häme, Yrjö; Pollari, Mika

    2012-01-01

    A novel liver tumor segmentation method for CT images is presented. The aim of this work was to reduce the manual labor and time required in the treatment planning of radiofrequency ablation (RFA), by providing accurate and automated tumor segmentations reliably. The developed method is semi-automatic, requiring only minimal user interaction. The segmentation is based on non-parametric intensity distribution estimation and a hidden Markov measure field model, with application of a spherical shape prior. A post-processing operation is also presented to remove the overflow to adjacent tissue. In addition to the conventional approach of using a single image as input data, an approach using images from multiple contrast phases was developed. The accuracy of the method was validated with two sets of patient data, and artificially generated samples. The patient data included preoperative RFA images and a public data set from "3D Liver Tumor Segmentation Challenge 2008". The method achieved very high accuracy with the RFA data, and outperformed other methods evaluated with the public data set, receiving an average overlap error of 30.3% which represents an improvement of 2.3% points to the previously best performing semi-automatic method. The average volume difference was 23.5%, and the average, the RMS, and the maximum surface distance errors were 1.87, 2.43, and 8.09 mm, respectively. The method produced good results even for tumors with very low contrast and ambiguous borders, and the performance remained high with noisy image data.

  4. A sharper view of Pal 5's tails: discovery of stream perturbations with a novel non-parametric technique

    Science.gov (United States)

    Erkal, Denis; Koposov, Sergey E.; Belokurov, Vasily

    2017-09-01

    Only in the Milky Way is it possible to conduct an experiment that uses stellar streams to detect low-mass dark matter subhaloes. In smooth and static host potentials, tidal tails of disrupting satellites appear highly symmetric. However, perturbations from dark subhaloes, as well as from GMCs and the Milky Way bar, can induce density fluctuations that destroy this symmetry. Motivated by the recent release of unprecedentedly deep and wide imaging data around the Pal 5 stellar stream, we develop a new probabilistic, adaptive and non-parametric technique that allows us to bring the cluster's tidal tails into clear focus. Strikingly, we uncover a stream whose density exhibits visible changes on a variety of angular scales. We detect significant bumps and dips, both narrow and broad: two peaks on either side of the progenitor, each only a fraction of a degree across, and two gaps, ∼2° and ∼9° wide, the latter accompanied by a gargantuan lump of debris. This largest density feature results in a pronounced intertail asymmetry which cannot be made consistent with an unperturbed stream according to a suite of simulations we have produced. We conjecture that the sharp peaks around Pal 5 are epicyclic overdensities, while the two dips are consistent with impacts by subhaloes. Assuming an age of 3.4 Gyr for Pal 5, these two gaps would correspond to the characteristic size of gaps created by subhaloes in the mass range of 106-107 M⊙ and 107-108 M⊙, respectively. In addition to dark substructure, we find that the bar of the Milky Way can plausibly produce the asymmetric density seen in Pal 5 and that GMCs could cause the smaller gap.

  5. Transit Timing Observations from Kepler: II. Confirmation of Two Multiplanet Systems via a Non-parametric Correlation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Eric B.; /Florida U.; Fabrycky, Daniel C.; /Lick Observ.; Steffen, Jason H.; /Fermilab; Carter, Joshua A.; /Harvard-Smithsonian Ctr. Astrophys.; Fressin, Francois; /Harvard-Smithsonian Ctr. Astrophys.; Holman, Matthew J.; /Harvard-Smithsonian Ctr. Astrophys.; Lissauer, Jack J.; /NASA, Ames; Moorhead, Althea V.; /Florida U.; Morehead, Robert C.; /Florida U.; Ragozzine, Darin; /Harvard-Smithsonian Ctr. Astrophys.; Rowe, Jason F.; /NASA, Ames /SETI Inst., Mtn. View /San Diego State U., Astron. Dept.

    2012-01-01

    We present a new method for confirming transiting planets based on the combination of transit timing variations (TTVs) and dynamical stability. Correlated TTVs provide evidence that the pair of bodies are in the same physical system. Orbital stability provides upper limits for the masses of the transiting companions that are in the planetary regime. This paper describes a non-parametric technique for quantifying the statistical significance of TTVs based on the correlation of two TTV data sets. We apply this method to an analysis of the transit timing variations of two stars with multiple transiting planet candidates identified by Kepler. We confirm four transiting planets in two multiple planet systems based on their TTVs and the constraints imposed by dynamical stability. An additional three candidates in these same systems are not confirmed as planets, but are likely to be validated as real planets once further observations and analyses are possible. If all were confirmed, these systems would be near 4:6:9 and 2:4:6:9 period commensurabilities. Our results demonstrate that TTVs provide a powerful tool for confirming transiting planets, including low-mass planets and planets around faint stars for which Doppler follow-up is not practical with existing facilities. Continued Kepler observations will dramatically improve the constraints on the planet masses and orbits and provide sensitivity for detecting additional non-transiting planets. If Kepler observations were extended to eight years, then a similar analysis could likely confirm systems with multiple closely spaced, small transiting planets in or near the habitable zone of solar-type stars.

  6. A non-parametric approach for detecting gene-gene interactions associated with age-at-onset outcomes.

    Science.gov (United States)

    Li, Ming; Gardiner, Joseph C; Breslau, Naomi; Anthony, James C; Lu, Qing

    2014-07-01

    Cox-regression-based methods have been commonly used for the analyses of survival outcomes, such as age-at-disease-onset. These methods generally assume the hazard functions are proportional among various risk groups. However, such an assumption may not be valid in genetic association studies, especially when complex interactions are involved. In addition, genetic association studies commonly adopt case-control designs. Direct use of Cox regression to case-control data may yield biased estimators and incorrect statistical inference. We propose a non-parametric approach, the weighted Nelson-Aalen (WNA) approach, for detecting genetic variants that are associated with age-dependent outcomes. The proposed approach can be directly applied to prospective cohort studies, and can be easily extended for population-based case-control studies. Moreover, it does not rely on any assumptions of the disease inheritance models, and is able to capture high-order gene-gene interactions. Through simulations, we show the proposed approach outperforms Cox-regression-based methods in various scenarios. We also conduct an empirical study of progression of nicotine dependence by applying the WNA approach to three independent datasets from the Study of Addiction: Genetics and Environment. In the initial dataset, two SNPs, rs6570989 and rs2930357, located in genes GRIK2 and CSMD1, are found to be significantly associated with the progression of nicotine dependence (ND). The joint association is further replicated in two independent datasets. Further analysis suggests that these two genes may interact and be associated with the progression of ND. As demonstrated by the simulation studies and real data analysis, the proposed approach provides an efficient tool for detecting genetic interactions associated with age-at-onset outcomes.

  7. Comparative study of species sensitivity distributions based on non-parametric kernel density estimation for some transition metals.

    Science.gov (United States)

    Wang, Ying; Feng, Chenglian; Liu, Yuedan; Zhao, Yujie; Li, Huixian; Zhao, Tianhui; Guo, Wenjing

    2017-02-01

    Transition metals in the fourth period of the periodic table of the elements are widely widespread in aquatic environments. They could often occur at certain concentrations to cause adverse effects on aquatic life and human health. Generally, parametric models are mostly used to construct species sensitivity distributions (SSDs), which result in comparison for water quality criteria (WQC) of elements in the same period or group of the periodic table might be inaccurate and the results could be biased. To address this inadequacy, the non-parametric kernel density estimation (NPKDE) with its optimal bandwidths and testing methods were developed for establishing SSDs. The NPKDE was better fit, more robustness and better predicted than conventional normal and logistic parametric density estimations for constructing SSDs and deriving acute HC5 and WQC for transition metals in the fourth period of the periodic table. The decreasing sequence of HC5 values for the transition metals in the fourth period was Ti > Mn > V > Ni > Zn > Cu > Fe > Co > Cr(VI), which were not proportional to atomic number in the periodic table, and for different metals the relatively sensitive species were also different. The results indicated that except for physical and chemical properties there are other factors affecting toxicity mechanisms of transition metals. The proposed method enriched the methodological foundation for WQC. Meanwhile, it also provided a relatively innovative, accurate approach for the WQC derivation and risk assessment of the same group and period metals in aquatic environments to support protection of aquatic organisms.

  8. Sci—Thur AM: YIS - 11: Estimation of Bladder-Wall Cumulative Dose in Multi-Fraction Image-Based Gynaecological Brachytherapy Using Deformable Point Set Registration

    Energy Technology Data Exchange (ETDEWEB)

    Zakariaee, R [Physics Department, University of British Columbia, Vancouver, BC (Canada); Brown, C J; Hamarneh, G [School of Computing Science, Simon Fraser University, Burnaby, BC (Canada); Parsons, C A; Spadinger, I [British Columbia Cancer Agency, Vancouver, BC (Canada)

    2014-08-15

    Dosimetric parameters based on dose-volume histograms (DVH) of contoured structures are routinely used to evaluate dose delivered to target structures and organs at risk. However, the DVH provides no information on the spatial distribution of the dose in situations of repeated fractions with changes in organ shape or size. The aim of this research was to develop methods to more accurately determine geometrically localized, cumulative dose to the bladder wall in intracavitary brachytherapy for cervical cancer. The CT scans and treatment plans of 20 cervical cancer patients were used. Each patient was treated with five high-dose-rate (HDR) brachytherapy fractions of 600cGy prescribed dose. The bladder inner and outer surfaces were delineated using MIM Maestro software (MIM Software Inc.) and were imported into MATLAB (MathWorks) as 3-dimensional point clouds constituting the “bladder wall”. A point-set registration toolbox for MATLAB, Coherent Point Drift (CPD), was used to non-rigidly transform the bladder-wall points from four of the fractions to the coordinate system of the remaining (reference) fraction, which was chosen to be the emptiest bladder for each patient. The doses were accumulated on the reference fraction and new cumulative dosimetric parameters were calculated. The LENT-SOMA toxicity scores of these patients were studied against the cumulative dose parameters. Based on this study, there was no significant correlation between the toxicity scores and the determined cumulative dose parameters.

  9. Power of non-parametric linkage analysis in mapping genes contributing to human longevity in long-lived sib-pairs

    DEFF Research Database (Denmark)

    Tan, Qihua; Zhao, J H; Iachine, I

    2004-01-01

    This report investigates the power issue in applying the non-parametric linkage analysis of affected sib-pairs (ASP) [Kruglyak and Lander, 1995: Am J Hum Genet 57:439-454] to localize genes that contribute to human longevity using long-lived sib-pairs. Data were simulated by introducing a recently...... developed statistical model for measuring marker-longevity associations [Yashin et al., 1999: Am J Hum Genet 65:1178-1193], enabling direct power comparison between linkage and association approaches. The non-parametric linkage (NPL) scores estimated in the region harboring the causal allele are evaluated...... in case of a dominant effect. Although the power issue may depend heavily on the true genetic nature in maintaining survival, our study suggests that results from small-scale sib-pair investigations should be referred with caution, given the complexity of human longevity....

  10. SU-E-J-66: Significant Anatomical and Dosimetric Changes Observed with the Pharyngeal Constrictor During Head and Neck Radiotherapy Elicited From Daily Deformable Image Registration and Dose Accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Kumarasiri, A; Siddiqui, F; Liu, C; Kamal, M; Fraser, C; Chetty, I; Kim, J [Henry Ford Health System, Detroit, MI (United States)

    2015-06-15

    Purpose: To evaluate the anatomical changes and associated dosimetric consequences to the pharyngeal constrictor (PC) that occurs during head and neck radiotherapy (H&N RT). Methods: A cohort of 13 oro-pharyngeal cancer patients, who had daily CBCT’s for localization, was retrospectively studied. On every 5th CBCT, PC was manually delineated by a radiation oncologist. The anterior-posterior PC thickness was measured at the C3 level. Delivered dose to PC was estimated by calculating daily doses on CBCT’s, and accumulating to corresponding planning CT images. For accumulation, a parameter-optimized B- spline-based deformable image registration algorithm (Elastix) was used, in conjunction with an energy-mass mapping dose transfer algorithm. Mean and maximum dose (Dmean, Dmax) to PC was determined and compared with corresponding planned quantities. Results: The mean (±standard deviation) volume increase (ΔV) and thickness increase (Δt) over the course of 35 total fractions were 54±33% (11.9±7.6 cc), and 63±39% (2.9±1.9 mm), respectively. The resultant cumulative mean dose increase from planned dose to PC (ΔDmean) was 1.4±1.3% (0.9±0.8 Gy), while the maximum dose increase (ΔDmax) was 0.0±1.6% (0.0±1.1 Gy). Patients with adaptive replanning (n=6) showed a smaller mean dose increase than those without (n=7); 0.5±0.2% (0.3±0.1 Gy) vs. 2.2±1.4% (1.4±0.9 Gy). There was a statistically significant (p<0.0001) strong correlation between ΔDmean and Δt (Pearson coefficient r=0.78), and a moderate-to-strong correlation (r=0.52) between ΔDmean and ΔV. Correlation between ΔDmean and weight loss ΔW (r=0.1), as well as ΔV and ΔW (r=0.2) were negligible. Conclusion: Patients were found to undergo considerable anatomical changes to pharyngeal constrictor during H&N RT, resulting in non-negligible dose deviations from intended dose. Results are indicative that pharyngeal constrictor thickness, measured at C3 level, is a good predictor for the dose change to

  11. Dependence between fusion temperatures and chemical components of a certain type of coal using classical, non-parametric and bootstrap techniques

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Manteiga, W.; Prada-Sanchez, J.M.; Fiestras-Janeiro, M.G.; Garcia-Jurado, I. (Universidad de Santiago de Compostela, Santiago de Compostela (Spain). Dept. de Estadistica e Investigacion Operativa)

    1990-11-01

    A statistical study of the dependence between various critical fusion temperatures of a certain kind of coal and its chemical components is carried out. As well as using classical dependence techniques (multiple, stepwise and PLS regression, principal components, canonical correlation, etc.) together with the corresponding inference on the parameters of interest, non-parametric regression and bootstrap inference are also performed. 11 refs., 3 figs., 8 tabs.

