WorldWideScience

Sample records for non-oscillatory shock capturing

  1. ON DISPERSION-CONTROLLED PRINCIPLES FOR NON-OSCILLATORY SHOCK-CAPTURING SCHEMES

    Institute of Scientific and Technical Information of China (English)

    JIANG Zonglin

    2004-01-01

    The role of dispersions in the numerical solutions of hydrodynamic equation systems has been realized for long time. It is only during the last two decades that extensive studies on the dispersion-controlled dissipative (DCD) schemes were reported. The studies have demonstrated that this kind of the schemes is distinct from conventional dissipation-based schemes in which the dispersion term of the modified equation is not considered in scheme construction to avoid nonphysical oscillation occurring in shock wave simulations. The principle of the dispersion controlled aims at removing nonphysical oscillations by making use of dispersion characteristics instead of adding artificial viscosity to dissipate the oscillation as the conventional schemes do. Research progresses on the dispersioncontrolled principles are reviewed in this paper, including the exploration of the role of dispersions in numerical simulations, the development of the dispersion-controlled principles, efforts devoted to high-order dispersion-controlled dissipative schemes, the extension to both the finite volume and the finite element methods, scheme verification and solution validation, and comments on several aspects of the schemes from author's viewpoint.

  2. WEIGHTED COMPACT SCHEME FOR SHOCK CAPTURING

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new class of finite difference schemes--the weighted compact schemes are proposed. According to the idea of the WENO schemes, the weighted compact scheme is constructed by a combination of the approximations of derivatives on candidate stencils with properly assigned weights so that the non-oscillatory property is achieved when discontinuities appear. The primitive function reconstruction method of ENO schemes is applied to obtain the conservative form of the weighted compact scheme. This new scheme not only preserves the characteristic of standard compact schemes and achieves high order accuracy and high resolution using a compact stencil,but also can accurately capture shock waves and discontinuities without oscillation, Numerical examples show that the new scheme is very promising and successful.``

  3. Assessment of shock capturing schemes for discontinuous Galerkin method

    Institute of Scientific and Technical Information of China (English)

    于剑; 阎超; 赵瑞

    2014-01-01

    This paper carries out systematical investigations on the performance of several typical shock-capturing schemes for the discontinuous Galerkin (DG) method, including the total variation bounded (TVB) limiter and three artificial diffusivity schemes (the basis function-based (BF) scheme, the face residual-based (FR) scheme, and the element residual-based (ER) scheme). Shock-dominated flows (the Sod problem, the Shu-Osher problem, the double Mach reflection problem, and the transonic NACA0012 flow) are considered, addressing the issues of accuracy, non-oscillatory property, dependence on user-specified constants, resolution of discontinuities, and capability for steady solutions. Numerical results indicate that the TVB limiter is more efficient and robust, while the artificial diffusivity schemes are able to preserve small-scale flow structures better. In high order cases, the artificial diffusivity schemes have demonstrated superior performance over the TVB limiter.

  4. HyCFS, a high-resolution shock capturing code for numerical simulation on hybrid computational clusters

    Science.gov (United States)

    Shershnev, Anton A.; Kudryavtsev, Alexey N.; Kashkovsky, Alexander V.; Khotyanovsky, Dmitry V.

    2016-10-01

    The present paper describes HyCFS code, developed for numerical simulation of compressible high-speed flows on hybrid CPU/GPU (Central Processing Unit / Graphical Processing Unit) computational clusters on the basis of full unsteady Navier-Stokes equations, using modern shock capturing high-order TVD (Total Variation Diminishing) and WENO (Weighted Essentially Non-Oscillatory) schemes on general curvilinear structured grids. We discuss the specific features of hybrid architecture and details of program implementation and present the results of code verification.

  5. Developing shock-capturing difference methods

    Institute of Scientific and Technical Information of China (English)

    TU Guo-hua; YUAN Xiang-jiang; LU Li-peng

    2007-01-01

    A new shock-capturing method is proposed which is based on upwind schemes and flux-vector splittings. Firstly, original upwind schemes are projected along characteristic directions. Secondly, the amplitudes of the characteristic decompositions are carefully controlled by limiters to prevent non-physical oscillations. Lastly, the schemes are converted into conservative forms, and the oscillation-free shock-capturing schemes are acquired. Two explicit upwind schemes (2nd-order and 3rd-order) and three compact upwind schemes (3rd-order, 5th-order and 7th-order) are modified by the method for hyperbolic systems and the modified schemes are checked on several one-dimensional and two-dimensional test cases. Some numerical solutions of the schemes are compared with those of a WENO scheme and a MP scheme as well as a compact-WENO scheme. The results show that the method with high order accuracy and high resolutions can capture shock waves smoothly.

  6. An Efficient High-Resolution Shock-Capturing Scheme for Multi-Dimensional Flows I.Hydrodynamics

    Institute of Scientific and Technical Information of China (English)

    Cong Yu

    2006-01-01

    Many problems at the forefront of theoretical astrophysics require a treatment of dynamical fluid behavior. We present an efficient high-resolution shock-capturing hydrodynamic scheme designed to study such phenomena. We have implemented a weighted, essentially non-oscillatory (WENO) scheme to fifth order accuracy in space. HLLE approximate Riemann solver is used for the flux computation at cell interface, which does not require spectral decomposition into characteristic waves and so is computationally friendly. For time integration we apply a third order total variation diminishing (TVD) Runge-Kutta scheme.Extensive testing and comparison with schemes that require characteristic decomposition are carried out demonstrating the ability of our scheme to address challenging open questions in astrophysics.

  7. Third-order modified coefficient scheme based on essentially non-oscillatory scheme

    Institute of Scientific and Technical Information of China (English)

    LI Ming-jun; YANG Yu-yue; SHU Shi

    2008-01-01

    A third-order numerical scheme is presented to give approximate solutions to multi-dimensional hyperbolic conservation laws only using modified coefficients of an essentially non-oscillatory (MCENO) scheme without increasing the base points during construction of the scheme.The construction process shows that the modified coefficient approach preserves favourable properties inherent in the original essentially non oscillatory (ENO) scheme for its essential non-oscillation,total variation bounded (TVB),etc.The new scheme improves accuracy by one order compared to the original one.The proposed MCENO scheme is applied to simulate two-dimensional Rayleigh-Taylor (RT) instability with densities 1:3 and 1:100,and solve the Lax shock-wave tube numerically.The ratio of CPU time used to implement MCENO,the third-order ENO and fifth-order weighed ENO (WENO) schemes is 0.62:1:2.19.This indicates that MCENO improves accuracy in smooth regions and has higher accuracy and better efficiency compared to the original ENO scheme.

  8. Multi-Dimensional High Order Essentially Non-Oscillatory Finite Difference Methods in Generalized Coordinates

    Science.gov (United States)

    Shu, Chi-Wang

    1998-01-01

    This project is about the development of high order, non-oscillatory type schemes for computational fluid dynamics. Algorithm analysis, implementation, and applications are performed. Collaborations with NASA scientists have been carried out to ensure that the research is relevant to NASA objectives. The combination of ENO finite difference method with spectral method in two space dimension is considered, jointly with Cai [3]. The resulting scheme behaves nicely for the two dimensional test problems with or without shocks. Jointly with Cai and Gottlieb, we have also considered one-sided filters for spectral approximations to discontinuous functions [2]. We proved theoretically the existence of filters to recover spectral accuracy up to the discontinuity. We also constructed such filters for practical calculations.

  9. A class of the fourth order finite volume Hermite weighted essentially non-oscillatory schemes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper,we developed a class of the fourth order accurate finite volume Hermite weighted essentially non-oscillatory(HWENO)schemes based on the work(Computers&Fluids,34:642-663(2005))by Qiu and Shu,with Total Variation Diminishing Runge-Kutta time discretization method for the two-dimensional hyperbolic conservation laws.The key idea of HWENO is to evolve both with the solution and its derivative,which allows for using Hermite interpolation in the reconstruction phase,resulting in a more compact stencil at the expense of the additional work.The main difference between this work and the formal one is the procedure to reconstruct the derivative terms.Comparing with the original HWENO schemes of Qiu and Shu,one major advantage of new HWENOschemes is its robust in computation of problem with strong shocks.Extensive numerical experiments are performed to illustrate the capability of the method.

  10. Finite difference weighted essentially non-oscillatory schemes with constrained transport for ideal magnetohydrodynamics

    Science.gov (United States)

    Christlieb, Andrew J.; Rossmanith, James A.; Tang, Qi

    2014-07-01

    In this work we develop a class of high-order finite difference weighted essentially non-oscillatory (FD-WENO) schemes for solving the ideal magnetohydrodynamic (MHD) equations in 2D and 3D. The philosophy of this work is to use efficient high-order WENO spatial discretizations with high-order strong stability-preserving Runge-Kutta (SSP-RK) time-stepping schemes. Numerical results have shown that with such methods we are able to resolve solution structures that are only visible at much higher grid resolutions with lower-order schemes. The key challenge in applying such methods to ideal MHD is to control divergence errors in the magnetic field. We achieve this by augmenting the base scheme with a novel high-order constrained transport approach that updates the magnetic vector potential. The predicted magnetic field from the base scheme is replaced by a divergence-free magnetic field that is obtained from the curl of this magnetic potential. The non-conservative weakly hyperbolic system that the magnetic vector potential satisfies is solved using a version of FD-WENO developed for Hamilton-Jacobi equations. The resulting numerical method is endowed with several important properties: (1) all quantities, including all components of the magnetic field and magnetic potential, are treated as point values on the same mesh (i.e., there is no mesh staggering); (2) both the spatial and temporal orders of accuracy are fourth-order; (3) no spatial integration or multidimensional reconstructions are needed in any step; and (4) special limiters in the magnetic vector potential update are used to control unphysical oscillations in the magnetic field. Several 2D and 3D numerical examples are presented to verify the order of accuracy on smooth test problems and to show high-resolution on test problems that involve shocks.

  11. Evaluating the Capability of the Flux-Limiter Schemes in Capturing Strong Shocks and Discontinuities

    Directory of Open Access Journals (Sweden)

    Iman Harimi

    2013-01-01

    Full Text Available A numerical study is conducted to investigate the capability of the flux-limiter TVD schemes in capturing sharp discontinuities like shock waves. For this purpose, four classical test problems are considered such as slowly moving shock, gas Riemann problem with high density and pressure ratios, shock wave interaction with a density disturbance and shock-acoustic interaction. The governing equations consist of one-dimensional and quasi-one-dimensional Euler equations solved using an in-house numerical code. In order to validate the solution, the obtained results are compared with other results found in the literature.

  12. A new shock-capturing numerical scheme for ideal hydrodynamics

    CERN Document Server

    Feckova, Zuzana

    2015-01-01

    We present a new algorithm for solving ideal relativistic hydrodynamics based on Godunov method with an exact solution of Riemann problem for an arbitrary equation of state. Standard numerical tests are executed, such as the sound wave propagation and the shock tube problem. Low numerical viscosity and high precision are attained with proper discretization.

  13. Electromyographic activity of shoulder muscles during exercises performed with oscillatory and non-oscillatory poles.

    Science.gov (United States)

    Hallal, Camilla Z; Marques, Nise R; Silva, Sarah R D; Dieën, Jaap V; Gonçalves, Mauro

    2011-01-01

    Pain and dysfunction of the shoulder complex are commonly found physiotherapy practice. These musculoskeletal abnormalities are related to instability and inadequate kinematic function, that depend on the integrity of the muscle tissues. Thus, to enhance the results of exercise therapies, and prevent and attenuate pain and dynfunction, the use of oscillatory pole has been implemented in clinical practice. The purpose of this study was to analyze the electromyographic (EMG) activity of shoulder stabilizing muscles during exercises performed with an oscillatory and a non-oscillatory pole. Twelve female volunteers, aged 20.4 years±1.9, participated in this study. EMG data were collected from upper trapezius (UT), lower trapezius (LT) and middle deltoid (MD) during three different exercises with an oscillatory and a non-oscillatory pole. The EMG signals were analyzed in the time domain through the calculation of Root Mean Square (RMS). The RMS values were normalized by the peak value obtained over all trials for each muscle. Statistical analysis was performed with repeated measures ANOVA and post-hoc of Bonferroni tests. The EMG activity of UT, LT and MD muscles were significantly higher with the oscillatory pole than the non-oscillatory pole (all pmuscles between exercises. The results of the present study indicated that the oscillatory pole does require higher activation of the shoulder muscles and therefore, may be useful in the training of the shoulder complex.

  14. Robust and Accurate Shock Capturing Method for High-Order Discontinuous Galerkin Methods

    Science.gov (United States)

    Atkins, Harold L.; Pampell, Alyssa

    2011-01-01

    A simple yet robust and accurate approach for capturing shock waves using a high-order discontinuous Galerkin (DG) method is presented. The method uses the physical viscous terms of the Navier-Stokes equations as suggested by others; however, the proposed formulation of the numerical viscosity is continuous and compact by construction, and does not require the solution of an auxiliary diffusion equation. This work also presents two analyses that guided the formulation of the numerical viscosity and certain aspects of the DG implementation. A local eigenvalue analysis of the DG discretization applied to a shock containing element is used to evaluate the robustness of several Riemann flux functions, and to evaluate algorithm choices that exist within the underlying DG discretization. A second analysis examines exact solutions to the DG discretization in a shock containing element, and identifies a "model" instability that will inevitably arise when solving the Euler equations using the DG method. This analysis identifies the minimum viscosity required for stability. The shock capturing method is demonstrated for high-speed flow over an inviscid cylinder and for an unsteady disturbance in a hypersonic boundary layer. Numerical tests are presented that evaluate several aspects of the shock detection terms. The sensitivity of the results to model parameters is examined with grid and order refinement studies.

  15. Evaluate shock capturing capability with the numerical methods in OpenFOAM

    Directory of Open Access Journals (Sweden)

    Khodadadi Azadboni Reza

    2013-01-01

    Full Text Available Simulations for both multiphase flows and supersonic single phased flows are well known, however the combination is a less investigated area of research, as the two basic approaches of CFD, the pressure and the density based approach, each describe one of the phases in a better way than the other one. In this paper, we systematically investigate the solver quality of the open source CFD code OpenFOAM in handling transonic flow phenomena that typically occur inside the breaking chamber of high voltage circuit breakers, during contact separation. The solver quality is then compared with that of chosen commercial CFD tools. The main advantage of OpenFOAM is that, contrary to most of the commercial simulation tools, it is license fee free and allows access to the source code. This means that complicated multi physics phenomena inside the arcing chamber can be directly modeled into the code by users, which opens an opportunity to remove limitations of commercial CFD tools. Particularly, the shock capturing capability of OpenFOAM will be evaluated for the transonic internal flow which typically occurs in high voltage circuit breakers. Overall, Open-FOAM shows acceptable shock capturing capabilities in the performed verification and validation studies, with the solver quality comparable to some of the tested commercial CFD tools. There is still room for further solver quality improvements in OpenFOAM by implementing better shock capturing schemes such as a density-based flux-difference-splitting scheme or by writing better physical modeling of the shock/boundary layer interaction into the open architecture of OpenFOAM.

  16. Birth of oscillation in coupled non-oscillatory Rayleigh-Duffing oscillators

    Science.gov (United States)

    Guin, A.; Dandapathak, M.; Sarkar, S.; Sarkar, B. C.

    2017-01-01

    We have studied the dynamics of two bilaterally-coupled non-oscillatory Rayleigh-Duffing oscillators (RDOs). With the increase of coupling factor (CF) between RDOs, birth of periodic oscillations observed. For increased values of CF, dynamics becomes chaotic through a quasi-periodicroute but for even higher CF, synchronized stable periodic oscillations in RDOs are found. Taking direct and anti-diffusive coupling cases into consideration, we derive conditions for periodic bifurcation in parameter space analytically and verified them through numerical solution of system equations. Numerical simulation is also used to predict system states in two parameter space involving CF and linear damping parameter of RDOs. It indicates non-oscillatory, periodic, quasi-periodic and chaotic zones of system dynamics. Qualitative explanation of the simulated dynamics is given using homoclinic perturbation theory. Hardware experiment is performed on analog circuits simulating RDO model and obtained results confirm the predictions regarding birth of periodic oscillation and other features of system dynamics. Experimental results examining onset of oscillations in two under-biased bi-laterally coupled X-band Gunn oscillators (which are modelled as RDOs) is presented in support of the analysis.

  17. WLS-ENO: Weighted-least-squares based essentially non-oscillatory schemes for finite volume methods on unstructured meshes

    Science.gov (United States)

    Liu, Hongxu; Jiao, Xiangmin

    2016-06-01

    ENO (Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) schemes are widely used high-order schemes for solving partial differential equations (PDEs), especially hyperbolic conservation laws with piecewise smooth solutions. For structured meshes, these techniques can achieve high order accuracy for smooth functions while being non-oscillatory near discontinuities. For unstructured meshes, which are needed for complex geometries, similar schemes are required but they are much more challenging. We propose a new family of non-oscillatory schemes, called WLS-ENO, in the context of solving hyperbolic conservation laws using finite-volume methods over unstructured meshes. WLS-ENO is derived based on Taylor series expansion and solved using a weighted least squares formulation. Unlike other non-oscillatory schemes, the WLS-ENO does not require constructing sub-stencils, and hence it provides a more flexible framework and is less sensitive to mesh quality. We present rigorous analysis of the accuracy and stability of WLS-ENO, and present numerical results in 1-D, 2-D, and 3-D for a number of benchmark problems, and also report some comparisons against WENO.

  18. Synchronization of single-side locally averaged adaptive coupling and its application to shock capturing.

    Science.gov (United States)

    Wei, G W

    2001-04-16

    We propose a single-sided locally averaged adaptive coupling scheme for the synchronization of spatially extended systems. Coupling and synchronization are analyzed from the viewpoint of image filter construction and numerical dissipation. Single-sided locally averaged coupling is introduced based on the resolution argument of control process. Control sensors are adaptively selected and automatically adjusted according to the magnitude of local oscillations. We demonstrate that the present scheme can effectively suppress and control spatiotemporal oscillations and, thus, provide a powerful approach for shock capturing. Both the Navier-Stokes equation and Burgers' equation are used to illustrate the idea.

  19. Finite Difference Weighted Essentially Non-Oscillatory Schemes with Constrained Transport for Ideal Magnetohydrodynamics

    CERN Document Server

    Christlieb, Andrew J; Tang, Qi

    2013-01-01

    In this work we develop a class of high-order finite difference weighted essentially non-oscillatory (FD-WENO) schemes for solving the ideal magnetohydrodynamic (MHD) equations in 2D and 3D. The philosophy of this work is to use efficient high-order WENO spatial discretizations with high-order strong stability-preserving Runge-Kutta (SSP-RK) time-stepping schemes. Numerical results have shown that with such methods we are able to resolve solution structures that are only visible at much higher grid resolutions with lower-order schemes. The key challenge in applying such methods to ideal MHD is to control divergence errors in the magnetic field. We achieve this by augmenting the base scheme with a novel high-order constrained transport approach that updates the magnetic vector potential. The predicted magnetic field from the base scheme is replaced by a divergence-free magnetic field that is obtained from the curl of this magnetic potential. The non-conservative weakly hyperbolic system that the magnetic vecto...

  20. Shock capturing, level sets, and PDE based methods in computer vision and image processing: a review of Osher's contributions

    CERN Document Server

    Fedkiw, R P

    2003-01-01

    In this paper we review the algorithm development and applications in high resolution shock capturing methods, level set methods, and PDE based methods in computer vision and image processing. The emphasis is on Stanley Osher's contribution in these areas and the impact of his work. We will start with shock capturing methods and will review the Engquist-Osher scheme, TVD schemes, entropy conditions, ENO and WENO schemes, and numerical schemes for Hamilton-Jacobi type equations. Among level set methods we will review level set calculus, numerical techniques, fluids and materials, variational approach, high codimension motion, geometric optics, and the computation of discontinuous solutions to Hamilton-Jacobi equations. Among computer vision and image processing we will review the total variation model for image denoising, images on implicit surfaces, and the level set method in image processing and computer vision.

  1. Spurious Behavior of Shock-Capturing Methods: Problems Containing Stiff Source Terms and Discontinuities

    Science.gov (United States)

    Yee, Helen M. C.; Kotov, D. V.; Wang, Wei; Shu, Chi-Wang

    2013-01-01

    The goal of this paper is to relate numerical dissipations that are inherited in high order shock-capturing schemes with the onset of wrong propagation speed of discontinuities. For pointwise evaluation of the source term, previous studies indicated that the phenomenon of wrong propagation speed of discontinuities is connected with the smearing of the discontinuity caused by the discretization of the advection term. The smearing introduces a nonequilibrium state into the calculation. Thus as soon as a nonequilibrium value is introduced in this manner, the source term turns on and immediately restores equilibrium, while at the same time shifting the discontinuity to a cell boundary. The present study is to show that the degree of wrong propagation speed of discontinuities is highly dependent on the accuracy of the numerical method. The manner in which the smearing of discontinuities is contained by the numerical method and the overall amount of numerical dissipation being employed play major roles. Moreover, employing finite time steps and grid spacings that are below the standard Courant-Friedrich-Levy (CFL) limit on shockcapturing methods for compressible Euler and Navier-Stokes equations containing stiff reacting source terms and discontinuities reveals surprising counter-intuitive results. Unlike non-reacting flows, for stiff reactions with discontinuities, employing a time step and grid spacing that are below the CFL limit (based on the homogeneous part or non-reacting part of the governing equations) does not guarantee a correct solution of the chosen governing equations. Instead, depending on the numerical method, time step and grid spacing, the numerical simulation may lead to (a) the correct solution (within the truncation error of the scheme), (b) a divergent solution, (c) a wrong propagation speed of discontinuities solution or (d) other spurious solutions that are solutions of the discretized counterparts but are not solutions of the governing equations

  2. Synergistic and antagonistic effects of thermal shock, air exposure, and fishing capture on the physiological stress of Squilla mantis (Stomatopoda.

    Directory of Open Access Journals (Sweden)

    Saša Raicevich

    Full Text Available This study is aimed at assessing the effects of multiple stressors (thermal shock, fishing capture, and exposure to air on the benthic stomatopod Squilla mantis, a burrowing crustacean quite widespread in the Mediterranean Sea. Laboratory analyses were carried out to explore the physiological impairment onset over time, based on emersion and thermal shocks, on farmed individuals. Parallel field-based studies were carried out to also investigate the role of fishing (i.e., otter trawling in inducing physiological imbalance in different seasonal conditions. The dynamics of physiological recovery from physiological disruption were also studied. Physiological stress was assessed by analysing hemolymph metabolites (L-Lactate, D-glucose, ammonia, and H+, as well as glycogen concentration in muscle tissues. The experiments were carried out according to a factorial scheme considering the three factors (thermal shock, fishing capture, and exposure to air at two fixed levels in order to explore possible synergistic, additive, or antagonistic effects among factors. Additive effects on physiological parameters were mainly detected when the three factors interacted together while synergistic effects were found as effect of the combination of two factors. This finding highlights that the physiological adaptive and maladaptive processes induced by the stressors result in a dynamic response that may encounter physiological limits when high stress levels are sustained. Thus, a further increase in the physiological parameters due to synergies cannot be reached. Moreover, when critical limits are encountered, mortality occurs and physiological parameters reflect the response of the last survivors. In the light of our mortality studies, thermal shock and exposure to air have the main effect on the survival of S. mantis only on trawled individuals, while lab-farmed individuals did not show any mortality during exposure to air until after 2 hours.

  3. Semi-implicit and fully implicit shock-capturing methods for hyperbolic conservation laws with stiff source terms

    Science.gov (United States)

    Yee, H. C.; Shinn, Judy L.

    1987-01-01

    Some numerical aspects of finite-difference algorithms for nonlinear multidimensional hyperbolic conservation laws with stiff nonhomogeneous (source) terms are discussed. If the stiffness is entirely dominated by the source term, a semi-implicit shock-capturing method is proposed provided that the Jacobian of the source terms possesses certain properties. The proposed semi-implicit method can be viewed as a variant of the Bussing and Murman point-implicit scheme with a more appropriate numerical dissipation for the computation of strong shock waves. However, if the stiffness is not solely dominated by the source terms, a fully implicit method would be a better choice. The situation is complicated by problems that are higher than one dimension, and the presence of stiff source terms further complicates the solution procedures for alternating direction implicit (ADI) methods. Several alternatives are discussed. The primary motivation for constructing these schemes was to address thermally and chemically nonequilibrium flows in the hypersonic regime. Due to the unique structure of the eigenvalues and eigenvectors for fluid flows of this type, the computation can be simplified, thus providing a more efficient solution procedure than one might have anticipated.

  4. An oscillation free shock-capturing method for compressible van der Waals supercritical fluid flows

    Science.gov (United States)

    Pantano, C.; Saurel, R.; Schmitt, T.

    2017-04-01

    Numerical solutions of the Euler equations using real gas equations of state (EOS) often exhibit serious inaccuracies. The focus here is the van der Waals EOS and its variants (often used in supercritical fluid computations). The problems are not related to a lack of convexity of the EOS since the EOS are considered in their domain of convexity at any mesh point and at any time. The difficulties appear as soon as a density discontinuity is present with the rest of the fluid in mechanical equilibrium and typically result in spurious pressure and velocity oscillations. This is reminiscent of well-known pressure oscillations occurring with ideal gas mixtures when a mass fraction discontinuity is present, which can be interpreted as a discontinuity in the EOS parameters. We are concerned with pressure oscillations that appear just for a single fluid each time a density discontinuity is present. The combination of density in a nonlinear fashion in the EOS with diffusion by the numerical method results in violation of mechanical equilibrium conditions which are not easy to eliminate, even under grid refinement. A cure to this problem is developed in the present paper for the van der Waals EOS based on previous ideas. A special extra field and its corresponding evolution equation is added to the flow model. This new field separates the evolution of the nonlinear part of the density in the EOS and produce oscillation free solutions. The extra equation being nonconservative the behavior of two established numerical schemes on shocks computation is studied and compared to exact reference solutions that are available in the present context. The analysis shows that shock conditions of the nonconservative equation have important consequence on the results. Last, multidimensional computations of a supercritical gas jet is performed to illustrate the benefits of the present method, compared to conventional flow solvers.

  5. Shock

    Science.gov (United States)

    Shock can be caused by any condition that reduces blood flow, including: Heart problems (such as heart attack or heart failure ) Low blood volume (as with heavy bleeding or dehydration ) Changes in blood vessels (as with infection ...

  6. A non-oscillatory balanced scheme for an idealized tropical climate model. Part II. Nonlinear coupling and moisture effects

    Energy Technology Data Exchange (ETDEWEB)

    Khouider, Boualem [University of Victoria, Mathematics and Statistics, Victoria, B.C. (Canada); Majda, Andrew J. [New York University, Department of Mathematics and Center for Atmosphere/Ocean Sciences, NY (United States); Courant Institute, New York, NY (United States)

    2005-10-01

    We use the non-oscillatory balanced numerical scheme developed in Part I to track the dynamics of a dry highly nonlinear barotropic/baroclinic coupled solitary wave, as introduced by Biello and Majda (2004), and of the moisture fronts of Frierson et al. (2004) in the presence of dry gravity waves, a barotropic trade wind, and the beta effect. It is demonstrated that, for the barotropic/baroclinic solitary wave, except for a little numerical dissipation, the scheme utilized here preserves total energy despite the strong interactions and exchange of energy between the baroclinic and barotropic components of the flow. After a short transient period where the numerical solution stays close to the asymptotic predictions, the flow develops small scale eddies and ultimately becomes highly turbulent. It is found here that the interaction of a dry gravity wave with a moisture front can either result in a reflection of a fast moistening front or the pure extinction of the precipitation. The barotropic trade wind stretches the precipitation patches and increases the lifetime of the moisture fronts which decay naturally by the effects of dissipation through precipitation while the Coriolis effect makes the moving precipitation patches disappear and appear at other times and places. (orig.)

  7. A high-order WENO-Z finite difference based particle-source-in-cell method for computation of particle-laden flows with shocks

    Science.gov (United States)

    Jacobs, Gustaaf B.; Don, Wai-Sun

    2009-03-01

    A high-order particle-source-in-cell (PSIC) algorithm is presented for the computation of the interaction between shocks, small scale structures, and liquid and/or solid particles in high-speed engineering applications. The improved high-order finite difference weighted essentially non-oscillatory (WENO-Z) method for solution of the hyperbolic conservation laws that govern the shocked carrier gas flow, lies at the heart of the algorithm. Finite sized particles are modeled as points and are traced in the Lagrangian frame. The physical coupling of particles in the Lagrangian frame and the gas in the Eulerian frame through momentum and energy exchange, is numerically treated through high-order interpolation and weighing. The centered high-order interpolation of the fluid properties to the particle location is shown to lead to numerical instability in shocked flow. An essentially non-oscillatory interpolation (ENO) scheme is devised for the coupling that improves stability. The ENO based algorithm is shown to be numerically stable and to accurately capture shocks, small flow features and particle dispersion. Both the carrier gas and the particles are updated in time without splitting with a third-order Runge-Kutta TVD method. One and two-dimensional computations of a shock moving into a particle cloud demonstrates the characteristics of the WENO-Z based PSIC method (PSIC/WENO-Z). The PSIC/WENO-Z computations are not only in excellent agreement with the numerical simulations with a third-order Rusanov based PSIC and physical experiments in [V. Boiko, V.P. Kiselev, S.P. Kiselev, A. Papyrin, S. Poplavsky, V. Fomin, Shock wave interaction with a cloud of particles, Shock Waves, 7 (1997) 275-285], but also show a significant improvement in the resolution of small scale structures. In two-dimensional simulations of the Mach 3 shock moving into forty thousand bronze particles arranged in the shape of a rectangle, the long time accuracy of the high-order method is demonstrated

  8. A new limiting procedure for discontinuous Galerkin methods applied to compressible multiphase flows with shocks and interfaces

    Science.gov (United States)

    Henry de Frahan, Marc T.; Varadan, Sreenivas; Johnsen, Eric

    2015-01-01

    Although the Discontinuous Galerkin (DG) method has seen widespread use for compressible flow problems in a single fluid with constant material properties, it has yet to be implemented in a consistent fashion for compressible multiphase flows with shocks and interfaces. Specifically, it is challenging to design a scheme that meets the following requirements: conservation, high-order accuracy in smooth regions and non-oscillatory behavior at discontinuities (in particular, material interfaces). Following the interface-capturing approach of Abgrall [1], we model flows of multiple fluid components or phases using a single equation of state with variable material properties; discontinuities in these properties correspond to interfaces. To represent compressible phenomena in solids, liquids, and gases, we present our analysis for equations of state belonging to the Mie-Grüneisen family. Within the DG framework, we propose a conservative, high-order accurate, and non-oscillatory limiting procedure, verified with simple multifluid and multiphase problems. We show analytically that two key elements are required to prevent spurious pressure oscillations at interfaces and maintain conservation: (i) the transport equation(s) describing the material properties must be solved in a non-conservative weak form, and (ii) the suitable variables must be limited (density, momentum, pressure, and appropriate properties entering the equation of state), coupled with a consistent reconstruction of the energy. Further, we introduce a physics-based discontinuity sensor to apply limiting in a solution-adaptive fashion. We verify this approach with one- and two-dimensional problems with shocks and interfaces, including high pressure and density ratios, for fluids obeying different equations of state to illustrate the robustness and versatility of the method. The algorithm is implemented on parallel graphics processing units (GPU) to achieve high speedup.

  9. An explicit relaxation filtering framework based upon Perona-Malik anisotropic diffusion for shock capturing and subgrid scale modeling of Burgers turbulence

    CERN Document Server

    Maulik, Romit

    2016-01-01

    In this paper, we introduce a relaxation filtering closure approach to account for subgrid scale effects in explicitly filtered large eddy simulations using the concept of anisotropic diffusion. We utilize the Perona-Malik diffusion model and demonstrate its shock capturing ability and spectral performance for solving the Burgers turbulence problem, which is a simplified prototype for more realistic turbulent flows showing the same quadratic nonlinearity. Our numerical assessments present the behavior of various diffusivity functions in conjunction with a detailed sensitivity analysis with respect to the free modeling parameters. In comparison to direct numerical simulation (DNS) and under-resolved DNS results, we find that the proposed closure model is efficient in the prevention of energy accumulation at grid cut-off and is also adept at preventing any possible spurious numerical oscillations due to shock formation under the optimal parameter choices. In contrast to other relaxation filtering approaches, it...

  10. Non-oscillatory Central Differencing (Noc) Scheme to Solve the Shallow Water Equations Coupled with Sediment Transport and Bed Evolution in Two Dimensions

    Science.gov (United States)

    Zia, H.; Simpson, G.

    2013-12-01

    The interaction between flowing surface water and sediment transport has numerous important applications in Earth science, including controls on river patterns, drainage basin evolution and morphological changes induced by extreme events such as tsunamis and dam breaks. Many of these problems can be investigated with the mathematical model of the shallow water equations coupled to conservation of sediment concentration and empirical functions for bed friction, substrate erosion and deposition. However, this system of equations is highly nonlinear, requiring fast and robust numerical methods. In this study, we investigate the solution of the shallow water equations coupled to sediment transports via the Non-oscillatory Central Differencing (NOC ) method, a second order scheme based on a predictor-corrector method. The scheme is chosen for its relative stability and robustness. The NOC scheme is especially favorable in situations where the water depth approaches zero and for steady flow conditions, both of which cause problems with more naive schemes. The model is verified by comparing computed results with documented solutions. We are currently using the model to investigate coupling between flow and sediment transport in alluvial rivers.

  11. APPLICATION OF WEIGHTED NON- OSCILLATORY AND NON-FREE- PARAMETER DISSIPATION DIFFERENCE SCHEME IN CALCULATING THE FLOW OF VIBRATING FLAT CASCADE

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A dual-time method is introduced to calculate the unsteady flow in a certain vibrating flat cascade. An implicit lower-upper symmetric-gauss-seidel scheme(LU-SGS) is applied for time stepping in pseudo time domains, and the convection items are discretized with the spatial three-order weighted non-oscillatory and non-free-parameter dissipation difference (WNND) scheme. The turbulence model adopts q-( low-Reynolds-number model. The frequency spectrums of lift coefficients and the unsteady pressure-difference coefficients at different spanwise heights as well as the entropy contours at blade tips on different vibrating instants, are obtained. By the analysis of frequency spectrums of lift coefficients at three spanwise heights, it is considered that there exist obvious non-linear perturbations in the flow induced by the vibrating, and the perturbation frequencies are higher than the basic frequency. The entropy contours at blade tips at different times display an intensively unsteady attribute of the flow under large amplitudes.

  12. Investigation of shock focusing in a cavity with incident shock diffracted by an obstacle

    Science.gov (United States)

    Zhang, Q.; Chen, X.; He, L.-M.; Rong, K.; Deiterding, R.

    2017-03-01

    Experiments and numerical simulations were carried out in order to investigate the focusing of a shock wave in a test section after the incident shock has been diffracted by an obstacle. A conventional shock tube was used to generate the planar shock. Incident shock Mach numbers of 1.4 and 2.1 were tested. A high-speed camera was employed to obtain schlieren photos of the flow field in the experiments. In the numerical simulations, a weighted essentially non-oscillatory (WENO) scheme of third-order accuracy supplemented with structured dynamic mesh adaptation was adopted to simulate the shock wave interaction. Good agreement between experiments and numerical results is observed. The configurations exhibit shock reflection phenomena, shock-vortex interaction and—in particular—shock focusing. The pressure history in the cavity apex was recorded and compared with the numerical results. A quantitative analysis of the numerically observed shock reflection configurations is also performed by employing a pseudo-steady shock transition boundary calculation technique. Regular reflection, single Mach reflection and transitional Mach reflection phenomena are observed and are found to correlate well with analytic predictions from shock reflection theory.

  13. Climate shocks and conflict

    NARCIS (Netherlands)

    Papaioannou, Kostadis J.

    2016-01-01

    This paper offers a historical micro-level analysis of the impact of climate shocks on the incidence of civil conflict in colonial Nigeria (1912-1945). Primary historical sources on court cases, prisoners and homicides are used to capture conflict. To measure climate shocks we use the deviation f

  14. Non-Oscillatory Central Schemes for One- and Two-Dimensional MHD Equations. II: High-Order Semi-Discrete Schemes

    Science.gov (United States)

    2004-06-20

    t) + 4(uWj+1,k(t)− uEj,k(t)) + uSWj+1,k(t)− uSEj,k (t) ) , (2.25) Hzj ,k+ 12 (t) = 1 12 [ g(uSWj,k+1(t)) + g(u NW j,k (t)) + 4(g(u S j,k+1(t)) + g(u...problem consists of a left–moving fast rarefaction wave (FR), followed by a tangential discontinuity ( TD ), and a right moving fast shock (FS) with Mach

  15. Shock Detector for SURF model

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-11

    SURF and its extension SURFplus are reactive burn models aimed at shock initiation and propagation of detonation waves in high explosives. A distinctive feature of these models is that the burn rate depends on the lead shock pressure. A key part of the models is an algorithm to detect the lead shock. Typically, shock capturing hydro algorithms have small oscillations behind a shock. Here we investigate how well the shock detection algorithm works for a nearly steady propagating detonation wave in one-dimension using the Eulerian xRage code.

  16. Shock Detector for SURF model

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-11

    SURF and its extension SURFplus are reactive burn models aimed at shock initiation and propagation of detonation waves in high explosives. A distinctive feature of these models is that the burn rate depends on the lead shock pressure. A key part of the models is an algorithm to detect the lead shock. Typically, shock capturing hydro algorithms have small oscillations behind a shock. Here we investigate how well the shock detection algorithm works for a nearly steady propagating detonation wave in one-dimension using the Eulerian xRage code.

  17. Capturing Thoughts, Capturing Minds?

    DEFF Research Database (Denmark)

    Nielsen, Janni

    2004-01-01

    Think Aloud is cost effective, promises access to the user's mind and is the applied usability technique. But 'keep talking' is difficult, besides, the multimodal interface is visual not verbal. Eye-tracking seems to get around the verbalisation problem. It captures the visual focus of attention...

  18. Classification of sepsis, severe sepsis and septic shock: the impact of minor variations in data capture and definition of SIRS criteria.

    Science.gov (United States)

    Klein Klouwenberg, Peter M C; Ong, David S Y; Bonten, Marc J M; Cremer, Olaf L

    2012-05-01

    To quantify the effects of minor variations in the definition and measurement of systemic inflammatory response syndrome (SIRS) criteria and organ failure on the observed incidences of sepsis, severe sepsis and septic shock. We conducted a prospective, observational study in a tertiary intensive care unit in The Netherlands between January 2009 and October 2010. A total of 1,072 consecutive adults were included. We determined the upper and lower limits of the measured incidence of sepsis by evaluating the influence of the use of an automated versus a manual method of data collection, and variations in the number of SIRS criteria, concurrency of SIRS criteria, and duration of abnormal values required to make a particular diagnosis. The measured incidence of SIRS varied from 49% (most restrictive setting) to 99% (most liberal setting). Subsequently, the incidences of sepsis, severe sepsis and septic shock ranged from 22 to 31%, from 6 to 27% and from 4 to 9% for the most restrictive versus the most liberal measurement settings, respectively. In non-infected patients, 39-98% of patients had SIRS, whereas still 17-6% of patients without SIRS had an infection. The apparent incidence of sepsis heavily depends on minor variations in the definition of SIRS and mode of data recording. As a consequence, the current consensus criteria do not ensure uniform recruitment of patients into sepsis trials.

  19. The shock-vortex interaction patterns affected by vortex flow regime and vortex models

    Science.gov (United States)

    Chang, Keun-Shik; Barik, Hrushikesh; Chang, Se-Myong

    2009-08-01

    We have used a third-order essentially non-oscillatory method to obtain numerical shadowgraphs for investigation of shock-vortex interaction patterns. To search different interaction patterns, we have tested two vortex models (the composite vortex model and the Taylor vortex model) and as many as 47 parametric data sets. By shock-vortex interaction, the impinging shock is deformed to a S-shape with leading and lagging parts of the shock. The vortex flow is locally accelerated by the leading shock and locally decelerated by the lagging shock, having a severely elongated vortex core with two vertices. When the leading shock escapes the vortex, implosion effect creates a high pressure in the vertex area where the flow had been most expanded. This compressed region spreads in time with two frontal waves, an induced expansion wave and an induced compression wave. They are subsonic waves when the shock-vortex interaction is weak but become supersonic waves for strong interactions. Under a intermediate interaction, however, an induced shock wave is first developed where flow speed is supersonic but is dissipated where the incoming flow is subsonic. We have identified three different interaction patterns that depend on the vortex flow regime characterized by the shock-vortex interaction.

  20. Simulating radiative shocks in nozzle shock tubes

    Science.gov (United States)

    van der Holst, B.; Tóth, G.; Sokolov, I. V.; Daldorff, L. K. S.; Powell, K. G.; Drake, R. P.

    2012-06-01

    We use the recently developed Center for Radiative Shock Hydrodynamics (CRASH) code to numerically simulate laser-driven radiative shock experiments. These shocks are launched by an ablated beryllium disk and are driven down xenon-filled plastic tubes. The simulations are initialized by the two-dimensional version of the Lagrangian Hyades code which is used to evaluate the laser energy deposition during the first 1.1 ns. Later times are calculated with the CRASH code. CRASH solves for the multi-material hydrodynamics with separate electron and ion temperatures on an Eulerian block-adaptive-mesh and includes a multi-group flux-limited radiation diffusion and electron thermal heat conduction. The goal of the present paper is to demonstrate the capability to simulate radiative shocks of essentially three-dimensional experimental configurations, such as circular and elliptical nozzles. We show that the compound shock structure of the primary and wall shock is captured and verify that the shock properties are consistent with order-of-magnitude estimates. The synthetic radiographs produced can be used for comparison with future nozzle experiments at high-energy-density laser facilities.

  1. Simulating radiative shocks in nozzle shock tubes

    CERN Document Server

    van der Holst, B; Sokolov, I V; Daldorff, L K S; Powell, K G; Drake, R P

    2011-01-01

    We use the recently developed Center for Radiative Shock Hydrodynamics (CRASH) code to numerically simulate laser-driven radiative shock experiments. These shocks are launched by an ablated beryllium disk and are driven down xenon-filled plastic tubes. The simulations are initialized by the two-dimensional version of the Lagrangian Hyades code which is used to evaluate the laser energy deposition during the first 1.1ns. The later times are calculated with the CRASH code. This code solves for the multi-material hydrodynamics with separate electron and ion temperatures on an Eulerian block-adaptive-mesh and includes a multi-group flux-limited radiation diffusion and electron thermal heat conduction. The goal of the present paper is to demonstrate the capability to simulate radiative shocks of essentially three-dimensional experimental configurations, such as circular and elliptical nozzles. We show that the compound shock structure of the primary and wall shock is captured and verify that the shock properties a...

  2. Cardiogenic shock

    Science.gov (United States)

    Shock - cardiogenic ... electrical system of the heart (heart block) Cardiogenic shock occurs when the heart is unable to pump ... orthostatic hypotension) Weak (thready) pulse To diagnose cardiogenic shock, a catheter (tube) may be placed in the ...

  3. Capture reactions

    NARCIS (Netherlands)

    Endt, P.M.

    1956-01-01

    Capture reactions will be considered here from the viewpoint of the nuclear spectroscopist. Especially important to him are the capture of neutrons, protons, and alpha particles, which may proceed through narrow resonances, offering a well defined initial state for the subsequent deexcitation proces

  4. 运动激波与气泡串相互作用的多介质数值模拟%MULTI-MATERIAL NUMERICAL SIMULATION OF MOVING SHOCK INTERACTING WITH CONSECUTIVE BUBBLES

    Institute of Scientific and Technical Information of China (English)

    张军; 任登凤; 谭俊杰

    2009-01-01

    Numerical simulations are performed on the interface with large deformation induced by the interaction between a moving shock and two consecutive bubbles. The high performance of the level set method for multi-material interfaces is demonstrated. Discontinuous Galerkin finite element method is used to solve Eulerian equations. And the fifth-order weighted essentially non-oscillatory (WENO) scheme is used to solve the level set equation for capturing multi-material interfaces. The ghost fluid method is used to deal with the interfacial boundary condition. Results are obtained for two bubble interacting with a moving shock. The contours of the constant density and the pressure at different time are given. In the computational domain, three different cases are considered, i.e. two helium bubbles, a helium bubble followed by an R22 bubble in the direction of the moving shock, and an R22 bubble followed by a helium bubble. Computational results indicate that multi-material interfaces can be properly captured by the level set method. Therefore, for problems involving the flow of three different materials with two different interfaces, each interface separating two different materials can be similarly handled.%通过对激波和流体界面相互作用而诱导的大变形界面演化的数值模拟,验证了Level set 方法精确模拟多个流体界面的有效性.采用间断有限元Galerkin方法求解欧拉方程得到流场解,采用5阶WENO格式求解Level set方程追踪多流体界面,界面附近的边界条件由虚拟流体方法处理.对运动激波和两个气泡相互作用过程进行了数值模拟,得到了不同时刻的压力和密度等值线分布,并分析了计算域中两个气泡同是氦气泡,以及一个是氦气泡,一个是R22气泡情况下的计算结果.计算结果表明:利用多界面Level set方程可高质量地捕捉多个流体界面,处理3种多介质流场数值模拟问题.

  5. Hypovolemic shock

    Science.gov (United States)

    ... thready Tests that may be done include: Blood chemistry, including kidney function tests and those tests looking ... severe shock. Severe hypovolemic shock may lead to death, even with immediate medical attention. Older adults are ...

  6. [Cardiogenic shock].

    Science.gov (United States)

    Houegnifioh, Komlanvi Kafui; Gfeller, Etienne; Garcia, Wenceslao; Ribordy, Vincent

    2014-08-13

    Cardiogenic shock, especially when it complicates a myocardial infarction, is still associated with high mortality rate. Emergency department or first care physicians are often the first providers to assess the cardiogenic shock patient, and plays thereby a key role in achieving a timely diagnosis and treatment. This review will detail the actual physiopathology understanding of the cardiogenic shock, its diagnosis and management focusing on the care within the emergency department.

  7. Capturing appearance

    Science.gov (United States)

    Rushmeier, Holly E.

    2005-01-01

    For computer graphics applications, capturing the appearance parameters of objects (reflectance, transmittance and small scale surface structures), is as important as capturing the overall shape. We briefly review recent approaches developed by the computer graphics community to solve this problem. Excellent results have been obtained by various researchers measuring spatially varying reflectance functions for some classes of objects. We will consider some challenges from two of the remaining problematic classes of objects. First we will describe our experience scanning and modeling the throne of Tutankhamen. The major difficulties in this case were that the base shape was a highly detailed non-convex geometry with complex topology, and the shape was covered by optically uncooperative gold and silver. Then we will discuss some observations from our ongoing project to scan and model historic buildings on the Yale campus. The major difficulties in this second case are quantity of data and the lack of control over acquisition conditions.

  8. Reentry Shock

    Institute of Scientific and Technical Information of China (English)

    Dorine; Houston

    1998-01-01

    Dear Xiao Lan, You remember the pain of culture and reentry shock; humor me please; let mereview the facts for the sake of the students you are sending here in greater numbers.Culture shock is the emotional pain that people experience when they visit a newcountry and find customs, experiences, smells, and non-verbal communication stylesto be different from their own country.

  9. Are gauge shocks really shocks?

    CERN Document Server

    Alcubierre, M

    2005-01-01

    The existence of gauge pathologies associated with the Bona-Masso family of generalized harmonic slicing conditions is proven for the case of simple 1+1 relativity. It is shown that these gauge pathologies are true shocks in the sense that the characteristic lines associated with the propagation of the gauge cross, which implies that the name ``gauge shock'' usually given to such pathologies is indeed correct. These gauge shocks are associated with places where the spatial hypersurfaces that determine the foliation of spacetime become non-smooth.

  10. Simulations of Turbulent Flows with Strong Shocks and Density Variations

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Xiaolin

    2012-12-13

    In this report, we present the research efforts made by our group at UCLA in the SciDAC project Simulations of turbulent flows with strong shocks and density variations. We use shock-fitting methodologies as an alternative to shock-capturing schemes for the problems where a well defined shock is present. In past five years, we have focused on development of high-order shock-fitting Navier-Stokes solvers for perfect gas flow and thermochemical non-equilibrium flow and simulation of shock-turbulence interaction physics for very strong shocks. Such simulation has not been possible before because the limitation of conventional shock capturing methods. The limitation of shock Mach number is removed by using our high-order shock-fitting scheme. With the help of DOE and TeraGrid/XSEDE super computing resources, we have obtained new results which show new trends of turbulence statistics behind the shock which were not known before. Moreover, we are also developing tools to consider multi-species non-equilibrium flows. The main results are in three areas: (1) development of high-order shock-fitting scheme for perfect gas flow, (2) Direct Numerical Simulation (DNS) of interaction of realistic turbulence with moderate to very strong shocks using super computing resources, and (3) development and implementation of models for computation of mutli-species non-quilibrium flows with shock-fitting codes.

  11. Converging cylindrical shocks in ideal magnetohydrodynamics

    KAUST Repository

    Pullin, D. I.

    2014-09-01

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R = √μ0/p0 I/(2π) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field then

  12. Converging cylindrical shocks in ideal magnetohydrodynamics

    Science.gov (United States)

    Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R.

    2014-09-01

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=sqrt{μ _0/p_0} I/(2 π ) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field

  13. [Neurogenic shock].

    Science.gov (United States)

    Meister, Rafael; Pasquier, Mathieu; Clerc, David; Carron, Pierre-Nicolas

    2014-08-13

    The neurogenic shock is a common complication of spinal cord injury, especially when localized at the cervical level. Characterized by a vasoplegia (hypotension) and bradycardia, the neurogenic shock is secondary to the damage of the sympathetic nervous system. The clinical presentation often includes tetraplegia, with or without respiratory failure. Early treatment aims to minimize the occurrence of secondary spinal cord lesions resulting from systemic ischemic injuries. Medical management consists in a standardized ABCDE approach, in order to stabilize vital functions and immobilize the spine. The hospital care includes performing imaging, further measures of neuro-resuscitation, and coordinated surgical assessment and treatment of any other injury.

  14. Electromyographic activity of shoulder muscles during exercises performed with oscillatory and non-oscillatory poles Atividade eletromiográfica dos músculos do ombro durante exercícios executados com hastes oscilatória e não oscilatória

    Directory of Open Access Journals (Sweden)

    Camilla Z. Hallal

    2011-04-01

    Full Text Available BACKGROUND: Pain and dysfunction of the shoulder complex are commonly found physiotherapy practice. These musculoskeletal abnormalities are related to instability and inadequate kinematic function, that depend on the integrity of the muscle tissues. Thus, to enhance the results of exercise therapies, and prevent and attenuate pain and dynfunction, the use of oscillatory pole has been implemented in clinical practice. OBJECTIVES: The purpose of this study was to analyze the electromyographic (EMG activity of shoulder stabilizing muscles during exercises performed with an oscillatory and a non-oscillatory pole. METHODS: Twelve female volunteers, aged 20.4 years±1.9, participated in this study. EMG data were collected from upper trapezius (UT, lower trapezius (LT and middle deltoid (MD during three different exercises with an oscillatory and a non-oscillatory pole. The EMG signals were analyzed in the time domain through the calculation of Root Mean Square (RMS. The RMS values were normalized by the peak value obtained over all trials for each muscle. Statistical analysis was performed with repeated measures ANOVA and post-hoc of Bonferroni tests. RESULTS: The EMG activity of UT, LT and MD muscles were significantly higher with the oscillatory pole than the non-oscillatory pole (all pCONTEXTUALIZAÇÃO: A dor e a disfunção no complexo articular do ombro é comumente encontrada na prática fisioterapêutica. Essas anormalidades musculoesqueléticas estão relacionadas à instabilidade e inadequado funcionamento cinemático, que dependem da integridade dos tecidos musculares. Assim, no sentido de prevenir e reabilitar esses sintomas, o uso da haste oscilatória vem sendo implantado para melhorar os resultados de técnicas cinesioterapêuticas. OBJETIVOS: Analisar a atividade eletromiográfica (EMG dos músculos que estabilizam a articulação do ombro durante a realização de exercícios com haste oscilatória e haste não-oscilatória. M

  15. Ion Injection at Non-relativistic Collisionless Shocks

    CERN Document Server

    Caprioli, Damiano; Spitkovsky, Anatoly

    2014-01-01

    We use kinetic hybrid simulations (kinetic ions - fluid electrons) to characterize the fraction of ions that are accelerated to non-thermal energies at non-relativistic collisionless shocks. We investigate the properties of the shock discontinuity and show that shocks propagating almost along the background magnetic field (quasi-parallel shocks) reform quasi-periodically on ion cyclotron scales. Ions that impinge on the shock when the discontinuity is the steepest are specularly reflected. This is a necessary condition for being injected, but it is not sufficient. Also by following the trajectories of reflected ions, we calculate the minimum energy needed for injection into diffusive shock acceleration, as a function of the shock inclination. We construct a minimal model that accounts for the ion reflection from quasi-periodic shock barrier, for the fraction of injected ions, and for the ion spectrum throughout the transition from thermal to non-thermal energies. This model captures the physics relevant for i...

  16. Culture Shock

    Institute of Scientific and Technical Information of China (English)

    宋文玲

    2004-01-01

    Specialists say that it is not easy to get used to life in a new culture.“Culture shock”is the term these specialists use when talking about the feelings that people have in a new environment.There are three stages of culture shock,say the specialists.In the first stage,the newcomers like their new environment,Then when the fresh experience

  17. Shock Waves

    CERN Document Server

    Jiang, Z

    2005-01-01

    The International Symposium on Shock Waves (ISSW) is a well established series of conferences held every two years in a different location. A unique feature of the ISSW is the emphasis on bridging the gap between physicists and engineers working in fields as different as gas dynamics, fluid mechanics and materials sciences. The main results presented at these meetings constitute valuable proceedings that offer anyone working in this field an authoritative and comprehensive source of reference.

  18. [Definition of shock types].

