Sample records for non-oxidized pyridoxylated polymerized

  1. Reexamination of the Polymerization of Pyridoxylated Hemoglobin with Glutaraldehyde (United States)


    cross-links was RESULTS AND DISCUSSION assumed to be some form of a Schiff base , a final reduction with NaCNBH:, was attempted. The conditions...hydride-reduced sample to be found in the a-chain cross-links could consist of Schiff bases that could region. conceivably rearrange and/or dissociate. This...involve an a. /3-unsaturated aldehyde 95, 249-255. to form a Schiff base conjugated to a double bond, 14. Gould, S. A., Rosen. A. L., Sehgal. L. It

  2. Environmental Effects on Non-oxide Ceramics (United States)

    Jacobson, Nathan S.; Opila, Elizabeth J.


    Non-oxide ceramics such as silicon carbide (SiC) and silicon nitride (Si3N4) are promising materials for a wide range of high temperature applications. These include such diverse applications as components for heat engines, high temperature electronics, and re-entry shields for space vehicles. Table I lists a number of selected applications. Most of the emphasis here will be on SiC and Si3N4. Where appropriate, other non-oxide materials such as aluminum nitride (AlN) and boron nitride (BN) will be discussed. Proposed materials include both monolithic ceramics and composites. Composites are treated in more detail elsewhere in this volume, however, many of the oxidation/corrosion reactions discussed here can be extended to composites. In application these materials will be exposed to a wide variety of environments. Table I also lists reactive components of these environments.It is well-known that SiC and Si3N4 retain their strength to high temperatures. Thus these materials have been proposed for a variety of hot-gas-path components in combustion applications. These include heat exchanger tubes, combustor liners, and porous filters for coal combustion products. All combustion gases contain CO2, CO, H2, H2O, O2, and N2. The exact gas composition is dependent on the fuel to air ratio or equivalence ratio. (Equivalence ratio (EQ) is a fuel-to-air ratio, with total hydrocarbon content normalized to the amount of O2 and defined by EQ=1 for complete combustion to CO2 and H2O). Figure 1 is a plot of equilibrium gas composition vs. equivalence ratio. Note that as a general rule, all combustion atmospheres are about 10% water vapor and 10% CO2. The amounts of CO, H2, and O2 are highly dependent on equivalence ratio.

  3. Antiferroptotic activity of non-oxidative dopamine. (United States)

    Wang, Ding; Peng, Yingpeng; Xie, Yangchun; Zhou, Borong; Sun, Xiaofang; Kang, Rui; Tang, Daolin


    Dopamine is a neurotransmitter that has many functions in the nervous and immune systems. Ferroptosis is a non-apoptotic form of regulated cell death that is involved in cancer and neurodegenerative diseases. However, the role of dopamine in ferroptosis remains unidentified. Here, we show that the non-oxidative form of dopamine is a strong inhibitor of ferroptotic cell death. Dopamine dose-dependently blocked ferroptosis in cancer (PANC1 and HEY) and non-cancer (MEF and HEK293) cells following treatment with erastin, a small molecule ferroptosis inducer. Notably, dopamine reduced erastin-induced ferrous iron accumulation, glutathione depletion, and malondialdehyde production. Mechanically, dopamine increased the protein stability of glutathione peroxidase 4, a phospholipid hydroperoxidase that protects cells against membrane lipid peroxidation. Moreover, dopamine suppressed dopamine receptor D4 protein degradation and promoted dopamine receptor D5 gene expression. Thus, our findings uncover a novel function of dopamine in cell death and provide new insight into the regulation of iron metabolism and lipid peroxidation by neurotransmitters. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Fiber Fabrication Facility for Non-Oxide and Specialty Glasses (United States)

    Federal Laboratory Consortium — FUNCTION: Unique facility for the research, development, and fabrication of non-oxide and specialty glasses and fibers in support of Navy/DoD programs. DESCRIPTION:...

  5. Crystal-free Formation of Non-Oxide Optical Fiber (United States)

    Nabors, Sammy A.


    Researchers at NASA Marshall Space Flight Center have devised a method for the creation of crystal-free nonoxide optical fiber preforms. Non-oxide fiber optics are extensively used in infrared transmitting applications such as communication systems, chemical sensors, and laser fiber guides for cutting, welding and medical surgery. However, some of these glasses are very susceptible to crystallization. Even small crystals can lead to light scatter and a high attenuation coefficient, limiting their usefulness. NASA has developed a new method of non-oxide fiber formation that uses axial magnetic fields to suppress crystallization. The resulting non-oxide fibers are crystal free and have lower signal attenuation rates than silica based optical fibers.

  6. Preparation of nanosized non-oxide powders using diatomaceous earth

    Directory of Open Access Journals (Sweden)

    Šaponjić A.


    Full Text Available In this paper the nanosized non-oxide powders were prepared by carbothermal reduction and subsequent nitridation of diatomaceous earth which is a waste product from coal exploitation. Our scope was to investigate the potential use of diatomaceous earth as a main precursor for low-cost nanosized non-oxide powder preparation as well as to solve an environmental problem. The influence of carbon materials (carbonized sucrose, carbon cryogel and carbon black as a reducing agent on synthesis and properties of low-cost nanosized nonoxide powders was also studied. The powders were characterized by specific surface area, X-ray and SEM investigations. It was found that by using diatomaceous earth it is was possible to produce either a mixture of non-oxide powders (Si3N4/SiC or pure SiC powders depending on temperature.

  7. A review of non-oxidative dissolution of iron sulphides

    Energy Technology Data Exchange (ETDEWEB)

    Marsland, S.D.; Dawe, R.A.; Kelsall, G.H.


    This paper reviews the non-oxidative dissolution of mineral sulphides as a possible source of reservoir souring. It investigates the factors affecting the rate of dissolution/H/sub 2/S evolution and the mechanisms by which the process takes to place. From the information presented it is apparent that no exhaustive kinetic or thermodynamic studies have been carried out in this area. The paper indicates that the non-oxidative dissolution of mineral sulphides, and in particular iron sulphides, is a probable source of hydrogen sulphide generation under reservoir conditions.

  8. Polymeric microspheres (United States)

    Walt, David R.; Mandal, Tarun K.; Fleming, Michael S.


    The invention features core-shell microsphere compositions, hollow polymeric microspheres, and methods for making the microspheres. The microspheres are characterized as having a polymeric shell with consistent shell thickness.

  9. Thermodynamic Properties of Non-Oxide Composite Refractories

    Institute of Scientific and Technical Information of China (English)

    HONG Yanruo; WU Hongpeng; SUN Jialin


    For initiative application of non-oxides in refractories, it is essential to study thermodynamic properties of non-oxides. The stability and stable order of non-oxides under oxidized atmosphere are analyzed firstly and then a new process, "converse reaction sintering", is proposed. The results of study on oxidation mechanism of silicon and aluminum nitrides indicate that the gaseous suboxides can be produced observably when the oxygen partial pressure is lower than "conversion oxygen partial pressure". The suboxides can be deposited near the surface of composite to become a compact layer. This causes the material possessing a performance of "self-impedient oxidation". Metal Si and Al are the better additives for increasing the density and width of compact layer and increasing the ability of anti-oxidation and anti-corrosion. The study on Si3N4-Al2O3, Si3N4-MgO, Si3N4-SiC systems is also enumerated as examples in the paper. The experimental results show that the converse reaction sintering is able to make high performance composites and metal Si and Al not only can promote the sintering but also increase the density and width of compact layer.

  10. Condensation Polymerization

    Indian Academy of Sciences (India)

    S Ramakrishnan


    The very idea that large polymer molecules can indeed existwas hotly debated during the early part of the 20th century.As highlighted by Sivaram in his articles on Carothersand Flory, Staudinger’s macromolecular hypothesis was finallyaccepted, and the study of polymers gained momentumbecause of the remarkable efforts of the these two individualswho laid down the foundations concerning the processes thatled to the formation of large polymer molecules, and to thosethat led to an understanding of many of their extraordinaryphysical properties. Condensation polymerizations, as thename suggests, utilizes bond-forming reactions that generatea small molecule condensate, which often needs to be continuouslyremoved to facilitate the formation of the polymer. Inthis article, I shall describe some of the essential principles ofcondensation polymerizations or more appropriately calledstep-growth polymerizations; and I will also describe someinteresting extensions that lead to the formation of polymernetworks and highly branched polymers.

  11. Biokompatible Polymere (United States)

    Ha, Suk-Woo; Wintermantel, Erich; Maier, Gerhard

    Der klinische Einsatz von synthetischen Polymeren begann in den 60-er Jahren in Form von Einwegartikeln, wie beispielsweise Spritzen und Kathetern, vor allem aufgrund der Tatsache, dass Infektionen infolge nicht ausreichender Sterilität der wiederverwendbaren Artikel aus Glas und metallischen Werkstoffen durch den Einsatz von sterilen Einwegartikeln signifikant reduziert werden konnten [1]. Die Einführung der medizinischen Einwegartikel aus Polymeren erfolgte somit nicht nur aus ökonomischen, sondern auch aus hygienischen Gründen. Wegen der steigenden Anzahl synthetischer Polymere und dem zunehmenden Bedarf an ärztlicher Versorgung reicht die Anwendung von Polymeren in der Medizin von preisgünstigen Einwegartikeln, die nur kurzzeitig intrakorporal eingesetzt werden, bis hin zu Implantaten, welche über eine längere Zeit grossen Beanspruchungen im menschlichen Körper ausgesetzt sind. Die steigende Verbreitung von klinisch eingesetzten Polymeren ist auf ihre einfache und preisgünstige Verarbeitbarkeit in eine Vielzahl von Formen und Geometrien sowie auf ihr breites Eigenschaftsspektrum zurückzuführen. Polymere werden daher in fast allen medizinischen Bereichen eingesetzt.

  12. Interphase for ceramic matrix composites reinforced by non-oxide ceramic fibers (United States)

    DiCarlo, James A. (Inventor); Bhatt, Ramakrishna (Inventor); Morscher, Gregory N. (Inventor); Yun, Hee-Mann (Inventor)


    A ceramic matrix composite material is disclosed having non-oxide ceramic fibers, which are formed in a complex fiber architecture by conventional textile processes; a thin mechanically weak interphase material, which is coated on the fibers; and a non-oxide or oxide ceramic matrix, which is formed within the interstices of the interphase-coated fiber architecture. During composite fabrication or post treatment, the interphase is allowed to debond from the matrix while still adhering to the fibers, thereby providing enhanced oxidative durability and damage tolerance to the fibers and the composite material.

  13. Conducting Polymeric Materials

    DEFF Research Database (Denmark)

    Hvilsted, Søren


    The overall objective of this collection is to provide the most recent developments within the various areas of conducting polymeric materials. The conductivity of polymeric materials is caused by electrically charged particles, ions, protons and electrons. Materials in which electrons...

  14. Microbially-mediated method for synthesis of non-oxide semiconductor nanoparticles (United States)

    Phelps, Tommy J.; Lauf, Robert J.; Moon, Ji Won; Rondinone, Adam J.; Love, Lonnie J.; Duty, Chad Edward; Madden, Andrew Stephen; Li, Yiliang; Ivanov, Ilia N.; Rawn, Claudia Jeanette


    The invention is directed to a method for producing non-oxide semiconductor nanoparticles, the method comprising: (a) subjecting a combination of reaction components to conditions conducive to microbially-mediated formation of non-oxide semiconductor nanoparticles, wherein said combination of reaction components comprises i) anaerobic microbes, ii) a culture medium suitable for sustaining said anaerobic microbes, iii) a metal component comprising at least one type of metal ion, iv) a non-metal component containing at least one non-metal selected from the group consisting of S, Se, Te, and As, and v) one or more electron donors that provide donatable electrons to said anaerobic microbes during consumption of the electron donor by said anaerobic microbes; and (b) isolating said non-oxide semiconductor nanoparticles, which contain at least one of said metal ions and at least one of said non-metals. The invention is also directed to non-oxide semiconductor nanoparticle compositions produced as above and having distinctive properties.

  15. Microbially-mediated method for synthesis of non-oxide semiconductor nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, Tommy J.; Lauf, Robert J.; Moon, Ji-Won; Rondinone, Adam Justin; Love, Lonnie J.; Duty, Chad Edward; Madden, Andrew Stephen; Li, Yiliang; Ivanov, Ilia N.; Rawn, Claudia Jeanette


    The invention is directed to a method for producing non-oxide semiconductor nanoparticles, the method comprising: (a) subjecting a combination of reaction components to conditions conducive to microbially-mediated formation of non-oxide semiconductor nanoparticles, wherein said combination of reaction components comprises i) anaerobic microbes, ii) a culture medium suitable for sustaining said anaerobic microbes, iii) a metal component comprising at least one type of metal ion, iv) a non-metal component comprising at least one non-metal selected from the group consisting of S, Se, Te, and As, and v) one or more electron donors that provide donatable electrons to said anaerobic microbes during consumption of the electron donor by said anaerobic microbes; and (b) isolating said non-oxide semiconductor nanoparticles, which contain at least one of said metal ions and at least one of said non-metals. The invention is also directed to non-oxide semiconductor nanoparticle compositions produced as above and having distinctive properties.

  16. Polymerization Using Phosphazene Bases

    KAUST Repository

    Zhao, Junpeng


    In the recent rise of metal-free polymerization techniques, organic phosphazene superbases have shown their remarkable strength as promoter/catalyst for the anionic polymerization of various types of monomers. Generally, the complexation of phosphazene base with the counterion (proton or lithium cation) significantly improves the nucleophilicity of the initiator/chain end resulting in highly enhanced polymerization rates, as compared with conventional metalbased initiating systems. In this chapter, the general features of phosphazenepromoted/catalyzed polymerizations and the applications in macromolecular engineering (synthesis of functionalized polymers, block copolymers, and macromolecular architectures) are discussed with challenges and perspectives being pointed out.

  17. Making Polymeric Microspheres (United States)

    Rhim, Won-Kyu; Hyson, Michael T.; Chung, Sang-Kun; Colvin, Michael S.; Chang, Manchium


    Combination of advanced techniques yields uniform particles for biomedical applications. Process combines ink-jet and irradiation/freeze-polymerization techniques to make polymeric microspheres of uniform size in diameters from 100 to 400 micrometer. Microspheres used in chromatography, cell sorting, cell labeling, and manufacture of pharmaceutical materials.

  18. Applied bioactive polymeric materials

    CERN Document Server

    Carraher, Charles; Foster, Van


    The biological and biomedical applications of polymeric materials have increased greatly in the past few years. This book will detail some, but not all, of these recent developments. There would not be enough space in this book to cover, even lightly, all of the major advances that have occurred. Some earlier books and summaries are available by two of this book's Editors (Gebelein & Carraher) and these should be consul ted for additional information. The books are: "Bioactive Polymeric Systems" (Plenum, 1985); "Polymeric Materials In Medication" (Plenum, 1985); "Biological Acti vi ties of Polymers" (American Chemical Society, 1982). Of these three, "Bioacti ve Polymeric Systems" should be the most useful to a person who is new to this field because it only contains review articles written at an introductory level. The present book primarily consists of recent research results and applications, with only a few review or summary articles. Bioactive polymeric materials have existed from the creation of life...

  19. Thermal non-oxidative aromatization of light alkanes catalyzed by gallium nitride. (United States)

    Li, Lu; Mu, Xiaoyue; Liu, Wenbo; Kong, Xianghua; Fan, Shizhao; Mi, Zetian; Li, Chao-Jun


    The thermal catalytic activity of GaN in non-oxidative alkane dehydroaromatization has been discovered for the first time. The origin of the catalytic activity was studied experimentally and theoretically. Commercially available GaN powders with a wurtzite crystal structure showed superior stability and reactivity for converting light alkanes, including methane, propane, n-butane, n-hexane and cyclohexane into benzene at an elevated temperature with high selectivity. The catalyst is highly robust and can be used repeatedly without noticeable deactivation.

  20. Non-oxidic nanoscale composites: single-crystalline titanium carbide nanocubes in hierarchical porous carbon monoliths. (United States)

    Sonnenburg, Kirstin; Smarsly, Bernd M; Brezesinski, Torsten


    We report the preparation of nanoscale carbon-titanium carbide composites with carbide contents of up to 80 wt%. The synthesis yields single-crystalline TiC nanocubes 20-30 nm in diameter embedded in a hierarchical porous carbon matrix. These composites were generated in the form of cylindrical monoliths but can be produced in various shapes using modern sol-gel and nanocasting methods in conjunction with carbothermal reduction. The monolithic material is characterized by a combination of microscopy, diffraction and physisorption. Overall, the results presented in this work represent a concrete design template for the synthesis of non-oxidic nanoscale composites with high surface areas.

  1. Eliminating Crystals in Non-Oxide Optical Fiber Preforms and Optical Fibers (United States)

    Tucker, Dennis S.; LaPointe, Michael R.


    Non ]oxide fiber optics such as heavy metal fluoride and chalcogenide glasses are extensively used in infrared transmitting applications such as communication systems, chemical sensors, and laser fiber guides for cutting, welding and medical surgery. The addition of rare earths such as erbium, enable these materials to be used as fiber laser and amplifiers. Some of these glasses however are very susceptible to crystallization. Even small crystals can lead to light scatter and a high attenuation coefficient, limiting their usefulness. Previously two research teams found that microgravity suppressed crystallization in heavy metal fluoride glasses. Looking for a less expensive method to suppress crystallization, ground based research was performed utilizing an axial magnetic field. The experiments revealed identical results to those obtained via microgravity processing. This research then led to a patented process for eliminating crystals in optical fiber preforms and the resulting optical fibers. In this paper, the microgravity results will be reviewed as well as patents and papers relating to the use of magnetic fields in various material and glass processing applications. Finally our patent to eliminate crystals in non ]oxide glasses utilizing a magnetic field will be detailed.

  2. Polymeric bicontinuous microemulsions

    DEFF Research Database (Denmark)

    Bates, F.S.; Maurer, W.W.; Lipic, P.M.


    High molecular weight block copolymers can be viewed as macromolecular surfactants when blended with thermodynamically incompatible homopolymers. This Letter describes the formation of polymeric bicontinuous microemulsions in nurtures containing a model diblock copolymer and two homopolymers...

  3. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor


    The present application offers a solution to the current problems associated with recovery and recycling of precious metals from scrap material, discard articles, and other items comprising one or more precious metals. The solution is premised on a microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  4. Cerebral non-oxidative carbohydrate consumption in humans driven by adrenaline

    DEFF Research Database (Denmark)

    Seifert, Thomas S; Brassard, Patrice; Jørgensen, Thomas B


    (1)-adrenergic receptor antagonist metroprolol. These observations suggest involvement of a beta(2)-adrenergic mechanism in non-oxidative metabolism for the brain. Therefore, we evaluated the effect of adrenaline (0.08 microg kg(-1) min(-1) i.v. for 15 min) and noradrenaline (0.5, 0.1 and 0.15 microg...... kg(-1) min(-1) i.v. for 20 min) on the arterial to internal jugular venous concentration differences (a-v diff) of O(2), glucose and lactate in healthy humans. Adrenaline (n = 10) increased the arterial concentrations of O(2), glucose and lactate (P ... from 0.6 +/- 0.1 to 0.8 +/- 0.2 mM (mean +/- s.d.; P adrenaline...

  5. Plasma polymerization by Softplasma

    DEFF Research Database (Denmark)

    Jiang, J.; Wu, Zhenning; Benter, Maike


    In the late 19th century, the first depositions - known today as plasma polymers, were reported. In the last century, more and more research has been put into plasma polymers. Many different deposition systems have been developed. [1, 2] Shi F. F. broadly classified them into internal electrode......, external electrode, and electrodeless microwave or high frequency reactors. [3] Softplasma™ is an internal electrode plasma setup powered by low frequenc~ gower supply. It was developed in late 90s for surface treatment of silicone rubber. [ ]- 5] It is a low pressure, low electron density, 3D homogenous...... plasma. In this study, we are presenting the surface modification"pf polymers by plasma polymerization using Softplasma™. Softplasma™ can be used for two major types of polymerization: polymerization of vinyl monomers, where plasma acts as initiator; chemical vapour deposition, where plasma acts...


    Institute of Scientific and Technical Information of China (English)

    P.M. Saville; J.W. White


    Polymeric surfactants are amongst the most widespread of all polymers. In nature, proteins and polysaccharides cause self organization as a result of this surfactancy; in industry, polymeric surfactants play key roles in the food, explosives and surface coatings sectors. The generation of useful nano- and micro-structures in films and emulsions as a result of polymer amphiphilicity and the application of mechanical stress is discussed. The use of X-ray and neutron small angle scattering and reflectivity to measure these structures and their dynamic properties will be described. New results on linear and dendritic polymer surfactants are presented.

  7. Effect of Prior Exposure at Elevated Temperatures on Tensile Properties and Stress-Strain Behavior of Four Non-Oxide Ceramic Matrix Composites (United States)



  8. Polymerized and functionalized triglycerides (United States)

    Plant oils are useful sustainable raw materials for the development of new chemical products. As part of our research emphasis in sustainability and green polymer chemistry, we have explored a new method for polymerizing epoxidized triglycerides with the use of fluorosulfonic acid. Depending on the ...

  9. Waterborne Polymeric Films. (United States)


    Skydrol 500B is a fire resistant hydraulic fluid available from Monsanto and which is primarily tricresyl phosphate. In most cases, the above table...Makromol. Chem. 1979, 82 149.- 23. Ger. Offen 2,804,609; (8/9/79). Bayer AG. 24. Odian, G. "Principles of Polymerization; "McGraw-Hill Book Co.: New York

  10. Exposure to lead in water and cysteine non-oxidative metabolism in Pelophylax ridibundus tissues

    Energy Technology Data Exchange (ETDEWEB)

    Kaczor, Marta [Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow (Poland); Sura, Piotr [Department of Human Developmental Biology, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow (Poland); Bronowicka-Adamska, Patrycja [Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow (Poland); Wrobel, Maria, E-mail: [Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow (Poland)


    Chronic, low-level exposure to metals is an increasing global problem. Lead is an environmentally persistent toxin that causes many lead-related pathologies, directly affects tissues and cellular components or exerts an effect of the generation of reactive oxygen species causing a diminished level of available sulfhydryl antioxidant reserves. Cysteine is one of substrates in the synthesis of glutathione - the most important cellular antioxidant, and it may also undergo non-oxidative desulfuration that produces compounds containing sulfane sulfur atoms. The aim of the experiment was to examine changes of the non-oxidative metabolism of cysteine and the levels of cysteine and glutathione in the kidneys, heart, brain, liver and muscle of Marsh frogs (Pelophylax ridibundus) exposed to 28 mg/L Pb(NO{sub 3}){sub 2} for 10 days. The activities of sulfurtransferases, enzymes related to the sulfane sulfur metabolism - 3-mercaptopyruvate sulfurtransfearse, {gamma}-cystathionase and rhodanese - were detected in tissue homogenates. The activity of sulfurtransferases was much higher in the kidneys of frogs exposed to lead in comparison to control frogs, not exposed to lead. The level of sulfane sulfur remained unchanged. Similarly, the total level of cysteine did not change significantly. The total levels of glutathione and the cysteine/cystine and GSH/GSSG ratios were elevated. Thus, it seems that the exposure to lead intensified the metabolism of sulfane sulfur and glutathione synthesis in the kidneys. The results presented in this work not only confirm the participation of GSH in the detoxification of lead ions and/or products appearing in response to their presence, such as reactive oxygen species, but also indicate the involvement of sulfane sulfur and rhodanese in this process (e.g. brain). As long as the expression of enzymatic proteins (rhodanese, MPST and CST) is not examined, no answer will be provided to the question whether changes in their activity are due to

  11. Non-oxidative dehydro-oligomerization of methane to higher molecular weight hydrocarbons at low temperatures

    Institute of Scientific and Technical Information of China (English)

    王林胜; 徐奕德; 陶龙骧


    The non-oxidative dehydro-oligomerization of methane to higher molecular weight hydrocarbons such as aroma tics and C2 hydrocarbons in a low temperature range of 773-973 K with Mo/HZSM-5,Mo-Zr/HZSM-5 and Mo-W/HZSM-5 catalysts is studied.The means for enhancing the activity and stability of the Mo-containing catalysts under the reaction conditions is reported.Quite a stable methane conversion rate of over 10% with a high selectivity to the higher hydrocarbons has been obtained at a temperature of 973 K.Pure methane conversions of about 5.2% and 2.0% have been obtained at 923 and 873 K,respectively.In addition,accompanied by the C2-C3 mixture,tht- methane reaction can be initiated even at a lower temperature and the conversion rate of methane is enhanced by the presence of tne initiator of C2-C3 hydrocarbons.Compared with methane oxidative coupling to ethylene,the novel way for methane transformation is significant and reasonable for its lower reaction temperatures and high selectivity to the desired prod

  12. Non-oxidative dehydroaromatization of methane:an effective reaction regeneration cyclic operation for catalyst life extension


    Portilla Ovejero, Mª Teresa; LLOPIS ALONSO, FRANCISCO; LLOPIS ALONSO, FRANCISCO JAVIER; Martínez, Cristina


    Non-oxidative methane aromatization is an attractive direct route for producing higher hydrocarbons. It is highly selective to benzene despite the low conversion due to thermodynamic limitations, and Mo/H-ZSM-5, the first catalyst proposed for this reaction, is still considered as one of the most adequate. The major problem of this process is the severe catalyst deactivation due to the rapid build-up of carbonaceous deposits on the catalysts. Here we present an effective regeneration procedur...

  13. Living olefin polymerization processes (United States)

    Schrock, Richard R.; Baumann, Robert


    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  14. Phosphazene-promoted anionic polymerization

    KAUST Repository

    Zhao, Junpeng


    In the recent surge of metal-free polymerization techniques, phosphazene bases have shown their remarkable potential as organic promoters/catalysts for the anionic polymerization of various types of monomers. By complexation with the counterion (e.g. proton or lithium cation), phosphazene base significantly improve the nucleophilicity of the initiator/chain-end resulting in rapid and usually controlled anionic/quasi-anionic polymerization. In this review, we will introduce the general mechanism, i.e. in situ activation (of initiating sites) and polymerization, and summarize the applications of such a mechanism on macromolecular engineering toward functionalized polymers, block copolymers and complex macromolecular architectures.

  15. Gratings in polymeric waveguides (United States)

    Mishakov, G.; Sokolov, V.; Kocabas, A.; Aydinli, A.


    Laser-induced formation of polymer Bragg grating filters for Dense Wavelength Division Multiplexing (DWDM) applications is discussed. Acrylate monomers halogenated with both fluorine and chlorine, which possess absorption losses less than 0.25 dB/cm and wide choice of refractive indices (from 1.3 to 1.5) in the 1.5 μm telecom wavelength region were used. The monomers are highly intermixable thus permitting to adjust the refractive index of the composition within +/-0.0001. Moreover they are photocurable under UV exposure and exhibit high contrast in polymerization. These properties make halogenated acrylates very promising for fabricating polymeric waveguides and photonic circuits. Single-mode polymer waveguides were fabricated on silicon wafers using resistless contact lithography. Submicron index gratings have been written in polymer waveguides using holographic exposure with He-Cd laser beam (325 nm) through a phase mask. Both uniform and apodized gratings have been fabricated. The gratings are stable and are not erased by uniform UV exposure. The waveguide gratings possess narrowband reflection spectra in the 1.5 μm wavelength region of 0.4 nm width, nearly rectangular shape of the stopband and reflectivity R > 99%. The fabricated Bragg grating filters can be used for multiplexing/demultiplexing optical signals in high-speed DWDM optical fiber networks.

  16. Collaborative Research: Polymeric Multiferroics

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Shenqiang [Temple Univ., Philadelphia, PA (United States). College of Engineering


    The goal of this project is to investigate room temperature magnetism and magnetoelectric coupling of polymeric multiferroics. A new family of molecular charge-transfer crystals has been emerged as a fascinating opportunity for the development of all-organic electrics and spintronics due to its weak hyperfine interaction and low spin-orbit coupling; nevertheless, direct observations of room temperature magnetic spin ordering have yet to be accomplished in organic charge-transfer solids. Furthermore, room temperature magnetoelectric coupling effect hitherto known multiferroics, is anticipated in organic donor-acceptor complexes because of magnetic field effects on charge-transfer dipoles, yet this is also unexplored. The PI seeks to fundamental understanding of the control of organic crystals to demonstrate and explore room temperature multiferroicity. The experimental results have been verified through the theoretical modeling.

  17. Modeling of Oxidized PTH (oxPTH) and Non-oxidized PTH (n-oxPTH) Receptor Binding and Relationship of Oxidized to Non-Oxidized PTH in Children with Chronic Renal Failure, Adult Patients on Hemodialysis and Kidney Transplant Recipients

    DEFF Research Database (Denmark)

    Hocher, Berthold; Oberthür, Dominik; Slowinski, Torsten;


    Background: The biological properties of oxidized and non-oxidized PTH are substantially different. Oxidized PTH (oxPTH) loses its PTH receptor-stimulating properties, whereas non-oxidized PTH (n-oxPTH) is a full agonist of the receptor. This was described in more than 20 well published studies i...

  18. Features of non-oxidative conversion of methane into aromatic hydrocarbons over Mo-containing zeolite catalysts (United States)

    Stepanov, A. A.; Korobitsyna, L. L.; Vosmerikov, A. V.


    The results of study of methane conversion under non-oxidative conditions over molybdenum containing zeolite catalysts prepared by solid-phase synthesis using nanosized molybdenum powder are presented. The kinetic mechanisms of the process behavior under different conditions of methane dehydroaromatization are determined. It is shown that nonoxidative conversion of methane can occur both in the external diffusion and kinetic regions, depending on the methane flow rate. It is found out, that the optimum temperature of the methane conversion is 750 °C. It is shown that increased methane conversion is observed at the feed space velocity of methane decreasing from 1500 to 500 h-1.

  19. Organometallic Polymeric Conductors (United States)

    Youngs, Wiley J.


    For aerospace applications, the use of polymers can result in tremendous weight savings over metals. Suitable polymeric materials for some applications like EMI shielding, spacecraft grounding, and charge dissipation must combine high electrical conductivity with long-term environmental stability, good processability, and good mechanical properties. Recently, other investigators have reported hybrid films made from an electrically conductive polymer combined with insulating polymers. In all of these instances, the films were prepared by infiltrating an insulating polymer with a precursor for a conductive polymer (either polypyrrole or polythiophene), and oxidatively polymerizing the precursor in situ. The resulting composite films have good electrical conductivity, while overcoming the brittleness inherent in most conductive polymers. Many aerospace applications require a combination of properties. Thus, hybrid films made from polyimides or other engineering resins are of primary interest, but only if conductivities on the same order as those obtained with a polystyrene base could be obtained. Hence, a series of experiments was performed to optimize the conductivity of polyimide-based composite films. The polyimide base chosen for this study was Kapton. 3-MethylThiophene (3MT) was used for the conductive phase. Three processing variables were identified for producing these composite films, namely time, temperature, and oxidant concentration for the in situ oxidation. Statistically designed experiments were used to examine the effects of these variables and synergistic/interactive effects among variables on the electrical conductivity and mechanical strength of the films. Multiple linear regression analysis of the tensile data revealed that temperature and time have the greatest effect on maximum stress. The response surface of maximum stress vs. temperature and time (for oxidant concentration at 1.2 M) is shown. Conductivity of the composite films was measured for

  20. High temperature structural, polymeric foams from high internal emulsion polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Hoisington, M.A.; Duke, J.R.; Apen, P.G.


    In 1982, a high internal phase emulsion (HIPE) polymerization process to manufacture microcellular, polymeric foam systems was patented by Unilever. This patent discloses a polymerization process that occurs in a water-in-oil emulsion in which the water represents at least 76% of the emulsion by volume. The oil phase consists of vinyl monomers such as styrene and acrylates that are crosslinked by divinyl monomers during polymerization. After polymerization and drying to remove the water phase, the result is a crosslinked polymer foam with an open cell microstructure that is homogeneous throughout in terms of morphology, density, and mechanical properties. Since 1982, numerous patents have examined various HIPE polymerized foam processing techniques and applications that include absorbents for body fluids, cleaning materials, and ion exchange systems. All the published HIPE polymerized foams have concentrated on materials for low temperature applications. Copolymerization of styrene with maleic anhydride and N-substituted maleimides to produce heat resistant thermoplastics has been studied extensively. These investigations have shown that styrene will free radically copolymerize with N-substituted maleimides to create an alternating thermoplastic copolymer with a Tg of approximately 200{degrees}C. However, there are many difficulties in attempting the maleimide styrene copolymerization in a HIPE such as lower polymerization temperatures, maleimide solubility difficulties in both styrene and water, and difficulty obtaining a stable HIPE with a styrene/maleimide oil phase. This work describes the preparation of copolymer foams from N-ethylmaleimide and Bis(3-ethyl-5-methyl-4-maleimide-phenyl)methane with styrene based monomers and crosslinking agents.

  1. Electroactivity in Polymeric Materials

    CERN Document Server


    Electroactivity in Polymeric Materials provides an in-depth view of the theory of electroactivity and explores exactly how and why various electroactive phenomena occur. The book explains the theory behind electroactive bending (including ion-polymer-metal-composites –IPMCs), dielectric elastomers, electroactive contraction, and electroactive contraction-expansion cycles.  The book also balances theory with applications – how electroactivity can be used – drawing inspiration from the manmade mechanical world and the natural world around us.  This book captures: A complete introduction to electroactive materials including examples and recent developments The theory and applications of numerous topics like electroactive bending of dielectric elastomers and electroactive contraction and expansion New topics, such as biomimetic applications and energy harvesting This is a must-read within the electroactive community, particularly for professionals and graduate students who are interested in the ...

  2. Kinetics of silica polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Weres, O.; Yee, A.; Tsao, L.


    The polymerization of silicic acid in geothermal brine-like aqueous solutions to produce amorphous silica in colloidal form has been studied experimentally and theoretically. A large amount of high quality experimental data has been generated over the temperature rang 23 to 100{sup 0}C. Wide ranges of dissolved silica concentration, pH, and sodium chloride concentration were covered. The catalytic effects of fluoride and the reaction inhibiting effects of aluminum and boron were studied also. Two basic processes have been separately studied: the formation of new colloidal particles by the homogeneous nucleation process and the deposition of dissolved silica on pre-existing colloidal particles. A rigorous theory of the formation of colloidal particles of amorphous silica by homogeneous nucleation was developed. This theory employs the Lothe-Pound formalism, and is embodied in the computer code SILNUC which quantitatively models the homogeneous nucleation and growth of colloidal silica particles in more than enough detail for practical application. The theory and code were extensively used in planning the experimental work and analyzing the data produced. The code is now complete and running in its final form. It is capable of reproducing most of the experimental results to within experimental error. It is also capable of extrapolation to experimentally inaccessible conditions, i.e., high temperatures, rapidly varying temperature and pH, etc.

  3. Polymerization of anionic wormlike micelles. (United States)

    Zhu, Zhiyuan; González, Yamaira I; Xu, Hangxun; Kaler, Eric W; Liu, Shiyong


    Polymerizable anionic wormlike micelles are obtained upon mixing the hydrotropic salt p-toluidine hydrochloride (PTHC) with the reactive anionic surfactant sodium 4-(8-methacryloyloxyoctyl)oxybenzene sulfonate (MOBS). Polymerization captures the cross-sectional radius of the micelles (approximately 2 nm), induces micellar growth, and leads to the formation of a stable single-phase dispersion of wormlike micellar polymers. The unpolymerized and polymerized micelles were characterized using static and dynamic laser light scattering, small-angle neutron scattering, 1H NMR, and stopped-flow light scattering. Stopped-flow light scattering was also used to measure the average lifetime of the unpolymerized wormlike micelles. A comparison of the average lifetime of unpolymerized wormlike micelles with the surfactant monomer propagation rate was used to elucidate the mechanism of polymerization. There is a significant correlation between the ratio of the average lifetime to the monomer propagation rate and the average aggregation number of the polymerized wormlike micelles.

  4. Surface glycosylation of polymeric membranes

    Institute of Scientific and Technical Information of China (English)

    DAI ZhengWei; WAN LingShu; XU ZhiKang


    Surface glycosylation of polymeric membranes has been inspired by the structure of natural biomembranes. It refers to that glycosyl groups are introduced onto the membrane surface by various strategies, which combine the separation function of the membrane with the biological function of the saccharides in one system. In this review, progress in the surface glycosylation of polymeric membranes is highlighted in two aspects, i.e. the glycosylation methods and the potential applications of the surface-glycosylated membranes.


    Institute of Scientific and Technical Information of China (English)

    Andrea R. Szkurhan; Michael K. Georges


    An overview of aqueous polymerizations, which include emulsion, miniemulsion and suspension polymerizations,under stable free radical polymerization (SFRP) conditions is presented. The success of miniemulsion and suspension SFRP polymerizations is contrasted with the difficulties associated with obtaining a stable emulsion polymerization. A recently developed unique microprecipitation technique is referenced as a means of making submicron sized particles that can be used to achieve a stable emulsion SFRP process.

  6. Polymeric materials for neovascularization (United States)

    DeVolder, Ross John

    Revascularization therapies have emerged as a promising strategy to treat various acute and chronic wounds, cardiovascular diseases, and tissue defects. It is common to either administer proangiogenic growth factors, such as vascular endothelial growth factor (VEGF), or transplant cells that endogenously express multiple proangiogenic factors. Additionally, these strategies utilize a wide variety of polymeric systems, including hydrogels and biodegradable plastics, to deliver proangiogenic factors in a sophisticated manner to maintain a sustained proangiogenic environment. Despite some impressive results in rebuilding vascular networks, it is still a challenging task to engineer mature and functional neovessels in target tissues, because of the increasing complexities involved with neovascularization applications. To resolve these challenges, this work aims to design a wide variety of proangiogenic biomaterial systems with tunable properties used for neovascularization therapies. This thesis describes the design of several biomaterial systems used for the delivery of proangiogenic factors in neovascularization therapies, including: an electrospun/electrosprayed biodegradable plastic patch used for directional blood vessel growth (Chapter 2), an alginate-g-pyrrole hydrogel system that biochemically stimulates cellular endogenous proangiogenic factor expression (Chapter 3), an enzyme-catalyzed alginate-g-pyrrole hydrogel system for VEGF delivery (Chapter 4), an enzyme-activated alginate-g-pyrrole hydrogel system with systematically controllable electrical and mechanical properties (Chapter 5), and an alginate-g-pyrrole hydrogel that enables the decoupled control of electrical conductivity and mechanical rigidity and is use to electrically stimulate cellular endogenous proangiogenic factor expression (Chapter 6). Overall, the biomaterial systems developed in this thesis will be broadly useful for improving the quality of a wide array of molecular and cellular based

  7. Stereospecific olefin polymerization catalysts (United States)

    Bercaw, John E.; Herzog, Timothy A.


    A metallocene catalyst system for the polymerization of .alpha.-olefins to yield stereospecific polymers including syndiotactic, and isotactic polymers. The catalyst system includes a metal and a ligand of the formula ##STR1## wherein: R.sup.1, R.sup.2, and R.sup.3 are independently selected from the group consisting of hydrogen, C.sub.1 to C.sub.10 alkyl, 5 to 7 membered cycloalkyl, which in turn may have from 1 to 3 C.sub.1 to C.sub.10 alkyls as a substituent, C.sub.6 to C.sub.15 aryl or arylalkyl in which two adjacent radicals may together stand for cyclic groups having 4 to 15 carbon atoms which in turn may be substituted, or Si(R.sup.8).sub.3 where R.sup.8 is selected from the group consisting of C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; R.sup.4 and R.sup.6 are substituents both having van der Waals radii larger than the van der Waals radii of groups R.sup.1 and R.sup.3 ; R.sup.5 is a substituent having a van der Waals radius less than about the van der Waals radius of a methyl group; E.sup.1, E.sup.2 are independently selected from the group consisting of Si(R.sup.9).sub.2, Si(R.sup.9).sub.2 --Si(R.sup.9).sub.2, Ge(R.sup.9).sub.2, Sn(R.sup.9).sub.2, C(R.sup.9).sub.2, C(R.sup.9).sub.2 --C(R.sup.9).sub.2, where R.sup.9 is C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; and the ligand may have C.sub.S or C.sub.1 -symmetry. Preferred metals are selected from the group consisting of group III, group IV, group V or lanthanide group elements. The catalysts are used to prepare stereoregular polymers including polypropylene from .alpha.-olefin monomers.

  8. Mechanically controlled radical polymerization initiated by ultrasound (United States)

    Mohapatra, Hemakesh; Kleiman, Maya; Esser-Kahn, Aaron Palmer


    In polymer chemistry, mechanical energy degrades polymeric chains. In contrast, in nature, mechanical energy is often used to create new polymers. This mechanically stimulated growth is a key component of the robustness of biological materials. A synthetic system in which mechanical force initiates polymerization will provide similar robustness in polymeric materials. Here we show a polymerization of acrylate monomers initiated and controlled by mechanical energy provided by ultrasonic agitation. The activator for an atom-transfer radical polymerization is generated using piezochemical reduction of a Cu(II) precursor complex, which thus converts a mechanical activation of piezoelectric particles to the synthesis of a new material. This polymerization reaction has some characteristics of controlled radical polymerization, such as narrow molecular-weight distribution and linear dependence of the polymeric chain length on the time of mechanical activation. This new method of controlled radical polymerization complements the existing methods to synthesize commercially useful well-defined polymers.

  9. Non-Oxidative Aromatization of CH4-C3H8 over La-Promoted Zn/HZSM-5 Catalysts

    Institute of Scientific and Technical Information of China (English)


    The non-oxidative aromatization of mixed CH4 with C3H8 over La-promoted Zn/HZSM-5 catalysts was studied in a fixed-bed reactor at 823 K with space velocity 600 h-1 and CH4/C3H8 (mol ratio)=5:1. The propane conversion and the aromatic selectivities were up to 99% and 60% over the catalyst respectively, while methane conversion had an induction period with the highest conversion of 30%. The structure and surface acidity of the catalysts were characterized by XRD, NH3-TPD and TG-DTA. The influences of reaction and regenerative conditions on the activity and selectivity were also investigated.

  10. Intrinsic kinetics of methane aromatization under non-oxidative conditions over modified Mo/HZSM-5 catalysts

    Institute of Scientific and Technical Information of China (English)

    Benzhen Yao; Jin Chen; Dianhua Liu; Dingye Fang


    The intrinsic reaction kinetics of methane aromatization under non-oxidative conditions over modified Mo/HZSM-5 catalysts was studied in the quartz pipe-reactor under ordinary pressure with the temperature ranging from 913.15 to 973.15 K and the space velocity from 700 to 2100 ml/(g-h). The Langmuir-Hinshelwood model was chosen to describe the intrinsic kinetics while Levenberg-Marquardt method was selected to determine the parameters in the kinetic model. Statistical test and residual error distribution diagrams showed that experimental data were in good agreement with calculated data, and Langmuir-Hinshelwood model was suitable for the description of the intrinsic kinetics of methane aromatization under the reaction conditions discussed in this article.

  11. Supramolecular Polymeric Materials Containing Cyclodextrins. (United States)

    Nakahata, Masaki; Takashima, Yoshinori; Harada, Akira


    Smart design of polymeric materials may lead to intelligent materials exhibiting unique functional properties. Looking at nature, living systems use specific and reversible intermolecular interactions in realizing complex functions. Hence reversible bonds based on selective molecular recognition can impart artificial materials with unique functional properties. This review mainly focuses on supramolecular polymeric materials based on cyclodextrin-based host-guest interactions. Polymeric materials using molecular recognition at polymer main chain, side chain, and termini are described. Polymers carrying host and guest residues exhibit unique properties such as: 1) formation of macroscopic self-assembly of polymer gels carrying host and guest residues; 2) stimuli-responsive self-healing properties due to the reversible nature of host-guest interactions; and 3) macroscopic motion of artificial muscle cross-linked by host-guest interaction controlled by external stimuli. An overview of recent developments in this new frontier between materials science and life science is given.

  12. Surface glycosylation of polymeric membranes

    Institute of Scientific and Technical Information of China (English)


    Surface glycosylation of polymeric membranes has been inspired by the structure of natural biomem-branes. It refers to that glycosyl groups are introduced onto the membrane surface by various strate-gies, which combine the separation function of the membrane with the biological function of the sac-charides in one system. In this review, progress in the surface glycosylation of polymeric membranes is highlighted in two aspects, i.e. the glycosylation methods and the potential applications of the sur-face-glycosylated membranes.

  13. On-demand photoinitiated polymerization (United States)

    Boydston, Andrew J; Grubbs, Robert H; Daeffler, Chris; Momcilovic, Nebojsa


    Compositions and methods for adjustable lenses are provided. In some embodiments, the lenses contain a lens matrix material, a masking compound, and a prepolymer. The lens matrix material provides structure to the lens. The masking compound is capable of blocking polymerization or crosslinking of the prepolymer, until photoisomerization of the compound is triggered, and the compound is converted from a first isomer to a second isomer having a different absorption profile. The prepolymer is a composition that can undergo a polymerization or crosslinking reaction upon photoinitiation to alter one or more of the properties of the lenses.

  14. Functionalization and Polymerization on the CNT Surfaces

    KAUST Repository

    Albuerne, Julio


    In this review we focus on the current status of using carbon nanotube (CNT) as a filler for polymer nanocomposites. Starting with the historical background of CNT, its distinct properties and the surface functionalization of the nanotube, the three different surface polymerization techniques, namely grafting "from", "to" and "through/in between" were discussed. Wider focus has been given on "grafting from" surface initiated polymerizations, including atom transfer radical polymerization (ATRP), reversible addition fragmentation chain-transfer (RAFT) Polymerization, nitroxide mediated polymerization (NMP), ring opening polymerization (ROP) and other miscellaneous polymerization methods. The grafting "to" and "through / in between" also discussed and compared with grafting from polymerization. The merits and shortcomings of all three grafting methods were discussed and the bottleneck issue in grafting from method has been highlighted. Furthermore the current and potential future industrial applications were deliberated. Finally the toxicity issue of CNTs in the final product has been reviewed with the limited available literature knowledge. © 2013 Bentham Science Publishers.

  15. The absorption of polymeric composites (United States)

    Řídký, R.; Popovič, M.; Rolc, S.; Drdlová, M.; Krátký, J.


    An absorption capacity of soft, viscoelastic materials at high strain rates is important for wide range of practical applications. Nowadays there are many variants of numerical models suitable for this kind of analysis. The main difficulty is in selection of the most realistic numerical model and a correct setup of many unknown material constants. Cooperation between theoretical simulations and real testing is next crucial point in the investigation process. Standard open source material database offer material properties valid for strain rates less than 250 s-1. There are experiments suitable for analysis of material properties with strain rates close to 2000 s-1. The high strain-rate characteristics of a specific porous blast energy absorbing material measured by modified Split Hopkinson Pressure Bar apparatus is presented in this study. Testing these low impedance materials using a metallic split Hopkinson pressure bar setup results in poor signal to noise ratios due to impedance mismatching. These difficulties are overcome by using polymeric Hopkinson bars. Conventional Hopkinson bar analysis cannot be used on the polymeric bars due to the viscoelastic nature of the bar material. One of the possible solution leads to complex and frequency depended Young modulus of testing bars material. This testing technique was applied to materials composed of porous glass/ceramic filler and polymeric binder, with density of 125 - 300 kg/m3 and particle size in range of 50 µm - 2 mm. The achieved material model was verified in practical application of sandwich structure includes polymeric composites under a blast test.

  16. The Viscosity of Polymeric Fluids. (United States)

    Perrin, J. E.; Martin, G. C.


    To illustrate the behavior of polymeric fluids and in what respects they differ from Newtonian liquids, an experiment was developed to account for the shear-rate dependence of non-Newtonian fluids. Background information, procedures, and results are provided for the experiment. Useful in transport processes, fluid mechanics, or physical chemistry…

  17. Biodegradable polymeric prodrugs of naltrexone

    NARCIS (Netherlands)

    Bennet, D.B.; Li, X.; Adams, N.W.; Kim, S.W.; Hoes, C.J.T.; Feijen, J.


    The development of a biodegradable polymeric drug delivery system for the narcotic antagonist naltrexone may improve patient compliance in the treatment of opiate addiction. Random copolymers consisting of the ¿-amino acids N5-(3-hydroxypropyl--glutamine and -leucine were synthesized with equimolar

  18. Buckling of polymerized monomolecular films (United States)

    Bourdieu, L.; Daillant, J.; Chatenay, D.; Braslau, A.; Colson, D.


    The buckling of a two-dimensional polymer network at the air-water interface has been evidenced by grazing incidence x-ray scattering. A comprehensive description of the inhomogeneous octadecyltrichlorosilane polymerized film was obtained by atomic force microscopy and x-ray scattering measurements. The buckling occurs with a characteristic wavelength ~=10 μm.

  19. Novel polymeric materials from triglycerides (United States)

    Triglycerides are good platforms for new polymeric products that can substitute for petroleum-based materials. As part of our research emphasis in sustainability and green polymer chemistry, we have explored a number of reactions in efforts to produce a wide range of value-added products. In this ...

  20. Polymeric amines and biomedical uses thereof

    NARCIS (Netherlands)

    Broekhuis, Antonius; Zhang, Youchum; Picchioni, Francesco; Roks, Antonius


    The invention relates to the field of polymers and biomedical applications thereof. In particular, it relates to the use of polymeric amines derived from alternating polyketones.Provided is the use of a polymeric amine for modulating or supporting cellular behavior, said polymeric amine being an alt


    Institute of Scientific and Technical Information of China (English)

    HUANG Zhitang


    This review is a concise survey about the works in our laboratory on the polymerization of aromatic and heterocyclic dinitriles, including the polymerization kinetics and mechanism, synthesis of heterocyclic dinitriles, the structure of polymers, and the correlation between the structures of dinitriles and polymerization rates and thermal performances of polymers.

  2. Glycine Polymerization on Oxide Minerals (United States)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru


    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH3 + group of adsorbed Gly to the nucleophilic NH2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  3. Simultaneous determination of ethanol's four types of non-oxidative metabolites in human whole blood by liquid chromatography tandem mass spectrometry

    DEFF Research Database (Denmark)

    Zhang, Xinyu; Zheng, Feng; Lin, Zebin


    , but it was difficult to achieve because of their wide range of polarity. This work describes development and validation of a simple liquid chromatography tandem mass spectrometry (LC-MS/MS) assay for 4 types of ethanol non-oxidative metabolites (ethyl glucuronide, ethyl sulfate, fatty acid ethyl esters...


    Directory of Open Access Journals (Sweden)



    Full Text Available Here, of great interest to us is a quantitative study of the scattering properties from ramified polymeric systems of arbitrary topology. We consider three types of systems, namely ramified polymers in solution, ramified polymer blends, or ternary mixtures made of two ramified polymers of different chemical nature immersed in a good solvent. To achieve the goal of the study, use is made of the Random Phase Approximation. First we determine the exact expression of the form factor of an ideal ramified polymer of any topology, from which we extract the exact expression of its gyration radius. Using the classical Zimm's formulae and the exact form factor, we determine all scattering properties of these three types of ramified polymeric systems. The main conclusion is that ramification of the chains induces drastic changes of the scattering properties.

  5. Magnetic properties of polymerized diphenyloctatetrayne

    Energy Technology Data Exchange (ETDEWEB)

    Beristain, Miriam F.; Jimenez-Solomon, Maria F.; Ortega, Alejandra; Escudero, Roberto [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-360, Ciudad Universitaria, Mexico DF 04510 (Mexico); Munoz, Eduardo [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-364, Ciudad Universitaria, Mexico DF 01000 (Mexico); Maekawa, Yasunari; Koshikawa, Hiroshi [High Performance Polymer Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Ogawa, Takeshi, E-mail: [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-360, Ciudad Universitaria, Mexico DF 04510 (Mexico)


    A new type of metal-free ferromagnetic carbon material was obtained by thermal polymerization and electron beam irradiation of diphenyloctatetrayne (DPOT). The isothermal magnetic measurements showed hysteresis loops indicating weak but intrinsic ferromagnetism with Curie temperatures of around 600 K. Electron spin resonance spectroscopy showed that the material contained stable free radicals in the range of 10{sup 17}-10{sup 20} radicals g{sup -1} depending on the polymerization process. The ferromagnetism should be due to high radical concentration although no correlation was observed between them. It was shown that an amorphous ferromagnetic carbon could be obtained from a simple crystalline solid by heating at moderate temperatures. Highlights: Black-Right-Pointing-Pointer Diphenyloctatetrayne as a precursor for carbon with high radical concentration. Black-Right-Pointing-Pointer The carbon material consists of sp{sup 2} configuration. Black-Right-Pointing-Pointer A weak intrinsic metal-free ferromagnetism was observed for the carbon products.

  6. Polymeric Microspheres for Medical Applications

    Directory of Open Access Journals (Sweden)

    Ketie Saralidze


    Full Text Available Synthetic polymeric microspheres find application in a wide range of medical applications. Among other applications, microspheres are being used as bulking agents, embolic- or drug-delivery particles. The exact composition of the spheres varies with the application and therefore a large array of materials has been used to produce microspheres. In this review, the relation between microsphere synthesis and application is discussed for a number of microspheres that are used for different treatment strategies.