  12. A non-parametric meta-analysis approach for combining independent microarray datasets: application using two microarray datasets pertaining to chronic allograft nephropathy

    Directory of Open Access Journals (Sweden)

    Archer Kellie J

    2008-02-01

    Full Text Available Abstract Background With the popularity of DNA microarray technology, multiple groups of researchers have studied the gene expression of similar biological conditions. Different methods have been developed to integrate the results from various microarray studies, though most of them rely on distributional assumptions, such as the t-statistic based, mixed-effects model, or Bayesian model methods. However, often the sample size for each individual microarray experiment is small. Therefore, in this paper we present a non-parametric meta-analysis approach for combining data from independent microarray studies, and illustrate its application on two independent Affymetrix GeneChip studies that compared the gene expression of biopsies from kidney transplant recipients with chronic allograft nephropathy (CAN to those with normal functioning allograft. Results The simulation study comparing the non-parametric meta-analysis approach to a commonly used t-statistic based approach shows that the non-parametric approach has better sensitivity and specificity. For the application on the two CAN studies, we identified 309 distinct genes that expressed differently in CAN. By applying Fisher's exact test to identify enriched KEGG pathways among those genes called differentially expressed, we found 6 KEGG pathways to be over-represented among the identified genes. We used the expression measurements of the identified genes as predictors to predict the class labels for 6 additional biopsy samples, and the predicted results all conformed to their pathologist diagnosed class labels. Conclusion We present a new approach for combining data from multiple independent microarray studies. This approach is non-parametric and does not rely on any distributional assumptions. The rationale behind the approach is logically intuitive and can be easily understood by researchers not having advanced training in statistics. Some of the identified genes and pathways have been

  13. A non-parametric meta-analysis approach for combining independent microarray datasets: application using two microarray datasets pertaining to chronic allograft nephropathy.

    Science.gov (United States)

    Kong, Xiangrong; Mas, Valeria; Archer, Kellie J

    2008-02-26

    With the popularity of DNA microarray technology, multiple groups of researchers have studied the gene expression of similar biological conditions. Different methods have been developed to integrate the results from various microarray studies, though most of them rely on distributional assumptions, such as the t-statistic based, mixed-effects model, or Bayesian model methods. However, often the sample size for each individual microarray experiment is small. Therefore, in this paper we present a non-parametric meta-analysis approach for combining data from independent microarray studies, and illustrate its application on two independent Affymetrix GeneChip studies that compared the gene expression of biopsies from kidney transplant recipients with chronic allograft nephropathy (CAN) to those with normal functioning allograft. The simulation study comparing the non-parametric meta-analysis approach to a commonly used t-statistic based approach shows that the non-parametric approach has better sensitivity and specificity. For the application on the two CAN studies, we identified 309 distinct genes that expressed differently in CAN. By applying Fisher's exact test to identify enriched KEGG pathways among those genes called differentially expressed, we found 6 KEGG pathways to be over-represented among the identified genes. We used the expression measurements of the identified genes as predictors to predict the class labels for 6 additional biopsy samples, and the predicted results all conformed to their pathologist diagnosed class labels. We present a new approach for combining data from multiple independent microarray studies. This approach is non-parametric and does not rely on any distributional assumptions. The rationale behind the approach is logically intuitive and can be easily understood by researchers not having advanced training in statistics. Some of the identified genes and pathways have been reported to be relevant to renal diseases. Further study on the

  14. Development and evaluation of an articulated registration algorithm for human skeleton registration

    Science.gov (United States)

    Yip, Stephen; Perk, Timothy; Jeraj, Robert

    2014-03-01

    Accurate registration over multiple scans is necessary to assess treatment response of bone diseases (e.g. metastatic bone lesions). This study aimed to develop and evaluate an articulated registration algorithm for the whole-body skeleton registration in human patients. In articulated registration, whole-body skeletons are registered by auto-segmenting into individual bones using atlas-based segmentation, and then rigidly aligning them. Sixteen patients (weight = 80-117 kg, height = 168-191 cm) with advanced prostate cancer underwent the pre- and mid-treatment PET/CT scans over a course of cancer therapy. Skeletons were extracted from the CT images by thresholding (HU>150). Skeletons were registered using the articulated, rigid, and deformable registration algorithms to account for position and postural variability between scans. The inter-observers agreement in the atlas creation, the agreement between the manually and atlas-based segmented bones, and the registration performances of all three registration algorithms were all assessed using the Dice similarity index—DSIobserved, DSIatlas, and DSIregister. Hausdorff distance (dHausdorff) of the registered skeletons was also used for registration evaluation. Nearly negligible inter-observers variability was found in the bone atlases creation as the DSIobserver was 96 ± 2%. Atlas-based and manual segmented bones were in excellent agreement with DSIatlas of 90 ± 3%. Articulated (DSIregsiter = 75 ± 2%, dHausdorff = 0.37 ± 0.08 cm) and deformable registration algorithms (DSIregister = 77 ± 3%, dHausdorff = 0.34 ± 0.08 cm) considerably outperformed the rigid registration algorithm (DSIregsiter = 59 ± 9%, dHausdorff = 0.69 ± 0.20 cm) in the skeleton registration as the rigid registration algorithm failed to capture the skeleton flexibility in the joints. Despite superior skeleton registration performance, deformable registration algorithm failed to preserve the local rigidity of bones as over 60% of the

  15. Image registration

    CERN Document Server

    Goshtasby, A Ardeshir

    2012-01-01

    This book presents a thorough and detailed guide to image registration, outlining the principles and reviewing state-of-the-art tools and methods. The book begins by identifying the components of a general image registration system, and then describes the design of each component using various image analysis tools. The text reviews a vast array of tools and methods, not only describing the principles behind each tool and method, but also measuring and comparing their performances using synthetic and real data. Features: discusses similarity/dissimilarity measures, point detectors, feature extr

  16. Registration and Summation of Respiratory-Gated or Breath-Hold PET Images Based on Deformation Estimation of Lung from CT Image

    Directory of Open Access Journals (Sweden)

    Hideaki Haneishi

    2016-01-01

    Full Text Available Lung motion due to respiration causes image degradation in medical imaging, especially in nuclear medicine which requires long acquisition times. We have developed a method for image correction between the respiratory-gated (RG PET images in different respiration phases or breath-hold (BH PET images in an inconsistent respiration phase. In the method, the RG or BH-PET images in different respiration phases are deformed under two criteria: similarity of the image intensity distribution and smoothness of the estimated motion vector field (MVF. However, only these criteria may cause unnatural motion estimation of lung. In this paper, assuming the use of a PET-CT scanner, we add another criterion that is the similarity for the motion direction estimated from inhalation and exhalation CT images. The proposed method was first applied to a numerical phantom XCAT with tumors and then applied to BH-PET image data for seven patients. The resultant tumor contrasts and the estimated motion vector fields were compared with those obtained by our previous method. Through those experiments we confirmed that the proposed method can provide an improved and more stable image quality for both RG and BH-PET images.

  17. Non-parametric data-based approach for the quantification and communication of uncertainties in river flood forecasts

    Science.gov (United States)

    Van Steenbergen, N.; Willems, P.

    2012-04-01

    Reliable flood forecasts are the most important non-structural measures to reduce the impact of floods. However flood forecasting systems are subject to uncertainty originating from the input data, model structure and model parameters of the different hydraulic and hydrological submodels. To quantify this uncertainty a non-parametric data-based approach has been developed. This approach analyses the historical forecast residuals (differences between the predictions and the observations at river gauging stations) without using a predefined statistical error distribution. Because the residuals are correlated with the value of the forecasted water level and the lead time, the residuals are split up into discrete classes of simulated water levels and lead times. For each class, percentile values are calculated of the model residuals and stored in a 'three dimensional error' matrix. By 3D interpolation in this error matrix, the uncertainty in new forecasted water levels can be quantified. In addition to the quantification of the uncertainty, the communication of this uncertainty is equally important. The communication has to be done in a consistent way, reducing the chance of misinterpretation. Also, the communication needs to be adapted to the audience; the majority of the larger public is not interested in in-depth information on the uncertainty on the predicted water levels, but only is interested in information on the likelihood of exceedance of certain alarm levels. Water managers need more information, e.g. time dependent uncertainty information, because they rely on this information to undertake the appropriate flood mitigation action. There are various ways in presenting uncertainty information (numerical, linguistic, graphical, time (in)dependent, etc.) each with their advantages and disadvantages for a specific audience. A useful method to communicate uncertainty of flood forecasts is by probabilistic flood mapping. These maps give a representation of the

  18. Non-parametric Bayesian approach to post-translational modification refinement of predictions from tandem mass spectrometry.

    Science.gov (United States)

    Chung, Clement; Emili, Andrew; Frey, Brendan J

    2013-04-01

    Tandem mass spectrometry (MS/MS) is a dominant approach for large-scale high-throughput post-translational modification (PTM) profiling. Although current state-of-the-art blind PTM spectral analysis algorithms can predict thousands of modified peptides (PTM predictions) in an MS/MS experiment, a significant percentage of these predictions have inaccurate modification mass estimates and false modification site assignments. This problem can be addressed by post-processing the PTM predictions with a PTM refinement algorithm. We developed a novel PTM refinement algorithm, iPTMClust, which extends a recently introduced PTM refinement algorithm PTMClust and uses a non-parametric Bayesian model to better account for uncertainties in the quantity and identity of PTMs in the input data. The use of this new modeling approach enables iPTMClust to provide a confidence score per modification site that allows fine-tuning and interpreting resulting PTM predictions. The primary goal behind iPTMClust is to improve the quality of the PTM predictions. First, to demonstrate that iPTMClust produces sensible and accurate cluster assignments, we compare it with k-means clustering, mixtures of Gaussians (MOG) and PTMClust on a synthetically generated PTM dataset. Second, in two separate benchmark experiments using PTM data taken from a phosphopeptide and a yeast proteome study, we show that iPTMClust outperforms state-of-the-art PTM prediction and refinement algorithms, including PTMClust. Finally, we illustrate the general applicability of our new approach on a set of human chromatin protein complex data, where we are able to identify putative novel modified peptides and modification sites that may be involved in the formation and regulation of protein complexes. Our method facilitates accurate PTM profiling, which is an important step in understanding the mechanisms behind many biological processes and should be an integral part of any proteomic study. Our algorithm is implemented in

  19. Efficient Hyperelastic Regularization for Registration

    DEFF Research Database (Denmark)

    Darkner, Sune; Hansen, Michael S; Larsen, Rasmus;

    2011-01-01

    For most image registration problems a smooth one-to-one mapping is desirable, a diffeomorphism. This can be obtained using priors such as volume preservation, certain kinds of elasticity or both. The key principle is to regularize the strain of the deformation which can be done through penalizat......For most image registration problems a smooth one-to-one mapping is desirable, a diffeomorphism. This can be obtained using priors such as volume preservation, certain kinds of elasticity or both. The key principle is to regularize the strain of the deformation which can be done through...... penalization of the eigen values of the stress tensor. We present a computational framework for regularization of image registration for isotropic hyper elasticity. We formulate an efficient and parallel scheme for computing the principal stain based for a given parameterization by decomposing the left Cauchy...... elastic priors such at the Saint Vernant Kirchoff model, the Ogden material model or Riemanian elasticity. We exemplify the approach through synthetic registration and special tests as well as registration of different modalities; 2D cardiac MRI and 3D surfaces of the human ear. The artificial examples...