    Science.gov (United States)

    Adams, H A; Baumann, G; Gänsslen, A; Janssens, U; Knoefel, W; Koch, T; Marx, G; Müller-Werdan, U; Pape, H C; Prange, W; Roesner, D; Standl, T; Teske, W; Werner, G; Zander, R

    2001-11-01

    Definitions of shock types. Hypovolaemic shock is a state of insufficient perfusion of vital organs with consecutive imbalance of oxygen supply and demand due to an intravascular volume deficiency with critically impaired cardiac preload. Subtypes are haemorrhagic shock, hypovolaemic shock in the narrow sense, traumatic-haemorrhagic shock and traumatic-hypovolaemic shock. Cardiac shock is caused by a primary critical cardiac pump failure with consecutive inadequate oxygen supply of the organism. Anaphylactic shock is an acute failure of blood volume distribution (distributive shock) and caused by IgE-dependent, type-I-allergic, classical hypersensibility, or a physically, chemically, or osmotically induced IgE-independent anaphylactoid hypersensibility. The septic shock is a sepsis-induced distribution failure of the circulating blood volume in the sense of a distributive shock. The neurogenic shock is a distributive shock induced by generalized and extensive vasodilatation with consecutive hypovolaemia due to an imbalance of sympathetic and parasympathetic regulation of vascular smooth muscles.

  19. Localized shocks

    CERN Document Server

    Roberts, Daniel A; Susskind, Leonard

    2014-01-01

    We study products of precursors of spatially local operators, $W_{x_{n}}(t_{n}) ... W_{x_1}(t_1)$, where $W_x(t) = e^{-iHt} W_x e^{iHt}$. Using chaotic spin-chain numerics and gauge/gravity duality, we show that a single precursor fills a spatial region that grows linearly in $t$. In a lattice system, products of such operators can be represented using tensor networks. In gauge/gravity duality, they are related to Einstein-Rosen bridges supported by localized shock waves. We find a geometrical correspondence between these two descriptions, generalizing earlier work in the spatially homogeneous case.

  20. Effects of Fin Leading Edge Sweep on Shock-Shock Interaction at Mach 6

    Science.gov (United States)

    Berry, Scott A.; Nowak, Robert J.

    1996-01-01

    The effects of fin leading edge sweep on peak heating rates due to shock-shock interaction have been experimentally examined in the Langley 20-Inch Mach 6 Tunnel. The shock interaction was produced by the intersection of a planar incident shock (16.8 deg shock angle relative to the freestream, generated by a 9 deg wedge) with the bow shock formed around a O.5-inch diameter cylindrical leading edge fin. Heating distributions along the leading edge stagnation line have been obtained using densely spaced thin film resistive-type sensors. Schlieren images were obtained to illustrate the very complex shock-shock interactions. The fin leading edge sweep angle was varied from 15-degrees swept back to 45-degrees swept forward for a freestream unit Reynolds number of 2 x 10(exp 6)/ft. Two models were utilized during the study, one with 0.025-inch spacing between gage centers, and the other 0.015-inch spacing. Gage spatial resolution on the order of 0.015-in appeared to accurately capture the narrow spike in heating. Peak heating due to shock interaction was maximized when the fin was swept forward 15 deg and 25 deg, both promoting augmentations about 7 times the baseline value. The schlieren images for these cases revealed Type 4 and Type 3 interactions, respectively.

  1. Video Screen Capture Basics

    Science.gov (United States)

    Dunbar, Laura

    2014-01-01

    This article is an introduction to video screen capture. Basic information of two software programs, QuickTime for Mac and BlueBerry Flashback Express for PC, are also discussed. Practical applications for video screen capture are given.

  2. Experimental Investigation of Shock Wave Surfing

    CERN Document Server

    Parziale, N J; Hornung, H G; Shepherd, J E

    2010-01-01

    Shock wave surfing is investigated experimentally in GALCIT's Mach 4.0 Ludwieg Tube. Shock wave surfing occurs when a secondary free-body follows the bow shock formed by a primary free-body; an example of shock wave surfing occurs during meteorite breakup. The free-bodies in the current investigation are nylon spheres. During each run in the Ludwieg tube a high speed camera is used to capture a series of schlieren images; edge tracking software is used to measure the position of each sphere. Velocity and acceleration are had from processing the position data. The radius ratio and initial orientation of the two spheres are varied in the test matrix. The variation of sphere radius ratio and initial angle between the centers of gravity are shown to have a significant effect on the dynamics of the system.

  3. Density shock waves in confined microswimmers

    CERN Document Server

    Tsang, Alan Cheng Hou

    2015-01-01

    Motile and driven particles confined in microfluidic channels exhibit interesting emergent behavior from propagating density bands to density shock waves. A deeper understanding of the physical mechanisms responsible for these emergent structures is relevant to a number of physical and biomedical applications. Here, we study the formation of density shock waves in the context of an idealized model of microswimmers confined in a narrow channel and subject to a uniform external flow. Interestingly, these density shock waves exhibit a transition from `subsonic' with compression at the back to `supersonic' with compression at the front of the population as the intensity of the external flow increases. This behavior is the result of a non-trivial interplay between hydrodynamic interactions and geometric confinement, and is confirmed by a novel quasilinear wave model that properly captures the dependence of the shock formation on the external flow. These findings can be used to guide the development of novel mechan...

  4. Collisionless electrostatic shocks

    DEFF Research Database (Denmark)

    Andersen, H.K.; Andersen, S.A.; Jensen, Vagn Orla

    1970-01-01

    An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth......An attempt was made in the laboratory to observe the standing collisionless electrostatic shocks in connection with the bow shock of the earth...

  5. Geometrical shock dynamics for magnetohydrodynamic fast shocks

    KAUST Repository

    Mostert, W.

    2016-12-12

    We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press

  6. Cosmological shock waves: clues to the formation history of haloes

    CERN Document Server

    Planelles, Susana

    2012-01-01

    Shock waves developed during the formation and evolution of cosmic structures encode crucial information on the hierarchical formation of the Universe. We analyze an Eulerian AMR hydro + N-body simulation in a $\\Lambda$CDM cosmology focused on the study of cosmological shock waves. The combination of a shock-capturing algorithm together with the use of a halo finder allows us to study the morphological structures of the shock patterns, the statistical properties of shocked cells, and the correlations between the cosmological shock waves appearing at different scales and the properties of the haloes harbouring them. The shocks in the simulation can be split into two broad classes: internal weak shocks related with evolutionary events within haloes, and external strong shocks associated with large-scale events. The shock distribution function contains information on the abundances and strength of the different shocks, and it can be fitted by a double power law with a break in the slope around a Mach number of 2...

  7. Radiative Shock Waves In Emerging Shocks

    Science.gov (United States)

    Drake, R. Paul; Doss, F.; Visco, A.

    2011-05-01

    In laboratory experiments we produce radiative shock waves having dense, thin shells. These shocks are similar to shocks emerging from optically thick environments in astrophysics in that they are strongly radiative with optically thick shocked layers and optically thin or intermediate downstream layers through which radiation readily escapes. Examples include shocks breaking out of a Type II supernova (SN) and the radiative reverse shock during the early phases of the SN remnant produced by a red supergiant star. We produce these shocks by driving a low-Z plasma piston (Be) at > 100 km/s into Xe gas at 1.1 atm. pressure. The shocked Xe collapses to > 20 times its initial density. Measurements of structure by radiography and temperature by several methods confirm that the shock wave is strongly radiative. We observe small-scale perturbations in the post-shock layer, modulating the shock and material interfaces. We describe a variation of the Vishniac instability theory of decelerating shocks and an analysis of associated scaling relations to account for the growth of these perturbations, identify how they scale to astrophysical systems such as SN 1993J, and consider possible future experiments. Collaborators in this work have included H.F. Robey, J.P. Hughes, C.C. Kuranz, C.M. Huntington, S.H. Glenzer, T. Doeppner, D.H. Froula, M.J. Grosskopf, and D.C. Marion ________________________________ * Supported by the US DOE NNSA under the Predictive Sci. Academic Alliance Program by grant DE-FC52-08NA28616, the Stewardship Sci. Academic Alliances program by grant DE-FG52-04NA00064, and the Nat. Laser User Facility by grant DE-FG03-00SF22021.

  8. Neutron Capture Nucleosynthesis

    CERN Document Server

    Kiss, Miklos

    2016-01-01

    Heavy elements (beyond iron) are formed in neutron capture nucleosynthesis processes. We have proposed a simple unified model to investigate the neutron capture nucleosynthesis in arbitrary neutron density environment. We have also investigated what neutron density is required to reproduce the measured abundance of nuclei assuming equilibrium processes. We found both of these that the medium neutron density has a particularly important role at neutron capture nucleosynthesis. About these results most of the nuclei can formed at medium neutron capture density environment e.g. in some kind of AGB stars. Besides these observations our model is capable to use educational purpose.

  9. Capture ready study

    Energy Technology Data Exchange (ETDEWEB)

    Minchener, A.

    2007-07-15

    There are a large number of ways in which the capture of carbon as carbon dioxide (CO{sub 2}) can be integrated into fossil fuel power stations, most being applicable for both gas and coal feedstocks. To add to the choice of technology is the question of whether an existing plant should be retrofitted for capture, or whether it is more attractive to build totally new. This miscellany of choices adds considerably to the commercial risk of investing in a large power station. An intermediate stage between the non-capture and full capture state would be advantageous in helping to determine the best way forward and hence reduce those risks. In recent years the term 'carbon capture ready' or 'capture ready' has been coined to describe such an intermediate stage plant and is now widely used. However a detailed and all-encompassing definition of this term has never been published. All fossil fuel consuming plant produce a carbon dioxide gas byproduct. There is a possibility of scrubbing it with an appropriate CO{sub 2} solvent. Hence it could be said that all fossil fuel plant is in a condition for removal of its CO{sub 2} effluent and therefore already in a 'capture ready' state. Evidently, the practical reality of solvent scrubbing could cost more than the rewards offered by such as the ETS (European Trading Scheme). In which case, it can be said that although the possibility exists of capturing CO{sub 2}, it is not a commercially viable option and therefore the plant could not be described as ready for CO{sub 2} capture. The boundary between a capture ready and a non-capture ready condition using this definition cannot be determined in an objective and therefore universally acceptable way and criteria must be found which are less onerous and less potentially contentious to assess. 16 refs., 2 annexes.

  10. CAPTURED India Country Evaluation

    NARCIS (Netherlands)

    O'Donoghue, R.; Brouwers, J.H.A.M.

    2012-01-01

    This report provides the findings of the India Country Evaluation and is produced as part of the overall CAPTURED End Evaluation. After five years of support by the CAPTURED project the End Evaluation has assessed that results are commendable. I-AIM was able to design an approach in which health fol

  11. Carbon Capture and Storage

    NARCIS (Netherlands)

    Benson, S.M.; Bennaceur, K.; Cook, P.; Davison, J.; Coninck, H. de; Farhat, K.; Ramirez, C.A.; Simbeck, D.; Surles, T.; Verma, P.; Wright, I.

    2012-01-01

    Emissions of carbon dioxide, the most important long-lived anthropogenic greenhouse gas, can be reduced by Carbon Capture and Storage (CCS). CCS involves the integration of four elements: CO 2 capture, compression of the CO2 from a gas to a liquid or a denser gas, transportation of pressurized CO 2

  12. Carbon Capture and Storage

    NARCIS (Netherlands)

    Benson, S.M.; Bennaceur, K.; Cook, P.; Davison, J.; Coninck, H. de; Farhat, K.; Ramirez, C.A.; Simbeck, D.; Surles, T.; Verma, P.; Wright, I.

    2012-01-01

    Emissions of carbon dioxide, the most important long-lived anthropogenic greenhouse gas, can be reduced by Carbon Capture and Storage (CCS). CCS involves the integration of four elements: CO 2 capture, compression of the CO2 from a gas to a liquid or a denser gas, transportation of pressurized CO 2

  13. CAPTURED India Country Evaluation

    NARCIS (Netherlands)

    O'Donoghue, R.; Brouwers, J.H.A.M.

    2012-01-01

    This report provides the findings of the India Country Evaluation and is produced as part of the overall CAPTURED End Evaluation. After five years of support by the CAPTURED project the End Evaluation has assessed that results are commendable. I-AIM was able to design an approach in which health

  14. DIFFUSIVE SHOCK ACCELERATION AT COSMOLOGICAL SHOCK WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyesung [Department of Earth Sciences, Pusan National University, Pusan 609-735 (Korea, Republic of); Ryu, Dongsu, E-mail: kang@uju.es.pusan.ac.kr, E-mail: ryu@canopus.cnu.ac.kr [Department of Astronomy and Space Science, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2013-02-10

    We reexamine nonlinear diffusive shock acceleration (DSA) at cosmological shocks in the large-scale structure of the universe, incorporating wave-particle interactions that are expected to operate in collisionless shocks. Adopting simple phenomenological models for magnetic field amplification (MFA) by cosmic-ray (CR) streaming instabilities and Alfvenic drift, we perform kinetic DSA simulations for a wide range of sonic and Alfvenic Mach numbers and evaluate the CR injection fraction and acceleration efficiency. In our DSA model, the CR acceleration efficiency is determined mainly by the sonic Mach number M{sub s} , while the MFA factor depends on the Alfvenic Mach number and the degree of shock modification by CRs. We show that at strong CR modified shocks, if scattering centers drift with an effective Alfven speed in the amplified magnetic field, the CR energy spectrum is steepened and the acceleration efficiency is reduced significantly, compared to the cases without such effects. As a result, the postshock CR pressure saturates roughly at {approx}20% of the shock ram pressure for strong shocks with M{sub s} {approx}> 10. In the test-particle regime (M{sub s} {approx}< 3), it is expected that the magnetic field is not amplified and the Alfvenic drift effects are insignificant, although relevant plasma physical processes at low Mach number shocks remain largely uncertain.

  15. Streptococcal toxic shock syndrome

    OpenAIRE

    Gvozdenović Ljiljana; Pasternak Janko; Milovanović Stanislav; Ivanov Dejan; Milić Saša

    2010-01-01

    Introduction. Streptococcal toxic shock syndrome is now recognized as a toxin-mediated, multisystem illness. It is characterized by an early onset of shock with multiorgan failure and continues to be associated with high morbidity and mortality, caused by group A Streptococcus pyogenes. The symptoms for staphylococcal and streptococcal toxic shock syndrome are similar. Streptococcal toxic shock syndrome was not well described until 1993, when children who had suffered from varicella pre...

  16. Biomass shock pretreatment

    Science.gov (United States)

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  17. When Shock Waves Collide

    CERN Document Server

    Hartigan, P; Frank, A; Hansen, E; Yirak, K; Liao, A S; Graham, P; Wilde, B; Blue, B; Martinez, D; Rosen, P; Farley, D; Paguio, R

    2016-01-01

    Supersonic outflows from objects as varied as stellar jets, massive stars and novae often exhibit multiple shock waves that overlap one another. When the intersection angle between two shock waves exceeds a critical value, the system reconfigures its geometry to create a normal shock known as a Mach stem where the shocks meet. Mach stems are important for interpreting emission-line images of shocked gas because a normal shock produces higher postshock temperatures and therefore a higher-excitation spectrum than an oblique one does. In this paper we summarize the results of a series of numerical simulations and laboratory experiments designed to quantify how Mach stems behave in supersonic plasmas that are the norm in astrophysical flows. The experiments test analytical predictions for critical angles where Mach stems should form, and quantify how Mach stems grow and decay as intersection angles between the incident shock and a surface change. While small Mach stems are destroyed by surface irregularities and ...

  18. Marine turtle capture data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To estimate abundance, growth, and survival rate and to collect tissue samples, marine turtles are captured at nesting beaches and foraging grounds through various...

  19. Preparing to Capture Carbon

    National Research Council Canada - National Science Library

    Daniel P. Schrag

    2007-01-01

    .... Scientific and economic challenges still exist, but none are serious enough to suggest that carbon capture and storage will not work at the scale required to offset trillions of tons of carbon...

  20. Experimental investigation of shock wave - bubble interaction

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Mohsen

    2010-04-09

    In this work, the dynamics of laser-generated single cavitation bubbles exposed to lithotripter shock waves has been investigated experimentally. The energy of the impinging shock wave is varied in several steps. High-speed photography and pressure field measurements simultaneously with image acquisition provide the possibility of capturing the fast bubble dynamics under the effect of the shock wave impact. The pressure measurement is performed using a fiber optic probe hydrophone (FOPH) which operates based on optical diagnostics of the shock wave propagating medium. After a short introduction in chapter 1 an overview of the previous studies in chapter 2 is presented. The reported literatures include theoretical and experimental investigations of several configurations of physical problems in the field of bubble dynamics. In chapter 3 a theoretical description of propagation of a shock wave in a liquid like water has been discussed. Different kinds of reflection of a shock wave at an interface are taken into account. Undisturbed bubble dynamics as well as interaction between a planar shock wave and an initially spherical bubble are explored theoretically. Some physical parameters which are important in this issue such as the velocity of the shock-induced liquid jet, Kelvin impulse and kinetic energy are explained. The shock waves are generated in a water filled container by a focusing piezoelectric generator. The shock wave profile has a positive part with pulse duration of ∼1 μs followed by a longer tension tail (i.e. ∼3 μs). In chapter 4 high-speed images depict the propagation of a shock wave in the water filled tank. The maximum pressure is also derived for different intensity levels of the shock wave generator. The measurement is performed in the free field (i.e. in the absence of laser-generated single bubbles). In chapter 5 the interaction between lithotripter shock waves and laserinduced single cavitation bubbles is investigated experimentally. An

  1. Experimental investigation of shock wave - bubble interaction

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Mohsen

    2010-04-09

    In this work, the dynamics of laser-generated single cavitation bubbles exposed to lithotripter shock waves has been investigated experimentally. The energy of the impinging shock wave is varied in several steps. High-speed photography and pressure field measurements simultaneously with image acquisition provide the possibility of capturing the fast bubble dynamics under the effect of the shock wave impact. The pressure measurement is performed using a fiber optic probe hydrophone (FOPH) which operates based on optical diagnostics of the shock wave propagating medium. After a short introduction in chapter 1 an overview of the previous studies in chapter 2 is presented. The reported literatures include theoretical and experimental investigations of several configurations of physical problems in the field of bubble dynamics. In chapter 3 a theoretical description of propagation of a shock wave in a liquid like water has been discussed. Different kinds of reflection of a shock wave at an interface are taken into account. Undisturbed bubble dynamics as well as interaction between a planar shock wave and an initially spherical bubble are explored theoretically. Some physical parameters which are important in this issue such as the velocity of the shock-induced liquid jet, Kelvin impulse and kinetic energy are explained. The shock waves are generated in a water filled container by a focusing piezoelectric generator. The shock wave profile has a positive part with pulse duration of ∼1 μs followed by a longer tension tail (i.e. ∼3 μs). In chapter 4 high-speed images depict the propagation of a shock wave in the water filled tank. The maximum pressure is also derived for different intensity levels of the shock wave generator. The measurement is performed in the free field (i.e. in the absence of laser-generated single bubbles). In chapter 5 the interaction between lithotripter shock waves and laserinduced single cavitation bubbles is investigated experimentally. An

  2. A shock-fitting technique for cell-centered finite volume methods on unstructured dynamic meshes

    Science.gov (United States)

    Zou, Dongyang; Xu, Chunguang; Dong, Haibo; Liu, Jun

    2017-09-01

    In this work, the shock-fitting technique is further developed on unstructured dynamic meshes. The shock wave is fitted and regarded as a special boundary, whose boundary conditions and boundary speed (shock speed) are determined by solving Rankine-Hugoniot relations. The fitted shock splits the entire computational region into subregions, in which the flows are free from shocks and flow states are solved by a shock-capturing code based on arbitrary Lagrangian-Eulerian algorithm. Along with the motion of the fitted shock, an unstructured dynamic meshes algorithm is used to update the internal node's position to maintain the high quality of computational meshes. The successful applications prove the present shock-fitting to be a valid technique.

  3. Numerical investigation of shock induced bubble collapse in water

    Science.gov (United States)

    Apazidis, N.

    2016-04-01

    A semi-conservative, stable, interphase-capturing numerical scheme for shock propagation in heterogeneous systems is applied to the problem of shock propagation in liquid-gas systems. The scheme is based on the volume-fraction formulation of the equations of motion for liquid and gas phases with separate equations of state. The semi-conservative formulation of the governing equations ensures the absence of spurious pressure oscillations at the material interphases between liquid and gas. Interaction of a planar shock in water with a single spherical bubble as well as twin adjacent bubbles is investigated. Several stages of the interaction process are considered, including focusing of the transmitted shock within the deformed bubble, creation of a water-hammer shock as well as generation of high-speed liquid jet in the later stages of the process.

  4. Experiments in hand-operated, hypersonic shock tunnel facility

    Science.gov (United States)

    Sudhiesh Kumar, Chintoo; Reddy, K. P. J.

    2016-11-01

    Experiments were conducted using the newly developed table-top, hand-operated hypersonic shock tunnel, otherwise known as the Reddy hypersonic shock tunnel. This novel instrument uses only manual force to generate the shock wave in the shock tube, and is designed to generate a freestream flow of Mach 6.5 in the test section. The flow was characterized using stagnation point pressure measurements made using fast-acting piezoelectric transducers. Schlieren visualization was also carried out to capture the bow shock in front of a hemispherical body placed in the flow. Freestream Mach numbers estimated at various points in the test section showed that for a minimum diameter of 46 mm within the test section, the value did not vary by more than 3 % along any cross-sectional plane. The results of the experiments presented here indicate that the device may be successfully employed for basic hypersonic research activities at the university level.

  5. Planetary Embryo Bow Shocks as a Mechanism for Chondrule Formation

    CERN Document Server

    Mann, Christopher R; Morris, Melissa M

    2016-01-01

    We use radiation hydrodynamics with direct particle integration to explore the feasibility of chondrule formation in planetary embryo bow shocks. The calculations presented here are used to explore the consequences of a Mars-size planetary embryo traveling on a moderately excited orbit through the dusty, early environment of the solar system. The embryo's eccentric orbit produces a range of supersonic relative velocities between the embryo and the circularly orbiting gas and dust, prompting the formation of bow shocks. Temporary atmospheres around these embryos, which can be created via volatile outgassing and gas capture from the surrounding nebula, can non-trivially affect thermal profiles of solids entering the shock. We explore the thermal environment of solids that traverse the bow shock at different impact radii, the effects that planetoid atmospheres have on shock morphologies, and the stripping efficiency of planetoidal atmospheres in the presence of high relative winds. Simulations are run using adia...

  6. Muon capture at PSI

    CERN Document Server

    Winter, Peter

    2010-01-01

    Measuring the rate of muon capture in hydrogen provides one of the most direct ways to study the axial current of the nucleon. The MuCap experiment uses a negative muon beam stopped in a time projection chamber operated with ultra-pure hydrogen gas. Surrounded by a decay electron detector, the lifetime of muons in hydrogen can be measured to determine the singlet capture rate Lambda_s to a final precision of 1%. The capture rate determines the nucleon's pseudoscalar form factor g_p. A first result, g_p = 7.3 +- 1.1, has been published and the final analysis of the full statistics will reduce the error by a factor of up to 3. Muon capture on the deuteron probes the weak axial current in the two-nucleon system. Within the framework of effective field theories the calculation of such two-nucleon processes involving the axial current requires the knowledge of one additional low energy constant which can be extracted from the doublet capture rate Lambda_d. The same constant then allows to model-independently calcu...

  7. Toxic Shock Syndrome (For Parents)

    Science.gov (United States)

    ... Feeding Your 1- to 2-Year-Old Toxic Shock Syndrome KidsHealth > For Parents > Toxic Shock Syndrome Print ... en español Síndrome de shock tóxico About Toxic Shock Syndrome Toxic shock syndrome (TSS) is a serious ...

  8. Muon capture in deuterium

    Science.gov (United States)

    Ricci, P.; Truhlík, E.; Mosconi, B.; Smejkal, J.

    2010-06-01

    Model dependence of the capture rates of the negative muon capture in deuterium is studied starting from potential models and the weak two-body meson exchange currents constructed in the tree approximation and also from an effective field theory. The tree one-boson exchange currents are derived from the hard pion chiral Lagrangians of the NΔπρωa system. If constructed in conjunction with the one-boson exchange potentials, the capture rates can be calculated consistently. On the other hand, the effective field theory currents, constructed within the heavy baryon chiral perturbation theory, contain a low energy constant d that cannot be extracted from data at the one-particle level nor determined from the first principles. Comparative analysis of the results for the doublet transition rate allows us to extract the constant d.

  9. Streptococcal toxic shock syndrome

    Directory of Open Access Journals (Sweden)

    Gvozdenović Ljiljana

    2010-01-01

    Full Text Available Introduction. Streptococcal toxic shock syndrome is now recognized as a toxin-mediated, multisystem illness. It is characterized by an early onset of shock with multiorgan failure and continues to be associated with high morbidity and mortality, caused by group A Streptococcus pyogenes. The symptoms for staphylococcal and streptococcal toxic shock syndrome are similar. Streptococcal toxic shock syndrome was not well described until 1993, when children who had suffered from varicella presented roughly 2-4 weeks later with a clinical syndrome highly suggestive of toxic shock syndrome. Characteristics, complications and therapy. It is characterized by a sudden onset of fever, chills, vomiting, diarrhea, muscle aches and rash. It can rapidly progress to severe and intractable hypotension and multisystem dysfunction. Almost every organ system can be involved. Complications of streptococcal toxic shock syndrome may include kidney failure, liver failure and even death. Crystalloids and inotropic agents are used to treat the hypovolemic shock aggressively, with close monitoring of the patient’s mean arterial pressure and central venous pressure. An immediate and aggressive management of hypovolemic shock is essential in streptococcal toxic shock syndrome. Targeted antibiotics are indicated; penicillin or a betalactam antibiotic is used for treating group A streptococci, and clindamycin has emerged as a key portion of the standard treatment.

  10. When Shock Waves Collide

    Science.gov (United States)

    Hartigan, P.; Foster, J.; Frank, A.; Hansen, E.; Yirak, K.; Liao, A. S.; Graham, P.; Wilde, B.; Blue, B.; Martinez, D.; Rosen, P.; Farley, D.; Paguio, R.

    2016-06-01

    Supersonic outflows from objects as varied as stellar jets, massive stars, and novae often exhibit multiple shock waves that overlap one another. When the intersection angle between two shock waves exceeds a critical value, the system reconfigures its geometry to create a normal shock known as a Mach stem where the shocks meet. Mach stems are important for interpreting emission-line images of shocked gas because a normal shock produces higher postshock temperatures, and therefore a higher-excitation spectrum than does an oblique shock. In this paper, we summarize the results of a series of numerical simulations and laboratory experiments designed to quantify how Mach stems behave in supersonic plasmas that are the norm in astrophysical flows. The experiments test analytical predictions for critical angles where Mach stems should form, and quantify how Mach stems grow and decay as intersection angles between the incident shock and a surface change. While small Mach stems are destroyed by surface irregularities and subcritical angles, larger ones persist in these situations and can regrow if the intersection angle changes to become more favorable. The experimental and numerical results show that although Mach stems occur only over a limited range of intersection angles and size scales, within these ranges they are relatively robust, and hence are a viable explanation for variable bright knots observed in Hubble Space Telescope images at the intersections of some bow shocks in stellar jets.

  11. Anti-Shock Garment

    Science.gov (United States)

    1996-01-01

    Ames Research Center developed a prototype pressure suit for hemophiliac children, based on research of astronauts' physiological responses in microgravity. Zoex Corporation picked up the design and patents and developed an anti-shock garment for paramedic use. Marketed by Dyna Med, the suit reverses the effect of shock on the body's blood distribution by applying counterpressure to the legs and abdomen, returning blood to vital organs and stabilizing body pressure until the patient reaches a hospital. The DMAST (Dyna Med Anti-Shock Trousers) employ lower pressure than other shock garments, and are non-inflatable.

  12. Chiral Shock Waves

    CERN Document Server

    Sen, Srimoyee

    2016-01-01

    We study shock waves in relativistic chiral matter. We argue that the conventional Rankine- Hugoinot relations are modified due to the presence of chiral transport phenomena. We show that the entropy discontinuity in a weak shock wave is linearly proportional to the pressure discontinuity when the effect of chiral transport becomes sufficiently large. We also show that rarefaction shock waves, which do not exist in usual nonchiral fluids, can appear in chiral matter. These features are exemplified by shock propagation in dense neutrino matter in the hydrodynamic regime.

  13. US Spacesuit Knowledge Capture

    Science.gov (United States)

    Chullen, Cinda; Thomas, Ken; McMann, Joe; Dolan, Kristi; Bitterly, Rose; Lewis, Cathleen

    2011-01-01

    The ability to learn from both the mistakes and successes of the past is vital to assuring success in the future. Due to the close physical interaction between spacesuit systems and human beings as users, spacesuit technology and usage lends itself rather uniquely to the benefits realized from the skillful organization of historical information; its dissemination; the collection and identification of artifacts; and the education of those in the field. The National Aeronautics and Space Administration (NASA), other organizations and individuals have been performing United States (U.S.) Spacesuit Knowledge Capture since the beginning of space exploration. Avenues used to capture the knowledge have included publication of reports; conference presentations; specialized seminars; and classes usually given by veterans in the field. More recently the effort has been more concentrated and formalized whereby a new avenue of spacesuit knowledge capture has been added to the archives in which videotaping occurs engaging both current and retired specialists in the field presenting technical scope specifically for education and preservation of knowledge. With video archiving, all these avenues of learning can now be brought to life with the real experts presenting their wealth of knowledge on screen for future learners to enjoy. Scope and topics of U.S. spacesuit knowledge capture have included lessons learned in spacesuit technology, experience from the Gemini, Apollo, Skylab and Shuttle programs, hardware certification, design, development and other program components, spacesuit evolution and experience, failure analysis and resolution, and aspects of program management. Concurrently, U.S. spacesuit knowledge capture activities have progressed to a level where NASA, the National Air and Space Museum (NASM), Hamilton Sundstrand (HS) and the spacesuit community are now working together to provide a comprehensive closed-looped spacesuit knowledge capture system which includes

  14. Diffusive Shock Acceleration at Cosmological Shock Waves

    CERN Document Server

    Kang, Hyesung

    2012-01-01

    We reexamine nonlinear diffusive shock acceleration (DSA) at cosmological shocks in the large scale structure of the Universe, incorporating wave-particle interactions that are expected to operate in collisionless shocks. Adopting simple phenomenological models for magnetic field amplification (MFA) by cosmic-ray (CR) streaming instabilities and Alfv'enic drift, we perform kinetic DSA simulations for a wide range of sonic and Alfv'enic Mach numbers and evaluate the CR injection fraction and acceleration efficiency. In our DSA model the CR acceleration efficiency is determined mainly by the sonic Mach number Ms, while the MFA factor depends on the Alfv'enic Mach number and the degree of shock modification by CRs. We show that at strong CR modified shocks, if scattering centers drift with an effective Alfv'en speed in the amplified magnetic field, the CR energy spectrum is steepened and the acceleration efficiency is reduced significantly, compared to the cases without such effects. As a result, the postshock C...

  15. Capturing the Market

    Science.gov (United States)

    Ramaswami, Rama

    2009-01-01

    Digital lecture capture and broadcast solutions have been around for only about 10 years, but are poised for healthy growth. Frost & Sullivan research analysts estimate that the market (which amounts to $25 million currently) will quadruple by 2013. It's still dominated by a few key players, however: Sonic Foundry holds a hefty 40 percent-plus…

  16. Neutron capture therapies

    Energy Technology Data Exchange (ETDEWEB)

    Yanch, Jacquelyn C. (Cambridge, MA); Shefer, Ruth E. (Newton, MA); Klinkowstein, Robert E. (Winchester, MA)

    1999-01-01

    In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  17. Neutron capture therapies

    Energy Technology Data Exchange (ETDEWEB)

    Yanch, J.C.; Shefer, R.E.; Klinkowstein, R.E.

    1999-11-02

    In one embodiment there is provided an application of the {sup 10}B(n,{alpha}){sup 7}Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  18. Toxic Shock Syndrome (For Teens)

    Science.gov (United States)

    ... Surgery? A Week of Healthy Breakfasts Shyness Toxic Shock Syndrome KidsHealth > For Teens > Toxic Shock Syndrome Print ... it, then take some precautions. What Is Toxic Shock Syndrome? If you're a girl who's had ...

  19. CAPTURED End Evaluation Synthesis Report

    NARCIS (Netherlands)

    Brouwers, J.H.A.M.

    2012-01-01

    This report provides the findings of the Synthesis Study of the CAPTURED Evaluation and is produced as part of the overall CAPTURED End Evaluation. After five years of support by the CAPTURED project the three CAPTURED partners have achieved commendable results. Ten lessons learned are formulated th

  20. [Historical vision of shock].

    Science.gov (United States)

    Dosne Pasqualini, C

    1998-01-01

    The concept of shock and its close relationship with that of stress dates back to the experiments of Hans Selye initiated in 1936 at McGill University in Montreal, with whom I collaborated between 1939 and 1942. It was demonstrated that the General Adaptation Syndrome begins with an Alarm Reaction, which consists of a Stage of Shock and one of Counter-Shock, followed by a Stage of Adaptation and finally a Stage of Exhaustion. My Ph.D. thesis concluded that shock was due to an adrenal insufficiency postulating that active metabolic processes drain the body of certain essential compounds the lack of which causes shock. My interest in the role of the glucose metabolism in shock led me to work with Bernardo Houssay in 1942 at the Institute of Physiology of the University of Buenos Aires and in 1944 with C.N.H. Long at Yale University. There I developed a method for the induction of hemorrhagic shock in the guinea pig with 94% lethality; curiously, the administration of 200 mg of ascorbic acid prevented death. Upon my return to Buenos Aires, these results were confirmed and moreover, it was demonstrated that the administration of cortisone led to 40% survival of the animals while desoxycorticosterone had no effect. At the time, no explanation was available but to-day, half a century later, this Symposium should be able to explain the mechanisms leading to death by hemorrhagic shock.

  1. [Shock waves in orthopedics].

    Science.gov (United States)

    Haupt, G

    1997-05-01

    Extracorporeal shock waves have revolutionized urological stone treatment. Nowadays shock waves are widely used in orthopedics, too. This article reviews the applications of extracorporeal shock waves on bone and adjacent soft tissue. The osteoneogenetic effect of extracorporeal shock waves has been proven and can be used to treat pseudarthrosis with a success rate of around 75%. Shock waves have a positive effect in tennis and golfer's elbow, calcaneal spur, and the complex called "periarthritis humero-scapularis." The mechanism for this is not yet known, and results from large prospective and randomized studies are still lacking. However, the treatment has been performed many thousands of times. In patients in whom conservative treatment has failed surgery used to be the only choice, but its success rate barely exceeds that of shock wave therapy and surgery can still be done if shock wave therapy fails. Extracorporeal shock waves will have an impact on orthopedics comparable to its effect in urology. Scientific evaluations, professional certifications, quality assurance and reimbursement issues present great challenges.

  2. The Shock Routine

    DEFF Research Database (Denmark)

    van Hooren, Franca; Kaasch, Alexandra; Starke, Peter

    2014-01-01

    in Australia, Belgium, the Netherlands and Sweden over the course of four global economic shocks, we ask whether the notion of critical junctures is useful in understanding the nature of change triggered by crisis. The main empirical finding is that fundamental change in the aftermath of an exogenous shock...

  3. Our Favorite Film Shocks

    DEFF Research Database (Denmark)

    Willerslev, Rane; Suhr, Christian

    2014-01-01

    shocks? In this text we exchange personal experiences of cinematic shocks and ponder over these questions as related to wider theories on human trauma, emancipation, and enlightenment. In conclusion we argue for a revision of anthropological notions of validity in terms of the efficacy of the cinematic...

  4. Reflection of curved shock waves

    Science.gov (United States)

    Mölder, S.

    2017-03-01

    Shock curvatures are related to pressure gradients, streamline curvatures and vorticity in flows with planar and axial symmetry. Explicit expressions, in an influence coefficient format, are used to relate post-shock pressure gradient, streamline curvature and vorticity to pre-shock gradients and shock curvature in steady flow. Using higher order, von Neumann-type, compatibility conditions, curved shock theory is applied to calculate the flow near singly and doubly curved shocks on curved surfaces, in regular shock reflection and in Mach reflection. Theoretical curved shock shapes are in good agreement with computational fluid dynamics calculations and experiment.

  5. Reflection of curved shock waves

    Science.gov (United States)

    Mölder, S.

    2017-09-01

    Shock curvatures are related to pressure gradients, streamline curvatures and vorticity in flows with planar and axial symmetry. Explicit expressions, in an influence coefficient format, are used to relate post-shock pressure gradient, streamline curvature and vorticity to pre-shock gradients and shock curvature in steady flow. Using higher order, von Neumann-type, compatibility conditions, curved shock theory is applied to calculate the flow near singly and doubly curved shocks on curved surfaces, in regular shock reflection and in Mach reflection. Theoretical curved shock shapes are in good agreement with computational fluid dynamics calculations and experiment.

  6. Supernova electron capture rates

    CERN Document Server

    Martínez-Pinedo, G

    1999-01-01

    We have calculated the Gamow-Teller strength distributions for the ground states and low lying states of several nuclei that play an important role in the precollapse evolution of supernova. The calculations reproduce the experimental GT distributions nicely. The GT distribution are used to calculate electron capture rates for typical presupernova conditions. The computed rates are noticeably smaller than the presently adopted rates. The possible implications for the supernova evolution are discussed.

  7. Vasogenic shock physiology

    Directory of Open Access Journals (Sweden)

    Sotiria Gkisioti

    2011-01-01

    Full Text Available Sotiria Gkisioti, Spyros D MentzelopoulosDepartment of Intensive Care Medicine, University of Athens Medical School, Evaggelismos General Hospital, Athens, GreeceAbstract: Shock means inadequate tissue perfusion by oxygen-carrying blood. In vasogenic shock, this circulatory failure results from vasodilation and/or vasoplegia. There is vascular hyporeactivity with reduced vascular smooth muscle contraction in response to α1 adrenergic agonists. Considering vasogenic shock, one can understand its utmost importance, not only because of its association with sepsis but also because it can be the common final pathway for long-lasting, severe shock of any cause, even postresuscitation states. The effective management of any patient in shock requires the understanding of its underlying physiology and pathophysiology. Recent studies have provided new insights into vascular physiology by revealing the interaction of rather complicated and multifactorial mechanisms, which have not been fully elucidated yet. Some of these mechanisms, such as the induction of nitric oxide synthases, the activation of adenosine triphosphate-sensitive potassium channels, and vasopressin deficiency, have gained general acceptance and are considered to play an important role in the pathogenesis of vasodilatory shock. The purpose of this review is to provide an update on the pathogenesis of vasogenic shock.Keywords: nitric oxide synthases, KATP channels, vasopressin, H2S, vasoplegic syndrome

  8. A cylindrical converging shock tube for shock-interface studies.

    Science.gov (United States)

    Luo, Xisheng; Si, Ting; Yang, Jiming; Zhai, Zhigang

    2014-01-01

    A shock tube facility for generating a cylindrical converging shock wave is developed in this work. Based on the shock dynamics theory, a specific wall profile is designed for the test section of the shock tube to transfer a planar shock into a cylindrical one. The shock front in the converging part obtained from experiment presents a perfect circular shape, which proves the feasibility and reliability of the method. The time variations of the shock strength obtained from numerical simulation, experiment, and theoretical estimation show the desired converging effect in the shock tube test section. Particular emphasis is then placed on the problem of shock-interface interaction induced by cylindrical converging shock waves. For this purpose, membrane-less gas cylinder is adopted to form the interface between two different fluids while the laser sheet technique to visualize the flow field. The result shows that it is convenient to perform such experiments in this facility.

  9. Capturing the Future: Direct and Indirect Probes of Neutron Capture

    Energy Technology Data Exchange (ETDEWEB)

    Couture, Aaron Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-31

    This report documents aspects of direct and indirect neutron capture. The importance of neutron capture rates and methods to determine them are presented. The following conclusions are drawn: direct neutron capture measurements remain a backbone of experimental study; work is being done to take increased advantage of indirect methods for neutron capture; both instrumentation and facilities are making new measurements possible; more work is needed on the nuclear theory side to understand what is needed furthest from stability.

  10. Agricultural Commodity Price Shocks and their Effect on Growth in Sub-Saharan Africa

    OpenAIRE

    Addison, Tony; Ghoshray, Atanu

    2014-01-01

    Commodity price shocks are an important type of external shock and are often cited as a problem for economic growth in sub-Saharan Africa. This paper quantifies the impact of agricultural commodity price shocks using a near vector autoregressive model. The novel aspect of this model is that we define an auxiliary variable that can potentially capture the definition of a price shock that allows us to determine whether the response of per capita Gross domestic product (GDP) growth in sub-Sahara...

  11. Collisionless parallel shocks

    Science.gov (United States)

    Khabibrakhmanov, I. KH.; Galeev, A. A.; Galinskii, V. L.

    1993-01-01

    Consideration is given to a collisionless parallel shock based on solitary-type solutions of the modified derivative nonlinear Schroedinger equation (MDNLS) for parallel Alfven waves. The standard derivative nonlinear Schroedinger equation is generalized in order to include the possible anisotropy of the plasma distribution and higher-order Korteweg-de Vies-type dispersion. Stationary solutions of MDNLS are discussed. The anisotropic nature of 'adiabatic' reflections leads to the asymmetric particle distribution in the upstream as well as in the downstream regions of the shock. As a result, nonzero heat flux appears near the front of the shock. It is shown that this causes the stochastic behavior of the nonlinear waves, which can significantly contribute to the shock thermalization.

  12. Shock structures of astrospheres

    CERN Document Server

    Scherer, Klaus; Kleimann, Jens; Wiengarten, Tobias; Bomans, Dominik J; Weis, Kerstin

    2015-01-01

    The interaction between a supersonic stellar wind and a (super-)sonic interstellar wind has recently been viewed with new interest. We here first give an overview of the modeling, which includes the heliosphere as an example of a special astrosphere. Then we concentrate on the shock structures of fluid models, especially of hydrodynamic (HD) models. More involved models taking into account radiation transfer and magnetic fields are briefly sketched. Even the relatively simple HD models show a rich shock structure, which might be observable in some objects. We employ a single fluid model to study these complex shock structures, and compare the results obtained including heating and cooling with results obtained without these effects. Furthermore, we show that in the hypersonic case valuable information of the shock structure can be obtained from the Rankine-Hugoniot equations. We solved the Euler equations for the single fluid case and also for a case including cooling and heating. We also discuss the analytic...

  13. Counseling For Future Shock

    Science.gov (United States)

    Morgan, Lewis B.

    1974-01-01

    In this article the author looks at some of the searing prophecies made by Alvin Toffler in his book Future Shock and relates them to the world of the professional counselor and the clientele the counselor attempts to serve. (Author)

  14. Capturing Near Earth Objects

    OpenAIRE

    Baoyin, Hexi; CHEN Yang; Li, Junfeng

    2011-01-01

    Recently, Near Earth Objects (NEOs) have been attracting great attention, and thousands of NEOs have been found to date. This paper examines the NEOs' orbital dynamics using the framework of an accurate solar system model and a Sun-Earth-NEO three-body system when the NEOs are close to Earth to search for NEOs with low-energy orbits. It is possible for such an NEO to be temporarily captured by Earth; its orbit would thereby be changed and it would become an Earth-orbiting object after a small...

  15. Lunar Sulfur Capture System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Sulfur Capture System (LSCS) is an innovative method to capture greater than 90 percent of sulfur gases evolved during thermal treatment of lunar soils....

  16. [Pathophysiology of hemorragic shock].

    Science.gov (United States)

    Copotoiu, R; Cinca, E; Collange, O; Levy, F; Mertes, P-M

    2016-11-01

    This review addresses the pathophysiology of hemorrhagic shock, a condition produced by rapid and significant loss of intravascular volume, which may lead to hemodynamic instability, decreases in oxygen delivery, decreased tissue perfusion, cellular hypoxia, organ damage, and death. The initial neuroendocrine response is mainly a sympathetic activation. Haemorrhagic shock is associated altered microcirculatory permeability and visceral injury. It is also responsible for a complex inflammatory response associated with hemostasis alteration. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Geometrical on-the-fly shock detection in smoothed particle hydrodynamics

    Science.gov (United States)

    Beck, A. M.; Dolag, K.; Donnert, J. M. F.

    2016-05-01

    We present an on-the-fly geometrical approach for shock detection and Mach number calculation in simulations employing smoothed particle hydrodynamics (SPH). We utilize pressure gradients to select shock candidates and define up- and downstream positions. We obtain hydrodynamical states in the up- and downstream regimes with a series of normal and inverted kernel weightings parallel and perpendicular to the shock normals. Our on-the-fly geometrical Mach detector incorporates well within the SPH formalism and has low computational cost. We implement our Mach detector into the simulation code GADGET and alongside many SPH improvements. We test our shock finder in a sequence of shock tube tests with successively increasing Mach numbers exceeding by far the typical values inside galaxy clusters. For all shocks, we resolve the shocks well and the correct Mach numbers are assigned. An application to a strong magnetized shock tube gives stable results in full magnetohydrodynamic setups. We simulate a merger of two idealized galaxy clusters and study the shock front. Shock structures within the merging clusters as well as the cluster shock are well captured by our algorithm and assigned correct Mach numbers.

  18. Neutron capture reactions at DANCE

    Science.gov (United States)

    Bredeweg, T. A.

    2008-05-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) is a 4π BaF2 array consisting of 160 active detector elements. The primary purpose of the array is to perform neutron capture cross section measurements on small (>~100 μg) and/or radioactive (DANCE we have performed neutron capture cross section measurements on a wide array of medium to heavy mass nuclides. Measurements to date include neutron capture cross sections on 241,243Am, neutron capture and neutron-induced fission cross sections and capture-to-fission ratio (α = σγ/σf) for 235U using a new fission-tagging detector as well as neutron capture cross sections for several astrophysics branch-point nuclei. Results from several of these measurements will be presented along with a discussion of additional physics information that can be extracted from the DANCE data.

  19. Robust automated knowledge capture.

    Energy Technology Data Exchange (ETDEWEB)

    Stevens-Adams, Susan Marie; Abbott, Robert G.; Forsythe, James Chris; Trumbo, Michael Christopher Stefan; Haass, Michael Joseph; Hendrickson, Stacey M. Langfitt

    2011-10-01

    This report summarizes research conducted through the Sandia National Laboratories Robust Automated Knowledge Capture Laboratory Directed Research and Development project. The objective of this project was to advance scientific understanding of the influence of individual cognitive attributes on decision making. The project has developed a quantitative model known as RumRunner that has proven effective in predicting the propensity of an individual to shift strategies on the basis of task and experience related parameters. Three separate studies are described which have validated the basic RumRunner model. This work provides a basis for better understanding human decision making in high consequent national security applications, and in particular, the individual characteristics that underlie adaptive thinking.

  20. Capturing the uncultivated majority

    Energy Technology Data Exchange (ETDEWEB)

    Green, Brian D.; Keller, Martin

    2007-04-02

    The metagenomic analysis of environmental microbialcommunities continues to be a rapidly developing area of study. DNAisolation, the first step in capturing the uncultivated majority, hasseen many advances in recent years. Protocols have been developed todistinguish DNA from live versus dead cells and to separate extracellularfrom intracellular DNA. Looking to increase our understanding of the rolethat members of a microbial community play in ecological processes,several techniques have been developed that are enabling greater indepthanalysis of environmental metagenomes. These include the development ofenvironmental gene tags and the serial analysis of 16S rRNA gene sequencetags. In addition, new screening methods have been designed to select forspecific functional genes within metagenomic libraries. Finally, newcultivation methods continue to be developed to improve our ability tocapture a greater diversity of microorganisms within theenvironment.

  1. Capturing the Daylight Dividend

    Energy Technology Data Exchange (ETDEWEB)

    Peter Boyce; Claudia Hunter; Owen Howlett

    2006-04-30

    Capturing the Daylight Dividend conducted activities to build market demand for daylight as a means of improving indoor environmental quality, overcoming technological barriers to effective daylighting, and informing and assisting state and regional market transformation and resource acquisition program implementation efforts. The program clarified the benefits of daylight by examining whole building systems energy interactions between windows, lighting, heating, and air conditioning in daylit buildings, and daylighting's effect on the human circadian system and productivity. The project undertook work to advance photosensors, dimming systems, and ballasts, and provided technical training in specifying and operating daylighting controls in buildings. Future daylighting work is recommended in metric development, technology development, testing, training, education, and outreach.

  2. On the dynamics of a shock-bubble interaction

    Science.gov (United States)

    Quirk, James J.; Karni, Smadar

    1994-01-01

    We present a detailed numerical study of the interaction of a weak shock wave with an isolated cylindrical gas inhomogenity. Such interactions have been studied experimentally in an attempt to elucidate the mechanisms whereby shock waves propagating through random media enhance mixing. Our study concentrates on the early phases of the interaction process which are dominated by repeated refractions of acoustic fronts at the bubble interface. Specifically, we have reproduced two of the experiments performed by Haas and Sturtevant : M(sub s) = 1.22 planar shock wave, moving through air, impinges on a cylindrical bubble which contains either helium or Refrigerant 22. These flows are modelled using the two-dimensional, compressible Euler equations for a two component fluid (air-helium or air-Refrigerant 22). Although simulations of shock wave phenomena are now fairly commonplace, they are mostly restricted to single component flows. Unfortunately, multi-component extensions of successful single component schemes often suffer from spurious oscillations which are generated at material interfaces. Here we avoid such problems by employing a novel, nonconservative shock-capturing scheme. In addition, we have utilized a sophisticated adaptive mesh refinement algorithm which enables extremely high resolution simulations to be performed relatively cheaply. Thus we have been able to reproduce numerically all the intricate mechanisms that were observed experimentally (e.g., transitions from regular to irregular refraction, cusp formation and shock wave focusing, multi-shock and Mach shock structures, jet formation, etc.), and we can now present an updated description for the dynamics of a shock-bubble interaction.

  3. Numerical simulation of multi-fluid shock-turbulence interaction

    Science.gov (United States)

    Tian, Yifeng; Jaberi, Farhad; Livescu, Daniel; Li, Zhaorui

    2017-01-01

    Accurate numerical simulation of multi-fluid Shock-Turbulence Interaction (STI) is conducted by a hybrid monotonicity preserving-compact finite difference scheme for a detailed study of STI in variable density flows. Theoretical and numerical assessments of data confirm that all turbulence scales as well as the STI are well captured by the computational method. Comparison of multi-fluid and single-fluid data indicates that the turbulent kinetic energy is amplified more and the scalar mixing is enhanced more by the shock in flows involving two different fluids/densities when compared with those observed in single-fluid flows.

  4. Relativistic Radiation Mediated Shocks

    CERN Document Server

    Budnik, Ran; Sagiv, Amir; Waxman, Eli

    2010-01-01

    The structure of relativistic radiation mediated shocks (RRMS) propagating into a cold electron-proton plasma is calculated and analyzed. A qualitative discussion of the physics of relativistic and non relativistic shocks, including order of magnitude estimates for the relevant temperature and length scales, is presented. Detailed numerical solutions are derived for shock Lorentz factors $\\Gamma_u$ in the range $6\\le\\Gamma_u\\le30$, using a novel iteration technique solving the hydrodynamics and radiation transport equations (the protons, electrons and positrons are argued to be coupled by collective plasma processes and are treated as a fluid). The shock transition (deceleration) region, where the Lorentz factor $ \\Gamma $ drops from $ \\Gamma_u $ to $ \\sim 1 $, is characterized by high plasma temperatures $ T\\sim \\Gamma m_ec^2 $ and highly anisotropic radiation, with characteristic shock-frame energy of upstream and downstream going photons of a few~$\\times\\, m_ec^2$ and $\\sim \\Gamma^2 m_ec^2$, respectively.P...

  5. Physics of Collisionless Shocks Space Plasma Shock Waves

    CERN Document Server

    Balogh, André

    2013-01-01

    The present book provides a contemporary systematic treatment of shock waves in high-temperature collisionless plasmas as are encountered in near Earth space and in Astrophysics. It consists of two parts. Part I develops the complete theory of shocks in dilute hot plasmas under the assumption of absence of collisions among the charged particles when the interaction is mediated solely by the self-consistent electromagnetic fields. Such shocks are naturally magnetised implying that the magnetic field plays an important role in their evolution and dynamics. This part treats both subcritical shocks, which dissipate flow energy by generating anomalous resistance or viscosity, and supercritical shocks. The main emphasis is, however, on super-critical shocks where the anomalous dissipation is insufficient to retard the upstream flow. These shocks, depending on the direction of the upstream magnetic field, are distinguished as quasi-perpendicular and quasi-parallel shocks which exhibit different behaviours, reflecti...

  6. Shock wave reflection phenomena

    CERN Document Server

    Ben-dor, Gabi

    2007-01-01

    This book provides a comprehensive state-of-the-knowledge description of the shock wave reflection phenomena from a phenomenological point of view. The first part is a thorough introduction to oblique shock wave reflections, presenting the two major well-known reflection wave configurations, namely, regular (RR) and Mach (MR) reflections, the corresponding two- and three-shock theories, their analytical and graphical solution and the proposed transition boundaries between these two reflection-wave configurations. The second, third and fourth parts describe the reflection phenomena in steady, pseudo-steady and unsteady flows, respectively. Here, the possible specific types of reflection wave configurations are described, criteria for their formation and termination are presented and their governing equations are solved analytically and graphically and compared with experimental results. The resolution of the well-known von Neumann paradox and a detailed description of two new reflection-wave configurations - t...

  7. [Traumatic neurogenic shock].

    Science.gov (United States)

    Maurin, O; de Régloix, S; Caballé, D; Arvis, A-M; Perrochon, J-C; Tourtier, J-P

    2013-05-01

    Traumatic neurogenic shock is a rare but serious complication of spinal cord injury. It associates bradycardia and hypotension caused by a medullary trauma. It is life-threatening for the patient and it aggravates the neurological deficit. Strict immobilization and a quick assessment of the gravity of cord injury are necessary as soon as prehospital care has begun. Initial treatment requires vasopressors associated with fluid resuscitation. Steroids are not recommended. Early decompression is recommended for incomplete deficit seen in the first 6 hours. We relate the case of secondary spinal shock to a luxation C6/C7 treated in prehospital care.

  8. [Corticosteroids and septic shock].

    Science.gov (United States)

    Bouletreau, P; Petit, P; Latarjet, J

    1976-01-01

    According to the data in the literature, the authors attempted to sum-up present attitudes on the value of corticoids in the treatment of septic shock. If their cardiovascular effects after a period of enthusiasm, are presently rather controversial, their cellular and sub-cellular actions, on the lysosomal membranes, capillary permeability and perhaps the intimate mechanisms of cellular oxygenation seem to be more real. However, the contra-indications which persist in the results of clinical works have resulted in the fact that the exact place of cortico-steroids in the therapeutic arsenal of septic shock still remains to be specified.