  7. Ultrasound-Mediated Polymeric Micelle Drug Delivery. (United States)

    Xia, Hesheng; Zhao, Yue; Tong, Rui


    The synthesis of multi-functional nanocarriers and the design of new stimuli-responsive means are equally important for drug delivery. Ultrasound can be used as a remote, non-invasive and controllable trigger for the stimuli-responsive release of nanocarriers. Polymeric micelles are one kind of potential drug nanocarrier. By combining ultrasound and polymeric micelles, a new modality (i.e., ultrasound-mediated polymeric micelle drug delivery) has been developed and has recently received increasing attention. A major challenge remaining in developing ultrasound-responsive polymeric micelles is the improvement of the sensitivity or responsiveness of polymeric micelles to ultrasound. This chapter reviews the recent advance in this field. In order to understand the interaction mechanism between ultrasound stimulus and polymeric micelles, ultrasound effects, such as thermal effect, cavitation effect, ultrasound sonochemistry (including ultrasonic degradation, ultrasound-initiated polymerization, ultrasonic in-situ polymerization and ultrasound site-specific degradation), as well as basic micellar knowledge are introduced. Ultrasound-mediated polymeric micelle drug delivery has been classified into two main streams based on the different interaction mechanism between ultrasound and polymeric micelles; one is based on the ultrasound-induced physical disruption of the micelle and reversible release of payload. The other is based on micellar ultrasound mechanochemical disruption and irreversible release of payload.

  8. Polymerization rate and mechanism of ultrasonically initiated emulsion polymerization of n-butyl acrylate. (United States)

    Xia, Hesheng; Wang, Qi; Liao, Yongqin; Xu, Xi; Baxter, Steven M; Slone, Robert V; Wu, Shuguang; Swift, Graham; Westmoreland, David G


    The factors affecting the induction period and polymerization rate in ultrasonically initiated emulsion polymerization of n-butyl acrylate (BA) were investigated. The induction period takes only an instant in ultrasonically initiated emulsion polymerization of BA without any added initiator by enhancing the N2 flow rate. Increasing temperature, power output and SDS concentration, decreasing the monomer concentration results in further decreasing induction period and enhanced polymerization rate. Under optimized reaction conditions the conversion of BA reaches 92% in 11 min. The polymerization rate can be controlled by varying reaction parameters. The apparatus of ultrasonically initiated semi-continuous and continuous emulsion polymerization were set up and the feasibility was first studied. Based on the experimental results, a free radical polymerization mechanism for ultrasonically initiated emulsion polymerization was proposed, including the sources of the radicals, the process of radical formation, the locus of polymerization and the polymerization process. Compared with conventional emulsion polymerization, where the radicals come from thermal decomposition of a chemical initiator, ultrasonically initiated emulsion polymerization has attractive features such as no need for a chemical initiator, lower reaction temperature, faster polymerization rate, and higher molecular weight of the polymer prepared.

  9. The physical chemistry of nucleation of sub-micrometer non-oxide ceramic powders via sub-oxide vapor-phase reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Jha, A. [Brunel Univ., Uxbridge (United Kingdom). Dept. of Materials Technology


    Fine ceramic powders (< 500 nm) exhibit exceptional physical and mechanical properties in engineered structural ceramics. The production of fine powders, in particular the non-oxide ceramics, via a cheaper route than the organic solvent route has been rather elusive. This paper examines the physical chemistry of sub-oxide vapor-phase reduction reaction for the nucleation of non-oxide ceramic phase. Well known vapor species eg SiO and BO in the production of technical ceramic powders (SiC, BN) are particularly discussed for understanding the nucleation process of SiC and BN ceramic phases respectively. The regimes of partial pressures and temperatures are particularly identified. The calculated nucleation rate as a function of the temperature is compared with the experimental results on powder morphology. The production of amorphous and nanocrystalline h-BN powders is discussed in the context of substrate structure and thermodynamic parameters.

  10. Nanoporous Polymeric Grating-Based Biosensors

    KAUST Repository

    Gao, Tieyu


    We demonstrate the utilization of an interferometrically created nanoporous polymeric gratings as a platform for biosensing applications. Aminopropyltriethoxysilane (APTES)-functionalized nanoporous polymeric gratings was fabricated by combining holographic interference patterning and APTES-functionalization of pre-polymer syrup. The successful detection of multiple biomolecules indicates that the biofunctionalized nanoporous polymeric gratings can act as biosensing platforms which are label-free, inexpensive, and applicable as high-throughput assays. Copyright © 2010 by ASME.


    Institute of Scientific and Technical Information of China (English)

    DONG Jianhua; QIU Kunyuan; FENG Xinde


    Polymerization of acrylamide initiated by ceric ammonium nitrate alone has been studied in aqueous medium. The effects of UV light irradiation on the initial rates of polymerization, the activation energy and on the polymer molecular weights have been investigated. Compared with that in the dark, the rate of polymerization under UV light was accelerated to eleven times higher, and the overall activation energy was lowered markedly.

  12. Bulk binary ZrO2-based oxides as highly active alternative-type catalysts for non-oxidative isobutane dehydrogenation. (United States)

    Otroshchenko, Tatyana; Radnik, Jörg; Schneider, Matthias; Rodemerck, Uwe; Linke, David; Kondratenko, Evgenii V


    Bulk binary ZrO2-based oxides efficiently catalyse non-oxidative dehydrogenation of isobutane to isobutylene. Their activity strongly depends on the kind of second metal oxide. So designed CrZrOx showed superior activity to industrially relevant catalysts with supported Pt or CrOx species. It was also stable under alternating dehydrogenation and oxidative regeneration cycles over ca. 110 h under different reaction conditions between 550 and 600 °C.

  13. Non-oxidative coupling reaction of methane to ethane and hydrogen catalyzed by the silica-supported tantalum hydride: ([triple bond]SiO)2Ta-H. (United States)

    Soulivong, Daravong; Norsic, Sébastien; Taoufik, Mostafa; Copéret, Christophe; Thivolle-Cazat, Jean; Chakka, Sudhakar; Basset, Jean-Marie


    Silica-supported tantalum hydride, (SiO)2Ta-H (1), proves to be the first single-site catalyst for the direct non-oxidative coupling transformation of methane into ethane and hydrogen at moderate temperatures, with a high selectivity (>98%). The reaction likely involves the tantalum-methyl-methylidene species as a key intermediate, where the methyl ligand can migrate onto the tantalum-methylidene affording the tantalum-ethyl.

  14. Directional Growth of Polymeric Nanowires (United States)

    Thapa, Prem; Flanders, Bret


    This work establishes an innovative electrochemical approach to the template free growth of conducting polypyrrole and polythiophene wires. These polymeric wires exhibit a knobby structure, but persistent growth in a given direction up to 30 μm in length. A long-range component of the applied voltage signal defines the growth-path. Moreover, the presence of this component enables the growth of amorphous nanowires with wire-like geometries. Such wires are employed in a non-invasive methodology for attaining strong mechanical attachments to live cells. This capability is of potential use in the electro-mechanical probing of cell physiological processes.

  15. Marketing NASA Langley Polymeric Materials (United States)

    Flynn, Diane M.


    A marketing tool was created to expand the knowledge of LaRC developed polymeric materials, in order to facilitate the technology transfer process and increase technology commercialization awareness among a non-technical audience. The created brochure features four materials, LaRC-CP, LaRC-RP46, LaRC-SI, and LaRC-IA, and highlights their competitive strengths in potential commercial applications. Excellent opportunities exist in the $40 million per year microelectronics market and the $6 billion adhesives market. It is hoped that the created brochure will generate inquiries regarding the use of the above materials in markets such as these.

  16. Charge transport in polymeric transistors

    Directory of Open Access Journals (Sweden)

    Alberto Salleo


    Full Text Available Polymeric semiconductors have attracted much attention because of their possible use as active materials in printed electronics. Thin-film transistors (TFTs are a convenient tool for studying charge-transport physics in conjugated polymers. Two families of materials are reviewed here: fluorene copolymers and polythiophenes. Because charge transport is highly anisotropic in molecular conductors, the electrical properties of conjugated polymers are strongly dependent on microstructure. Molecular weight, polydispersity, and regioregularity all affect morphology and charge-transport in these materials. Charge transport models based on microstructure are instrumental in identifying the electrical bottlenecks in these materials.

  17. High Vacuum Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar


    Anionic polymerization high vacuum techniques (HVTs) are the most suitable for the preparation of polymer samples with well-defined complex macromolecular architectures. Though HVTs require glassblowing skill for designing and making polymerization reactor, it is the best way to avoid any termination of living polymers during the number of steps for the synthesis of polymers with complex structure. In this chapter, we describe the different polymerization reactors and HVTs for the purification of monomers, solvents, and other reagents for anionic polymerization as well as few model reactions for the synthesis of polymers with simple to complex structure.

  18. Effect of Polymerization Condition on Particle Size Distribution in St/BA/MAA Emulsion Polymerization Process

    Institute of Scientific and Technical Information of China (English)


    A series of St/BA/MAA emulsion polymerizations was carried out. By using PCS (photon correlation spectroscopy), the particle size distribution(PSD) of the whole St/BA/MAA emulsion polymerization process was gotten easily and quickly. The effect of polymerization condition on PSD in St/BA/MAA emulsion process was discussed.

  19. Twin screw extruders as polymerization reactors for a free radical homo polymerization

    NARCIS (Netherlands)

    Ganzeveld, K.J.; Janssen, L.P.B.M.


    The bulk polymerization of n-butylmethacrylate was investigated in a counter-rotating twin screw extruder. It appeared that the gel effect, occurring with bulk polymerizations, affected the polymerization progress very strongly. Due to this effect the conversion of the reaction is independent of the

  20. Electrochemical Polymerization of Methylene Green

    Institute of Scientific and Technical Information of China (English)

    ZHU,Hong-Ping; MU,Shao-Lin


    The electrochemical polymerization of methylene green has been carried out using cyclic voltammetry. The electrolytic so lution consisted of 4 × 10-3 mol/L methylene green, 0.1 mol/L NaNO3 and 1 × 10-2 mol/L sodium tetraborate with pH 11.0. The temperature for polymerization is controlled at 60℃. The scan potential is set between -0.2 and 1.2 V (vs. Ag/AgCl with saturated KCl solution). There are an anodic peak and a cathodic peak on the cyclic voltammogram of poly(methylene green) at pH≤3.8. Both peak potentials shift towards nega tive potentials with increasing pH value, and their peak cur rents decrease with increasing pH value. Poly(methylene green) has a good electrochemical activity and stability in aqueous solutions with pH ≤ 3.8. The UV-Visible spectrum and FTIR spectrum of poly (methylene green) are different from those of methylene green.

  1. Schlenk Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar


    Anionic polymerization-high vacuum techniques (HVTs) are doubtlessly the most prominent and reliable experimental tools to prepare polymer samples with well-defined and, in many cases, complex macromolecular architectures. Due to the high demands for time and skilled technical personnel, HVTs are currently used in only a few research laboratories worldwide. Instead, most researchers in this filed are attracted to more facile Schlenk techniques. The basic principle of this technique followed in all laboratories is substantially the same, i.e. the use of alternate vacuum and inert gas atmosphere in glass apparatus for the purification/charging of monomer, solvents, additives, and for the manipulation of air-sensitive compounds such as alkyl metal initiators, organometallic or organic catalysts. However, it is executed quite differently in each research group in terms of the structure of Schlenk apparatus (manifolds, connections, purification/storage flasks, reactors, etc.), the use of small supplementary devices (soft tubing, cannulas, stopcocks, etc.) and experimental procedures. The operational methods are partly purpose-oriented while also featured by a high flexibility, which makes it impossible to describe in detail each specific one. In this chapter we will briefly exemplify the application of Schlenk techniques for anionic polymerization by describing the performance of a few experiments from our own work.


    Institute of Scientific and Technical Information of China (English)

    Wei-jun Ye; Jason S. Keiper; Joseph M. DeSimone


    Herein, we reported the microemulsion polymerization in supercritical carbon dioxide. With the aid of an anionic phosphate fluorosurfactant (bis-[2-(F-hexyl)ethyl]phosphate sodium), water-soluble/CO2-insoluble acryloxyethyltrimethyl ammonium chloride monomer and N,N'-methylene-bisacrylamide cross-linker were solubilized into CO2 continuous phase via the formation of water-in-CO2 (w/c) microemulsion water pools. Initiated by a CO2-soluble initiator, 2,2'-azo-bisisobutyronitrile (AIBN), cross-linked poly(acryloxyethyltrimethyl ammonium chloride) particles were produced and stabilized in these w/c internal water pools. Nano-sized particles with sizes less than 20 nm in diameter and narrow particle size distributions were obtained.

  3. Inflation and Instability of a Polymeric Membrane

    DEFF Research Database (Denmark)

    Hassager, Ole; Kristensen, Susanne Brogaard; Larsen, Johannes Ruben


    We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane. The polymeric material is described by an arbitrary combination of a viscoelastic and a purely viscous component to the stress. Some viscoelastic materials described by a Mooney...

  4. Inflation and Instability of a Polymeric Membrane

    DEFF Research Database (Denmark)

    Neergaard, Jesper; Hassager, Ole


    We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane. The polymeric materialis described by an arbitrary combination of a viscoelastic and a purely viscous component to the stress. Some viscoelastic materials described by a Mooney...

  5. Photoacoustic analysis of dental resin polymerization (United States)

    Coloiano, E. C. R.; Rocha, R.; Martin, A. A.; da Silva, M. D.; Acosta-Avalos, D.; Barja, P. R.


    In this work, we use the photoacoustic technique to monitor the curing process of diverse dental materials, as the resins chemically activated (RCA). The results obtained reveal that the composition of a determined RCA significantly alters its activation kinetics. Photoacoustic data also show that temperature is a significant parameter in the activation kinetics of resins. The photoacoustic technique was also applied to evaluate the polymerization kinetics of photoactivated resins. Such resins are photoactivated by incidence of continuous light from a photodiode. This leads to the polymerization of the resin, modifying its thermal properties and, consequently, the level of the photoacoustic signal. Measurements show that the polymerization of the resin changes the photoacoustic signal amplitude, indicating that photoacoustic measurements can be utilized to monitor the polymerization kinetic and the degree of polymerization of photoactivated dental resins.

  6. Fluid Effects in Polymers and Polymeric Composites

    CERN Document Server

    Weitsman, Y Jack


    Fluid Effects in Polymers and Polymeric Composites, written by the late Dr. Y. Jack Weitsman, addresses the wide range of parameters that affect the interaction of fluids with polymers and polymeric composites. The book aims at broadening the scope of available data, mostly limited up to this time to weight-gain recordings of fluid ingress into polymers and composites, to the practical circumstances of fluctuating exposure. Various forms of experimental data are given, in conjunction with theoretical models derived from basic scientific principles, and correlated with severity of exposure conditions and interpreted by means of rationally based theoretical models. The practical implications of the effects of fluids are discussed. The issue of fluid effects on polymers and polymeric composites is of concern to engineers and scientists active in aerospace and naval structures, as an increasing portion of these structures are made of polymeric composites and employ polymeric adhesives as a joining device. While...

  7. Modeling liquid crystal polymeric devices (United States)

    Gimenez Pinto, Vianney Karina

    The main focus of this work is the theoretical and numerical study of materials that combine liquid crystal and polymer. Liquid crystal elastomers are polymeric materials that exhibit both the ordered properties of the liquid crystals and the elastic properties of rubbers. Changing the order of the liquid crystal molecules within the polymer network can induce shape change. These materials are very valuable for applications such as actuators, sensors, artificial muscles, haptic displays, etc. In this work we apply finite element elastodynamics simulations to study the temperature induced shape deformation in nematic elastomers with complex director microstructure. In another topic, we propose a novel numerical method to model the director dynamics and microstructural evolution of three dimensional nematic and cholesteric liquid crystals. Numerical studies presented in this work are in agreement with experimental observations and provide insight into the design of application devices.


    Institute of Scientific and Technical Information of China (English)

    Zhen-zhongYang; Jian-huaRong; DanLi


    Meso-structured(opal and inverse opal) polymeric hydrogels of varied morphology and composition were prepared by using two methods:post-modification of the template-synthesized structured polymers and templatepolymerization of functional monomers.A polyacrylic acid based inverse opal hydrogel was chosen to demonstrate its fast pH response by changing color,which is important in designing tunable photonic crystals.Template effects of the hydrogels on controlling structure of the template-synthesized inorganic materials were discussed.The catalytic effect of acid groups in the templates was emphasized for a preferential formation of TiO2 in the region containing acid groups,which allowed duplicating inorganic colloidal crystals from colloidal crystal hydrogels (or macroporous products from macroporous hydrogels) via one step duplication.


    Institute of Scientific and Technical Information of China (English)

    Zhen-zhong Yang; Jian-hua Rong; Dan Li


    Meso-structured (opal and inverse opal) polymeric hydrogels of varied morphology and composition were prepared by using two methods: post-modification of the template-synthesized structured polymers and templatepolymerization of functional monomers. A polyacrylic acid based inverse opal hydrogel was chosen to demonstrate its fast pH response by changing color, which is important in designing tunable photonic crystals. Template effects of the hydrogels on controlling structure of the template-synthesized inorganic materials were discussed. The catalytic effect of acid groups inthe templates was emphasized for a preferential formation of TiO2 in the region containing acid groups, which allowed duplicating inorganic colloidal crystals from colloidal crystal hydrogels (or macroporous products from macroporous hydrogels) via one step duplication.

  10. Pressure induced polymerization of Formates (United States)

    Tschauner, Oliver


    The discovery of pressure induced polymerization of CO2 inspired us to search for C-O based chain structures forming at high pressure. We used salts of carboxylic acids as starting materials and exposed them to pressures between 10 and 30 GPa. Upon heating to temperatures above 1800 K we observed deprotonation and significant changes in the Raman shifts of C-O streching modes. Structure analysis based on powder diffraction patterns collected at sector 16 of the APS showed formation of extended C-O chain structures with the cations of the salts residing in the interchain spaces. These new high pressure polymers are interesting by their mechanical strength and provide basic molecular patterns of organic metallic conductors.

  11. Environment-Responsive Polymeric Hydrogels

    Institute of Scientific and Technical Information of China (English)

    Zhn X. X.; M. Nichifor; Lin H.Y.; D. Avoce


    Some polymers may respond by changing their physico-chemical perperties when the environmental conditions such as pH, temperature and ionic strength are varied. For example,thermosensentive polymers can exhibit a sharp change in solubility in a solvent such as water at a certain temperature known as the lower critical solution temperature (LCST). The responsiveness of the polymeric materials has important technological implications since they can be employed for various applications. The responsiveness of such polymers can be varied by means of copolymerization, chemical modification of the polymer, or the addition of reagents into the solutions. It is interesting and important to tune predictably the responsiveness of the polymers for the different applications. The sensitivity towards the external environment can be modulated by the relative hydrophilicity of the copolymers, hence the chemical structure and composition of the comonomers used.

  12. Hemocompatibility of polymeric nanostructured surfaces. (United States)

    Leszczak, Victoria; Smith, Barbara S; Popat, Ketul C


    Tissue integration is an important property when inducing transplant tolerance, however, the hemocompatibility of the biomaterial surface also plays an important role in the ultimate success of the implant. Therefore, in order to induce transplant tolerance, it is critical to understand the interaction of blood components with the material surfaces. In this study, we have investigated the adsorption of key blood serum proteins, in vitro adhesion and activation of platelets and clotting kinetics of whole blood on flat polycaprolactone (PCL) surfaces, nanowire (NW) surfaces and nanofiber (NF) surfaces. Previous studies have shown that polymeric nanostructured surfaces improve cell adhesion, proliferation and viability; however it is unclear how these polymeric nanostructured surfaces interact with the blood and its components. Protein adsorption results indicate that while there were no significant differences in total albumin (ALB) adsorption on PCL, NW and NF surfaces, NW surfaces had higher total fibrinogen (FIB) and immunoglobulin-G (IgG) adsorption compared to NF and PCL surfaces. In contrast, NF surfaces had higher surface FIB and IgG adsorption compared to PCL and NW surfaces. Platelet adhesion and viability studies show more adhesion and clustering of platelets on the NF surfaces as compared to PCL and NW surfaces. Platelet activation studies reveal that NW surfaces have the highest percentage of unactivated platelets, whereas NF surfaces have the highest percentage of fully activated platelets. Whole blood clotting results indicate that NW surfaces maintain an increased amount of free hemoglobin during the clotting process compared to PCL and NF surface, indicating less clotting and slower rate of clotting on their surfaces.

  13. Polymeric materials from renewable resources (United States)

    Frollini, Elisabete; Rodrigues, Bruno V. M.; da Silva, Cristina G.; Castro, Daniele O.; Ramires, Elaine C.; de Oliveira, Fernando; Santos, Rachel P. O.


    The goals of our studies have been the use of renewable raw materials in the preparation of polymeric materials with diversified properties. In this context, lignosulfonate, which is produced in large scale around the world, but not widely used in the production of polymeric materials, was used to replace phenol and polyols in the preparation of phenolic- (Ligno-PH) and polyurethane-type (Ligno-PU) polymers, respectively. These polymers were used to prepare composites reinforced with sisal lignocellulosic fibers. The use of lignosulfonate in the formulation of both types of polymers was beneficial, because in general composites with improved properties, specially impact strength, were obtained. Composites were also prepared from the so called "biopolyethylene" (HDPE), curaua lignocellulosic fiber, and castor oil (CO). All composites HDBPE/CO/Fiber exhibited higher impact strength, when compared to those of the corresponding HDBPE/Fiber. These results, combined with others (eg SEM images of the fractured surfaces) indicated that, in addition to acting as a plasticizer, this oil may have acted as a compatibilizer of the hydrophilic fiber with the hydrophobic polymer. The set of results indicated that (i) mats with nano (diameter ≤ 100nm) and/or ultrafine (submicron scale) fibers were produced, (ii) hybrid fibers were produced (bio-based mats composites), (iii) cellulosic pulp (CP) and/or lignin (Lig) can be combined with PET matrices to control properties such as stiffness and hydrophilicity of the respective mats. Materials with diversified properties were prepared from high content of renewable raw materials, thus fulfilling the proposed targets.

  14. Polymeric materials from renewable resources

    Energy Technology Data Exchange (ETDEWEB)

    Frollini, Elisabete; Rodrigues, Bruno V. M.; Silva, Cristina G. da; Castro, Daniele O.; Ramires, Elaine C.; Oliveira, Fernando de; Santos, Rachel P. O. [Macromolecular Materials and Lignocellulosic Fibers Group, Center for Research on Science and Technology of BioResources, Institute of Chemistry of São Carlos, University of São Paulo, CP 780, 13560-970 São Carlos, São Paulo (Brazil)


    The goals of our studies have been the use of renewable raw materials in the preparation of polymeric materials with diversified properties. In this context, lignosulfonate, which is produced in large scale around the world, but not widely used in the production of polymeric materials, was used to replace phenol and polyols in the preparation of phenolic- (Ligno-PH) and polyurethane-type (Ligno-PU) polymers, respectively. These polymers were used to prepare composites reinforced with sisal lignocellulosic fibers. The use of lignosulfonate in the formulation of both types of polymers was beneficial, because in general composites with improved properties, specially impact strength, were obtained. Composites were also prepared from the so called “biopolyethylene” (HDPE), curaua lignocellulosic fiber, and castor oil (CO). All composites HDBPE/CO/Fiber exhibited higher impact strength, when compared to those of the corresponding HDBPE/Fiber. These results, combined with others (eg SEM images of the fractured surfaces) indicated that, in addition to acting as a plasticizer, this oil may have acted as a compatibilizer of the hydrophilic fiber with the hydrophobic polymer. The set of results indicated that (i) mats with nano (diameter ≤ 100nm) and/or ultrafine (submicron scale) fibers were produced, (ii) hybrid fibers were produced (bio-based mats composites), (iii) cellulosic pulp (CP) and/or lignin (Lig) can be combined with PET matrices to control properties such as stiffness and hydrophilicity of the respective mats. Materials with diversified properties were prepared from high content of renewable raw materials, thus fulfilling the proposed targets.

  15. Programming magnetic anisotropy in polymeric microactuators. (United States)

    Kim, Jiyun; Chung, Su Eun; Choi, Sung-Eun; Lee, Howon; Kim, Junhoi; Kwon, Sunghoon


    Polymeric microcomponents are widely used in microelectromechanical systems (MEMS) and lab-on-a-chip devices, but they suffer from the lack of complex motion, effective addressability and precise shape control. To address these needs, we fabricated polymeric nanocomposite microactuators driven by programmable heterogeneous magnetic anisotropy. Spatially modulated photopatterning was applied in a shape-independent manner to microactuator components by successive confinement of self-assembled magnetic nanoparticles in a fixed polymer matrix. By freely programming the rotational axis of each component, we demonstrate that the polymeric microactuators can undergo predesigned, complex two- and three-dimensional motion.

  16. Polymeric nanoparticles: the future of nanomedicine. (United States)

    Banik, Brittany L; Fattahi, Pouria; Brown, Justin L


    Polymeric nanoparticles (NPs) are one of the most studied organic strategies for nanomedicine. Intense interest lies in the potential of polymeric NPs to revolutionize modern medicine. To determine the ideal nanosystem for more effective and distinctly targeted delivery of therapeutic applications, particle size, morphology, material choice, and processing techniques are all research areas of interest. Utilizations of polymeric NPs include drug delivery techniques such as conjugation and entrapment of drugs, prodrugs, stimuli-responsive systems, imaging modalities, and theranostics. Cancer, neurodegenerative disorders, and cardiovascular diseases are fields impacted by NP technologies that push scientific boundaries to the leading edge of transformative advances for nanomedicine.


    Institute of Scientific and Technical Information of China (English)

    Hong-kun Li; Jing-zhi Sun; An-jun Qin; Ben Zhong Tang


    The great achievements of click chemistry have encouraged polymer scientists to use this reaction in their field.This review assembles an update of the advances of using azide-alkyne click polymerization to prepare functional polytriazoles (PTAs) with linear and hyperbranched structures.The Cu(Ⅰ)-mediated click polymerization furnishes 1,4-regioregular PTAs,whereas,the metal-free click polymerization of propiolates and azides produces PTAs with 1,4-regioisomer contents up to 90%.The PTAs display advanced functions,such as aggregation-induced emission,thermal stability,biocompatibility and optical nonlinearity.


    Institute of Scientific and Technical Information of China (English)

    PAN Caiyuan; ZHAO Yulong; William J. Bailey


    Bisphenylene orthocarbonate (Ⅱ) was synthesized by the reaction of dicopper catecholate with carbon tetrachloride, and underwent cationic ring-opening polymerization with the introduction of phenyl group into the main ehain. The obtained polymer with ester and ether group was verified by IR and 1H NMR spectra.Based on the analysis of the polymer structures, the polymerization mechanism was proposed. Its Tm and Tg are 254℃ and 160℃ respectively. No decomposition of the polymer was observed below 320℃. The volume expansion property of the monomer during polymerization was studied by measuring the density difference between I and its polymer at various temperatures.

  19. Characterization of Polymeric Nanofiltration Membranes

    Directory of Open Access Journals (Sweden)

    Simoncic, B.


    Full Text Available As membrane processes are increasingly used in industrial applications, there is a growing interest in methods of membrane characterization. Traditional membrane characteristics, such as cut-off value and pore size distribution, are being supplemented by membrane surface characteristics, such as charge density or zeta potential and hydrophobicity. This study, therefore, characterizes the three different polymeric membranes used (NFT-50, DL and DK. The molecular mass cut-off (MMCO value was determined using a set of reference solutes within the molecular range 150-600 Da, whereas streaming potential measurements enabled quantification of the surface charge characteristics. Hydrophobicity was studied using contact angle measurements. The results indicated that even though all three membranes had very similar layer compositions which consisted of poly(piperazneamide, as top layers they showed different values of measured quantitive. The NFT-50 membrane had the lowest MMCO value and the most hydrophilic membrane surface, followed by DK and DL. Membrane fouling as measured by flux reduction was determined by streaming potential measurements and accompanied by a positive change in zeta potential.

  20. Polymerization as a Model Chain Reaction (United States)

    Morton, Maurice


    Describes the features of the free radical, anionic, and cationic mechanisms of chain addition polymerization. Indicates that the nature of chain reactions can be best taught through the study of macromolecules. (CC)

  1. Deformation and flow of polymeric materials

    CERN Document Server

    Münstedt, Helmut


    This book describes the properties of single polymer molecules and polymeric materials and the methods how to characterize them. Molar masses, molar mass distributions and branching structure are discussed in detail. These properties are decisive for a deeper understanding of structure/properties relationships of polymeric materials. This book therefore describes and discusses them in detail. The mechanical behavior as a function of time and temperature is a key subject of the book. The authors present it on the basis of many original results they have obtained in their long research careers. They present the temperature dependence of mechanical properties of various polymeric materials in a wide temperature range: from cryogenic temperatures to the melt. Besides an extensive data collection on the transitions of various different polymeric materials, they also carefully present the physical explanations of the observed phenomena. Glass transition and melting temperatures are discussed, particularly, with the...

  2. Isothermal Titration Calorimetry of Chiral Polymeric Nanoparticles. (United States)

    Werber, Liora; Preiss, Laura C; Landfester, Katharina; Muñoz-Espí, Rafael; Mastai, Yitzhak


    Chiral polymeric nanoparticles are of prime importance, mainly due to their enantioselective potential, for many applications such as catalysis and chiral separation in chromatography. In this article we report on the preparation of chiral polymeric nanoparticles by miniemulsion polymerization. In addition, we describe the use of isothermal titration calorimetry (ITC) to measure the chiral interactions and the energetics of the adsorption of enantiomers from aqueous solutions onto chiral polymeric nanoparticles. The characterization of chirality in nano-systems is a very challenging task; here, we demonstrate that ITC can be used to accurately determine the thermodynamic parameters associated with the chiral interactions of nanoparticles. The use of ITC to measure the energetics of chiral interactions and recognition at the surfaces of chiral nanoparticles can be applied to other nanoscale chiral systems and can provide further insight into the chiral discrimination processes of nanomaterials. © 2015 Wiley Periodicals, Inc.

  3. Reverse-osmosis membranes by plasma polymerization (United States)

    Hollahan, J. R.; Wydeven, T.


    Thin allyl amine polymer films were developed using plasma polymerization. Resulting dry composite membranes effectively reject sodium chloride during reverse osmosis. Films are 98% sodium chloride rejective, and 46% urea rejective.

  4. Polymeric lithography editor: Editing lithographic errors with nanoporous polymeric probes. (United States)

    Rajasekaran, Pradeep Ramiah; Zhou, Chuanhong; Dasari, Mallika; Voss, Kay-Obbe; Trautmann, Christina; Kohli, Punit


    A new lithographic editing system with an ability to erase and rectify errors in microscale with real-time optical feedback is demonstrated. The erasing probe is a conically shaped hydrogel (tip size, ca. 500 nm) template-synthesized from track-etched conical glass wafers. The "nanosponge" hydrogel probe "erases" patterns by hydrating and absorbing molecules into a porous hydrogel matrix via diffusion analogous to a wet sponge. The presence of an interfacial liquid water layer between the hydrogel tip and the substrate during erasing enables frictionless, uninterrupted translation of the eraser on the substrate. The erasing capacity of the hydrogel is extremely high because of the large free volume of the hydrogel matrix. The fast frictionless translocation and interfacial hydration resulted in an extremely high erasing rate (~785 μm(2)/s), which is two to three orders of magnitude higher in comparison with the atomic force microscopy-based erasing (~0.1 μm(2)/s) experiments. The high precision and accuracy of the polymeric lithography editor (PLE) system stemmed from coupling piezoelectric actuators to an inverted optical microscope. Subsequently after erasing the patterns using agarose erasers, a polydimethylsiloxane probe fabricated from the same conical track-etched template was used to precisely redeposit molecules of interest at the erased spots. PLE also provides a continuous optical feedback throughout the entire molecular editing process-writing, erasing, and rewriting. To demonstrate its potential in device fabrication, we used PLE to electrochemically erase metallic copper thin film, forming an interdigitated array of microelectrodes for the fabrication of a functional microphotodetector device. High-throughput dot and line erasing, writing with the conical "wet nanosponge," and continuous optical feedback make PLE complementary to the existing catalog of nanolithographic/microlithographic and three-dimensional printing techniques. This new PLE

  5. Inflation and Failure of Polymeric Membranes

    DEFF Research Database (Denmark)

    Hassager, Ole; Neergaard, Jesper


    We consider the inflation of an axisymmetric polymeric membrane.Some membranes composed of viscoelastic materialsdescribed by a Mooney-Rivlin model show a monotone increasingpressure during inflation. These materialsdevelop a homogeneous membrane thickness in agreement with the Considere-Pearson ......We consider the inflation of an axisymmetric polymeric membrane.Some membranes composed of viscoelastic materialsdescribed by a Mooney-Rivlin model show a monotone increasingpressure during inflation. These materialsdevelop a homogeneous membrane thickness in agreement with the Considere...

  6. Thermo-inelastic Response of Polymeric Solids (United States)


    Public Release; Distribution Unlimited Final Report: Thermo -inelastic Response of Polymeric Solids The views, opinions and/or findings contained in non peer-reviewed journals: Final Report: Thermo -inelastic Response of Polymeric Solids Report Title We the study the impact response of a large...none) Challenges and opportunities in the modeling of thermo -viscoelastic materials, Society of Experimental Mechanics, Greenville, North, Carolina

  7. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions (United States)

    Coari, Kristin M.; Martin, Rebecca C.; Jain, Kopal; McGown, Linda B.


    In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.

  8. Post polymerization cure shape memory polymers (United States)

    Wilson, Thomas S; Hearon, Michael Keith; Bearinger, Jane P


    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  9. Volumetric polymerization shrinkage of contemporary composite resins

    Directory of Open Access Journals (Sweden)

    Halim Nagem Filho


    Full Text Available The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill Magic, Alert, and Solitaire to determine whether there are differences among these materials. The tests were conducted with precision of 0.1 mg. The volumetric shrinkage was measured by hydrostatic weighing before and after polymerization and calculated by known mathematical equations. One-way ANOVA (a or = 0.05 was used to determine statistically significant differences in volumetric shrinkage among the tested composite resins. Suprafill (1.87±0.01 and Definite (1.89±0.01 shrank significantly less than the other composite resins. SureFil (2.01±0.06, Filtek Z250 (1.99±0.03, and Fill Magic (2.02±0.02 presented intermediate levels of polymerization shrinkage. Alert and Solitaire presented the highest degree of polymerization shrinkage. Knowing the polymerization shrinkage rates of the commercially available composite resins, the dentist would be able to choose between using composite resins with lower polymerization shrinkage rates or adopting technical or operational procedures to minimize the adverse effects deriving from resin contraction during light-activation.

  10. Post polymerization cure shape memory polymers

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Thomas S.; Hearon, II, Michael Keith; Bearinger, Jane P.


    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  11. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions (United States)

    Coari, Kristin M.; Martin, Rebecca C.; Jain, Kopal; McGown, Linda B.


    In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.

  12. Polymeric micellar drug carriers with fluorescent properties


    Abreu, Ana Sofia Lemos Machado; Sá, Arsénio Vasconcelos; Oliveira, Manuel; Moura, I; Machado, A.V.


    Self-assembling polymeric surfactants, based on amphiphilic block copolymers into nanosized aggregates in aqueous solution, are of great interest in the biomedical fields as one class of promising carrier systems, for drug delivery, gene therapy and diagnostic biosensors.[1] The incorporation of fluorescent probes into polymeric micelles has been fulfilled either by physically encapsulation or chemically attachment of fluorophores. [2] These micelle-based fluorescent probes not only facili...

  13. Post polymerization cure shape memory polymers (United States)

    Wilson, Thomas S.; Hearon, II, Michael Keith; Bearinger, Jane P.


    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  14. Activation of Proinflammatory Responses in Cells of the Airway Mucosa by Particulate Matter: Oxidant- and Non-Oxidant-Mediated Triggering Mechanisms

    Directory of Open Access Journals (Sweden)

    Johan Øvrevik


    Full Text Available Inflammation is considered to play a central role in a diverse range of disease outcomes associated with exposure to various types of inhalable particulates. The initial mechanisms through which particles trigger cellular responses leading to activation of inflammatory responses are crucial to clarify in order to understand what physico-chemical characteristics govern the inflammogenic activity of particulate matter and why some particles are more harmful than others. Recent research suggests that molecular triggering mechanisms involved in activation of proinflammatory genes and onset of inflammatory reactions by particles or soluble particle components can be categorized into direct formation of reactive oxygen species (ROS with subsequent oxidative stress, interaction with the lipid layer of cellular membranes, activation of cell surface receptors, and direct interactions with intracellular molecular targets. The present review focuses on the immediate effects and responses in cells exposed to particles and central down-stream signaling mechanisms involved in regulation of proinflammatory genes, with special emphasis on the role of oxidant and non-oxidant triggering mechanisms. Importantly, ROS act as a central second-messenger in a variety of signaling pathways. Even non-oxidant mediated triggering mechanisms are therefore also likely to activate downstream redox-regulated events.

  15. Polymeric micelles for acyclovir drug delivery. (United States)

    Sawdon, Alicia J; Peng, Ching-An


    Polymeric prodrug micelles for delivery of acyclovir (ACV) were synthesized. First, ACV was used directly to initiate ring-opening polymerization of ɛ-caprolactone to form ACV-polycaprolactone (ACV-PCL). Through conjugation of hydrophobic ACV-PCL with hydrophilic methoxy poly(ethylene glycol) (MPEG) or chitosan, polymeric micelles for drug delivery were formed. (1)H NMR, FTIR, and gel permeation chromatography were employed to show successful conjugation of MPEG or chitosan to hydrophobic ACV-PCL. Through dynamic light scattering, zeta potential analysis, transmission electron microscopy, and critical micelle concentration (CMC), the synthesized ACV-tagged polymeric micelles were characterized. It was found that the average size of the polymeric micelles was under 200nm and the CMCs of ACV-PCL-MPEG and ACV-PCL-chitosan were 2.0mgL(-1) and 6.6mgL(-1), respectively. The drug release kinetics of ACV was investigated and cytotoxicity assay demonstrates that ACV-tagged polymeric micelles were non-toxic.

  16. The tempered polymerization of human neuroserpin.

    Directory of Open Access Journals (Sweden)

    Rosina Noto

    Full Text Available Neuroserpin, a member of the serpin protein superfamily, is an inhibitor of proteolytic activity that is involved in pathologies such as ischemia, Alzheimer's disease, and Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB. The latter belongs to a class of conformational diseases, known as serpinopathies, which are related to the aberrant polymerization of serpin mutants. Neuroserpin is known to polymerize, even in its wild type form, under thermal stress. Here, we study the mechanism of neuroserpin polymerization over a wide range of temperatures by different techniques. Our experiments show how the onset of polymerization is dependent on the formation of an intermediate monomeric conformer, which then associates with a native monomer to yield a dimeric species. After the formation of small polymers, the aggregation proceeds via monomer addition as well as polymer-polymer association. No further secondary mechanism takes place up to very high temperatures, thus resulting in the formation of neuroserpin linear polymeric chains. Most interesting, the overall aggregation is tuned by the co-occurrence of monomer inactivation (i.e. the formation of latent neuroserpin and by a mechanism of fragmentation. The polymerization kinetics exhibit a unique modulation of the average mass and size of polymers, which might suggest synchronization among the different processes involved. Thus, fragmentation would control and temper the aggregation process, instead of enhancing it, as typically observed (e.g. for amyloid fibrillation.

  17. Genotoxic evaluation of polymeric nanoparticles

    Directory of Open Access Journals (Sweden)

    Tamara Iglesias Alonso


    Full Text Available An important strategy for optimizing the therapeutic efficacy of many conventional drugs is the development of polymeric nanoparticles (NPs, as it may expand their activities, reduce their toxicity, increase their bioactivity and improve biodistribution. The main objective of this study was to evaluate the genotoxicity of 8 different poly (anhydride NPs designed for the oral administration of therapeutic compounds by using the comet assay in combination with the enzyme formamidopypiridine DNA-glycosylase (FPG. Furthermore, the mitogen capacity of the NPs was evaluated by the proliferation assay. All NPs were tested at four concentrations (0, 0.5, 1 and 2 mg/mL in Caco-2 cells after 3 hours of treatment while selected NPs were also tested after 24 h. The comet assay was performed immediately after the treatment and cell proliferation was assessed by counting the treated cells after their incubation at 37 °C for 48h. Cells treated with 1 µM of the photosensitizer Ro 19-8022 plus 5 min of light, as well as cells treated with 100 µM H2O2 were included as positive controls in all the experiments. All NPs studied did not result in any increase in the frequency of strand breaks or alkali-labile sites in Caco-2 cells but they induced a slight concentration-dependent increase in net FPG sensitive sites (oxidized and/or alkylated bases. Furthermore, treated cells did not show changes in levels of proliferation in comparison with the negative control.

  18. Polymerization in emulsion microdroplet reactors (United States)

    Carroll, Nick J.

    The goal of this research project is to utilize emulsion droplets as chemical reactors for execution of complex polymerization chemistries to develop unique and functional particle materials. Emulsions are dispersions of immiscible fluids where one fluid usually exists in the form of drops. Not surprisingly, if a liquid-to-solid chemical reaction proceeds to completion within these drops, the resultant solid particles will possess the shape and relative size distribution of the drops. The two immiscible liquid phases required for emulsion polymerization provide unique and complex chemical and physical environments suitable for the engineering of novel materials. The development of novel non-ionic fluorosurfactants allows fluorocarbon oils to be used as the continuous phase in a water-free emulsion. Such emulsions enable the encapsulation of almost any hydrocarbon compound in droplets that may be used as separate compartments for water-sensitive syntheses. Here, we exemplify the promise of this approach by suspension polymerization of polyurethanes (PU), in which the liquid precursor is emulsified into droplets that are then converted 1:1 into polymer particles. The stability of the droplets against coalescence upon removal of the continuous phase by evaporation confirms the formation of solid PU particles. These results prove that the water-free environment of fluorocarbon based emulsions enables high conversion. We produce monodisperse, cross-linked, and fluorescently labeled PU-latexes with controllable mesh size through microfluidic emulsification in a simple one-step process. A novel method for the fabrication of monodisperse mesoporous silica particles is presented. It is based on the formation of well-defined equally sized emulsion droplets using a microfluidic approach. The droplets contain the silica precursor/surfactant solution and are suspended in hexadecane as the continuous oil phase. The solvent is then expelled from the droplets, leading to

  19. Polymeric lithography editor: Editing lithographic errors with nanoporous polymeric probes (United States)

    Rajasekaran, Pradeep Ramiah; Zhou, Chuanhong; Dasari, Mallika; Voss, Kay-Obbe; Trautmann, Christina; Kohli, Punit


    A new lithographic editing system with an ability to erase and rectify errors in microscale with real-time optical feedback is demonstrated. The erasing probe is a conically shaped hydrogel (tip size, ca. 500 nm) template-synthesized from track-etched conical glass wafers. The “nanosponge” hydrogel probe “erases” patterns by hydrating and absorbing molecules into a porous hydrogel matrix via diffusion analogous to a wet sponge. The presence of an interfacial liquid water layer between the hydrogel tip and the substrate during erasing enables frictionless, uninterrupted translation of the eraser on the substrate. The erasing capacity of the hydrogel is extremely high because of the large free volume of the hydrogel matrix. The fast frictionless translocation and interfacial hydration resulted in an extremely high erasing rate (~785 μm2/s), which is two to three orders of magnitude higher in comparison with the atomic force microscopy–based erasing (~0.1 μm2/s) experiments. The high precision and accuracy of the polymeric lithography editor (PLE) system stemmed from coupling piezoelectric actuators to an inverted optical microscope. Subsequently after erasing the patterns using agarose erasers, a polydimethylsiloxane probe fabricated from the same conical track-etched template was used to precisely redeposit molecules of interest at the erased spots. PLE also provides a continuous optical feedback throughout the entire molecular editing process—writing, erasing, and rewriting. To demonstrate its potential in device fabrication, we used PLE to electrochemically erase metallic copper thin film, forming an interdigitated array of microelectrodes for the fabrication of a functional microphotodetector device. High-throughput dot and line erasing, writing with the conical “wet nanosponge,” and continuous optical feedback make PLE complementary to the existing catalog of nanolithographic/microlithographic and three-dimensional printing techniques. This new

  20. Survey and research on precision polymerization polymeric materials; Seimitsu jugo kobunshi zairyo ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)



    Survey and research on the precision control of primary structure of polymeric materials and the precision evaluation technology have been conducted to develop advanced polymeric materials. It is proposed that the three basic processes of polymer synthesis, i.e., addition, condensation, and biomimesis, in forming the precision polymerization skeleton are to be covered through a centralized joint research effort with participation of industry, academia, and the government institute and under the leadership of researchers from academic institutions as the team leaders. For the study of technology trends, international conferences held in UK, Germany, and Hawaii are introduced, and domestic meetings, i.e., Annual Polymer Congress and Polymer Conference, are summarized. In addition, Precision Polymerization Forum and International Workshop on Precision Polymerization were held. The basic studies include a quantum-chemical elucidation of the elementary process in polymerization reaction, time-resolved analysis of polymerization process and polymer properties, synthesis of polymers with controlled microstructures by coordination polymerization using metal complexes, synthesis of polymer with controlled microstructures by precision polycondensation, molecular recognition in catalyst-reaction site, and synthesis of imprinting polymers. 246 refs., 117 figs., 14 tabs.

  1. Fire-Retardant Polymeric Additives (United States)

    Williams, Martha K.; Smith, Trent M.


    component forms polybenzoxazole (PBO) in a reaction that absorbs heat from its surroundings. PBO under thermal stress cross-links, forming a protective char layer, which thermally insulates the polymer. Thus, the formation of the char layer further assists to extinguish the fire by preventing vaporization of the polymeric fuel.

  2. Mixing in polymeric microfluidic devices.

    Energy Technology Data Exchange (ETDEWEB)

    Schunk, Peter Randall; Sun, Amy Cha-Tien; Davis, Robert H. (University of Colorado at Boulder, Boulder, CO); Brotherton, Christopher M. (University of Colorado at Boulder, Boulder, CO)


    This SAND report describes progress made during a Sandia National Laboratories sponsored graduate fellowship. The fellowship was funded through an LDRD proposal. The goal of this project is development and characterization of mixing strategies for polymeric microfluidic devices. The mixing strategies under investigation include electroosmotic flow focusing, hydrodynamic focusing, physical constrictions and porous polymer monoliths. For electroosmotic flow focusing, simulations were performed to determine the effect of electroosmotic flow in a microchannel with heterogeneous surface potential. The heterogeneous surface potential caused recirculations to form within the microchannel. These recirculations could then be used to restrict two mixing streams and reduce the characteristic diffusion length. Maximum mixing occurred when the ratio of the mixing region surface potential to the average channel surface potential was made large in magnitude and negative in sign, and when the ratio of the characteristic convection time to the characteristic diffusion time was minimized. Based on these results, experiments were performed to evaluate the manipulation of surface potential using living-radical photopolymerization. The material chosen to manipulate typically exhibits a negative surface potential. Using living-radical surface grafting, a positive surface potential was produced using 2-(Dimethylamino)ethyl methacrylate and a neutral surface was produced using a poly(ethylene glycol) surface graft. Simulations investigating hydrodynamic focusing were also performed. For this technique, mixing is enhanced by using a tertiary fluid stream to constrict the two mixing streams and reduce the characteristic diffusion length. Maximum mixing occurred when the ratio of the tertiary flow stream flow-rate to the mixing streams flow-rate was maximized. Also, like the electroosmotic focusing mixer, mixing was also maximized when the ratio of the characteristic convection time to the

  3. Delivery of antibiotics with polymeric particles. (United States)

    Xiong, Meng-Hua; Bao, Yan; Yang, Xian-Zhu; Zhu, Yan-Hua; Wang, Jun


    Despite the wide use of antibiotics, bacterial infection is still one of the leading causes of hospitalization and mortality. The clinical failure of antibiotic therapy is linked with low bioavailability, poor penetration to bacterial infection sites, and the side effects of antibiotics, as well as the antibiotic resistance properties of bacteria. Antibiotics encapsulated in nanoparticles or microparticles made up of a biodegradable polymer have shown great potential in replacing the administration of antibiotics in their "free" form. Polymeric particles provide protection to antibiotics against environmental deactivation and alter antibiotic pharmacokinetics and biodistribution. Polymeric particles can overcome tissue and cellular barriers and deliver antibiotics into very dense tissues and inaccessible target cells. Polymeric particles can be modified to target or respond to particular tissues, cells, and even bacteria, and thereby facilitate the selective concentration or release of the antibiotic at infection sites, respectively. Thus, the delivery of antibiotics with polymeric particles augments the level of the bioactive drug at the site of infection while reducing the dosage and the dosing frequency. The end results are improved therapeutic effects as well as decreased "pill burden" and drug side effects in patients. The main objective of this review is to analyze recent advances and current perspectives in the use of polymeric antibiotic delivery systems in the treatment of bacterial infection.

  4. Effect of combining the metals of group VI supported on H-ZSM-5 zeolite as catalysts for non-oxidative conversion of natural gas to petrochemicals

    Institute of Scientific and Technical Information of China (English)

    A.K.Aboul-Gheit; A.E.Awadallah


    The most prestigious catalyst applied in natural gas (methane) non-oxidative conversion to petrochemicals is 6%Mo/H-ZSM-5.Chromium,molybdenum and tungsten are the group VI metals.Hence,in this work,6%Mo/H-ZSM-5 was correlated with 3%Cr+3%Mo/H-ZSM-5 and 3%W+3%Mo/H-ZSM-5 as catalysts to examine their promoting or inhibiting effects on the various reactions taking place during methane conversion.The catalytic activities of these catalysts were tested in a continuous flow fixed bed reactor at 700℃ and a GHSV of 1500 ml·g-1 ·h-1. Characterization of the catalysts using XRD,TGA and TPD were investigated.XRD and NH3-TPD showed greater interaction between the W-phase and the Bronsted acid sites in the channels of the zeolite than between Cr-phase and the acid sites in the zeolite.

  5. A new approach to the non-oxidative conversion of gaseous alkanes in a barrier discharge and features of the reaction mechanism (United States)

    Kudryashov, S.; Ryabov, A.; Shchyogoleva, G.


    A new approach to the non-oxidative conversion of C1-C4 alkanes into gaseous and liquid products in a barrier discharge is proposed. It consists in inhibiting the formation of deposits on the reactor electrode surfaces due to the addition of distilled water into the flow of hydrocarbon gases. The energy consumption on hydrocarbon conversion decreases from methane to n-butane from ~46 to 35 eV molecule-1. The main gaseous products of the conversion of light alkanes are hydrogen and C2-C4 hydrocarbons. The liquid reaction products contain C5+ alkanes with a predominantly isomeric structure. The results of modeling the kinetics of chemical reactions show that an increase in the molecular weight of the reaction products is mainly due to processes involving CH2 radical and the recombination of alkyl radicals.

  6. Development of radioisotope labeled polymeric carriers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jin; Jeong, Jea Min; Hwang, Hyun Jeong [Ewha Womans University, Seoul (Korea)


    This research was performed with the aim of developing polymeric radioisotope or drug carriers for obtaining efficient diagnostic therapeutic efficacy. As polymers, polyethylene oxides, polylactides, polycaprolactone were chosen to prepare the devices including micelle system, microemulsion, nanospheres. In addition, anticancer drug loaded polylactide microparticulates were fabricated as a regional chemotherapeutics for the treatment of cancer. Technetium or radioactive iodine was labeled to the polymeric carriers via ligands such as DTPA and HPP, respectively. Labeling efficiency was above 90% and stable enough up to 24 hours. Moreover, injected polymer carriers demonstrated higher blood maintenance and bone uptake than Tin colloid, a control. These results suggested that radioisotope carrying polymeric particulate are promising tools for diagnosing blood vessels or bones. Besides, anticancer drug loaded particulates demonstrated appropriate maintenance of therapeutic concentration and localization. Therefore it was proposed that this therapeutic system may be potential as a cancer therapy modality. 20 refs., 24 figs.,5 tabs. (Author)

  7. Medical prototyping using two photon polymerization

    Directory of Open Access Journals (Sweden)

    Roger J Narayan


    Full Text Available Two photon polymerization involves nearly simultaneous absorption of ultrashort laser pulses for selective curing of photosensitive material. This process has recently been used to create small-scale medical devices out of several classes of photosensitive materials, such as acrylate-based polymers, organically-modified ceramic materials, zirconium sol-gels, and titanium-containing hybrid materials. In this review, the use of two photon polymerization for fabrication of several types of small-scale medical devices, including microneedles, artificial tissues, microfluidic devices, pumps, sensors, and valves, from computer models is described. Necessary steps in the development of two photon polymerization as a commercially viable medical device manufacturing method are also considered.

  8. Self-Healing of biocompatible polymeric nanocomposities (United States)

    Espino, Omar; Chipara, Dorina


    Polymers are vulnerable to damage in form of cracks deep within the structure, where detection is difficult and repair is near to impossible. These cracks lead to mechanical degradation of the polymer. A method has been created to solve this problem named polymeric self healing. Self healing capabilities implies the dispersion within the polymeric matrix of microcapsules filled with a monomer and of catalyst. Poly urea-formaldehyde microcapsules used in this method are filled with dicyclopentadiene that is liberated after being ruptured by the crack propagation in the material. Polymerization is assisted by a catalyst FGGC that ignites the self healing process. Nanocomposites, such as titanium oxide, will be used as an integration of these polymers that will be tested by rupturing mechanically slowly. In order to prove the self healing process, Raman spectroscopy, FTIR, and SEM are used.