  20. Diffeomorphic Statistical Deformation Models

    DEFF Research Database (Denmark)

    Hansen, Michael Sass; Hansen, Mads/Fogtman; Larsen, Rasmus

    2007-01-01

    In this paper we present a new method for constructing diffeomorphic statistical deformation models in arbitrary dimensional images with a nonlinear generative model and a linear parameter space. Our deformation model is a modified version of the diffeomorphic model introduced by Cootes et al. Th...... with ground truth in form of manual expert annotations, and compared to Cootes's model. We anticipate applications in unconstrained diffeomorphic synthesis of images, e.g. for tracking, segmentation, registration or classification purposes....

  1. When the Single Matters more than the Group (II): Addressing the Problem of High False Positive Rates in Single Case Voxel Based Morphometry Using Non-parametric Statistics.

    Science.gov (United States)

    Scarpazza, Cristina; Nichols, Thomas E; Seramondi, Donato; Maumet, Camille; Sartori, Giuseppe; Mechelli, Andrea

    2016-01-01

    In recent years, an increasing number of studies have used Voxel Based Morphometry (VBM) to compare a single patient with a psychiatric or neurological condition of interest against a group of healthy controls. However, the validity of this approach critically relies on the assumption that the single patient is drawn from a hypothetical population with a normal distribution and variance equal to that of the control group. In a previous investigation, we demonstrated that family-wise false positive error rate (i.e., the proportion of statistical comparisons yielding at least one false positive) in single case VBM are much higher than expected (Scarpazza et al., 2013). Here, we examine whether the use of non-parametric statistics, which does not rely on the assumptions of normal distribution and equal variance, would enable the investigation of single subjects with good control of false positive risk. We empirically estimated false positive rates (FPRs) in single case non-parametric VBM, by performing 400 statistical comparisons between a single disease-free individual and a group of 100 disease-free controls. The impact of smoothing (4, 8, and 12 mm) and type of pre-processing (Modulated, Unmodulated) was also examined, as these factors have been found to influence FPRs in previous investigations using parametric statistics. The 400 statistical comparisons were repeated using two independent, freely available data sets in order to maximize the generalizability of the results. We found that the family-wise error rate was 5% for increases and 3.6% for decreases in one data set; and 5.6% for increases and 6.3% for decreases in the other data set (5% nominal). Further, these results were not dependent on the level of smoothing and modulation. Therefore, the present study provides empirical evidence that single case VBM studies with non-parametric statistics are not susceptible to high false positive rates. The critical implication of this finding is that VBM can be used

  2. A GPU Based Improved Demons Algorithm for CT to CBCT Deformable Image Registration%GPU框架下基于改进Demons算法的CT-CBCT图像变形配准研究

    Institute of Scientific and Technical Information of China (English)

    王琳婧; 张书旭; 张海南; 沈国辉; 余辉; 彭莹莹

    2013-01-01

    Objective:To propose a GPU-based fast CT to Cone-beam CT (CBCT) deformable image registration (DIR)method for adaptive radiotherapy.Methods:Before calculating deformation moving vector field using origin demons,an intensity correction step is first performed in CBCT by matching the first and the second moments of the voxel intensities inside a patch around the voxel with those on the CT image.This improved demons algorithm is implanted on the GPU fiamework using CUDA language.Results:We use CT and CBCT images from five clinical head-and-neck cancer patients to evaluate our algorithm,and compare the DIR results with that of the classic demons algorithm.The results show that our method can register CT and CBCT images with high accuracy in about 80 seconds.Conclusions:We have proposed and evaluated an improved demons algorithm for CT-CBCT DIR based on the GPU framework,and this improved method is a promising tool for clinical adaptive radiotherapy.%目的:针对自适应放射治疗中的关键技术——CT和CBCT图像变形配准问题,提出一种基于图形处理器GPU的改进Demons配准算法.方法:通过匹配CT和CBCT图像相应体素局部邻域点集的k阶样本矩,计算CBCT图像每一个体素CT值的线性变换系数,并在每一次Demons迭代过程中,对原CBCT图像逐体素做CT值线性变换,最后利用Demons公式计算变形场.结果:5例临床头颈部肿瘤患者的CT和CBCT图像配准结果表明,改进后算法不受CT和CBCT图像CT值强度不一致的影响,能快速、精确的完成图像的变形配准.结论:基于GPU框架的改进Demons算法可以快速精确完成CT-CBCT图像变形配准,较好的满足了临床对于快速变形图像配准的要求.

  3. The relationship between multilevel models and non-parametric multilevel mixture models: Discrete approximation of intraclass correlation, random coefficient distributions, and residual heteroscedasticity.

    Science.gov (United States)

    Rights, Jason D; Sterba, Sonya K

    2016-11-01

    Multilevel data structures are common in the social sciences. Often, such nested data are analysed with multilevel models (MLMs) in which heterogeneity between clusters is modelled by continuously distributed random intercepts and/or slopes. Alternatively, the non-parametric multilevel regression mixture model (NPMM) can accommodate the same nested data structures through discrete latent class variation. The purpose of this article is to delineate analytic relationships between NPMM and MLM parameters that are useful for understanding the indirect interpretation of the NPMM as a non-parametric approximation of the MLM, with relaxed distributional assumptions. We define how seven standard and non-standard MLM specifications can be indirectly approximated by particular NPMM specifications. We provide formulas showing how the NPMM can serve as an approximation of the MLM in terms of intraclass correlation, random coefficient means and (co)variances, heteroscedasticity of residuals at level 1, and heteroscedasticity of residuals at level 2. Further, we discuss how these relationships can be useful in practice. The specific relationships are illustrated with simulated graphical demonstrations, and direct and indirect interpretations of NPMM classes are contrasted. We provide an R function to aid in implementing and visualizing an indirect interpretation of NPMM classes. An empirical example is presented and future directions are discussed. © 2016 The British Psychological Society.

  4. Non-parametric methods – Tree and P-CFA – for the ecological evaluation and assessment of suitable aquatic habitats: A contribution to fish psychology

    Directory of Open Access Journals (Sweden)

    Andreas H. Melcher

    2012-09-01

    Full Text Available This study analyses multidimensional spawning habitat suitability of the fish species “Nase” (latin: Chondrostoma nasus. This is the first time non-parametric methods were used to better understand biotic habitat use in theory and practice. In particular, we tested (1 the Decision Tree technique, Chi-squared Automatic Interaction Detectors (CHAID, to identify specific habitat types and (2 Prediction-Configural Frequency Analysis (P-CFA to test for statistical significance. The combination of both non-parametric methods, CHAID and P-CFA, enabled the identification, prediction and interpretation of most typical significant spawning habitats, and we were also able to determine non-typical habitat types, e.g., types in contrast to antitypes. The gradual combination of these two methods underlined three significant habitat types: shaded habitat, fine and coarse substrate habitat depending on high flow velocity. The study affirmed the importance for fish species of shading and riparian vegetation along river banks. In addition, this method provides a weighting of interactions between specific habitat characteristics. The results demonstrate that efficient river restoration requires re-establishing riparian vegetation as well as the open river continuum and hydro-morphological improvements to habitats.

  5. A Non-Parametric Approach for the Activation Detection of Block Design fMRI Simulated Data Using Self-Organizing Maps and Support Vector Machine.

    Science.gov (United States)

    Bahrami, Sheyda; Shamsi, Mousa

    2017-01-01

    Functional magnetic resonance imaging (fMRI) is a popular method to probe the functional organization of the brain using hemodynamic responses. In this method, volume images of the entire brain are obtained with a very good spatial resolution and low temporal resolution. However, they always suffer from high dimensionality in the face of classification algorithms. In this work, we combine a support vector machine (SVM) with a self-organizing map (SOM) for having a feature-based classification by using SVM. Then, a linear kernel SVM is used for detecting the active areas. Here, we use SOM for feature extracting and labeling the datasets. SOM has two major advances: (i) it reduces dimension of data sets for having less computational complexity and (ii) it is useful for identifying brain regions with small onset differences in hemodynamic responses. Our non-parametric model is compared with parametric and non-parametric methods. We use simulated fMRI data sets and block design inputs in this paper and consider the contrast to noise ratio (CNR) value equal to 0.6 for simulated datasets. fMRI simulated dataset has contrast 1-4% in active areas. The accuracy of our proposed method is 93.63% and the error rate is 6.37%.

  6. Detection and correction of inconsistency-based errors in non-rigid registration

    Science.gov (United States)

    Gass, Tobias; Szekely, Gabor; Goksel, Orcun

    2014-03-01

    In this paper we present a novel post-processing technique to detect and correct inconsistency-based errors in non-rigid registration. While deformable registration is ubiquitous in medical image computing, assessing its quality has yet been an open problem. We propose a method that predicts local registration errors of existing pairwise registrations between a set of images, while simultaneously estimating corrected registrations. In the solution the error is constrained to be small in areas of high post-registration image similarity, while local registrations are constrained to be consistent between direct and indirect registration paths. The latter is a critical property of an ideal registration process, and has been frequently used to asses the performance of registration algorithms. In our work, the consistency is used as a target criterion, for which we efficiently find a solution using a linear least-squares model on a coarse grid of registration control points. We show experimentally that the local errors estimated by our algorithm correlate strongly with true registration errors in experiments with known, dense ground-truth deformations. Additionally, the estimated corrected registrations consistently improve over the initial registrations in terms of average deformation error or TRE for different registration algorithms on both simulated and clinical data, independent of modality (MRI/CT), dimensionality (2D/3D) and employed primary registration method (demons/Markov-randomfield).

  7. An active contour-based atlas registration model applied to automatic subthalamic nucleus targeting on MRI: method and validation.

    Science.gov (United States)

    Duay, Valérie; Bresson, Xavier; Castro, Javier Sanchez; Pollo, Claudio; Cuadra, Meritxell Bach; Thiran, Jean-Philippe

    2008-01-01

    This paper presents a new non parametric atlas registration framework, derived from the optical flow model and the active contour theory, applied to automatic subthalamic nucleus (STN) targeting in deep brain stimulation (DBS) surgery. In a previous work, we demonstrated that the STN position can be predicted based on the position of surrounding visible structures, namely the lateral and third ventricles. A STN targeting process can thus be obtained by registering these structures of interest between a brain atlas and the patient image. Here we aim to improve the results of the state of the art targeting methods and at the same time to reduce the computational time. Our simultaneous segmentation and registration model shows mean STN localization errors statistically similar to the most performing registration algorithms tested so far and to the targeting expert's variability. Moreover, the computational time of our registration method is much lower, which is a worthwhile improvement from a clinical point of view.

  8. Water quality analysis in rivers with non-parametric probability distributions and fuzzy inference systems: application to the Cauca River, Colombia.

    Science.gov (United States)

    Ocampo-Duque, William; Osorio, Carolina; Piamba, Christian; Schuhmacher, Marta; Domingo, José L

    2013-02-01

    The integration of water quality monitoring variables is essential in environmental decision making. Nowadays, advanced techniques to manage subjectivity, imprecision, uncertainty, vagueness, and variability are required in such complex evaluation process. We here propose a probabilistic fuzzy hybrid model to assess river water quality. Fuzzy logic reasoning has been used to compute a water quality integrative index. By applying a Monte Carlo technique, based on non-parametric probability distributions, the randomness of model inputs was estimated. Annual histograms of nine water quality variables were built with monitoring data systematically collected in the Colombian Cauca River, and probability density estimations using the kernel smoothing method were applied to fit data. Several years were assessed, and river sectors upstream and downstream the city of Santiago de Cali, a big city with basic wastewater treatment and high industrial activity, were analyzed. The probabilistic fuzzy water quality index was able to explain the reduction in water quality, as the river receives a larger number of agriculture, domestic, and industrial effluents. The results of the hybrid model were compared to traditional water quality indexes. The main advantage of the proposed method is that it considers flexible boundaries between the linguistic qualifiers used to define the water status, being the belongingness of water quality to the diverse output fuzzy sets or classes provided with percentiles and histograms, which allows classify better the real water condition. The results of this study show that fuzzy inference systems integrated to stochastic non-parametric techniques may be used as complementary tools in water quality indexing methodologies.

  9. Mass preserving image registration

    DEFF Research Database (Denmark)

    Gorbunova, Vladlena; Sporring, Jon; Lo, Pechin Chien Pau

    2010-01-01

    The paper presents results the mass preserving image registration method in the Evaluation of Methods for Pulmonary Image Registration 2010 (EMPIRE10) Challenge. The mass preserving image registration algorithm was applied to the 20 image pairs. Registration was evaluated using four different...