  9. Culture shock and travelers.

    Science.gov (United States)

    Stewart, L; Leggat, P A

    1998-06-01

    As travel has become easier and more affordable, the number of people traveling has risen sharply. People travel for many and varied reasons, from the business person on an overseas assignment to backpackers seeking new and exotic destinations. Others may take up residence in different regions, states or countries for family, business or political reasons. Other people are fleeing religious or political persecution. Wherever they go and for whatever reason they go, people take their culture with them. Culture, like language, is acquired innately in early childhood and is then reinforced through formal and complex informal social education into adulthood. Culture provides a framework for interpersonal and social interactions. Therefore, the contact with a new culture is often not the exciting or pleasurable experience anticipated. When immersed in a different culture, people no longer know how to act when faced with disparate value systems. Contact with the unfamiliar culture can lead to anxiety, stress, mental illness and, in extreme cases, physical illness and suicide. "Culture shock" is a term coined by the anthropologist Oberg. It is the shock of the new. It implies that the experience of the new culture is an unpleasant surprise or shock, partly because it is unexpected and partly because it can lead to a negative evaluation of one's own culture. It is also known as cross-cultural adjustment, being that period of anxiety and confusion experienced when entering a new culture. It affects people intellectually, emotionally, behaviorally and physically and is characterized by symptoms of psychological distress. Culture shock affects both adults and children. In travelers or workers who have prolonged sojourns in foreign countries, culture shock may occur not only as they enter the new culture, but also may occur on their return to their original culture. Children may also experience readjustment problems after returning from leading sheltered lives in expatriate

  10. PLANETARY EMBRYO BOW SHOCKS AS A MECHANISM FOR CHONDRULE FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Christopher R.; Boley, Aaron C. [Department of Physics and Astronomy University of British Columbia Vancouver, BC V6T 1Z1 (Canada); Morris, Melissa A. [Physics Department State University of New York at Cortland Cortland, NY 13045 (United States)

    2016-02-20

    We use radiation hydrodynamics with direct particle integration to explore the feasibility of chondrule formation in planetary embryo bow shocks. The calculations presented here are used to explore the consequences of a Mars-size planetary embryo traveling on a moderately excited orbit through the dusty, early environment of the solar system. The embryo’s eccentric orbit produces a range of supersonic relative velocities between the embryo and the circularly orbiting gas and dust, prompting the formation of bow shocks. Temporary atmospheres around these embryos, which can be created via volatile outgassing and gas capture from the surrounding nebula, can non-trivially affect thermal profiles of solids entering the shock. We explore the thermal environment of solids that traverse the bow shock at different impact radii, the effects that planetoid atmospheres have on shock morphologies, and the stripping efficiency of planetoidal atmospheres in the presence of high relative winds. Simulations are run using adiabatic and radiative conditions, with multiple treatments for the local opacities. Shock speeds of 5, 6, and 7 km s{sup −1} are explored. We find that a high-mass atmosphere and inefficient radiative conditions can produce peak temperatures and cooling rates that are consistent with the constraints set by chondrule furnace studies. For most conditions, the derived cooling rates are potentially too high to be consistent with chondrule formation.

  11. Prediction of Shock-Induced Cavitation in Water

    Science.gov (United States)

    Brundage, Aaron

    2013-06-01

    Fluid-structure interaction problems that require estimating the response of thin structures within fluids to shock loading has wide applicability. For example, these problems may include underwater explosions and the dynamic response of ships and submarines; and biological applications such as Traumatic Brain Injury (TBI) and wound ballistics. In all of these applications the process of cavitation, where small cavities with dissolved gases or vapor are formed as the local pressure drops below the vapor pressure due to shock hydrodynamics, can cause significant damage to the surrounding thin structures or membranes if these bubbles collapse, generating additional shock loading. Hence, a two-phase equation of state (EOS) with three distinct regions of compression, expansion, and tension was developed to model shock-induced cavitation. This EOS was evaluated by comparing data from pressure and temperature shock Hugoniot measurements for water up to 400 kbar, and data from ultrasonic pressure measurements in tension to -0.3 kbar, to simulated responses from CTH, an Eulerian, finite volume shock code. The new EOS model showed significant improvement over pre-existing CTH models such as the SESAME EOS for capturing cavitation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy/NNSA under contract DE-AC04-94AL85000.

  12. Planetary Embryo Bow Shocks as a Mechanism for Chondrule Formation

    Science.gov (United States)

    Mann, Christopher R.; Boley, Aaron C.; Morris, Melissa A.

    2016-02-01

    We use radiation hydrodynamics with direct particle integration to explore the feasibility of chondrule formation in planetary embryo bow shocks. The calculations presented here are used to explore the consequences of a Mars-size planetary embryo traveling on a moderately excited orbit through the dusty, early environment of the solar system. The embryo’s eccentric orbit produces a range of supersonic relative velocities between the embryo and the circularly orbiting gas and dust, prompting the formation of bow shocks. Temporary atmospheres around these embryos, which can be created via volatile outgassing and gas capture from the surrounding nebula, can non-trivially affect thermal profiles of solids entering the shock. We explore the thermal environment of solids that traverse the bow shock at different impact radii, the effects that planetoid atmospheres have on shock morphologies, and the stripping efficiency of planetoidal atmospheres in the presence of high relative winds. Simulations are run using adiabatic and radiative conditions, with multiple treatments for the local opacities. Shock speeds of 5, 6, and 7 km s-1 are explored. We find that a high-mass atmosphere and inefficient radiative conditions can produce peak temperatures and cooling rates that are consistent with the constraints set by chondrule furnace studies. For most conditions, the derived cooling rates are potentially too high to be consistent with chondrule formation.

  13. Characteristics of Weak Interplanetary Shocks and Shock-like Events

    Science.gov (United States)

    Balogh, A.; Gloag, J. M.

    The variation of magnetic and plasma parameters across the discontinuity of a colli- sionless shock wave are clearly understood and presented in MHD theory. The anal- ysis of 116 shock waves appearing on the Ulysses shock list in the period mid 1996 to the end of 1999 show that in the cases of the stronger shock waves, measured by the ratio of downstream to upstream magnetic field magnitudes, this MHD descrip- tion is adequate. However in the case of many of the weaker shocks there are events which are not clearly characterised in MHD terms and in these cases plasma param- eters are particularly difficult to interpret. To explore the issues associated with these very weak shocks further, a set of shock-like events is considered which have shock characteristics in the high frequency wave data measured by the plasma wave inves- tigation(URAP) but are not considered to be clearly shock waves purely considering magnetic and plasma data. These shock-like events are thought to extend the spectrum of interplanetary shocks at the very weakest end and possibly beyond what should be considered a collisionless shock wave.

  14. Trojan capture by terrestrial planets

    CERN Document Server

    Schwarz, Richard

    2016-01-01

    The paper is devoted to investigate the capture of asteroids by Venus, Earth and Mars into the 1:1 mean motion resonance especially into Trojan orbits. Current theoretical studies predict that Trojan asteroids are a frequent by-product of the planet formation. This is not only the case for the outer giant planets, but also for the terrestrial planets in the inner Solar System. By using numerical integrations, we investigated the capture efficiency and the stability of the captured objects. We found out that the capture efficiency is larger for the planets in the inner Solar System compared to the outer ones, but most of the captured Trojan asteroids are not long term stable. This temporary captures caused by chaotic behaviour of the objects were investigated without any dissipative forces. They show an interesting dynamical behaviour of mixing like jumping from one Lagrange point to the other one.

  15. Captured by Aliens

    Science.gov (United States)

    Achenbach, Joel

    2000-03-01

    Captured by Aliens is a long and twisted voyage from science to the supernatural and back again. I hung out in Roswell, N.M., spent time with the Mars Society, met a guy who was figuring out the best way to build a spaceship to go to Alpha Centauri. I visited the set of the X-Files and talked to Mulder and Scully. One day over breakfast I was told by NASA administrator Dan Goldin, We live in a fog, man! He wants the big answers to the big questions. I spent a night in the base of a huge radio telescope in the boondocks of West Virginia, awaiting the signal from the aliens. I was hypnotized in a hotel room by someone who suspected that I'd been abducted by aliens and that this had triggered my interest in the topic. In the last months of his life, I talked to Carl Sagan, who believed that the galaxy riots with intelligent civilizations. He's my hero, for his steadfast adherence to the scientific method. What I found in all this is that the big question that needs immediate attention is not what's out THERE, but what's going on HERE, on Earth, and why we think the way we do, and how we came to be here in the first place.

  16. Inland capture fisheries.

    Science.gov (United States)

    Welcomme, Robin L; Cowx, Ian G; Coates, David; Béné, Christophe; Funge-Smith, Simon; Halls, Ashley; Lorenzen, Kai

    2010-09-27

    The reported annual yield from inland capture fisheries in 2008 was over 10 million tonnes, although real catches are probably considerably higher than this. Inland fisheries are extremely complex, and in many cases poorly understood. The numerous water bodies and small rivers are inhabited by a wide range of species and several types of fisher community with diversified livelihood strategies for whom inland fisheries are extremely important. Many drivers affect the fisheries, including internal fisheries management practices. There are also many drivers from outside the fishery that influence the state and functioning of the environment as well as the social and economic framework within which the fishery is pursued. The drivers affecting the various types of inland water, rivers, lakes, reservoirs and wetlands may differ, particularly with regard to ecosystem function. Many of these depend on land-use practices and demand for water which conflict with the sustainability of the fishery. Climate change is also exacerbating many of these factors. The future of inland fisheries varies between continents. In Asia and Africa the resources are very intensely exploited and there is probably little room for expansion; it is here that resources are most at risk. Inland fisheries are less heavily exploited in South and Central America, and in the North and South temperate zones inland fisheries are mostly oriented to recreation rather than food production.

  17. Capture-recapture methodology

    Science.gov (United States)

    Gould, William R.; Kendall, William L.

    2013-01-01

    Capture-recapture methods were initially developed to estimate human population abundance, but since that time have seen widespread use for fish and wildlife populations to estimate and model various parameters of population, metapopulation, and disease dynamics. Repeated sampling of marked animals provides information for estimating abundance and tracking the fate of individuals in the face of imperfect detection. Mark types have evolved from clipping or tagging to use of noninvasive methods such as photography of natural markings and DNA collection from feces. Survival estimation has been emphasized more recently as have transition probabilities between life history states and/or geographical locations, even where some states are unobservable or uncertain. Sophisticated software has been developed to handle highly parameterized models, including environmental and individual covariates, to conduct model selection, and to employ various estimation approaches such as maximum likelihood and Bayesian approaches. With these user-friendly tools, complex statistical models for studying population dynamics have been made available to ecologists. The future will include a continuing trend toward integrating data types, both for tagged and untagged individuals, to produce more precise and robust population models.

  18. Simulations and Theory of Ion Injection at Non-relativistic Collisionless Shocks

    Science.gov (United States)

    Caprioli, Damiano; Pop, Ana-Roxana; Spitkovsky, Anatoly

    2015-01-01

    We use kinetic hybrid simulations (kinetic ions-fluid electrons) to characterize the fraction of ions that are accelerated to non-thermal energies at non-relativistic collisionless shocks. We investigate the properties of the shock discontinuity and show that shocks propagating almost along the background magnetic field (quasi-parallel shocks) reform quasi-periodically on ion cyclotron scales. Ions that impinge on the shock when the discontinuity is the steepest are specularly reflected. This is a necessary condition for being injected, but it is not sufficient. Also, by following the trajectories of reflected ions, we calculate the minimum energy needed for injection into diffusive shock acceleration, as a function of the shock inclination. We construct a minimal model that accounts for the ion reflection from quasi-periodic shock barrier, for the fraction of injected ions, and for the ion spectrum throughout the transition from thermal to non-thermal energies. This model captures the physics relevant for ion injection at non-relativistic astrophysical shocks with arbitrary strengths and magnetic inclinations, and represents a crucial ingredient for understanding the diffusive shock acceleration of cosmic rays.

  19. Flow behind concave shock waves

    Science.gov (United States)

    Mölder, S.

    2017-03-01

    Curved shock theory is introduced and applied to calculate the flow behind concave shock waves. For sonic conditions, three characterizing types of flow are identified, based on the orientation of the sonic line, and it is shown that, depending on the ratio of shock curvatures, a continuously curving shock can exist with Type III flow, where the sonic line intercepts the reflected characteristics from the shock, thus preventing the formation of a reflected shock. The necessary shock curvature ratio for a Type III sonic point does not exist for a hyperbolic shock so that it will revert to Mach reflection for all Mach numbers. A demonstration is provided, by CFD calculations, at Mach 1.2 and 3.

  20. Flow behind concave shock waves

    Science.gov (United States)

    Mölder, S.

    2017-09-01

    Curved shock theory is introduced and applied to calculate the flow behind concave shock waves. For sonic conditions, three characterizing types of flow are identified, based on the orientation of the sonic line, and it is shown that, depending on the ratio of shock curvatures, a continuously curving shock can exist with Type III flow, where the sonic line intercepts the reflected characteristics from the shock, thus preventing the formation of a reflected shock. The necessary shock curvature ratio for a Type III sonic point does not exist for a hyperbolic shock so that it will revert to Mach reflection for all Mach numbers. A demonstration is provided, by CFD calculations, at Mach 1.2 and 3.

  1. The Generic Data Capture Facility

    Science.gov (United States)

    Connell, Edward B.; Barnes, William P.; Stallings, William H.

    The Generic Data Capture Facility, which can provide data capture support for a variety of different types of spacecraft while enabling operations costs to be carefully controlled, is discussed. The data capture functions, data protection, isolation of users from data acquisition problems, data reconstruction, and quality and accounting are addressed. The TDM and packet data formats utilized by the system are described, and the development of generic facilities is considered.

  2. Resource capture by single leaves

    Energy Technology Data Exchange (ETDEWEB)

    Long, S.P.

    1992-05-01

    Leaves show a variety of strategies for maximizing CO{sub 2} and light capture. These are more meaningfully explained if they are considered in the context of maximizing capture relative to the utilization of water, nutrients and carbohydrates reserves. There is considerable variation between crops in their efficiency of CO{sub 2} and light capture at the leaf level. Understanding of these mechanisms indicate some ways in which efficiency of resource capture could be level cannot be meaningfully considered without simultaneous understanding of implications at the canopy level. 36 refs., 5 figs., 1 tab.

  3. Shock compression of polyvinyl chloride

    Science.gov (United States)

    Neogi, Anupam; Mitra, Nilanjan

    2016-04-01

    This study presents shock compression simulation of atactic polyvinyl chloride (PVC) using ab-initio and classical molecular dynamics. The manuscript also identifies the limits of applicability of classical molecular dynamics based shock compression simulation for PVC. The mechanism of bond dissociation under shock loading and its progression is demonstrated in this manuscript using the density functional theory based molecular dynamics simulations. The rate of dissociation of different bonds at different shock velocities is also presented in this manuscript.

  4. The special relativistic shock tube

    Science.gov (United States)

    Thompson, Kevin W.

    1986-01-01

    The shock-tube problem has served as a popular test for numerical hydrodynamics codes. The development of relativistic hydrodynamics codes has created a need for a similar test problem in relativistic hydrodynamics. The analytical solution to the special relativistic shock-tube problem is presented here. The relativistic shock-jump conditions and rarefaction solution which make up the shock tube are derived. The Newtonian limit of the calculations is given throughout.

  5. Shock conditions for hypoelastic materials

    Science.gov (United States)

    Renardy, Michael; Rogers, Robert C.

    1993-10-01

    The equations governing the motion of hypoelastic materials (and related models of non-Newtonian fluids) are not in conservation form. Hence there is no obvious formulation of Rankine-Hugoniot jump conditions across a shock. In this paper we demonstrate that a viscosity criterion can be used to obtain meaningful shock conditions. In particular, we discuss shocks of small amplitude. The shock conditions obtained will in general depend on the form of the viscosity term.

  6. STEREO interplanetary shocks and foreshocks

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Cano, X. [Instituto de Geofisica, UNAM, CU, Coyoacan 04510 DF (Mexico); Kajdic, P. [IRAP-University of Toulouse, CNRS, Toulouse (France); Aguilar-Rodriguez, E. [Instituto de Geofisica, UNAM, Morelia (Mexico); Russell, C. T. [ESS and IGPP, University of California, Los Angeles, 603 Charles Young Drive, Los Angeles, CA 90095 (United States); Jian, L. K. [NASA Goddard Space Flight Center, Greenbelt, MD and University of Maryland, College Park, MD (United States); Luhmann, J. G. [SSL, University of California Berkeley (United States)

    2013-06-13

    We use STEREO data to study shocks driven by stream interactions and the waves associated with them. During the years of the extended solar minimum 2007-2010, stream interaction shocks have Mach numbers between 1.1-3.8 and {theta}{sub Bn}{approx}20-86 Degree-Sign . We find a variety of waves, including whistlers and low frequency fluctuations. Upstream whistler waves may be generated at the shock and upstream ultra low frequency (ULF) waves can be driven locally by ion instabilities. The downstream wave spectra can be formed by both, locally generated perturbations, and shock transmitted waves. We find that many quasiperpendicular shocks can be accompanied by ULF wave and ion foreshocks, which is in contrast to Earth's bow shock. Fluctuations downstream of quasi-parallel shocks tend to have larger amplitudes than waves downstream of quasi-perpendicular shocks. Proton foreshocks of shocks driven by stream interactions have extensions dr {<=}0.05 AU. This is smaller than foreshock extensions for ICME driven shocks. The difference in foreshock extensions is related to the fact that ICME driven shocks are formed closer to the Sun and therefore begin to accelerate particles very early in their existence, while stream interaction shocks form at {approx}1 AU and have been producing suprathermal particles for a shorter time.

  7. Teleconnected food supply shocks

    Science.gov (United States)

    Bren d'Amour, Christopher; Wenz, Leonie; Kalkuhl, Matthias; Steckel, Jan Christoph; Creutzig, Felix

    2016-03-01

    The 2008-2010 food crisis might have been a harbinger of fundamental climate-induced food crises with geopolitical implications. Heat-wave-induced yield losses in Russia and resulting export restrictions led to increases in market prices for wheat across the Middle East, likely contributing to the Arab Spring. With ongoing climate change, temperatures and temperature variability will rise, leading to higher uncertainty in yields for major nutritional crops. Here we investigate which countries are most vulnerable to teleconnected supply-shocks, i.e. where diets strongly rely on the import of wheat, maize, or rice, and where a large share of the population is living in poverty. We find that the Middle East is most sensitive to teleconnected supply shocks in wheat, Central America to supply shocks in maize, and Western Africa to supply shocks in rice. Weighing with poverty levels, Sub-Saharan Africa is most affected. Altogether, a simultaneous 10% reduction in exports of wheat, rice, and maize would reduce caloric intake of 55 million people living in poverty by about 5%. Export bans in major producing regions would put up to 200 million people below the poverty line at risk, 90% of which live in Sub-Saharan Africa. Our results suggest that a region-specific combination of national increases in agricultural productivity and diversification of trade partners and diets can effectively decrease future food security risks.

  8. Early Treatment in Shock

    Science.gov (United States)

    2011-06-01

    of L-arginine resuscitation in shock were carried out by An-1 gele , Chaudry, and co-workers. 6-10 They used the rat model, bleeding to 40 mm Hg in...17 14. Preissler G, Lothe F, Ebersberger U, Huff I, Bittmann I, Messmer K, Jauch KW, An-18 gele , MK. Recipient treatment with L-arginine

  9. A Shocking New Pump

    Science.gov (United States)

    2000-01-01

    Hydro Dynamics, Inc. received a technical helping hand from NASA that made their Hydrosonic Pump (HPump) a reality. Marshall engineers resolved a bearing problem in the rotor of the pump and recommended new bearings, housings and mounting hardware as a solution. The resulting HPump is able to heat liquids with greater energy efficiency using shock waves to generate heat.

  10. Planetary Bow Shocks

    CERN Document Server

    Treumann, R A

    2008-01-01

    Our present knowledge of the properties of the various planetary bow shocks is briefly reviewed. We do not follow the astronomical ordering of the planets. We rather distinguish between magnetised and unmagnetised planets which groups Mercury and Earth with the outer giant planets of the solar system, Mars and Moon in a separate group lacking magnetic fields and dense atmospheres, and Venus together with the comets as the atmospheric celestial objects exposed to the solar wind. Asteroids would, in this classification, fall into the group together with the Moon and should behave similarly though being much smaller. Extrasolar planets are not considered as we have only remote information about their behaviour. The presentation is brief in the sense that our in situ knowledge is rather sporadic yet, depending on just a countable number of bow shock crossings from which just some basic conclusions can be drawn about size, stationarity, shape and nature of the respective shock. The only bow shock of which we have ...

  11. Shock compression of nitrobenzene

    Science.gov (United States)

    Kozu, Naoshi; Arai, Mitsuru; Tamura, Masamitsu; Fujihisa, Hiroshi; Aoki, Katsutoshi; Yoshida, Masatake; Kondo, Ken-Ichi

    1999-06-01

    The Hugoniot (4 - 30 GPa) and the isotherm (1 - 7 GPa) of nitrobenzene have been investigated by shock and static compression experiments. Nitrobenzene has the most basic structure of nitro aromatic compounds, which are widely used as energetic materials, but nitrobenzene has been considered not to explode in spite of the fact its calculated heat of detonation is similar to TNT, about 1 kcal/g. Explosive plane-wave generators and diamond anvil cell were used for shock and static compression, respectively. The obtained Hugoniot consists of two linear lines, and the kink exists around 10 GPa. The upper line agrees well with the Hugoniot of detonation products calculated by KHT code, so it is expected that nitrobenzene detonates in that area. Nitrobenzene solidifies under 1 GPa of static compression, and the isotherm of solid nitrobenzene was obtained by X-ray diffraction technique. Comparing the Hugoniot and the isotherm, nitrobenzene is in liquid phase under experimented shock condition. From the expected phase diagram, shocked nitrobenzene seems to remain metastable liquid in solid phase region on that diagram.

  12. Toxic shock syndrome

    Science.gov (United States)

    ... chap 196. Read More Acute kidney failure Heart failure - overview Shock Review Date 4/12/2016 Updated by: Jatin M. Vyas, MD, PhD, Assistant Professor in Medicine, Harvard Medical School; Assistant in Medicine, Division of Infectious Disease, Department ...

  13. Health Shocks and Retirement:

    DEFF Research Database (Denmark)

    Datta Gupta, Nabanita; Larsen, Mona

    benefits in Denmark nor by the promotion of corporate social responsibility initiatives since the mid-1990s. In the late 1990s, however, the retirement rate following a health shock is reduced to 3% with the introduction of the subsidized employment program (fleksjob) but this effect is not strongly...

  14. Pressure-Sensitive Paint Measurements of Transient Shock Phenomena

    Directory of Open Access Journals (Sweden)

    Konstantinos Kontis

    2013-04-01

    Full Text Available Measurements of the global pressure field created by shock wave diffraction have been captured optically using a porous pressure-sensitive paint. The pressure field created by a diffracting shock wave shows large increases and decreases in pressure and can be reasonably accurately captured using CFD. The substrate, a thin-layer chromatography (TLC plate, has been dipped in a luminophore solution. TLC plates are readily available and easy to prepare. Illumination comes from two high-intensity broadband Xenon arc light sources with short-pass filters. The sample is imaged at 100 kHz using a Vision Research Phantom V710 in conjunction with a pair of long and short pass filters, creating a band. The PSP results are compared with numerical simulations of the flow using the commercial CFD package Fluent as part of ANSYS 13 for two Mach numbers.

  15. In situ local shock speed and transit shock speed

    Directory of Open Access Journals (Sweden)

    S. Watari

    Full Text Available A useful index for estimating the transit speeds was derived by analyzing interplanetary shock observations. This index is the ratio of the in situ local shock speed and the transit speed; it is 0.6–0.9 for most observed shocks. The local shock speed and the transit speed calculated for the results of the magnetohydrodynamic simulation show good agreement with the observations. The relation expressed by the index is well explained by a simplified propagation model assuming a blast wave. For several shocks the ratio is approximately 1.2, implying that these shocks accelerated during propagation in slow-speed solar wind. This ratio is similar to that for the background solar wind acceleration.

    Keywords. Interplanetary physics (Flare and stream dynamics; Interplanetary shocks; Solar wind plasma

  16. Shock Dynamics in Stellar Outbursts. I. Shock Formation

    Science.gov (United States)

    Ro, Stephen; Matzner, Christopher D.

    2017-05-01

    Wave-driven outflows and non-disruptive explosions have been implicated in pre-supernova outbursts, supernova impostors, luminous blue variable eruptions, and some narrow-line and superluminous supernovae. To model these events, we investigate the dynamics of stars set in motion by strong acoustic pulses and wave trains, focusing on nonlinear wave propagation, shock formation, and an early phase of the development of a weak shock. We identify the shock formation radius, showing that a heuristic estimate based on crossing characteristics matches an exact expansion around the wave front and verifying both with numerical experiments. Our general analytical condition for shock formation applies to one-dimensional motions within any static environment, including both eruptions and implosions. We also consider the early phase of shock energy dissipation. We find that waves of super-Eddington acoustic luminosity always create shocks, rather than damping by radiative diffusion. Therefore, shock formation is integral to super-Eddington outbursts.

  17. On neutrinoless double electron capture

    CERN Document Server

    Drukarev, E G

    2016-01-01

    We found the probability for the neutrinoless double electron capture in the case of $KK$ capture. We clarified the mechanism of the energy transfer from the nucleus to the bound electrons. This enabled us to obtain the equations for the probability of the $2EC0\

  18. Muon capture on Chlorine-35

    CERN Document Server

    Arole, S; Gorringe, T P; Hasinoff, M D; Kovash, M A; Kuzmin, V; Moftah, B A; Sedlar, R; Stocki, T J; Tetereva, T

    2002-01-01

    We report measurements of $\\gamma$--ray spectra from muon capture on $^{35}$Cl. For the allowed Gamow--Teller transitions to the $^{35}$S$(2939, 3/2^+)$ state and the $^{35}$S$(3421, 5/2^+)$ state we obtained their capture rates, hyperfine dependences and $\\gamma$--$\

  19. Shock detachment from curved wedges

    Science.gov (United States)

    Mölder, S.

    2017-03-01

    Curved shock theory is used to show that the flow behind attached shocks on doubly curved wedges can have either positive or negative post-shock pressure gradients depending on the freestream Mach number, the wedge angle and the two wedge curvatures. Given enough wedge length, the flow near the leading edge can choke to force the shock to detach from the wedge. This local choking can preempt both the maximum deflection and the sonic criteria for shock detachment. Analytical predictions for detachment by local choking are supported by CFD results.

  20. Shock detachment from curved wedges

    Science.gov (United States)

    Mölder, S.

    2017-09-01

    Curved shock theory is used to show that the flow behind attached shocks on doubly curved wedges can have either positive or negative post-shock pressure gradients depending on the freestream Mach number, the wedge angle and the two wedge curvatures. Given enough wedge length, the flow near the leading edge can choke to force the shock to detach from the wedge. This local choking can preempt both the maximum deflection and the sonic criteria for shock detachment. Analytical predictions for detachment by local choking are supported by CFD results.

  1. Iodine neutron capture therapy

    Science.gov (United States)

    Ahmed, Kazi Fariduddin

    A new technique, Iodine Neutron Capture Therapy (INCT) is proposed to treat hyperthyroidism in people. Present thyroid therapies, surgical removal and 131I treatment, result in hypothyroidism and, for 131I, involve protracted treatment times and excessive whole-body radiation doses. The new technique involves using a low energy neutron beam to convert a fraction of the natural iodine stored in the thyroid to radioactive 128I, which has a 24-minute half-life and decays by emitting 2.12-MeV beta particles. The beta particles are absorbed in and damage some thyroid tissue cells and consequently reduce the production and release of thyroid hormones to the blood stream. Treatment times and whole-body radiation doses are thus reduced substantially. This dissertation addresses the first of the several steps needed to obtain medical profession acceptance and regulatory approval to implement this therapy. As with other such programs, initial feasibility is established by performing experiments on suitable small mammals. Laboratory rats were used and their thyroids were exposed to the beta particles coming from small encapsulated amounts of 128I. Masses of 89.0 mg reagent-grade elemental iodine crystals have been activated in the ISU AGN-201 reactor to provide 0.033 mBq of 128I. This activity delivers 0.2 Gy to the thyroid gland of 300-g male rats having fresh thyroid tissue masses of ˜20 mg. Larger iodine masses are used to provide greater doses. The activated iodine is encapsulated to form a thin (0.16 cm 2/mg) patch that is then applied directly to the surgically exposed thyroid of an anesthetized rat. Direct neutron irradiation of a rat's thyroid was not possible due to its small size. Direct in-vivo exposure of the thyroid of the rat to the emitted radiation from 128I is allowed to continue for 2.5 hours (6 half-lives). Pre- and post-exposure blood samples are taken to quantify thyroid hormone levels. The serum T4 concentration is measured by radioimmunoassay at

  2. Electric Shock Injuries in a Harris's Hawk Population

    OpenAIRE

    Dwyer, James F.

    2006-01-01

    Electrocution may be an important agent of mortality in many raptor populations, and has been implicated as a contributing factor in the endangerment of some species. In Tucson, Arizona U.S.A. the electrocution of Harris's Hawks (Parabuteo unicinctus) was reported in both the 1980s and 1990s. The latter report also described Harris's Hawks that survived electric shock injuries. From February 2003-May 2004, I captured and examined wild Harris's Hawks in Tucson to investigate whether electric s...

  3. Shock metamorphism of deformed quartz

    Science.gov (United States)

    Gratz, Andrew J.; Christie, John; Tyburczy, James; Ahrens, Thomas; Pongratz, Peter

    1988-01-01

    The effect produced by shock loading (to peak pressures of 12 and 24) on deformed synthetic quartz containing a dislocation and abundant bubbles and small inclusions was investigated, and the relationships between preexisting dislocation density shock lamellae in the target material were examined. The resultant material was found to be inhomogeneously deformed and extremely fractured. Results of TEM examinations indicate that no change in dislocation density was caused by shock loading except in regions containing shock lamellae, where the dislocation density was lowered. The shock-induced defects tend to nucleate on and be controlled by preexisting stress concentrators; shock lamellae, glassy veins, and most curviplanar defects form in tension, presumably during release. An extremely mobile silica fluid is formed and injected into fractures during release, which forcibly removes crystalline fragments from vein walls. It is concluded that shock deformation in quartz is dominated by fracture and melting.

  4. Bubble Dynamics and Shock Waves

    CERN Document Server

    2013-01-01

    This volume of the Shock Wave Science and Technology Reference Library is concerned with the interplay between bubble dynamics and shock waves. It is divided into four parts containing twelve chapters written by eminent scientists. Topics discussed include shock wave emission by laser generated bubbles (W Lauterborn, A Vogel), pulsating bubbles near boundaries (DM Leppinen, QX Wang, JR Blake), interaction of shock waves with bubble clouds (CD Ohl, SW Ohl), shock propagation in polydispersed bubbly liquids by model equations (K Ando, T Colonius, CE Brennen. T Yano, T Kanagawa,  M Watanabe, S Fujikawa) and by DNS (G Tryggvason, S Dabiri), shocks in cavitating flows (NA Adams, SJ Schmidt, CF Delale, GH Schnerr, S Pasinlioglu) together with applications involving encapsulated bubble dynamics in imaging (AA Doinikov, A Novell, JM Escoffre, A Bouakaz),  shock wave lithotripsy (P Zhong), sterilization of ships’ ballast water (A Abe, H Mimura) and bubbly flow model of volcano eruptions ((VK Kedrinskii, K Takayama...

  5. Simulations of Relativistic Collisionless Shocks: Shock Structure and Particle Acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Spitkovsky, Anatoly; /KIPAC, Menlo Park

    2006-04-10

    We discuss 3D simulations of relativistic collisionless shocks in electron-positron pair plasmas using the particle-in-cell (PIC) method. The shock structure is mainly controlled by the shock's magnetization (''sigma'' parameter). We demonstrate how the structure of the shock varies as a function of sigma for perpendicular shocks. At low magnetizations the shock is mediated mainly by the Weibel instability which generates transient magnetic fields that can exceed the initial field. At larger magnetizations the shock is dominated by magnetic reflections. We demonstrate where the transition occurs and argue that it is impossible to have very low magnetization collisionless shocks in nature (in more than one spatial dimension). We further discuss the acceleration properties of these shocks, and show that higher magnetization perpendicular shocks do not efficiently accelerate nonthermal particles in 3D. Among other astrophysical applications, this may pose a restriction on the structure and composition of gamma-ray bursts and pulsar wind outflows.

  6. Materials For Gas Capture, Methods Of Making Materials For Gas Capture, And Methods Of Capturing Gas

    KAUST Repository

    Polshettiwar, Vivek

    2013-06-20

    In accordance with the purpose(s) of the present disclosure, as embodied and broadly described herein, embodiments of the present disclosure, in one aspect, relate to materials that can be used for gas (e.g., CO.sub.2) capture, methods of making materials, methods of capturing gas (e.g., CO.sub.2), and the like, and the like.

  7. DISCONTINUITY-CAPTURING FINITE ELEMENT COMPUTATION OF UNSTEADY FLOW WITH ADAPTIVE UNSTRUCTURED MESH

    Institute of Scientific and Technical Information of China (English)

    DONG Genjin; LU Xiyun; ZHUANG Lixian

    2004-01-01

    A discontinuity-capturing scheme of finite element method (FEM) is proposed. The unstructured-grid technique combined with a new type of adaptive mesh approach is developed for both compressible and incompressible unsteady flows, which exhibits the capability of capturing the shock waves and/or thin shear layers accurately in an unsteady viscous flow at high Reynolds number.In particular, a new testing variable, i.e., the disturbed kinetic energy E, is suggested and used in the adaptive mesh computation, which is universally applicable to the capturing of both shock waves and shear layers in the inviscid flow and viscous flow at high Reynolds number. Based on several calculated examples, this approach has been proved to be effective and efficient for the calculations of compressible and incompressible flows.

  8. Desalination shocks in microstructures

    CERN Document Server

    Mani, Ali

    2011-01-01

    Salt transport in bulk electrolytes is limited by diffusion and convection, but in microstructures with charged surfaces (e.g. microfluidic devices, porous media, soils, or biological tissues) surface conduction and electro-osmotic flow also contribute to ionic fluxes. For small applied voltages, these effects lead to well known linear electrokinetic phenomena. In this paper, we predict some surprising nonlinear dynamics that can result from the competition between bulk and interfacial transport at higher voltages. When counter-ions are selectively removed by a membrane or electrode, a "desalination shock" can propagate through the microstructure, leaving in its wake an ultrapure solution, nearly devoid of co-ions and colloidal impurities. We elucidate the basic physics of desalination shocks and develop a mathematical theory of their existence, structure, and stability, allowing for slow variations in surface charge or channel geometry. Via asymptotic approximations and similarity solutions, we show that des...

  9. Bow shock data analysis

    Science.gov (United States)

    Zipf, Edward C.; Erdman, Peeter W.

    1994-08-01

    The University of Pittsburgh Space Physics Group in collaboration with the Army Research Office (ARO) modeling team has completed a systematic organization of the shock and plume spectral data and the electron temperature and density measurements obtained during the BowShock I and II rocket flights which have been submitted to the AEDC Data Center, has verified the presence of CO Cameron band emission during the Antares engine burn and for an extended period of time in the post-burn plume, and have adapted 3-D radiation entrapment codes developed by the University of Pittsburgh to study aurora and other atmospheric phenomena that involve significant spatial effects to investigate the vacuum ultraviolet (VUV) and extreme ultraviolet (EUV) envelope surrounding the re-entry that create an extensive plasma cloud by photoionization.

  10. SUPERDIFFUSIVE SHOCK ACCELERATION

    Energy Technology Data Exchange (ETDEWEB)

    Perri, S.; Zimbardo, G. [Dipartimento di Fisica, Universita della Calabria, Ponte P. Bucci Cubo 31C, I-87036 Rende (Italy)

    2012-05-10

    The theory of diffusive shock acceleration is extended to the case of superdiffusive transport, i.e., when the mean square deviation grows proportionally to t{sup {alpha}}, with {alpha} > 1. Superdiffusion can be described by a statistical process called Levy random walk, in which the propagator is not a Gaussian but it exhibits power-law tails. By using the propagator appropriate for Levy random walk, it is found that the indices of energy spectra of particles are harder than those obtained where a normal diffusion is envisaged, with the spectral index decreasing with the increase of {alpha}. A new scaling for the acceleration time is also found, allowing substantially shorter times than in the case of normal diffusion. Within this framework we can explain a number of observations of flat spectra in various astrophysical and heliospheric contexts, for instance, for the Crab Nebula and the termination shock of the solar wind.

  11. The Shock and Vibration Bulletin. Part 1. Invited Papers, Submarine Shock Testing, Shock Analysis, Shock Testing

    Science.gov (United States)

    1973-06-01

    P. White, Jr., Rochester Applied Science Associates, Inc., Rochester, New York MATHEMATICAL MODEL OF A TYPICAL FLOATING SHOCK PLATFORM SUBJECTED TO...our offer. standardization projects as well as in the This asrect of cuantitive railroad technology various technical societies. This multi...Analysis of a Gravity phenomena which my education had kept care- Dam," using gelatin models . The stimulation fully hidden from me until that time. It’s

  12. Numerical solution of shock and ramp compression for general material properties

    Energy Technology Data Exchange (ETDEWEB)

    Swift, D C

    2009-01-28

    A general formulation was developed to represent material models for applications in dynamic loading. Numerical methods were devised to calculate response to shock and ramp compression, and ramp decompression, generalizing previous solutions for scalar equations of state. The numerical methods were found to be flexible and robust, and matched analytic results to a high accuracy. The basic ramp and shock solution methods were coupled to solve for composite deformation paths, such as shock-induced impacts, and shock interactions with a planar interface between different materials. These calculations capture much of the physics of typical material dynamics experiments, without requiring spatially-resolving simulations. Example calculations were made of loading histories in metals, illustrating the effects of plastic work on the temperatures induced in quasi-isentropic and shock-release experiments, and the effect of a phase transition.

  13. Thermodynamic and Kinetic Properties of Shocks in Two-Dimensional Yukawa Systems

    Science.gov (United States)

    Marciante, M.; Murillo, M. S.

    2017-01-01

    Particle-level simulations of shocked plasmas are carried out to examine kinetic properties not captured by hydrodynamic models. In particular, molecular dynamics simulations of 2D Yukawa plasmas with variable couplings and screening lengths are used to examine shock features unique to plasmas, including the presence of dispersive shock structures for weak shocks. A phase-space analysis reveals several kinetic properties, including anisotropic velocity distributions, non-Maxwellian tails, and the presence of fast particles ahead of the shock, even for moderately low Mach numbers. We also examine the thermodynamics (Rankine-Hugoniot relations) of recent experiments [Phys. Rev. Lett. 111, 015002 (2013), 10.1103/PhysRevLett.111.015002] and find no anomalies in their equations of state.

  14. Provenance Datasets Highlighting Capture Disparities

    Science.gov (United States)

    2014-01-01

    the Web pages of the universities and institutes.1 Notes are made and links pasted in a variety of formats. Files are saved on a shared drive. When...institutions/ 3. Capture Methods There are several capture methods that are available for use [4]: • Manual capture. • Scraping of logs or...the high-level user desktop. Save links App: Word, SharePoint User: Alice Web Data Web Data Web Data Web Data Web Data Web Data Notes.txt Create

  15. Converging cylindrical magnetohydrodynamic shock collapse onto a power-law-varying line current

    KAUST Repository

    Mostert, W.

    2016-03-16

    We investigate the convergence behaviour of a cylindrical, fast magnetohydrodynamic (MHD) shock wave in a neutrally ionized gas collapsing onto an axial line current that generates a power law in time, azimuthal magnetic field. The analysis is done within the framework of a modified version of ideal MHD for an inviscid, non-dissipative, neutrally ionized compressible gas. The time variation of the magnetic field is tuned such that it approaches zero at the instant that the shock reaches the axis. This configuration is motivated by the desire to produce a finite magnetic field at finite shock radius but a singular gas pressure and temperature at the instant of shock impact. Our main focus is on the variation with shock radius, as, of the shock Mach number and pressure behind the shock as a function of the magnetic field power-law exponent, where gives a constant-in-time line current. The flow problem is first formulated using an extension of geometrical shock dynamics (GSD) into the time domain to take account of the time-varying conditions ahead of the converging shock, coupled with appropriate shock-jump conditions for a fast, symmetric MHD shock. This provides a pair of ordinary differential equations describing both and the time evolution on the shock, as a function of, constrained by a collapse condition required to achieve tuned shock convergence. Asymptotic, analytical results for and are obtained over a range of for general, and for both small and large . In addition, numerical solutions of the GSD equations are performed over a large range of, for selected parameters using . The accuracy of the GSD model is verified for some cases using direct numerical solution of the full, radially symmetric MHD equations using a shock-capturing method. For the GSD solutions, it is found that the physical character of the shock convergence to the axis is a strong function of . For μ≤0.816, and both approach unity at shock impact owing to the dominance of the strong

  16. Shock breakout theory

    CERN Document Server

    Waxman, Eli

    2016-01-01

    The earliest supernova (SN) emission is produced when the optical depth of the plasma lying ahead of the shock, which ejects the envelope, drops below c/v, where v is the shock velocity. This "breakout" may occur when the shock reaches the edge of the star, producing a bright X-ray/UV flash on time scales of seconds to a fraction of an hour, followed by UV/optical "cooling" emission from the expanding cooling envelope on a day time-scale. If the optical depth of circumstellar material (CSM) ejected from the progenitor star prior to the explosion is larger than c/v, the breakout will take place at larger radii, within the CSM, extending its duration to days time scale. The properties of the early, breakout and cooling, emission carry unique signatures of the structure of the progenitor star (e.g. its radius and surface composition) and of its mass-loss history. The recent progress of wide-field transient surveys enable SN detections on a day time scale, and are being used to set unique constraints on the proge...

  17. Characterization of shocked beryllium

    Directory of Open Access Journals (Sweden)

    Papin P.A.

    2012-08-01

    Full Text Available While numerous studies have investigated the low-strain-rate constitutive response of beryllium, the combined influence of high strain rate and temperature on the mechanical behavior and microstructure of beryllium has received limited attention over the last 40 years. In the current work, high strain rate tests were conducted using both explosive drive and a gas gun to accelerate the material. Prior studies have focused on tensile loading behavior, or limited conditions of dynamic strain rate and/or temperature. Two constitutive strength (plasticity models, the Preston-Tonks-Wallace (PTW and Mechanical Threshold Stress (MTS models, were calibrated using common quasi-static and Hopkinson bar data. However, simulations with the two models give noticeably different results when compared with the measured experimental wave profiles. The experimental results indicate that, even if fractured by the initial shock loading, the Be remains sufficiently intact to support a shear stress following partial release and subsequent shock re-loading. Additional “arrested” drive shots were designed and tested to minimize the reflected tensile pulse in the sample. These tests were done to both validate the model and to put large shock induced compressive loads into the beryllium sample.

  18. Radiative effects in radiative shocks in shock tubes

    Science.gov (United States)

    Drake, R. P.; Doss, F. W.; McClarren, R. G.; Adams, M. L.; Amato, N.; Bingham, D.; Chou, C. C.; DiStefano, C.; Fidkowski, K.; Fryxell, B.; Gombosi, T. I.; Grosskopf, M. J.; Holloway, J. P.; van der Holst, B.; Huntington, C. M.; Karni, S.; Krauland, C. M.; Kuranz, C. C.; Larsen, E.; van Leer, B.; Mallick, B.; Marion, D.; Martin, W.; Morel, J. E.; Myra, E. S.; Nair, V.; Powell, K. G.; Rauchwerger, L.; Roe, P.; Rutter, E.; Sokolov, I. V.; Stout, Q.; Torralva, B. R.; Toth, G.; Thornton, K.; Visco, A. J.

    2011-09-01

    Using modern high-energy-density facilities it is straightforward to produce radiative shock waves in which the transfer of energy by radiation controls the hydrodynamic structure of the system. Some of these experiments use shock tubes. This paper discusses such experiments, with an emphasis on the simple physical relations that determine the primary features of such shocks and on the details and impact of radiative energy transfer in such systems. Notable aspects include the creation of high-density shocked layers, the flow of radiative energy toward regions of higher energy density, and the creation of secondary shocks by ablation of the tube walls ahead of the primary shock front. Simulations of one such experimental system are also shown.

  19. Fundamentals of collisionless shocks for astrophysical application, 2. Relativistic shocks

    CERN Document Server

    Bykov, A M

    2011-01-01

    We review recent progress on collisionless relativistic shocks. Kinetic instability theory is briefed including its predictions and limitations. The main focus is on numerical experiments in (i) pair and (ii) electron-nucleon plasmas. The main results are: (i) confirmation of shock evolution in non-magnetised relativistic plasma in 3D due to either the lepton-Weibel instability or the ion-Weibel instability; (ii) sensitive dependence on upstream magnetisation ; (iii) the sensitive dependence of particle dynamics on the upstream magnetic inclination angle $\\thetabn$, where particles of $\\thetabn>34^\\circ$ cannot escape upstream, leading to the distinction between `sub-luminal' and `super-luminal' shocks; (iv) particles in ultra-relativistic shocks can hardly overturn the shock and escape to upstream; they may oscillate around the shock ramp for a long time, so to speak `surfing it' and thereby becoming accelerated by a kind of SDA; (v) these particles form a power law tail on the downstream distribution; their...

  20. Shock wave treatment in medicine

    Indian Academy of Sciences (India)

    S K Shrivastava; Kailash

    2005-03-01

    Extracorporeal shock wave therapy in orthopedics and traumatology is still a young therapy method. Since the last few years the development of shock wave therapy has progressed rapidly. Shock waves have changed the treatment of urolithiasis substantially. Today shock waves are the first choice to treat kidney and urethral stones. Urology has long been the only medical field for shock waves in medicine. Meanwhile shock waves have been used in orthopedics and traumatology to treat insertion tendinitis, avascular necrosis of the head of femur and other necrotic bone alterations. Another field of shock wave application is the treatment of tendons, ligaments and bones on horses in veterinary medicine. In the present paper we discuss the basic theory and application of shock waves and its history in medicine. The idea behind using shock wave therapy for orthopedic diseases is the stimulation of healing in tendons, surrounding tissue and bones. This is a completely different approach compared to urology where shock waves are used for disintegration.

  1. Hugoniot equation of state of rock materials under shock compression.

    Science.gov (United States)

    Zhang, Q B; Braithwaite, C H; Zhao, J

    2017-01-28

    Two sets of shock compression tests (i.e. conventional and reverse impact) were conducted to determine the shock response of two rock materials using a plate impact facility. Embedded manganin stress gauges were used for the measurements of longitudinal stress and shock velocity. Photon Doppler velocimetry was used to capture the free surface velocity of the target. Experimental data were obtained on a fine-grained marble and a coarse-grained gabbro over a shock pressure range of approximately 1.5-12 GPa. Gabbro exhibited a linear Hugoniot equation of state (EOS) in the pressure-particle velocity (P-up) plane, while for marble a nonlinear response was observed. The EOS relations between shock velocity (US) and particle velocity (up) are linearly fitted as US = 2.62 + 3.319up and US = 5.4 85 + 1.038up for marble and gabbro, respectively.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  2. Enzymes in CO2 Capture

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Gladis, Arne; Thomsen, Kaj

    of carbon capture is the application of enzymes for acceleration of typically slow ternary amines or inorganic carbonates. There is a hidden potential to revive currently infeasible amines which have an interesting low energy consumption for regeneration but too slow kinetics for viable CO2 capture. The aim......The enzyme Carbonic Anhydrase (CA) can accelerate the absorption rate of CO2 into aqueous solutions by several-fold. It exist in almost all living organisms and catalyses different important processes like CO2 transport, respiration and the acid-base balances. A new technology in the field...... of this work is to discuss the measurements of kinetic properties for CA promoted CO2 capture solvent systems. The development of a rate-based model for enzymes will be discussed showing the principles of implementation and the results on using a well-known ternary amine for CO2 capture. Conclusions...

  3. Lunar Sulfur Capture System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Sulfur Capture System (LSCS) is an innovative method to recover sulfur compounds from lunar soil using sorbents derived primarily from in-situ resources....

  4. Methane capture from livestock manure.

    Science.gov (United States)

    Tauseef, S M; Premalatha, M; Abbasi, Tasneem; Abbasi, S A

    2013-03-15

    It has been estimated that livestock manure contributes about 240 million metric tons of carbon dioxide equivalent of methane to the atmosphere and represents one of the biggest anthropogenic sources of methane. Considering that methane is the second biggest contributor to global warming after carbon dioxide, it is imperative that ways and means are developed to capture as much of the anthropogenic methane as possible. There is a major associated advantage of methane capture: its use as a source of energy which is comparable in 'cleanness' to natural gas. The present review dwells upon the traditional ways of methane capture used in India, China, and other developing countries for providing energy to the rural poor. It then reviews the present status of methane capture from livestock manure in developed countries and touches upon the prevalent trends.

  5. Simulation and Experimental Validation of Hypersonic Shock Wave Interaction

    Directory of Open Access Journals (Sweden)

    Li Jing

    2013-12-01

    Full Text Available The present paper examines the relevance of grid and simulation accuracy of hypersonic CFD in terms of hypersonic sharp double-cone flow. The flow grid and normal grid each adopted 250×100, 500×100, 1000×100, 500×200, 1000×200, 1000×400 and so on grids. When the normal grid was 100, the wall pressure and heat flux distribution obtained from flow grid 500 and 1000 were consistent, indicating that the solution of flow grid convergence was obtained. However, some difference was observed when the separation zone was compared with the experimental data. In increasing the normal grid number and adopting grid 500×200, the position of the separation point, wall pressure and heat flux peak was shown to be consistent with the experiment. When the grid was further encrypted, the calculation using grid 1000×200 and 1000×400 was equal to that using grid 500×200. The simulation of hypersonic sharp double-cone flow also showed that when the separation zone of the simulation was less than the experimental measurement, the wall pressure and heat flux peak moved forward. This is because the backwardness of the intersection of the separation shock and the first shock resulted in the forwardness of the intersection of the first shock and the second shock after interference, making the work region of the induction shock and boundary layer move forward. The key challenge in achieving the correct simulation of the hypersonic sharp double-cone flow is explained as follows: the algorithm can not only capture shock wave strength correctly and give the adverse pressure gradient formed by the interfering shock wave near the wall accurately. It can also prevent the numerical dissipation of the algorithm from affecting the simulation accuracy of the viscous boundary layer to ensure the correct prediction of the size of the separation zone.

  6. Toward transformational carbon capture systems

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David C. [National Energy Technology Laboratory, U.S. Dept. of Energy, Pittsburgh PA (United States); Litynski, John T. [Office of Fossil Energy, U.S. Dept. of Energy, Washington DC (United States); Brickett, Lynn A. [National Energy Technology Laboratory, U.S. Dept. of Energy, Pittsburgh PA (United States); Morreale, Bryan D. [National Energy Technology Laboratory, U.S. Dept. of Energy, Pittsburgh PA (United States)

    2015-10-28

    This paper will briefly review the history and current state of Carbon Capture and Storage (CCS) research and development and describe the technical barriers to carbon capture. it will argue forcefully for a new approach to R&D, which leverages both simulation and physical systems at the laboratory and pilot scales to more rapidly move the best technoogies forward, prune less advantageous approaches, and simultaneously develop materials and processes.

  7. Radiative muon capture on hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Bertl, W. (Paul Scherrer Inst. (PSI), Villigen (Switzerland)); Ahmad, S.; Chen, C.Q.; Gumplinger, P.; Hasinoff, M.D.; Larabee, A.J.; Sample, D.G.; Schott, W.; Wright, D.H. (British Columbia Univ., Vancouver (Canada)); Armstrong, D.S.; Blecher, M. (Virginia Polytechnic Inst., Blacksburg, VA (United States) Virginia State Univ., Blacksburg, VA (United States)); Azuelos, G. (British Columbia Univ., Vancouver (Canada). TRIUMF Facility Montreal Univ., Quebec (Canada)); Depommier, P.; Jonkmans, G. (Montreal Univ., Quebec (Canada)); Gorringe, T.P. (Kentucky Univ., Lexington, KY (United States)); Henderson, R. (British Columbia Univ., Vancouver (Canada). TRIUMF Facility Melbourne Univ., Parkville (Australia)); Macdonald, J.A.; Poutissou, J.M.; Poutissou, R.; Von Egidy, T.; Zhang, N.S. (British Columbia Univ., Vancouver (Canada). TRIUMF Facility); McDonald, S.C.; Taylor, G.N. (Melbourne Univ., Parkville (Australia)); Robertson, B.D. (Queen' s Univ., Kingston, Ontario (Canada))

    1992-01-01

    The radiative capture of negative muons by protons can be used to measure the weak induced pseudoscalar form factor. Brief arguments why this method is preferable to ordinary muon capture are given followed by a discussion of the experimental difficulties. The solution to these problems as attempted by experiment no. 452 at TRIUMF is presented together with preliminary results from the first run in August 1990. An outlook on the expected final precision and the experimental schedule is also given. (orig.).

  8. Alignment in double capture processes

    Energy Technology Data Exchange (ETDEWEB)

    Moretto-Capelle, P.; Benhenni, M.; Bordenave-Montesquieu, A.; Benoit-Cattin, P.; Gleizes, A. (IRSAMC, URA CNRS 770, Univ. Paul Sabatier, 118 rte de Narbonne, 31062 Toulouse Cedex (France))

    1993-06-05

    The electron spectra emitted when a double capture occurs in N[sup 7+]+He and Ne[sup 8+]+He systems at 10 qkeV collisional energy, allow us to determine the angular distributions of the 3[ell]3[ell] [prime] lines through a special spectra fitting procedure which includes interferences between neighbouring states. It is found that the doubly excited states populated in double capture processes are generally aligned.

  9. The Capture of Jupiter Trojans

    Science.gov (United States)

    Morbidelli, A.; Nesvorny, D.; Vokrouhlicky, D.