  9. Removal of radioactive contaminants by polymeric microspheres. (United States)

    Osmanlioglu, Ahmet Erdal


    Radionuclide removal from radioactive liquid waste by adsorption on polymeric microspheres is the latest application of polymers in waste management. Polymeric microspheres have significant immobilization capacity for ionic substances. A laboratory study was carried out by using poly(N-isopropylacrylamide) for encapsulation of radionuclide in the liquid radioactive waste. There are numbers of advantages to use an encapsulation technology in radioactive waste management. Results show that polymerization step of radionuclide increases integrity of solidified waste form. Test results showed that adding the appropriate polymer into the liquid waste at an appropriate pH and temperature level, radionuclide was encapsulated into polymer. This technology may provide barriers between hazardous radioactive ions and the environment. By this method, solidification techniques became easier and safer in nuclear waste management. By using polymer microspheres as dust form, contamination risks were decreased in the nuclear industry and radioactive waste operations.


    Institute of Scientific and Technical Information of China (English)

    ZHANG Shengshui; LIU Qingguo; YANG Leiling; FARRINGTON; Gregory C.


    This paper reports the synthesis of methoxyoligo (oxyethylene) methacrylate (MEOn , n is the repeating unit number of (CH2CH2O) in the macromonomer),and its polymerization in different solvents. MEOn is prepared through such two independent reactions as (1) anionic polymerization of oxirane initiated by potassium alkoxide and (2) end-capping of methoxy oligo(oxyethylene) by methacrylic group. The n value can be conveniently controlled over the range of 5~30 by varying the molar ratio of oxirane to initiator and the molecular weight distribution of MEOn be narrowed by increasing reaction time only in step (1). MEOn thus obtained shows a rapid polymerization in water and benzene respectively, and both give water-soluble polymers as long as suitable conditions are used.

  11. Thrombin interaction with fibrin polymerization sites. (United States)

    Hsieh, K


    Thrombin is central to hemostasis, and postclotting fibrinolysis and wound healing. During clotting, thrombin transforms plasma fibrinogen into polymerizing fibrin, which selectively adsorbs the enzyme into the clot. This protects thrombin from heparin-antithrombin inactivation, thus preserving the enzyme for postclotting events. To determine how the fibrin N-terminal polymerization sites of A alpha 17-23 (GPRVVER) and B beta 15-25 (GHRPLDKKREE) and their analogs may interact with thrombin, amidolysis vs. plasma- and fibrinogen-clotting assays were used to differentiate blockade of catalytic site vs. other thrombin domains. Amidolysis studies suggest GPRVVER inhibition of thrombin catalytic site through hydrophobic interaction, and GPRVVER inhibited clotting. Neither GPRP nor VVER nor the B beta 15-25 homologs inhibited amidolysis. Contrary to heparin, acyl-DKKREE promoted plasma-clotting, but inhibited fibrinogen-clotting. In addition, acyl-DKKREE reversed the anticoagulant effect of heparin (0.1 U/ml) in plasma. The results suggest fibrin B beta 15-25 interaction with thrombin, possibly by blocking the heparin-binding site. Together with the reported fibrin A alpha 27-50 binding to thrombin, polymerizing fibrin appears to initially bind to thrombin catalytic site and exosite-1 through A alpha 17-50, and to another thrombin site through B beta 15-25. As these fibrin sites are also involved in polymerization, competition of the polymerization process with thrombin-binding could subsequently dislodge thrombin from fibrin alpha-chain. This may re-expose the catalytic site and exosite-1, thus explaining the thrombogenicity of clot-bound thrombin. The implications of these findings in polymerization mechanism and anticoagulant design are discussed.

  12. Influence of Cyclodextrin on the Styrene Polymerization

    Institute of Scientific and Technical Information of China (English)

    HU Jie; LIU Bai-ling


    Cyclodextrin (CD) are oligosaccharides consisting of 6( α ), 7( β ), 8( γ ) units of1,4-linked glucose. Due to their polar hydrophilic outer shell and relatively hydrophobic cavity, theyare able to build up host-guest complexes by inclusion of suitable hydrophobic molecules. Theformation of these complexes leads to significant changes of the solubility and reactivity of the guestmolecules, but without any chemical modification. Thus, water insoluble molecules may becomecompletely water soluble simply by mixing with an aqueous solution of native CD or CD-derivatives.Hydrogen bonds or hydrophobic interactions are responsible for the stability of the complexes and itturned out that the complexed monomers could be successfully polymerized by free radicalpolymerization in water.In our present work, using styrene as monomer, potassium peroxodisulfate as radical initiator thatreacted in water in the presence ofβ-CD but without any additional surfactant, the effect ofcyclodextrin on the polymerization was described. Additionally, the acceleration mechanism ofcyclodextrin in the polymerization was also explained based on dynamic study.Table 1 Effect of CD on the monomer reactivityIt is found that β -CD could greatly accelerate the polymerization, enhance the final conversion ofmonomer. And the more the amount of β-CD was introduced, the faster the polymerization wasobtained. From Figure 1, after 5 hours reaction at 80℃, the monomer conversion in the presence of1.0g cyclodextrin reached to 95%. However, that in absence of cyclodextrin was only 60%. And themonomer conversion was not to exceed 75% even reacted for 8 hours when no CD in reactionsystem.In order to describe the acceleration of CD in the polymerization quantitatively, based onCD and without CD. As shown in Table 1, CD produced significant effect on the monomer reactivity.The relative relativities of monomer were greatly increased with the increase of the amount of CD.

  13. Polymeric matrix materials for infrared metamaterials (United States)

    Dirk, Shawn M; Rasberry, Roger D; Rahimian, Kamyar


    A polymeric matrix material exhibits low loss at optical frequencies and facilitates the fabrication of all-dielectric metamaterials. The low-loss polymeric matrix material can be synthesized by providing an unsaturated polymer, comprising double or triple bonds; partially hydrogenating the unsaturated polymer; depositing a film of the partially hydrogenated polymer and a crosslinker on a substrate; and photopatterning the film by exposing the film to ultraviolet light through a patterning mask, thereby cross-linking at least some of the remaining unsaturated groups of the partially hydrogenated polymer in the exposed portions.

  14. The flat phase of quantum polymerized membranes

    CERN Document Server

    Coquand, O


    We investigate the flat phase of quantum polymerized phantom membranes by means of a nonperturbative renormalization group approach. We first implement this formalism for general quantum polymerized membranes and derive the flow equations that encompass both quantum and thermal fluctuations. We then deduce and analyze the flow equations relevant to study the flat phase and discuss their salient features : quantum to classical crossover and, in each of these regimes, strong to weak coupling crossover. We finally illustrate these features in the context of free standing graphene physics.

  15. Mechanism and kinetics of addition polymerizations

    CERN Document Server

    Kucera, M


    This volume presents an up-to-date survey of knowledge concerning addition type polymerizations. It contains nine chapters, each of which covers a particular basic term. Whenever necessary, the phenomena are discussed from the viewpoint of both stationary and non-stationary state of radical, ionic (i.e. anionic and cationic) and coordination polymerization. Special attention has been paid to the propagation process. It provides not only a general overview but also information on important special cases (theoretical conditions of propagation, influence of external factors, controlled propagatio

  16. Producing ORMOSIL scaffolds by femtosecond laser polymerization (United States)

    Matei, A.; Zamfirescu, M.; Radu, C.; Buruiana, E. C.; Buruiana, T.; Mustaciosu, C.; Petcu, I.; Radu, M.; Dinescu, M.


    Structures with different geometries and sizes were built via direct femtosecond laser writing, starting from new organic/inorganic hybrid monomers based on hybrid methacrylate containing triethoxysilane, in addition to urethane and urea groups. Multifunctional oligomer of urethane dimethacrylate type was chosen as comonomer in polymerization experiments because dimethacrylates give rise to the formation of a polymer network, having a number of favorable properties including biocompatibility and surface nanostructuring. Free standing polymeric structures were designed and created in order to be tested in fibroblast cells culture. Investigations of the cellular adhesion, proliferation, and viability of L929 mouse fibroblasts on free-standing laser processed scaffolds were performed for different scaffold designs.

  17. Preparation, Properties and Application of Polymeric Organic-Inorganic Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    任杰; 刘艳; 唐小真


    Six preparation methods for polymeric organic-inorganic nanocomposites and their respective mechanisms and features are reviewed. The extraordinary properties of polymeric organic-inorganic nanocomposites are discussed,and their potential applications are evaluated.

  18. Polymerization Initiated at the Sidewalls of Carbon Nanotubes (United States)

    Tour, James M.; Hudson, Jared L.


    A process has been developed for growing polymer chains via anionic, cationic, or radical polymerization from the side walls of functionalized carbon nanotubes, which will facilitate greater dispersion in polymer matrices, and will greatly enhance reinforcement ability in polymeric material.

  19. Kinetics of crosslinking in emulsion polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Ghielmi, A.; Fiorentino, S.; Morbidelli, M. [Universitaetstrasse Zuerich (Switzerland)] [and others


    A mathematical model for evaluating the chain length distribution of nonlinear polymers produced in emulsions is presented. The heterogeneous emulsion polymerization process is described. The aim of the analysis is the distribution of active polymer chains and pairs of chains with a given growth time in latex particles in state.

  20. The Morphology of Emulsion Polymerized Latex Particles (United States)

    Wignall, G. D.; Ramakrishnan, V. R.; Linne, M. A.; Klein, A.; Sperling, L. H.; Wai, M. P.; Gelman, R. A.; Fatica, M. G.; Hoerl, R. H.; Fisher, L. W.


    Under monomer starved feed conditions, emulsion polymerization of perdeuterated methyl methacrylate and styrene in the presence of preformed polymethylmethacrylate latexes resulted in particles with a core-shell morphology, as determined by small-angle neutron scattering (SANS) analysis for a hollow sphere. The locus of polymerization of the added deuterated monomer is therefore at the particle surface. In similar measurements a statistical copolymer of styrene and methyl methacrylate was used as seed particles for further polymerization of trideuteromethyl methacrylate. The resulting polymer latex was again shown to have a core-shell morphological structure as determined by SANS. SANS experiments were also undertaken on polystyrene latexes polymerized by equilibrium swelling methods, with deuterated polymer forming the first or second step. The experiments covered a molecular weight range of 6 x 10{sup 4} 10{sup 6} the molecular weights are consistent with the experimental errors, indicating that the deuterium labeled molecules are randomly distributed in the latex. These results led to the finding that the polymer chains were constrained in the latex particles by factors of 2 to 4 from the relaxed coil dimensions. For M < 10{sup 6} g/mol SANS gave zero angle scattering intensities much higher than expected on the basis of a random distribution of labeled molecules. Several models were examined, including the possible development of core-shell structures at lower molecular weights.

  1. Controlled Cationic Polymerization of N-Vinylcarbazol

    NARCIS (Netherlands)

    Nuyken, O.; Rieß, G.; Loontjens, J.A.


    Cationic polymerization of N-Vinylcarbazol (NVC) was initiated with 1-iodo-1-(2-methylpropyloxy)ethane in the presence of N(n-Bu)4ClO4 and without addition of this activator. Furthermore, 1-chloro-1-(2-methylpropyloxy) ethane, with and without activator has been applied as initiator for NVC. These i

  2. Planar elongation of soft polymeric networks

    DEFF Research Database (Denmark)

    Jensen, Mette Krog; Hassager, Ole; Rasmussen, Henrik K.


    A new test fixture for the filament stretch rheometer (FSR) has been developed to measure planar elongation of soft polymeric networks with application towards pressure-sensitive adhesives (PSAs). The concept of this new geometry is to elongate a tube-like sample by keeping the perimeter constant...

  3. Operating Modes Of Chemical Reactors Of Polymerization

    Directory of Open Access Journals (Sweden)

    Meruyert Berdieva


    Full Text Available In the work the issues of stable technological modes of operation of main devices of producing polysterol reactors have been researched as well as modes of stable operation of a chemical reactor have been presented, which enables to create optimum mode parameters of polymerization process, to prevent emergency situations of chemical reactor operation in industrial conditions.

  4. Proteins and Peptides in Biomimetic Polymeric Membranes

    DEFF Research Database (Denmark)

    Perez, Alfredo Gonzalez


    This chapter discusses recent advances and the main advantages of block copolymers for functional membrane protein reconstitution in biomimetic polymeric membranes. A rational approach to the reconstitution of membrane proteins in a functional form can be addressed by a more holistic view by usin...

  5. Forming of Polymeric Tubular Micro-components

    DEFF Research Database (Denmark)

    Qin, Yi; Zhao, Jie; Anyasodor, Gerald;


    This chapter is intended to provide an overview of three nontraditional shaping technologies for the forming of polymeric micro-tubes, which are hot embossing, blow molding, and cross rolling, as well as realization of a process chain and the integration of a modular machine-based manufacturing...

  6. Polymerization of different lignins by laccase

    NARCIS (Netherlands)

    Mattinen, M.L.; Suortti, T.; Gosselink, R.J.A.; Argyropoulos, D.S.; Evtuguin, D.; Suurnäkki, A.; Jong, de E.; Tamminen, T.


    In this study the oxidative polymerization of different lignins, i.e. Flax Soda lignin, Spruce EMAL, and Eucalyptus Dioxane lignin by Trametes hirsuta laccase was compared. Initially the structures of the different lignins were compared by Fourier transform infrared spectroscopy. The reactivity of l

  7. Olefin polymerization over supported chromium oxide catalysts

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Schoonheydt, R.A.


    Cr/SiO2 or Phillips-type catalysts are nowadays responsible for a large fraction of all polyethylene (HDPE and LLDPE) worldwide produced. In this review, several key-properties of Cr/SiO2 catalysts will be discussed in relation to their polymerization characteristics. It will be shown how the polyol

  8. Bioactive Polymeric Materials for Tissue Repair

    Directory of Open Access Journals (Sweden)

    Diane R. Bienek


    Full Text Available Bioactive polymeric materials based on calcium phosphates have tremendous appeal for hard tissue repair because of their well-documented biocompatibility. Amorphous calcium phosphate (ACP-based ones additionally protect against unwanted demineralization and actively support regeneration of hard tissue minerals. Our group has been investigating the structure/composition/property relationships of ACP polymeric composites for the last two decades. Here, we present ACP’s dispersion in a polymer matrix and the fine-tuning of the resin affects the physicochemical, mechanical, and biological properties of ACP polymeric composites. These studies illustrate how the filler/resin interface and monomer/polymer molecular structure affect the material’s critical properties, such as ion release and mechanical strength. We also present evidence of the remineralization efficacy of ACP composites when exposed to accelerated acidic challenges representative of oral environment conditions. The utility of ACP has recently been extended to include airbrushing as a platform technology for fabrication of nanofiber scaffolds. These studies, focused on assessing the feasibility of incorporating ACP into various polymer fibers, also included the release kinetics of bioactive calcium and phosphate ions from nanofibers and evaluate the biorelevance of the polymeric ACP fiber networks. We also discuss the potential for future integration of the existing ACP scaffolds into therapeutic delivery systems used in the precision medicine field.

  9. Proteins and Peptides in Biomimetic Polymeric Membranes

    DEFF Research Database (Denmark)

    Perez, Alfredo Gonzalez


    This chapter discusses recent advances and the main advantages of block copolymers for functional membrane protein reconstitution in biomimetic polymeric membranes. A rational approach to the reconstitution of membrane proteins in a functional form can be addressed by a more holistic view by using...

  10. Vibrating polymeric microsieves: Antifouling strategies for microfiltration

    NARCIS (Netherlands)

    Gironès i Nogué, M.; Akbarsyah, Imam J.; Bolhuis-Versteeg, Lydia A.M.; Lammertink, Rob G.H.; Wessling, Matthias


    Constant flux performance in time is achieved with polyethersulfone (PES) polymeric microsieves when filtering protein solutions, skimmed milk and white beer in combination with backpulsing. Such microsieves are fabricated by phase separation micromolding (PSμM) and possess pores around 2 μm. The fi

  11. Polymerization of epoxidized triglycerides with fluorosulfonic acid (United States)

    The use of triglycerides as agri-based renewable raw materials for the development of new products is highly desirable in view of uncertain future petroleum prices. A new method of polymerizing epoxidized soybean oil has been devised with the use of fluorosulfonic acid. Depending on the reaction con...

  12. Structure-properties relationships in polymeric fibres

    NARCIS (Netherlands)

    Penning, Jan Paul


    Dit proefschrift beschrijft een onderzoek naar de samenhang tussen de struktuur en de mechanische eigenschappen van polymere vezels, met als centrale vraag hoe men deze eigenschappen het best kan beschrijven op grond van de vezelstruktuur en hoe deze struktuur onstaat tijdens de diverse stappen van


    Institute of Scientific and Technical Information of China (English)

    Bing Liu; Feng Liu; Ning Luo; Sheng-kang Ying; Qing Liu


    Alpha-trichloroacetoxy terminated polystyrene oligomer (PS-CH2CH2OCOCCl3) and poly-(styrene-b-butadiene)oligomer [P(S-b-B)-CH2CH2OCOCCl3)] were synthesized by living anionic polymeri-zation using n-butyllithium as initiator.Then the PS-CH2CH2OCOCCl3 (PS-Cl3) or P(S-b-B)-CH2CH2O-COCCl3 (PSB-Cl3) was used as the macroinitiator in the polymerization of (meth)acrylates in the presence of CuX/bpy. AB diblock and ABC triblock copolymers were prepared by the integrated living anionic polymerization (LAP)-atom transfer radical polymerization (ATRP). The structures of the PSB-Cl3 and the P(S-b-MMA) were identified by FTIR and 1H-NMR spectrum, respectively. A new way to design block copolymers (the combination of LAP and ATRP) was developed.

  14. Mechanism and Kinetics of Nitroxide-Controlled Free Radical Polymerization (ORGANIC MATERIALS CHEMISTRY-Polymeric Materials)



    In the nitroxide-mediated free radical polymerization, the rate of polymerization is determined by the balance of the rates of thermal initiation and bialkyl termination, just like in the conventional system, while the polydispersity is determined by the dissociation-combination frequency of the polymer-nitroxyl adduct and the rate of decomposition of the adduct. These mechanisms were quantitatively confirmed by both experiments and computer simulations.

  15. 21 CFR 177.2250 - Filters, microporous polymeric. (United States)


    ... as Components of Articles Intended for Repeated Use § 177.2250 Filters, microporous polymeric. Microporous polymeric filters identified in paragraph (a) of this section may be safely used, subject to the... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Filters, microporous polymeric. 177.2250 Section...

  16. Mechanism and Modeling for Polymerization of Acrylamide in Inverse Microemulsions

    Institute of Scientific and Technical Information of China (English)

    LiXiao; ZhangWeiying; YuanHuigen


    After discussion on the mechanism of polymer particle nucleation and growth in inverse microemulsion polymerization, a schematic physical model for polymerization of acrylamide in inverse microemulsions was presented. Furthermore, several key problems in mathematically modeling of inverse microemulsion polymerization were pointed out.

  17. Biocompatible Polymeric Materials Intended for Drug Delivery and Therapeutic Applications

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Javakhishvili, Irakli; Bednarek, Melania


    water soluble polymers, polyethylene glycol (PEG), and poly(acrylic acid) (PAA) with good mycoadhesive properties, are all prepared by living/controlled polymerization techniques. These techniques, atom transfer radical polymerization (ATRP) and ring opening polymerization (ROP), ensure at the same time...

  18. 21 CFR 870.3650 - Pacemaker polymeric mesh bag. (United States)


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric mesh bag. (a) Identification. A pacemaker polymeric mesh bag is an implanted device used to hold a...

  19. Free heme and sickle hemoglobin polymerization (United States)

    Uzunova, Veselina V.

    This work investigates further the mechanism of one of the most interesting of the protein self-assembly systems---the polymerization of sickle hemoglobin and the role of free heme in it. Polymerization of sickle hemoglobin is the primary event in the pathology of a chronic hemolytic condition called sickle cell anemia with complex pathogenesis, unexplained variability and symptomatic treatment. Auto-oxidation develops in hemoglobin solutions exposed to room temperature and causes release of ferriheme. The composition of such solutions is investigated by mass spectrometry. Heme dimers whose amount corresponds to the initial amounts of heme released from the protein are followed. Differences in the dimer peak height are established for hemoglobin variants A, S and C and depending on the exposure duration. The effects of free heme on polymerization kinetics are studied. Growth rates and two characteristic parameters of nucleation are measured for stored Hb S. After dialysis of polymerizing solutions, no spherulites are detected at moderately high supersaturation and prolonged exposure times. The addition of 0.16-0.26 mM amounts of heme to dialyzed solutions leads to restoration of polymerization. The measured kinetic parameters have higher values compared to the ones before dialysis. The amount of heme in non-dialyzed aged solution is characterized using spectrophotometry. Three methods are used: difference in absorbance of dialyzed and non-dialyzed solutions, characteristic absorbance of heme-albumin complex and absorbance of non-dialyzed solutions with added potassium cyanide. The various approaches suggest the presence of 0.12 to 0.18 mM of free ferriheme in such solutions. Open questions are whether the same amounts of free heme are present in vivo and whether the same mechanism operates intracellulary. If the answer to those questions is positive, then removal of free heme from erythrocytes can influence their readiness to sickle.

  20. NATO Advanced Study Institute on Ring-opening Metathesis Polymerization of Olefins and Polymerization of Alkynes

    CERN Document Server


    The first NATO Advanced Study Institute on Olefin Metathesis and Polymerization Catalysts was held on September 10-22, 1989 in Akcay, Turkey. Based on the fundamental research of RRSchrock, RGrubbs and K.B.Wagener in the field of ring opening metathesis polymerization (ROMP), acyclic diene metathesis (ADMET) and alkyne polymerization, these areas gained growing interest within the last years. Therefore the second NATO-ASI held on metathesis reactions was on Ring Opening Metathesis Po­ lymerization of Olefins and Polymerization of Alkynes on September 3-16, 1995 in Akcay, Turkey. The course joined inorganic, organic and polymer chemists to exchange their knowledge in this field. This volume contains the main and short lectures held in Akcay. To include ADMET reactions better into the title of this volume we changed it into: Metathesis Polymerization of Olefins and Alkyne Polymerization. This volume is addressed to research scientists, but also to those who start to work in the area of olefin metathesis and al...

  1. Signal amplification strategies for DNA and protein detection based on polymeric nanocomposites and polymerization: A review

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shaohong; Yuan, Liang; Hua, Xin; Xu, Lingling; Liu, Songqin, E-mail:


    Highlights: • We review the innovative advances in polymer-based signal amplification. • Conceptual connectivity between different amplified methodologies is illustrated. • Examples explain the mechanisms of polymers/polymerizations-based amplification. • Several elegant applications are summarized that illustrate underlying concept. - Abstract: Demand is increasing for ultrasensitive bioassays for disease diagnosis, environmental monitoring and other research areas. This requires novel signal amplification strategies to maximize the signal output. In this review, we focus on a series of significant signal amplification strategies based on polymeric nanocomposites and polymerization. Some common polymers are used as carriers to increase the local concentration of signal probes and/or biomolecules on their surfaces or in their interiors. Some polymers with special fluorescence and optical properties can efficiently transfer the excitation energy from a single site to the whole polymer backbone. This results in superior fluorescence signal amplification due to the resulting collective effort (integration of signal). Recent polymerization-based signal amplification strategies that employ atom transfer radical polymerization (ATRP) and photo-initiated polymerization are also summarized. Several distinctive applications of polymers in ultrasensitive bioanalysis are highlighted.


    Institute of Scientific and Technical Information of China (English)

    QIU Kunyuan; ZHANG Zhanghua; FENG Xinde


    The effects of N-2-hydroxyethyl-N-methyl-p-toluidine (HMT) on MMA polymerization using organic peroxide as an initiator and on AN photoinduced polymerization have been investigated respectively. The kinetics of polymerization and the overall activation energy of polymerization were determined. Based on kinetics study and the end group analysis of the polymer obtained by UV spectrum method, the initiation mechanism is proposed.

  3. Functionalized polymer networks: synthesis of microporous polymers by frontal polymerization

    Indian Academy of Sciences (India)

    N S Pujari; A R Vishwakarma; T S Pathak; A M Kotha; S Ponrathnam


    A series of glycidyl methacrylate (GMA)–ethylene dimethacrylate (EGDM) copolymers of varying compositions were synthesized by free-radically triggered thermal frontal polymerization (FP) as well as by suspension polymerization (SP) using azobisisobutyronitrile [AIBN] as initiator. The two sets of copolymers were characterized by IR spectroscopy and mercury intrusion porosimetry, for determination of epoxy number and specific surface area. Frontal polymerization was more efficient, yielding greater conversions at much shorter reaction times. The self-propagating frontal polymerization also generates microporous material with narrow pore size distribution. It yields higher internal pore volume and surface area than suspension polymerization, surface morphologies are, however, inferior.

  4. Dynamic self-assembly of 'living' polymeric chains (United States)

    Deng, Binghui; Shi, Yunfeng


    We report a dynamic self-assembly system of 'living' polymeric chains sustained by chemistry using reactive molecular dynamics simulations. The linear polymeric chains consist of self-assembled nanoparticles connected by metastable linker molecules. As such, the polymeric chains, once assembled, undergo spontaneous dissociation driven by thermodynamics. However, with a continuous supply of linker molecules and the stored chemical energy therein, the polymeric chains can survive and maintain a steady state averaged chain length. These dynamically self-assembled polymeric chains are analogous to biological systems that both are thermodynamically metastable, yet dynamically stable upon continuous influx of matter and energy.

  5. Complex Macromolecular Architectures by Living Cationic Polymerization

    KAUST Repository

    Alghamdi, Reem D.


    Poly (vinyl ether)-based graft polymers have been synthesized by the combination of living cationic polymerization of vinyl ethers with other living or controlled/ living polymerization techniques (anionic and ATRP). The process involves the synthesis of well-defined homopolymers (PnBVE) and co/terpolymers [PnBVE-b-PCEVE-b-PSiDEGVE (ABC type) and PSiDEGVE-b-PnBVE-b-PSiDEGVE (CAC type)] by sequential living cationic polymerization of n-butyl vinyl ether (nBVE), 2-chloroethyl vinyl ether (CEVE) and tert-butyldimethylsilyl ethylene glycol vinyl ether (SiDEGVE), using mono-functional {[n-butoxyethyl acetate (nBEA)], [1-(2-chloroethoxy) ethyl acetate (CEEA)], [1-(2-(2-(t-butyldimethylsilyloxy)ethoxy) ethoxy) ethyl acetate (SiDEGEA)]} or di-functional [1,4-cyclohexanedimethanol di(1-ethyl acetate) (cHMDEA), (VEMOA)] initiators. The living cationic polymerizations of those monomers were conducted in hexane at -20 0C using Et3Al2Cl3 (catalyst) in the presence of 1 M AcOEt base.[1] The PCEVE segments of the synthesized block terpolymers were then used to react with living macroanions (PS-DPE-Li; poly styrene diphenyl ethylene lithium) to afford graft polymers. The quantitative desilylation of PSiDEGVE segments by n-Bu4N+F- in THF at 0 °C led to graft co- and terpolymers in which the polyalcohol is the outer block. These co-/terpolymers were subsequently subjected to “grafting-from” reactions by atom transfer radical polymerization (ATRP) of styrene to afford more complex macromolecular architectures. The base assisted living cationic polymerization of vinyl ethers were also used to synthesize well-defined α-hydroxyl polyvinylether (PnBVE-OH). The resulting polymers were then modified into an ATRP macro-initiator for the synthesis of well-defined block copolymers (PnBVE-b-PS). Bifunctional PnBVE with terminal malonate groups was also synthesized and used as a precursor for more complex architectures such as H-shaped block copolymer by “grafting-from” or

  6. The coupling of glycolysis and the Rubisco-based pathway through the non-oxidative pentose phosphate pathway to achieve low carbon dioxide emission fermentation. (United States)

    Li, Ya-Han; Ou-Yang, Fan-Yu; Yang, Cheng-Han; Li, Si-Yu


    In this study, Rubisco-based engineered Escherichia coli, containing two heterologous enzymes of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoribulokinase (PrkA), has been shown to be capable of the in situ recycling of carbon dioxide (CO2) during glycolysis. Two alternative approaches have been proposed to further enhance the carbon flow from glycolysis to a Rubisco-based pathway through the non-oxidative pentose phosphate pathway (NOPPP). The first is achieved by elevating the expression of transketolase I (TktA) and the second by blocking the native oxidation-decarboxylation reaction of E. coli by deleting the zwf gene from the chromosome (designated as JB/pTA and MZB, respectively). Decreases in the CO2 yield and the CO2 evolution per unit mole of ethanol production by at least 81% and 40% are observed. It is demonstrated in this study that the production of one mole of ethanol using E. coli strain MZB, the upper limit of CO2 emission is 0.052mol.

  7. Highly Efficient Electronic Sensitization of Non-oxidized Graphene Flakes on Controlled Pore-loaded WO3 Nanofibers for Selective Detection of H2S Molecules (United States)

    Choi, Seon–Jin; Choi, Chanyong; Kim, Sang-Joon; Cho, Hee-Jin; Hakim, Meggie; Jeon, Seokwoo; Kim, Il–Doo


    Tailoring of semiconducting metal oxide nanostructures, which possess controlled pore size and concentration, is of great value to accurately detect various volatile organic compounds in exhaled breath, which act as potential biomarkers for many health conditions. In this work, we have developed a very simple and robust route for controlling both the size and distribution of spherical pores in electrospun WO3 nanofibers (NFs) via a sacrificial templating route using polystyrene colloids with different diameters (200 nm and 500 nm). A tentacle-like structure with randomly distributed pores on the surface of electrospun WO3 NFs were achieved, which exhibited improved surface area as well as porosity. Porous WO3 NFs with enhanced surface area exhibited high gas response (Rair/Rgas = 43.1 at 5 ppm) towards small and light H2S molecules. In contrast, porous WO3 NFs with maximized pore diameter showed a high response (Rair/Rgas = 2.8 at 5 ppm) towards large and heavy acetone molecules. Further enhanced sensing performance (Rair/Rgas = 65.6 at 5 ppm H2S) was achieved by functionalizing porous WO3 NFs with 0.1 wt% non-oxidized graphene (NOGR) flakes by forming a Schottky barrier (ΔΦ = 0.11) at the junction between the WO3 NFs (Φ = 4.56 eV) and NOGR flakes (Φ = 4.67 eV), which showed high potential for the diagnosis of halitosis.

  8. Hydrogen-Permeable Tubular Membrane Reactor: Promoting Conversion and Product Selectivity for Non-Oxidative Activation of Methane over an Fe©SiO2 Catalyst. (United States)

    Sakbodin, Mann; Wu, Yiqing; Oh, Su Cheun; Wachsman, Eric D; Liu, Dongxia


    Non-oxidative methane conversion over Fe©SiO2 catalyst was studied for the first time in a hydrogen (H2 ) permeable tubular membrane reactor. The membrane reactor is composed of a mixed ionic-electronic SrCe0.7 Zr0.2 Eu0.1 O3-δ thin film (≈20 μm) supported on the outer surface of a one-end capped porous SrCe0.8 Zr0.2 O3-δ tube. Significant improvement in CH4 conversion was achieved upon H2 removal from the membrane reactor compared to that in a fixed-bed reactor. The Fe©SiO2 catalyst in the H2 permeable membrane reactor demonstrated a stable ≈30 % C2+ single-pass yield, with up to 30 % CH4 conversion and 99 % selectivity to C2 (ethylene and acetylene) and aromatic (benzene and naphthalene) products, at the tested conditions. The selectivity towards C2 or aromatics was manipulated purposely by adding H2 into or removing H2 from the membrane reactor feed and permeate gas streams. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Linkages between the life-history evolution of tropical and temperate birds and the resistance of cultured skin fibroblasts to oxidative and non-oxidative chemical injury. (United States)

    Jimenez, Ana Gabriela; Harper, James M; Queenborough, Simon A; Williams, Joseph B


    A fundamental challenge facing physiological ecologists is to understand how variation in life history at the whole-organism level might be linked to cellular function. Thus, because tropical birds have higher annual survival and lower rates of metabolism, we hypothesized that cells from tropical species would have greater cellular resistance to chemical injury than cells from temperate species. We cultured dermal fibroblasts from 26 tropical and 26 temperate species of birds and examined cellular resistance to cadmium, H(2)O(2), paraquat, thapsigargin, tunicamycium, methane methylsulfonate (MMS) and UV light. Using ANCOVA, we found that the values for the dose that killed 50% of cells (LD(50)) from tropical birds were significantly higher for H(2)O(2) and MMS. When we tested for significance using a generalized least squares approach accounting for phylogenetic relationships among species to model LD(50), we found that cells from tropical birds had greater tolerance for Cd, H(2)O(2), paraquat, tunicamycin and MMS than cells from temperate birds. In contrast, tropical birds showed either lower or no difference in tolerance to thapsigargin and UV light in comparison with temperate birds. These findings are consistent with the idea that natural selection has uniquely fashioned cells of long-lived tropical bird species to be more resistant to forms of oxidative and non-oxidative stress than cells from shorter-lived temperate species.

  10. Synthesis and characterization of poly(2-ethylhexyl acrylate) prepared via atom transfer radical polymerization, reverse atom transfer radical polymerization and radical polymerization

    Indian Academy of Sciences (India)

    Dhruba Jyoti Haloi; Bishnu Prasad Koiry; Prithwiraj Mandal; Nikhil Kumar Singha


    This investigation reports a comparative study of poly(2-ethylhexyl acrylate) (PEHA) prepared via atom transfer radical polymerization (ATRP), reverse atom transfer radical polymerization (RATRP) and conventional free radical polymerization (FRP). The molecular weights and the molecular weight distributions of the polymers were measured by gel permeation chromatography (GPC) analysis. Structural characterization of the polymers was carried out by 1H NMR and MALDI-TOF-MS analyses. Thermal properties of the polymers were evaluated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The polymerization results and the thermal properties of PEHAs prepared via ATRP, RATRP and FRP were compared.

  11. Therapeutic Strategies Based on Polymeric Microparticles

    Directory of Open Access Journals (Sweden)

    C. Vilos


    Full Text Available The development of the field of materials science, the ability to perform multidisciplinary scientific work, and the need for novel administration technologies that maximize therapeutic effects and minimize adverse reactions to readily available drugs have led to the development of delivery systems based on microencapsulation, which has taken one step closer to the target of personalized medicine. Drug delivery systems based on polymeric microparticles are generating a strong impact on preclinical and clinical drug development and have reached a broad development in different fields supporting a critical role in the near future of medical practice. This paper presents the foundations of polymeric microparticles based on their formulation, mechanisms of drug release and some of their innovative therapeutic strategies to board multiple diseases.

  12. Low-Energy Polymeric Phases of Alanates (United States)

    Huan, Tran Doan; Amsler, Maximilian; Marques, Miguel A. L.; Botti, Silvana; Willand, Alexander; Goedecker, Stefan


    Low-energy structures of alanates are currently known to be described by patterns of isolated, nearly ideal tetrahedral [AlH4] anions and metal cations. We discover that the novel polymeric motif recently proposed for LiAlH4 plays a dominant role in a series of alanates, including LiAlH4, NaAlH4, KAlH4, Mg(AlH4)2, Ca(AlH4)2, and Sr(AlH4)2. In particular, most of the low-energy structures discovered for the whole series are characterized by networks of corner-sharing [AlH6] octahedra, forming wires and/or planes throughout the materials. Finally, for Mg(AlH4)2 and Sr(AlH4)2, we identify two polymeric phases to be lowest in energy at low temperatures.

  13. Polymeric membrane studied using slow positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Hung, W.-S.; Lo, C.-H. [R and D Center for Membrane Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Cheng, M.-L. [Department of Chemistry, University of Missouri-Kansas City, Kansas City, MO 64110 (United States); Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 32003, Taiwan (China); Chen Hongmin; Liu Guang; Chakka, Lakshmi [Department of Chemistry, University of Missouri-Kansas City, Kansas City, MO 64110 (United States); Nanda, D.; Tung, K.-L.; Huang, S.-H.; Lee, Kueir-Rarn; Lai, J.-Y. [R and D Center for Membrane Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Sun Yiming [R and D Center for Membrane Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 32003, Taiwan (China); Yu Changcheng [R and D Center for Membrane Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Department of Physics, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Zhang Renwu [Physical Science Department, Southern Utah University, Cedar City, UT 84720 (United States); Jean, Y.C. [R and D Center for Membrane Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Department of Chemistry, University of Missouri-Kansas City, Kansas City, MO 64110 (United States)], E-mail:


    A radioisotope slow positron beam has been built at the Chung Yuan Christian University in Taiwan for the research and development in membrane science and technology. Doppler broadening energy spectra and positron annihilation lifetime have been measured as a function of positron energy up to 30 keV in a polyamide membrane prepared by the interfacial polymerization between triethylenetetraamine (TETA) and trimesoyl chloride (TMC) on modified porous polyacrylonitrile (PAN) asymmetric membrane. The multilayer structures and free-volume depth profile for this asymmetric membrane system are obtained. Positron annihilation spectroscopy coupled with a slow beam could provide new information about size selectivity of transporting molecules and guidance for molecular designs in polymeric membranes.

  14. Polymeric Piezoelectric Transducers for Hydrophone Applications

    Directory of Open Access Journals (Sweden)

    D. K. Kharat


    Full Text Available Conventional ceramic piezoelectric materials have been used in hydrophones for sonarapplications since 1940's. In the last few years since the discovery of polymeric piezoelectrichydrophones, the technology has matured, applications have emerged in extraordinary number ofcases such as underwater navigation, biomedical applications, biomimetics, etc. Hydrophones areused underwater at high hydrostatic pressures. In the presence of hydrostatic pressures, theanisotropic piezoelectric response of ceramic materials is such that it has poor hydrophone performancecharacteristics whereas polymeric piezoelectric materials show enough hydrostatic piezoelectriccoefficients. Moreover, piezoelectric polymers have low acoustic impedance, which is only 2-6 timethat of water, whereas in piezoelectric ceramics, it is typically 11-time greater than that of water. Aclose impedance match permits efficient transduction of acoustic signals in water and tissues. Newlydeveloped hydrostatic-mode polyvinylidene flouride (PVDF hydrophones use a pressure-releasesystem to achieve improved sensitivity. Recently, voided PVDF materials have been used for makinghydrophones having higher sensitivity and figure of merit than unvoided PVDF materials.

  15. Simultaneous covalent and noncovalent hybrid polymerizations

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhilin; Tantakitti, Faifan; Yu, Tao; Palmer, Liam C.; Schatz, George C.; Stupp, Samuel I. (NWU)


    Covalent and supramolecular polymers are two distinct forms of soft matter, composed of long chains of covalently and noncovalently linked structural units, respectively. We report a hybrid system formed by simultaneous covalent and supramolecular polymerizations of monomers. The process yields cylindrical fibers of uniform diameter that contain covalent and supramolecular compartments, a morphology not observed when the two polymers are formed independently. The covalent polymer has a rigid aromatic imine backbone with helicoidal conformation, and its alkylated peptide side chains are structurally identical to the monomer molecules of supramolecular polymers. In the hybrid system, covalent chains grow to higher average molar mass relative to chains formed via the same polymerization in the absence of a supramolecular compartment. The supramolecular compartments can be reversibly removed and re-formed to reconstitute the hybrid structure, suggesting soft materials with novel delivery or repair functions.

  16. Enhancement of peptide immunogenicity by linear polymerization. (United States)

    Borras-Cuesta, F; Fedon, Y; Petit-Camurdan, A


    The effect of linear homopolymerization on the immunogenicity of synthetic peptides was studied using either haptenic peptides (representing amino acid sequences 103-115 and 133-147 of bovine rotavirus major protein) or immunogenic peptides TD-103-115 and TD-133-147 which were constructed by co-linear synthesis of the former peptides and an amino acid sequence representing a determinant recognized by T helper cells (TD). It was found that the two haptenic peptides were rendered immunogenic by linear homopolymerization. Moreover, homopolymerization also enhanced the immunogenicity of TD-103-115 but not that of TD-133-147. In the three cases where polymerization enhanced immunogenicity, a reinforced amphipathic pattern was predicted in the neighborhood of the junction of the monomers. The possibility that polymerization might have generated a new T cell determinant is discussed.

  17. Raman Laser Polymerization of C60 Nanowhiskers

    Directory of Open Access Journals (Sweden)

    Ryoei Kato


    Full Text Available Photopolymerization of C60 nanowhiskers (C60NWs was investigated by using a Raman spectrometer in air at room temperature, since the polymerized C60NWs are expected to exhibit a high mechanical strength and a thermal stability. Short C60NWs with a mean length of 4.4 μm were synthesized by LLIP method (liquid-liquid interfacial precipitation method. The Ag(2 peak of C60NWs shifted to the lower wavenumbers with increasing the laser beam energy dose, and an energy dose more than about 1520 J/mm2 was found necessary to obtain the photopolymerized C60NWs. However, excessive energy doses at high-power densities increased the sample temperature and lead to the thermal decomposition of polymerized C60 molecules.

  18. Microencapsulation of Chlorocyclophosphazene by Interfacial Polymerization

    Institute of Scientific and Technical Information of China (English)

    LIU Ya-qing; ZHAO Gui-zhe


    A polyurea-chlorocyclophosphazene microcapsule flame retardant is prepared by an interfacial polymerization process using 2, 4-toluene diisocyanate (TDI) and hexanediamine as the raw materials. TG tests show that the thermal decomposition temperature of chlorocyclophosphazene in microcapsule obviously rises. The flame retardancy of HDPE/chlorocyclophosphazene in microencapsules is better than that of HDPE/chlorocyclophosphazene. Mechanical properties of HDPE/chlorocyclophosphazene microencapsule turn out to be superior to those of HDPE/chlorocyclophosphazene.

  19. Remendable Polymeric Materials Using Reversible Covalent Bonds (United States)


    phenyl glycidyl ether (PGE), and N,N- dimethylformamide DMF were obtained from Sigma- Aldrich. EPON 828, a Diglycidyl ether of bisphenol-A ( DGEBA ...RT). The linear polymer was a copolymer of FA and DGEBA . Stoichiometric amounts of FA and DGEBA were mixed to form a 15 wt.% solution in DMF... DGEBA reacts via step growth polymerization with 4,4’-methylenebiscyclohexanamine PACM, an aliphatic diamine. This system was modified by

  20. On viscoelastic instability in polymeric filaments

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole


    The 3D Lagrangian Integral Method is used to simulate the effects of surface tension on the viscoelastic end-plate instability, occuring in the rapid extension of some polymeric filaments between parallel plates. It is shovn that the surface tension delays the onset of the instability. Furthermore...... it is demonstrated that surface tension plays a key role in the selection of the most unstable mode...

  1. Sono-enzymatic polymerization of catechol


    Fernandes, Margarida M.; Basto, Carlos; Zille, Andrea; Munteanu, Florentina-Daniela; Gübitz, Georg M.; Paulo, Artur Cavaco


    "Abstracts of papers presented at the 232nd American Chemical Society National Meeting" The potential of laccase enzymes for polymerizing, crosslinking and functionalizing various compounds was studied extensively and increasing interest has been focused on the application of this enzyme as a new biocatalyst in organic synthesis.[1-6] Laccases (EC are a class of multi-copper-containing oxidoreductase enzymes able to catalyze the transformation of various aromatic c...

  2. Single-Molecule Visualization of Living Polymerization (United States)


    proposed to use a magnetic tweezers (MT) approach to visualize real-time single-polymer growth to study polymerization catalysis . Fig 1A illustrates our...on the magnetic particle to stretch the polymer. By monitoring the vertical (z) position of the particle in real time under catalysis , we can...which show very different extension lengths over the same applied force range. These different extension lengths reflect the heterogeneity in chain

  3. Homogeneous catalysts for stereoregular olefin polymerization (United States)

    Marks, T.J.; Eisen, M.S.; Giardello, M.A.


    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C{sub 5}R{prime}{sub 4{minus}x}R*{sub x})A(C{sub 5}R{double_prime}{sub 4{minus}y}R{double_prime}{prime}{sub y})MQ{sub p}, where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R{prime}, R{double_prime}, R{double_prime}{prime}, and R* represent substituted and unsubstituted alkyl groups having 1--30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3{>=}p{>=}0. Related complexes may be prepared by alkylation of the corresponding dichlorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form ``cation-like`` species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other {alpha}-olefin polymerization can be effected with very high efficiency and isospecificity. 1 fig.

  4. Preparation of polyvinylpyrrodione microspheres by dispersion polymerization

    Institute of Scientific and Technical Information of China (English)

    Linfeng ZHAI; Tiejun SHI; Hualin WANG


    The preparation of polyvinylpyrrolidone (PVP) microspheres in ethyl acetate by dispersion polymerization with N-vinylpyrrolidone (NVP) as initial monomer, poly(N-vinylpyrrolidone-co-vinyl acetate) (P (NVP-co-VAc)) as dispersant, and 2, 2'-azobisisobutyr-onitrile(AIBN) as initiator is reported. The influences of monomer concentration, dispersant concentration and initiator concentration on the size of PVP microspheres as well as the monomer conversion were studied. The structure and properties of PVP microspheres were analyzed. The results show that the prepared PVP micro-spheres have a mean diameter of 3-4 μm. With an increase in NVP concentration, the size and the molecular weight of the PVP microspheres as well as the monomer conversion all increase. With increasing P(NVP-co-VAc) concentra-tions, the PVP molecular weight and monomer conversion both increase while the size of the microspheres becomes smaller. As the concentration of AIBN increases, the microsphere size and monomer conversion increase whereas the PVP molecular weight decreases. The PVP prepared by dispersion polymerization has a crystal structure, and its molecular weight is lower compared to that prepared by solution polymerization.


    Directory of Open Access Journals (Sweden)

    Maija-Liisa Mattinen


    Full Text Available In this study the oxidative polymerization of different lignins, i.e. Flax Soda lignin, Spruce EMAL, and Eucalyptus Dioxane lignin by Trametes hirsuta laccase was compared. Initially the structures of the different lignins were compared by Fourier transform infrared spectroscopy. The reactivity of laccase with the different types of lignins in the absence of mediators was examined and verified by oxygen consumption measurements. The molecular weight distributions of treated and untreated lignins were determined by two different size exclusion chromatography methods. Furthermore, the potential of matrix-assisted laser desorption/ionisation-time of flight-mass spectroscopy for determination of the absolute molecular weights of the different lignins was evaluated. The data showed that all the technical lignins could be activated and polymerized by laccase to different degrees. The efficiency as indicated by measurements of the degree of polymerization was found to increase in the order of Spruce EMAL < Eucalyptus Dioxane lignin < Flax Soda lignin. Overall, this data supplies foundations for using enzymes more efficiently in the enzymatic upgrading of lignin.

  6. Polymerization initated at sidewalls of carbon nanotubes (United States)

    Tour, James M. (Inventor); Hudson, Jared L. (Inventor); Krishnamoorti, Ramanan (Inventor); Yurekli, Koray (Inventor); Mitchell, Cynthia A. (Inventor)


    The present invention is directed to aryl halide (such as aryl bromide) functionalized carbon nanotubes that can be utilized in anionic polymerization processes to form polymer-carbon nanotube materials with improved dispersion ability in polymer matrices. In this process the aryl halide is reacted with an alkyllithium species or is reacted with a metal to replace the aryl-bromine bond with an aryl-lithium or aryl-metal bond, respectively. It has further been discovered that other functionalized carbon nanotubes, after deprotonation with a deprotonation agent, can similarly be utilized in anionic polymerization processes to form polymer-carbon nanotube materials. Additionally or alternatively, a ring opening polymerization process can be performed. The resultant materials can be used by themselves due to their enhanced strength and reinforcement ability when compared to their unbound polymer analogs. Additionally, these materials can also be blended with pre-formed polymers to establish compatibility and enhanced dispersion of nanotubes in otherwise hard to disperse matrices resulting in significantly improved material properties. The resultant polymer-carbon nanotube materials can also be used in drug delivery processes due to their improved dispersion ability and biodegradability, and can also be used for scaffolding to promote cellular growth of tissue.

  7. Homogeneous catalysts for stereoregular olefin polymerization (United States)

    Marks, Tobin J.; Eisen, Moris S.; Giardello, Michael A.


    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C.sub.5 R'.sub.4-x R*.sub.x) A (C.sub.5 R".sub.4-y R'".sub.y) M Q.sub.p, where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R', R", R'", and R* represent substituted and unsubstituted alkyl groups having 1-30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3.ltoreq.p.ltoreq.o. Related complexes may be prepared by alkylation of the corresponding dichorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form "cation-like" species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other .alpha.-olefin polymerization can be effected with very high efficiency and isospecificity.

  8. Photothermal determination of thermal diffusivity and polymerization depth profiles of polymerized dental resins (United States)

    Martínez-Torres, P.; Mandelis, A.; Alvarado-Gil, J. J.


    The degree and depth of curing due to photopolymerization in a commercial dental resin have been studied using photothermal radiometry. The sample consisted of a thick layer of resin on which a thin metallic gold layer was deposited, thus guaranteeing full opacity. Purely thermal-wave inverse problem techniques without the interference of optical profiles were used. Thermal depth profiles were obtained by heating the gold coating with a modulated laser beam and by performing a frequency scan. Prior to each frequency scan, photopolymerization was induced using a high power blue light emitted diode (LED). Due to the highly light dispersive nature of dental resins, the polymerization process depends strongly on optical absorption of the blue light, thereby inducing a depth dependent thermal diffusivity profile in the sample. A robust depth profilometric method for reconstructing the thermal diffusivity depth dependence on degree and depth of polymerization has been developed. The thermal diffusivity depth profile was linked to the polymerization kinetics.

  9. Synthesis of Glycopolymer Architectures by Reversible-Deactivation Radical Polymerization

    Directory of Open Access Journals (Sweden)

    Ali Ghadban


    Full Text Available This review summarizes the state of the art in the synthesis of well-defined glycopolymers by Reversible-Deactivation Radical Polymerization (RDRP from its inception in 1998 until August 2012. Glycopolymers architectures have been successfully synthesized with four major RDRP techniques: Nitroxide-mediated radical polymerization (NMP, cyanoxyl-mediated radical polymerization (CMRP, atom transfer radical polymerization (ATRP and reversible addition-fragmentation chain transfer (RAFT polymerization. Over 140 publications were analyzed and their results summarized according to the technique used and the type of monomer(s and carbohydrates involved. Particular emphasis was placed on the experimental conditions used, the structure obtained (comonomer distribution, topology, the degree of control achieved and the (potential applications sought. A list of representative examples for each polymerization process can be found in tables placed at the beginning of each section covering a particular RDRP technique.

  10. Structural studies of novel glycoconjugates from polymerized allergens (allergoids) and mannans as allergy vaccines. (United States)

    Manzano, Ana I; Javier Cañada, F; Cases, Bárbara; Sirvent, Sofia; Soria, Irene; Palomares, Oscar; Fernández-Caldas, Enrique; Casanovas, Miguel; Jiménez-Barbero, Jesús; Subiza, José L


    Immunotherapy for treating IgE-mediated allergies requires high doses of the corresponding allergen. This may result in undesired side effects and, to avoid them, hypoallergenic allergens (allergoids) polymerized with glutaraldehyde are commonly used. Targeting allergoids to dendritic cells to enhance cell uptake may result in a more effective immunotherapy. Allergoids coupled to yeast mannan, as source of polymannoses, would be suitable for this purpose, since mannose-binding receptors are expressed on these cells. Conventional conjugation procedures of mannan to proteins use oxidized mannan to release reactive aldehydes able to bind to free amino groups in the protein; yet, allergoids lack these latter because their previous treatment with glutaraldehyde. The aim of this study was to obtain allergoids conjugated to mannan by an alternative approach based on just glutaraldehyde treatment, taking advantage of the mannoprotein bound to the polymannose backbone. Allergoid-mannan glycoconjugates were produced in a single step by treating with glutaraldehyde a defined mixture of allergens derived from Phleum pratense grass pollen and native mannan (non-oxidized) from Saccharomyces cerevisae. Analytical and structural studies, including 2D-DOSY and (1)H-(13)C HSQC nuclear magnetic resonance spectra, demonstrated the feasibility of such an approach. The glycoconjugates obtained were polymers of high molecular weight showing a higher stability than the native allergen or the conventional allergoid without mannan. The allergoid-mannan glycoconjugates were hypoallergenic as detected by the IgE reactivity with sera from grass allergic patients, even with lower reactivity than conventional allergoid without mannan. Thus, stable hypoallergenic allergoids conjugated to mannan suitable for using in immunotherapy can be achieved using glutaraldehyde. In contrast to mannan oxidation, the glutaraldehyde approach allows to preserve mannoses with their native geometry, which may be

  11. Polymerization monitoring in plasma etching systems (United States)

    Kim, Jinsoo


    In plasma etching processes, the polymers used to enhance etch anisotropy and selectivity also deposit on various parts of the reaction chamber. This polymerization on reactor surface not only strongly affects the concentration of reactants in the plasma discharge, eventually changing the etching characteristics, but also can produce particulates which lower yield. This thesis explores the development of a direct in-situ polymerization monitoring sensor to minimize the drifts in plasma etching processes. In addition, polymerization dependencies on basic processing parameters and polymerization effects on etching characteristics have been explored for the first time using a direct in-situ sensor. The polymer buildup process is a strong function of parameters such as power, base pressure, and flow rate, and is also dependent on the reactor materials used, temperature, and the hydrogen/oxygen concentrations present. Experiments performed in an Applied Materials 8300 plasma etcher show a significant increase in polymerization with increased pressure and flow rates and a decrease as a function of power. These experiments provide insight into how the chamber state changes under the different processing recipes used for etching specific material layers and also suggest how the chamber seasoning process can best be carried out. The reactor surface, which serves as both a source and a sink for reactive gas species, not only strongly affects the concentration of reactants in the plasma discharge, eventually changing the etching characteristics, but also can produce particulates which lower yield. The etch rate and selectivity variations for specific silicon dioxide and silicon nitride etching recipes have been explored as a function of the polymer thickness on the reactor walls. The etch rates of nitride and polysilicon decrease dramatically with polymer thickness up to a thickness of 60nm, while the oxide etch rate remains virtually constant due to the polymerization

  12. Shape of the Polymerization Rate in the Prion Equation

    CERN Document Server

    Gabriel, Pierre


    We consider a polymerization (fragmentation) model with size-dependent parameters involved in prion proliferation. Using power laws for the different rates of this model, we recover the shape of the polymerization rate using experimental data. The technique used is inspired from an article of Zampieri et al. where the fragmentation dependency on prion strains is investigated. Our improvement is to use power laws for the rates whereas Zampieri et al. used a constant polymerization coefficient and linear fragmentation.