  10. Piecewise nonlinear image registration using DCT basis functions

    Science.gov (United States)

    Gan, Lin; Agam, Gady

    2015-03-01

    The deformation field in nonlinear image registration is usually modeled by a global model. Such models are often faced with the problem that a locally complex deformation cannot be accurately modeled by simply increasing degrees of freedom (DOF). In addition, highly complex models require additional regularization which is usually ineffective when applied globally. Registering locally corresponding regions addresses this problem in a divide and conquer strategy. In this paper we propose a piecewise image registration approach using Discrete Cosine Transform (DCT) basis functions for a nonlinear model. The contributions of this paper are three-folds. First, we develop a multi-level piecewise registration framework that extends the concept of piecewise linear registration and works with any nonlinear deformation model. This framework is then applied to nonlinear DCT registration. Second, we show how adaptive model complexity and regularization could be applied for local piece registration, thus accounting for higher variability. Third, we show how the proposed piecewise DCT can overcome the fundamental problem of a large curvature matrix inversion in global DCT when using high degrees of freedoms. The proposed approach can be viewed as an extension of global DCT registration where the overall model complexity is increased while achieving effective local regularization. Experimental evaluation results provide comparison of the proposed approach to piecewise linear registration using an affine transformation model and a global nonlinear registration using DCT model. Preliminary results show that the proposed approach achieves improved performance.

  11. Medical Image Registration and Surgery Simulation

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten

    1996-01-01

    This thesis explores the application of physical models in medical image registration and surgery simulation. The continuum models of elasticity and viscous fluids are described in detail, and this knowledge is used as a basis for most of the methods described here. Real-time deformable models......, and the use of selective matrix vector multiplication. Fluid medical image registration A new and faster algorithm for non-rigid registration using viscous fluid models is presented. This algorithm replaces the core part of the original algorithm with multi-resolution convolution using a new filter, which...... for surgery simulation Real-time deformable models, using finite element models of linear elasticity, have been developed for surgery simulation. The time consumption of the finite element method is reduced dramaticly, by the use of condensation techniques, explicit inversion of the stiffness matrix...

  12. Image Registration for Targeted MRI-guided Transperineal Prostate Biopsy

    Science.gov (United States)

    Fedorov, Andriy; Tuncali, Kemal; Fennessy, Fiona M.; Tokuda, Junichi; Hata, Nobuhiko; Wells, William M.; Kikinis, Ron; Tempany, Clare M.

    2012-01-01

    Purpose To develop and evaluate image registration methodology for automated re-identification of tumor-suspicious foci from pre-procedural MR exams during MR-guided transperineal prostate core biopsy. Materials and Methods A hierarchical approach for automated registration between planning and intra-procedural T2-weighted prostate MRI was developed and evaluated on the images acquired during 10 consecutive MR-guided biopsies. Registration accuracy was quantified at image-based landmarks and by evaluating spatial overlap for the manually segmented prostate and sub-structures. Registration reliability was evaluated by simulating initial mis-registration and analyzing the convergence behavior. Registration precision was characterized at the planned biopsy targets. Results The total computation time was compatible with a clinical setting, being at most 2 minutes. Deformable registration led to a significant improvement in spatial overlap of the prostate and peripheral zone contours compared to both rigid and affine registration. Average in-slice landmark registration error was 1.3±0.5 mm. Experiments simulating initial mis-registration resulted in an estimated average capture range of 6 mm and an average in-slice registration precision of ±0.3 mm. Conclusion Our registration approach requires minimum user interaction and is compatible with the time constraints of our interventional clinical workflow. The initial evaluation shows acceptable accuracy, reliability and consistency of the method. PMID:22645031

  13. Comparison of three filters in the solution of the Navier-Stokes equation in registration

    DEFF Research Database (Denmark)

    Gramkow, Claus; Bro-Nielsen, Morten

    1997-01-01

    he registration of images is an often encountered problem in e.g. medical imagi ng, satelite imaging, or stereo vision. In most applications a rigid deformation model does not suffce and complex deformations must be estimated. In medical registration Bajcsy et al. [1] have proposed the use...

  14. A Multistage Approach for Image Registration.

    Science.gov (United States)

    Bowen, Francis; Hu, Jianghai; Du, Eliza Yingzi

    2016-09-01

    Successful image registration is an important step for object recognition, target detection, remote sensing, multimodal content fusion, scene blending, and disaster assessment and management. The geometric and photometric variations between images adversely affect the ability for an algorithm to estimate the transformation parameters that relate the two images. Local deformations, lighting conditions, object obstructions, and perspective differences all contribute to the challenges faced by traditional registration techniques. In this paper, a novel multistage registration approach is proposed that is resilient to view point differences, image content variations, and lighting conditions. Robust registration is realized through the utilization of a novel region descriptor which couples with the spatial and texture characteristics of invariant feature points. The proposed region descriptor is exploited in a multistage approach. A multistage process allows the utilization of the graph-based descriptor in many scenarios thus allowing the algorithm to be applied to a broader set of images. Each successive stage of the registration technique is evaluated through an effective similarity metric which determines subsequent action. The registration of aerial and street view images from pre- and post-disaster provide strong evidence that the proposed method estimates more accurate global transformation parameters than traditional feature-based methods. Experimental results show the robustness and accuracy of the proposed multistage image registration methodology.

  15. 非参数化方法在 DNB 传递分析中的应用%Non-parametric Method Used in DNB Propagation Analysis

    Institute of Scientific and Technical Information of China (English)

    刘俊强; 黄禹

    2014-01-01

    Deciding the internal pressure probability distribution of the fuel rod is a fundamental work in the DNB propagation analysis using Monte Carlo method .The traditional parametric method is used to assume that the internal pressure probability of all rods can be characterized by a normal distribution .But this is not always the case , sometimes there is far more differences between normal distribution and the real one . However ,a new method ,the non-parametric method was used in the treatment of the rod internal pressure data because of its applicability anyw here and good precision in the case of large samples ,and the results show that it is more conservative to use non-parametric method than parametric method in DNB propagation analysis .%采用蒙特卡罗方法进行偏离泡核沸腾(DNB)传递分析中一个最基本的工作是确定燃料棒内压的概率分布。通常假设燃料棒的内压服从正态分布即传统的参数化方法。但燃料棒的内压不总是满足正态分布或与正态分布相差较远。为克服这一不足,本工作采用一种新的方法即非参数化的方法计算燃料棒内压的概率分布。通过对压水堆核电厂燃料棒内压数据的非参数化处理,得到燃料棒内压的概率分布并进行DNB传递分析。由计算结果得出:在DNB传递分析中,相较于参数化方法,采用非参数化方法所得的棒内压概率分布具有普遍适用性及大样本下的良好精度,分析结果更为保守、安全。

  16. Constrained non-rigid registration for whole body image registration: method and validation

    Science.gov (United States)

    Li, Xia; Yankeelov, Thomas E.; Peterson, Todd E.; Gore, John C.; Dawant, Benoit M.

    2007-03-01

    3D intra- and inter-subject registration of image volumes is important for tasks that include measurements and quantification of temporal/longitudinal changes, atlas-based segmentation, deriving population averages, or voxel and tensor-based morphometry. A number of methods have been proposed to tackle this problem but few of them have focused on the problem of registering whole body image volumes acquired either from humans or small animals. These image volumes typically contain a large number of articulated structures, which makes registration more difficult than the registration of head images, to which the vast majority of registration algorithms have been applied. To solve this problem, we have previously proposed an approach, which initializes an intensity-based non-rigid registration algorithm with a point based registration technique [1, 2]. In this paper, we introduce new constraints into our non-rigid registration algorithm to prevent the bones from being deformed inaccurately. Results we have obtained show that the new constrained algorithm leads to better registration results than the previous one.

  17. SOPIE: an R package for the non-parametric estimation of the off-pulse interval of a pulsar light curve

    Science.gov (United States)

    Schutte, Willem D.; Swanepoel, Jan W. H.

    2016-09-01

    An automated tool to derive the off-pulse interval of a light curve originating from a pulsar is needed. First, we derive a powerful and accurate non-parametric sequential estimation technique to estimate the off-pulse interval of a pulsar light curve in an objective manner. This is in contrast to the subjective `eye-ball' (visual) technique, and complementary to the Bayesian Block method which is currently used in the literature. The second aim involves the development of a statistical package, necessary for the implementation of our new estimation technique. We develop a statistical procedure to estimate the off-pulse interval in the presence of noise. It is based on a sequential application of p-values obtained from goodness-of-fit tests for uniformity. The Kolmogorov-Smirnov, Cramér-von Mises, Anderson-Darling and Rayleigh test statistics are applied. The details of the newly developed statistical package SOPIE (Sequential Off-Pulse Interval Estimation) are discussed. The developed estimation procedure is applied to simulated and real pulsar data. Finally, the SOPIE estimated off-pulse intervals of two pulsars are compared to the estimates obtained with the Bayesian Block method and yield very satisfactory results. We provide the code to implement the SOPIE package, which is publicly available at http://CRAN.R-project.org/package=SOPIE (Schutte).

  18. Non parametric deprojection of NIKA SZ observations: pressure distribution in the Planck-discovered cluster PSZ1 G045.85+57.71

    CERN Document Server

    Ruppin, F; Comis, B; Ade, P; André, P; Arnaud, M; Beelen, A; Benoît, A; Bideaud, A; Billot, N; Bourrion, O; Calvo, M; Catalano, A; Coiffard, G; D'Addabbo, A; De Petris, M; Désert, F -X; Doyle, S; Goupy, J; Kramer, C; Leclercq, S; Macías-Pérez, J F; Mauskopf, P; Mayet, F; Monfardini, A; Pajot, F; Pascale, E; Perotto, L; Pisano, G; Pointecouteau, E; Ponthieu, N; Pratt, G W; Revéret, V; Ritacco, A; Rodriguez, L; Romero, C; Schuster, K; Sievers, A; Triqueneaux, S; Tucker, C; Zylka, R

    2016-01-01

    The determination of the thermodynamic properties of clusters of galaxies at intermediate and high redshift can bring new insights into the formation of large scale structures. It is essential for a robust calibration of the mass-observable scaling relations and their scatter, which are key ingredients for precise cosmology using cluster statistics. Here we illustrate an application of high-resolution $(< 20$ arcsec) thermal Sunyaev-Zel'dovich (tSZ) observations by probing the intracluster medium (ICM) of the Planck-discovered galaxy cluster PSZ1 G045.85+57.71 at redshift $z = 0.61$, using tSZ data obtained with the NIKA camera, a dual-band (150 and 260~GHz) instrument operated at the IRAM 30-meter telescope. We deproject jointly NIKA and Planck data to extract the electronic pressure distribution non-parametrically from the cluster core ($R \\sim 0.02\\, R_{500}$) to its outskirts ($R \\sim 3\\, R_{500}$), for the first time at intermediate redshift. The constraints on the resulting pressure profile allow us ...

  19. Determination of drug absorption rate in time-variant disposition by direct deconvolution using beta clearance correction and end-constrained non-parametric regression.

    Science.gov (United States)

    Neelakantan, S; Veng-Pedersen, P

    2005-11-01

    A novel numerical deconvolution method is presented that enables the estimation of drug absorption rates under time-variant disposition conditions. The method involves two components. (1) A disposition decomposition-recomposition (DDR) enabling exact changes in the unit impulse response (UIR) to be constructed based on centrally based clearance changes iteratively determined. (2) A non-parametric, end-constrained cubic spline (ECS) input response function estimated by cross-validation. The proposed DDR-ECS method compensates for disposition changes between the test and the reference administrations by using a "beta" clearance correction based on DDR analysis. The representation of the input response by the ECS method takes into consideration the complex absorption process and also ensures physiologically realistic approximations of the response. The stability of the new method to noisy data was evaluated by comprehensive simulations that considered different UIRs, various input functions, clearance changes and a novel scaling of the input function that includes the "flip-flop" absorption phenomena. The simulated input response was also analysed by two other methods and all three methods were compared for their relative performances. The DDR-ECS method provides better estimation of the input profile under significant clearance changes but tends to overestimate the input when there were only small changes in the clearance.

  20. A novel non-parametric method for uncertainty evaluation of correlation-based molecular signatures: its application on PAM50 algorithm.

    Science.gov (United States)

    Fresno, Cristóbal; González, Germán Alexis; Merino, Gabriela Alejandra; Flesia, Ana Georgina; Podhajcer, Osvaldo Luis; Llera, Andrea Sabina; Fernández, Elmer Andrés

    2017-03-01

    The PAM50 classifier is used to assign patients to the highest correlated breast cancer subtype irrespectively of the obtained value. Nonetheless, all subtype correlations are required to build the risk of recurrence (ROR) score, currently used in therapeutic decisions. Present subtype uncertainty estimations are not accurate, seldom considered or require a population-based approach for this context. Here we present a novel single-subject non-parametric uncertainty estimation based on PAM50's gene label permutations. Simulations results ( n  = 5228) showed that only 61% subjects can be reliably 'Assigned' to the PAM50 subtype, whereas 33% should be 'Not Assigned' (NA), leaving the rest to tight 'Ambiguous' correlations between subtypes. The NA subjects exclusion from the analysis improved survival subtype curves discrimination yielding a higher proportion of low and high ROR values. Conversely, all NA subjects showed similar survival behaviour regardless of the original PAM50 assignment. We propose to incorporate our PAM50 uncertainty estimation to support therapeutic decisions. Source code can be found in 'pbcmc' R package at Bioconductor. cristobalfresno@gmail.com or efernandez@bdmg.com.ar. Supplementary data are available at Bioinformatics online.