    2013-09-01

    The origin of Jupiter Trojans remained mysterious for decades. Particularly, it was difficult to explain the excitation of the inclinations of the Trojan population [1]. In 2005, Morbidelli et al. [2] proposed a scenario of capture from the trans-Neptunian disk, in the framework of the so-called "Nice model" [3,4]. This scenario explained in a natural way the observed orbital distribution of Trojans. The Nice model, however, evolved in the years, in order to satisfy an increasingly large number of constraints. It now appears that the dynamical evolution of the giant planets was different from that envisioned in [2]. Here, we assess again the process of capture of Trojans within this new evolution. We show that (6-8)×10 - 7 of the original trans-Neptunian planetesimals are captured in the Trojan region, with an orbital distribution consistent with the one observed. Relative to [2], the new capture mechanism has the potential of explaining the asymmetry between the L4 and L5 populations. Moreover, the resulting population of Trojans is consistent with that of the Irregular Satellites of Jupiter, which are captured in the same process; a few bodies from the main asteroid belt could also be captured in the Trojan cloud.

  10. Quasiperpendicular high Mach number Shocks

    CERN Document Server

    Sulaiman, A H; Dougherty, M K; Burgess, D; Fujimoto, M; Hospodarsky, G B

    2015-01-01

    Shock waves exist throughout the universe and are fundamental to understanding the nature of collisionless plasmas. Reformation is a process, driven by microphysics, which typically occurs at high Mach number supercritical shocks. While ongoing studies have investigated this process extensively both theoretically and via simulations, their observations remain few and far between. In this letter we present a study of very high Mach number shocks in a parameter space that has been poorly explored and we identify reformation using in situ magnetic field observations from the Cassini spacecraft at 10 AU. This has given us an insight into quasi-perpendicular shocks across two orders of magnitude in Alfven Mach number (MA) which could potentially bridge the gap between modest terrestrial shocks and more exotic astrophysical shocks. For the first time, we show evidence for cyclic reformation controlled by specular ion reflection occurring at the predicted timescale of ~0.3 {\\tau}c, where {\\tau}c is the ion gyroperio...

  11. CMEs as a Shock Structure

    Science.gov (United States)

    Muñoz Martínez, Guadalupe; Becerril, Carlos; Lopez-Lopez, Jose Luis

    Interplanetary shocks are associated to approximately one third of the CMEs detected in the interplanetary medium. Even though they have been associated to fast CMEs (V>1000 km/s) it has been shown that some slow ones (V 300 km/s) presented shocks at 1 AU. The structure of the features observed in coronograph images can be hardly compared to the ones detected beyond the coronograph field of view, where the shock is clearly identify. For a few cases, the shock in front of the CME has been distinguish in white light images, but, is there a real visual difference between the CME itself and the considered shock? In this work we compare the optical characteristics of CMEs and some hydrodynamic parameters of ICMEs to show that the feature observed in white light images can be considered as a shock structure.

  12. Physics of collisionless shocks - theory and simulation

    CERN Document Server

    Novo, A Stockem; Fonseca, R A; Silva, L O

    2015-01-01

    Collisionless shocks occur in various fields of physics. In the context of space and astrophysics they have been investigated for many decades. However, a thorough understanding of shock formation and particle acceleration is still missing. Collisionless shocks can be distinguished into electromagnetic and electrostatic shocks. Electromagnetic shocks are of importance mainly in astrophysical environments and they are mediated by the Weibel or filamentation instability. In such shocks, charged particles gain energy by diffusive shock acceleration. Electrostatic shocks are characterized by a strong electrostatic field, which leads to electron trapping. Ions are accelerated by reflection from the electrostatic potential. Shock formation and particle acceleration will be discussed in theory and simulations.

  13. Stability of oblique shock front

    Institute of Scientific and Technical Information of China (English)

    CHEN; Shuxing(陈恕行)

    2002-01-01

    The stability of the weak planar oblique shock front with respect to the perturbation of the wall is discussed. By the analysis of the formation and the global construction of shock and its asymptotic behaviour for stationary supersonic flow along a smooth rigid wall we obtain the stability of the solution containing a weak planar shock front. The stability can be used to single out a physically reasonable solution together with the entropy condition.

  14. Capture by colour: evidence for dimension-specific singleton capture.

    Science.gov (United States)

    Harris, Anthony M; Becker, Stefanie I; Remington, Roger W

    2015-10-01

    Previous work on attentional capture has shown the attentional system to be quite flexible in the stimulus properties it can be set to respond to. Several different attentional "modes" have been identified. Feature search mode allows attention to be set for specific features of a target (e.g., red). Singleton detection mode sets attention to respond to any discrepant item ("singleton") in the display. Relational search sets attention for the relative properties of the target in relation to the distractors (e.g., redder, larger). Recently, a new attentional mode was proposed that sets attention to respond to any singleton within a particular feature dimension (e.g., colour; Folk & Anderson, 2010). We tested this proposal against the predictions of previously established attentional modes. In a spatial cueing paradigm, participants searched for a colour target that was randomly either red or green. The nature of the attentional control setting was probed by presenting an irrelevant singleton cue prior to the target display and assessing whether it attracted attention. In all experiments, the cues were red, green, blue, or a white stimulus rapidly rotated (motion cue). The results of three experiments support the existence of a "colour singleton set," finding that all colour cues captured attention strongly, while motion cues captured attention only weakly or not at all. Notably, we also found that capture by motion cues in search for colour targets was moderated by their frequency; rare motion cues captured attention (weakly), while frequent motion cues did not.

  15. Grain Destruction in Interstellar Shocks

    OpenAIRE

    1995-01-01

    Interstellar shock waves can erode and destroy grains present in the shocked gas, primarily as the result of sputtering and grain-grain collisions. Uncertainties in current estimates of sputtering yields are reviewed. Results are presented for the simple case of sputtering of fast grains being stopped in cold gas. An upper limit is derived for sputtering of refractory grains in C-type MHD shocks: shock speeds $v_s \\gtrsim 50 \\kms$ are required for return of more than 30\\% of the silicate to t...

  16. Quasiperpendicular High Mach Number Shocks

    Science.gov (United States)

    Sulaiman, A. H.; Masters, A.; Dougherty, M. K.; Burgess, D.; Fujimoto, M.; Hospodarsky, G. B.

    2015-09-01

    Shock waves exist throughout the Universe and are fundamental to understanding the nature of collisionless plasmas. Reformation is a process, driven by microphysics, which typically occurs at high Mach number supercritical shocks. While ongoing studies have investigated this process extensively both theoretically and via simulations, their observations remain few and far between. In this Letter we present a study of very high Mach number shocks in a parameter space that has been poorly explored and we identify reformation using in situ magnetic field observations from the Cassini spacecraft at 10 AU. This has given us an insight into quasiperpendicular shocks across 2 orders of magnitude in Alfvén Mach number (MA ) which could potentially bridge the gap between modest terrestrial shocks and more exotic astrophysical shocks. For the first time, we show evidence for cyclic reformation controlled by specular ion reflection occurring at the predicted time scale of ˜0.3 τc , where τc is the ion gyroperiod. In addition, we experimentally reveal the relationship between reformation and MA and focus on the magnetic structure of such shocks to further show that for the same MA , a reforming shock exhibits stronger magnetic field amplification than a shock that is not reforming.

  17. Management of refractory cardiogenic shock.

    Science.gov (United States)

    Reyentovich, Alex; Barghash, Maya H; Hochman, Judith S

    2016-08-01

    Cardiogenic shock is a life-threatening condition that occurs in response to reduced cardiac output in the presence of adequate intravascular volume and results in tissue hypoxia. Cardiogenic shock has several underlying aetiologies, with the most common being acute myocardial infarction (AMI). Refractory cardiogenic shock presents as persistent tissue hypoperfusion despite administration of adequate doses of two vasoactive medications and treatment of the underlying aetiology. Investigators of the SHOCK trial reported a long-term mortality benefit of emergency revascularization for shock complicating AMI. Since the publication of the SHOCK trial and subsequent guideline recommendations, the increase in community-based use of percutaneous coronary intervention for this condition has resulted in a significant decline in mortality. Despite these successes in the past 15 years, mortality still remains exceptionally high, particularly in patients with refractory cardiogenic shock. In this Review, we discuss the aetiology and pathophysiology of cardiogenic shock and summarize the data on the available therapeutics and their limitations. Although new mechanical circulatory support devices have been shown to improve haemodynamic variables in patients with shock complicating AMI, they did not improve clinical outcomes and are associated with high costs and complications.

  18. An interface capturing scheme for modeling atomization in compressible flows

    Science.gov (United States)

    Garrick, Daniel P.; Hagen, Wyatt A.; Regele, Jonathan D.

    2017-09-01

    The study of atomization in supersonic flow is critical to ensuring reliable ignition of scramjet combustors under startup conditions. Numerical methods incorporating surface tension effects have largely focused on the incompressible regime as most atomization applications occur at low Mach numbers. Simulating surface tension effects in compressible flow requires robust numerical methods that can handle discontinuities caused by both shocks and material interfaces with high density ratios. In this work, a shock and interface capturing scheme is developed that uses the Harten-Lax-van Leer-Contact (HLLC) Riemann solver while a Tangent of Hyperbola for INterface Capturing (THINC) interface reconstruction scheme retains the fluid immiscibility condition in the volume fraction and phasic densities in the context of the five equation model. The approach includes the effects of compressibility, surface tension, and molecular viscosity. One and two-dimensional benchmark problems demonstrate the desirable interface sharpening and conservation properties of the approach. Simulations of secondary atomization of a cylindrical water column after its interaction with a shockwave show good qualitative agreement with experimentally observed behavior. Three-dimensional examples of primary atomization of a liquid jet in a Mach 2 crossflow demonstrate the robustness of the method.

  19. [Toxic shock syndrome].

    Science.gov (United States)

    Tyll, T; Bílková, M; Revinová, A; Müller, M; Čurdová, M; Zlámal, M; Holub, M

    2015-10-01

    The authors present an up-to-date review of toxic shock syndrome (TSS) - a life-threatening condition where toxins of the Gram-positive bacteria Staphyloccocus aureus and Streptococcus pyogenes play a key role in the pathogenesis. The authors provide insight into the epidemiology and pathogenesis of the disease and point out the relevant patient history data and clinical signs and symptoms that may indicate progression of TSS. Last but not least, the state of the art diagnostic and therapeutic approaches to early and full blown TSS are summarized. Case reports are presented to illustrate two different etiological forms of this relatively rare nosological entity.

  20. A shocking experiment

    Directory of Open Access Journals (Sweden)

    Gregory S. Berns

    2007-08-01

    Full Text Available We study whether probability weighting is observed when individuals are presented with a series of choices between lotteries consisting of real non-monetary adverse outcomes, electric shocks. Our estimation of the parameters of the probability weighting function proposed by Tversky and Kahneman (1992 are similar to those obtained in previous studies of lottery choice for negative monetary payoffs and negative hypothetical payoffs. In addition, common ratio violations in choice behavior are widespread. Our results provide evidence that probability weighting is a general phenomenon, independent of the source of disutility.

  1. Characterization of Shocked Beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Cady, Carl M [Los Alamos National Laboratory; Adams, Chris D [Los Alamos National Laboratory; Hull, Lawrence M [Los Alamos National Laboratory; Gray III, George T [Los Alamos National Laboratory; Prime, Michael B [Los Alamos National Laboratory; Addessio, Francis L [Los Alamos National Laboratory; Wynn, Thomas A [Los Alamos National Laboratory; Brown, Eric N [Los Alamos National Laboratory

    2012-08-24

    Beryllium metal has many excellent structural properties in addition to its unique radiation characteristics, including: high elastic modulus, low Poisson's ratio, low density, and high melting point. However, it suffers from several major mechanical drawbacks: 1) high anisotropy - due to its hexagonal lattice structure and its susceptibility to crystallographic texturing; 2) susceptibility to impurity-induced fracture - due to grain boundary segregation; and 3) low intrinsic ductility at ambient temperatures thereby limiting fabricability. While large ductility results from deformation under the conditions of compression, the material can exhibit a brittle behavior under tension. Furthermore, there is a brittle to ductile transition at approximately 200 C under tensile conditions. While numerous studies have investigated the low-strain-rate constitutive response of beryllium, the combined influence of high strain rate and temperature on the mechanical behavior and microstructure of beryllium has received limited attention over the last 40 years. Prior studies have focused on tensile loading behavior, or limited conditions of dynamic strain rate and/or temperature. The beryllium used in this study was Grade S200-F (Brush Wellman, Inc., Elmore, OH) material. The work focused on high strain rate deformation and examine the validity of constitutive models in deformation rate regimes, including shock, the experiments were modeled using a Lagrangian hydrocode. Two constitutive strength (plasticity) models, the Preston-Tonks-Wallace (PTW) and Mechanical Threshold Stress (MTS) models, were calibrated using the same set of quasi-static and Hopkinson bar data taken at temperatures from 77K to 873K and strain rates from 0.001/sec to 4300/sec. In spite of being calibrated on the same data, the two models give noticeably different results when compared with the measured wave profiles. These high strain rate tests were conducted using both explosive drive and a gas gun to

  2. Hypovolemic shock resuscitation.

    Science.gov (United States)

    Kobayashi, Leslie; Costantini, Todd W; Coimbra, Raul

    2012-12-01

    Several changes in the way patients with hemorrhagic shock are resuscitated have occurred over the past decades, including permissive hypotension, minimal crystalloid resuscitation, earlier blood transfusion, and higher plasma and platelet-to-red cell ratios. Hemostatic adjuncts, such as tranexamic acid and prothrombin complex, and the use of new methods of assessing coagulopathy are also being incorporated into resuscitation of the bleeding patient. These ideas have been incorporated by many trauma centers into institutional massive transfusion protocols, and adoption of these protocols has resulted in improvements in mortality and morbidity. This article discusses each of these new resuscitation strategies and the evidence supporting their use.

  3. Simulations of Converging Shock Collisions for Shock Ignition

    Science.gov (United States)

    Sauppe, Joshua; Dodd, Evan; Loomis, Eric

    2016-10-01

    Shock ignition (SI) has been proposed as an alternative to achieving high gain in inertial confinement fusion (ICF) targets. A central hot spot below the ignition threshold is created by an initial compression pulse, and a second laser pulse drives a strong converging shock into the fuel. The collision between the rebounding shock from the compression pulse and the converging shock results in amplification of the converging shock and increases the hot spot pressure above the ignition threshold. We investigate shock collision in SI drive schemes for cylindrical targets with a polystyrene foam interior using radiation-hydrodynamics simulations with the RAGE code. The configuration is similar to previous targets fielded on the Omega laser. The CH interior results in a lower convergence ratio and the cylindrical geometry facilitates visualization of the shock transit using an axial X-ray backlighter, both of which are important for comparison to potential experimental measurements. One-dimensional simulations are used to determine shock timing, and the effects of low mode asymmetries in 2D computations are also quantified. LA-UR-16-24773.

  4. Particle Acceleration at Shocks: Insights from Supernova Remnant Shocks

    Indian Academy of Sciences (India)

    T. W. Jones

    2011-12-01

    I review some basic properties of diffusive shock acceleration (DSA) in the context of young supernova remnants (SNRs). I also point out some key differences with cosmological, cluster-related shocks. DSA seems to be very efficient in strong, young SNR shocks. Provided the magnetic fields exceed some hundreds of Gauss (possibly amplified by CR related dynamics), these shocks can accelerate cosmic ray hadrons to PeV energies in the time available to them. Electron energies, limited by radiative losses, are likely limited to the TeV range. Injection of fresh particles at these shocks is poorly understood, but hadrons are much more easily injected than the more highly magnetized electrons. That seems supported by observational data, as well. So, while CR protons in young SNRs may play very major roles in the SNR evolution, the CR electron populations have minimal such impact, despite their observational importance.

  5. 30th International Symposium on Shock Waves

    CERN Document Server

    Sadot, Oren; Igra, Ozer

    2017-01-01

    These proceedings collect the papers presented at the 30th International Symposium on Shock Waves (ISSW30), which was held in Tel-Aviv Israel from July 19 to July 24, 2015. The Symposium was organized by Ortra Ltd. The ISSW30 focused on the state of knowledge of the following areas: Nozzle Flow, Supersonic and Hypersonic Flows with Shocks, Supersonic Jets, Chemical Kinetics, Chemical Reacting Flows, Detonation, Combustion, Ignition, Shock Wave Reflection and Interaction, Shock Wave Interaction with Obstacles, Shock Wave Interaction with Porous Media, Shock Wave Interaction with Granular Media, Shock Wave Interaction with Dusty Media, Plasma, Magnetohyrdrodynamics, Re-entry to Earth Atmosphere, Shock Waves in Rarefied Gases, Shock Waves in Condensed Matter (Solids and Liquids), Shock Waves in Dense Gases, Shock Wave Focusing, Richtmyer-Meshkov Instability, Shock Boundary Layer Interaction, Multiphase Flow, Blast Waves, Facilities, Flow Visualization, and Numerical Methods. The two volumes serve as a reference ...

  6. Shock train generated turbulence inside a nozzle with a small opening angle

    Energy Technology Data Exchange (ETDEWEB)

    Grzona, A.; Olivier, H. [RWTH Aachen University, Shock Wave Laboratory, Aachen (Germany)

    2011-09-15

    The flow inside an over expanding rectangular nozzle with a small opening angle of 1.6 is investigated by means of high-speed schlieren and shadowgraph photography, pressure probes and hot-wire anemometry on the nozzle centre line in order to measure the turbulent fluctuations generated by the occurring shock wave/boundary layer interaction. Additionally, an optical shock capturing tool is deployed to measure the amplitude and frequency of the shock train oscillation. Varying the back pressure, the pre-shock Mach number is changed between Ma{sub 1} = 1.1 and 2.1. Two different modes of turbulence generation and distribution are detected. For a single normal shock and a normal shock train, the normal Reynolds stress u{sup '2} on the channel axis is only slightly increased compared to the free stream value, whereas for the cases of a lambda foot shock train and an x-type shock train, a strong intensification by forming a turbulent mixing zone can be observed. (orig.)

  7. Interpreting Shock Tube Ignition Data

    Science.gov (United States)

    2003-10-01

    times only for high concentrations (of order 1% fuel or greater). The requirements of engine (IC, HCCI , CI and SI) modelers also present a different...Paper 03F-61 Interpreting Shock Tube Ignition Data D. F. Davidson and R. K. Hanson Mechanical Engineering ... Engineering Department Stanford University, Stanford CA 94305 Abstract Chemical kinetic modelers make extensive use of shock tube ignition data

  8. Shock waves in polycrystalline iron.

    Science.gov (United States)

    Kadau, Kai; Germann, Timothy C; Lomdahl, Peter S; Albers, Robert C; Wark, Justin S; Higginbotham, Andrew; Holian, Brad Lee

    2007-03-30

    The propagation of shock waves through polycrystalline iron is explored by large-scale atomistic simulations. For large enough shock strengths the passage of the wave causes the body-centered-cubic phase to transform into a close-packed phase with most structure being isotropic hexagonal-close-packed (hcp) and, depending on shock strength and grain orientation, some fraction of face-centered-cubic (fcc) structure. The simulated shock Hugoniot is compared to experiments. By calculating the extended x-ray absorption fine structure (EXAFS) directly from the atomic configurations, a comparison to experimental EXAFS measurements of nanosecond-laser shocks shows that the experimental data is consistent with such a phase transformation. However, the atomistically simulated EXAFS spectra also show that an experimental distinction between the hcp or fcc phase is not possible based on the spectra alone.

  9. Oscillating nonlinear acoustic shock waves

    DEFF Research Database (Denmark)

    Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth

    2016-01-01

    We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... that at resonance a stationary state arise consisting of multiple oscillating shock waves. Off resonance driving leads to a nearly linear oscillating ground state but superimposed by bursts of a fast oscillating shock wave. Based on a travelling wave ansatz for the fluid velocity potential with an added 2'nd order...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....

  10. Nonparametric Regression with Common Shocks

    Directory of Open Access Journals (Sweden)

    Eduardo A. Souza-Rodrigues

    2016-09-01

    Full Text Available This paper considers a nonparametric regression model for cross-sectional data in the presence of common shocks. Common shocks are allowed to be very general in nature; they do not need to be finite dimensional with a known (small number of factors. I investigate the properties of the Nadaraya-Watson kernel estimator and determine how general the common shocks can be while still obtaining meaningful kernel estimates. Restrictions on the common shocks are necessary because kernel estimators typically manipulate conditional densities, and conditional densities do not necessarily exist in the present case. By appealing to disintegration theory, I provide sufficient conditions for the existence of such conditional densities and show that the estimator converges in probability to the Kolmogorov conditional expectation given the sigma-field generated by the common shocks. I also establish the rate of convergence and the asymptotic distribution of the kernel estimator.

  11. Non-spherical voids and lattice reorientation patterning in a shock-loaded Al single crystal

    DEFF Research Database (Denmark)

    Hong, Chuanshi; Fæster, Søren; Hansen, Niels

    2017-01-01

    An Al single crystal shock loaded in the direction and captured at incipient spallation was examined by combining X-ray tomography, electron backscatter diffraction on a scanning electron microscope, and transmission electron microscopy (TEM). Octahedral voids with {1 1 1} faces were...

  12. Plasma ion stratification by weak planar shocks

    Science.gov (United States)

    Simakov, Andrei N.; Keenan, Brett D.; Taitano, William T.; Chacón, Luis

    2017-09-01

    We derive fluid equations for describing steady-state planar shocks of a moderate strength ( 0 shock Mach number) propagating through an unmagnetized quasineutral collisional plasma comprising two separate ion species. In addition to the standard fluid shock quantities, such as the total mass density, mass-flow velocity, and electron and average ion temperatures, the equations describe shock stratification in terms of variations in the relative concentrations and temperatures of the two ion species along the shock propagation direction. We have solved these equations analytically for weak shocks ( 0 shocks, and they have been used to verify kinetic simulations of shocks in multi-ion plasmas.

  13. Numerical modeling of the early interaction of a planar shock with a dense particle field

    Science.gov (United States)

    Regele, Jonathan; Blanquart, Guillaume

    2011-11-01

    Dense compressible multiphase flows are of interest for multiphase turbomachinary and energetic material detonations. Still, there is little understanding of the detailed interaction mechanisms between shock waves and dense (particle volume fraction αd > 0 . 001) particle fields. A recent experimental study [Wagner et al, AIAA Aero. Sci., Orlando, 2011-188] has focused on the impingement of a planar shock wave on a dense particle curtain. In the present work, numerical solutions of the Euler equations in one and two dimensions are performed for a planar shock wave impinging on a fixed particle curtain and are compared to the experimental data for early times. Comparison of the one- and two-dimensional results demonstrate that the one-dimensional description captures the large scale flow behavior, but is inadequate to capture all the details observed in the experiments. The two-dimensional solutions are shown to reproduce the experimentally observed flow structures and provide insight into how these details originate.

  14. Optic capture pars plana lensectomy

    Directory of Open Access Journals (Sweden)

    Lee JE

    2012-10-01

    Full Text Available Joo Eun LeeDepartment of Ophthalmology, Inje University College of Medicine, Busan, South KoreaObjective: To describe an optic capture pars plana lensectomy technique.Methods: After core vitrectomy, pars plana lensectomy is performed with preservation of the anterior capsule. Capsulorhexis is performed on the preserved anterior capsule through a 2.8 mm clear corneal incision. An intraocular lens (IOL is placed in the ciliary sulcus, and then the optic of the IOL is pushed back to the vitreous cavity so that the optic is captured by the surrounding capsulorhexis margin.Results: The captured IOL-capsule diaphragm remained stable during air–fluid exchange and prevented air prolapse to the anterior chamber. IOL stability and a clear visual axis were preserved during the follow-up period.Conclusion: With this modified pars plana lensectomy technique, stable IOL position and clear visual axis can be maintained when a pars plana approach is needed during combined cataract and vitreoretinal surgery.Keywords: lensectomy, optic capture, pars plana lensectomy, vitrectomy

  15. Dengue shock syndrome

    Science.gov (United States)

    Sudulagunta, Sreenivasa Rao; Sodalagunta, Mahesh Babu; Sepehrar, Mona; Bangalore Raja, Shiva Kumar; Nataraju, Aravinda Settikere; Kumbhat, Mounica; Sathyanarayana, Deepak; Gummadi, Siddharth; Burra, Hemanth Kumar

    2016-01-01

    Dengue fever is a mosquito-borne arthropod-borne viral (arboviral) tropical disease in humans affecting 50–528 million people worldwide. The acute abdominal complications of dengue fever are acute appendicitis, acute pancreatitis, acute acalculous cholecystitis and non-specific peritonitis. Acute pancreatitis with new onset diabetes in dengue shock syndrome (DSS) is very rarely reported. We describe a case of 30-year-old man admitted in intensive care unit and was diagnosed with DSS with RT-PCR, NS1 antigen and dengue IgM antibody being positive. Abdominal ultrasound and computerized tomography confirmed acute pancreatitis. Patient required insulin after recovery. Diabetes mellitus caused by DSS is under-reported and lack of awareness may increase mortality and morbidity. PMID:28031845

  16. Shock induced cavity collapse

    Science.gov (United States)

    Skidmore, Jonathan; Doyle, Hugo; Tully, Brett; Betney, Matthew; Foster, Peta; Ringrose, Tim; Ramasamy, Rohan; Parkin, James; Edwards, Tom; Hawker, Nicholas

    2016-10-01

    Results from the experimental investigation of cavity collapse driven by a strong planar shock (>6km/s) are presented. Data from high speed framing cameras, laser backlit diagnostics and time-resolved pyromety are used to validate the results of hydrodynamic front-tracking simulations. As a code validation exercise, a 2-stage light gas gun was used to accelerate a 1g Polycarbonate projectile to velocities exceeding 6km/s; impact with a PMMA target containing a gas filled void results in the formation of a strong shockwave with pressures exceeding 1Mbar. The subsequent phenomena associated with the collapse of the void and excitation of the inert gas fill are recorded and compared to simulated data. Variation of the mass density and atomic number of the gas fill is used to alter the plasma parameters furthering the extent of the code validation.

  17. Shock waves & explosions

    CERN Document Server

    Sachdev, PL

    2004-01-01

    Understanding the causes and effects of explosions is important to experts in a broad range of disciplines, including the military, industrial and environmental research, aeronautic engineering, and applied mathematics. Offering an introductory review of historic research, Shock Waves and Explosions brings analytic and computational methods to a wide audience in a clear and thorough way. Beginning with an overview of the research on combustion and gas dynamics in the 1970s and 1980s, the author brings you up to date by covering modeling techniques and asymptotic and perturbative methods and ending with a chapter on computational methods.Most of the book deals with the mathematical analysis of explosions, but computational results are also included wherever they are available. Historical perspectives are provided on the advent of nonlinear science, as well as on the mathematical study of the blast wave phenomenon, both when visualized as a point explosion and when simulated as the expansion of a high-pressure ...

  18. The microphysics of collisionless shock waves

    CERN Document Server

    Marcowith, A; Bykov, A; Dieckman, M E; Drury, L O C; Lembege, B; Lemoine, M; Morlino, G; Murphy, G; Pelletier, G; Plotnikov, I; Reville, B; Riquelme, M; Sironi, L; Novo, A Stockem

    2016-01-01

    Collisionless shocks, that is shocks mediated by electromagnetic processes, are customary in space physics and in astrophysics. They are to be found in a great variety of objects and environments: magnetospheric and heliospheric shocks, supernova remnants, pulsar winds and their nebul\\ae, active galactic nuclei, gamma-ray bursts and clusters of galaxies shock waves. Collisionless shock microphysics enters at different stages of shock formation, shock dynamics and particle energization and/or acceleration. It turns out that the shock phenomenon is a multi-scale non-linear problem in time and space. It is complexified by the impact due to high-energy cosmic rays in astrophysical environments. This review adresses the physics of shock formation, shock dynamics and particle acceleration based on a close examination of available multi-wavelength or in-situ observations, analytical and numerical developments. A particular emphasize is made on the different instabilities triggered during the shock formation and in a...

  19. 49 CFR 563.9 - Data capture.

    Science.gov (United States)

    2010-10-01

    ... frontal or side air bag deployment crash, capture and record the current deployment data, up to two events... 49 Transportation 6 2010-10-01 2010-10-01 false Data capture. 563.9 Section 563.9 Transportation..., DEPARTMENT OF TRANSPORTATION EVENT DATA RECORDERS § 563.9 Data capture. The EDR must capture and record...

  20. First Results from Shocked Foam XRTS on Z

    Science.gov (United States)

    Harding, E. C.; Ao, T.; Bailey, J. E.; Hansen, S. B.; Lemke, R. W.; Sinars, D. B.; Rochau, G. A.; Desjarlais, M. P.; Smith, I. C.; Reneker, J.; Romero, D.; Benage, J. F.; Golovkin, I.; Gregori, G.

    2014-10-01

    For the first time, a space-resolved X-ray Thomson Scattering (XRTS) spectra from shocked foam was recorded on the Z machine. The large electrical current produced by Z was used to launch an Al flyer plate to 25 km/s. The impact of the flyer plate on a CH2 foam target produced a shocked state with an estimated pressure of 0.75 Mbar, density of 0.47 g/cc, and temperature of 4.3 eV. Both unshocked and shocked portions of the foam target were probed with 6 keV x-rays produced by focusing the Z-Beamlet laser onto a nearby Mn foil. The data comprises of three, spatially distinct spectra that were simultaneously captured with a single spectrometer. These three spectra originated from the following target locations: the laser spot, the unshocked foam, and the shocked foam. The spatial resolution was made possible by the use of a spherically-bent crystal spectrometer. The analysis of this data using the new SPECT3D scattering tool will be presented, as well as future improvements to the experimental hardware. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under contract DE-AC04-94AL85000.

  1. Initial Conditions and Modeling for Shock Driven Turbulence

    Science.gov (United States)

    Grinstein, Fernando

    2016-11-01

    We focus on the simulation of shock-driven material mixing driven by flow instabilities and initial conditions. Beyond complex multi-scale resolution of shocks and variable density turbulence, me must address the equally difficult problem of predicting flow transition promoted by energy deposited at the material interfacial layer during the shock interface interactions. Transition involves unsteady large-scale coherent-structure dynamics which can be captured by LES, but not by URANS based on equilibrium turbulence assumptions and single-point-closure modeling. Such URANS is frequently preferred on the engineering end of computation capabilities for full-scale configurations - and with reduced 1D/2D dimensionality being also a common aspect. With suitable initialization around each transition - e.g., reshock, URANS can be used to simulate the subsequent near-equilibrium weakly turbulent flow. We demonstrate 3D state-of-the-art URANS performance in one such flow regime. We simulate the CEA planar shock-tube experiments by Poggi et al. (1998) with an ILES strategy. Laboratory turbulence and mixing data are used to benchmark ILES. In turn, the ILES generated data is used to initialize and as reference to assess state-of-the-art 3D URANS. We find that by prescribing physics-based 3D initial conditions and allowing for 3D flow convection with just enough resolution, the additionally computed dissipation in 3D URANS effectively blends with the modeled dissipation to yield significantly improved statistical predictions.

  2. Shock Particle Interaction - Fully Resolved Simulations and Modeling

    Science.gov (United States)

    Mehta, Yash; Neal, Chris; Jackson, Thomas L.; Balachandar, S. "Bala"; Thakur, Siddharth

    2016-11-01

    Currently there is a substantial lack of fully resolved data for shock interacting with multiple particles. In this talk we will fill this gap by presenting results of shock interaction with 1-D array and 3-D structured arrays of particles. Objectives of performing fully resolved simulations of shock propagation through packs of multiple particles are twofold, 1) To understand the complicated physical phenomena occurring during shock particle interaction, and 2) To translate the knowledge from microscale simulations in building next generation point-particle models for macroscale simulations that can better predict the motion (forces) and heat transfer for particles. We compare results from multiple particle simulations against the single particle simulations and make relevant observations. The drag history and flow field for multiple particle simulations are markedly different from those of single particle simluations, highlighting the effect of neighboring particles. We propose new models which capture this effect of neighboring particles. These models are called Pair-wise Interaction Extended Point Particle models (PIEP). Effect of multiple neighboring particles is broken down into pair-wise interactions, and these pair-wise interactions are superimposed to get the final model U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  3. Shock compression of polyurethane foams

    Directory of Open Access Journals (Sweden)

    Stahl D.B.

    2012-08-01

    Full Text Available Several shock studies have been made on polyurethane materials, both fully dense and distended in the form of foams. However, there is a lack of shock data between the densities of 0.321 and 1.264g/cm3 (fully dense. We present here data obtained from two different types of shock experiments at densities of 0.35, 0.5, 0.68, 0.78, and 0.9g/cm3 in order to fill in the density deficiencies and make it easier to develop an unreacted equation of state (EOS for polyurethane as a function of density. A thermodynamically consistent EOS was developed, based on the Helmholtz free energy, and was used to predict the shock properties of polyurethane materials at densities from 1.264 to 0.348g/cm3. These estimates are compared to the available data. The data match quite close to the predictions and provide a basis for calculating polyurethane foam shock processes. Chemical reaction has been observed at relatively high pressure (21.7 GPa in fully dense polyurethane in an earlier study, and the equation of state presented here is representative of the unreacted polyurethane foam. Lowering the density is expected to drop the shock pressure for chemical reaction, yet there is not enough data to address the low density shock reaction thresholds in this study.

  4. Bridgman's concern (shock compression science)

    Science.gov (United States)

    Graham, R. A.

    1994-07-01

    In 1956 P. W. Bridgman published a letter to the editor in the Journal of Applied Physics reporting results of electrical resistance measurements on iron under static high pressure. The work was undertaken to verify the existence of a polymorphic phase transition at 130 kbar (13 GPa) reported in the same journal and year by the Los Alamos authors, Bancroft, Peterson, and Minshall for high pressure, shock-compression loading. In his letter, Bridgman reported that he failed to find any evidence for the transition. Further, he raised some fundamental concerns as to the state of knowledge of shock-compression processes in solids. Later it was determined that Bridgman's static pressure scale was in error, and the shock observations became the basis for calibration of pressure values in static high pressure apparatuses. In spite of the error in pressure scales, Bridgman's concerns on descriptions of shock-compression processes were perceptive and have provided the basis for subsequent fundamental studies of shock-compressed solids. The present paper, written in response to receipt of the 1993 American Physical Society Shock-Compression Science Award, provides a brief contemporary assessment of those shock-compression issues which were the basis of Bridgman's 1956 concerns.

  5. Chondrule destruction in nebular shocks

    Energy Technology Data Exchange (ETDEWEB)

    Jacquet, Emmanuel; Thompson, Christopher, E-mail: ejacquet@mnhn.fr [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St George Street, Toronto, ON M5S 3H8 (Canada)

    2014-12-10

    Chondrules are millimeter-sized silicate spherules ubiquitous in primitive meteorites, but whose origin remains mysterious. One of the main proposed mechanisms for producing them is melting of solids in shock waves in the gaseous protoplanetary disk. However, evidence is mounting that chondrule-forming regions were enriched in solids well above solar abundances. Given the high velocities involved in shock models, destructive collisions would be expected between differently sized grains after passage of the shock front as a result of differential drag. We investigate the probability and outcome of collisions of particles behind a one-dimensional shock using analytic methods as well as a full integration of the coupled mass, momentum, energy, and radiation equations. Destruction of protochondrules seems unavoidable for solid/gas ratios ε ≳ 0.1, and possibly even for solar abundances because of 'sandblasting' by finer dust. A flow with ε ≳ 10 requires much smaller shock velocities (∼2 versus 8 km s{sup –1}) in order to achieve chondrule-melting temperatures, and radiation trapping allows slow cooling of the shocked fragments. Initial destruction would still be extensive; although re-assembly of millimeter-sized particles would naturally occur by grain sticking afterward, the compositional heterogeneity of chondrules may be difficult to reproduce. We finally note that solids passing through small-scale bow shocks around few kilometer-sized planetesimals might experience partial melting and yet escape fragmentation.

  6. A Method to Capture Macroslip at Bolted Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Ronald Neil; Heitman, Lili Anne Akin

    2015-10-01

    Relative motion at bolted connections can occur for large shock loads as the internal shear force in the bolted connection overcomes the frictional resistive force. This macroslip in a structure dissipates energy and reduces the response of the components above the bolted connection. There is a need to be able to capture macroslip behavior in a structural dynamics model. A linear model and many nonlinear models are not able to predict marcoslip effectively. The proposed method to capture macroslip is to use the multi-body dynamics code ADAMS to model joints with 3-D contact at the bolted interfaces. This model includes both static and dynamic friction. The joints are preloaded and the pinning effect when a bolt shank impacts a through hole inside diameter is captured. Substructure representations of the components are included to account for component flexibility and dynamics. This method was applied to a simplified model of an aerospace structure and validation experiments were performed to test the adequacy of the method.

  7. Targeting cyclone relief within the village: kinship, sharing, and capture.

    Science.gov (United States)

    Takasaki, Yoshito

    2011-01-01

    This article investigates the targeting of cyclone relief within villages in Fiji. It focuses on how relief allocation is linked with informal risk sharing and elite capture, both of which are directly related to kinship. The results are as follows. First, food aid is initially targeted toward kin groups according to their aggregate shocks and then shared among group members. Right after the cyclone, when aid is scarce, households with damage to their housing and with greater crop damage are allocated less aid within the group. Instead, they receive greater net private transfers in other forms, especially in labor sharing. Consistent patterns are found in village, cropping, and housing rehabilitations. Second, there is no elite capture of food aid in the kin group, and instead, traditional kin leaders share food with others; however, non-kin-based community leaders capture aid when it is allocated across kin groups. Third, distinct from food aid demanded by all, tarpaulins demanded by victims only strongly target individual housing damage at the village level—not the kin group—independent of social status. As with food aid, victims with greater crop damage are given a lower priority. Implications for relief policies are discussed.

  8. Analysis on shock attenuation in gap test configuration for characterizing energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bohoon; Yoh, Jack J., E-mail: jjyoh@snu.ac.kr [Seoul National University, Seoul 151-742 (Korea, Republic of); Park, Jungsu [Agency for Defense Development, Daejeon 305-600 (Korea, Republic of)

    2016-04-14

    A pyrotechnic system consisting of donor/acceptor pair separated by a gap relies on shock attenuation characteristics of the gap material and shock sensitivity of the donor and the acceptor charges. Despite of its common use, a numerical study of such a pyrotechnic train configuration is seldom reported because proper modeling of the full process requires precise capturing of the shock wave attenuation in the gap prior to triggering a full detonation of a high explosive and accurate description of the high strain rate dynamics of the explosively loaded inert confinements. We apply a hybrid particle level-set based multimaterial hydrocode with reactive flow models for pentolite donor and heavily aluminized cyclotrimethylene-trinitramine as the acceptor charge. The complex shock interaction, a critical gap thickness, an acoustic impedance, and go/no-go characteristics of the pyrotechnic system are quantitatively investigated.

  9. Shock-driven fluid-structure interaction for civil design

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Stephen L [ORNL; Deiterding, Ralf [ORNL

    2011-11-01

    The multiphysics fluid-structure interaction simulation of shock-loaded structures requires the dynamic coupling of a shock-capturing flow solver to a solid mechanics solver for large deformations. The Virtual Test Facility combines a Cartesian embedded boundary approach with dynamic mesh adaptation in a generic software framework of flow solvers using hydrodynamic finite volume upwind schemes that are coupled to various explicit finite element solid dynamics solvers (Deiterding et al., 2006). This paper gives a brief overview of the computational approach and presents first simulations that utilize the general purpose solid dynamics code DYNA3D for complex 3D structures of interest in civil engineering. Results from simulations of a reinforced column, highway bridge, multistory building, and nuclear reactor building are presented.

  10. Shocks in the Early Universe.

    Science.gov (United States)

    Pen, Ue-Li; Turok, Neil

    2016-09-23

    We point out a surprising consequence of the usually assumed initial conditions for cosmological perturbations. Namely, a spectrum of Gaussian, linear, adiabatic, scalar, growing mode perturbations not only creates acoustic oscillations of the kind observed on very large scales today, it also leads to the production of shocks in the radiation fluid of the very early Universe. Shocks cause departures from local thermal equilibrium as well as create vorticity and gravitational waves. For a scale-invariant spectrum and standard model physics, shocks form for temperatures 1  GeVUniverse as early as 10^{-30}  sec after the big bang.

  11. Cosmology with a shock wave

    OpenAIRE

    1998-01-01

    We construct the simplest solution of the Einstein equations that incorporates a shock-wave into a standard Friedmann-Robertson-Walker metric whose equation of state accounts for the Hubble constant and the microwave background radiation temperature. This produces a new solution of the Einstein equations from which we are able to derive estimates for the shock position at present time. We show that the distance from the shock-wave to the center of the explosion at present time is comparable t...

  12. Counter-driver shock tube

    Science.gov (United States)

    Tamba, T.; Nguyen, T. M.; Takeya, K.; Harasaki, T.; Iwakawa, A.; Sasoh, A.

    2015-11-01

    A "counter-driver" shock tube was developed. In this device, two counter drivers are actuated with an appropriate delay time to generate the interaction between a shock wave and a flow in the opposite direction which is induced by another shock wave. The conditions for the counter drivers can be set independently. Each driver is activated by a separate electrically controlled diaphragm rupture device, in which a pneumatic piston drives a rupture needle with a temporal jitter of better than 1.1 ms. Operation demonstrations were conducted to evaluate the practical performance.

  13. INTERFERENCE OF COUNTERPROPAGATING SHOCK WAVES

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-03-01

    Full Text Available The subject of study. We examined the interaction of counterpropagating shock waves. The necessity of counterpropagating shock waves studying occurs at designing of high Mach number modern internal compression air intakes, Ramjets with subsonic and supersonic combustion, in asymmetrical supersonic nozzles and in some other cases. In a sense, this problem is a generalization of the case of an oblique shock reflection from the wall or from the plane of symmetry. With the renewed vigor, the interest to this problem emerged at the end of the 90s. This was due to the start of the programs for flight study at hypersonic speeds. The first experiments performed with air intakes, which realized the interaction of counterpropagating shock waves have shown that the change in flow velocity is accompanied by abrupt alteration of shock-wave structure, the occurrence of nonstationary and oscillatory phenomena. With an increase of flow velocity these phenomena undesirable for aircraft structure became more marked. The reason is that there are two fundamentally different modes of interaction of counterpropagating shock waves: a four-wave regular and a five-wave irregular. The transition from one mode to another can be nonstationary abrupt or gradual, it can also be accompanied by hysteresis. Main results. Criteria for the transition from regular reflection of counterpropagating shock waves to irregular are described: the criterion of von Neumann and the stationary Mach configuration criterion. We described areas in which the transition from one reflection type to another is possible only in abrupt way, as well as areas of possible gradual transition. Intensity dependences of the reflected shock waves from the intensity of interacting counterpropagating shocks were given. Qualitative pictures of shock-wave structures arising from the interaction of counterpropagating shock waves were shown. Calculation results of the intensity of outgoing gas

  14. Is this septic shock? A rare case of distributive shock.

    Science.gov (United States)

    Val-Flores, Luis Silva; Fior, Alberto; Santos, Ana; Reis, Luís; Bento, Luís

    2014-01-01

    The authors report a rare case of shock in a patient without significant clinical history, admitted to the intensive care unit for suspected septic shock. The patient was initially treated with fluid therapy without improvement. A hypothesis of systemic capillary leak syndrome was postulated following the confirmation of severe hypoalbuminemia, hypotension, and hemoconcentration--a combination of three symptoms typical of the disease. The authors discussed the differential diagnosis and also conducted a review of the diagnosis and treatment of the disease.

  15. Shock Wave-Boundary Layer Interaction in Forced Shock Oscillations

    Institute of Scientific and Technical Information of China (English)

    Piotr Doerffer; Oskar Szulc; Franco Magagnato

    2003-01-01

    The flow in transonic diffusers as well as in supersonic air intakes becomes often unsteady due to shock wave boundary layer interaction. The oscillations may be induced by natural separation unsteadiness or may be forced by boundary conditions. Significant improvement of CFD tools, increase of computer resources as well as development of experimental methods have again.drawn the attention of researchers to this topic.To investigate the problem forced oscillations of transonic turbulent flow in asymmetric two-dimensional Laval nozzle were considered. A viscous, perfect gas flow, was numerically simulated using the Reynolds-averaged compressible Navier-Stokes solver SPARC, employing a two-equation, eddy viscosity, turbulence closure in the URANS approach.For time-dependent and stationary flow simulations, Mach numbers upstream of the shock between 1.2 and 1.4 were considered. Comparison of computed and experimental data for steady states generally gave acceptable agreement. In the case of forced oscillations, a harmonic pressure variation was prescribed at the exit plane resulting in shock wave motion. Excitation frequencies between 0 Hz and 1024 Hz were investigated at the same pressure amplitude.The main result of the work carried out is the relation between the amplitude of the shock wave motion and the excitation frequency in the investigated range. Increasing excitation frequency resulted in decreasing amplitude of the shock movement. At high frequencies a natural mode of shock oscillation (of small amplitude) was observed which is not sensitive to forced excitement.

  16. Quasilinear simulations of interplanetary shocks and Earth's bow shock

    Science.gov (United States)

    Afanasiev, Alexandr; Battarbee, Markus; Ganse, Urs; Vainio, Rami; Palmroth, Minna; Pfau-Kempf, Yann; Hoilijoki, Sanni; von Alfthan, Sebastian

    2016-04-01

    We have developed a new self-consistent Monte Carlo simulation model for particle acceleration in shocks. The model includes a prescribed large-scale magnetic field and plasma density, temperature and velocity profiles and a self-consistently computed incompressible ULF foreshock under the quasilinear approximation. Unlike previous analytical treatments, our model is time dependent and takes full account of the anisotropic particle distributions and scattering in the wave-particle interaction process. We apply the model to the problem of particle acceleration at traveling interplanetary (IP) shocks and Earth's bow shock and compare the results with hybrid-Vlasov simulations and spacecraft observations. A qualitative agreement in terms of spectral shape of the magnetic fluctuations and the polarization of the unstable mode is found between the models and the observations. We will quantify the differences of the models and explore the region of validity of the quasilinear approach in terms of shock parameters. We will also compare the modeled IP shocks and the bow shock, identifying the similarities and differences in the spectrum of accelerated particles and waves in these scenarios. The work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA). The Academy of Finland is thanked for financial support. We acknowledge the computational resources provided by CSC - IT Centre for Science Ltd., Espoo.

  17. Shock Train and Pseudo-shock Phenomena in Supersonic Internal Flows

    Institute of Scientific and Technical Information of China (English)

    Kazuyasu Matsuo

    2003-01-01

    When a normal shock wave interacts with a boundary layer along a wall surface in supersonic internal flows and the shock is strong enough to separate the boundary layer, the shock is bifurcated and a series of shocks called "shock train" is formed. The flow is decelerated from supersonic to subsonic through the whole interaction region that is referred to as "pseudo-shock". In the present paper some characteristics of the shock train and pseudo-shock and some examples of the pseudo-shocks in some flow devices are described.

  18. Coping with shocks in rural Ethiopia

    NARCIS (Netherlands)

    Debebe, Z.Y.; Mebratie, A.; Sparrow, R.; Abebaw, D.; Dekker, M.; Alemu, G.; Bedi, A.S.

    2013-01-01

    Based on household survey data and event history interviews undertaken in a highly shock prone country, this paper investigates which shocks trigger which coping responses and why? We find clear differences in terms of coping strategies across shock types. The two relatively covariate shocks, that

  19. Natural materials for carbon capture.

    Energy Technology Data Exchange (ETDEWEB)

    Myshakin, Evgeniy M. (National Energy Technology Laboratory, Pittsburgh, PA); Romanov, Vyacheslav N. (National Energy Technology Laboratory, Pittsburgh, PA); Cygan, Randall Timothy

    2010-11-01

    Naturally occurring clay minerals provide a distinctive material for carbon capture and carbon dioxide sequestration. Swelling clay minerals, such as the smectite variety, possess an aluminosilicate structure that is controlled by low-charge layers that readily expand to accommodate water molecules and, potentially, carbon dioxide. Recent experimental studies have demonstrated the efficacy of intercalating carbon dioxide in the interlayer of layered clays but little is known about the molecular mechanisms of the process and the extent of carbon capture as a function of clay charge and structure. A series of molecular dynamics simulations and vibrational analyses have been completed to assess the molecular interactions associated with incorporation of CO2 in the interlayer of montmorillonite clay and to help validate the models with experimental observation.

  20. Carbon Capture: A Technology Assessment

    Science.gov (United States)

    2013-10-21

    time. The absence of a significant market for the novel technologies put them at a further disadvantage . This is similar to the situation for CO2...the overall CCS process applied to a power plant or other industrial process. The CO2 produced from carbon in the fossil fuels or biomass feedstock...Air or Oxygen Fossil Fuels; Biomass USEFUL PRODUCTS (e.g., electricity, fuels, chemicals, hydrogen) CO2 CO2 Capture & Compress CO2 Transport CO2

  1. Carbon Capture and Sequestration (CCS)

    Science.gov (United States)

    2009-06-19

    for the pre-combustion capture of CO2 is the use of Integrated Gasification Combined-Cycle ( IGCC ) technology to generate electricity.14 There are...currently four commercial IGCC plants worldwide (two in the United States) each with a capacity of about 250 MW. The technology has yet to make a major... IGCC is an electric generating technology in which pulverized coal is not burned directly but mixed with oxygen and water in a high-pressure gasifier

  2. Shock wave velocity and shock pressure for low density powders : A novel approach

    NARCIS (Netherlands)

    Dijken, D.K.; Hosson, J.Th.M. De

    1994-01-01

    A novel approach is presented to predict the shock wave velocity as well as the shock wave pressure in powder materials. It is shown that the influence of the specific volume behind the shock wave on shock wave velocity and shock pressure decreases with decreasing initial powder density. The new mod

  3. SHOCK-WAVE VELOCITY AND SHOCK PRESSURE FOR LOW-DENSITY POWDERS - A NOVEL-APPROACH

    NARCIS (Netherlands)

    DIJKEN, DK; DEHOSSON, JTM

    1994-01-01

    A novel approach is presented to predict the shock wave velocity as well as the shock wave pressure in powder materials. It is shown that the influence of the specific volume behind the shock wave on shock wave velocity and shock pressure decreases with decreasing initial powder density. The new mod

  4. Manually operated piston-driven shock tube

    OpenAIRE

    Reddy, KPJ; Sharath, N

    2013-01-01

    A simple hand-operated shock tube capable of producing Mach 2 shock waves is described. Performance of this miniature shock tube using compressed high pressure air created by a manually operated piston in the driver section of the shock tube as driver gas with air at 1 atm pressure as the test gas in the driven tube is presented. The performance of the shock tube is found to match well with the theoretically estimated values using normal shock relations. Applications of this shock tube named ...

  5. Collisionless ion dynamics in the shock front

    Science.gov (United States)

    Gedalin, Michael

    2016-07-01

    In the vicinity of the shock front the dynamics of ions is governed by the macroscopic regular electric and magnetic field of the shock. Upon crossing the shock the thermal ions form a non-gyrotropic distribution. The pressure of these non-gyrotropic ions shapes the downstream magnetic field. High-energy ions behave in the shock front as test particles under the influence on the macroscopic fields. The reflection and transmission coefficients of high-energy ions at an oblique shock front is not sensitive to the shock structure and depends only on the global magnetic field change at the shock.

  6. Attentional Bias for Uncertain Cues of Shock in Human Fear Conditioning: Evidence for Attentional Learning Theory

    Directory of Open Access Journals (Sweden)

    Stephan Koenig

    2017-05-01

    Full Text Available We conducted a human fear conditioning experiment in which three different color cues were followed by an aversive electric shock on 0, 50, and 100% of the trials, and thus induced low (L, partial (P, and high (H shock expectancy, respectively. The cues differed with respect to the strength of their shock association (L < P < H and the uncertainty of their prediction (L < P > H. During conditioning we measured pupil dilation and ocular fixations to index differences in the attentional processing of the cues. After conditioning, the shock-associated colors were introduced as irrelevant distracters during visual search for a shape target while shocks were no longer administered and we analyzed the cues’ potential to capture and hold overt attention automatically. Our findings suggest that fear conditioning creates an automatic attention bias for the conditioned cues that depends on their correlation with the aversive outcome. This bias was exclusively linked to the strength of the cues’ shock association for the early attentional processing of cues in the visual periphery, but additionally was influenced by the uncertainty of the shock prediction after participants fixated on the cues. These findings are in accord with attentional learning theories that formalize how associative learning shapes automatic attention.

  7. Attentional Bias for Uncertain Cues of Shock in Human Fear Conditioning: Evidence for Attentional Learning Theory.

    Science.gov (United States)

    Koenig, Stephan; Uengoer, Metin; Lachnit, Harald

    2017-01-01

    We conducted a human fear conditioning experiment in which three different color cues were followed by an aversive electric shock on 0, 50, and 100% of the trials, and thus induced low (L), partial (P), and high (H) shock expectancy, respectively. The cues differed with respect to the strength of their shock association (L H). During conditioning we measured pupil dilation and ocular fixations to index differences in the attentional processing of the cues. After conditioning, the shock-associated colors were introduced as irrelevant distracters during visual search for a shape target while shocks were no longer administered and we analyzed the cues' potential to capture and hold overt attention automatically. Our findings suggest that fear conditioning creates an automatic attention bias for the conditioned cues that depends on their correlation with the aversive outcome. This bias was exclusively linked to the strength of the cues' shock association for the early attentional processing of cues in the visual periphery, but additionally was influenced by the uncertainty of the shock prediction after participants fixated on the cues. These findings are in accord with attentional learning theories that formalize how associative learning shapes automatic attention.

  8. Attentional Bias for Uncertain Cues of Shock in Human Fear Conditioning: Evidence for Attentional Learning Theory

    Science.gov (United States)

    Koenig, Stephan; Uengoer, Metin; Lachnit, Harald

    2017-01-01

    We conducted a human fear conditioning experiment in which three different color cues were followed by an aversive electric shock on 0, 50, and 100% of the trials, and thus induced low (L), partial (P), and high (H) shock expectancy, respectively. The cues differed with respect to the strength of their shock association (L H). During conditioning we measured pupil dilation and ocular fixations to index differences in the attentional processing of the cues. After conditioning, the shock-associated colors were introduced as irrelevant distracters during visual search for a shape target while shocks were no longer administered and we analyzed the cues’ potential to capture and hold overt attention automatically. Our findings suggest that fear conditioning creates an automatic attention bias for the conditioned cues that depends on their correlation with the aversive outcome. This bias was exclusively linked to the strength of the cues’ shock association for the early attentional processing of cues in the visual periphery, but additionally was influenced by the uncertainty of the shock prediction after participants fixated on the cues. These findings are in accord with attentional learning theories that formalize how associative learning shapes automatic attention. PMID:28588466

  9. Instability in Shocked Granular Gases

    CERN Document Server

    Sirmas, Nick; Radulescu, Matei

    2013-01-01

    Shocks in granular media, such as vertically oscillated beds, have been shown to develop instabilities. Similar jet formation has been observed in explosively dispersed granular media. Our previous work addressed this instability by performing discrete-particle simulations of inelastic media undergoing shock compression. By allowing finite dissipation within the shock wave, instability manifests itself as distinctive high density non-uniformities and convective rolls within the shock structure. In the present study we have extended this work to investigate this instability at the continuum level. We modeled the Euler equations for granular gases with a modified cooling rate to include an impact velocity threshold necessary for inelastic collisions. Our results showed a fair agreement between the continuum and discrete-particle models. Discrepancies, such as higher frequency instabilities in our continuum results may be attributed to the absence of higher order effects.