  13. Organosilicon Polymeric Nonlinear Optical Materials for Optical Switching and Modulation (United States)


    Organosilicon Polymeric Nonlinear Optical Materials for Optical C: F49620-93-C-0039 Switching and Modulation 6. AUTHOR(S) Mr. Sandip K. Sengupta, Dr...D FINAL REPORT for Organosilicon Polymeric Nonlinear Optical Materials for Optical Switching and Modulation Prepared for: USAF, AFMC (AFOSR) Air Force...34Organosilicon Polymeric Nonlinear Optical Materials for Optical Switching and Modulation," contract number F49620-93-C-0039. The work has been performed by Dr

  14. Polymerization of Pyrrole and Thiophene on Polyethylene Adipate Electrodes


    Erturan, Seyfettin; TORAMAN, Burcu YALVAÇ and Sena


    Polymerizations of pyrrole and thiophene on a platinum foil coated by polyethylene adipate (PEA) were carried out in acetonitrile by electrochemical methods. Different compositions of semi-conducting composite films of PEA/Polypyrrole(PPy), PEA/Polythiophene(PT) were prepared by the electrochemical polymerization of pyrrole and thiophene on PEA electrode. The polymerization was possible only for a certain thickness of the polyethylene adipate(PEA) on the platinum. Conductivities of PEA/PPy, P...

  15. Polymerization shrinkage of flowable resin-based restorative materials


    Stavridakis, Minos M; Dietschi, Didier; Krejci, Ivo


    This study measured the linear polymerization displacement and polymerization forces induced by polymerization shrinkage of a series of flowable resin-based restorative materials. The materials tested were 22 flowable resin-based restorative materials (Admira Flow, Aelite Flow, Aeliteflow LV, Aria, Crystal Essence, Definite Flow, Dyract Flow, Filtek Flow, FloRestore, Flow-it, Flow-Line, Freedom, Glacier, OmegaFlo, PermaFlo, Photo SC, Revolution 2, Star Flow, Synergy Flow, Tetric Flow, Ultrase...

  16. Diacetylene mixed Langmuir monolayers for interfacial polymerization. (United States)

    Ariza-Carmona, Luisa; Rubia-Payá, Carlos; García-Espejo, G; Martín-Romero, María T; Giner-Casares, Juan J; Camacho, Luis


    Polydiacetylene (PDA) and its derivatives are promising materials for applications in a vast number of fields, from organic electronics to biosensing. PDA is obtained through polymerization of diacetylene (DA) monomers, typically using UV irradiation. DA polymerization is a 1-4 addition reaction with both initiation and growth steps with topochemical control, leading to the "blue" polymer form as primary reaction product in bulk and at interfaces. Herein, the diacetylene monomer 10,12-pentacosadiynoic acid (DA) and the amphiphilic cationic N,N'-dioctadecylthiapentacarbocyanine (OTCC) have been used to build a mixed Langmuir monolayer. The presence of OTCC imposes a monolayer supramolecular structure instead of the typical trilayer of pure DA. Surface pressure, Brewster angle microscopy, and UV-vis reflection spectroscopy measurements, as well as computer simulations, have been used to assess in detail the supramolecular structure of the DA:OTCC Langmuir monolayer. Our experimental results indicate that the DA and OTCC molecules are sequentially arranged, with the two OTCC alkyl chains acting as spacing diacetylene units. Despite this configuration is expected to prevent photopolymerization of DA, the polymerization takes place without phase segregation, thus exclusively leading to the red polydiacetylene form. We propose a simple model for the initial formation of the "blue" or "red" PDA forms as a function of the relative orientation of the DA units. The structural insights and the proposed model concerning the supramolecular structure of the "blue" and "red" forms of the PDA are aimed at the understanding of the relation between the molecular and macroscopical features of PDAs.

  17. Durability of Polymeric Glazing and Absorber Materials

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, G.; Terwilliger, K.; Bingham, C.; Lindquist, C.; Milbourne, M.


    The Solar Heating and Lighting Program has set the goal of reducing the cost of solar water heating systems by at least 50%. An attractive approach to such large cost reduction is to replace glass and metal parts with less-expensive, lighter-weight, more-integrated polymeric components. The key challenge with polymers is to maintain performance and assure requisite durability for extended lifetimes. We have begun evaluation of several new UV-screened polycarbonate sheet glazing constructions. This has involved interactions with several major polymer industry companies to obtain improved candidate samples. Proposed absorber materials were tested for UV resistance, and appear adequate for unglazed ICS absorbers.

  18. Novel hybrid polymeric materials for barrier coatings (United States)

    Pavlacky, Erin Christine

    Polymer-clay nanocomposites, described as the inclusion of nanometer-sized layered silicates into polymeric materials, have been widely researched due to significant enhancements in material properties with the incorporation of small levels of filler (1--5 wt.%) compared to conventional micro- and macro-composites (20--30 wt.%). One of the most promising applications for polymer-clay nanocomposites is in the field of barrier coatings. The development of UV-curable polymer-clay nanocomposite barrier coatings was explored by employing a novel in situ preparation technique. Unsaturated polyesters were synthesized in the presence of organomodified clays by in situ intercalative polymerization to create highly dispersed clays in a precursor resin. The resulting clay-containing polyesters were crosslinked via UV-irradiation using donor-acceptor chemistry to create polymer-clay nanocomposites which exhibited significantly enhanced barrier properties compared to alternative clay dispersion techniques. The impact of the quaternary alkylammonium organic modifiers, used to increase compatibility between the inorganic clay and organic polymer, was studied to explore influence of the organic modifier structure on the nanocomposite material properties. By incorporating just the organic modifiers, no layered silicates, into the polyester resins, reductions in film mechanical and thermal properties were observed, a strong indicator of film plasticization. An alternative in situ preparation method was explored to further increase the dispersion of organomodified clay within the precursor polyester resins. In stark contrast to traditional in situ polymerization methods, a novel "reverse" in situ preparation method was developed, where unmodified montmorillonite clay was added during polyesterification to a reaction mixture containing the alkylammonium organic modifier. The resulting nanocomposite films exhibited reduced water vapor permeability and increased mechanical properties

  19. Polymeric materials for solar thermal applications

    CERN Document Server

    Köhl, Michael; Papillon, Philippe; Wallner, Gernot M; Saile, Sandrin


    Bridging the gap between basic science and technological applications, this is the first book devoted to polymers for solar thermal applications.Clearly divided into three major parts, the contributions are written by experts on solar thermal applications and polymer scientists alike. The first part explains the fundamentals of solar thermal energy especially for representatives of the plastics industry and researchers. Part two then goes on to provide introductory information on polymeric materials and processing for solar thermal experts. The third part combines both of these fields, dis

  20. Polymeric Cantilever Arrays for Biosensing Applications

    DEFF Research Database (Denmark)

    Calleja, M.; Tamayo, J.; Johansson, Alicia


    We report the fabrication of arrays of polymeric cantilevers for biochemistry applications. The cantilevers are fabricated in the polymer SU-8. The use of a polymer as the component material for the cantilevers provides the sensors with very high sensitivity due to convenient mechanical material...... properties. The fabrication process is based on spin coating of the photosensitive polymer and near-ultraviolet exposure. The method allows obtaining well-controlled and uniform mechanical properties of the cantilevers. The elastic constant of the cantilevers was measured, and their dynamic response...

  1. Extracellular polymeric bacterial coverages as minimal surfaces

    CERN Document Server

    Saa, A; Saa, Alberto; Teschke, Omar


    Surfaces formed by extracellular polymeric substances enclosing individual and some small communities of {\\it Acidithiobacillus ferrooxidans} on plates of hydrophobic silicon and hydrophilic mica are analyzed by means of atomic force microscopy imaging. Accurate nanoscale descriptions of such coverage surfaces are obtained. The good agreement with the predictions of a rather simple but realistic theoretical model allows us to conclude that they correspond, indeed, to minimal area surfaces enclosing a given volume associated with the encased bacteria. This is, to the best of our knowledge, the first shape characterization of the coverage formed by these biomolecules, with possible applications to the study of biofilms.

  2. Direct Laser Printing of Tailored Polymeric Microlenses. (United States)

    Florian, Camilo; Piazza, Simonluca; Diaspro, Alberto; Serra, Pere; Duocastella, Martí


    We report a laser-based approach for the fast fabrication of high-optical-quality polymeric microlenses and microlens arrays with controllable geometry and size. Our strategy consists of the direct laser printing of microdroplets of a highly viscous UV prepolymer at targeted positions, followed by photocuring. We study the morphological characteristics and imaging performance of the microlenses as a function of the substrate and laser parameters and investigate optimal printing conditions and printing mechanisms. We show that the microlens size and focusing properties can be easily tuned by the laser pulse energy, with minimum volumes below 20 fL and focal lengths ranging from 7 to 50 μm.

  3. Clickable Polymeric Coating for Oriented Peptide Immobilization. (United States)

    Sola, Laura; Gori, Alessandro; Cretich, Marina; Finetti, Chiara; Zilio, Caterina; Chiari, Marcella


    A new methodology for the fabrication of an high-performance peptide microarray is reported, combining the higher sensitivity of a layered Si-SiO2 substrate with the oriented immobilization of peptides using a N,N-dimethylacrylamide-based polymeric coating that contains alkyne monomers as functional groups. This clickable polymer allows the oriented attachment of azido-modified peptides via a copper-mediated azide/alkyne cycloaddition. A similar coating that does not contain the alkyne functionality has been used as comparison, to demonstrate the importance of a proper orientation for facilitating the probe recognition and interaction with the target antibody.

  4. Multiphoton polymerization using optical trap assisted nanopatterning (United States)

    Leitz, Karl-Heinz; Tsai, Yu-Cheng; Flad, Florian; Schäffer, Eike; Quentin, Ulf; Alexeev, Ilya; Fardel, Romain; Arnold, Craig B.; Schmidt, Michael


    In this letter, we show the combination of multiphoton polymerization and optical trap assisted nanopatterning (OTAN) for the additive manufacturing of structures with nanometer resolution. User-defined patterns of polymer nanostructures are deposited on a glass substrate by a 3.5 μm polystyrene sphere focusing IR femtosecond laser pulses, showing minimum feature sizes of λ/10. Feature size depends on the applied laser fluence and the bead surface spacing. A finite element model describes the intensity enhancement in the microbead focus. The results presented suggest that OTAN in combination with multiphoton processing is a viable technique for additive nanomanufacturing with sub-diffraction-limited resolution.

  5. Polymeric biomaterials structure and function, v.1

    CERN Document Server

    Dumitriu, Severian


    Biomaterials have had a major impact on the practice of contemporary medicine and patient care. Growing into a major interdisciplinary effort involving chemists, biologists, engineers, and physicians, biomaterials development has enabled the creation of high-quality devices, implants, and drug carriers with greater biocompatibility and biofunctionality. The fast-paced research and increasing interest in finding new and improved biocompatible or biodegradable polymers has provided a wealth of new information, transforming this edition of Polymeric Biomaterials into a two-volume set. This volume

  6. Studies of molecular properties of polymeric materials (United States)

    Harries, W. L.; Long, Sheila Ann T.; Long, Edward R., Jr.


    Aerospace environment effects (high energy electrons, thermal cycling, atomic oxygen, and aircraft fluids) on polymeric and composite materials considered for structural use in spacecraft and advanced aircraft are examined. These materials include Mylar, Ultem, and Kapton. In addition to providing information on the behavior of the materials, attempts are made to relate the measurements to the molecular processes occurring in the material. A summary and overview of the technical aspects are given along with a list of the papers that resulted from the studies. The actual papers are included in the appendices and a glossary of technical terms and definitions is included in the front matter.

  7. Polysaccharide-modified synthetic polymeric biomaterials. (United States)

    Baldwin, Aaron D; Kiick, Kristi L


    This review presents an overview of polysaccharide-conjugated synthetic polymers and their use in tissue-engineered scaffolds and drug-delivery applications. This topic will be divided into four categories: (1) polymeric materials modified with non-mammalian polysaccharides such as alginate, chitin, and dextran; (2) polymers modified with mammalian polysaccharides such as hyaluronan, chondroitin sulfate, and heparin; (3) multi-polysaccharide-derivatized polymer conjugate systems; and (4) polymers containing polysaccharide-mimetic molecules. Each section will discuss relevant conjugation techniques, analysis, and the impact of these materials as micelles, particles, or hydrogels used in in-vitro and in-vivo biomaterial applications. (c) 2010 Wiley Periodicals, Inc.

  8. Charpy Impact Test on Polymeric Molded Parts

    Directory of Open Access Journals (Sweden)

    Alexandra Raicu


    Full Text Available The paper presents the Charpy impact tests on the AcrylonitrileButadiene-Styrene (ABS polymeric material parts. The Charpy impact test, also known as the Charpy V-notch test, is a standardized strain rate test which determines the amount of energy absorbed by a material during fracture. This is a typical method described in ASTM Standard D 6110. We use for testing an Instron - Dynatup equipment which have a fully integrated hardware and software package that let us capture load information at very high speed from the impact tests.

  9. Polymeric micelles as carriers of diagnostic agents. (United States)



    This review deals with diagnostic applications of polymeric micelles composed of amphiphilic block-copolymers. In aqueous solutions these polymers spontaneously form particles with diameter 20-100 nm. A variety of diagnostic moieties can be incorporated covalently or non-covalently into the particulates with high loads. Resulting particles can be used as particulate agents for diagnostic imaging using three major imaging modalities: gamma-scintigraphy, magnetic resonance imaging and computed tomography. The use of polyethyleneoxide-diacyllipid micelles loaded with chelated (111)In/Gd(3+) as well as iodine-containing amphiphilic copolymer in percutaneous lymphography and blood pool/liver imaging are discussed as specific examples.

  10. Role(s) of TMA in polymerization. (United States)

    Ehm, C; Cipullo, R; Budzelaar, P H M; Busico, V


    Quenched-flow data for propene polymerization with rac-Me2Si(2-Me-4-Ph-1-indenyl)2ZrCl2/MAO support a picture where removal of MAO qualitatively changes the kinetic profile from a mainly enthalpic to a mainly entropic barrier. DFT studies suggest that a not previously recognized singly-bridged end-on coordination mode of Me6Al2 to catalytically active centers may be kinetically relevant as a resting state. In contrast, the more traditional doubly-bridged complex of Me3Al is proposed to be more relevant to chain transfer to cocatalyst.

  11. Modelling degradation of bioresorbable polymeric medical devices

    CERN Document Server

    Pan, J


    The use of bioresorbable polymers in stents, fixation devices and tissue engineering is revolutionising medicine. Both industry and academic researchers are interested in using computer modelling to replace some experiments which are costly and time consuming. This book provides readers with a comprehensive review of modelling polymers and polymeric medical devices as an alternative to practical experiments. Chapters in part one provide readers with an overview of the fundamentals of biodegradation. Part two looks at a wide range of degradation theories for bioresorbable polymers and devices.

  12. Development of Polymeric Coatings for Antifouling Applications (United States)

    Toumayan, Edward Philip

    Fouling, or the deposition of unwanted material onto a surface, is a serious problem that can impair the function of submerged structures, such as marine-going vessels and underwater equipment. Water filtration membranes are particularly susceptible to fouling due to their microstructure and high water pressure operating conditions. For this reason, there has been considerable interest in developing fouling-resistant, or "antifouling" coatings for membranes, specifically coatings that mitigate fouling propensity while maintain high water flux. Polymer coatings have garnered significant interest in antifouling literature, due to their synthetic versatility and variety, and their promising resistance to a wide range of foulants. However, antifouling research has yet to establish a consistent framework for polymer coating synthesis and fouling evaluation, making it difficult or impossible to compare previously established methodologies. To this end, this work establishes a standardized methodology for synthesizing and evaluating polymer antifouling coatings. Specifically, antifouling coatings are synthesized using a grafting-from polymerization and fouling propensity is evaluated by quartz crystal microbalance with dissipation (QCM-D). Using this framework, a number of different surface functionalization strategies are compared, including grafting-to and grafting-from polymerization. A number of different surface functionalization strategies, including grafting-to and grafting-from, were investigated and the fouling performance of these films was evaluated. Primarily, sulfobetaine methacrylate, and poly(ethylene oxide) methacrylate monomers were investigated, among others. Grafting-to, while advantageous from a characterization standpoint, was ultimately limited to low grafting densities, which did not afford a significant improvement in fouling resistance. However, the higher grafting densities achievable by grafting-from did indicate improved fouling resistance. A


    Institute of Scientific and Technical Information of China (English)

    QIU Kunyuan; ZHANG Jingyi; FENG Xinde(S. T. Voong)


    Two main types of amine-containing initiation systems were studied in this work. In the case of MMA polymerization initiated by BPO-amine (DMT, DHET, DMA) redox systems, it was found that the polymerization rate and colour stability of the polymer for different amine systems were in the following order: DMT≈DHET>DMA. Accordingly, BPO-DMT and BPO-DHET are effective initiators. In the case of MEMA polymerization by amine (DMT, DHET, DMA) alone, it was found that the polymerization rate and the percentage of conversion for these different amine systems were in the following order: DMT≥DHET>DMA. The polymerization rate and the percentage of conversion also increased with the increase of DMT concentration. From the kinetic investigation the rate equation of Rp=K [DMT]1/2 [MEMA]3/2 was obtained, and the overall activation energy of polymerization was calculated to be 34.3 KJ/mol (8.2 Kcal/mol). Moreover, the polymerization of MEMA in the presence of DMT was strongly inhibited by hydroquinone, indicating the polymerization being free radical in nature. From these results, the mechanism of MEMA polymerization initiated by amine was proposed.

  14. Lyophilized Oral Sustained Release Polymeric Nanoparticles of Nateglinide

    National Research Council Canada - National Science Library

    Kaleemuddin, Mohammad; Srinivas, Prathima


    The objective of this study is to formulate lyophilized oral sustained release polymeric nanoparticles of nateglinide in order to decrease dosing frequency, minimize side effects, and increase bioavailability...

  15. Online observation of emulsion polymerization by fluorescence technique

    CERN Document Server

    Rudschuck, S; Fuhrmann, J


    An online observation of local polarity via fluorescence spectroscopy was used to study the formation and growth of polymer particles during an emulsifier-free heterogeneous polymerization. The reaction mixture consisted of styrene dispersed in water and the polymerization was initiated by a macro-initiator (hydrolyzed propene-maleic acid copolymer with t-butyl perester groups). Pyrenyl probes were attached to the backbone of the initiator to analyze the heterogeneous reaction. The experimental results allow a clear distinction of different time regions during the heterogeneous polymerization. Information about the heating period, the latex formation, the particle growth and the final stage of the polymerization process (gel point) were obtained. (11 refs).




    Institute of Scientific and Technical Information of China (English)

    Zhijie Zhang; Ning Zhou; Cai-hong Xu; Ze-min Xie


    This work focused on the anionic polymerization of octamethylcyclotetrasiloxane (D4, D = Me2SiO2/2) initiated by a new kind of initiator hexamethyldisilazyl-lithium (MMPi). 29Si-NMR spectroscopy and gas chromatography (GC) were used to characterize the polymerization products. The process was accelerated by adding a small amount of high activity monomer D3 and by raising the polymerization temperature. At the end of polymerization more than 95% of the monomer was converted to polymer and only a very small amount ofD4 and D5 remained in the polymers.

  18. Biocompatible Polymeric Materials Intended for Drug Delivery and Therapeutic Applications

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Javakhishvili, Irakli; Bednarek, Melania


    water soluble polymers, polyethylene glycol (PEG), and poly(acrylic acid) (PAA) with good mycoadhesive properties, are all prepared by living/controlled polymerization techniques. These techniques, atom transfer radical polymerization (ATRP) and ring opening polymerization (ROP), ensure at the same time...... both good molecular weight control and well defined, manageable structural end groups that sets the scene for combination of the different polymer blocks. With this tool box at hand the choice becomes to decide between all polymerization strategies or build in chemical functionalities allowing coupling...

  19. Interfacial polymerization of conductive polymers: Generation of polymeric nanostructures in a 2-D space. (United States)

    Dallas, Panagiotis; Georgakilas, Vasilios


    In the recent advances in the field of conductive polymers, the fibrillar or needle shaped nanostructures of polyaniline and polypyrrole have attracted significant attention due to the potential advantages of organic conductors that exhibit low-dimensionality, uniform size distribution, high crystallinity and improved physical properties compared to their bulk or spherically shaped counterparts. Carrying the polymerization reaction in a restricted two dimensional space, instead of the three dimensional space of the one phase solution is an efficient method for the synthesis of polymeric nanostructures with narrow size distribution and small diameter. Ultra-thin nanowires and nanofibers, single crystal nanoneedles, nanocomposites with noble metals or carbon nanotubes and layered materials can be efficiently synthesized with high yield and display superior performance in sensors and energy storage applications. In this critical review we will focus not only on the interfacial polymerization methods that leads to polymeric nanostructures and composites and their properties, but also on the mechanism and the physico-chemical processes that govern the diffusion and reactivity of molecules and nanomaterials at an interface. Recent advances for the synthesis of conductive polymer composites with an interfacial method for energy storage applications and future perspectives are presented.

  20. Chemical polymerization of aniline in phenylphosphinic acid

    Directory of Open Access Journals (Sweden)



    Full Text Available The chemical polymerization of aniline was performed in phenylphosphinic acid (APP medium using ammonium peroxidisulfate as the oxidizing agent, at 0 ºC and 25 ºC. The yield of polyaniline (PANI was about 60–69 %. The polymerization process required an induction time 8–10 times greater than in other acids (hydrochloric, sulfuric. The average density of the obtained polymer was 1.395 g cm-3 for PANI-salt and 1.203 g cm-3 for PANI-base. The acid capacity of PANI depends on the synthesis parameters and the maximum value was 15.02 meq/g polymer. The inherent viscosity of PANI was 0.662 dl/g at aniline/oxidant molar ratios >2 and 0 ºC. The oxidation state was a function of the synthesis parameters and lay between 0.553–0.625, as determined from UV-VIS and titration with TiCl3 data. The PANI samples were characterized by measurements of their density, inherent viscosity, conductivity, acid capacity, FTIR and UV-VIS spectrum, and thermogravimetric data.

  1. Synthesis of photolabile fluorescent polymeric micelles. (United States)

    Park, Teahoon; You, Jungmok; Oikawa, Hidetoshi; Kim, Eunkyoung


    A new amphiphilic block copolymers were synthesized with the atom transfer radical polymerization (ATRP) method. Then, the micelle structures were fabricated with a self-assembly method for application in nanocarriers and sensing. The fluorescent intensity was increased by a factor of 4 in the micelle solution due to more stacked pyrene moieties. The core-shell structure of the micelle was confirmed by HR-TEM images. The pyrene moieties were positioned in the core of the micelle, and the surface consisted of hydrophilic PMMA blocks. The ester bond of the polymer backbone was breakable by irradiation with UV light. Therefore, the micelle structure was deformed after UV irradiation, and the excimer peak was drastically reduced as the monomer peak appeared. The deformation of micelle structures was clearly confirmed by FE-SEM and NMR analysis. These photolabile polymeric micelles may be widely useful for photo-stimulative nanocarriers as well as for the design of new functional micelles with many other chromophores.

  2. Polymeric Slippery Coatings: Nature and Applications

    Directory of Open Access Journals (Sweden)

    Mohamed A. Samaha


    Full Text Available We review recent developments in nature-inspired superhydrophobic and omniphobic surfaces. Water droplets beading on a surface at significantly high static contact angles and low contact-angle hystereses characterize superhydrophobicity. Microscopically, rough hydrophobic surfaces could entrap air in their pores resulting in a portion of a submerged surface with air–water interface, which is responsible for the slip effect. Suberhydrophobicity enhances the mobility of droplets on lotus leaves for self-cleaning purposes, so-called lotus effect. Amongst other applications, superhydrophobicity could be used to design slippery surfaces with minimal skin-friction drag for energy conservation. Another kind of slippery coatings is the recently invented slippery liquid-infused porous surfaces (SLIPS, which are one type of omniphobic surfaces. Certain plants such as the carnivorous Nepenthes pitcher inspired SLIPS. Their interior surfaces have microstructural roughness, which can lock in place an infused lubricating liquid. The lubricant is then utilized as a repellent surface for other liquids such as water, blood, crude oil, and alcohol. In this review, we discuss the concepts of both lotus effect and Nepenthes slippery mechanism. We then present a review of recent advances in manufacturing polymeric and non-polymeric slippery surfaces with ordered and disordered micro/nanostructures. Furthermore, we discuss the performance and longevity of such surfaces. Techniques used to characterize the surfaces are also detailed. We conclude the article with an overview of the latest advances in characterizing and using slippery surfaces for different applications.

  3. Degradable polymeric materials for osteosynthesis: Tutorial

    Directory of Open Access Journals (Sweden)

    D Eglin


    Full Text Available This report summarizes the state of the art and recent developments and advances in the use of degradable polymers devices for osteosynthesis. The current generation of biodegradable polymeric implants for bone repair utilising designs copied from metal implants, originates from the concept that devices should be supportive and as “inert” substitute to bone tissue. Today degradable polymeric devices for osteosynthesis are successful in low or mild load bearing applications. However, the lack of carefully controlled randomized prospective trials that document their efficacy in treating a particular fracture pattern is still an issue. Then, the choice between degradable and non-degradable devices must be carefully weighed and depends on many factors such as the patient age and condition, the type of fracture, the risk of infection, etc. The improvement of the biodegradable devices mechanical properties and their degradation behaviour will have to be achieved to broaden their use. The next generation of biodegradable implants will probably see the implementation of the recent gained knowledge in cell-material interactions and cells therapy, with a better control of the spatial and temporal interfaces between the material and the surrounding bone tissue.

  4. Space environmental effects on polymeric materials (United States)

    Kiefer, Richard L.; Orwoll, Robert A.


    Two of the major environmental hazards in the Geosynchronous Earth Orbit (GEO) are energetic charged particles and ultraviolet radiation. The charged particles, electrons and protons, range in energy from 0.1 to 4 MeV and each have a flux of 10 to the 8th sq cm/sec. Over a 30 year lifetime, materials in the GEO will have an absorbed dose from this radiation of 10 to the 10th rads. The ultraviolet radiation comes uninhibited from the sun with an irradiance of 1.4 kw/sq m. Radiation is known to initiate chain sission and crosslinking in polymeric materials, both of which affect their structural properties. The 30-year dose level from the combined radiation in the GEO exceeds the threshold for measurable damage in most polymer systems studied. Of further concern is possible synergistic effects from the simultaneous irradiation with charged particles and ultraviolet radiation. Most studies on radiation effects on polymeric materials use either electrons or ultraviolet radiation alone, or in a sequential combination.

  5. Capillary wrinkling of thin bilayer polymeric sheets (United States)

    Chang, Jooyoung; Menon, Narayanan; Russell, Thomas

    We have investigated capillary force induced wrinkling on a floated polymeric bilayer thin sheet. The origin of the wrinkle pattern is compressional hoop stress caused by the capillary force of a water droplet placed on the floated polymeric thin sheet afore investigated. Herein, we study the effect of the differences of surface energy arising from the hydrophobicity of Polystyrene (PS Mw: 97 K, Contact Angle: 88 º) and the hydrophilicity of Poly(methylmethacrylate) (PMMA Mw: 99K, Contact Angle: 68 º) on two sides of a bilayer film. We measure the number and the length of the wrinkles by broadly varying the range of thicknesses of top (9 nm to 550 nm) and bottom layer (25 nm to 330 nm). At the same, there is only a small contrast in mechanical properties of the two layers (PS E = 3.4 GPa, and PMMA E = 3 GPa). The number of the wrinkles is not strongly affected by the composition (PS(Top)/PMMA(Bottom) or PMMA(Top)/PS(Bottom)) and the thickness of each and overall bilayer system. However, the length of the wrinkle is governed by the contact angle of the drop on the top layer of bilayer system. We also compare this to the wrinkle pattern obtained in monolayer systems over a wide range of thickness from PS and PMMA (7 nm to 1 μm). W.M. Keck Foundation.

  6. Protein encapsulation in polymeric microneedles by photolithography

    Directory of Open Access Journals (Sweden)

    Kochhar JS


    Full Text Available Jaspreet Singh Kochhar,1 Shui Zou,2 Sui Yung Chan,1 Lifeng Kang11Department of Pharmacy, 2Department of Chemistry, National University of Singapore, SingaporeBackground: Recent interest in biocompatible polymeric microneedles for the delivery of biomolecules has propelled considerable interest in fabrication of microneedles. It is important that the fabrication process is feasible for drug encapsulation and compatible with the stability of the drug in question. Moreover, drug encapsulation may offer the advantage of higher drug loading compared with other technologies, such as drug coating.Methods and results: In this study, we encapsulated a model protein drug, namely, bovine serum albumin, in polymeric microneedles by photolithography. Drug distribution within the microneedle array was found to be uniform. The encapsulated protein retained its primary, secondary, and tertiary structural characteristics. In vitro release of the encapsulated protein showed that almost all of the drug was released into phosphate buffered saline within 6 hours. The in vitro permeation profile of encapsulated bovine serum albumin through rat skin was also tested and shown to resemble the in vitro release profile, with an initial release burst followed by a slow release phase. The cytotoxicity of the microneedles without bovine serum albumin was tested in three different cell lines. High cell viabilities were observed, demonstrating the innocuous nature of the microneedles.Conclusion: The microneedle array can potentially serve as a useful drug carrier for proteins, peptides, and vaccines.Keywords: poly (ethylene glycol diacrylate, microneedles, protein stability, photolithography, biocompatibility

  7. Mucoadhesive polymeric platforms for controlled drug delivery. (United States)

    Andrews, Gavin P; Laverty, Thomas P; Jones, David S


    The process of mucoadhesion involving a polymeric drug delivery platform is a complex one that includes wetting, adsorption and interpenetration of polymer chains amongst various other processes. The success and degree of mucoadhesion bonding is influenced by various polymer-based properties such as the degree of cross-linking, chain length and the presence of various functional groupings. The attractiveness of mucosal-targeted controlled drug delivery of active pharmaceutical ingredients (APIs), has led formulation scientists to engineer numerous polymeric systems for such tasks. Formulation scientists have at their disposal a range of in vitro and in vivo mucoadhesion testing setups in order to select candidate adhesive drug delivery platforms. As such, mucoadhesive systems have found wide use throughout many mucosal covered organelles for API delivery for local or systemic effect. Evolution of such mucoadhesive formulations has transgressed from first-generation charged hydrophilic polymer networks to more specific second-generation systems based on lectin, thiol and various other adhesive functional groups.

  8. Sorption of small molecules in polymeric media (United States)

    Camboni, Federico; Sokolov, Igor M.


    We discuss the sorption of penetrant molecules from the gas phase by a polymeric medium within a model which is very close in spirit to the dual sorption mode model: the penetrant molecules are partly dissolved within the polymeric matrix, partly fill the preexisting voids. The only difference with the initial dual sorption mode situation is the assumption that the two populations of molecules are in equilibrium with each other. Applying basic thermodynamics principles we obtain the dependence of the penetrant concentration on the pressure in the gas phase and find that this is expressed via the Lambert W-function, a different functional form than the one proposed by dual sorption mode model. The Lambert-like isotherms appear universally at low and moderate pressures and originate from the assumption that the internal energy in a polymer-penetrant-void ternary mixture is (in the lowest order) a bilinear form in the concentrations of the three components. Fitting the existing data shows that in the domain of parameters where the dual sorption mode model is typically applied, the Lambert function, which describes the same behavior as the one proposed by the gas-polymer matrix model, fits the data equally well.

  9. Light induced polymerization of resin composite restorative materials

    Directory of Open Access Journals (Sweden)

    Blažić Larisa


    Full Text Available Introduction Dimensional stability of polymer-based dental materials is compromised by polymerization reaction of the monomer. The conversion into a polymer is accompanied by a closer packing of molecules, which leads to volume reduction called curing contraction or polymerization shrinkage. Curing contraction may break the adhesion between the adhesive system and hard tooth tissues forming micrographs which may result in marginal deterioration, recurrent caries and pulp injury. Polymerization shrinkage of resin-based restorative dental materials Polymerization of the organic phase (monomer molecules of resin-based dental materials causes shrinkage. The space occupied by filler particles is not associated with polymerization shrinkage. However, high filler loading within certain limits, can contribute to a lesser curing contraction. Polymerization shrinkage stress and stress reduction possibilities Polymerization shrinkage stress of polymer-based dental resins can be controlled in various ways. The adhesive bond in tooth-restoration interface guides the contraction forces to cavity walls. If leakage occurs, complications like secondary caries and pulpal irritation may jeopardize the longevity of a restoration. Stress relieve can be obtained by modifications of the monomer and photoinitiator, or by specially designed tooth preparation and application of bases and liners of low modulus of elasticity. The polymerization contraction can be compensated by water absorption due to oral cavity surrounding. The newest approach to stress relief is based on modulation of polymerization initiation. Conclusion This work deals with polymerization contraction and how to achieve leak-proof restoration. Restorative techniques that may reduce the negative effect of polymerization shrinkage stress need further research in order to confirm up-to-date findings.

  10. Microstructure Control in the emulsion polymerization of fluorinated monomers

    Energy Technology Data Exchange (ETDEWEB)

    Apostolo, Marco [Ausimont R and D, Bollate (Italy); Morbidelli, Massimo [ETH Zentrum, Zuerich (Switzerland)


    In this paper a mathematical model able to evaluate the microstructure of fluorinated polymers is presented. The model uses the pseudo-homo polymerization approach to describe the kinetic evolution of polymerization reactions involving any number of monomer species. The molecular weight distribution is evaluated combining the classical leading moments method with a recently proposed model based on the numerical fractionation technique.

  11. Characterization of Polymeric Microneedle Arrays for Transdermal Drug Delivery


    Yusuf K Demir; Zafer Akan; Oya Kerimoglu


    Microfabrication of dissolvable, swellable, and biodegradable polymeric microneedle arrays (MNs) were extensively investigated based in a nano sensitive fabrication style known as micromilling that is then combined with conventional micromolding technique. The aim of this study was to describe the polymer selection, and optimize formulation compounding parameters for various polymeric MNs. Inverse replication of micromilled master MNs reproduced with polydimethylsiloxane (PDMS), where solid o...

  12. Polymerization Simulator for Introductory Polymer and Material Science Courses (United States)

    Chirdon, William M.


    This work describes how molecular simulation of polymerization reactions can be used to enrich introductory polymer or material science courses to give students a deeper understanding of free-radical chain and stepwise growth polymerization reactions. These simulations have proven to be effective media for instruction that do not require material…

  13. Autonomous Indication of Mechanical Damage in Polymeric Coatings. (United States)

    Li, Wenle; Matthews, Christopher C; Yang, Ke; Odarczenko, Michael T; White, Scott R; Sottos, Nancy R


    High-resolution in situ autonomous visual indication of mechanical damage is achieved through a microcapsule-based polymeric material system. Upon mechanical damage, ruptured microcapsules release a liquid indicator molecule. A sharp color change from light yellow to bright red is triggered when the liberated indicator 2',7'-dichlorofluorescein reacts with the polymeric coating matrix.

  14. Radiation and thermal polymerization of allyl(p-allylcarbonate) benzoate

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-V, D., E-mail: dlopez@siu.buap.m [Facultad de Ciencias Quimicas, Benemerita Universidad Autonoma de Puebla, Antiguo Edificio de la Fac. de Cs., Quimica. Av. San Claudio y Boulevard de la 14 sur, Col. San Manuel, Puebla, Pue., CP 72500 (Mexico); Herrera-G, A.M., E-mail: mherrera@uaeh.reduaeh.m [Centro de Inv. en Materiales y Metalurgia, UAEH. Km 4.5, C.U., CP 42184, Pachuca de S. Hidalgo (Mexico); Castillo-Rojas, S., E-mail: castillo@nucleares.unam.m [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510 DF (Mexico)


    Bulk polymerization of novel allyl(p-allylcarbonate) benzoate was investigated using different sources of energy, such as gamma rays, ultraviolet rays as well as thermal polymerization. The poly(allyl(p-allylcarbonate) benzoate) obtained is a cross-linking, transparent, thermoset polycarbonate. Compositions of the monomer and the polycarbonate were analyzed by infrared spectroscopy, elemental analysis, and {sup 1}H NMR spectroscopy.

  15. A Kinetic Study of the Emulsion Polymerization of Vinyl Acetate

    DEFF Research Database (Denmark)

    Friis, N.; Nyhagen, L.


    The emulsion polymerization of vinyl acetate was studied at 50°C. It was found that the rate of polymerization was proportional to the 0.5 power of the initiator concentration and the 0.25 power of the number of particles. The number of particles was proportional to the power 0.5 ± 0.05 of the em...

  16. Kinetics of Vinyl Chloride Polymerization with Mixture of Initiators

    Institute of Scientific and Technical Information of China (English)


    Kinetic models for the rate constants of vinyl chloride polymerization in the presence of initiator mixtures were proposed. They may be used to design the initiator recipes for the vinyl chloride polymerization with uniform rate at different temperatures at which various grades of poly(vinyl chloride) will be prepared.


    Institute of Scientific and Technical Information of China (English)

    ZHAO Jian; YANG Mujie; ZHENG Yi; SHEN Zhiquan


    The neodymium complex supported on styrene-maleic anhydride copolymer (SMA·Nd) has been prepared for the first time and found to be a highly effective catalyst for the polymerization of styrene. The SMA · Nd polymeric complex is characterized by IR and its catalytic activity, and the polymerization features have been investigated in comparison with that of the conventional Ziegler-Natta catalysts. When [Nd] = 1×10-3 mol/L, [M]=5 mol/L, Al/Nd = 170 (mol ratio ) and CCl4/Nd=50(mol ratio), the polymerization conversion of styrene gets to 51.6% in six hours, and the catalytic activity reaches 1852 gPS/gNd, which is much higher than that of conventional rare earth catalysts. The polymerization reaction has an induction period and shows some characteristics of chain polymerization. The polymerization rate is the first order with respect to the concentration of styrene monomer. Addition of FeCl3 does not suppress the polymerization.

  18. Vinylimidazole-Based Asymmetric Ion Pair Comonomers: Synthesis, Polymerization Studies and Formation of Ionically Crosslinked PMMA

    NARCIS (Netherlands)

    Jana, S.; Vasantha, V.A.; Stubbs, L.P.; Parthiban, A.; Vancso, G.J.


    Vinylimidazole-based asymmetric ion pair comonomers (IPCs) which are free from nonpolymerizable counter ions have been synthesized, characterized and polymerized by free radical polymerization (FRP), atom transfer radical polymerization (ATRP), and reversible addition-fragmentation chain transfer (R

  19. Dynamic bioactive stimuli-responsive polymeric surfaces (United States)

    Pearson, Heather Marie

    This dissertation focuses on the design, synthesis, and development of antimicrobial and anticoagulant surfaces of polyethylene (PE), polypropylene (PP), and poly(tetrafluoroethylene) (PTFE) polymers. Aliphatic polymeric surfaces of PE and PP polymers functionalized using click chemistry reactions by the attachment of --COOH groups via microwave plasma reactions followed by functionalization with alkyne moieties. Azide containing ampicillin (AMP) was synthesized and subsequently clicked into the alkyne prepared PE and PP surfaces. Compared to non-functionalized PP and PE surfaces, the AMP clicked surfaces exhibited substantially enhanced antimicrobial activity against Staphylococcus aureus bacteria. To expand the biocompatibility of polymeric surface anticoagulant attributes, PE and PTFE surfaces were functionalized with pH-responsive poly(2-vinyl pyridine) (P2VP) and poly(acrylic acid) (PAA) polyelectrolyte tethers terminated with NH2 and COOH groups. The goal of these studies was to develop switchable stimuli-responsive polymeric surfaces that interact with biological environments and display simultaneous antimicrobial and anticoagulant properties. Antimicrobial AMP was covalently attached to --COOH terminal ends of protected PAA, while anticoagulant heparin (HEP) was attached to terminal --NH2 groups of P2VP. When pH 5.5, they collapse while the PAA segments extend. Such surfaces, when exposed to Staphylococcus aureus, inhibit bacterial growth due to the presence of AMP, as well as are effective anticoagulants due to the presence of covalently attached HEP. Comparison of these "dynamic" pH responsive surfaces with "static" surfaces terminated with AMP entities show significant enhancement of longevity and surface activity against microbial film formation. The last portion of this dissertation focuses on the covalent attachment of living T1 and Φ11 bacteriophages (phages) on PE and PTFE surface. This was accomplished by carbodiimide coupling between --COOH

  20. Modelling the Load Torques of Electric Drive for Polymerization Process

    Directory of Open Access Journals (Sweden)

    Andrzej Popenda


    Full Text Available The problems of mathematical modelling the load torques on shaft of driving motor designed for applications in polymerization reactors are presented in the paper. The real load of polymerization drive is determined as a function of angular velocity. Mentioned function results from friction in roll-formed slide bearing as well as from friction of ethylene molecules with mixer arms in polymerization reactor chamber. Application of mathematical formulas concerning the centrifugal ventilator is proposed to describe the mixer in reactor chamber. The analytical formulas describing the real loads of polymerization drive are applied in mathematical modelling the power unit of polymerization reactor with specially designed induction motor. The numerical analysis of transient states was made on the basis of formulated mathematical model. Examples of transient responses and trajectories resulting from analysis are presented in the paper.

  1. Fabrication and manipulation of polymeric magnetic particles with magnetorheological fluid

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Lopez, Jaime [Centro de Acustica Aplicada y Evaluacion No Destructivos (CAEND), CSIC-UPM, C/Serrano 144, 28006, Madrid (Spain); Shum, Ho Cheung, E-mail: [Department of Mechanical Engineering, University of Hong Kong, 7/F Haking Wong Building, Pokfulam Road (Hong Kong); Elvira, Luis; Montero de Espinosa, Francisco [Centro de Acustica Aplicada y Evaluacion No Destructivos (CAEND), CSIC-UPM, C/Serrano 144, 28006, Madrid (Spain); Weitz, David A., E-mail: [Department of Physics and School of Engineering and Applied Sciences, Harvard University, 9 and 15 Oxford Street, Cambridge, MA 02138 (United States)


    Polymeric magnetic microparticles have been created using a microfluidic device via ultraviolet (UV) polymerization of double emulsions, resulting in cores of magnetorheological (MR) fluids surrounded by polymeric shells. We demonstrate that the resultant particles can be manipulated magnetically to achieve triggered rupture of the capsules. This illustrates the great potential of our capsules for triggered release of active ingredients encapsulated in the polymeric magnetic microparticles. - Highlights: Black-Right-Pointing-Pointer Polymeric microparticles encapsulating MR fluids have been fabricated. Black-Right-Pointing-Pointer A double-emulsion-templated approach using microfluidic techniques has been used. Black-Right-Pointing-Pointer The monodisperse microparticles obtained are easily manipulated under magnetic field. Black-Right-Pointing-Pointer These microparticles have great potential for encapsulation-and-release applications.

  2. Polymeric vehicles for topical delivery and related analytical methods. (United States)

    Cho, Heui Kyoung; Cho, Jin Hun; Jeong, Seong Hoon; Cho, Dong Chul; Yeum, Jeong Hyun; Cheong, In Woo


    Recently a variety of polymeric vehicles, such as micelles, nanoparticles, and polymersomes, have been explored and some of them are clinically used to deliver therapeutic drugs through skin. In topical delivery, the polymeric vehicles as drug carrier should guarantee non-toxicity, long-term stability, and permeation efficacy for drugs, etc. For the development of the successful topical delivery system, it is of importance to develop the polymeric vehicles of well-defined intrinsic properties, such as molecular weights, HLB, chemical composition, topology, specific ligand conjugation and to investigate the effects of the properties on drug permeation behavior. In addition, the role of polymeric vehicles must be elucidated in in vitro and in vivo analyses. This article describes some important features of polymeric vehicles and corresponding analytical methods in topical delivery even though the application span of polymers has been truly broad in the pharmaceutical fields.

  3. Thermal Emulsion Polymerization without any Conventional Initiators and Emulsifiers

    Institute of Scientific and Technical Information of China (English)


    Stable poly(styrene-co-sodium styrene suffonate) (P(St-NaSS) nanoparticles with broader size distribution were synthesized by thermal emulsion polymerization without any conventional initiators and emulsifiers. The obtained polymer nanoparticles have higher ξpotential, and the particle sizes have broad distribution. The stability of polymer particles originated from the addition of small amounts of ionic comonomer, NaSS, which can act as an emulsifier in somewhat. The monomer conversion could reach up to about 28 wt% in 48 h, and did not increase by further polymerization when higher polymerization temperature (120℃) was employed. This polymerization system may be give some further understand for mechanism of emulsion polymerization.

  4. Cooperative polymerization of α-helices induced by macromolecular architecture (United States)

    Baumgartner, Ryan; Fu, Hailin; Song, Ziyuan; Lin, Yao; Cheng, Jianjun


    Catalysis observed in enzymatic processes and protein polymerizations often relies on the use of supramolecular interactions and the organization of functional elements in order to gain control over the spatial and temporal elements of fundamental cellular processes. Harnessing these cooperative interactions to catalyse reactions in synthetic systems, however, remains challenging due to the difficulty in creating structurally controlled macromolecules. Here, we report a polypeptide-based macromolecule with spatially organized α-helices that can catalyse its own formation. The system consists of a linear polymeric scaffold containing a high density of initiating groups from which polypeptides are grown, forming a brush polymer. The folding of polypeptide side chains into α-helices dramatically enhances the polymerization rate due to cooperative interactions of macrodipoles between neighbouring α-helices. The parameters that affect the rate are elucidated by a two-stage kinetic model using principles from nucleation-controlled protein polymerizations; the key difference being the irreversible nature of this polymerization.

  5. Origins and Development of Initiation of Free Radical Polymerization Processes

    Directory of Open Access Journals (Sweden)

    Dietrich Braun


    Full Text Available At present worldwide about 45% of the manufactured plastic materials and 40% of synthetic rubber are obtained by free radical polymerization processes. The first free radically synthesized polymers were produced between 1910 and 1930 by initiation with peroxy compounds. In the 1940s the polymerization by redox processes was found independently and simultaneously at IG Farben in Germany and ICI in Great Britain. In the 1950s the systematic investigation of azo compounds as free radical initiators followed. Compounds with labile C–C-bonds were investigated as initiators only in the period from the end of the 1960s until the early 1980s. At about the same time, iniferters with cleavable S–S-bonds were studied in detail. Both these initiator classes can be designated as predecessors for “living” or controlled free radical polymerizations with nitroxyl-mediated polymerizations, reversible addition fragmentation chain transfer processes (RAFT, and atom transfer radical polymerizations (ATRP.

  6. Facile Soap-Free Miniemulsion Polymerization of Methyl Methacrylate via Reverse Atom Transfer Radical Polymerization. (United States)

    Zhu, Gaohua; Zhang, Lifen; Pan, Xiangqiang; Zhang, Wei; Cheng, Zhenping; Zhu, Xiulin


    A facile soap-free miniemulsion polymerization of methyl methacrylate (MMA) was successfully carried out via a reverse ATRP technique, using a water-soluble potassium persulfate (KPS) or 2,2'-azobis(2-methylpropionamidine) dihydrochloride (V-50) both as the initiator and the stabilizer, and using an oil-soluble N,N-n-butyldithiocarbamate copper (Cu(S2CN(C4H9)2)2) as the catalyst without adding any additional ligand. Polymerization results demonstrated the "living"/controlled characteristics of ATRP and the resultant latexes showed good colloidal stability with average particle size around 300-700 nm in diameter. The monomer droplet nucleation mechanism was proposed. NMR spectroscopy and chain-extension experiments under UV light irradiation confirmed the attachment and livingness of UV light sensitive -S-C(=S)-N(C4H9)2 group in the chain end.

  7. Micro Injection Moulding of Polymeric Components (United States)

    Trotta, G.; Surace, R.; Modica, F.; Spina, R.; Fassi, I.


    Micro components and micro devices are strongly used in several fields: IT components, biomedical and medical products, automotive industry, telecommunication area and aerospace. A micro component is characterized by small dimensions of the product itself or small dimensions of the functional features. The development of new micro parts is highly dependent on manufacturing systems that can reliably and economically produce micro components in large quantities. In this context, micro-electrical discharge machining (EDM) for mould production and micro-injection moulding of polymer materials are the key technologies for micro manufacturing. This paper will focus on the production and quality evaluation of polymeric micro components manufactured by micro injection moulding. In particular the authors want to investigate the process parameters on the overall quality of the product. The factors affecting micro flow behavior, components weights and dimension definition are experimentally studied basing on DoE approach and then discussed.


    Directory of Open Access Journals (Sweden)

    V. V. Vlizlo


    Full Text Available The new method for detection of cationic oligoelectrolytes conjugates with oligodeoxyonucleotides, based on free diffusion of these substances in 0.8% agarose gels is developed. It enables to simplify and reduce the cost of visual identification of the best carrier among various polymer compounds and to uncover the fact of complex formation between the interacting agents resulting in formation of a ring precipitation. The universality of the proposed methodological approach is confirmed by interaction of coligodeoxynucleotides with other cationic polymer of natural origin, namely chitosan. Comparative analysis of our approach applicationto turbidimetry data concerning coligodeoxynucleotides complexes and their electrophoresis showed some advantages, among them are the ability to screen simultaneously a large number of polymeric carriers and no need for using of more expensive equipment and materials. To conclude the complexing occurrence it is enough nanomol amounts of oligodeoxynucleotide.

  9. Simultaneous polymerization of Mg and Zr alkoxides

    Energy Technology Data Exchange (ETDEWEB)

    Mendez-Vivar, J.; Lara, V.H. [Univ. Autonoma Metropolitana-Iztapalapa, Depto. de Quimica, Mexico, D. F. (Mexico); Mendoza-Serna, R.; Ayala-Morales, A. [Facultad de Estudios Superiores Zaragoza, UNAM, Carrera de Ingenieria Quimica, Mexico, D. F. (Mexico); Bosch, P. [Inst. de Investigaciones en Materiales, UNAM Circuito Exterior, Mexico, D. F. (Mexico)


    The preparation of homogeneous MgO-ZrO{sub 2} ceramics by the sol-gel process is of interest because of its potential technological applications as dielectric materials in thin films and membranes. In this work we used magnesium methoxide and zirconium n-propoxide as precursors. The simultaneous polymerization of the alkoxides was performed via the sol-gel process, using acetylacetone (acacH) and isoeugenol (isoH) separately as the chelating agents, in order to control the hydrolysis and condensation steps. Spectroscopic studies have been performed on the sols, gels, xerogels and oxides, including Fourier transform infrared (FTIR) spectroscopy and small Angle X-ray Scattering (SAXS). (orig.)

  10. Final Technical Report: Collaborative Research. Polymeric Muliferroics

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Shenqiang [Univ. of Kansas, Lawrence, KS (United States)


    The goal of this project is to investigate room temperature magnetism and magnetoelectric coupling of polymeric multiferroics. A new family of organic charge-transfer complexes has been emerged as a fascinating opportunity for the development of all-organic electrics and spintronics due to its weak hyperfine interaction and low spin-orbit coupling; nevertheless, direct observations of room temperature magnetic spin ordering have yet to be accomplished in organic charge-transfer complexes. Furthermore, room temperature magnetoelectric coupling effect hitherto known multiferroics, is anticipated in organic donor-acceptor complexes because of magnetic field effects on charge-transfer dipoles, yet this is also unexplored. The PIs seek to fundamental understanding of the synthetic control of organic complexes to demonstrate and explore room temperature multiferroicity.

  11. Vegetal fibers in polymeric composites: a review

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Fernandes Pereira


    Full Text Available The need to develop and commercialize materials containing vegetal fibers has grown in order to reduce environmental impact and reach sustainability. Large amounts of lignocellulosic materials are generated around the world from several human activities. The lignocellulosic materials are composed of cellulose, hemicellulose, lignin, extractives and ashes. Recently these constituents have been used in different applications; in particular, cellulose has been the subject of numerous works on the development of composite materials reinforced with natural fibers. Many studies have led to composite materials reinforced with fibers to improve the mechanical, physical, and thermal properties. Furthermore, lignocellulosic materials have been treated to apply in innovative solutions for efficient and sustainable systems. This paper aims to review the lignocellulosic fibers characteristics, as well as to present their applications as reinforcement in composites of different polymeric matrices.