  1. Non-parametric study of the evolution of the cosmological equation of state with SNeIa, BAO and high redshift GRBs

    CERN Document Server

    Postnikov, Sergey; Hernandez, Xavier; Capozziello, Salvatore

    2014-01-01

    We study the dark energy equation of state as a function of redshift in a non-parametric way, without imposing any {\\it a priori} $w(z)$ (ratio of pressure over energy density) functional form. As a check of the method, we test our scheme through the use of synthetic data sets produced from different input cosmological models which have the same relative errors and redshift distribution as the real data. Using the luminosity-time $L_{X}-T_{a}$ correlation for GRB X-ray afterglows (the Dainotti et al. correlation), we are able to utilize GRB sample from the {\\it Swift} satellite as probes of the expansion history of the Universe out to $z \\approx 10$. Within the assumption of a flat FLRW universe and combining SNeIa data with BAO constraints, the resulting maximum likelihood solutions are close to a constant $w=-1$. If one imposes the restriction of a constant $w$, we obtain $w=-0.99 \\pm 0.06$ (consistent with a cosmological constant) with the present day Hubble constant as $H_{0}=70.0 \\pm 0.6$ ${\\rm km} \\, {\\...

  2. A Critical Look at the Mass-Metallicity-SFR Relation in the Local Universe: Non-parametric Analysis Framework and Confounding Systematics

    CERN Document Server

    Salim, Samir; Ly, Chun; Brinchmann, Jarle; Davé, Romeel; Dickinson, Mark; Salzer, John J; Charlot, Stéphane

    2014-01-01

    It has been proposed that the mass-metallicity relation of galaxies exhibits a secondary dependence on star formation rate (SFR), and that the resulting M-Z-SFR relation may be redshift-invariant, i.e., "fundamental." However, conflicting results on the character of the SFR dependence, and whether it exists, have been reported. To gain insight into the origins of the conflicting results, we (a) devise a non-parametric, astrophysically-motivated analysis framework based on the offset from the star-forming ("main") sequence at a given stellar mass (relative specific SFR), (b) apply this methodology and perform a comprehensive re-analysis of the local M-Z-SFR relation, based on SDSS, GALEX, and WISE data, and (c) study the impact of sample selection, and of using different metallicity and SFR indicators. We show that metallicity is anti-correlated with specific SFR regardless of the indicators used. We do not find that the relation is spurious due to correlations arising from biased metallicity measurements, or ...

  3. A simple 2D non-parametric resampling statistical approach to assess confidence in species identification in DNA barcoding--an alternative to likelihood and bayesian approaches.

    Science.gov (United States)

    Jin, Qian; He, Li-Jun; Zhang, Ai-Bing

    2012-01-01

    In the recent worldwide campaign for the global biodiversity inventory via DNA barcoding, a simple and easily used measure of confidence for assigning sequences to species in DNA barcoding has not been established so far, although the likelihood ratio test and the bayesian approach had been proposed to address this issue from a statistical point of view. The TDR (Two Dimensional non-parametric Resampling) measure newly proposed in this study offers users a simple and easy approach to evaluate the confidence of species membership in DNA barcoding projects. We assessed the validity and robustness of the TDR approach using datasets simulated under coalescent models, and an empirical dataset, and found that TDR measure is very robust in assessing species membership of DNA barcoding. In contrast to the likelihood ratio test and bayesian approach, the TDR method stands out due to simplicity in both concepts and calculations, with little in the way of restrictive population genetic assumptions. To implement this approach we have developed a computer program package (TDR1.0beta) freely available from ftp://202.204.209.200/education/video/TDR1.0beta.rar.

  4. Application of non-parametric bootstrap methods to estimate confidence intervals for QTL location in a beef cattle QTL experimental population.

    Science.gov (United States)

    Jongjoo, Kim; Davis, Scott K; Taylor, Jeremy F

    2002-06-01

    Empirical confidence intervals (CIs) for the estimated quantitative trait locus (QTL) location from selective and non-selective non-parametric bootstrap resampling methods were compared for a genome scan involving an Angus x Brahman reciprocal fullsib backcross population. Genetic maps, based on 357 microsatellite markers, were constructed for 29 chromosomes using CRI-MAP V2.4. Twelve growth, carcass composition and beef quality traits (n = 527-602) were analysed to detect QTLs utilizing (composite) interval mapping approaches. CIs were investigated for 28 likelihood ratio test statistic (LRT) profiles for the one QTL per chromosome model. The CIs from the non-selective bootstrap method were largest (87 7 cM average or 79-2% coverage of test chromosomes). The Selective II procedure produced the smallest CI size (42.3 cM average). However, CI sizes from the Selective II procedure were more variable than those produced by the two LOD drop method. CI ranges from the Selective II procedure were also asymmetrical (relative to the most likely QTL position) due to the bias caused by the tendency for the estimated QTL position to be at a marker position in the bootstrap samples and due to monotonicity and asymmetry of the LRT curve in the original sample.

  5. Higher Order Kernels and Locally Affine LDDMM Registration

    CERN Document Server

    Sommer, Stefan; Darkner, Sune; Pennec, Xavier

    2011-01-01

    To achieve sparse description that allows intuitive analysis, we aim to represent deformation with a basis containing interpretable elements, and we wish to use elements that have the description capacity to represent the deformation compactly. We accomplish this by introducing higher order kernels in the LDDMM registration framework. The kernels allow local description of affine transformations and subsequent compact description of non-translational movement and of the entire non-rigid deformation. This is obtained with a representation that contains directly interpretable information from both mathematical and modeling perspectives. We develop the mathematical construction behind the higher order kernels, we show the implications for sparse image registration and deformation description, and we provide examples of how the capacity of the kernels enables registration with a very low number of parameters. The capacity and interpretability of the kernels lead to natural modeling of articulated movement, and th...

  6. Phase Correlation Based Iris Image Registration Model

    Institute of Scientific and Technical Information of China (English)

    Jun-Zhou Huang; Tie-Niu Tan; Li Ma; Yun-Hong Wang

    2005-01-01

    Iris recognition is one of the most reliable personal identification methods. In iris recognition systems, image registration is an important component. Accurately registering iris images leads to higher recognition rate for an iris recognition system. This paper proposes a phase correlation based method for iris image registration with sub-pixel accuracy.Compared with existing methods, it is insensitive to image intensity and can compensate to a certain extent the non-linear iris deformation caused by pupil movement. Experimental results show that the proposed algorithm has an encouraging performance.

  7. COMPARISON OF VOLUMETRIC REGISTRATION ALGORITHMS FOR TENSOR-BASED MORPHOMETRY

    Science.gov (United States)

    Villalon, Julio; Joshi, Anand A.; Toga, Arthur W.; Thompson, Paul M.

    2015-01-01

    Nonlinear registration of brain MRI scans is often used to quantify morphological differences associated with disease or genetic factors. Recently, surface-guided fully 3D volumetric registrations have been developed that combine intensity-guided volume registrations with cortical surface constraints. In this paper, we compare one such algorithm to two popular high-dimensional volumetric registration methods: large-deformation viscous fluid registration, formulated in a Riemannian framework, and the diffeomorphic “Demons” algorithm. We performed an objective morphometric comparison, by using a large MRI dataset from 340 young adult twin subjects to examine 3D patterns of correlations in anatomical volumes. Surface-constrained volume registration gave greater effect sizes for detecting morphometric associations near the cortex, while the other two approaches gave greater effects sizes subcortically. These findings suggest novel ways to combine the advantages of multiple methods in the future. PMID:26925198

  8. Non-parametric deprojection of NIKA SZ observations: Pressure distribution in the Planck-discovered cluster PSZ1 G045.85+57.71

    Science.gov (United States)

    Ruppin, F.; Adam, R.; Comis, B.; Ade, P.; André, P.; Arnaud, M.; Beelen, A.; Benoît, A.; Bideaud, A.; Billot, N.; Bourrion, O.; Calvo, M.; Catalano, A.; Coiffard, G.; D'Addabbo, A.; De Petris, M.; Désert, F.-X.; Doyle, S.; Goupy, J.; Kramer, C.; Leclercq, S.; Macías-Pérez, J. F.; Mauskopf, P.; Mayet, F.; Monfardini, A.; Pajot, F.; Pascale, E.; Perotto, L.; Pisano, G.; Pointecouteau, E.; Ponthieu, N.; Pratt, G. W.; Revéret, V.; Ritacco, A.; Rodriguez, L.; Romero, C.; Schuster, K.; Sievers, A.; Triqueneaux, S.; Tucker, C.; Zylka, R.

    2017-01-01

    The determination of the thermodynamic properties of clusters of galaxies at intermediate and high redshift can bring new insights into the formation of large-scale structures. It is essential for a robust calibration of the mass-observable scaling relations and their scatter, which are key ingredients for precise cosmology using cluster statistics. Here we illustrate an application of high resolution (R 0.02 R500) to its outskirts (R 3 R500) non-parametrically for the first time at intermediate redshift. The constraints on the resulting pressure profile allow us to reduce the relative uncertainty on the integrated Compton parameter by a factor of two compared to the Planck value. Combining the tSZ data and the deprojected electronic density profile from XMM-Newton allows us to undertake a hydrostatic mass analysis, for which we study the impact of a spherical model assumption on the total mass estimate. We also investigate the radial temperature and entropy distributions. These data indicate that PSZ1 G045.85+57.71 is a massive (M500 5.5 × 1014M⊙) cool-core cluster. This work is part of a pilot study aiming at optimizing the treatment of the NIKA2 tSZ large program dedicated to the follow-up of SZ-discovered clusters at intermediate and high redshifts. This study illustrates the potential of NIKA2 to put constraints on thethermodynamic properties and tSZ-scaling relations of these clusters, and demonstrates the excellent synergy between tSZ and X-ray observations of similar angular resolution.

  9. Estimation from PET data of transient changes in dopamine concentration induced by alcohol: support for a non-parametric signal estimation method

    Energy Technology Data Exchange (ETDEWEB)

    Constantinescu, C C; Yoder, K K; Normandin, M D; Morris, E D [Department of Radiology, Indiana University School of Medicine, Indianapolis, IN (United States); Kareken, D A [Department of Neurology, Indiana University School of Medicine, Indianapolis, IN (United States); Bouman, C A [Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN (United States); O' Connor, S J [Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN (United States)], E-mail: emorris@iupui.edu

    2008-03-07

    We previously developed a model-independent technique (non-parametric ntPET) for extracting the transient changes in neurotransmitter concentration from paired (rest and activation) PET studies with a receptor ligand. To provide support for our method, we introduced three hypotheses of validation based on work by Endres and Carson (1998 J. Cereb. Blood Flow Metab. 18 1196-210) and Yoder et al (2004 J. Nucl. Med. 45 903-11), and tested them on experimental data. All three hypotheses describe relationships between the estimated free (synaptic) dopamine curves (F{sup DA}(t)) and the change in binding potential ({delta}BP). The veracity of the F{sup DA}(t) curves recovered by nonparametric ntPET is supported when the data adhere to the following hypothesized behaviors: (1) {delta}BP should decline with increasing DA peak time, (2) {delta}BP should increase as the strength of the temporal correlation between F{sup DA}(t) and the free raclopride (F{sup RAC}(t)) curve increases, (3) {delta}BP should decline linearly with the effective weighted availability of the receptor sites. We analyzed regional brain data from 8 healthy subjects who received two [{sup 11}C]raclopride scans: one at rest, and one during which unanticipated IV alcohol was administered to stimulate dopamine release. For several striatal regions, nonparametric ntPET was applied to recover F{sup DA}(t), and binding potential values were determined. Kendall rank-correlation analysis confirmed that the F{sup DA}(t) data followed the expected trends for all three validation hypotheses. Our findings lend credence to our model-independent estimates of F{sup DA}(t). Application of nonparametric ntPET may yield important insights into how alterations in timing of dopaminergic neurotransmission are involved in the pathologies of addiction and other psychiatric disorders.

  10. Mass Preserving Registration for lung CT

    DEFF Research Database (Denmark)

    Gorbunova, Vladlena; Lo, Pechin Chien Pau; Loeve, Martin

    2009-01-01

    intensities due to differences in inspiration level, we propose to adjust the intensity of lung tissue according to the local expansion or compression. An image registration method without intensity adjustment is compared to the proposed method. Both approaches are evaluated on a set of 10 pairs of expiration...... and inspiration CT scans of children with cystic fibrosis lung disease. The proposed method with mass preserving adjustment results in significantly better alignment of the vessel trees. Analysis of local volume change for regions with trapped air compared to normally ventilated regions revealed larger...... differences between these regions in the case of mass preserving image registration, indicating that mass preserving registration is better at capturing localized differences in lung deformation....