  10. Instability in shocked granular gases

    Science.gov (United States)

    Sirmas, Nick; Falle, Sam; Radulescu, Matei

    2014-05-01

    Shocks in granular media, such as vertically oscillated beds, have been shown to develop instabilities. Similar jet formation has been observed in explosively dispersed granular media. Our previous work addressed this instability by performing discrete-particle simulations of inelastic media undergoing shock compression. By allowing finite dissipation within the shock wave, instability manifests itself as distinctive high density non-uniformities and convective rolls within the shock structure. In the present study we have extended this work to investigate this instability at the continuum level. We modeled the Euler equations for granular gases with a modified cooling rate to include an impact velocity threshold necessary for inelastic collisions. Our results showed a fair agreement between the continuum and discrete-particle models. Discrepancies, such as higher frequency instabilities in our continuum results may be attributed to the absence of higher order effects.

  11. Shock structure in massless gases

    Directory of Open Access Journals (Sweden)

    Armando Majorana

    1991-05-01

    Full Text Available The shock structure problem is investigated in the framework of the Eckart theory of irreversible thermodynamics in the ultra relativistic limit. It is considered a neutrino gas and a gas in the approximation of hard sphere model.

  12. Shock Thermodynamic Applied Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Shock Thermodynamic Applied Research Facility (STAR) facility, within Sandia’s Solid Dynamic Physics Department, is one of a few institutions in the world with a...

  13. Shock Thermodynamic Applied Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Shock Thermodynamic Applied Research Facility (STAR) facility, within Sandia’s Solid Dynamic Physics Department, is one of a few institutions in the world with...

  14. Particle acceleration around SNR shocks

    Energy Technology Data Exchange (ETDEWEB)

    Morlino, G., E-mail: morlino@arcetri.astro.it [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5, 50125 Firenze (Italy)

    2013-08-21

    We review the basic features of particle acceleration theory around collisionless shocks in supernova remnants (SNRs). We show how non-linear effects induced by the back reaction of accelerated particles onto the shock dynamics are of paramount importance to support the hipotesys that SNRs are the factories of Galactic cosmic rays. Recent developments in the modeling of the mechanism of diffusive shock acceleration are discussed, with emphasis on the role of magnetic field amplification and the presence of neutrals in the circumstellar environment. Special attention will be devoted to observational consequences of non-linear effects on the multi-wavelength spectrum of SNRs, with emphasis on X-ray and gamma-ray emission. Finally we also discuss how Balmer lines, detected from several young SNRs, can be used to estimate the shock dynamical properties and the efficiency of CR acceleration.

  15. Particle acceleration around SNR shocks

    CERN Document Server

    Morlino, Giovanni

    2012-01-01

    We review the basic features of particle acceleration theory around collisionless shocks in supernova remnants (SNRs). We show how non linear effects induced by the back reaction of accelerated particles onto the shock dynamics are of paramount importance to support the hipotesys that SNRs are the factories of Galactic cosmic rays. Recent developments in the modeling of the mechanism of diffusive shock acceleration are discussed, with emphasis on the role of magnetic field amplification and the presence of neutrals in the circumstellar environment. Special attention will be devoted to observational consequences of non linear effects on the multi-wavelength spectrum of SNRs, with emphasis on X-ray and gamma-ray emission. Finally we also discuss how Balmer lines, detected from several young SNRs, can be used to estimate the shock dynamical properties and the efficiency of CR acceleration.

  16. The microphysics of collisionless shock waves

    DEFF Research Database (Denmark)

    Marcowith, Alexandre; Bret, Antoine; Bykov, Andrei;

    2016-01-01

    Collisionless shocks, that is shocks mediated by electromagnetic processes, are customary in space physics and in astrophysics. They are to be found in a great variety of objects and environments: magnetospheric and heliospheric shocks, supernova remnants, pulsar winds and their nebulæ, active...... galactic nuclei, gamma-ray bursts and clusters of galaxies shock waves. Collisionless shock microphysics enters at different stages of shock formation, shock dynamics and particle energization and/or acceleration. It turns out that the shock phenomenon is a multi-scale non-linear problem in time and space....... It is complexified by the impact due to high-energy cosmic rays in astrophysical environments. This review adresses the physics of shock formation, shock dynamics and particle acceleration based on a close examination of available multi-wavelength or in situ observations, analytical and numerical developments...

  17. Shock waves in disordered media

    CERN Document Server

    Ghofraniha, N; Folli, V; DelRe, E; Conti, C

    2012-01-01

    We experimentally investigate the interplay between spatial shock waves and the degree of disorder during nonlinear optical propagation in a thermal defocusing medium. We characterize the way the shock point is affected by the amount of disorder and scales with wave amplitude. Evidence for the existence of a phase diagram in terms of nonlinearity and amount of randomness is reported. The results are in quantitative agreement with a theoretical approach based on the hydrodynamic approximation.

  18. Shock instability in dissipative gases

    OpenAIRE

    Radulescu, Matei I.; Sirmas, Nick

    2011-01-01

    Previous experiments have revealed that shock waves in thermally relaxing gases, such as ionizing, dissociating and vibrationally excited gases, can become unstable. To date, the mechanism controlling this instability has not been resolved. Previous accounts of the D'yakov-Kontorovich instability, and Bethe-Zel'dovich-Thompson behaviour could not predict the experimentally observed instability. To address the mechanism controlling the instability, we study the propagation of shock waves in a ...

  19. Theoretical Insight into Shocked Gases

    Energy Technology Data Exchange (ETDEWEB)

    Leiding, Jeffery Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-29

    I present the results of statistical mechanical calculations on shocked molecular gases. This work provides insight into the general behavior of shock Hugoniots of gas phase molecular targets with varying initial pressures. The dissociation behavior of the molecules is emphasized. Impedance matching calculations are performed to determine the maximum degree of dissociation accessible for a given flyer velocity as a function of initial gas pressure.

  20. Collisionless Electrostatic Shock Modeling and Simulation

    Science.gov (United States)

    2016-10-21

    Briefing Charts 3. DATES COVERED (From - To) 30 September 2016 – 21 October 2016 4. TITLE AND SUBTITLE Collisionless Electrostatic Shock Modeling and...release: distribution unlimited. PA#16490 Air Force Research Laboratory Collisionless Electrostatic Shock Modeling and Simulation Daniel W. Crews In-Space...unlimited. PA#16490 Overview • Motivation and Background • What is a Collisionless Shock Wave? • Features of the Collisionless Shock • The Shock Simulation

  1. Pressure Hull Analysis under Shock Loading

    OpenAIRE

    Ya-Jung Lee; Chia-Hao Hsu; Chien-Hua Huang

    2008-01-01

    The hull of high performance submarines must resist underwater shock loading due to exploding torpedoes or depth bombs. An underwater shock involving an initial shock wave and successive bubble pulsating waves is so complex that a theoretical technique for deriving shock pressure distribution is required for improving simulation efficiency. Complete shock loading is obtained theoretically in this work, and responses of a submarine pressure hull are calculated using ABAQUS USA (Underwater Shoc...

  2. Sepsis and septic shock

    Science.gov (United States)

    Hotchkiss, Richard S.; Moldawer, Lyle L.; Opal, Steven M.; Reinhart, Konrad; Turnbull, Isaiah R.; Vincent, Jean-Louis

    2017-01-01

    For more than two decades, sepsis was defined as a microbial infection that produces fever (or hypothermia), tachycardia, tachypnoea and blood leukocyte changes. Sepsis is now increasingly being considered a dysregulated systemic inflammatory and immune response to microbial invasion that produces organ injury for which mortality rates are declining to 15–25%. Septic shock remains defined as sepsis with hyperlactataemia and concurrent hypotension requiring vasopressor therapy, with in-hospital mortality rates approaching 30–50%. With earlier recognition and more compliance to best practices, sepsis has become less of an immediate life-threatening disorder and more of a long-term chronic critical illness, often associated with prolonged inflammation, immune suppression, organ injury and lean tissue wasting. Furthermore, patients who survive sepsis have continuing risk of mortality after discharge, as well as long-term cognitive and functional deficits. Earlier recognition and improved implementation of best practices have reduced in-hospital mortality, but results from the use of immunomodulatory agents to date have been disappointing. Similarly, no biomarker can definitely diagnose sepsis or predict its clinical outcome. Because of its complexity, improvements in sepsis outcomes are likely to continue to be slow and incremental. PMID:28117397

  3. Vascular Endothelium and Hypovolemic Shock.

    Science.gov (United States)

    Gulati, Anil

    2016-01-01

    Endothelium is a site of metabolic activity and has a major reservoir of multipotent stem cells. It plays a vital role in the vascular physiological, pathophysiological and reparative processes. Endothelial functions are significantly altered following hypovolemic shock due to ischemia of the endothelial cells and by reperfusion due to resuscitation with fluids. Activation of endothelial cells leads to release of vasoactive substances (nitric oxide, endothelin, platelet activating factor, prostacyclin, mitochondrial N-formyl peptide), mediators of inflammation (tumor necrosis factor α, interleukins, interferons) and thrombosis. Endothelial cell apoptosis is induced following hypovolemic shock due to deprivation of oxygen required by endothelial cell mitochondria; this lack of oxygen initiates an increase in mitochondrial reactive oxygen species (ROS) and release of apoptogenic proteins. The glycocalyx structure of endothelium is compromised which causes an impairment of the protective endothelial barrier resulting in increased permeability and leakage of fluids in to the tissue causing edema. Growth factors such as angiopoetins and vascular endothelial growth factors also contribute towards pathophysiology of hypovolemic shock. Endothelium is extremely active with numerous functions, understanding these functions will provide novel targets to design therapeutic agents for the acute management of hypovolemic shock. Hypovolemic shock also occurs in conditions such as dengue shock syndrome and Ebola hemorrhagic fever, defining the role of endothelium in the pathophysiology of these conditions will provide greater insight regarding the functions of endothelial cells in vascular regulation.

  4. Shock initiated instabilities in underwater cylindrical structures

    Science.gov (United States)

    Gupta, Sachin; Matos, Helio; LeBlanc, James M.; Shukla, Arun

    2016-10-01

    An experimental investigation to understand the mechanisms of dynamic buckling instability in cylindrical structures due to underwater explosive loadings is conducted. In particular, the effects of initial hydrostatic pressure coupled with a dynamic pressure pulse on the stability of metallic cylindrical shells are evaluated. The experiments are conducted at varying initial hydrostatic pressures, below the critical buckling pressure, to estimate the threshold after which dynamic buckling will initiate. The transient underwater full-field deformations of the structures during shock wave loading are captured using high-speed stereo photography coupled with modified 3-D Digital Image Correlation (DIC) technique. Experimental results show that increasing initial hydrostatic pressure decreases the natural vibration frequency of the structure indicating loss in structural stiffness. DIC measurements reveal that the initial structural excitations primarily consist of axisymmetric vibrations due to symmetrical shock wave loading in the experiments. Following their decay after a few longitudinal reverberations, the primary mode of vibration evolves which continues throughout later in time. At the initial hydrostatic pressures below the threshold value, these vibrations are stable in nature. The analytical solutions for the vibration frequency and the transient response of cylindrical shell are discussed in the article by accounting for both (1) the added mass effect of the surrounding water and (2) the effect of initial stress on the shell imposed by the hydrostatic pressure. The analytical solutions match reasonably well with the experimental vibration frequencies. Later, the transient response of a cylindrical shell subjected to a general underwater pressure wave loading is derived which leads to the analytical prediction of dynamic stability.

  5. Lithotripter shock wave interaction with a bubble near various biomaterials

    Science.gov (United States)

    Ohl, S. W.; Klaseboer, E.; Szeri, A. J.; Khoo, B. C.

    2016-10-01

    Following previous work on the dynamics of an oscillating bubble near a bio-material (Ohl et al 2009 Phys. Med. Biol. 54 6313-36) and the interaction of a bubble with a shockwave (Klaseboer et al 2007 J. Fluid Mech. 593 33-56), the present work concerns the interaction of a gas bubble with a traveling shock wave (such as from a lithotripter) in the vicinity of bio-materials such as fat, skin, muscle, cornea, cartilage, and bone. The bubble is situated in water (to represent a water-like biofluid). The bubble collapses are not spherically symmetric, but tend to feature a high speed jet. A few simulations are performed and compared with available experimental observations from Sankin and Zhong (2006 Phys. Rev. E 74 046304). The collapses of cavitation bubbles (created by laser in the experiment) near an elastic membrane when hit by a lithotripter shock wave are correctly captured by the simulation. This is followed by a more systematic study of the effects involved concerning shockwave bubble biomaterial interactions. If a subsequent rarefaction wave hits the collapsed bubble, it will re-expand to a very large size straining the bio-materials nearby before collapsing once again. It is noted that, for hard bio-material like bone, reflection of the shock wave at the bone—water interface can affect the bubble dynamics. Also the initial size of the bubble has a significant effect. Large bubbles (˜1 mm) will split into smaller bubbles, while small bubbles collapse with a high speed jet in the travel direction of the shock wave. The numerical model offers a computationally efficient way of understanding the complex phenomena involving the interplay of a bubble, a shock wave, and a nearby bio-material.

  6. Non-oscillatory flux correlation functions for efficient nonadiabatic rate theory.

    Science.gov (United States)

    Richardson, Jeremy O; Thoss, Michael

    2014-08-21

    There is currently much interest in the development of improved trajectory-based methods for the simulation of nonadiabatic processes in complex systems. An important goal for such methods is the accurate calculation of the rate constant over a wide range of electronic coupling strengths and it is often the nonadiabatic, weak-coupling limit, which being far from the Born-Oppenheimer regime, provides the greatest challenge to current methods. We show that in this limit there is an inherent sign problem impeding further development which originates from the use of the usual quantum flux correlation functions, which can be very oscillatory at short times. From linear response theory, we derive a modified flux correlation function for the calculation of nonadiabatic reaction rates, which still rigorously gives the correct result in the long-time limit regardless of electronic coupling strength, but unlike the usual formalism is not oscillatory in the weak-coupling regime. In particular, a trajectory simulation of the modified correlation function is naturally initialized in a region localized about the crossing of the potential energy surfaces. In the weak-coupling limit, a simple link can be found between the dynamics initialized from this transition-state region and an generalized quantum golden-rule transition-state theory, which is equivalent to Marcus theory in the classical harmonic limit. This new correlation function formalism thus provides a platform on which a wide variety of dynamical simulation methods can be built aiding the development of accurate nonadiabatic rate theories applicable to complex systems.

  7. Low Pressure Evidence of High Pressure Shock: Thermal Histories and Annealing in Shocked Meteorites

    Science.gov (United States)

    Sharp, T. G.; Hu, J.

    2016-08-01

    In this study we look at the mineralogy associated with shock veins in several highly shocked L chondrites to better understand shock conditions and the importance of thermal history in creating and destroying high-pressure minerals.

  8. Realistic costs of carbon capture

    Energy Technology Data Exchange (ETDEWEB)

    Al Juaied, Mohammed (Harvard Univ., Cambridge, MA (US). Belfer Center for Science and International Affiaris); Whitmore, Adam (Hydrogen Energy International Ltd., Weybridge (GB))

    2009-07-01

    There is a growing interest in carbon capture and storage (CCS) as a means of reducing carbon dioxide (CO2) emissions. However there are substantial uncertainties about the costs of CCS. Costs for pre-combustion capture with compression (i.e. excluding costs of transport and storage and any revenue from EOR associated with storage) are examined in this discussion paper for First-of-a-Kind (FOAK) plant and for more mature technologies, or Nth-of-a-Kind plant (NOAK). For FOAK plant using solid fuels the levelised cost of electricity on a 2008 basis is approximately 10 cents/kWh higher with capture than for conventional plants (with a range of 8-12 cents/kWh). Costs of abatement are found typically to be approximately US$150/tCO2 avoided (with a range of US$120-180/tCO2 avoided). For NOAK plants the additional cost of electricity with capture is approximately 2-5 cents/kWh, with costs of the range of US$35-70/tCO2 avoided. Costs of abatement with carbon capture for other fuels and technologies are also estimated for NOAK plants. The costs of abatement are calculated with reference to conventional SCPC plant for both emissions and costs of electricity. Estimates for both FOAK and NOAK are mainly based on cost data from 2008, which was at the end of a period of sustained escalation in the costs of power generation plant and other large capital projects. There are now indications of costs falling from these levels. This may reduce the costs of abatement and costs presented here may be 'peak of the market' estimates. If general cost levels return, for example, to those prevailing in 2005 to 2006 (by which time significant cost escalation had already occurred from previous levels), then costs of capture and compression for FOAK plants are expected to be US$110/tCO2 avoided (with a range of US$90-135/tCO2 avoided). For NOAK plants costs are expected to be US$25-50/tCO2. Based on these considerations a likely representative range of costs of abatement from CCS

  9. Molecular dynamics simulations of shock waves using the absorbing boundary condition: A case study of methane

    Science.gov (United States)

    Bolesta, Alexey V.; Zheng, Lianqing; Thompson, Donald L.; Sewell, Thomas D.

    2007-12-01

    We report a method that enables long-time molecular dynamics (MD) simulations of shock wave loading. The goal is to mitigate the severe interference effects that arise at interfaces or free boundaries when using standard nonequilibrium MD shock wave approaches. The essence of the method is to capture between two fixed pistons the material state at the precise instant in time when the shock front, initiated by a piston with velocity up at one end of the target sample, traverses the contiguous boundary between the target and a second, stationary piston located at the opposite end of the sample, at which point the second piston is also assigned velocity up and the simulation is continued. Thus, the target material is captured in the energy-volume Hugoniot state resulting from the initial shock wave, and can be propagated forward in time to monitor any subsequent chemistry, plastic deformation, or other time-dependent phenomena compatible with the spatial scale of the simulation. For demonstration purposes, we apply the method to shock-induced chemistry in methane based on the adaptive intermolecular reactive empirical bond order force field [S. J. Stuart , J. Chem. Phys. 112, 6472 (2000)].

  10. Algal Energy Conversion and Capture

    Science.gov (United States)

    Hazendonk, P.

    2015-12-01

    We address the potential for energy conversions and capture for: energy generation; reduction in energy use; reduction in greenhouse gas emissions; remediation of water and air pollution; protection and enhancement of soil fertility. These processes have the potential to sequester carbon at scales that may have global impact. Energy conversion and capture strategies evaluate energy use and production from agriculture, urban areas and industries, and apply existing and emerging technologies to reduce and recapture energy embedded in waste products. The basis of biocrude production from Micro-algal feedstocks: 1) The nutrients from the liquid fraction of waste streams are concentrated and fed into photo bioreactors (essentially large vessels in which microalgae are grown) along with CO2 from flue gasses from down stream processes. 2) The algae are processed to remove high value products such as proteins and beta-carotenes. The advantage of algae feedstocks is the high biomass productivity is 30-50 times that of land based crops and the remaining biomass contains minimal components that are difficult to convert to biocrude. 3) The remaining biomass undergoes hydrothermal liquefaction to produces biocrude and biochar. The flue gasses of this process can be used to produce electricity (fuel cell) and subsequently fed back into the photobioreactor. The thermal energy required for this process is small, hence readily obtained from solar-thermal sources, and furthermore no drying or preprocessing is required keeping the energy overhead extremely small. 4) The biocrude can be upgraded and refined as conventional crude oil, creating a range of liquid fuels. In principle this process can be applied on the farm scale to the municipal scale. Overall, our primary food production is too dependent on fossil fuels. Energy conversion and capture can make food production sustainable.

  11. Automated left ventricular capture management.

    Science.gov (United States)

    Crossley, George H; Mead, Hardwin; Kleckner, Karen; Sheldon, Todd; Davenport, Lynn; Harsch, Manya R; Parikh, Purvee; Ramza, Brian; Fishel, Robert; Bailey, J Russell

    2007-10-01

    The stimulation thresholds of left ventricular (LV) leads tend to be less reliable than conventional leads. Cardiac resynchronization therapy (CRT) requires continuous capture of both ventricles. The purpose of this study is to evaluate a novel algorithm for the automatic measurement of the stimulation threshold of LV leads in cardiac resynchronization systems. We enrolled 134 patients from 18 centers who had existing CRT-D systems. Software capable of automatically executing LV threshold measurements was downloaded into the random access memory (RAM) of the device. The threshold was measured by pacing in the left ventricle and analyzing the interventricular conduction sensed in the right ventricle. Automatic LV threshold measurements were collected and compared with manual LV threshold tests at each follow-up visit and using a Holter monitor system that recorded both the surface electrocardiograph (ECG) and continuous telemetry from the device. The proportion of Left Ventricular Capture Management (LVCM) in-office threshold tests within one programming step of the manual threshold test was 99.7% (306/307) with a two-sided 95% confidence interval of (98.2%, 100.0%). The algorithm measured the threshold successfully in 96% and 97% of patients after 1 and 3 months respectively. Holter monitor analysis in a subset of patients revealed accurate performance of the algorithm. This study demonstrated that the LVCM algorithm is safe, accurate, and highly reliable. LVCM worked with different types of leads and different lead locations. LVCM was demonstrated to be clinically equivalent to the manual LV threshold test. LVCM offers automatic measurement, output adaptation, and trends of the LV threshold and should result in improved ability to maintain LV capture without sacrificing device longevity.

  12. Fast radiation mediated shocks and supernova shock breakouts

    CERN Document Server

    Katz, Boaz; Waxman, Eli

    2009-01-01

    We present a simple analytic model for the structure of non-relativistic and relativistic radiation mediated shocks. At shock velocities \\beta_s\\equiv v_s/c\\gtrsim 0.1, the shock transition region is far from thermal equilibrium, since the transition crossing time is too short for the production of a black-body photon density (by Bremsstrahlung emission). In this region, electrons and photons (and positrons) are in Compton (pair) equilibrium at temperatures T_s significantly exceeding the far downstream temperature, T_s\\gg T_d\\approx 2(\\varepsilon n_u \\hbar^3c^3)^{1/4}. T_s\\gtrsim 10 keV is reached at shock velocities \\beta_s\\approx 0.2. At higher velocities, \\beta_s\\gtrsim0.6, the plasma is dominated in the transition region by e^\\pm pairs and 60 keV\\lesssim T_s \\lesssim 200 keV. We argue that the spectrum emitted during the breaking out of supernova shocks from the stellar envelopes (or the surrounding winds) of Blue Super Giants and Wolf-Rayet stars, which reach \\beta_s>0.1 for reasonable stellar parameter...

  13. Objects capture perceived gaze direction.

    Science.gov (United States)

    Lobmaier, Janek S; Fischer, Martin H; Schwaninger, Adrian

    2006-01-01

    The interpretation of another person's eye gaze is a key element of social cognition. Previous research has established that this ability develops early in life and is influenced by the person's head orientation, as well as local features of the person's eyes. Here we show that the presence of objects in the attended space also has an impact on gaze interpretation. Eleven normal adults identified the fixation points of photographed faces with a mouse cursor. Their responses were systematically biased toward the locations of nearby objects. This capture of perceived gaze direction probably reflects the attribution of intentionality and has methodological implications for research on gaze perception.

  14. Why capture CO2 from the atmosphere?

    National Research Council Canada - National Science Library

    Keith, David W

    2009-01-01

    Air capture is an industrial process for capturing CO2 from ambient air; it is one of an emerging set of technologies for CO2 removal that includes geological storage of biotic carbon and the acceleration of geochemical weathering...

  15. The microphysics of collisionless shock waves

    DEFF Research Database (Denmark)

    Marcowith, Alexandre; Bret, Antoine; Bykov, Andrei

    2016-01-01

    galactic nuclei, gamma-ray bursts and clusters of galaxies shock waves. Collisionless shock microphysics enters at different stages of shock formation, shock dynamics and particle energization and/or acceleration. It turns out that the shock phenomenon is a multi-scale non-linear problem in time and space...... the magnetization and its obliquity is the dominant one. The shock velocity that can reach relativistic speeds has also a strong impact over the development of the micro-instabilities and the fate of particle acceleration. Recent developments of laboratory shock experiments has started to bring some new insights...... in the physics of space plasma and astrophysical shock waves. A special section is dedicated to new laser plasma experiments probing shock physics....

  16. Experimental investigation of the shock-induced distortion of a spherical gas inhomogeneity

    Science.gov (United States)

    Ranjan, Devesh

    In a high load capability vertical shock tube, a series of experiments have been carried out to characterize the interaction of a planar shock wave with discrete gas inhomogeneities. Eleven scenarios have been considered covering the Atwood (A) and Mach (M) number ranges -0.8 soap bubble. The shock wave strength, leading to a post-shock compressible regime, allows the study of instability development in an intermediary regime between low Mach number shock tube experiments and high Mach number laser-driven experiments that has not been investigated previously. Flow visualizations are obtained using planar laser diagnostics. The imaging technique used here takes advantage of the atomization of the liquid bubble film by the incident shock wave, and up to five shocked bubble images are captured per run, enhancing the investigation of the evolution of the instability during a single experiment. Quantitative analyses of the experimental data include the vortex velocity, and subsequent circulation calculations, along with a new set of relevant geometrical length scales. As the planar shock passes over the bubble, intense vortical and nonlinear acoustic phenomena are observed, including vortex ring formation, mixing, and growth of turbulence-like features. At late-times, experimental images show the presence of secondary features in the flow field at high Mach numbers, some of which were predicted previously but, until now, not confirmed experimentally. In the case of a low Atwood number, the late time flow field is dominated by coherent vortical structures while, in the case of a high Atwood number, the shocked bubble is effectively reduced to a small core of compressed fluid, which trails behind a plume-like structure indicative of a well-developed mixing region. Dimensionless analysis of trends in the bubble length scales and other features shows that no universal timescale exists, but for each feature, a unique velocity scale is appropriate as a basis for timescaling

  17. Capturing Reality at Centre Block

    Science.gov (United States)

    Boulanger, C.; Ouimet, C.; Yeomans, N.

    2017-08-01

    The Centre Block of Canada's Parliament buildings, National Historic Site of Canada is set to undergo a major rehabilitation project that will take approximately 10 years to complete. In preparation for this work, Heritage Conservation Services (HCS) of Public Services and Procurement Canada has been completing heritage documentation of the entire site which includes laser scanning of all interior rooms and accessible confined spaces such as attics and other similar areas. Other documentation completed includes detailed photogrammetric documentation of rooms and areas of high heritage value. Some of these high heritage value spaces present certain challenges such as accessibility due to the height and the size of the spaces. Another challenge is the poor lighting conditions, requiring the use of flash or strobe lighting to either compliment or completely eliminate the available ambient lighting. All the spaces captured at this higher level of detail were also captured with laser scanning. This allowed the team to validate the information and conduct a quality review of the photogrammetric data. As a result of this exercise, the team realized that in most, if not all cases, the photogrammetric data was more detailed and at a higher quality then the terrestrial laser scanning data. The purpose and motivation of this paper is to present these findings, as well provide the advantages and disadvantages of the two methods and data sets.

  18. CAPTURING REALITY AT CENTRE BLOCK

    Directory of Open Access Journals (Sweden)

    C. Boulanger

    2017-08-01

    Full Text Available The Centre Block of Canada’s Parliament buildings, National Historic Site of Canada is set to undergo a major rehabilitation project that will take approximately 10 years to complete. In preparation for this work, Heritage Conservation Services (HCS of Public Services and Procurement Canada has been completing heritage documentation of the entire site which includes laser scanning of all interior rooms and accessible confined spaces such as attics and other similar areas. Other documentation completed includes detailed photogrammetric documentation of rooms and areas of high heritage value. Some of these high heritage value spaces present certain challenges such as accessibility due to the height and the size of the spaces. Another challenge is the poor lighting conditions, requiring the use of flash or strobe lighting to either compliment or completely eliminate the available ambient lighting. All the spaces captured at this higher level of detail were also captured with laser scanning. This allowed the team to validate the information and conduct a quality review of the photogrammetric data. As a result of this exercise, the team realized that in most, if not all cases, the photogrammetric data was more detailed and at a higher quality then the terrestrial laser scanning data. The purpose and motivation of this paper is to present these findings, as well provide the advantages and disadvantages of the two methods and data sets.

  19. The Effectiveness of Classroom Capture Technology

    Science.gov (United States)

    Ford, Maire B.; Burns, Colleen E.; Mitch, Nathan; Gomez, Melissa M.

    2012-01-01

    The use of classroom capture systems (systems that capture audio and video footage of a lecture and attempt to replicate a classroom experience) is becoming increasingly popular at the university level. However, research on the effectiveness of classroom capture systems in the university classroom has been limited due to the recent development and…

  20. The Effectiveness of Classroom Capture Technology

    Science.gov (United States)

    Ford, Maire B.; Burns, Colleen E.; Mitch, Nathan; Gomez, Melissa M.

    2012-01-01

    The use of classroom capture systems (systems that capture audio and video footage of a lecture and attempt to replicate a classroom experience) is becoming increasingly popular at the university level. However, research on the effectiveness of classroom capture systems in the university classroom has been limited due to the recent development and…

  1. Marker-Free Human Motion Capture

    DEFF Research Database (Denmark)

    Grest, Daniel

    Human Motion Capture is a widely used technique to obtain motion data for animation of virtual characters. Commercial optical motion capture systems are marker-based. This book is about marker-free motion capture and its possibilities to acquire motion from a single viewing direction. The focus...

  2. [Shock in obstetrics. Institutional experience].

    Science.gov (United States)

    Bonfante Ramírez, E; Ahued Ahued, R; García-Benítez, C Q; Bolaños Ancona, R; Callejos, T; Juárez García, L

    1997-04-01

    Shock is one of the most difficult problems an obstetrician can face. Hemorrhage is the main reason of shock. A descriptive and retrospective research was conducted at Instituto Nacional de Perinatología, from January 1992 to May 1996, including all patients admitted to the intensive care unit with diagnosis of shock. There were found 90 cases with diagnosis of shock, 82 were hipovolemic, and 8 cases had the septic kind of shock. The average of age was 32.2 years, with a gestational age between 6.2 to 41.4 weeks . There were 71 healthy patients, hypertension was associated to pregnancy in 9 cases, infertility in two, myomatosis in 2, and diabetes in 2 more patients. Other 5 cases reported different pathologies. The most frequent cause for hipovolemic shock resulted to be placenta acreta (40 cases), followed by uterine tone alterations in 37 patients, ectopic pregnancy in 7, uterine rupture or perforation in 4, and vaginal or cervical lacerations in 2. The estimated blood loss varied from 2200 cc to 6500 cc, and the minimal arterial pressure registered during shock was between 40/20 mmHg to 90/60 mmHg. Medical initial assistance consisted in volume reposition with crystalloids, globular packages, and plasma expansors in 73 patients (81.1%). The rest of the patients received in addition coloids, platelets and cryoprecipitates. A total of 76 patients required surgical intervention consisting in total abdominal hysterectomy. In 5 cases the previous surgical procedure was done and ligation of hypogastric vessels was needed. Salpingectomy was performed in 5 patients, and rupture or perforation repair in 3. The average surgery time was 2 hours and 33 minutes. The observed complications were 7 cases with abscess of the cupula, consumption coagulopathy in 2, 1 vesical quirurgical injury, 1 intestinal occlusion, and 11 vesico-vaginal fistula. The average days of hospitalization resulted to be 5. The most frequent kind of shock seen by obstetricians is the hipovolemic type

  3. Prediction of massive bleeding. Shock index and modified shock index.

    Science.gov (United States)

    Terceros-Almanza, L J; García-Fuentes, C; Bermejo-Aznárez, S; Prieto-Del Portillo, I J; Mudarra-Reche, C; Sáez-de la Fuente, I; Chico-Fernández, M

    2017-04-08

    To determine the predictive value of the Shock Index and Modified Shock Index in patients with massive bleeding due to severe trauma. Retrospective cohort. Severe trauma patient's initial attention at the intensive care unit of a tertiary hospital. Patients older than 14 years that were admitted to the hospital with severe trauma (Injury Severity Score >15) form January 2014 to December 2015. We studied the sensitivity (Se), specificity (Sp), positive and negative predictive value (PV+ and PV-), positive and negative likelihood ratio (LR+ and LR-), ROC curves (Receiver Operating Characteristics) and the area under the same (AUROC) for prediction of massive hemorrhage. 287 patients were included, 76.31% (219) were male, mean age was 43,36 (±17.71) years and ISS was 26 (interquartile range [IQR]: 21-34). The overall frequency of massive bleeding was 8.71% (25). For Shock Index: AUROC was 0.89 (95% confidence intervals [CI] 0.84 to 0.94), with an optimal cutoff at 1.11, Se was 91.3% (95% CI: 73.2 to 97.58) and Sp was 79.69% (95% CI: 74.34 to 84.16). For the Modified Shock Index: AUROC was 0.90 (95% CI: 0.86 to 0.95), with an optimal cutoff at 1.46, Se was 95.65% (95% CI: 79.01 to 99.23) and Sp was 75.78% (95% CI: 70.18 to 80.62). Shock Index and Modified Shock Index are good predictors of massive bleeding and could be easily incorporated to the initial workup of patients with severe trauma. Copyright © 2017 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  4. Transient shocks beyond the heliopause

    Science.gov (United States)

    Fermo, R. L.; Pogorelov, N. V.; Burlaga, L. F.

    2015-09-01

    The heliopause is a rich, dynamic surface affected by the time-dependent solar wind. Stream interactions due to coronal mass ejections (CMEs), corotating interaction regions (CIRs), and other transient phenomena are known to merge producing global merged interaction regions (GMIRs). Numerical simulations of the solar wind interaction with the local interstellar medium (LISM) show that GMIRs, as well other time-dependent structures in the solar wind, may produce compression/rarefaction waves and shocks in the LISM behind the heliopause. These shocks may initiate wave activity observed by the Voyager spacecraft. The magnetometer onboard Voyager 1 indeed observed a few structures that may be interpreted as shocks. We present numerical simulations of such shocks in the year of 2000, when both Voyager spacecraft were in the supersonic solar wind region, and in 2012, when Voyager 1 observed traveling shocks. In the former case, Voyager observations themselves provide time- dependent boundary conditions in the solar wind. In the latter case, we use OMNI data at 1 AU to analyze the plasma and magnetic field behavior after Voyager 1 crossed the heliospheric boundary. Numerical results are compared with spacecraft observations.

  5. Shock in the emergency department

    DEFF Research Database (Denmark)

    Holler, Jon Gitz; Henriksen, Daniel Pilsgaard; Mikkelsen, Søren

    2016-01-01

    BACKGROUND: The knowledge of the frequency and associated mortality of shock in the emergency department (ED) is limited. The aim of this study was to describe the incidence, all-cause mortality and factors associated with death among patients suffering shock in the ED. METHODS: Population......-based cohort study at an University Hospital ED in Denmark from January 1, 2000, to December 31, 2011. All patients aged ≥18 years living in the hospital catchment area with a first time ED presentation with shock (n = 1646) defined as hypotension (systolic blood pressure (SBP) ≤100 mmHg)) and ≥1 organ...... failures. Outcomes were annual incidence per 100,000 person-years at risk (pyar), all-cause mortality at 0-7, and 8-90 days and risk factors associated with death. RESULTS: We identified 1646 of 438,191 (0.4 %) ED patients with shock at arrival. Incidence of shock increased from 53.8 to 80.6 cases per 100...

  6. Shock wave-droplet interaction

    Science.gov (United States)

    Habibi Khoshmehr, Hamed; Krechetnikov, Rouslan

    2016-11-01

    Disintegration of a liquid droplet under the action of a shock wave is experimentally investigated. The shock wave-pulse is electromagnetically generated by discharging a high voltage capacitor into a flat spiral coil, above which an isolated circular metal membrane is placed in a close proximity. The Lorentz force arising due to the eddy current induced in the membrane abruptly accelerates it away from the spiral coil thus generating a shock wave. The liquid droplet placed at the center of the membrane, where the maximum deflection occurs, is disintegrated in the process of interaction with the shock wave. The effects of droplet viscosity and surface tension on the droplet destruction are studied with high-speed photography. Water-glycerol solution at different concentrations is used for investigating the effect of viscosity and various concentrations of water-sugar and water-ethanol solution are used for studying the effect of surface tension. Here we report on how the metamorphoses, which a liquid drop undergoes in the process of interaction with a shock wave, are affected by varied viscosity and surface tension.

  7. Unveiling shocks in planetary nebulae

    CERN Document Server

    Guerrero, M A; Medina, J J; Luridiana, V; Miranda, L F; Riera, A; Velázquez, P F

    2013-01-01

    The propagation of a shock wave into a medium is expected to heat the material beyond the shock, producing noticeable effects in intensity line ratios such as [O III]/Halpha. To investigate the occurrence of shocks in planetary nebulae (PNe), we have used all narrowband [O III] and Halpha images of PNe available in the HST archive to build their [O III]/Halpha ratio maps and to search for regions where this ratio is enhanced. Regions with enhanced [O III]/Halpha emission ratio can be ascribed to two different types of morphological structures: bow-shock structures produced by fast collimated outflows and thin skins enveloping expanding nebular shells. Both collimated outflows and expanding shells are therefore confirmed to generate shocks in PNe. We also find regions with depressed values of the [O III]/Halpha ratio which are found mostly around density bounded PNe, where the local contribution of [N II] emission into the F656N Halpha filter cannot be neglected.

  8. Pressure Hull Analysis under Shock Loading

    Directory of Open Access Journals (Sweden)

    Ya-Jung Lee

    2008-01-01

    Full Text Available The hull of high performance submarines must resist underwater shock loading due to exploding torpedoes or depth bombs. An underwater shock involving an initial shock wave and successive bubble pulsating waves is so complex that a theoretical technique for deriving shock pressure distribution is required for improving simulation efficiency. Complete shock loading is obtained theoretically in this work, and responses of a submarine pressure hull are calculated using ABAQUS USA (Underwater Shock Analysis codes. In the long run, this deflection and stress data will assist in examining the structural arrangement of the submarine pressure hull.

  9. The Sensitivity of Core-Collapse Supernovae to Nuclear Electron Capture

    CERN Document Server

    Sullivan, Chris; Zegers, Remco G T; Grubb, Thomas; Austin, Sam M

    2015-01-01

    A weak-rate library aimed at investigating the sensitivity of astrophysical environments to variations of electron-capture rates on medium-heavy nuclei has been developed. With this library, the sensitivity of the core-collapse and early post-bounce phases of core-collapse supernovae to nuclear electron-capture is examined by systematically and statistically varying electron-capture rates of individual nuclei. The rates are adjusted by factors consistent with uncertainties indicated by comparing theoretical rates to those deduced from charge-exchange and $\\beta$-decay measurements. To ensure a model independent assessment, sensitivity studies across a comprehensive set of progenitors and equations of state are performed. In our systematic study, we find a +16/-4 % range in the mass of the inner-core at the time of shock formation and a $\\pm$20% range of peak {\

  10. High-order shock-fitted detonation propagation in high explosives

    Science.gov (United States)

    Romick, Christopher M.; Aslam, Tariq D.

    2017-03-01

    A highly accurate numerical shock and material interface fitting scheme composed of fifth-order spatial and third- or fifth-order temporal discretizations is applied to the two-dimensional reactive Euler equations in both slab and axisymmetric geometries. High rates of convergence are not typically possible with shock-capturing methods as the Taylor series analysis breaks down in the vicinity of discontinuities. Furthermore, for typical high explosive (HE) simulations, the effects of material interfaces at the charge boundary can also cause significant computational errors. Fitting a computational boundary to both the shock front and material interface (i.e. streamline) alleviates the computational errors associated with captured shocks and thus opens up the possibility of high rates of convergence for multi-dimensional shock and detonation flows. Several verification tests, including a Sedov blast wave, a Zel'dovich-von Neumann-Döring (ZND) detonation wave, and Taylor-Maccoll supersonic flow over a cone, are utilized to demonstrate high rates of convergence to nontrivial shock and reaction flows. Comparisons to previously published shock-capturing multi-dimensional detonations in a polytropic fluid with a constant adiabatic exponent (PF-CAE) are made, demonstrating significantly lower computational error for the present shock and material interface fitting method. For an error on the order of 10 m /s, which is similar to that observed in experiments, shock-fitting offers a computational savings on the order of 1000. In addition, the behavior of the detonation phase speed is examined for several slab widths to evaluate the detonation performance of PBX 9501 while utilizing the Wescott-Stewart-Davis (WSD) model, which is commonly used in HE modeling. It is found that the thickness effect curve resulting from this equation of state and reaction model using published values is dramatically more steep than observed in recent experiments. Utilizing the present fitting

  11. Halo Effect on Direct Neutron Capture Process

    Institute of Scientific and Technical Information of China (English)

    刘祖华; 周宏余

    2004-01-01

    We calculate the capture cross sections of the 10Be(n,γ) 11 Be reaction by means of the asymptotic normalization coefficient method and demonstrate the halo effects on the capture cross sections for the direct radiative neutron capture where a p-, s- or d-wave neutron is captured into an s-orbit or p-orbit in 11 Be by emitting an E1 γ-ray,respectively. The result shows that the enormous enhancement of the capture cross section is just due to the large overlap of the incident neutron wave with the extended tail of the halo, which is clearly illustrated by the reduced transition amplitude function.

  12. CO2 Capture for Cement Technology

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar

    performed recently has focused on CO2capture from fossil fuel-based power plants. Inherently,this process is especially suitablefor cement plants, as CaO used for CO2capture is also a majoringredient for clinker production. Thus, a detailed investigation was carried outto study the applicationof......% of the inlet CO2 was captured by highly deactivated limestone, which had a maximum CO2 capture capacity of 11.5%, with an inlet Ca/C ratio of 13. So, the performance of the carbonator can be defined by the inlet Ca/C ratio, which can be estimated if the maximum capture capacity of limestone is known...

  13. Shocks in the Early Universe

    CERN Document Server

    Pen, Ue-Li

    2015-01-01

    We point out a surprising consequence of the usually assumed initial conditions for cosmological perturbations. Namely, a scale-invariant spectrum of Gaussian, linear, adiabatic, scalar, growing mode perturbations not only creates acoustic oscillations, of the kind observed in great detail on large scales today, it also leads to the production of shock waves in the radiation fluid of the very early universe. At very early epochs, $1$ GeV$shocks after $\\sim 10^4$ oscillations. The resulting scale-invariant network of shocks provides a natural mechanism for creating significant departures from local thermal equilibrium as well as primordial vorticity and gravitational waves.

  14. Shock Formation in Lovelock Theories

    CERN Document Server

    Reall, Harvey S; Way, Benson

    2014-01-01

    We argue that Lovelock theories of gravity suffer from shock formation, unlike General Relativity. We consider the propagation of (i) a discontinuity in curvature, and (ii) weak, high frequency, gravitational waves. Such disturbances propagate along characteristic hypersurfaces of a "background" spacetime and their amplitude is governed by a transport equation. In GR the transport equation is linear. In Lovelock theories, it is nonlinear and its solutions can blow up, corresponding to the formation of a shock. We show that this effect is absent in some simple cases e.g. a flat background spacetime, and demonstrate its presence for a plane wave background. We comment on weak cosmic censorship, the evolution of shocks, and the nonlinear stability of Minkowski spacetime, in Lovelock theories.

  15. Shock compression of simulated adobe

    Science.gov (United States)

    Braithwaite, C. H.; Church, P. D.; Gould, P. J.; Stewart, B.; Jardine, A. P.

    2017-01-01

    A series of plate impact experiments were conducted to investigate the shock response of a simulant for adobe, a traditional form of building material widely used around the world. Air dried bricks were sourced from the London brick company, dry machined and impacted at a range of velocities in a single stage gas gun. The shock Hugoniot was determined (Us =2.26up+0.37) as well as release information. The material was found to behave in a manner which was similar to that of loose sand and considerably less stiff than a weak porous sandstone. The effect of any cementing of the grains was examined by shocking powdered samples contained within a cell arrangement.

  16. Shock, diaschisis and von Monakow

    Directory of Open Access Journals (Sweden)

    Eliasz Engelhardt

    2013-07-01

    Full Text Available The concept of shock apparently emerged in the middle of the 18th century (Whyett as an occurrence observed experimentally after spinal cord transection, and identified as "shock" phenomenon one century later (Hall. The concept was extended (Brown-Séquard and it was suggested that brain lesions caused functional rupture in regions distant from the injured one ("action à distance". The term "diaschisis" (von Monakow, proposed as a new modality of shock, had its concept broadened, underpinned by observations of patients, aiming at distinguishing between symptoms of focal brain lesions and transitory effects they produced, attributable to depression of distant parts of the brain connected to the injured area. Presently, diaschisis is related mainly to cerebrovascular lesions and classified according to the connection fibers involved, as proposed by von Monakow. Depression of metabolism and blood flow in regions anatomically separated, but related by connections with the lesion, allows observing diaschisis with neuroimaging.

  17. Shock Compression of Simulated Adobe

    Science.gov (United States)

    Braithwaite, C. H.; Church, P. D.; Gould, P. J.; Stewart, B.; Jardine, A. P.

    2015-06-01

    A series of plate impact experiments were conducted to investigate the shock response of a simulant for adobe, a traditional form of building material widely used around the world. Air dried bricks were sourced from the London brick company, dry machined and impacted at a range of velocities in a single stage gas gun. The shock Hugoniot was determined (Us = 2.26up + 0.33) as well as release information. The material was found to behave in a manner which was similar to that of loose sand and considerably less stiff than a weak porous sandstone. The effect of any cementing of the grains was examined by shocking powdered samples contained within a cell arrangement. The research was funded by DSTL through a WSTC contract.

  18. Capture of Irregular Satellites at Jupiter

    CERN Document Server

    Nesvorny, D; Deienno, R

    2014-01-01

    The irregular satellites of outer planets are thought to have been captured from heliocentric orbits. The exact nature of the capture process, however, remains uncertain. We examine the possibility that irregular satellites were captured from the planetesimal disk during the early Solar System instability when encounters between the outer planets occurred (Nesvorny, Vokrouhlicky & Morbidelli 2007, AJ 133; hereafter NVM07). NVM07 already showed that the irregular satellites of Saturn, Uranus and Neptune were plausibly captured during planetary encounters. Here we find that the current instability models present favorable conditions for capture of irregular satellites at Jupiter as well, mainly because Jupiter undergoes a phase of close encounters with an ice giant. We show that the orbital distribution of bodies captured during planetary encounters provides a good match to the observed distribution of irregular satellites at Jupiter. The capture efficiency for each particle in the original transplanetary d...

  19. Shock waves in tidally compressed stars by massive black holes

    CERN Document Server

    Brassart, M

    2007-01-01

    We study the case of a solar-type star penetrating deeply within the tidal radius of a massive black hole. We focus on the compression phase leading to a so-called pancake configuration of the star at the instant of maximal compression. The aim is to provide reliable estimates of the thermodynamical quantities involved in the pancake star, and to solve a controversy about whether or not thermonuclear reactions can be triggered in the core of a tidally compressed star. We have set up a one-dimensional hydrodynamical code based on the high-resolution shock-capturing Godunov-type approach in order to study the compression phase undergone by the star in the direction orthogonal to its orbital plane, taking into account the development of shock waves during that phase. We show the existence of two regimes of compression depending on whether shock waves develop after or before the instant of maximal compression. In both cases we confirm high compression and heating factors in the stellar core, able to trigger a the...

  20. Workshop on neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Fairchild, R.G.; Bond, V.P. (eds.)

    1986-01-01

    Potentially optimal conditions for Neutron Capture Therapy (NCT) may soon be in hand due to the anticipated development of band-pass filtered beams relatively free of fast neutron contaminations, and of broadly applicable biomolecules for boron transport such as porphyrins and monoclonal antibodies. Consequently, a number of groups in the US are now devoting their efforts to exploring NCT for clinical application. The purpose of this Workshop was to bring these groups together to exchange views on significant problems of mutual interest, and to assure a unified and effective approach to the solutions. Several areas of preclinical investigation were deemed to be necessary before it would be possible to initiate clinical studies. As neither the monomer nor the dimer of sulfhydryl boron hydride is unequivocally preferable at this time, studies on both compounds should be continued until one is proven superior.

  1. Muon capture by silicon 28

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, D.S. [College of William and Mary, Williamsburg, VA (United States). Dept. of Physics; Bauer, J. [Kentucky Univ., Lexington, KY (United States). Dept. of Physics; Evans, J. [Kentucky Univ., Lexington, KY (United States). Dept. of Physics; Gorringe, T.P. [Kentucky Univ., Lexington, KY (United States). Dept. of Physics; Johnson, B.L. [Kentucky Univ., Lexington, KY (United States). Dept. of Physics; Kalvoda, S. [Kentucky Univ., Lexington, KY (United States). Dept. of Physics; Porter, R. [Kentucky Univ., Lexington, KY (United States). Dept. of Physics; Siebels, B. [Kentucky Univ., Lexington, KY (United States). Dept. of Physics; Gete, E. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Physics; Measday, D.F. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Physics; Moftah, B.A. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Physics; Stanislaus, S. [Valparaiso Univ., IN (United States). Dept. of Physics

    1996-12-01

    A measurement has been made of the angular correlation of the neutrino with the 1229 keV {gamma}-ray from the de-excitation of the 2201 keV 1{sup +} level in aluminum-28, following muon capture in silicon-28. To suppress the neutron-induced background in the HPGe detector, a coincidence in a NaI array is required with the 942 keV {gamma}-ray in the de-excitation cascade. The lifetime of the 2201 keV level is found to be 61{+-}4{+-}9 fs. The correlation coefficient {alpha} is found to be 0.36{+-}0.06 implying g{sub P}/g{sub A}=0{sup +3.5}{sub -3}. (orig.).

  2. Prey capture by harbor porpoises

    DEFF Research Database (Denmark)

    Miller, Lee

    2008-01-01

    their ultrasonic clicks as biosonar for orientation and detection of prey (mostly smaller pelagic and bottom dwelling fish), and for communication.  For studying wild animals, hydrophone arrays [Villadsgaard et al. J.Exp.Biol. 210 (2007)] and acoustic (time/depth) tags [Akamatsu et al. Deep Sea Research II 54...... (2007)] have been used.  For studying captive animals, arrays and video techniques [Verfuss et al. J.Exp.Biol. 208 (2005)] as well as miniature acoustic-behavioral tags [Deruiter et al. JASA 123 (2008)] have been used.  While searching for prey, harbor porpoises use clicks at long intervals (~50 ms......) that progressively decrease when closing on an object.  After detecting the prey, the click interval stabilizes and then becomes progressively shorter while approaching the prey.  The sequence ends in a terminal, high repetition rate buzz (~500 clicks/s) just before capturing the prey (a video will be shown...

  3. Cage-based performance capture

    CERN Document Server

    Savoye, Yann

    2014-01-01

    Nowadays, highly-detailed animations of live-actor performances are increasingly easier to acquire and 3D Video has reached considerable attentions in visual media production. In this book, we address the problem of extracting or acquiring and then reusing non-rigid parametrization for video-based animations. At first sight, a crucial challenge is to reproduce plausible boneless deformations while preserving global and local captured properties of dynamic surfaces with a limited number of controllable, flexible and reusable parameters. To solve this challenge, we directly rely on a skin-detached dimension reduction thanks to the well-known cage-based paradigm. First, we achieve Scalable Inverse Cage-based Modeling by transposing the inverse kinematics paradigm on surfaces. Thus, we introduce a cage inversion process with user-specified screen-space constraints. Secondly, we convert non-rigid animated surfaces into a sequence of optimal cage parameters via Cage-based Animation Conversion. Building upon this re...

  4. Shock Sensitivity of energetic materials

    Science.gov (United States)

    Kim, K.

    1980-01-01

    Viscoplastic deformation is examined as the principal source of hot energy. Some shock sensitivity data on a proposed model is explained. A hollow sphere model is used to approximate complex porous matrix of energetic materials. Two pieces of shock sensitivity data are qualitatively compared with results of the proposed model. The first is the p2 tau law. The second is the desensitization of energetic materials by a ramp wave applied stress. An approach to improve the model based on experimental observations is outlined.

  5. Scientific Evidence for Hydrostatic Shock

    CERN Document Server

    Courtney, Michael

    2008-01-01

    This paper reviews the scientific support for a ballistic pressure wave radiating outward from a penetrating projectile and causing injury and incapacitation. This phenomenon is known colloquially as "hydrostatic shock." The idea apparently originates with Col. Frank Chamberlin, a World War II trauma surgeon and wound ballistics researcher. The paper reviews claims that hydrostatic shock is a myth and considers supporting evidence through parallels with blast, describing the physics of the pressure wave, evidence for remote cerebral effects, and remote effects in the spine and other internal organs. Finally, the review considers the levels of energy transfer required for the phenomenon to be readily observed.

  6. Diaphragm opening effects on shock wave formation and acceleration in a rectangular cross section channel

    Science.gov (United States)

    Pakdaman, S. A.; Garcia, M.; Teh, E.; Lincoln, D.; Trivedi, M.; Alves, M.; Johansen, C.

    2016-11-01

    Shock wave formation and acceleration in a high-aspect ratio cross section shock tube were studied experimentally and numerically. The relative importance of geometric effects and diaphragm opening time on shock formation are assessed. The diaphragm opening time was controlled through the use of slit-type (fast opening time) and petal-type (slow opening time) diaphragms. A novel method of fabricating the petal-type diaphragms, which results in a consistent burst pressure and symmetric opening without fragmentation, is presented. High-speed schlieren photography was used to visualize the unsteady propagation of the lead shock wave and trailing gas dynamic structures. Surface-mounted pressure sensors were used to capture the spatial and temporal development of the pressure field. Unsteady Reynolds-Averaged Navier-Stokes simulation predictions using the shear-stress-transport turbulence model are compared to the experimental data. Simulation results are used to explain the presence of high-frequency pressure oscillations observed experimentally in the driver section as well as the cause of the initial acceleration and subsequent rapid decay of shock velocity measured along the top and bottom channel surfaces. A one-dimensional theoretical model predicting the effect of the finite opening time of the diaphragm on the rate of driver depressurization and shock acceleration is proposed. The model removes the large amount of empiricism that accompanies existing models published in the literature. Model accuracy is assessed through comparisons with experiments and simulations. Limitations of and potential improvements in the model are discussed.