  12. Dead Sea Minerals loaded polymeric nanoparticles. (United States)

    Dessy, Alberto; Kubowicz, Stephan; Alderighi, Michele; Bartoli, Cristina; Piras, Anna Maria; Schmid, Ruth; Chiellini, Federica


    Therapeutic properties of Dead Sea Water (DSW) in the treatment of skin diseases such as atopic dermatitis, psoriasis and photo aging UV damaged skin have been well established. DSW is in fact rich in minerals such as calcium, magnesium, sodium, potassium, zinc and strontium which are known to exploit anti-inflammatory effects and to promote skin barrier recovery. In order to develop a Dead Sea Minerals (DSM) based drug delivery system for topical therapy of skin diseases, polymeric nanoparticles based on Poly (maleic anhydride-alt-butyl vinyl ether) 5% grafted with monomethoxy poly(ethyleneglycol) 2000 MW (PEG) and 95% grafted with 2-methoxyethanol (VAM41-PEG) loaded with DSM were prepared by means of a combined miniemulsion/solvent evaporation process. The resulting nanoparticles were characterized in terms of dimension, morphology, biocompatibility, salt content and release. Cytocompatible spherical nanoparticles possessing an average diameter of about 300 nm, a time controlled drug release profile and a high formulation yield were obtained.

  13. Using Polymeric Scaffolds for Vascular Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Alida Abruzzo


    Full Text Available With the high occurrence of cardiovascular disease and increasing numbers of patients requiring vascular access, there is a significant need for small-diameter (<6 mm inner diameter vascular graft that can provide long-term patency. Despite the technological improvements, restenosis and graft thrombosis continue to hamper the success of the implants. Vascular tissue engineering is a new field that has undergone enormous growth over the last decade and has proposed valid solutions for blood vessels repair. The goal of vascular tissue engineering is to produce neovessels and neoorgan tissue from autologous cells using a biodegradable polymer as a scaffold. The most important advantage of tissue-engineered implants is that these tissues can grow, remodel, rebuild, and respond to injury. This review describes the development of polymeric materials over the years and current tissue engineering strategies for the improvement of vascular conduits.

  14. Space environmental effects on polymeric materials (United States)

    Kiefer, Richard L.; Orwoll, Robert A.


    Polymeric materials that may be exposed on spacecraft to the hostile environment beyond Earth's atmosphere were subjected to atomic oxygen, electron bombardment, and ultraviolet radiation in terrestrial experiments. Evidence is presented for the utility of an inexpensive asher for determining the relative susceptibility of organic polymers to atomic oxygen. Kapton, Ultem, P1700 polysulfone, and m-CBB/BIS-A (a specially formulated polymer prepared at NASA Langley) all eroded at high rates, just as was observed in shuttle experiments. Films of Ultem, P1700 polysulfone, and m-CBB/BIS-A were irradiated with 85 keV electrons. The UV/VIS absorbance of Ultem was found to decay with time after irradiation, indicating free radical decay. The tensile properties of Ultem began to change only after it had been exposed to 100 Mrads. The effects of dose rate, temperature, and simultaneous vs. sequential electron and UV irradiation were also studied.

  15. Polymeric molecular sieve membranes for gas separation

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Sheng; Qiao, Zhenan; Chai, Songhai


    A porous polymer membrane useful in gas separation, the porous polymer membrane comprising a polymeric structure having crosslinked aromatic groups and a hierarchical porosity in which micropores having a pore size less than 2 nm are present at least in an outer layer of the porous polymer membrane, and macropores having a pore size of over 50 nm are present at least in an inner layer of the porous polymer membrane. Also described are methods for producing the porous polymer membrane in which a non-porous polymer membrane containing aromatic rings is subjected to a Friedel-Crafts crosslinking reaction in which a crosslinking molecule crosslinks the aromatic rings in the presence of a Friedel-Crafts catalyst and organic solvent under sufficiently elevated temperature, as well as methods for using the porous polymer membranes for gas or liquid separation, filtration, or purification.

  16. Dipeptide catalysed prebiotic polymerization of RNA

    DEFF Research Database (Denmark)

    Wieczorek, Rafal; Luisi, Pier Luigi; Monnard, Pierre-Alain


    toward more peptide synthesis. In the present work we describe a prebiotically plausible system in which the SerHis dipeptide acts as catalyst for the formation of RNA oligomers from imidazole derivatives of mononucleotides. The thermodynamic shift towards condensation was achieved using water......-concentrated in the remaining liquid microinclusions, thus creating an environment with low water activity in which condensation reactions can occur. Successful oligomerization of RNA monomers catalysed by the SerHis dipeptide was observed in a broad range of pH, and with all four natural nucleobases. The isomeric dipeptide...... HisSer did not exhibit any catalytic properties thus indicating that the specific, spatial arrangement of amino acid residues in the SerHis structure is responsible for its catalytic activity. Establishing novel synthetic pathways to RNA polymerization is important, as to date no convincing prebiotic...

  17. Alternatives in polymerization contraction stress management

    Directory of Open Access Journals (Sweden)

    Roberto R. Braga


    Full Text Available Polymerization contraction stress of dental composites is often associated with marginal and interfacial failure of bonded restorations. The magnitude of the stress depends on the composite's composition (filler content and matrix composition and its ability to flow before gelation, which is related to the cavity configuration and curing characteristics of the composite. This article reviews the variations found among studies regarding the contraction stress testing method, contraction stress values of current composites, and discusses the validity of contraction stress studies in relation to results from microleakage tests. The effect of lower curing rates and alternative curing routines on contraction stress values is also discussed, as well as the use of low elastic modulus liners. Moreover, studies with experimental Bis-GMA-based composites and recent developments in low-shrinkage monomers are described.


    NARCIS (Netherlands)



    The kinetics of the L-lactide bulk polymerization was studied using tin(II) bis(2-ethylhexanoate) and zinc bis(2,2-dimethyl-3,5-heptanedionato-O,O'). Up to 80% conversion, the rate of polymerization using tin(II) bis(2-ethylhexanoate) is higher than that with the zinc-containing catalyst, while at

  19. Tubulin Binding and Polymerization Promoting Properties of Tubulin Polymerization Promoting Proteins Are Evolutionarily Conserved. (United States)

    Oláh, Judit; Szénási, Tibor; Szabó, Adél; Kovács, Kinga; Lőw, Péter; Štifanić, Mauro; Orosz, Ferenc


    Tubulin polymerization promoting proteins (TPPPs) constitute a eukaryotic protein family. There are three TPPP paralogs in the human genome, denoted as TPPP1-TPPP3. TPPP1 and TPPP3 are intrinsically unstructured proteins (IUPs) that bind and polymerize tubulin and stabilize microtubules, but TPPP2 does not. Vertebrate TPPPs originated from the ancient invertebrate TPPP by two-round whole-genome duplication; thus, whether the tubulin/microtubule binding function of TPPP1 and TPPP3 is a newly acquired property or was present in the invertebrate orthologs (generally one TPPP per species) has been an open question. To answer this question, we investigated a TPPP from a simple and early branching animal, the sponge Suberites domuncula. Bioinformatics, biochemical, immunochemical, spectroscopic, and electron microscopic data showed that the properties of the sponge protein correspond to those of TPPP1; namely, it is an IUP that strongly binds tubulin and induces its polymerization, proving that these features of animal TPPPs have been evolutionarily conserved.

  20. [Study of "living" radical polymerization by FTIR in situ]. (United States)

    Chen, J; Hua, F; Qiu, J; Yang, Y


    Three types of living radical polymerization processes were monitored by means of FTIR spectrometer with handful diamond detector called as Dicomp in situ. It was found that both styrene and styrene/hydroxylpropyl methyacrylate (HPMA) could polymerize according to stable free radical polymerization (SFRP) mechanism in presence of 4-hydroxyl tetramethypiperidiyl-1-oxy(HTEMPO). For styrene/HPMA system, the styrene and HPMA conversion monitored by FTIR were linear with increase of molecular weight, but it gave longer induction period compared with that for St bulk polymerization. It was related to the hydrogen-transfer reaction between the propagating radicals with the end HPMA unit and HTEMPO. Furthermore, This following method in situ could be introduced into monitoring heterogeneous polymerization of styrene during atom transfer radical polymerization (ATRP). The apparent kinetics was found to be about zero order and not 1.0 order, due to propagating on the complex including radicals, CuX and bpy in heterogeneous interface. The polymerization rate will be not related to the St in bulk St phase.

  1. Micro-fluidic partitioning between polymeric sheets for chemical amplification and processing

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Brian L.


    A system for fluid partitioning for chemical amplification or other chemical processing or separations of a sample, comprising a first dispenser of a first polymeric sheet, wherein the first polymeric sheet contains chambers; a second dispenser of a second polymeric sheet wherein the first dispenser and the second dispenser are positioned so that the first polymeric sheet and the second polymeric sheet become parallel; a dispenser of the fluid positioned to dispense the fluid between the first polymeric sheet and the second polymeric sheet; and a seal unit that seals the first polymeric sheet and the second polymeric sheet together thereby sealing the sample between the first polymeric sheet and the second polymeric sheet and partitioning the fluid for chemical amplification or other chemical processing or separations.

  2. Plasma polymerized allylamine coated quartz particles for humic acid removal. (United States)

    Jarvis, Karyn L; Majewski, Peter


    Allylamine plasma polymerization has been used to modify the surface of quartz particles for humic acid removal via an inductively coupled rotating barrel plasma reactor. Plasma polymerized allylamine (ppAA) films were deposited at a power of 25 W, allylamine flow rate of 4.4 sccm and polymerization times of 5-60 min. The influence of polymerization time on surface chemistry was investigated via X-ray photoelectron spectroscopy (XPS), time of flight secondary ion mass spectrometry (ToF-SIMS) and electrokinetic analysis. Acid orange 7 adsorption/desorption quantified the number of surface amine groups. Humic acid removal via ppAA quartz particles was examined by varying pH, removal time, humic acid concentration, and particle mass. Increasing the polymerization time increased the concentration of amine groups on the ppAA quartz surface, thus also increasing the isoelectric point. ToF-SIMS demonstrated uniform distribution of amine groups across the particle surface. Greatest humic acid removal was observed at pH 5 due to electrostatic attraction. At higher pH values, for longer polymerization times, humic acid removal was also observed due to hydrogen bonding. Increasing the initial humic acid concentration increased the mass of humic acid removed, with longer polymerization times exhibiting the greatest increases. Plasma polymerization using a rotating plasma reactor has shown to be a successful method for modifying quartz particles for the removal of humic acid. Further development of the plasma polymerization process and investigation of additional contaminants will aid in the development of a low cost water treatment system.

  3. Biodegradable Polymeric Nanoparticles as the Delivery Carrier for Drug. (United States)

    Zhao, Kai; Li, Dan; Shi, Ci; Ma, Xueling; Rong, Guangu; Kang, Hong; Wang, Xiaohua; Sun, Bin


    Drug research and development has entered into the new epoch of innovation formulation, and the drug delivery system has been in the forefront of pharmaceutical innovation. Nanotechnology is widely used in fiber and textiles, electronics, space, agriculture, forensic science and medical therapeutics. It increasingly plays a significant role in drug delivery system. Compared with traditional delivery system, the nanoparticle drug delivery system has lots of merits, such as the high drug loading ability, the excellent biocompatibility, low toxicity, controlled and targeted drug release. We undertook a structured research of biodegradable polymeric nanoparticles used as delivery carrier for drug using a focused review question and inclusion/exclusion criteria. We have searched the bibliographic databases for peerreviewed research literature. The outstanding characteristics of the screened papers were described respectively, and a systematic content analysis methodology was used to analysis the findings. Seventy-three papers were included in the review, the majority defined leadership and governance approaches that had impacted upon the polymeric nanoparticles as the delivery carrier for drug in therapeutic applications and developments. Seven papers outlined the superiority characteristics of polymeric nanoparticles that applied in the field of vaccine. Forty-seven papers overviewed the application prospects of polymeric nanoparticles used as drug delivery carrier for cancer. These included current advances in research and clinical applications of polymeric nanoparticles. The review identified the drug delivery carrier of biodegradable polymeric nanoparticles, and we described the synthesis methods, applications and challenges of polymeric nanoparticles. The findings of this review identified that the biodegradable polymeric nanoparticles were used as delivery carrier for drug currently. It also indicates that the biodegradable polymeric nanoparticles play an


    Institute of Scientific and Technical Information of China (English)

    CAO Weixiao; ZHANG Peng; FENG Xinde


    Photoinduced charge transfer polymerization of styrene(St) with electron acceptor as initiator was investigated. In case of fumaronitrile (FN) or maleic anhydride (MA) as initiator the polymerization takes place regularly, whereas the tetrachloro-1, 4-benzenequinone (TCQ), 2, 3-dichloro-5, 6-dicyano-1, 4-benzenequinone (DDQ) . or tetracyano ethylene (TCNE) as initiator the polymerization proceeds reluctantly only after the photoaddition reaction. A mechanism was proposed that free radicals would be formed following the charge and proton transfer in the exciplex formed between St and electron acceptors.

  5. Measurement of in vitro microtubule polymerization by turbidity and fluorescence. (United States)

    Mirigian, Matthew; Mukherjee, Kamalika; Bane, Susan L; Sackett, Dan L


    Tubulin polymerization may be conveniently monitored by the increase in turbidity (optical density, or OD) or by the increase in fluorescence intensity of diamidino-phenylindole. The resulting data can be a quantitative measure of microtubule (MT) assembly, but some care is needed in interpretation, especially of OD data. Buffer formulations used for the assembly reaction significantly influence the polymerization, both by altering the critical concentration for polymerization and by altering the exact polymer produced-for example, by increasing the production of sheet polymers in addition to MT. Both the turbidity and the fluorescence methods are useful for demonstrating the effect of MT-stabilizing or -destabilizing additives.

  6. Novel Complex Polymers with Carbazole Functionality by Controlled Radical Polymerization

    Directory of Open Access Journals (Sweden)

    Kazuhiro Nakabayashi


    Full Text Available This review summarizes recent advances in the design and synthesis of novel complex polymers with carbazole moieties using controlled radical polymerization techniques. We focus on the polymeric architectures of block copolymers, star polymers, including star block copolymers and miktoarm star copolymers, comb-shaped copolymers, and hybrids. Controlled radical polymerization of N-vinylcarbazole (NVC and styrene and (methacrylate derivatives having carbazole moieties is well advanced, leading to the well-controlled synthesis of complex macromolecules. Characteristic optoelectronic properties, assembled structures, and three-dimensional architectures are briefly introduced.

  7. A large deformation poroplasticity theory for microporous polymeric materials (United States)

    Anand, Lallit


    A coupled theory accounting for fluid diffusion and large deformations of elastic-viscoplastic microporous polymeric materials is presented. The theory is intended to represent the coupled deformation-diffusion response of a material which at a microscopic scale consists of a porous polymeric skeleton and a freely moving fluid in a fully connected pore space. Potential applications of the theory include modeling the response of polymer microfiltration membranes, as well as modeling the response of several hydrated biological tissues which are microporous polymeric materials containing a high concentration of liquids.

  8. Optical Properties of the Self-Assembling Polymeric Colloidal Systems

    Directory of Open Access Journals (Sweden)

    Alexandra Mocanu


    Full Text Available In the last decade, optical materials have gained much interest due to the high number of possible applications involving path or intensity control and filtering of light. The continuous emerging technology in the field of electrooptical devices or medical applications allowed the development of new innovative cost effective processes to obtain optical materials suited for future applications such as hybrid/polymeric solar cells, lasers, polymeric optical fibers, and chemo- and biosensing devices. Considering the above, the aim of this review is to present recent studies in the field of photonic crystals involving the use of polymeric materials.

  9. Styrene polymerization in three-component cationic microemulsions

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Luna, V.H.; Puig, J.E. (Universidad de Guadalajara (Mexico)); Castano, V.M. (Instituto de Fisica (Mexico)); Rodriguez, B.E.; Murthy, A.K.; Kaler, E.W. (Univ. of Delaware, Newark (USA))


    The polymerization of styrene in three-component dodecyltrimethylammonium bromide (DTAB) microemulsions is reported. The structure of the unpolymerized microemulsions, determined by conductimetry and quasielastic light scattering (QLS), is consistent with styrene-swollen micelles in equilibrium with regular micelles, both dispersed in an aqueous phase. Polymerization of these transparent microemulsions, monitored by QLS an dilatometry, produced stable, bluish monodisperse microlatices with particle radii ranging from 20 to 30 nm, depending on styrene content. Polymerization initiation appears to occur in the styrene-swollen micelles, and the polymer particles grow by recruiting monomer and surfactant from uninitiated droplets and small micelles.

  10. Charge trapping in plasma-polymerized thin films (United States)

    Klemberg-Sapieha, J. E.; Sapieha, S.; Wertheimer, M. R.; Yelon, A.


    The surface potential of freshly plasma-polymerized films of hexamethyldisiloxane was measured for film thicknesses ranging from about 0.1 to 1 micron. The films are found to be in an electret state under certain fabrication conditions. Experimental evidence is given which indicates that charge trapped during plasma polymerization is uniformly distributed across the sample thickness. It has been found that other electret properties such as the polarity of trapped charge, and the charge retention characteristics can also be controlled by an appropriate choice of polymerization conditions.


    Institute of Scientific and Technical Information of China (English)


    Desorption of volatile organic compounds (VOCs)from polymeric adsorbents by microwave was investigated experimentally. Two kinds of organic compounds, benzene and toluene,were separately used as adsorbates in this work. Results showed that the application of microwave to regenerate the polymeric adsorbents not only can get higher regeneration efficiency in comparison with the use of heat regeneration, but also make the temperatures of the fixed beds much lower than that when using the heat regeneratton The weaker the polarity of a polymeric adsorbent, the easier its regeneration was.

  12. Accurate fluorescent polymeric thermometers containing an ionic component. (United States)

    Gota, Chie; Uchiyama, Seiichi; Ohwada, Tomohiko


    Fluorescent polymeric thermometers consisting of only N-alkylacrylamide and fluorescent components show rather low temperature resolution in their functional ranges (ca. 15-50 degrees C) because of the occurrence of intermolecular aggregation, which causes hysteresis in their fluorescence response to changes in temperature. By adding an ionic component to prevent such intermolecular aggregation, we obtained four fluorescent polymeric thermometers that offer high temperature resolution (<0.2 degrees C). Each new fluorescent polymeric thermometer covered the temperature range, 9-33 degrees C, 30-51 degrees C, 49-66 degrees C or 4-38 degrees C.

  13. Intrinsic embedded sensors for polymeric mechatronics: flexure and force sensing. (United States)

    Jentoft, Leif P; Dollar, Aaron M; Wagner, Christopher R; Howe, Robert D


    While polymeric fabrication processes, including recent advances in additive manufacturing, have revolutionized manufacturing, little work has been done on effective sensing elements compatible with and embedded within polymeric structures. In this paper, we describe the development and evaluation of two important sensing modalities for embedding in polymeric mechatronic and robotic mechanisms: multi-axis flexure joint angle sensing utilizing IR phototransistors, and a small (12 mm), three-axis force sensing via embedded silicon strain gages with similar performance characteristics as an equally sized metal element based sensor.

  14. Intrinsic Embedded Sensors for Polymeric Mechatronics: Flexure and Force Sensing

    Directory of Open Access Journals (Sweden)

    Leif P. Jentoft


    Full Text Available While polymeric fabrication processes, including recent advances in additive manufacturing, have revolutionized manufacturing, little work has been done on effective sensing elements compatible with and embedded within polymeric structures. In this paper, we describe the development and evaluation of two important sensing modalities for embedding in polymeric mechatronic and robotic mechanisms: multi-axis flexure joint angle sensing utilizing IR phototransistors, and a small (12 mm, three-axis force sensing via embedded silicon strain gages with similar performance characteristics as an equally sized metal element based sensor.

  15. Polymeric and Ceramic Nanoparticles in Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Aura-Ileana Moreno-Vega


    Full Text Available Materials in the nanometer size range may possess unique and beneficial properties, which are very useful for different medical applications including stomatology, pharmacy, and implantology tissue engineering. The application of nanotechnology to medicine, known as nanomedicine, concerns the use of precisely engineered materials at this length scale to develop novel therapeutic and diagnostic modalities. Nanomaterials have unique physicochemical properties, such as small size, large surface area to mass ratio, and high reactivity, which are different from bulk materials of the same composition. Polymeric and ceramic nanoparticles have been extensively studied as particulate carriers in the pharmaceutical and medical fields, because they show promise as drug delivery systems as a result of their controlled- and sustained-release properties, subcellular size, and biocompatibility with tissue and cells. These properties can be used to overcome some of the limitations found in traditional therapeutic and diagnostic agents. Nanotechnology is showing promising developments in many areas and may benefit our health and welfare. However, a wide range of ethical issues has been raised by this innovative science. Many authorities believe that these advancements could lead to irreversible disasters if not limited by ethical guidelines.

  16. Current progress of polymeric gene vectors

    Institute of Scientific and Technical Information of China (English)

    ZENG Xuan; SUN YunXia; ZHUO RenXi; ZHANG XianZheng


    After over 40 years ot progress,gene therapy provides great opportunities for treating diseases from various genetic disorders,infections and cancers.The success of gene therapy largely depends on the availability of suitable gene vectors.As an attractive alternative to virus-based gene therapy,non-viral gene delivery system has been developed and investigated due to their merits including low immunogenecity,convenient operability,and large-scale manufacturability [1].Because polycations can condense with DNA as a result of electrostatic interactions,form nanosize polyplexes,and protect DNA from degradation by DNase,cationic polymer becomes a major type of non-viral gene delivery vectors (Figure 1) [2].A wide range of polymeric vectors have been developed and investigated in the past decade,such as polyethylenimine (PEI)-based vectors,poly(L-lysine) (PLL)-based vectors,dendrimer-based vectors,polypeptide-based vectors,and chitosan-based vectors [3].However,unlike viral vectors that have the ability to infect host cells and overcome cellular barriers through the course of evolution,nonviral gene vectors exhibit Significantly reduced transfection efficiency as they are obstructed by various extra- and intracellular barriers,including serum proteins in blood stream,cell membrane,endosomal compartment and nuclear membrane [4].

  17. Polymeric Biodegradable Stent Insertion in the Esophagus

    Directory of Open Access Journals (Sweden)

    Kai Yang


    Full Text Available Esophageal stent insertion has been used as a well-accepted and effective alternative to manage and improve the quality of life for patients diagnosed with esophageal diseases and disorders. Current stents are either permanent or temporary and are fabricated from either metal or plastic. The partially covered self-expanding metal stent (SEMS has a firm anchoring effect and prevent stent migration, however, the hyperplastic tissue reaction cause stent restenosis and make it difficult to remove. A fully covered SEMS and self-expanding plastic stent (SEPS reduced reactive hyperplasia but has a high migration rate. The main advantage that polymeric biodegradable stents (BDSs have over metal or plastic stents is that removal is not require and reduce the need for repeated stent insertion. But the slightly lower radial force of BDS may be its main shortcoming and a post-implant problem. Thus, strengthening support of BDS is a content of the research in the future. BDSs are often temporarily effective in esophageal stricture to relieve dysphagia. In the future, it can be expect that biodegradable drug-eluting stents (DES will be available to treat benign esophageal stricture, perforations or leaks with additional use as palliative modalities for treating malignant esophageal stricture, as the bridge to surgery or to maintain luminal patency during neoadjuvant chemoradiation.

  18. Confocal Raman Imaging of Polymeric Materials (United States)

    Schmidt, Ute; Müller, Jörg; Koenen, Joachim

    Polymers play an essential role in modern materials science. Due to the wide variety of mechanical and chemical properties of polymers, they are used in almost every field of application and are still a dynamic area in the development of new materials with demanding requirements. Raman spectroscopy is one of the standard characterization techniques used to uniquely determine the chemical composition of a polymer. Modern materials, however, are generally heterogeneous, in which various chemical components or polymorphs of the same chemical species can be present in a very small sample volume. For the analysis of such heterogeneous materials, the combination of Raman spectroscopy with confocal microscopy delivers information about the spatial distribution of the various chemical species with a resolution down to 200 nm. The aim of this contribution is to demonstrate the power of confocal Raman imaging for the characterization of heterogeneous polymeric materials. The first section will deal with polymorphs of polypropylene in polymer films, followed by the nondestructive analysis of polymer blends. A later section will deal with multi-layer polymer coatings and paints and finally various additives to polymer matrices will be discussed.

  19. Transport through track etched polymeric blend membrane

    Indian Academy of Sciences (India)

    Kamlendra Awasthi; Vaibhav Kulshreshtha; B Tripathi; N K Acharya; M Singh; Y K Vijay


    Polymer blends of polycarbonate (PC) and polysulphone (PSF) having thickness, 27 m, are prepared by solution cast method. The transport properties of pores in a blend membrane are examined. The pores were produced in this membrane by a track etching technique. For this purpose, a thin polymer membrane was penetrated by a single heavy ion of Ni7+ of 100 MeV, followed by preferential chemical etching of the ion track. Ion permeation measurements show that pores in polymeric membrane are charged or neutralized, which depends upon the variation in concentration of the solvent. The – curve at concentration, N/10, shows that the pores are negatively charged, whereas at concentration, N/20, the linear nature of – curve indicates that the pores approach towards neutralized state and on further concentration, N/40, the pores become fully neutralized, consequently the rectifier behaviour of pores has been omitted. The gas permeability of hydrogen and carbon dioxide of this membrane was measured with increasing etching time. The permeability was measured from both the sides. Permeability at the front was larger than the permeability at the back which shows asymmetric behaviour of membranes.

  20. Nanostructuring of PEG-fibrinogen polymeric scaffolds. (United States)

    Frisman, Ilya; Seliktar, Dror; Bianco-Peled, Havazelet


    Recent studies have shown that nanostructuring of scaffolds for tissue engineering has a major impact on their interactions with cells. The current investigation focuses on nanostructuring of a biocompatible, biosynthetic polymeric hydrogel scaffold made from crosslinked poly(ethylene glycol)-fibrinogen conjugates. Nanostructuring was achieved by the addition of the block copolymer Pluronic F127, which self-assembles into nanometric micelles at certain concentrations and temperatures. Cryo-transmission electron microscopy experiments detected F127 micelles, both embedded within PEGylated fibrinogen hydrogels and in solution. The density of the F127 micelles, as well as their ordering, increased with increasing block copolymer concentration. The mechanical properties of the nanostructured hydrogels were investigated using stress-sweep rheological testing. These tests revealed a correlation between the block copolymer concentration and the storage modulus of the composite hydrogels. In vitro cellular assays confirmed that the increased modulus of the hydrogels did not limit the ability of the cells to form extensions and become spindled within the three-dimensional (3-D) hydrogel culture environment. Thus, altering the nanostructure of the hydrogel may be used as a strategy to control cellular behavior in 3-D through changes in mechanical properties of the environment.

  1. Transition metal-free olefin polymerization catalyst (United States)

    Sen, Ayusman; Wojcinski, II, Louis M.; Liu, Shengsheng


    Ethylene and/or propylene are polymerized to form high molecular weight, linear polymers by contacting ethylene and/or propylene monomer, in the presence of an inert reaction medium, with a catalyst system which consists essentially of (1) an aluminum alkyl component, such as trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-octylaluminum and diethylaluminum hydride and (2) a Lewis acid or Lewis acid derivative component, such as B (C.sub.6 F.sub.5).sub.3, [(CH.sub.3).sub.2 N (H) (C.sub.6 H.sub.5)].sup.+ [B (C.sub.6 F.sub.5)4].sup.-, [(C.sub.2 H.sub.5).sub.3 NH].sup.+ [B C.sub.6 F.sub.5).sub.4 ],.sup.-, [C(C.sub.6 F.sub.5).sub.3 ].sup.+ [B(C.sub.6 F.sub.5).sub.4 ].sup.-, (C.sub.2 H.sub.5).sub.2 Al(OCH.sub.3), (C.sub.2 H.sub.5).sub.2 Al(2,6-di-t-butyl-4-methylphenoxide), (C.sub.2 H.sub.5)Al(2,6 -di-t-butylphenoxide).sub.2, (C.sub.2 H.sub.5).sub.2 Al(2,6-di-t-butylphonoxide) , 2,6 -di-t-butylphenol.multidot.methylaluminoxane or an alkylaluminoxane, and which may be completely free any transition metal component(s).

  2. Inorganic Surface Modification of Nonwoven Polymeric Substrates (United States)

    Halbur, Jonathan Chandler

    In this study, atomic layer deposition (ALD), a vapor phase inorganic thin film deposition technique, is used to modify the surface of a range of industrially relevant polymers to enhance surface properties or impart additional functionalities. Several unique demonstrations of polymer surface modification are presented including uniform nanomaterial photodeposition to the surface of nonowoven fabrics and the first application of photocatalytic thin film coated nonwovens for advanced filtration of heavy metals from solution. Recent advances in polymer synthesis and processing technologies have resulted in the production of novel polymer systems with unique chemistries and sub-micron scale dimensions. As a result, advanced fiber systems have received much attention for potential use in a wide range of industrially and medically important applications such as advanced and selective filtration, catalysis, flexible electronics, and tissue engineering. However, tailoring the surface properties of the polymer is still needed in order to realize the full range of advanced applications, which can be difficult given the high complexity and non-uniformity of nonwoven polymeric structures. Uniform and controllable inorganic surface modification of nonwovens allows the introduction or modification of many crucial polymer properties with a wide range of application methods.

  3. Bouncing of polymeric droplets on liquid interfaces (United States)

    Gier, S.; Dorbolo, S.; Terwagne, D.; Vandewalle, N.; Wagner, C.


    The effect of polymers on the bouncing behavior of droplets in a highly viscous, vertically shaken silicone oil bath was investigated in this study. Droplets of a sample liquid were carefully placed on a vibrating bath that was maintained well below the threshold of Faraday waves. The bouncing threshold of the plate acceleration depended on the acceleration frequency. For pure water droplets and droplets of aqueous polymer solutions, a minimum acceleration amplitude was observed in the acceleration threshold curves as a function of frequency. The bouncing acceleration amplitude for a droplet of a dilute aqueous polymer solution was higher than the acceleration amplitude for a pure water droplet. Measurements of the center of mass trajectory and the droplet deformations showed that the controlling parameter in the bouncing process was the oscillating elongational rate of the droplet. This parameter can be directly related to the elongational viscosity of the polymeric samples. The large elongational viscosity of the polymer solution droplets suppressed large droplet deformations, resulting in less chaotic bouncing.

  4. Oligonucleotide and Long Polymeric DNA Encoding

    Energy Technology Data Exchange (ETDEWEB)

    Miller, E; Mariella Jr., R P; Christian, A T; Gardner, S N; Williams, J M


    This report summarizes the work done at Lawrence Livermore National Laboratory for the Oligonucleotide and Long Polymeric DNA Encoding project, part of the Microelectronic Bioprocesses Program at DARPA. The goal of the project was to develop a process by which long (circa 10,000 base-pair) synthetic DNA molecules could be synthesized in a timely and economic manner. During construction of the long molecule, errors in DNA sequence occur during hybridization and/or the subsequent enzymatic process. The work done on this project has resulted in a novel synthesis scheme that we call the parallel pyramid synthesis protocol, the development of a suit of computational tools to minimize and quantify errors in the synthesized DNA sequence, and experimental proof of this technique. The modeling consists of three interrelated modules: the bioinformatics code which determines the specifics of parallel pyramid synthesis for a given chain of long DNA, the thermodynamics code which tracks the products of DNA hybridization and polymerase extension during the later steps in the process, and the kinetics model which examines the temporal and spatial processes during one thermocycle. Most importantly, we conducted the first successful syntheses of a gene using small starting oligomers (tetramers). The synthesized sequence, 813 base pairs long, contained a 725 base pair gene, modified green fluorescent protein (mGFP), which has been shown to be a functional gene by cloning into cells and observing its green fluorescent product.

  5. Actin cytoskeleton: putting a CAP on actin polymerization. (United States)

    Stevenson, V A; Theurkauf, W E


    Two recent studies have identified a Drosophila homolog of cyclase-associated protein (CAP) as a developmentally important negative regulator of actin polymerization that may also directly mediate signal transduction.

  6. 'Green' reversible addition-fragmentation chain-transfer (RAFT) polymerization (United States)

    Semsarilar, Mona; Perrier, Sébastien


    Reversible addition-fragmentation chain-transfer (RAFT) polymerization has revolutionized the field of polymer synthesis as a versatile tool for the production of complex polymeric architectures. As for all chemical processes, research and development in RAFT have to focus on the design and application of chemical products and processes that have a minimum environmental impact, and follow the principles of 'green' chemistry. In this Review, we summarize some of the green features of the RAFT process, and review the recent advances in the production of degradable polymers obtained from RAFT polymerization. Its use to modify biodegradable and renewable inorganic and organic materials to yield more functional products with enhanced applications is also covered. RAFT is a promising candidate for answering both the increasing need of modern society to employ highly functional polymeric materials and the global requirements for developing sustainable chemicals and processes.

  7. The unusual dynamics of parasite actin result from isodesmic polymerization. (United States)

    Skillman, Kristen M; Ma, Christopher I; Fremont, Daved H; Diraviyam, Karthikeyan; Cooper, John A; Sept, David; Sibley, L David


    Previous reports have indicated that parasite actins are short and inherently unstable, despite being required for motility. Here we re-examine the polymerization properties of actin in Toxoplasma gondii, unexpectedly finding that it exhibits isodesmic polymerization in contrast to the conventional nucleation-elongation process of all previously studied actins from both eukaryotes and bacteria. Polymerization kinetics of actin in T. gondii lacks both a lag phase and critical concentration, normally characteristic of actins. Unique among actins, the kinetics of assembly can be fit with a single set of rate constants for all subunit interactions, without need for separate nucleation and elongation rates. This isodesmic model accurately predicts the assembly, disassembly and the size distribution of actin filaments in T. gondii in vitro, providing a mechanistic explanation for actin dynamics in vivo. Our findings expand the repertoire of mechanisms by which actin polymerization is governed and offer clues about the evolution of self-assembling, stabilized protein polymers.

  8. Growth Kinetics of Monodisperse Polystyrene Microspheres Prepared by Dispersion Polymerization

    Directory of Open Access Journals (Sweden)

    Fan Li


    Full Text Available Dispersion polymerization has been widely applied to the synthesis of monodisperse micron-sized polymer colloidal spheres. Many efforts have been devoted to studying the influence of initial conditions on the size and uniformity of the resultant microspheres, aiming to synthesize micron-size monodisperse colloidal spheres. However, the inner contradiction between the size and the size distribution of colloidal spheres hinders the realization of this goal. In this work, we drew our attention from the initial conditions to the growth stage of dispersion polymerization. We tracked the size evolution of colloidal sphere during the dispersion polymerization, through which we established a kinetic model that described the relationship between the monomer concentration and the reaction time. The model may provide a guideline to prepare large polymer colloidal spheres with good monodispersity by continuous monomer feeding during the growth stage to maintain the concentration of monomer at a constant value in a dispersion polymerization process.

  9. Dispersion Polymerization of Polystyrene Particles Using Alcohol as Reaction Medium (United States)

    Cho, Young-Sang; Shin, Cheol Hwan; Han, Sujin


    In this study, monodisperse polystyrene nanospheres were prepared by dispersion polymerization using alcohol as reaction medium to prepare colloidal clusters of the latex beads. Polyvinylpyrrolidone (PVP) and 2-(methacryloyloxy)ethyltrimethylammonium chloride (MTC) were used as dispersion stabilizer and comonomer, respectively. The particle size could be controlled by adjusting the reactant compositions such as the amount of stabilizer, comonomer, and water in the reactant mixture. The size and monodispersity of the polymeric particles could be also controlled by changing the reaction medium with different alcohols other than ethanol or adjusting the polymerization temperature. The synthesized particles could be self-organized inside water-in-oil emulsion droplets by evaporation-driven self-assembly to produce colloidal clusters of the polymeric nanospheres.

  10. Polymeric microring resonator based electro-optic modulator

    NARCIS (Netherlands)

    Leinse, Arne


    This thesis will describe the design, realization and characterization of an EO polymeric MR resonator, which was fabricated in the framework of a MESA+ Strategic Research Orientation TeraHertz and an IST project NAIS.

  11. Radiological response of ceramic and polymeric devices for breast brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Batista Nogueira, Luciana, E-mail: [Departamento de Propedeutica Complementar, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha 31270901, BH/MG (Brazil); Passos Ribeiro de Campos, Tarcisio, E-mail: [Departamento de Engenharia Nuclear, Programa de Pos Graduacao em Ciencias e Tecnicas Nucleares, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha 31270901, BH/MG (Brazil)


    In the present study, the radiological visibility of ceramic and polymeric devices implanted in breast phantom was investigated for future applications in brachytherapy. The main goal was to determine the radiological viability of ceramic and polymeric devices in vitro by performing simple radiological diagnostic methods such as conventional X-ray analysis and mammography due to its easy access to the population. The radiological response of ceramic and polymeric devices implanted in breast phantom was determined using conventional X-ray, mammography and CT analysis. - Highlights: Black-Right-Pointing-Pointer Radiological visibility of ceramic and polymeric devices implanted in breast phantom. Black-Right-Pointing-Pointer The barium incorporation in the seed improves the radiological contrast. Black-Right-Pointing-Pointer Radiological monitoring shows the position, orientation and degradation of devices. Black-Right-Pointing-Pointer Simple radiological methods such as X-ray and mammography were used for radiological monitoring.

  12. Fractal Evolving Theory and Growing Model of Olefin Polymerization Process

    Institute of Scientific and Technical Information of China (English)

    霍超; 任晓红; 等


    The surface morphology of Ti-Mg supported catalyst and the polyethylene particles are studied using scanning electron microscope(SEM) technology.The results show that either the catalyst's surface or polymer particle's surface is irregular and has fractal characteristics,which can be described by fractal parameter.The more interesting discovery is that the surface fractal dimension values of the polymer particles vary periodically with the polymerization time.We call this phenomenon fractal evolution,which can be divided into the "revolution" stage and the "evolution" stage,And then we present polymerization fractal growing model(PFGM),and successfully describe and /or predict the whole evolving process of the polyethylene particle morphology under the different slurry polymerization(including pre-polymerization) conditions without H2.

  13. Novel polymer coatings based on plasma polymerized 2-methoxyethyl acrylate

    DEFF Research Database (Denmark)

    Wu, Zhenning; Jiang, Juan; Benter, Maike


    plasma system[4]. The system named SoftPlasma™ is equipped with unique three-phase pulsed AC voltage. Low energy plasma polymerization has almost no thermal load for sensitive polymer materials[5]. Plasma polymerized coatings are highly cross-linked, pin-hole free and provide hydrophilic or hydrophobic...... properties[4-6]. We have exploited these possibilities and prepared plasma polymerized 2-methoxyethyl acrylate (PPMEA) coatings on various polymer substrates. The PPMEA coatings were optimized using various plasma polymerization conditions and characterized by X-ray photoelectron spectroscopy......, Fouriertransform infrared spectroscopy, Atomic force spectroscopy and Water contact-angle measurements. The microstructures ofPPMEA coatings with different thicknesses were also studied. For practical applications in mind, the coating stability was tested in different media (air, water, acetone, phosphate...

  14. Investigation of potential injectable polymeric biomaterials for bone regeneration. (United States)

    Dreifke, Michael B; Ebraheim, Nabil A; Jayasuriya, Ambalangodage C


    This article reviews the potential injectable polymeric biomaterial scaffolds currently being investigated for application in bone tissue regeneration. Two types of injectable biomaterial scaffolds are focused in this review, including injectable microspheres and injectable gels. The injectable microspheres section covers several polymeric materials, including poly(L-lactide-co-glycolide)-PLGA, poly(propylene fumarate), and chitosan. The injectable gel section covers alginate gels, hyaluronan hydrogels, poly(ethylene-glycol)-PEG hydrogels, and PEG-PLGA copolymer hydrogels. This review focuses on the effect of cellular behavior in vitro and in vivo in terms of material properties of polymers, such as biodegradation, biocompatibility, porosity, microsphere size, and cross-linking nature. Injectable polymeric biomaterials offer a major advantage for orthopedic applications by allowing the ability to use noninvasive or minimally invasive treatment methods. Therefore, combining injectable polymeric biomaterial scaffolds with cells have a significant potential to treat orthopedic bone defects, including spine fusion, and craniofacial and periodontal defects.

  15. Design of Electro-Functional Polymeric Systems with Siloxane Components

    Institute of Scientific and Technical Information of China (English)

    Yusuke Kawakami


    @@ 1Introduction Siloxane derivatives have many unique static and dynamic properties like low surface free energy, incompatibility with other component, and bond flexibility. Various functional polymeric systems were designed by taking advantage of these properties.

  16. Highly reflective polymeric substrates functionalized utilizing atomic layer deposition (United States)

    Zuzuarregui, Ana; Coto, Borja; Rodríguez, Jorge; Gregorczyk, Keith E.; Ruiz de Gopegui, Unai; Barriga, Javier; Knez, Mato


    Reflective surfaces are one of the key elements of solar plants to concentrate energy in the receivers of solar thermal electricity plants. Polymeric substrates are being considered as an alternative to the widely used glass mirrors due to their intrinsic and processing advantages, but optimizing both the reflectance and the physical stability of polymeric mirrors still poses technological difficulties. In this work, polymeric surfaces have been functionalized with ceramic thin-films by atomic layer deposition. The characterization and optimization of the parameters involved in the process resulted in surfaces with a reflection index of 97%, turning polymers into a real alternative to glass substrates. The solution we present here can be easily applied in further technological areas where seemingly incompatible combinations of polymeric substrates and ceramic coatings occur.

  17. Multifunctional Benzoxazines Feature Low Polymerization Temperature and Diverse Polymer Structures

    Directory of Open Access Journals (Sweden)

    Marc Soto


    Full Text Available 3,4-dihydro-3-phenyl-2H-1,3-benzoxazines derived from phenol-, resorcinol-, and phloroglucinol give monomers with one, two, and three oxazine units at a single benzene ring, respectively. Aside from the synthesis and characterization of such multifunctional benzoxazines, reactivity and polymerization behavior is studied in dependence of the oxazine functionality. Monomer reactivities are directly related to the number of oxazine functionalities present at the benzene ring yielding the lowest polymerization temperature for the trifunctional phloroglucinol-based benzoxazine. Comparing the polymerization processes and resulting structures, the trifunctional benzoxazine derivative enter new polymerization pathways, which include methylene linkages bridging aniline units, as well as the formation of carbonyl-derived structures.

  18. Highly reflective polymeric substrates functionalized utilizing atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zuzuarregui, Ana, E-mail:; Gregorczyk, Keith E. [CIC Nanogune Consolider, de Tolosa Hiribidea 76, 20018 San Sebastián (Spain); Coto, Borja; Ruiz de Gopegui, Unai; Barriga, Javier [IK4-Tekniker, Iñaki Goenaga 5, 20600 Eibar (Spain); Rodríguez, Jorge [Torresol Energy (SENER Group), Avda. de Zugazarte 61, 48930 Las Arenas (Spain); Knez, Mato [CIC Nanogune Consolider, de Tolosa Hiribidea 76, 20018 San Sebastián (Spain); IKERBASQUE Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao (Spain)


    Reflective surfaces are one of the key elements of solar plants to concentrate energy in the receivers of solar thermal electricity plants. Polymeric substrates are being considered as an alternative to the widely used glass mirrors due to their intrinsic and processing advantages, but optimizing both the reflectance and the physical stability of polymeric mirrors still poses technological difficulties. In this work, polymeric surfaces have been functionalized with ceramic thin-films by atomic layer deposition. The characterization and optimization of the parameters involved in the process resulted in surfaces with a reflection index of 97%, turning polymers into a real alternative to glass substrates. The solution we present here can be easily applied in further technological areas where seemingly incompatible combinations of polymeric substrates and ceramic coatings occur.

  19. Gamma radiation initiated polymerization of fluromonomers. I. Homepolymers

    Energy Technology Data Exchange (ETDEWEB)

    Manno, P. J.


    Fluoromonomers in a reactor cooled in a liquid N bath and degassed were exposed to gamma doses of 1 to 5 x 10/sup 6/ reps from Co/sup 60/ and spent fuel elements. The recovered polymers were cycle-dried and pulverized. G-values percent polymerization, moldability, and melting range were evaluated. Vinyl fluoride polymerization received particular attention. The presence of solid polyethylene accelerated the polymerization, and G values of 15,000 and 6400 were calculated at 0.7 and 5 x 10/sup 5/ reps/hr. The effect of temperature on vinyl fluoride polymerization and the physical properties of the polyvinyl fluoride were also examined. (D.C.W.)

  20. Free-radical solution-polymerization of trifluoronitrosomethane with tetrafluoroethylene (United States)

    Gdickman, S. A.


    Heavy-walled glass reactor, equipped with aerosol-compatible couplings and needle valve and charged with solvent and initiator, is utilized for polymerization. Polymer conversions and reactor/vessel operation are discussed.

  1. Synthesis and Characterization of Tailored Macromolecules via Stable Free Radical Polymerization Methodologies



    The stable free radical polymerization methodology for production of controlled macromolecules was investigated using a novel monomer, 2-vinylnaphthalene. Initial polymerizations resulted in molecular weight distributions typical of conventional free radical polymerization techniques (>2.0). Manipulation of the initiator concentration and the molar ratio of initiator to nitroxide demonstrated no significant control over the resulting polymer products. Analysis of the polymerization kinetics...

  2. Method of preparing water purification membranes. [polymerization of allyl amine as thin films in plasma discharge (United States)

    Hollahan, J. R.; Wydeven, T. J., Jr. (Inventor)


    Allyl amine and chemically related compounds are polymerized as thin films in the presence of a plasma discharge. The monomer compound can be polymerized by itself or in the presence of an additive gas to promote polymerization and act as a carrier. The polymerized films thus produced show outstanding advantages when used as reverse osmosis membranes.

  3. Protein Compatible Polymer Brushes on Polymeric Substrates Prepared by Surface-Initiated Transfer Radica Polymerization

    DEFF Research Database (Denmark)

    Fristrup, Charlotte Juel; Eskimergen, Rüya; Burkrinsky, J.T.


    limited. Therefore, a polymer coating containing some of the required properties may expand the use ofpolymers in medical devices. 'The approach was to graft polymer brushes from initiator-functionalized substrates using Surface-Initiated Atom TnlJlsfer Radical Polymerization (SI ATRP). Initial studies......Materials for insulin containers and delivery systems should comply with requirements like compatibility with proteins, sterilisability, 'good barrier properties towards preservatives, and no toxic leachables. The number of commercially available polymer materials which can be u sed is rather...

  4. Sterically and electrosterically stabilized emulsion polymerization. Kinetics and preparation. (United States)

    Capek, Ignác


    The principal subject discussed in the current paper is the radical polymerization in the aqueous emulsions of unsaturated monomers (styrene, alkyl (meth)acrylates, etc.) stabilized by non-ionic and ionic/non-ionic emulsifiers. The sterically and electrosterically stabilized emulsion polymerization is a classical method which allows to prepare polymer lattices with large particles and a narrow particle size distribution. In spite of the similarities between electrostatically and sterically stabilized emulsion polymerizations, there are large differences in the polymerization rate, particle size and nucleation mode due to varying solubility of emulsifiers in oil and water phases, micelle sizes and thickness of the interfacial layer at the particle surface. The well-known Smith-Ewart theory mostly applicable for ionic emulsifier, predicts that the number of particles nucleated is proportional to the concentration of emulsifier up to 0.6. The thin interfacial layer at the particle surface, the large surface area of relatively small polymer particles and high stability of small particles lead to rapid polymerization. In the sterically stabilized emulsion polymerization the reaction order is significantly above 0.6. This was ascribed to limited flocculation of polymer particles at low concentration of emulsifier, due to preferential location of emulsifier in the monomer phase. Polymerization in the large particles deviates from the zero-one approach but the pseudo-bulk kinetics can be operative. The thick interfacial layer can act as a barrier for entering radicals due to which the radical entry efficiency and also the rate of polymerization are depressed. The high oil-solubility of non-ionic emulsifier decreases the initial micellar amount of emulsifier available for particle nucleation, which induces non-stationary state polymerization. The continuous release of emulsifier from the monomer phase and dismantling of the non-micellar aggregates maintained a high level of

  5. Investigation on the Inverse Emulsion Polymerization of Acrylic Acid

    Institute of Scientific and Technical Information of China (English)


    Polyacrylic acid particles in nano-scale were synthesized using an inverse (W/O) emulsion polymerization method. The particle size and size change of inverse micelles which solubilize a part of monomer solution was monitored by PCS (photon correlation spectroscopy) and the particles of polyacrylic acid were viewed in scanning electron microscope for the first time. It was concluded that the inverse micelles were primarily the polymerization reaction sites.

  6. 2-D Polymerized Langmuir-Blodgett Films Studied by STM (United States)


    Langmuir polymerization of 3- hexadecyl pyrrole. By spreading monomer at room temperature on an oxidizing subphase (0.03 M ammonium persulfate ) and...used to image LB films 9 ,10. In our case, the intrinsic conductivity of the polypyrrole backbone should change the contrast and allow us to image...polymerization. All monolayer samples were prepared by one upstroke of the MoS 2 substrate, placing the hydrophilic pyrrole rings or the polypyrrole


    Institute of Scientific and Technical Information of China (English)

    JIN Yingtai; ZHANG Xitian; PEI Fengkui; WU Yue


    The reaction mechanisms ofdiene polymerization with homogeneous rare earth catalyst are studied by means of the spectra of 1H- NM R, one- and two- dimensions 13C-NMR. Based on the data of above NMR spectra, it is proposed that the polymerization reaction proceeds according to the following mechanism: η4-diene (cis- (→)trans- )and η3-allyl (syn- (→)anti- ).

  8. One Dimensional Polymeric Organic Photonic Crystals for DFB Lasers

    Directory of Open Access Journals (Sweden)

    F. Scotognella


    Full Text Available We present a very simple method to realize a one-dimensional photonic crystal (1D PC, consisting of a dye-doped polymeric multilayer. Due to the high photonic density of states at the edges of the photonic band-gap (PBG, a surface emitting distributed feedback (DFB laser is obtained with this structure. Furthermore, the incidence angle dependence of the PBG of the polymeric multilayer is reported.

  9. Flexural strength of acrylic resins polymerized by different cycles

    Directory of Open Access Journals (Sweden)

    Débora Barros Barbosa


    Full Text Available Despite the large number of studies addressing the effect of microwave polymerization on the properties of acrylic resin, this method has received limited clinical acceptance. This study evaluated the influence of microwave polymerization on the flexural strength of a denture base resin. A conventional heat-polymerized (Clássico, a microwave-polymerized (Onda-Cryl and a autopolymerizing acrylic (Jet resins were used. Five groups were established, according to polymerization cycles: A, B and C (Onda-Cryl, short cycle - 500W/3 min, long - 90W/13 min + 500W/90 sec, and manufacturing microwave cycle - 320W/3 min + 0W/3 min + 720W/3 min; T (Clássico, water bath cycle - 74ºC/9h and Q (Jet, press chamber cycle - 50ºC/15 min at 2 bar. Ten specimens (65 x 10 x 3.3mm were prepared for each cycle. The flexural strength of the five groups was measured using a three-point bending test at a cross-head speed of 5 mm/min. Flexural strength values were analyzed by one-way ANOVA and the Tukey's test was performed to identify the groups that were significantly different at 5% level. The microwave-polymerized groups showed the highest means (p<0.05 for flexural strength (MPa (A = 106.97 ± 5.31; B = 107.57 ± 3.99; C = 109.63 ± 5.19, and there were no significant differences among them. The heat-polymerized group (T showed the lowest flexural strength means (84.40 ± 1.68, and differ significantly from all groups. The specimens of a microwavable denture base resin could be polymerized by different microwave cycles without risk of decreasing the flexural strength.

  10. Polymerization of isoprene catalyzed by neodymium heterocyclic Schiff base complex

    Institute of Scientific and Technical Information of China (English)

    Lei Zhang; Xu Feng Ni; Wei Lin Sun; Zhi Quan Shen


    Neodymium-based heterocyclic Schiff base complex was prepared and applied for the coordination polymerization of isoprene. This complex polymerized isoprene to afford products featuring high cis-1,4 stereospecificity (ca. 95%) and high molecular weight (ca. 105) in the presence of the triisobutyl aluminium (AliBu3) as cocatalyst. The microstructure of obtained polyisoprene was investigated by FTIR, 1H NMR. Two different kinds of active centers in the catalyst system were examined by GPC method.


    Institute of Scientific and Technical Information of China (English)



    A study has been made on the plasma polymerization of acetylene/CO2/H2 in a capacitively coupled RF plasma. The monomer mixture yielded a crosslinked film with light brown color. A kinetic study is reported for the plasma polymerization of acetylene/CO2/H2. The effects of discharge power level and reactor geometry on the rate of polymer formation are reported. The structure of the plasma polymer is investigated by IR study.

  12. Aquaporin-Based Biomimetic Polymeric Membranes: Approaches and Challenges

    DEFF Research Database (Denmark)

    Habel, Joachim Erich Otto; Hansen, Michael; Kynde, Søren;


    In recent years, aquaporin biomimetic membranes (ABMs) for water separation have gained considerable interest. Although the first ABMs are commercially available, there are still many challenges associated with further ABM development. Here, we discuss the interplay of the main components of ABMs...... thin film interfacial polymerization techniques. Finally, we describe some new developments in interfacial polymerization using polyhedral oligomeric silsesquioxane cages for increasing the physical and chemical durability of thin film composite membranes....