  11. Quantification and validation of soft tissue deformation

    DEFF Research Database (Denmark)

    Mosbech, Thomas Hammershaimb; Ersbøll, Bjarne Kjær; Christensen, Lars Bager

    2009-01-01

    markers are easy to distinguish from the surrounding soft tissue in 3D computed tomography images. By tracking corresponding markers using methods from point-based registration, we are able to accurately quantify the magnitude and propagation of the induced deformation. The deformation is parameterised......We present a model for soft tissue deformation derived empirically from 10 pig carcases. The carcasses are subjected to deformation from a known single source of pressure located at the skin surface, and the deformation is quantified by means of steel markers injected into the tissue. The steel...

  12. Non Parametric Statistical Analysis Research on College Students' Math Anxiety Generation Factors%大学生数学焦虑产生因素的非参数统计分析

    Institute of Scientific and Technical Information of China (English)

    范大付; 李春红

    2012-01-01

    The non-parametric statistics is a test method which does not involve the general parameter and does not depend on the distribution. By using the non-parametric statistics for analyzing and researching the factors of college students' math anxiety, we try to solve the negative effect for studying from math anxiety, and increase the academic achievement of the college students.%采用非参数统计方法中的Wilconxon秩和检验、Friedman检验、Mann-WhitneyU检验对大学生数学焦虑的5个主要影响因素进行了定量分析与评价,获得了数学焦虑产生因素的相关非参数统计结果,为解决数学焦虑所带来的学习负效应提供参考。

  13. Supervised local error estimation for nonlinear image registration using convolutional neural networks

    Science.gov (United States)

    Eppenhof, Koen A. J.; Pluim, Josien P. W.

    2017-02-01

    Error estimation in medical image registration is valuable when validating, comparing, or combining registration methods. To validate a nonlinear image registration method, ideally the registration error should be known for the entire image domain. We propose a supervised method for the estimation of a registration error map for nonlinear image registration. The method is based on a convolutional neural network that estimates the norm of the residual deformation from patches around each pixel in two registered images. This norm is interpreted as the registration error, and is defined for every pixel in the image domain. The network is trained using a set of artificially deformed images. Each training example is a pair of images: the original image, and a random deformation of that image. No manually labeled ground truth error is required. At test time, only the two registered images are required as input. We train and validate the network on registrations in a set of 2D digital subtraction angiography sequences, such that errors up to eight pixels can be estimated. We show that for this range of errors the convolutional network is able to learn the registration error in pairs of 2D registered images at subpixel precision. Finally, we present a proof of principle for the extension to 3D registration problems in chest CTs, showing that the method has the potential to estimate errors in 3D registration problems.

  14. Bayesian technique for image classifying registration.

    Science.gov (United States)

    Hachama, Mohamed; Desolneux, Agnès; Richard, Frédéric J P

    2012-09-01

    In this paper, we address a complex image registration issue arising while the dependencies between intensities of images to be registered are not spatially homogeneous. Such a situation is frequently encountered in medical imaging when a pathology present in one of the images modifies locally intensity dependencies observed on normal tissues. Usual image registration models, which are based on a single global intensity similarity criterion, fail to register such images, as they are blind to local deviations of intensity dependencies. Such a limitation is also encountered in contrast-enhanced images where there exist multiple pixel classes having different properties of contrast agent absorption. In this paper, we propose a new model in which the similarity criterion is adapted locally to images by classification of image intensity dependencies. Defined in a Bayesian framework, the similarity criterion is a mixture of probability distributions describing dependencies on two classes. The model also includes a class map which locates pixels of the two classes and weighs the two mixture components. The registration problem is formulated both as an energy minimization problem and as a maximum a posteriori estimation problem. It is solved using a gradient descent algorithm. In the problem formulation and resolution, the image deformation and the class map are estimated simultaneously, leading to an original combination of registration and classification that we call image classifying registration. Whenever sufficient information about class location is available in applications, the registration can also be performed on its own by fixing a given class map. Finally, we illustrate the interest of our model on two real applications from medical imaging: template-based segmentation of contrast-enhanced images and lesion detection in mammograms. We also conduct an evaluation of our model on simulated medical data and show its ability to take into account spatial variations

  15. Mokken scale analysis of mental health and well-being questionnaire item responses: a non-parametric IRT method in empirical research for applied health researchers

    Directory of Open Access Journals (Sweden)

    Stochl Jan

    2012-06-01

    Full Text Available Abstract Background Mokken scaling techniques are a useful tool for researchers who wish to construct unidimensional tests or use questionnaires that comprise multiple binary or polytomous items. The stochastic cumulative scaling model offered by this approach is ideally suited when the intention is to score an underlying latent trait by simple addition of the item response values. In our experience, the Mokken model appears to be less well-known than for example the (related Rasch model, but is seeing increasing use in contemporary clinical research and public health. Mokken's method is a generalisation of Guttman scaling that can assist in the determination of the dimensionality of tests or scales, and enables consideration of reliability, without reliance on Cronbach's alpha. This paper provides a practical guide to the application and interpretation of this non-parametric item response theory method in empirical research with health and well-being questionnaires. Methods Scalability of data from 1 a cross-sectional health survey (the Scottish Health Education Population Survey and 2 a general population birth cohort study (the National Child Development Study illustrate the method and modeling steps for dichotomous and polytomous items respectively. The questionnaire data analyzed comprise responses to the 12 item General Health Questionnaire, under the binary recoding recommended for screening applications, and the ordinal/polytomous responses to the Warwick-Edinburgh Mental Well-being Scale. Results and conclusions After an initial analysis example in which we select items by phrasing (six positive versus six negatively worded items we show that all items from the 12-item General Health Questionnaire (GHQ-12 – when binary scored – were scalable according to the double monotonicity model, in two short scales comprising six items each (Bech’s “well-being” and “distress” clinical scales. An illustration of ordinal item analysis

  16. The signaling petri net-based simulator: a non-parametric strategy for characterizing the dynamics of cell-specific signaling networks.

    Directory of Open Access Journals (Sweden)

    Derek Ruths

    2008-02-01

    Full Text Available Reconstructing cellular signaling networks and understanding how they work are major endeavors in cell biology. The scale and complexity of these networks, however, render their analysis using experimental biology approaches alone very challenging. As a result, computational methods have been developed and combined with experimental biology approaches, producing powerful tools for the analysis of these networks. These computational methods mostly fall on either end of a spectrum of model parameterization. On one end is a class of structural network analysis methods; these typically use the network connectivity alone to generate hypotheses about global properties. On the other end is a class of dynamic network analysis methods; these use, in addition to the connectivity, kinetic parameters of the biochemical reactions to predict the network's dynamic behavior. These predictions provide detailed insights into the properties that determine aspects of the network's structure and behavior. However, the difficulty of obtaining numerical values of kinetic parameters is widely recognized to limit the applicability of this latter class of methods. Several researchers have observed that the connectivity of a network alone can provide significant insights into its dynamics. Motivated by this fundamental observation, we present the signaling Petri net, a non-parametric model of cellular signaling networks, and the signaling Petri net-based simulator, a Petri net execution strategy for characterizing the dynamics of signal flow through a signaling network using token distribution and sampling. The result is a very fast method, which can analyze large-scale networks, and provide insights into the trends of molecules' activity-levels in response to an external stimulus, based solely on the network's connectivity. We have implemented the signaling Petri net-based simulator in the PathwayOracle toolkit, which is publicly available at http

  17. Non-parametric linear regression of discrete Fourier transform convoluted chromatographic peak responses under non-ideal conditions of internal standard method.

    Science.gov (United States)

    Korany, Mohamed A; Maher, Hadir M; Galal, Shereen M; Fahmy, Ossama T; Ragab, Marwa A A

    2010-11-15

    This manuscript discusses the application of chemometrics to the handling of HPLC response data using the internal standard method (ISM). This was performed on a model mixture containing terbutaline sulphate, guaiphenesin, bromhexine HCl, sodium benzoate and propylparaben as an internal standard. Derivative treatment of chromatographic response data of analyte and internal standard was followed by convolution of the resulting derivative curves using 8-points sin x(i) polynomials (discrete Fourier functions). The response of each analyte signal, its corresponding derivative and convoluted derivative data were divided by that of the internal standard to obtain the corresponding ratio data. This was found beneficial in eliminating different types of interferences. It was successfully applied to handle some of the most common chromatographic problems and non-ideal conditions, namely: overlapping chromatographic peaks and very low analyte concentrations. For example, a significant change in the correlation coefficient of sodium benzoate, in case of overlapping peaks, went from 0.9975 to 0.9998 on applying normal conventional peak area and first derivative under Fourier functions methods, respectively. Also a significant improvement in the precision and accuracy for the determination of synthetic mixtures and dosage forms in non-ideal cases was achieved. For example, in the case of overlapping peaks guaiphenesin mean recovery% and RSD% went from 91.57, 9.83 to 100.04, 0.78 on applying normal conventional peak area and first derivative under Fourier functions methods, respectively. This work also compares the application of Theil's method, a non-parametric regression method, in handling the response ratio data, with the least squares parametric regression method, which is considered the de facto standard method used for regression. Theil's method was found to be superior to the method of least squares as it assumes that errors could occur in both x- and y-directions and

  18. Mokken scale analysis of mental health and well-being questionnaire item responses: a non-parametric IRT method in empirical research for applied health researchers.

    Science.gov (United States)

    Stochl, Jan; Jones, Peter B; Croudace, Tim J

    2012-06-11

    Mokken scaling techniques are a useful tool for researchers who wish to construct unidimensional tests or use questionnaires that comprise multiple binary or polytomous items. The stochastic cumulative scaling model offered by this approach is ideally suited when the intention is to score an underlying latent trait by simple addition of the item response values. In our experience, the Mokken model appears to be less well-known than for example the (related) Rasch model, but is seeing increasing use in contemporary clinical research and public health. Mokken's method is a generalisation of Guttman scaling that can assist in the determination of the dimensionality of tests or scales, and enables consideration of reliability, without reliance on Cronbach's alpha. This paper provides a practical guide to the application and interpretation of this non-parametric item response theory method in empirical research with health and well-being questionnaires. Scalability of data from 1) a cross-sectional health survey (the Scottish Health Education Population Survey) and 2) a general population birth cohort study (the National Child Development Study) illustrate the method and modeling steps for dichotomous and polytomous items respectively. The questionnaire data analyzed comprise responses to the 12 item General Health Questionnaire, under the binary recoding recommended for screening applications, and the ordinal/polytomous responses to the Warwick-Edinburgh Mental Well-being Scale. After an initial analysis example in which we select items by phrasing (six positive versus six negatively worded items) we show that all items from the 12-item General Health Questionnaire (GHQ-12)--when binary scored--were scalable according to the double monotonicity model, in two short scales comprising six items each (Bech's "well-being" and "distress" clinical scales). An illustration of ordinal item analysis confirmed that all 14 positively worded items of the Warwick-Edinburgh Mental

  19. Locally Orderless Registration Code

    DEFF Research Database (Denmark)

    2012-01-01

    This is code for the TPAMI paper "Locally Orderless Registration". The code requires intel threadding building blocks installed and is provided for 64 bit on mac, linux and windows.......This is code for the TPAMI paper "Locally Orderless Registration". The code requires intel threadding building blocks installed and is provided for 64 bit on mac, linux and windows....

  20. Locally orderless registration code

    DEFF Research Database (Denmark)

    2012-01-01

    This is code for the TPAMI paper "Locally Orderless Registration". The code requires intel threadding building blocks installed and is provided for 64 bit on mac, linux and windows.......This is code for the TPAMI paper "Locally Orderless Registration". The code requires intel threadding building blocks installed and is provided for 64 bit on mac, linux and windows....

  1. Semiautomated Multimodal Breast Image Registration

    Directory of Open Access Journals (Sweden)

    Charlotte Curtis

    2012-01-01

    However, due to the highly deformable nature of breast tissues, comparison of 3D and 2D modalities is a challenge. To enable this comparison, a registration technique was developed to map features from 2D mammograms to locations in the 3D image space. This technique was developed and tested using magnetic resonance (MR images as a reference 3D modality, as MR breast imaging is an established technique in clinical practice. The algorithm was validated using a numerical phantom then successfully tested on twenty-four image pairs. Dice's coefficient was used to measure the external goodness of fit, resulting in an excellent overall average of 0.94. Internal agreement was evaluated by examining internal features in consultation with a radiologist, and subjective assessment concludes that reasonable alignment was achieved.