  7. Kinetic Simulations of Particle Acceleration at Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Caprioli, Damiano [Princeton University; Guo, Fan [Los Alamos National Laboratory

    2015-07-16

    Collisionless shocks are mediated by collective electromagnetic interactions and are sources of non-thermal particles and emission. The full particle-in-cell approach and a hybrid approach are sketched, simulations of collisionless shocks are shown using a multicolor presentation. Results for SN 1006, a case involving ion acceleration and B field amplification where the shock is parallel, are shown. Electron acceleration takes place in planetary bow shocks and galaxy clusters. It is concluded that acceleration at shocks can be efficient: >15%; CRs amplify B field via streaming instability; ion DSA is efficient at parallel, strong shocks; ions are injected via reflection and shock drift acceleration; and electron DSA is efficient at oblique shocks.

  8. Shock dynamics in layered periodic media

    KAUST Repository

    Ketcheson, David I.

    2012-01-01

    Solutions of constant-coeffcient nonlinear hyperbolic PDEs generically develop shocks, even if the initial data is smooth. Solutions of hyperbolic PDEs with variable coeffcients can behave very differently. We investigate formation and stability of shock waves in a one-dimensional periodic layered medium by a computational study of time-reversibility and entropy evolution. We find that periodic layered media tend to inhibit shock formation. For small initial conditions and large impedance variation, no shock formation is detected even after times much greater than the time of shock formation in a homogeneous medium. Furthermore, weak shocks are observed to be dynamically unstable in the sense that they do not lead to significant long-term entropy decay. We propose a characteristic condition for admissibility of shocks in heterogeneous media that generalizes the classical Lax entropy condition and accurately predicts the formation or absence of shocks in these media.

  9. 29th International Symposium on Shock Waves

    CERN Document Server

    Ranjan, Devesh

    2015-01-01

    This proceedings present the results of the 29th International Symposium on Shock Waves (ISSW29) which was held in Madison, Wisconsin, U.S.A., from July 14 to July 19, 2013. It was organized by the Wisconsin Shock Tube Laboratory, which is part of the College of Engineering of the University of Wisconsin-Madison. The ISSW29 focused on the following areas: Blast Waves, Chemically Reactive Flows, Detonation and Combustion,  Facilities, Flow Visualization, Hypersonic Flow, Ignition, Impact and Compaction, Industrial Applications, Magnetohydrodynamics, Medical and Biological Applications, Nozzle Flow, Numerical Methods, Plasmas, Propulsion, Richtmyer-Meshkov Instability, Shock-Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shock Waves in Condensed Matter, Shock Waves in Multiphase Flow, as well as Shock Waves in Rarefield Flow. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 29 and individuals interes...

  10. Early Treatment of Shock and Injury

    Science.gov (United States)

    2013-10-01

    Resuscitation from Shock. FELANPE, Federation Latinoamericana de Terapia Nutricional, Nutrition Clinica, y Metabolisma. October 5, 2011. (Asuncion...Resuscitation from Shock. FELANPE, Federation Latinoamericana de Terapia Nutricional, Nutrition Clinica, y Metabolisma. October 5, 2011

  11. Shock State of Itokawa Regolith Grains

    Science.gov (United States)

    Zolensky, M.; Nishiizumi, K.; Mikouchi, T.; Chan, Q. H. S.; Martinez, J.; Caffee, M.

    2014-01-01

    One of the fundamental aspects of any astromaterial is its shock history, since this factor elucidates critical historical events, and also because shock metamorphism can alter primary mineralogical and petrographic features, and reset chronologies.

  12. Shear Viscosity of Aluminium under Shock Compression

    Institute of Scientific and Technical Information of China (English)

    LIU Fu-Sheng; YANG Mei-Xia; LIU Qi-Wen; CHEN Jun-Xiang; JING Fu-Qian

    2005-01-01

    @@ Based on the Newtonian viscous fluid model and the analytic perturbation theory of Miller and Ahrens for the oscillatory damping of a sinusoidal shock front, a flyer-impact technique is developed to investigate the effecti veviscosity of shocked aluminium.

  13. Etiology of Shock in the Emergency Department

    DEFF Research Database (Denmark)

    Holler, Jon Gitz; Jensen, Helene Kildegaard; Henriksen, Daniel Pilsgaard

    2017-01-01

    INTRODUCTION: The knowledge of the etiology and associated mortality of undifferentiated shock in the emergency department (ED) is limited. We aimed to describe the etiology based proportions and incidence rates (IR) of shock, as well as the associated mortality in the ED. METHODS: Population......-based cohort study at an University Hospital ED in Denmark from January 1, 2000, to December 31, 2011. Patients aged ≥18 years living in the ED-catchment area (N = 225,000) with a first time ED presentation with shock (n = 1,646) defined as hypotension (systolic blood pressure ≤100 mmHg)) and ≥1 organ failures...... were included. Discharge diagnoses defined the etiology and were grouped as; distributive septic shock (SS), distributive non-septic shock (NS)), cardiogenic shock (CS), hypovolemic shock (HS), obstructive shock (OS) and other conditions (OC). Outcomes were etiology-based characteristics, annual IR per...

  14. SHOCK WAVE IN IONOSPHERE DURING EARTHQUAKE

    Directory of Open Access Journals (Sweden)

    V.V. Kuznetsov

    2016-11-01

    Full Text Available Fundamentally new model of the shock wave (SW generation in atmosphere and ionosphere during earthquake is proposed. The model proceeds from the idea of cooperative shock water crystallization in a cloud

  15. Suppressive and Facilitative Effects of Shock Intensity and Interresponse Times Followed by Shock

    Science.gov (United States)

    Everly, Jessica B.; Perone, Michael

    2012-01-01

    Although response-dependent shock often suppresses responding, response facilitation can occur. In two experiments, we examined the suppressive and facilitative effects of shock by manipulating shock intensity and the interresponse times that produced shock. Rats' lever presses were reinforced on a variable-interval 40-s schedule of food…

  16. Suppressive and Facilitative Effects of Shock Intensity and Interresponse Times Followed by Shock

    Science.gov (United States)

    Everly, Jessica B.; Perone, Michael

    2012-01-01

    Although response-dependent shock often suppresses responding, response facilitation can occur. In two experiments, we examined the suppressive and facilitative effects of shock by manipulating shock intensity and the interresponse times that produced shock. Rats' lever presses were reinforced on a variable-interval 40-s schedule of food…

  17. Interaction of Accretion Shocks with Winds

    Indian Academy of Sciences (India)

    Kinsuk Acharya; Sandip K. Chakrabarti; D. Molteni

    2002-03-01

    Accretion shocks are known to oscillate in presence of cooling processes in the disk. This oscillation may also cause quasi-periodic oscillations of black holes. In the presence of strong winds, these shocks have oscillations in vertical direction as well.We show examples of shock oscillations under the influence of both the effects. When the shocks are absent and the flow is cooler, the wind becomes weaker and the vertical oscillation becomes negligible.

  18. Evaluation of a Two-Length Scale Turbulence Model with Experiments on Shock-Driven Turbulent Mixing

    Science.gov (United States)

    Carter, John; Gore, Rob; Ranjan, Devesh

    2015-11-01

    A new second moment turbulence model which uses separate transport and decay length scales is used to model the shock-driven instability. The ability of the model to capture the evolution of turbulence statistics and mixing is discussed. Evaluation is based on comparison to the Georgia Tech shock tube experiments. In the experiments a membraneless light-over-heavy interface is created. There is a long-wavelength perturbation which exists due to inclination of the entire shock tube. By limiting calculations to one dimension, there is not a geometric description of the incline, and the ability of the transport length scale alone to capture the effect of the long-wavelength perturbation is tested.

  19. Cavitation inception following shock wave passage

    NARCIS (Netherlands)

    Ohl, C.D.

    2002-01-01

    Cavitation bubble nucleation following the passage of an extracorporeal shock wave lithotripter pulse is investigated experimentally and numerically. In the experiments two configurations are considered: Free passage of the shock wave, and reflection of the shock wave from a rigid reflector. The nuc

  20. Coping with shocks in rural Ethiopia

    NARCIS (Netherlands)

    Z.Y. Debebe (Zelalem); A.D. Mebratie (Anagaw); R.A. Sparrow (Robert); D. Abebaw Ejigie (Degnet); M. Dekker (Marleen); G. Alemu (Getnet ); A.S. Bedi (Arjun Singh)

    2013-01-01

    textabstractBased on household survey data and event history interviews undertaken in a highly shock prone country, this paper investigates which shocks trigger which coping responses and why? We find clear differences in terms of coping strategies across shock types. The two relatively covariate

  1. Streptococcus pyogenes toxic-shock syndrome

    OpenAIRE

    Antunes, R; M Diogo; Carvalho, A.; Pimentel, T.; J. Oliveira

    2011-01-01

    Recently there has been an exponential increase in invasive infections caused by Streptococcus ß hemolyticcus group A. In about one third of cases they are complicated by toxic shock syndrome, characterized by septic shock and multiorgan failure. The authors, by their rarity, report a case of bacteraemia caused by Streptococcus pyogenes complicated by toxic shock syndrome.

  2. Percutaneous mechanical circulatory support in cardiogenic shock

    NARCIS (Netherlands)

    Ouweneel, D.M.

    2017-01-01

    Cardiogenic shock is the most common cause of death in patients with acute myocardial infarction. Around 10% of the patients with an ST-segment elevation myocardial infarction develop cardiogenic shock. Mortality in cardiogenic shock has been reduced over the last few decades, but it still remains a

  3. Formation and construction of shock for psystem

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The paper concerns the formation and construction of shocks. The process of transform from a smooth solution to a shock is precisely described. Meanwhile, the singularity structure and estimates of solutions near the starting point of the shock are also obtained.

  4. 33 CFR 159.105 - Shock test.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Shock test. 159.105 Section 159... MARINE SANITATION DEVICES Design, Construction, and Testing § 159.105 Shock test. The device, with liquid... shocks that are ten times the force of gravity (10g) and have a duration of 20-25 milliseconds...

  5. [Streptococcus pyogenes toxic-shock syndrome].

    Science.gov (United States)

    Antunes, Rui; Diogo, Marco; Carvalho, Alexandre; Pimentel, Teresa; Oliveira, José

    2011-12-01

    Recently there has been an exponential increase in invasive infections caused by Streptococcus ß hemolyticus group A. In about one third of cases they are complicated by toxic shock syndrome, characterized by septic shock and multiorgan failure. The authors, by their rarity, report a case of bacteraemia caused by Streptococcus pyogenes complicated by toxic shock syndrome.

  6. Cavitation inception following shock wave passage

    NARCIS (Netherlands)

    Ohl, C.D.

    2002-01-01

    Cavitation bubble nucleation following the passage of an extracorporeal shock wave lithotripter pulse is investigated experimentally and numerically. In the experiments two configurations are considered: Free passage of the shock wave, and reflection of the shock wave from a rigid reflector. The nuc

  7. Magnetic Fields inside Extremely Fast Shock Waves

    NARCIS (Netherlands)

    Wiersma, J.

    2007-01-01

    The aim of my research on magnetic fields in extremely fast shock waves has been to predict the properties of shock waves that move almost with the speed of light. These shocks are created in the tenuous interstellar medium by catastrophic events such as the explosion of stars many times heavier

  8. Magnetic Fields inside Extremely Fast Shock Waves

    NARCIS (Netherlands)

    Wiersma, J.

    2007-01-01

    The aim of my research on magnetic fields in extremely fast shock waves has been to predict the properties of shock waves that move almost with the speed of light. These shocks are created in the tenuous interstellar medium by catastrophic events such as the explosion of stars many times heavier

  9. Early Treatment in Shock. Addendum

    Science.gov (United States)

    2012-08-01

    An-1 gele , Chaudry, and co-workers. 6-10 They used the rat model, bleeding to 40 mm Hg in 2 a modified Wiggers preparation, and resuscitation...Bittmann I, Messmer K, Jauch KW, An-18 gele , MK. Recipient treatment with L-arginine attenuates donor lung injury associated 19 with hemorrhagic shock

  10. Cardiovascular failure and cardiogenic shock.

    Science.gov (United States)

    Patel, Ankitkumar K; Hollenberg, Steven M

    2011-10-01

    Cardiovascular system failure is commonly faced by the intensivist. Heart failure can occur due to a host of predisposing cardiac disorders or as secondary effects of systemic illness. When the heart is unable to provide an adequate cardiac output to maintain adequate tissue perfusion, cardiogenic shock ensues. Without prompt diagnosis and appropriate management, these patients have significant morbidity and mortality, with in-hospital mortality approaching 60% for all age groups. Accurate and rapid identification of cardiogenic shock as a medical emergency, with expeditious implementation of appropriate therapy, can lead to improved clinical outcomes. In this review, we discuss optimal strategies for diagnosis and monitoring of cardiogenic shock. We discuss the diverse therapeutic strategies employed for cardiogenic shock, including pharmacological (e.g., vasoactive agents, fibrinolytic agents), mechanical (e.g., intraaortic balloon pumps, left ventricular assist devices, percutaneous coronary intervention [PCI]), and surgical approaches such as coronary artery bypass graft (CABG), valvular repair or replacement (e.g., for acute mitral regurgitation, ventricular septal rupture, or free wall rupture).

  11. Model for Shock Wave Chaos

    KAUST Repository

    Kasimov, Aslan R.

    2013-03-08

    We propose the following model equation, ut+1/2(u2−uus)x=f(x,us) that predicts chaotic shock waves, similar to those in detonations in chemically reacting mixtures. The equation is given on the half line, x<0, and the shock is located at x=0 for any t≥0. Here, us(t) is the shock state and the source term f is taken to mimic the chemical energy release in detonations. This equation retains the essential physics needed to reproduce many properties of detonations in gaseous reactive mixtures: steady traveling wave solutions, instability of such solutions, and the onset of chaos. Our model is the first (to our knowledge) to describe chaos in shock waves by a scalar first-order partial differential equation. The chaos arises in the equation thanks to an interplay between the nonlinearity of the inviscid Burgers equation and a novel forcing term that is nonlocal in nature and has deep physical roots in reactive Euler equations.

  12. Shock desensitizing of solid explosive

    Energy Technology Data Exchange (ETDEWEB)

    Davis, William C [Los Alamos National Laboratory

    2010-01-01

    Solid explosive can be desensitized by a shock wave too weak to initiate it promptly, and desensitized explosive does not react although its chemical composition is almost unchanged. A strong second shock does not cause reaction until it overtakes the first shock. The first shock, if it is strong enough, accelerates very slowly at first, and then more rapidly as detonation approaches. These facts suggest that there are two competing reactions. One is the usual explosive goes to products with the release of energy, and the other is explosive goes to dead explosive with no chemical change and no energy release. The first reaction rate is very sensitive to the local state, and the second is only weakly so. At low pressure very little energy is released and the change to dead explosive dominates. At high pressure, quite the other way, most of the explosive goes to products. Numerous experiments in both the initiation and the full detonation regimes are discussed and compared in testing these ideas.

  13. The shocking truth about meniscus.

    Science.gov (United States)

    Andrews, Stephen; Shrive, Nigel; Ronsky, Janet

    2011-11-10

    The menisci of the knee are structures integral to the long term health of the knee joint. The primary function of these tissues is to distribute load across the tibiofemoral joint by increasing the congruency of the joint, thereby decreasing the resultant stress experienced by the articular cartilages. The menisci also play a secondary role in stabilizing the joint, particularly in the anterior cruciate ligament deficient knee, and also have roles in joint lubrication and proprioception. Also, an oft-cited role of this tissue is that of a shock absorber. We will review the literature supporting this shock absorption paradigm and describe the limitations and errors in the conclusions made by these studies. Consequently, we will show that the literature is inconclusive with no support for the shock absorption paradigm, which should therefore not be stated as a function of the menisci. We will describe how one of the three articles in support of this paradigm actually could be interpreted to the contrary and support the idea that the menisci may play no significant role in shock absorption at the knee at all, with the two remaining papers being inconclusive. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Self-Similar Collisionless Shocks

    CERN Document Server

    Katz, B; Waxman, E; Katz, Boaz; Keshet, Uri; Waxman, Eli

    2006-01-01

    Observations of gamma-ray burst afterglows suggest that the correlation length of magnetic field fluctuations downstream of relativistic non-magnetized collisionless shocks grows with distance from the shock to scales much larger than the plasma skin depth. We argue that this indicates that the plasma properties are described by a self-similar solution, and derive constraints on the scaling properties of the solution. For example, we find that the scaling of the characteristic magnetic field amplitude with distance from the shock is B \\propto D^{s_B} with -1 \\propto x^{2s_B} (for x>>D). We show that the plasma may be approximated as a combination of two self-similar components: a kinetic component of energetic particles and an MHD-like component representing "thermal" particles. We argue that the latter may be considered as infinitely conducting, in which case s_B=0 and the scalings are completely determined (e.g. dn/dE \\propto E^{-2} and B \\propto D^0). Similar claims apply to non- relativistic shocks such a...

  15. Shock Safe Nepal: team one

    NARCIS (Netherlands)

    Oosterhof, A.J.; Düzgün, B.C.; Spelt, C.J.; De Stoppelaar, A.O.; Van Wijnbergen, E.C.M.

    2016-01-01

    As a response to the 2015 Nepal earthquakes Shock Safe Nepal was founded to function as platform intended to contribute to the development of knowledge on earthquake safe housing. The project started on initiative of the Consul General of Nepal to The Netherlands Cas de Stoppelaar and the faculty of

  16. Shock wave, fluid instability and implosion studies with a kinetic particle approach

    Science.gov (United States)

    Sagert, Irina; Even, Wesley P.; Strother, Terrance T.

    2016-10-01

    Many problems in laboratory plasma physics are subject to flows that move between the continuum and the kinetic regime. The correct description of these flows is crucial in order to capture their impact on the system's dynamical evolution. Examples are capsule implosions in inertial confinement fusion (ICF). Although their dynamics is predominantly shaped by shock waves and fluid instabilities, non-equilibrium flows in form of deuterium/tritium ions have been shown to play a significant role. We present recent studies with our Monte Carlo kinetic particle code that is designed to capture continuum and kinetic flows in large physical systems with possible applications in ICF studies. Discussed results will include standard shock wave and fluid instability tests and simulations that are adapted towards future ICF studies with comparisons to hydrodynamic simulations. This work used the Wolf TriLAB Capacity Cluster at LANL. I.S. acknowledges support through a Director's fellowship (20150741PRD3) from Los Alamos National Laboratory.

  17. A computational study on oblique shock wave-turbulent boundary layer interaction

    Science.gov (United States)

    Joy, Md. Saddam Hossain; Rahman, Saeedur; Hasan, A. B. M. Toufique; Ali, M.; Mitsutake, Y.; Matsuo, S.; Setoguchi, T.

    2016-07-01

    A numerical computation of an oblique shock wave incident on a turbulent boundary layer was performed for free stream flow of air at M∞ = 2.0 and Re1 = 10.5×106 m-1. The oblique shock wave was generated from a 8° wedge. Reynolds averaged Navier-Stokes (RANS) simulation with k-ω SST turbulence model was first utilized for two dimensional (2D) steady case. The results were compared with the experiment at the same flow conditions. Further, to capture the unsteadiness, a 2D Large Eddy Simulation (LES) with sub-grid scale model WMLES was performed which showed the unsteady effects. The frequency of the shock oscillation was computed and was found to be comparable with that of experimental measurement.

  18. Shock and Release Response of Unreacted Epon 828: Shot 2s-905

    Energy Technology Data Exchange (ETDEWEB)

    Pisa, Matthew Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fredenburg, David A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dattelbaum, Dana M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lang, John Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sandoval, Donald Leon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-16

    This document summarizes the shock and release response of Epon 828 measured in the dynamic impact experiment 2s-905. Experimentally, a thin Kel-F impactor backed by a low impedance foam impacted an Epon 828 target with embedded electromagnetic gauges. Computationally, a one dimensional simulation of the impact event was performed, and tracer particles were located at the corresponding electromagnetic gauge locations. The experimental configuration was such that the Epon 828 target was initially shocked, and then allowed to release from the high-pressure state. Comparisons of the experimental gauge and computational tracer data were made to assess the performance of equation of state (EOS) 7603, a SESAME EOS for Epon 828, on and off the principal shock Hugoniot. Results indicate that while EOS 7603 can capture the Hugoniot response to better that 1%, while the sound speeds at pressure are under-predicted by 6 - 7%.

  19. Generation and evolution of interplanetary slow shocks

    Directory of Open Access Journals (Sweden)

    C.-C. Wu

    Full Text Available It is well known that most MHD shocks observed within 1 AU are MHD fast shocks. Only a very limited number of MHD slow shocks are observed within 1 AU. In order to understand why there are only a few MHD slow shocks observed within 1 AU, we use a one-dimensional, time-dependent MHD code with an adaptive grid to study the generation and evolution of interplanetary slow shocks (ISS in the solar wind. Results show that a negative, nearly square-wave perturbation will generate a pair of slow shocks (a forward and a reverse slow shock. In addition, the forward and the reverse slow shocks can pass through each other without destroying their characteristics, but the propagating speeds for both shocks are decreased. A positive, square-wave perturbation will generate both slow and fast shocks. When a forward slow shock (FSS propagates behind a forward fast shock (FFS, the former experiences a decreasing Mach number. In addition, the FSS always disappears within a distance of 150R (where R is one solar radius from the Sun when there is a forward fast shock (with Mach number ≥1.7 propagating in front of the FSS. In all tests that we have performed, we have not discovered that the FSS (or reverse slow shock evolves into a FFS (or reverse fast shock. Thus, we do not confirm the FSS-FFS evolution as suggested by Whang (1987.

  20. The microphysics of collisionless shock waves

    Science.gov (United States)

    Marcowith, A.; Bret, A.; Bykov, A.; Dieckman, M. E.; O'C Drury, L.; Lembège, B.; Lemoine, M.; Morlino, G.; Murphy, G.; Pelletier, G.; Plotnikov, I.; Reville, B.; Riquelme, M.; Sironi, L.; Stockem Novo, A.

    2016-04-01

    Collisionless shocks, that is shocks mediated by electromagnetic processes, are customary in space physics and in astrophysics. They are to be found in a great variety of objects and environments: magnetospheric and heliospheric shocks, supernova remnants, pulsar winds and their nebulæ, active galactic nuclei, gamma-ray bursts and clusters of galaxies shock waves. Collisionless shock microphysics enters at different stages of shock formation, shock dynamics and particle energization and/or acceleration. It turns out that the shock phenomenon is a multi-scale non-linear problem in time and space. It is complexified by the impact due to high-energy cosmic rays in astrophysical environments. This review adresses the physics of shock formation, shock dynamics and particle acceleration based on a close examination of available multi-wavelength or in situ observations, analytical and numerical developments. A particular emphasis is made on the different instabilities triggered during the shock formation and in association with particle acceleration processes with regards to the properties of the background upstream medium. It appears that among the most important parameters the background magnetic field through the magnetization and its obliquity is the dominant one. The shock velocity that can reach relativistic speeds has also a strong impact over the development of the micro-instabilities and the fate of particle acceleration. Recent developments of laboratory shock experiments has started to bring some new insights in the physics of space plasma and astrophysical shock waves. A special section is dedicated to new laser plasma experiments probing shock physics.

  1. The microphysics of collisionless shock waves.

    Science.gov (United States)

    Marcowith, A; Bret, A; Bykov, A; Dieckman, M E; Drury, L O'C; Lembège, B; Lemoine, M; Morlino, G; Murphy, G; Pelletier, G; Plotnikov, I; Reville, B; Riquelme, M; Sironi, L; Novo, A Stockem

    2016-04-01

    Collisionless shocks, that is shocks mediated by electromagnetic processes, are customary in space physics and in astrophysics. They are to be found in a great variety of objects and environments: magnetospheric and heliospheric shocks, supernova remnants, pulsar winds and their nebulæ, active galactic nuclei, gamma-ray bursts and clusters of galaxies shock waves. Collisionless shock microphysics enters at different stages of shock formation, shock dynamics and particle energization and/or acceleration. It turns out that the shock phenomenon is a multi-scale non-linear problem in time and space. It is complexified by the impact due to high-energy cosmic rays in astrophysical environments. This review adresses the physics of shock formation, shock dynamics and particle acceleration based on a close examination of available multi-wavelength or in situ observations, analytical and numerical developments. A particular emphasis is made on the different instabilities triggered during the shock formation and in association with particle acceleration processes with regards to the properties of the background upstream medium. It appears that among the most important parameters the background magnetic field through the magnetization and its obliquity is the dominant one. The shock velocity that can reach relativistic speeds has also a strong impact over the development of the micro-instabilities and the fate of particle acceleration. Recent developments of laboratory shock experiments has started to bring some new insights in the physics of space plasma and astrophysical shock waves. A special section is dedicated to new laser plasma experiments probing shock physics.

  2. Techniques for capturing bighorn sheep lambs

    Science.gov (United States)

    Smith, Joshua B.; Walsh, Daniel P.; Goldstein, Elise J.; Parsons, Zachary D.; Karsch, Rebekah C.; Stiver, Julie R.; Cain, James W.; Raedeke, Kenneth J.; Jenks, Jonathan A.

    2014-01-01

    Low lamb recruitment is a major challenge facing managers attempting to mitigate the decline of bighorn sheep (Ovis canadensis), and investigations into the underlying mechanisms are limited because of the inability to readily capture and monitor bighorn sheep lambs. We evaluated 4 capture techniques for bighorn sheep lambs: 1) hand-capture of lambs from radiocollared adult females fitted with vaginal implant transmitters (VITs), 2) hand-capture of lambs of intensively monitored radiocollared adult females, 3) helicopter net-gunning, and 4) hand-capture of lambs from helicopters. During 2010–2012, we successfully captured 90% of lambs from females that retained VITs to ≤1 day of parturition, although we noted differences in capture rates between an area of high road density in the Black Hills (92–100%) of South Dakota, USA, and less accessible areas of New Mexico (71%), USA. Retention of VITs was 78% with pre-partum expulsion the main cause of failure. We were less likely to capture lambs from females that expelled VITs ≥1 day of parturition (range = 80–83%) or females that were collared without VITs (range = 60–78%). We used helicopter net-gunning at several sites in 1999, 2001–2002, and 2011, and it proved a useful technique; however, at one site, attempts to capture lambs led to lamb predation by golden eagles (Aquila chrysaetos). We attempted helicopter hand-captures at one site in 1999, and they also were successful in certain circumstances and avoided risk of physical trauma from net-gunning; however, application was limited. In areas of low accessibility or if personnel lack the ability to monitor females and/or VITs for extended periods, helicopter capture may provide a viable option for lamb capture.

  3. The plasma physics of shock acceleration

    Science.gov (United States)

    Jones, Frank C.; Ellison, Donald C.

    1991-01-01

    The history and theory of shock acceleration is reviewed, paying particular attention to theories of parallel shocks which include the backreaction of accelerated particles on the shock structure. The work that computer simulations, both plasma and Monte Carlo, are playing in revealing how thermal ions interact with shocks and how particle acceleration appears to be an inevitable and necessary part of the basic plasma physics that governs collisionless shocks is discussed. Some of the outstanding problems that still confront theorists and observers in this field are described.

  4. Hybrid Simulations of Particle Acceleration at Shocks

    CERN Document Server

    Caprioli, Damiano

    2014-01-01

    We present the results of large hybrid (kinetic ions - fluid electrons) simulations of particle acceleration at non-relativistic collisionless shocks. Ion acceleration efficiency and magnetic field amplification are investigated in detail as a function of shock inclination and strength, and compared with predictions of diffusive shock acceleration theory, for shocks with Mach number up to 100. Moreover, we discuss the relative importance of resonant and Bell's instability in the shock precursor, and show that diffusion in the self-generated turbulence can be effectively parametrized as Bohm diffusion in the amplified magnetic field.

  5. Calorimetric thermobarometry of experimentally shocked quartz

    Science.gov (United States)

    Ocker, Katherine D.; Gooding, James L.; Hoerz, Friedrich

    1994-01-01

    Structural damage in experimentally shock-metamorphosed, granular quartz is quantitatively measurable by differential scanning calorimetry (DSC). Shock-induced loss of crystallinity is witnessed by disappearance of the alpha/beta phase transformation and evolution of a broad endoenthalpic strain peak at 650-900 K. The strain-energy peak grows rapidly at less than 10 GPa but declines with increasing shock pressure; it approaches zero at 32 GPa where vitrification is extensive. Effects of grain size and post-shock thermal history must be better understood before calorimetric thermobarometry of naturally shocked samples becomes possible.

  6. Shock drift mechanism for Forbush decreases

    Science.gov (United States)

    Cheng, Andrew F.; Sarris, E. T.; Dodopoulos, C.

    1990-01-01

    Consideration is given to the way in which Forbush decreases can arise from variable drifts in nonuniform shocks, where the variation in shock strength along the shock front causes both the shock drift distance and the energy gain to become variable. More particles can then be transported out of a given region of space and energy interval than were transported in, so a spacecraft passing through this region can observe a Forbush decrease in this energy interval despite shock energization and compression. A simple example of how this can occur is presented.

  7. Radioactive proton capture on {sup 6}He

    Energy Technology Data Exchange (ETDEWEB)

    Sauvan, E.; Marques, F.M. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; Wilschut, H.W. [Kernfysich Versneller Instituut, Groningen (Netherlands)

    2001-03-01

    Radiative capture of protons is investigated as a probe of clustering in nuclei far from stability. The first such measurement on a halo nucleus is reported here for the reaction {sup 6}He(p,{gamma}) at 40 MeV. Capture into {sup 7}Li is observed as the strongest channel. In addition, events have been recorded that may be described by quasi-free capture on halo neutron, the {alpha} core and {sup 5}He. The possibility of describing such events by capture into the continuum of {sup 7}Li is also discussed. (authors)

  8. Several methods of smoothing motion capture data

    Science.gov (United States)

    Qi, Jingjing; Miao, Zhenjiang; Wang, Zhifei; Zhang, Shujun

    2011-06-01

    Human motion capture and editing technologies are widely used in computer animation production. We can acquire original motion data by human motion capture system, and then process it by motion editing system. However, noise embed in original motion data maybe introduced by extracting the target, three-dimensional reconstruction process, optimizing algorithm and devices itself in human motion capture system. The motion data must be modified before used to make videos, otherwise the animation figures will be jerky and their behavior is unnatural. Therefore, motion smoothing is essential. In this paper, we compare and summarize three methods of smoothing original motion capture data.

  9. Application of background-oriented schlieren (BOS) technique to a laser-induced underwater shock wave

    CERN Document Server

    Yamamoto, Shota; Kameda, Masaharu

    2015-01-01

    We build an ultra-high-speed imaging system based on the background-oriented schlieren (BOS) technique in order to capture a laser-induced underwater shock wave. This BOS technique is able to provide two-dimensional density-gradient field of fluid and requires a simple setup. The imaging system consists of an ultra-high speed video camera, a laser stroboscope, and a patterned background. This system takes images every 0.2 $\\mu$s. Furthermore, since the density change of water disturbed by the shock is exceedingly small, the system has high spatial resolution $\\sim$ 10 $\\mu$m/pixel. Using this BOS system, we examine temporal position of a shock wave. The position agrees well with that measured by conventional shadowgraph, which indicates that the high-speed imaging system can successfully capture the instantaneous position of the underwater shock wave that propagates with the speed of about 1500 m/s. The local density gradient can be determined up to $O$(10$^3$ kg/m$^4$), which is confirmed by the gradient est...

  10. Modeling wall effects in a micro-scale shock tube using hybrid MD-DSMC algorithm

    Science.gov (United States)

    Watvisave, D. S.; Puranik, B. P.; Bhandarkar, U. V.

    2016-07-01

    Wall effects in a micro-scale shock tube are investigated using the Direct Simulation Monte Carlo method as well as a hybrid Molecular Dynamics-Direct Simulation Monte Carlo algorithm. In the Direct Simulation Monte Carlo simulations, the Cercignani-Lampis-Lord model of gas-surface interactions is employed to incorporate the wall effects, and it is shown that the shock attenuation is significantly affected by the choice of the values of tangential momentum accommodation coefficient. A loosely coupled Molecular Dynamics-Direct Simulation Monte Carlo approach is then employed to demonstrate incomplete accommodation in micro-scale shock tube flows. This approach uses fixed values of the accommodation coefficients in the gas-surface interaction model, with their values determined from a separate dynamically similar Molecular Dynamics simulation. Finally, a completely coupled Molecular Dynamics-Direct Simulation Monte Carlo algorithm is used, wherein the bulk of the flow is modeled using Direct Simulation Monte Carlo, while the interaction of gas molecules with the shock tube walls is modeled using Molecular Dynamics. The two regions are separate and coupled both ways using buffer zones and a bootstrap coupling algorithm that accounts for the mismatch of the number of molecules in both regions. It is shown that the hybrid method captures the effect of local properties that cannot be captured using a single value of accommodation coefficient for the entire domain.

  11. Experiments on a Miniature Hypervelocity Shock Tube

    Science.gov (United States)

    Tasker, Douglas; Johnson, Carl; Murphy, Michael; Lieber, Mark; MIMS Team

    2013-06-01

    A miniature explosively-driven shock tube, based on the Voitenko compressor design, has been designed to produce shock speeds in light gases in excess of 80 km/s. Voitenko compressors over 1 meter in diameter have been reported but here experiments on miniature shock tubes with ~1-mm bore diameters are described. In this design a 12-mm diameter explosive pellet drives a metal plate into a hemispherical gas compression chamber. Downstream from the piston a mica diaphragm separates the gas from an evacuated shock tube which is confined by a massive polymethylmethacrylate (PMMA) block. The diaphragm eventually ruptures under the applied pressure loading and the compressed gases escape into the evacuated shock tube at hyper velocities. The progress of gas shocks in the tube and bow shocks in the PMMA are monitored with an ultra-high-speed imaging system, the Shock Wave Image Framing Technique (SWIFT). The resulting time-resolved images yield two-dimensional visualizations of shock geometry and progression. By measuring both the gas and bow shocks, accurate and unequivocal measurements of shock position history are obtained. The experimental results were compared with those of hydrocode modeling to optimize the design. The first experiments were suboptimum in that the velocities were ~16 km/s. Progress with these experiments will be reported.

  12. Sub-photospheric shocks in relativistic explosions

    CERN Document Server

    Beloborodov, Andrei M

    2016-01-01

    This paper examines the mechanism of shocks in opaque outflows from astrophysical explosions, in particular in cosmological gamma-ray bursts. Sub-photospheric shocks can produce neutrino emission and affect the observed photospheric radiation from the explosion. Shocks develop from internal compressive waves and can be of different types depending on the composition of the flow: (1) Shocks in `photon gas' with small plasma inertial mass have a unique structure determined by the `force-free' condition -- zero radiation flux in the plasma rest frame. Radiation dominance over plasma inertia suppresses formation of collisionless shocks mediated by collective electromagnetic fields. (2) Strong collisionless subshocks develop in the opaque flow if it is sufficiently magnetized. We evaluate the critical magnetization for this to happen. The collisionless subshock is embedded in a thicker radiation-mediated shock structure. (3) Shocks in outflows carrying a free neutron component involve dissipation through nuclear c...

  13. Experimental methods of shock wave research

    CERN Document Server

    Seiler, Friedrich

    2016-01-01

    This comprehensive and carefully edited volume presents a variety of experimental methods used in Shock Waves research. In 14 self contained chapters this 9th volume of the “Shock Wave Science and Technology Reference Library” presents the experimental methods used in Shock Tubes, Shock Tunnels and Expansion Tubes facilities. Also described is their set-up and operation. The uses of an arc heated wind tunnel and a gun tunnel are also contained in this volume. Whenever possible, in addition to the technical description some typical scientific results obtained using such facilities are described. Additionally, this authoritative book includes techniques for measuring physical properties of blast waves and laser generated shock waves. Information about active shock wave laboratories at different locations around the world that are not described in the chapters herein is given in the Appendix, making this book useful for every researcher involved in shock/blast wave phenomena.

  14. Shock Wave Dynamics in Weakly Ionized Plasmas

    Science.gov (United States)

    Johnson, Joseph A., III

    1999-01-01

    An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.

  15. Initial conditions of radiative shock experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kuranz, C. C.; Drake, R. P.; Krauland, C. M.; Marion, D. C.; Grosskopf, M. J.; Rutter, E.; Torralva, B.; Holloway, J. P. [Department of Atmospheric, Oceanic and Space Science, University of Michigan, Center for Radiative Shock Hydrodynamics, 2455 Hayward Dr., Ann Arbor, Michigan 48109 (United States); Bingham, D.; Goh, J. [Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC, Canada V5A 1S6 (Canada); Boehly, T. R.; Sorce, A. T. [Laboratory for Laser Energetics, University of Rochester, New York 14623 (United States)

    2013-05-15

    We performed experiments at the Omega Laser Facility to characterize the initial, laser-driven state of a radiative shock experiment. These experiments aimed to measure the shock breakout time from a thin, laser-irradiated Be disk. The data are then used to inform a range of valid model parameters, such as electron flux limiter and polytropic γ, used when simulating radiative shock experiments using radiation hydrodynamics codes. The characterization experiment and the radiative shock experiment use a laser irradiance of ∼7 × 10{sup 14} W cm{sup −2} to launch a shock in the Be disk. A velocity interferometer and a streaked optical pyrometer were used to infer the amount of time for the shock to move through the Be disk. The experimental results were compared with simulation results from the Hyades code, which can be used to model the initial conditions of a radiative shock system using the CRASH code.

  16. Shock-induced chemistry in organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Dattelbaum, Dana M [Los Alamos National Laboratory; Sheffield, Steve [Los Alamos National Laboratory; Engelke, Ray [Los Alamos National Laboratory; Manner, Virginia [Los Alamos National Laboratory; Chellappa, Raja [Los Alamos National Laboratory; Yoo, Choong - Shik [WASHINGTON STATE UNIV

    2011-01-20

    The combined 'extreme' environments of high pressure, temperature, and strain rates, encountered under shock loading, offer enormous potential for the discovery of new paradigms in chemical reactivity not possible under more benign conditions. All organic materials are expected to react under these conditions, yet we currently understand very little about the first bond-breaking steps behind the shock front, such as in the shock initiation of explosives, or shock-induced reactivity of other relevant materials. Here, I will present recent experimental results of shock-induced chemistry in a variety of organic materials under sustained shock conditions. A comparison between the reactivity of different structures is given, and a perspective on the kinetics of reaction completion under shock drives.

  17. Diffusive Acceleration of Ions at Interplanetary Shocks

    CERN Document Server

    Baring, M G; Baring, Matthew G.; Summerlin, Errol J.

    2005-01-01

    Heliospheric shocks are excellent systems for testing theories of particle acceleration in their environs. These generally fall into two classes: (1) interplanetary shocks that are linear in their ion acceleration characteristics, with the non-thermal ions serving as test particles, and (2) non-linear systems such as the Earth's bow shock and the solar wind termination shock, where the accelerated ions strongly influence the magnetohydrodynamic structure of the shock. This paper explores the modelling of diffusive acceleration at a particular interplanetary shock, with an emphasis on explaining in situ measurements of ion distribution functions. The observational data for this event was acquired on day 292 of 1991 by the Ulysses mission. The modeling is performed using a well-known kinetic Monte Carlo simulation, which has yielded good agreement with observations at several heliospheric shocks, as have other theoretical techniques, namely hybrid plasma simulations, and numerical solution of the diffusion-conv...

  18. Shock Tubes and Shock Tunnels: Design and Experiments

    Science.gov (United States)

    2009-09-01

    another gas (driver gas). After the rupture of this diaphragm the driver gas, acting as a piston expands into the low pressure chamber and generates a...interface, acts like a well for the non-dissipative part of the test gas and a loss of this gas occurs through the interface in the boundary layer (Fig.2...photography or cinematography [(x, t) or (y, t) diagrams]. Examples of shock tube flows are thus represented in Figs.14 and 15 [30]. (a

  19. Relativistic Electron Shock Drift Acceleration in Low Mach Number Galaxy Cluster Shocks

    CERN Document Server

    Matsukiyo, Shuichi; Yamazaki, Ryo; Umeda, Takayuki

    2011-01-01

    An extreme case of electron shock drift acceleration in low Mach number collisionless shocks is investigated as a plausible mechanism of initial acceleration of relativistic electrons in large-scale shocks in galaxy clusters where upstream plasma temperature is of the order of 10 keV and a degree of magnetization is not too small. One-dimensional electromagnetic full particle simulations reveal that, even though a shock is rather moderate, a part of thermal incoming electrons are accelerated and reflected through relativistic shock drift acceleration and form a local nonthermal population just upstream of the shock. The accelerated electrons can self-generate local coherent waves and further be back-scattered toward the shock by those waves. This may be a scenario for the first stage of the electron shock acceleration occurring at the large-scale shocks in galaxy clusters such as CIZA J2242.8+5301 which has well defined radio relics.

  20. Cures for the Expansion Shock and the Shock Instability of the Roe Scheme

    CERN Document Server

    Li, Xue-song; Gu, Chun-wei

    2016-01-01

    A common defect of the Roe scheme is the production of non-physical expansion shock and shock instability. An improved method with several advantages was presented to suppress the shock instability. However, this method cannot prevent expansion shock and is incompatible with the traditional curing method for expansion shock. Therefore, the traditional curing mechanism is analyzed. The discussion explains the effectiveness of the traditional curing method and identifies several defects, one of which leads to incompatibility between curing the shock instability and expansion shock. Consequently, a new improved Roe scheme is proposed in this study. This scheme is concise, easy to implement, low computational cost, and robust. More importantly, the scheme can simultaneously cure the shock instability and expansion shock without additional costs.

  1. Time-resolved lattice measurements of shock-induced phase transitions in polycrystalline materials

    Science.gov (United States)

    Milathianaki, Despina

    The response of materials under extreme temperature and pressure conditions is a topic of great significance because of its relevance in astrophysics, geophysics, and inertial confinement fusion. In recent years, environments exceeding several hundred gigapascals in pressure have been produced in the laboratory via laser-based dynamic loading techniques. Shock-loading is of particular interest as the shock provides a fiducial for measuring time-dependent processes in the lattice such as phase transitions. Time-resolved x-ray diffraction is the only technique that offers an insight into these shock-induced processes at the relevant spatial (atomic) and temporal scales. In this study, nanosecond resolution x-ray diffraction techniques were developed and implemented towards the study of shock-induced phase transitions in polycrystalline materials. More specifically, the capability of a focusing x-ray diffraction geometry in high-resolution in situ lattice measurements was demonstrated by probing shock-compressed Cu and amorphous metallic glass samples. In addition, simultaneous lattice and free surface velocity measurements of shock-compressed Mg in the ambient hexagonal close packed (hcp) and shock-induced body centered cubic (bcc) phases between 12 and 45 GPa were performed. These measurements revealed x-ray diffraction signals consistent with a compressed bcc lattice above a shock pressure of 26.2+/-1.3 GPa, thus capturing for the first time direct lattice evidence of a shock-induced hcp to bcc phase transition in Mg. Our measurement of the hcp-bcc phase boundary in Mg was found to be consistent with the calculated boundary from generalized pseudopotential theory in the pressure and temperature region intersected by the principal shock Hugoniot. Furthermore, the subnanosecond timescale of the phase transition implied by the shock-loading conditions was in agreement with the kinetics of a martensitic transformation. In conclusion, we report on the progress and

  2. Toxic Shock Syndrome following Tattooing

    Directory of Open Access Journals (Sweden)

    Ki Young Jeong

    2015-08-01

    Full Text Available Toxic shock syndrome (TSS is a rare but life-threatening illness that is mainly caused by toxigenic strains of Staphylococcus aureus. Although TSS is classically known to be associated with tampon use, the number of TSS cases with non-menstrual causes such as skin and soft tissue infection has been increasing. Tattooing can result in several complications such as localized and systemic infections, inflammatory skin eruptions and neoplasms. We recently experienced a 26-year-old man diagnosed with typical TSS following tattooing. He complained of fever, chills and erythematous rash at tattoo site. Subsequently, the patient developed sign of shock. The skin cultures on the tattoo site were positive for methicillin-sensitive Staphylococcus aureus. The patient was successfully treated with vasopressor infusion and intravenous antibiotics and was discharged without complications. On discharge from the hospital 7 days later, desquamations on the tattoo site, fingers and toes were observed.

  3. Dissipative Shocks behind Bacteria Gliding

    CERN Document Server

    Virga, Epifanio G

    2014-01-01

    Gliding is a means of locomotion on rigid substrates utilized by a number of bacteria includingmyxobacteria and cyanobacteria. One of the hypotheses advanced to explain this motility mechanism hinges on the role played by the slime filaments continuously extruded from gliding bacteria. This paper solves in full a non-linear mechanical theory that treats as dissipative shocks both the point where the extruded slime filament comes in contact with the substrate, called the filament's foot, and the pore on the bacterium outer surface from where the filament is ejected. We prove that kinematic compatibility for shock propagation requires that the bacterium uniform gliding velocity (relative to the substrate) and the slime ejecting velocity (relative to the bacterium) must be equal, a coincidence that seems to have already been observed.

  4. Insight into magnetorheological shock absorbers

    CERN Document Server

    Gołdasz, Janusz

    2015-01-01

    This book deals with magnetorheological fluid theory, modeling and applications of automotive magnetorheological dampers. On the theoretical side a review of MR fluid compositions and key factors affecting the characteristics of these fluids is followed by a description of existing applications in the area of vibration isolation and flow-mode shock absorbers in particular. As a majority of existing magnetorheological devices operates in a so-called flow mode a critical review is carried out in that regard. Specifically, the authors highlight common configurations of flow-mode magnetorheological shock absorbers, or so-called MR dampers that have been considered by the automotive industry for controlled chassis applications. The authors focus on single-tube dampers utilizing a piston assembly with one coil or multiple coils and at least one annular flow channel in the piston.

  5. Hydrodynamic shocks in microroller suspensions

    Science.gov (United States)

    Delmotte, Blaise; Driscoll, Michelle; Chaikin, Paul; Donev, Aleksandar

    2017-09-01

    We combine experiments, large-scale simulations, and continuum models to study the emergence of coherent structures in a suspension of magnetically driven microrollers sedimented near a floor. Collective hydrodynamic effects are predominant in this system, leading to strong density-velocity coupling. We characterize a uniform suspension and show that density waves propagate freely in all directions in a dispersive fashion. When sharp density gradients are introduced in the suspension, we observe the formation of a shock. Unlike Burgers' shocklike structures observed in other active and driven confined hydrodynamic systems, the shock front in our system has a well-defined finite width and moves rapidly compared to the mean suspension velocity. We introduce a continuum model demonstrating that the finite width of the front is due to far-field nonlocal hydrodynamic interactions and governed by a geometric parameter, the average particle height above the floor.

  6. Radiative proton capture on He-6

    NARCIS (Netherlands)

    Sauvan, E; Marques, FM; Wilschut, HW; Orr, NA; Angelique, JC; Borcea, C; Catford, WN; Clarke, NM; Descouvemont, P; Diaz, J; Grevy, S; Kugler, A; Kravchuk, [No Value; Labiche, M; Le Brun, C; Lienard, E; Lohner, H; Mittig, W; Ostendorf, RW; Pietri, S; Roussel-Chomaz, P; Saint Laurent, MG; Savajols, H; Wagner, [No Value; Yahlali, N

    2001-01-01

    Radiative capture of protons is investigated as a probe of clustering in nuclei far from stability. The first such measurement on a halo nucleus is reported here for the reaction He-6(p, gamma) at 40 MeV. Capture into Li-7 is observed as the strongest channel. In addition, events have been recorded

  7. Experience machines : Capturing and retrieving personal content

    NARCIS (Netherlands)

    Werkhoven, P.

    2005-01-01

    Fundamental to human existence is the ability to capture, memorise and retrieve personal experiences and to share them with others. Can systems help us to capture and retrieve experiences? After motors have supplemented our muscles and sensors have supplemented our senses, emerging computer systems

  8. Visual Field Asymmetry in Attentional Capture

    Science.gov (United States)

    Du, Feng; Abrams, Richard A.

    2010-01-01

    The present study examined the spatial distribution of involuntary attentional capture over the two visual hemi-fields. A new experiment, and an analysis of three previous experiments showed that distractors in the left visual field that matched a sought-for target in color produced a much larger capture effect than identical distractors in the…

  9. Capturing Value from Public-Private Collaborations

    NARCIS (Netherlands)

    Reypens, C.; Lievens, A.; Blazevic, V.

    2016-01-01

    Although public-private collaborations offer opportunities to create unique value for a wide range of stakeholders, participating organizations often struggle to capture value from them. We focus on this challenge using a practice perspective and aim to understand how organizations attempt to captur

  10. Experience machines : Capturing and retrieving personal content

    NARCIS (Netherlands)

    Werkhoven, P.

    2005-01-01

    Fundamental to human existence is the ability to capture, memorise and retrieve personal experiences and to share them with others. Can systems help us to capture and retrieve experiences? After motors have supplemented our muscles and sensors have supplemented our senses, emerging computer systems

  11. Screen captures to support switching attention

    NARCIS (Netherlands)

    Gellevij, Mark; Meij, van der Hans

    2002-01-01

    The study set out to validate the supportive role of screen captures for switching attention. Forty-two participants learned how to work with Microsoft Excel with a paper manual. There were three types of manuals: a textual manual, a visual manual with full-screen captures, and a visual manual with

  12. Encapsulated liquid sorbents for carbon dioxide capture.

    Science.gov (United States)

    Vericella, John J; Baker, Sarah E; Stolaroff, Joshuah K; Duoss, Eric B; Hardin, James O; Lewicki, James; Glogowski, Elizabeth; Floyd, William C; Valdez, Carlos A; Smith, William L; Satcher, Joe H; Bourcier, William L; Spadaccini, Christopher M; Lewis, Jennifer A; Aines, Roger D

    2015-02-05

    Drawbacks of current carbon dioxide capture methods include corrosivity, evaporative losses and fouling. Separating the capture solvent from infrastructure and effluent gases via microencapsulation provides possible solutions to these issues. Here we report carbon capture materials that may enable low-cost and energy-efficient capture of carbon dioxide from flue gas. Polymer microcapsules composed of liquid carbonate cores and highly permeable silicone shells are produced by microfluidic assembly. This motif couples the capacity and selectivity of liquid sorbents with high surface area to facilitate rapid and controlled carbon dioxide uptake and release over repeated cycles. While mass transport across the capsule shell is slightly lower relative to neat liquid sorbents, the surface area enhancement gained via encapsulation provides an order-of-magnitude increase in carbon dioxide absorption rates for a given sorbent mass. The microcapsules are stable under typical industrial operating conditions and may be used in supported packing and fluidized beds for large-scale carbon capture.

  13. Capture of Trojans by Jumping Jupiter

    CERN Document Server

    Nesvorny, David; Morbidelli, Alessandro

    2013-01-01

    Jupiter Trojans are thought to be survivors of a much larger population of planetesimals that existed in the planetary region when planets formed. They can provide important constraints on the mass and properties of the planetesimal disk, and its dispersal during planet migration. Here we tested a possibility that the Trojans were captured during the early dynamical instability among the outer planets (aka the Nice model), when the semimajor axis of Jupiter was changing as a result of scattering encounters with an ice giant. The capture occurs in this model when Jupiter's orbit and its Lagrange points become radially displaced in a scattering event and fall into a region populated by planetesimals (that previously evolved from their natal transplanetary disk to ~5 AU during the instability). Our numerical simulations of the new capture model, hereafter jump capture, satisfactorily reproduce the orbital distribution of the Trojans and their total mass. The jump capture is potentially capable of explaining the ...

  14. CO2 Capture by Cement Raw Meal

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar; Lin, Weigang; Illerup, Jytte Boll

    2013-01-01

    The cement industry is one of the major sources of CO2 emissions and is likely to contribute to further increases in the near future. The carbonate looping process has the potential to capture CO2 emissions from the cement industry, in which raw meal for cement production could be used...... as the sorbent. Cyclic experiments were carried out in a TGA apparatus using industrial cement raw meal and synthetic raw meal as sorbents, with limestone as the reference. The results show that the CO2 capture capacities of the cement raw meal and the synthetic raw meal are comparable to those of pure limestone....... The CO2 capture capacity of limestone in the raw meal is lower than for pure limestone. The difference in the CO2 capture capacity decreases with an increase in cycle number. The calcination conditions and composition are major factors that influence the CO2 capture capacity of limestone. At 850 °C in N2...

  15. Seamless presentation capture, indexing, and management

    Science.gov (United States)

    Hilbert, David M.; Cooper, Matthew; Denoue, Laurent; Adcock, John; Billsus, Daniel

    2005-10-01

    Technology abounds for capturing presentations. However, no simple solution exists that is completely automatic. ProjectorBox is a "zero user interaction" appliance that automatically captures, indexes, and manages presentation multimedia. It operates continuously to record the RGB information sent from presentation devices, such as a presenter's laptop, to display devices, such as a projector. It seamlessly captures high-resolution slide images, text and audio. It requires no operator, specialized software, or changes to current presentation practice. Automatic media analysis is used to detect presentation content and segment presentations. The analysis substantially enhances the web-based user interface for browsing, searching, and exporting captured presentations. ProjectorBox has been in use for over a year in our corporate conference room, and has been deployed in two universities. Our goal is to develop automatic capture services that address both corporate and educational needs.

  16. Proton Acceleration at Oblique Shocks

    Science.gov (United States)

    Galinsky, V. L.; Shevchenko, V. I.

    2011-06-01

    Acceleration at the shock waves propagating oblique to the magnetic field is studied using a recently developed theoretical/numerical model. The model assumes that resonant hydromagnetic wave-particle interaction is the most important physical mechanism relevant to motion and acceleration of particles as well as to excitation and damping of waves. The treatment of plasma and waves is self-consistent and time dependent. The model uses conservation laws and resonance conditions to find where waves will be generated or damped, and hence particles will be pitch-angle-scattered. The total distribution is included in the model and neither introduction of separate population of seed particles nor some ad hoc escape rate of accelerated particles is needed. Results of the study show agreement with diffusive shock acceleration models in the prediction of power spectra for accelerated particles in the upstream region. However, they also reveal the presence of spectral break in the high-energy part of the spectra. The role of the second-order Fermi-like acceleration at the initial stage of the acceleration is discussed. The test case used in the paper is based on ISEE-3 data collected for the shock of 1978 November 12.