  13. Recent progress of atomic layer deposition on polymeric materials. (United States)

    Guo, Hong Chen; Ye, Enyi; Li, Zibiao; Han, Ming-Yong; Loh, Xian Jun


    As a very promising surface coating technology, atomic layer deposition (ALD) can be used to modify the surfaces of polymeric materials for improving their functions and expanding their application areas. Polymeric materials vary in surface functional groups (number and type), surface morphology and internal structure, and thus ALD deposition conditions that typically work on a normal solid surface, usually do not work on a polymeric material surface. To date, a large variety of research has been carried out to investigate ALD deposition on various polymeric materials. This paper aims to provide an in-depth review of ALD deposition on polymeric materials and its applications. Through this review, we will provide a better understanding of surface chemistry and reaction mechanism for controlled surface modification of polymeric materials by ALD. The integrated knowledge can aid in devising an improved way in the reaction between reactant precursors and polymer functional groups/polymer backbones, which will in turn open new opportunities in processing ALD materials for better inorganic/organic film integration and potential applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Controlled free radical polymerization of vinyl acetate with cobalt acetoacetonate

    Indian Academy of Sciences (India)

    Mohammad Ali Semsarzadeh; Sahar Amiri


    The polymerization of vinyl acetate with the complex catalyst of cobalt acetoacetonate [Co (acac)2] and DMF ligand with benzoyl peroxide initiator has been successfully carried out in bulk and in solution. The bulk polymerization has been used in a new route consisting of a one-step polymer formation in a fine capillary tube. In this process, the high rate of propagation was used to carry out the reaction in a microcapillary tube. Under 60°C, the colour-free reaction without solid catalyst impurity was 95% complete within a few hours. The high molecular weight of polyvinyl acetate (PVAc) with its relatively low molecular distribution without unreacted monomer provided a new method in microprocessing of the controlled radical polymerization of vinyl acetate in a one-step polymerization process. PVAc polymerization systems showed induction time, which was reduced in this reaction with using complex of DMF/ Co(acac)2. The kinetics of the reaction with a smaller degree of branching from this catalyst indicated that the electronegativity of the transition metal and diffusion of the homogeneous catalyst with DMF are important factors of fast polymerization in the bulk. Thermal properties of the polymer indicated a lower glass transition state. The easily reformed or stretched microsolid polymer demonstrated 20% crystallinity.

  15. A qualitative chemometric study of resin composite polymerization

    Directory of Open Access Journals (Sweden)

    Regina Ferraz Mendes


    Full Text Available Objective: An experiment was carried out to assess the effect produced by different polymerization techniques on resin composite color after it has been immersed in coffee. Methods: Samples were manufactured using TPH Spectrum composite. It was polymerized for 10 or 40 seconds, with the light tip at one or zero millimeters from the resin surface, and afterwards the samples were immersed in coffee for 24 hours or 7 days. Ten different evaluators classified the samples according to their degree of staining. Results: The samples that were polymerized for 10 seconds were more susceptible to staining than the ones polymerized by 40 seconds. Samples immersed in coffee for 7 days were more susceptible to staining than the ones immersed for 24 hours. Conclusion: The variables polymerization time and immersion time were determinant in the staining susceptibility of the studied composite by coffee. However, there was no significant difference, irrespective of whether the resin was polymerized 10 or zero millimeters away from the resin surface.

  16. A Novel RAFT Polymerization under UV Radiation at Ambient Temperature

    Institute of Scientific and Technical Information of China (English)

    Nianfa Yang; Lican Lu; Yuanli Cai


    @@ 1Introduction Reversible Addition Fragmentation chain Transfer (RAFT) polymerization has become a highly versatile technique for the controlled/"living" radical polymerization of a wide range of monomers under various conditions[1,2]. The RAFT polymerization was carried out using a dithiocarboxylate or trithiocarbonate as a Chain Transfer Agent (CTA), which mediates the growing chain radicals via an equilibrium[1,2]. From both academic and industrial standpoints, it is clearly desirable to develop a RAFT process under mild conditions. Rizzardo, et al [3] and McCormick's group[4] have respectively reported RAFT polymerization using conventional radical initiators at ambient temperature by adjusting the structure of CTA. The RAFT Polymerization initiated by γ-radiation has also reported recently[5]. Quinn, et al [6] have reported the RAFT polymerization under UV radiation using CTA as the source of primary radicals at 42 ℃, which was well controlled at low conversions (below 20% ) but less controlled at higher conversions (over 20% ) due to the photolysis of CTA residues under UV radiation.

  17. Perfluorocyclobutyl-containing Amphiphilic Block Copolymers Synthesized by RAFT Polymerization

    Institute of Scientific and Technical Information of China (English)

    LI, Yongjun; ZHANG, Sen; FENG, Chun; ZHANG, Yaqin; LI, Qingnuan; LI, Wenxin; HUANG, Xiaoyu


    Amphiphilic block copolymers containing hydrophobic perfluorocyclobutyl-based (PFCB) polyacrylate and hydrophilic poly(ethylene glycol) (PEG) segments were prepared via reversible addition-fragmentation chain transfer (RAP-T) polymerization. The PFCB-containing acrylate monomer, p-(2-(p-tolyloxy)perfluorocyclobutoxy)phenyl acrylate, was first synthesized from commercially available compounds in good yields, and this kind of acrylate monomer can be homopolymerized by free radical polymerization or RAFT polymerization. Kinetic study showed the 2,2'-azobis(isobutyronitrile) (AIBN) initiated and cumyl dithiobenzoate (CDB) mediated RAFT polymerization was in a living fashion, as suggested by the fact that the number-average molecular weights (M_n) increased linearly with the conversions of the monomer, while the polydispersity indices kept less than 1.10. The block polymers with narrow molecular weight distributions (M_w/M_n≤1.21) were prepared through RAFT polymerization using PEG monomethyl ether capped with 4-cyanopentanoic acid dithiobenzoate end group as the macro chain transfer agent (mPEG-CTA). The length of the hydrophobic segment can be tuned by the feed ratio of the PFCB-based acrylate monomer and the extending of the polymerization time. The micellization behavior of the block copolymers in aqueous media was investigated by the fluorescence probe technique.

  18. A comparison of three dimensional change in maxillary complete dentures between conventional heat polymerizing and microwave polymerizing techniques

    Directory of Open Access Journals (Sweden)

    Shinsuke Sadamori


    Full Text Available The purpose of this study was to measure and compare two different polymerizing processes, heat polymerizing (HP and microwave polymerizing (MP, on the three dimensional changes in the fitting surface and artificial teeth of maxillary complete dentures. A threedimensional coordinate measurement system was used to record distortion of the specimens. The distortion of the fitting surface was measured from the reference plane on the fitting side from which a coordinate system was set, and the movement of the artificial teeth and the distortion of the polished surface was measured from the reference plane of the artificial tooth side, from which a coordinate system was set. It was clearly showed that various distortions of denture specimens after polymerization process can be measured with this three-coordinate measuring machine. The study showed that the overall distortion of the fitting surface in HP specimens was shown to be larger than in MP ones.

  19. Preparing polymeric biomaterials using "click" chemistry techniques (United States)

    Lin, Fei

    Significant efforts have been focused on preparing degradable polymeric biomaterials with controllable properties, which have the potential to stimulate specific cellular responses at the molecular level. Click reactions provide a universal tool box to achieve that goal through molecular level design and modification. This dissertation demonstrates multiple methodologies and techniques to develop advanced biomaterials through combining degradable polymers and click chemistry. In my initial work, a novel class of amino acid-based poly(ester urea)s (PEU) materials was designed and prepared for potential applications in bone defect treatment. PEUs were synthesized via interfacial polycondensation, and showed degradability in vivo and possessed mechanical strength superior to conventionally used polyesters. Further mechanical enhancement was achieved after covalent crosslinking with a short peptide crosslinker derived from osteogenic growth peptide (OGP). The in vitro and in an in vivo subcutaneous rat model demonstrated that the OGP-based crosslinkers promoted proliferative activity of cells and accelerated degradation properties of PEUs. As a continuous study, extra efforts were focused on the development of PEUs with functional pendant groups, including alkyne, azide, alkene, tyrosine phenol, and ketone groups. PEUs with Mw exceeding to 100K Da were obtained via interfacial polycondensation, and the concentration of pendent groups was varied using a copolymerization strategy. Electrospinning was used to fabricate PEU nanofiber matrices with mechanical strengths suitable for tissue engineering. A series of biomolecules were conjugated to nanofiber surface following electrospinning using click reactions in aqueous media. The ability to derivatize PEUs with biological motifs using high efficient chemical reactions will significantly expand their use in vitro and in vivo. Based on similar principles, a series of mono- and multifunctionalized polycaprolactone (PCL

  20. RAFT microemulsion polymerization with surface-active chain transfer agent (United States)

    El-Hedok, Ibrahim Adnan

    The work described in this dissertation focuses on enhancing the polymer nanoparticle synthesis using RAFT (reversible-addition fragmentation chain transfer) in microemulsion polymerization in order to achieve predetermined molecular weight with narrow molecular weight polydispersity. The hypothesis is that the use of an amphiphilic chain transfer agent (surface-active CTA) will confine the CTA to the surface of the particle and thermodynamically favor partitioning of the CTA between micelles and particles throughout the polymerization. Thus, the CTA diffusion from micelles to polymer particles would be minimized and the breadth of the CTA per particle distribution would remain low. We report the successful improved synthesis of poly(butyl acrylate), poly(ethyl acrylate), and poly(styrene) nanoparticles using the RAFT microemulsion polymerization with surface-active CTA. The polymerization kinetics, polymer characteristics and latex size experimental data are presented. The data analysis indicates that the CTA remains partitioned between the micelles and particles by the end of the polymerization, as expected. We also report the synthesis of well-defined core/shell poly(styrene)/poly(butyl acrylate) nanoparticle, having polydispersity index value of 1.1, using semi-continuous microemulsion polymerization with the surface-active CTA. The surface-active CTA restricts the polymerization growth to the surface of the particle, which facilitates the formation of a shell block co-polymers with each subsequent second monomer addition instead of discrete homopolymers. This synthesis method can be used to create a wide range of core/shell polymer nanoparticles with well-defined morphology, given the right feeding conditions.

  1. Polymerization of chloro-p-xylylenes, quantum-chemical study. (United States)

    Czaplewski, Cezary; Smalara, Krzysztof; Giełdoń, Artur; Bobrowski, Maciej


    The p-xylylene monomers of parylene N, C and D have similar high polymerization reactivity. For effective copolymerization processes this fact is basically a drawback and for instance the copolymerization with styrene doesn't go at all (Corley et al. J Pol Sc 13(68):137-156, [15]). Substitution of terminal hydrogen atoms by chlorine atoms reduces reactivity dramatically. 7,7,8,8-tetrachloro-p-xylylene and 2,5,7,7,8,8-hexachloro-p-xylylene can be isolated as yellow crystals. These crystals can be kept without any change in temperature below 0 (∘)C, but they polymerize slowly at room temperature. Perchloro-p-xylylene is stable even at elevated temperatures and does not polymerize under any conditions. Both 7,7,8,8-tetrachloro-p-xylylene and 2,5,7,7,8,8-hexachloro-p-xylylene copolymerize with various vinyl monomers, such as styrene and others. In this work the polymerization reactions of different chloro-derivatives of p-xylylene were modeled by means of the DFT method with hybrid correlation functionals (B3LYP and PBE0) and, for comparison, by means of the Hartree Fock methods. We inquired both initiation as well as elongation polymeric reactions for each of the reactants. We survied their reactivity analytically examining energetics and configurations in Szwarc-like process. The quantitative influence of chlorine atoms on the reactivity in polymerization steps, their location in the reactants' structure (aromatic and/or aliphatic) as well as their number, were reviewed. The polymerizations of p-xylylenes with chlorine atoms as terminal aliphatic substituents yet revealed one more access path for parylenes' in situ functionalization.

  2. Stress and structure development in polymeric coatings (United States)

    Vaessen, Diane Melissa


    temperature. Observations from infrared spectroscopy, scanning electron microscopy, camera imaging, and indentation were also studied to correlate coating properties to measured stresses. The results obtained in this thesis will lead to strategies for material selection, process optimization, and defect elimination in polymeric coatings.

  3. Curing mechanism of flexible aqueous polymeric coatings. (United States)

    Irfan, Muhammad; Ahmed, Abid Riaz; Dashevskiy, Andriy; Kolter, Karl; Bodmeier, Roland


    The objective of this study was to explain curing phenomena for pellets coated with a flexible polymeric coating based on poly(vinyl acetate) (Kollicoat(®) SR 30D) with regard to the effect of starter cores, thickness of drug layer, adhesion of coating to drug-layered-cores as well as coating properties. In addition, appropriate approaches to eliminate the curing effect were identified. Sugar or MCC cores were layered with the model drugs carbamazepine, theophylline, propranolol HCl, tramadol HCl and metoprolol HCl using HPMC (5 or 25% w/w, based on drug) as a binder. Drug-layered pellets were coated with Kollicoat(®) SR 30D in a fluidized bed coater using TEC (10% w/w) as plasticizer and talc (35-100% w/w) as anti-tacking agent. Drug release, pellet properties (morphology, water uptake-weight loss and osmolality) and adhesion of the coating to the drug layer were investigated as a function of curing at 60 °C or 60 °C/75% RH for 24 h. The film formation of the aqueous dispersion of Kollicoat(®) SR 30D was complete, and therefore, a strong curing effect (decrease in drug release) at elevated temperature and humidity (60 °C/75% RH) could not be explained by the well-known hydroplasticization and the further gradual coalescence of the colloidal polymer particles. According to the provided mechanistic explanation, the observed curing effect was associated with 1) high flexibility of coating, 2) adhesion between coating and drug layer, 3) water retaining properties of the drug layer, and 4) osmotically active cores. Unwanted curing effects could be minimized/eliminated by the addition of talc or/and pore-forming water soluble polymers in the coating, increasing binder amount or applying an intermediate coating, by increasing the thickness of drug layer or using non-osmotic cores. A new insight into curing phenomena mainly associated with the adhesion between drug layer and coating was provided. Appropriate approaches to avoid unwanted curing effect were identified.

  4. Ring-opening polymerization of cyclic esters by cyclodextrins. (United States)

    Harada, Akira; Osaki, Motofumi; Takashima, Yoshinori; Yamaguchi, Hiroyasu


    Synthetic polymers, typically prepared by addition polymerization or stepwise polymerization, are used constantly in our daily lives. In recent years, polymer scientists have focused on more environmentally friendly synthetic methods such as mild reaction conditions and biodegradable condensation polymers, including polyesters and polyamides. However, challenges remain in finding greener methods for the synthesis of polymers. Although reactions carried out in water are more environmentally friendly than those in organic solvents, aqueous media can lead to the hydrolysis of condensation polymers. Furthermore, bulk polymerizations are difficult to control. In biological systems, enzymes synthesize most polymers (proteins, DNAs, RNAs, and polysaccharides) in aqueous environments or in condensed phases (membranes). Most enzymes, such as DNA polymerases, RNA polymerases, and ribosomes, form doughnutlike shapes, which encircle the growing polymer chain. As biopolymers form, the active sites and the substrate-combining sites are located at the end of the growing polymer chain and carefully control the polymerization. Therefore, a synthetic catalyst that could insert the monomers between the active site and binding site would create an ideal biomimetic polymerization system. In this Account, we describe cyclodextrins (CDs) as catalysts that can polymerize cyclic esters (lactones and lactides). CDs can initiate polymerizations of cyclic esters in bulk without solvents (even water) to give products in high yields. During our studies on the polymerization of lactones by CDs in bulk, we found that CDs function not only as initiators (catalysts) but also as supporting architectures similar to chaperone proteins. CDs encircle a linear polymer chain so that the chain assumes the proper conformation and avoids coagulation. The CDs can mimic the strategy that living systems use to prepare polymers. Thus, we can obtain polyesters tethered to CDs without employing additional solvents

  5. Polymerization shrinkage and stress development in amorphous calcium phosphate/urethane dimethacrylate polymeric composites (United States)

    Antonucci, J.M.; Regnault, W. F.; Skrtic, D.


    This study explores how substituting a new high molecular mass oligomeric poly(ethylene glycol) extended urethane dimethacrylate (PEG-U) for 2-hydroxyethyl methacrylate (HEMA) in photo-activated urethane dimethacrylate (UDMA) resins affects degree of vinyl conversion (DC), polymerization shrinkage (PS), stress development (PSSD) and biaxial flexure strength (BFS) of their amorphous calcium phosphate (ACP) composites. The composites were prepared from four types of resins (UDMA, PEG-U, UDMA/HEMA and UDMA/PEG-U) and zirconia-hybridized ACP. Introducing PEG-U improved DC while not adversely affecting PS, PSSD and the BFS of composites. This improvement in DC is attributed to the long, more flexible structure between the vinyl groups of PEG-U and its higher molecular mass compared to poly(HEMA). The results imply that PEG-U has the potential to serve as an alternative to HEMA in dental and other biomedical applications. PMID:20169007

  6. Characterization of polymeric microneedle arrays for transdermal drug delivery. (United States)

    Demir, Yusuf K; Akan, Zafer; Kerimoglu, Oya


    Microfabrication of dissolvable, swellable, and biodegradable polymeric microneedle arrays (MNs) were extensively investigated based in a nano sensitive fabrication style known as micromilling that is then combined with conventional micromolding technique. The aim of this study was to describe the polymer selection, and optimize formulation compounding parameters for various polymeric MNs. Inverse replication of micromilled master MNs reproduced with polydimethylsiloxane (PDMS), where solid out of plane polymeric MNs were subsequently assembled, and physicochemically characterized. Dissolvable, swellable, and biodegradable MNs were constructed to depth of less than 1 mm with an aspect ratio of 3.6, and 1/2 mm of both inter needle tip and base spacing. Micromolding step also enabled to replicate the MNs very precisely and accurate. Polymeric microneedles (MN) precision was ranging from ± 0.18 to ± 1.82% for microneedle height, ± 0.45 to ± 1.42% for base diameter, and ± 0.22 to ± 0.95% for interbase spacing. Although dissolvable sodium alginate MN showed less physical robustness than biodegradable polylactic-co-glycolic acid MN, their thermogravimetric analysis is of promise for constructing these polymeric types of matrix devices.

  7. Characterization of polymeric microneedle arrays for transdermal drug delivery.

    Directory of Open Access Journals (Sweden)

    Yusuf K Demir

    Full Text Available Microfabrication of dissolvable, swellable, and biodegradable polymeric microneedle arrays (MNs were extensively investigated based in a nano sensitive fabrication style known as micromilling that is then combined with conventional micromolding technique. The aim of this study was to describe the polymer selection, and optimize formulation compounding parameters for various polymeric MNs. Inverse replication of micromilled master MNs reproduced with polydimethylsiloxane (PDMS, where solid out of plane polymeric MNs were subsequently assembled, and physicochemically characterized. Dissolvable, swellable, and biodegradable MNs were constructed to depth of less than 1 mm with an aspect ratio of 3.6, and 1/2 mm of both inter needle tip and base spacing. Micromolding step also enabled to replicate the MNs very precisely and accurate. Polymeric microneedles (MN precision was ranging from ± 0.18 to ± 1.82% for microneedle height, ± 0.45 to ± 1.42% for base diameter, and ± 0.22 to ± 0.95% for interbase spacing. Although dissolvable sodium alginate MN showed less physical robustness than biodegradable polylactic-co-glycolic acid MN, their thermogravimetric analysis is of promise for constructing these polymeric types of matrix devices.

  8. EB1 targets to kinetochores with attached, polymerizing microtubules. (United States)

    Tirnauer, Jennifer S; Canman, Julie C; Salmon, E D; Mitchison, Timothy J


    Microtubule polymerization dynamics at kinetochores is coupled to chromosome movements, but its regulation there is poorly understood. The plus end tracking protein EB1 is required both for regulating microtubule dynamics and for maintaining a euploid genome. To address the role of EB1 in aneuploidy, we visualized its targeting in mitotic PtK1 cells. Fluorescent EB1, which localized to polymerizing ends of astral and spindle microtubules, was used to track their polymerization. EB1 also associated with a subset of attached kinetochores in late prometaphase and metaphase, and rarely in anaphase. Localization occurred in a narrow crescent, concave toward the centromere, consistent with targeting to the microtubule plus end-kinetochore interface. EB1 did not localize to kinetochores lacking attached kinetochore microtubules in prophase or early prometaphase, or upon nocodazole treatment. By time lapse, EB1 specifically targeted to kinetochores moving antipoleward, coupled to microtubule plus end polymerization, and not during plus end depolymerization. It localized independently of spindle bipolarity, the spindle checkpoint, and dynein/dynactin function. EB1 is the first protein whose targeting reflects kinetochore directionality, unlike other plus end tracking proteins that show enhanced kinetochore binding in the absence of microtubules. Our results suggest EB1 may modulate kinetochore microtubule polymerization and/or attachment.

  9. Bouncing scalar field cosmology in the polymeric minisuperspace picture

    CERN Document Server

    Vakili, B; Hosseinzadeh, V; Gorji, M A


    We study a cosmological setup consisting of a FRW metric as the background geometry with a massless scalar field in the framework of classical polymerization of a given dynamical system. To do this, we first introduce the polymeric representation of the quantum operators. We then extend the corresponding process to reach a transformation which maps any classical variable to its polymeric counterpart. It is shown that such a formalism has also an analogue in terms of the symplectic structure, i.e., instead of applying polymerization to the classical Hamiltonian to arrive its polymeric form, one can use a new set of variables in terms of which Hamiltonian retains its form but now the corresponding symplectic structure gets a new deformed functional form. We show that these two methods are equivalent and by applying of them to the scalar field FRW cosmology see that the resulting scale factor exhibits a bouncing behavior from a contraction phase to an expanding era. Since the replacing of the big bang singularit...

  10. Applications of polymeric micelles with tumor targeted in chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ding Hui; Wang Xiaojun; Zhang Song; Liu Xinli, E-mail: [Shandong Polytechnic University, Shandong Provincial Key Laboratory of Microbial Engineering (China)


    Polymeric micelles (PMs) have gained more progress as a carrier system with the quick development of biological and nanoparticle techniques. In particular, PMs with smart targeting can deliver anti-cancer drugs directly into tumor cells at a sustained rate. PMs with core-shell structure (with diameters of 10 {approx} 100 nm) have been prepared by a variety of biodegradable and biocompatible polymers via a self-assembly process. The preparation of polymeric micelles with stimuli-responsive block copolymers or modification of target molecules on polymeric micelles' surface are able to significantly improve the efficiency of drug delivery. Polymeric micelles, which have been considered as a novel promising drug carrier for cancer therapeutics, are rapidly evolving and being introduced in an attempt to overcome several limitations of traditional chemotherapeutics, including water solubility, tumor-specific accumulation, anti-tumor efficacy, and non-specific toxicity. This review describes the preparation of polymeric micelles and the targeted modification which greatly enhance the effects of chemotherapeutic agents.

  11. Pickering miniemulsion polymerization using Laponite clay as a stabilizer. (United States)

    Bon, Stefan A F; Colver, Patrick J


    Solid-stabilized, or Pickering, miniemulsion polymerizations using Laponite clay discs as stabilizer are investigated. Free radical polymerizations are carried out using a variety of hydrophobic monomers (i.e., styrene, lauryl (meth)acrylate, butyl (meth)acrylate, octyl acrylate, and 2-ethyl hexyl acrylate). Armored latexes, of which the surfaces of the particles are covered with clay discs, are obtained, as confirmed by scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). Overall polymerization kinetics of the Pickering miniemulsion polymerizations of styrene were investigated via gravimetry. Comparison with the bulk polymerization analogue clearly shows compartmentalization. Moreover, retardation effects up to intermediate monomer conversions are observed; they are more prominent for the smaller particles and are ascribed to the Laponite clay. A model is presented that allows for the prediction of the average particle size of the latexes produced as a function of the amounts of monomer and Pickering stabilizers used. It shows that under specific generic conditions the number of clay discs used correlates in a linear fashion with the total surface area of the latex particles. This is a direct result of the reversibility of the Laponite clay disc adhesion process under the emulsification conditions (i.e., sonication) used.

  12. Direct surface PEGylation of nanodiamond via RAFT polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yingge [Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Liu, Meiying [Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wang, Ke [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China); Huang, Hongye; Wan, Qing [Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Tao, Lei [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China); Fu, Lihua [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Zhang, Xiaoyong, E-mail: [Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China)


    Graphical abstract: In this paper, we describe an efficient, practical and novel method to modify ND via direct immobilization of chain transfer agent for RAFT polymerization. - Highlights: • Surface PEGylation of ND via RAFT polymerization. • ND with high water dispersibility and excellent biocompatibility. • Controlled living polymerization. - Abstract: Nanodiamond (ND) is a novel class of carbon nanomaterials, which has been extensively investigated for biomedical applications because of its small size, high surface area and excellent biocompatibility. However, the biomedical applications of unmodified ND are still largely restricted because of their poor dispersibility in both aqueous and organic medium. In this work, we reported a novel strategy for the surface modification of ND via reversible addition fragmentation chain transfer (RAFT) polymerization. For preparation of the PEGylated ND (pPEGMA-ND), chain transfer agent (CTA) was immobilized onto ND through reaction between the hydroxyl group of ND and the carboxyl group of CTA, which was used as the initiator for surface-initiated RAFT polymerization. The successful preparation of pPEGMA-ND was characterized by nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectra and thermal gravimetric analysis in detail. Results demonstrated that pPEGMA-ND exhibited enhanced water dispersibility and desirable biocompatibility, making it promising for biomedical applications.

  13. [On the polymerization of pour type resin (author's transl)]. (United States)

    Nagata, K; Hirasawa, T; Masuhara, E


    The initial polymerization point and the polymerization progress have been observed on powder-liquid pour type acrylic resin and one-liquid pour type acrylic resin. The results are as follows: 1. In case of un-heating at the bottom of powder liquid resin, in the former stage the polymerization makes the regular progress from the bottom part to the upper of the mould, but in the latter stage it does some irregular one. In case of heating at the bottom, at first it shows a better regular progress as in the case of un-heating. 2. In case of un-heating at the bottom of one-liquid resin, in the first stage the polymerization makes the regular progress from the bottom part of the resin and at the same time from its middle of the mould, and then to the upper part and the sprue part. In case of heating at the bottom, it begins just from the heated part, then it goes quite regularly to the middle, the upper, and the sprue part, and lastly the polymerization shrinkage concentrates exclusively at the sprue part.

  14. Thermodynamic Presynthetic Considerations for Ring-Opening Polymerization. (United States)

    Olsén, Peter; Odelius, Karin; Albertsson, Ann-Christine


    The need for polymers for high-end applications, coupled with the desire to mimic nature's macromolecular machinery fuels the development of innovative synthetic strategies every year. The recently acquired macromolecular-synthetic tools increase the precision and enable the synthesis of polymers with high control and low dispersity. However, regardless of the specificity, the polymerization behavior is highly dependent on the monomeric structure. This is particularly true for the ring-opening polymerization of lactones, in which the ring size and degree of substitution highly influence the polymer formation properties. In other words, there are two important factors to contemplate when considering the particular polymerization behavior of a specific monomer: catalytic specificity and thermodynamic equilibrium behavior. This perspective focuses on the latter and undertakes a holistic approach among the different lactones with regard to the equilibrium thermodynamic polymerization behavior and its relation to polymer synthesis. This is summarized in a monomeric overview diagram that acts as a presynthetic directional cursor for synthesizing highly specific macromolecules; the means by which monomer equilibrium conversion relates to starting temperature, concentration, ring size, degree of substitution, and its implications for polymerization behavior are discussed. These discussions emphasize the importance of considering not only the catalytic system but also the monomer size and structure relations to thermodynamic equilibrium behavior. The thermodynamic equilibrium behavior relation with a monomer structure offers an additional layer of complexity to our molecular toolbox and, if it is harnessed accordingly, enables a powerful route to both monomer formation and intentional macromolecular design.


    Institute of Scientific and Technical Information of China (English)

    Xiao-fei Zhang; Yang Wu; Jun Huang; Xue-lang Miao; Zheng-biao Zhang; Xiu-lin Zhu


    The "living'/controlled radical polymerization (LRP) of styrene (St) at room temperature is rarely reported.In this work,copper(0) (Cu(0))-mediated radical polymerization of St at room temperature was investigated in detail.Dimethyl sulfoxide (DMSO),N,N-dimethylformamide (DMF) as well as a binary solvent,tetrahydrofuran/1,1,1,3,3,3-hexafluoro-2-propanol were used as the solvents,respectively.Methyl-2-bromopropionate and ethyl 2-bromoisobutyrate were used as the initiators,respectively.The polymerization proceeded smoothly with moderate conversions at room temperature.It was found that DMF was a good solvent with the essential features of LRP,while DMSO was a poor solvent with uncontrollable molecular weights.Besides,the match among the initiator,solvent and molar ratios of reactants can modulate the livingness of the polymerization,and the proper selection of ligand was also crucial to a controlled process.This work provided a first example of Cu(0)-mediated radical polymerization of St at room temperature,which would enrich and strength the LRP technique.

  16. Linear interfacial polymerization: theory and simulations with dissipative particle dynamics. (United States)

    Berezkin, Anatoly V; Kudryavtsev, Yaroslav V


    Step-growth alternating interfacial polymerization between two miscible or immiscible monomer melts is investigated theoretically and by dissipative particle dynamics simulations. In both cases the kinetics for an initially bilayer system passes from the reaction to diffusion control. The polymer composed of immiscible monomers precipitates at the interface forming a film of nearly uniform density. It is demonstrated that the reaction proceeds in a narrow zone, which expands much slower than the whole film, so that newly formed polymer is extruded from the reaction zone. This concept of "reactive extrusion" is used to analytically predict the degree of polymerization and distribution of all components (monomers, polymer, and end groups) within the film in close agreement with the simulations. Increasing the comonomer incompatibility leads to thinner and more uniform films with the higher average degree of polymerization. The final product is considerably more polydisperse than expected for the homogeneous step-growth polymerization. The results extend the previous theoretical reports on interfacial polymerization and provide new insights into the internal film structure and polymer characteristics, which are important for membrane preparation, microencapsulation, and 3D printing technologies. A systematic way of mapping the simulation data onto laboratory scales is discussed.

  17. Quantitative determination of urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine, 8-oxo-7,8-dihydroguanine, 8-oxo-7,8-dihydroguanosine, and their non-oxidized forms: daily concentration profile in healthy volunteers. (United States)

    Andreoli, Roberta; Manini, Paola; De Palma, Giuseppe; Alinovi, Rossella; Goldoni, Matteo; Niessen, Wilfried M A; Mutti, Antonio


    We developed a new method for the simultaneous quantitative determination of 8-oxo-7,8-hydro-2'-deoxyguanosine (8-oxodGuo), 8-oxo-7,8-dihydroguanine (8-oxoGua), 8-oxo-7,8-dihydroguanosine (8-oxoGuo), and the corresponding non-oxidized forms, 2'-deoxyguanosine (dGuo), guanine (Gua) and guanosine (Guo), in human urine samples by liquid chromatography-tandem mass spectrometry. Differences in the ionization of analytes in different urine batches with variable matrix effects were effectively compensated for by internal standardization with stable isotope-labelled analytes. The method was sensitive enough to allow the determination of background levels of these biomarkers and was applied to characterize the inter- and intraindividual variability of biomarkers in the diurnal profile of concentrations in 24 healthy volunteers. When normalized for creatinine, none of the biomarkers was affected by sampling time, thus ruling out any circadian rhythm for nucleic acid oxidation in urine.

  18. 无水溶胶-凝胶法制备非氧化物陶瓷的研究进展%Research Progress in Fabrication of Non-Oxide Ceramics via Non-Aqueous Sol-Gel Method

    Institute of Scientific and Technical Information of China (English)

    李书宏; 张宗波; 罗永明; 徐彩虹


    综述了基于氨解、胺解以及碳化二亚胺化三类反应的无水相溶胶-凝胶方法在制备SiCN、B(C)N、SiN、BN等非氧化物陶瓷材料方面的研究进展,并对其前景进行了展望.%This review mainly summarized recent progress on the fabrication of non-oxide ceramics, such as SiCN, BN, B ( C ) N, and SiN, by the non-aqueous sol-gel method, on the basis of ammonolysis reaction, aminolysis reaction, and the carbodiimide reaction. Future prospects of the method were also discussed.


    Directory of Open Access Journals (Sweden)

    N.M. Ghasem


    Full Text Available The absence of a stable operational state in polymerization reactors that operates in batches is factor that determine the need of a special control system. In this study, advanced control methodology is implemented for controlling the operation of a batch polymerization reactor for polystyrene production utilizingmodel predictive control. By utilizing a model of the polymerization process, the necessary operational conditions were determined for producing the polymer within the desired characteristics. The maincontrol objective is to bring the reactor temperature to its target temperature as rapidly as possible with minimal temperature overshoot. Control performance for the proposed method is encouraging. It has been observed that temperature overshoot can be minimized by the proposed method with the use of both reactor and jacket energy balance for reactor temperature control.


    Institute of Scientific and Technical Information of China (English)

    LI Guizhi; YE Meiling; SHI Lianghe


    Samples of polyphenylsilsisquioxane (PPSQ)using CaF2 or MgF2 as the main catalysts had been prepared under different polymerization conditions. The results were treated on an orthogonal design L9 (34). All weight-average molecular weights Mw of PPSQ had been measured by gel permeation chromatography (GPC). Effects of polymerization conditions including reaction temperature, composition of the dual catalysts (CaF2 or MgF2 and DCC),mixture of solvents and reaction time on Mw of PPSQ have been discussed. The quantity of the catalysts is the most important factor that affects Mw of PPSQ. Reaction temperature is the second important factor. Appropriate polymerization condition has been established to get PPSQ with high Mw.

  1. Polymerization of nonfood biomass-derived monomers to sustainable polymers. (United States)

    Zhang, Yuetao; Chen, Eugene Y-X


    The development of sustainable routes to fine chemicals, liquid fuels, and polymeric materials from natural resources has attracted significant attention from academia, industry, the general public, and governments owing to dwindling fossil resources, surging energy demand, global warming concerns, and other environmental problems. Cellulosic material, such as grasses, trees, corn stover, or wheat straw, is the most abundant nonfood renewable biomass resources on earth. Such annually renewable material can potentially meet our future needs with a low carbon footprint if it can be efficiently converted into fuels, value added chemicals, or polymeric materials. This chapter focuses on various renewable monomers derived directly from cellulose or cellulose platforms and corresponding sustainable polymers or copolymers produced therefrom. Recent advances related to the polymerization processes and the properties of novel biomass-derived polymers are also reviewed and discussed.

  2. Advanced Polymeric Materials for High-tech Innovations

    Institute of Scientific and Technical Information of China (English)

    TANG; BenZhong


    High technology is advancing our society and modernizing our life and advanced materials play an important role in the technological innovations. My research group has been working on the development of advanced polymeric materials and in this talk I will report our recent work on the creation of new conjugated polymers with novel molecular structures and unique materials properties.1-18 Our work include the design of molecular structures of monomeric building blocks, development of stable, effective and environmentally benign "green” polymerization catalysts, discovery of new polymerization reactions, synthesis of functional macromolecules, fabrication of nanodimensional composites, assembly and control of hierarchical structures, and construction of electrooptical devices. We have revealed the liquid crystallinity, light emission, photoconductivity, optical limiting, nano-hybridization, solvatochromism, optical activity, self-organization, and biological activity of the linear polyacetylenes and hyperbranched polyarylenes. The utilization of the advanced polymers and their interesting materials properties for high-tech innovations will be discussed.  ……

  3. Surface functionalization of polyamide fiber via dopamine polymerization (United States)

    Kuang, Xiao-Hui; Guan, Jin-Ping; Tang, Ren-Cheng; Chen, Guo-Qiang


    The oxidative polymerization of dopamine for the functional surface modification of textile fibers has drawn great attention. In this work, the functionalization of polyamide fiber via dopamine polymerization was studied with the aim of the fabrication of hydrophilic and antistatic surface. The conditions of dopamine application were first discussed in the absence of specific oxidants in terms of the apparent color depth of polyamide fiber. Dopamine concentration, pH and time were found to exert great impact on color depth. The highest color depth was achieved at pH 8.5. In the process of modification, polydopamine was deposited onto the surface of polyamide fiber. The modified polyamide fiber displayed a yellowish brown color with excellent wash and light color fastness, and exhibited good hydrophilic, UV protection and antistatic effects. A disadvantage of the present approach was the slow rate of dopamine polymerization and functionalization.

  4. The titanium-coated polymeric membranes for hydrogen recovery

    Energy Technology Data Exchange (ETDEWEB)

    Vijay, Y.K.; Wate, S.; Acharya, N.K.; Garg, J.C. [University of Rajasthan, Jaipur, (India). Physics Department


    The polymeric membranes are commercially used for gas separation. The important parameters for their commercial application are good permeabilities and permselectivities. These parameters have a strong dependence on the free volume properties of the material. The membranes alone are generally not suitable when high product purity and recovery is desired. However, the titanium-coated polymeric membranes can solve the problem. Hydrogen molecules when diffuse through metals like titanium and palladium, break into atomic form and recombine after recovery. The binding of metallic clusters on the polymeric material is improved partially by heat treatment, however, good results are obtained by dissolving the coated membranes and recasting them. The permeability of hydrogen in comparison to air has been found to increase 2-5 times. (author)

  5. Platinum porphyrins as ionophores in polymeric membrane electrodes

    DEFF Research Database (Denmark)

    Lvova, Larisa; Verrelli, Giorgio; Nardis, Sara


    porphyrin dimers occurs in the membrane plasticized both with high or low dielectric constant plasticizer, due to a low oxophilicity of central Pt. The computational study of various anion–Pt(IV)TPPCl2 complex formation by means of semi-empirical and density functional theory (DFT) methods revealed a good......A comparative study of Pt(II)- and Pt(IV)-porphyrins as novel ionophores for anion-selective polymeric membrane electrodes is performed. Polymeric membranes of different compositions, prepared by varying plasticizers, cationic and anionic additives and Pt porphyrins, have been examined...... within the electrode membranes, while those based on Pt(IV)TPPCl2 operate via a mixed mode carrier mechanism, evidencing also a partial reduction of the starting ionophore to Pt(II)TPP. Spectrophotometric measurements of thin polymeric films indicate that no spontaneous formation of hydroxide ion bridged...

  6. Engineered Polymeric Hydrogels for 3D Tissue Models

    Directory of Open Access Journals (Sweden)

    Sujin Park


    Full Text Available Polymeric biomaterials are widely used in a wide range of biomedical applications due to their unique properties, such as biocompatibility, multi-tunability and easy fabrication. Specifically, polymeric hydrogel materials are extensively utilized as therapeutic implants and therapeutic vehicles for tissue regeneration and drug delivery systems. Recently, hydrogels have been developed as artificial cellular microenvironments because of the structural and physiological similarity to native extracellular matrices. With recent advances in hydrogel materials, many researchers are creating three-dimensional tissue models using engineered hydrogels and various cell sources, which is a promising platform for tissue regeneration, drug discovery, alternatives to animal models and the study of basic cell biology. In this review, we discuss how polymeric hydrogels are used to create engineered tissue constructs. Specifically, we focus on emerging technologies to generate advanced tissue models that precisely recapitulate complex native tissues in vivo.

  7. Polymeric peptide pigments with sequence-encoded properties

    Energy Technology Data Exchange (ETDEWEB)

    Lampel, Ayala; McPhee, Scott A.; Park, Hang-Ah; Scott, Gary G.; Humagain, Sunita; Hekstra, Doeke R.; Yoo, Barney; Frederix, Pim W. J. M.; Li, Tai-De; Abzalimov, Rinat R.; Greenbaum, Steven G.; Tuttle, Tell; Hu, Chunhua; Bettinger, Christopher J.; Ulijn, Rein V.


    Melanins are a family of heterogeneous polymeric pigments that provide ultraviolet (UV) light protection, structural support, coloration, and free radical scavenging. Formed by oxidative oligomerization of catecholic small molecules, the physical properties of melanins are influenced by covalent and noncovalent disorder. We report the use of tyrosine-containing tripeptides as tunable precursors for polymeric pigments. In these structures, phenols are presented in a (supra-)molecular context dictated by the positions of the amino acids in the peptide sequence. Oxidative polymerization can be tuned in a sequence-dependent manner, resulting in peptide sequence–encoded properties such as UV absorbance, morphology, coloration, and electrochemical properties over a considerable range. Short peptides have low barriers to application and can be easily scaled, suggesting near-term applications in cosmetics and biomedicine.

  8. Enzyme-catalysis breathes new life into polyester condensation polymerizations. (United States)

    Gross, Richard A; Ganesh, Manoj; Lu, Wenhua


    Traditional chemical catalysts for polyester synthesis have enabled the generation of important commercial products. Undesirable characteristics of chemically catalyzed condensation polymerizations include the need to conduct reactions at high temperatures (150-280 degrees C) with metal catalysts that are toxic and lack selectivity. The latter is limiting when aspiring towards synthesis of increasingly complex and well-defined polyesters. This review describes an exciting technology that makes use of immobilized enzyme-catalysts for condensation polyester synthesis. Unlike chemical catalysts, enzymes function under mild conditions (< or =100 degrees C), which enables structure retention when polymerizing unstable monomers, circumvents the introduction of metals, and also provides selectivity that avoids protection-deprotection steps and presents unique options for structural control. Examples are provided that describe the progress made in enzyme-catalyzed polymerizations, as well as current limitations and future prospects for developing more efficient enzyme-catalysts for industrial processes.

  9. Effects of polymeric carbohydrates on growth and development

    DEFF Research Database (Denmark)

    Knudsen, Knud Erik Bach

    The main objective of the presentation is to provide insight into the role of polymeric carbohydrates in growth and development of pigs. Polymeric carbohydrates—starch and non-starch polysaccharides (NSP)—quantitatively represent the largest portion of the diets for pigs and are therefore...... at a slower and more constant rate and with SCFA being absorbed by passive diffusion. Type and levels of polymeric carbohydrates influence growth and development through different mechanisms; first, the proportion of starch to NSP plays an important role for the content of available energy (digestible......, metabolized and net energy); available energy relative to protein is crucial for performance and carcass quality; second, the proportion of starch to NSP will influence rate and type of metabolites (glucose vs. SCFA) deriving from carbohydrate assimilation, and finally, type of starch (types A, B, and C...

  10. Advanced Polymeric Materials for High-tech Innovations

    Institute of Scientific and Technical Information of China (English)


    @@ High technology is advancing our society and modernizing our life and advanced materials play an important role in the technological innovations. My research group has been working on the development of advanced polymeric materials and in this talk I will report our recent work on the creation of new conjugated polymers with novel molecular structures and unique materials properties.1-18 Our work include the design of molecular structures of monomeric building blocks, development of stable, effective and environmentally benign "green” polymerization catalysts, discovery of new polymerization reactions, synthesis of functional macromolecules, fabrication of nanodimensional composites, assembly and control of hierarchical structures, and construction of electrooptical devices. We have revealed the liquid crystallinity, light emission, photoconductivity, optical limiting, nano-hybridization, solvatochromism, optical activity, self-organization, and biological activity of the linear polyacetylenes and hyperbranched polyarylenes. The utilization of the advanced polymers and their interesting materials properties for high-tech innovations will be discussed.

  11. The limits of precision monomer placement in chain growth polymerization (United States)

    Gody, Guillaume; Zetterlund, Per B.; Perrier, Sébastien; Harrisson, Simon


    Precise control over the location of monomers in a polymer chain has been described as the `Holy Grail' of polymer synthesis. Controlled chain growth polymerization techniques have brought this goal closer, allowing the preparation of multiblock copolymers with ordered sequences of functional monomers. Such structures have promising applications ranging from medicine to materials engineering. Here we show, however, that the statistical nature of chain growth polymerization places strong limits on the control that can be obtained. We demonstrate that monomer locations are distributed according to surprisingly simple laws related to the Poisson or beta distributions. The degree of control is quantified in terms of the yield of the desired structure and the standard deviation of the appropriate distribution, allowing comparison between different synthetic techniques. This analysis establishes experimental requirements for the design of polymeric chains with controlled sequence of functionalities, which balance precise control of structure with simplicity of synthesis.

  12. Polymerization reaction in restricted space of layered double hydroxides (LDHs)

    Institute of Scientific and Technical Information of China (English)

    SI Lichun; WANG Ge; CAI Fuli; WANG Zhiqiang; DUAN Xue


    This paper reported the preparation of styrene sulfonate intercalated layered double hydroxides (LDHs) material, SS-LDHs by coprecipitation method, followed by in-situ polymerization of the monomers in the interlayer space of LDHs. The polymerization reaction was monitored by UV and NMR. It is confirmed that when the reaction occurred at 100℃ for 24 h, part of monomers did not react .When the reaction was carried out at 150℃, the polymeriza tion of the intercalated monomers is complete to afford the polymer intercalated product PSS-LDHs. During the polymerization process, the layered structure remains well. At thesame time the gallery height increases with the lengthening of reaction time. This is preliminarily because that the PSS becomes more swelling with the amount of water it absorbs due to its hygroscopicity property.

  13. Polymeric salt bridges for conducting electric current in microfluidic devices (United States)

    Shepodd, Timothy J.; Tichenor, Mark S.; Artau, Alexander


    A "cast-in-place" monolithic microporous polymer salt bridge for conducting electrical current in microfluidic devices, and methods for manufacture thereof is disclosed. Polymeric salt bridges are formed in place in capillaries or microchannels. Formulations are prepared with monomer, suitable cross-linkers, solvent, and a thermal or radiation responsive initiator. The formulation is placed in a desired location and then suitable radiation such as UV light is used to polymerize the salt bridge within a desired structural location. Embodiments are provided wherein the polymeric salt bridges have sufficient porosity to allow ionic migration without bulk flow of solvents therethrough. The salt bridges form barriers that seal against fluid pressures in excess of 5000 pounds per square inch. The salt bridges can be formulated for carriage of suitable amperage at a desired voltage, and thus microfluidic devices using such salt bridges can be specifically constructed to meet selected analytical requirements.

  14. Effect of ultrasonic pretreatment on emulsion polymerization of styrene. (United States)

    Nagatomo, Daichi; Horie, Takafumi; Hongo, Chizuru; Ohmura, Naoto


    This study investigated the effect of pretreatment of ultrasonic irradiation on emulsion polymerization of styrene to propose a process intensification method which gives high conversion, high reaction rate, and high energy efficiency. The solution containing styrene monomer was irradiated by a horn mounted on the ultrasonic transducer with the diameter of 5mm diameter and the frequency of 28 kHz before starting polymerization. The pretreatment of ultrasound irradiation as short as 1 min drastically improved monomer dispersion and increased reaction rate even under the agitation condition with low rotational speed of impeller. Furthermore, the ultrasonic pretreatment resulted in higher monomer concentration in polymer particles and produced larger polymer particles than conventional polymerization without ultrasonic pretreatment.

  15. Simulation of styrene polymerization reactors: kinetic and thermodynamic modeling

    Directory of Open Access Journals (Sweden)

    A. S. Almeida


    Full Text Available A mathematical model for the free radical polymerization of styrene is developed to predict the steady-state and dynamic behavior of a continuous process. Special emphasis is given for the kinetic and thermodynamic models, where the most sensitive parameters were estimated using data from an industrial plant. The thermodynamic model is based on a cubic equation of state and a mixing rule applied to the low-pressure vapor-liquid equilibrium of polymeric solutions, suitable for modeling the auto-refrigerated polymerization reactors, which use the vaporization rate to remove the reaction heat from the exothermic reactions. The simulation results show the high predictive capability of the proposed model when compared with plant data for conversion, average molecular weights, polydispersity, melt flow index, and thermal properties for different polymer grades.

  16. Polymeric Materials for Tissue Engineering of Arterial Substitutes (United States)

    Ravi, Swathi; Qu, Zheng; Chaikof, Elliot L.


    Cardiovascular disease is the leading cause of mortality in the United States. The limited availability of healthy autologous vessels for bypass grafting procedures has led to the fabrication of prosthetic vascular conduits. Synthetic polymeric materials, while providing the appropriate mechanical strength, lack the compliance and biocompatibility that bioresorbable and naturally occurring protein polymers offer. Vascular tissue engineering approaches have emerged in order to meet the challenges of designing a vascular graft with long-term patency. In vitro culture techniques that have been explored with vascular cell seeding of polymeric scaffolds and the use of bioactive polymers for in situ arterial regeneration have yielded promising results. This review describes the development of polymeric materials in various tissue engineering strategies for the improvement in the mechanical and biological performance of an arterial substitute. PMID:19426609

  17. Near-infrared light responsive polymeric nanocomposites for cancer therapy. (United States)

    Min, Cong; Zou, Xueqing; Yang, Quanzhu; Liao, Liqiong; Zhou, Guofu; Liu, Lijian


    Inorganic nanoparticles, which can absorb and convert near infrared (NIR) light to heat to ablate cancer cells, have been widely investigated in photothermal therapy. However, the inherent poor solubility and acute systemic toxicity of these inorganic particles hinder their application in clinical practice. Polymeric nnanocomposites materials containing both inorganic nanoparticles and polymers could be harnessed to achieve enhanced photothermal therapeutic effect as well as improved biocompatibility and multi-responsiveness. Synergistic chemo-photothermal efficacy towards cancer cells and tumor tissue can thus be realized through such multi-functional and multi-responsive polymeric nanocomposites. In this review, the recent developments in polymeric nanocomposites based on different types of inorganic nanoparticles (i.e. gold, carbon nanotube, graphene, and up-conversion nanoparticles) for NIR-triggered cancer therapy are summarized.

  18. FTIR Study of Enhanced Polymeric Blend Membrane with Amines

    Directory of Open Access Journals (Sweden)

    Asim Mushtaq


    Full Text Available In this study, research will be carried out to identify the functional group behavior of glassy and rubbery polymeric blend membrane with amines. Polymeric blend membranes with different blending ratios were prepared and the developed membranes were characterized by FTIR to see the effect of blend ratio on different functional groups. The developed membranes are flat dense sheet membrane of 20% wt/wt. The pure and blend membrane polysulfone, polyethersulfone, polyvinyl acetate with different composition, with 10% methyl diethanol amine, mono ethanol amine, diethanol amine are developed with dimethyl acetamide solvent. Fourier Transform Infrared (FTIR spectroscopy was utilized to study the interaction between two polymers and to analyze the type of bonding present. To observed frequencies were assigned to various mode of vibration in terms of fundamentals and combination. These spectral changes indicated the existence of molecular interaction among the enhanced polymeric blends; highlight the compatible nature among each other.

  19. Fluorescent-magnetic Janus particles prepared via seed emulsion polymerization. (United States)

    Kaewsaneha, Chariya; Bitar, Ahmad; Tangboriboonrat, Pramuan; Polpanich, Duangporn; Elaissari, Abdelhamid


    Anisotropic polymeric colloidal or Janus particles possessing simultaneous magnetic and fluorescent properties were successfully prepared via the swelling-diffusion or the in situ emulsion polymerization method. In the swelling-diffusion process, magnetic emulsions (an organic ferrofluid dispersed in aqueous medium) were synthesized and used for seeds of submicron magnetic Janus particles. After swelling the anisotropic particles obtained by 1-pyrene-carboxaldehyde fluorescent dye dissolved in tetrahydrofuran, well-defined fluorescent-magnetic Janus particles were produced. In the in situ emulsion polymerization, styrene monomer mixed with fluorescent dye monomers, i.e., 1-pyrenylmethyl methacrylate (PyMMA) or fluorescein dimethacrylate (FDMA), and an oil-soluble initiator (2,2'-azobis(2-isobutyronitrile)) were emulsified in the presence of magnetic seed emulsions. The confocal microscopic images showed the fluorescent-magnetic Janus particles with high fluorescent intensity when a fluorescent crosslinker monomer FDMA was employed.

  20. Polymeric mechanical amplifiers of immune cytokine-mediated apoptosis (United States)

    Mitchell, Michael J.; Webster, Jamie; Chung, Amanda; Guimarães, Pedro P. G.; Khan, Omar F.; Langer, Robert


    Physical forces affect tumour growth, progression and metastasis. Here, we develop polymeric mechanical amplifiers that exploit in vitro and in vivo physical forces to increase immune cytokine-mediated tumour cell apoptosis. Mechanical amplifiers, consisting of biodegradable polymeric particles tethered to the tumour cell surface via polyethylene glycol linkers, increase the apoptotic effect of an immune cytokine on tumour cells under fluid shear exposure by as much as 50% compared with treatment under static conditions. We show that targeted polymeric particles delivered to tumour cells in vivo amplify the apoptotic effect of a subsequent treatment of immune cytokine, reduce circulating tumour cells in blood and overall tumour cell burden by over 90% and reduce solid tumour growth in combination with the antioxidant resveratrol. The work introduces a potentially new application for a broad range of micro- and nanoparticles to maximize receptor-mediated signalling and function in the presence of physical forces.

  1. Polymeric nanoparticles for drug delivery and targeting: A comprehensive review

    Directory of Open Access Journals (Sweden)

    Natarajan Jawahar


    Full Text Available In the recent years, many modern technologies have been established in the pharmaceutical research and development area. The field of nanotechnology has been revolutionary as substantial and technical, and scientific growth, in basic sciences plus manipulation by physical or chemical process of individual atoms and molecules have widened its horizon. Polymeric nanoparticles with a size in the nanometer range protect drugs against in vitro and in vivo degradation; it releases the drug in a controlled manner and also offers the possibility of drug targeting. The use of polymeric drug nanoparticles is a universal approach to increase the therapeutic performance of poorly soluble drugs in any route of administration. The present review discusses the physico-chemical properties of polymeric nanoparticles, production methods, routes of administration and potential therapeutic applications.