  2. Quicksilver: Fast predictive image registration - A deep learning approach.

    Science.gov (United States)

    Yang, Xiao; Kwitt, Roland; Styner, Martin; Niethammer, Marc

    2017-07-11

    This paper introduces Quicksilver, a fast deformable image registration method. Quicksilver registration for image-pairs works by patch-wise prediction of a deformation model based directly on image appearance. A deep encoder-decoder network is used as the prediction model. While the prediction strategy is general, we focus on predictions for the Large Deformation Diffeomorphic Metric Mapping (LDDMM) model. Specifically, we predict the momentum-parameterization of LDDMM, which facilitates a patch-wise prediction strategy while maintaining the theoretical properties of LDDMM, such as guaranteed diffeomorphic mappings for sufficiently strong regularization. We also provide a probabilistic version of our prediction network which can be sampled during the testing time to calculate uncertainties in the predicted deformations. Finally, we introduce a new correction network which greatly increases the prediction accuracy of an already existing prediction network. We show experimental results for uni-modal atlas-to-image as well as uni-/multi-modal image-to-image registrations. These experiments demonstrate that our method accurately predicts registrations obtained by numerical optimization, is very fast, achieves state-of-the-art registration results on four standard validation datasets, and can jointly learn an image similarity measure. Quicksilver is freely available as an open-source software. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. DTI Image Registration under Probabilistic Fiber Bundles Tractography Learning

    Science.gov (United States)

    Lei, Tao; Fan, Yangyu; Zhang, Xiuwei

    2016-01-01

    Diffusion Tensor Imaging (DTI) image registration is an essential step for diffusion tensor image analysis. Most of the fiber bundle based registration algorithms use deterministic fiber tracking technique to get the white matter fiber bundles, which will be affected by the noise and volume. In order to overcome the above problem, we proposed a Diffusion Tensor Imaging image registration method under probabilistic fiber bundles tractography learning. Probabilistic tractography technique can more reasonably trace to the structure of the nerve fibers. The residual error estimation step in active sample selection learning is improved by modifying the residual error model using finite sample set. The calculated deformation field is then registered on the DTI images. The results of our proposed registration method are compared with 6 state-of-the-art DTI image registration methods under visualization and 3 quantitative evaluation standards. The experimental results show that our proposed method has a good comprehensive performance.

  4. Temporal mammogram image registration using optimized curvilinear coordinates.

    Science.gov (United States)

    Abdel-Nasser, Mohamed; Moreno, Antonio; Puig, Domenec

    2016-04-01

    Registration of mammograms plays an important role in breast cancer computer-aided diagnosis systems. Radiologists usually compare mammogram images in order to detect abnormalities. The comparison of mammograms requires a registration between them. A temporal mammogram registration method is proposed in this paper. It is based on the curvilinear coordinates, which are utilized to cope both with global and local deformations in the breast area. Temporal mammogram pairs are used to validate the proposed method. After registration, the similarity between the mammograms is maximized, and the distance between manually defined landmarks is decreased. In addition, a thorough comparison with the state-of-the-art mammogram registration methods is performed to show its effectiveness.

  5. A Novel Technique for Prealignment in Multimodality Medical Image Registration

    Directory of Open Access Journals (Sweden)

    Wu Zhou

    2014-01-01

    Full Text Available Image pair is often aligned initially based on a rigid or affine transformation before a deformable registration method is applied in medical image registration. Inappropriate initial registration may compromise the registration speed or impede the convergence of the optimization algorithm. In this work, a novel technique was proposed for prealignment in both monomodality and multimodality image registration based on statistical correlation of gradient information. A simple and robust algorithm was proposed to determine the rotational differences between two images based on orientation histogram matching accumulated from local orientation of each pixel without any feature extraction. Experimental results showed that it was effective to acquire the orientation angle between two unregistered images with advantages over the existed method based on edge-map in multimodalities. Applying the orientation detection into the registration of CT/MR, T1/T2 MRI, and monomadality images with respect to rigid and nonrigid deformation improved the chances of finding the global optimization of the registration and reduced the search space of optimization.

  6. Information from the Registration Service

    CERN Multimedia

    GS Department

    2011-01-01

    Please note that the Registration Service (Bldg 55-1st floor) will be exceptionally open during the annual end of year closure from 10:00 to 12:00 on the following days: 22, 23, 26, 27,28, 29 et 30 December 2011 and 2,3, et 4 January 2012. All the activities related to the Registration Service will be operational: registration for contractors’ personnel; registrations for professional visits; access cards; car stickers; biometric registration. The Registration Service

  7. SU-E-J-196: New Visualization Methods for Longitudinal MRI Registrations and Segmentations

    Energy Technology Data Exchange (ETDEWEB)

    Veeraraghavan, H; Deasy, J [Memorial Sloan Kettering Cancer Center, NY, NY (United States)

    2014-06-01

    Purpose: To develop visualization techniques to facilitate easy assessment of (a) registration and (b) tracking volumetric changes in structures during radiation therapy from MRI. Method: The frequently used method for visualizing registrations between scans is a multi-color overlay technique or deformation vector fields. However, the overlay technique is unintuitive and does not help to appreciate the quality of registration particularly when the registration mismatches are not very large. Similarly, the deformation fields give an indication of extent of deformation but do not help to assess the differences in registration. We present a mirroring and edge-augmented mirroring technique that places the fixed and moving image next to each other and allows the user to quickly assess the small differences in registration. Next, we present a volumetric intersection based 3D model to visualize the changes in diseased lymph node volumes in head and neck cancer. 3D model-based visualization provides more information about the location-specific changes in volume rather than the simplistic one dimensional information obtained from 2D plot of nodal volume changes. Result: We show results comparing our approach with the standard colorbased overlay method for comparing registrations of intra-patient registrations using T2-MRI. Upon comparing the mirroring technique with the color-overlay, one can more easily appreciate the differences in registration. Adding edge-based mirroring seems to further assist in evaluating the registration. Our approach for viewing registrations seems to be more intuitive and easy to use in order to help assess the quality of registration compared to color-based overlays. Similarly, the change volumetric model together with a 2D plot reveals more information including the locations undergoing changes and responding to treatment. Conclusions: Better approaches are necessary for assessing the quality of registrations and changes in diseased structures

  8. Automatic Registration of SAR Images with the Integrated Complementary Invariant Feature

    Directory of Open Access Journals (Sweden)

    Xiao-hua Wang

    2014-01-01

    Full Text Available The accurate Synthetic Aperture Radar (SAR image registration is important for exact analyses of mine deformation and ecological environment change. Currently, many image registration algorithms have been proposed, but these registration algorithms cannot be directly applied to SAR image, so an integrated registration approach is presented in this paper. Firstly, it is the coarse matching with Canny edge dividing regions; secondly, it is the fine matching by SIFT algorithm with improved Canny edge features; finally, obtain accurate registration SAR image. This approach has fewer computations than that simply using SIFT feature matching. Experimental analyses with SAR images of Yanzhou Mine demonstrate the efficiency and the accuracy of this approach for mine SAR image registration, which provides a simple and effective tool in SAR monitoring of mining deformation and ecological changes

  9. 3D Elastic Registration of Ultrasound Images Based on Skeleton Feature

    Institute of Scientific and Technical Information of China (English)

    LI Dan-dan; LIU Zhi-Yan; SHEN Yi

    2005-01-01

    In order to eliminate displacement and elastic deformation between images of adjacent frames in course of 3D ultrasonic image reconstruction, elastic registration based on skeleton feature was adopt in this paper. A new automatically skeleton tracking extract algorithm is presented, which can extract connected skeleton to express figure feature. Feature points of connected skeleton are extracted automatically by accounting topical curvature extreme points several times. Initial registration is processed according to barycenter of skeleton. Whereafter, elastic registration based on radial basis function are processed according to feature points of skeleton. Result of example demonstrate that according to traditional rigid registration, elastic registration based on skeleton feature retain natural difference in shape for organ's different part, and eliminate slight elastic deformation between frames caused by image obtained process simultaneously. This algorithm has a high practical value for image registration in course of 3D ultrasound image reconstruction.

  10. A non-parametric method for automatic determination of P-wave and S-wave arrival times: application to local micro earthquakes

    Science.gov (United States)

    Rawles, Christopher; Thurber, Clifford

    2015-08-01

    We present a simple, fast, and robust method for automatic detection of P- and S-wave arrivals using a nearest neighbours-based approach. The nearest neighbour algorithm is one of the most popular time-series classification methods in the data mining community and has been applied to time-series problems in many different domains. Specifically, our method is based on the non-parametric time-series classification method developed by Nikolov. Instead of building a model by estimating parameters from the data, the method uses the data itself to define the model. Potential phase arrivals are identified based on their similarity to a set of reference data consisting of positive and negative sets, where the positive set contains examples of analyst identified P- or S-wave onsets and the negative set contains examples that do not contain P waves or S waves. Similarity is defined as the square of the Euclidean distance between vectors representing the scaled absolute values of the amplitudes of the observed signal and a given reference example in time windows of the same length. For both P waves and S waves, a single pass is done through the bandpassed data, producing a score function defined as the ratio of the sum of similarity to positive examples over the sum of similarity to negative examples for each window. A phase arrival is chosen as the centre position of the window that maximizes the score function. The method is tested on two local earthquake data sets, consisting of 98 known events from the Parkfield region in central California and 32 known events from the Alpine Fault region on the South Island of New Zealand. For P-wave picks, using a reference set containing two picks from the Parkfield data set, 98 per cent of Parkfield and 94 per cent of Alpine Fault picks are determined within 0.1 s of the analyst pick. For S-wave picks, 94 per cent and 91 per cent of picks are determined within 0.2 s of the analyst picks for the Parkfield and Alpine Fault data set

  11. Quantitative Phylogenomics of Within-Species Mitogenome Variation: Monte Carlo and Non-Parametric Analysis of Phylogeographic Structure among Discrete Transatlantic Breeding Areas of Harp Seals (Pagophilus groenlandicus.

    Directory of Open Access Journals (Sweden)

    Steven M Carr

    -stepping-stone biogeographic models, but not a simple 1-step trans-Atlantic model. Plots of the cumulative pairwise sequence difference curves among seals in each of the four populations provide continuous proxies for phylogenetic diversification within each. Non-parametric Kolmogorov-Smirnov (K-S tests of maximum pairwise differences between these curves indicates that the Greenland Sea population has a markedly younger phylogenetic structure than either the White Sea population or the two Northwest Atlantic populations, which are of intermediate age and homogeneous structure. The Monte Carlo and K-S assessments provide sensitive quantitative tests of within-species mitogenomic phylogeography. This is the first study to indicate that the White Sea and Greenland Sea populations have different population genetic histories. The analysis supports the hypothesis that Harp Seals comprises three genetically distinguishable breeding populations, in the White Sea, Greenland Sea, and Northwest Atlantic. Implications for an ice-dependent species during ongoing climate change are discussed.

  12. Non-rigid registration using higher-order mutual information

    Science.gov (United States)

    Rueckert, D.; Clarkson, M. J.; Hill, D. L. G.; Hawkes, D. J.

    2000-03-01

    Non-rigid registration of multi-modality images is an important tool for assessing temporal and structural changesbetween images. For rigid registration, voxel similarity measures like mutual information have been shown to alignimages from different modalities accurately and robustly. For non-rigid registration, mutual information can besensitive to local variations of intensity which in MR images may be caused by RF inhomogeneity. The reasonfor the sensitivity of mutual information towards intensity variations stems from the fact that mutual informationignores any spatial information. In this paper we propose an extension of the mutual information framework whichincorporates spatial information about higher-order image structure into the registration process and has the potentialto improve the accuracy and robustness of non-rigid registration in the presence of intensity variations. We haveapplied the non-rigid registration algorithm to a number of simulated MR brain images of a digital phantom whichhave been degraded by a simulated intensity shading and a known deformation. In addition, we have applied thealgorithm for the non-rigid registration of eight pre- and post-operative brain MR images which were acquired withan interventional MR scanner and therefore have substantial intensity shading due to RF field inhomogeneities. Inall cases the second-order estimate of mutual information leads to robust and accurate registration.

  13. Pesticide Registration Information System

    Data.gov (United States)

    U.S. Environmental Protection Agency — PRISM provides an integrated, web portal for all pesticide related data, communications, registrations and transactions for OPP and its stakeholders, partners and...

  14. Visitor Registration System

    Data.gov (United States)

    US Agency for International Development — Visitor Registration System (VRS) streamlines visitor check-in and check-out process for expediting visitors into USAID. The system captures visitor information...

  15. Antenna Structure Registrate

    Data.gov (United States)

    Department of Homeland Security — This file is an extract of the Antenna Structure Registrate (ASR). The ASR consists of antenna structures that are more than 60.96 meters (200 feet) in height or...