  17. Non-haemorrhagic obstetric shock.

    Science.gov (United States)

    Thomson, A J; Greer, I A

    2000-02-01

    The causes of non-haemorrhagic obstetric shock (pulmonary thromboembolism, amniotic fluid embolism, acute uterine inversion and sepsis) are uncommon but responsible for the majority of maternal deaths in the developed world. Clinically suspected pulmonary thromboembolism should be treated initially with heparin and objective testing should be performed. If the diagnosis is confirmed, heparin is usually continued until delivery, following which anticoagulation in the puerperium is achieved with either warfarin or heparin. Amniotic fluid embolism is a rare complication of pregnancy, occurring most commonly during labour. The management of amniotic fluid embolism involves maternal oxygenation, the maintenance of cardiac output and blood pressure, and the management of any associated coagulopathy. Acute uterine inversion arises most commonly following mismanagement of the third stage of labour. The shock in uterine inversion is neurogenic in origin, although there may also be profound haemorrhage. The management of this condition includes maternal resuscitation and replacement of the uterus either manually, surgically or by hydrostatic pressure. Genital tract sepsis remains a significant cause of maternal death, the most common predisposing factor being prolonged rupture of the fetal membranes. The management of septic shock in pregnancy includes resuscitation, identification of the source of infection and alteration of the systemic inflammatory response.

  18. Internal shock model for Microquasars

    CERN Document Server

    Kaiser, C R; Spruit, H C; Kaiser, Christian R.; Sunyaev, Rashid; Spruit, Henk C.

    2000-01-01

    We present a model for the radio outbursts of microquasars based on the assumption of quasi-continuous jet ejection. The jets are `lit up' by shock fronts traveling along the jets during outbursts. The observed comparatively flat decay light curves combined with gradually steepening spectral slopes are explained by a superposition of the radiation of the aging relativistic particle population left behind by the shocks. This scenario is the low energy, time-resolved equivalent to the internal shock model for GRBs. We show that this model predicts energy contents of the radiating plasma similar to the plasmon model. At the same time, the jet model relaxes the severe requirements on the central source in terms of the rate at which this energy must be supplied to the jet. Observations of `mini-bursts' with flat spectral slopes and of infrared emission far from the source centre suggest two different states of jet ejections: (i) A `mini-burst' mode with relatively stable jet production and weak radio emission with...

  19. Post electric shock reactive thrombocytosis.

    Science.gov (United States)

    Katiyar, Richa; Patne, Shashikant C U; Pankaj, Pranjal

    2015-04-01

    Thrombocytosis is defined as a platelet count greater than 400×10(9)/L. Electric shock may lead to tissue injury and marked thrombocytosis. We herein report a case of 45-year-old woman, who was hospitalized with progressively increasing weakness, tingling sensation, and numbness of the bilateral lower limbs. She had a history of receiving electric shock during household work, 15 days prior to her admission. Her laboratory investigations revealed a markedly increased platelet count (1,570×10(9)/L) along with increased level of serum uric acid (12 mg/dL), and mild increase in serum potassium (6.7 mmol/L), and serum alanine transaminase (50 U/L). She was treated with intravenous fluids, calcium, and multivitamins. Following hospitalization and treatment, condition of the patient improved, her symptoms resolved, and her platelet counts declined. We report this case because of rare presentation of marked thrombocytosis secondary to electric shock with a brief discussion on pathophysiology of this condition.

  20. Times New Materials Company Enhancing the Technical Innovation of Building Shock Absorption and Shock Insulation Products

    Institute of Scientific and Technical Information of China (English)

    Hao Tian

    2012-01-01

    To enhance the technical innovation and market promotion of building shock absorption and shock insulation products, to promote institute-enterprise cooperation and realize complementary advantage, on March 27, Zhuzhou Times New Materials Technology Co., Ltd. concluded Framework Agreement on the Joint R&D Strategic Cooperation of Building Shock Absorption and Shock Insulation Products with Yunnan Earthquake Engineering Institute in Kunming. Both parties will fully exert their technology and resource advantages, and develop and promote shock absorption and shock insulation products jointly in the form of strategic partners.

  1. Waves near interplanetary shocks observed by STEREO

    Science.gov (United States)

    Aguilar-Rodriguez, E.; Blanco-Cano, X.; Russell, C. T.; Luhmann, J. G.; Krauss-Varban, D.

    2007-12-01

    We investigate the properties of interplanetary shocks that form ahead of virtually all fast propagating coronal mass ejections (CMEs). Understanding the characteristics of these shocks and their surrounding regions is of great interest as they play a major role in the acceleration of solar energetic particles (SEPs). In this work we study low frequency waves upstream and downstream of interplanetary shocks (IP) observed by the twin spacecraft mission STEREO. In the upstream region waves can be generated by ion beams reflected or otherwise energized at the shock. Downstream the wave spectrum may be formed by both, waves generated locally and waves transmitted through the shock.The efficiency of wave generation and wave convection to the shock depends on the shock Mach number, and the angle between the IMF and the shock normal. Waves can disturb the shock and participate in ion acceleration processes. Multi-point STEREO measurements will allow us to study wave characteristics in different regions near IP shocks and determine the effects that these fluctuations have on particle energization.

  2. Binary star formation: gravitational fragmentation followed by capture

    Science.gov (United States)

    Turner, J. A.; Chapman, S. J.; Bhattal, A. S.; Disney, M. J.; Pongracic, H.; Whitworth, A. P.

    1995-11-01

    We describe in detail one of a sequence of numerical simulations which realize the mechanism of binary star formation proposed by Pringle. In these simulations, collisions between stable molecular cloud clumps produce dense shocked layers, which cool radiatively and fragment gravitationally. The resulting fragments then condense to form protostellar discs, which at the same time fall together and, as a result of tidal and viscous interactions, capture one another to form binary systems. We refer to this mechanism as shock-induced gravitational fragmentation followed by capture, or SGF+C. When the initial clumps are sufficiently massive and/or the Mach number of the collision is sufficiently high, a large number (>~10) of protostellar discs is produced; under these circumstances, the layer fragments first into filaments, and then into beads along the filaments. The marriage of two protostellar discs in this way is `arranged' in the sense that the protostellar discs involved do not form independently. First, they both condense out of the same layer, and probably also out of the same filament within this layer; this significantly increases the likelihood of them interacting dynamically. Secondly, there tends to be alignment between the orbital and spin angular momenta of the interacting protostellar discs, reflecting the fact that these angular momenta derive mainly from the systematic global angular momentum of the off-axis collision which produced the layer; this alignment of the various angular momenta pre-disposes the discs to very dissipative interactions, thereby increasing the probability of producing a strongly bound, long-lasting union. It is a marriage because the binary orbit stabilizes itself rather quickly. Any subsequent orbit evolution, as the protostellar discs `mop up' the surrounding residual gas and interact tidally, tends to harden the orbit. Therefore, as long as a third body does not intervene, the union is binding. Even if a third body does

  3. The Role of Momentum Interpolation Mechanism of the Roe Scheme in the Shock Instability

    CERN Document Server

    Li, Xue-song

    2015-01-01

    The shock instability phenomenon is a famous problem for the shock-capturing scheme. By subdividing the numerical dissipation of the Roe scheme, the term of pressure-difference-driven modification for the cell face velocity is regarded as a version of the momentum interpolation method (MIM), which is necessary for incompressible flows to suppress the pressure checkerboard problem. Through the analysis and odd-even decoupling test, it is discovered that MIM plays the most important role on the shock instability. In fact, for non-linear flows MIM should be completely removed, but unexpected MIM is activated on the cell face nearly parallel to the flow for high Mach number flows or low Mach number flows in shock. For such conditions, two coefficients are designed based on local Mach number and a shock detector, respectively, and then the improved Roe scheme is proposed, which gives consideration to requirement of MIM for incompressible and compressible flows and is validated for good performance of avoiding odd-...

  4. Capture of irregular satellites at Jupiter

    Energy Technology Data Exchange (ETDEWEB)

    Nesvorný, David; Vokrouhlický, David; Deienno, Rogerio [Department of Space Studies, Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States)

    2014-03-20

    The irregular satellites of outer planets are thought to have been captured from heliocentric orbits. The exact nature of the capture process, however, remains uncertain. We examine the possibility that irregular satellites were captured from the planetesimal disk during the early solar system instability when encounters between the outer planets occurred. Nesvorný et al. already showed that the irregular satellites of Saturn, Uranus, and Neptune were plausibly captured during planetary encounters. Here we find that the current instability models present favorable conditions for capture of irregular satellites at Jupiter as well, mainly because Jupiter undergoes a phase of close encounters with an ice giant. We show that the orbital distribution of bodies captured during planetary encounters provides a good match to the observed distribution of irregular satellites at Jupiter. The capture efficiency for each particle in the original transplanetary disk is found to be (1.3-3.6) × 10{sup –8}. This is roughly enough to explain the observed population of jovian irregular moons. We also confirm Nesvorný et al.'s results for the irregular satellites of Saturn, Uranus, and Neptune.

  5. Covalent Organic Frameworks for CO2 Capture.

    Science.gov (United States)

    Zeng, Yongfei; Zou, Ruqiang; Zhao, Yanli

    2016-04-20

    As an emerging class of porous crystalline materials, covalent organic frameworks (COFs) are excellent candidates for various applications. In particular, they can serve as ideal platforms for capturing CO2 to mitigate the dilemma caused by the greenhouse effect. Recent research achievements using COFs for CO2 capture are highlighted. A background overview is provided, consisting of a brief statement on the current CO2 issue, a summary of representative materials utilized for CO2 capture, and an introduction to COFs. Research progresses on: i) experimental CO2 capture using different COFs synthesized based on different covalent bond formations, and ii) computational simulation results of such porous materials on CO2 capture are summarized. Based on these experimental and theoretical studies, careful analyses and discussions in terms of the COF stability, low- and high-pressure CO2 uptake, CO2 selectivity, breakthrough performance, and CO2 capture conditions are provided. Finally, a perspective and conclusion section of COFs for CO2 capture is presented. Recent advancements in the field are highlighted and the strategies and principals involved are discussed.

  6. The dynamic quasiperpendicular shock: Cluster discoveries

    CERN Document Server

    Krasnoselskikh, V; Walker, S N; Schwartz, S; Sundkvist, D; Lobzin, V; Gedalin, M; Bale, S D; Mozer, F; Soucek, J; Hobara, Y; Comisel, H

    2013-01-01

    The physics of collisionless shocks is a very broad topic which has been studied for more than five decades. However, there are a number of important issues which remain unresolved. The energy repartition amongst particle populations in quasiperpendicular shocks is a multi-scale process related to the spatial and temporal structure of the electromagnetic fields within the shock layer. The most important processes take place in the close vicinity of the major magnetic transition or ramp region. The distribution of electromagnetic fields in this region determines the characteristics of ion reflection and thus defines the conditions for ion heating and energy dissipation for supercritical shocks and also the region where an important part of electron heating takes place. All of these processes are crucially dependent upon the characteristic spatial scales of the ramp and foot region provided that the shock is stationary. The earliest studies of collisionless shocks identified nonlinearity, dissipation, and dispe...

  7. Shock compaction of high- Tc superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Weir, S.T.; Nellis, W.J.; McCandless, P.C.; Brocious, W.F. (Lawrence Livermore National Lab., CA (USA)); Seaman, C.L.; Early, E.A.; Maple, M.B. (California Univ., San Diego, La Jolla, CA (USA). Dept. of Physics); Kramer, M.J. (Ames Lab., IA (USA)); Syono, Y.; Kikuchi, M. (Tohoku Univ., Sendai (Japan))

    1990-09-01

    We present the results of shock compaction experiments on high-{Tc} superconductors and describe the way in which shock consolidation addresses critical problems concerning the fabrication of high J{sub c} bulk superconductors. In particular, shock compaction experiments on YBa{sub 2}Cu{sub 3}O{sub 7} show that shock-induced defects can greatly increase intragranular critical current densities. The fabrication of crystallographically aligned Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} samples by shock-compaction is also described. These experiments demonstrate the potential of the shock consolidation method as a means for fabricating bulk high-{Tc} superconductors having high critical current densities.

  8. Remote shock sensing and notification system

    Science.gov (United States)

    Muralidharan, Govindarajan; Britton, Charles L.; Pearce, James; Jagadish, Usha; Sikka, Vinod K.

    2008-11-11

    A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interference circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitting with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.

  9. Remote shock sensing and notification system

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, Govindarajan [Knoxville, TN; Britton, Charles L [Alcoa, TN; Pearce, James [Lenoir City, TN; Jagadish, Usha [Knoxville, TN; Sikka, Vinod K [Oak Ridge, TN

    2010-11-02

    A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interface circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitter with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.

  10. Advances in Monitoring and Management of Shock

    Science.gov (United States)

    Mtaweh, Haifa; Trakas, Erin V.; Su, Erik; Carcillo, Joseph A.; Aneja, Rajesh K.

    2013-01-01

    Synopsis Shock continues to be the proximate cause of death for many childhood diseases and imposes a significant burden. Early recognition and treatment of pediatric shock, regardless of etiology, decreases mortality and improves outcome. In addition to the conventional parameters (e.g., heart rate (HR), systolic blood pressure (SBP), urine output (UOP), and central venous pressure (CVP)), biomarkers and non-invasive methods of measuring cardiac output are now available to monitor and treat shock. In this article, we emphasize how fluid resuscitation is the cornerstone of shock resuscitation although the choice and amount of fluid may vary based on the etiology of shock. Other emerging treatments for shock i.e., temperature control, extracorporeal membrane oxygenation (ECMO)/Ventricular Assist Devices (VAD) are also discussed briefly in this article. PMID:23639660

  11. Corrugation of relativistic magnetized shock waves

    CERN Document Server

    Lemoine, M; Gremillet, L

    2016-01-01

    As a shock front interacts with turbulence, it develops corrugation which induces outgoing wave modes in the downstream plasma. For a fast shock wave, the incoming wave modes can either be fast magnetosonic waves originating from downstream, outrunning the shock, or eigenmodes of the upstream plasma drifting through the shock. Using linear perturbation theory in relativistic MHD, this paper provides a general analysis of the corrugation of relativistic magnetized fast shock waves resulting from their interaction with small amplitude disturbances. Transfer functions characterizing the linear response for each of the outgoing modes are calculated as a function of the magnetization of the upstream medium and as a function of the nature of the incoming wave. Interestingly, if the latter is an eigenmode of the upstream plasma, we find that there exists a resonance at which the (linear) response of the shock becomes large or even diverges. This result may have profound consequences on the phenomenology of astrophys...

  12. Entropy Generation Across Earth's Bow Shock

    Science.gov (United States)

    Parks, George K.; McCarthy, Michael; Fu, Suiyan; Lee E. s; Cao, Jinbin; Goldstein, Melvyn L.; Canu, Patrick; Dandouras, Iannis S.; Reme, Henri; Fazakerley, Andrew; Lin, Naiguo; Wilber, Mark

    2011-01-01

    Earth's bow shock is a transition layer that causes an irreversible change in the state of plasma that is stationary in time. Theories predict entropy increases across the bow shock but entropy has never been directly measured. Cluster and Double Star plasma experiments measure 3D plasma distributions upstream and downstream of the bow shock that allow calculation of Boltzmann's entropy function H and his famous H-theorem, dH/dt O. We present the first direct measurements of entropy density changes across Earth's bow shock. We will show that this entropy generation may be part of the processes that produce the non-thermal plasma distributions is consistent with a kinetic entropy flux model derived from the collisionless Boltzmann equation, giving strong support that solar wind's total entropy across the bow shock remains unchanged. As far as we know, our results are not explained by any existing shock models and should be of interests to theorists.

  13. Molecular dynamics simulation of laser shock phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Fukumoto, Ichirou [Japan Atomic Energy Research Inst., Kansai Research Establishment, Advanced Photon Research Center, Neyagawa, Osaka (Japan).

    2001-10-01

    Recently, ultrashort-pulse lasers with high peak power have been developed, and their application to materials processing is expected as a tool of precision microfabrication. When a high power laser irradiates, a shock wave propagates into the material and dislocations are generated. In this paper, laser shock phenomena of the metal were analyzed using the modified molecular dynamics method, which has been developed by Ohmura and Fukumoto. The main results obtained are summarized as follows: (1) The shock wave induced by the Gaussian beam irradiation propagates radially from the surface to the interior. (2) A lot of dislocations are generated at the solid-liquid interface by the propagation of a shock wave. (3) Some dislocations are moved instantaneously with the velocity of the longitudinal wave when the shock wave passes, and their velocity is not larger than the transverse velocity after the shock wave has passed. (author)

  14. Shock experiments in metals and ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Gray, G.T. III.

    1990-01-01

    Shock recovery and spallation experiments, in which material structure/property effects are systematically varied and characterized quantitatively, offer two important experimental techniques to probe the physical mechanisms controlling shock processes and dynamic fracture. This paper highlights the current state of knowledge and principal challenges of the structure/property effects of shock-wave deformation on metals and ceramics. Recent shock-recovery and spallation experimental results on post-mortem material properties and fracture behavior in metals and ceramics are reviewed. Finally, the influence of shock-wave deformation on several intermetallics and a recent experiment examining the Bauschinger effect in Al-4% Cu during shock loading are presented. 65 refs., 6 figs.

  15. Suprathermal electrons at Saturn's bow shock

    CERN Document Server

    Masters, A; Sergis, N; Stawarz, L; Fujimoto, M; Coates, A J; Dougherty, M K

    2016-01-01

    The leading explanation for the origin of galactic cosmic rays is particle acceleration at the shocks surrounding young supernova remnants (SNRs), although crucial aspects of the acceleration process are unclear. The similar collisionless plasma shocks frequently encountered by spacecraft in the solar wind are generally far weaker (lower Mach number) than these SNR shocks. However, the Cassini spacecraft has shown that the shock standing in the solar wind sunward of Saturn (Saturn's bow shock) can occasionally reach this high-Mach number astrophysical regime. In this regime Cassini has provided the first in situ evidence for electron acceleration under quasi-parallel upstream magnetic conditions. Here we present the full picture of suprathermal electrons at Saturn's bow shock revealed by Cassini. The downstream thermal electron distribution is resolved in all data taken by the low-energy electron detector (CAPS-ELS, 18 keV) measured a suprathermal electron signature at 31 of 508 crossings, where typically onl...

  16. Experimental and Numerical Investigation of Condensation Shock in Shock Tube

    Institute of Scientific and Technical Information of China (English)

    F.Marsik; P.Sopuch; 等

    1997-01-01

    The homogeneous nucleation with subsequent spontaneous condensation of water,pentanol,and ethanol vapors in a carrier gas are investigated experimentally and theoretically in the expansion part of a shock tube.The precise pressure and MCW measurements give additional information about the wetness,so that the nucleation and condensation rates which are closely coupled for stronger expansion rates are determied more accurately,Predictions of the principle of the minimum of entropy production are compared with experiments performed for water,ethanol and pentanol at different pressures.

  17. Eye movements are captured by a perceptually simple conditioned stimulus in the absence of explicit contingency knowledge.

    Science.gov (United States)

    Hopkins, Lauren S; Helmstetter, Fred J; Hannula, Deborah E

    2016-12-01

    Past reports suggest that threatening materials can impact the efficiency of goal-directed behavior. However, questions remain about whether a conditional stimulus (CS) can capture attention as previous results may have been influenced by voluntary prioritization of a to-be-ignored CS. In 2 experiments, eye tracking was used to evaluate whether neutral, perceptually simple materials capture attention when they take on aversive properties via probabilistic fear conditioning with strict methods in place to eliminate voluntary CS prioritization. During training, participants attempted to fixate search targets (i.e., horizontally or vertically oriented rectangles) as quickly as possible to avoid shock. In reality, shock administration was related to rectangle orientation so that 1 rectangle (CS+) predicted shock more often than the other (CS-). Subsequently rectangles became distractors and were to be ignored. At this point, participants were instructed to fixate a new target and incidences of CS capture were examined. Results showed that saccades were made more quickly to the CS+ than the CS- as training progressed, and that oculomotor capture by irrelevant rectangles occurred more often for the CS+ than the CS-. An independent physiological index (skin conductance response) confirmed that contingencies had been learned, as SCR magnitude was greater for CS+ than CS- trials early in the test phase. These effects were documented despite the absence of explicit contingency knowledge, assessed using a postexperimental questionnaire. Collectively, these outcomes indicate that a CS can capture attention despite being task-irrelevant, and that these effects do not depend on conscious awareness of learned contingencies. (PsycINFO Database Record

  18. Dissecting a Molecular Shock: Spatially Resolved H2 Line Ratios Across the HH7 Bow Shock

    Science.gov (United States)

    Pike, Rosemary E.; Geballe, Thomas R.; Burton, Michael G.; Chrysostomou, Antonio; Brand, Peter

    2015-01-01

    We report on a detailed study of the physics of molecular shocks using Gemini NIFS (Near-Infrared Field Spectrometer) K-band spectra of a 3.'2 x 2.'9 region near the tip of the HH7 bow shock. The IFU data have an angular resolution of 0.3", much higher resolution then in any previous study of a molecular shock, and a velocity resolution of 60 km/s. We have detected 20 H2 emission lines with upper state energies as high as 28,000 K, and 6 additional unidentified lines which share the same bow shock morphology as the H2. We use excitation temperatures derived from line pairs measured in 0.15' x 0.15' bins to attempt to constrain the shock type and distinguish between low velocity jump shocks, continuous shocks, and dissociative shocks in which the H2 line emission arises from newly reformed H2.

  19. Child Labour, Crop Shocks and Credit Constraints

    OpenAIRE

    Beegle, Kathleen; Dehejia, Rajeev H.; Gatti, Roberta

    2005-01-01

    This paper examines the relationship between household income shocks and child labour. In particular, we investigate the extent to which transitory income shocks lead to increases in child labour and whether household access to credit mitigates the effects of these shocks. Using data from a household panel survey in Tanzania, we find that both relationships are significant. We provide evidence that credit constraints could plausibly account for our results, but also discuss alternative interp...

  20. Whistler Waves Associated with Weak Interplanetary Shocks

    Science.gov (United States)

    Velez, J. C. Ramirez; Blanco-Cano, X.; Aguilar-Rodriguez, E.; Russell, C. T.; Kajdic, P.; Jian,, L. K.; Luhmann, J. G.

    2012-01-01

    We analyze the properties of 98 weak interplanetary shocks measured by the dual STEREO spacecraft over approximately 3 years during the past solar minimum. We study the occurrence of whistler waves associated with these shocks, which on average are high beta shocks (0.2 whistler waves can extend up to 100,000 km in the upstream region but in most cases (88%) are contained in a distance within 30,000 km from the shock. This corresponds to a larger region with upstream whistlers associated with IP shocks than previously reported in the literature. The maximum amplitudes of the waves are observed next to the shock interface, and they decrease as the distance to the shock increases. In most cases the wave propagation direction becomes more aligned with the magnetic field as the distance to the shock increases. These two facts suggest that most of the waves in the upstream region are Landau damping as they move away from the shock. From the analysis we also conclude that it is likely that the generation mechanism of the upstream whistler waves is taking place at the shock interface. In the downstream region, the waves are irregularly polarized, and the fluctuations are very compressive; that is, the compressive component of the wave clearly dominates over the transverse one. The majority of waves in the downstream region (95%) propagate at oblique angles with respect to the ambient magnetic field (>60 deg.). The wave propagation with respect to the shock-normal direction has no preferred direction and varies similarly to the upstream case. It is possible that downstream fluctuations are generated by ion relaxation as suggested in previous hybrid simulation shocks.

  1. Child Labor, Crop Shocks, and Credit Constraints

    OpenAIRE

    Kathleen Beegle; Rajeev Dehejia; Roberta Gatti

    2003-01-01

    This paper examines the relationship between household income shocks and child labor. In particular, we investigate the extent to which transitory income shocks lead to increases in child labor and whether household access to credit mitigates the effects of these shocks. Using panel data from a survey in Tanzania, we find that both relationships are significant. Our results suggest that credit constraints play a role in explaining child labor and consequently that child labor is inefficient, ...

  2. Understanding Motion Capture for Computer Animation

    CERN Document Server

    Menache, Alberto

    2010-01-01

    The power of today's motion capture technology has taken animated characters and special effects to amazing new levels of reality. And with the release of blockbusters like Avatar and Tin-Tin, audiences continually expect more from each new release. To live up to these expectations, film and game makers, particularly technical animators and directors, need to be at the forefront of motion capture technology. In this extensively updated edition of Understanding Motion Capture for Computer Animation and Video Games, an industry insider explains the latest research developments in digital design

  3. Capture into resonance of coupled Duffing oscillators.

    Science.gov (United States)

    Kovaleva, Agnessa

    2015-08-01

    In this paper we investigate capture into resonance of a pair of coupled Duffing oscillators, one of which is excited by periodic forcing with a slowly varying frequency. Previous studies have shown that, under certain conditions, a single oscillator can be captured into persistent resonance with a permanently growing amplitude of oscillations (autoresonance). This paper demonstrates that the emergence of autoresonance in the forced oscillator may be insufficient to generate oscillations with increasing amplitude in the attachment. A parametric domain, in which both oscillators can be captured into resonance, is determined. The quasisteady states determining the growth of amplitudes are found. An agreement between the theoretical and numerical results is demonstrated.

  4. Neutron capture cross section of Am241

    Science.gov (United States)

    Jandel, M.; Bredeweg, T. A.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Haight, R. C.; Kawano, T.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Agvaanluvsan, U.; Parker, W. E.; Wu, C. Y.; Becker, J. A.

    2008-09-01

    The neutron capture cross section of Am241 for incident neutrons from 0.02 eV to 320 keV has been measured with the detector for advanced neutron capture experiments (DANCE) at the Los Alamos Neutron Science Center. The thermal neutron capture cross section was determined to be 665±33 b. Our result is in good agreement with other recent measurements. Resonance parameters for Enwell with the measured data, and the extracted averaged resonance parameters in the unresolved resonance region are consistent with those for the resolved resonances.

  5. Gravitational Capture of Asteroids by Gas Drag

    Directory of Open Access Journals (Sweden)

    E. Vieira Neto

    2009-01-01

    captured by the planet got its velocity reduced and could been trapped as an irregular satellite. It is well known that, depending on the time scale of the gas envelope, an asteroid will spiral and collide with the planet. So, we simulate the passage of the asteroid in the gas envelope with its density decreasing along the time. Using this approach, we found effective captures, and have a better understanding of the whole process. Finally, we conclude that the origin of the irregular satellites cannot be attributed to the gas drag capture mechanism alone.

  6. Stationary one-dimensional dispersive shock waves

    CERN Document Server

    Kartashov, Yaroslav V

    2011-01-01

    We address shock waves generated upon the interaction of tilted plane waves with negative refractive index defect in defocusing media with linear gain and two-photon absorption. We found that in contrast to conservative media where one-dimensional dispersive shock waves usually exist only as nonstationary objects expanding away from defect or generating beam, the competition between gain and two-photon absorption in dissipative medium results in the formation of localized stationary dispersive shock waves, whose transverse extent may considerably exceed that of the refractive index defect. One-dimensional dispersive shock waves are stable if the defect strength does not exceed certain critical value.

  7. Journal of emergencies, trauma and shock

    National Research Council Canada - National Science Library

    JETS encourages research, education and dissemination of knowledge in the fields of emergency medicine, traumatology and shock resuscitation thus promoting translational research by striking a synergy...

  8. EFFECT OF SHOCK WAVES ON RILL FORMATION

    Institute of Scientific and Technical Information of China (English)

    Keli ZHANG; Lifang LUO; Shuangcai LI

    2004-01-01

    Hydraulic mechanism of rill formation was studied theoretically and experimentally.It was assumed that the impact of varied boundary on overland flow results in fluctuating of water surface,and shock waves that may contribute to the formation of rills.Both theoretical derivation and laboratory experiments were used to compare the hydraulic characteristics of flows with and without shock waves.Results showed that shock waves can lead to an increase in flowdepth,flow velocity,and turbulence intensity.Consequently,flow shear stress or stream energy increase dramatically and rill headcuts may occur where shock waves converge.

  9. A miniature high repetition rate shock tube.

    Science.gov (United States)

    Tranter, R S; Lynch, P T

    2013-09-01

    A miniature high repetition rate shock tube with excellent reproducibility has been constructed to facilitate high temperature, high pressure, gas phase experiments at facilities such as synchrotron light sources where space is limited and many experiments need to be averaged to obtain adequate signal levels. The shock tube is designed to generate reaction conditions of T > 600 K, P shock waves with predictable characteristics are created, repeatably. Two synchrotron-based experiments using this apparatus are also briefly described here, demonstrating the potential of the shock tube for research at synchrotron light sources.

  10. Six-Inch Shock Tube Characterization

    Science.gov (United States)

    2016-12-09

    USAARL Report No. 2017-08 Six-Inch Shock Tube Characterization By Michael Chen1,2, J. Trevor McEntire1,3, Miles Garwood1,3, Devyn...2016 - Nov 2016 Six-Inch Shock Tube Characterization N/A N/A N/A N/A N/A N/A Chen, Michael McEntire, J. Trevor Garwood, Miles Gentzyel, Devyn U.S...Auditory Protection and Performance Division (APPD) owns, operates, and maintains a 6-inch inner diameter shock tube to create shock waves in a

  11. Detonation onset following shock wave focusing

    Science.gov (United States)

    Smirnov, N. N.; Penyazkov, O. G.; Sevrouk, K. L.; Nikitin, V. F.; Stamov, L. I.; Tyurenkova, V. V.

    2017-06-01

    The aim of the present paper is to study detonation initiation due to focusing of a shock wave reflected inside a cone. Both numerical and experimental investigations were conducted. Comparison of results made it possible to validate the developed 3-d transient mathematical model of chemically reacting gas mixture flows incorporating hydrogen - air mixtures. The results of theoretical and numerical experiments made it possible improving kinetic schemes and turbulence models. Several different flow scenarios were detected in reflection of shock waves all being dependent on incident shock wave intensity: reflecting of shock wave with lagging behind combustion zone, formation of detonation wave in reflection and focusing, and intermediate transient regimes.

  12. Shock Performance of Different Semiactive Damping Strategies

    Directory of Open Access Journals (Sweden)

    N. Ferguson

    2010-08-01

    Full Text Available The problem of shock generated vibration is presented and analyzed. The fundamental background is explainedbased on the analysis of a single degree-of-freedom model with passive stiffness and damping. The advantages andlimitations of such a shock mount are discussed. Afterwards, different semi-active strategies involving variabledamping are presented. These strategies have been used for harmonic excitation but it is not clear how they willperform during a shock. This paper analyzes the different variable damping schemes already used for harmonicvibration in order to find any potential advantages or issues for theoretical shock pulses.

  13. Entropy Production and Admissibility of Shocks

    Institute of Scientific and Technical Information of China (English)

    Tai-Ping Liu; Tommaso Ruggeri

    2003-01-01

    In shock wave theory there are two considerations in selecting the physically relevant shock waves.There is the admissibility criterion for the well-posedness of hyperbolic conservation laws. Another consideration concerns the entropy production across the shocks. The latter is natural from the physical point of view, but is not sufficient in its straightforward formulation, if the system is not genuinely nonlinear. In this paper we propose the principles of increasing entropy production and that of the superposition of shocks. These principles are shown to be equivalent to the admissibility criterion.

  14. Shock Wave Smearing by Passive Control

    Institute of Scientific and Technical Information of China (English)

    Piotr DOERFFER; Oskar SZULC; Rainer BOHNING

    2006-01-01

    Normal shock wave, terminating a local supersonic area on an airfoil, limits its performance and becomes a source of high speed impulsive noise. It is proposed to use passive control to disintegrate the shock wave. Details of the flow structure obtained by this method are studied numerically. A new boundary condition has been developed and the results of its application are verified against experiments in a nozzle flow. The method of shock wave disintegration has been confirmed and detailed analysis of the flow details is presented. The substitution of a shock wave by a gradual compression changes completely the source of the high speed impulsive noise and bears potential of its reduction.

  15. Shock Wave Emissions of a Sonoluminescing Bubble

    CERN Document Server

    Holzfuss, J; Billó, M; Holzfuss, Joachim; Ruggeberg, Matthias; Billo, Andreas

    1998-01-01

    A single bubble in water is excited by a standing ultrasound wave. At high intensity the bubble starts to emit light. Together with the emitted light pulse, a shock wave is generated in the liquid at collapse time. The time-dependent velocity of the outward-travelling shock is measured with an imaging technique. The pressure in the shock and in the bubble is shown to have a lower limit of 5500 bars. Visualization of the shock and the bubble at different phases of the acoustic cycle reveals previously unobserved dynamics during stable and unstable sonoluminescence.

  16. Advanced and Exploratory Shock Sensing Mechanisms.

    Energy Technology Data Exchange (ETDEWEB)

    Nelsen, Nicholas; Kolb, James; Kulkarni, Akshay; Sorscher, Zachary; Habing, Clayton; Mathis, Allen; Beller, Zachary

    2017-09-01

    Mechanical component response to shock environments must be predictable in order to ensure reliability and safety. Whether the shock input results from accidental drops during transportation to projectile impact scenarios, the system must irreversibly transition into a safe state that is incapable of triggering the component . With this critical need in mind, the 2017 Nuclear Weapons Summer Product Realization Institute (NW SPRINT) program objective sought the design of a passive shock failsafe with emphasis on additively manufactured (AM) components. Team Advanced and Exploratory (A&E) responded to the challenge by designing and delivering multiple passive shock sensing mech anisms that activate within a prescribed mechanical shock threshold. These AM failsafe designs were tuned and validated using analytical and computational techniques including the shock response spectrum (SRS) and finite element analysis (FEA). After rapid prototyping, the devices experienced physical shock tests conducted on Sandia drop tables to experimentally verify performance. Keywords: Additive manufacturing, dynamic system, failsafe, finite element analysis, mechanical shock, NW SPRINT, shock respon se spectrum

  17. Basic Shock Physiology and Critical Care.

    Science.gov (United States)

    Roberts, Brian K

    2016-05-01

    Veterinarians practicing emergency medicine and/or working with exotic animals must be well versed in the pathophysiology of shock because many exotic pets present with an acute crisis or an acute manifestation of a chronic process causing poor organ perfusion. This article discusses the pathophysiology of shock and the systemic inflammatory response syndrome, which may lead to organ dysfunction, organ failure, sepsis, and death. The physiology of perfusion, perfusion measurements, categories of shock, and altered function of the immune system, gastrointestinal barrier, and coagulation system are discussed. Veterinarians providing emergency care to patients with shock must also be aware of comorbidities. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Thermal Shock-resistant Cement

    Energy Technology Data Exchange (ETDEWEB)

    Sugama T.; Pyatina, T.; Gill, S.

    2012-02-01

    We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved

  19. Isothermal Shock Wave in Magnetogasdynamics

    Directory of Open Access Journals (Sweden)

    B. G. Verma

    1983-01-01

    Full Text Available The problem of propagation of a plane isothermal discontinuity (shock wave in a homogeneous semi-infinite body of a perfect gas, in the presence of amagnetic field have been solved. It has been shown that under certain definiteconditions, the density p at the wave front may be arbitrarily high for a singlecompression pulse. A certain class of solutions of the present problem for a nonhomogeneous semi-infinite body have been derived. Such solutions are expected to be of great importance in compression problems of plasma.

  20. Complexity and Shock Wave Geometries

    CERN Document Server

    Stanford, Douglas

    2014-01-01

    In this paper we refine a conjecture relating the time-dependent size of an Einstein-Rosen bridge to the computational complexity of the of the dual quantum state. Our refinement states that the complexity is proportional to the spatial volume of the ERB. More precisely, up to an ambiguous numerical coefficient, we propose that the complexity is the regularized volume of the largest codimension one surface crossing the bridge, divided by $G_N l_{AdS}$. We test this conjecture against a wide variety of spherically symmetric shock wave geometries in different dimensions. We find detailed agreement.

  1. Carbon Dioxide Capture Adsorbents: Chemistry and Methods.

    Science.gov (United States)

    Patel, Hasmukh A; Byun, Jeehye; Yavuz, Cafer T

    2016-12-21

    Excess carbon dioxide (CO2 ) emissions and their inevitable consequences continue to stimulate hard debate and awareness in both academic and public spaces, despite the widespread lack of understanding on what really is needed to capture and store the unwanted CO2 . Of the entire carbon capture and storage (CCS) operation, capture is the most costly process, consisting of nearly 70 % of the price tag. In this tutorial review, CO2 capture science and technology based on adsorbents are described and evaluated in the context of chemistry and methods, after briefly introducing the current status of CO2 emissions. An effective sorbent design is suggested, whereby six checkpoints are expected to be met: cost, capacity, selectivity, stability, recyclability, and fast kinetics.

  2. Assisted living captures profitable market niche.

    Science.gov (United States)

    Pallarito, K

    1995-05-08

    The $15 billion assisted-living industry has captured a profitable market niche and created a star on Wall Street. Sunrise Retirement Home of Falls Church (Va.), right, is a facility of the nation's largest assisted-living provider.

  3. Reactive Capture of Carbon Dioxide Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase I SBIR, Reactive Innovations, LLC (RIL) proposes to develop a compact and lightweight electrochemical to capture carbon dioxide in the martian...

  4. Multiplexed programmable release of captured DNA.

    Science.gov (United States)

    Kennedy-Darling, Julia; Holden, Matthew T; Shortreed, Michael R; Smith, Lloyd M

    2014-11-03

    Nucleic-acid hybridization is widely used for the specific capture of complementary sequences from complex samples. It is useful for both analytical methodologies, such as array hybridization (e.g. transcriptome analysis, genetic-variation analysis), and preparative strategies such as exome sequencing and sequence-specific proteome capture and analysis (PICh, HyCCAPP). It has not generally been possible to selectively elute particular captured subsequences, however, as the conditions employed for disruption of a duplex can lack the specificity needed to discriminate between different sequences. We show here that it is possible to bind and selectively release multiple sets of sequences by using toehold-mediated DNA branch migration. The strategy is illustrated for simple mixtures of oligonucleotides, for the sequence-specific capture and specific release of crosslinked yeast chromatin, and for the specific release of oligonucleotides hybridized to DNA microarrays. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A robust HLLC-type Riemann solver for strong shock

    Science.gov (United States)

    Shen, Zhijun; Yan, Wei; Yuan, Guangwei

    2016-03-01

    It is well known that for the Eulerian equations the numerical schemes that can accurately capture contact discontinuity usually suffer from some disastrous carbuncle phenomenon, while some more dissipative schemes, such as the HLL scheme, are free from this kind of shock instability. Hybrid schemes to combine a dissipative flux with a less dissipative flux can cure the shock instability, but also may lead to other problems, such as certain arbitrariness of choosing switching parameters or contact interface becoming smeared. In order to overcome these drawbacks, this paper proposes a simple and robust HLLC-type Riemann solver for inviscid, compressible gas flows, which is capable of preserving sharp contact surface and is free from instability. The main work is to construct a HLL-type Riemann solver and a HLLC-type Riemann solver by modifying the shear viscosity of the original HLL and HLLC methods. Both of the two new schemes are positively conservative under some typical wavespeed estimations. Moreover, a linear matrix stability analysis for the proposed schemes is accomplished, which illustrates the HLLC-type solver with shear viscosity is stable whereas the HLL-type solver with vorticity wave is unstable. Our arguments and numerical experiments demonstrate that the inadequate dissipation associated to the shear wave may be a unique reason to cause the instability.

  6. Simulating shock-bubble interactions at water-gelatin interfaces

    Science.gov (United States)

    Adami, Stefan; Kaiser, Jakob; Bermejo-Moreno, Ivan; Adams, Nikolaus

    2016-11-01

    Biomedical problems are often driven by fluid dynamics, as in vivo organisms are usually composed of or filled with fluids that (strongly) affected their physics. Additionally, fluid dynamical effects can be used to enhance certain phenomena or destroy organisms. As examples, we highlight the benign potential of shockwave-driven kidney-stone lithotripsy or sonoporation (acoustic cavitation of microbubbles) to improve drug delivery into cells. During the CTR SummerProgram 2016 we have performed axisymmetric three-phase simulations of a shock hitting a gas bubble in water near a gelatin interface mimicking the fundamental process during sonoporation. We used our multi-resolution finite volume method with sharp interface representation (level-set), WENO-5 shock capturing and interface scale-separation and compared the results with a diffuse-interface method. Qualitatively our simulation results agree well with the reference. Due to the interface treatment the pressure profiles are sharper in our simulations and bubble collapse dynamics are predicted at shorter time-scales. Validation with free-field collapse (Rayleigh collapse) shows very good agreement. The project leading to this application has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No 667483).

  7. Data capture and processing. [for Space Station

    Science.gov (United States)

    Lyon, John; Smith, Gene; Carper, Richard

    1987-01-01

    A systems concept developed in response to the specific requirements imposed by the Space Station and affiliated instrumentation is described. Particular attention is given to those subsystems associated with initial data capture, handling, routing, and distribution control for return link data via the Tracking and Data Relay Satellite System. The conceived approach, designated the Customer Data and Operations System, includes a data interface facility and a data handling center whose functions are data capture, demultiplexing and routing, early preprocessing, and ancillary data handling.

  8. Telescoping Sample Canister Capture Mechanism (TSCCM)

    Science.gov (United States)

    Kong, Kin Yuen; Gorevan, Stephen; Mukherjee, Suparna; Wilson, Jack

    2003-11-01

    Sample return from solar system bodies including planets, moons, comets and asteroids is of high importance within the space science community. A returned sample will allow much more elaborate and detailed analysis not feasible through remote robotic analysis. For this reason, Honeybee Robotics has developed a low-cost reusable, automated on-orbit sample canister capture mechanism. The purpose of the mechanism is to capture a full sample canister and transfer it to a storage cache, sample return spacecraft, or on-orbit laboratory for further scientific study. The current design allows for reliable misalignment-compensated capture for various sample container geometries in any initial orientation. After capture, the sample canister is aligned and presented for transfer. Honeybee has demonstrated the concept through tests of two- and three-dimensional telescopic capture mechanism breadboards. The telescopic capture mechanism design is scalable, minimizes volume and can be made of lightweight material to minmize mass, all of which are critical aspects of spacecraft design.

  9. Gate manipulation of DNA capture into nanopores.

    Science.gov (United States)

    He, Yuhui; Tsutsui, Makusu; Fan, Chun; Taniguchi, Masateru; Kawai, Tomoji

    2011-10-25

    Understanding biophysics governing DNA capture into a nanopore and establishing a manipulation system for the capture process are essential for nanopore-based genome sequencing. In this work, the functionality of extended electric field and electroosmotic flow (EOF) during the capture stage and their dependence on gate voltage, U(G), are investigated. We demonstrate that while both the electric field and EOF within a cis chamber make long-distance contributions to DNA capture around the pore mouth, the former effect is always capturing, while the latter causes trapping or blocking of the molecule depending on the magnitude of the gate voltage, U(G): an anionic EOF induced by high U(G) is capable of doubling the DNA trapping speed and thus the absorption radius in the cis chamber, whereas a cationic EOF by low U(G) would substantially offset the trapping effort by the electric field and even totally block DNA entrance into the pore. Based on the analysis, a gate regulation is proposed with the objective of achieving a high DNA capture rate while maintaining a low error rate.

  10. Converging shocks in elastic-plastic solids.

    Science.gov (United States)

    Ortega, A López; Lombardini, M; Hill, D J

    2011-11-01

    We present an approximate description of the behavior of an elastic-plastic material processed by a cylindrically or spherically symmetric converging shock, following Whitham's shock dynamics theory. Originally applied with success to various gas dynamics problems, this theory is presently derived for solid media, in both elastic and plastic regimes. The exact solutions of the shock dynamics equations obtained reproduce well the results obtained by high-resolution numerical simulations. The examined constitutive laws share a compressible neo-Hookean structure for the internal energy e=e(s)(I(1))+e(h)(ρ,ς), where e(s) accounts for shear through the first invariant of the Cauchy-Green tensor, and e(h) represents the hydrostatic contribution as a function of the density ρ and entropy ς. In the strong-shock limit, reached as the shock approaches the axis or origin r=0, we show that compression effects are dominant over shear deformations. For an isothermal constitutive law, i.e., e(h)=e(h)(ρ), with a power-law dependence e(h) is proportional to ρ(α), shock dynamics predicts that for a converging shock located at r=R(t) at time t, the Mach number increases as M is proportional to [log(1/R)](α), independently of the space index s, where s=2 in cylindrical geometry and 3 in spherical geometry. An alternative isothermal constitutive law with p(ρ) of the arctanh type, which enforces a finite density in the strong-shock limit, leads to M is proportional to R(-(s-1)) for strong shocks. A nonisothermal constitutive law, whose hydrostatic part e(h) is that of an ideal gas, is also tested, recovering the strong-shock limit M is proportional to R(-(s-1)/n(γ)) originally derived by Whitham for perfect gases, where γ is inherently related to the maximum compression ratio that the material can reach, (γ+1)/(γ-1). From these strong-shock limits, we also estimate analytically the density, radial velocity, pressure, and sound speed immediately behind the shock. While the

  11. Converging shocks in elastic-plastic solids

    Science.gov (United States)

    López Ortega, A.; Lombardini, M.; Hill, D. J.

    2011-11-01

    We present an approximate description of the behavior of an elastic-plastic material processed by a cylindrically or spherically symmetric converging shock, following Whitham's shock dynamics theory. Originally applied with success to various gas dynamics problems, this theory is presently derived for solid media, in both elastic and plastic regimes. The exact solutions of the shock dynamics equations obtained reproduce well the results obtained by high-resolution numerical simulations. The examined constitutive laws share a compressible neo-Hookean structure for the internal energy e=es(I1)+eh(ρ,ς), where es accounts for shear through the first invariant of the Cauchy-Green tensor, and eh represents the hydrostatic contribution as a function of the density ρ and entropy ς. In the strong-shock limit, reached as the shock approaches the axis or origin r=0, we show that compression effects are dominant over shear deformations. For an isothermal constitutive law, i.e., eh=eh(ρ), with a power-law dependence eh∝ρα, shock dynamics predicts that for a converging shock located at r=R(t) at time t, the Mach number increases as M∝[log(1/R)]α, independently of the space index s, where s=2 in cylindrical geometry and 3 in spherical geometry. An alternative isothermal constitutive law with p(ρ) of the arctanh type, which enforces a finite density in the strong-shock limit, leads to M∝R-(s-1) for strong shocks. A nonisothermal constitutive law, whose hydrostatic part eh is that of an ideal gas, is also tested, recovering the strong-shock limit M∝R-(s-1)/n(γ) originally derived by Whitham for perfect gases, where γ is inherently related to the maximum compression ratio that the material can reach, (γ+1)/(γ-1). From these strong-shock limits, we also estimate analytically the density, radial velocity, pressure, and sound speed immediately behind the shock. While the hydrostatic part of the energy essentially commands the strong-shock behavior, the shear

  12. Shocks, star formation and the JWST

    Science.gov (United States)

    Gusdorf, A.

    2015-12-01

    The interstellar medium (ISM) is constantly evolving due to unremitting injection of energy in various forms. Energetic radiation transfers energy to the ISM: from the UV photons, emitted by the massive stars, to X- and γ-ray ones. Cosmic rays are another source of energy. Finally, mechanical energy is injected through shocks or turbulence. Shocks are ubiquitous in the interstellar medium of galaxies. They are associated to star formation (through jets and bipolar outflows), life (via stellar winds), and death (in AGB stellar winds or supernovae explosion). The dynamical processes leading to the formation of molecular clouds also generate shocks where flows of interstellar matter collide. Because of their ubiquity, the study of interstellar shocks is also a useful probe to the other mechanisms of energy injection in the ISM. This study must be conducted in order to understand the evolution of the interstellar medium as a whole, and to address various questions: what is the peculiar chemistry associated to shocks, and what is their contribution to the cycle of matter in galaxies ? What is the energetic impact of shocks on their surroundings on various scales, and hence what is the feedback of stars on the galaxies ? What are the scenarios of star formation, whether this star formation leads to the propagation of shocks, or whether it is triggered by shock propagation ? What is the role of shocks in the acceleration of cosmic rays ? Can they shed light on their composition and diffusion processes ? In order to progress on these questions, it is paramount to interpret the most precise observations with the most precise models of shocks. From the observational point of view, the James Webb Space Telescope represents a powerful tool to better address the above questions, as it will allow to observe numerous shock tracers in the infrared range at an unprecedented spatial and spectral resolution.

  13. Shock finding on a moving-mesh - II. Hydrodynamic shocks in the Illustris universe

    Science.gov (United States)

    Schaal, Kevin; Springel, Volker; Pakmor, Rüdiger; Pfrommer, Christoph; Nelson, Dylan; Vogelsberger, Mark; Genel, Shy; Pillepich, Annalisa; Sijacki, Debora; Hernquist, Lars

    2016-10-01

    Hydrodynamical shocks are a manifestation of the non-linearity of the Euler equations and play a fundamental role in cosmological gas dynamics. In this work, we identify and analyse shocks in the Illustris simulation, and contrast the results with those of non-radiative runs. We show that simulations with more comprehensive physical models of galaxy formation pose new challenges for shock finding algorithms due to radiative cooling and star-forming processes, prompting us to develop a number of methodology improvements. We find in Illustris a total shock surface area which is about 1.4 times larger at the present epoch compared to non-radiative runs, and an energy dissipation rate at shocks which is higher by a factor of around 7. Remarkably, shocks with Mach numbers above and below mathcal {M}≈ 10 contribute about equally to the total dissipation across cosmic time. This is in sharp contrast to non-radiative simulations, and we demonstrate that a large part of the difference arises due to strong black hole radio-mode feedback in Illustris. We also provide an overview of the large diversity of shock morphologies, which includes complex networks of halo-internal shocks, shocks on to cosmic sheets, feedback shocks due to black holes and galactic winds, as well as ubiquitous accretion shocks. In high-redshift systems more massive than 1012 M⊙, we discover the existence of a double accretion shock pattern in haloes. They are created when gas streams along filaments without being shocked at the outer accretion shock, but then forms a second, roughly spherical accretion shock further inside.

  14. Development of a shock noise prediction code for high-speed helicopters - The subsonically moving shock

    Science.gov (United States)

    Tadghighi, H.; Holz, R.; Farassat, F.; Lee, Yung-Jang

    1991-01-01

    A previously defined airfoil subsonic shock-noise prediction formula whose result depends on a mapping of the time-dependent shock surface to a time-independent computational domain is presently coded and incorporated in the NASA-Langley rotor-noise prediction code, WOPWOP. The structure and algorithms used in the shock-noise prediction code are presented; special care has been taken to reduce computation time while maintaining accuracy. Numerical examples of shock-noise prediction are presented for hover and forward flight. It is confirmed that shock noise is an important component of the quadrupole source.

  15. Plasma Shock Wave Modification Experiments in a Temperature Compensated Shock Tube

    Science.gov (United States)

    Vine, Frances J.; Mankowski, John J.; Saeks, Richard E.; Chow, Alan S.

    2003-01-01

    A number of researchers have observed that the intensity of a shock wave is reduced when it passes through a weakly ionized plasma. While there is little doubt that the intensity of a shock is reduced when it propagates through a weakly ionized plasma, the major question associated with the research is whether the reduction in shock wave intensity is due to the plasma or the concomitant heating of the flow by the plasma generator. The goal of this paper is to describe a temperature compensated experiment in a "large" diameter shock tube with an external heating source, used to control the temperature in the shock tube independently of the plasma density.

  16. Standing Shocks in Viscous Accretion Flows around Black Holes

    Institute of Scientific and Technical Information of China (English)

    GU Wei-Min; LU Ju-Fu

    2005-01-01

    @@ We study the problem of standing shocks in viscous accretion flows around black holes.We parameterize such a flow with two physical constants, namely the specific angular momentum accreted by the black hole j and the energy quantity K.By providing the global dependence of shock formation in the j - K parameter space, we show that a significant parameter region can ensure solutions with shocks of different types, namely Rankine-Hugoniot shocks, isothermal shocks, and more realistically, mixed shocks.

  17. Benjamin Franklin and Shock-Induced Amnesia

    Science.gov (United States)

    Finger, Stanley; Zaromb, Franklin

    2006-01-01

    Shock-induced amnesia received considerable attention after Cerletti popularized electroconvulsive shock therapy in the late 1930s. Yet, often overlooked is the fact that Benjamin Franklin recognized that passing electricity through the head could affect memory for the traumatic event. Franklin described his findings on himself and others in…

  18. Oil price shocks and European industries

    NARCIS (Netherlands)

    Scholtens, Bert; Yurtsever, Cenk

    2012-01-01

    We investigate the impact of oil price shocks at the industry level in the Euro area for the period 1983-2007. We use different oil price specifications and use dynamic VAR models and multivariate regression to investigate how 38 different industries respond to oil price shocks. We pay specific atte

  19. Vibrational energy transfer in shocked molecular crystals.

    Science.gov (United States)

    Hooper, Joe

    2010-01-07

    We consider the process of establishing thermal equilibrium behind an ideal shock front in molecular crystals and its possible role in initiating chemical reaction at high shock pressures. A new theory of equilibration via multiphonon energy transfer is developed to treat the scattering of shock-induced phonons into internal molecular vibrations. Simple analytic forms are derived for the change in this energy transfer at different Hugoniot end states following shock compression. The total time required for thermal equilibration is found to be an order of magnitude or faster than proposed in previous work; in materials representative of explosive molecular crystals, equilibration is predicted to occur within a few picoseconds following the passage of an ideal shock wave. Recent molecular dynamics calculations are consistent with these time scales. The possibility of defect-induced temperature localization due purely to nonequilibrium phonon processes is studied by means of a simple model of the strain field around an inhomogeneity. The specific case of immobile straight dislocations is studied, and a region of enhanced energy transfer on the order of 5 nm is found. Due to the rapid establishment of thermal equilibrium, these regions are unrelated to the shock sensitivity of a material but may allow temperature localization at high shock pressures. Results also suggest that if any decomposition due to molecular collisions is occurring within the shock front itself, these collisions are not enhanced by any nonequilibrium thermal state.

  20. [Shock wave treatment for tennis elbow].

    Science.gov (United States)

    Rompe, J D; Theis, C; Maffulli, N

    2005-06-01

    Randomized controlled trials were evaluated to assess the effectiveness of extracorporeal shock wave treatment in the management of tennis elbow. Five trials had a mediocre methodology and four trials had a high-quality design. Well-designed randomized control trials have provided evidence of the effectiveness of shock wave intervention for tennis elbow.

  1. 33 CFR 183.584 - Shock test.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Shock test. 183.584 Section 183... SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Tests § 183.584 Shock test. A fuel tank is tested by... surface of the tank. The duration of each vertical acceleration pulse is measured at the base of the...