  2. Processes for microemulsion polymerization employing novel microemulsion systems (United States)

    Beckman, Eric J.; Smith, Richard D.; Fulton, John L.


    This invention is directed to a microemulsion system comprising a first phase including a low-polarity fluid material which is a gas at standard temperature and pressure, and which has a cloud-point density. It also includes a second phase including a polar fluid, typically water, a monomer, preferably a monomer soluble in the polar fluid, and a microemulsion promoter for facilitating the formation of micelles including the monomer in the system. In the subject process, micelles including the monomer are formed in the first phase. A polymerization initiator is introduced into the micelles in the microemulsion system. The monomer is then polymerized in the micelles, preferably in the core of the micelle, to produce a polymeric material having a relatively high molecular weight.

  3. New initiation system for polymerization of acryl acid

    Institute of Scientific and Technical Information of China (English)

    LI Hai-pu; ZHONG Hong; CHEN Qi-yuan; YIN Zhou-lan


    The redox initiation system for polyacrylate sodium of high molecular mass was designed and its effect with varying component dosage on the degree of polymerization was investigated. The results show that the proper type and amount of inorganic salt, as well as amine initiator, are conductive to the increase of degree of polymerization. The fine ingredient of the initiation system is as follows:the dosages of amine, persulphate and inorganic salt are 0.75%, 0.10% and 1.00% by mass based on acryl acid respectively, the molar ratio of sulphite to the persulphate is 1:1. Under such conditions the degree of polyacrylate can reach 7.43×107 with a acceptable polymerization time for industrial production.

  4. Enantioselective Epoxide Polymerization Using a Bimetallic Cobalt Catalyst

    KAUST Repository

    Thomas, Renee M.


    A highly active enantiopure bimetallic cobalt complex was explored for the enantioselective polymerization of a variety of monosubstituted epoxides. The polymerizations were optimized for high rates and stereoselectivity, with s-factors (kfast/kslow) for most epoxides exceeding 50 and some exceeding 300, well above the threshold for preparative utility of enantiopure epoxides and isotactic polyethers. Values for mm triads of the resulting polymers are typically greater than 95%, with some even surpassing 98%. In addition, the use of a racemic catalyst allowed the preparation of isotactic polyethers in quantitative yields. The thermal properties of these isotactic polyethers are presented, with many polymers exhibiting high T m values. This is the first report of the rapid synthesis of a broad range of highly isotactic polyethers via the enantioselective polymerization of racemic epoxides. © 2010 American Chemical Society.

  5. Recent advances on polymeric membranes for membrane reactors

    KAUST Repository

    Buonomenna, M. G.


    Membrane reactors are generally applied in high temperature reactions (>400 °C). In the field of fine chemical synthesis, however, much milder conditions are generally applicable and polymeric membranes were applied without their damage. The successful use of membranes in membrane reactors is primary the result of two developments concerning: (i) membrane materials and (ii) membrane structures. The selection of a suited material and preparation technique depends on the application the membrane is to be used in. In this chapter a review of up to date literature about polymers and configuration catalyst/ membranes used in some recent polymeric membrane reactors is given. The new emerging concept of polymeric microcapsules as catalytic microreactors has been proposed. © 2012 Bentham Science Publishers. All rights reserved.

  6. Calix[4]arene methylenebisphosphonic acids as inhibitors of fibrin polymerization. (United States)

    Lugovskoy, Eduard V; Gritsenko, Pavel G; Koshel, Tatyana A; Koliesnik, Ievgen O; Cherenok, Serhey O; Kalchenko, Olga I; Kalchenko, Vitaliy I; Komisarenko, Serhey V


    Calix[4]arenes bearing two or four methylenebisphosphonic acid groups at the macrocyclic upper rim have been studied with respect to their effects on fibrin polymerization. The most potent inhibitor proved to be calix[4]arene tetrakis-methylene-bis-phosphonic acid (C-192), in which case the maximum rate of fibrin polymerization in the fibrinogen + thrombin reaction decreased by 50% at concentrations of 0.52 × 10(-6) M (IC(50)). At this concentration, the molar ratio of the compound to fibrinogen was 1.7 : 1. For the case of desAABB fibrin polymerization, the IC(50) was 1.26 × 10(-6) M at a molar ratio of C-192 to fibrin monomer of 4 : 1. Dipropoxycalix[4]arene bis-methylene-bis-phosphonic acid (C-98) inhibited fibrin desAABB polymerization with an IC(50) = 1.31 × 10(-4) M. We hypothesized that C-192 blocks fibrin formation by combining with polymerization site 'A' (Aα17-19), which ordinarily initiates protofibril formation in a 'knob-hole' manner. This suggestion was confirmed by an HPLC assay, which showed a host-guest inclusion complex of C-192 with the synthetic peptide Gly-Pro-Arg-Pro, an analogue of site 'A'. Further confirmation that the inhibitor was acting at the initial step of the reaction was obtained by electron microscopy, with no evidence of protofibril formation being evident. Calixarene C-192 also doubled both the prothrombin time and the activated partial thromboplastin time in normal human blood plasma at concentrations of 7.13 × 10(-5) M and 1.10 × 10(-5) M, respectively. These experiments demonstrate that C-192 is a specific inhibitor of fibrin polymerization and blood coagulation and can be used for the design of a new class of antithrombotic agents.

  7. Microbial deterioration and degradation of Polymeric materials

    Directory of Open Access Journals (Sweden)

    Krishna Mohan


    -bidi-theme-font:minor-bidi;}  Polymeric materials due to its structural versatility are widely used in aerospace applications, aviation and space industries. As they are potential source of carbon and energy for heterotrophic microorganisms including bacteria and fungi in several ways its biodegradation affect these industries. The information on degradability can provide fundamental information facilitating design and life-time analysis of materials. Literature survey shows that polymers which are susceptible to biofilm formation includes paints, adhesives, plastics, rubbers, sealants, FRPCMs, lubricating materials, fuels etc. Even though the understanding of polymer degradation has been advanced in recent years the subject is still inadequately addressed because of the lack of information available. The review focuses on polymer biodeterioration and biodegradation and its mechanisms, the types of microorganisms involved, the reactions of enzymes of importance in the biodegradation of polymers, consequences, of biodegradation, the factors involved in biodegradation of polymers and its prevention and the tests used to evaluate it.

  8. Nanoencapsulation of blocked isocyanates through aqueous emulsion polymerization

    Directory of Open Access Journals (Sweden)


    Full Text Available Blocked isocyanates were successfully encapsulated into polystyrene and hydroxyl and amine functionalized polymeric nanospheres via emulsion polymerization. The nanocapsules were characterized via Fourier transform infrared spectroscopy, differential scanning calorimetry and transmission electronic microscopy. The blocked isocyanates generated free isocyanate functionality upon thermal annealing of nanocapsules. This research establishes a novel encapsulating method for release and retention of free isocyanates in aqueous media. These nanocapsules can provide active isocyanates in coatings and adhesive applications, and represent a novel application of nanoencapsulated materials for controlled or delayed active material utilization.

  9. Antimicrobial Polymeric Materials with Quaternary Ammonium and Phosphonium Salts

    Directory of Open Access Journals (Sweden)

    Yan Xue


    Full Text Available Polymeric materials containing quaternary ammonium and/or phosphonium salts have been extensively studied and applied to a variety of antimicrobial-relevant areas. With various architectures, polymeric quaternary ammonium/phosphonium salts were prepared using different approaches, exhibiting different antimicrobial activities and potential applications. This review focuses on the state of the art of antimicrobial polymers with quaternary ammonium/phosphonium salts. In particular, it discusses the structure and synthesis method, mechanisms of antimicrobial action, and the comparison of antimicrobial performance between these two kinds of polymers.

  10. Comparison of Charging Characteristics of Polymerized and Pulverized Toners

    Institute of Scientific and Technical Information of China (English)

    Yasushi Hoshino; Tsunenori Nakanishi; Ye Zhou; Hidetaka Ishihara


    Toner charge is very important in electrophotographic printing process. Although many studies on toner charging mechanism have been carried out, the mechanism is very complex and the understanding of toner charging characteristics is not yet sufficient. Toner charge distribution is measured by E-SPART (electrical single particle aerodynamic relaxation time) analyzer, which can measure the size and charge of toner. The measured toners are polymerized and pulverized type. Charging is carried out as follows: the toner is mixed with the carrier and the mixture is bottled into the roller, and mixed by rotating the roller. Toner charge dependences on toner wt% are compared between polymerized and pulverized toner.

  11. Dyes as Photoinitiators or Photosensitizers of Polymerization Reactions

    Directory of Open Access Journals (Sweden)

    Christian Ley


    Full Text Available A short but up-to-date review on the role of dyes in the photoinitiation processes of polymerization reactions is presented. Radical and cationic reactions are largely encountered in the radiation curing and the imaging areas for use in traditional coating applications as well as in high tech sectors such as nanofabrication, computer-to-plate processing, laser direct imaging, manufacture of optical elements, etc. Recent promising developments concerned with the introduction of the silyl radical chemistry that enhances the polymerization efficiency are also discussed.

  12. Theoretical Study of 1,8-Diaminonaphthalene Polymerization (United States)

    Nateghi, Mohammad R.; Kalantari, F.


    The polymerization of 1,8-diaminonaphthalene (1,8-DAN) was studied by a theoretical approach based on Hartree-Fock calculations. Investigation of relative stability of most possible dimers, trimers and tetramers yields very useful data concerning the regioselectivity of the coupling reaction as well as the final structures of the polymeric chains. The mechanism is more likely to occur via a radical-radical pathway and leads to mixture of compounds through ortho-C-C and para-C-N linkages.

  13. Durability of Polymeric Encapsulation Materials for Concentrating Photovoltaic Systems (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D. C.; Kempe, M. D.; Araki, K.; Kennedy, C. E.; Kurtz, S. R.


    Polymeric encapsulation materials are typically used in concentrating photovoltaic (CPV) modules to protect the cell from the field environment. Because it is physically located adjacent to the cell, the encapsulation is exposed to a high optical flux, often including light in the ultraviolet (UV) and infrared (IR) wavelengths. The durability of encapsulants used in CPV modules is critical to the technology, but is presently not well understood. This work seeks to identify the appropriate material types, field-induced failure mechanisms, and factors of influence (if possible) of polymeric encapsulation. These results will ultimately be weighed against those of future qualification and accelerated life test procedures.

  14. Polymeric Gas-Separation Membranes for Petroleum Refining

    Directory of Open Access Journals (Sweden)

    Yousef Alqaheem


    Full Text Available Polymeric gas-separation membranes were commercialized 30 years ago. The interest on these systems is increasing because of the simplicity of concept and low-energy consumption. In the refinery, gas separation is needed in many processes such as natural gas treatment, carbon dioxide capture, hydrogen purification, and hydrocarbons separations. In these processes, the membranes have proven to be a potential candidate to replace the current conventional methods of amine scrubbing, pressure swing adsorption, and cryogenic distillation. In this paper, applications of polymeric membranes in the refinery are discussed by reviewing current materials and commercialized units. Economical evaluation of these membranes in comparison to traditional processes is also indicated.


    Institute of Scientific and Technical Information of China (English)

    LIXiang; LIZhong; 等


    Desorption of volatile organic compounds(VOCs) from polymeric adsorbents by microwave was investigated experimentally.Two kinds of organic compounds.benzene and toluene.were separately used as adsorbates in this work Results showed that the application of microwave to regenerate the polymeric adsorbents not only can get higher regeneration efficiency in comparison with the use of heat regeneration,but also make the temperatures of the fixed beds much lower than that when using the heat regeneration the weaker the polarity of a polymericadsorbent,the easier its regeneration was.

  16. Optical Fiber Tweezers Fabricated by Guided Wave Photo-Polymerization

    Directory of Open Access Journals (Sweden)

    Rita S. Rodrigues Ribeiro


    Full Text Available In this work the use of guided wave photo-polymerization for the fabrication of novel polymeric micro tips for optical trapping is demonstrated. It is shown that the selective excitation of linear polarized modes, during the fabrication process, has a direct impact on the shape of the resulting micro structures. Tips are fabricated with modes LP02 and LP21 and their shapes and output intensity distribution are compared. The application of the micro structures as optical tweezers is demonstrated with the manipulation of yeast cells.

  17. Living atom transfer radical polymerization of 4-acetoxystyrene

    DEFF Research Database (Denmark)

    Gao, Bo; Chen, Xianyi; Ivan, Bela


    Living atom transfer radical polymerization (ATRP) of 4-acetoxystyrene (1), a protected 4-vinylphenol, leading to poly(4-acetoxystyrene) with well-defined molecular weight and narrow molecular weight distribution was carried out in bulk with a,a'-dibromoxylene(2)/CuBr/2,2-bipyridine(bpy) as initi......Living atom transfer radical polymerization (ATRP) of 4-acetoxystyrene (1), a protected 4-vinylphenol, leading to poly(4-acetoxystyrene) with well-defined molecular weight and narrow molecular weight distribution was carried out in bulk with a,a'-dibromoxylene(2)/CuBr/2,2-bipyridine...


    Institute of Scientific and Technical Information of China (English)

    Xin Hou; Bo Gao; Zhe-guo Zhang; Kang-de Yao


    Monodisperse micron-sized polyacrylamide (PAM) particles with a regular shape have been successfully prepared through dispersion polymerization of the monomer using a rotary reactor. FTIR and NMR spectroscopic results demonstrated the formation of PAM. POM and TEM observations revealed that PAM particles had a regular shape and good dispersity. A thick layer of surfactant (PVP) still existed on PAM particles after multiple centrifugation and ultrasonic re-dispersion in ethanol, which indicates a strong interaction between PVP and PAM. The effects of various polymerization factors on the average size of PAM particles have also been studied.

  19. Stress Analysis in Polymeric Coating Layer Deposited on Rigid Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Soon Lee [Korea University of Technology and Education, School of Mechatronics Engineering, Chonan (Korea, Republic of)


    This paper presents an analysis of thermal stress induced along the interface between a polymeric coating layer and a steel substrate as a result of uniform temperature change. The epoxy layer is assumed to be a linear viscoelastic material and to be theromorheologically simple. The viscoelastic boundary element method is employed to investigate the behavior of interface stresses. The numerical results exhibit relaxation of interface stresses and large stress gradients, which are observed in the vicinity of the free surface. Since the exceedingly large stresses cannot be borne by the polymeric coating layer, local cracking or delamination can occur at the interface corner.


    Institute of Scientific and Technical Information of China (English)

    XUE Gi; DAI Qinpin; DING Jianfu; WU Peiyi


    The coordination polymerization of benzotriazole with metallic copper has been investigated by infrared and X-ray photoelectron spectroscopies. We found that benzotriazole could react with copper (0) under mild conditions to form bis ( benzotriazolato ) copper (Ⅱ) and benzotriazolato copper(Ⅰ)which covered the surface of copper metal in the shape of polymeric materials. Since benzotriazole is of great interest as a ligand in that its presence in many biological system with metal ions ,and is considered as a corrosion inhibitor, this work will be in favour of the study of protective corrosion.

  1. Synthesis of Uniform Polyaniline Nanofibers through Interfacial Polymerization

    Directory of Open Access Journals (Sweden)

    Shahrir Hashim


    Full Text Available The present paper aims to study the preparation of polyaniline nanofibers through simple interfacial polymerization. Ammonium persulfate, hydrochloric acid and chloroform were used as oxidant, dopant and organic solvent respectively. Field Emission Scanning Electron Microscopy (FESEM, X-ray diffraction and Fourier Transform Infrared Spectroscopy (FTIR techniques were used to analyze the product. FESEM results show that polyaniline has nano-fiber morphology. XRD results show the crystalline properties of polyaniline nanofiber, and FTIR results confirmed the formation of polyaniline in different monomer/oxidant molar ratios. This study provides a better understanding on the synthesis of uniform polyaniline nanofibers through interfacial polymerization.

  2. Comparison of techniques for the determination of conversion during suspension polymerization reactions

    Directory of Open Access Journals (Sweden)

    J. C. Santos


    Full Text Available The determination of conversion during suspension polymerization reactions is not an easy task due to the heterogeneity of the reaction medium and the tendency of particles to agglomerate rapidly when stirring is stopped. Usually, bulk polymerization in ampoules is employed to study the kinetics of suspension polymerization reactions. In this work, a comparison of different techniques for the determination of conversion during suspension polymerization reactions is presented. Results showed a good agreement between the conversion obtained by gravimetry during styrene suspension polymerization and on-line conversion monitoring data using fiber-optic based Raman Spectroscopy. Nevertheless, the polymerization rate of styrene bulk polymerization carried out in ampoules was higher than the real reaction rate of styrene suspension polymerization due to slightly higher reaction temperatures. Simulation results using the experimental temperature data in a mathematical model confirmed these results.

  3. Organo-Lewis acid as cocatalyst for cationic homogenous metallocene Ziegler-Natta olefin polymerizations (United States)

    Marks, Tobin J.; Chen, You-Xian


    The synthesis of the organo-Lewis acid perfluorobiphenylborane (PBB) and the activation of metallocenes for the formation of a variety of highly active homogeneous Ziegler-Natta metallocene olefin polymerization, copolymerization and ring-opening polymerization catalysts is described.

  4. 不同聚合机理的聚合反应速率串讲%Explain of Polymerization Reaction Rate of Different Polymerization Mechanism

    Institute of Scientific and Technical Information of China (English)

    赵文杰; 张会轩


    In the polymerization reaction engineering course,the polymerization reaction rate directly influences average polymerization degree of the polymerization products,and has the important position in the teaching material.The polymerization rate of different polymerization mechanisms is different,but they have high correlation.In this paper,The polymerization rate in the course of “polymerization reaction engineering” was detailed based on the clue of different mechanism of free radical polymerization,ion polymerization,coordination polymerization and the condensation polymerization.The similarities and differences among different polymerization rate were pointed out,aimed at improving students to understand and grasp the definition of the polymerizationrate.%在《聚合反应工程》课程中,聚合反应速率直接影响聚合产物的平均聚合度,是课程的一个核心内容,在教材中占有重要地位.不同聚合反应机理所对应的聚合反应速率不同,但它们具有很强的关联性.文中以自由基聚合、离子聚合、配位聚合以及缩聚的聚合机理为主线,把不同聚合机理中的聚合反应速率这一重要知识点做了串讲;指出了不同聚合反应速率之间的相同之处和不同之处.旨在使学生对聚合反应速率能有一个系统的认识和把握.

  5. Surface Hardness of Resin Cement Polymerized under Different Ceramic Materials

    Directory of Open Access Journals (Sweden)

    Pimmada Kesrak


    Full Text Available Objectives. To evaluate the surface hardness of two light-cured resin cements polymerized under different ceramic discs. Methods. 40 experimental groups of 2 light-cured resin cement specimens (Variolink Veneer and NX3 were prepared and polymerized under 5 different ceramic discs (IPS e.max Press HT, LT, MO, HO, and Cercon of 4 thicknesses (0.5, 1.0, 1.5, and 2.0 mm, Those directly activated of both resin cements were used as control. After light activation and 37∘C storage in an incubator, Knoop hardness measurements were obtained at the bottom. The data were analyzed with three-way ANOVA, t-test, and one-way ANOVA. Results. The KHN of NX3 was of significantly higher than that of Variolink Veneer (<0.05. The KHN of resin cement polymerized under different ceramic types and thicknesses was significant difference (<0.05. Conclusion. Resin cements polymerized under different ceramic materials and thicknesses showed statistically significant differences in KHN.

  6. Powerful polymeric thermal microactuator with embedded silicon microstructure

    NARCIS (Netherlands)

    Lau, G.K.; Goosen, J.F.L.; Van Keulen, F.; Chu Duc, T.; Sarro, P.M.


    A powerful and effective design of a polymeric thermal microactuator is presented. The design has SU-8 epoxy layers filled and bonded in a meandering silicon (Si) microstructure. The silicon microstructure reinforces the SU-8 layers by lateral restraint. It also improves the transverse thermal expan

  7. Pigment encapsulation by emulsion polymerization using macro-RAFT copolymers. (United States)

    Nguyen, Duc; Zondanos, Hollie S; Farrugia, Jason M; Serelis, Algirdas K; Such, Chris H; Hawkett, Brian S


    A new method is described, based on living amphipathic random macro-RAFT copolymers, which enables the efficient polymeric encapsulation of both inorganic and organic particulate materials via free-radical polymerization. The mechanism for this new approach is examined in the context of the polymer coating of zirconia- and alumina-coated titanium dioxide particles and its breadth of application demonstrated by the coating of organic phthalocyanine blue pigment particles. The particulate materials were first dispersed in water using a macro-RAFT copolymer as a stabilizer. Monomer and water-soluble initiator were then added to the system, and the monomer polymerized to form the coating. If nucleation of new polymer particles in the aqueous phase was to be avoided, it was found necessary to use a macro-RAFT copolymer that did not form micelles; within this constraint, a broad range of RAFT agents could be used. The macro-RAFT agents used in this work were found not to transfer competitively in the aqueous phase and therefore did not support growth of aqueous-phase polymer. Successful encapsulation of particles was demonstrated by TEM. The process described enables 100% of the particles to be encapsulated with greater than 95% of the polymer finishing up in the polymeric shells around the particles. Moreover, the coating reaction can be carried out at greater than 50% solids in many cases and avoids the agglomeration of particles during the coating step.

  8. Multilayered composite microgels synthesized by surfactant-free seeded polymerization. (United States)

    Suzuki, Daisuke; Yamagata, Tomoyo; Murai, Masaki


    We report on a simple and rapid method to produce multilayered composite microgels. Thermosensitive microgels were synthesized by aqueous free radical precipitation polymerization using N-isopropylacrylamide (NIPAm) as a monomer. Using the microgels as cores, surfactant-free seeded polymerization of an oil-soluble monomer, glycidyl methacrylate (GMA), was carried out at 70 °C, where the microgels were highly deswollen in water. All of the oil-soluble monomers were polymerized, and the resultant polymers were attached on the pre-existing microgel cores, resulting in hard shell formation. It is worth mentioning that secondary particles of oil-soluble monomers have never been formed during the polymerization. The composite microgels were characterized by electron microscopy and dynamic light scattering. In particular, X-ray photoelectron spectroscopy (XPS) measurements revealed that the surface of the composite microgels was composed of a hydrogel layer, although microgel cores were covered by polyGMA shell. The mechanism of the trilayered composite microgel formation will be discussed.

  9. Stimuli-responsive biodegradable polymeric micelles for targeted cancer therapy

    NARCIS (Netherlands)

    Talelli, M.A.


    Thermosensitive and biodegradable polymeric micelles based on mPEG-b-pHPMAmLacn have shown very promising results during the past years. The results presented in this thesis illustrate the high potential of these micelles for anticancer therapy and imaging and fully justify further pharmaceutical


    NARCIS (Netherlands)

    ANDRE, XAVIER; Bernaerts, Katrien


    A polymeric dispersant having a hyperbranched polyurethane architecture obtained by reacting a polyisocyanate core with a mixture of a) 40 to 65 mol% of an anchor represented by Formula (I) and/or (II) wherein n represents an integer selected from 0 to 7; and X and Y each independently represent a p

  11. Hyperbranched polymeric dispersants and non-aqueous pigment dispersions

    NARCIS (Netherlands)

    ANDRE, XAVIER; Bernaerts, Katrien


    The invention discloses a polymeric dispersant having a hyperbranched polyurethane architecture obtained by reacting a polyisocyanate core with a mixture of a) 40 to 65 mol% of an anchor represented by Formula (I) and/or (II) wherein n represents an integer selected from 0 to 7; and X and Y each ind


    NARCIS (Netherlands)



    A polymeric dispersant having a hyperbranched polyurethane architecture obtained by reacting a polyisocyanate core with a mixture of: a) 40 to 65 mol % of an anchor represented by Formula (I) and/or (II): wherein n represents an integer selected from 0 to 7; and X and Y each independently represent

  13. Polymerization catalysts containing electron-withdrawing amide ligands (United States)

    Watkin, John G.; Click, Damon R.


    The present invention describes methods of making a series of amine-containing organic compounds which are used as ligands for group 3-10 and lanthanide metal compounds. The ligands have electron-withdrawing groups bonded to them. The metal compounds, when combined with a cocatalyst, are catalysts for the polymerization of olefins.

  14. On the sedimentation velocity of spheres in a polymeric liquid

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole


    A Lagrangian finite element method is used to simulate the transient sedimentation of spheres in polymeric liquids. The liquid is described by an integral constitutive equation of the Rivlin-Sawyers type. The simulations show a marked increase in the drag, which is apparently related...

  15. FBR for catalytic propylene polymerization: Controlled mixing and reactor modeling

    NARCIS (Netherlands)

    Meier, G.B.; Weickert, G.; Swaaij, van W.P.M.


    Particle mixing and segregation have been studied in a small-scale fluidized-bed reactor (FBR) under pressure. The solids mixing is relatively faster than the residence time of catalyst particles in the case of a polymerization process, but smaller particles accumulate in the upper zone. Semibatch p

  16. Controlled/"Living" Radical Polymerization of (-)-Menthyl Methacrylate

    Institute of Scientific and Technical Information of China (English)


    The atom transfer radical polymerization(ATRP) of (-)-menthyl methacrylate((-)-MnMA) mediated by CuCl/bipyridine and ethyl 2-bromopropionate or 1-phenylethyl bromide in THF system has been studied. The dependence of the specific rotation on molecular weight and the CD of Poly((-)-MnMA) thus obtained was investigated.

  17. Reverse Atom Transfer Radical Polymerization of (-)-Menthyl Methacrylate

    Institute of Scientific and Technical Information of China (English)


    The reverse atom transfer radical polymerization(RATRP) of (-)-menthyl methacrylate ((-)-MnMA) with AIBN(AIBN/CuCl2/bipyridine(bipy) or (-)sparteine((-)Sp) =1/2/4) initiating system in THF has been studied. The dependence of the specific rotation on molecular weight was investigated.

  18. Synthesis and Polymerization of Pyrole Characterization of Polypyrole

    Directory of Open Access Journals (Sweden)

    Moulay Abderrahim EL MHAMMEDI


    Full Text Available The anodic polymerization of pyrole (P onto Iron and Copper electrodes gives a PP/Metal composite. Some attractive properties de PP/Metal composites are employed by cyclic voltammetry, potentiometry, impedance measurements and scanning electron microscopy SEM.

  19. Polyethylene-waste tire dust composites via in situ polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Reyes A, Y. K.; Narro C, R. I.; Ramos A, M. E. [Universidad Autonoma de Coahuila, Facultad de Ciencias Quimicas, Blvd. Venustiano Carranza s/n, 25280 Saltillo, Coahuila (Mexico); Neira V, M. G.; Diaz E, J.; Enriquez M, F.; Valencia L, L. A.; Saade C, H.; Diaz de L, R., E-mail: [Centro de Investigacion en Quimica Aplicada, Blvd. Enrique Reyna Hermosillo No. 40, Col. San Jose de los Cerritos, 25293 Saltillo, Coahuila (Mexico)


    Polyethylene/waste tire dust (WTD) composites were obtained by an in situ polymerization technique. The surface of the WTD was modified with deposition of polyethylene by using plasma polymerization. Ethylene polymerization was carried out using bis(cyclopentadienyl) titanium dichloride (Cp{sub 2}TiCl{sub 2}) as homogeneous metallocenes catalyst, while diethylaluminum chloride (DEAC), ethyl aluminum sesquichloride (EASC) and methyl alumino xane (Mao) were used as co-catalysts at two different [Al]/[Ti] molar ratio. The main characteristics of the obtained polyethylenes were determined by size exclusion chromatography, thermogravimetric analysis, differential scanning calorimetry and wide-angle X-ray diffraction. The results showed that by using EASC and Mao the highest catalytic activities were presented at a [Al]/[Ti] molar ratio of 9.17 and 18.33 respectively. Even though it was possible to obtain polyethylene using WTD (modified or unmodified) the catalytic activity was lower than in the case in which no WTD was added in ethylene polymerization. Scanning transmission electronic microscopy images evidenced that the original morphology of the polyethylenes was not modified by the presence of WTD. (Author)

  20. Propylene polymerization in a circulating slugging fluidized bed reactor

    NARCIS (Netherlands)

    Putten, van Inge Cornelia


    The work presented in this thesis is concerned with research on the riser of a circulating fluidized bed system for olefin polymerization. In the riser section, fluidization takes place in the transporting slugging mode and polymer particles are produced in the riser in a non-isothermal way. Propert


    NARCIS (Netherlands)



    The mutual influence on the pumping capacity of independently driven pumping-stirring devices in a polymerization loop reactor is presented. A simple method for the calculation of the minimum rotational speed for an axial pumping stirrer in relation to the pumping action of a helical ribbon is descr

  2. Lithographically defined shape-specific polymeric particulates for nanomedicine application (United States)

    Tao, Li

    Size and shape are fundamental properties of micro/nano particles that are critically important for nanomedicine applications. Extensive studies have revealed the effect particle size has on spherical particles with respect to biological behaviors such as blood circulation time or targeting efficacy to specific receptors on the cell. In contrast, the importance of particle shape has been less understood. The major contributing factor is that conventional bottom-up fabrication methods are limited in their ability to control the shape of polymeric particles precisely. This dissertation will mainly focus on the development of top-down platforms to fabricate shape-specific polymeric particles. Shape-specific polymeric particles incorporated with fluorescent or magnetic agents were demonstrated with high uniformity. Microfluidic testing platform was built to verify the shape effect on the flow behavior of fabricated particles. The fabrication platform developed here opened up the opportunity to perform fundamental study on how shape can alter the biological behavior of polymeric nanomedicine, thus leading to a more rational design of nanomedicine with enhanced efficacy but reduced toxicity.

  3. The Research on Modeling and Simulation of TFE Polymerization Process

    Directory of Open Access Journals (Sweden)

    Jing Gao Sun


    Full Text Available PTFE (polytetrafluoroethylene is the fluorinated straight-chain polymer, made by the polymerization of tetrafluoroethylene monomer; it is used widely because of its excellent performance and can be obtained by the polymerization of body, solutions, suspensions, and emulsions. But only the last two are the main ways. This research paper makes simulation based on Polymer Plus. It uses the emulsion polymerization method at background to carry out a semibatch reactor system. Upon the actual production conditions, simulation process under the steady state conditions is used to analyze the effects of the changes on operating conditions; the corresponding dynamic model is created to analyze the impact of the changes of conditions on the entire system. Moreover, the amount of APS which plays an important part in this reaction is discussed for getting the most suitable amount of initiator. Because of less research work on this job, it is so difficult to find the related data from the literature. Therefore, this research will have a great significance for the process of the tetrafluoroethylene emulsion polymerization in the future.

  4. Modeling the chemistry of plasma polymerization using mass spectrometry. (United States)

    Ihrig, D F; Stockhaus, J; Scheide, F; Winkelhake, Oliver; Streuber, Oliver


    The goal of the project is a solvent free painting shop. The environmental technologies laboratory is developing processes of plasma etching and polymerization. Polymerized thin films are first-order corrosion protection and primer for painting. Using pure acetylene we get very nice thin films which were not bonded very well. By using air as bulk gas it is possible to polymerize, in an acetylene plasma, well bonded thin films which are stable first-order corrosion protections and good primers. UV/Vis spectroscopy shows nitrogen oxide radicals in the emission spectra of pure nitrogen and air. But nitrogen oxide is fully suppressed in the presence of acetylene. IR spectroscopy shows only C=O, CH(2) and CH(3) groups but no nitrogen species. With the aid of UV/Vis spectra and the chemistry of ozone formation it is possible to define reactive traps and steps, molecule depletion and processes of proton scavenging and proton loss. Using a numerical model it is possible to evaluate these processes and to calculate theoretical mass spectra. Adjustment of theoretical mass spectra to real measurements leads to specific channels of polymerization which are driven by radicals especially the acetyl radical. The estimated theoretical mass spectra show the specific channels of these chemical processes. It is possible to quantify these channels. This quantification represents the mass flow through this chemical system. With respect to these chemical processes it is possible to have an idea of pollutant production processes.

  5. Synthesis, Characterization, and Surface Initiated Polymerization of Carbazole Functionalized Isocyanides

    NARCIS (Netherlands)

    Schwartz, Erik; Lim, Eunhee; Gowda, Chandrakala M.; Liscio, Andrea; Fenwick, Oliver; Tu, Guoli; Palermo, Vincenzo; Gelder, de Rene; Cornelissen, Jeroen J.L.M.; Eck, van Ernst R.H.; Kentgens, Arno P.M.; Cacialli, Franco; Nolte, Roeland J.M.; Samori, Paolo; Huck, Wilhelm T.S.; Rowan, Alan E.


    We describe the design and synthesis of carbazole functionalized isocyanides and the detailed investigation of their properties. Characterization by solid state NMR, CD, and IR spectroscopic techniques reveals that the polymer has a well-defined helical architecture. Surface-initiated polymerization

  6. Structural Analysis of Ciprofloxacin-Carbopol Polymeric Composites ...

    African Journals Online (AJOL)


    XRD) peaks of the pure ... relative intensity of these peaks was higher in the polymeric composites. ... oscillator, was set to alternately emit sound ... In order to prepare a sample for analysis, a glass slide was clipped to the top face of the sample.

  7. Surface Initiated Polymerizations via e-ATRP in Pure Water

    NARCIS (Netherlands)

    Hosseiny, Seyed Schwan; van Rijn, Patrick


    Here we describe the combined process of surface modification with electrochemical atom transfer radical polymerization (e-ATRP) initiated from the surface of a modified gold-electrode in a pure aqueous solution without any additional supporting electrolyte. This approach allows for a very controlle

  8. Biological in situ characterization of polymeric microbubble contrast agents

    NARCIS (Netherlands)

    Wan, Sha; Egri, Gabriella; Oddo, Letizia; Cerroni, Barbara; Dähne, Lars; Paradossi, Gaio; Salvati, Anna; Lynch, Iseult; Dawson, Kenneth A; Monopoli, Marco P


    Polymeric microbubbles (MBs) are gas filled particles composed of a thin stabilized polymer shell that have been recently developed as valid contrast agents for the combined use of ultrasonography (US), magnetic resonance imaging (MRI) and single photon emission computer tomography (SPECT) imaging.

  9. Polymeric Amines by chemical modifications of alternating aliphatic polyketones

    NARCIS (Netherlands)

    Zhang, Youchun; Broekhuis, A. A.; Stuart, Marc C. A.; Picchioni, F.


    Alternating, aliphatic polyketones were chemically modified by using di-amines to obtain polymeric products having pendant amino groups. The used reaction, Paal-Knorr, involves the formation of pyrrole rings along the polyketone backbone. The corresponding kinetics and final conversions are clearly

  10. The effects of polymeric nanostructure shape on drug delivery. (United States)

    Venkataraman, Shrinivas; Hedrick, James L; Ong, Zhan Yuin; Yang, Chuan; Ee, Pui Lai Rachel; Hammond, Paula T; Yang, Yi Yan


    Amphiphilic polymeric nanostructures have long been well-recognized as an excellent candidate for drug delivery applications. With the recent advances in the "top-down" and "bottom-up" approaches, development of well-defined polymeric nanostructures of different shapes has been possible. Such a possibility of tailoring the shape of the nanostructures has allowed for the fabrication of model systems with chemically equivalent but topologically different carriers. With these model nanostructures, evaluation of the importance of particle shape in the context of biodistribution, cellular uptake and toxicity has become a major thrust area. Since most of the current polymeric delivery systems are based upon spherical nanostructures, understanding the implications of other shapes will allow for the development of next generation drug delivery vehicles. Herein we will review different approaches to fabricate polymeric nanostructures of various shapes, provide a comprehensive summary on the current understandings of the influence of nanostructures with different shapes on important biological processes in drug delivery, and discuss future perspectives for the development of nanostructures with well-defined shapes for drug delivery.

  11. Assessment of polymerization contraction stress of three composite resins

    NARCIS (Netherlands)

    Cadenaro, M.; Biasotto, M.; Scuor, N.; Breschi, L.; Davidson, C.L.; Di Lenarda, R.


    Objectives: The purpose of this study was to measure the development of contraction stress of three composite resin restorative materials during photo-polymerization: a micro-hybrid composite (Filtek Z250, 3M ESPE, St. Paul, MN, USA); a nano-filled composite (Filtek Supreme, 3M ESPE, St. Paul, MN,

  12. Preparation and Evaluation of Inhalable Itraconazole Chitosan Based Polymeric Micelles

    Directory of Open Access Journals (Sweden)

    Esmaeil Moazeni


    Full Text Available Background: This study evaluated the potential of chitosan based polymeric micelles as a nanocarrier system for pulmonary delivery of itraconazole (ITRA.Methods: Hydrophobically modified chitosan were synthesized by conjugation of stearic acid to the hydrophilic depolymerized chitosan. FTIR and 1HNMR were used to prove the chemical structure and physical properties of the depolymerized and the stearic acid grafted chitosan. ITRA was entrapped into the micelles and physicochemical properties of the micelles were investigated. Fluorescence spectroscopy, dynamic laser light scattering andtransmission electron microscopy were used to characterize the physicochemical properties of the prepared micelles. The in vitro pulmonary profile of polymeric micelles was studied by an air-jet nebulizer connected to a twin stage impinger.Results: The polymeric micelles prepared in this study could entrap up to 43.2±2.27 μg of ITRA per milliliter. All micelles showed mean diameter between 120–200 nm. The critical micelle concentration of the stearic acid grafted chitosan was found to be 1.58×10-2 mg/ml. The nebulization efficiency was up to 89% and the fine particle fraction (FPF varied from 38% to 47%. The micelles had enough stability to remain encapsulation of the drug during nebulization process.Conclusions: In vitro data showed that stearic acid grafted chitosan based polymeric micelles has a potential to be used as nanocarriers for delivery of itraconazole through inhalation.

  13. Three-dimensional simulations of viscoelastic instability in polymeric filaments

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole


    The three-dimensional Langrangian integral method is used to simulate the elastic end-plate instability that occurs in the rapid extension of some polymeric filaments between parallel plates. It is demonstrated that the upper convected Maxwell model describes the essential features of the instabi...

  14. Imitation model of destruction of aviation fibrous polymeric composite materials

    Directory of Open Access Journals (Sweden)

    В. М. Синеглазов


    Full Text Available Considered are models imitating influence of lighting on dielectric construction materials with elements of lighting protection. Described are models of current spreading in multilayer materials and thermal destruction of fibrous polymeric composite materials caused by lighting current flowing on such materials

  15. Assessment of polymerization contraction stress of three composite resins

    NARCIS (Netherlands)

    Cadenaro, M.; Biasotto, M.; Scuor, N.; Breschi, L.; Davidson, C.L.; Di Lenarda, R.


    Objectives: The purpose of this study was to measure the development of contraction stress of three composite resin restorative materials during photo-polymerization: a micro-hybrid composite (Filtek Z250, 3M ESPE, St. Paul, MN, USA); a nano-filled composite (Filtek Supreme, 3M ESPE, St. Paul, MN, U

  16. Fiber Drawn 2D Polymeric Photonic Crystal THz Filters

    DEFF Research Database (Denmark)

    Stecher, Matthias; Jansen, Christian; Ahmadi-Boroujeni, Mehdi


    In this paper, we report on different polymeric 2D photonic crystal filters for THz frequencies which are fabricated by a standard fiber drawing technique. The bandstop filters were simulated and designed by the generalized multipole technique (GMT). The frequency and angle dependent transmission...

  17. Monolithic molecularly imprinted polymeric capillary columns for isolation of aflatoxins. (United States)

    Szumski, Michał; Grzywiński, Damian; Prus, Wojciech; Buszewski, Bogusław


    Monolithic molecularly imprinted polymers extraction columns have been prepared in fused-silica capillaries by UV or thermal polymerization in a two-step process. First, a poly-(trimethylolpropane trimethacrylate) (polyTRIM) core monolith was synthesized either by UV or thermal polymerization. Then it was grafted with the mixture of methacrylic acid (MAA) as a functional monomer, ethylene dimethacrylate (EDMA) as a cross-linking agent, 5,7-dimethoxycoumarin (DMC) as an aflatoxin-mimicking template, toluene as a porogen solvent and 2,2-azobis-(2-methylpropionitrile) (AIBN) as an initiator of the polymerization reaction. Different thermal condition of the photografting and different concentrations of the grafting mixture were tested during polymerization. The extraction capillary columns were evaluated in the terms of their hydrodynamic and chromatographic properties. Retention coefficients for aflatoxin B1 and DMC were used for assessment of the selectivity and imprinting factor. The obtained results indicate that the temperature of photografting and concentration of the grafting mixture are key parameters that determine the quality of the prepared MIPs. From the MIP columns characterized by the highest permeability the column of the highest imprinting factor was applied for isolation of aflatoxins B1, B2, G1 and G2 from the model aqueous sample followed by on-line chromatographic separation. The process was performed using a micro-MISPE-microLC-LIF system of a novel design, which allowed for detection of the eluates from the sample preparation part as well as from the chromatographic separation.

  18. Competition Between Hydrotreating and Polymerization Reactions During Pyrolysis Oil Hydrodeoxygenation

    NARCIS (Netherlands)

    Mercader, F. De Miguel; Koehorst, P. J. J.; Heeres, H. J.; Kersten, S. R. A.; Hogendoorn, J. A.


    Hydrodeoxygenation (HDO) of pyrolysis oil is an upgrading step that allows further coprocessing of the oil product in (laboratory-scale) standard refinery units to produce advanced biofuels. During HDO, desired hydrotreating reactions are in competition with polymerization reactions that can lead to

  19. Water vapor and gas transport through polymeric membranes

    NARCIS (Netherlands)

    Metz, S.J.


    Water vapor transport through polymeric materials plays an important role in a large number of applications such as: food packaging, breathable clothing, roofing membranes, diapers, and the removal of water vapor from gas streams (e.g. dehydration of natural gas or the drying of compressed air). Dep

  20. Surface Engineered Polymeric Biomaterials with Improved Biocontact Properties

    Directory of Open Access Journals (Sweden)

    Todorka G. Vladkova


    Full Text Available We present many examples of surface engineered polymeric biomaterials with nanosize modified layers, controlled protein adsorption, and cellular interactions potentially applicable for tissue and/or blood contacting devices, scaffolds for cell culture and tissue engineering, biosensors, biological microchips as well as approaches to their preparation.

  1. Dual release of proteins from porous polymeric scaffolds

    NARCIS (Netherlands)

    Sohier, J.; Vlugt, T.J.H.; Cabrol, N.; Blitterswijk, van C.; Groot, de K.; Bezemer, J.M.


    To create porous scaffolds releasing in a controlled and independent fashion two different proteins, a novel approach based on protein-loaded polymeric coatings was evaluated. In this process, two water-in-oil emulsions are forced successively through a prefabricated scaffold to create coatings, con

  2. A Kinetic Study of the Adiabatic Polymerization of Acrylamide. (United States)

    Thomson, R. A. M.


    Discusses theory, procedures, and results for an experiment which demonstrates the application of basic physics to chemical problems. The experiment involves the adiabatic process, in which polymerization carried out in a vacuum flask is compared to the theoretical prediction of the model with the temperature-time curve obtained in practice. (JN)

  3. Biodegradable Multiamine Polymeric Vector for siRNA Delivery. (United States)

    Yuan, Yuanyuan; Gong, Faming; Cao, Yang; Chen, Weicai; Cheng, Du; Shuai, Xintao


    The gene silencing activity of small interfering RNA (siRNA) has led to their use as tools for target validation and as potential therapeutics for a variety of diseases. A major challenge is the development of vectors with high delivery efficiency and low toxicity. Although poly(ethylenimine) (PEI) has been regarded as the most promising polymeric vector for nucleic acid delivery, the nonbiodegradable structure greatly hinders its clinical application. In the present study, a diblock copolymer, PEG-PAsp(DIP-DETA), of poly(ethylene glycol) (PEG) and poly(L-aspartic acid) (PAsp) randomly grafted with pH-sensitive 2-(diisopropylamino)ethylamine (DIP) and diethylenetriamine (DETA) groups was synthesized via ring-opening polymerization and aminolysis reaction. Similar to polyethylenimine (PEI), the copolymer possesses a multiamine structure that not only allows effective siRNA complexation at neutral pH but also facilitates lysosomal release of siRNA via a proton buffering effect. Moreover, the poly(L-aspartic acid) backbone renders the vector biodegradability, which is not achievable with PEI. This novel polymeric vector can mediate effective intracellular siRNA delivery in various cancer cells. Consequently, the delivery of BCL-2 siRNA resulted in target gene silencing, inducing apoptosis and inhibiting the growth of cancer cells. These results show the potential of this non-PEI based polymeric vector with proton buffering capacity and biodegradability for siRNA delivery in cancer therapy.

  4. Supported organometallic catalysts for hydrogenation and Olefin Polymerization (United States)

    Marks, Tobin J.; Ahn, Hongsang


    Novel heterogeneous catalysts for the which hydrogenation of olefins and arenes with high conversion rates under ambient conditions and the polymerization of olefins have been developed. The catalysts are synthesized from Ziegler-type precatalysts by supporting them on sulfate-modified zirconia.

  5. Sterically shielded diboron-containing metallocene olefin polymerization catalysts (United States)

    Marks, Tobin J.; Ja, Li; Yang, Xinmin


    A non-coordinating anion, preferably containing a sterically shielded diboron hydride, if combined with a cyclopenta-dienyl-substituted metallocene cation component, such as a zirconocene metallocene, is a useful olefin polymerization catalyst component. The anion preferably has the formula ##STR1## where R is branched lower alkyl, such as t-butyl.

  6. Characterization of Plasma Polymerized Hexamethyldisiloxane Films Prepared by Arc Discharge

    NARCIS (Netherlands)

    Lazauskas, A.; Baltrusaitis, Jonas; Grigaliunas, V.; Jucius, D; Guobiene, A.; Prosycevas, I.; Narmontas, P.


    Herein, we present a simple method for fabricating plasma polymerized hexamethyldisiloxane films (pp-HMDSO) possessing superhydrophobic characteristics via arc discharge. The pp-HMDSO films were deposited on a soda–lime–silica float glass using HMDSO monomer vapor as a precursor. A detailed surface

  7. Local excitation and collection in polymeric fluorescent microstructures (United States)

    Henrique, Franciele Renata; Mendonca, Cleber Renato


    Integrated photonics has gained attention in recent years due to its wide range of applications which span from biology to optical communications. The use of polymer-based platforms for photonic devices is of great interest because organic compounds can be easily incorporated to polymers, enabling modifications to the system physical properties. The two-photon polymerization technique has emerged as an interesting tool for the production of three-dimensional polymeric microstructures. However, for their further incorporation in photonic devices it is necessary to develop methods to perform optical excitation and signal collection on such microstructures. With such purpose, we demonstrate approaches to perform local excitation and collection in polymeric microstructures doped with fluorescent dyes, employing tapered fibers. The obtained results indicate that fiber tapers are suitable to couple light in and out of fluorescent polymeric microstructures, paving the way for their incorporation in photonic devices. We also show that microstructures doped with more than one dye can be used as built-in broadband light sources to photonic circuits and their emission spectrum can be tuned by the right choice of the excitation position.

  8. Calix[4]arene methylenebisphosphonic acids as inhibitors of fibrin polymerization.

    NARCIS (Netherlands)

    Lugovskoy, E.V.; Gritsenko, P.; Koshel, T.A.; Koliesnik, I.O.; Cherenok, S.O.; Kalchenko, O.I.; Kalchenko, V.I.; Komisarenko, S.V.


    Calix[4]arenes bearing two or four methylenebisphosphonic acid groups at the macrocyclic upper rim have been studied with respect to their effects on fibrin polymerization. The most potent inhibitor proved to be calix[4]arene tetrakis-methylene-bis-phosphonic acid (C-192), in which case the maximum

  9. Water vapor and Gas Transport through Polymeric Membranes

    NARCIS (Netherlands)

    Metz, S.J.


    Water vapor transport through polymeric materials plays an important role in a large number of applications such as: food packaging, breathable clothing, roofing membranes, diapers, and the removal of water vapor from gas streams (e.g. dehydration of natural gas or the drying of compressed air).

  10. Polymeric Systems of Antimicrobial Peptides—Strategies and Potential Applications

    Directory of Open Access Journals (Sweden)

    Ewa Olędzka


    Full Text Available The past decade has seen growing interest in the investigation of peptides with antimicrobial activity (AMPs. One approach utilized in infection control is incorporation of antimicrobial agents conjugated with the polymers. This review presents the recent developments on polymeric AMP carriers and their potential applications in the biomedical and pharmaceutical fields.

  11. Novel polymeric biochips for enhanced detection of infectious diseases

    CERN Document Server

    Hosseini, Samira


    This book focuses on the creation and development of polymeric platforms (different compositions) from a specific polymer system. This system can be used as an adaptive technique for producing sensitive analytical devices, or for simple integration into existing bioanalytical tools in order to enhance the detection signal.

  12. Injection-limited current in a polymeric heterojunction

    NARCIS (Netherlands)

    Woudenbergh, T. van; Wildeman, J.; Blom, P.W.M.; Mertens, RP; Claeys, CL


    This work describes the current over an interface between two different polymeric semiconductors. The interface barrier amounts to 0.7 to 1.0 eV, which is orders of magnitude larger than the thermal energy. It is demonstrated that the current across the interface is injection limited. Furthermore, i

  13. Transparent conducting oxides on polymeric substrates by pulsed laser deposition

    NARCIS (Netherlands)

    Dekkers, Jan Matthijn


    This thesis describes the research on thin films of transparent conducting oxides (TCOs) on polymeric substrates manufactured by pulsed laser deposition (PLD). TCOs are an indispensable part in optoelectronic applications such as displays, solar cells, light-emitting diodes, etc. At present, in many

  14. Epithelial-microbial crosstalk in polymeric Ig receptor deficient mice

    NARCIS (Netherlands)

    Reikvam, D.H.; Derrien, M.M.N.; Islam, R.; Erofeev, A.; Grcic, V.; Sandvik, A.; Gaustad, P.; Meza-Zepeda, L.A.; Jahnsen, F.L.; Smidt, H.; Johansen, F.E.


    Innate and adaptive mucosal defense mechanisms ensure a homeostatic relationship with the large and complex mutualistic gut microbiota. Dimeric IgA and pentameric IgM are transported across the intestinal epithelium via the epithelial polymeric Ig receptor (pIgR) and provide a significant portion of


    Institute of Scientific and Technical Information of China (English)

    XUMancai; SHIZuoqing; 等


    After a concise introduction of hydrogen bonding effects in solute-solute and solute-solvent bonding,the design of polymeric adsorbents based on hydrogen bonding ,selectivity in adsorption through hydrogen bonding,and characterization of hydrogen bonding in adsorption and separation were reviewed with 28 references.

  16. Polyhedral oligomeric silsesquioxane grafted polymer in polymeric foam

    Energy Technology Data Exchange (ETDEWEB)

    King, Bruce A.; Patankar, Kshitish A.; Costeux, Stephane; Jeon, Hyun K.


    A polymeric foam article with a polymer matrix defining multiple cells therein has a polymer component with a first polymer that is a polyhedral oligomeric silsesquioxane grafted polymer that has a weight-average molecular weight of two kilograms per mole or higher and 200 kilograms per mole or lower.

  17. Ethylene Polymerization with Palygorskite Supported Nickel-Diimine Catalyst

    Institute of Scientific and Technical Information of China (English)

    严小伟; 王靖贷; 阳永荣; 张雷


    A nickel-diimine catalyst IN, N′-bis(2,6-diisopropylphenyl)-1,4-diaza-2,3-dimethyl-1, 3-butadiene nickel dibromide, DMN] was supported on palygorskite clay for ethylene slurry polymerization. The effect of supporting methods on the catalyst impregnation was studied and compared. Pretreatment of the support with methylaluminoxane (MAO) followed by DMN impregnation gave higher catalyst loading and catalytic activity than the direct impregnation of DMN. Catalyst activity as high as 5.42 × 105 g PE·molNi-l·h-1 was achieved at ethylene pressure of 6.87 × 105 Pa and polymerization temperature of 20℃ In particular, the morphological change of the support during MAO treatment was characterized and analyzed. It was found that nano-fiber clusters formed during the support pretreatment, which increased the surface area of the support and favored the impregnation of the catalyst. The investigation of polymerization behavior of supported catalyst revealed that the polymerization rate could be kept at a relatively high level for a long time, different from the homogeneous catalyst. By analyzing the SEM photographs of the polymer produced by the supported catalyst, the morphological evolution of polymer particles was preliminarily studied.

  18. Space charge accumulation in polymeric high voltage DC cable systems

    NARCIS (Netherlands)

    Bodega, R.


    One of the intrinsic properties of the polymeric high voltage (HV) direct current (DC) cable insulation is the accumulation of electrostatic charges. Accumulated charges distort the initial Laplacian distribution of the electric field, leading to a local field enhancement that may cause insulation d

  19. Polymerization of 4—Vinylpyridine by Lanthanide Coordination Catalyst

    Institute of Scientific and Technical Information of China (English)

    GuoHuaTAN; YiFengZHANG; 等


    Polymerization of 4-vinylpyridine was carried out with the lanthanide coordination catalyst. The influence of the component in catalytic system and solvents had been examined. The molecular weight of poly(4-viylpyridine) obtained in CH2Cl2 with Ln(P204)3/Al(i-Bu)3 is more than 20×104.