  16. Surface driven biomechanical breast image registration

    Science.gov (United States)

    Eiben, Björn; Vavourakis, Vasileios; Hipwell, John H.; Kabus, Sven; Lorenz, Cristian; Buelow, Thomas; Williams, Norman R.; Keshtgar, M.; Hawkes, David J.

    2016-03-01

    Biomechanical modelling enables large deformation simulations of breast tissues under different loading conditions to be performed. Such simulations can be utilised to transform prone Magnetic Resonance (MR) images into a different patient position, such as upright or supine. We present a novel integration of biomechanical modelling with a surface registration algorithm which optimises the unknown material parameters of a biomechanical model and performs a subsequent regularised surface alignment. This allows deformations induced by effects other than gravity, such as those due to contact of the breast and MR coil, to be reversed. Correction displacements are applied to the biomechanical model enabling transformation of the original pre-surgical images to the corresponding target position. The algorithm is evaluated for the prone-to-supine case using prone MR images and the skin outline of supine Computed Tomography (CT) scans for three patients. A mean target registration error (TRE) of 10:9 mm for internal structures is achieved. For the prone-to-upright scenario, an optical 3D surface scan of one patient is used as a registration target and the nipple distances after alignment between the transformed MRI and the surface are 10:1 mm and 6:3 mm respectively.

  17. Spatially varying Riemannian elasticity regularization: Application to thoracic CT registration in image-guided radiotherapy

    DEFF Research Database (Denmark)

    Bjerre, Troels; Hansen, Mads Fogtmann; Aznar, M.;

    2012-01-01

    For deformable registration of computed tomography (CT) scans in image guided radiation therapy (IGRT) we apply Riemannian elasticity regularization. We explore the use of spatially varying elasticity parameters to encourage bone rigidity and local tissue volume change only in the gross tumor......-model we achieved a total mean target registration error (TRE) of 0.92 ± 0.49 mm. Using spatially varying regularization for the HL case, deformation was limited to the GTV and lungs....

  18. Deformation field correction for spatial normalization of PET images

    Science.gov (United States)

    Bilgel, Murat; Carass, Aaron; Resnick, Susan M.; Wong, Dean F.; Prince, Jerry L.

    2015-01-01

    Spatial normalization of positron emission tomography (PET) images is essential for population studies, yet the current state of the art in PET-to-PET registration is limited to the application of conventional deformable registration methods that were developed for structural images. A method is presented for the spatial normalization of PET images that improves their anatomical alignment over the state of the art. The approach works by correcting the deformable registration result using a model that is learned from training data having both PET and structural images. In particular, viewing the structural registration of training data as ground truth, correction factors are learned by using a generalized ridge regression at each voxel given the PET intensities and voxel locations in a population-based PET template. The trained model can then be used to obtain more accurate registration of PET images to the PET template without the use of a structural image. A cross validation evaluation on 79 subjects shows that the proposed method yields more accurate alignment of the PET images compared to deformable PET-to-PET registration as revealed by 1) a visual examination of the deformed images, 2) a smaller error in the deformation fields, and 3) a greater overlap of the deformed anatomical labels with ground truth segmentations. PMID:26142272

  19. Microscopic neural image registration based on the structure of mitochondria

    Science.gov (United States)

    Cao, Huiwen; Han, Hua; Rao, Qiang; Xiao, Chi; Chen, Xi

    2017-02-01

    Microscopic image registration is a key component of the neural structure reconstruction with serial sections of neural tissue. The goal of microscopic neural image registration is to recover the 3D continuity and geometrical properties of specimen. During image registration, various distortions need to be corrected, including image rotation, translation, tissue deformation et.al, which come from the procedure of sample cutting, staining and imaging. Furthermore, there is only certain similarity between adjacent sections, and the degree of similarity depends on local structure of the tissue and the thickness of the sections. These factors make the microscopic neural image registration a challenging problem. To tackle the difficulty of corresponding landmarks extraction, we introduce a novel image registration method for Scanning Electron Microscopy (SEM) images of serial neural tissue sections based on the structure of mitochondria. The ellipsoidal shape of mitochondria ensures that the same mitochondria has similar shape between adjacent sections, and its characteristic of broad distribution in the neural tissue guarantees that landmarks based on the mitochondria distributed widely in the image. The proposed image registration method contains three parts: landmarks extraction between adjacent sections, corresponding landmarks matching and image deformation based on the correspondences. We demonstrate the performance of our method with SEM images of drosophila brain.

  20. INTER-GROUP IMAGE REGISTRATION BY HIERARCHICAL GRAPH SHRINKAGE.

    Science.gov (United States)

    Ying, Shihui; Wu, Guorong; Liao, Shu; Shen, Dinggang

    2013-12-31

    In this paper, we propose a novel inter-group image registration method to register different groups of images (e.g., young and elderly brains) simultaneously. Specifically, we use a hierarchical two-level graph to model the distribution of entire images on the manifold, with intra-graph representing the image distribution in each group and the inter-graph describing the relationship between two groups. Then the procedure of inter-group registration is formulated as a dynamic evolution of graph shrinkage. The advantage of our method is that the topology of entire image distribution is explored to guide the image registration. In this way, each image coordinates with its neighboring images on the manifold to deform towards the population center, by following the deformation pathway simultaneously optimized within the graph. Our proposed method has been also compared with other state-of-the-art inter-group registration methods, where our method achieves better registration results in terms of registration accuracy and robustness.

  1. Geodesic active fields--a geometric framework for image registration.

    Science.gov (United States)

    Zosso, Dominique; Bresson, Xavier; Thiran, Jean-Philippe

    2011-05-01

    In this paper we present a novel geometric framework called geodesic active fields for general image registration. In image registration, one looks for the underlying deformation field that best maps one image onto another. This is a classic ill-posed inverse problem, which is usually solved by adding a regularization term. Here, we propose a multiplicative coupling between the registration term and the regularization term, which turns out to be equivalent to embed the deformation field in a weighted minimal surface problem. Then, the deformation field is driven by a minimization flow toward a harmonic map corresponding to the solution of the registration problem. This proposed approach for registration shares close similarities with the well-known geodesic active contours model in image segmentation, where the segmentation term (the edge detector function) is coupled with the regularization term (the length functional) via multiplication as well. As a matter of fact, our proposed geometric model is actually the exact mathematical generalization to vector fields of the weighted length problem for curves and surfaces introduced by Caselles-Kimmel-Sapiro. The energy of the deformation field is measured with the Polyakov energy weighted by a suitable image distance, borrowed from standard registration models. We investigate three different weighting functions, the squared error and the approximated absolute error for monomodal images, and the local joint entropy for multimodal images. As compared to specialized state-of-the-art methods tailored for specific applications, our geometric framework involves important contributions. Firstly, our general formulation for registration works on any parametrizable, smooth and differentiable surface, including nonflat and multiscale images. In the latter case, multiscale images are registered at all scales simultaneously, and the relations between space and scale are intrinsically being accounted for. Second, this method is, to

  2. Nonrigid Registration of Monomodal MRI Using Linear Viscoelastic Model

    Directory of Open Access Journals (Sweden)

    Jian Yang

    2014-01-01

    Full Text Available This paper describes a method for nonrigid registration of monomodal MRI based on physical laws. The proposed method assumes that the properties of image deformations are like those of viscoelastic matter, which exhibits the properties of both an elastic solid and a viscous fluid. Therefore, the deformation fields of the deformed image are constrained by both sets of properties. After global registration, the local shape variations are assumed to have the properties of the Maxwell model of linear viscoelasticity, and the deformation fields are constrained by the corresponding partial differential equations. To speed up the registration, an adaptive force is introduced according to the maximum displacement of each iteration. Both synthetic datasets and real datasets are used to evaluate the proposed method. We compare the results of the linear viscoelastic model with those of the fluid model on the basis of both the standard and adaptive forces. The results demonstrate that the adaptive force increases in both models and that the linear viscoelastic model improves the registration accuracy.

  3. Higher-order momentum distributions and locally affine LDDMM registration

    DEFF Research Database (Denmark)

    Sommer, Stefan Horst; Nielsen, Mads; Darkner, Sune;

    2013-01-01

    higher-order momentum distributions in the large deformation diffeomorphic metric mapping (LDDMM) registration framework. While the zeroth-order moments previously used in LDDMM only describe local displacement, the first-order momenta that are proposed here represent a basis that allows local...

  4. Dense image registration through MRFs and efficient linear programming.

    Science.gov (United States)

    Glocker, Ben; Komodakis, Nikos; Tziritas, Georgios; Navab, Nassir; Paragios, Nikos

    2008-12-01

    In this paper, we introduce a novel and efficient approach to dense image registration, which does not require a derivative of the employed cost function. In such a context, the registration problem is formulated using a discrete Markov random field objective function. First, towards dimensionality reduction on the variables we assume that the dense deformation field can be expressed using a small number of control points (registration grid) and an interpolation strategy. Then, the registration cost is expressed using a discrete sum over image costs (using an arbitrary similarity measure) projected on the control points, and a smoothness term that penalizes local deviations on the deformation field according to a neighborhood system on the grid. Towards a discrete approach, the search space is quantized resulting in a fully discrete model. In order to account for large deformations and produce results on a high resolution level, a multi-scale incremental approach is considered where the optimal solution is iteratively updated. This is done through successive morphings of the source towards the target image. Efficient linear programming using the primal dual principles is considered to recover the lowest potential of the cost function. Very promising results using synthetic data with known deformations and real data demonstrate the potentials of our approach.

  5. The Stellar Initial Mass Function in Early-type Galaxies from Absorption Line Spectroscopy. IV. A Super-Salpeter IMF in the Center of NGC 1407 from Non-parametric Models

    Science.gov (United States)

    Conroy, Charlie; van Dokkum, Pieter G.; Villaume, Alexa

    2017-03-01

    It is now well-established that the stellar initial mass function (IMF) can be determined from the absorption line spectra of old stellar systems, and this has been used to measure the IMF and its variation across the early-type galaxy population. Previous work focused on measuring the slope of the IMF over one or more stellar mass intervals, implicitly assuming that this is a good description of the IMF and that the IMF has a universal low-mass cutoff. In this work we consider more flexible IMFs, including two-component power laws with a variable low-mass cutoff and a general non-parametric model. We demonstrate with mock spectra that the detailed shape of the IMF can be accurately recovered as long as the data quality is high (S/N ≳ 300 Å‑1) and cover a wide wavelength range (0.4–1.0 μm). We apply these flexible IMF models to a high S/N spectrum of the center of the massive elliptical galaxy NGC 1407. Fitting the spectrum with non-parametric IMFs, we find that the IMF in the center shows a continuous rise extending toward the hydrogen-burning limit, with a behavior that is well-approximated by a power law with an index of ‑2.7. These results provide strong evidence for the existence of extreme (super-Salpeter) IMFs in the cores of massive galaxies.

  6. The Stellar Initial Mass Function in Early-Type Galaxies From Absorption Line Spectroscopy. IV. A Super-Salpeter IMF in the center of NGC 1407 from Non-Parametric Models

    CERN Document Server

    Conroy, Charlie; Villaume, Alexa

    2016-01-01

    It is now well-established that the stellar initial mass function (IMF) can be determined from the absorption line spectra of old stellar systems, and this has been used to measure the IMF and its variation across the early-type galaxy population. Previous work focused on measuring the slope of the IMF over one or more stellar mass intervals, implicitly assuming that this is a good description of the IMF and that the IMF has a universal low-mass cutoff. In this work we consider more flexible IMFs, including two-component power-laws with a variable low-mass cutoff and a general non-parametric model. We demonstrate with mock spectra that the detailed shape of the IMF can be accurately recovered as long as the data quality are high (S/N$\\gtrsim300$) and cover a wide wavelength range (0.4um-1.0um). We apply these flexible IMF models to a high S/N spectrum of the center of the massive elliptical galaxy NGC 1407. Fitting the spectrum with non-parametric IMFs, we find that the IMF in the center shows a continuous ri...

  7. A statistical framework for inter-group image registration.

    Science.gov (United States)

    Liao, Shu; Wu, Guorong; Shen, Dinggang

    2012-10-01

    Groupwise image registration plays an important role in medical image analysis. The principle of groupwise image registration is to align a given set of images to a hidden template space in an iteratively manner without explicitly selecting any individual image as the template. Although many approaches have been proposed to address the groupwise image registration problem for registering a single group of images, few attentions and efforts have been paid to the registration problem between two or more different groups of images. In this paper, we propose a statistical framework to address the registration problems between two different image groups. The main contributions of this paper lie in the following aspects: (1) In this paper, we demonstrate that directly registering the group mean images estimated from two different image groups is not sufficient to establish the reliable transformation from one image group to the other image group. (2) A novel statistical framework is proposed to extract anatomical features from the white matter, gray matter and cerebrospinal fluid tissue maps of all aligned images as morphological signatures for each voxel. The extracted features provide much richer anatomical information than the voxel intensity of the group mean image, and can be integra