  2. Septisk shock på intensivafdeling

    DEFF Research Database (Denmark)

    Perner, Anders; Carlsen, Sarah; Marcussen, Klaus

    2010-01-01

    Patients in septic shock have a 33-42% 30-day mortality, but characteristics and outcome have not been assessed in Danish intensive care units (ICUs).......Patients in septic shock have a 33-42% 30-day mortality, but characteristics and outcome have not been assessed in Danish intensive care units (ICUs)....

  3. Shock wave interactions with liquid sheets

    Science.gov (United States)

    Jeon, H.; Eliasson, V.

    2017-04-01

    Shock wave interactions with a liquid sheet are investigated by impacting planar liquid sheets of varying thicknesses with a planar shock wave. A square frame was designed to hold a rectangular liquid sheet, with a thickness of 5 or 10 mm, using plastic membranes and cotton wires to maintain the planar shape and minimize bulge. The flat liquid sheet, consisting of either water or a cornstarch and water mixture, was suspended in the test section of a shock tube. Incident shock waves with Mach numbers of M_s = 1.34 and 1.46 were considered. A schlieren technique with a high-speed camera was used to visualize the shock wave interaction with the liquid sheets. High-frequency pressure sensors were used to measure wave speed, overpressure, and impulse both upstream and downstream of the liquid sheet. Results showed that no transmitted shock wave could be observed through the liquid sheets, but compression waves induced by the shock-accelerated liquid coalesced into a shock wave farther downstream. A thicker liquid sheet resulted in a lower peak overpressure and impulse, and a cornstarch suspension sheet showed a higher attenuation factor compared to a water sheet.

  4. Existence Regions of Shock Wave Triple Configurations

    Science.gov (United States)

    Bulat, Pavel V.; Chernyshev, Mikhail V.

    2016-01-01

    The aim of the research is to create the classification for shock wave triple configurations and their existence regions of various types: type 1, type 2, type 3. Analytical solutions for limit Mach numbers and passing shock intensity that define existence region of every type of triple configuration have been acquired. The ratios that conjugate…

  5. Numerical simulation of converging shock waves

    Science.gov (United States)

    Yee, Seokjune; Abe, Kanji

    We can achieve the high pressure and high temperature state of gas if the shock wave converges stably. In order to check the stability of the converging shock wave, we introduce two kinds of perturbed initial conditions. The Euler equations of conservation form are integrated by using explicit Non-Muscl TVD finite difference scheme.

  6. Oil price shocks and European industries

    NARCIS (Netherlands)

    Scholtens, Bert; Yurtsever, Cenk

    2012-01-01

    We investigate the impact of oil price shocks at the industry level in the Euro area for the period 1983-2007. We use different oil price specifications and use dynamic VAR models and multivariate regression to investigate how 38 different industries respond to oil price shocks. We pay specific atte

  7. Shock-induced melting and rapid solidification

    Energy Technology Data Exchange (ETDEWEB)

    Nellis, W.J.; Gourdin, W.H.; Maple, M.B.

    1987-08-01

    Model calculations are presented to estimate that approx.50 GPa is required to completely shock melt metal powders with quenching at rates up to 10/sup 8/ K/s. Experiments are discussed for powders of a Cu-Zr alloy compacted in the usual way at 16 GPa and melted by shocking to 60 GPa. 12 refs.

  8. Oil price shocks and European industries

    NARCIS (Netherlands)

    Scholtens, Bert; Yurtsever, Cenk

    We investigate the impact of oil price shocks at the industry level in the Euro area for the period 1983-2007. We use different oil price specifications and use dynamic VAR models and multivariate regression to investigate how 38 different industries respond to oil price shocks. We pay specific

  9. Investigation on stability of electrohydrodynamic shock waves

    Directory of Open Access Journals (Sweden)

    A. M. Blokhin

    1997-05-01

    Full Text Available Well-posedness of a linear mixed problem on stability of electrohydrodynamic shock waves is investigated in the paper. Stability of shock waves for a hydrodynamic model of movement of a continuum with a volume electric charge is proved.

  10. Suprathermal Electrons at Saturn's Bow Shock

    Science.gov (United States)

    Masters, A.; Sulaiman, A. H.; Sergis, N.; Stawarz, L.; Fujimoto, M.; Coates, A. J.; Dougherty, M. K.

    2016-07-01

    The leading explanation for the origin of galactic cosmic rays is particle acceleration at the shocks surrounding young supernova remnants (SNRs), although crucial aspects of the acceleration process are unclear. The similar collisionless plasma shocks frequently encountered by spacecraft in the solar wind are generally far weaker (lower Mach number) than these SNR shocks. However, the Cassini spacecraft has shown that the shock standing in the solar wind sunward of Saturn (Saturn's bow shock) can occasionally reach this high-Mach number astrophysical regime. In this regime Cassini has provided the first in situ evidence for electron acceleration under quasi-parallel upstream magnetic conditions. Here we present the full picture of suprathermal electrons at Saturn's bow shock revealed by Cassini. The downstream thermal electron distribution is resolved in all data taken by the low-energy electron detector (CAPS-ELS, 18 keV) measured a suprathermal electron signature at 31 of 508 crossings, where typically only the lowest energy channels (process involves interaction with whistler waves at the shock front, and becomes possible for all upstream magnetic field orientations at high Mach numbers like those of the strong shocks around young SNRs. A future dedicated study will analyze the rare crossings with evidence for relativistic electrons (up to ˜1 MeV).

  11. The influence of incident shock Mach number on radial incident shock wave focusing

    Directory of Open Access Journals (Sweden)

    Xin Chen

    2016-04-01

    Full Text Available Experiments and numerical simulations were carried out to investigate radial incident shock focusing on a test section where the planar incident shock wave was divided into two identical ones. A conventional shock tube was used to generate the planar shock. Incident shock Mach number of 1.51, 1.84 and 2.18 were tested. CCD camera was used to obtain the schlieren photos of the flow field. Third-order, three step strong-stability-preserving (SSP Runge-Kutta method, third-order weighed essential non-oscillation (WENO scheme and adaptive mesh refinement (AMR algorithm were adopted to simulate the complicated flow fields characterized by shock wave interaction. Good agreement between experimental and numerical results was observed. Complex shock wave configurations and interactions (such as shock reflection, shock-vortex interaction and shock focusing were observed in both the experiments and numerical results. Some new features were observed and discussed. The differences of structure of flow field and the variation trends of pressure were compared and analyzed under the condition of different Mach numbers while shock wave focusing.

  12. Neutron capture cross section and capture gamma-ray spectra of 89Y

    Directory of Open Access Journals (Sweden)

    Katabuchi Tatsuya

    2016-01-01

    Full Text Available The neutron capture cross section of 89Y was measured by the time-of-flight method in an energy range from 15 to 100 keV. A pulse-height weighting technique was applied to derive the capture yield. The absolute cross section was determined based on the standard reaciotn 197 Au(n, γ198 Au reaction. The neutron capture γ-ray spectrum was derived by unfolding the pulse-height spectrum with detector response functions.

  13. Enhanced virome sequencing using targeted sequence capture.

    Science.gov (United States)

    Wylie, Todd N; Wylie, Kristine M; Herter, Brandi N; Storch, Gregory A

    2015-12-01

    Metagenomic shotgun sequencing (MSS) is an important tool for characterizing viral populations. It is culture independent, requires no a priori knowledge of the viruses in the sample, and may provide useful genomic information. However, MSS can lack sensitivity and may yield insufficient data for detailed analysis. We have created a targeted sequence capture panel, ViroCap, designed to enrich nucleic acid from DNA and RNA viruses from 34 families that infect vertebrate hosts. A computational approach condensed ∼1 billion bp of viral reference sequence into <200 million bp of unique, representative sequence suitable for targeted sequence capture. We compared the effectiveness of detecting viruses in standard MSS versus MSS following targeted sequence capture. First, we analyzed two sets of samples, one derived from samples submitted to a diagnostic virology laboratory and one derived from samples collected in a study of fever in children. We detected 14 and 18 viruses in the two sets, comprising 19 genera from 10 families, with dramatic enhancement of genome representation following capture enrichment. The median fold-increases in percentage viral reads post-capture were 674 and 296. Median breadth of coverage increased from 2.1% to 83.2% post-capture in the first set and from 2.0% to 75.6% in the second set. Next, we analyzed samples containing a set of diverse anellovirus sequences and demonstrated that ViroCap could be used to detect viral sequences with up to 58% variation from the references used to select capture probes. ViroCap substantially enhances MSS for a comprehensive set of viruses and has utility for research and clinical applications.

  14. Introduction to Shock Waves and Shock Wave Research

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, William Wyatt [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    M-9 and a number of other organizations at LANL and elsewhere study materials in dynamic processes. Often, this is described as “shock wave research,” but in reality is broader than is implied by that term. Most of our work is focused on dynamic compression and associated phenomena, but you will find a wide variety of things we do that, while related, are not simple compression of materials, but involve a much richer variety of phenomena. This tutorial will introduce some of the underlying physics involved in this work, some of the more common types of phenomena we study, and common techniques. However, the list will not be exhaustive by any means.

  15. Historic Food Production Shocks: Quantifying the Extremes

    Directory of Open Access Journals (Sweden)

    Aled W. Jones

    2016-04-01

    Full Text Available Understanding global food production trends is vital for ensuring food security and to allow the world to develop appropriate policies to manage the food system. Over the past few years, there has been an increasing attention on the global food system, particularly after the extreme shocks seen in food prices after 2007. Several papers and working groups have explored the links between food production and various societal impacts however they often categorise production shocks in different ways even to the extent of identifying different levels, countries and timings for shocks. In this paper we present a simple method to quantify and categorise cereal production shocks at a country level. This method can be used as a baseline for other studies that examine the impact of these production shocks on the global food system.

  16. Barrier experiment: Shock initiation under complex loading

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-12

    The barrier experiments are a variant of the gap test; a detonation wave in a donor HE impacts a barrier and drives a shock wave into an acceptor HE. The question we ask is: What is the trade-off between the barrier material and threshold barrier thickness to prevent the acceptor from detonating. This can be viewed from the perspective of shock initiation of the acceptor subject to a complex pressure drive condition. Here we consider key factors which affect whether or not the acceptor undergoes a shock-to-detonation transition. These include the following: shock impedance matches for the donor detonation wave into the barrier and then the barrier shock into the acceptor, the pressure gradient behind the donor detonation wave, and the curvature of detonation front in the donor. Numerical simulations are used to illustrate how these factors affect the reaction in the acceptor.

  17. Organic synthesis in experimental impact shocks

    Science.gov (United States)

    McKay, C. P.; Borucki, W. J.

    1997-01-01

    Laboratory simulations of shocks created with a high-energy laser demonstrate that the efficacy of organic production depends on the molecular, not just the elemental composition of the shocked gas. In a methane-rich mixture that simulates a low-temperature equilibrium mixture of cometary material, hydrogen cyanide and acetylene were produced with yields of 5 x 10(17) molecules per joule. Repeated shocking of the methane-rich mixture produced amine groups, suggesting the possible synthesis of amino acids. No organic molecules were produced in a carbon dioxide-rich mixture, which is at odds with thermodynamic equilibrium approaches to shock chemistry and has implications for the modeling of shock-produced organic molecules on early Earth.

  18. The shock waves in decaying supersonic turbulence

    CERN Document Server

    Smith, M D; Zuev, J M; Smith, Michael D.; Low, Mordecai-Mark Mac; Zuev, Julia M.

    2000-01-01

    We here analyse numerical simulations of supersonic, hypersonic andmagnetohydrodynamic turbulence that is free to decay. Our goals are tounderstand the dynamics of the decay and the characteristic properties of theshock waves produced. This will be useful for interpretation of observations ofboth motions in molecular clouds and sources of non-thermal radiation. We find that decaying hypersonic turbulence possesses an exponential tail offast shocks and an exponential decay in time, i.e. the number of shocks isproportional to t exp (-ktv) for shock velocity jump v and mean initialwavenumber k. In contrast to the velocity gradients, the velocity ProbabilityDistribution Function remains Gaussian with a more complex decay law. The energy is dissipated not by fast shocks but by a large number of low Machnumber shocks. The power loss peaks near a low-speed turn-over in anexponential distribution. An analytical extension of the mapping closuretechnique is able to predict the basic decay features. Our analytic descrip...

  19. Shock-induced devolatilization of calcite

    Science.gov (United States)

    Boslough, M. B.; Ahrens, T. J.; Vizgirda, J.; Becker, R. H.; Epstein, S.

    1982-01-01

    Experimental measurements of the release adiabats by Vizgirda (1981) indicate that substantial vaporization takes place upon release from shock pressures of 37 GPa for calcite and 14 GPa for aragonite. The present investigation includes the first controlled partial vaporization experiments on calcite. The experiments were conducted to test the predictions of the release adiabat experiments. The quantities of the gaseous species produced from shocked calcite and their carbon and oxygen isotopic compositions were determined, and the shock-induced effect on the Mn(2+) electron spin resonance spectrum in the shock-recovered calcite was observed. On the basis of the obtained results, it is concluded that shock stresses at the 17-18 GPa level give rise to volatilization of 0.03-0.3 (mole) percent of calcite to CO2 and CO. The devolatilization of calcite occurs at low pressure at significantly lower entropy densities than predicted on the basis of thermodynamic continuum models.

  20. Shocks, Star Formation, and the JWST

    CERN Document Server

    Gusdorf, Antoine

    2015-01-01

    The interstellar medium (ISM) is constantly evolving due to unremitting injection of energy in various forms. Energetic radiation transfers energy to the ISM: from the UV photons, emitted by the massive stars, to X- and $\\gamma$-ray ones. Cosmic rays are another source of energy. Finally, mechanical energy is injected through shocks or turbulence. Shocks are ubiquitous in the interstellar medium of galaxies. They are associated to star formation (through jets and bipolar outflows), life (via stellar winds), and death (in AGB stellar winds or supernovae explosion). The dynamical processes leading to the formation of molecular clouds also generate shocks where flows of interstellar matter collide. Because of their ubiquity, the study of interstellar shocks is also a useful probe to the other mechanisms of energy injection in the ISM. This study must be conducted in order to understand the evolution of the ISM as a whole, and to address various questions: what is the peculiar chemistry associated to shocks, and ...

  1. Curved Radio Spectra of Weak Cluster Shocks

    CERN Document Server

    Kang, Hyesung

    2015-01-01

    We explore a diffusive shock acceleration (DSA) model for radio relics in which a spherical shock impinges on a magnetized cloud of fossil relativistic electrons in the cluster periphery. Such a scenario could explain uniformity of the surface brightness and spectral curvature in the integrated spectra of thin arc-like radio relics. Toward this end, we perform DSA simulations of spherical shocks with the parameters relevant for the Sausage radio relic in cluster CIZA J2242.8+5301, and calculate the ensuing radio synchrotron emission from re-accelerated electrons. The surface brightness profile of radio-emitting postshock region and the volume-integrated radio spectrum are calculated as well. We find that the observed width of the Sausage relic can be explained reasonably well by shocks with speed $u_s \\sim 3,000 \\kms$ and sonic Mach number $M_s \\sim 3$. These shocks produce curved radio spectra that steepen gradually over $(0.1-10) \

  2. Cosmic ray acceleration at modified shocks

    CERN Document Server

    Meli, A; Dimitrakoudis, S

    2007-01-01

    The non-linear back reaction of accelerated cosmic rays at the shock fronts, leads to the formation of a smooth precursor with a length scale corresponding to the diffusive scale of the energetic particles. Past works claimed that shocklets could be created in the precursor region of a specific shock width, which might energize few thermal particles to sufficient acceleration and furthermore this precursor region may act as confining large angle scatterer for very high energy cosmic rays. On the other hand, it has been shown that the smoothing of the shock front could lower the acceleration efficiency. These controversies motivated us to investigate numerically by Monte Carlo simulations the particle acceleration efficiency in oblique modified shocks. The results show flatter spectra compared to the spectra of the pressumed sharp discontinuity shock fronts. The findings are in accordance with theoretical predictions, since the scattering inside the precursor confines high energy particles to further scatterin...

  3. Organic synthesis in experimental impact shocks

    Science.gov (United States)

    McKay, C. P.; Borucki, W. J.

    1997-01-01

    Laboratory simulations of shocks created with a high-energy laser demonstrate that the efficacy of organic production depends on the molecular, not just the elemental composition of the shocked gas. In a methane-rich mixture that simulates a low-temperature equilibrium mixture of cometary material, hydrogen cyanide and acetylene were produced with yields of 5 x 10(17) molecules per joule. Repeated shocking of the methane-rich mixture produced amine groups, suggesting the possible synthesis of amino acids. No organic molecules were produced in a carbon dioxide-rich mixture, which is at odds with thermodynamic equilibrium approaches to shock chemistry and has implications for the modeling of shock-produced organic molecules on early Earth.

  4. Sandia computerized shock compression bibliographical database

    Energy Technology Data Exchange (ETDEWEB)

    Wilbeck, J.S.; Anderson, C.E.; Hokanson, J.C.; Asay, J.R.; Grady, D.E.; Graham, R.A.; Kipp, M.E.

    1985-01-01

    A searchable and updateable bibliographical database is being developed which will be designed, controlled, and evaluated by working technical experts in the field of shock-compression science. It will emphasize shock-compression properties in the stress region of a few tens of GPa and provide a broad and complete base of bibliographical information on the shock-compression behavior of materials. Through the operation of technical advisors, the database provides authoritative blbliographical and keyword data for use by both the inexperienced and expert user. In its current form, it consists of: (1) a library of journal articles, reports, books, and symposia papers in the areas of shock physics and shock mechanics; and (2) a computerized database system containing complete bibliographical information, exhaustive keyword descriptions, and author abstracts for each of the documents in the database library.

  5. 28th International Symposium on Shock Waves

    CERN Document Server

    2012-01-01

    The University of Manchester hosted the 28th International Symposium on Shock Waves between 17 and 22 July 2011. The International Symposium on Shock Waves first took place in 1957 in Boston and has since become an internationally acclaimed series of meetings for the wider Shock Wave Community. The ISSW28 focused on the following areas: Blast Waves, Chemically Reacting Flows, Dense Gases and Rarefied Flows, Detonation and Combustion, Diagnostics, Facilities, Flow Visualisation, Hypersonic Flow, Ignition, Impact and Compaction, Multiphase Flow, Nozzle Flow, Numerical Methods, Propulsion, Richtmyer-Meshkov, Shockwave Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shockwave Phenomena and Applications, as well as Medical and Biological Applications. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 28 and individuals interested in these fields.

  6. Molecular shock response of explosives: electronic absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mcgrne, Shawn D [Los Alamos National Laboratory; Moore, David S [Los Alamos National Laboratory; Whitley, Von H [Los Alamos National Laboratory; Bolme, Cindy A [Los Alamos National Laboratory; Eakins, Daniel E [Los Alamos National Laboratory

    2009-01-01

    Electronic absorption spectroscopy in the range 400-800 nm was coupled to ultrafast laser generated shocks to begin addressing the question of the extent to which electronic excitations are involved in shock induced reactions. Data are presented on shocked polymethylmethacrylate (PMMA) thin films and single crystal pentaerythritol tetranitrate (PETN). Shocked PMMA exhibited thin film interference effects from the shock front. Shocked PETN exhibited interference from the shock front as well as broadband increased absorption. Relation to shock initiation hypotheses and the need for time dependent absorption data (future experiments) is briefly discussed.

  7. Magnetic field amplification by collisionless shocks in partially ionized plasmas

    CERN Document Server

    Ohira, Yutaka

    2015-01-01

    In this paper, we study shock structures of collisionless shocks in partially ionized plasmas by means of two-dimensional hybrid simulations, where the shock is a perpendicular shock with shock velocity Vsh ~ 40 Va ~ 1333 km/s and the upstream ionization fraction is 0.5. We find that large density fluctuations and large magnetic fields fluctuations are generated both in the upstream and downstream regions. In addition, we find that the velocity distribution of downstream hydrogen atoms has three components. Observed shock structures suggest that diffusive shock acceleration can operate at perpendicular shocks propagating into partially ionized plasmas in real three-dimensional systems.

  8. Capture of farmed Nile crocodiles (Crocodylus niloticus): comparison of physiological parameters after manual capture and after capture with electrical stunning.

    Science.gov (United States)

    Pfitzer, S; Ganswindt, A; Fosgate, G T; Botha, P J; Myburgh, J G

    2014-09-27

    The electric stunner (e-stunner) is commonly used to handle Nile crocodiles (Crocodylus niloticus) on commercial farms in South Africa, but while it seems to improve handling and safety for the keepers, no information regarding physiological reactions to e-stunning is currently available. The aim of this study was therefore to compare various physiological parameters in farmed C niloticus captured either manually (noosing) or by using an e-stunner. A total of 45 crocodiles were captured at a South African farm by either e-stunning or noosing, and blood samples were taken immediately as well as four hours after capture. Parameters monitored were serum corticosterone, lactate, glucose, as well as alanine aminotransferase, alkaline phosphatase, aspartate aminotransferase and creatine kinase. Lactate concentrations were significantly higher in noosed compared with e-stunned animals (Pcrocodiles in a commercial setup because it is quicker, safer and did not cause a significant increase in any of the parameters measured.

  9. Refraction of cylindrical converging shock wave at an air/helium gaseous interface

    Science.gov (United States)

    Zhai, Zhigang; Li, Wei; Si, Ting; Luo, Xisheng; Yang, Jiming; Lu, Xiyun

    2017-01-01

    Refraction of a cylindrical converging shock wave at an inclined air/helium interface is investigated. Experimentally, based on the shock dynamics theory, a special wall profile is designed to generate a perfectly cylindrical converging shock wave. A soap film technique is developed to form an inclined discontinuous air/helium interface, and high-speed schlieren photography is adopted to capture the flow. Numerical simulations are also performed to compare with the experimental counterparts and to show details of refraction. In this work, two initial incident angles (45° and 60°) are considered. As the incident shock converges inward, the shock intensity increases while the incident angle decreases, causing possible transitions among the wave patterns. For the case of 45°, an irregular refraction of free precursor refraction (FPR) first occurs and gradually transits into regular refraction, while for the case of 60°, various irregular refractions of twin von Neumann refraction (TNR), twin regular refraction (TRR), free precursor von Neumann refraction (FNR), and FPR occur in sequence. The transition sequences do not belong to any groups described in the planar counterpart, indicating that the classification of the refraction phenomenon in the planar case is not exhaustive or cannot be applied to the converging case. It is also the first time to observe the transition from FNR to FPR, providing an experimental evidence for the previous numerical results. It is deemed that the difference between the velocities of the incident and transmitted shocks propagating along the interface is the primary factor that induces the transitions among wave patterns.

  10. Active suppression after involuntary capture of attention.

    Science.gov (United States)

    Sawaki, Risa; Luck, Steven J

    2013-04-01

    After attention has been involuntarily captured by a distractor, how is it reoriented toward a target? One possibility is that attention to the distractor passively fades over time, allowing the target to become attended. Another possibility is that the captured location is actively suppressed so that attention can be directed toward the target location. The present study investigated this issue with event-related potentials (ERPs), focusing on the N2pc component (a neural measure of attentional deployment) and the Pd component (a neural measure of attentional suppression). Observers identified a color-defined target in a search array, which was preceded by a task-irrelevant cue array. When the cue array contained an item that matched the target color, this item captured attention (as measured both behaviorally and with the N2pc component). This capture of attention was followed by active suppression (indexed by the Pd component), and this was then followed by a reorienting of attention toward the target in the search array (indexed by the N2pc component). These findings indicate that the involuntary capture of attention by a distractor is followed by an active suppression process that presumably facilitates the subsequent voluntary orienting of attention to the target.

  11. Selective particle capture by asynchronously beating cilia

    Science.gov (United States)

    Ding, Yang; Kanso, Eva

    2015-12-01

    Selective particle filtration is fundamental in many engineering and biological systems. For example, many aquatic microorganisms use filter feeding to capture food particles from the surrounding fluid, using motile cilia. One of the capture strategies is to use the same cilia to generate feeding currents and to intercept particles when the particles are on the downstream side of the cilia. Here, we develop a 3D computational model of ciliary bands interacting with flow suspended particles and calculate particle trajectories for a range of particle sizes. Consistent with experimental observations, we find optimal particle sizes that maximize capture rate. The optimal size depends nonlinearly on cilia spacing and cilia coordination, synchronous vs. asynchronous. These parameters affect the cilia-generated flow field, which in turn affects particle trajectories. The low capture rate of smaller particles is due to the particles' inability to cross the flow streamlines of neighboring cilia. Meanwhile, large particles have difficulty entering the sub-ciliary region once advected downstream, also resulting in low capture rates. The optimal range of particle sizes is enhanced when cilia beat asynchronously. These findings have potentially important implications on the design and use of biomimetic cilia in processes such as particle sorting in microfluidic devices.

  12. Quality assessment of video image capture systems

    Science.gov (United States)

    Rowberg, Alan H.; Lian, Jing

    1991-05-01

    As Picture Archiving and Communication System (PACS) technology has matured, video image capture has become a common way of capturing digital images from many modalities. While digital interfaces, such as those which use the ACR/NEMA standard, will become more common in the future, and are preferred because of the accuracy of image transfer, video image capture will be the dominant method in the short term, and may continue to be used for some time because of the low cost and high speed often associated with such devices. A series of digital phantoms has been developed for display on either a CT9800 or Hilite Advantage scanner. The phantom images have been stored on magnetic tape in the standard tape archive format used by General Electric, so that the images may be loaded onto the scanner at any time. These images are then captured using a commercial video image capture board in a PC/286 computer, where the images are not only to be displayed, but also analyzed with the use of an automated process implemented in a computer program on the same PC. Results of the analyses are saved, together with the data and time of image acquisition, so that the results can be displayed graphically, as trend plots.

  13. Technology Roadmap: Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    As long as fossil fuels and carbon-intensive industries play dominant roles in our economies, carbon capture and storage (CCS) will remain a critical greenhouse gas reduction solution. This CCS roadmap aims at assisting governments and industry in integrating CCS in their emissions reduction strategies and in creating the conditions for scaled-up deployment of all three components of the CCS chain: CO2 capture, transport and storage. To get us onto the right pathway, this roadmap highlights seven key actions needed in the next seven years to create a solid foundation for deployment of CCS starting by 2020. IEA analysis shows that CCS is an integral part of any lowest-cost mitigation scenario where long-term global average temperature increases are limited to significantly less than 4 °C, particularly for 2 °C scenarios (2DS). In the 2DS, CCS is widely deployed in both power generation and industrial applications. The total CO2 capture and storage rate must grow from the tens of megatonnes of CO2 captured in 2013 to thousands of megatonnes of CO2 in 2050 in order to address the emissions reduction challenge. A total cumulative mass of approximately 120 GtCO2 would need to be captured and stored between 2015 and 2050, across all regions of the globe.

  14. Shock dynamics of phase diagrams

    CERN Document Server

    Moro, Antonio

    2014-01-01

    A thermodynamic phase transition denotes a drastic change of state of a physical system due to a continuous change of thermodynamic variables, as for instance pressure and temperature. The classical van der Waals equation of state is the simplest model that predicts the occurrence of a critical point associated with the gas-liquid phase transition. Nevertheless, below the critical temperature, theoretical predictions of the van der Waals theory significantly depart from the observed physical behaviour. We develop a novel approach to classical thermodynamics based on the solution of Maxwell relations for a generalised family of nonlocal entropy functions. This theory provides an exact mathematical description of discontinuities of the order parameter within the phase transition region, it explains the universal form of the equations of state and the occurrence of triple points in terms of the dynamics of nonlinear shock wave fronts.

  15. Heat shock proteins and immunotherapy

    Institute of Scientific and Technical Information of China (English)

    XinZHAO; XueMeiXU; GuoxingSONG

    2005-01-01

    Being one of the most abundant intracellular proteins,heat shock proteins(HSPs) have many housekeeping functions which are crucial for the survival of organisms.In addition,some HSPs are new immunoactive molecules which play important roles in both adaptive and innate immunity.They could activate CD8+ and CD4+ lymphocytes,induce innate immune response including natural killer(NK) cell activation and cytokine secretion,and induce maturation of dendritic cells(DCs).These characteristics have been used for immunotherapy of various types of cancers and infectious disenses.This review focuses on the main HSP families——HSP70 and 90 families.The mechanism of HSPs’ function in eliciting immune response are elucidated and various forms of HSPs used in immunotherapy are discussed in details.At the end of this review,authors summarize clinical trials related to HSPs and evaluate their clinical efficacy.

  16. Heat Shock Proteins and Diabetes.

    Science.gov (United States)

    Zilaee, Marzie; Shirali, Saeed

    2016-12-01

    Diabetes is a chronic disease, and its prevalence continues to rise and can increase the risk for the progression of microvascular (such as nephropathy, retinopathy and neuropathy) and also macrovascular complications. Diabetes is a condition in which the oxidative stress and inflammation rise. Heat shock proteins (HSPs) are a highly conserved family of proteins that are expressed by all cells exposed to environmental stress, and they have diverse functions. In patients with diabetes, the expression and levels of HSPs decrease, but these chaperones can aid in improving some complications of diabetes, such as oxidative stress and inflammation. (The suppression of some HSPs is associated with a generalized increase in tissue inflammation.) In this review, we summarize the current understanding of HSPs in diabetes as well as their complications, and we also highlight their potential role as therapeutic targets in diabetes. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  17. Shock waves on complex networks

    CERN Document Server

    Mones, Enys; Vicsek, Tamás; Herrmann, Hans J

    2014-01-01

    Power grids, road maps, and river streams are examples of infrastructural networks which are highly vulnerable to external perturbations. An abrupt local change of load (voltage, traffic density, or water level) might propagate in a cascading way and affect a significant fraction of the network. Almost discontinuous perturbations can be modeled by shock waves which can eventually interfere constructively and endanger the normal functionality of the infrastructure. We study their dynamics by solving the Burgers equation under random perturbations on several real and artificial directed graphs. Even for graphs with a narrow distribution of node properties (e.g., degree or betweenness), a steady state is reached exhibiting a heterogeneous load distribution, having a difference of one order of magnitude between the highest and average loads. Unexpectedly we find for the European power grid and for finite Watts-Strogatz networks a broad pronounced bimodal distribution for the loads. To identify the most vulnerable...

  18. The Shocked POststarburst Galaxy Survey

    Science.gov (United States)

    Alatalo, Katherine A.; SPOGS Team

    2017-01-01

    Modern day galaxies are found to be in a bimodal distribution, both in terms of their morphologies, and in terms of their colors, and these properties are inter-related. In color space, there is a genuine dearth of intermediate colored galaxies, which has been taken to mean that the transition a galaxy undergoes to transform must be rapid. Given that this transformation is largely one-way (at z=0), identifying all initial conditions that catalyze it becomes essential. The Shocked POststarburst Galaxy Survey (http://www.spogs.org) is able to pinpoint transitioning galaxies at an earlier stage of transition than other traditional searches, possibly opening a new door to identifying new pathways over which galaxies transform from blue spirals to red ellipticals.

  19. Piecewise parabolic method for simulating one-dimensional shear shock wave propagation in tissue-mimicking phantoms

    Science.gov (United States)

    Tripathi, B. B.; Espíndola, D.; Pinton, G. F.

    2017-06-01

    The recent discovery of shear shock wave generation and propagation in the porcine brain suggests that this new shock phenomenology may be responsible for a broad range of traumatic injuries. Blast-induced head movement can indirectly lead to shear wave generation in the brain, which could be a primary mechanism for injury. Shear shock waves amplify the local acceleration deep in the brain by up to a factor of 8.5, which may tear and damage neurons. Currently, there are numerical methods that can model compressional shock waves, such as comparatively well-studied blast waves, but there are no numerical full-wave solvers that can simulate nonlinear shear shock waves in soft solids. Unlike simplified representations, e.g., retarded time, full-wave representations describe fundamental physical behavior such as reflection and heterogeneities. Here we present a piecewise parabolic method-based solver for one-dimensional linearly polarized nonlinear shear wave in a homogeneous medium and with empirical frequency-dependent attenuation. This method has the advantage of being higher order and more directly extendable to multiple dimensions and heterogeneous media. The proposed numerical scheme is validated analytically and experimentally and compared to other shock capturing methods. A Riemann step-shock problem is used to characterize the numerical dissipation. This dissipation is then tuned to be negligible with respect to the physical attenuation by choosing an appropriate grid spacing. The numerical results are compared to ultrasound-based experiments that measure planar polarized shear shock wave propagation in a tissue-mimicking gelatin phantom. Good agreement is found between numerical results and experiment across a 40 mm propagation distance. We anticipate that the proposed method will be a starting point for the development of a two- and three-dimensional full-wave code for the propagation of nonlinear shear waves in heterogeneous media.

  20. Study of interaction between shock wave and unsteady boundary layer

    Institute of Scientific and Technical Information of China (English)

    董志勇; 韩肇元

    2003-01-01

    This paper reports theoretical and experimental study of a new type of interaction of a moving shock wave with an unsteady boundary layer. This type of shock wave-boundary layer interaction describes a moving shock wave interaction with an unsteady boundary layer induced by another shock wave and a rarefaction wave. So it is different from the interaction of a stationary shock wave with steady boundary layer, also different from the interaction of a reflected moving shock wave at the end of a shock tube with unsteady boundary layer induced by an incident shock. Geometrical shock dynamics is used for the theoretical analysis of the shock wave-unsteady boundary layer interaction, and a double-driver shock tube with a rarefaction wave bursting diaphragm is used for the experimental investigation in this work.

  1. Muon capture rates within the projected QRPA

    CERN Document Server

    Santos, Danilo Sande; Krmpotić, Francisco; Dimarco, Alejandro J

    2012-01-01

    The conservation of the number of particles within the QRPA plays an important role in the evaluation muon capture rates in all light nuclei with A \\precsim 30 . The violation of the CVC by the Coulomb field in this mass region is of minor importance, but this effect could be quite relevant for medium and heavy nuclei studied previously. The extreme sensitivity of the muon capture rates on the 'pp' coupling strength in nuclei with large neutron excess when described within the QRPA is pointed out. We reckon that the comparison between theory and data for the inclusive muon capture is not a fully satisfactory test on the nuclear model that is used. The exclusive muon transitions are much more robust for such a purpose.

  2. Electron capture in carbon dwarf supernovae

    Science.gov (United States)

    Mazurek, T. J.; Truran, J. W.; Cameron, A. G. W.

    1974-01-01

    The rates of electron capture on heavier elements under the extreme conditions predicted for dwarf star supernovae have been computed, incorporating modifications that seem to be indicated by present experimental results. An estimate of the maximum possible value of such rates is also given. The distribution of nuclei in nuclear statistical equilibrium has been calculated for the range of expected supernovae conditions, including the effects of the temperature dependence of nuclear partition functions. These nuclide abundance distributions are then used to compute nuclear equilibrium thermodynamic properties. The effects of the electron capture on such equilibrium matter are discussed. In the context of the 'carbon detonation' supernova model, the dwarf central density required to ensure core collapse to a neutron star configuration is found to be slightly higher than that obtained by Bruenn (1972) with the electron capture rates of Hansen (1966).-

  3. Neutron transmission and capture of 241Am

    Directory of Open Access Journals (Sweden)

    Sage C.

    2013-03-01

    Full Text Available A set of neutron transmission and capture experiments based on the Time Of Flight (TOF technique, were performed in order to determine the 241Am capture cross section in the energy range from 0.01 eV to 1 keV. The GELINA facility of the Institute for Reference Materials and Measurements (IRMM served as the neutron source. A pair of C6D6 liquid scintillators was used to register the prompt gamma rays emerging from the americium sample, while a Li-glass detector was used in the transmission setup. Results from the capture and transmission data acquired are consistent with each other, but appear to be inconsistent with the evaluated data files. Resonance parameters have been derived for the data up to the energy of 100 eV.

  4. Quantifying protein diffusion and capture on filaments

    CERN Document Server

    Reithmann, Emanuel; Frey, Erwin

    2015-01-01

    The functional relevance of regulating proteins is often limited to specific binding sites such as the ends of microtubules or actin-filaments. A localization of proteins on these functional sites is of great importance. We present a quantitative theory for a diffusion and capture process, where proteins diffuse on a filament and stop diffusing when reaching the filament's end. It is found that end-association after one-dimensional diffusion is the main source for tip-localization of such proteins. As a consequence, diffusion and capture is highly efficient in enhancing the reaction velocity of enzymatic reactions, where proteins and filament ends are to each other as enzyme and substrate. We show that the reaction velocity can effectively be described within a Michaelis-Menten framework. Together one-dimensional diffusion and capture beats the (three-dimensional) Smoluchowski diffusion limit for the rate of protein association to filament ends.

  5. Selective gas capture via kinetic trapping

    CERN Document Server

    Kundu, Joyjit; Prendergast, David; Whitelam, Stephen

    2016-01-01

    Conventional approaches to the capture of CO_2 by metal-organic frameworks focus on equilibrium conditions, and frameworks that contain little CO_2 in equilibrium are often rejected as carbon-capture materials. Here we use a statistical mechanical model, parameterized by quantum mechanical data, to suggest that metal-organic frameworks can be used to separate CO_2 from a typical flue gas mixture when used under {\\em nonequilibrium} conditions. The origin of this selectivity is an emergent gas-separation mechanism that results from the acquisition by different gas types of different mobilities within a crowded framework. The resulting distribution of gas types within the framework is in general spatially and dynamically heterogeneous. Our results suggest that relaxing the requirement of equilibrium can substantially increase the parameter space of conditions and materials for which selective gas capture can be effected.

  6. Inertial capture in flow through porous media

    Science.gov (United States)

    Andrade, J. S., Jr.; Araújo, A. D.; Vasconcelos, T. F.; Herrmann, H. J.

    2008-08-01

    We investigate through numerical calculation of non-Brownian particles transported by a fluid in a porous medium, the influence of geometry and inertial effects on the capture efficiency of the solid matrix. In the case of a periodic array of cylinders and under the action of gravity, our results reveal that δ ˜ St, where δ is the particle capture efficiency, and St is the Stokes number. In the absence of gravity, we observe a typical second order transition between non-trapping and trapping of particles that can be expressed as δ ˜ ( St - St c ) α , with an exponent α ≈ 0.5, where St c is the critical Stokes number. We also perform simulations for flow through a random porous structure and confirm that its capture behavior is consistent with the simple periodic model.

  7. Electron capture from coherent elliptic Rydberg states

    Energy Technology Data Exchange (ETDEWEB)

    Day, J.C.; DePaola, B.D.; Ehrenreich, T.; Hansen, S.B.; Horsdal-Pedersen, E.; Leontiev, Y.; Mogensen, K.S. [Institute of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark)

    1997-12-01

    Experimental relative cross sections for electron capture by singly charged ions (Na{sup +}) from coherent elliptic states of principal quantum number n=25 are presented. An interval of reduced impact velocities from about 1{endash}2 is covered. Absolute reaction cross sections could not be determined precisely, but the eccentricity of the coherent elliptic states and their orientation relative to the ion-impact velocity were varied to expose the dependence of the electron-capture process on the initial motion of the electron. The dependencies on eccentricity and orientation are generally strong and they vary sharply with impact velocity. Qualitatively, the observations agree fairly well with classical trajectory Monte Carlo (CTMC) calculations, as expected for the large quantum numbers involved, but significant deviations of a systematic nature do remain, showing that some aspects of the capture reactions studied are described poorly by classical physics as represented by the CTMC model. {copyright} {ital 1997} {ital The American Physical Society}

  8. Capturing Creativity in Collaborative Design Processes

    DEFF Research Database (Denmark)

    Pedersen, J. U.; Onarheim, Balder

    2015-01-01

    This paper is concerned with the question of how we can capture creativity in collaborative design processes consisting of two or more individuals collaborating in the process of producing innovative outputs. Traditionally, methods for detecting creativity are focused on the cognitive and mental...... processes of the solitary individual. A new framework for studying and capturing creativity, which goes beyond individual cognitive processes by examining the applied creative process of individuals in context, is proposed. We apply a context sensitive framework that embraces the creative collaborative...... process and present the process in a visual overview with the use of a visual language of symbols. The framework, entitled C3, Capturing Creativity in Context, is presented and subsequently evaluated based on a pilot study utilizing C3. Here it was found that the framework was particularly useful...

  9. CAPTURE OF TROJANS BY JUMPING JUPITER

    Energy Technology Data Exchange (ETDEWEB)

    Nesvorny, David [Department of Space Studies, Southwest Research Institute, 1050 Walnut St., Suite 300, Boulder, CO 80302 (United States); Vokrouhlicky, David [Institute of Astronomy, Charles University, V Holesovickach 2, 180 00 Prague 8 (Czech Republic); Morbidelli, Alessandro [Departement Cassiopee, University of Nice, CNRS, Observatoire de la Cote d' Azur, Nice, F-06304 (France)

    2013-05-01

    Jupiter Trojans are thought to be survivors of a much larger population of planetesimals that existed in the planetary region when planets formed. They can provide important constraints on the mass and properties of the planetesimal disk, and its dispersal during planet migration. Here, we tested a possibility that the Trojans were captured during the early dynamical instability among the outer planets (aka the Nice model), when the semimajor axis of Jupiter was changing as a result of scattering encounters with an ice giant. The capture occurs in this model when Jupiter's orbit and its Lagrange points become radially displaced in a scattering event and fall into a region populated by planetesimals (that previously evolved from their natal transplanetary disk to {approx}5 AU during the instability). Our numerical simulations of the new capture model, hereafter jump capture, satisfactorily reproduce the orbital distribution of the Trojans and their total mass. The jump capture is potentially capable of explaining the observed asymmetry in the number of leading and trailing Trojans. We find that the capture probability is (6-8) Multiplication-Sign 10{sup -7} for each particle in the original transplanetary disk, implying that the disk contained (3-4) Multiplication-Sign 10{sup 7} planetesimals with absolute magnitude H < 9 (corresponding to diameter D = 80 km for a 7% albedo). The disk mass inferred from this work, M{sub disk} {approx} 14-28 M{sub Earth}, is consistent with the mass deduced from recent dynamical simulations of the planetary instability.

  10. Thermal Propulsion Capture System Heat Exchanger Design

    Science.gov (United States)

    Richard, Evan M.

    2016-01-01

    One of the biggest challenges of manned spaceflight beyond low earth orbit and the moon is harmful radiation that astronauts would be exposed to on their long journey to Mars and further destinations. Using nuclear energy has the potential to be a more effective means of propulsion compared to traditional chemical engines (higher specific impulse). An upper stage nuclear engine would allow astronauts to reach their destination faster and more fuel efficiently. Testing these engines poses engineering challenges due to the need to totally capture the engine exhaust. The Thermal Propulsion Capture System is a concept for cost effectively and safely testing Nuclear Thermal Engines. Nominally, hydrogen exhausted from the engine is not radioactive, but is treated as such in case of fuel element failure. The Thermal Propulsion Capture System involves injecting liquid oxygen to convert the hydrogen exhaust into steam. The steam is then cooled and condensed into liquid water to allow for storage. The Thermal Propulsion Capture System concept for ground testing of a nuclear powered engine involves capturing the engine exhaust to be cooled and condensed before being stored. The hydrogen exhaust is injected with liquid oxygen and burned to form steam. That steam must be cooled to saturation temperatures before being condensed into liquid water. A crossflow heat exchanger using water as a working fluid will be designed to accomplish this goal. Design a cross flow heat exchanger for the Thermal Propulsion Capture System testing which: Eliminates the need for water injection cooling, Cools steam from 5800 F to saturation temperature, and Is efficient and minimizes water requirement.

  11. Experimental investigation of flow induced dust acoustic shock waves in a complex plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jaiswal, S., E-mail: surabhijaiswal73@gmail.com; Bandyopadhyay, P.; Sen, A. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)

    2016-08-15

    We report on experimental observations of flow induced large amplitude dust-acoustic shock waves in a complex plasma. The experiments have been carried out in a Π shaped direct current glow discharge experimental device using kaolin particles as the dust component in a background of Argon plasma. A strong supersonic flow of the dust fluid is induced by adjusting the pumping speed and neutral gas flow into the device. An isolated copper wire mounted on the cathode acts as a potential barrier to the flow of dust particles. A sudden change in the gas flow rate is used to trigger the onset of high velocity dust acoustic shocks whose dynamics are captured by fast video pictures of the evolving structures. The physical characteristics of these shocks are delineated through a parametric scan of their dynamical properties over a range of flow speeds and potential hill heights. The observed evolution of the shock waves and their propagation characteristics are found to compare well with model numerical results based on a modified Korteweg-de-Vries-Burgers type equation.

  12. Experimental investigation of flow induced dust acoustic shock waves in a complex plasma

    CERN Document Server

    Jaiswal, S; Sen, A

    2016-01-01

    We report on experimental observations of flow induced large amplitude dust-acoustic shock waves (DASW) in a complex plasma. The experiments have been carried out in a $\\Pi$ shaped DC glow discharge experimental device using kaolin particles as the dust component in a background of Argon plasma. A strong supersonic flow of the dust fluid is induced by adjusting the pumping speed and neutral gas flow into the device. An isolated copper wire mounted on the cathode acts as a potential barrier to the flow of dust particles. A sudden change of gas flow rate is used to trigger the onset of high velocity dust acoustic shocks whose dynamics are captured by fast video pictures of the evolving structures. The physical characteristics of these shocks are delineated through a parametric scan of their dynamical properties over a range of flow speeds and potential hill heights. The observed evolution of the shock waves and their propagation characteristics are found to compare well with model numerical results based on a m...

  13. Sensitivity of shock boundary-layer interactions to weak geometric perturbations

    Science.gov (United States)

    Kim, Ji Hoon; Eaton, John K.

    2016-11-01

    Shock-boundary layer interactions can be sensitive to small changes in the inlet flow and boundary conditions. Robust computational models must capture this sensitivity, and validation of such models requires a suitable experimental database with well-defined inlet and boundary conditions. To that end, the purpose of this experiment is to systematically document the effects of small geometric perturbations on a SBLI flow to investigate the flow physics and establish an experimental dataset tailored for CFD validation. The facility used is a Mach 2.1, continuous operation wind tunnel. The SBLI is generated using a compression wedge; the region of interest is the resulting reflected shock SBLI. The geometric perturbations, which are small spanwise rectangular prisms, are introduced ahead of the compression ramp on the opposite wall. PIV is used to study the SBLI for 40 different perturbation geometries. Results show that the dominant effect of the perturbations is a global shift of the SBLI itself. In addition, the bumps introduce weaker shocks of varying strength and angles, depending on the bump height and location. Various scalar validation metrics, including a measure of shock unsteadiness, and their uncertainties are also computed to better facilitate CFD validation. Ji Hoon Kim is supported by an OTR Stanford Graduate Fellowship.

  14. Simulations of transonic shock-tube flow with a model micro-cylinder in the driver.

    Science.gov (United States)

    Liu, Yi; Kendall, Mark A F

    2007-02-01

    A unique hand-held needle-free powder injection system, using a transient shock-tube flow to deliver powder genes and drugs into human skin for a wide range of treatments, has been proposed. In the development of such devices, a strong non-linear phenomenon, possibly shock process instead of unsteady expansion waves, was observed in the driver portion of the shock-tube flow in the presence of a gas micro-cylinder. In this paper, we further investigate effects of a model micro-cylinder in the driver on the gas dynamics of a prototype clinical device numerically. To accurately simulate such complex shock-tube flows, an efficient numerical solver, MIFVS, is extended to incorporate with a transition-modified turbulence model. Comparison with experimental measurements shows that the extended MIFVS accurately predicts pressure traces in both laminar and turbulent regimes. The separation zone due to a strong non-linear process is properly captured via such transition-modified turbulence model. Numerical investigations and discoveries are presented and discussed.

  15. A variational multiscale finite element method for monolithic ALE computations of shock hydrodynamics using nodal elements

    Science.gov (United States)

    Zeng, X.; Scovazzi, G.

    2016-06-01

    We present a monolithic arbitrary Lagrangian-Eulerian (ALE) finite element method for computing highly transient flows with strong shocks. We use a variational multiscale (VMS) approach to stabilize a piecewise-linear Galerkin formulation of the equations of compressible flows, and an entropy artificial viscosity to capture strong solution discontinuities. Our work demonstrates the feasibility of VMS methods for highly transient shock flows, an area of research for which the VMS literature is extremely scarce. In addition, the proposed monolithic ALE method is an alternative to the more commonly used Lagrangian+remap methods, in which, at each time step, a Lagrangian computation is followed by mesh smoothing and remap (conservative solution interpolation). Lagrangian+remap methods are the methods of choice in shock hydrodynamics computations because they provide nearly optimal mesh resolution in proximity of shock fronts. However, Lagrangian+remap methods are not well suited for imposing inflow and outflow boundary conditions. These issues offer an additional motivation for the proposed approach, in which we first perform the mesh motion, and then the flow computations using the monolithic ALE framework. The proposed method is second-order accurate and stable, as demonstrated by extensive numerical examples in two and three space dimensions.

  16. Dynamic response and modeling of a carbon fiber— epoxy composite subject to shock loading

    Science.gov (United States)

    Alexander, C. S.; Key, C. T.; Schumacher, S. C.

    2013-12-01

    Unidirectional carbon fiber reinforced epoxy composite samples were tested to determine their response to one dimensional shock loading with the ultimate goal of developing a micromechanics based numerical model of the dynamic response. The material tested had high fiber content (62-68% by volume) and low porosity. Wave speeds for shocks traveling along the carbon fibers are significantly higher than for those traveling transverse to the fibers or through the bulk epoxy. As a result, the dynamic material response is dependent on the relative shock—fiber orientation; a complication that must be captured in the numerical models. Shocks traveling transverse to the fibers show an inelastic response consistent with the material constituent parts. Shocks traveling along the fiber direction travel faster and exhibit both elastic and plastic characteristics over the stress range tested; up to 15 GPa. Results presented detail the anisotropic material response, which is governed by different mechanisms along each of the two principle directions in the composite. Finally, numerical modeling of this response is described in detail and validated against the experimental data.

  17. Experimental demonstration of bow-shock instability and its numerical analysis

    Science.gov (United States)

    Kikuchi, Y.; Ohnishi, N.; Ohtani, K.

    2016-07-01

    An experimental demonstration was carried out in a ballistic range at high Mach numbers with the low specific heat ratio gas hydrofluorocarbon HFC-134a to observe the unstable bow-shock wave generated in front of supersonic blunt objects. The shadowgraph images obtained from the experiments showed instability characteristics, in which the disturbances grow and flow downstream and the wake flow appears wavy because of the shock oscillation. Moreover, the influence of the body shape and specific heat ratio on the instability was investigated for various experimental conditions. Furthermore, the observed features, such as wave structure and disturbance amplitude, were captured by numerical simulations, and it was demonstrated that computational fluid dynamics could effectively simulate the physical instability. In addition, it was deduced that the shock instability is induced by sound emissions from the edge of the object. This inference supports the dependence of the instability on the specific heat ratio and Mach number because the shock stand-off distance is affected by these parameters and limits the sound wave propagation.

  18. Shock Mechanism Analysis and Simulation of High-Power Hydraulic Shock Wave Simulator

    Directory of Open Access Journals (Sweden)

    Xiaoqiu Xu

    2017-01-01

    Full Text Available The simulation of regular shock wave (e.g., half-sine can be achieved by the traditional rubber shock simulator, but the practical high-power shock wave characterized by steep prepeak and gentle postpeak is hard to be realized by the same. To tackle this disadvantage, a novel high-power hydraulic shock wave simulator based on the live firing muzzle shock principle was proposed in the current work. The influence of the typical shock characteristic parameters on the shock force wave was investigated via both theoretical deduction and software simulation. According to the obtained data compared with the results, in fact, it can be concluded that the developed hydraulic shock wave simulator can be applied to simulate the real condition of the shocking system. Further, the similarity evaluation of shock wave simulation was achieved based on the curvature distance, and the results stated that the simulation method was reasonable and the structural optimization based on software simulation is also beneficial to the increase of efficiency. Finally, the combination of theoretical analysis and simulation for the development of artillery recoil tester is a comprehensive approach in the design and structure optimization of the recoil system.

  19. A Prognostic Model for Development of Profound Shock among Children Presenting with Dengue Shock Syndrome.

    Directory of Open Access Journals (Sweden)

    Phung Khanh Lam

    Full Text Available To identify risk factors and develop a prediction model for the development of profound and recurrent shock amongst children presenting with dengue shock syndrome (DSS.We analyzed data from a prospective cohort of children with DSS recruited at the Paediatric Intensive Care Unit of the Hospital for Tropical Disease in Ho Chi Minh City, Vietnam. The primary endpoint was "profound DSS", defined as ≥2 recurrent shock episodes (for subjects presenting in compensated shock, or ≥1 recurrent shock episodes (for subjects presenting initially with decompensated/hypotensive shock, and/or requirement for inotropic support. Recurrent shock was evaluated as a secondary endpoint. Risk factors were pre-defined clinical and laboratory variables collected at the time of presentation with shock. Prognostic model development was based on logistic regression and compared to several alternative approaches.The analysis population included 1207 children of whom 222 (18% progressed to "profound DSS" and 433 (36% had recurrent shock. Independent risk factors for both endpoints included younger age, earlier presentation, higher pulse rate, higher temperature, higher haematocrit and, for females, worse hemodynamic status at presentation. The final prognostic model for "profound DSS" showed acceptable discrimination (AUC=0.69 for internal validation and calibration and is presented as a simple score-chart.Several risk factors for development of profound or recurrent shock among children presenting with DSS were identified. The score-chart derived from the prognostic models should improve triage and management of children presenting with DSS in dengue-endemic areas.

  20. Universal High Order Subroutine with New Shock Detector for Shock Boundary Layer Interaction

    CERN Document Server

    Oliveria, M; Liu, X; Liu, C

    2014-01-01

    The goal of this work is to develop a new universal high order subroutine for shock boundary layer interaction. First, an effective shock/discontinuity detector has been developed.The detector has two steps.The first step is to check the ratio of the truncation errors on the coarse and fine grids and the second step is to check the local ratio of the left and right slopes. The currently popular shock/discontinuity detectors can detect shock, but mistake high frequency waves and critical points as shock and then damp the physically important high frequency waves.Preliminary results show the new shock/discontinuity detector is very delicate and can detect all shocks including strong, weak and oblique shocks or discontinuity in function and the first, second, and third order derivatives without artificial constants, but never mistake high frequency waves and critical points, expansion waves as shock. This will overcome the bottle neck problem with numerical simulation for the shock-boundary layer interaction, sh...