  20. Polymerization of 4-Vinylpyridine by Lanthanide Coordination Catalyst

    Institute of Scientific and Technical Information of China (English)


    Polymerization of 4-vinylpyridine was carried out with the lanthanide coordination catalyst. The influence of the component in catalytic system and solvents had been examined.The molecular weight of poly(4-vinylpyridinc) obtained in CH2Cl2 with Ln(P204)3/Al(i-Bu)3 is more than 20×104.

  1. Polyhedral oligomeric silsesquioxane grafted polymer in polymeric foam (United States)

    King, Bruce A.; Patankar, Kshitish A.; Costeux, Stephane; Jeon, Hyun K.


    A polymeric foam article with a polymer matrix defining multiple cells therein has a polymer component with a first polymer that is a polyhedral oligomeric silsesquioxane grafted polymer that has a weight-average molecular weight of two kilograms per mole or higher and 200 kilograms per mole or lower.

  2. Preparation of polymeric aluminium ferric chloride from bauxite tailings

    Directory of Open Access Journals (Sweden)

    Ma D.


    Full Text Available Bauxite tailings are the main solid wastes in the ore dressing process. The Al2O3 and Fe2O3 contents in bauxite tailings can reach 50% and 13% respectively. The present study proposed a feasible method to use bauxite tailings to prepare polymeric aluminium ferric chloride (PAFC, a new composite inorganic polymer for water purification. Bauxite tailings roasted reacting with hydrochloric acid under air, pickle liquor which mainly contains Fe3+, Al3+ was generated, then calcium aluminate was used to adjust pH value and the basicity of the pickle liquor, the PAFC was subsequently prepared after the polymerization process. The optimal synthesizing parameters for the preparation of PAFC obtained were as follows: the concentration of hydrochloric acid of 24 wt%, ratio of hydrochloric acid to bauxite tailings of 6:1, temperature of 90ºC, leaching time of 2.5 hours, ration of pickle liquor to calcium aluminate of 12:1, polymerization temperature of 90ºC and polymerization time of about 3 hours. The basicity of PAFC was higher than 68%, the sum concentration of Al2O3 and Fe2O3 was beyond 12.5%. The results of flocculation tests indicate that the PAFC has a better performance of removing the turbidity of wastewater compared to PAC, and PAFC prepared by bauxite tailings is a kind of high quality flocculants.

  3. Mechanism of spontaneous hole formation in thin polymeric films

    DEFF Research Database (Denmark)

    Yu, Kaijia; Rasmussen, Henrik K.; Román Marín, José Manuel;


    We show computationally that (molten) thin polymeric film containing nonequilibrium configurations originating from a solvent evaporation may develop holes spontaneously in the molten state, and that they appear delayed. Polymers above the glass transition temperature are liquids where the flow d...... depends solely on the nonequilibrium configurations of the molecules....

  4. Direct Writing of Photonic Structures by Two-Photon Polymerization

    Directory of Open Access Journals (Sweden)

    Li Yan


    Full Text Available Single-mode dielectric-loaded surface plasmon-polariton nanowaveguides with strong mode confinement at excitation wavelength of 830 nm and high-Q polymer whispering gallery mode microcavities with surface roughness less than 12 nm have been directly written by two-photon polymerization, which pave the way to fabricate 3D plasmonic photonic structures by direct laser writing.

  5. Kinetics of phenolic polymerization catalyzed by peroxidase in organic media

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.P.; Huang, G.L; Yu, Y.T. [Nankai Univ., Tianjin (China). Inst. for Molecular Biology


    Phenolic polymerization was carried out by enzymatic catalysis in organic media, and its kinetics was studied by using high-pressure liquid chromatography (HPLC). Phenols and aromatic amines with electron-withdrawing groups could hardly be polymerized by HRP catalysis, but phenols and aromatic amines with electron-donating groups could easily by polymerized. The reaction rate of either the para-substituted substrate or meta-substituted substrate was higher than that of ortho-substituted substrate. When ortho-position of hydroxy group of phenols was occupied by an electron-donating group and if another electron-donating group occupied para-position of hydroxy group, the reaction rate increased. Horseradish peroxidase and lactoperoxidase could easily catalyze the polymerization, but chloroperoxidase and laccase failed to yield polymers. Metallic ions such as Mn{sup 2+}, Fe{sup 2+}, or Fe{sup 3+}, and Cu{sup 2+} could poison horseradish peroxidase to various extents, but ions such as Co{sup 2+}, Cd{sup 2+}, Zn{sup 2+}, and K{sup +} were not found to inhibit the reaction.

  6. Non-enzymatic Polymerization of Nucleic Acids from Monomers

    DEFF Research Database (Denmark)

    Dörr, Mark; Löffler, Philipp M. G.; Monnard, Pierre-Alain


    synthesis of long nucleic acid polymers or to sequence-specifically amplify nucleic acid polymers, respectively. Starting from molecular requirements, details of the polymerization mechanisms and strategies are first presented and then compared. Finally, we discuss the relevance of these strategies...... to the investigation of possible early molecular information systems on the prebiotic earth and the development of novel synthetic methodologies for nucleic acids....


    Institute of Scientific and Technical Information of China (English)

    SUN Qiushi; HOU Xiaohua


    Polymer-metal oxane bonds (M-O-Si) can be created in the form of tight networks by silane plasma polymerization directly on the metal (e.g. copper) substrates. In this paper the structure and properties of the plasma-deposited organosilane polymers, the corrosion performance of such coating system on copper substrates were investigated.

  8. Hyper-cross-linked, hybrid membranes via interfacial polymerization

    NARCIS (Netherlands)

    Raaijmakers, M.J.T.


    Hyper-cross-linked, hybrid membranes consist of covalent networks of alternating organic and inorganic, or biological groups. This thesis reports on the preparation of such hybrid networks via interfacial polymerization. The structure-property relationships of the hybrid networks depend strongly on

  9. Meter-long multiblock copolymer microfibers via interfacial bioorthogonal polymerization. (United States)

    Liu, Shuang; Zhang, Han; Remy, Roddel A; Deng, Fei; Mackay, Michael E; Fox, Joseph M; Jia, Xinqiao


    High-molecular-weight multiblock copolymers are synthesized as robust polymer fibers via interfacial bioorthogonal polymerization employing the rapid cycloaddition of s-tetrazines with strained trans-cyclooctenes. When cell-adhesive peptide is incorporated in the tetrazine monomer, the resulting protein-mimetic polymer fibers provide guidance cues for cell attachment and elongation.

  10. Visualization and characterization of interfacial polymerization layer formation. (United States)

    Zhang, Yali; Benes, Nieck E; Lammertink, Rob G H


    We present a microfluidic platform to visualize the formation of free-standing films by interfacial polymerization. A microfluidic device is fabricated, with an array of micropillars to stabilize an aqueous-organic interface that allows a direct observation of the films formation process via optical microscopy. Three different amines are selected to react with trimesoyl chloride: piperazine, JEFFAMINE(®)D-230, and an ammonium functionalized polyhedral oligomeric silsesquioxane. Tracking the formation of the free-standing films in time reveals strong effects of the characteristics of the amine precursor on the morphological evolution of the films. Piperazine exhibits a rapid reaction with trimesoyl chloride, forming a film up to 20 μm thick within half a minute. JEFFAMINE(®)D-230 displays much slower film formation kinetics. The location of the polymerization reaction was initially in the aqueous phase and then shifted into the organic phase. Our in situ real-time observations provide information on the kinetics and the changing location of the polymerization. This provides insights with important implications for fine-tuning of interfacial polymerizations for various applications.

  11. Membrane surface modification via polymer grafting and interfacial polymerization (United States)

    Membrane separation is an important technology for separating food ingredients and fractionating high-value substances from food processing by-products. Long-term uses of polymeric membranes in food protein processing are impeded by formation of fouled layers on the membrane surface. Surface modif...

  12. Visualization and characterization of interfacial polymerization layer formation

    NARCIS (Netherlands)

    Zhang, Yali; Benes, Nieck E.; Lammertink, Rob G.H.


    We present a microfluidic platform to visualize the formation of free-standing films by interfacial polymerization. A microfluidic device is fabricated, with an array of micropillars to stabilize an aqueous–organic interface that allows a direct observation of the films formation process via optical


    Institute of Scientific and Technical Information of China (English)

    Jiang Yu; Hui-zhou Liu; Jia-yong Chen


    FT-Raman spectroscopy was used to monitor the polymerization of acrylic acid in aqueous solution. A simple method to avoid the noise in the background during the signal processing via Fourier transformation was used in this work. The effects of the amount of initiator used on the polymerization are studied. When the amount of the initiator in the polymerization was increased, both the rate and extent of polymerization of acrylic acid will be increased.

  14. Tribology of polymeric nanocomposites friction and wear of bulk materials and coatings

    CERN Document Server

    Friedrich, Klaus


    Tribology of Polymeric Nanocomposites provides a comprehensive description of polymeric nanocomposites, both as bulk materials and as thin surface coatings, and provides rare, focused coverage of their tribological behavior and potential use in tribological applications. Providing engineers and designers with the preparation techniques, friction and wear mechanisms, property information and evaluation methodology needed to select the right polymeric nanocomposites for the job, this unique book also includes valuable real-world examples of polymeric nanocomposites in a


    Institute of Scientific and Technical Information of China (English)

    LI Xuefen; LI Zhifen; CHEN Chuanfu; WU Wenhui


    Surface modification of nucle-microporous membrane by plasma polymerization of HEMA, NVP and D4 has been studied. The hydrophilicity of membranes was increased with increasing of plasma polymerization time of hydrophilic monomers HEMA and NVP. The flow rate of water through the membrane was increased remarkably after plasma polymerization of HEMA on it.

  16. The working domain in reactive extrusion .2. The effect of the polymerization rate

    NARCIS (Netherlands)

    der Goot, A.J.van; Klaassens, S.A.; Janssen, L.P.B.M.


    This article describes the influence of the polymerization rate on the working domain of a counter-rotating twin-screw extruder used as a polymerization reactor. The rate of polymerization was varied by changing the maleic anhydride (Mah) content in the feed, which consisted of styrene, n-butylmetha

  17. The Working Domain in Reactive Extrusion. Part II : The Effect of the Polymerization Rate

    NARCIS (Netherlands)

    Goot, A.J. van der; Klaassens, S.A.; Janssen, L.P.B.M.


    This article describes the influence of the polymerization rate on the working domain of a counter-rotating twin-screw extruder used as a polymerization reactor. The rate of polymerization was varied by changing the maleic anhydride (Mah) content in the feed, which consisted of styrene, n-butylmetha

  18. Low-melting elemental metal or fusible alloy encapsulated polymerization initiator for delayed initiation

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, Robert E.


    An encapsulated composition for polymerization includes an initiator composition for initiating a polymerization reaction, and a capsule prepared from an elemental metal or fusible alloy having a melting temperature from about C. to about C. A fluid for polymerization includes the encapsulated composition and a monomer. When the capsule melts or breaks open, the initiator is released.

  19. Homogeneous vs heterogeneous polymerization catalysis revealed by single-particle fluorescence microscopy. (United States)

    Esfandiari, N Melody; Blum, Suzanne A


    A high-sensitivity and high-resolution single-particle fluorescence microscopy technique differentiated between homogeneous and heterogeneous metathesis polymerization catalysis by imaging the location of the early stages of polymerization. By imaging single polymers and single crystals of Grubbs II, polymerization catalysis was revealed to be solely homogeneous rather than heterogeneous or both.

  20. Polymerization shrinkage assessment of dental resin composites: a literature review. (United States)

    Kaisarly, Dalia; Gezawi, Moataz El


    Composite restorations are widely used worldwide, but the polymerization shrinkage is their main disadvantage that may lead to clinical failures and adverse consequences. This review reports, currently available in vitro techniques and methods used for assessing the polymerization shrinkage. The focus lies on recent methods employing three-dimensional micro-CT data for the evaluation of polymerization shrinkage: volumetric measurement and the shrinkage vector evaluation through tracing particles before and after polymerization. Original research articles reporting in vitro shrinkage measurements and shrinkage stresses were included in electronic and hand-search. Earlier methods are easier, faster and less expensive. The procedures of scanning the samples in the micro-CT and performing the shrinkage vector evaluation are time consuming and complicated. Moreover, the respective software is not commercially available and the various methods for shrinkage vector evaluation are based on different mathematical principles. Nevertheless, these methods provide clinically relevant information and give insight into the internal shrinkage behavior of composite applied in cavities and how boundary conditions affect the shrinkage vectors. The traditional methods give comparative information on polymerization shrinkage of resin composites, whereas using three-dimensional micro-CT data for volumetric shrinkage measurement and the shrinkage vector evaluation is a highly accurate method. The methods employing micro-CT data give the researchers knowledge related to the application method and the boundary conditions of restorations for visualizing the shrinkage effects that could not be seen otherwise. Consequently, this knowledge can be transferred to the clinical situation to optimize the material manipulation and application techniques for improved outcomes.

  1. Biomimetic polymeric superhydrophobic surfaces and nanostructures: from fabrication to applications. (United States)

    Wen, Gang; Guo, ZhiGuang; Liu, Weimin


    Numerous research studies have contributed to the development of mature superhydrophobic systems. The fabrication and applications of polymeric superhydrophobic surfaces have been discussed and these have attracted tremendous attention over the past few years due to their excellent properties. In general, roughness and chemical composition, the two most crucial factors with respect to surface wetting, provide the basic criteria for yielding polymeric superhydrophobic materials. Furthermore, with their unique properties and flexible configurations, polymers have been one of the most efficient materials for fabricating superhydrophobic materials. This review aims to summarize the most recent progress in polymeric superhydrophobic surfaces. Significantly, the fundamental theories for designing these materials will be presented, and the original methods will be introduced, followed by a summary of multifunctional superhydrophobic polymers and their applications. The principles of these methods can be divided into two categories: the first involves adding nanoparticles to a low surface energy polymer, and the other involves combining a low surface energy material with a textured surface, followed by chemical modification. Notably, surface-initiated radical polymerization is a versatile method for a variety of vinyl monomers, resulting in controlled molecular weights and low polydispersities. The surfaces produced by these methods not only possess superhydrophobicity but also have many applications, such as self-cleaning, self-healing, anti-icing, anti-bioadhesion, oil-water separation, and even superamphiphobic surfaces. Interestingly, the combination of responsive materials and roughness enhances the responsiveness, which allows the achievement of intelligent transformation between superhydrophobicity and superhydrophilicity. Nevertheless, surfaces with poor physical and chemical properties are generally unable to withstand the severe conditions of the outside world

  2. High-temperature-pressure Polymerized Resin-infiltrated Ceramic Networks (United States)

    Nguyen, J.F.; Ruse, D.; Phan, A.C.; Sadoun, M.J.


    The aim of this study was to produce composite blocks (CB) for CAD/CAM applications by high-temperature-pressure (HT/HP) polymerization of resin-infiltrated glass-ceramic networks. The effect of network sintering and the absence/presence of initiator was investigated. Mechanical properties were determined and compared with those of Paradigm MZ100 (3M ESPE) blocks and HT/HP polymerized experimental “classic” CB, in which the filler had been incorporated by conventional mixing. The networks were made   from glass-ceramic powder (VITA Zahnfabrik) formed by slip casting and were either sintered or not. They were silanized, infiltrated by urethane dimethacrylate, with or without initiator, and polymerized under HT/HP (300 MPa, 180°C) to obtain resin-infiltrated glass-ceramic network (RIGCN) CB. HT/HP polymerized CB were also made from an experimental “classic” composite. Flexural strength (σf), fracture toughness (KIC), and Vickers hardness were determined and analyzed by one- or two-way analysis of variance (ANOVA), Scheffé multiple-means comparisons (α = 0.05), and Weibull statistics (for σf). Fractured surfaces were characterized with scanning electron microscopy. The mechanical properties of RIGCN CB were significantly higher. Sintering induced significant increases in σf and hardness, while the initiator significantly decreased hardness. The results suggested that RIGCN and HT/HP polymerization could be used to obtain CB with superior mechanical properties, suitable for CAD/CAM applications. PMID:24186559

  3. Analysis of beer volatiles by polymeric imidazolium-solid phase microextraction coatings: Synthesis and characterization of polymeric imidazolium ionic liquids. (United States)

    González-Álvarez, Jaime; Blanco-Gomis, Domingo; Arias-Abrodo, Pilar; Pello-Palma, Jairo; Ríos-Lombardía, Nicolás; Busto, Eduardo; Gotor-Fernández, Vicente; Gutiérrez-Álvarez, María Dolores


    Two polymeric ionic liquids, 3-(but-3″-en-1″-yl)-1-[2'-hydroxycyclohexyl]-1H-imidazol-3-ium bis(trifluoromethanesulfonyl)imide (IL-1) and 1-(2'-hydroxycyclohexyl)-3-(4″-vinylbenzyl)-1H-imidazol-3-ium bis(trifluoromethylsulfonyl)imide (IL-2), have been synthesized by a free radical polymerization reaction and used as coatings for solid-phase microextraction (SPME). These new fibers exhibit good film stability, high thermal stability (270-290°C) and long lifetimes, and are used for the extraction of volatile compounds in lemon beer using gas chromatography separation and flame ionization detection. The scanning electron micrographs of the fiber surface revealed a polymeric ionic liquid (PIL) film, which is distributed homogeneously on the fiber. The developed PIL fiber showed good linearity between 50 and 2000μg/L with regression coefficients in the range of 0.996-0.999. The relative standard deviations (RSD) obtained in the peak area were found to vary between 1% and 12%, which assured that adequate repeatability was achieved. The spiked recoveries for three beer samples ranged from 78.4% to 123.6%. Experimental design has been employed in the optimization of extraction factors and robustness assessment. The polymeric IL-1 butenyl fiber showed a greater efficiency compared to the PDMS-DVB (65μm) and CAR-PDMS (75μm) for the extraction of all of the analytes studied.


    Epoxidized soybean oil (ESO) was converted to a polysoap via a two-step synthetic procedure of catalytic ring-opening polymerization (PESO), followed by hydrolysis with a base (HPESO). Various molecular weights of PESO and HPESO were prepared by varying the reaction temperature and/or catalyst conc...

  5. Immortal Ring-Opening Polymerization of rac-Lactide Using Polymeric Alcohol as Initiator to Prepare Graft Copolymer

    Directory of Open Access Journals (Sweden)

    Na Liu


    Full Text Available In the presence of a small molecular protic initiator, immortal ring-opening polymerization (ROP of lactide (LA is a highly efficient strategy to synthesize polylactide in a controllable manner, while using polymeric alcohol as an initiator has been less investigated. A series of polymeric alcohols (PS–OH composed of styrene and 4.3%–18% hydroxyl functional styrene (diethyl(hydroxy(4-vinylphenylmethylphosphonate, St–OH were synthesized through reversible addition-fragmentation transfer (RAFT polymerization. Using PS–OH as an initiator, the immortal ROP of rac-LA was catalyzed by dibutylmagnesium (MgnBu2 under various ratios of monomer to hydroxyl group within PS–OH to generate polystyrene-g-polylactide (PS–g–PLA copolymers with different graft lengths. After thermal annealing at 115 °C, the PLA domain aggregated to nanospheres among the PS continuum. The size of the nanospheres, varying from 130.1 to 224.2 nm, was related to the graft density and length of PS–g–PLA. Nanoporous films were afforded through chemical etching of the PLA component.


    NARCIS (Netherlands)



    The template polymerization of N-vinylimidazole (VIm) along poly(methacrylic acid) (PMAA) in water at 50-degrees-C with 2,2'-azobis(2-amidinopropane).2HCl (AAP) as initiator was studied by using variable initiator and monomer concentrations at constant [PMAA]/[VIm]0. From the order in [VIm] it was c

  7. The charge percolation mechanism and simulation of Ziegler–Natta polymerizations. Part VI. Mechanism of ethylene polymerization by supported chromium oxide

    Directory of Open Access Journals (Sweden)



    Full Text Available Despite intensive research over the last 50 years, many questions concerning ethylene polymerization by supported chromium oxide are still unanswered. Hence, the very fundamental issues of this polymerization are discussed in this paper. It is shown that a charge percolation mechanism (CPM of olefin polymerization by Ziegler–Natta transition metal complexes, recently proposed by us, can give the answers in this case, too.

  8. Polymeric bionanocomposite cast thin films with in situ laccase-catalyzed polymerization of dopamine for biosensing and biofuel cell applications. (United States)

    Tan, Yueming; Deng, Wenfang; Li, Yunyong; Huang, Zhao; Meng, Yue; Xie, Qingji; Ma, Ming; Yao, Shouzhuo


    We report here on the facile preparation of polymer-enzyme-multiwalled carbon nanotubes (MWCNTs) cast films accompanying in situ laccase (Lac)-catalyzed polymerization for electrochemical biosensing and biofuel cell applications. Lac-catalyzed polymerization of dopamine (DA) as a new substrate was examined in detail by UV-vis spectroscopy, cyclic voltammetry, quartz crystal microbalance, and scanning electron microscopy. Casting the aqueous mixture of DA, Lac and MWCNTs on a glassy carbon electrode (GCE) yielded a robust polydopamine (PDA)-Lac-MWCNTs/GCE that can sense hydroquinone with 643 microA mM(-1) cm(-2) sensitivity and 20-nM detection limit (S/N = 3). The DA substrate yielded the best biosensing performance, as compared with aniline, o-phenylenediamine, or o-aminophenol as the substrate for similar Lac-catalyzed polymerization. Casting the aqueous mixture of DA, glucose oxidase (GOx), Lac, and MWCNTs on a Pt electrode yielded a robust PDA-GOx-Lac-MWCNTs/Pt electrode that exhibits glucose-detection sensitivity of 68.6 microA mM(-1) cm(-2). In addition, 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS) was also coimmobilized to yield a PDA-Lac-MWCNTs-ABTS/GCE that can effectively catalyze the reduction of O(2), and it was successfully used as the biocathode of a membraneless glucose/O(2) biofuel cell (BFC) in pH 5.0 Britton-Robinson buffer. The proposed biomacromolecule-immobilization platform based on enzyme-catalyzed polymerization may be useful for preparing many other multifunctional polymeric bionanocomposites for wide applications.

  9. Fabrication of lead zirconate titanate actuator via suspension polymerization casting (United States)

    Miao, Weiguo


    The research presented herein has focused on the fabrication of a lead zirconate titanate (PZT) telescopic actuator from Suspension Polymerization Casting (SPC). Two systems were studied: an acrylamide-based hydrogel, and an acrylate-based nonaqueous system. Analytical tools such as thermomechanical analysis (TMA), differential scanning calorimetry (DSC), chemorheology, thermogravimetric analysis (TGA), and differential thermal analysis (DTA) were used to investigate the polymerization and burnout processes. The acrylamide hydrogel polymerization casting process used hydroxymethyl acrylamide (HMAM) monofunctional monomer with methylenebisacrylamide (MBAM) difunctional monomer, or used methacrylamide (MAM) as monofunctional monomer. High solid loading PZT slurries with low viscosities were obtained by optimizing the amounts of dispersant and the PZT powders. The overall activation energy of gelation was calculated to be 60--76 kJ/mol for the monomer solution, this energy was increased to 91 kJ/mol with the addition of PZT powder. The results show that the PZT powder has a retardation effect on gelation. Although several PZT tubes were made using the acrylamide-based system, the demolding and drying difficulties made this process unsuitable for building internal structures, such as the telescopic actuator. The acrylate-based system was used successfully to build telescopic actuator. Efforts were made to study the influence of composition and experimental conditions on the polymerization process. Temperature was found to have the largest impact on polymerization. To adjust the polymerization temperature and time, initiator and/or catalyst were used. PZT powder has a catalytic effect on the polymerization process. Compared with acrylamide systems, acrylate provided a strong polymer network to support the ceramic green body. This high strength is beneficial for the demolding process, but it can easily cause cracks during the burnout process. To solve the burnout issue

  10. Characterization of Plasma-Polymerized Fused Polycyclic Compounds for Binding Conducting Polymers

    DEFF Research Database (Denmark)

    Winther-Jensen, Bjørn; Norrman, Kion; Kingshott, Peter


    An investigation is made of the plasma polymerization of fused polycyclic monomers containing a dioxy-ring that is fused to an aromatic ring. These molecules provide the basis for very efficient polymerization mechanisms in which only the dioxy-ring undergoes ring opening during the polymerization...... with the remaining part of the monomer remaining intact. XPS, ToF-SIMS, and IR are used to investigate the chemistry of the films produced by plasma polymerization of EDT, which contains a high content of the aromatic group. We find that the plasma-polymerized films of EDT contain intact thiophene groups...

  11. Sixtieth Anniversary of Ziegler-Natta Catalysts and Stereospecific Polymerization

    Directory of Open Access Journals (Sweden)

    Janović Z.


    Full Text Available This review article highlights the history of the discoveries of organometallic catalysts and stereospecific polymerization of α-olefins, dienes and a number of vinyl monomers by Karl Ziegler and Giulio Natta sixty years ago, their developments and recent progress. As one of the most important achievements in the field of catalysis, macromolecular science and polymer materials, their inventors were awarded the Nobel Prize in Chemistry in 1963 “for their discoveries in the field of chemistry and technology of high polymers”. These discoveries have stimulated an intensive, both basic and applied research all over the world, up to the present times, leading to great development of the polymer industry. The important biographical data and scientific advancements of K. Ziegler and G. Natta are presented as well. Karl Ziegler, a German scientist, Director of Max Planck Institute for Coal Research in Mülheim, besides many scientific achievements, in 1953 discovered a new process for the polymerization of ethylene into linear polyethylene under mild conditions by using titanium chloride and alkyl aluminium catalytic system that was superior to all existing polymerization. Giulio Natta, an Italian scientist, Director of the Department of Industrial Chemistry at Polytechnic, University of Milan, besides many achievements in petrochemical processes, in 1954 obtained for the first time isotactic polypropylene and Montecatini Co. started its production already in 1958. He conducted pioneering studies on the chain microstructure of synthetic organic polymers and postulated the mechanisms of stereospecific polymerizations. Since the discovery of the Zeigler-Natta catalyst, stereospecific polymerization and processes, significant developments have occurred. The breakthrough in polymerization processes such as fluid bed, liquid phase loop reactor and reactor granule technology led to significant development and growth of polyolefin production. In the 1980s

  12. Studies in reactive extrusion processing of biodegradable polymeric materials (United States)

    Balakrishnan, Sunder

    Various reaction chemistries such as Polymerization, Polymer cross-linking and Reactive grafting were investigated in twin-screw extruders. Poly (1,4-dioxan-2-one) (PPDX) was manufactured in melt by the continuous polymerization of 1,4-dioxan-2-one (PDX) monomer in a twin-screw extruder using Aluminum tri-sec butoxide (ATSB) initiator. Good and accurate control over molecular weight was obtained by controlling the ratio of monomer to initiator. A screw configuration consisting of only conveying elements was used for the polymerization. The polymerization reaction was characterized by a monomer-polymer dynamic equilibrium, above the melting temperature of the polymer, limiting the equilibrium conversion to 78-percent. Near complete (˜100-percent) conversion was obtained on co-polymerizing PDX monomer with a few mol-percent (around 8-percent) Caprolactone (CL) monomer in a twin-screw extruder using ATSB initiator. The co-polymers exhibited improved thermal stability with reduction in glass transition temperature. The extruder was modeled as an Axial Dispersed Plug Flow Reactor for the polymerization of CL monomer using Residence Time Distribution (RTD) Analysis. The model provided a good fit to the experimental RTD and conversion data. Aliphatic and aliphatic-aromatic co-polyesters, namely Polycaprolactone (PCL) and Poly butylenes (adipate-co-terephthalate) (Ecoflex) were cross-linked in a twin-screw extruder using radical initiator to form micro-gel reinforced biodegradable polyesters. Cross-linked Ecoflex was further extrusion blended with talc to form blends suitable to be blown into films. A screw configuration consisting of conveying and kneading elements was found to be effective in dispersion of the talc particles (5--10 microns) in the polyester matrix. While the rates of crystallization increased for the talc filled polyester blends, overall crystallinity reduced. Mechanical, tear and puncture properties of films made using the talc filled polyester blends

  13. Studies on the Self-condensing Vinyl Living Radical Polymerization of a Novel Acrylate Inimer

    Institute of Scientific and Technical Information of China (English)


    A novel acrylate inimer, 2-(2-chloroacetyloxy) ethyl acrylate, was prepared by the reaction of 2-hydroxyethyl acrylate with chloroacetyl chloride in the presence of triethylamine. The self-condensing vinyl living radical polymerization of the inimer was studied and the hyperbranched macromolecules containing ester linkages on their backbone were prepared. All the polymerization products were characterized by 1H NMR. The polymerization degree and the branching parameter were calculated based on the 1H NMR spectra. It has been shown that this inimer exhibits a very distinctive polymerization behavior. Similar to step-growth polymerization, the polymerization degree of the products formed increased exponentially during the early stage of the polymerization, and then the increasing rate slowed down. However, the inimer remained present throughout the polymerization consistent with conventional free radical polymerization. Also, if much longer polymerization time was used, the polymerization system would become gel due to the crosslinking reaction derived from radical-radical recombination. As a result of the unequal reactivity of -CH2Cl and >CHCl, an almost linear product was obtained at a molar ratio of bipy to inimer=0.05, while a relatively high ratio of bipy to inimer 1 favored the formation of the branched structure. The macromolecules formed at a high ratio of bipy to inimer 1 exhibited an excellent solubility in organic solvents such as acetone.

  14. Dynamic Monte Carlo simulation of chain growth polymerization and its concentration effect

    Institute of Scientific and Technical Information of China (English)

    L(U) Wenqi; DING Jiandong


    Free radical polymerization and living ion polymerization have been simulated via the dynamic Monte Carlo method with the bond-fluctuation model in this paper. The polymerization-related parameters such as conversion of monomers, degree of polymerization, average molecular weight and its distribution are obtained by statistics. The simulation outputs are consistent with the corresponding theoretical predictions. The scaling relationships of the coil size versus chain length are also confirmed at different volume fractions. Furthermore, the effect of diffusion on polymerization is revealed preliminarily in our simulation. Hence the simulation approach has been proven to be feasible to investigate polymerization reactions with the advantages that configuration and diffusion of polymer chains can be examined together with polymerization kinetics.

  15. Benzocaine-loaded polymeric nanocapsules: study of the anesthetic activities. (United States)

    De Melo, Nathalie Ferreira Silva; De Araújo, Daniele Ribeiro; Grillo, Renato; Moraes, Carolina Morales; De Matos, Angélica Prado; de Paula, Eneida; Rosa, André Henrique; Fraceto, Leonardo Fernandes


    This paper describes a comparison of different polymeric nanocapsules (NCs) prepared with the polymers poly(D,L-lactide-co-glycolide), poly(L-lactide) (PLA), and poly(ε-caprolactone) and used as carrier systems for the local anesthetic (LA) benzocaine (BZC). The systems were characterized and their anesthetic activities investigated. The results showed particle size distributions with polydispersity indices below 0.135, average diameters up to 120 nm, zeta potentials up to -30 mV, and entrapment efficiencies around 70%. Formulations of BZC using the polymeric NCs presented slower release profiles, compared with that of free BZC. Slowest release (release constant, k = 0.0016 min(-1)) was obtained using the PLA NC system. Pharmacological evaluation showed that encapsulation of BZC in PLA NCs prolonged its anesthetic action. This new formulation could potentially be used in future applications involving the gradual release of local anesthetics (LAs).

  16. Lipid-coated polymeric nanoparticles for cancer drug delivery. (United States)

    Krishnamurthy, Sangeetha; Vaiyapuri, Rajendran; Zhang, Liangfang; Chan, Juliana M


    Polymeric nanoparticles and liposomes have been the platform of choice for nanoparticle-based cancer drug delivery applications over the past decade, but extensive research has revealed their limitations as drug delivery carriers. A hybrid class of nanoparticles, aimed at combining the advantages of both polymeric nanoparticles and liposomes, has received attention in recent years. These core/shell type nanoparticles, frequently referred to as lipid-polymer hybrid nanoparticles (LPNs), possess several characteristics that make them highly suitable for drug delivery. This review introduces the formulation methods used to synthesize LPNs and discusses the strategies used to treat cancer, such as by targeting the tumor microenvironment or vasculature. Finally, it discusses the challenges that must be overcome to realize the full potential of LPNs in the clinic.

  17. Patterned hydrogel layers produced by electrochemically triggered polymerization. (United States)

    Bünsow, Johanna; Johannsmann, Diethelm


    We report on a lithographic mode of electrochemically triggered free radical polymerization. The polymerization is initiated by the reduction of an electrochemically active initiator. Hydrogel patterns can be written by employing a small insulated counter electrode. The investigations show that the "pen" actually is a small oxygen bubble between the counter electrode and the sample surface. The spot size corresponds to the size of the bubble produced between the counter electrode and the substrate. The gas/liquid interface traps the growing chains and guides the growth of a gel layer at the bubble surface. Since bubbles can be created and controlled in many different ways, this mechanism constitutes an easy route for the formation of structured, surface-bound polymer layers.

  18. Electrochemical performance of nonflammable polymeric gel electrolyte containing triethylphosphate

    Energy Technology Data Exchange (ETDEWEB)

    Lalia, Boor Singh; Fujita, Takayoshi; Yoshimoto, Nobuko; Egashira, Minato; Morita, Masayuki [Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611 (Japan)


    Nonflammable polymeric gel electrolyte has been prepared by immobilizing 1 M LiBF{sub 4}/EC + DEC + TEP (55:25:20, v/v/v, EC: ethylene carbonate, DEC: diethyl carbonate and TEP: triethylphosphate) solution in poly(vinylidene fluoride-co-hexafluoro propylene) (PVdF-HFP) where TEP acts as a fire-retardant solvent in the gel electrolyte. The polymeric gel electrolyte has a high value of ionic conductivity of 1.76 mS cm{sup -1} at 28 C. Thermal safety calorimetry (TSC) experiments show good thermal stability of the gel electrolyte. Cyclic voltammetry and charge/discharge cycling tests were performed on LiMn{sub 2}O{sub 4}/gel electrolyte and graphite/gel electrolyte half cells. The gel electrolyte works well for graphite/LiMn{sub 2}O{sub 4} cell although some improvement in the cycleability of the graphite electrode is still needed. (author)

  19. Simulation of nylon 6 polymerization in tubular reactors with recycle

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.K.; Kunzru, D.; Kumar, A.; Agarwal, K.K.


    In the hydrolytic polymerization of epsilon-caprolactam, the ring opening of the monomer is much slower than the polyaddition reaction. Hence, the mixing of aminocaproic acid to the feed results in a faster conversion of the monomer. Industrially, this fact is exploited by using a recycle stream. An isothermal plug flow reactor (PFR) with a recycle is simulated in this study, using two techniques: the method of successive substitutions and Wegstein's method. It is found that, under certain operating conditions, the use of a recycle stream gives higher monomer conversions and lower cyclic dimer concentrations than either a PFR or a homogeneous continuous flow stirred tank reactor (HCSTR), with the degree of polymerization almost the same as that obtained in an HCSTR, and thus offers a considerable advantage. However, when a recycle reactor is coupled with a subsequent flashing operation and a finishing reactor, these advantages are considerably reduced.

  20. Polymeric microdevices for transdermal and subcutaneous drug delivery. (United States)

    Ochoa, Manuel; Mousoulis, Charilaos; Ziaie, Babak


    Low cost manufacturing of polymeric microdevices for transdermal and subcutaneous drug delivery is slated to have a major impact on next generation devices for administration of biopharmaceuticals and other emerging new formulations. These devices range in complexity from simple microneedle arrays to more complicated systems incorporating micropumps, micro-reservoirs, on-board sensors, and electronic intelligence. In this paper, we review devices currently in the market and those in the earlier stages of research and development. We also present two examples of the research in our laboratory towards using phase change liquids in polymeric structures to create disposable micropumps and the development of an elastomeric reservoir for MEMS-based transdermal drug delivery systems.

  1. Characteristics of Titanocene Catalyst Supported on Palygorskite for Ethylene Polymerization

    Institute of Scientific and Technical Information of China (English)

    Xiao Wei YAN; Jing Dai WANG; Yi Bing SHAN; Yong Rong YANG


    A series of heterogeneous catalysts with Cp2TiCl2 supported on palygorskite were prepared and evaluated by ethylene slurry polymerizations. The so-called direct supported catalyst, for which the pretreatment of palygorskite with MAO or Al(i-Bu)3 was not necessary,gave the highest activity among these supported catalysts and could be more robust than homogeneous Cp2TiCl2. With the direct supported catalyst, no significant activity loss was observed under low Al/Ti molar ratios (Al/Ti=300) and the decay of polymerization rate was slower when compared to the other supported catalysts. It was found that the surface Lewis acidity of palygorskite after thermal treatment played an important role in activation of metallocene compound and resulted in high catalyst activity.

  2. Effects of polymeric carbohydrates on growth and development in pigs

    DEFF Research Database (Denmark)

    Knudsen, Knud Erik Bach


    and lead to different metabolites upon digestion. Pancreatic and mucosal enzymes in the small intestine break down the majority of starch, whereas NSP primarily are degraded by the microflora in the large intestine. Starch degradation leads to the release of glucose, which is absorbed by an active...... absorption process that triggers the release of insulin from the pancreas, whereas the fermentation of NSP to short-chain fatty acids (SCFA; i.e., acetate, propionate, and butyrate) occurs at a slower and more constant rate and with SCFA being absorbed by passive diffusion. Type and amounts of polymeric......, organs, and cells, and thus plays a critically essential role in protein synthesis and muscle growth, as well as lipid synthesis and adipose tissue growth. In conclusion, polymeric carbohydrates influence growth and development through events in the gut and direct and indirect effects of different...

  3. Reactions and Polymerizations at the Liquid-Liquid Interface. (United States)

    Piradashvili, Keti; Alexandrino, Evandro M; Wurm, Frederik R; Landfester, Katharina


    Reactions and polymerizations at the interface of two immiscible liquids are reviewed. The confinement of two reactants at the interface to form a new product can be advantageous in terms of improved reaction kinetics, higher yields, and selectivity. The presence of the liquid-liquid interface can accelerate the reaction, or a phase-transfer catalyst is employed to draw the reaction in one phase of choice. Furthermore, the use of immiscible systems, e.g., in emulsions, offers an easy means of efficient product separation and heat dissipation. A general overview on low molecular weight organic chemistry is given, and the applications of heterophase polymerization, occurring at or in proximity of the interface, (mostly) in emulsions are presented. This strategy can be used for the efficient production of nano- and microcarriers for various applications.

  4. Polymeric packaging for fully implantable wireless neural microsensors. (United States)

    Aceros, Juan; Yin, Ming; Borton, David A; Patterson, William R; Bull, Christopher; Nurmikko, Arto V


    We present polymeric packaging methods used for subcutaneous, fully implantable, broadband, and wireless neurosensors. A new tool for accelerated testing and characterization of biocompatible polymeric packaging materials and processes is described along with specialized test units to simulate our fully implantable neurosensor components, materials and fabrication processes. A brief description of the implantable systems is presented along with their current encapsulation methods based on polydimethylsiloxane (PDMS). Results from in-vivo testing of multiple implanted neurosensors in swine and non-human primates are presented. Finally, a novel augmenting polymer thin film material to complement the currently employed PDMS is introduced. This thin layer coating material is based on the Plasma Enhanced Chemical Vapor Deposition (PECVD) process of Hexamethyldisiloxane (HMDSO) and Oxygen (O(2)).

  5. Evaporation rate and vapor pressure of selected polymeric lubricating oils. (United States)

    Gardos, M. N.


    A recently developed ultrahigh-vacuum quartz spring mass sorption microbalance has been utilized to measure the evaporation rates of several low-volatility polymeric lubricating oils at various temperatures. The evaporation rates are used to calculate the vapor pressures by the Langmuir equation. A method is presented to accurately estimate extended temperature range evaporation rate and vapor pressure data for polymeric oils, incorporating appropriate corrections for the increases in molecular weight and the change in volatility of the progressively evaporating polymer fractions. The logarithms of the calculated data appear to follow linear relationships within the test temperature ranges, when plotted versus 1000/T. These functions and the observed effusion characteristics of the fluids on progressive volatilization are useful in estimating evaporation rate and vapor pressure changes on evaporative depletion.

  6. Prefabricated light-polymerizing plastic pattern for partial denture framework

    Directory of Open Access Journals (Sweden)

    Atsushi Takaichi


    Full Text Available Our aim is to report an application of a prefabricated light-polymerizing plastic pattern to construction of removable partial denture framework without the use of a refractory cast. A plastic pattern for the lingual bar was adapted on the master cast of a mandibular Kennedy class I partially edentulous patient. The pattern was polymerized in a light chamber. Cobalt-chromium wires were employed to minimize the potential distortion of the plastic framework. The framework was carefully removed from the master cast and invested with phosphate-bonded investment for the subsequent casting procedures. A retentive clasp was constructed using 19-gauge wrought wire and was welded to the framework by means of laser welding machine. An excellent fit of the framework in the patient′s mouth was observed in the try-in and the insertion of the denture. The result suggests that this method minimizes laboratory cost and time for partial denture construction.


    Institute of Scientific and Technical Information of China (English)

    Xianqiao Liu; Huizhou Liu; Jianmin Xing; Yueping Guan; Zhiya Ma; Guobin Shan; Chengli Yang


    Superparamagnetic poly(styrene-divinylbenzene-glycidyl methacrylate) (Pst-DVB-GMA) microparticles were prepared via a modified suspension polymerization process. A magnetic fluid was first prepared by a chemical co-precipitation method. Then magnetic microparticles were produced by mixing the monomers and the magnetic fluid with water in the presence of a stabilizer poly(vinyl pyrrolidone) (PVP) to form a suspension, and finally benzoyl peroxide was added to initiate the co-polymerization. The morphology and magnetic properties of the microparticles were examined by TEM and VSM. The spherically shaped microparticles, with a size range of 4 to 7 μm, showed distinct superparamagnetic characteristics. XRD was used to investigate the structure of the magnetite particles dispersed in the polymer matrix. The microparticles with epoxy groups on their surface can be applied directly to the separation of biomolecules.

  8. Recent advances in "bioartificial polymeric materials" based nanovectors (United States)

    Conte, Raffaele; De Luca, Ilenia; Valentino, Anna; Di Salle, Anna; Calarco, Anna; Riccitiello, Francesco; Peluso, Gianfranco


    This chapter analyzes the advantages of the use of bioartificial polymers as carriers and the main strategies used for their design. Despite the enormous progresses in this field, more studies are required for the fully evaluation of these nanovectors in complex organisms and for the characterization of the pharmacodynamic and pharmacokinetic of the loaded drugs. Moreover, progresses in polymer chemistry are introducing a wide range of functionalities in the bioartificial polymeric material (BPM) nanostructures leading to a second generation of bioartificial polymer therapeutics based on novel and heterogeneous architectures with higher molecular weight and predictable structures, in order to achieve greater multivalency and increased loading capacity. Therefore, research on bioartificial polymeric nanovectors is an "on-going" field capable of attracting medical interest.

  9. Opportunities in theoretical and computational polymeric materials and soft matter. (United States)

    Liu, Andrea J; Grest, Gary S; Marchetti, M Cristina; Grason, Gregory M; Robbins, Mark O; Fredrickson, Glenn H; Rubinstein, Michael; Olvera de la Cruz, Monica


    Soft materials are abundant in nature and ubiquitous in living systems. Elucidating their multi-faceted properties and underlying mechanisms is not only theoretically challenging and important in its own right, but also serves as the foundation for new materials and applications that will have wide-ranging impact on technology and the national economy. Recent initiatives in computation and data-driven materials discovery, such as the Materials Genome Initiative and the National Science Foundation Designing Materials to Revolutionize and Engineer our Future (NSF-DMREF) program, recognize and highlight the many future opportunities in the field. Building upon similar past efforts, a workshop was held at the University of California, Santa Barbara in October 2013 to specifically identify the central challenges and opportunities in theoretical and computational studies of polymeric as well as non-polymeric soft materials. This article presents a summary of the main findings of the workshop.

  10. Propylene Polymerization Catalysts with Sulfonyl Amines as Internal Electron Donors

    Institute of Scientific and Technical Information of China (English)

    Wang Liang; Yin Baozuo; Yi Jianjun; Cui Chunming


    Three sulfonyl aliphatic amines [(R2SO2)2NR1, viz.:compound 1, in which R1=Me, and R2=Ph;compound 2, in which R1=n-Bu, and R2=CF3;and compound 3, in which R1=C8H17, and R2=CF3], have been synthesized and employed as internal electron donors (IED) for the preparation of Ziegler-Natta catalysts for the polymerization of propylene. The contents of Ti, H and C in these catalysts have been determined by elemental analysis and UV-vis spectrophotometry. The effect of the structure and dosage of the electron donor, the Al/Ti ratio and the polymerization temperature on the catalyst performance has been studied. Under optimized conditions, the catalyst with a highest activity yielded polypropylene with high isotacticity in the absence of external electron donors.

  11. Quality control of residual solvent content in polymeric microparticles. (United States)

    Dixit, Kalpana; Athawale, Rajani B; Singh, Sarabjit


    Organic solvents are the innate part of pharmaceutical industry, playing vital role in the bulk drug substance as well as finished product manufacturing. Even though they are used for various crucial purposes, they still lack therapeutic beneficial effect and can be toxic if present in unacceptable limits in final product. Hence, their concentration must be regulated in the final pharmaceutical formulation. With the major development in the market of polymeric microparticles in past few decades, drug product manufacturers are paying more attention towards the development of new techniques for reducing residual solvent content of microparticles. This article sheds light on the importance of removal of organic volatile impurities from the formulation and its regulatory aspects. It also highlights how residual solvent affects various physicochemical characteristics of polymeric microparticles and suggests certain solutions as per the current state of art for limiting organic solvent content in the final product.

  12. Polymeric nanotherapeutics: clinical development and advances in stealth functionalization strategies (United States)

    Hu, Che-Ming J.; Fang, Ronnie H.; Luk, Brian T.; Zhang, Liangfang


    Long-circulating polymeric nanotherapeutics have garnered increasing interest in research and in the clinic owing to their ability to improve the solubility and pharmacokinetics of therapeutic cargoes. Modulation of carrier properties promises more effective drug localization at the disease sites and can lead to enhanced drug safety and efficacy. In the present review, we highlight the current development of polymeric nanotherapeutics in the clinic. In light of the importance of stealth properties in therapeutic nanoparticles, we also review the advances in stealth functionalization strategies and examine the performance of different stealth polymers in the literature. In addition, we discuss the recent development of biologically inspired ``self'' nanoparticles, which present a differing stealth concept from conventional approaches.

  13. Polymerization of phenols catalyzed by peroxidase in nonaqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Dordick, J.S.; Marletta, M.A.; Klibanov, A.M.


    Polymers produced by horseradish-peroxidase-catalyzed coupling of phenols have been explored as potential substitutes for phenol-formaldehyde resins. To overcome low substrate solubilities and product molecular weights in water, enzymatic polymerizations in aqueous-organic mixtures have been examined. Peroxidase vigorously polymerizes a number of phenols in mixtures of water with water-miscible solvents such as dioxane, acetone, dimethylformamide, and methyl formate with the solvent content up to 95%. As a result, various phenolic polymers with average molecular weights from 400 to 2.6 x 10/sup 4/ D were obtained depending on the reaction medium composition and the nature of the phenol. Peroxidase-catalyzed copolymerization of different phenols in 85% dioxane was demonstrated. Poly(p-phenylphenol) and poly(p-cresol) were enzymatically prepared on a gram scale. They had much higher melting points, and in addition, poly(p-phenylphenol) was found to have a much higher electrical conductivity than phenol-formaldehyde resins.

  14. Reticulated Nanoporous Polymers by Controlled Polymerization-Induced Microphase Separation

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Myungeun; Hillmyer, Marc A. (UMM)


    Materials with percolating mesopores are attractive for applications such as catalysis, nanotemplating, and separations. Polymeric frameworks are particularly appealing because the chemical composition and the surface chemistry are readily tunable. We report on the preparation of robust nanoporous polymers with percolating pores in the 4- to 8-nanometer range from a microphase-separated bicontinuous precursor. We combined polymerization-induced phase separation with in situ block polymer formation from a mixture of multifunctional monomers and a chemically etchable polymer containing a terminal chain transfer agent. This marriage results in microphase separation of the mixture into continuous domains of the etchable polymer and the emergent cross-linked polymer. Precise control over pore size distribution and mechanical integrity renders these materials particularly suited for various advanced applications.

  15. Surface Initiated Polymerizations via e-ATRP in Pure Water

    Directory of Open Access Journals (Sweden)

    Seyed Schwan Hosseiny


    Full Text Available Here we describe the combined process of surface modification with electrochemical atom transfer radical polymerization (e-ATRP initiated from the surface of a modified gold-electrode in a pure aqueous solution without any additional supporting electrolyte. This approach allows for a very controlled growth of the polymer chains leading towards a steady increase in film thickness. Electrochemical quartz crystal microbalance displayed a highly regular increase in surface confined mass only after the addition of the pre-copper catalyst which is reduced in situ and transformed into the catalyst. Even after isolation and washing of the modified electrode surface, reinitiation was achieved with retention of the controlled electrochemical ATRP reaction. This reinitiation after isolation proves the livingness of the polymerization. This approach has interesting potential for smart thin film materials and offers also the possibility of post-modification via additional electrochemical induced reactions.

  16. Commercial Test of Polymerization Inhibition in the Pyrogasoline Prefractionator System

    Institute of Scientific and Technical Information of China (English)


    This article refers to the commercial test for application of the polymerization inhibition tech-nology developed by the Research Institute of Petroleum Processing (RIPP) in the prefractionation systemof the pyrogasoline hydrotreating unit at the Olefin Plant of Qilu Petrochemical Company. During thecommercial test the operation of the C9+ removal tower, the de-pentanizer tower and its reflux line, productdelivery line, reflux drum, condenser, and reboiler of the prefractionation system that were susceptible tofouling and blocking went smoothly and the run cycle was significantly extended. The amount of foulingwas apparently lower than what was before the said commercial test. The fouling was loose and soft, andcould be easily cleaned. Test results have shown that this technology can effectively suppress the polymer-ization and fouling of active C5 diolefins existing in the pyrogasoline hydrotreating/prefractionation system,and can extend the run cycle of the process unit.

  17. Polymeric Nanoparticles, Nanospheres and Nanocapsules, for Cutaneous Applications

    Directory of Open Access Journals (Sweden)

    Adriana R. Pohlmann


    Full Text Available This review presents an overview about pharmaceutical and cosmetic topical products containing polymeric nanoparticles (nanospheres and nanocapsules, reporting the main preparation and characterization methods and the studies of penetration and transport of substances through the skin. The penetration and transport extent of those systems through the skin depends on the ingredients chemical composition, on the encapsulation mechanism influencing the drug release, on the size of nanoparticles and on the viscosity of the formulations. The polymeric nanoparticles are able to modify the activity of drugs, delay and control the drug release, and increase the drug adhesivity or its time of permanence in the skin. Briefly, the nanoparticles can be useful as reservoirs of lipophilic drugs to deliver them in the stratum corneum becoming an important strategy to control their permeation into the skin.

  18. Solid coatings deposited from liquid methyl methacrylate via Plasma Polymerization (United States)

    Wurlitzer, Lisa; Maus-Friedrichs, Wolfgang; Dahle, Sebastian


    The polymerization of methyl methacrylate via plasma discharges is well known today. Usually, plasma-enhanced chemical vapor deposition (PECVD) is used to deposit polymer coatings. Solid coatings are formed out of the liquid phase from methyl methacrylate via dielectric barrier discharge. The formation of the coating proceeds in the gas and the liquid phase. To learn more about the reactions in the two phases, the coatings from MMA monomer will be compared to those from MMA resin. Finally, attenuated total reflection infrared spectroscopy, confocal laser scanning microscopy and X-ray photoelectron spectroscopy are employed to characterize the solid coatings. In conclusion, the plasma enhanced chemical solution deposition is compared to the classical thermal polymerization of MMA.

  19. Stimulus-responsive polymeric nanoparticles for biomedical applications

    Institute of Scientific and Technical Information of China (English)


    Polymeric nanoparticles with unique properties are regarded as the most promising materials for biomedical applications including drug delivery and in vitro/in vivo imaging.Among them,stimulus-responsive polymeric nanoparticles,usually termed as "intelligent" nanoparticles,could undergo structure,shape,and property changes after being exposed to external signals including pH,temperature,magnetic field,and light,which could be used to modulate the macroscopical behavior of the nanoparticles.This paper reviews the recent progress in stimulus-responsive nanoparticles used for drug delivery and in vitro/in vivo imaging,with an emphasis on double/multiple stimulus-responsive systems and their biomedical applications.

  20. Functional bio-based polyesters by enzymatic polymerization

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Hoffmann, Christian; Andersen, Christian

    During recent years enzymatic polymerization has become increasingly popular as an alternative to classical polyesterification processes. The high regioselectivity observed for lipases permits preparation of novel polyesters with a high number of functional groups.1 This is particularly interesting...... polymerization was applied to prepare functional water soluble polyesters based on dimethyl itaconate and poly(ethyleneglycol).2 The monomer permits postfunctionalization using thiol-ene chemistry or aza-michael additions, which was used to illustrate the possibilites of preparing functional hydrogels. Hydrogels...... was copolymerized together with ethyl-6-hydroxyhexanoate yielding copolymers with molecular weights of up to 12,000 g/mol. The polymers were postfunctionalized using trifluoroacetic anhydride, which resulted in 100% conversion of the secondary alcohols, illustrating the possibility to use the secondary alcohol...